
OpenGL Performer™
Getting Started Guide
007-3560-003

CONTRIBUTORS
Written by George Eckel, Ken Jones, and Tammy Domeier
Illustrated by Dany Galgani, Chrystie Danzer, and Chris Wengelski
Edited by Susan Wilkening and Connie Boltz
Production by Karen Jacobson
Engineering contributions by the Performer Team, including Sharon Clay, Tom McReynolds, Don Hatch, Jenny Zhao, Remi Arnaud, Yair

Kurzion, Rob Mace, Marcin Romaszewicz, Allan Schaffer, Tom Flynn, Radomir Mech, Angus Dorbie, Paolo Farinelli, and Alexandre Naaman.

COPYRIGHT
© 1997, 2000, 2002 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein.
No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in
whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if acquired under an agreement with the USA government
or any contractor thereto, it is acquired as "commercial computer software" subject to the provisions of its applicable license agreement, as
specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b) 48 CFR 227-7202 of the DoD FAR Supplement; or
sections succeeding thereto. Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, InfiniteReality, IRIX, OpenGL, O2, Octane, and Onyx are registered trademarks of Silicon Graphics, Inc., and
Geometry Pipeline, GL, Graphics Library, InfiniteReality4, Inventor, IRIS GL, OpenGL Multipipe, OpenGL Optimizer, OpenGL Performer,
OpenGL Shader, OpenGL Volumizer, and Power Onyx are trademarks of Silicon Graphics, Inc.

Alias|Wavefront and Wavefront are trademarks of Alias|Wavefront, a division of Silicon Graphics Limited. Designer’s Workbench is a
trademark of Centric Software, Inc. MIPS, R4400, and R8000 are trademarks or registered trademarks of MIPS Technologies, Inc., used under
license by Silicon Graphics, Inc. OpenFlight is a registered trademark of Multigen. Motif is a registered trademark and OSF/Motif and the X
Window System are trademarks of The Open Group. Netscape is a trademark of Netscape Communications Corporation. DI-Guy is a trademark
of Boston Dynamics, Inc. Lightscape is a trademark of Autodesk, Inc. Linux is a registered trademark of Linus Torvolds. Weather Environment
Simulation Technology and WEST are trademarks of Southwest Research Institute. Microsoft, Windows, and Windows NT are registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. All other trademarks are the properties of their
respective owners.

Yosemite image copyright of Delphi International. DI-Guy image copyright of Bostom Dynamics Inc. Palace image copyright of Pinxi. Clouds
image copyright of SWRI. Ocean and Marine Effects Simulation image copyright of Paradigm Simulation Inc.

Cover Design By Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical Publications.

PATENT DISCLOSURE
Many of the techniques and methods disclosed in the Getting Started Guide are covered by patents held by Silicon Graphics including U.S.
Patent Nos. 5,051,737; 5,369,739; 5,438,654; 5,394,170; 5,528,737; 5,528,738; 5,581,680; 5,471,572 and patent applications pending.

New Features in This Guide

This revision of the guide documents OpenGL Performer 3.0, which has the following
features:

• New hardware support
- SGI Scalable Graphics Compositor
- InfiniteReality4

• New OS platforms
- Windows NT 4.0
- Windows 2000
- Windows XP

• Functional features
- Image-Based rendering using simplified 3D proxy geometry
- Other image-based rendering enhancements
- Occlusion culling using cull programs
- Cull helper processes (cull sidekick)
- New library libpfv, providing a feature-rich viewer

• Integration with other graphics toolkits
- OpenGL Multipipe SDK
- Direct integration with OpenGL Shader 3.0
- OpenGL Volumizer

• OpenFlight 15.7 support
007-3560-003 iii

Record of Revision

Version Description

001 1997
Original publication.

002 November 2000
Updated for the 2.4 version of OpenGL Performer.

003 December 2002
Updated for the 3.0 version of OpenGL Performer.
007-3560-003 v

Contents

New Features in This Guide. iii

Record of Revision . v

Figures . . xvii

Tables . xxi

About This Guide. . xxiii
What Is OpenGL Performer? xxiii
Why Use OpenGL Performer? xxiii
What You Should Know Before Reading This Guide xxiv
What This Guide Contains xxv

Part One: Overview of OpenGL Performer xxv
Part Two: Programming with OpenGL Performer xxv

Conventions . xxvi
Internet and Hardcopy Reading for the OpenGL Performer Series xxvii
Reader Comments . . xxvii

PART I Overview of OpenGL Performer

1. Getting Acquainted with OpenGL Performer 3
Installing the Software . 3
007-3560-003 vii

Contents
Exploring the OpenGL Performer Sample Scenes with Perfly 3
Locations of Perfly and Example Source Code 4
Starting and Quitting Perfly 4
Basic Perfly Controls . . 5
Looking Around . 5
Approaching the Building 5
More Controls . . 6
Other Motion Models . . 7
The Use of Instances . . 9

Loading Databases into OpenGL Performer 9
Going Beyond Visual Simulation 10

2. OpenGL Performer Basics . 13
OpenGL Performer Applications 13
Library Structure of OpenGL Performer. 13

Library Features . 16
Overview of the OpenGL Performer Library Structure 19

libpf—Visual Simulation Library 19
 libpr—High-Performance Rendering Library 23
 libpfdu—Geometry Builder Library 26
libpfv—A Graphical Viewer Library 29
libpfmpk—A Configuration-Import Library 30

X and IRIS IM . 30
Porting from IRIS GL to OpenGL. 31
Survey of Visual Simulation Techniques 31

Low-Latency Image Generation 33
Consistent Frame Rates . 34
Rich Scene Content . 35
Texture Mapping . . 37
Character Animation . . 38
Database Construction . 40
viii 007-3560-003

Contents
PART II Programming with OpenGL Performer

3. OpenGL Performer Programming Interface 45
General Naming Conventions 45

Prefixes. . 45
Header Files . 46
Naming in C and C++ . 46
Abbreviations . . 47
Macros, Tokens, and Enums. 47

Class API . 47
Object Creation . 47
Set Routines . 48
Get Routines . 48
Action Routines . 49
Enable and Disable of Modes 49
Mode, Attribute, or Value 49

Base Classes . 50
Inheritance Graph. . 51
Libpr and Libpf Objects 53
User Data . . 53
pfDelete() and Reference Counting 54
Copying Objects with pfCopy() 58
Printing Objects with pfPrint() 58
Determining Object Type 60

4. Introduction to OpenGL Performer Concepts 63
Scene-to-Screen Path . . 63

Scene Graph . 64
Channels . 66
007-3560-003 ix

Contents
Parts of a Performer Application 70
Initializing Performer . . 71
Creating the Pipe, Channel, and Pipe Window 71
Loading the Scene Graph 72
Positioning the Channel 72
Creating the Simulation Loop 73

Inputting and Reading User Events 74
Implementing User Input with Window Events 74
Retrieving User Events . 75

5. Creating a Display with pfChannel 79
Creating and Configuring a pfChannel 81

Acquiring a pfPipe . 81
Creating a pfChannel Rendered by a pfPipe 82
Creating and Configuring a pfPipeWindow 82
Attaching a pfScene to the pfChannel 82
Configuring a Viewport for the pfChannel 82
Creating a Background for a pfChannel 83

Initializing the pfChannel View 83
Bounding Volumes . 85
Defining the Viewing Frustum 85

Channel Callbacks . . 89
Using Passthrough Data 89
Channel Callback Example 90

Using Multiple Channels . . 91
Grouping Channels . 92
Choosing the Attributes to Share 92
Using View Offsets . 94

Multiple Pipes . . 95
Setting the Multiprocessing Configuration 96
Creating Multiple pfPipes 97
x 007-3560-003

Contents
6. Creating Scene Graphs . 99
What Is a Node? . 99

Node Attributes . .100
Scene Graph Nodes .101

Group Nodes . .101
Leaf Nodes. .102

Creating a Scene Graph . .103
Creating and Attaching the pfScene Node103
Adding Nodes in a Scene Graph 103
Removing Nodes from a Scene Graph 103
Arrangement of Nodes 104

Loading a Scene Graph . .104
Finding Scene Graph Files 106

Saving a Scene Graph . .107
Scene Graph Traversals . .107

Pipelined Traversals . .107
Traversal Order . .109

Customizing OpenGL Performer Traversals 110
Setting Up Node Callbacks 110
Sample Customized Traversals 112

7. Creating Geometry with pfGeoSet115
pfGeoSet Overview .115
Creating a pfGeoSet . .116

Creating a pfGeoSet Object 116
Setting the Primitive Type 117
Setting the Number of Primitives 118
Setting the Number of Vertices Per Stripped Primitive 118

Attributes of pfGeoSet Primitives 119
Setting the Attributes . .120
Attribute Bindings .121
Indexed Arrays .122
Packed Attributes . .124
Drawing and Printing a pfGeoSet 125
007-3560-003 xi

Contents
Placing Geometry in a Scene Graph 126
Creating Common Geometric Objects 127

Utilities to Create Common Geometric Objects 128

8. Specifying the Appearance of Geometry with pfState and pfGeoState 129
Setting the Graphics State 129

Global State. . 129
Defining a pfGeoState 130
Setting Modal pfGeoState Values 132
Setting pfGeoState Attributes 135

Using Textures . . 136
Enabling Texture Mapping 137
Creating a Texture Object. 137
Loading an Image as a Texture 137
Specifying Texture Attribute 138
Specifying Texture Formats 139
Setting the Texture Environment 140
Setting the Texture Coordinates 140

Specifying the Material . 141
Specifying the Color and Shininess 142

Specifying Lighting . 143

9. Placing Geometry in a Scene 147
World Space and Object Space 147

Transformation Node Isolation 148
World Space . 148

Transformation Nodes . . 149
Transformation Node Functionality 149
Ordering Transformation Nodes in the Scene Graph 149

Using pfFCS. . 150
pfFCS, pfFlux, and pfEngine Example 151
xii 007-3560-003

Contents
Using DCS Nodes . .152
Creating a DCS Node. .152
Setting the DCS Node .152
Optimizing the Use of DCS Nodes 153

Using SCS Nodes . .154
Creating a SCS Node . .154
Setting the SCS Node . .154
Optimizing SCS Transformations 155

10. Controlling Frame Rate . .159
Double Buffering . .159
Specifying a Target Frame Rate 160

pfFrameRate . .161
pfFieldRate .161

Frame Synchronization . .162
Phase Control . .162

Adjusting the Frame Rate Automatically 163
Stress Filters . .164
Dynamic Video Resolution 164

11. Multiprocessing . .167
OpenGL Performer Stages .168

Optional, Asynchronous Stages168
Benefits of Multiprocessing 169
Shared Memory .170
Printing Process States .171
Setting Up Multiprocessing 172

Multiprocessing Models 172
Common Multiprocessing Models 174
Default Processing Models 175
Choosing a Multiprocessing Model. 175

Automatic Multiprocessing 176

12. Database Paging . .177
Anticipating Paging . .177
007-3560-003 xiii

Contents
Database Process . 178
Handling Memory for the DBASE Process 179
Changing the Scene Graph 179

13. Intersection Testing . 185
Creating an ISECT Process 186
Constructing a Segment Set for pfNodeIsectSegs() 187

Setting the Mode . . 188
Intersection Masks. . 188
Creating the Segment Array 189
The pfSegSet Bound . 189

Testing for Intersections . 189
Intersection Information 190

14. Creating a User Interface 195
Traveling through a Scene. 195

Creating a Transformer 196
Initializing the Transformer 197
Setting Up Transformer Input and Output 198
Updating the Channel. 198
Scaling the Motion. . 199

Example of Implementing User Interaction 199

15. Optimizing Performance 207
General Performance Tips 207

Displaying Statistics . 208
Rendering the Statistics Tool 209
Specifying the Statistics to Gather 210
Reducing Bottlenecks 210

Culling Unseen Shapes . 212
CULL Process . . 212
Face Culling . 214
Rendering Slices of Shapes 215

Maintaining Frame Rate Using DVR 215
DVR Scaling . 216
xiv 007-3560-003

Contents
Level of Detail Reduced for Performance 217
Choosing a Child Node Based on Range 217
Transitioning Between Levels of Detail 219
Customizing LOD Actions 221
Scaling LOD Ranges . .221
Overriding Stress Effects222
Selecting LODs Based on Viewport. 222

Reducing System Stress . .223
Setting the Stress Filter 223

Optimizing pfGeoSet Performance 224
Optimizing Graphics State Changes. 225

Sharing Common pfGeoStates 225
Computing the Optimal, Global Graphics State 225

Optimizing Texture Handling 226
Optimizing File Loading . .226

pfconv . .226
pficonv . .227

A. Building a Visual Simulation Application Using libpf229
Overview . .229
Setting Up the Basic Elements 235

Using OpenGL Performer Header Files 235
Initializing and Configuring OpenGL Performer235
Setting Up a Pipe . .236
Frame Rate and Synchronization 238
Setting Up a Channel . .238
Creating and Loading a Scene Graph 239
Simulation Loop . .240

Performance .241
007-3560-003 xv

Contents
Compiling and Linking OpenGL Performer Applications. 241
Required Libraries . . 241
Dynamic Shared Objects (DSOs) 243
Debug and Static Libraries 243
Using Compiler Flags 244
MIPS-3, MIPS-4, and 64-Bit Compilation 244
Using OpenGL Performer From C++ 245

B. Building a Visual Simulation Application Using libpfv. 247
Overview . 247
The Simplest pfvViewer Program 248
Adding Interaction to a pfvViewer Program 249
Reading XML Configuration Files 250
Module Scoping, Multiple Worlds and Multiple Views 254
Extending a pfvViewer—Writing Custom Modules 257
 Extending a pfvViewer—Module Entry Points 259
Picking, Selection, and Interaction 260
More Sample Programs, Configuration Files, and Source Code 264

C. Image Gallery . . 267

Index . . 289
xvi 007-3560-003

Figures

Figure 1-1 Section of the New Jerusalem City Hall 6
Figure 2-1 OpenGL Performer Library Hierarchy 15
Figure 2-2 Parallel Pipeline Processes. 20
Figure 2-3 Relationship of OpenGL Performer to Database Formats 27
Figure 3-1 Partial Inheritance Graph of OpenGL Performer Data Types . . . 52
Figure 4-1 Data-to-Display 64
Figure 4-2 Scene Graph Hierarchy 65
Figure 4-3 Camera with Viewing Volume 67
Figure 4-4 Multiprocessing Frames in the Pipe 68
Figure 4-5 Simulation Loop 73
Figure 5-1 Multiple Windows, Multiple Channels 80
Figure 5-2 Bounding Sphere 84
Figure 5-3 Viewing Frustum 86
Figure 5-4 Heading, Pitch, and Roll Values 88
Figure 5-5 Multiple Channels 91
Figure 5-6 Axes Orientation in Performer 95
Figure 5-7 Pipe Stages 96
Figure 6-1 Multiple Parent Nodes. 101
Figure 6-2 Loading Scene Graphs105
Figure 6-3 Processes Acting on Scene Graph. 109
Figure 6-4 Scene Graph Traversal Flow 110
Figure 7-1 Primitives 117
Figure 7-2 Arrays of Stripped Primitives120
Figure 7-3 Indexing Arrays 123
Figure 7-4 Deciding whether to Index Attributes 124
Figure 7-5 Geometry Objects 126
Figure 8-1 Applying Textures to Geometries 136
007-3560-003 xvii

Figures
Figure 8-2 Texture Coordinates 141
Figure 8-3 Light Characteristics 142
Figure 9-1 Shared Space. 148
Figure 9-2 Order of Transformations 150
Figure 9-3 pfEngine Drives a pfFlux Node Animating a pfFCS Node . . . 151
Figure 9-4 pfFlatten 156
Figure 9-5 pfdCleanTree 157
Figure 10-1 Double Buffering 160
Figure 10-2 Frame Rate 161
Figure 10-3 Phase Control over Three Frames 163
Figure 11-1 OpenGL Performer Stages 168
Figure 11-2 Multiprocessing in the Graphics Pipeline 170
Figure 11-3 Shared Memory Arena 171
Figure 11-4 PFMP_CULLoDRAW 174
Figure 11-5 Four Common Multiprocessing Models 174
Figure 12-1 Memory Pages 178
Figure 12-2 Creating the Buffer and Changes 180
Figure 12-3 Linking and Deleting Nodes 182
Figure 12-4 Merging Scene Graph Changes 183
Figure 13-1 Approximating a Shape with Segments 185
Figure 13-2 Hits Array 190
Figure 14-1 Shared Memory Arena 197
Figure 15-1 Statistics Display 208
Figure 15-2 Various Statistical Modes 209
Figure 15-3 Culling Process 213
Figure 15-4 Real Size of Viewport Rendered under Increasing Stress . . . 216
Figure 15-5 pfLOD Ranges 219
Figure C-1 Simulated View of an Atrium 267
Figure C-2 Another Simulated View of the Atrium 268
Figure C-3 Simulated View of a Castle. 269
Figure C-4 Simulated Hallway View 270
Figure C-5 Simulated Hotel Lobby 271
Figure C-6 Simulated Waiting Room 272
xviii 007-3560-003

Figures
Figure C-7 Simulated Conference Room 273
Figure C-8 Parliament Stairway 274
Figure C-9 Unity Temple Interior 275
Figure C-10 Yosemite276
Figure C-11 DI-Guy 277
Figure C-12 Palace 278
Figure C-13 Seattle-Tacoma International Airport 279
Figure C-14 Hasparen 280
Figure C-15 Clouds 281
Figure C-16 Ocean and Marine Effects Simulation 282
Figure C-17 Night Image. 283
007-3560-003 xix

Tables

Table 2-1 OpenGL Performer Libraries 14
Table 3-1 Routines that Modify libpr Object Reference Counts 55
Table 4-1 Traversals Launched 69
Table 5-1 pfChannel Attributes 93
Table 6-1 Examples of Node Fields 100
Table 6-2 Supported Scene Graph File Formats 106
Table 6-3 General User Traversals 112
Table 7-1 Possible Bindings Per Attribute Type 122
Table 7-2 Common Geometric Objects 128
Table 8-1 Graphic States 132
Table 8-2 Attribute pfGeoState Values 135
Table 11-1 Multiprocessing Tokens 172
Table 11-2 Default Multiprocessing Models 175
Table 13-1 Segment Set Modes. 188
Table 13-2 Hit Information191
Table 15-1 Statistics Class Table 210
007-3560-003 xxi

About This Guide

Welcome to the OpenGL Performer application development environment. OpenGL
Performer provides a programming interface (with ANSI C and C++ bindings) for
creating real-time graphics applications and offers high-performance, multiprocessed
rendering in an easy-to-use 3D graphics toolkit. OpenGL Performer interfaces with the
OpenGL graphics library; this library combined with the IRIX, Linux, or MicroSoft
Windows (Windows 2000, Windows NT, or Windows XP) operating system forms the
foundation of a powerful suite of tools and features for creating real-time 3D graphics
applications.

This guide introduces the most important concepts and classes in the Performer libraries.
A full explanation of all OpenGL Performer classes can be found in the OpenGL Performer
Programmer’s Guide. Use this guide to quick-start your programming using the OpenGL
Performer application programming interface (API.)

What Is OpenGL Performer?

OpenGL Performer is an extensible software toolkit for creating real-time 3D graphics.
Typical applications are in the fields of visual simulation, entertainment, virtual reality,
broadcast video, and computer aided design. OpenGL Performer provides a flexible,
intuitive, toolkit-based solution for developers who want to optimize application
performance.

Why Use OpenGL Performer?

Use OpenGL Performer to:

• Build visual simulation applications and virtual reality environments

• Render on-air broadcast and virtual set applications quickly

• View large simulation-based design tasks
007-3560-003 xxiii

About This Guide
• Maximize the graphics performance of any application

Applications that require real-time visuals, free-running or fixed-frame-rate display, or
high-performance rendering can benefit from using OpenGL Performer.

OpenGL Performer drastically reduces the work required to tune your application’s
performance. General optimizations include:

• Use of highly tuned routines for all performance-critical operations

• Reorganization of graphics data and operations for faster rendering

OpenGL Performer also handles SGI architecture-specific tuning issues for you by
selecting the best rendering and multiprocessing modes at run time, based on the system
configuration.

OpenGL Performer is an integral part of SGI visual simulation systems. It provides the
interface to advanced features available exclusively with the SGI product line, such as the
InfiniteReality, Silicon Graphics Octane, and Silicon Graphics O2, VPro, and Impact
graphics subsystems. OpenGL Performer provides the features to develop a
sophisticated image generation system in a powerful, flexible, and extensible software
environment. OpenGL Performer is also tuned to operate efficiently on a variety of
graphics platforms; you do not need the hardware sophistication of InfiniteReality
graphics to benefit from OpenGL Performer.

What You Should Know Before Reading This Guide

To use OpenGL Performer, you should be comfortable programming in ANSI C or C++.
You should have a fairly good grasp of graphics programming concepts; terms such as
“texture map” and “homogeneous coordinate” are not explained in this guide. It helps if
you are familiar with the OpenGL graphics libraries.

On the other hand, though you need to know a little about graphics, you do not have to
be a seasoned C (or C++) programmer, a graphics hardware guru, or a graphics library
virtuoso to use OpenGL Performer. OpenGL Performer puts the engineering expertise
behind SGI hardware and software at your fingertips so that you can minimize your
application development time while maximizing the application’s performance and
visual impact.
xxiv 007-3560-003

About This Guide
What This Guide Contains

This guide is divided into the following parts, chapters, and appendices: Part One is an
overview of OpenGL Performer features; Part Two is a programming overview. For more
detailed programming instructions, see the OpenGL Programmer’s Guide. If your interest
is in programming only, skip to Part Two.

Part One: Overview of OpenGL Performer

• Chapter 1, “Getting Acquainted with OpenGL Performer,” provides a hands-on
example of an OpenGL Performer application, Perfly, to introduce you to the
features of OpenGL Performer.

• Chapter 2, “OpenGL Performer Basics,” provides an introduction to OpenGL
Performer, including a survey of visual simulation techniques, descriptions of
features and libraries, and a discussion of some of the specific details of OpenGL
Performer structure and use.

Part Two: Programming with OpenGL Performer

• Chapter 3, “OpenGL Performer Programming Interface,” describes the
fundamental ideas behind the OpenGL Performer programming interface.

• Chapter 4, “Introduction to OpenGL Performer Concepts,” describes the basic
classes that implement the database-to-display pipeline.

• Chapter 5, “Creating a Display with pfChannel,” discusses many of the important
classes that constitute the process of taking data from a scene graph database and
rendering it on a display system.

• Chapter 6, “Creating Scene Graphs,” describes how to create, change, load, and
save scene graphs.

• Chapter 7, “Creating Geometry with pfGeoSet,” describes how to create surfaces
and geometric objects.

• Chapter 8, “Specifying the Appearance of Geometry with pfState and pfGeoState,”
describes how to define the appearance of geometry.

• Chapter 9, “Placing Geometry in a Scene,” describes how to reorient and scale
geometry.

• Chapter 10, “Controlling Frame Rate,” describes how to control the frame rate.
007-3560-003 xxv

About This Guide
• Chapter 11, “Multiprocessing,” describes how to use multiprocessing.

• Chapter 12, “Database Paging,” describes how to page the database efficiently.

• Chapter 13, “Intersection Testing,” describes how to check for intersections.

• Chapter 14, “Creating a User Interface,” describes how to create a user interface.

• Chapter 15, “Optimizing Performance,” describes how to optimize an application.

• Appendix A, “Building a Visual Simulation Application Using libpf” follows the
development of a skeleton application program that introduces you to the basic
concepts involved in creating a visual simulation application with libpf.

• Appendix B, “Building a Visual Simulation Application Using libpfv” describes
how to use the library libpfv to build an application using a graphical viewer.

• Appendix C "Image Gallery," contains some sample images created by using
OpenGL Performer to display various scene databases.

These chapters are followed by a glossary and an index.

Conventions

This guide uses the following typographical conventions:

Bold Used for function names with parentheses appended to the name. Also,
bold lowercase letters represent vectors, and bold uppercase letters
denote matrices.

Italics Indicates variables and book titles.

Fixed-width Used for filenames, operating system command names, command-line
option flags, code examples, and system output.

Bold Fixed-width

Indicates user input, such as items you type in from the keyboard.

Note that in some cases it is convenient to refer to a group of similarly named OpenGL
Performer functions by a single name; in such cases an asterisk is used to indicate all the
functions whose names start the same way. For instance, pfNew*() refers to all functions
whose names begin with “pfNew”: pfNewChan(), pfNewDCS(), pfNewESky(),
pfNewGeode(), and so on.
xxvi 007-3560-003

About This Guide
All code examples for IRIX and Linux are available in both C and C++ forms in the source
directory /usr/share/Performer/src/pguide; on Windows the examples can be
found in %PFROOT%/Src/pguide.

Internet and Hardcopy Reading for the OpenGL Performer Series

The OpenGL Performer series include the following in printed and online versions:

• OpenGL Performer Programmer’s Guide

• IRIX, Linux, or WindowsOpenGL Performer Getting Started Guide (this book)

These and all other SGI documents are available online at the following URL:

http://techpubs.sgi.com

For general information about OpenGL Performer, use the following URL:

http://www.sgi.com/software/performer

The info-performer mailing list provides a forum for discussion of
OpenGL Performer including technical and nontechnical issues. Subscription requests
should be sent to info-performer-request@sgi.com. Much like the
comp.sys.sgi.* newsgroups on the Internet, it is not an official support channel but
is monitored by several interested SGI employees familiar with the toolkit. The
OpenGL Performer mailing list archives are located at the following URL:

http://oss.sgi.com/projects/performer/mail/info-performer/

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number is located at the bottom of each
page.)

You can contact us in any of the following ways:

• Send e-mail to the following address:

techpubs@sgi.com
007-3560-003 xxvii

About This Guide
• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://techpubs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.
xxviii 007-3560-003

PART ONE

Overview of OpenGL Performer I
Chapter 1, “Getting Acquainted with OpenGL Performer.”

Chapter 2, “OpenGL Performer Basics.”

Chapter 1

1. Getting Acquainted with OpenGL Performer

This chapter provides a hands-on example of an OpenGL Performer application, Perfly,
to introduce you to the features of OpenGL Performer. If you are already familiar with
OpenGL Performer or visual simulation in general, you might like to skip to the
overview in Chapter 2, “OpenGL Performer Basics.”

Installing the Software

Follow the instructions in the OpenGL Performer release notes to install the software.
This process places the appropriate libraries, header files, sample databases, man pages,
online books, and demonstration programs on your system.

Note: For the IRIX operating system, use grelnotes to read the release notes. For the
Linux operating system, the release notes are located in /usr/doc/performer-3.0.
The release notes are located in %PFROOT%/Doc/performer-3.0 for Windows
systems.

Exploring the OpenGL Performer Sample Scenes with Perfly

This section introduces you to basic OpenGL Performer functionality through the Perfly
demo application. Perfly is a basic visual simulation application that can load, store, and
display scene databases in many common formats. Using the following subsections, this
section describes how to use Perfly to look at several sample databases provided with
OpenGL Performer:

• “Locations of Perfly and Example Source Code” on page 4

• “Starting and Quitting Perfly” on page 4

• “Basic Perfly Controls” on page 5
007-3560-003 3

1: Getting Acquainted with OpenGL Performer
• “Looking Around” on page 5

• “Approaching the Building” on page 5

• “More Controls” on page 6

• “Other Motion Models” on page 7

• “The Use of Instances” on page 9

Locations of Perfly and Example Source Code

The Perfly application is the sample OpenGL Performer application included with the
installation. For the IRIX operating system, it is installed in /usr/sbin. For the Linux
operating system, it is installed in /usr/X11R6/bin.On Windows systems, you can
find Perfly in the directory %PFROOT%/Bin.

For IRIX and Linux systems, source code for Perfly is provided in
/usr/share/Performer/src/sample/C in the perfly and common directories so
that you can incorporate parts of these programs into your own applications. A C++
version can be found in the /usr/share/Performer/src/sample/C++ directory.
On Windows systems, these locations are %PFROOT%/Src/sample/C and
%PFROOT%/Src/sample/C++, respectively.

The Perfly demo is a good demonstration of OpenGL Performer in action because it is a
complete application. It is, however, a large and complex piece of code. A better place to
start exploring programming with OpenGL Performer is the sample code provided in
/usr/share/Performer/src/sample/pguide. On Windows systems, this is
located in %PFROOT%/Src/pguide. Under this directory, you can find examples for
programming many of the features available in each of the libraries that make up
OpenGL Performer, using either C or C++. Not all example programs appear in both
directories, so you will want to look at both the C and C++ directories.

Starting and Quitting Perfly

To launch Perfly, enter the following:

CHIEF% perfly -d chamber.0.lsa

The Perfly program allows several motion models; the –d on the command line tells the
program to start in the Drive model, which provides an easy way to drive or walk
4 007-3560-003

Exploring the OpenGL Performer Sample Scenes with Perfly
through a scene while maintaining a fixed height above the ground. A command-line
entry of perfly –h displays a list of the command-line options.

When you want to quit Perfly, either press the Esc key or click the Quit button on the
Perfly graphical user interface (GUI).

Basic Perfly Controls

The Perfly demo provides a GUI with which you can control many of the visual
simulation features that are described in this guide, such as time-of-day selection, haze
density, and so on. These options all default to reasonable values; so, you do not need to
learn about them before using Perfly.

You can operate the control panel using the mouse buttons and the keyboard. Many
other keys on the keyboard are active and can be used to control Perfly even when the
control panel is not displayed. The perfly man page contains a list of these keys
sequences and their effects as well as details on motion models.

Looking Around

Look around the scene using the mouse. First, place the cursor in the center of the
simulation window. Now depress the middle mouse button and move the mouse to the
left or right to turn in place; you will continue to pivot until you place the cursor back in
the center of the screen.

Do not worry if you inadvertently start moving around, lose sight of the building, or
otherwise lose position or control. Just move the cursor into the control panel area and
click the Reset All button on the control panel to get back to the original setup.

Approaching the Building

To approach the City Hall model, turn until you are facing it (if you are not already facing
it) and then center the mouse in the screen. Depress the left mouse button briefly to start
accelerating forward. When you release the button, you will continue gliding forward at
constant speed and can hold down the middle mouse button to steer. The Perfly
application shows you how the basic visual simulation tools work. This example uses a
section of the New Jerusalem City Hall (see Figure 1-1).
007-3560-003 5

1: Getting Acquainted with OpenGL Performer
Figure 1-1 Section of the New Jerusalem City Hall

Tap the middle mouse button to stop in front of the building (if you actually entered the
building, remember the Reset All button). Now accelerate backward by pressing the
right button. When you are as far back as you want to go, hold down the left mouse
button to gradually slow down, or tap the middle mouse button to stop immediately.

Now use the left mouse button again to start moving forward and drive slowly into the
model. Notice that the walls closest to you are cut away at first so you can see inside;
when you are completely inside the building, those walls reappear. Drive around and
explore the building. Tap the middle mouse button to stop before you run into anything
(but do not worry—at this point you will bounce off any walls you hit). If the walls get
in your way, you can turn off collision detection with the button labeled Collide on the
control panel, or press the c key on the keyboard.

More Controls

To see the underlying geometry used to create the model, click the Style button in the
control panel, or press the w key on the keyboard. This changes the display to wireframe
mode. In this mode you can more easily see how many polygons are used to represent
an object. This information can be helpful when you are tuning a database, because it is
6 007-3560-003

Exploring the OpenGL Performer Sample Scenes with Perfly
important to know when the number of polygons becomes a limiting factor. To turn
wireframe mode off, just click the Style button (or press w) again. The W key can be used
to cycle through several different draw styles.

To close the entire control panel (and devote the entire screen to the model), click the Off
button at the upper right of the control panel, or just press the F1 key. Press the F1 key
again to restore the control panel. The GUI is part of libpfutil. See the following
sample program:

/usr/share/Performer/src/pguide/libpfutil/utilui.c
(IRIX and Linux)
%PFROOT%/Src/pguide/libpfutil/utilui.c
(Windows)

If you click the Stats button in the control panel, a transparent panel showing scene
statistics appears overlaid on the screen. The buttons next to the Stats button allow you
to choose one of the available statistical displays. Try moving around in the scene while
watching how the statistics change. Note in particular that the number of triangles being
considered for rendering changes drastically depending on where you look; this
demonstrates OpenGL Performer’s use of culling to ignore objects that are completely
outside the field of vision. For more information about culling, see Chapter 15,
“Optimizing Performance.” For more detailed information on the statistics panels, see
Chapter 18, “Statistics” in the OpenGL Performer Programmer’s Guide.

The control panel’s field-of-view slider can be used to select a wide angle view, up to
100 degrees.

As you travel through the building, try turning on the fog effect by clicking the Fog
button. Experiment with the fog density and other controls. (Remember that if you have
closed the control panel, the F1 key restores it.)

Other Motion Models

So far you have been driving. There are other default motion models provided through
the libpfui library. These motion models can be subclassed to create your own models.
On IRIX and Linux systems, you can find the source code for these motion models in
/usr/share/performer/src/lib/libpfui/. On Windows systems, the source
code is found in %PFROOT%/Src/lib/lib/libpfui/.
007-3560-003 7

1: Getting Acquainted with OpenGL Performer
Flying

The Fly motion model provides an alternative to the Drive model. This model allows full
motion in three dimensions (unlike the Drive model, which does not allow vertical
motion). The mouse in the Fly model is used in much the same way to control motion,
but when steering, the vertical position of the mouse in the window controls your
vertical tilt. You can select this mode by pressing the right mouse button on the button
marked Drive and select Fly from the menu.

As when driving, the left button makes you go forward and the right button makes you
go backward. As long as either button is pressed you will continue to accelerate.

You turn by holding the middle mouse button down and moving the cursor away from
the center of the simulation window. Moving the cursor left or right causes left or right
turns, respectively. Moving the cursor up or down causes the view direction to tilt up or
down, respectively. The rate of turning and tilting is scaled by the distance of the cursor
from the center of the simulation window; that is, no change of direction occurs when the
cursor is at the center and full-speed rotation occurs at the edges of the window.

If you want to maintain a steady velocity rather than accelerating, hold down the middle
mouse button to steer while using the left and right buttons to control the speed. To stop,
tap the middle mouse button.

Trackball

The trackball motion model provides a third option for controlling motion. You can select
this mode by pressing the right mouse button on the Fly button and selecting Trackball
from the menu.

In trackball mode, when you drag with the middle button, the object rotates about its
center as if it were attached to a large trackball that fills the screen. Dragging up and
down causes rotation about the horizontal axis parallel to the screen; dragging left and
right causes rotation about the vertical axis parallel to the screen.

By dragging with the left mouse, you can translate the object in the direction you drag:
left, right, up or down. By dragging with the right mouse, you can translate the object in
and out of the screen. In all cases, if you release the mouse button while dragging, the
motion continues on its own.
8 007-3560-003

Loading Databases into OpenGL Performer
Motion Using Paths

There are other approaches to traveling through a scene than the models described here.
For instance, you can build a specific path into the viewer to prevent the user from
straying outside your model. The path model is supported by a general path-following
system in thelibpfutil library. Many simulation applications require path support for
such objects as cars, trucks, and people (in driver-training software); waiting aircraft both
on the ground and in the air (in flight simulation); and opposing forces in military
trainers. Path support in libpfutil allows paths of varying speeds to be built from line
segments and arcs with automatic fillet construction between segments for smooth
transitions.

The Use of Instances

The bench objects in the City Hall scene were designed using the database concept
known as instancing. For example, a single geometric object such as a tree, house, car, or
(in this case) bench, is used multiple times within a database at different locations and
with different positions or scale factors. (In this case, the instances have been flattened to
improve performance; each bench is now a separate object.) See the OpenGL Performer
Programmer’s Guide for information on this topic.

Loading Databases into OpenGL Performer

Databases do not need to be converted to a standard file format before being read to an
OpenGL Performer application. Rather, unique file readers are constructed for each
format to be used. OpenGL Performer can thus work with data from multiple sources
concurrently, using a common software interface, without needing intermediate
translation or conversion steps.

The libpfdb library is a collection of independent loaders, each of which loads a
particular file format into OpenGL Performer. Among the loaders included in the
distribution are loaders for Optimizer, Inventor, VRML, OpenFlight, Designer’s
Workbench, Medit, and Wavefront. Each of the libpfdb loaders is located in its own
source directory. Users can call the libpfdu function pfdLoadFile(), which uses the
extension part of the filename to determine the file format and automatically invoke the
proper loader from libpfdb. For example, to use the visual interface from the Perfly
demo with your own databases, simply list your databases after the perfly command
007-3560-003 9

1: Getting Acquainted with OpenGL Performer
line. The perfly command examines the extension part of each filename to determine
what format the file is in and does a run-time system lookup for a loader for that format.

Note: Many of the database loaders are contributed by companies that are OpenGL
Performer developers. In particular, the OpenFlight loader is provided by Multigen, the
Designer’s Workbench loader is provided by Centric Software, Inc., and the VRML 2.0
loader is provided by OpenWorlds, Inc.

You can write custom loaders for whatever formats you require in your applications.This
is not a difficult task, but it does require that you understand most of OpenGL Performer.
It should not be undertaken until you have completed reading this book. New loaders
can be written and added at any time, and the run-time lookup mechanism can find the
new loader when the new file type is encountered. To see the source code for provided
loaders and more information on the companies that contributed them, look in the
directories under /usr/share/Performer/src/lib/libpfdb on IRIX and Linux
under %PFROOT/Src/lib/libpfdb on Windows systems.

For more information about database formats, see the section “Geometry Builder Library
(libpfdu)” on page 18.

Going Beyond Visual Simulation

In the Perfly demo, you can view an object or scene from any angle and location, from
points either inside or outside of the scene. This is the part of the visual simulation
development task that OpenGL Performer helps you create: the visual part. In other
words, what you see when you look out the window.

But there is more to a simulation of reality than just visuals. Purely visual simulations of
travel have much the same feel whether the simulation is of a boat, a car, a plane, or a
magic carpet. In such simulations there is no nonvisual sensory input at all; the user
simply watches scenery move past. OpenGL Performer leaves the nonvisual aspects—
the feel of the simulation—up to you. You determine the vehicle dynamics and construct
an apparatus or create code to mimic its behavior. You develop a method for manifesting
the physical sensation of how your simulation relates to its environment and responds to
stimuli.
10 007-3560-003

Going Beyond Visual Simulation
When you integrate physical aspects of a simulator with the real-time visuals created
with OpenGL Performer, the result can be a complete sensory environment, both visual
and physical—creating a convincing simulation of reality. Since OpenGL Performer puts
the tools for rapid development of real-time visuals into your hands, you can spend more
time developing the physical part of the simulation.

Another aspect of OpenGL Performer that lies below the surface of the demos is its
ability to accelerate graphics to top-rated performance levels on SGI hardware. This
means that OpenGL Performer puts a virtual SGI hardware and software expert at your
fingertips, providing all the tools you need to custom-tune your graphics application for
maximum performance on your system.
007-3560-003 11

Chapter 2

2. OpenGL Performer Basics

This chapter provides an introduction to OpenGL Performer, including a survey of
visual simulation techniques, descriptions of features and libraries, and discussion of
some of the specific details of OpenGL Performer structure and use.

OpenGL Performer Applications

OpenGL Performer can be used in various ways. You can use it as a complete database
processing and rendering system for applications such as flight simulation, driver
training, or virtual reality. You can also use it in conjunction with layered
application-development tools to perform the low-level portion of visual simulation
development projects. In short, applications can use part or all of the features provided
by OpenGL Performer.

For example, consider a driver training application that has already been developed. This
application consists of a database, simulation code, and rendering code. The application
can be ported to OpenGL Performer in several ways. If time is short and the bottleneck
is in the rendering code, OpenGL Performer’s libpr rapid- rendering layer can take
over the rendering task with minimal effort. Alternatively, it may be better to create an
importer to import the existing database into OpenGL Performer’s run-time format and
gain the extra features that the full library, libpf, provides.

Library Structure of OpenGL Performer

OpenGL Performer is an extensible software toolkit for creating real-time 3D graphics.
On IRIX and Linux systems, the main components of the toolkit are six libraries, typically
used in their dynamic shared object (DSO) form with the .so suffix, as shown in Table 2-1;
support files for those libraries (such as the header files); and source code for sample
applications. On Windows systems, the DSO equivalent is a dynamic link library (DLL)
with a corresponding file suffix of .dll.
007-3560-003 13

2: OpenGL Performer Basics
Note: Throughout this guide, a reference to DSO files will pertain to both DSO and DLL
files unless otherwise noted.

Note that while this document refers often to the libpr library or libpr “objects,” the
library itself does not exist in isolation—it has been placed within the libpf library to
improve instruction-space layout, procedure call performance, and caching behavior.
However, libpr still provides an implementation and portability abstraction layer that
simplifies the following discussions.

Table 2-1 OpenGL Performer Libraries

DSO/DLL Name Header File Description

libpf.so
libpf.dll

pf.h Main OpenGL Performer library. Contains libpf, which
handles multiprocessed database traversal and rendering,
and libpr, which performs the optimized rendering, state
control, and other functions fundamental to real-time
graphics.

libpfdu.so pfdu.h Library of scene and geometry building tools that greatly
facilitate the construction of database loaders and
converters. Tools include a sophisticated triangle mesher
and state sharing for high-performance databases.

libpfutil.so
libpfdu-util.dll

pfutil.h Utility functions library. Note that libpfdu-util.dll is
a combination of libpfdu and libpfutil.

libpfui.so
libpfui.dll

pfui.h User interface library.

libpfv.so
libpfv.dll

pfv.h A graphical viewer library that provides for the easy
construction of applications.

libpfmpk.so

libpfmpk.dll

pfmpk.h Library for importing display-configuration information
from files using the OpenGL Multipipe SDK configuration
file format.

libpfdb pfdb.h Collection of libraries containing the load, convert, and
store routines for numerous file formats.
14 007-3560-003

Library Structure of OpenGL Performer
In addition to the core libraries, OpenGL Performer provides a suite of database loaders
in the form of dynamic shared objects. Each loader reads data files or streams structured
in a particular format and converts it into an OpenGL Performer scene graph. Loader
libraries are named after their corresponding file extension, for example, the Wavefront
“obj” format loader is found in libpfobj.so. Any number of file loaders may be
accessed through the single pfdLoadFile() function, which uses special dynamic shared
object features to locate and use the proper loader corresponding to the extension of the
file being loaded.

Figure 2-1 illustrates the relationships between the OpenGL Performer libraries and the
operating system software.

Figure 2-1 OpenGL Performer Library Hierarchy

All OpenGL Performer features are provided as a layer above the operating system and
the graphics library. However, OpenGL Performer does not isolate application programs
from the operating system or the graphics library, however. Even when using OpenGL
Performer to its fullest extent, applications have direct and free access to all system

libpr

libpf

libpfui libpfdu

libpfutil

IRIX/Linux/Windows OS

libpfpfb

libpfcsb

libpfiv

libpffit

libpfdwb

...

libpfdb

libpfv
libpfmpk
007-3560-003 15

2: OpenGL Performer Basics
layers—including not only libpf, libpr, libpfdu ,libpfutil, libpfui, libpfv,
libpfmpk, and the libpfdb loader, but also the OpenGL graphics library and the
operating system. You are free to choose which of the libraries best suits your needs. You
may want to build your own toolkits on top of libpr (but you still link with libpf; you
just do not use any libpf features), or you can take advantage of the visual simulation
development environment that libpf provides.

OpenGL Performer defines a run-time-only database through its programming interface;
it does not define an archival database or file format. Applications import their databases
into OpenGL Performer run-time structures. You can either write your own routines to
do this or use one of the many database loaders provided as sample source code. These
examples show how to import more than 30 popular database formats and how to export
scene graphs in the open Designer’s Workbench and Medit formats (see OpenGL
Performer Programmer’s Guide for more information).

Library Features

This section lists the features of the OpenGL Performer libraries. An application can use
all or just part of the features. You can use these features in conjunction with or extend
them with other application development tools.

High-Performance Rendering Library (libpr)

libpr consists of many facilities generally required in most visual simulation and
real-time graphics applications, such as:

• High-speed geometry rendering functions

• Efficient graphics state management

• Comprehensive lighting and texturing

• Simplified window creation and management

• Immediate mode graphics

• Display list graphics

• Integrated 2D and 3D text display functions

• A comprehensive set of math routines

• Intersection detection and reporting

• Color table utilities
16 007-3560-003

Library Structure of OpenGL Performer
• Windowing and video channel management utilities

• Asynchronous filesystem I/O

• Shared memory allocation facilities

• High-resolution clocks and video-interval counters

Visual Simulation Application Library (libpf)

• Multiple graphics pipeline capability

• Multiple windows per graphics pipeline

• Multiple display channels and video channels per window

• Hierarchical scene graph construction and real-time editing

• Multiprocessing (parallel simulation, intersection, cull, draw processes, and
asynchronous database management)

• System stress and load management

• Asynchronous database paging

• Morphing

• Level-of-detail model switching, with fading or morphing

• Rapid culling to the viewing frustum

• Intersections and database queries

• Dynamic and static coordinate systems

• Fixed-frame-rate capability

• Shadows and spotlights

• Visual simulation features

– Environmental model

– Light points, both raster and calligraphic

– Animation sequences

– Sophisticated fog and haze control

– Landing light capabilities

– Billboarded geometry
007-3560-003 17

2: OpenGL Performer Basics
Geometry Builder Library (libpfdu)

• Allows input in immediate mode fashion, simplifying database conversion.

