IRIS Performer = C++
Reference Pages

Document Number 007-2782-001

CONTRIBUTORS

Written by Sharon Clay, Michael Garland, Brad Grantham, Don Hatch, Jim Helman,
Michael Jones, T. Murali, John Rohlf, Allan Schaffer, Christopher Tanner,
and Jenny Zhao

Production by Derrald Vogt

Cover design and illustration by Rob Aguilar, Rikk Carey, Dean Hodgkinson,
Erik Lindholm, and Kay Maitz

© Copyright 1995, Silicon Graphics, Inc.— All Rights Reserved

This document contains proprietary and confidential information of Silicon
Graphics, Inc. The contents of this document may not be disclosed to third parties,
copied, or duplicated in any form, in whole or in part, without the prior written
permission of Silicon Graphics, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure of the technical data contained in this document by
the Government is subject to restrictions as set forth in subdivision (c) (1) (ii) of the
Rights in Technical Data and Computer Software clause at DFARS 52.227-7013
and/or in similar or successor clauses in the FAR, or in the DOD or NASA FAR
Supplement. Unpublished rights reserved under the Copyright Laws of the United
States. Contractor/manufacturer is Silicon Graphics, Inc., 2011 N. Shoreline Blvd.,
Mountain View, CA 94043-1389.

IRIS, ImageVision Library, Open GL, Silicon Graphics and the Silicon Graphics logo are
registered trademarks of Silicon Graphics, Inc. CHALLENGE, Extreme Graphics, Galileo Video,
ImageVision, Impressario, Indigo2, Indigo Magic, Indy Video, InPerson, IRIS Annotator, IRIS
Digital Media, IRIS InSight, IRIS POWER C, IRIS Showcase, MediaMail, Mindshare, Open
Inventor, Power Fortran Accelerator, RapidApp, RealityEngine, and XFS are trademarks of
Silicon Graphics, Inc.

IRIS Performer™ C++ Reference Pages
Document Number 007-2782-001

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

NAME
Performer — Overview of IRIS Performer and summary of the C++ Language Bindings: libpr, libpf,
libpfdu, libpfdb, libpfui, and libpfutil.

DESCRIPTION

Welcome to the IRIS Performer application development environment.

IRIS Performer provides a comprehensive programming interface (with ANSI C and C++ bindings) for
creating real-time visual simulation and other interactive graphics applications. IRIS Performer 2.0 sup-
ports both the IRIS Graphics Library (IRIS GL) and the industry standard OpenGL graphics library; these
libraries combine with the IRIX operating system and REACT extensions to form the foundation of a
powerful suite of tools and features for creating real-time visual simulation applications on Silicon
Graphics systems.

IRIS Performer is an integral part of the Onyx/RealityEngine and Indigo2/Impact visual simulation sys-
tems and provides interfaces to the advanced features of RealityEngine class graphics. IRIS Performer is
compatible with all SGI graphics platforms and attains maximum performance on each. IRIS Performer
provides an extensible basis for creating real-time 3D graphics applications in the fields of visual simula-
tion, entertainment, virtual reality, broadcast video, and computer aided design. IRIS Performer is the
flexible, intuitive, toolkit-based solution for developers who want to optimize performance on Silicon
Graphics systems.

Take a Test Drive

If you are new to IRIS Performer, the best way to start learning about it is to go for a test drive. The
Performer-based sample application perfly is installed in the /usr/sbin directory. To start perfly, all that
you need to do is type

perfly esprit.flt

Type "man pfiXformer" for details on how to drive, fly, or tumble; and rerun perfly with the command
line option "-help" for a full list of features. Type "?" while running perfly to print a list of keyboard com-
mand sequences to the shell window. The source code for this program is in
Jusr/share/Performer/src/sample/perfly.

IRIS Performer Overview

IRIS Performer consists of two main libraries, libpf and libpr, and four associated libraries, libpfdu,
libpfdb, libpfui, and libpfutil.

The basis of IRIS Performer is the performance rendering library libpr, a low level library providing high
speed rendering functions based on pfGeoSets, efficient graphics state control using pfGeoStates, and
other application-neutral functions. Layered above libpr is libpf, a real-time visual simulation environ-
ment providing a high-performance multi-processing database rendering system that takes best

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

advantage of IRIS symmetric multiprocessing CPU hardware. The database utility library libpfdu pro-
vides powerful functions for defining both geometric and appearance attributes of three dimensional
objects, encourages sharing of state and materials, and generates efficient triangle strips from indepen-
dent polygonal input. The database library libpfdb uses the facilities of libpfdu, libpf, and libpr to
import database files in many popular industry standard database formats. These loaders also serve as a
guide to developers creating new database importers. libpfui contains the user interface, and input
management facilities common to many interactive applications. Completing the suite of libraries is
libpfutil, the IRIS Performer utility library. It provides a collection of important convenience routines
implementing such diverse tasks as smoke effects, MultiChannel Option support, graphical user interface
tools, input event collection and handling, and various traversal functions.

In addition to these SGI-developed tools, IRIS Performer also includes sample code, databases, games,
and movies contributed by the Friends of Performer: companies and individuals with services of general
interest to the IRIS Performer community.

Program Structure

Most IRIS Performer application programs have a common general structure. The following steps are
typically involved in preparing for a real-time simulation:

Initialize IRIS Performer with pfInit.

2. Specify number of graphics pipelines with pfMultipipe, choose the multiprocessing
configuration by calling pfMultiprocess, and specify the hardware mode with
pfHyperpipe if needed.

Initiate the chosen multiprocessing mode by calling pfConfig.
Initialize the frame rate with pfFrameRate and set the frame-extend policy with pfPhase.

Create, configure, and open windows with new pfPipeWindow,
pfPipeWindow::setFBConfigAttrs, and pfPipeWindow::open, as required.

6. Create and configure display channels with new pfChannel, pfChannel::setTravFunc,
pfChannel::setFOV, and pfChannel::setScene as required.

Once the application has created a graphical rendering environment as shown above, the remaining task
is to iterate through a main simulation loop once per frame.

7. Compute dynamics, update model matrices, etc.

8. Delay until the next frame time: pfSync

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

9. Perform latency critical viewpoint updates.

10. Draw a frame by calling pfFrame.
In many applications the viewpoint will be set in step 7 and both step 8 and step 9 are not required. The

more general case is shown since it is typical in head-tracked and other cases where low-latency applica-
tions with last-minute position input must be used.

The libpr Performance Rendering Library

Libpr consists of many low-level hardware oriented facilities generally required for real-time and other
performance-oriented graphics applications. These features include

High-speed rendering functions using the innovative pfGeoSet.

Efficient graphics state management and mode control based on the pfGeoState.

Display lists suitable for rendering between multiple processes.

An extensive collection of fast linear algebra and math routines.

Intersection computation and detection services.

A colortable mechanism for rapid switching of database appearance.

Asynchronous file I/O system for real-time file operations.

Memory allocation oriented to shared memory and mutual exclusion.

High speed clock functions that hide the complexities of hardware clocks.
GeoSets are collections of drawable geometry which group same-type graphics primitives (e.g. triangles
or quads) into one data object. The GeoSet contains no geometry itself, only pointers to data arrays and
index arrays. Geometry arrays may be indexed or non-indexed (i.e. stored in order) depending upon
application requirements. Because all the primitives in a GeoSet are of the same type and have the same
attributes, rendering of most databases is performed at maximum hardware speed. There are many
GeoSet rendering methods, one for each combination of geometry and attribute specification. However,
in IRIS Performer, all GeoSet rendering is performed through a single render dispatching routine,
pfGeoSet:draw.
GeoStates provide graphics state definitions (e.g. texture or material) for GeoSets. When used in conjunc-

tion with Performer state management functions, GeoSets can be rendered in a prescribed way without
concern for the inherited modes of the graphics pipeline. GeoSets may share GeoStates. Less-used

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

Vi

machine modes are not supported.

State Management and Mode Control. IRIS Performer provides functions that bundle together graphics
library state control functions such as lighting, materials, texture, and transparency. They have two pur-
poses: to track state and to allow the creation of display lists that can be rendered later. The application
program can set states in three ways: globally, locally (via GeoState), and directly. State changes made
using direct graphics library calls are not "known" to the IRIS Performer state tracking mechanisms, and
thus defeat IRIS Performer state management. However, functions exist to push state, pop state, and get
the current state so proper intermixing of direct graphics library and IRIS Performer functions can be
achieved.

Display Lists are supported in IRIS Performer. These are not typical graphics library display lists, but
rather simple token and data mechanisms that do not cache geometry or state data and are designed to
allow efficient multiprocessing. These display lists use IRIS Performer state and rendering commands.
They also support function callbacks to allow application programs to perform any required special pro-
cessing during display list rendering.

Windows for IRIS GL, IRIS GL mixed model (GLX), and OpenGL applications can be configured, created
and managed with the pfWindow routines.

Math Support is provided by an extensive set of point, segment, vector, plane, matrix, cylinder, sphere
and frustum functions.

Intersection and collision detection functions are provided to test for the intersection of line segments
with cylinders, spheres, boxes, planes, and geometry. Intersection functions for spheres, cylinders, and
frusta are also provided.

ColorTables are supported by allowing GeoSet color indexes to refer to common tables of RGBA color
information. Color tables are global and may be of any size. Any number of color tables may exist at one
time and they can be activated at any time. The active color table may be switched in real-time without
performance impact.