• Produces optimized OpenGL Performer data structures.

– Tessellates input polygons including concave polygons and recombines
triangles into high-performance meshes.

– Automatically shares state structures between geometry when possible.

– Produces scene graph containing optimized pfGeoSets and pfGeoStates.

Utility Library (libpfutil)

• Processor isolation routines

• GLX mixed mode utilities

• Device input and event handling

• Cursor control

• Simple and efficient GUI and widgets

• Scene graph traversal utilities

• Texture animation or “movies”

• Smoke and fire effect simulation

User Interface Library (libpfui)

• Motion models, including trackball, fly, and drive

• Collision models

A Graphical Viewer Library (libpfv)

• Reading and writing XML files

• Specifying complex display configuration (pipes, windows, and channels) from a
file or through API calls

• Tracking mouse and keyboard input

• Setting up user interaction with 3D scene elements

• Managing multiple scene graphs (worlds)
18 007-3560-003

Overview of the OpenGL Performer Library Structure
• Managing multiple camera positions (views)

• Extending program functionality using program modules

A Configuration-Import Library (libpfmpk)

• Imports display-configuration information from files using the OpenGL Multipipe
SDK configuration file format.

• Configures OpenGL Performer pipes, windows, and channels according to the
configuration file specifications.

Database Loader Library (libpfdb)

• Common software interface to read files

• Supports a wide variety of file formats.

• Source code included as templates for customization

Overview of the OpenGL Performer Library Structure

This section outlines the basic elements of each library.

libpf—Visual Simulation Library

libpf is the visual simulation development library. Functions from libpfmake calls to
libpr functions; libpf thus provides a high-performance yet easy-to-use interface to
the hardware.

Multiprocessing Framework

libpf provides a pipelined multiprocessing model for implementing visual simulation
applications. The critical path pipeline stages are:

• APP

• CULL

• DRAW
007-3560-003 19

2: OpenGL Performer Basics
The application (APP) stage updates and queries the scene. The CULL stage traverses the
scene and adds all potentially visible geometry to a special libpr display list, which is
then rendered by the draw stage. Rendering pipelines can be split into separate processes
to tailor the application to the number of available CPUs, as shown in Figure 2-2.

Figure 2-2 Parallel Pipeline Processes

An application might have multiple rendering pipelines drawing to multiple graphics
pipelines with separate processes. The CULL task of the rendering pipeline can itself be
multithreaded.

OpenGL Performer provides additional, asynchronous stages for various computations:

• INTERSECTION—intersects line segments with the database for things like
collision detection and line-of-sight determination, and may be multithreaded.

• COMPUTE—for general, asynchronous computations.

• DATABASE—for asynchronously loading files and adding to or deleting files from
the scene graph.

Multiprocess operation is largely transparent because OpenGL Performer manages the
difficult multiprocessing issues for you, such as process timing, synchronization, and
data exclusion and coherence.

For more information about multiprocessing stages, see Chapter 11, “Multiprocessing.”

Scene

Frame Buffer

Traversal/Cull

Application

Draw

Pipeline 1

Pipeline 0

Frame Buffer

Traversal/Cull

Draw
20 007-3560-003

Overview of the OpenGL Performer Library Structure
Display

libpf provides software constructs to facilitate visual database rendering. A pfPipe is a
rendering pipeline that renders one or more pfChannels into one or more
pfPipeWindows. A pfChannel is a view into a visual database, equivalent to a viewport,
within a pfPipeWindow.

Frame Control

OpenGL Performer is designed to run at a fixed frame rate specified by the application.
OpenGL Performer measures graphics load and uses that information to compute a
stress value. Stress is applied to the model’s level of detail to reduce scene complexity
when nearing graphics overload conditions.

OpenGL Performer supports multiple pfChannels on a single pfPipeWindow, multiple
pfPipeWindows on a single pfPipe, and multiple pfPipes per machine for multichannel,
multiwindow, and multipipe operation. Frame synchronization between channels and
between the host application and the graphics subsystem is provided. This also supports
simulations that display multiple simultaneous views on different hardware displays.

Visual Database (pfScene)

A visual database is a graph of nodes with a pfScene node as its root. A pfScene is viewed
by a pfChannel, which in turn is culled and drawn by a pfPipe. Scenes are typically, but
not necessarily, constructed by the application at database loading time. OpenGL
Performer supplies sample source code that shows how to construct a scene from several
popular database formats; see OpenGL Performer Programmer’s Guide for more
information.

Qlibpf supports a general database scene graph hierarchy, defined as a directed acyclic
graph of nodes. OpenGL Performer provides specialized node types useful for visual
simulation applications:

Grouping Nodes

• pfScene—Root node of a visual database

• pfGroup—Branch node, which may have children

• pfSCS—Static coordinate system

• pfDCS—Dynamic coordinate system
007-3560-003 21

2: OpenGL Performer Basics
• pfLayer—Coplanar geometry node

• pfLOD—Level-of-detail selection node

• pfSwitch—Select among children

• pfSequence—Sequenced animation node

• pfPartition—Collection of geometry organized for efficiency

Geometry and leaf nodes are the following:

• pfGeode—Geometry node

• pfBillboard—Geometry that rotates to face the viewpoint

• pfText—Geometry based upon pfFont and pfString

• pfASD—Active Surface Definition for morphing geometry and continuous level of
detail (LOD) measurement

• pfLightSource—User-manipulatable lights that support high-quality spotlights and
shadows

OpenGL Performer provides traversal functions that act on a pfScene or portions thereof.
These functions include:

• Culling the scene to the visible portion in the viewing frustum.

• Comprehensive, user-directed database intersections.

• Flattening modeling transformations for improved CULL, intersection, and
rendering performance.

• Cloning a database subgraph to obtain model instancing, which shares geometry
but not articulations.

• Deletion of scene-graph components.

• Printing for debugging purposes.

The application can direct and customize traversals through the use of identification
masks on a per-node basis using callbacks.
22 007-3560-003

Overview of the OpenGL Performer Library Structure
Special Features (pfEarthSky, pfSequence, pfASD)

libpf provides an environmental model called a pfEarthSky, consisting of ground and
sky polygons, which efficiently clears the viewport before rendering the scene.
Atmospheric effects such as ground fog, haze, and clouds are included.

Sequenced animations, using pfSequence nodes, allow the application to efficiently
render complex geometry sequences that are not easily modeled otherwise. You can
think of animation sequences as a series of "flip cards," where the application controls
which card is shown, and for how long.

Active Surface Definition (pfASD) is a library that handles real-time surface meshing and
blending in a multiprocessing and multichannel environment. The pfASD approach uses
a modeling terrain that is a single, connected surface rather than a collection of patches.

A pfASD surface contains several hierarchical level of detail (LOD) meshes where one
level encapsulates a coarser level of detail than the next. When rendering a pfASD
surface, an evaluation function selects polygons from the appropriate LODs, and
constructs a valid meshing to best approximate a real terrain. An evaluation function, for
example, might be based on distance.

Unlike existing LOD schemes, pfASD selects triangles from many different LODs and
combines them into a final surface that transitions smoothly between LODs without
cracks. This feature lets a fly-through over a surface use polygons from higher LODs for
drawing nearby portions of the surface in combination with polygons from low LODs
that represent distant portions of the surface.

libpr—High-Performance Rendering Library

libpr is a low-level graphics library supporting various functions useful for any
high-performance graphics application.

High-Performance Geometry Rendering

Many graphics applications are limited in sending graphics commands to the Geometry
Pipeline by CPU overhead. A pfGeoSet is a collection of like primitives such as points,
lines, triangles, and triangle strips. pfGeoSets use tuned rendering loops to eliminate the
CPU bottleneck.
007-3560-003 23

2: OpenGL Performer Basics
Efficient Graphics State Management

OpenGL Performer optimizes graphics library performance by managing state changes,
and provides functions to control aspects of the graphics library state such as lighting,
texture, and transparency. These functions operate in both immediate and libpr
display-list mode for direct mode changes, as well as for mode caching.

Other state functions such as push, pop, and override allow extensive control of graphics
state.

Graphics State Encapsulation

A pfState is an encapsulation of graphics that renders lighting, texturing, and fog—the
state settings for a graphics context. Loading a pfState ensures that the graphics pipeline
is configured appropriately, regardless of previous graphics state. pfGeoStates describe
the state of the geometry in pfGeoSets, and are used for simplifying and accelerating
graphics state management.

Display Lists

OpenGL Performer supports special libpr display lists. They do not use graphics
library objects, but rather a simple token/data mechanism that does not cache geometry
data. These display lists cache only libpr state and rendering commands. They also
support function callbacks to allow applications to perform special processing during
display list rendering. Display lists can be reused and are therefore useful for
multiprocessing producer/consumer situations in which one process generates a display
list of the visible scene, while another one renders it. Note that you can also use OpenGL
display lists in OpenGL Performer applications.

Math Support

Extensive linear algebra and simple geometric functions are provided. Some supported
data types are point, segment, vector, plane, matrix, cylinder, sphere, frustum, and
quaternion.

Intersections

Functions are provided to perform intersections of segments with cylinders, spheres,
boxes, planes, and geometry. Intersection functions for spheres, cylinders, and frustums
are also provided.
24 007-3560-003

Overview of the OpenGL Performer Library Structure
Color Tables (pfColortable)

OpenGL Performer supports global color tables that can define the colors used by
pfGeoSets. You can use color tables for special effects such as infrared lighting, and you
can switch them in real time.

Light Points

Light points, defined by the pfLPointState state object, can simulate highly emissive
objects such as runway lights, approach lights, strobes, beacons, and street lights. The
size, direction, shape, color, and intensity of these lights can be controlled.

Calligraphic extensions to pfLPointState provide a means of displaying exceptionally
bright light points on non-raster display systems.

For more information about pfLPointState, see Chapter 16, “Light Points,” in the OpenGL
Performer Programmer’s Guide.

pfObjects

OpenGL Performer is an object-oriented API. Basic object function, such as creation,
deletion, and printing, are inherited from pfObject. Basic memory management is done
through pfMemory.

Asynchronous File I/O (pfFile)

A simple nonblocking file access method is provided to allow applications to retrieve file
data during real-time operation.

Memory Allocation (pfDataPool)

OpenGL Performer includes routines to allocate memory from the application process
heap or from shared memory arenas. Shared memory arenas must be used when multiple
processes need to share data. The application can create its own shared memory arenas
or use pfDataPools. pfDataPools are shared arenas that can be shared by multiple
processes. Applications can allocate blocks of memory within pfDataPools, which can be
individually locked and unlocked to provide mutual exclusion between unrelated
processes.
007-3560-003 25

2: OpenGL Performer Basics
High-Resolution and Video-Rate Clocks (pfGetTime,)

OpenGL Performer includes high-resolution clock and video interval counter routines.
pfGetTime() returns the current time at the highest resolution that the hardware
supports. Processes can either share synchronized time values with other processes, or
have their own individual clocks.

The video interval counter is tied to the video retrace rate and can synchronize a process
with any multiple of the video rate; this mechanism is the basis for producing fixed frame
rates.

The pfWindow Windowing Functions

OpenGL Performer provides window-system-independent window routines to allow
greater portability of applications. For information about these window routines, see
Chapter 11, “Windows,” in the OpenGL Performer Programmer’s Guide.

For sample programs involving windows and input handling on IRIX and Linux
systems, see the following directories:

/usr/share/Performer/src/pguide/{libpr,libpf,libpfutil,libpfui}

On Windows systems, see these directories:

%PFROOT%/Src/pguide/{libpr,libpf,libpfutil,libpfui}

 libpfdu—Geometry Builder Library

Although OpenGL Performer does not define a file format, it does provide sample source
code for importing numerous other database formats into OpenGL Performer’s run-time
structures. Figure 2-3 shows how databases are imported into OpenGL Performer: first,
a user creates a database with a modeling program, and then an OpenGL
Performer-based application imports that database using one of the many importing
routines.
26 007-3560-003

Overview of the OpenGL Performer Library Structure
Figure 2-3 Relationship of OpenGL Performer to Database Formats

OpenGL Performer routines then manipulate and draw the database in real time.

Designer
Workbench

pfdLoadFile-dwb()
Open

Inventor

pfdLoadFile-iv()

pfdLoadFile-flt()

Multigen

FLT
format

database

M
od

el
in

g
pr

og
ra

m
s

Re
sp

ec
tiv

e
Da

ta
ba

se
s

Op
en

GL
 P

er
fo

rm
er

-b
as

ed
im

po
rti

ng
 ro

ut
in

es

OpenGL Performer

Scene created from
various databases

DWB
format

database

iv
format

database
007-3560-003 27

2: OpenGL Performer Basics
Scene graphs can also be generated automatically by loaders with built-in scene-graph
generation algorithms. The “sponge” loader is an example of such automatic generation;
it builds a model of the Menger (Sierpinski) Sponge, without requiring an input file.

libpfdu is a database utilities library that provides helpful functions for constructing
optimized OpenGL Performer data structures and scene graphs. It is mainly used by
database loaders, which take an external file format containing 3D geometry and
graphics state and load them into OpenGL Performer-optimized, run-time-only
structures. Such utilities often prove very useful; most modeling tools and file formats
represent their data in structures that correspond to the way users model data. However,
these data structures are often mutually exclusive with effective OpenGL Performer
run-time structures.

Database Builder

libpfdu contains many utilities, including DSO support for database loaders and their
modes, and file path support. The heart of libpfdu is the OpenGL Performer database
builder. The builder is a tool that allows users to input or output a collection of geometry
and graphics state in immediate mode.

Geometric primitives with their corresponding graphics state are sent one at a time to the
builder. When the builder has received all the data, the builder can return optimized
OpenGL Performer data structures, which can be used as a part of a scene graph. The
builder hashes geometry into different bins, based on the attribute binding types and
associated graphics state of the geometry. The builder also keeps track of graphics state
elements, such as textures, materials, light models, and fog, and shares state elements
whenever possible.

The builder creates pfGeoSets that contain triangle meshes created by running the
original geometry through the libpfdu triangle-meshing utility.

For each pfGeoSet, the builder creates a pfGeoState (OpenGL Performer’s encapsulated
state primitive), which has been optimized to share as many attributes as possible with
other pfGeoStates being built (and possibly with the default pfGeoState that can be
attached to a channel with pfChanGState()).

Having created all of these primitives (pfGeoSets and pfGeoStates), the builder places
them in a leaf node (pfGeode), and optionally creates a spatial hierarchy (for increased
culling efficiency) by running the new database through a spatial breakup utility
function, which is also contained in libpfdu.
28 007-3560-003

Overview of the OpenGL Performer Library Structure
Note: The builder allows the user to extend the notion of a graphics state by registering
callback functionality through the builder API, and then treating this state or
functionality like any other OpenGL Performer state or mode (although such uses of the
builder are slightly more complicated).

libpfv—A Graphical Viewer Library

The library libpfv provides for the easy construction of modular, interactive OpenGL
Performer applications.

The library libpfv supports the following features:

• Reading and writing XML files

• Specifying complex display configuration (pipes, windows, and channels) from a
file or through API calls

• Tracking mouse and keyboard input

• Setting up user interaction with 3D scene elements

• Managing multiple scene graphs (worlds)

• Managing multiple camera positions (views)

• Extending program functionality using program modules

The principal class in libpfv is the pfvViewer. It allows complex multiworld and
multiview applications to be implemented in a modular fashion, allowing individual
features to be encapsulated into configurable and re-usable modules.

In addition to libpfv, OpenGL Performer includes ready-to-use modules that provide
the following features:

• Loading geometry into a pfvViewer world

• Picking geometry under the mouse pointer

• Manipulating geometry (rotating, translating, scaling, deleting)

• Navigating through a world using mouse and keyboard controls

• Controlling the render style of models

• Setting up colorful earth and sky backgrounds
007-3560-003 29

2: OpenGL Performer Basics
• Displaying 2D images in overlay

• Saving snapshots of the rendered images

• Smoothly transitioning from one world to another

• Collecting and displaying statistics

libpfmpk—A Configuration-Import Library

A typical OpenGL Performer program starts with defining how many pipes, windows,
and channels it requires. This code has to change every time you target the application at
a new hardware configuration. The software product OpenGL Multipipe SDK solves this
problem by providing a file format for specifying different display configurations.
Loading such a configuration file determines the pipe/window/channel configuration
that the program uses.

The library libpfmpk facilitates importing configuration files that use the
OpenGL Multipipe SDK configuration file format. This library configures the
OpenGL Performer application using the configuration file specifications. As a result,
display configuration becomes easier and quicker to change.

X and IRIS IM

The X Window System is a network-based, hardware-independent window system for
use with bitmapped graphics displays. In the X client/server model, an X server running
in the background handles input and output, and informs client applications when
various events occur. A special client, the window manager, places windows on the
screen, handles icons, and manages the titles and borders of windows.

IRIS IM is Silicon Graphics’ port of OSF/Motif, a set of widgets for use with Xt, the
X toolkit intrinsics library.

With the pfWindow functions that OpenGL Performer provides, you do not need to
know X or IRIS IM to use windows. However, you might want to integrate pfWindows
with a Motif application or have a pfWindow use a designated Motif window.
30 007-3560-003

Porting from IRIS GL to OpenGL
Porting from IRIS GL to OpenGL

If you have an IRIS Performer application that uses IRIS GL, you can port it to use
OpenGL with minimal work. Most of what you need to do is port the window- and
event-handling to use X. OpenGL does not have window or event routines. The OpenGL
Porting Guide provides more information on porting from IRIS GL to OpenGL, and the
sample applications distributed with OpenGL Performer provide many examples of
programs that compile and run with either IRIS GL or OpenGL.

Most of the differences between IRIS GL and OpenGL are transparent to a developer
using OpenGL Performer. The most significant difference between IRIS GL and OpenGL
is how Performer handles windows and input. These differences are covered by
pfWindows that provide a GL-independent windowing layer. Graphics rendering and
state calls made through the OpenGL Performer API are also GL-independent.

You will notice differences between IRIS GL and OpenGL when direct GL calls are used
outside of the OpenGL Performer interface. There are relatively few circumstances in
which your OpenGL Performer-based program needs to call graphics library routines
directly. Making outside calls usually happens only in DRAW callbacks. For more
information, see “Customizing OpenGL Performer Traversals” on page 110.

For information on compiling and linking OpenGL Performer applications, see the
OpenGL Performer Programmer’s Guide.

Survey of Visual Simulation Techniques

Computers have generated interactive simulated virtual environments—usually for
training or entertainment—since the 1960s. Computer image generation (CIG) has not
always been a readily available technique, and many special-purpose approaches to
visual simulation have been tried. For example, the NASA Kennedy Space Center
newspaper Spaceport News described the Apollo 7 astronaut training visual simulator this
way on March 28, 1968:

Each simulator consists of an instructor’s station, crew station, computer

complex, and projectors to simulate the stages of a flight. Engineers

serve as instructors, instruments keeping them informed at all times of

what the pilot is doing. Through the windows, infinity optics equipment

duplicates the scenery of space. The main components of a typical visual

display for each window includes a 71-centimeter fiber-plastic celestial
007-3560-003 31

2: OpenGL Performer Basics
sphere embedded with 966 ball bearings of various sizes to represent the

stars from the first through fifth magnitudes, a mission-effects projector

to provide earth and lunar scenes, and a rendezvous and docking projector

which functions as a realistic target during maneuvers.1

Visual simulation systems have advanced significantly due to advances in hardware and
software, and to a greater understanding of human perceptions. For example, the Mars
Sojourner Rover, the land rover on Mars, was simulated by researchers with an OpenGL
Performer application.

This section outlines the major requirements of current visual simulation systems. These
requirements fall into six major groups, each covering several related topics:

• Low latency image generation

Reducing perceived latency (the time between input and response) requires
reducing actual latency and increasing the frame rate. You cannot avoid latency, but
you can minimize its effects by attention to hardware design and software structure.

• Consistent frame rates

A fixed frame rate is essential to realistic visual simulation. Achieving this goal,
however, is very difficult because it requires using a fixed graphics resource to view
images of varying complexity. To design for constant frame rates you must
understand the required compromises in hardware, database, and application
design.

• Rich scene content

Customers nearly always want complex, detailed, and realistic images, without
sacrificing high update rates and low system cost. Thus, providing interesting and
natural scenes is usually a matter of tricks and halfway measures; a naive
implementation would be prohibitively expensive in terms of machine resources.

• Texture mapping

1 In recognition of the ingenuity of this system, OpenGL Performer includes a star database with the
locations and magnitudes of the 3010 brightest stars as seen from earth. View the file
“/usr/share/Performer/data/3010.star” with perfly while contemplating the engineering effort
required to accurately embed those 966 ball bearings.
32 007-3560-003

Survey of Visual Simulation Techniques
Texture processing is arguably the most important incremental capability of
real-time image generation systems. Sophisticated texture processing is the factor
that most clearly separates the “major league” from the “minor league” in visual
simulation technology.

• Real-time character animation

Real-time character animation in entertainment systems is based on features and
capabilities originally developed for high-end flight simulators. Creation of
compelling entertainment experiences hinges on the ability to provide engaging
synthetic characters.

• Database construction

One of the key notions of real-time image generation systems is the fact that they are
often programmed largely by their databases. This programming includes the
design and specification of several autonomous actions for later playback by the
visual system.

Low-Latency Image Generation

The issue of latency is critical to comfortable perception of moving images under
interactive control. In the real world, the images that reach our brains move smoothly
and instantly in reaction to our own motion. In simulated visual environments, such
motion is usually depicted as a discrete series of images generated at fixed time intervals.
Furthermore, the image resulting from a motion often is not presented until several
frame intervals have elapsed, creating a very unnatural latency. A typical human reaction
to such delayed images is nausea, commonly known as simulator sickness.

In visual simulation the terms “latency” and “transport delay” refer to the time elapsed
between stimulus and response. Confusion can enter the picture because there are
several important latencies.

The most general measure is the total latency, which measures the time between user
input (such as a pilot moving a control) and the display of a new image computed using
that input. For example, if the pilot of a flight simulator initiates a sudden roll after a
smooth level flight, how long does it take for a tilted horizon to appear?

The total time required is the sum of latencies of components within the processing path
of the simulation system. The basic component latencies include the time required for
each of these tasks:
007-3560-003 33

2: OpenGL Performer Basics
• Input device measurement and reporting

• Vehicle dynamics computation

• Image generation computation

• Video display system scan-out

The latency that matters to the user of the system is the total time delay. This overall
latency controls the sense of realness the system can provide.

Another measure combines the latencies due to image generation and video display into
the visual latency. Questions of latency in visual simulation applications usually refer to
either total latency or visual latency. The application developer selects the scope of the
application, and then the latency is decided by the choice of image generation mode,
frame rate, and video output format.

In many situations the perceived latency can be much less than the actual latency. This is
because the human perception of latency can be reduced by anticipating user input. This
means that reducing perceived latency is largely a matter of accurate prediction.

Consistent Frame Rates

To be acceptable by human observers, interactive graphics applications, and immersive
virtual environments, in particular, depend on a consistent frame rate. Human
perceptions are attuned to continuous update from natural scenes but seem tolerant of
discrete images presented at rates above 15 frames per second—as long as the frame rate
is consistent. When latency grows large or frame rates waver, headaches and nausea
often result.

Attaining a constant frame rate for a constant scene is easy. However, it is difficult to
maintain a constant frame rate through wildly varying scene content and complexity.
Designers of image generation systems use several approaches to achieve a constant,
programmer-selected, frame rate.

The first and most basic method is to draw all scenes in such a simple way that they can
be viewed from any location without altering the chosen frame rate. This conservative
approach is much like always driving in low gear just in case a hill might be encountered.
Implementing it simply means identifying and planning for the worst case situation of
graphics load. Although this may be reasonable in some cases, in general it is wasteful of
system resources.
34 007-3560-003

Survey of Visual Simulation Techniques
A second approach is to discard (cull) database objects that are positioned completely
outside the viewing frustum. This requires a pass through the visual database to compare
scene geometry with the current frame’s viewing volume. Any objects completely
outside the frustum can be safely discarded. Testing and culling a complex object
requires less time than drawing it.

When simple view-volume culling is insufficient to keep scene complexity constant, it
may be necessary to compute the potential visibility of each object during the culling
process by considering other objects within the scene that may occlude the test object.
High-performance image generation systems use comparable occlusion culling tests to
reduce the polygon filling complexity of real-time scenes.

Rich Scene Content

Several tricks and techniques can give the impression of rich scene content without
actually requiring large quantities of complex geometry.

Level of Detail Selection

Graphics systems can display only a finite number of geometric primitives per frame at
a specified frame rate. Because of these limitations, the fundamental problem of database
construction for real-time simulation is to maximize visual cues and minimize scene
complexity. With level of detail selection, one of several similar models of varying
complexity is displayed based on how visible the object is from the eyepoint. Level of
detail selection is one of the best tools available for improving display performance by
reducing database complexity. For more detailed information, see Chapter 15,
“Optimizing Performance.”

Billboard Objects

Many of the objects in databases can be considered to have one or more axes of symmetry.
Trees, for example, tend to look nearly the same from all horizontal directions of view.
An effective approach to drawing such objects with less graphic complexity is to place a
texture image of the object onto a single polygon and then rotate the polygon during
simulation to face the observer. These self-orienting objects are commonly called
billboards. For information on billboards, see Chapter 15, “Optimizing Performance.”
007-3560-003 35

2: OpenGL Performer Basics
Animation Sequences

Animated events in simulation environments often have a sequence of stages that follow
each other without variation. Where this is the case, you can often define this behavior in
the database during database construction. The behavior can be implemented by the
real-time visual system without intervention by the application process.

An example of this would be illuminated traffic signals in a driving simulator database.
There are three mutually exclusive states of the signal, one with a green lamp, one with
the amber, and one with the red. The duration of each state is known and can be recorded
in the database. With these intervals built into the database, simulations can be
performed without requiring the simulation application to cycle the traffic signal from
one state to the next.

The simplest type of animation sequence is known as a geometry movie. It is a sequence of
exclusive objects that are selected for display based on elapsed time from a trigger event.
Advancement is tied to frames rather than time, or is based on specific events within the
database.

For further information on animation, see the section, “pfSequence Nodes” in the
OpenGL Performer Programmer’s Guide.

Antialiasing

Antialiased image generation can have a significant effect on image quality in visual
simulation. The difference, though subtle in some cases, has very significant effects on
the sense of reality and the suitability of simulators for training. Military simulators often
center on the goal of detecting and recognizing small objects on the horizon. Aliased
graphics systems produce a “sparkle” or “twinkle” effect when drawing small objects.
This artifact is unacceptable in these training applications because the student will come
to subconsciously expect such effects to announce the arrival of an opponent and this
unfulfilled expectation can prove fatal.

The idea of antialiasing is for image pixels to represent an average or other convolution
of the image fragments within the area of a pixel rather than simply be a sample taken at
the center of the pixel. This idea is easily stated but difficult to implement while
maintaining high performance.

InfiniteReality continues the RealityEngine antialiasing approach known as
multisampling. In this system, each pixel is considered to be composed of multiple
subpixels. Multisampling stores a complete set of pixel information for each of the
36 007-3560-003

Survey of Visual Simulation Techniques
several subpixels. This includes such information as color, transparency, and (most
importantly) a Z-buffer value.

Providing multiple independent Z-buffered subpixels (the so-called subpixel Z-buffer) per
image pixel allows opaque polygons to be drawn in an arbitrary order because the
subpixel Z-comparison will implement proper visibility testing. Converting the multiple
color values that exist within a pixel into a single result can either be done as each
fragment is rendered into the multisampling buffer or after all polygons have been
rendered. For the best visual result, transparent polygons are rendered after all opaque
polygons have been drawn.

Texture Mapping

The most powerful incremental feature of image generation systems beyond the initial
capability to draw geometry is texture mapping, the ability to apply textures to surfaces.
These textures consist of synthetic or photographic images that are displayed in place of
the surfaces of geometric primitives, which serve to modify their surface appearance,
reflectance, or shading properties. For each point on a texture-mapped surface, a
corresponding pixel from the texture map is chosen to display instead, giving the
appearance of warping the texture into the shape of the object’s surface. With the
InfiniteReality graphics subsystem, you can have very large textures, called cliptextures,
(up to 8Mx8M texels).

For more information about texture mapping and cliptextures, see Chapter 8,
“Geometry,” and Chapter 10, “ClipTextures,” in the OpenGL Performer Programmer’s
Guide.

Surface Appearance

The most obvious use of texture mapping is to generate the appearance of surface details
on geometric objects, without making those details into actual geometry. One valuable
and widely used addition to these texture processing features is the concept of partly
transparent textures. An example of this is the use of billboards (see “Rendering Slices of
Shapes” on page 215). For example, to display a tree using textures and billboards, you
would create a texture map of a tree (from a photograph, perhaps), marking the
background (any part of the texture that does not show part of the tree) as transparent.
Then, using a flat rectangle for the billboard, map the texture to the billboard; the
transparent regions in the texture become transparent regions of the billboard, allowing
other geometry to show through.
007-3560-003 37

2: OpenGL Performer Basics
Environment Mapping

You can use textures to simulate reflections (usually in a curved surface) of a 3D
environment such as a room by using the viewing vector and the surface normal of the
geometry to compute the index of each screen pixel into the texture image. The texture
used for this process, the environment map, must contain images of the environment to be
reflected.

Sophisticated Shading

You can use the environment mapping technique to implement lighting equations by
noting that the environment map image represents the image seen in each direction from
a chosen point. Interpreting this image as the illumination reflected from an incident
light source as a function of angle, the intensities rather than the colors of the
environment map can be used to scale the colors of objects in the database in order to
implement complex lighting models (such as Phong shading) with high performance.
You can use this method to provide elaborate lighting environments with systems in
which per-pixel shading calculations would not otherwise be available.

Projective Texture

You can also use texture mapping to project images such as aircraft landing lights and
vehicle headlights into images. These projective texture techniques, when combined with
the ability to use Z-buffer contents to texture images, allow the generation of real-time
images with true 3D cast shadows.

Character Animation

Some interactive applications include animated characters as well as scenery and objects.
Character animation is a complex topic with its own requirements and techniques.

Morphing

The shared-memory, multiprocessed system architecture with high bandwidth for
graphics subsystems in the SGI product line provide ideal systems for real-time high
quality character animation. Vertex position, colors, normal vectors, and texture
coordinates can all be interpolated between two versions of a model, a process known as
morphing, with the OpenGL Performer pfEngine and pfFlux objects. You can also apply
more complex functions between multiple versions of a model. You can use morphing to
38 007-3560-003

Survey of Visual Simulation Techniques
fill in motion between a start position and an end position for an object or—in its fully
generalized form—parts of an animated character (such as facial expressions).

For more information about morphing, see Chapter 14, “Dynamic Data”, in the OpenGL
Performer Programmer’s Guide.

Generalized Morphing

Simple pair-wise morphing is not sufficient to give animated characters life-like
emotional expressions and behavior. You need the ability to model multiple expressions
in an orthogonal manner and then combine them with arbitrary weighting factors during
real-time simulation.

One current approach to human facial animation is to build a geometric model of an
expressionless face, and then to distort this neutral model into an independent target for
each desired expression. Examples include faces with frowns and smiles, faces with eye
gestures, and faces with eyebrow movement. Subtracting the neutral face from the smile
face gives a set of smile displacement vectors and increases efficiency by allowing
removal of null displacements. Completing this process for each of the other gestures
yields the input needed by a real-time system: a base or neutral model and a collection
of displacement vector sets.

In actual use, you would process the data in a straightforward manner. You would
specify the weights of each source model (or corresponding displacement vector set)
before each frame is begun. For example, a particular setting might be “62% grin and 87%
arched eyebrows” for a clownish physiognomy. The algorithmic implication is simply a
weighted linear combination of the indicated vectors with the base model.

These processing steps are made more complicated in practice by the
performance-inspired need to execute the operations in a multiprocessing environment.
Parallel processing is needed because users of this technology:

• Need to perform hundreds to thousands of interpolations per character.

• Desire several characters in animation simultaneously.

• Prefer animation update rates of 30 or 60 Hertz.

• Generate multiple independent displays from a single system.

Together, these demands can require significant resources, even when only vertex
coordinates are interpolated. When colors, normals, and texture coordinates are also
007-3560-003 39

2: OpenGL Performer Basics
interpolated, and especially when shared vertex normals are recomputed, the
computational complexity is correspondingly increased.

The computational demands can be reduced when the rate of morphing is less than the
image update rate. You can often improve the quality of the interpolated result by
applying a non-linear interpolation operation, such as the eased cosine curves and
splines found useful in other applications of computer animation.

Skeleton Animation

A successful concept in computer-assisted 2D animation systems is the notion of skeleton
animation. With this method you interpolate a defining skeleton and then position
artwork relative to the interpolated skeleton. In essence, the skeleton defines a
deformation of the original 2D plane, and the original image is transformed by this
mapping to create the interpolated image. This process can be extended directly into the
3D domain of real-time computer image generation systems and used for character
animation in entertainment applications.

Total Animation

The techniques of generalized morphing and skeleton animation can be used together to
create advanced entertainment applications with life-like animated characters. One
application of the two methods is to first perform a generalized" betweening" operation
that builds a character with the desired pre-planned animation aspects, such as eye or
mouth motion, and then to set the matrices or other transformation operators of the
skeleton transformation operation to represent hierarchical motions such as those of
arms or legs. The result of these animation operations is a freshly posed character ready
for display.

Database Construction

Several companies produce database modeling tools and example databases that are well
integrated with OpenGL Performer. A selection of these products are included and
described in the Friends of Performer distribution. The Friends of Performer gift
software is located in the /usr/share/Performer/friends directory. These tools
have been built to address many aspects of the database construction process. Popular
systems include tools that allow interactive design of geometry, easy editing and
placement of texture images, flexible file-based instancing, and many other operations.
40 007-3560-003

Survey of Visual Simulation Techniques
Special purpose tools also exist to aid in the design of roadways, instrument panels, and
terrain surfaces.

The reward of building complex databases that accurately and efficiently represent the
desired virtual environment is great, however, since real-time image generation systems
are only as good as the environments they explore.
007-3560-003 41

PART TWO

Programming with OpenGL Performer II
Chapter 3, “OpenGL Performer Programming Interface.”

Chapter 4, “Introduction to OpenGL Performer Concepts.”

Chapter 5, “Creating a Display with pfChannel.”

Chapter 6, “Creating Scene Graphs.”

Chapter 7, “Creating Geometry with pfGeoSet.”

Chapter 8, “Specifying the Appearance of Geometry with pfState and
pfGeoState.”

Chapter 9, “Placing Geometry in a Scene.”

Chapter 10, “Controlling Frame Rate.”

Chapter 11, “Multiprocessing.”

Chapter 12, “Database Paging.”

Chapter 13, “Intersection Testing.”

Chapter 14, “Creating a User Interface.”

Chapter 15, “Optimizing Performance.”

Chapter 3

3. OpenGL Performer Programming Interface

This chapter describes the fundamental ideas behind the OpenGL Performer
programming interface in the following sections:

• “General Naming Conventions” on page 45

• “Class API” on page 47

• “Base Classes” on page 50

General Naming Conventions

The OpenGL Performer API uses naming conventions to help you understand what a
given command will do and even predict the appropriate names of routines for desired
functionality. Following similar naming practices in the software that you develop will
make it easier for you and others on your team to understand and debug your code.

The API is largely object-oriented; it contains classes of objects comprised of methods
that do the following:

• Configure their parent objects.

• Apply associated operations, based on the current configuration of the object.

Both C and C++ bindings are provided for OpenGL Performer. In addition, naming
conventions provide a consistent and predictable API and indicate the kind of operations
performed by a given command.

Prefixes

The prefix of the command tells you in which library a C command or C++ class is found.
All exposed OpenGL Performer C commands and C++ classes begin with "pf". The
utility libraries use an additional prefix letter, such as "pfu" for the libpfutil general
utility library, "pfi" for the libpfui input handling library, and "pfd" for the libpfdu
007-3560-003 45

3: OpenGL Performer Programming Interface
database utility library. Libpr level commands still have the `pf’ prefix as they are still
in the main libpf library.

Header Files

Each OpenGL Performer library contains a main header file in
/usr/include/Performer that contains type and class definitions, the C API for that
library, and global routines that are part of the C and C++ API. Libpf is broken into two
distinct pieces: the low-level rendering layer, libpr, and the application layer, libpf,
and each has their own main header file: pr.h and pf.h. Because libpf is considered
to include libpr, pf.h includes pr.h. C++ class header files are found under
/usr/include/Performer/{pf, pr, ...} on IRIX and Linux systems. On Windows, the
header files are under %PFROOT%/Include/Performer. Each class has its own C++
header file and that header must be included to use that class.

#include <Performer/pf.h>

#include <Performer/pf/pfGroup.h>
.....
pfGroup *group;

Naming in C and C++

All C++ class method names have an expanded C counterpart. Typically, the C routine
will include the class name in the routine, whereas the C++ method will not.

C: pfGetPipeScreen();
C++: pipe->getScreen();

For some very general routines on the most abstract classes, the class name is omitted.
This is the case with the child API on pfNodes:

C: pfAddChild(node,child);
C++: node->addChild(child);

Command and type names are mixed case; the first letter of a new word in a name is
capitalized. C++ method names always start with a lowercase letter.

pfTexture *texture;
texture->loadFile();
46 007-3560-003

Class API
Abbreviations

Type names do not use abbreviations. The C API acting on that type will often use
abbreviations for the type names, as does the associated tokens and enums.

In procedure names, a name is always abbreviated or never abbreviated, and the same
abbreviation is always be used and is in the pfNew* C command. For example, the
pfTexture object uses "Tex" in its API, such as pfNewTex(). If a type name has multiple
words, the abbreviation uses the first letter of the first words and then the first syllable of
the last word.

pfPipeWindow *pwin = pfNewPWin();
pfPipeVideoChannel *pvchan = pfNewPVChan();
pfTexLOD *tlod = pfNewTLOD();

Macros, Tokens, and Enums

Macros, tokens, and enums all use full uppercase. Token names associated with a class
and methods of a class start with the abbreviated name for that class, such as texture to
“tex” in PFTEX_SHARPEN.

Class API

The API of a given class, such as pfTexture, is comprised of:

• API to create an instance of the object

• API to set parameters on the object

• API to get those parameter settings

• API to perform actions on the configured object

Object Creation

Objects are always created with:

C: pfThing *thing = pfNewThing();
C++: pfThing *thing = new pfThing;
007-3560-003 47

3: OpenGL Performer Programming Interface
Libpf objects are automatically created out of the shared memory arena. Libpr objects
take as an argument an arena pointer that, if NULL, causes allocation off the heap.

Set Routines

A set routine has the form:

C: pfThingParam(thing, ...) (note no ‘Set’ in the name)
C++: thing->setParam()

Set routines are usually very fast and are not order dependent. Work required to process
the settings happens once when the object is first used after settings have changed. If
particularly expensive options must be done, there will be a pfConfigThing routine or
method to explicitly force this work that must be called before the object is to be used.

Get Routines

For every "set" there is a matching "get" routine to get back the value that was set.

C: pfGetThingParam(thing, ...)
C++: thing->getParam()

If the set/get is for a single value, that value is usually the return value of the routine. If
there are multiple values together, the "get" routine will use pointers to result variables.

Getting Current In-Use Values

Get routines return values that have been previously set by the user, or default values if
no settings have been made. Sometimes a value other than the user-specified value is
currently in use and that is the value that you would like to get. For these cases, there is
a separate "getCur" routine to get the current value in use.

C: pfGetCurThingParam()
C++: thing->getcurParam()

These "cur" routines may only be able to give reasonable values in the process in which
associated operations are happening. For example, to get the current texture
(pfGetCurTex()), you need to be in the DRAW process, because that is the only process
that has a current texture.
48 007-3560-003

Class API
Action Routines

An action routine has the following form:

C: pfVerbThing(), such as pfApplyTex()
C++: thing->verb(), such as tex->apply()

Action routines can have parameter scope and apply only to that parameter. These
routines have the following forms:

C: pfVerbThingParam(), such as pfApplyTexMinLOD()
C++: thing->verbParam(), such as tex->applyMinLOD()

The APPLY and DRAW action routines do graphics operations and so must happen
either in the DRAW process or in display list mode.

C: pfApplyGState()
pfDrawGSet()
C++: gstate->apply()
gset->draw()

Enable and Disable of Modes

You can enable land disable with pfEnable() and pfDisable(), respectively.

pfEnable() and pfDisable() take PFEN_* tokens, naming the graphics state operation to
enable or disable. pfGetEnable() is used to query enable status, and will return 1 or 0 if
the given mode is enabled or disabled, respectively.

ex: pfEnable(PFEN_TEXTURE), pfDisable(PFEN_TEXTURE),
pfGetEnable(PFEN_TEXTURE);

Mode, Attribute, or Value

Class instances are configured by having their internal fields set. These fields may be
simple modes or complex attribute structures. Mode values are ints or tokens, attributes
are typically pointers to objects, and values are floats.

pfGStateMode(gstate, PFSTATE_DECAL, PFDECAL_LAYER)
pfGStateAttr(gstate, PFSTATE_TEXTURE, texPtr)
pfGStateVal(gstate, PFSTATE_ALPHAREF, 0.5)
007-3560-003 49

3: OpenGL Performer Programming Interface
Base Classes

OpenGL Performer provides an object-oriented programming interface to most of its
data structures. Only OpenGL Performer functions can change the values of elements of
these data structures; for example, you must call pfMtlColor() to set the color of a
pfMaterial structure rather than modifying the structure directly.

For a more transparent type of memory, OpenGL Performer provides pfMemory. All
object classes are derived from pfMemory. pfMemory instances must be explicitly
allocated with the new operator and cannot be allocated statically, on the stack, or
included directly in other object definitions. pfMemory is managed memory; it includes
special fields, such as size, arena, and ref count, that are initialized by the pfMemory
new() function.

Some very simple and unmanaged data types are not encapsulated for speed and easy
access. Examples include pfMatrix, pfSphere and pfVec3. These data types are referred
to as public structures and are inherited from pfStruct.

Unlike pfMemory, pfStructs can be:

• Allocated statically.

• Allocated on the stack.

• Included directly in other structure and object definitions.

pfStructs allocated off the stack or allocated statically are not in the shared memory arena
and thus are not safe for multiprocessed use. Also, pfStructs allocated off the stack in a
procedure do not exist after the procedure exits so they should not be given to persistent
objects, such as a pfVec3 array of vertices for a pfGeoSet.

To allow some functions to apply to multiple data types, OpenGL Performer uses the
concept of class inheritance. Class inheritance takes advantage of the fact that different
data types (classes) often share attributes. For example, a pfGroup is a node that can have
children. A pfDCS (Dynamic Coordinate System) has the same basic structure as a
pfGroup, but also defines a transformation to apply to its children—in other words, the
pfDCS data type inherits the attributes of the pfGroup and adds new attributes of its
own. This means that all functions that accept a pfGroup* argument will alternatively
accept a pfDCS* argument.

For example, pfAddChild() takes a pfGroup* argument, but the following appends child
to the list of children belonging to dcs.
50 007-3560-003

Base Classes
pfDCS *dcs = pfNewDCS();
pfAddChild(dcs, child);

Because the C language does not directly express the notion of classes and inheritance,
arguments to functions must be cast before being passed, for example:

pfAddChild((pfGroup*)dcs, (pfNode*)child);

In the example above, no such casting is required because OpenGL Performer provides
macros that perform the casting when compiling with ANSI C, for example:

#define pfAddChild(g, c) pfAddchild((pfGroup*)g, (pfNode*)c)

Note: Using automatic casting eliminates type checking—the macros cast anything to
the desired type. If you make a mistake and pass an unintended data type to a casting
macro, the results may be unexpected.

No such trickery is required when using the C++ API. Full type checking is always
available at compile time.

Inheritance Graph

The relations between classes can be arranged in a directed acyclic inheritance graph in
which each child inherits all of its parent’s attributes, as illustrated in Figure 3-1. OpenGL
Performer does not use multiple inheritance, so each class has only one parent in the
graph.

Note: It is important to remember that an inheritance graph is different from a scene
graph. The inheritance graph shows the inheritance of data elements and member
functions among user-defined data types; the scene graph shows the relationship among
instances of nodes in a hierarchical scene definition.
007-3560-003 51

3: OpenGL Performer Programming Interface
Figure 3-1 Partial Inheritance Graph of OpenGL Performer Data Types

Some classes
found in libpf

Some classes
found in libpr

pfNode

pfChannel

pfMaterial

pfGeoSet

pfFrustum

pfObject

pfLight
pfPipe
52 007-3560-003

Base Classes
OpenGL Performer objects are divided into two groups: those found in thelibpf library
and those found in the libpr library. These two groups of objects have some common
attributes, but also differ in some respects.