Asynchronous File I/O is provided by a simple non-blocking file access method. This is provided to
allow applications to retrieve file data during real-time operation.

Memory Allocation is supported with routines to allocate memory from process heap storage, shared
memory arenas, and datapool memory. Shared arenas must be used when multiple processes need to
access data. The arena is created by the application program. Datapools allow applications to create
shared arenas visible to any process where allocations can be locked for easy mutual exclusion on a per
allocation basis.

High Speed Clock support is based on a high speed clock access routine that reports elapsed time in
seconds as a double precision floating point number to highest machine resolution.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

Statistics are maintained by IRIS Performer on the geometry that is drawn, state changes, transforma-
tions, and most internal operations. These statistics can used for application tuning and form the basis for
IRIS Performer’s automatic system load management.

The libpf Visual Simulation Library

libpf is a high level library built on libpr that is architected and implemented to meet the specific needs of
real-time graphics software. Applications developed with libpf are able to provide smooth motion
through elaborate scenes at programmable frame rates, all with very little code development. libpf pro-
vides

Hierarchical scene graph processing and operators.

Transparent multiprocessing for parallel simulation, culling and drawing.

Graphics load measurement and frame rate management.

Level of detail selection with smooth fade and rotational invariance.

Rapid culling to the viewing frustum through hierarchical bounding volumes.

Multiprocessed intersection detection and reporting.

Dynamic coordinate systems for highly interactive graphics.

Multibuffering of changes to the scene graph for simple multiprocessing.
Multiprocessing
libpf provides a pipelined multiprocessing model for implementing visual simulation applications. The
application, visibility culling and drawing tasks can all run in separate processes. The simulation process
updates the scene, the cull process traverses the scene checking for visibility and generates display lists
which are then rendered by the drawing process. libpf multibuffering capabilities allow each process to
have copies of the scene graph and the user data appropriate to its target frame time.
The simulation, culling, and drawing for a graphics pipeline may be combined into one, two or three
processes to allow an application to be tailored to different hardware and expected CPU demand in each
process. For example, culling and drawing are normally done by separate processes in order to obtain
maximum graphics performance, but if an application is simulation bound, it may wish to combine both

cull and draw into a single process.

Statistics are maintained for each IRIS Performer process - application, cull and draw. These statistics can

Vii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

viii

be displayed in a channel, printed, and queried using the pfFrameStats routines.

Graphics Pipes, Windows, and Channels

In addition to the functionality it derives from libpr, libpf supports multiple channels per window, mul-
tiple windows per graphics pipe, grouping of channels to form video walls, and frame synchronization
between multiple graphics pipes. libpf maintains a graphics stress value for each channel and uses it to
attempt to maintain a fixed frame rate by manipulating levels-of-detail (LODs). Like many graphics
libraries, libpf assumes a coordinate system with +Z up, +X to the right and +Y into the screen.

Database

libpf supports a general database hierarchy which consists of the following node types:

pfNode General node (base class)

pfScene Top level node.

pfGroup Node with multiple children.
pfSCS Static coordinate system.

pfDCS Dynamic coordinate system.
pfLayer Layer or decal node.

pfLOD Level of detail node.

pfSwitch Switch node.

pfSequence Sequential animation node.
pfGeode Fundamental geometry node.
pfBillboard Special tracking leaf node.
pfLightPoint One or more emissive light points.
pfLightSource Definition of a graphics hardware light.
pfPartition Special culling acceleration node.
pfText 2D and 3D text geometry.
pfMorph Geometry morphing node.

Each of these is derived from pfNode and any function which requires a pfNode* as an argument can
accept any of the above types. Similarly pfSCS, pfDCS, pfLOD, pfSequence and pfSwitch are derived
from pfGroup and can be used in any function which takes a pfGroup* as an argument.

Nodes can be assembled into a directed graph to represent a scene with its modeling hierarchy.
Geometry and graphics state information is contained in pfGeoStates and pfGeoSets which are attached
to pfGeodes.

Intersection inquiries are made via groups of line segments which can be tested against a subgraph of the
scene. Masks and callbacks can be specified to allow evaluation of line-of-sight visibility, collisions, and
terrain intersections. libpf also provides earth-sky and weather functions for modeling fog, haze and
other atmospheric effects.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

The libpfdu Database Utility Library
libpfdu provides helpful functions for constructing optimized IRIS Performer data structures and scene
graphs. It is used by most of the database loaders in libpfdb to take external file formats containing 3D
geometry and graphics state and load them into IRIS Performer optimized run-time data structures. Such
utilities often prove very useful; most modeling tools and file formats represent their data in structures
that correspond to the way users model data, but such data structures are often mutually exclusive with
effective and efficient IRIS Performer run-time structures.

libpfdu contains many utilities, including DSO support for database loaders and their modes, file path
support, and so on, but the heart of libpfdu is the IRIS Performer database builder and geometry builder.
The builders are tools that allow users to input or output a collection of geometry and graphics state in
immediate mode.

Users send geometric primitives one at a time, each with its corresponding graphics state, to the builder.
When the builder has received all the data, the user simply requests optimized IRIS Performer data struc-
tures which can then be used as a part of a scene graph. The builder hashes geometry into different ‘bins’
based on the geometry’s attribute binding types and associated graphics state. It also keeps track of
graphics state elements (textures, materials, light models, fog, and so on) and shares state elements when-
ever possible. Finally, the builder creates pfGeoSets that contain triangle meshes created by running the
original geometry through the libpfdu triangle-meshing utility.

To go along with each pfGeoSet, the builder creates a pfGeoState (IRIS Performer’s encapsulated state
primitive). The builder generates pfGeoStates that share as many attributes as possible with other pfGeo-
States in the scene graph.

Having created these primitives (pfGeoSets and pfGeoStates) the builder will place them in a leaf node
(pfGeode), and optionally create a spatial hierarchy by running the new database through a spatial
breakup utility function which is also contained in libpfdu.

Note that the builder also allows the user to extend the notion of a graphics state by registering callback
functionality through builder API and then treating this state or functionality like any other IRIS Per-
former state or mode (although such uses of the builder are slightly more complicated). In short, libpfdu
is a collection of utilities that effectively act as a data funnel where users enter flattened 3D graphics infor-
mation and are given in return fully functional and optimized IRIS Performer run-time structures.

The libpfui User Interface Library
The libpfui library provides building blocks for writing manipulation components for user interfaces.
This library provides both C and C++ interfaces. Provided are separate components for motion control (-
pfilnputCoordXform), collision detection between the viewer and objects in the scene (pfiCollide), and
picking of objects in the scene based on current mouse coordinates (pfiPick). The pfilnputCoordXform
utilities update transformation matrices that can be used to drive motion in an application. The actual
mapping of user events is orthogonal to these motion models and can be done using the input collection

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

utilities in libpfutil, or directly with custom application code. The pfiXformer is a re-implementation of
the old pfuXformer based on these components and combines several different kinds of motion control in
one complex component. The pfiXformer also provides mapping of user input events, such as mouse and
keyboard, to motion controls which is described in the pfiXformer reference page. Examples of how to
use these utilities can be found in

[usr/ share/ Perforner/src/pguide/libpfui/

The libpfutil Utility Library
The libpfutil library contains a large number of miscellaneous functions that provide support for the fol-
lowing important tasks.

Processor control enables the user to specify which CPU a particular Performer process runs on and to
devote a particular processor to a given process.

Multiprocess rendezvous lets master and slave processes synchronize in a multiprocessing environment.
GLX mixed model routines are provided for compatibility with previous versions of IRIS Performer.
Current development should be based on the pfWindow and pfPipeWindow routines that provide a sin-

gle API for managing IRIS GL, IRIS GL mixed model, and OpenGL windows.

GL and X input handling is handled by an exhaustive set of commands that operate on compressed,
space-efficient queues of events.

Cursor control is provided to easily manipulate the cursors associated with each window managed by
IRIS Performer.

X fonts are supported so that they can be used to draw text in IRIS Performer windows. The main task of
these functions is to simplify the use of X fonts and present a high-level interface to the user.

Graphical User Interfaces (GUIs) are made easily accessible to the user through a set of functions that
provide simple means to create a GUI, set up widgets, manipulate them, set user-defined functions to

control their behavior and do other common tasks.

Scene graph traversal routines provide for different, highly-customizable traversal mechanisms for the
IRIS Performer scene graph.

MultiChannel Option (MCO) is supported on RealityEngine graphics systems by a set of functions that
generically initialize channels for using MCO.

Path following mechanisms allow the user to follow a pre-defined path in a walkthrough application.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

Functions to create paths are also provided.

Various draw styles like haloed lines and wireframe images are supported as a demonstration of the uses
of multi-pass rendering.

Other utilities supported are for timer control to track time in real-time independently of the frame-rate,
managing hash tables, a simple geometric simplification scheme for generating very simple level-of-
detail representations of the scene graph, texture loading and texture animation, random number gen-
eration, flybox control, smoke and fire simulation and converting light point states into textures.

The libpfdb Database Library
libpfdb is a collection of independent libraries (one for each supported file format) that read or write a
particular scene description file format. These loaders are implemented using the IRIX Dynamic Shared
Object facility and are demand loaded as needed.