While OpenGL Performer only uses single inheritance, some objects encapsulate others,
hiding the encapsulated object but also providing a functional interface that mimics its
original one. For example, a pfChannel has a pfFrustum, a pfFrameStats has a pfStats, a
pfPipeWindow has a pfWindow, and a pfPipeVideoChannel has a pfVideoChannel. In
these cases, the first object in each pair provides functions corresponding to those of the
second. For example, pfFrustum has the following routine:

pfMakeSimpleFrust(frust, 45.0f);

and pfChannel has a corresponding routine:

pfMakeSimpleChan(channel, 45.0f);

Libpr and Libpf Objects

All of the major classes in OpenGL Performer are derived from the pfObject class. This
common, base class unifies the data types by providing common attributes and
functions. Libpf objects are further derived from pfUpdatable. The pfUpdatable
abstract class provides support for automatic multibuffering for multiprocessing.
pfObjects have no special support for multiprocessing and so all processes share the
same copy of the pfObject in the shared arena. libpr objects allocated from the heap are
only visible in the process in which they are created or in child processes created after the
object. Changes made to such an object in one process are not visible in any other process.

Explicit multibuffering of pfObjects is available through the pfFlux class. In general,
libpr provides lightweight and low-level modular pieces of functionality that are then
enhanced by more powerful libpf objects.

User Data

The primary attribute defined by the pfObject class is the custom data a user can define
on any pfObject called “user data.” pfUserData attaches the user-supplied data pointer
to the user data attribute. pfUserDataSlot attaches the user supplied data pointer to the
given user data slot. Example 3-1 shows how to use user data.
007-3560-003 53

3: OpenGL Performer Programming Interface
Example 3-1 How to Use User Data

typedef struct
{

float coeffFriction;
float density;
float *dataPoints;

}
myMaterial;

myMaterial *granite;

granite = (myMaterial *)pfMalloc(sizeof(myMaterial), NULL);
granite->coeffFriction = 0.5f;
granite->density = 3.0f;
granite->dataPoints = (float *)pfMalloc(sizeof(float)*8, NULL);
graniteMtl = pfNewMtl(NULL);

pfUserData(graniteMtl, granite);

pfDelete() and Reference Counting

You can place types of data objects in OpenGL Performer can be placed in a hierarchical
scene graph, using instancing (see OpenGL Performer Programmer’s Guide) when an object
is referenced multiple times. Scene graphs can become quite complex, which can cause
problems if you are not careful. Deleting objects can be a particularly dangerous
operation, for example, if you delete an object that another object still references.

Reference counting provides a bookkeeping mechanism that makes object deletion safe:
an object is never deleted if its reference count is greater than zero.

All libpr objects (such as pfGeoState and pfMaterial) have a reference count that
specifies how many other objects refer to it. A reference is made whenever an object is
attached to another using the OpenGL Performer routines shown in Table 3-1.
54 007-3560-003

Base Classes
When object A is attached to object B, the reference count of A is incremented.
Additionally, if A replaces a previously referenced object C, then the reference count of
C is decremented. Example 3-2 demonstrates how reference counts are incremented and
decremented.

Example 3-2 Objects and Reference Counts

pfGeoState *gstateA, *gstateC;
pfGeoSet *gsetB;

/* Attach gstateC to gsetB. Reference count of gstateC
 * is incremented. */
pfGSetGState(gsetB, gstateC);

/* Attach gstateA to gsetB, replacing gstateC. Reference
 * count of gstateC is decremented and that of gstateA
 * is incremented. */
pfGSetGState(gsetB, gstateA);

This automatic reference counting by OpenGL Performer routines would normally be
sufficient for your needs. However, the routines pfRef(), pfUnref(), and pfGetRef()
allow you to increment, decrement, and retrieve the reference count of a libpr object if

Table 3-1 Routines that Modify libpr Object Reference Counts

Routine Action

pfGSetGState() Attaches a pfGeoState to a pfGeoSet

pfGStateAttr() Attaches a state structure (such as a pfMaterial) to
a pfGeoState

pfGSetHlight() Attaches a pfHighlight to a pfGeoSet

pfTexDetail() Attaches a detail pfTexture to a base pfTexture

pfGSetAttr() Attaches attribute and index arrays to a pfGeoSet

pfTexImage() Attaches an image array to a pfTexture

pfAddGSet(),
pfReplaceGSet(),
pfInsertGSet()

Modifies pfGeoSet/pfGeode association
007-3560-003 55

3: OpenGL Performer Programming Interface
you want to do so. (These routines also work with objects allocated by pfMalloc(); see
the OpenGL Performer Programmer’s Guide for more information).

You can delete an object whose reference count is equal to with pfDelete(). pfDelete()
works for all libpr objects and all pfNodes but not for other libpf objects like pfPipe
and pfChannel. pfDelete() first checks the reference count of an object. If the reference
count is non-positive, pfDelete() decrements the reference count of all objects that the
current object references, and then it deletes the current object. pfDelete() does not stop
here but continues down all reference chains, deleting objects until it finds one whose
count is greater than zero. Once all reference chains have been explored, pfDelete returns
a boolean indicating whether it successfully deleted the first object or not. Example 3-3
illustrates the use of pfDelete() with libpr.

Example 3-3 Using pfDelete() with libpr Objects

pfGeoState *gstate0, *gstate1;
pfMaterial *mtl;
pfGeoSet *gset;

gstate0 = pfNewGState(arena); /* initial ref count is 0 */
gset = pfNewGSet(arena); /* initial ref count is 0 */
mtl = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtl to gstate0. Reference count of mtl is
 * incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtl);

/* Attach mtl to gstate1. Reference count of mtl is
 * incremented. */
pfGStateAttr(gstate1, PFSTATE_FRONTMTL, mtl);

/* Attach gstate0 to gset. Reference count of gstate0 is
 * incremented. */
pfGSetGState(gset, gstate0);

/* This deletes gset, gstate0, but not mtl since gstate1 is
 * still referencing it. */
pfDelete(gset);
56 007-3560-003

Base Classes
Example 3-4 illustrates the use of pfDelete() with libpf.

Example 3-4 Using pfDelete() with libpf Objects

pfGroup *group;
pfGeode *geode;
pfGeoSet *gset;

group = pfNewGroup(); /* initial parent count is 0 */
geode = pfNewGeode(); /* initial parent count is 0 */
gset = pfNewGSet(arena); /* initial ref count is 0 */

/* Attach geode to group. Parent count of geode is
 * incremented. */
pfAddChild(group, geode);

/* Attach gset to geode. Reference count of gset is
 * incremented. */
pfAddGSet(geode, gset);

/* This has no effect since the parent count of geode is 1.*/
pfDelete(geode);

/* This deletes group, geode, and gset */
pfDelete(group);

Some notes about reference counting and pfDelete():

• All reference count modifications are locked, so they guarantee mutual exclusion
when multiprocessing.

• The counts of objects added to a pfDispList are not incremented due to performance
considerations.

• In the multiprocessing environment of libpf, the successful deletion of a pfNode
does not have immediate effect but is delayed one or more frames until all processes
in all processing pipelines are done with the node. This accounts for the fact that
pfDispLists do not reference-count their objects.

• pfUnrefDelete(obj) is shorthand for:

if(pfUnref(obj) ==0)
pfDelete(obj);

This is true when pfUnrefGetRef is atomic.
007-3560-003 57

3: OpenGL Performer Programming Interface
• An object whose count reaches zero is not automatically deleted by OpenGL
Performer. You must specifically request that an object be deleted with pfDelete()
or pfUnrefDelete().

Copying Objects with pfCopy()

pfCopy() is currently implemented for libpr (and pfMalloc()) objects only. Object
references are copied and reference counts are modified appropriately, as illustrated in
Example 3-5.

Example 3-5 Using pfCopy()

pfGeoState *gstate0, *gstate1;
pfMaterial *mtlA, *mtlB;

gstate0 = pfNewGState(arena);
gstate1 = pfNewGState(arena);
mtlA = pfNewMtl(arena); /* initial ref count is 0 */
mtlB = pfNewMtl(arena); /* initial ref count is 0 */

/* Attach mtlA to gstate0. Reference count of mtlA is
 * incremented. */
pfGStateAttr(gstate0, PFSTATE_FRONTMTL, mtlA);

/* Attach mtlB to gstate1. Reference count of mtlB is
 * incremented. */
pfGStateAttr(gstate1, PFSTATE_FRONTMTL, mtlB);

/* gstate1 = gstate0. The reference counts of mtlA and mtlB
 * are 2 and 0 respectively. Note that mtlB is NOT deleted
 * even though its reference count is 0. */
pfCopy(gstate1, gstate0);

The routine pfMalloc() and the related routines provide a consistent method to allocate
memory, either from the user’s heap (using the C library malloc() function) or from a
shared memory arena (using the IRIX malloc() function).

Printing Objects with pfPrint()

pfPrint() can print many different kinds of objects to a fill. For example, you can print
nodes and GeoSets. To do so, you specify in the argument of the function the object to
58 007-3560-003

Base Classes
print, the level of verbosity, and the destination file. An additional argument, which,
specifies different data according to the type of object being printed.

The different levels of verbosity include:

• PFPRINT_VB_OFF—no printing.

• PFPRINT_VB_ON—minimal printing (default).

• PFPRINT_VB_NOTICE—minimal printing (default).

• PFPRINT_VB_INFO—considerable printing.

• PFPRINT_VB_DEBUG—exhaustive printing.

If the object to print is a type of pfNode, which specifies whether the print traversal
should only traverse the current node (PFTRAV_SELF) or the entire scene graph where
the node specified in the argument is the root node (PFTRAV_SELF |
PFTRAV_DESCEND). For example, to print an entire scene graph, in which scene is the
root node, to the file fp, with default verbosity, use the following line of code.

file = fopen (“scene.out”,”w”);
pfPrint(scene, PFTRAV_SELF | PFTRAV_DESCEND, PFPRINT_VB_ON, fp);
fclose(file);

If the object to print is a pfFrameStats, which should specify a bitmask of the frame
statistics classes that you want printed. The values for the bitmask include:

• PFSTATS_ON enables the specified classes.

• PFSTATS_OFF disables the specified classes.

• PFSTATS_DEFAULT sets the specified classes to their default values.

• PFSTATS_SET sets the class enable mask to enmask.

For example, to print select classes of a pfFrameStats structure, stats, to stderr, use the
following line of code.

pfPrint(stats, PFSTATS_ENGFX | PFFSTATS_ENDB | PFFSTATS_ENCULL,
PFSTATS_ON, NULL);

If the object to print is a pfGeoSet, which is ignored and information about that pfGeoSet
is printed according to the verbosity indicator. The output contains the types, names, and
bounding volumes of the nodes and pfGeoSets in the hierarchy. For example, to print the
contents of a pfGeoSet, gset, to stderr, use the following line of code:
007-3560-003 59

3: OpenGL Performer Programming Interface
pfPrint(gset, NULL, PFPRINT_VB_DEBUG, NULL);

Note: When the last argument, file, is set to NULL, the object is printed to stderr.

Determining Object Type

Sometimes you have a pointer to a pfObject but you do not know what it really is—is it
a pfGeoSet, a pfChannel, or something else? pfGetType() returns a pfType that specifies
the type of a pfObject. You can use pfType to determine the class ancestry of the object.
Another set of routines, one for each class, returns the pfType corresponding to that class,
For example, pfGetGroupClassType() returns the pfType corresponding to pfGroup.

pfIsOfType() tells whether an object is derived from a specified type, as opposed to
being the exact type.

With these functions you can test for class type as shown in Example 3-6.

Example 3-6 General-Purpose Scene Graph Traverser

void
travGraph(pfNode *node)
{

if (pfIsOfType(node, pfGetDCSClassType()))
 doSomethingTransforming(node);

 /* If ’node’ is derived from pfGroup then recursively
 * traverse its children */
 if (pfIsOfType(node, pfGetGroupClassType()))
 for (i = 0; i < pfGetNumChildren(node); i++)
 travGraph(pfGetChild(node, i));
}

Because OpenGL Performer allows subclassing of built-in types when decisions are
made based on the type of an object, it is usually better to use pfIsOfType() to test the
type of an object rather than to test for the strict equality of the pfTypes. Otherwise the
code will not have reasonable default behavior with file loaders or applications that use
subclassing.

The pfType returned from pfGetType() is useful for programs but is not in a readable
form for you. Calling pfGetTypeName() on a pfType returns a null-terminated ASCII
60 007-3560-003

Base Classes
string that identifies an object’s type. For a pfDCS, for example, pfGetTypeName()
returns the string“pfDCS.” The type returned by pfGetType() can then be compared to
a class type using pfIsOfType(). Class types can be returned by methods such as
pfGetGroupClassType().
007-3560-003 61

Chapter 4

4. Introduction to OpenGL Performer Concepts

This chapter describes the basic classes that implement the database- to- display pipeline
in the following sections:

• “Scene-to-Screen Path” on page 63

• “Parts of a Performer Application” on page 70

• “Inputting and Reading User Events” on page 74

Scene-to-Screen Path

A description of your world is encapsulated in the scene graph, and a view into the
world is described by a pfChannel. This view is rendered by an OpenGL Performer
software pipeline, pfPipe, into a window, pfPipeWindow, on a selected screen. This path
of operation and associated classes is shown in Figure 4-1.
007-3560-003 63

4: Introduction to OpenGL Performer Concepts
Figure 4-1 Data-to-Display

Scene Graph

A scene graph is a directional, acyclic graph (DAG). Its structure determines the order of
operation of its data.

pfNode is the base class of all scene graph node types. A node might hold, for example,
the data for a geometry. Different node types provide mechanisms for grouping,
animation, level of detail, and other concepts that are applied when the scene graph is
traversed with a traverser.

Scene graph

pfChannel

pfPipe

pfPipeWindow

Display system
64 007-3560-003

Scene-to-Screen Path
Scene Graph Hierarchy

The nodes in a scene graph are arranged in a hierarchy, as shown in Figure 4-2.

Figure 4-2 Scene Graph Hierarchy

The hierarchy of nodes can have many meanings, for example:

• The child nodes may be part of the parent node. For example, the parent node
might encapsulate a light bulb, where one child node encapsulates the silver base of
the light bulb, and another child node encapsulates the glass part of the light bulb.

• The parent node may also just serve as a means of grouping the children nodes. For
example, four children might encapsulate data that renders four tires on a car.

• The children nodes can all be views of the same geometry at different levels of
resolution.

The parent node, in this example, switches the source of the display data between
its child nodes according to, for example, how far the geometry is from the viewer.
The bottom of the group contains geometry that is stored in several childless leaf
nodes, such as pfGeode.

The entire scene graph represents all of the data in the database.

Scene Graph Traversers

Nodes in a scene graph can respond to some kind of traversal. A traverser runs over part
or all of the hierarchy of nodes in the scene graph, which triggers some response. Not all
nodes, however, respond to all traversals.

1

3 4 7 8 9

2 5 6

Nodes
007-3560-003 65

4: Introduction to OpenGL Performer Concepts
Examples of traversers include the CULL traverser, pfCull, and the DRAW traverser,
pfDraw. pfNodes can use the OpenGL Performer default behavior, or define their own
using callback mechanisms. For more information about callbacks, see “Customizing
OpenGL Performer Traversals” on page 110.

The hierarchy of the scene graph specifies the order in which the nodes are processed by
a traversal. The order is top down. For example, the numbers on the nodes in Figure 4-2
show one example of the order in which the traversal is applied to each node.

A traversal going from one node to another is said to traverse the scene graph. Figure 4-2
shows that the traversal was applied at the root node, pfScene, of the scene graph. A
traversal applied at the root is passed throughout the entire scene graph. You can,
however, apply the traversal to a subsection of the scene graph by applying it to any node
beside the root node.

For more information about scene graphs, see Chapter 6, “Creating Scene Graphs.”

Channels

A channel is equivalent to a camera moving throughout the scene. Whereas the scene
graph encapsulates all of the visual data in the scene, the channel contains only that
visual information that is visible to the viewer; the channel shows a slice of the scene
from a specified perspective. The view culled by the channel is defined by:

• Camera position and orientation

• Viewing frustum

The channel provides a particular view of a scene, as shown in Figure 4-3.
66 007-3560-003

Scene-to-Screen Path
Figure 4-3 Camera with Viewing Volume

Note: OpenGL Performer allows you to create asymmetric frustums.

The viewing volume is the pyramid shown in Figure 4-3. The frustum is the truncated
pyramid defined by:

• Near and far clipping planes.

• Horizontal and vertical fields of view.

The only geometries in view are those in the viewing frustum. Geometries in the scene
graph are invisible when they are:

• Beyond the far clipping plane.

• Between the viewer and the near clipping plane.

• Outside the horizontal and vertical fields of view.

Each channel is associated with a scene graph; however, one scene graph may be
associated with more than one channel.

Vertical FOV

Horizontal FOV

y

xTop

Left

Right

Bottom

Line of sight

Aspect Ratio = =
x

y

tan(vertical FOV/2)
tan(horizontal FOV/2)

Eyepoint

Near

Far
007-3560-003 67

4: Introduction to OpenGL Performer Concepts
For more information about channels, see Chapter 5, “Creating a Display with
pfChannel.”

Pipe and Window

The pipe renders the visual data in the viewing frustum to a window. The pipe is the
software abstraction of the hardware graphics pipeline.

Rendering the scene occurs in three stages:

1. APP—updates the location and look of geometries and updates the viewing
location and orientation.

2. CULL—determines which geometries in the scene are visible (in the viewing
frustum), taking occlusion into account.

3. DRAW—renders all visible geometries.

Each stage is potentially a separate process. For maximum performance, run each of
these processes on a different CPU. When using three CPUs, OpenGL Performer can
process three frames at the same time, as shown in Figure 4-4.

Figure 4-4 Multiprocessing Frames in the Pipe

Figure 4-4 shows how:

• Three frames are processed sequentially across three processes.

• The three processes running on three CPUs can process up to three frames of data
concurrently, while the APP stage processes the third frame, the CULL stage
processes the second frame, and the DRAW stage processes the second frame.

0 1

Time

Pr
oc

es
se

s
on

 T
hr

ee
 C

PU
s

App

Cull

Draw

0

0

1

1

2

2

2

68 007-3560-003

Scene-to-Screen Path
Most of your work is done in the APP stage, which updates the location of the geometries
and the camera in the scene.

It is possible to customize the CULL and DRAW stages using callback functions. It is
more common, however, to let OpenGL Performer handle those stages. For more
information about customizing stages using callback functions, see “Customizing
OpenGL Performer Traversals” on page 110.

Starting the Stages

Each stage runs as a separate traversal over the scene graph. Table 4-1 shows the classes
that start each stage.

The ISECT traversal searches for intersections. For more information, see Chapter 13,
“Intersection Testing.”

Rendering the Scene

When you call pfFrame, the CULL traversal generates a libpr display list of geometry
and state commands, which describes the scene that is visible from a pfChannel.

• The DRAW traversal traverses the display list and sends commands to the
Geometry Pipeline to generate the scene.

The libpr display list keeps pointers to user data. The list allows users to have dynamic
data.

Traversing a pfDispList is much faster than traversing the database hierarchy because the
pfDispList flattens the hierarchy into a simple, efficient structure. In this way, the CULL

Table 4-1 Traversals Launched

Traversal Launched By

APP pfApp (from pfSync)

CULL pfCull (from pfFrame)

DRAW pfDraw (from pfFrame)

ISECT pfNodeIsectSegs/pfChanNodeIsectSegs
007-3560-003 69

4: Introduction to OpenGL Performer Concepts
traversal removes much of the processing burden from the DRAW traversal; throughput
greatly increases when both traversals are running in parallel.

Display Lists

libpr supports display lists, which contain and later execute libpr graphics
commands. pfNewDList() creates and returns a handle to a new pfDispList. You can
select a pfDispList as the current display list with pfOpenDList(), which puts the system
in display list mode. Any subsequent libpr graphics commands, such as
pfTransparency(), pfApplyTex(), or pfDrawGSet(), are added to the current display list.
Commands are added until pfCloseDList() returns the system to immediate mode. In
display list mode, changes to the scene do not take effect until the next pfFrame is called.

It is not legal to have multiple pfDispLists open at the same time, but a pfDispList may
be reopened, in which case commands are appended to the end of the list.

Once a display list is constructed, it can be executed by calling pfDrawDList(), which
traverses the list and sends commands down the Geometry Pipeline. pfFrame, however,
executes the display list automatically.

For more information on pfDispList, see the OpenGL Performer Programmer’s Guide.

Parts of a Performer Application

The basic parts of your OpenGL Performer program include:

1. Initializing OpenGL Performer.

2. Acquiring a pipe.

3. Creating a channel and window.

4. Associating the channel with the appropriate window.

5. Loading the scene graph and associate it with the channel.

6. Positioning the channel(s) and updating the scene.

7. Calling pfFrame to draw the scene.

8. Creating the simulation loop to return to step 6.
70 007-3560-003

Parts of a Performer Application
Initializing Performer

To initialize OpenGL Performer, use the following call:

void pfInit(void);

Initializing OpenGL Performer causes the following:

• Sets up the shared memory arena for the three processes.

• Initializes the OpenGL Performer graphics state.

pfInit() must be the first method called in an OpenGL Performer application. pfConfig
creates the additional, desired OpenGL Performer processes. You clean up by calling
pfExit(), which exits the application and kills all OpenGL Performer processes.

Shared Memory Arena

Because all three processes can work on the same frame of visual data, a shared memory
arena is required. OpenGL Performer uses shared memory arenas that can be accessed
by separate processes. All OpenGL Performer processes need to access the scene graph,
so all scene graph data must be in the shared memory arena. OpenGL Performer creates
the arena for you in pfInit in a libpf application.

pfNodes and other libpf objects are automatically created in the shared memory arena.
You can get the shared arena with pfGetSharedArena.

For more information about shared memory, see Chapter 19, “Performance Tuning and
Debugging”, in the OpenGL Performer Programmer’s Guide.

Creating the Pipe, Channel, and Pipe Window

To create the pipe, channel, and pipe window, use the following calls:

// pfConfig must go first
pfConfig();

// Acquire handled pipe number 0.
pfPipe *pipe = pfGetPipe(0);

// Create the pipe window and associate it with the pipe.
pfPipeWindow *pwin0 = pfNewPWin(pipe);
007-3560-003 71

4: Introduction to OpenGL Performer Concepts
// Create the channel and associate it with the pipe.
pfChannel *chan0 = pfNewChan(pipe);

// Associate the channel and pipe window so the channel is drawn in it.
pfAddChan(pwin0, chan0);

// Calls that cause the window to be opened at next pfFrame()
pfOpenPWin(pwin0);
pfFrame();

These methods configure the graphics pipeline, and fork all requested processes,
including APP, CULL, and DRAW.

Loading the Scene Graph

To specify the path to the scene graph file, use the following method:

void pfFilePath(const char *pathName);

pathName is the complete path to the scene graph file. For more information about
loading a scene graph, see “Loading a Scene Graph” on page 104.

Positioning the Channel

Use the following methods to position the channel:

void pfChanFOV(pfChannel* chan, float horiz, float vert);
void pfChanNearFar(pfChannel* chan, float near, float far);

The simulation loop, up to this point, has handled the APP process. To start the CULL
and DRAW processes, use the following call:

void pfFrame(void);

Besides starting the CULL and DRAW processes, this call, along with pfSync, handles
frame synchronization.
72 007-3560-003

Parts of a Performer Application
Creating the Simulation Loop

The simulation loop drives the application. Its actions are carried out in the APP process.
The simulation loop repeats endlessly until the application exits.

Figure 4-5 shows that the simulation loop generally has three steps:

1. Update the appearance, shape, and location of the objects in the scene.

2. Update the position and orientation of the camera in the scene.

3. Redraw the scene.

Figure 4-5 Simulation Loop

Example 4-1 shows pseudo code for a synchronization loop.

Example 4-1 Synchronization Loop

while(!finished)
{

handleinput();
updateScene();
anyCriticalUpdate();
pfFrame();

}

Initialize

Update
scene

Update
camera

pfFrame()

Simulation loop
007-3560-003 73

4: Introduction to OpenGL Performer Concepts
Inputting and Reading User Events

Performer applications are interactive and use the OpenGL/X Window System on IRIX
and Linux systems.

User input devices are unlimited, but OpenGL Performer provides utilities for handling
the following:

• Keyboard

• Mouse

• Track ball

• Flybox

Other input can come from the following:

• Network

• Reflective memory

Implementing User Input with Window Events

To implement user input, you need to:

1. Initialize the utility library.

2. Set the window type.

3. Enable user input on the window.

4. Collect the window events in a forked process.

Initializing the Utility Library

The utility library,libpfutil, provides input handling utilities. Initialize it by using the
following call:

void pfuInitUtil(void);

Clean it up by using the following call:

void pfuExitUtil();
74 007-3560-003

Inputting and Reading User Events
Enabling User Input

To enable user input, you can use the following method:

void pfuInitInput(*pwin, int mode);

where pwin points to the pfPipeWindow where the user enters information, and mode is
one of two tokens:

• PFUINPUT_X

• PFUINPUT_X_NOFORK

You can set the window with the following method:

void pfPWinType(pwin, type);

where pwin points to the pfPipeWindow where the user enters information and type is
one of the following tokens:

• PFPWIN_TYPE_X

• PFPWIN_TYPE_X_NOFORK

Note: On Windows, the user events are not processed in a separate process. Hence, use
PFUINPUT_X_NOFORK and PFPWIN_TYPE_X_NOFORK.

To clean up when user input is finished, use the following method:

pfuExitInput();

Retrieving User Events

OpenGL Performer provides utilities for asynchronously calculating window system
events and returning them to the application. User events are stored in a pfuEventStream
object, which is a queue. To retrieve keyboard and mouse events, use the following
methods, respectively:

pfuGetEvents (event);
pfuGetMouse(mouse);

where event and mouse are pointers to keyboard events and a pfuMouse structure,
respectively.
007-3560-003 75

4: Introduction to OpenGL Performer Concepts
To complete the implementation, you must respond to the following events:

• Examine the keyboard input and take appropriate actions.

• Use pfiXformer to handle the mouse events.

OpenGL Performer provides a routine for examining keyboard input. You only need to
add code that takes appropriate actions in response to the input, as shown in
Example 4-2.

Example 4-2 Handling Keyboard Input

void handleEvents(void)
(

extern pfuEventStream events;
pfuEventStream *pEvents = &events;

// get events and number of events pfuGetEvents(&events);
numDevs = pEvents->numDevs;

// process each of the events; dev is the kind of event, val is
// its value, such as a keyboard event with an ASCii value of 27.
for (j=0; j = numDevs; ++j) (

dev = pEvents->devQ[j];
val = pEvents->devVal[j];

if (pEvents->devCount[dev] > 0) {
switch (dev) {
...

// process keyboard input
case PFUDEV_KEYBD:

for (i=0; i < pEvents->numKeys; ++i) {
key = pEvents->keyQ[i];
if (pEvents->keyCount[key]) {

switch [key] {

case 27:
// escape key; exit program
exitFlag = 1; break;

case ‘h’:
// print help
76 007-3560-003

Inputting and Reading User Events
printHelp(progName);
break; ...
007-3560-003 77

Chapter 5

5. Creating a Display with pfChannel

A pfChannel is a view into a scene graph based on the following:

• Location and orientation of the camera in the scene

• Viewing frustum

A pfPipe can display one or more channels in one or more windows, as shown in
Figure 5-1. Each pfChannel in a window corresponds to a viewport.
007-3560-003 79

5: Creating a Display with pfChannel
Figure 5-1 Multiple Windows, Multiple Channels

This chapter discusses, in the following sections, many of the important classes that
constitute the process of taking data from a scene graph database and rendering it on a
display system:

• “Creating and Configuring a pfChannel” on page 81

• “Initializing the pfChannel View” on page 83

• “Channel Callbacks” on page 89

Scene graph

pfChannel 1pfChannel 0

pfPipe

pfPipeWindow 0

pfPipeWindow 1

Display system

pfChannel 0 pfChannel 1

pfScene
80 007-3560-003

Creating and Configuring a pfChannel
• “Using Multiple Channels” on page 91

• “Multiple Pipes” on page 95

Creating and Configuring a pfChannel

To use a pfChannel:

1. “Acquiring a pfPipe” on page 81.

2. “Creating and Configuring a pfPipeWindow” on page 82. (Optional)

3. “Creating a pfChannel Rendered by a pfPipe” on page 82.

4. “Attaching a pfScene to the pfChannel” on page 82.

5. “Configuring a Viewport for the pfChannel” on page 82. (Optional)

6. “Defining the Viewing Frustum” on page 85.

Note: Steps 4, 5, and 6 can be completed in any order.

The following sections explain this procedure.

Acquiring a pfPipe

A pfPipe is a graphics pipeline that renders one or more pfChannels into one or more
pfPipeWindows, as shown in Figure 5-1.

The pfPipe is the software abstraction of the hardware graphics pipeline. You can create
as many pfPipe objects as you like. For optimal performance, use only one pfPipe object
per hardware graphics pipeline.

To acquire a handle to a pfPipe object, use the following pfPipe method:

pfPipe *pipe = pfGetPipe(0);
007-3560-003 81

5: Creating a Display with pfChannel
Creating a pfChannel Rendered by a pfPipe

To create a pfChannel, use the following constructor:

pfChannel *channel = new pfNewChan(pipe);

where pipe is a pointer to a pfPipe.

The pfChannel is automatically associated with the first pfPipeWindow in the pfPipe. If
a pfPipeWindow is not explicitly created, one is generated automatically and set to be
fully screened.

Creating and Configuring a pfPipeWindow

To create and configure a pfPipeWindow in which the pfPipe displays its rendering, use
the following method:

pfPipeWindow* pfNewPWin(pfPipe *pipe);

where pipe is a pointer to a pfPipe.

Use the pfPipeWindow methods to configure a pfPipeWindow.

Attaching a pfScene to the pfChannel

To attach a scene to the pfChannel, use the following method:

void pfChanScene(pfChannel *chan, pfScene *scene);

where chan and scene are the pfChannel to a scene to connect.

Configuring a Viewport for the pfChannel

The viewport is that portion of the pfWindow in which the pfChannel is displayed, as
shown in Figure 5-1. If you do not configure the viewport, the pfChannel defaults to
displaying in the entire pfWindow.

You can create and modify the viewport of a pfChannel using the following line of code:

void pfChanViewport(pfChannel *chan, float left, float right,
82 007-3560-003

Initializing the pfChannel View
float bottom, float top);

chan is the pfChannel associated with the viewport.

left and right specify the X coordinates from the left side to the right side of the viewport.
Values are clamped between 0.0 and 1.0, where 1.0 is the entire width of the pfWindow.

bottom and top specify the Y coordinates from the bottom to the top of the viewport.
Values are clamped between 0.0 and 1.0, where 1.0 is the entire height of the pfWindow.

Creating a Background for a pfChannel

pfEarthSky objects draw sky, horizon, and ground in different weather conditions.

To display the background, follow these steps:

1. Use pfClear to clear the buffers in the current graphics window.

2. Use pfNewESky to create a new pfEarthSky object.

3. Use pfChannel::pfChanESky() to attach the pfEarthSky to a pfChannel.

pfEarthSky is called automatically in the DRAW process, unless a DRAW callback is
present, in which case it must be explicitly called using pfClearChan.

Initializing the pfChannel View

You might like to start the size of the view frustrum so that the shape in it is completely
in view. To determine the size of a shape, you retrieve the bounding sphere for the shape.
The bounding sphere is a sphere that encloses a shape and approximates its size, as
shown in Figure 5-2.
007-3560-003 83

5: Creating a Display with pfChannel
Figure 5-2 Bounding Sphere

To return the size of a bounding sphere, use the following method:

int pfGetNodeBSphere(pfNode *node, pfSphere *sphere);

This method returns the bounding sphere, sphere, for the node, node. The bounding
sphere is returned as a pfSphere, defined as:

typedef struct {
pfVec3 center;
float radius;

} pfSphere;

Note: The bounding spheres are often slightly larger than the size of the geometry.

Use the dimensions of the bounding sphere as a guideline for the starting size of the view
frustum, for example:

pfGetNodeBSphere(shapeNode, &Bsphere);
distanceToShape = 2.0f * Bsphere.radius;
pfChanNearFar(chan, 1.0f, 10.0f * Bsphere.radius);
84 007-3560-003

Initializing the pfChannel View
float sceneSize = 2*bsphere.radius;

/* Set initial view to be “in front” of scene */
/* first put view point at center of sphere */
PFCOPY_VEC3(Shared->view.xyz, bsphere.center);

/* then back up so all is visible */
Shared->view.xyz[PF_Y] -= sceneSize;
Shared->view.xyz[PF_Z] += 0.25f*sceneSize;

/* look up the Y axis */
pfSetVec3(Shared->view.hpr, 0.0f, 0.0f, 0.0f);

pfChanView(chan, Shared->view.xyz, Shared->view.hpr);

Bounding Volumes

The following geometries are used as bounding volumes for the following classes:

• pfSpheres are used as bounding volumes for pfNodes.

• pfBoxes are used as bounding volumes for pfGeoSets.

• pfCylinders are used as bounding volumes for intersection rays.

Defining the Viewing Frustum

The viewing frustum is defined by the following:

• “Near and Far Clip Planes” on page 86

• “Height and Width of the View Frustum” on page 87

• “Direction and Position of the View” on page 87

These parameters are shown in Figure 5-3.
007-3560-003 85

5: Creating a Display with pfChannel
Figure 5-3 Viewing Frustum

The following sections explain how to set these parameters.

Near and Far Clip Planes

To set up the viewing frustum, use the following method:

void pfChanNearFar(pfChannel *chan, float near, float far);

chan is the pfChannel, near and far define the distances to the near and far clipping planes
of the viewing frustum.

Shapes closer to the camera than the near clip plane or further than the far clip plane are
not rendered. The default values for each clip plane are:

• Near clip plane = 1.0

• Far clip plane = 1000.0

The near clip plane must lie between 0.0 and the far clip plane.

Tip: Moving the near clip plane close to the origin degrades Z-buffer precision.

wAspect Ratio =
h

Near clip plane

Far clip plane

wh

Frustum
Viewing volume
86 007-3560-003

Initializing the pfChannel View
Height and Width of the View Frustum

To set up the height and width of viewing frustum, use the following method:

void pfChanFOV(pfChannel *chan, float horiz, float vert);

where chan is the pfChannel and horiz and vert, expressed in degrees, define the
horizontal and vertical dimensions, respectively, of the view frustum, as shown in
Figure 5-3. The default values are:

• horiz = 45.0

• vert = 0.0

If one angle is less than or equal to 0.0 degrees, that dimension is computed using the
other angle and the viewport aspect ratio. Generally, you should only specify one of the
angles so that the other is determined automatically to fit into viewport without
distortion.

Direction and Position of the View

To set up the direction and position of the viewing frustum, use the following method:

void pfChanView(pfChannel *chan, pfVec3 xyz, pfVec3 hpr);

where

• chan is the pfChannel.

• xyz is the position of the camera in world space coordinates.

• hpr is the heading, pitch, and roll of the camera, specified in degrees.

The heading, pitch, and roll values account for the rotation of the camera in any of the
three dimensions, as shown in Figure 5-4.
007-3560-003 87

5: Creating a Display with pfChannel
Figure 5-4 Heading, Pitch, and Roll Values

The starting hpr is oriented at the origin looking down the Y-axis.

OpenGL Performer also includes a pfCoord data type that defines the location and the
rotation values.

typedef float pfVec3[3];

typedef struct (
pfVec3 xyz;
pfVec3 hpr;

}pfCoord;

Note: The multiplication order is roll, pitch, and then heading.

X
+ Pitch Y

Z

+ Heading

+ Roll
88 007-3560-003

Channel Callbacks
Channel Callbacks

CULL and DRAW traversals are executed for each channel on a pfPipe whenever you call
pfFrame. If you want to modify the default behavior when pfFrame is called on a
channel, you can use callback functions.

For example, if you have special knowledge that the default CULL process cannot know,
customize the behavior of the channel when CULL traverses the channel. One example
is if you know you are inside a house, you would cull everything outside the house. The
default CULL process would not necessarily produce this result.

To set up a channel callback function, use the following method:

void pfChanTravFunc(pfChannel* chan, int trav, pfChanFuncType func);

chan is the channel for which you are setting up the callback function.

trav is the kind of traversal that triggers the callback function. Possible values include:

• PFTRAV_CULL

• PFTRAV_DRAW

func is the callback function called when the specified traversal, trav, evaluates the
channel, chan.

The default behavior is to call:

• pfCull from the CULL callback

• pfClearChan and pfDraw from the DRAW callback

You can either ignore or add to this behavior.

Using Passthrough Data

The data derived from a channel traversal callback function must be sent down the
graphics pipeline at frame boundaries. To synchronize the use of channel callback data,
follow these steps:
007-3560-003 89

5: Creating a Display with pfChannel
1. Allocate memory and associate it with a channel.

2. Mark the data in the allocated memory as ready to be passed down the graphics
pipeline at the next pfFrame call.

The following methods accomplish those tasks:

void * pfAllocChanData(pfChannel* chan, int size);
void pfPassChanData(pfChannel* chan);

size is the number of bytes of memory to allocate and associate with the channel, chan.

Changes are passed down the graphics pipeline only. For example, changes in the CULL
process are not seen in the APP process.

Channel Callback Example

Example 5-1 shows how to implement channel callbacks using pass through data. The
example assumes that the CULL and DRAW callbacks have already been set up.

Example 5-1 Channel Callback Using Passthrough Data

typedef struct {
int frameCount;

} PassData;

PassData *data = (PassData *)pfAllocChanData(chan, sizeof(PassData));
...
while (...) {

data->frameCount = pfSync();
pfPassChan Data(chan);
pfFrame();

}

void cullChan(pfShannel *chan, void *data)
{

// Changes made to data will be seen in channel DRAW callback.

PassData *pass = (PassData *)data;
pass->frameCount++;
...

}

90 007-3560-003

Using Multiple Channels
Using Multiple Channels

Multiple channels can be connected to a single pfPipe; a single pfChannel, however,
cannot be connected to more than one pfPipe. pfPipe maintains a list of channels attached
to it.

Each pfChannel is rendered in its own viewport, as shown in Figure 5-5.

Figure 5-5 Multiple Channels

Scene graph

pfChannel 1pfChannel 0

pfPipe

pfPipeWindow

Display system

pfChannel 0 pfChannel 1

pfScene
007-3560-003 91

5: Creating a Display with pfChannel
In Figure 5-5, pfChannel 0 is rendered in viewport 0, and pfChannel 1 is rendered in
viewport 1. The channels are rendered in the order they are created.

For information about rendering channels in their own viewport, see “Configuring a
Viewport for the pfChannel” on page 82.

Grouping Channels

At times you may want to have different views of the same part of the scene. For
example, each pfChannel might show the same scene at different LOD levels. These two
views of the same scene require that the channels showing each view have the same
attributes.

OpenGL Performer makes it easy for different channels to share attributes by creating
pfChannel groups. One pfChannel is chosen as the master pfChannel and the other
channels in the group are attached to the master, as follows:

int pfAttachChan(pfChannel *master, pfChannel *chan);

master is the pfChannel whose attributes are used for all channels attached to it. chan is a
different pfChannel that is dependent upon the master pfChannel; chan uses the master
pfChannel’s attributes.

You can add as many channels to the group as you like by repeating the pfAttachChan()
method.

Choosing the Attributes to Share

By default, the channels in a group use the master pfChannel’s attributes except for:

• Viewport

• View offsets, explained in “Using View Offsets” on page 94

• Hardware swap buffers signal (for multichassis sync)

You can, however, specify other attributes that you do not want a pfChannel to derive
from the master by setting the bits in a mask. By default, all of the bits in the mask are
ON. To unshare attributes, follow these steps:
92 007-3560-003

Using Multiple Channels
1. Get the pfChannel’s mask, using:

uint pfGetChanShare(pfChannel *chan);

2. Unset the bit for the attribute you do not want to be shared with the master
pfChannel.

3. Set the mask, using:

void pfChanShare(pfChannel *chan, uint mask);

The following code segment shows an implementation of this procedure in which the
attribute, near and far planes, is unset.

mask = pfGetChanShare(chan);
mask &= !PFCHAN_NEARFAR;
pfChanShare(chan, mask);

In this example, the view frustum of the pfChannel may be different from that of the
master pfChannel.

Attribute Mask

Table 5-1 lists the pfChannel attributes that can be shared.

Table 5-1 pfChannel Attributes

pfChannel property Description

PFCHAN_FOV Field of view angles

PFCHAN_NEARFAR Near and far clip planes

PFCHAN_VIEW View position

PFCHAN_VIEW_OFFSETS xyz, hpr offsets from master viewpoint

PFCHAN_VIEWPORT Viewport

PFCHAN_SCENE Scene

PFCHAN_EARTHSKY Earth-sky model

PFCHAN_STRESS Stress filter parameters

PFCHAN_LOD Level of detail modifiers

PFCHAN_SWAPBUFFERS Signal to swap
007-3560-003 93

5: Creating a Display with pfChannel
Using View Offsets

Although a pfChannel might look at the same scene as that seen by the master
pfChannel, you might like to orient the pfChannel differently. For example, you might
like the master pfChannel to show one view of a scene and a slave pfChannel to show a
view of adjacent scenery so that when the two channels are projected side by side, you
have a wide view of the scene.

The view offset can be set for each pfChannel. If it is not set, the offset is zero, which
means the master and slave channels are in the same location and orientation.

To specify how a slave’s pfChannel view is different from the master pfChannel View,
use the following method:

void pfChanViewOffsets(pfChannel* chan, pfVec3 xyz, pfVec3 hpr);

chan specifies the pfChannel to offset.

xyz specifies the 3D coordinates, relative to the master pfChannel, where the slave
pfChannel is located.

hpr specifies the rotation of the pfChannel, relative to the master pfChannel, where h, p,
and r are the degrees of rotation about the x, y, and z axes, respectively.

For example, if you want the slave pfChannel to be 100 units above the master pfChannel
pointed down, the values for x, y, and z would be (0, 0, 100) and the values for h, p, and
r would be (0, -90, 0).

The Z-axis is oriented vertically to the ground, as shown in Figure 5-6.

PFCHAN_SWAPBUFFERS_HW Signal to swap (multipipe)

PFCHAN_STATS_DRAWMODE Statistics graph characteristics

PFCHAN_APPFUNC Application callback

PFCHAN_CULLFUNC CULL callback

PFCHAN_DRAWFUNC DRAW callback

Table 5-1 pfChannel Attributes (continued)

pfChannel property Description
94 007-3560-003

Multiple Pipes
Figure 5-6 Axes Orientation in Performer

The starting orientation is located at the origin and pointed down the Y-axis.

Multiple Pipes

You may find it appropriate to display your data over more than one display system. For
example, you might want to present the left side and right side of a scene on two different
monitors. The CULL and DRAW stages are specific to each pfPipe object; the APP stage,
however, is shared by both pfPipe objects, as shown in Figure 5-7.

X

Y

Z

007-3560-003 95

5: Creating a Display with pfChannel
Figure 5-7 Pipe Stages

Setting the Multiprocessing Configuration

pfMultiprocess controls the multiprocessing configuration of a pfPipe. The CULL and
DRAW stages can run as a single process or, for improved performance, run as separate
processes, according to the value passed to pfMultiprocess. For example, to run the APP,
CULL and DRAW stages as separate processes, use the following line of code:

pfMultiprocess(PFMP_APP_CULL_DRAW);

You must call pfMultiprocess between pfInit and pfConfig. If you do not, OpenGL
Performer creates a multiprocessing configuration automatically based on the number of
CPUs in the run-time hardware.

For more information about multiprocessing, see Chapter 11, “Multiprocessing.”

App

Cull

Draw

Cull

Draw
96 007-3560-003

Multiple Pipes
Creating Multiple pfPipes

To create multiple pfPipe objects, use the following pfPipe method:

void pfMultipipe(int npipes);

npipes is the number of pfPipe objects to create.

Call pfMultipipe between pfInit and pfConfig. By default, there is just one pfPipe.

For more information about multiprocessing, see Chapter 11, “Multiprocessing.”
007-3560-003 97

Chapter 6

6. Creating Scene Graphs

A scene graph holds the data that defines a virtual world. The scene graph includes
low-level descriptions of object geometry and their appearance, as well as higher-level,
spatial information, such as specifying positions, animations, and transformations of
objects, as well as additional application-specific data.

Scene graph data is encapsulated in many different types of nodes. One node might
contain the geometric data of an object; another node might contain the transformation
to orient and position it in the virtual world.

Nodes are associated in a hierarchy that is a directed, acyclic graph. OpenGL Performer
and your application can act on the scene graph to perform various complex operations
efficiently, such as database intersection and rendering scenes.

This chapter describes how to create, change, load, and save scene graphs, in the
following sections:

• “What Is a Node?” on page 99

• “Scene Graph Nodes” on page 101

• “Creating a Scene Graph” on page 103

• “Loading a Scene Graph” on page 104

• “Saving a Scene Graph” on page 107

• “Scene Graph Traversals” on page 107

• “Customizing OpenGL Performer Traversals” on page 110

What Is a Node?