The loaders in libpfdb have been developed by Silicon Graphics, by modeling tool vendors, and by Per-
former customers. Many are provided in source form as part of this IRIS Performer distribution. Use
these loaders as templates to write custom loaders for whatever formats you require in your applications.
The different kinds of file formats supported by IRIS Performer are listed below

3ds AutoDesk 3DStudio binary data

bin Minor SGI format used by powerflip

bpoly Side Effects Software PRISMS binary

byu Brigham Young University CAD/FEA data
dwb Coryphaeus Software Designer’s Workbench
dxf AutoDesk AutoCAD ASCII format

flt11 MultiGen public domain Flight v11 format
flt14 MultiGen OpenFlight v14 format

gds McDonnell-Douglas GDS things data

gfo Minor SGI format (radiosity output)

im Minor SGI format (IRIS Performer example)
irtp AAI/Graphicon Interactive Real-Time PHIGS
iv SGI Openlnventor / Silicon Studio Keystone
Isa Lightscape Technologies radiosity (ASCII)
Isb Lightscape Technologies radiosity (binary)
m University of Washington mesh data

medit Medit Productions medit modeling tool

nff Eric Haines’ ray tracing test data format

obj Wavefront Technologies data format

Xi

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

Xii

phd
poly
pts
ptu
slk
sgf
sgo
spf
sponge
star
stla
stlb
sV
tri
unc

Minor SGI format (polyhedra)

Side Effects Software PRISMS ASCII data
University of Washington point data

Minor SGI format (IRIS Performer example)
US ARMY SIMNET databases (Texas Instruments)
US NAVY standard graphics format

Minor SGI format

US NAVY simple polygon format

Sierpinski sponge 3D fractal generator

Yale University compact star chart data

3D Structures Stereolithography (ASCII)

3D Structures Stereolithography (binary)
Format of John Kichury’s i3dm modeler
University of Minnesota Geometry Center data
University of North Carolina data

Source code for many of these loaders is provided with IRIS Performer. Loader source code is located in
and below the directory

/usr/sharel/ Perforner/src/libpfdb

While most loaders do in fact "load" data from files, scene graphs can also be generated procedurally.
The sponge loader is an example of such automatic generation; it builds a model of the Menger (Sierpin-
ski) sponge, without requiring an input file. To see the sponge run perfly specify the number of recur-
sions (0, 1, 2, ...) as the filename. For example

perfly 2.sponge

Learning More

Once you've seen IRIS Performer in action, you will want to learn more about it. The IRIS Performer Pro-
gramming Guide and the IRIS Performer Release Notes are the primary sources of information, but the
following overview will give you a head start in your learning process.

IRIS Performer Sample Code

The IRIS Performer sample code can be found in

/usr/share/ Perforner/src/pguide - small exanples

and

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

/usr/share/ Performer/src/sanple - sanple applications

and its subdirectories. The "apps" subdirectory contains the various flying demos like perfly and the Per-
former town demo. The "pguide" subdirectory has further subdirectories for each IRIS Performer library.
Each of these directories has example and sample programs that highlight the features of the correspond-
ing library.

IRIS Performer Documentation

In addition to the reference pages on IRIS Performer, an on-line Programming Guide is also provided. To
read this, run Insight and click on the Performer Programming Guide button.

IRIS Performer World Wide Web Home Page

Silicon Surf, the Silicon Graphics World Wide Web Home Page, contains an archive of IRIS Performer-
related technical and promotional material in the Extreme Tech section. The information from the IRIS Per-
former FTP site and mailing list is also accessible via the WWW.

Explore Silicon Surf using the URL

http://ww. sgi . com

or go directly to the IRIS Performer information with the URL

http://ww. sgi . com Technol ogy/ Performer. ht m

IRIS Performer INTERNET FTP Site

An archive of IRIS Performer-related material is available via anonymous FTP from Silicon Graphics. The
FTIP address is

ftp://sgigate.sgi.com pub/ Perforner

Current contents of the IRIS Performer FTP site include
README Overview file
FAQ The IRIS Performer FAQ

Xiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

Xiv

INFO-PERFORMER Information about the IRIS Performer mailing list

src/ Sample source code and miscellaneous patches
docs/ IRIS Performer documents including SIGGRAPH "94 paper
selected-topics/ Directory of info, Q&A, etc. from mailing list

monthly-archives/ Raw monthly archives of the mailing list
CortaillodCentre/ Goodies from SGI’s Cortaillod Office
RealityCentre/ Goodies from SGI’s RealityCentre in the UK

IRIS Performer Electronic Mailing List

The IRIS Performer mailing list is a resource for developers who are using IRIS Performer to maximize
the performance of their graphics applications on Silicon Graphics hardware. The info-performer list is
intended to be an unmoderated, free-form discussion of IRIS Performer with issues both technical and
non-technical; and to provide feedback to Silicon Graphics about the product. Much like the
comp.sys.sgi.* newsgroups, it is not an official support channel but is monitored by the IRIS Performer
development team, so it’s an excellent source of early information about upcoming events and product
features, as well as a venue for asking questions and having them answered.

To subscribe to the info-performer mailing list, send email to

i nf o- performer-request @gi . com

Once your request is processed you will receive submission and posting instructions, some guidelines,
and a current copy of the Performer Frequently-Asked-Questions (FAQ) list.

The mailing list has become rather large and carries several hundred messages per month. Mailing list
archives are available in the Performer FTP area (see above) in

ftp://sgigate.sgi.com pub/ Perforner/nonthly-archives/

IRIS Performer Frequently Asked Questions

Silicon Graphics maintains a publicly accessible directory of questions that developers often ask about
IRIS Performer, along with answers to those questions. Each question-and-answer pair is provided in a
file of its own, named by topic. To obtain any of these files, use anonymous FTP to connect to
sgigate.sgi.com; then cd to the directory

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

/ pub/ Per f or ner/ sel ect ed-t opi cs

and use Is to see a list of available topics. Alternatively, use a World Wide Web browser to look at

ftp://sgigate. sgi.conl pub/ Perforner/sel ected-topics

The Friends of Performer
A number of leading companies in the visual simulation, database modeling, game authoring, and, vir-
tual reality marketplaces produce tools and products that are based on and work with IRIS Performer.
Several of these companies have provided samples of their work for your use and enjoyment. These
software gifts are in the friends component of the IRIS Performer distribution, and are installed in the
directory

/usr/share/ Performer/friends

Check out the gifts and the products that these companies offer.

IRIS Performer Application Programming Interface
The IRIS Performer application programming interface (API) has been designed by following a consistent
set of naming principles that are outlined below. Following that review is a complete listing of the API
grouped by topic for your use as both a quick reference and as an API directory.

Each of the libpf, libpr, libpfdu, libpfdb, libpfui, and libpfutil functions also has a complete reference
page description available via the IRIX man and xman commands. Refer to these reference pages for a
thorough discussion of the functions and data types, features and limitations, performance and resource
implications, and sample code showing how these functions are used in practice.

IRIS Performer Software Conventions
All the IRIS Performer commands have intuitive names that describe what they do. These mnemonic
names make it easy for you to learn and remember the commands. The names may look a little strange to
you if you're unfamiliar with this type of convention because they use a mixture of upper and lowercase
letters. Naming conventions provide for consistency and uniqueness, both for routines and for symbolic
tokens. Following consistent naming practices in the software that you develop will make it easier for
you and others on your team to understand and debug your code. Naming conventions for IRIS Per-
former are as follows:

XV

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

XVi

All class, command and token names, associated with libpf or libpr are preceded by the letters pf, denot-
ing the IRIS Performer library. Member functions do not have the pf prefix since the class name provides

sufficient scope resolution. Functions from the other libraries also affix an identifying letter suffix (d, i, or

u) to the pf prefix for scope resolution purposes.

Library | Prefix Example
libpf pf pfMultiprocess
libpr pf pfGetCurDList

libpfdu | pfd pfdNewGeom

libpfdb | pfd pfdLoadFile_medit
libpfui pfi pfiResetXformerPosition
libpfutil | pfu pfuDownloadTexList

Command and type names are mixed-case, while token names are uppercase. For example, pfTexture is
a type name and PFTEX_SHARPEN is a token name. Underscores are not used in function names except
in the libpfdb libraries, where the underscore serves to separate the common loader name (pfdLoad)
from the file type extension (medit in the example above).

In type names, the part following the pf is usually spelled out in full, as is the case with pfTexture, but in
some cases a shortened form of the word is used. For example, pfDispList is the name of the display-list

type.

Much of IRIS Performer’s interface involves setting parameters and retrieving parameter values. For the
sake of brevity, the word Set is omitted from function names, so that instead of pfSetMtlColor,
pfMtlColor is the name of the routine used for setting the color of a pfMaterial. Get, however, is not
omitted from the names of routines that get information, such as pfGetMtlColor. C++ member function
names do include both "get" and "set".

Routine names are constructed by appending a type name to an operation name. The operation name
always precedes the type name. In this case, the operation name is unabbreviated and the type name is

abbreviated. For example, the name of the routine that applies a pfTexture is pfApplyTex.

Compound type names are abbreviated by the first initial of the first word and the entire second word.
For example, to draw a display list, which is type pfDispList, use pfDrawDList.

Symbolic token names incorporate another abbreviation, usually shorter, of the type name. For example
pfTexture tokens begin with PFTEX_.
pfDispList tokens begin with PFDL_.

This convention ensures that tokens for a particular type have their own name space.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

Other tokens and identifiers follow the conventions of ANSI C and C++ wherein a valid identifier consists
of upper and lower-case alphabetic characters, digits, and underscores, and the first character is not a
digit.