A node is a scene graph building block; a pfNode is the abstract class from which
OpenGL Performer nodes are inherited. A complete OpenGL Performer scene graph is
one that is rooted by a pfScene node. The most common type of node is the pfGroup
007-3560-003 99

6: Creating Scene Graphs
node, which can take an arbitrary number of child nodes. Other node types are more
discriminating, and provide structure and semantics to the operations that process them.

pfNodes are opaque classes; methods are used to get and set all member fields. For
example, a few of the methods setting some node fields are included in Table 6-1.

Because it is subclassed from pfUpdatable, pfNode is automatically multibuffered for
multiprocessing. This feature enables pfNode subclasses to be edited safely from the
application processes while OpenGL Performer is using them for scene graph operations
in other processes.

Nodes in OpenGL Performer are used for describing a virtual world. Objects associated
with viewing the world, such as pfChannels, are not nodes and are not placed in the
scene graph. Only pfNode and its subclasses can be placed directly in the scene graph
and only some of those subclasses can take child nodes.

Node Attributes

All nodes have the following attributes:

• Parent list — node(s) from which the node is subclassed.

• Bounding volume—volume, sphere, box, or cylinder that completely surrounds a
shape and is roughly equivalent to the size of the shape. A bounding volume makes
such things as collisions and culling faster to compute.

• Name— name of the node.

• Type— node type.

• Traversal masks—directs a traversal to a subgraph of nodes.

• Callback functions and data—callback functions enable the programmer to
customize the behavior of certain traversals for specific nodes.

Table 6-1 Examples of Node Fields

Node Field Type Method Description

pfSwitch Val float pfSwitchVal Selects the active child under a pfSwitch node.

pfLOD Center pfVec3 pfLODCenter Sets the center for LOD evaluation.

pfLayer Mode int pfLayerMode Selects a method of coplanar object layering.
100 007-3560-003

Scene Graph Nodes
Scene Graph Nodes

The two most general classifications of node functionality are:

• Group nodes—associate nodes into hierarchies.

• Leaf nodes—contain all the descriptive data of objects in the virtual world used to
render them.

Group Nodes

Only group nodes can have child nodes. Each child node has an index number; the first
child added to a group node has an index number of 0, the next child added has an index
number of 1, and so on. The group node keeps a list of its child nodes.

A child node may have multiple parent nodes. For example, a node encapsulating a
wheel might have four parent nodes, each translating the shape of the wheel to a
different place in the scene (on a car), as shown in Figure 6-1.

Figure 6-1 Multiple Parent Nodes

Chassis

Transform Transform Transform

Wheel

Transform
007-3560-003 101

6: Creating Scene Graphs
OpenGL Performer Group Nodes

In OpenGL Performer, the pfNodes inherited from pfGroup are:

• pfScene—root node of a scene graph.

• pfLOD—its children represent the same shape but at different levels of resolution
(LOD).

• pfSCS—stores a static coordinate system transformation in which to place its
children.

• pfDCS—contains a changeable coordinate system in which to place its children.

• pfFCS—contains a pfFlux for holding a coordinate system transformation that is
computed by an asynchronous process.

• pfSwitch—node that directs a traversal to one, all, or none of the child nodes.

• pfSequence—node that directs a traversal to each of its child nodes one at a time,
sequentially.

• pfLayer—groups coplanar polygons: the first child is the base and the following
children layer on top of it and one another.

• pfPartition—group that optimizes very flat terrains.

Leaf Nodes

Leaf nodes contain the descriptive values used to render all the visual elements in the
virtual world. Leaf nodes cannot have child nodes.

Special leaf nodes in OpenGL Performer include:

• pfGeode—encapsulates general geometry in the scene graph.

• pfLightSource—contains global light sources.

• pfASD—contains a continuous morphing LOD surface.

• pfBillboard—makes a slice of geometry turn to always face the viewer, which
reduces the amount of rendering necessary to view a shape.

• pfText—incorporates 3D text into a scene graph.
102 007-3560-003

Creating a Scene Graph
Creating a Scene Graph

Creating a scene graph is an iterative process of adding child nodes (leaf and group) to
group nodes. Eventually, you create a tree rooted at a pfScene node.

Creating and Attaching the pfScene Node

The root node, pfScene, is the node at the “top” of the scene graph hierarchy. pfScene is
a group node because child nodes must be added to it. When a traversal is applied to it,
the traversal is (potentially) passed to all other nodes in the scene graph.

You create a pfScene using the following method:

pfScene* root = pfNewScene();

pfScene nodes are attached to a pfChannel using the following method:

pfChanScene(chan, root);

A pfChannel provides a view of the geometric objects defined in the scene graph. For
more information about pfChannel, see Chapter 5, “Creating a Display with pfChannel.”

Adding Nodes in a Scene Graph

You can start anywhere in the hierarchy to create the scene graph. To create the hierarchy
by follow these steps:

1. Create a group node and a child node using lines of code similar to the following:

pfGroup* myGroup = pfNewGroup();
pfASD* childNode = pfNewASD();

2. Add child nodes to the group node, as follows:

pfAddChild(myGroup, childNode);

You continue making the hierarchy by repeating these steps.

Removing Nodes from a Scene Graph

To remove a node from a scene graph, use the following method:
007-3560-003 103

6: Creating Scene Graphs
pfRemoveChild(GroupNode, removeNode)

pfRemoveChild() returns 0 if the node is not a child of the specified group node.

When a child is removed, the index numbers of the remaining children are shifted so
there is no discontinuity; all index numbers greater than the index number removed are
decremented by one.

To find a specific node in a scene graph based on name and type, use pfFindNode().

Arrangement of Nodes

The hierarchy of nodes is determined by the order in which you add nodes to one
another. For example, if you start with the root node, called the pfScene node, and add a
child node to it, it would appear in the scene graph directly below the pfScene node.

There are no rules for grouping nodes. However, there are some important guidelines
that affect the performance of an application:

• Group nodes together for spatial coherence—put objects that are in the same basic
location under the same group node.

• Rather than extend one object, such as a runway, across the entire scene, break static
objects into multiple pieces in pfGeoSets or pfNodes so that parts of the object can
be culled. This way the culling traversal does not have to consider too many nodes
at any one level in the scene graph.

• To reduce memory usage, for a potential minor performance cost, encapsulate in a
separate node any objects that are used repeatedly. For example, a single node
encapsulating a wheel can be referenced four times when creating a car, rather than
using four nodes to encapsulate a wheel.

• In a vertical hierarchy, place all nodes comprising an object; if the top node of the
shape is culled, the remaining nodes in the hierarchy of the shape are not evaluated.

Loading a Scene Graph

A scene graph you create might contain thousands of nodes; for that reason, they are
retained on disk. The nodes are paged into memory according to the location of the
104 007-3560-003

Loading a Scene Graph
viewer, only those parts of the scene close to the viewer are in system memory. For more
information on paging, see Chapter 12, “Database Paging.”

The explicit arrangement of data in the scene graph depends on the format used. Formats
are identified by the extensions to the filenames, for example, Wavefront files use .obj
and Workbench files use .dwb.

To load a scene graph file, pass the name of the file to pfdLoadFile():

pfNode *pfdLoadFile(const char *filename);

filename is the name of the scene graph or subgraph database file.

pfdLoadFile() loads scene graph data at run time from the disk and constructs a graph
from the data, as shown in Figure 6-2.

Figure 6-2 Loading Scene Graphs

pfdLoadFile() performs a run-time search for a DSO to load the file based on the filename
suffix and calls the load routine pfdLoadFile_xxx() for the given database format. This
mechanism allows OpenGL Performer to support an unlimited number of formats and
to load new files in new formats or to load multiple formats at any time. The OpenGL
Performer distribution includes a large number of file loaders.

Scene graph

pfLoadFile

myCar.obj
007-3560-003 105

6: Creating Scene Graphs
Table 6-2 lists some of the more common file formats.

To see a complete list of supported formats, see the OpenGL Performer Programmer’s Guide.

Finding Scene Graph Files

OpenGL Performer automatically looks for the file specified in pfdLoadFile() in the
following directories in the following order:

1. Current directory.

2. Directories specified by the PFPATH environment variable.

3. Directories specified by pfFilePath() or pfFilePathv().

The function pfFilePathv() is the preferred function. See section “Setting the Search
Path for Database Files” on page 239 for more details.

The last valid directory takes precedence over any before it. For example, if you had two
versions of mySceneGraph.pif, one in the current directory and another in the directory
specified by pfdLoadFile(), the version in pfdLoadFile() would be loaded.

Table 6-2 Supported Scene Graph File Formats

Modeler File Name Extension

Alias|Wavefront .obj

3D Studio .3ds

Coryphaeus .dwb

Multigen .flt

Inventor .iv

Lightscape .lsa, .lsb

Performer (native) .pfa, .pfb
106 007-3560-003

Saving a Scene Graph
Saving a Scene Graph

To save a scene graph or part of one, libpfpfb supports the following method:

int pfdStoreFile(pfNode *root, const char *filename)

root is the pfScene node or the top of the subgraph that you want to save.

filename is the name of the file in which the scene graph is stored. The same run-time
search mechanism used for pfdLoadFile() is also used for pfdStoreFile() to find a file
format writer for the requested format. To use pfdStoreFile() for run-time database
paging and to use the fast OpenGL Performer paging format, the extension for the
filename should be .pfb.

For more information about the OpenGL Performer binary format (.pfb), see
“Optimizing File Loading” on page 226.

Scene Graph Traversals

A traversal is a method applied to (potentially) every node in a scene graph. Each node
type responds in its own way by implementing a method call. For example, a common
traversal culls the scene. Each pfNode implements a cull() method so the node can
respond to the traversal. Individual node instances can further customize traversal
behavior with their own callbacks.

Some nodes, called group nodes, simply pass the traversal to other nodes. In some cases
(pfSwitch, pfLOD), the group node passes the traversal only to selected children nodes.

Other nodes, called leaf nodes, such as a pfGeode node, either encapsulate geometry to
be rendered or represent significant computation, such as pfASD.

Pipelined Traversals

Several standard traversal operations are usually necessary for basic application
operation and for the efficient rendering of a scene. OpenGL Performer provides
automatic and transparent mechanisms for utilizing pipelined and parallel
multiprocessing for handling these different traversals. The following processes can be
007-3560-003 107

6: Creating Scene Graphs
created by OpenGL Performer for the purpose of handling a specific traversal with its
own effective copy of the scene graph nodes.

• APP—user traversal for updating the values in the nodes.

• CULL—evaluates application settings and eliminates the processing of any nodes
out of view.

• DRAW—renders the culled scene graph.

• ISECT—intersects a set of line segments with the scene graph.

• DBASE—loads new database and deletes pieces no longer needed.

Each process is allotted its own memory space and acts on the scene graph nodes that
reside in the shared memory arena, as shown in Figure 6-3. The scene graph geometry,
and most of the actual scene graph data, is by default shared across the different
processes and is not set up for multiprocessing. For multiprocessed geometry data, you
should use the pfFlux object. See Chapter 14, “Dynamic Data,” in the OpenGL Performer
Programmer’s Guide.
108 007-3560-003

Scene Graph Traversals
Figure 6-3 Processes Acting on Scene Graph

Traversal Order

Scene graphs are traversed in a depth-first, left-to-right order, as shown in Figure 6-4. At
each node, some default behavior occurs. For example, a CULL stage starts a bounding
sphere test to see whether the node is within the viewing frustum. Custom user pre and
post-traversal callbacks on nodes are called as nodes are entered and exited.

Shared memory arena

Scene graph

Root
node

APP DRAWDRAW
007-3560-003 109

6: Creating Scene Graphs
Figure 6-4 Scene Graph Traversal Flow

Customizing OpenGL Performer Traversals

In addition to providing callback functions for channels, discussed in “Channel
Callbacks” on page 89, you can also customize the behavior of nodes by setting up
callback functions for them.

You can customize the default behavior, however, by adding pre- or post-callbacks to any
node. For example, you might integrate OpenGL into your application for a given node
by using OpenGL in your DRAW callback functions.

Setting Up Node Callbacks

The following method enables you to set up pre- or post-callback functions for a node,
with a given traversal that triggers the callback function.

void pfGetNodeTravFuncs(const pfNode* node, int which,
pfNodeTravFuncType *pre, pfNodeTravFuncType *post);

node is the node for which the callback functions apply.

which is the kind of traversal that triggers the callback function. Possible values include:

1

2

3

4

5

6

7

8

9

10

Root node
110 007-3560-003

Customizing OpenGL Performer Traversals
• PFTRAV_APP

• PFTRAV_CULL

• PFTRAV_DRAW

• PFTRAV_ISECT

pre and post are pointers to callback functions triggered before or after, respectively, a
node is traversed. Pre-callback functions completely replace the default behavior of the
node; post-callbacks modify the default behavior of the node.

Use NULL as the value when not using a pre- or post-callback function.

You can use *pfGetTravNode() can be used inside the callback function. It returns the
node for which a callback function was called.

Passing Data to Traversal Callback Functions

You can pass data to pre- or post-callback functions using the following function:

void pfNodeTravData(pfNode *node, int which, void *data);

node is the node for which the callback functions apply.

which is the kind of traversal that triggers the callback function.

data is a pointer to the data, allocated from shared memory, that is passed to the callback
function.

Return Values for Traversal Callback Functions

The return value for your callback function must have one of three values:

• PFTRAV_CONT—continue with the traversal.

• PFTRAV_PRUNE—ignore the current node and its children but continue with the
traversal.

• PFTRAV_TERM—terminate the traversal.
007-3560-003 111

6: Creating Scene Graphs
Sample Customized Traversals

You can create your own traversals to accomplish specific tasks, such as:

• Creating packed attribute arrays or GL display lists for objects in the scene graph.

• Finding the textures or nodes of a specific type in a scene graph.

• Computing bounding geometry.

OpenGL Performer includes in a pfuTraverser utility libpfutil/trav.c to help you
write your own traverser. pfuTraverser recursively traverses the nodes in a scene graph
database, applying pre- and post-traversal functions to each node.

Also included in trav.c is a series of general user traversers that implement
pfuTraverser, as described in Table 6-3.

Table 6-3 General User Traversals

Traversal Description

pfuTravPrintNodes Prints the nodes encountered in a traversal.

pfuTravCountDB Accumulates static graphics and database statistics for the
tree under the given node.

pfuTravNodeHlight Sets a given highlighting structure on all pfGeoSets under a
given node.

pfuTravNodeAttrBind Sets a given attribute to the given bind value on every
pfGeoSet under the given node.

pfuTravCalcBBox Computes the bounding box.

pfuTravCountNumVerts Counts the number of vertices.

pfuTravSetDListMode Sets the display-list pfGeoSet status.

pfuTravCreatePackedAttrs Creates packed attributes.

pfuFillGSetPackedAttrs Sets the values of packed attributes.

pfuDelGSetAttrs Deletes attributes.

pfuTravCachedCull Caches CULL stages.
112 007-3560-003

Customizing OpenGL Performer Traversals
pfuCalcDepth Calculates the depth of the scene graph rooted at a node. A
single root node with no children is counted as having a depth
of one.

pfuLowestCommonAncestor Finds the lowest common ancestor of all nodes under node for
which a given function returns true.

pfuLowestCommonAncestorOf
GeoSets

Finds the lowest common ancestor node of all GeoSets under
node for which a given function returns true.

pfuFindTexture Finds the nth texture under a given node for which a given
function returns true.

Table 6-3 General User Traversals (continued)

Traversal Description
007-3560-003 113

Chapter 7

7. Creating Geometry with pfGeoSet

OpenGL Performer provides pfGeoSets for holding low-level geometric descriptions of
objects. A pfGeoSet is a collection of like-geometric primitives, such as points, line
segments, triangle strips, triangles, or triangle fans. The primitives in a pfGeoSet share a
state description for texture, material, and other surface attributes in a pfGeoState.

By combining multiple pfGeoSets you can create a complex object, such as a house, car,
or terrain. By manipulating the vertices of pfGeoSet elements, you can create a dynamic
object, such as ocean waves.

This chapter describes how to create geometric surfaces and place them in the scene
graph in the following sections:

• “pfGeoSet Overview” on page 115

• “Creating a pfGeoSet” on page 116

• “Attributes of pfGeoSet Primitives” on page 119

• “Placing Geometry in a Scene Graph” on page 126

• “Creating Common Geometric Objects” on page 127

For more information about pfGeoState, see Chapter 8, “Specifying the Appearance of
Geometry with pfState and pfGeoState.”

pfGeoSet Overview

A pfGeoSet is a collection of one or more like primitives, such as lines or triangles. These
primitives are arranged in a way that forms a geometric surface.

pfGeoSets contain:

• A defined primitive type set with pfGSetPrimType().
007-3560-003 115

7: Creating Geometry with pfGeoSet
• The function pfGSetNumPrims() specifies the number of primitives in the
pfGeoSet.

• For stripped primitives, such as triangle strips, the number of vertices in each strip
is set with a lengths array using pfGSetPrimLengths().

• Vertex coordinate attribute lists, with optional corresponding index lists set with
pfGSetAttr().

• The kind of attribute binding, also specified in pfGSetAttr(), determines whether
attributes are specified as follows:

– Per vertex: PFGS_PER_VERTEX

– Per primitive: PFGS_PER_PRIM

– For all the primitives in the pfGeoSet: PFGS_OVERALL

• A reference to a pfGeoState specified with pfGSetGState(), which specifies the
surface appearance (lighting material, texture, transparency, etc.) of the geometry.

A simple example of pfGeoSet creation and rendering demonstrating the concepts in this
chapter can be found at /usr/share/Performer/src/pguide/libpr/gset.c on
IRIX and Linux systems and at %PFROOT%/Src/pguide/libpr/gset.c on Windows
systems.

For information about optimizing pfGeoSet performance, see “Optimizing pfGeoSet
Performance” on page 224.

Creating a pfGeoSet

The following sections describe how to create a pfGeoSet.

Creating a pfGeoSet Object

To create a pfGeoSet from the shared memory arena, use the following line of code:

pfGeoSet *pfNewGSet(void *arena)
116 007-3560-003

Creating a pfGeoSet
Setting the Primitive Type

Use the following pfGeoSet method to specify the type of primitive in the pfGeoSet:

void pfGSetPrimType(pfGeoSet *gset, int type);

type is one of the primitives provided by OpenGL Performer:

• PFGS_POINTS

• PFGS_LINES

• PFGS_LINESTRIPS

• PFGS_FLAT_LINESTRIPS

• PFGS_TRIS

• PFGS_QUADS

• PFGS_TRISTRIPS

• PFGS_FLAT_TRISTRIPS

• PFGS_TRIFANS

• PFGS_FLAT_TRIFANS

• PFGS_POLYS

PFGS_FLAT_* primitives are flat-shaded. PFGS_POLYS draws polygons of arbitrary
vertex lengths.

Figure 7-1 shows some of these primitives.

Figure 7-1 Primitives

Points Lines Line strips

Triangles Tri-strips Quads Polygons

3

4
5

4

5 6

7

007-3560-003 117

7: Creating Geometry with pfGeoSet
The numbers in Figure 7-1 show the order in which the vertex attributes should appear
in the attribute array.

Setting the Number of Primitives

Use the following pfGeoSet method to specify the number of primitives in the pfGeoSet:

void pfGSetNumPrims(pfGeoSet *gset, int num);

num is the number of primitives.

Setting the Number of Vertices Per Stripped Primitive

When using one of the following pfGeoSet primitives, which have an arbitrary number
of vertices, you must define the number of vertices of each primitive in the pfGeoSet:

• PFGS_LINESTRIPS

• PFGS_FLAT_LINESTRIPS

• PFGS_TRISTRIPS

• PFGS_FLAT_TRISTRIPS

• PFGS_TRIFANS

• PFGS_FLAT_TRIFANS

• PFGS_POLYS

Use pfGSetPrimLengths() to specify the number of vertices of each primitive in the
pfGeoSet:

void pfGSetPrimLengths(pfGeoSet* gset, int *lengths);

lengths is an array of the number of strips in a pfGeoSet. Each element of the lengths array
is the number of vertices in a corresponding strip. For example:

lengths[0] = 8;
lengths[1] = 5;

These lines of code mean that the number 0 primitive has 8 vertices, and the number 1
primitive has 5 vertices. Use pfGetGSetPrimLength() to return the length of an
individual primitive from the lengths array.
118 007-3560-003

Attributes of pfGeoSet Primitives
Note: pfGetGSetPrimLength() checks for NULL or negative lengths.

Attributes of pfGeoSet Primitives

The vertex information of the primitives in a pfGeoSet are described by attribute lists.
Each element in an attribute list contains information for a single vertex. The vertex
attributes for all vertices of all primitives of a pfGeoSet are stored in separate arrays,
according to the following attribute types:

• Vertices—pfVec3 coordinates (required)

• Colors—pfVec4 colors

• Normals—pfVec3 normals

• Texture coordinates—pfVec2 texture coordinates

A pfGeoSet has at least one array pfVec3 of vertex coordinates. Optional attributes
include colors, normals, and texture coordinates. Arrays holding these attributes for the
vertices of the pfGeoSet are specified for the pfGeoSet using pfGSetAttr(). Figure 7-2
shows the arrays of attributes.
007-3560-003 119

7: Creating Geometry with pfGeoSet
Figure 7-2 Arrays of Stripped Primitives

Indexes for indexed attributes are in separate index arrays. For more information about
indexed attributes, see “Indexed Arrays” on page 122.

You can also put all vertex attributes of a pfGeoSet in a single-packed attribute array. You
may use packed attribute arrays for performance reasons or for specifying specialized
custom formats of data. For more information about packed attribute arrays, see “Packed
Attributes” on page 124.

Setting the Attributes

To set the attributes of a pfGeoSet, use pfGSetAttr() as follows:

void setAttr(int attr, int bind, void *alist, ushort *ilist);

attr specifies the attribute array to set. The tokens for the different attribute lists are:

Array of
primitive lengths

 4
 3
 2
 5
 .
 .
 .

Array of coordinates

(x, y, z)
(x, y, z)
(x, y, z)
(x, y, z)

(x, y, z)
(x, y, z)
(x, y, z)

(x, y, z)
(x, y, z)

(x, y, z)
(x, y, z)
(x, y, z)
(x, y, z)
(x, y, z)
 .
 .
 .

Array of color values

(r, g, b, a)
(r, g, b, a)
(r, g, b, a)
(r, g, b, a)

(r, g, b, a)
(r, g, b, a)
(r, g, b, a)

(r, g, b, a)
(r, g, b, a)

(r, g, b, a)
(r, g, b, a)
(r, g, b, a)
(r, g, b, a)
(r, g, b, a)
 .
 .
 .

Array of normal values

(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)

(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)

(Nx, Ny, Nz)
(Nx, Ny, Nz)

(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)
(Nx, Ny, Nz)
 .
 .
 .
120 007-3560-003

Attributes of pfGeoSet Primitives
• PFGS_COLOR4

• PFGS_NORMAL3

• PFGS_TEXCOORD2

• PFGS_COORD3

• PFGS_PACKED_ATTRS

bind is the binding type. The tokens are listed in Table 7-1.

alist is a pointer to an attribute array for appropriate, corresponding data.

ilist is a pointer to an index array for used to access the attribute array.

Attribute Bindings

Attribute bindings specify whether attributes are as follows:

• Per vertex— PFGS_PER_VERTEX

• Per primitive—PFGS_PER_PRIM

• For all the primitives in the pfGeoSet—PFGS_OVERALL

• Unspecified—PFGS_OFF

For example, you can specify the following:

• A unique color for each vertex (PFGS_PER_VERTEX).

• A unique color for each primitive (PFGS_PER_PRIM).

• One color for all primitives in the pfGeoSet (PFGS_OVERALL).

• An unspecified color (PFGS_OFF).
007-3560-003 121

7: Creating Geometry with pfGeoSet
Table 7-1 shows the possible bindings per attribute type.

Indexed Arrays

A cube has 6 sides; together those sides have 24 vertices. In a vertex array, you could
specify the primitives in the cube using 24 vertices. However, most of those vertices
overlap. If more than 1 primitive can refer to the same vertex, the number of vertices can
be streamlined to 8. To get more than 1 primitive to refer to the same vertex, use an index;
3 vertices of 3 primitives use the same index, which points to the same vertex
information. Adding the index array adds an extra step in the determination of the
attribute, as shown in Figure 7-3.

Table 7-1 Possible Bindings Per Attribute Type

Binding Type Colors Normals
Texture
Coordinates Vertices

PFGS_OFF Yes Yes Yes No

PFGS_OVERALL Yes Yes No No

PFGS_PER_PRIM Yes Yes No No

PFGS_PER_VERTEX Yes Yes Yes Yes
122 007-3560-003

Attributes of pfGeoSet Primitives
Figure 7-3 Indexing Arrays

Indexing can save system memory, but rendering performance is often lost.

Whether or not attributes should be indexed depends on how many vertices in a
geometry are shared:

• If attributes are shared by many primitives, the attributes should be indexed.

• If attributes are not shared by many primitives, the attributes should be handled
sequentially.

Consider the following two examples in Figure 7-4, in which each dot marks a vertex.

StripLengths
PrimCoords
ColorBind
NormalBind
TexCoordBind

CoordSet
ColorSet
NormalSet
TexCoordSet

CoordIndexSet
ColorIndexSet
NormalIndexSet
TextCoordIndexSet

< x, y, z >
.
.
.

< r, g, b >
.
.
.

< nx, ny, nz >
.
.
.

< x, y, z >
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

n1
n2
n3
.
.
.

pfGeoSet
007-3560-003 123

7: Creating Geometry with pfGeoSet
Figure 7-4 Deciding whether to Index Attributes

In the triangle strip, each vertex is shared by 2 adjoining triangles. In the square, the same
vertex is shared by 8 triangles. Consider moving these vertices when, for example,
morphing the object. If the vertices were not indexed in the square, the application would
have to search for and alter 8 triangles to change one vertex. In the case of the square, it
is much more efficient to index the attributes.

On the other hand, if the attributes in the triangle strip were indexed, because each vertex
is shared by only 2 triangles, the index search time would exceed the time required to
simply update the vertices sequentially. In the case of the triangle strip, rendering is
improved by handling the attributes sequentially.

The choice of using indexed or sequential attributes applies to all of the primitives in a
pfGeoSet. All of the primitives within one pfGeoSet must be referenced sequentially or
by index; you cannot mix the two.

Packed Attributes

Using packed attributes is an optimized way of sending formatted data to the graphics
pipeline under OpenGL operation. Using packed attributes can help host traversal
performance because they remove subroutine call overhead. Packed attributes can also
reduce memory usage because they allow for the format specification of attributes such
as normals, texture coordinates as floats, and colors as unsigned bytes. Some small
additional overhead might be incurred by the geometry subsystem of the graphics
pipeline, which has to unpack the data.

The packed attribute array holds the currently bound per-vertex attribute data packed
into a single non-indexed array and is specified with the matching format of the data
with pfGSetAttr() as follows:

pfGSetAttr(gset, PFGS_PACKED_ATTRS, PFGS_PA_C4UBN3ST2F /*the format*/);
124 007-3560-003

Attributes of pfGeoSet Primitives
Vertex coordinate attributes can be placed in this array and do not need to be duplicated
in their regular arrays. Specify NULL for the attribute list to pfGSetAttr(). Vertex
coordinates themselves must always be provided in the normal vertex coordinate list.
They can, based on the packed format, be duplicated in the packed array.

To create packed attributes, you can use the utility pfuTravCreatePackedAttrs(), which
traverses a scene graph to create packed attributes according to the specified format for
pfGeoSets and, optionally, pfDelete redundant attribute arrays. This utility packs the
pfGeoSet attributes using pfuFillGSetPackedAttrs(). To then render geometry with
packed attributes, use the pfGSetDrawMode(PFGS_PACKED_ATTRS) method when
using OpenGL.

For more information on packed arrays on IRIX and Linux systems, see the following
examples:

• /usr/share/Performer/src/pguide/libpr/C/packedattrs.c

• /usr/share/Performer/src/sample/C/perfly.c

• /usr/share/Performer/src/sample/C++/perfly/perfly.C

For more information on packed arrays on Windows systems, see following the
examples:

• %PFROOT%/Src/pguide/libpr/C/packedattrs.c

• %PFROOT%/Src/sample/C/perfly.c

• %PFROOT%/Src/sample/C++/perfly/perfly.C

Also, see Chapter 8, “Geometry,” in the OpenGL Performer Programmer’s Guide.

Drawing and Printing a pfGeoSet

pfGeoSets are the lowest-level OpenGL Performer object that can be rendered. To directly
draw a pfGeoSet, use pfDrawGset().

pfGeoSets are pfObjects, so they can have their contents printed for debugging with
different levels of verbosity via the pfObject routine, pfPrint().You can also use other
pfObject methods, such as pfCopy() and pfDelete(), can also be used with pfGeoSets.
007-3560-003 125

7: Creating Geometry with pfGeoSet
Placing Geometry in a Scene Graph

You incorporate pfGeoSets into scene graphs using a pfGeode leaf node. A single
pfGeode node can have multiple pfGeoSets associated with it if you use the
pfAddGSet() method.

To place geometry in a scene graph, follow these steps:

1. Create a pfGeoSet with pfNewGSet().

2. Attach the pfGeoSet to a pfGeoState using pfGSetGstate().

3. Add the pfGeoSet to a pfGeode node in a scene graph using pfAddGSet().

The result is shown in Figure 7-5.

Figure 7-5 Geometry Objects

pfGeoSet

pfGeoState

pfGeoSet

pfGeode

pfGeoState

libpf

libpr

Scene graph
126 007-3560-003

Creating Common Geometric Objects
To create a pfGeode node, associate two pfGeoSets with it, and attach the node to the
scene graph using code similar to the following:

pfGeode *geode = pfNewGeode();
pfAddSet(geode, gSet1);
pfAddSet(geode, gSet2);
pfAddChild(GeodesParentNode, geode);

The structure of a scene graph impacts the performance of your application. For more
information, see “Arrangement of Nodes” on page 104.

Creating Common Geometric Objects

libpfdu provides routines to generate pfGeoSets for common shapes, including

• Sphere

• Cube

• Pyramid

• Cylinder

• Cone

When creating these shapes, you can specify the number of triangles that comprise them.
For example, the following method sets the number of triangles comprising the sphere
to 200:

pfGeoSet *sphere = pfdNewSphere(200, arena);

This method returns the number of vertices and normals in the shape.

The more triangles, the smoother the curves but the slower the rendering; fewer triangles
allow faster rendering but produce more jagged curves.
007-3560-003 127

7: Creating Geometry with pfGeoSet
Utilities to Create Common Geometric Objects

Table 7-2 shows the libpf utilities that generate pfGeoSets of larger geometric shapes.

Table 7-2 Common Geometric Objects

Geometry Properties Utilities That Create the Geometry

Sphere Unit extern pfGeoSet * pfdNewSphere(int ntris, void *arena)

Radius=1,
from Z=-1 to Z=1

extern pfGeoSet * pfdNewCylinder(int ntris, void *arena)

Radius=1,
from Z=0 to Z=1

extern pfGeoSet * pfdNewCone(int ntris, void *arena)

Cube Unit extern pfGeoSet * pfdNewCube(void *arena)

Pyramid Unit square base,
from Z=0 to Z=1

extern pfGeoSet * pfdNewPyramid (void *arena)

Z=0 to Z=1 extern pfGeoSet * pfdNewArrow (int ntris, void *arena)

Z=-1 to Z=1 extern pfGeoSet * pfdNewDoubleArrow (int ntris, void
*arena)

Cylinder Without end caps
and variable radii

extern pfGeoSet * pfdNewPipe (float botRadius, float
topRadius, int ntris, void *arena)

Circle Unit circle facing +Z,
filled

extern pfGeoSet * pfdNewCircle (int ntris, void *arena)

Unit circle in Z=0
plane, lines

extern pfGeoSet * pfdNewRing (int ntris, void *arena);
128 007-3560-003

Chapter 8

8. Specifying the Appearance of Geometry with
pfState and pfGeoState

A pfState holds the global graphic’s state description. A pfGeoState encapsulates the
graphics state elements, such as lighting, transparency, and texture that define the
appearance of a pfGeoSet. Every pfGeoSet must reference a pfGeoState. State definitions
for the pfGeoSet come either from its pfGeoState, or from the global, default settings in
the global pfState.

This chapter describes how to define the appearance of geometries in the following
sections:

• “Setting the Graphics State” on page 129

• “Using Textures” on page 136

• “Specifying the Material” on page 141

• “Specifying Lighting” on page 143

Setting the Graphics State

Graphics state elements can be directly set in immediate mode through pfApply*()
routines. For example, use pfApplyMtl() to set a current material; use pfEnable() to
enable a specific mode, such as lighting, or use pfApplyGState() to set a complete
collection of graphics state elements. When these calls are made, the current graphics
state is recorded by OpenGL Performer in a pfState. This provides functionality, as well
as optimizations, to prevent redundant graphics state changes.

Global State

pfState contains all global graphics state information and all of the information necessary
to define the appearance of a geometry. You must have a current pfState to create any
other OpenGL Performer state objects or to do any graphics operations; however,
007-3560-003 129

8: Specifying the Appearance of Geometry with pfState and pfGeoState
pfWindows by default automatically creates and selects its own pfState when it is
opened. You can create and select a pfState object with pfInitState(). There is also a state
stack that can be pushed and popped in pfState with pfPushState() and pfPopState().
You can lock state settings can be locked by using the pfState function pfOverride() to
prevent future changes. pfState graphic state values become the default appearance
values for all pfGeoSets.

pfGeoStates state values found in pfState and are primarily used for specifying the
appearance of geometry. pfGeoStates can specify the following, among other things:

• Material properties with the pfMaterial state attribute object

• Textures with the pfTexture state attribute object

• Transparency with the transparency mode

When a pfGeoState is created, it is configured to inherit all appearance values from the
current pfState when it is applied. Those values can be changed using methods in
pfGeoState: pfGStateAttr(), pfGStateMode(), and pfGStateVal(). pfGeoStates settings
can be applied directly to the current global state with pfLoadGState(). pfGeoStates
referenced by pfGeoSets only affect the pfGeoSets referencing them. pfApplyGState()
will set state values for subsequent pfGeoSets, but those state values will revert back to
the previous pfState values for the next call to pfApplyGState(). A pfGeoState can be
directly loaded into the current pfState to set inherited values by future pfGeoStates with
pfLoadGState().

Defining a pfGeoState

To define a pfGeoState, follow these steps:

1. Create a pfGeoState object using pfNewGState().

2. Associate the pfGeoState appearance values with a geometry using pfGSetGState().

3. Specify the modal graphic states, such as enables, you want to change using
pfGStateMode().

4. Specify the attribute graphic states you want to change, such as textures and
materials, using pfGStateAttr().

For example, to enable lighting and antialiasing and to set the material of the geometry
to metal, use code similar to the following:

pfMaterial *mtl = pfNewMtl(arena);
130 007-3560-003

Setting the Graphics State
pfGeoState *gstate = pfNewGState(arena);
pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_ON);
pfGStateMode(gstate, PFSTATE_ANTIALIAS, PFAA_ON);
pfGStateAttr(gstate, PFSTATE_FRONTMTL, mtl);

Setting pfGeoState Values for a Scene

Generally, pfGeoState values alter global, pfState appearance values for specific
pfGeoSets. You can also use a pfGeoState to set global state values by attaching a
pfGeoState object to a scene node using pfSceneGState(), as follows:

void pfSceneGState(pfScene *scene, pfGeoState *gstate);

OpenGL Performer does a pfPushState() and a pfLoadGState() of the pfScene
pfGeoState before rendering the scene graph.

pfGeoStates and pfGeoSets

pfState contains the default, global state values, many of which define the appearance of
the geometric objects in the scene. When pfGeoSets are drawn with pfDrawGSet(), they
automatically call pfApplyGState() on their pfGeoState. If a pfGeoState is not defined for
a geometry, the appearance values are undefined. To inherit all values from the global
pfState, a pfGeoSet should have a pfGeoState with all values set to inherit, which is the
default. A state value defined for a specific pfGeoSet takes precedence over the
corresponding global state value.

For an example of a pfGeoState used globally, see “Computing the Optimal, Global
Graphics State” on page 225.

Optimizing Graphics State Changes

Changing the graphics context from the global value to a value defined for a specific
geometry impacts the performance of an application. For that reason, it is important to
set the global appearance values to satisfy most geometries, thus changing the local
appearance values as little as possible.

For more information about optimizing graphic state changes, see “Optimizing Graphics
State Changes” on page 225.
007-3560-003 131

8: Specifying the Appearance of Geometry with pfState and pfGeoState
Setting Modal pfGeoState Values

Many pfGeoState graphic states, such as transparency, are specified with a token. These
graphic states are set using pfGStateMode().

Table 8-1 shows the modal graphic states you can specify along with their possible values
and defaults.

Table 8-1 Graphic States

Graphic State Possible Values Default Value

PFSTATE_TRANSPARENCY See “pfTransparency” on page 133 PFTR_OFF

PFSTATE_ANTIALIAS PFAA_OFF, PFAA_ON PFAA_OFF

PFSTATE_DECAL See “pfDecal” on page 133 PFDECAL_OFF

PFSTATE_ALPHAFUNC See “pfAlphaFunc” on page 134 PFAF_ALWAYS

PFSTATE_ALPHAREF Float between 0.0 and 1.0 0.0

PFSTATE_ENLIGHTING PF_OFF, PF_ON PF_OFF

PFSTATE_ENTEXTURE PF_OFF, PF_ON PF_OFF

PFSTATE_ENFOG PF_OFF, PF_ON PF_OFF

PFSTATE_CULLFACE PFCF_OFF, PFCF_BACK,
PFCF_FRONT, PFCF_BOTH

PFCF_OFF

PFSTATE_ENWIREFRAME PF_OFF, PF_ON PF_OFF

PFSTATE_ENCOLORTABLE PF_OFF, PF_ON PF_OFF

PFSTATE_ENHIGHLIGHTING PF_OFF, PF_ON PF_OFF

PFSTATE_ENLPOINTSTATE PF_OFF, PF_ON PF_OFF

PFSTATE_ENTEXGEN PF_OFF, PFTG_OBJECT_LINEAR,
PFTG_EYE_LINEAR,
PFTG_EYE_LINEAR_IDENT

PF_OFF

PFSTATE_ENTEXLOD PF_OFF, PF_ON PF_OFF

PFSTATE_ENTEXMAT PF_OFF, PF_ON PF_OFF
132 007-3560-003

Setting the Graphics State
pfTransparency

pfTransparency sets the type of transparency computation used for rendering
transparency effects. The different types of transparency computations define how the
geometry’s color and the framebuffer color are blended. Transparency can have different
performance and image-quality characteristics on different graphics subsystems. For this
reason, it is better to provide OpenGL Performer with a hint, such as
PFTR_HIGH_QUALITY, rather than specifying a method that does not work on all
platforms; OpenGL Performer interprets the hint, PFTR_HIGH_QUALITY, for all
platforms.

Transparency modes include:

• PFTR_OFF—the default, draws transparent objects as opaque.

• PFTR_ON—allows OpenGL Performer to choose the default mode based on speed
and quality.

• PFTR_HIGH_QUALITY—uses methods for highest image quality.

• PFTR_FAST—uses methods for fastest rendering.

• PFTR_BLEND_ALPHA—OpenGL glBlendFunc(3g) method.

• PFTR_MS_ALPHA—OpenGL glEnable(GL_SAMPLE_ALPHA_TO_ONE_SGIS)
method when multisampling is available and enabled.

• PFTR_MS_ALPHA_MASK—OpenGL
glEnable(GL_SAMPLE_ALPHA_TO_MASK_SGIS) when multisampling is
enabled.

pfDecal

Decaled geometry can be thought of as a stack, where each layer has visual priority over
the geometry beneath it in the stack. As with transparencies, different hardware
platforms offer different methods with different performance and image quality
characteristics. For this reason, OpenGL Performer allows and recommends that unless
you have specific motivation, use a hint rather than a specific method, which might not
work on all platforms.

pfDecal modes include:

• PFDECAL_OFF

• PFDECAL_BASE
007-3560-003 133

8: Specifying the Appearance of Geometry with pfState and pfGeoState
• PFDECAL_LAYER

• PFDECAL_BASE_FAST, PFDECAL_LAYER_FAST

• PFDECAL_BASE_HIGH_QUALITY, PFDECAL_LAYER_HIGH_QUALITY

• PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE

• PFDECAL_BASE_DISPLACE, PFDECAL_LAYER_DISPLACE_AWAY

• PFDECAL_BASE_STENCIL, PFDECAL_LAYER_STENCIL

• PFDECAL_PLANE

See the pfDecal man page for the definition of the decal mode values. PFDECAL_OFF
is the default.

pfAlphaFunc

pfAlphaFunc sets the alpha function mode. The alpha function mode specifies whether
or not a given pixel is rendered according to its alpha value. For example, if you set
pfAlphaFunc to PFAF_GREATER, only pixels with alpha values greater than a reference
value are rendered.

You specify the reference value using PFSTATE_ALPHAREF. For example, to render
only those pixels with alpha values greater than 0.5, use the following code:

pfGStateMode(gstate, PFSTATE_ALPHAFUNC, PFAF_GREATER);
pfGStateValue(gstate, PFSTATE_ALPHAREF, 0.5);

Alpha Func Modes

PFSTATE_ALPHAFUNC is the function you use to compare a reference alpha value with
the alpha value of a geometry. PFSTATE_ALPHAFUNC must be set to one of the
following modes:

• PFAF_ALWAYS

• PFAF_EQUAL

• PFAF_GEQUAL

• PFAF_GREATER

• PFAF_LEQUAL

• PFAF_LESS
134 007-3560-003

Setting the Graphics State
• PFAF_NEVER

• PFAF_NOTEQUAL

• PFAF_OFF

See the pfAlphaFuncman page for the definition of the PFSTATE_ALPHAFUNC mode
values.

Setting pfGeoState Attributes

Many pfGeoState graphic states are specified using an object, such as pfMaterial. These
graphic states are set using pfGStateAttr(). To use an object as the definition for an
attribute, you must create the object and define it before calling pfGStateAttr().

Table 8-2 shows the attribute pfGeoState values and the objects that define them.

Table 8-2 Attribute pfGeoState Values

Attribute Object

PFSTATE_FRONTMTL pfMaterial

PFSTATE_BACKMTL pfMaterial

PFSTATE_TEXTURE pfTexture

PFSTATE_TEXENV pfTexEnv

PFSTATE_FOG pfFog

PFSTATE_LIGHTMODEL pfLightModel

PFSTATE_LIGHTS pfLight

PFSTATE_COLORTABLE pfColortable

PFSTATE_HIGHLIGHT pfHighlight

PFSTATE_LPOINTSTATE pfLPointState

PFSTATE_TEXGEN pfTexGen

PFSTATE_TEXLOD pfTexLOD
007-3560-003 135

8: Specifying the Appearance of Geometry with pfState and pfGeoState
All attributes default to NULL, which means that OpenGL default values are used.

For more information about any of the attributes, see the man pages of the objects
associated with them.

Using Textures

Textures are images that are applied to the surface of a geometry, as shown in Figure 8-1.

Figure 8-1 Applying Textures to Geometries

Textures can add tremendous realism to the rendered scene because they can be real
photographs. An image of the pitted rind of an orange applied to a sphere, for example,
creates a realistic-looking orange.

To use a texture, follow these steps:

1. Enable texture mapping.

2. Create a pfTexture.

PFSTATE_TEXMAT pfMatrix

PFSTATE_DECALPLANE pfPlane

Table 8-2 Attribute pfGeoState Values (continued)

Attribute Object
136 007-3560-003

Using Textures
3. Load or create the texture image and assign it to the pfTexture.

4. Optionally set the texture environment using pfTexEnv.

5. Set the texture coordinates on the pfGeoSet using pfGSetAttr, or else use a pfTexGen
in the pfGeoState to automatically generate texture coordinates.

Enabling Texture Mapping

Texture mapping is expensive; consequently, by default, it is turned off. Enable texture
mapping only for those objects that are textured.

To enable texture mapping for a geometry, use the following pfGeoState methods:

pfGStateMode(gstate, PFSTATE_ENTEXTURE, PF_ON);
pfGSetGState(gset, gstate);

The first line enables texture mapping, and the second line selects the pfGeoSet that is to
be texture mapped.

Creating a Texture Object

To create a pfTexture, use the following method:

pfTexture *pfNewTex(void *arena)

The arena is that part of memory shared by all OpenGL Performer processes.

Loading an Image as a Texture

The easy way to set up a pfTexture is to load an image file. To load an image and make it
a texture, use pfLoadTexFile():

int pfLoadTexFile(pfTexture *tex, char *fname)

The texture must be in either the SGI format or the fast-loading OpenGL Performer PFI
format. The texture is created with reasonable defaults for the specified image for the
various control modes discussed further in this section.

You can set the paths that OpenGL Performer uses to find the image file fname using
pfFilePathv(), for example:
007-3560-003 137

8: Specifying the Appearance of Geometry with pfState and pfGeoState
pfFilePathv(“/usr/demos/data/textures",
 "/usr/demos/data/images",
 "/usr/share/Performer/data”,
 NULL);

OpenGL Performer searches through the directories in the order of their specification.

Preloading Textures

Downloading texture images from disk to the arena is time consuming. You can improve
the performance of your application if you download all of the textures that your
application needs one time.

Two tools help you preload textures:

pfList *pfuMakeSceneTexList(pfScene *scene)
void pfuDownloadTexList(pfList *list, int mode)

pfuMakeSceneTexList() traverses the scene graph and builds a list of all the textures
used. pfuDownloadTexList() downloads the textures specified in the list to the GL and
hardware texture memory and must be called from the DRAW process.

Specifying Texture Attribute

The texture image can be loaded or generated by some other utility besides
pfLoadTexFile(), and in this case you must fully specify the texture image details with
pfTexImage().

void pfTexImage(pfTexture* tex, uint* image,
int comp, int sx, int sy, int sz);

Textures can have as many as four components. The following are example uses:

• One component—consisting of intensity (I) or luminance (L) only, useful geometries
that repeat but vary in contrast, such as grass and sand.

• Two components—consisting of intensity and transparency (IA), useful for
geometries that repeat but vary in contrast and transparency, such as clouds.

• Three components—consisting of red, green, and blue (RGB).

• Four components—consisting of red, green, blue, and alpha (RGBA), useful for
full-color textures.
138 007-3560-003

Using Textures
A texture object also contains information about the handling of the image data,
including

• Image data formats: host memory external format, internal hardware format, and
the type of image data (RGB, Luminance, Intensity, etc.), set with pfTexFormat().

• Minification or magnification filters, which specify whether the image is reduced or
magnified before being applied to the surface of a geometry, set with pfTexFilter().

Texture wrap options, which specifies what happens when the texture is too small
to completely cover a geometry, set with pfTexRepeat(). Options include repeating
the texture until the geometry is covered or expanding the texture so that it covers
the geometry.

The prototypes for these basic configuration routines are:

void pfTexFormat(pfTexture *tex, int format, int type);
void pfTexFilter(pfTexture *tex, int filt, int type);
void pfTexRepeat(pfTexture *tex, int wrap, int type);

Specifying Texture Formats

The format in which an image is stored in texture memory is defined with pfTexFormat():

void pfTexFormat(pfTexture *tex, int format, int type)

format specifies which format to set. Valid formats and their basic types include:

• PFTEX_INTERNAL_FORMAT— specifies how many bits per component are to be
used in internal hardware texture memory storage. The default is 16-bits per full
texel and is based on the number of components and external format.

• PFTEX_IMAGE_FORMAT— describes the type of image data and must match the
number of components, such as PFTEX_LUMINANCE,
PFTEX_LUMINANCE_ALPHA, PFTEX_RGB, and PFTEX_RGBA. The default is
the token in this list that matches the number of components. Other OpenGL
selections can be specified with the GL token.

• PFTEX_EXTERNAL_FORMAT—specifies the format of the data in the pfTexImage
array. The default is packed with 8-bits per component. There are special
fast-loading hardware ready formats, such as
PFTEX_UNSIGNED_SHORT_5_5_5_1.

• PFTEX_SUBLOAD_FORMAT—a boolean to specify if the texture will be a
sub-loadable paging texture. Default is FALSE.
007-3560-003 139

8: Specifying the Appearance of Geometry with pfState and pfGeoState
In general, you just need to specify the number of components in pfTexImage(). You may
want to specify a fast-loading hardware-ready external format, such as
PFTEX_UNSIGNED_SHORT_5_5_5_1, in which case OpenGL Performer will
automatically choose a matching internal format. See the pfTexFormat(3pf) man
page for more information on texture configuration details.

Setting the Texture Environment

The environment specifies how the potentially lit colors of the geometry and the texture
image interact. This is described with a pfTexEnv object. The mode of interaction is set
with pfTEnvMode(), and valid modes include:

PFTE_MODULATE—gray scale of the geometry is mixed with the color of the
texture (the default). This option multiplies the shaded color of the geometry by the
texture color. If the texture has an alpha component, the alpha value modulates the
geometry’s transparency. For example, if a black and white texture, such as text, is
applied to a green polygon, the polygon remains green and the writing appears as
dark green lettering.

• PFTE_DECAL—texture alpha component acts as a selector between 1.0 for the
texture color, and 0.0 for the base color, to decal an image onto geometry.

• PFTE_BLEND—alpha acts as a selector between 0.0 for the base color and 1.0 for the
texture color modulated by a constant texture blend color specified with
pfTEnvBlendColor(). The alpha/intensity components are multiplied.

• PFTE_ADD—RGB components of the base color are added to the product of the
texture color modulated by the current texture environment blend color. The
alpha/intensity components are multiplied.

Setting the Texture Coordinates

The texture coordinates specify how the coordinates of the texture map to the coordinates
of the geometry, as shown in Figure 8-2.
140 007-3560-003

Specifying the Material
Figure 8-2 Texture Coordinates

The pfGeoSet method pfGSetAttr() specifies the texture coordinates for mapping each
vertex of a pfGeoSet into texture space:

void pfGSetAttr(pfGeoSet *gset, PFGS_TEXCOORD2, PFGS_PER_VERTEX,
void *alist, ushort *llist)

PFGS_TEXCOORD2 specifies pfVec2 texture coordinates.

PFGS_PER_VERTEX means the attribute is specified once per vertex.

alist is a pointer to the array of pfVec2 texture coordinates.

ilist is an optional pointer to the indices in the texture coordinate array.

Texture coordinates can also be automatically generated by various functions specified
by a pfTexGen object. See Chapter 9, “Graphics State,” in the OpenGL Performer
Programmer’s Guide, and the pfTGenMode(3pf)man page for more information on this
object.

Specifying the Material

A material specifies the color of a geometry under different lighting conditions and
opacity. There are five lighting conditions:

(0, 1)

(0, 0)

(1, 1)

(1, 0)

v0

v1

v2

v3
007-3560-003 141

8: Specifying the Appearance of Geometry with pfState and pfGeoState
• Specular—highlights, such as shiny glints, (0.0, 0.0, 0.0), by default.

• Diffuse—directly illuminated portions of the geometry outside the specular region
(0.8, 0.8, 0.8), by default.

• Ambient—those portions of the geometry illuminated by background lighting (0.2,
0.2, 0.2), by default.

• Emissive—color of the light emanating from the shape (0.0, 0.0, 0.0), by default.

• Alpha—transparency of the texture; the default, 1.0, is completely opaque.

Figure 8-3 shows three of these lighting conditions on a sphere illuminated from above.

Figure 8-3 Light Characteristics

Specifying the Color and Shininess

To create a material and specify its color and shininess, use the following methods:

pfMaterial * pfNewMtl(void *arena);
void pfMtlColor(pfMaterial *mtl, int color, float r, float g, float b);
void pfMtlShininess(pfMaterial *mtl, float shininess);

arena is memory allocated from the shared memory arena.

color specifies one of the lighting conditions:

• PFMTL_AMBIENT

• PFMTL_DIFFUSE

Specular

Diffuse

Ambient
142 007-3560-003

Specifying Lighting
• PFMTL_SPECULAR

• PFMTL_EMISSION

To define more than one of these lighting conditions, use the method repeatedly with a
different token for color each time.

shininess is a float between 0.0 and 128.0 where 0.0 is very dull and 128.0 is very shiny.

Color Mode

Loading material information is computationally intensive. In some situations, you can
take a shortcut. For example, consider the case where you have three differently colored
but otherwise identical balls. Rather than reload a new material for each ball, you can
change the color of the material of each ball through the object colors. pfMtlColorMode()
specifies the particular material attribute that can be set through object or vertex colors.
Changing a material color this way is much faster than switching to a different material;
it allows for sharing of materials and shading control.

The default is PFMTL_CMODE_AD, which sets the material’s ambient and diffuse
colors with the pfGeoSet colors. To turn this default functionality off, set the color mode
to PFMTL_CMODE_COLOR, so that geometry colors will only set the current GL color
and will not affect the material state.

Material Side

With the method pfMtlSide(), you can specify whether to apply the material on the side
facing the viewer (PFMTL_FRONT), the side not facing the viewer (PFMTL_BACK), or
both (PFMTL_BOTH). Back-sided lighting only takes effect if a two-sided lighting model
is active. Two-sided lighting typically has a significant performance cost.

Object materials only have effects when lighting is active.

Specifying Lighting

Lighting requires a specified lighting model, an active light, and the enabling of graphics
lighting operations. As lighting is typically applied to an entire scene, you probably want
to enable lighting in your global state with pfEnable(PFEN_LIGHTING), or in the scene
pfGeoState:
007-3560-003 143

8: Specifying the Appearance of Geometry with pfState and pfGeoState
pfGeoState *gstate = pfNewGState(arena);
pfScene *sceneNode = pfNewScene(void);

pfGStateMode(gstate, PFSTATE_ENLIGHTING, PF_ON);
pfSceneGState(sceneNode, gstate);

The lighting model, specified with the pfLightModel state attribute object, describes the
type of lighting operations to be considered, including local lighting, two-sided lighting,
and light attenuation. The fastest light model is infinite single-sided lighting. A light
model also allows you to specify ambient light for the scene, such as might come from
the sun, with pfLModelAmbient().

You create pfLights by calling pfNewLight(). Lights have color and position. The light
colors are specified with pfLightColor():

void pfLightColor(pfLightSource* lsource, int which, float r,
float g, float b);

which specifies one of three light regions:

• PFLT_AMBIENT

• PFLT_DIFFUSE

• PFLT_SPECULAR

r, g, and b specify the color components of the specified light color.

To position the light source using pfLightPos():

void pfLightPos(pfLight* light, float x, float y,
float z, float w);

w is the distance between the location in the scene defined by (x, y, z) and the light source,
lsource. If w equals zero, lsource is infinitely far away and (x, y, z) defines a vector pointing
from the origin in the direction of lsource. If w equals one, lsource is located at the position,
(x, y, z). The default position is (0, 0, 1, 0): directly overhead, infinitely far away.

pfLights are attached to a pfGeoState through the PFSTATE_LIGHTS attribute.

For moving lights in a libpf scene, you can use a pfLightSource node. pfLightSource
defines a pfLight with light color and position. They take effect when lighting is active.
144 007-3560-003

Specifying Lighting
pfLightSource nodes are nodes that can be placed in the scene graph and have their
position transformed by pfSCS and other transform nodes. pfLightSource nodes are
active for the rendering of the entire scene. pfLightSource nodes are not pfLights and
cannot be attached to pfGeoStates, and visa vera.

pfLights cannot be attached directly to the scene graph and must be attached to a
pfGeoState.
007-3560-003 145

Chapter 9

9. Placing Geometry in a Scene

When you create a geometry, it has a specified size, location, and orientation, as defined
in its own space. You can place such a geometry:

• In relationship to other shapes in the same scene.

• Into the coordinate system of the root node, known as world space.

This chapter describes how to perform these tasks in the following sections:

• “World Space and Object Space” on page 147

• “Transformation Nodes” on page 149

• “Using pfFCS” on page 150

• “Using DCS Nodes” on page 152

• “Using SCS Nodes” on page 154

World Space and Object Space

Geometries are often created in a local coordinate system, modeled at the origin. To place
geometries in a scene, the geometry must be given positions in the scene, or world space.
This transformation of location establishes a new local transformed coordinate system.
OpenGL Performer allows you to specify these transformations in the scene graph to
position geometries, as shown in Figure 9-1.
007-3560-003 147

9: Placing Geometry in a Scene
Figure 9-1 Shared Space

Transformation Node Isolation

Because a scene graph can be very wide and very deep, containing thousands of shapes,
transformation nodes are often stacked. The transformation node at the top of the branch
concatenates the transformations of all the transformation nodes directly below it.
Transformations, however, are not carried over from one branch to another. For example,
in Figure 9-1, the transformation node in the left branch does not affect the shape in the
right branch.

As transformation nodes are encountered in the traversal, they are post-multiplied:
(Geometry x TransformB) x TransformA.

World Space

When you want to put all of the shapes in a scene graph into one space, you use multiple
transformation nodes to translate the shapes into the coordinate system of the root node
of the scene graph. The coordinate system of the root node is called world space.

Geometry space is the coordinate system in a subsection of a scene graph.

Shared space

Local
spaces

Transformation
nodes
148 007-3560-003

Transformation Nodes
Transformation Nodes

To put shapes together in a common space, or to reorient, reposition, or rescale a shape,
you use one of two transformation nodes:

• pfFCS—for dynamically transforming geometries, in concert with pfFlux, to create
movement.

• pfDCS—for transformation values that do change.

• pfSCS—for transformation values that do not change once they are set.

If you have shapes, like a rock, that do not move in a scene, use a pfSCS node to transform
them. If a shape, such as a car, does move in a scene, use a pfDCS node to transform it.

Tip: Because pfDCS nodes require more processing, make as few pfDCS nodes as
possible.

Transformation Node Functionality

Each of the transformation nodes provide methods to scale, rotate, or translate a shape
to the coordinate system of the transformation’s parent node.

For a given transformation node, multiple transformations are applied in the following
order: scale, rotate, translate.

Ordering Transformation Nodes in the Scene Graph

The order in which you perform transformations can affect the final result. Consider, for
example, translating and rotating an image. If you perform the transformations in this
order, you end up with a rotated model translated, for example, down the X-axis, as
shown in Figure 9-2.
007-3560-003 149

9: Placing Geometry in a Scene
Figure 9-2 Order of Transformations

When you reverse the order of the transformations, the end result is different. Because
the center of rotation is about the origin, the rotation transformation lifts the object above
the X-axis.

Using pfFCS

pfFCS is used as a parent node to a pfGeode or pfGeoSet node. pfFCS can place the
transformation matrix in a pfFlux object. pfFlux is a container for holding dynamic data,
and stores the output data of a pfEngine. A pfEngine then can update the transformation
matrix held in the pfFlux object, which transforms the child node of the pfFCS, as shown
in Figure 9-3.

x

y

1-Rotate

2-Translate

x

y

2-Rotate

1-Translate
150 007-3560-003

Using pfFCS
Figure 9-3 pfEngine Drives a pfFlux Node Animating a pfFCS Node

In this figure, the pfEngine performs calculations on the data input from the pfMemory
nodes and sends the results to the pfFlux node. The pfFlux node contains the matrix for
the pfFCS node. The output data from the pfEngine, manipulates the matrix in pfFlux,
which, in turn, manipulates the pfGeode geometry, which is wrapped in the pfFCS node.
In this way, the pfEngine animates the pfGeode geometry.

For more information about pfFlux, pfEngine, and pfFCS nodes, see Chapter 14,
“Dynamic Data,” in the OpenGL Performer Programming Guide.

pfFCS, pfFlux, and pfEngine Example

Example 9-1 shows an implementation of pfFCS, pfFlux, and pfEngine.

Example 9-1 Connecting Engines and Fluxes

// create the nodes
pfFlux *myData1 = new pfFlux(100 * sizeof(pfVec3));
pfFlux *myData2 = new pfFlux(100 * sizeof(pfVec3));
pfEngine *myEngine = new pfEngine(PFENG_SUM);
pfFlux *engineOutput = new pfFlux(100 * sizeof(pfVec3));
pfFCS myFCS = new pfFCS();

pfEngine

pfMemory

pfFlux

pfEngine pfFlux

pfGroup

pfFCS

pfGeoSe
007-3560-003 151

9: Placing Geometry in a Scene
pfGeode myGeode = new pfGeode();

// initialize and populate the flux nodes
myData1->init();
myData2->init();

// attach the pfFlux nodes as the source of the pfEngine
myEngine->setSrc(0, myData1, 0, 3);
myEngine->setSrc(0, myData12, 0, 3);

// attach a pfFlux to the output of the pfEngine
myEngine->setDst(engineOutput, 0, 3);
myEngine->iterations(100, 3);

// connect the pfFlux output node to the scenegraph
myFCS->setFlux(engineOutput);
// attach child geometry to be tranformed by the FCS
myFCS->addChild(myGeode);

...
// compute the data in the source pfFluxes to the engine
float *current = (float *)myData1->getWritableData();
... // compute data
myData1->writeComplete();

Using DCS Nodes

You use DCS nodes to transform shapes when the transformations might change over
time. For example, a rotating wheel changes its rotational angle over time.

Creating a DCS Node

To create a DCS node, use the following member function:

pfDCS *pfNewDCS(void);

Setting the DCS Node

To set the orientation, rotation, and scaling of the shape in the transformation’s parent
node, use the following methods, respectively:
152 007-3560-003

Using DCS Nodes
void pfDCSTrans(pfDCS *dcs, float x, float y, float z);
void pfDCSRot(pfDCS *dcs, float h, float p, float r);
void pfDCSScale(pfDCS *dcs, float s);

pfDCS includes overwritten forms of these methods so that you can express the
arguments in different units.

pfDCSScale() scales all three axes the same amount.

All of the transformation values only take effect when the DCS node is traversed by a
DRAW action.

Using pfDCSCoord

An alternative to specifying translation and rotation values separately is using the
pfDCSCoord() method, as follows:

void pfDCSCoord(pfDCS *dcs, pfCoord *coord)

This call is equivalent to:

pfDCSTrans(dcs, coord.xyz[PF_X], coord.xyz[PF_Y], coord.xyz[PF_Z]);
pfDCSRot(dcs, coord.hpr[PF_H], coord.hpr[PF_P], coord.hpr[PF_R]);

Optimizing the Use of DCS Nodes

By default, OpenGL Performer recalculates bounding volumes every time a
transformation node is updated. To reduce the number of times a bounding volume is
recalculated requires special knowledge of your visualization. For example, if your
visualization is that of a solar system, every time a planet moves around the sun, its
bounding volume is recalculated. Instead, by knowing the dimensions of your solar
system model, you can set the bounding volume large enough so that it encompasses the
motion of the planet and therefore never needs to be recalculated. Set the bounding box
as high in the scene graph as you can at the transform node itself.

To turn off bounding volume recalculation, use the PFBOUND_STATIC token as the
value for mode in the following pfNode method:

void pfNodeBSphere(pfNode *node, pfSphere *sph, int mode);

node, in this case, is the DCS node.
007-3560-003 153

9: Placing Geometry in a Scene
sph is the bounding sphere whose size you set so that recalculating the bounding sphere
is unnecessary. If you set sph to NULL, the bounding sphere is automatically calculated.

OpenGL Performer makes internal optimizations based on knowing the matrix type, and
based on calls, such as pfDCSTrans() and pfDCSRot(). Otherwise you can specify the
matrix type using pfDCSMatType().

Using SCS Nodes

An SCS node contains a transformation matrix that concatenates matrices for translating,
rotating, and scaling a shape. The value of using a matrix is its speed of computation. The
transformation values in a SCS node, however, cannot be changed once the SCS node is
created.

Creating a SCS Node

To create an SCS node, use the following member function:

pfSCS *pfNewSCS(pfMatrix mat);

mat is the concatenation of the matrices for translating, rotating, and scaling a shape.

Setting the SCS Node

To set the transformation values in a SCS node:

1. Use pfMatrix pfMake..Mat() methods to define the first transformation matrix
value.

2. Use the resulting matrix as the argument for creating the SCS node.

3. Use pfMatrix pfPre..Mat() methods to define the remaining transformation matrix
values.

Note: Alternatively, you can use only pfMatrix pfMake..Mat() methods to define the
transformations and then use pfMultMat() iteratively to multiply the three
transformation matrices to yield the argument for pfNewSCS().
154 007-3560-003

Using SCS Nodes
Setting the First Transformation Matrix

To set the orientation, rotation, and the scaling transformation values, use the following
pfMatrix methods, respectively:

void pfMakeTransMat(pfMatrix dst, float x, float y, float z);
void pfMakeRotMat(pfMatrix dst, float degrees, float x, float y,

float z);
void pfMakeScaleMat(pfMatrix dst, float x, float y, float z);

dst in each method is the output transformation matrix for the function.

Setting the Remaining Transformation Matrices

You can concatenate transformation matrices by setting up one transformation method
and then using one of the following pfMatrix methods:

void pfPreTransMat(pfMatrix dst, float x, float y, float z,
pfMatrix m);

void pfPreRotMat(pfMatrix dst, float degrees, float x, float y,
float z, pfMatrix m);

void pfPreScaleMat(pfMatrix dst, float x, float y, float z,
pfMatrix m);

Each of these methods performs the matrix math to concatenate one matrix
transformation with another before the SCS node is traversed by an action.

For example, to rotate a shape and then translate it, use the following code:

pfMakeRotMat(mat, degrees, x, y, z);
pfPreTransMat(mat, x1, y1, z1, mat);

Optimizing SCS Transformations

When you have multiple SCS transformations in a branch of a hierarchy, you can
optimize the performance of an application by pre-calculating their concatenation. To do
so, use the following pfNode methods:

int pfFlatten(pfNode *node, int mode);
pfNode *pfdCleanTree(pfNode *node, pfuTravFuncType func);

The mode argument in pfFlatten is currently ignored and should be 0.
007-3560-003 155

9: Placing Geometry in a Scene
pfFlatten

pfFlatten precalculates at initialization the result of all transformation matrices in a
branch of a node hierarchy. If a geometry is referenced by more than one SCS node,
pfFlatten does the following:

1. Clones the geometry for each SCS node.

2. Calculates the transformed locations of each SCS node.

3. Changes the SCS matrix values to an identity matrix.

Figure 9-4 shows this process.

Figure 9-4 pfFlatten

In Figure 9-4, pfFlatten calculates the transformation of the car into three locations; those
locations are stored in the Scene node. As a result, three matrix calculations are reduced
to matrix result.

You identify the node in which to store the matrix concatenation in the pfFlatten method.
This node is generally the node at the top of a branch.

Note: If a DCS node is encountered under the SCS node, an SCS node is inserted above
the DCS node.

SCS SCS SCS Identity Identity Identity

Car Car1 Car2

Scene Scene

Car3

pfFlatten()
156 007-3560-003

Using SCS Nodes
Flattening can substantially improve performance, especially when many pfSCS nodes
are parents for a relatively small number of geometries. However, as Figure 9-4 shows,
pfFlatten can also increase the size of the database. To remedy that problem, you use
pfdCleanTree, as described in “pfdCleanTree” on page 157.

Flattening also increases the ability of OpenGL Performer to sort the database by mode,
often a major performance enhancement, because sorting does not cross transformation
boundaries.

pfdCleanTree

The SCS nodes containing identity matrices as a result of pfFlatten() serve no function.
To remove these nodes from the database, as shown in Figure 9-5, use pfdCleanTree
using NULL as the value of func.

Figure 9-5 pfdCleanTree

When func is NULL, pfdCleanTree performs as follows:

1. Converts pfSCS nodes with identity matrices into pfGroup nodes.

2. Removes any pfGroup nodes with zero or one child.

One exception is a pfSwitch node with one child, which is not eliminated.

You only call pfdCleanTree after calling pfFlatten.

Car1 Car2

Scene

Car3Identity Identity Identity

Car1 Car2

Scene

Car3

pfCleanTree()
007-3560-003 157

9: Placing Geometry in a Scene
Optionally, you can supply your own function to change the behavior of pfdCleanTree.
Whatever the function, if func returns TRUE, the current node is eliminated; if func
returns FALSE, the current node is retained.
158 007-3560-003

Chapter 10

10. Controlling Frame Rate

Frame rate is the number of times a scene is redrawn per second. Frame rate is
constrained by three factors:

• Rate at which the screen is refreshed.

• Specified frame rate.

• Time required to calculate and draw the scene.

For example, one system may have a refresh rate of 60 frames per second. Other systems
may have frame rates limited to the frame rate divided by an integer, for example, 30, 20,
15, 12, and 10 frames per second.

This chapter describes how to control the frame rate in the following sections:

• “Double Buffering” on page 159

• “Specifying a Target Frame Rate” on page 160

• “Frame Synchronization” on page 162

• “Adjusting the Frame Rate Automatically” on page 163

Double Buffering

OpenGL Performer uses the standard double buffering mechanism for displaying
scenes:

• The front buffer sends a complete description of the scene to the graphics pipeline.

• The back buffer is filled with the next frame of information to be displayed.

At a frame boundary, if the drawing to the back buffer is complete and a swap buffer has
been issued, the front and back buffers are swapped so that:
007-3560-003 159

10: Controlling Frame Rate
• The back buffer becomes the new front buffer whose graphic information is scanned
out.

• The front buffer becomes the new back buffer to hold the next frame, as shown in
Figure 10-1.

Figure 10-1 Double Buffering

Specifying a Target Frame Rate

You can only specify a target frame rate, not the frame rate, because sometimes
calculating and drawing a frame can require more time than the time between screen
refreshes. If a screen is not entirely drawn, rather than drawing part of a scene, the
current frame is redisplayed while the drawing of the next scene completes.

You can specify the target frame rate using one of two methods:

• pfFrameRate()

• pfFieldRate()

Rendering
pipe

Back
buffer

Front
buffer

Graphics
pipeline

Swapped at video field boundary
after swap buffer is issued.
160 007-3560-003

Specifying a Target Frame Rate
pfFrameRate

You can set the target frame rate directly using the following pfFrame method:

void pfFrameRate(float rate);

rate is rounded to the nearest frame rate that corresponds to an integral number of screen
refreshes, for example, a value of 33 frames per second (FPS) is rounded to 30 FPS.

The target time required to draw a frame is the reciprocal of the frame rate.

Figure 10-2 Frame Rate

With a screen refresh rate of 60 Hz, Figure 10-2 shows the frame boundaries for two
different frame rates.

pfFieldRate

You can set the frame rate indirectly using the following pfFrame method:

void pfFieldRate(int fields);

fields refers to the number of screen refreshes per frame. The corresponding frame rate is
the video field rate divided by fields.

Screen refresh= 60Hz
Frame rate= 60 FPS

Frame rate= 30 FPS
Screen refresh= 60Hz

Screen refresh
007-3560-003 161

10: Controlling Frame Rate
Frame Synchronization

pfSync synchronizes the graphics pipeline to the frame rate. This method makes all
processes start on frame boundaries. This keeps computations between multiple
processes consistent and based on data, such as eyepoint, rather that computation time.
Because computation time is variable, basing motion on the completion of computations
thereby creates unsmooth motion. Moving at the start of frame boundaries produces
smoother motion.

Exactly how pfSync responds to DRAW time overruns is specified by the phase control.

pfFrame, which sets off processes (APP, CULL), calls pfSync automatically if the user has
not called it for the current frame.

Phase Control

When drawing of the scene is complete in the background buffer, use pfPhase to specify
when to display the next frame (when it takes longer than the refresh rate to draw a
scene.)

PHPHASE_FREE_RUN
tells the application to run as fast as possible—to display each new
frame as soon as it is ready, without attempting to maintain a constant
frame rate.

PFPHASE_LIMIT
tells the application to run as fast as possible, but the rendering rate is
limited to the frame rate specified by pfFrameRate.

PHPHASE_FLOAT
allows the drawing process of a new frame (using swapbuffers(3G)) to
begin at any time, regardless of frame boundaries, but the display of the
frame is synchronized with the next frame boundary. If the DRAW
extends beyond the frame boundary, APP can continue. Application
frames might get skipped by DRAW, which is asynchronous.

PHPHASE_LOCK
requires the DRAW process to wait for a frame boundary before
displaying a new frame.

Figure 10-3 shows these four options.
162 007-3560-003

Adjusting the Frame Rate Automatically
Figure 10-3 Phase Control over Three Frames

Note the following in Figure 10-3:

• Screen refresh = 60 Hz.

• Frame rate = 30 Hz.

• Frame 1 requires too much time to draw.

Adjusting the Frame Rate Automatically

Erratic frame rates cause jumpy images. Rather than changing frame rates according to
whether or not a scene is drawn quickly enough, OpenGL Performer uses two
mechanisms to smooth out frame rates:

• Stress filters in pfChannel.

• Dynamic Video Resolution (DVR).

0

0

0

0

1

1

1

1

2

2

2

3

3

3

3

PFPHASE_FREE_RUN

PFPHASE_LIMIT

PFPHASE_FLOAT

PFPHASE_LOCK

Time
007-3560-003 163

10: Controlling Frame Rate
Stress Filters

pfChanStressFilter() automatically adjusts the level of detail (LOD) displayed according
to the speed at which the frames are being processed. As long as the speed is within a
range of values, the stress level and the LODs displayed remain the same. If the stress
level falls below that range, the LOD is increased. If the stress level moves above the
accepted stress range, the LOD is decreased.

pfChanStress() allows you to handle the LOD display manually.

For more information about stress filters, see Chapter 5, “Frame and Load Control,” in
the OpenGL Performer Programmer’s Guide.

Dynamic Video Resolution

On InfiniteReality machines, you can use Dynamic Video Resolution (DVR) to help
maintain a constant frame rate. The methods in pfPipeVideoChannel monitor how much
time is required to draw each frame. If the frame takes too long to draw, the size of the
pfChannel is reduced so that it requires fewer pixels to render. The output is then scaled
back to the correct size, so the image appears to be the correct size. If the frame requires
too little time to draw; the video output is not reduced.

When using DVR, the origin and size of a channel are dynamic. For example, a viewport
whose lower-left corner is at the center of a pfPipe (with coordinates 0.5, 0.5) would be
changed to an origin of (0.25, 0.25) with respect to the full pfPipe window if the DVR
settings were scaled by factors of 0.5 in both X and Y dimensions. This allows fewer
pixels to be drawn per pfChannel for a faster rendering of the scene. Video hardware
automatically rescales the image to full size with no penalty or added latency.

Setting the DVR Stress Filter

To set the stress filter, use psPVChanStressFilter, defined as follows:
void
pfPipeVideoChannel::psPVChanStressFilter(pfPipeVideoChannel*pv,float
*frameFrac,float *lowLoad, float *highLoad, float *pipeLoadScale,
float *stressScale, float *maxStress);
164 007-3560-003

Adjusting the Frame Rate Automatically
frameFrac is the fraction of a frame that pfPipeVideoChannel is expected to require to
render the frame. For example, if the rendering time is equal to the period of the frame
rate, frameFrac is 1.

If there is only one pfPipeVideoChannel, it is best to set frameFrac to 1. If there is more
than one pfPipeVideoChannel, it is best to divide frameFrac among the
pfPipeVideoChannels, such that a channel rendering complex scenes is allocated more
time than a channel rendering simple scenes.

For more information about DVR, see Chapter 5, “Frame and Load Control,” in the
OpenGL Performer Programmer’s Guide.
007-3560-003 165

Chapter 11

11. Multiprocessing

You can achieve higher frame rates by processing image data on multi-CPU platforms.
Each stage of the graphics pipeline process can then run as a separate process on a
separate CPU. Each pipeline can handle up to five processes. Although you can construct
the processes as you like, the recommended processes include three synchronous
processes:

• APP—for updating node values.

• CULL—for eliminating from rendering calculations any nodes outside of the view
frustum.

• DRAW—for rendering shapes.

The three recommended asynchronous processes include:

• ISECT—for intersection calculations.

• DBASE—for paging image data into system memory.

• COMPUTE—for general, asynchronous computations.

This chapter describes how to use multiprocessing in the following sections:

• “OpenGL Performer Stages” on page 168

• “Benefits of Multiprocessing” on page 169

• “Shared Memory” on page 170

• “Printing Process States” on page 171

• “Setting Up Multiprocessing” on page 172

• “Automatic Multiprocessing” on page 176
007-3560-003 167

11: Multiprocessing
OpenGL Performer Stages

The APP, CULL, and DRAW stages comprise the required stages of the graphic pipeline.
There can be only one APP process for an application. There are, however, separate pairs
of CULL and DRAW stages for each pfPipe, as shown in Figure 11-1.

Figure 11-1 OpenGL Performer Stages

You can change the default behavior of the DRAW and CULL stages using callback
functions.

Optional, Asynchronous Stages

If you do not fork off separate processes for intersection testing (ISECT), I/O (DBASE),
or miscellaneous calculations (COMPUTE), the calculations are performed in the APP
stage and will be performed serially.

Database

Scene

Frame Buffer

Cull

Application

LPoint

Compute

Pipeline 1

Pipeline 0

Frame Buffer

Cull

Draw

Draw

Intersect

isect

isect

Disk

LPoint
168 007-3560-003

Benefits of Multiprocessing
Each of the asynchronous stages perform computationally intense calculations in parallel
with the required stages to improve the overall speed of image processing.

ISECT Stage

The ISECT stage calculates intersection-related information. To do that calculation, it
keeps a copy of the scene graph. Consequently, this stage can use a significant amount of
memory, depending on the size of the scene graph.

For more information about intersection testing, see Chapter 13, “Intersection Testing.”

DBASE Stage

The DBASE stage deals with I/O issues of downloading scene graph data from the hard
drive to system memory. This stage is lightweight because it does not keep a copy of the
scene graph.

For more information about the DBASE process, see Chapter 12, “Database Paging.”

COMPUTE Stage

The COMPUTE stage is provided for general calculations. It does not contain a copy of
the database, but it does contain general statistics and the number of the frame that is
being processed.

When you fork off this process, pfASD is computed in this stage as is pfFlux, in addition
to any calculations you place in this stage.

Benefits of Multiprocessing

Multiprocessing enables parallel processing of image data in the graphics pipeline. If
each of the three stages in the graphics pipeline, (APP, CULL, and DRAW) run
sequentially, and each take 16 milliseconds, each frame would require 48 milliseconds for
processing. If, however, each stage is processed in parallel, the processing time for a
single frame is reduced to 16 milliseconds, as shown in Figure 11-2.
007-3560-003 169

11: Multiprocessing
Figure 11-2 Multiprocessing in the Graphics Pipeline

Figure 11-2 shows that three tasks running sequentially (in the upper figure) require
three times the processing time of the three tasks running in parallel (in the lower figure),
each in their own process.

The shorter processing time dramatically affects the frame rate at which the application
can display its images.

Shared Memory

The shared memory arena contains a copy of the frame’s data that is used by each
process, in the following way:

1. After the APP process updates the frame, the process places a copy of unique data
for the frame in the shared memory arena.

2. The CULL process takes the frame from the shared memory arena, culls out data
invisible to the viewer, and places a revised copy of the frame back in the shared
arena memory in the form of a libpr display list for that frame.

3. The DRAW process uses the updated frame and renders the scene to the display
system.

A0

A0

C0

C0

D0

D0

A1

A1

C1

C1

D1

D1

A2

C2

D2

Time

P0

P0

P1

P2

P
ro

ce
ss

es
P

ro
ce

ss
es
170 007-3560-003

Printing Process States
Figure 11-3 shows how the shared memory arena is used by the different stages.

Figure 11-3 Shared Memory Arena

Printing Process States

pfPrintProcessState() prints a description of OpenGL Performer processes to a file. The
following shows a sample printout:

Proc: APP pid:11895
Proc: ISECT pid:11895
Proc: DBASE pid:11895
Proc: CLOCK pid:11896
Proc: COMPUTE pid:11895
Proc: SYNC pid:0
Pipe Proc: CULL Pipes:1
 Thread Proc: CULL Pipe:0 Threads:0
 Parent:Proc: CULL Pipe:0 pid:0
Pipe Proc: DRAW Pipes:1
 Proc: DRAW Pipe:0 pid:0
Pipe Proc: LPOINT Pipes:1
 Thread Proc: LPOINT Pipe:0 Threads:0
 Parent:Proc: LPOINT Pipe:0 pid:0

APP

process

CULL

process

DRAW

process

Graphics
pipeline

Shared
memory
arena
007-3560-003 171

11: Multiprocessing
Setting Up Multiprocessing

OpenGL Performer simplifies setting up multiple processes by supplying the tokens
shown in Table 11-1 for the following pfConfig method:

int pfMultiprocess(int mode);

mode is one or more multiprocessing models ORed together. Table 11-1 lists the tokens to
use for mode. These processing models are set at creation time and cannot be altered at
run time.

You call pfMultiprocess between pfInit and pfConfig.

Multiprocessing Models

Table 11-1 lists the multiprocessing models available in OpenGL Performer.

Table 11-1 Multiprocessing Tokens

Token Description

PFMP_DEFAULT Chooses a multiprocessing mode based on the number of
pipelines required and the number of unrestricted, available
processors.

PFMP_FORK_ISECT Fork an asynchronous ISECT process.

PFMP_FORK_CULL Place CULL in a separate process.

PFMP_FORK_DRAW Place DRAW in a separate process.

PFMP_FORK_DBASE Fork an asynchronous DBASE process.

FMP_FORK_COMPUTE Fork an asynchronous COMPUTE process.

PFMP_CULLoDRAW Overlap CULL and DRAW processes.

PFMP_CULL_DL_DRAW Force CULL to generate display list.

PFMP_APPCULLDRAW All stages are combined into a single process. A pfDispList is
not used. pfDraw both culls and renders the scene.

PFMP_APPCULL_DL_DRAW All stages are combined into a single process. A pfDispList is
built by pfCull and rendered by pfDraw.
172 007-3560-003

Setting Up Multiprocessing
The “o” in PFMP_CULLoDRAW stands for “overlap.” The CULL and DRAW processes
can overlap when they are separate. Figure 11-4 shows that the DRAW process acts on
the first frame one screen refresh earlier in the PFMP_CULLoDRAW model than in the
PFMP_APP_CULL_DRAW model.

PFMP_APP_CULLDRAW The CULL and DRAW stages are combined in a process that
is separate from the application process. A pfDispList is not
used. pfDraw both culls and renders the scene. Equivalent to
(PFMP_FORK_CULL).

PFMP_APP_CULL_DL_DRAW The CULL and DRAW stages are combined in a process that
is separate from the application process. A pfDispList is built
by pfCull and rendered by pfDraw. Equivalent to
(PFMP_FORK_CULL | PFMP_CULL_DL_DRAW).

PFMP_APPCULLoDRAW The APP and CULL stages are combined in a process that is
separate from, but overlaps, the DRAW process. Equivalent
to (PFMP_FORK_DRAW | PFMP_CULLoDRAW).

PFMP_APP_CULL_DRAW The APP, CULL, and DRAW stages are each separate
processes. Equivalent to (PFMP_FORK_CULL |
PFMP_FORK_DRAW).

PFMP_APP_CULLoDRAW The APP, CULL, and DRAW stages are each separate
processes and the CULL and DRAW process are overlapped.
Equivalent to (PFMP_FORK_CULL | PFMP_FORK_DRAW
| PFMP_CULLoDRAW).

PFMP_FORK_LPOINT Fork a light process, pfLPointState.

Table 11-1 Multiprocessing Tokens (continued)

Token Description
007-3560-003 173

11: Multiprocessing
Figure 11-4 PFMP_CULLoDRAW

Common Multiprocessing Models

Figure 11-5 shows four common multiprocessing models.

Figure 11-5 Four Common Multiprocessing Models

A0 A1 A2 A3

C0 C1 C2

D0 D1

PFMP_APP_CULL_DRAW

P0

P2

P1

A0 A1 A2 A3

C0 C1 C2

D0

D1

PFMP_CULLoDRAW

P0

P2

P1

Time

D2

DRAW action occurs
one screen refresh
earlier.

A0 C0 D0 A1 C1 D1 A2 C2 D2 A3 C3 D3

A0 A1 A2 A3

C0 D0 C1 D1 C2 D2

D0 D1 D2

A0 C0 A1 C1 A2 C2 A3 C3

A0 A1 A2 A3

C0 C1 C2

D0 D1

PFMP_APPCULLDRAW

PFMP_APP_CULLDRAW

PFMP_APPCULL_DRAW

PFMP_APP_CULL_DRAW

P0

P0

P0

P0

P1

P1

P2

P1

Time
174 007-3560-003

Setting Up Multiprocessing
Tip: In two-processor mode, fork off the stage that consumes the most time.

Default Processing Models

The default multiprocessing model set up by PFMP_DEFAULT depends on the
following:

• Number of pfPipes

• Number of unrestricted CPUs

One pfPipe

If there is one pfPipe in the system, the default multiprocessing model depends upon the
number of unrestricted CPUs, as described in Table 11-2.

Multiple pfPipes

When multiple pfPipes are configured, the default multiprocessing model always
defaults to pfPipe::PFMP_APP_CULL_DRAW. In multiprocessing models, the CULL
process must be separate from the APP process.

Choosing a Multiprocessing Model

An application only runs as fast as its slowest stage. To improve the performance of your
application, you need to determine which stage acts as a bottleneck. Generally, of the
three synchronous processes, the DRAW stage takes the most time. Place the stage that
requires the longest time in its own process.

Table 11-2 Default Multiprocessing Models

Number of CPUs Default Multiprocessing Model

1 PFMP_APPCULLDRAW

2 PFMP_APPCULL_DRAW

3 PFMP_APP_CULL_DRAW
007-3560-003 175

11: Multiprocessing
Automatic Multiprocessing

When you enable the Process Manager, pfuProcessManager, found in libpfutil, it
automatically evaluates the number of processes and processors that you have and
spreads the processes evenly over the processors. You enable pfuProcessManager with
the routine pfuInitDefaultProcessManager().

Note: pfuProcessManager obsoletes pfuLockCPU.
176 007-3560-003

Chapter 12

12. Database Paging

Many scene graphs you use are too large to fit into system memory. Consequently, you
need to load data dynamically at run time. Because loading data from a hard drive is
relatively slow, to prevent breaking the frame rate, you should:

• Fork off a database (DBASE) process to handle database paging asynchronously in
the background.

• Anticipate which pages of data to load and which to delete.

This chapter describes how to page the database efficiently in the following sections:

• “Anticipating Paging” on page 177

• “Database Process” on page 178

Anticipating Paging

Because many scene graphs are too large to hold into system memory, your application
must anticipate which pages of memory to load and which to delete. Pages of memory
are often associated with nodes in the scene graph: a node encapsulates a part of the
scene which occupies a page of memory.

Figure 12-1 shows pages of memory represented as squares; each page corresponds to a
node in the scene graph. The triangle represents the position and direction of the motion
of the eyepoint.
007-3560-003 177

12: Database Paging
Figure 12-1 Memory Pages

In Figure 12-1, pages 6, 7, 10, 11, 12, 15, and 16 are currently in memory, pages 1, 2, and 5
are good candidates for loading, and pages 12, 15, and 16 are good candidates for
removal.

Database Process

Because loading data from disk is relatively slow, loading deserves its own process so
that it can run continuously and asynchronously in the background.

To use a database paging process, you must:

• Fork off a DBASE process.

• Call a database function of your creation, which handles memory allocation and
deallocation, and the loading of the data.

The following code performs those tasks:

pfInit();
pfMultiprocess(PFMP_FORK_DRAW | PFMP_FORK_DBASE);
pfConfig();

pfDBaseFunc(myDBaseFunc);

myDBaseFunc, of type pfDBaseFuncType, needs to handle data loading and memory
allocation and deallocation.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16
178 007-3560-003

Database Process
Handling Memory for the DBASE Process

The APP and DBASE processes need to share data. They reside, however, in separate
virtual memory spaces. To share data, they must allocate memory in the shared memory
arena, as the following code shows:

typedef struct (
pfScene *Scene;

) SharedData;

SharedData *shared;
void *arena;

arena = pfGetsharedArena();
shared = (SharedData *)pfMalloc(sizeof(SharedData), arena);

shared->scene = pfNewScene();

These lines of code, except for the last, must be placed between pfInit and pfConfig. To
deallocate the memory malloc’d, use pfFree.

The final line of code makes the scene node, the root node of the scene graph, accessible
to the DBASE process.

Changing the Scene Graph

Because of user interaction, such as moving through a scene, the scene graph in memory
often changes: nodes representing pages of memory are deleted or added to the scene
graph according to the motion of the eyepoint. The DBASE process should not change
the scene directly because it should anticipate where the eyepoint will go. If the process
were to change the scene graph immediately, the anticipated page of memory would
likely display too soon. Instead, the DBASE process should:

1. Cache scene graph changes in a pfBuffer.

2. Add and remove nodes from the scene graph in the buffer.

3. Delete nodes removed from the scene graph in the buffer.

4. Merge the changes from the buffer into the scene graph when the APP process calls
pfSync.

5. Carry out the deletion request.
007-3560-003 179

12: Database Paging
The following sections explain how to perform these tasks.

Caching Scene Graph Changes

Instead of changing the scene graph directly, you should:

1. Create a buffer.

2. Make it active.

3. Create the necessary scene graph changes in the buffer.

The following lines of code complete these tasks.

pfBuffer *buf;
node *d, *e;

buf = pfNewBuffer();
pfSelectBuffer(buf);
d = pfNewGroup();
e = pfNewGeode();
pfAddChild(d, e);

Figure 12-2 shows how a buffer is created and how nodes are created and grouped.

Figure 12-2 Creating the Buffer and Changes

DRAW

CULL

A

D

E

B

C

APP

DBASE

Main scene graph buffer

Buff buffer
180 007-3560-003

Database Process
Linking Buffer Changes to the Scene Graph

Once the scene graph in the buffer is complete, you must connect the changes to the main
scene graph. To remove node C and connect the scene graph in the buffer to node A, use
the following lines of code:

pfBufferRemoveChild(a, c);
pfBufferAddChild(a, d);

These lines of code request but do not cause the actions to be performed. The actions are
performed with the next call to pfSync.

Deleting Old Data

Once you request a node to be removed, you should request that it be deleted as well.
The following line of code removes node C:

pfAsyncDelete(c);

This code requests the deletion, but the deletion is not performed until the next call to
pfSync.

Figure 12-3 shows the linking and deletion of nodes.
007-3560-003 181

12: Database Paging
Figure 12-3 Linking and Deleting Nodes

Figure 12-3 shows that although node C was removed and deleted, its data remains in
the cache.