LIBPF
Initialization
pflInit initializes all internal IRIS Performer data structures while pfExit cleans up before returning con-
trol to the application. The other functions provide support for multiprocessed execution. This involves
configuring IRIS Performer for multiple processes and threads and multiple and multiplexed (hyper)

pipes.

int pflnit(void);

void pfExit(void);

int pfMultipipe(int numPipes);

int pfGetMultipipe(void);

int pfHyperpipe(int numHyperPipes);

int pfGetHyperpipe(pfPipe *pipe);

int pfMultiprocess(int mpMode);

int pfGetMultiprocess(void);

int pfMultithread(int pipe, uint stage, int nprocs);
int pfGetMultithread (int pipe, uint stage);

int pfConfig(void);

pid_t pfGetPID(int pipe, uint stage);

uint pfGetStage(pid_t pid, int *pipe);

void pfStageConfigFunc(int pipe, uint stage, pfStageFuncType configFunc);
pfStageFuncType pfGetStageConfigFunc(int pipe, uint stage);
int pfConfigStage(int pipe, uint stage);

Frame Control
IRIS Performer is designed to run at a fixed frame rate. pfFrame, pfSync and associated functions set a
frame rate the application should run at, initiate each new frame of IRIS Performer processing and syn-
chronize the application process with the specified frame rate.

pfApp, pfCull, pfDraw and pfDBase trigger the default IRIS Performer processing for each stage of the
graphics pipeline. User-defined callbacks can be specified for each of these stages using the pf*Func func-

tions. Data can be allocated for each stage and also passed down the different stages of the pipeline.

The other functions in this set manipulate IRIS Performer memory (pfMemory) and its associated refer-
ence counts.

XVii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void pfAppFrame(void);
int pfSync(void);
int pfFrame(void);
void pfApp(void);
void pfCull(void);
void pfDraw(void);
void pfDrawBin(int bin);
void pfIsectFunc(pflsectFuncType func);
pflsectFuncType pfGetlsectFunc(void);
void* pfAllocIsectData(int bytes);
void* pfGetlsectData(void);
void pfPasslIsectData(void);
void pfDBase(void);
void pfDBaseFunc(pfDBaseFuncType func);
pfDBaseFuncType
pfGetDBaseFunc(void);
void* pfAllocDBaseData(int bytes);
void* pfGetDBaseData(void);
void pfPassDBaseData(void);
void pfPhase(int phase);
int pfGetPhase(void);
void pfVideoRate(float vrate);
float pfGetVideoRate(void);
float pfFrameRate(float rate);
float pfGetFrameRate(void);
int pfFieldRate(int fields);
int pfGetFieldRate(void);
int pfGetFrameCount(void);
double pfGetFrameTimeStamp(void);
void pfFrameTimeStamp(double t);
int pfGetld(void *mem);
int pfAsyncDelete(void *mem);
int pfCopy(void *dst, void *src);

pfPipe Functions
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more
pfPipeWindows. Typically one pfPipe is created for each hardware graphics pipeline.

XViii

pfPipe* pfGetPipe(int pipeNum);

int pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

pfPipe C++ API
These functions create and manipulate pfPipes. Control can be exercised over the hardware screen used
by the pfPipe and the way a pfPipe swaps color buffers at the end of each frame.

pfType*

void

pfPipe::getClassType();
pfPipe::setSwapFunc(pfPipeSwapFuncType func);

pfPipeSwapFuncType pfPipe:getSwapFunc()const;

void
void
int

void

const char*
pfChannel*

int

pfPipeWindow*

int
int
int

pfBuffer*

pfBuffer C++ API
The pfBuffer data structure logically encompasses libpf objects such as pfNodes. Newly created objects
are automatically "attached" to the current pfBuffer specified by pfBuffer::select. Later, any objects
created in buf may be merged into the main IRIS Performer processing stream with pfBuffer::merge. In
conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc), the pfBuffer mechan-
ism supports asynchronous parallel creation and deletion of database objects. This is the foundation of a
real-time database paging system.

new
void
int
void
int
int
int
int
int
int
void
void

pfPipe::getSize(int *xs, int *ys)const;
pfPipe:setScreen(int scr);
pfPipe::getScreen()const;
pfPipe:setWSConnectionName(const char *name);
pfPipe::getWSConnectionName()const;
pfPipe::getChan(int i)const;
pfPipe::getNumChans()const;

pfPipe::getPWin(int i)const;
pfPipe::getNumPWins()const;
pfPipe::getHyperld()const;

pfPipe::movePWin(int where, pfPipeWindow *pw);
pfGetCurBuffer(void);

pfBuffer();

pfBuffer::
pfBuffer::
pfBuffer::
pfBuffer:
pfBuffer::
pfBuffer::
pfBuffer:
pfBuffer::
pfBuffer::
pfBuffer:
pfInitGfx

setScope(pfObject *obj, int scope);
getScope(pfObject *obj);
merge();