Merging Changes

To make the changes to the main scene graph take effect when pfSync() is called, you
must merge the changes, as follows:

int success;

success = pfMergeBuffer();

success is non-zero if the merge is successful.

When you merge the buffers, the following occurs:

• Nodes D and E are placed in the scope of the main scene graph buffer.

• The buff buffer is cleared.

C

DRAW

CULL

A

D

E

B

C

APP

DBASE

Main scene
graph buffer

Buff buffer
182 007-3560-003

Database Process
Figure 12-4 shows these changes.

Figure 12-4 Merging Scene Graph Changes

The merge is not performed until the next call to pfSync.

Cleaning Up the Cache

To completely delete removed nodes from system memory, but not the hard drive, call
the following method from the DBASE process:

void pfDBase(void);

This method carries out the deletion specified in pfAsyncDelete(). Be sure to call it after
pfMergeBuffer().

C

D

E

DRAW

CULL

A

B

APP

DBASE

Main scene
graph buffer

Buff buffer
007-3560-003 183

Chapter 13

13. Intersection Testing

Detecting when one shape touches another is useful for determining:

• Collision detection

• Terrain following

• Shape selection

• Orientation according to terrain

Instead of using a bounding volume for intersection testing, you construct segments that
approximate the shape of the object, as shown in Figure 13-1.

Figure 13-1 Approximating a Shape with Segments

This chapter describes how to check for intersections in the following sections:

• “Creating an ISECT Process” on page 186

• “Constructing a Segment Set for pfNodeIsectSegs()” on page 187
007-3560-003 185

13: Intersection Testing
• “Testing for Intersections” on page 189

For more information on intersections, see Chapter 4, “Database Traversal,” in the
OpenGL Performer Programmer’s Guide. Also, there are several source code examples
included in the OpenGL Performer source code for intersections:

• /usr/share/Performer/src/pguide/libpf/C/intersect.c
(IRIX and Linux)
%PFROOT%/Src/pguide/libpf/C/intersect.c
(Windows)
This example demonstrates basic intersection functionality.

• /usr/share/Performer/src/lib/libpfutil/collide.c
(IRIX and Linux)
%PFROOT%/Src/lib/libpfutil/collide.c
(Windows)
 This example uses intersections to implement ground-following and object
collision for a moving vehicle.

• /usr/share/Performer/src/lib/libpfui/pfiPick.C
/usr/share/Performer/src/pguide/libpfui/pick.c
(IRIX and Linux)
%PFROOT%/Src/lib/libpfui/pfiPick.C
%PFROOT%/Src/pguide/libpfui/pick.c
(Windows)
These use pfChanPick(), which is based on intersections.

Creating an ISECT Process

By default, no intersection processing is performed by OpenGL Performer. OpenGL
Performer allows you to specify a function that will be called in the intersection stage of
the application with pfIsectFunc().

void pfIsectFunc(pfIsectFuncType func);

Intersection testing is often time consuming. For that reason, it is often a good idea to let
the task run asynchronously in its own process. If the PFMP_FORK_ISECT bit is
specified in the pfMultiprocess() bitmask, the intersection stage will be run as a separate
asynchronous process and therefore can extend beyond the time for a frame without
impacting the performance of the main rendering pipeline.
186 007-3560-003

Constructing a Segment Set for pfNodeIsectSegs()
pfInit();
pfMultiprocess(PFMP_FORK_DRAW | PFMP_FORK_ISECT | PFMP_FORK_DBASE);
pfConfig();

pfIsectFunc(myIsectFunc);

Because the ISECT process runs asynchronously, two objects could collide without
providing immediate notification of the collision. If immediate notification is very
important, perform those intersections separately as part of the application process, or
do not create a separate intersection process. The function you register with pfIsectFunc
is called from the APP process and runs synchronously.

Constructing a Segment Set for pfNodeIsectSegs()

Evaluating every point on the surface of a geometric surface is far too computation-
intensive. Instead, a set of segments is used to grossly approximate the shape of an object
to test for intersections with that object. pfIsectNodeSegs() traverses a scene graph
looking for intersections with the provided segment set.

To create a segment set, you create a pfSegSet, which is a structure defined as follows:

typedef struct {
int mode;
void *userData;
pfSeg segs[PFIS_MAX_SEGS]; /* currently 32 */
uint activeMask;
uint isectMask;
void *bound;
int (*discFunc)(pfHit *);

} pfSegSet;

typedef struct {
pfVec3 pos;
pfVec3 dir;
float length;

} pfSeg;
007-3560-003 187

13: Intersection Testing
Setting the Mode

The mode field of pfSegSet specifies the kind of information recorded when there is a hit
at an intersection. The mode value is a bitwise OR of one or more of the values in
Table 13-1.

PFTRAV_IS_PRIM, PFTRAV_IS_GSET, and PFTRAV_IS_GEODE define where the
geometry is stored and thereby define the depth of the intersection test.

Intersection Masks

There are several mask fields in the pfSegSet structure to enable you to have conditional
intersection traversal. The activeMask field of pfSegSet is a 32-bit mask that allows you
to specify which segments are active.

The isectMask is masked with the intersection mask of each node, set on the node by
pfNodeTravMask() for PFTRAV_ISECT, in the intersection traversal. The traversal will
not intersect with a node or its children if the AND of its isectMask and the pfSegSet isect
Mask is zero. This allows you to create intersection classes of objects and intersection
types.

pfNodeTravMask() allows you to specify additional things for controlling the
intersection traversal of a scene. The function prototype is:

Table 13-1 Segment Set Modes

Mode Description

PFTRAV_IS_PRIM Intersect with quads or triangle geometry.

PFTRAV_IS_GSET Intersect with pfGeoSet bounding boxes.

PFTRAV_IS_GEODE Intersect with pfGeode bounding sphere.

PFTRAV_IS_NORM Return normals in the pfHit structure.

PFTRAV_IS_CULL_BACK Ignore back-facing polygons.

PFTRAV_IS_CULL_FRONT Ignore front-facing polygons.

PFTRAV_IS_PATH Retain traversal path information.

PFTRAV_IS_NO_PART Do not use partitions for intersections.
188 007-3560-003

Testing for Intersections
pfNodeTravMask(pfNode *node, int which, uint mask, int setMode, int bitOp);

The setMode enables you to specify intersection caching, and the bitOp enables you to
and- or- or set- the specified mask against the previous mask in the node. The following
is an example call:

pfNodeTravMask(node, PFTRAV_ISECT, 0xfffffffff,
PFTRAV_SELF|PFTRAV_DESCEND|PFTRAV_IS_CACHE /* turn on caching for
entire scene graph below object */,
PF_OR /* or- with prev bitmask in each node for new bitmask */);

Creating the Segment Array

The segment array defines the origin, direction, and length of the segments in the
following structure:

typedef struct {
pfVec3 pos;
pfVec3 dir;
float length;

} pfSeg;

The pfSegSet array can have up to 32 segments. The segment array is then set in the
pfSegSet structure in the segs[] field.

The pfSegSet Bound

To further improve intersection performance when you have many segments in a
pfSegSet, you can provide a bounding pfCylinder for the segments in the bound field of
the pfSegSet. You can create the bounding cylinder can be created with
pfCylAroundSegs(). The array passed to pfCylAroundSegs() needs to be an array of
pointers to pfSegs, which is different than the array of pfSegs for the pfSegSet.

Testing for Intersections

After setting up the segment set for the geometry and setting the mask for the nodes in
the scene graph, you can check for intersections between the geometry and the segment
set using the following pfNode method:

int pfNodeIsectSegs(pfNode *node, pfSegSet *segSet, pfHit **hits[]);
007-3560-003 189

13: Intersection Testing
segSet is the segment set for the geometry you are testing.

node is where the intersection testing begins.

hits is an empty array that the traversal will fill with pfHit structures for successful
intersections— one per segment.

Note: An alternative to pfNodeIsectSegs() is pfChanNodeIsectSegs().

Figure 13-2 Hits Array

The number of array elements matches the size of the segment set array.

Intersection Information

The hits array is filled by the intersection traversal, with temporary hit structures for each
intersection. The first element corresponds to the segment in the segment array, and the
second dimension is a list of pointers to hit structures relating to that segment. The data
in the hit structures only remains until another ISECT traversal is called, so you do not
want to save pointers to the pfHit structures and you do not want to free them.

To return all of the other information contained in a Hit structure, use the following
method:

int pfQueryHit(pfHit *hit, uint which, void *dst);

hit is a pfHit structure that the traversal fills with information regarding an intersection.

which is the information to retrieve from the hit structure.

0 0 . . . 0 1 0 0 0 1 1

31 30 6 5 4 3 2 1 0

Hit objects
per active segment

Segment in segs array
190 007-3560-003

Testing for Intersections
dst is the pfMemory where the query results are placed.

Table 13-2 shows the PFHIT_ tokens, supplied for which, that specify the hit structure
information to return.

PFQHIT_FLAGS is formed by optionally bitwise ORing zero or more of the
PFHIT_POINT, PFHIT_NORM, PFHIT_PRIM, PFHIT_TRI, PFHIT_VERTS and
PFHIT_XFORM symbols.

Determining If a Segment Was Hit

pfNodeIsectSegs() returns the number of segments that were intersected. To determine
which of the segments were intersected, use code similar to the following:

uint flags;
pfHit **hits[32];

// Assume segset has four active segs, indicies 0 - 3

Table 13-2 Hit Information

Token Definition

PFQHIT_FLAGS Indicates the validity of information in the hit structure described in this
table.

PFQHIT_POINT Returns the point of intersection.

PFQHIT_NORM Returns the normal of the triangle at that point.

PFQHIT_SEG Returns the current segment as clipped by the intersection process.

PFQHIT_PRIM Provides the index of the primitive within the pfGeoSet.

PFQHIT_TRI Returns the triangle index within the primitive.

PFQHIT_VERTS Returns the vertices of the intersected triangle.

PFHIT_XFORM Returns the non-identity transformation matrix.

PFQHIT_GSET Returns a pointer to the GeoSet.

PFQHIT_NODE Returns a pointer to the parent pfGeode.

PFQHIT_PATH Returns a pfPath* denoting the traversal path.
007-3560-003 191

13: Intersection Testing
nhits = pfNodeIsectSegs(scene, &segset, hits);
for (i = 0, i < 4 && nhits > 0, i++){

pfQueryHit(hits[i][0], PRQHIT_FLAGS, &flags);
if (flags & PFHIT_ISECT) {

// valid intersection
nhits--;

}
}

Testing for Valid Information

Each element in the hit array contains all of the hit structures recorded for a specific
segment. All of the fields in the hit structures may not have data. To see if the fields have
data, use the PFQHIT_FLAGS token in pfQueryHit(). Use this function to test the
following fields:

• PFHIT_POINT

• PFHIT_NORM

• PFHIT_PRIM

• PFHIT_TRI

• PFHIT_VERTS

• PFHIT_XFORM

Use code similar to the following to test whether or not the fields have values; if not, they
contain NULL:

pfQueryHit(hits[i][0], PFQHIT_POINT, &pt);
pfQueryHit(hit, PFQHIT_FORM, xform)’
if ((flags & PFHIT_XFORM) == 0) {

// xform contains garbage. so set it to the identity
// matrix so there is no transformation.
pfMakeIdentMat(xform);

}
pfXformPt3(xpt, pt, xform);

Retrieving the Intersection Location

You can find out what object in the scene graph was hit, the location of the intersection
on that object, the object normal at the point of intersection, a traversal path to that object
192 007-3560-003

Testing for Intersections
in the scene graph, and more. All of the geometric data is expressed in local object
coordinates. To transform the data into world coordinates, use:

• pfXformPt3 to transform the point of intersection.

• pfXformVec3 to transform the normal.

 Use these methods with the PFQHIT_XFORM matrix, as follows:

if (flags & PFHIT_ISECT) {
pfVec3 pt, xpt;
pfMatrix xform;

pfQueryHit(hits[i][0], PFQHIT_POINT, &pt);
pfQueryHit(hit, PFQHIT_XFORM, xform);
pfXformPt3(xpt, pt, xform);

shared->zpos = xpt[PF_Z] + 0.7;
}

In this example, the eyepoint is 0.7 units above the geometry.
007-3560-003 193

Chapter 14

14. Creating a User Interface

Real-time user interaction with complex databases is one of OpenGL Performer’s
strengths. This chapter describes how to create a user interface in the following sections:

• “Traveling through a Scene” on page 195

• “Example of Implementing User Interaction” on page 199

Traveling through a Scene

Often you want to allow the user to travel through a scene using an input device, such as
a mouse, as a guide for the motion. OpenGL Performer includes the transformer class,
pfiTDFXformer, for manipulating the eyepoint.

OpenGL Performer provides three models for interpreting input device events:

• Trackball—when the input device is a trackball and the input is translated into 3D
motion.

• Drive—where mouse events are translated into 2D motion.

• Fly—where mouse events are translated into 3D motion.

Note: pfiTDFXformer is a subclass of pfiXformer, which can be extended for custom
motion models.

To use the transformer class to interpret mouse events as the means by which a user
moves through a scene, use the following procedure:

1. “Creating a Transformer” on page 196.

2. “Initializing the Transformer” on page 197.
007-3560-003 195

14: Creating a User Interface
3. “Setting Up Transformer Input and Output” on page 198.

4. “Updating the Channel” on page 198.

5. “Scaling the Motion” on page 199.

The following sections explain this procedure.

Creating a Transformer

To create a transformer, you must:

1. Initialize the utility library, libui, using:

void pfiInit(void);

2. Create the transformer in the shared memory arena, as follows:

pfiTDFXformer *pfiNewTDFXformer(void *arena);

3. Check that the shared memory arena is not NULL, as follows:

if (pfGetSharedArena() = NULL) {
// use memory allocated from the local heap

}

The shared memory arena is that portion of memory that is available to all OpenGL
Performer processes. Three common processes in OpenGL Performer are:

• APP

• CULL

• DRAW

Each process handles only part of the rendering. When a process is finished operating on
one frame, it returns the data to the shared memory arena so that another process can
grab and process it, as shown in Figure 14-1.
196 007-3560-003

Traveling through a Scene
Figure 14-1 Shared Memory Arena

Initializing the Transformer

To initialize the transformer, you must:

1. Specify the motion model to use, using:

void pfiSelectXformerModel(pfiXformer* XF, int model);

where XF is the transformer created in the previous section, and model is one of
three values:

• PFITDF_TRACKBALL

• PFITDF_DRIVE

• PFITDF_FLY

For more information on the motion models, see “Traveling through a Scene” on
page 195.

2. Specify the initial position of the viewpoint, using:

void pfiXformerCoord(pfiXformer* XF, pfCoord* coord);

where XF is the transformer created in the previous section, and coord is a structure
containing a three-dimensional set of coordinates, and three rotation values around
those three dimensions. For more information about pfCoord, see “Direction and
Position of the View” on page 87.

APP

process

CULL

process

DRAW

process

Graphics
pipeline

Shared
memory
arena
007-3560-003 197

14: Creating a User Interface
Setting Up Transformer Input and Output

To set up transformer input (using a mouse) and output, use the following steps:

1. Make the transformer object created previously, XF, read from the mouse and
events buffer, as follows:

void pfiXformerAutoInput(pfiXformer *XF, pfChannel *chan,
pfuMouse *mouse, pfuEventStream *events);

events points at the buffer containing the mouse events.

2. Specify the channel, chan, to update with the mouse events, as follows:

void pfiXformerAutoPosition(pfiXformer* XF, pfChannel *chan,
pfDCS *dcs);

chan is updated for mouse events; dcs is updated for trackball events. If you do not
want to interpret trackball input, set dcs to NULL.

3. Collect mouse events, as follows:

pfuInitInput(mainPipeWindow, PFUINPUT_X);
pfuCollectInput(void);
pfuGetMouse(mouse);

mainPipeWindow is the pfPipeWindow where the channel, chan, is rendered.

PFUINPUT_X specifies that mouse and keyboard events are read from a forked
process using X device commands. In this case, mainPipeWindow, must be a GLX
window.

mouse is a pointer to the buffer for mouse events.

Updating the Channel

To read the events from the input buffers and update the view in the channel, use the
following method:

void pfiUpdateXformer(pfiXformer *XF);

where XF is the transformer.

This method updates the channel automatically.
198 007-3560-003

Example of Implementing User Interaction
Scaling the Motion

It is necessary to scale the effect of the motion of the mouse according to the size of the
scene. For example, if moving the mouse an inch moves the viewpoint in the scene 50
meters, a small shape might be hard to maneuver because the motion of the viewpoint is
so fast. On the other hand, in a large scene, such motion might be scaled appropriately.

To scale the motion of the viewpoint according to the size of the scene, use the following
procedure:

1. Calculate the bounding box of the scene, as follows:

void pfuTravCalcBBox(pfNode *node, pfBox *box);

node is generally the root node of the scene graph. box returns the size of the
bounding box of the scene. pfBox is a structure defined as follows:

typedef struct {
pfVec3 min;
pfVec3 max;

} pfBox;

The minimum and maximum 3D coordinates specify the lower-left, upper-right,
and front and back corner of the box, respectively.

2. Adjust the speed and acceleration of the viewpoint based on the size of the
bounding box, as follows:

void pfiXformerLimits(pfiXformer* XF, float maxSpeed,
float angularVel, float maxAccel, pfBox* dbLimits);

This method, in pfiXformer, sets the maximum speed of XF to maxSpeed, the angular
velocity of XF to angularVel, the maximum acceleration of XF to maxAccel, and the
bounds within which XF can move to be the bounding box, dbLimits.

Example of Implementing User Interaction

Example 14-1 shows in bold the code used to implement transforming the view
according to the motion of a mouse.

Example 14-1 Implementing User Interaction

#include <Performer/pf.h>
#include <Performer/pfdu.h>
#include <Performer/pfutil.h>
007-3560-003 199

14: Creating a User Interface
#include <Performer/pfui.h>
#include <stdio.h>

/* Function prototypes */

void windowSetup(char *title);
void sceneSetup(char *filename);
void channelSetup(void);
void xformerSetup(void);
void handleEvents(void);
void printHelp(char *progName);

/* Global variables */

pfScene *scene;
pfChannel *chan;
char *progName;
int exitFlag = 0;
pfuEventStream events;
pfuMouse mouse;
pfiTDFXformer *xformer;

int main(int argc, char *argv[])
{

extern char *progName;
extern int exitFlag;
extern pfuMouse mouse;
extern pfiTDFXformer *xformer;
char *filename = “esprit.flt”;

/* Initialize Performer and create the pipe */

pfInit();
pfuInitUtil();
pfiInit();
pfConfig();

/* Set up a window, scene graph, and channel */

progName = argv[0];
200 007-3560-003

Example of Implementing User Interaction
windowSetup(progName);

if (argc >= 2) filename = argv[1];
sceneSetup(filename);

channelSetup();
xformerSetup();

/* Simulate */

printHelp(progName);
while (!exitFlag) {

pfuGetMouse(&mouse);
pfiUpdateXformer(xformer);
 pfFrame();
handleEvents();

}

/* Clean up */

pfuExitInput();
pfuExitUtil();
pfExit();
return 0;

}

void windowSetup(char *title)
{

pfPipe *pipe;
pfPipeWindow *win;

pipe = pfGetPipe(0);
win = pfNewPWin(pipe);
pfPWinName(win, title);
pfPWinSize(win, 500, 500);

pfPWinType(win, PFPWIN_TYPE_X);
pfuInitInput(win, PFUINPUT_X);

pfOpenPWin(win);
}

007-3560-003 201

14: Creating a User Interface
void sceneSetup(char *filename)
{

extern pfScene *scene;
pfNode *model;
pfLightSource *light;

scene = pfNewScene();

light = pfNewLSource();
pfAddChild(scene, light);

pfFilePath(“/usr/people/perf/pf_data”);
model = pfdLoadFile(filename);
pfAddChild(scene, model);

}

void channelSetup(void)
{

extern pfScene *scene;
extern pfChannel *chan;
pfPipe *pipe;
pfSphere bsphere;

pfEarthSky *esky;

pipe = pfGetPipe(0);
chan = pfNewChan(pipe);
pfChanScene(chan, scene);

pfGetNodeBSphere(scene, &bsphere);
pfChanNearFar(chan, 1.0f, 10.0f * bsphere.radius);
pfChanFOV(chan, 60.0f, -1.0f);

esky = pfNewESky();
pfESkyAttr(esky, PFES_GRND_HT, -0.1f);
pfESkyColor(esky, PFES_GRND_NEAR, 0.0f, 0.4f, 0.0f, 1.0f);
pfESkyColor(esky, PFES_GRND_FAR, 0.0f, 0.4f, 0.0f, 1.0f);
pfESkyMode(esky, PFES_BUFFER_CLEAR, PFES_SKY_GRND);

pfChanESky(chan, esky);

}

202 007-3560-003

Example of Implementing User Interaction
void xformerSetup(void)
{

extern pfScene *scene;
extern pfChannel *chan;
extern pfuEventStream events;
extern pfiTDFXformer *xformer;
extern pfuMouse mouse;
pfCoord view;
pfSphere bsphere;
pfBox bbox;
float speed;

xformer = pfiNewTDFXformer(pfGetSharedArena());
pfiXformerAutoInput(xformer, chan, &mouse, &events);
pfiXformerAutoPosition(xformer, chan, NULL);
pfiSelectXformerModel(xformer, PFITDF_FLY);

pfGetNodeBSphere(scene, &bsphere);
pfSetVec3(view.xyz, 0.0f, -2.0f * bsphere.radius, 1.0f);
pfSetVec3(view.hpr, 0.0f, 0.0f, 0.0f);
pfiXformerCoord(xformer, &view);
pfiXformerResetCoord(xformer, &view);

pfuTravCalcBBox(scene, &bbox);
speed = bsphere.radius / 3.0f;
pfiXformerLimits(xformer, speed, 90.0f, speed/2.0f, &bbox);

}

void handleEvents(void)
{
 extern pfuEventStream events;
 extern char *progName;
 extern int exitFlag;
 extern pfiTDFXformer *xformer;
 int i, j;
 int key, dev, val, numDevs;
 pfuEventStream *pEvents = &events;

 pfuGetEvents(&events);
 numDevs = pEvents->numDevs;

 for (j=0; j < numDevs; ++j) {
 dev = pEvents->devQ[j];
 val = pEvents->devVal[j];
007-3560-003 203

14: Creating a User Interface
 if (pEvents->devCount[dev] > 0) {
 switch (dev) {

 case PFUDEV_REDRAW:
 pEvents->devCount[dev] = 0;
 break;

 case PFUDEV_WINQUIT:
 exitFlag = 1;
 pEvents->devCount[dev] = 0;
 break;

 case PFUDEV_KEYBD:
 for (i=0; i < pEvents->numKeys; ++i) {

 key = pEvents->keyQ[i];
 if (pEvents->keyCount[key]) {

 switch (key) {
 case 27: /* ESC key. Exits prog */
 exitFlag = 1;
 break;

 case ‘h’:
 printHelp(progName);
 break;

 case ‘r’:
 pfiStopXformer(xformer);
 pfiResetXformerPosition(xformer);
 break;

 default:
 break;
 }
 }
 }
 pEvents->devCount[dev] = 0;
 break;

 default:
 break;
 }
 }
204 007-3560-003

Example of Implementing User Interaction
 }
 pEvents->numKeys = 0;
 pEvents->numDevs = 0;
}

void printHelp(char *progName)
{

printf(“\n%s - using a transforme\n\n”
“<h> key\t\t\t- print help\n”
 “<r> key\t\t\t- reset transformer position\n”
“ESCAPE key\t\t- exit the program\n\n”,
progName);

}

007-3560-003 205

Chapter 15

15. Optimizing Performance

Optimizing the performance of your application is absolutely necessary to enable your
images to be drawn to the buffer as quickly as possible. When your application requires
too much time to render a scene, the frame rate is broken and such things as calligraphic
lights are not rendered at all.

One way to optimize your application is not to draw shapes that are out-of-sight. This
chapter contains the following sections, which explain how to eliminate shapes that are
out of sight from the rendering.

• “General Performance Tips” on page 207

• “Culling Unseen Shapes” on page 212

• “Maintaining Frame Rate Using DVR” on page 215

• “Level of Detail Reduced for Performance” on page 217

• “Reducing System Stress” on page 223

• “Optimizing pfGeoSet Performance” on page 224

• “Optimizing Graphics State Changes” on page 225

• “Optimizing Texture Handling” on page 226

• “Optimizing File Loading” on page 226

General Performance Tips

Do not run other IrisGL or OpenGL-based applications, such as Showcase, while running
OpenGL Performer applications. If you run more than one GL application on a
single-pipe machine, you incur graphics context switching overhead as the applications
contend for control of the pipe.
007-3560-003 207

15: Optimizing Performance
Run applications as root so that you can:

• Set nondegrading priorities

• Restrict processors

Restricting processors allows you to reduce contention for CPU time. No other processes
can run on a restricted processor. See pfStageConfigFunc for an example of how to use
sysmp() to customize each pipe stage.

Nondegrading priorities are necessary to ensure response times while an application is
running. Use schedctl() to set nondegrading priorities.

Displaying Statistics

The statistics display shows performance information. The type of information
displayed depends on the tokens passed to pfStatsClass, including:

• Time required for a frame to complete the APP, CULL, and DRAW stages.

• Load and stress.

• CPU usage.

• Rendering performance.

• Fill statistics.

You can, for example, display just one set of statistics, as shown in Figure 15-1.

Figure 15-1 Statistics Display

Alternately, you can display many sets of statistics, as shown in Figure 15-2. The
overhead for the statistical querying, however, can be expensive.
208 007-3560-003

General Performance Tips
Figure 15-2 Various Statistical Modes

Rendering the Statistics Tool

To attach the statistics tool to a channel, use the following method:

void pfDrawChanStats(pfChannel* chan)
007-3560-003 209

15: Optimizing Performance
Specifying the Statistics to Gather

Because some statistics can be expensive to gather and may influence other statistics,
statistics are divided into different classes, based on the tasks they monitor. You select the
specific statistics of interest using pfStatsClass.

uint pfStatsClass(pfStats *stats, uint enmask, int val);

stats is the statistics class you want to enable. Valid values are the PFSTATS_ tokens listed
in Table 15-1.

val specifies if the statistics class is enabled. Valid values for the PFSTATS_EN tokens are
listed in Table 15-1.

Tokens can be ORed with other statistics-enabling tokens to enable and disable multiple
statistics operations.

Statistics classes have different modes of collection so that performance-expensive
modes of a particular statistics class may be disabled with pfStatsClassMode.

uint pfStatsClassMode(pfStats *stats, int class, uint mask, int val);

For a list of the mask values that specify the mode of the statistics class to use, see the
OpenGL Performer Programmer’s Guide.

Reducing Bottlenecks

The purpose of using the statistics display is to determine what stage of the rendering
process requires the most time. To reduce bottlenecks, do the following:

Table 15-1 Statistics Class Table

Class PFSTATS_ Token PFSTATS_EN Token

Graphics rendered PFSTATS_GFX PFSTATS_ENGFX

Pixel fill PFSTATSHW_GFXPIPE_FILL PFSTATSHW_ENGFXPIPE_FILL

CPU PFSTATSHW_CPU PFSTATSHW_ENCPU

GfxPipe PFSTATSHW_GFXPIPE_TIMES PFSTATSHW_ENGFXPIPE_TIMES
210 007-3560-003

General Performance Tips
• Make sure the best multiprocessing model is used; the stage that requires the most
time should have its own process.

• If the APP stage is the bottleneck, you might have too many scene and channel
changes, creating excessive CPU calculations. Use the CPU profiling tools, prof
and pixie compiler tools, and cvperf and cvd from CaseVision, to find where too
many calculations are being done.

• If the CULL stage is the bottleneck, compare the spatial organization of the elements
in the scene to the grouping of nodes in the scene graph; the two should resemble
one another.

Use pfChanTravMode to limit culling calculations.

• The DRAW stage is the most common bottleneck. To reduce the time spent in the
DRAW stage:

– Minimize graphic state changes using pfdMakeShared() and
pfdMakeSharedScene().

– Turn off expensive pixel operations, such as blending and multisampling.

– Use 16-bit texel formats using pfTexFormat.

– Buy more raster managers.

– Reduce the LOD.

– Use pfFlatten and pfdCleanTree to minimize transformations of static shapes.

– Create smaller pfGeoSets to allow more finely grained culls.

– Use triangle strips instead of triangles; the longer the strip, the better.

– Substitute billboards for complete geometries.

– Minimize the number of active light sources.

– Use pfGSetDrawMode to create GL display lists since they transfer to graphics
pipeline efficiently.

– Consider the topics presented in the remaining sections of this chapter.

– To determine if the number of pixels is limiting performance, make the window
smaller. If the frame rate jumps, performance is limited by the rate at which
pixels are filling the polygons.

– To determine if the number of vertices is limiting performance, turn off the
lighting. If the frame rate jumps, performance is limited by per-vertex
calculations.
007-3560-003 211

15: Optimizing Performance
Culling Unseen Shapes

One way to increase the rendering speed of an application is to not render unseen shapes
in the scene graph. OpenGL Performer provides three ways to eliminate unseen shapes
from rendering calculations:

• CULL process—eliminates shapes outside the viewing frustum.

• pfCullFace—eliminates the back side of shapes, such as the rear half of a ball.

• pfBillboard—uses only a slice of a shape to represent the entire shape.

The following sections describe these OpenGL Performer features.

CULL Process

The CULL process eliminates from rendering calculations all of those shapes not in the
viewing frustum. The viewing frustum is what is in the view of the channel, as illustrated
in Figure 5-3 on page 86.

The CULL process checks to see if the bounding sphere of a shape is in the viewing
frustum. A bounding sphere is a sphere roughly the size of the shape it encloses. A
bounding sphere is used because testing a sphere is computationally less expensive than
testing each point on the surface of a shape.

Evaluating Bounding Spheres

The CULL process tests the bounding spheres of shapes to see whether or not the spheres
are:

• Totally inside the viewing frustum

• Totally outside the viewing frustum

• Partially inside and outside the viewing frustum

In the first two cases, the children nodes are not tested; all of the nodes are drawn or none
of them are drawn, respectively.

In the last case, the children nodes are tested. All three cases are then used at each level
of the subgraph.
212 007-3560-003

Culling Unseen Shapes
Figure 15-3 shows each of the cases: the ball and box are totally inside or outside of the
viewing frustum, respectively. The triangle is partially inside the viewing frustum.

The scene graph in Figure 15-3 shows how the CULL process eliminates nodes from
rendering, according to whether or not they are visible.

Figure 15-3 Culling Process

Sphere Cube Pyramid Sphere Pyramid
Culled
007-3560-003 213

15: Optimizing Performance
Optimizing the CULL Process

View frustum culling works best when:

• The objects in a pfGroup node are spatially close together, for example, all of the
nodes representing a body are linearly hierarchical. When this is the case, the CULL
process only needs to visit the top of the body subgraph. If the body nodes were
distributed horizontally, the CULL process would have to visit at least some of the
other body nodes.

• The shapes are small compared to the full database size. If a shape is large, very
likely part of it will be inside the viewing frustum so the children nodes of it must
be tested, which hinders performance.

Objects that are roughly the same length in each of the three dimensions cull better
than long, thin objects. An object that spans the database, for example, a beam
across the ceiling of a building, cannot be culled as easily as two halves of the beam.
It may be useful to divide objects that can be easily divided.

pfdGeoBuilder provides tools to group together in the scene those graph nodes whose
shapes are close together in world space. OpenGL Optimizer also provides tools for
arranging scene graph nodes spatially, as well as tools for creating LOD children.

Face Culling

When a three-dimensional shape is rendered, the side of it facing away from the camera
is normally hidden by the side that faces the camera. For example, when a sphere is
rendered, you normally only see its front side. You can avoid rendering the back side of
a shape using pfCullFace(). Backface culling is enabled by default in pfPipeWindows for
libpf applications.

The pfCullFace() mode specifies how much of a shape is rendered. The possible values
include:

• PFCF_OFF—Both the front and back sides of shapes are rendered.

• PFCF_FRONT—Only the back sides of all shapes are rendered.

• PFCF_BACK—Only the front sides of all shapes are rendered.

• PFCF_BOTH—Shapes are not rendered.

pfGetCullFace() returns one of these values, whichever is current.
214 007-3560-003

Maintaining Frame Rate Using DVR
Not rendering either the front or back side of a geometry improves rendering
performance.

Rendering Slices of Shapes

Some shapes are symmetric in the horizontal plane and vertical planes, such as a sphere.
Other shapes are roughly symmetric around one axis, (for example, a tree is generally
symmetric around the z-axis).

Rather than render the complete shape in great detail, pfBillboard rotates a slice of a
shape so that it always faces the camera. In this way, if you move a camera around a tree,
the same pfBillboard slice of the image revolves around the location of the tree such that
the slice appears to be the tree. The tree appears to lack the specificity of a fully rendered
shape because it appears the same from all sides; on the other hand, not rendering the
entire tree in detail increases the performance of the application.

Rotating the Slice

A pfBillboard can rotate freely around a point or it can rotate around an axis. pfBillboard
objects approximating shapes symmetric around two axes should use the point mode.
pfBillboard groups approximating shapes symmetric around one axis should use the axis
mode.

To specify the mode of rotation, use one of the following tokens as the value for mode in
the argument of pfBboardMode():

• PFBB_POINT_ROT_EYE—to rotate the billboard around a point.

• PFBB_AXIAL_ROT—to rotate the billboard around an axis.

Maintaining Frame Rate Using DVR

When there is too much data to render, the frame is not updated when the frame is
refreshed. The result of inconsistent frame rates is jerky motion within the scene.

The key to maintaining frame rate is limiting the amount of information to be rendered.
OpenGL Performer can take care of this problem automatically when you use the
PFPVC_DVR_AUTO token with pfPVChanDVRMode(). This mode is called Dynamic
Video Resolution (DVR).
007-3560-003 215

15: Optimizing Performance
In PFPVC_DVR_AUTO mode, OpenGL Performer checks every rendered frame to find
out if it required too much time to render. If it did, OpenGL Performer reduces the size
of the image, and correspondingly, the number of pixels in it. Afterwards, the video
hardware enlarges the images to the same size as the pfChannel; in this way, the image
is the correct size, but it contains a reduced number of pixels, as suggested in Figure 15-4.

Figure 15-4 Real Size of Viewport Rendered under Increasing Stress

Although the viewport is reduced as stress increases, the viewer never sees the image
grow smaller because bipolar filtering is used to enlarge the image to the size of the
channel.

DVR Scaling

DVR scales linearly in response to the most common cause of draw overload: filling the
polygons. For example, if the DRAW stage process overruns by 50%, in order to get back
in under the time frame, the new scene must reduce the dimensions of the viewport by
30% in both dimensions because 0.7 X 0.7 = 0.49; (almost a 50% reduction in the number
of pixels drawn.)

DVR can automatically render to a smaller viewport and let the video hardware rescale
the image to the correct display size.

If pfPVChanMode is DVR_AUTO, OpenGL Performer automatically scales each of the
pfChannels. pfChannels automatically scale themselves according to the scale set on the
pfPipeVideoChannel they are using.

If the pfPVChanMode is DVR_MANUAL, you control scaling according to your own
policy by setting the scale and size of the pfPipeVideoChannel in the application process
between pfSync() and pfFrame().
216 007-3560-003

Level of Detail Reduced for Performance
Note: For more information about customizing DVR or understanding the stress filter
used by DVR, see Chapter 5, “Frame and Load Control,” in the OpenGL Performer
Programmer’s Guide.

Level of Detail Reduced for Performance

The children of a level of detail (pfLOD) node each encapsulate a shape at a different
level of resolution. The factor of resolution between children of a pfLOD is often one
quarter; so when a lower resolution child replaces the current pfLOD child displayed,
only one quarter of the current number of vertices needs to be rendered. The maximum
reduction of detail is when all of the vertices of the highest-resolution image are reduced
to a single pixel.

The pfLOD (level of detail) node is a subclass of pfSwitch. pfLOD switches between its
child nodes, based on the proximity of an object to the camera.The further a shape is from
the viewer, the less resolution is needed to display it. OpenGL Performer switches
between the children automatically, based on a range value, to display a shape at the
correct level of resolution.

pfLOD allows you to reach a compromise between performance and the level of detail
rendered. For high quality images, a shape close to the camera should be rendered in
high detail. When a shape recedes from the camera, the same level of detail is not
necessary. Reducing the level of image detail reduces the number of vertices required to
render a shape, which results in improved performance.

OpenGL Optimizer can create the pfLOD children nodes.

Choosing a Child Node Based on Range

Each child node of a pfLOD node is associated with a range. The range can be defined as
the distance over which a child of the pfLOD is displayed from the camera, expressed in
world space.

Shapes are not displayed if:

• They are closer to the camera than the beginning distance of the closest (highest
resolution) LOD child.
007-3560-003 217

15: Optimizing Performance
• They are further away than the farthest distance of the farthest (lowest resolution)
LOD child.

The distance between the camera and the shape is computed during the traversal of the
scene graph and the correct LOD child is automatically displayed.

Setting the Range

You set the range value using the following pfLOD methods:

void pfLODCenter(pfLOD *lod, pfVec3 center);
void pfLODCenter(const pfLOD *lod, pfVec3 center);

void pfLODRange(pfLOD *lod, int index, float range);

void pfLODTransition(pfLOD *lod, int index, float distance);
int pfGetLODNumRanges(const pfLOD *lod);

The pfLODCenter() method specifies the center of the LOD. The range over which a
particular LOD child node is displayed is calculated as the center, plus or minus the range
value specified in pfLODRange().

pfLODRange() associates the child LOD node with its range. The child node is identified
by its index number, index, where the highest resolution node is index number zero.

Generally, you set up a loop to specify the range values for the child pfLOD nodes, using
the returned value of pfGetLODNumRanges() as the bounding value for the number of
loops.

Disregarding LODs

OpenGL Performer may disregard range values and perform as follows:

• Display an already fetched level of detail while a higher level of detail is
downloaded from disk.

• Adjust the level of detail displayed to maintain a constant frame rate; this is always
the case if you leave the range() field empty.

• Disregard the range values for any other implementation-dependent reason.
218 007-3560-003

Level of Detail Reduced for Performance
Tip: For best results, specify ranges only where necessary; give browsers as much
freedom as possible to choose levels of detail based on performance.

Transitioning Between Levels of Detail

The default transition between LOD children is simply a switch from one LOD child to
another. You can, however, specify a fade between LOD children over a range.

Note: To use the fade option, your platform must have multisampling hardware.

The pfLODTransition method specifies the distance over which one pfLOD child fades
into the next, as shown in Figure 15-5.

Figure 15-5 pfLOD Ranges

High resolution image

Low resolution image

Transition region

Range 1

Range 2
007-3560-003 219

15: Optimizing Performance
The distance value in pfLODTransition() is applied before and after the boundary
between two LOD children, such that the fade between one LOD child to another
actually occurs over 2 X distance value. The default value of distance is 1.

Fading involves an alpha blending between two LOD children, such that as one LOD
fades into transparency, the other LOD becomes 100% opaque.

The drawback for fading is that both LOD children must be drawn, which hinders
performance.

Enabling Fading

Even though you set the transition range inpfLODTransition(), the fade is not enabled
by default. To enable fading between LOD children, you must set the attribute,
PFLOD_FADE, in pfChanLODAttr(), to a non-zero value. The default value for
PFLOD_FADE is 0.0: no fade. For more information about pfChanLODAttr(), see
“Customizing LOD Actions” on page 221.

When computing the actual distance over which one LOD child fades into another, the
value supplied for PFLOD_FADE is multiplied by distance values specified in
pfLODTransition().

Customizing the Fade

OpenGL Performer fades one LOD child into another evenly, such that at the boundary
between two LOD children, both LOD children are 50% transparent and 50% opaque.

You can, however, specify an uneven rate of fading between LOD children using
pfEvaluateLOD(). By specifying a value of 1.25 in this method, for example, at the
boundary between two LOD children, the higher-resolution child would only be 25%
transparent, and the other child only 75% opaque.

Similarly, a value of 3.9 would mean that the higher-resolution child would only be 10%
transparent, and the other child only 90% opaque, at the boundary between two LOD
children.
220 007-3560-003

Level of Detail Reduced for Performance
Customizing LOD Actions

OpenGL Performer allows you to customize LOD actions using the following pfChannel
method:

extern void pfChanLODAttr(pfChannel* _chan, int attr, float val);

attr specifies the customization; it can be one of the following values:

• PFLOD_FADE—fades between LOD child nodes.

• PFLOD_SCALE—globally increases or decrease the ranges for all LODs in a
channel or channel group.

• PFLOD_STRESS_PIX_LIMIT—prevents lower-resolution LODs from displaying as
a result of stress.

• PFLOD_FRUST_SCALE—changes LODs based on the size of the viewport.

val is the value you give to the attr argument.

These attributes are shared by all channels in a channel group. If you want to specify
attributes per channel for channels in a group, use pfChanShare.

For more information about PFLOD_FADE, see “Enabling Fading” on page 220.

The following sections describe the other attribute values.

Scaling LOD Ranges

When you change the scale of the images displayed, you also need to change the scale of
the LOD children ranges. The PFLOD_SCALE attribute enables you to make global
changes to all of the ranges in a channel.

When you specify PFLOD_SCALE, the float you supply as its value in pfChanLODAttr()
becomes the multiplier for all of the range values. For example, if you specify 2.0 as the
value for PFLOD_SCALE, all ranges are doubled. The default value is 1.0.

This attribute is valuable for global changes in ranges.
007-3560-003 221

15: Optimizing Performance
Overriding Stress Effects

When the images displayed are complex enough that the frame rate is not maintained,
simpler LODs are drawn to reduce the graphics load. In some situations, however, it is
undesirable to use low-resolution LOD nodes, for example, when the shapes in the LOD
node are close to the viewer and occupy considerable screen space. You can avoid this
problem by using the PFLOD_STRESS_PIX_LIMIT attribute, which will keep exempt
specific LODs from being affected by system stress.

When you specify PFLOD_STRESS_PIX_LIMIT, the pixel size you supply as its value in
pfChanLODAttr() becomes the determining factor as to whether or not stress can change
the selection of LOD children displayed.

Stress, computed with pfChanStress(), can automatically reduce the level of detail
displayed if the frame rate is not maintained. The PFLOD_STRESS_PIX_LIMIT attribute
specifies the pixel size, above which stress has no effect on the selection of LOD children
displayed.

When the value of PFLOD_STRESS_PIX_LIMIT is less than or equal to zero, stress has
no effect on the selection of LOD children displayed.

For more information about stress, see “Reducing System Stress” on page 223.

Selecting LODs Based on Viewport

When you change the size of the viewport in which a channel is displayed, you scale the
image to fit the viewport. When you make the viewport smaller, the level of resolution
necessary to display the images is lowered. You can reduce the graphics load by tying the
scaling of the viewport with the selection of LOD children displayed, by using the
PFLOD_FRUST_SCALE attribute.

When you specify PFLOD_FRUST_SCALE and supply a non-zero value for it, LOD
ranges are multiplied by a factor according to the size of the viewport:

• The smaller the viewport, the shorter the ranges.

• The larger the viewport, the longer the ranges.

The general effect of the attribute is that as you reduce the size of the viewport,
lower-resolution LODs are displayed.
222 007-3560-003

Reducing System Stress
Reducing System Stress

OpenGL Performer tries to maintain a fixed frame rate by displaying different LOD
children to reduce or increase the graphics load. At the end of each frame, OpenGL
Performer computes a load value for each pfChannel based on the length of time required
to render the pfChannel. When rendering time approaches or exceeds a frame period, the
stress value is increased and lower-resolution LOD children are displayed as a result.

Load is the rendering time divided by the desired frame period. The value of stress varies
directly with the load; the more complex the display, the higher the system stress.

Setting the Stress Filter

The stress filter monitors the system load and either raises or lowers the stress value
according to its parameters. OpenGL Performer multiplies the stress value times the
LOD ranges for the next frame. A stress value greater than one increases the LOD ranges
so that coarser LOD children are drawn, and the graphics load is reduced. If stress = 1.0,
the system is not in stress and LOD ranges are not modified.

Whether or not the stress value is modified depends on the parameters in the stress filter:

void pfChanStressFilter(pfChannel *chan, float frac, float low,
float high, float scale, float max);

void pfChanStress(pfChannel *chan, float stress);

low and high define a hysteresis band for system load. When the load is:

• Less than low, the stress value is reduced.

• Higher than high, the stress value is increased.

• Between low and high, the stress value is unchanged.

Stress values are clamped to the range [1.0, max].

Stress Volatility

Because the stress is computed for every frame, stress values can change often. An
undesirable side effect in changing the stress value so often is overcompensating for too
much or too little system load. For example, the stress filter could change the load, so that
007-3560-003 223

15: Optimizing Performance
in adjacent frames the system load is too great, too little, too great, too little, and so on.
The effect is to display different LOD children in every frame.

To counteract this overcompensation, the stress filter includes the argument, scale. Stress
increases or decreases proportionally to the value of scale. With a small scale value, stress
values can change slowly; with a high scale value, stress values can change quickly.

Dividing Rendering Time

When rendering multiple channels, each channel must be rendered in a fraction of the
frame rate. Because load is partially based on the time you expect a channel to be
rendered, you can set frac to different values for different channels. frac is the proportion
of time you expect it will take a channel to be rendered.

When rendering a single channel on a pfPipe, frac should be 1.0, because the single
channel consumes all of the rendering time.

When rendering multiple channels, set the frac value larger for those channels that
require more time to render. For example, if channel 0 showed a scene, and channel 1
showed a smaller view of channel 0 with cross hairs superimposed on it, you might set
the frac for channel 0 to 0.7 and the frac for channel 1 to 0.3, because the smaller view
requires less time to render.

Setting the Stress Value Explicitly

An application may set the stress filter explicitly by calling pfChanStress(). Stress values
set by pfChanStress() override stress values computed by the stress filter.

Optimizing pfGeoSet Performance

Transferring geometry data from disk to system memory is time consuming. You can
eliminate this delay for geometries that do not change vertices, color, normals, or texture
coordinates.

The following method compiles a GL display list, which contains geometry data. The
compilation of the data eliminates the data download time.

void pfGSetDrawMode(pfGeoState *gset, PFGS_COMPILE_GL, PF_ON);
224 007-3560-003

Optimizing Graphics State Changes
A GL display list is not modifiable. You can, however, use pfDCS and pfSCS nodes to
transform geometries stored in GL display lists. Another option is to use packed attribute
arrays for pfGeoSet vertex attributes. See Chapter 8, “Geometry”, in the OpenGL
Performer Programmer’s Guide for more information on these topics.

Optimizing Graphics State Changes

The following tools can optimize graphic state changes:

• pfdMakeShared()

• pfdMakeSharedScene()

Sharing Common pfGeoStates

The pfdMakeShared() method performs as follows:

1. Finds all pfGeoStates that are the same.

2. Points all pfGeoSets using identical pfGeoStates at the same pfGeoState object.

3. Eliminates all duplicate pfGeoState objects.

Eliminating pfGeoState objects reduces memory consumption.

Computing the Optimal, Global Graphics State

The pfdMakeSharedScene() method performs as follows:

1. Examines all pfGeoStates in a scene graph.

2. Computes the optimal pfGeoState values that reflect how most of the geometries
look.

3. Change local pfGeoState values according to the newly calculated, global
pfGeoState values.
007-3560-003 225

15: Optimizing Performance
Optimizing Texture Handling

The following tips provide improved application performance when handling textures:

• Use images with dimensions that are powers of two.

• Use 16-bit texel formats.

• Larger texels slow down the application linearly, for example, a 32-bit texel texture
is twice as slow as a 16-bit texel texture.

• Download textures to hardware before the simulation loop.

For more information about downloading textures, see “Preloading Textures” on
page 138.

Optimizing File Loading

Although you can use files in many formats (specified by their file extensions), you can
dramatically reduce database loading time by preconverting databases into the PFB
format and images into the PFI format.

To convert to the PFB file format or the PFI image format, use the pfconv and pficonv
utilities.

pfconv

The pfconv utility converts from any format for which a pfdLoadFile...() function exists
into any format for which a pfdStoreFile...() exists. The most common format to convert
to is the PFB format. For example, to convert cow.obj into the PFB format, use the
following command:

% pfconv cow.obj cow.pfb

By default, pfconv optimizes the scene graph when performing the conversion. The
optimizations are controlled with the -o and -O command line options. Builder options
are controlled with the -b and -B command line options. Converter modes are controlled
with the -m and -M command line options. See the help page for more specific
information about the command line options by entering:

% pfconv -h
226 007-3560-003

Optimizing File Loading
When converting to the PFB format, texture files can be converted to the PFI format using
the following command line options:

% pfconv -M pfb, 5, 1

5 means PFPFB_SAVE_TEXTURE_PFI.

1 means convert .rgb texture images to .pfi.

pficonv

The pficonv utility converts from the IRIS RGB image format to the PFI image format.
For example, to convert cafe.rgb into the PFI format, use the following command:

% pficonv cafe.rgb cafe.pfi

Mipmaps can be automatically generated and stored in the resulting PFI files by adding
-m to the command line.
007-3560-003 227

Appendix A

A. Building a Visual Simulation Application Using libpf

This appendix outlines the steps involved in using libpf, the visual simulation
development library. The outline follows the development sequence of a skeleton
application program that introduces the basic concepts involved in creating a visual
simulation application with libpf. Each step at which more complex constructions are
possible gives a cross reference to a later section where you can learn more about the
topic.

For a more modular approach using a graphical viewer, see Appendix B, “Building a
Visual Simulation Application Using libpfv”.

Overview

It takes only a few lines of code to set up an OpenGL Performer libpf application.
Furthermore, once you have an application framework that you like you can use it again
to create other libpf applications.

Certain configuration and control routines are required in all applications, while others
depend on the features needed and the platform for which the application is designed.
The basic requirements for simple programs are the same as for more complex programs,
so you can learn the basic structure from a very simple framework application and then
build on it to suit your needs.

Take a few moments to browse through the introductory program, simple.c, shown in
Example A-1. If you want to compile this program, see the section of this appendix titled
“Compiling and Linking OpenGL Performer Applications.”

Note: Sample code built upon the framework presented in simple.c is presented
throughout the remainder of this guide, so familiarize yourself with the concepts
presented here before reviewing more advanced subjects.
007-3560-003 229

A: Building a Visual Simulation Application Using libpf
Example A-1 shows the basic framework of an OpenGL Performer application.

Example A-1 Structure of an OpenGL Performer Application

#include <stdlib.h>
#include <Performer/pf.h>
#include <Performer/pfutil.h>
#include <Performer/pfdu.h>

int
main (int argc, char *argv[])
{
 float t = 0.0f;
 pfScene *scene;
 pfNode *root;
 pfPipe *p;
 pfPipeWindow *pw;
 pfChannel *chan;
 pfSphere bsphere;

 if (argc < 2)
 {

pfNotify(PFNFY_FATAL, PFNFY_USAGE,
“Usage: simple file.ext\n”);

exit(1);
 }

/* Initialize Performer */
 pfInit();

 /*
* Select multiprocessing mode based on
* number of processors
*/

 pfMultiprocess(PFMP_DEFAULT);

 /* Load all loader DSO’s before pfConfig() forks */
 pfdInitConverter(argv[1]);

 /*
* Initiate multi-processing mode set by pfMultiprocess
* FORKs for Performer processes, CULL and DRAW, etc.
* happen here.
 */
 pfConfig();
230 007-3560-003

Overview
 /*
* Append to Performer search path, PFPATH, files in
* /usr/share/Performer/data
*/

 pfFilePath(“.:/usr/share/Performer/data”);

 /* Read a single file, of any known type. */
 if ((root = pfdLoadFile(argv[1])) == NULL)
 {
 pfExit();
 exit(-1);
 }

 /* Attach loaded file to a new pfScene. */
 scene = pfNewScene();
 pfAddChild(scene, root);

 /* Create a pfLightSource and attach it to scene. */
 pfAddChild(scene, pfNewLSource());

 /* Configure and open graphics window */
 p = pfGetPipe(0);
 pw = pfNewPWin(p);
 pfPWinType(pw, PFPWIN_TYPE_X);
 pfPWinName(pw, “OpenGL Performer”);
 pfPWinOriginSize(pw, 0, 0, 500, 500);

 /* Open and configure the GL window. */
 pfOpenPWin(pw);

 /* Create and configure a pfChannel. */
 chan = pfNewChan(p);
 pfChanScene(chan, scene);
 pfChanFOV(chan, 45.0f, 0.0f);

 /* determine extent of scene’s geometry */
 pfGetNodeBSphere (root, &bsphere);
 pfChanNearFar(chan, 1.0f, 10.0f * bsphere.radius);

 /* Simulate for twenty seconds. */
 while (t < 20.0f)
 {

pfCoord view;
float s, c;
007-3560-003 231

A: Building a Visual Simulation Application Using libpf
/* Compute new view position. */
t = pfGetTime();
pfSinCos(45.0f*t, &s, &c);
pfSetVec3(view.hpr, 45.0f*t, -10.0f, 0);
pfSetVec3(view.xyz, 2.0f * bsphere.radius * s,

-2.0f * bsphere.radius *c,
 0.5f * bsphere.radius);

pfChanView(chan, view.xyz, view.hpr);

/* Initiate cull/draw for this frame. */
pfFrame();

 }

/* Terminate parallel processes and exit. */
 pfExit();
}

If you want to compile simple.c and try it, use the copy in
/usr/share/Performer/src/pguide/libpf/C (for IRIX and Linux systems) and
%PFROOT%/Src (for Windows systems). File Makefile in that directory provides all
the necessary compilation options. (For more information about OpenGL Performer
compiler options, see the “Compiling and Linking OpenGL Performer Applications”
section of this appendix.) Once you have compiled the code, try executing it with some
of the sample data files in /usr/share/Performer/data (for IRIX and Linux
systems) and %PFROOT%/Data (for Windows systems), such as blimp.flt or
sampler.nff.

The following describes the steps involved in a simple OpenGL Performer application.
Refer to the sample code in Example A-1 as you read these steps.

1. Include the necessary system header files.

#include <stdlib.h>

2. Include the relevant OpenGL Performer header files.

#include <Performer/pf.h>
#include <Performer/pfutil.h>
#include <Performer/pfdu.h>

3. Declare variables for the required elements.

pfScene Scene graph to be rendered on a channel

pfPipe Graphics pipeline to perform the rendering

pfChannel View to be rendered on the designated pipe
232 007-3560-003

Overview
You can configure OpenGL Performer to use multiple scenes, multiple pipes (if
your system has them), and multiple channels per pipe. (See “Using Multiple
Channels” on page 91.)

4. Initialize OpenGL Performer.

pfInit();

This sets up the shared memory arena used for multiprocessing, initializes the
high-resolution clock, and resets OpenGL Performer’s state.

5. Configure OpenGL Performer.

pfConfig();

This configures the number of pipes and starts processes based on the selected
multiprocessing model. The code in Example A-1 uses the defaults: a single pipe
and a multiprocessing model that is tailored to the number of processors on the
machine.

6. Load or create the database.

root = pfdLoadFile(argv[1])

pfdLoadFile() loads a database from the disk using whichever file importer seems
appropriate (based on the three-letter extension at the end of the given filename).
There are other ways to set up scenes, too; for example, you can call a specific
importing routine in place of pfdLoadFile() if you want to load only databases of a
particular format, or you can create geometric objects directly using libpr and
place them in a database hierarchy. See Chapter 17, “Math Routines,” in the OpenGL
Performer Programmer’s Guide for information on constructing pfGeoSets, and
Chapter 6,“Creating Scene Graphs‚" for information on creating a scene graph.

7. Create a new scene for the channel to draw.

scene = pfNewScene();

8. Add the root of the database that you loaded or created in step 6 to the scene.

pfAddChild(scene, root);

9. Initialize a graphics-rendering pipeline with a custom window.

p = pfGetPipe(0);
pw = pfNewPWin(p);
pfPWinType(pw, PFPWIN_TYPE_X);
pfPWinName(pw, “OpenGL Performer”);
pfPWinOriginSize(pw, 0, 0, 500, 500);
/* set up configuration callback OpenPipeWin() */
pfPWinConfigFunc(pw, OpenPipeWin);
007-3560-003 233

A: Building a Visual Simulation Application Using libpf
/* Open and configure the graphics window. */
pfConfigPWin(pw);

This sets up an optional callback to open a graphics library window for custom
initialization, in this case, OpenPipeWin(). In the simple.c example, no window
configuration callback was used.

10. Specify the frame rate and the synchronization method.

pfFrameRate(60);
pfPhase(PFPHASE_LOCK);

Because neither a frame rate nor a synchronization method is specified in
simple.c, the application “free runs” without frame-rate control, which is the
default. See “Frame Rate and Synchronization” on page 238 and Chapter 10,
“Controlling Frame Rate‚" for more information on controlling frame rates.

11. Create a channel on the specified pipe.

chan = pfNewChan(p);

A channel is a viewport into a pipe. Because simple.c doesn’t configure any
screen dimensions for the channel, it renders to the full window of the pipe.

12. Configure the channel: set the viewpoint, field of view (FOV), and near and far
clipping planes (based on the size of the scene).

pfChanScene(chan, scene);
pfChanFOV(chan, 45.0f, 0.0f);
pfGetNodeBSphere (root, &bsphere);
pfChanNearFar(chan, 1.0f, 10.0f * bsphere.radius);

When you pass in zero as a field of view—in this case, the vertical FOV—OpenGL
Performer matches the FOV to the aspect ratio of the channel.

13. Render the scene repeatedly until the specified time has elapsed.

■ Set up the viewpoint for the next frame:

pfChanView(chan, view.xyz, view.hpr);

■ Initiate the next CULL/DRAW cycle to render the frame:

pfFrame();

14. When the time limit is reached, exit OpenGL Performer.

pfExit();
234 007-3560-003

Setting Up the Basic Elements
The remainder of this appendix discusses portions of the outline in detail. You may find
it helpful to continue to refer to simple.c while you read the following sections.

Setting Up the Basic Elements

This section describes how to set up the basic requirements of an OpenGL Performer
libpf application.

Using OpenGL Performer Header Files

The header files for the OpenGL Performer libraries are in the
/usr/include/Performer directory (for IRIX and Linux systems) and
%PFROOT%/Include/Performer (for Windows systems). They include pf.h and
pr.h (header files for libpf and libpr, respectively), and opengl.h and other header
files for use with the other OpenGL Performer libraries.

The header files contain useful macros as well as function declarations, including macros
for transparently casting a variable from one data type to another. (ANSI C requires that
expressions used as function arguments be cast to match function prototypes.) Some
routines therefore accept more than one type of argument, with automatic casting
between usable types. For example, a routine accepting a pfGroup as an argument can
also take a pfSwitch. In the code below, switch is automatically cast to a pfGroup* and
geode is automatically cast to a pfNode* by a macro within pf.h:

pfGeode *geode;
pfSwitch *switch;
pfAddChild(switch, geode);

Initializing and Configuring OpenGL Performer

Before you can set up a pipe, you have to set up any areas of shared memory that you
intend to use, and you have to determine how many processors to use (and in what
configuration).
007-3560-003 235

A: Building a Visual Simulation Application Using libpf
Initializing Shared Memory

OpenGL Performer uses shared memory to share data among the application, the
visibility cull traversal, and the draw traversal, all of which can run in parallel on
different processors. pfInit() sets up the shared memory arena from which libpf objects
are allocated. The shared memory arena uses either swap space or a file in the directory
specified by the environment variable PFTMPDIR. For more information on shared
memory arenas, see Chapter 5, “Frame and Load Control,” in the OpenGL Performer
Programmer’s Guide.

Initializing Processes

pfConfig() starts up multiple processes, which allow visibility culling and drawing to
run in parallel with the application process. The number of processes created depends on
the process model (specified by a call to pfMultiprocess()), the number of processors,
and the number of pipes (one by default; call pfMultipipe() to specify more than one
pipe). The order of the calls is important—pfMultiprocess() and pfMultipipe() are
effective only if called between pfInit() and pfConfig().

The default is a single pipe running with one, two (separate draw process), or three
(separate cull and draw processes) processes, depending on the number of processors on
the machine. When you run the application from the root login account, pfConfig() also
sets nondegradable priorities for the processes to improve the consistency of the
run-time behavior.

For information on controlling multiple pipes, see “Multiple Pipes” on page 95. For
information on multiprocessing, see Chapter 5, Frame and Load Control,” and
Chapter 20, “Programming with C++,” in the OpenGL Performer Programmer’s Guide.

In addition to setting up shared memory, pfInit() initializes a high-resolution clock by
calling pfInitClock(). Depending on the hardware, this may start up a process to service
the clock. The clock process consumes few system resources because it sleeps most of the
time.

Setting Up a Pipe

A pfPipe variable (also called a pipe) represents an OpenGL Performer software graphics
pipeline. You gain access to a pipe using pfGetPipe(), for example,

p = pfGetPipe(0);
236 007-3560-003

Setting Up the Basic Elements
This statement sets p to point to the OpenGL Performer graphics pipeline numbered
zero. The optional function pfStageConfigFunc() function for the PFPROC_DRAW stage
sets up a callback initializes the drawing process for the pfPipe. pfWinConfigFunc() sets
up a callback to do custom window initialization, as shown in Example A-2.

Example A-2 pfStageConfigFunc() Callback

/* Set up pipe config func. */
pfStageConfigFunc(0, PFPROC_DRAW, ConfigPipe);
/* Set up window config func. */
pfPWinConfigFunc(pw, OpenPipeline);
/* Trigger pipe stage config func in draw process. */
pfConfigStage(0, PFPROC_DRAW);
/* Trigger window config func in draw process. */
pfConfigPWin(pw);

The first argument to pfStageConfigFunc() is the pipe number and (-1) will select all
pipes. The next argument is the stage or process in which you select the DRAW. The third
argument is the configuration function.You perform custom window initialization in the
Window configuration function, OpenPipeline(). If there is a custom window
configuration function, it must open the window with pfOpenWin() as shown in
Example A-3.

Example A-3 Sample OpenPipeline() Routine

void OpenPipeline(pfPipe *p)
{
 /* Open the window. */
pfOpenWin();

 /* initialize custom graphics state */
pfCullFace(PFCF_BACK);
}

Whether or not you specify a function with pfConfigPWin(), a custom window (as
opposed to the default full screen window OpenGL Performer will otherwise create and
open for you automatically) is not opened until a call to pfOpenWin() is made.

The call to pfInitGfx() sets up the initial graphics library state for OpenGL Performer and
is called automatically by pfOpenWin(). You can also call this to re-initialize your
window. The graphics library maintains state information for graphics hardware and
software settings. These settings, or modes, determine how graphics are processed and
rendered. Because OpenGL Performer takes over the processing and rendering duties of
the system, the system must be set to a known state before it can reliably proceed.
007-3560-003 237

A: Building a Visual Simulation Application Using libpf
OpenGL Performer maintains its own representation of the global graphics state.
Therefore, changes that you make to the graphics state using graphics library commands
can create inconsistencies. OpenGL Performer provides state management routines that
let you manipulate both the graphics library state and the OpenGL Performer state.
When you want to change graphics states, use these routines rather than their graphics
library counterparts.

Frame Rate and Synchronization

The frame rate is the number of times per second the application intends to draw the
scene. The period for a frame must be an integer multiple of the video vertical retrace
period, which is typically 1/60th of a second. Thus, with a 60 Hz video rate, possible
frame rates are 60 Hz, 30 Hz, 20 Hz, 15 Hz, and so on. simple.c does not specify a frame
rate, so it attempts to free run at the default rate of 60 Hz.

The synchronization mode or phase defines how the system behaves if drawing takes
more than the requested time. Free-running mode (the default) is useful for applications
that do not require a fixed frame rate. pfSync() delays the application until the next
appropriate frame boundary.

See Chapter 10,“Controlling Frame Rate‚" to learn more about frame rates, phase, and
synchronization modes.

Setting Up a Channel

A channel is a rendering viewport into a pipe. A pipe can have many channels within it,
but by default a channel occupies the full window of a pipe. You can tell the channel to
use a portion of the window using pfChanViewport():

pfChanViewport(chan, left, right, bottom, top);

Channels support the standard viewing concepts such as eyepoint, view direction, field
of view, and near and far clipping planes.

For displays using multiple adjacent screens, you can slave channels together to a single
viewpoint. You can also use channels to control scene management functions, such as the
switching of level of detail models based on graphics stress and pixel size.
238 007-3560-003

Setting Up the Basic Elements
See Chapter 5, “Creating a Display with pfChannel‚" to learn more about setting up
channels.

Creating and Loading a Scene Graph

Databases exist in a variety of formats. OpenGL Performer does not define a file format
for databases; instead, it supports extensible run-time scene definitions of sufficient
generality to support many database formats. Source code for several file importers is
included with OpenGL Performer; the provided importers are described in Chapter 7,
“Importing Databases”, in the OpenGL Performer Programmer’s Guide.

Creating a Database

You can create a database with any modeler, or write your own modeler using libpr
routines. If you use a modeler that has its own database format, you can develop a file
importer for it by modifying one of the sample importers. See Chapter 7, “Importing
Databases”, in the OpenGL Performer Programmer’s Guide for more information about
import routines.

If you write your own modeler using libpr routines, you do not have to convert the
data structures for libpf to be able to use them. In this case, you create a database by
using a series of calls to construct geometry in pfGeoSets, by defining state and texture
definitions in pfGeoStates, and by constructing a scene graph of pfNodes.

Setting the Search Path for Database Files

Database files are often scattered about a file system, making file-loading operations
tedious. OpenGL Performer provides a general mechanism for defining multiple search
paths.

When OpenGL Performer attempts to open a file, it first tries the name as specified. If that
fails, it begins to search for the file using a search path, which specifies where to look for
data.

You can specify a search path using pfFilePath(path), pfFilePathv(path0, path1, ..., pathn,
NULL), or with the environment variable PFPATH. You can specify any number of
directories using pfFilePath() and a maximum of 64 using pfFilePathv(). Colons
separate path names on IRIX and Linux and semicolons on Windows. Since
pfFilePathv() allows you to specify path names delimited by commas, it provides much
007-3560-003 239

A: Building a Visual Simulation Application Using libpf
more economy in coding compared to the use of pfFilePath(), where you must employ
conditional code to accomodate cross-platform use. Directories are searched in the order
given, beginning with those specified in PFPATH, followed by those specified by
pfFilePath() or pfFilePathv().

For example, the following function call tells OpenGL Performer to search for data first
in the current directory, then in the data directory within the current directory, and then
in data directories one and two levels above the current directory, and then in the
installed OpenGL Performer data directory:

pfFilePath(".",
 "./data",
 "../data",
 "../../data",
 "/usr/share/Performer/data",
 NULL);

If you call pfFindFile() with the name of the file you want to locate, the complete
pathname of the file is returned if the result of the search is successful.

Simulation Loop

After the pipes and channels are configured and the scene is loaded, the main simulation
loop begins and manages scene updates, viewpoint updates, scene intersection inquiries,
and image generation.

The loop has two principal control calls: pfSync() and pfFrame().

The order of operations is this:

1. Call pfSync() to put the process to sleep until the next frame boundary. This step is
typically used only when viewpoint information is being updated from a streaming
input device, such as a head-tracker.

2. Perform latency-critical operations such as setting the viewpoint or reading
positional input/output devices.

3. Call pfFrame() to initiate the next cull traversal.

4. Perform any time-consuming calculations that are required.

5. Return to step 1.
240 007-3560-003

Performance
Time-consuming operations such as intersection inquiries and simulator dynamics
computations that are performed in the main simulation loop should go after pfFrame(),
but before pfSync(). If these calculations are done after pfSync() but before pfFrame(),
the calculations can delay the start of the cull process, and thereby reduce the time
available for the cull traversal on multiprocessor systems.

Performance

This appendix does not specifically discuss performance tuning (see
Chapter 15,“Optimizing Performance‚"), but every OpenGL Performer-based
application should be written with performance in mind. You cannot easily build speed
into an application as a last-minute addendum. During the design of your program
(rather than after debugging it), you need to consider speed as you structure your
database, as you decide what needs to happen in your main loop, and so on.

Compiling and Linking OpenGL Performer Applications

This section describes how to compile and link OpenGL Performer applications.

Required Libraries

The following libraries are required when linking an executable on the IRIX and Linux
operating systems:

libpf OpenGL Performer visual simulation development library.

libpr OpenGL Performer high-performance rendering library—exists in
OpenGL and is contained within the corresponding libpf.

libpfdu OpenGL Performer database library— does file handling, and includes
importers for a variety of data formats.

libpfutil OpenGL Performer utilities library— includes the window-related
functions.

libimage Image library—required by libpr.

libGLU OpenGL utilities library—required by libpr with OpenGL.

libGL OpenGL graphics library—is required by libpf and libpr.
007-3560-003 241

A: Building a Visual Simulation Application Using libpf
libXsgivc X extensions—for video control.

libXext X extensions—needed by Silicon Graphics X extensions libraries.

libGLw OpenGL widget library, for using OpenGL with IRIS IM.

libXm IRIS IM library; used for “Silicon Graphics look” windows.

libXt X toolkit intrinsics library—used by IRIS IM for Motif.

libXmu X utility library required by libpr.

libX11 X Window System library—required by libgl and libpr.

libm Math library—required by libpr.

libfpe Floating point exception library—required by libpr.

libC C++ library—required by libpf.

The corresponding line for an OpenGL application would be the following:

-lpfdu -lpfui -lpfutil -lpf -limage -lGLU -lGL -lXext -lXsgivc -lXmu
-lX11 -lm -lfpe -lC

The following libraries are required when linking an executable on the Windows
operating systems:

libpf.lib

libpr.lib

libpfdu-util.lib

glu32.lib

opengl32.lib

gdi32.lib

user32.lib

msvcrt.lib Multithreaded Optimized C library

The corresponding line for an OpenGL Performer application would be the following:

libpfdu-util.lib libpfui.lib libpf.lib glu32.lib opengl32.lib
gdi32.lib user32.lib /NODEFAULTLIB:LIBC /NODEFAULTLIB:MSVCRT
/NODEFAULTLIB:MSVCPRT msvcprt.lib msvcrt.lib
242 007-3560-003

Compiling and Linking OpenGL Performer Applications
Dynamic Shared Objects (DSOs)

The standard libraries for OpenGL Performer are distributed as dynamic shared objects
(DSOs). Compared with static libraries, DSOs produce smaller applications and allow
sharing between multiple executables that are running simultaneously. However, if you
build an application using a DSO, that DSO must be present on the target system at run
time. The DSOs for OpenGL Performer 3.0 are in the performer_eoe subsystem on the
OpenGL Performer CD-ROM. OpenGL Performer 3.0 on IRIX also includes DSOs from
all previous versions in compatibility subsystems, so that old OpenGL Performer
programs will still run on a system with OpenGL Performer 3.0 installed.

Note: On Windows systems, a dynamic link library (DLL) is the functional equivalent of
a DSO.

Debug and Static Libraries

OpenGL Performer is also shipped with libraries in different forms that might be useful
to developers. The debug versions are primarily intended for bug reporting, because
they contain more symbol table information than the optimized versions. The static
versions are for use when distributing an application to customers who may not have
performer_eoe installed. If you want to ensure that your customers will have all the
libraries they need, you should use static linking.

Debug DSO, static optimized and static debug versions of the libraries can be found in
optional subsystems and are installed under the directories
/usr/lib/Performer/Debug,/usr/lib/Performer/Static, and
/usr/lib/Performer/StaticDebug, respectively. The “-L” option to cc, CC or ld
can be used to link with the static libraries. Use of the standard DSO or debug DSO is
determined at run time through the environment variable LD_LIBRARY_PATH.

Note: See the OpenGL Performer Programmer’s Guide for information concerning file
readers, which are normally accessed as DSOs at run time even when the main OpenGL
Performer libraries have been statically linked. Also, when linking statically, you will
have to be sure that you have all required libraries on your link line.

Static libraries are not available for Windows systems.
007-3560-003 243

A: Building a Visual Simulation Application Using libpf
Using Compiler Flags

Note: This section is not applicable to Windows systems.

Much of the sample code in this guide, many of the sample applications, and most of the
database-importing code are written in ANSI C. They should be compiled using the
–ansi flag to the C compiler.

Using –cckr instead of –ansi affects OpenGL Performer in the following ways:

1. Because –cckr does not support floating point constants denoted with the f suffix,
all constants defined with #define are double-precision. The promotion of floating
point expressions to double-precision can decrease performance for some
numerically intensive applications.

2. Because –cckr does not allow a macro to have the same name as a routine, the
type-casting macros in pf.h are not available. Thus, when you pass a pointer to a
derived type such as pfGroup or pfGeode to a routine that takes a generic type such
as a pfNode, that argument must be cast to a pfNode explicitly, as shown in the
following example:

pfGeode *geode;
pfSwitch *switch;
pfAddChild((pfGroup *)switch, (pfNode *)geode);

MIPS-3, MIPS-4, and 64-Bit Compilation

If you are running version 6.2 or later of IRIX, you can compile and execute OpenGL
Performer applications in 64-bit mode.

To do this, you need to have installed the optional 64-bit versions of the OpenGL
Performer libraries. All that is required then is to use the “-64” switch to the compiler.
This selects the compilation mode and causes libraries to be searched for in /usr/lib64
instead of /usr/lib.

The 64-bit version of OpenGL Performer is itself created using -mips3, so that you can
compile an application using either the MIPS-3 or MIPS-4 instruction set. MIPS-3
executables can run on R4400-based machines such as Onyx and Indigo2 as well as on
R8000-based machines such as Power Onyx and PowerIndigo2. MIPS-4 executables can
only be run on R8000-based (and subsequent) machines.
244 007-3560-003

Compiling and Linking OpenGL Performer Applications
Under IRIX 6.2 and later, if you want to use the extended MIPS-3 or MIPS-4 instruction
set in a 32-bit application, install the optional “new 32-bit” (N32) version of OpenGL
Performer and use the “-n32” option to the compiler. The old 32-bit, new 32-bit and 64-bit
versions of OpenGL Performer can all be installed at the same time as each is installed in
a separate directory, /usr/lib,/usr/lib32 and /usr/lib64, respectively.

The sample Makefiles in the source code distribution recognize the environment variable
PFSTYLE and values of 32 for o32, N32 for n32, and 64 for 64-bit compilation.

Using OpenGL Performer From C++

OpenGL Performer provides C++ bindings for all functions as well as C bindings. Most
of this guide does not include code examples in C++; however, all sample programs are
provided in the OpenGL Performer distribution in both C and C++ versions. The
structure of a C++ program is largely identical to that of a C program; for examples of
OpenGL Performer programs using the C++ API, see the following directories for
examples of C and C++ programs:

/usr/share/Performer/src/pguide
/usr/share/Performer/src/apps
(IRIX and Linux)

%PFROOT%/Src/pguide
%PFROOT%/Src/apps
(Windows)
007-3560-003 245

Appendix B

B. Building a Visual Simulation Application Using
libpfv

In contrast to Appendix A, “Building a Visual Simulation Application Using libpf”, this
appendix describes how to use the library libpfv to build an application using a
graphical viewer.

This appendix has the following sections:

• “Overview” on page 247

• “The Simplest pfvViewer Program” on page 248

• “Adding Interaction to a pfvViewer Program” on page 249

• “Reading XML Configuration Files” on page 250

• “Module Scoping, Multiple Worlds and Multiple Views” on page 254

• “Extending a pfvViewer—Writing Custom Modules” on page 257

• “Extending a pfvViewer—Module Entry Points” on page 259

• “Picking, Selection, and Interaction” on page 260

• “More Sample Programs, Configuration Files, and Source Code” on page 264

Overview

OpenGL Performer includes libpfv, a C++ library for easy construction of modular,
interactive OpenGL Performer applications.

The library libpfv supports the following features:

• Reading and writing XML files

• Specifying complex display configuration (pipes, windows, and channels) from a
file or through API calls
007-3560-003 247

B: Building a Visual Simulation Application Using libpfv
• Tracking mouse and keyboard input

• Setting up user interaction with 3D scene elements

• Managing multiple scene graphs (worlds)

• Managing multiple camera positions (views)

• Extending program functionality using program modules

The principal class inlibpfv is pfvViewer. It allows complex multiworld and multiview
applications to be implemented in a modular fashion, allowing individual features to be
encapsulated into configurable and re-usable modules.

In addition to libpfv, OpenGL Performer includes ready-to-use modules that provide
the following features:

• Loading geometry into a pfvViewer world

• Picking geometry under the mouse pointer

• Manipulating geometry (rotating, translating, scaling, deleting)

• Navigating through a world using mouse and keyboard controls

• Controlling the render style of models

• Setting up colorful earth and sky backgrounds

• Displaying 2D images in overlay

• Saving snapshots of the rendered images

• Smoothly transitioning from one world to another

• Collecting and displaying scene graph statistics

The Simplest pfvViewer Program

The pfvViewer class starts with a very simple programming interface. It maintains a very
simple programming interface even when accessing high-level features. As shown in the
following program, the simplest program using pfvViewer loads a model and places the
camera at a comfortable viewing distance:

#include <Performer/pfdu.h>
#include <Performer/pf/pfLightSource.h>
#include <Performer/pfv/pfvViewer.h>
248 007-3560-003

Adding Interaction to a pfvViewer Program
main (int argc, char *argv[])
{
 // Initialize Performer
 pfInit();

 // Create a new pfvViewer
 pfvViewer* viewer = new pfvViewer;

 // Initialize loading of a model file.
 pfdInitConverter(argv[1]);

 // Configure/Initialize pfvViewer
 viewer->config();

 // Add a light source to the world.
 viewer->addNode(new pfLightSource);

 // Add a model to the world
 viewer->addNode(pfdLoadFile(argv[1]));

 // Start viewing
 viewer->run();
}

Adding Interaction to a pfvViewer Program

To add interaction, load the following two standard modules into the viewer:

• pfvmNavigator module

Allows the user to move around the 3D scene through mouse and keyboard input.

• pfvmPicker module

Allows the user to select, manipulate, and delete portions of the 3D scene through
mouse and keyboard input.

The following program shows the addition of these modules to the simple program in
the preceding subsection:

#include <Performer/pfdu.h>
#include <Performer/pf/pfLightSource.h>
#include <Performer/pfv/pfvViewer.h>
007-3560-003 249

B: Building a Visual Simulation Application Using libpfv
main (int argc, char *argv[])
{
 pfvModule* module;

 // Initialize Performer
 pfInit();

 // Create a new pfvViewer
 pfvViewer* viewer = new pfvViewer;

 // Add navigation module
 module = pfvModule::load("pfvmNavigator");
 viewer->addModule(module);

 // Add mouse-picking module
 module = pfvModule::load("pfvmPicker");
 viewer->addModule(module);

 // Initialize loading of model files.
 pfdInitConverter(argv[1]);

 // Configure/Initialize pfvViewer
 viewer->config();

 // Add a light source to the world.
 viewer->addNode(new pfLightSource);

 // Add a model to the world
 viewer->addNode(pfdLoadFile(argv[1]));

 // Start interaction
 viewer->run();
}

Reading XML Configuration Files

A pfvViewer can read most of its parameters from an XML configuration file. A
pfvViewer configuration file, denoted by the .pfv extension, can contain any of the
following items:

• Display configuration (pipes, windows, and channels)
250 007-3560-003

Reading XML Configuration Files
• Specification of multiple worlds

• Specification of multiple views (camera positions)

• Extension modules to be loaded into the pfvViewer and their specific configuration
parameters

The simplest pfvViewer program using an XML configuration file is pfview, which is
provided as a precompiled executable with OpenGL Performer.

The source code for the pfview program looks like the following:

#include <Performer/pfv/pfvViewer.h>

int
main (int argc, char *argv[])
{
 // Initialize Performer
 pfInit();

 // Create a new pfvViewer and read XML configuration file argv[1]
 pfvViewer* viewer = new pfvViewer(argv[1]);

 // Configure/Initialize pfvViewer.
 viewer->config();

 // Start interaction
 viewer->run();
}

 A minimal XML configuration file suitable for pfview has the following structure:

<?xml version="1.0" ?>
<viewer>
 <module>
 <!-- Loader module: loads models into world -->
 <class>pfvmLoader</class>
 <data>
 <Model>
 <FileName>esprit.flt</FileName>
 </Model>
 </data>
 </module>

 <!-- Add a trackball navigation module -->
 <module>
007-3560-003 251

B: Building a Visual Simulation Application Using libpfv
 <class>pfvmTrackball</class>
 </module>

 <!-- Add a picking module -->
 <module>
 <class>pfvmPicker</class>
 </module>

</viewer>

You can use a more complex XML configuration file, one including a display tag, to set
up complex display configurations. The following file is an example that sets up a
panoramic view over three channels, each rendered in a separate graphics pipe:

<?xml version="1.0" ?>
<viewer>
 <!-- Display specifications -->
 <display>
 <!-- Configure middle pipe -->
 <pipe>
 <!-- direct middle pipe to screen 0 -->
 <screen>0</screen>
 <!-- Configure a single pipe-window on middle pipe -->
 <pwin>
 <!-- set pipe-window to fullscreen, no border -->
 <fullscreen>1</fullscreen>
 <border>0</border>
 <!-- Configure a single channel on pipe-window -->
 <chan>
 <viewrange>0.32,0.68,0.0,1.0</viewrange>
 <hprOffset>0.0,0.0,0.0</hprOffset>
 <fov>59.0,46.0</fov>
 </chan>
 </pwin>
 </pipe>

 <!-- Configure right pipe -->
 <pipe>
 <screen>1</screen>
 <pwin>
 <!-- set pipe-window to fullscreen, no border -->
 <fullscreen>1</fullscreen>
 <border>0</border>
 <!-- Configure a single channel on pipe-window -->
 <chan>
252 007-3560-003

Reading XML Configuration Files
 <viewrange>0.64,1.0,0.0,1.0</viewrange>
 <hprOffset>-53.333,0.0,0.0</hprOffset>
 <fov>59.0,46.0</fov>
 </chan>
 </pwin>
 </pipe>

 <!-- Configure left pipe -->
 <pipe>
 <screen>2</screen>
 <pwin>
 <!-- set pipe-window to fullscreen, no border -->
 <fullscreen>1</fullscreen>
 <border>0</border>
 <!-- Configure a single channel on pipe-window -->
 <chan>
 <viewrange>0.0,0.36,0.0,1.0</viewrange>
 <hprOffset>53.333,0.0,0.0</hprOffset>
 <fov>59.0,46.0</fov>
 </chan>
 </pwin>
 </pipe>
 </display>

 <module>
 <!-- Loader module: loads models into world -->
 <class>pfvmLoader</class>
 <data>
 <Model>
 <FileName>esprit.flt</FileName>
 </Model>
 </data>
 </module>

 <!-- Add a trackball navigation module -->
 <module>
 <class>pfvmTrackball</class>
 </module>

 <!-- Add a picking module -->
 <module>
 <class>pfvmPicker</class>
 </module>

</viewer>
007-3560-003 253

B: Building a Visual Simulation Application Using libpfv
Module Scoping, Multiple Worlds and Multiple Views

In more complex pfvViewer applications, you can create multiple views and/or multiple
worlds. Each view will always render (view) one of the specified worlds. Each world
may be viewed by zero, one, or more views at any point during the life of the application.

Note: You can direct views from one world to another during the course of an
application.

The following simple XML configuration file defines two worlds, each being rendered
into a separate view:

<?xml version="1.0" ?>
<viewer>

 <!-- Specify two worlds, and assign each a unique name -->
 <world>
 <name>world0</name>
 </world>

 <world>
 <name>world1</name>
 </world>

 <!-- Specify two views, assign each a unique name,
 and direct to the corresponding world -->
 <view>
 <name>view0</name>
 <world>world0</world>
 </view>

 <view>
 <name>view1</name>
 <world>world1</world>
 </view>

 <!-- Specify two instances of the pfvmLoader module.
 By scoping these modules to different worlds,
 each loader module will add its geometry to the
 appropriate scene graph -->

 <module>
254 007-3560-003

Module Scoping, Multiple Worlds and Multiple Views
 <class>myLoader</class>
 <scope>world,world0</scope>
 <data>
 <Model>
 <FileName>esprit.flt</FileName>
 </Model>
 </data>
 </module>

 <module>
 <class>myLoader</class>
 <scope>world,world1</scope>
 <data>
 <Model>
 <FileName>truck.pfb</FileName>
 </Model>
 </data>
 </module>

 <!-- Specify two instances of the pfvmNavigator module.
 By scoping these modules to different views, each module
 will take care of navigation within the appropriate view -->

 <module>
 <class>myNavigator</class>
 <scope>view,view0</scope>
 </module>

 <module>
 <class>myNavigator</class>
 <scope>view,view1</scope>
 </module>

</viewer>
007-3560-003 255

B: Building a Visual Simulation Application Using libpfv
You can achieve the same result through API calls, as shown in the following program:

#include <Performer/pfdu.h>
#include <Performer/pfv/pfvViewer.h>

main (int argc, char *argv[])
{
 pfvModule* module;

 // Initialize Performer.
 pfInit();

 // Initialize loading of model files.
 pfdInitConverter("flt");
 pfdInitConverter("pfb");

 // Create a new pfvViewer.
 pfvViewer* viewer = new pfvViewer;

 //Create first world.
 pfvWorld* w0 = viewer->createWorld();

 //Create second world.
 pfvWorld* w1 = viewer->createWorld();

 //Create first view. v0 becomes vieewer’s current view.
 pfvView* v0 = (pfvView*)(viewer->createView());

 // Direct first view to first world.
 v0->setTargetWorld(w0);

 // Add navigation module to viewer’s current view (v0).
 module = pfvModule::load("pfvmNavigator");
 viewer->addModule(module, PFV_SCOPE_VIEW);

 //Create second view. v1 becomes viewer’s current view.
 pfvView* v1 = (pfvView*)(viewer->createView());

 // Direct second view to second world.
 v1->setTargetWorld(w1);

 // Add navigation module to viewer’s current view (v1).
 module = pfvModule::load("pfvmNavigator");
 viewer->addModule(module, PFV_SCOPE_VIEW);
256 007-3560-003

Extending a pfvViewer—Writing Custom Modules
 // Configure/Initialize pfvViewer
 viewer->config();

 // Add car model to first world
 w0->addNode(pfdLoadFile("esprit.flt"));

 // Add truck model to first world
 w1->addNode(pfdLoadFile("truck.pfb"));

 // Start viewing
 viewer->run();
}

Extending a pfvViewer—Writing Custom Modules

A pfvViewer accepts user-written modules and incorporates their functions into its
behavior. In order to extend a pfvViewer, you can write a new module. The following
very simple module informs the pfvViewer to invoke the handleEvent() method and to
print a message when the F1 key is pressed:

class myModule : public pfvModule
{
public:

 myModule::myModule()
 {
 char keys[64];

 // Declare what keyboard inputs this module is interested in.
 sprintf(keys,"%c",PFVKEY_F1);
 bindKeys(keys);
 }

 myModule::~myModule() {;}

 // Keyboard event handler. pfvViewer calls this method every
 // time the user hits the F1 key.
 int handleEvent(int evType, char key)
 {
 printf("myModule::handleEvent called for key %s\n",
 pfvInputMngr::getKeyName(key));
 return 0;
007-3560-003 257

B: Building a Visual Simulation Application Using libpfv
 }
};

In order to add this module to a pfvViewer program, add the following line:

viewer->addModule(new myModule);

Note that if this module is scoped to a view, pfvViewer will only inform the module of
F1 key presses within channels belonging to that specific view. Similarly, if this module
is scoped to a specific world, pfvViewer would inform the module of F1 key presses over
any channel belonging to any view currently viewing such world.

You can scope this module to a world by making the following call:

pfvWorld* w;
viewer->addModule(new myModule, PFV_SCOPE_WORLD);

You can scope this module to a view by making the following call:

pfvView* v;
viewer->addModule(new myModule, PFV_SCOPE_VIEW);

The following example illustrates how to implement a basic custom module that controls
the camera position (for the first view in pfvViewer’s list) based on the mouse position:

class myModule : public pfvModule
{
public:
 myModule(){
 bindCallback(PFV_CB_FRAME);
 }

 ~myModule(){;}

 void frame() {
 // Only set eye for view0 if mouse is over view0
 if(pfvInputMngr::getFocusViewIndex()!=0)
 return;

 pfVec3 xyz,hpr;
 // Get current eye position (we don't want to change xyz)
 viewer->getView(0)->getEye(xyz,hpr);

 float mx, my;
258 007-3560-003

Extending a pfvViewer—Module Entry Points
 // Get current mouse position in view-normalized values
 // (0.0 to 1.0)
 pfvInputMngr::getViewNormXY(&mx, &my);

 // Compute new values for Heading and Pitch based on mouse
 // position
 hpr[0]= (mx-0.5f)*180.0f;
 hpr[1]= (my-0.5f)*-90.0f;

 // Set new eye position for view0
 viewer->getView(0)->setEye(xyz,hpr);
 }
};

 Extending a pfvViewer—Module Entry Points

A module can gain program control at the various stages of rendering. The following are
some of these stages:

• Event-Driven methods

handleEvent()

Called in response to a key-press event. A pfvViewer invokes this method only if
the pressed key was bound by this module and if the event was generated over a
view relevant to the module.

• Configuration methods (called once in the life of the application)

– preConfig()

Called before pfvViewer calls pfConfig().

– postConfig()

Called after the pfvViewer calls pfConfig().

• Run-Time methods (called every frame):

– sync()

Called each frame immediately after pfvViewer calls pfSync().

– frame()

Called each frame after pfvViewer calls pfFrame().
007-3560-003 259

B: Building a Visual Simulation Application Using libpfv
– preCull()

Called in all CULL processes before calling pfCull().

– postCull()

Called in all CULL processes after calling pfCull().

– preDraw()

Called in all DRAW processes before calling pfDraw().

– postDraw()

Called in all DRAW processes after calling pfDraw().

– overlay()

Called in all DRAW processes after postDraw() callbacks.

• Enter and exit methods (called for scoped modules only)

– enterWorld()

A pfvViewer invokes this method on view-scoped modules to inform them that
their view is about to start viewing a new world.

– exitWorld()

A pfvViewer invokes this method on view-scoped modules to inform them that
their view is about to stop viewing current world.

– enterView()

A pfvViewer invokes this method on world-scoped modules to inform them
that a new view is about to start viewing their world.

– exitView()

A pfvViewer invokes this method on world-scoped modules to inform them
that a view is about to stop viewing their world.

Picking, Selection, and Interaction

The library libpfv also provides a framework for specifying custom interaction
behavior through the pfvPicker, pfvInteractor, and pfvSelector classes.
260 007-3560-003

Picking, Selection, and Interaction
A single pfvPicker instance will be able to coordinate multiple interaction classes derived
from pfvInteractor and/or pfvSelector.

The following example illustrates how to derive entities from the pfvInteractor class in
order to be able to highlight the geometry under the mouse cursor:

#include <Performer/pfv/pfvViewer.h>
#include <Performer/pfv/pfvInputMngrPicker.h>
#include <Performer/pr/pfHighlight.h>
#include <Performer/pf/pfLightSource.h>
#include <Performer/pfutil.h>
#include <Performer/pfdu.h>

class myInteractor : public pfvInteractor
{
public:

 myInteractor(){
 // create and configure a pfHighlight instance
 hl = new pfHighlight;
 hl->setMode(PFHL_LINES);
 hl->setColor(PFHL_FGCOLOR, 1.0f, 1.0f, 0.0f);
 }
 ~myInteractor(){ pfDelete(hl); }

 // startHlite will be called by picker once whenever mouse cursor
 // is moved over some geometry after being pointed away from all
 // geometry.
 int startHlite(pfvPicker*p, int prmsn){
 // Obtain a pointer to the pfNode that was picked by picker
 p->getPickResults(&node);
 // Traverse picked node and highlight it
 pfuTravNodeHlight(node, hl);
 // return 1 indicating we accept highlighted state
 return 1;
 }

 // updateHlite will be called by picker on each frame as long as
 // mouse cursor remains over some geometry.
 int updateHlite(pfvPicker* p,int ev,int prmsn, pfvPickerRequest*r
){
 pfNode* curnode = node;
 // Obtain a pointer to the pfNode that was picked by picker
 p->getPickResults(&node);
007-3560-003 261

B: Building a Visual Simulation Application Using libpfv
 // if node picked by picker is not the node that is
 // currently highlighted
 if(node!=curnode)
 {
 // De-highlight previously highlighted node
 pfuTravNodeHlight(node, hl);
 // Traverse picked node and highlight it
 pfuTravNodeHlight(curnode, NULL);
 }
 return 1;
 }

// endHlite will be called by picker once whenever mouse cursor is
 // moved away from all geometry..
 void endHlite(pfvPicker* p){
 // De-highlight previously highlighted node
 pfuTravNodeHlight(node, NULL);
 }

private:

 pfHighlight* hl;
 pfNode *node;
};

class myModule : public pfvModule
{
public:

 myModule(){
 // This module will use two callbacks (entry-points):
 bindCallback(PFV_CB_POSTCONFIG);
 bindCallback(PFV_CB_FRAME);
 }

 ~myModule(){;}

 // postConfig is called once by pfvViewer, after
 // calling pfConfig().
 void postConfig(){
 // Create a pfvInputMngrPicker instance
 picker = new pfvInputMngrPicker;
 // Set up picker so it will automatically isect scene and
 // allow interactors to highlight
262 007-3560-003

Picking, Selection, and Interaction
 picker->setState(PFPICKER_ALLOW_HLITE, NULL, NULL);
 // Create an instance of our custom interactor
 ia = new myInteractor;
 // set up a pointer to our interactor on scene's root-node
 ia->nodeSetup(viewer->getWorld(0)->getScene(), picker);
 }

 // on every frame, call picker->update() from APP process.
 void frame() {
 picker->update();
 }

private:
 pfvInputMngrPicker* picker;
 myInteractor* ia;
};

int
main (int argc, char *argv[])
{
 pfInit();

 pfvViewer* viewer = new pfvViewer();

 pfFilePath(".:/usr/share/Performer/data");

 pfdInitConverter("esprit.flt");

 viewer->addModule(new myModule);
 viewer->addModule(pfvModule::load("pfvmTrackball"));

 viewer->config();

 viewer->addNode(new pfLightSource);
 viewer->addNode(pfdLoadFile("esprit.flt"));

 viewer->run();
}

007-3560-003 263

B: Building a Visual Simulation Application Using libpfv
More Sample Programs, Configuration Files, and Source Code

OpenGL Performer provides many libpfv sample programs, configuration files, and
source code for modules in the following directories:

• /usr/share/Performer/src/pguide/libpfv/picker (IRIX and Linux)
%PFROOT%/Src/pguide/libpfv/picker (Microsoft Windows)

The samples in this directory demonstrate the use of pfvPicker and derived classes
as well as how to extend the pfvInteractor and pfvSelector classes to implement
your custom interaction behaviors.

• /usr/share/Performer/src/pguide/libpfv/viewer (IRIX and Linux)
%PFROOT%/Src/pguide/libpfv/viewer (Microsoft Windows)

The samples in this directory demonstrate how to do the following:

– Load models into pfvViewer applications.

– Load standard or custom modules.

– Create pfvViewers with multiple camera positions (views).

– Create pfvViewers with multiple independent scene graphs (worlds).

– Create complex multichannel display configurations.

– Load complex display configurations from an XML file.

– Write custom modules.

– Compile modules into re-usable DSOs.

• /usr/share/Performer/src/pguide/libpfv/viewer/modules
(IRIX and Linux)
%PFROOT%/Src/pguide/libpfv/viewer/modules (Microsoft Windows)

This directory contains source code for the following modules:

– pfvmDrawStyle

– pfvmEarthSky

– pfvmLoader

– pfvmLogo

– pfvmNavigator

– pfvmPicker
264 007-3560-003

More Sample Programs, Configuration Files, and Source Code
– pfvmSnapshot

– pfvmStats

– pfvmTrackball

– pfvmWorldSwitcher

• /usr/share/Performer/config (IRIX and Linux)
%PFROOT%/Config (Microsoft Windows)

This directory contains examples of pfvViewer configuration files, denoted by the
.pfv filename extension.
007-3560-003 265

Appendix C

C. Image Gallery

This appendix contains views of some of the models that come with OpenGL Performer.
The first nine images in this chapter were created using the Lightscape Visualization
System, available from Lightscape Technologies, Inc., in San Jose, California. For
information on Lightscape software, call 408-246-1155.

Figure C-1 Simulated View of an Atrium
007-3560-003 267

C: Image Gallery
The image in Figure C-1 was created by A.J. Diamond, Donald Schmitt and Company,
Toronto. For information, call 416-862-8800. The database that the image illustrates is part
of the OpenGL Performer software distribution.

Figure C-2 Another Simulated View of the Atrium

The image in Figure C-2 was also created by A.J. Diamond, Donald Schmitt and
Company, from the same database.
268 007-3560-002

Figure C-3 Simulated View of a Castle

The image in Figure C-3 was created by Advanced Graphics Applications, Toronto. For
more information, call 905-279-3838. The database that the image illustrates is part of the
Friends of Performer software distribution.
007-3560-002 269

C: Image Gallery
Figure C-4 Simulated Hallway View

The image in Figure C-4 was created by A.J. Diamond, Donald Schmitt and Company.
270 007-3560-002

Figure C-5 Simulated Hotel Lobby

The image in Figure C-5 was created by Design Vision Inc., Toronto. For more
information, call 416-585-2020.
007-3560-002 271

C: Image Gallery
Figure C-6 Simulated Waiting Room

The image in Figure C-6 was created by Digital Architecture, Isao Nagaoka, and Joe
Henke, New York. For information, call 212-587-4148.
272 007-3560-002

Figure C-7 Simulated Conference Room

The image in Figure C-7 was created by Advanced Graphics Applications.
007-3560-002 273

C: Image Gallery
Figure C-8 Parliament Stairway

The image in Figure C-8 was created by A.J. Diamond, Donald Schmitt and Company.
274 007-3560-002

Figure C-9 Unity Temple Interior

The image in Figure C-9 was created by Lightscape Technologies, Inc. The database that
the image illustrates is a model of the Unity Church and community house project
designed by Frank Lloyd Wright in 1906. This database is part of the OpenGL Performer
software distribution.
007-3560-002 275

C: Image Gallery
Figure C-10 Yosemite

The image in Figure C-10 was created by Delphi International with Yosemite image data
courtesy of the National Park Service. This image used ClipTexture to drape 0.5m image
data onto an Active Surface Definition terrain with 5m elevation data. Delphi
International is a global provider of high-end data visualization software and services.
Image copyright of Delphi International.
276 007-3560-002

Figure C-11 DI-Guy

The image in Figure C-11 was created with DI-Guy, realistic humans for virtual
environments, produced by Boston Dynamics Inc., using run-time morphing for
smoothly animated and interactive figures. Image copyright of Boston Dynamics Inc.
007-3560-002 277

C: Image Gallery
Figure C-12 Palace

The image in Figure C-12 is a screen snapshot of a 60Hz fly through of an archeological
reconstruction of the Palace from Chosun Dinasty in Seoul, Korea. de Pinxi uses
Performer for its interactive experiences. The model was created from ancient maps by
de Pinxi for LG, Korea. Image copyright of de Pinxi.
278 007-3560-002

Figure C-13 Seattle-Tacoma International Airport

IVEX provides real-time visual systems for commercial and military flight simulation.
Superior integrated image generators, database scenarios, and complete system
integration services use clipmapping, ASD, and calligraphic lights. The image in
Figure C-13 is provided courtesy of IVEX.
007-3560-002 279

C: Image Gallery
Figure C-14 Hasparen

Thomson Training & Simulation is the leading simulator manufacturer outside of North
America. The image in Figure C-14 is provided courtesy of Thomson Training &
Simulation.
280 007-3560-002

Figure C-15 Clouds

Southwest Research Institute received an R&D 100 award for development of the
patented Weather Environment Simulation Technology (WEST) process. WEST enables
volumetric rendering of real-world weather conditions through the use of dynamically
shaped billboards. The process assures real-time performance by prioritizing weather
elements in the field of view. The image in Figure C-15 is a copyright of SWRI.
007-3560-002 281

C: Image Gallery
Figure C-16 Ocean and Marine Effects Simulation

Vega Marine is OpenGL Performer-based visual simulation software for the
development of maritime applications. This module, one of many within the Vega
Development system, generates a real-time dynamic ocean modeled as a textured
surface with wave heights and periods corresponding to sea states. Vega Marine
provides special effects essential to realistic maritime simulation. These effects include
wakes, wind effects on water, constant tension and constant length lines, moored buoys,
depth (bathymetry) effects, foam, flotsam, surf, horizon glow, and glare from the sun.
The image in Figure C-16 is a copyright of Paradigm Simulation Inc.
282 007-3560-002

Figure C-17 Night Image

The image in Figure C-17 shows an aircraft 60 Hz visual system with advanced visual
effects, including runway aeronautical model lighting. Landing lobes implementation
affects terrain following and cultural features illumination. The simulation uses fully
geospecific real-time database paging and advanced weather model. The image is
provided courtesy of Construcciones Aeronauticas S.A., Madrid, Spain.
007-3560-002 283

Glossary

arena

A portion of memory shared by OpenGL Performer processes.

billboard

A slice of a geometry that rotates with the viewer so that the entire geometry appears
rendered, even though only a slice of it has been rendered.

channel

A view of objects in a scene, based on the location and orientation of the camera in the
scene viewing frustum.

cull

Eliminates all geometries out of view from rendering.

clip texture

Virtualizes MIPmapped textures using hardware and software support, so that only the
texels in the region close to the viewer (known as the clipped region) need to be loaded
in texture memory. (Also known as ClipMap.)

dynamic shared object (DSO)

An object that can be shared between applications at run time.

dynamic link library (DLL)

The Microsoft Windows equivalent of a dynamic shared object (DSO).

frustum

Computer-generated objects can be projected into an artificial viewing area, called a
frustum. A frustum is in the form of a truncated pyramid, shown in Figure 5-3, between
the base of the viewing volume, called the far plane, and the near plane.
007-3560-003 285

Glossary
heap

A portion of memory reserved for graphics.

libpf

The pf Performer library; a higher level library that relies on libpr.

libpr

The pr Performer library containing basic Performer tools.

libpfdu

The du Performer library containing database utilities, helpful for loading scene graphs.

load

(1) Transferring from disk to memory. (2) The processing burden of rendering a frame,
and can be defined as the rendering time divided by the desired frame period.

model view

Same as object space.

node

A class derived from pfNode. A node can be part of a scene graph.

object space

A coordinate system in a subsection of a scene graph. Also referred to as model view.

Perfly

The demonstration program distributed with OpenGL Performer.

pipe

Renders the visual data, contained in the viewing frustum, to a window.

scene graph

A hierarchy of nodes. The hierarchy specifies the order in which the nodes are processed.

stress

Stress is directly related to the graphics load; the more complex the display, the higher
the system stress.
286 007-3560-003

Glossary
texture mapping

Applies textures, such as the appearance of an orange, to the surface of a geometry.

traversal

An scene graph action, such as a draw action, going from one node to another.

viewing frustum

A truncated pyramid defined by the near and far clipping planes, and by the horizontal
and vertical field of view. See Figure 4-3. Only those shapes in the frustum are visible to
the viewer.

viewing volume

The viewing volume is the pyramid, shown in Figure 5-3, formed between the eyepoint
and the vertical and horizontal field of view.

viewport

A viewport refers to each channel in a window.

world space

The coordinate system of the root node, in which all shapes in a scene graph can reside.
007-3560-003 287

Index
Numbers

3D Studio, 106
64-bit compilation, 244

A

active database
animation sequences, 36
as programming language, 33
billboards, 35
level of detail, 35
skeleton, 40
total animation, 40

Active Surface Definition, 23
Advanced Graphics Applications, 269, 273
Alias|Wavefront, 106
alpha, 142
alpha function mode, 134
ambient, 142
animation, 38

characters, 39
sequences, 36
skeleton, 40
total, 40

antialiase, 36
antialiasing, 36
APP, 108
application areas

broadcast video, xxiii
driver training, 13

entertainment, xxiii
flight simulation, 13
virtual reality, xxiii, 13
virtual sets, xxiii
visual simulation, xxiii

application development tools, 13
arena, 285
array, indexed, 122
atmospheric model, 23
attribute

setting, 120
setting pfGeoState’s, 135
stripped, 119
when to index, 123

attribute array, 120
attribute binding, 116, 121
attribute, node, 100
attributes

array, 119
pfGeoState, 135

automatic type casting, 50

B

base classes, 50
billboard, 35, 285
billboards, 35
bins, 37
bounding volume, 100
broadcast video, xxiii
007-3560-003 289

Index
C

C code examples, xxvii
C++, 245
C++ code examples, xxvii
callback function, passing data to traversal callback,

111
callback, node, 110
callback, return values for traversal, 111
casting, 235
channel, 285
"Channel Callbacks" on page 83, 80
channels

setting up, 238
character animation, 38
child node, 103
circular references. See references, circular
class inheritance, 50
classes

libpf
pfBillboard, 35
pfEarthSky, 23
pfLightSource, 38

libpfv
pfvInteractor, 260
pfvPicker, 260
pfvSelector, 260
pfvViewer, 29, 248

libpr
pfDispList, 24
pfGeoSet, 23
pfGeoState, 24
pfState, 24

clearing the screen, 23
clip texture, 285
cloning, 22
color, 142
color mode, 143

color tables, 25
common shapes, 127
compiler flags, 244
compiling OpenGL Performer applications, 241
cone, 127
configuration file, 250
configuration files, 264
configuring OpenGL Performer, 236
configuring OpenGL Performer. See pfConfig()
conventions

typographical, xxvi
coordinates

texture, 140
copying pfObjects, 58
Coryphaeus, 106

Designer’s Workbench, 16
DWB format, 9

counter, video, 26
csBillboard, 215
csLOD, 217

transition between child nodes, 219
cube, 127
CULL, 108
cull, 214, 285

sides of geometries, 214
culling, 7
cylinder, 127

D

DAG. See directed acyclic graph, 21
data files, 232
database builder, 28
database construction, 28, 33
databases, 40

creating, 239
importing, 15
290 007-3560-003

Index
databases, as programming languages, 33
DBASE, 108
decal, 133
deleting objects, 54
deletion, 22
demonstration programs, xxvii
Design Vision, Inc., 271
Designer’s Workbench, 16
Diamond, A. J., 268, 270, 274
diffuse, 142
Digital Architecture, 272
directed acyclic graph, 21
display list

GL display list usage, 24
OpenGL Performer internal, 24

DLL (dynamic link library). See also DSO., 13
Donald Schmitt and Company, 268, 274
DRAW, 108
drive motion model, 4
driver training, 13
DSO (dynamic shared object), 13, 285

compiling and linking, 243
libpf, 14
libpfdu, 14
libpfmpk, 14
libpfui, 14
libpfutil, 14
libpfv, 14
libpr, 14

DVR (Dynamic Video Resolution), 164-165, 215-217
dynamic link library (DLL). See also DSO., 13, 285
dynamic shared object (DSO). See DSO.
Dynamic Video Resolution, see DVR

E

emissive, 142
entertainment, xxiii
enterView(), 260
enterWorld(), 260
environment

texture, 140
environment mapping, 38
environment model, 23
environment variables

PFPATH, 239
environmental effects, 7
example code, 26, 232
examples

simple.c, 229
exitView(), 260
exitWorld(), 260
extensibility

user data, 53

F

faces, simulating, 39
field of view (FOV), 234
file formats, scene graphs, 106
flags, compiler, 244
flattening, 22
flight motion model, 8
flight simulation, 13
fog, 7
format

texture, 139
fractal geometry, 28
frame rates, 32
frame(), 259
007-3560-003 291

Index
frames
rate, 238

free-store management, 54
Friends of Performer, 40
frustum, 285
functions (See routines.)

G

geometric shapes, large, 128
geometry, 22

definition, pfGeoSet, 23
placing in a scene, 147
placing in a scene graph, 126
rendering state, pfGeoState, 24

geometry movie, 36
getting started, xxiii
gift software, xxvii
global graphics state, 129
graph

directed acyclic, 21
graphic states, modal, 132
graphical user interface (GUI), 5
graphics libraries

OpenGL, xxiii
graphics library

overview, 19-29
graphics state, 24
ground, 23
group node, 101, 107
GUI, 5

H

handleEvent(), 257, 259
header file, 46

header files, 235
heap, 286
help

64-bit compilation, 244
accessing the mailing list, xxvii
compiling and linking, 241
constant frame rates, 34
finding files, 239
Friends of Performer, 40
getting started, xxv, 3
initializing OpenGL Performer, 235
IRIX 6.2 issues, 245
life-like character animation, 38
main simulation loop, 240
overview of chapter contents, xxv
sample code, 4
sample programs explained, 229
using the C++ API, 245
where to start, xxiii

help compiler flags, 244
Henke, Joe, 272
high-resolution clocks, 26

I

image computation rate, 238
immediate mode, 129
include files, 235
indexed arrays, 122
info-performer, xxvii
inheriting

classes, 50
initializing

multiprocessing, 236
OpenGLPerformer. See pfInit()
shared memory, 236

inst images
performer_eoe, 243
292 007-3560-003

Index
installing OpenGL Performer, 3
instancing, 9
intersections, 22
Inventor, 106
IRIS IM, 30
ISECT, 108

L

latency, 33
total, 33
transport delay, 33
visual, 34

layering, internal software structure, 15
leaf node, 101, 102, 107
level of detail, 35
level of detail (LOD), 35
level of detail (LOD),, 217-222
libpf library, 14, 17, 19, 53, 286
libpfdb library, 14
libpfdu library, 14, 18, 28, 286
libpfmpk library, 14, 30
libpfui library, 14, 18
libpfutil library, 14, 18
libpfv library, 14, 29, 247
libpr library, 14, 16, 23, 53, 286
libraries

libpf, 14, 17, 19, 53, 286
libpfdb, 14
libpfdu, 14, 18, 28, 286
libpfmpk, 14, 30
libpfui, 14, 18
libpfutil, 14, 18
libpfv, 14, 29, 247
libpr, 14, 16, 23, 53, 286

lighting, 141, 143, 144

Lightscape, 106
Lightscape Technologies, 267
linear algebra, 24
link libraries, 13
linking OpenGL Performer applications, 241
load, 286
load management, 21
local space, 148

M

magic carpet, 10
mailing list, xxvii
material, 141
material side, 143
math functions, 24
Medit Productions

Medit format, 9
Medit modeler, 16

Menger sponge, 28
methods (See routines.)
model view, 286
models, 40, 232
morphing

characters, 39
terrain, 38

motion models
drive, 4
flight, 8

motion sickness. See simulator sickness
Multigen, 106
MultiGen OpenFlight format, 9
multiple inheritance

avoidance of, 53
multiprocessing

initializing, 236
007-3560-003 293

Index
N

Nagaoka, Isao, 272
node, 99, 286

adding, 103
arrangement, 104
attributes, 100
fields, 100
group, 101
leaf, 101
removing, 103

node callback, 110
nodes

overview, 21-22
overview,, 21-22

O

object creation, 47
object derivation, 50
object space, 286
object type, 60
object type, determining, 60
Open GL

porting from, 31
OpenGL, xxiii

porting to, 31
OpenGL Multipipe SDK product, 14, 30
OpenGL Performer

and C++, 245
applications

compiling and linking, 241
setting up, 229
structure of, 232-235

features, 16-18
file format, 106
getting started, xxv
initializing

See pfInit()

installing, 3
introduction, xxiii
libraries, 13, 19-29
mailing list, xxvii
release notes, 3
sample programs, xxv, 3
type system, 60
why use OpenGL Performer, xxiii

OpenGL Performer API, 45
optimize

csBillboard, 215
optimize,setCullFace(), 214
optimizing graphic state, 131
ordered rendering, 37
overlay(), 260

P

packed attribute, 124
paths

search paths, 239
through a simulated scene, 9

Perfly, xxv
perfly, 3, 286

demo program, 3
performance, 241
Performer. See OpenGL Performer
pfAddGSet, 126
pfAddGSet(), 55
PFAF_ALWAYS, 134
PFAF_EQUAL, 134
PFAF_GEQUAL, 134
PFAF_GREATER, 134
PFAF_LEQUAL, 134
PFAF_LESS, 134
PFAF_NEVER, 135
294 007-3560-003

Index
PFAF_NOTEQUAL, 135
PFAF_OFF, 135
pfAlphaFunc, 134
pfApplyGState, 129, 130
pfApplyMtl, 129
pfASD, 102
pfAsyncDelete(), 183
PFB file format, 226
pfBillboard, 102
pfChanPick(), 186
pfConfig(), 259
pfconv, 226
pfCull(), 260
pfCylAroundSegs(), 189
pfdBuilder, 28
pfDCS, 102
pfDecal, 133
PFDECAL_BASE, 133
PFDECAL_BASE_DISPLACE, 134
PFDECAL_BASE_FAST, 134
PFDECAL_BASE_HIGH_QUALITY, 134
PFDECAL_BASE_STENCIL, 134
PFDECAL_LAYER, 134
PFDECAL_LAYER_DISPLACE, 134
PFDECAL_LAYER_DISPLACE_AWAY, 134
PFDECAL_LAYER_FAST, 134
PFDECAL_LAYER_HIGH_QUALITY, 134
PFDECAL_LAYER_STENCIL, 134
PFDECAL_OFF, 133
PFDECAL_PLANE, 134
pfdLoadFile, 105
pfdLoadFile(), 106
pfDraw(), 260
pfdStoreFile, 107
pfEnable, 129

pfFilePath(), 106, 137, 239
pfFilePathv(), 106, 239
pfFindFile(), 240
pfFrame(), 240, 259
pfGeode, 102
pfGeoSet, 115

contains, 115
creating, 116
drawing and printing, 125
example, 116
placing in a scene graph, 126
utilities to create large geometric chapes, 128

pfGeoSet data structures
adding to pfGeode nodes, 55

pfGeoState, 115
defining, 130

pfGetTravNode, 111
PFGS_FLAT_LINESTRIPS, 117
PFGS_FLAT_TRIFANS, 117
PFGS_FLAT_TRISTRIPS, 117
PFGS_LINES, 117
PFGS_LINESTRIPS, 117
PFGS_OVERALL, 116
PFGS_PER_PRIM, 116
PFGS_PER_VERTEX, 116, 141
PFGS_POINTS, 117
PFGS_POLYS, 117
PFGS_QUADS, 117
PFGS_TEXCOORD2, 141
PFGS_TRIFANS, 117
PFGS_TRIS, 117
PFGS_TRISTRIPS, 117
pfGSetAttr, 116
pfGSetAttr(), 55, 141
pfGSetGstate, 126
pfGSetGState(), 55
007-3560-003 295

Index
pfGSetHlight(), 55
pfGSetPrimLengths, 116, 118
pfGStateAttr, 130
pfGStateAttr(), 55
pfGStateMode, 130
pfGStateVal, 130
pf.h header file, 235
PFI image format, 226
pficonv, 227
pfInitGfx, 237
pfInitGfx(), 237
pfInsertGSet(), 55
pfIsectFunc(), 186
pfIsectNodeSegs(), 187
pfLayer, 102
pfLightColor, 144
pfLights, 144, 145
pfLightSource, 102
pfLigthSource, 144
pfLModelAmbient, 144
pfLoadGState, 130
pfLoadTexFile(), 137, 138
pfLOD, 102
PFLT_AMBIENT, 144
PFLT_DIFFUSE, 144
PFLT_SPECULAR, 144
pfMalloc(), 58
pfMergeBuffer(), 183
PFMTL_AMBIENT, 142
PFMTL_BACK, 143
PFMTL_BOTH, 143
PFMTL_DIFFUSE, 142
PFMTL_EMISSION, 143
PFMTL_FRONT, 143
PFMTL_SPECULAR, 143

pfMtlSide, 143
pfMultiprocess(), 186
pfNewGSet, 126
pfNodeTravMask(), 188
pfObject data structures, 50-??, 50-61

actual type of, 60
pfPartition, 102
PFPATH environment variable, 239
pfPrint, 58
pfPVChanDVRMode(), 215
pfQueryHit(), 192
pfReplaceGSet(), 55
pfScene, 102
pfSCS, 102
pfSequence, 102
pfStageConfigFunc(), 237
pfState, 129, 131
PFSTATE_ALPHAFUNC, 134
PFSTATE_BACKMTL, 135
PFSTATE_COLORTABLE, 135
PFSTATE_DECALPLANE, 136
PFSTATE_FOG, 135
PFSTATE_FRONTMTL, 135
PFSTATE_HIGHLIGHT, 135
PFSTATE_LIGHTMODEL, 135
PFSTATE_LIGHTS, 135, 144
PFSTATE_LPOINTSTATE, 135
PFSTATE_TEXENV, 135
PFSTATE_TEXGEN, 135
PFSTATE_TEXLOD, 135
PFSTATE_TEXMAT, 136
PFSTATE_TEXTURE, 135
pfSwitch, 102
pfSync(), 182, 240, 259
PFTE_ADD, 140
296 007-3560-003

Index
PFTE_BLEND, 140
PFTE_DECAL, 140
PFTE_MODULATE, 140
pfTEnvBlendColor(), 140
pfTEnvMode(), 140
PFTEX_EXTERNAL_FORMAT, 139
PFTEX_IMAGE_FORMAT, 139
PFTEX_INTERNAL_FORMAT, 139
PFTEX_SUBLOAD_FORMAT, 139
pfTexDetail(), 55
pfTexFilter(), 139
pfTexFormat(), 139
pfTexImage(), 55, 138
pfTexRepeat(), 139
pfText, 102
pfTexture, 137
PFTR_BLEND_ALPHA, 133
PFTR_FAST, 133
PFTR_HIGH_QUALITY, 133
PFTR_MS_ALPHA, 133
PFTR_MS_ALPHA_MASK, 133
PFTR_OFF, 133
PFTR_ON, 133
pfTransparency, 133
PFTRAV_APP, 111
PFTRAV_CONT, 111
PFTRAV_CULL, 111
PFTRAV_DRAW, 111
PFTRAV_ISECT, 111
PFTRAV_PRUNE, 111
PFTRAV_TERM, 111
pfuCalcDepth, 113
pfuDelGSetAttrs, 112
pfuDownloadTexList(), 138
pfuFillGSetPackedAttrs, 112

pfuFindTexture, 113
pfuLowestCommonAncestor, 113
pfuLowestCommonAncestorOfGeoSets, 113
pfuMakeSceneTexList(), 138
pfuTravCachedCull, 112
pfuTravCalcBBox, 112
pfuTravCountDB, 112
pfuTravCountNumVerts, 112
pfuTravCreatePackedAttrs, 112
pfuTraverser, 112
pfuTravNodeAttrBind, 112
pfuTravNodeHlight, 112
pfuTravPrintNodes, 112
pfuTravSetDListMode, 112
pfview program, 251
pfvInteractor class, 260
pfvmDrawStyle module, 264
pfvmEarthSky module, 264
pfvmLoader module, 264
pfvmLogo module, 264
pfvmNavigator module, 249, 264
pfvmPicker module, 249, 264
pfvmSnapshot module, 265
pfvmStats module, 265
pfvmTrackball module, 265
pfvmWorldSwitcher module, 265
pfvPicker class, 260
pfvSelector class, 260
pfvViewer class, 29, 248
pfWindow functions, 26
phase, 238
Phong shading, 38
physiognomy, clownish, 39
pipe, setting up, 236
pipelines

setting up, 236
007-3560-003 297

Index
porting graphics library calls, 31
postConfig(), 259
postCull(), 260
postDraw(), 260
precision clocks, 26
preConfig(), 259
preCull(), 260
preDraw(), 260
pr.h header file, 235
primitive

attributes of, 119
stripped, 118

primitive type, 117
primitives, setting number of, 118
printing, 22
printing objects, 58
programming modules, 29, 248
projective texture, 38
pyramid, 127

R

radiosity, 267
range(), 218
real-time character animation, 33
reference counting, 54
references, circular. See circular references
reflections, 38
release notes, 3
resolution, 217
root node, 103
routines

enterView(), 260
enterWorld(), 260
exitView(), 260
exitWorld(), 260

frame(), 259
handleEvent(), 257, 259
overlay(), 260
pfAddGSet(), 55
pfAsyncDelete(), 183
pfChanGState(), 28
pfChanViewport(), 238
pfConfig(), 233, 236, 259
pfCopy(), 58
pfCull(), 260
pfDelete(), 54, 56
pfdLoadFile(), 9, 15, 106, 233
pfDraw(), 260
pfFilePath(), 106, 239
pfFilePathv(), 106
pfFrame(), 240, 259
pfGetRef(), 55
pfGetTime(), 26
pfGetType(), 60
pfGetTypeName(), 60
pfGSetAttr(), 55
pfGSetGState(), 55
pfGSetHlight(), 55
pfGStateAttr(), 55
pfInit(), 233, 236
pfInsertGSet(), 55
pfIsOfType(), 60
pfMalloc(), 56, 58
pfMergeBuffer(), 183
pfNewLight(), 144
pfRef(), 55
pfReplaceGSet(), 55
pfSync(), 182, 238, 240, 259
pfTexDetail(), 55
pfTexImage(), 55
pfUnref(), 55
pfUnrefDelete(), 57
postConfig(), 259
postCull(), 260
postDraw(), 260
preConfig(), 259
298 007-3560-003

Index
preCull(), 260
preDraw(), 260
sync(), 259

S

sample code, 4, 26, 232, 264
sample data, 232
sample programs

Perfly, xxv
perfly, 3

sample source directory, xxvii
scene graph, 21, 99, 239, 286

adding nodes, 103
creating, 103
file formats supported, 106
loading, 104
placing geometry in, 126
saving, 107
traversal, 107

scene graph files, 106, 239
search paths, 239
shading, 38
shared memory

initializing, 236
shininess, 142
Sierpinski sponge, 28
simple.c example program, 229
simulation loop, 240
simulator sickness, 33
single inheritance, 53
skeleton animation, 40
sky, 23
sorting, 37
source code, 4, 232

sample code, 40
source code examples, xxvii

source code tour, 229
sparkle, 36
specular, 142
Sphere, 127
state management, 24
state values, default, 131
statistics, 7
stress, 286
stress management, 21
subpixel Z-buffer, 37
subpixels, 36
supported formats, 106
surface, 37
sync(), 259
synchronization mode, 238
system load management, 21

T

texture, 136
components, 138
coordinates, 140
enabling, 137
environment, 140
environment mapping, 38
loading, 137
overview, 37-38
preloading, 138
specifying attributes, 138

texture mapping, 32, 37, 137, 287
This, 10
time of day clockclocks

available types, 26
timing, 26
tokens

PFTRAV_ISECT, 188
007-3560-003 299

Index
total animation, 40
total latency, 33
tour through simple.c, 229
trackball, 8
transition

between csLOD child nodes, 219
transparency, 37
transparency in textures, 37
transport delay, 33
traversal, 287

creating, 112
customized, 109
customizing, 110

traversal mask, 100
traversal, pipelined, 107
traversal, scene graph, 107
traversals, 22

overview, 22
triangle meshing, 28
triangle strip, 124
twinkle, 36
type, actual, of objects, 60
typographical conventions, xxvi

U

update rate, 238
user data, 53
user interfaces, 30

V

vertex coordinate attribute, 125
video counter, 26
video retrace period, 238

video, Dynamic Video Resolution, see DVR
viewing frustum, 287
viewing volume, 287
viewport, 287
virtual reality, xxiii, 13
virtual set, xxiii
visual latency, 34
visual programming, 13
visual simulation, xxiii

overview, 31-41

W

Wavefront
OBJ format, 9

Wavefront file, 105
windows, 26, 30
Workbench file, 105
world space, 148, 287
Wright, Frank Lloyd, 275

X

X window system, 30
XML configuration file, 250
300 007-3560-003

	New Features in This Guide
	Record of Revision
	Figures
	Tables
	About This Guide
	What Is OpenGL Performer?
	Why Use OpenGL Performer?
	What You Should Know Before Reading This Guide
	What This Guide Contains
	Part One: Overview of OpenGL Performer
	Part Two: Programming with OpenGL Performer

	Conventions
	Internet and Hardcopy Reading for the OpenGL Performer Series
	Reader Comments

	Getting Acquainted with OpenGL Performer
	Installing the Software
	Exploring the OpenGL Performer Sample Scenes with Perfly
	Locations of Perfly and Example Source Code
	Starting and Quitting Perfly
	Basic Perfly Controls
	Looking Around
	Approaching the Building
	More Controls
	Other Motion Models
	Flying
	Trackball
	Motion Using Paths

	The Use of Instances

	Loading Databases into OpenGL Performer
	Going Beyond Visual Simulation

	OpenGL Performer Basics
	OpenGL Performer Applications
	Library Structure of OpenGL Performer
	Library Features
	High-Performance Rendering Library (libpr)
	Visual Simulation Application Library (libpf)
	Geometry Builder Library (libpfdu)
	Utility Library (libpfutil)
	User Interface Library (libpfui)
	A Graphical Viewer Library (libpfv)
	A Configuration-Import Library (libpfmpk)
	Database Loader Library (libpfdb)

	Overview of the OpenGL Performer Library Structure
	libpf—Visual Simulation Library
	Multiprocessing Framework
	Display
	Frame Control
	Visual Database (pfScene)
	Special Features (pfEarthSky, pfSequence, pfASD)

	libpr—High-Performance Rendering Library
	High-Performance Geometry Rendering
	Efficient Graphics State Management
	Graphics State Encapsulation
	Display Lists
	Math Support
	Intersections
	Color Tables (pfColortable)
	Light Points
	pfObjects
	Asynchronous File I/O (pfFile)
	Memory Allocation (pfDataPool)
	High-Resolution and Video-Rate Clocks (pfGetTime,)
	The pfWindow Windowing Functions

	libpfdu—Geometry Builder Library
	Database Builder

	libpfv—A Graphical Viewer Library
	libpfmpk—A Configuration-Import Library

	X and IRIS IM
	Porting from IRIS GL to OpenGL
	Survey of Visual Simulation Techniques
	Low-Latency Image Generation
	Consistent Frame Rates
	Rich Scene Content
	Level of Detail Selection
	Billboard Objects
	Animation Sequences
	Antialiasing

	Texture Mapping
	Surface Appearance
	Environment Mapping
	Sophisticated Shading
	Projective Texture

	Character Animation
	Morphing
	Generalized Morphing
	Skeleton Animation
	Total Animation

	Database Construction

	OpenGL Performer Programming Interface
	General Naming Conventions
	Prefixes
	Header Files
	Naming in C and C++
	Abbreviations
	Macros, Tokens, and Enums

	Class API
	Object Creation
	Set Routines
	Get Routines
	Getting Current In-Use Values

	Action Routines
	Enable and Disable of Modes
	Mode, Attribute, or Value

	Base Classes
	Inheritance Graph
	Libpr and Libpf Objects
	User Data
	pfDelete() and Reference Counting
	Copying Objects with pfCopy()
	Printing Objects with pfPrint()
	Determining Object Type

	Introduction to OpenGL Performer Concepts
	Scene-to-Screen Path
	Scene Graph
	Scene Graph Hierarchy
	Scene Graph Traversers

	Channels
	Pipe and Window
	Starting the Stages
	Rendering the Scene
	Display Lists

	Parts of a Performer Application
	Initializing Performer
	Shared Memory Arena

	Creating the Pipe, Channel, and Pipe Window
	Loading the Scene Graph
	Positioning the Channel
	Creating the Simulation Loop

	Inputting and Reading User Events
	Implementing User Input with Window Events
	Initializing the Utility Library
	Enabling User Input

	Retrieving User Events

	Creating a Display with pfChannel
	Creating and Configuring a pfChannel
	Acquiring a pfPipe
	Creating a pfChannel Rendered by a pfPipe
	Creating and Configuring a pfPipeWindow
	Attaching a pfScene to the pfChannel
	Configuring a Viewport for the pfChannel
	Creating a Background for a pfChannel

	Initializing the pfChannel View
	Bounding Volumes
	Defining the Viewing Frustum
	Near and Far Clip Planes
	Height and Width of the View Frustum
	Direction and Position of the View

	Channel Callbacks
	Using Passthrough Data
	Channel Callback Example

	Using Multiple Channels
	Grouping Channels
	Choosing the Attributes to Share
	Attribute Mask

	Using View Offsets

	Multiple Pipes
	Setting the Multiprocessing Configuration
	Creating Multiple pfPipes

	Creating Scene Graphs
	What Is a Node?
	Node Attributes

	Scene Graph Nodes
	Group Nodes
	OpenGL Performer Group Nodes

	Leaf Nodes

	Creating a Scene Graph
	Creating and Attaching the pfScene Node
	Adding Nodes in a Scene Graph
	Removing Nodes from a Scene Graph
	Arrangement of Nodes

	Loading a Scene Graph
	Finding Scene Graph Files

	Saving a Scene Graph
	Scene Graph Traversals
	Pipelined Traversals
	Traversal Order

	Customizing OpenGL Performer Traversals
	Setting Up Node Callbacks
	Passing Data to Traversal Callback Functions
	Return Values for Traversal Callback Functions

	Sample Customized Traversals

	Creating Geometry with pfGeoSet
	pfGeoSet Overview
	Creating a pfGeoSet
	Creating a pfGeoSet Object
	Setting the Primitive Type
	Setting the Number of Primitives
	Setting the Number of Vertices Per Stripped Primitive

	Attributes of pfGeoSet Primitives
	Setting the Attributes
	Attribute Bindings
	Indexed Arrays
	Packed Attributes
	Drawing and Printing a pfGeoSet

	Placing Geometry in a Scene Graph
	Creating Common Geometric Objects
	Utilities to Create Common Geometric Objects

	Specifying the Appearance of Geometry with pfState and pfGeoState
	Setting the Graphics State
	Global State
	Defining a pfGeoState
	Setting pfGeoState Values for a Scene
	pfGeoStates and pfGeoSets
	Optimizing Graphics State Changes

	Setting Modal pfGeoState Values
	pfTransparency
	pfDecal
	pfAlphaFunc
	Alpha Func Modes

	Setting pfGeoState Attributes

	Using Textures
	Enabling Texture Mapping
	Creating a Texture Object
	Loading an Image as a Texture
	Preloading Textures

	Specifying Texture Attribute
	Specifying Texture Formats
	Setting the Texture Environment
	Setting the Texture Coordinates

	Specifying the Material
	Specifying the Color and Shininess
	Color Mode
	Material Side

	Specifying Lighting

	Placing Geometry in a Scene
	World Space and Object Space
	Transformation Node Isolation
	World Space

	Transformation Nodes
	Transformation Node Functionality
	Ordering Transformation Nodes in the Scene Graph

	Using pfFCS
	pfFCS, pfFlux, and pfEngine Example

	Using DCS Nodes
	Creating a DCS Node
	Setting the DCS Node
	Using pfDCSCoord

	Optimizing the Use of DCS Nodes

	Using SCS Nodes
	Creating a SCS Node
	Setting the SCS Node
	Setting the First Transformation Matrix
	Setting the Remaining Transformation Matrices

	Optimizing SCS Transformations
	pfFlatten
	pfdCleanTree

	Controlling Frame Rate
	Double Buffering
	Specifying a Target Frame Rate
	pfFrameRate
	pfFieldRate

	Frame Synchronization
	Phase Control

	Adjusting the Frame Rate Automatically
	Stress Filters
	Dynamic Video Resolution
	Setting the DVR Stress Filter

	Multiprocessing
	OpenGL Performer Stages
	Optional, Asynchronous Stages
	ISECT Stage
	DBASE Stage
	COMPUTE Stage

	Benefits of Multiprocessing
	Shared Memory
	Printing Process States
	Setting Up Multiprocessing
	Multiprocessing Models
	Common Multiprocessing Models
	Default Processing Models
	One pfPipe
	Multiple pfPipes

	Choosing a Multiprocessing Model

	Automatic Multiprocessing

	Database Paging
	Anticipating Paging
	Database Process
	Handling Memory for the DBASE Process
	Changing the Scene Graph
	Caching Scene Graph Changes
	Linking Buffer Changes to the Scene Graph
	Deleting Old Data
	Merging Changes
	Cleaning Up the Cache

	Intersection Testing
	Creating an ISECT Process
	Constructing a Segment Set for pfNodeIsectSegs()
	Setting the Mode
	Intersection Masks
	Creating the Segment Array
	The pfSegSet Bound

	Testing for Intersections
	Intersection Information
	Determining If a Segment Was Hit
	Testing for Valid Information
	Retrieving the Intersection Location

	Creating a User Interface
	Traveling through a Scene
	Creating a Transformer
	Initializing the Transformer
	Setting Up Transformer Input and Output
	Updating the Channel
	Scaling the Motion

	Example of Implementing User Interaction

	Optimizing Performance
	General Performance Tips
	Displaying Statistics
	Rendering the Statistics Tool
	Specifying the Statistics to Gather
	Reducing Bottlenecks

	Culling Unseen Shapes
	CULL Process
	Evaluating Bounding Spheres
	Optimizing the CULL Process

	Face Culling
	Rendering Slices of Shapes
	Rotating the Slice

	Maintaining Frame Rate Using DVR
	DVR Scaling

	Level of Detail Reduced for Performance
	Choosing a Child Node Based on Range
	Setting the Range
	Disregarding LODs

	Transitioning Between Levels of Detail
	Enabling Fading
	Customizing the Fade

	Customizing LOD Actions
	Scaling LOD Ranges
	Overriding Stress Effects
	Selecting LODs Based on Viewport

	Reducing System Stress
	Setting the Stress Filter
	Stress Volatility
	Dividing Rendering Time
	Setting the Stress Value Explicitly

	Optimizing pfGeoSet Performance
	Optimizing Graphics State Changes
	Sharing Common pfGeoStates
	Computing the Optimal, Global Graphics State

	Optimizing Texture Handling
	Optimizing File Loading
	pfconv
	pficonv

	Building a Visual Simulation Application Using libpf
	Overview
	Setting Up the Basic Elements
	Using OpenGL Performer Header Files
	Initializing and Configuring OpenGL Performer
	Initializing Shared Memory
	Initializing Processes

	Setting Up a Pipe
	Frame Rate and Synchronization
	Setting Up a Channel
	Creating and Loading a Scene Graph
	Creating a Database
	Setting the Search Path for Database Files

	Simulation Loop

	Performance
	Compiling and Linking OpenGL Performer Applications
	Required Libraries
	Dynamic Shared Objects (DSOs)
	Debug and Static Libraries
	Using Compiler Flags
	MIPS-3, MIPS-4, and 64-Bit Compilation
	Using OpenGL Performer From C++

	Building a Visual Simulation Application Using libpfv
	Overview
	The Simplest pfvViewer Program
	Adding Interaction to a pfvViewer Program
	Reading XML Configuration Files
	Module Scoping, Multiple Worlds and Multiple Views
	Extending a pfvViewer—Writing Custom Modules
	Extending a pfvViewer—Module Entry Points
	Picking, Selection, and Interaction
	More Sample Programs, Configuration Files, and Source Code

	Image Gallery
	Index