:unrefDelete(void *mem);

checkDelete(void *mem);
insert(void *parent, int index, void *child);

:remove(void *parent, void *child);

add(void *parent, void *child);
replace(void *parent, void *oldChild, void *newChild);

uselect();

(void);

Xix

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

XX

pfPipeWindow C++ API

A pfPipeWindow creates a window on the screen managed by a given pfPipe. Programs render to a
pfPipeWindow by attaching a pfChannel of that pfPipe to the pfPipeWindow. Various ways of control-
ling the behavior of pfPipeWindows are provided including specifying their position and size on the
screen, specifying user-specified callbacks to configure them in the DRAW process, controlling lists of
pfWindows that can draw into a singe pfPipewindow, and manipulating pfChannels assigned to the

pfPipeWindows.

new
pfType*
void

const char*
void

const char*
void

int

void

uint
pfState*
void

void

void

void

void

void

void

void

void

void

void
pfWindow*
void
pfWindow*
void

int

void

uint

void
Window
void

pfPipeWindow(pfPipe *p);

pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::
pfPipeWindow::

getClassType();

setName(const char *name);

getName();

setWSConnectionName(const char *name);
getWSConnectionName();

setMode(int mode, int val);

getMode(int mode);

setWinType(uint type);

getWinType();

getCurState();

setAspect(int X, int y);

getAspect(int *x, int *y);

setOriginSize(int xo, int yo, int xs, int ys);
setOrigin(int xo, int yo);

getOrigin(int *xo, int *yo);

setSize(int xs, int ys);

getSize(int *xs, int *ys);

setFullScreen();

getCurOriginSize(int *xo, int *yo, int *xs, int *ys);
getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);
setOverlayWin(pfWindow *ow);
getOverlayWin();

setStatsWin(pfWindow *sw);

getStatsWin();

setScreen(int screen);

getScreen();

setShare(int mode);

getShare();

setWSWindow (pfWSConnection dsp, pfWSWindow wsw);
getWSWindow();
setWSDrawable(pfWSConnection dsp, pfWSDrawable gxw);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

pfWSDrawable pfPipeWindow::getWSDrawable();
pfWSDrawable pfPipeWindow::getCurWSDrawable();

void pfPipeWindow::setFBConfigData(void *data);
void* pfPipeWindow::getFBConfigData();

void pfPipeWindow::setFBConfigAttrs(int *attr);

int* pfPipeWindow::getFBConfigAttrs();

void pfPipeWindow::setFBConfig(XVisuallnfo *vis);
XVisuallnfo* pfPipeWindow::getFBConfig();

void pfPipeWindow::setFBConfigld(int vId);

int pfPipeWindow::getFBConfigld();

void pfPipeWindow::setIndex(int index);

int pfPipeWindow::getIndex();

pfWindow* pfPipeWindow::getSelect();

void pfPipeWindow::setGLCxt(pfGLContext gc);
pfGLContext pfPipeWindow::getGLCxt();

void pfPipeWindow::setWinList(pfList *wl);

pfList* pfPipeWindow::getWinList()const;

int pfPipeWindow::attachWin(pfWindow *wl);

int pfPipeWindow::detachWin(pfWindow *w1);

int pfPipeWindow::attach(pfPipeWindow *pwl);

int pfPipeWindow::detach(pfPipeWindow *pwl);
pfWindow* pfPipeWindow::select();

void pfPipeWindow::swapBuffers();

pfFBConfig pfPipeWindow::chooseFBConfig(int *attr);

int pfPipeWindow:isOpen();

int pfPipeWindow::query(int which, int *dst);

int pfPipeWindow: mQuery(int *which, int *dst);
pfPipe* pfPipeWindow::getPipe();

int pfPipeWindow::getPipeIndex()const;

void pfPipeWindow::setConfigFunc(pfPWinFuncType func);
pfPWinFuncType pfPipeWindow::getConfigFunc();

int pfPipeWindow::getChanIndex(pfChannel *chan);
void pfPipeWindow::config();

void pfPipeWindow::open();

void pfPipeWindow::close();

void pfPipeWindow::closeGL();

int pfPipeWindow::removeChan(pfChannel *chan);
void pfPipeWindow::addChan(pfChannel *chan);

void pfPipeWindow::insertChan(int where, pfChannel *chan);
int pfPipeWindow:: moveChan(int where, pfChannel *chan);

XXi

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

XXii

pfChannel* pfPipeWindow::getChan(int which);
int pfPipeWindow::getNumChans()const;
void pfNodePickSetup(pfNode* node);

pfChannel C++ API

A pfChannel’s primary function is to define a viewing frustum which is used both for viewing and for
culling. A pfChannel can be associated with a pfPipe with new pfChannel. All aspects of the
pfChannel’s viewing frustum, field of view (FOV), aspect ratio, view point and viewing direction can be
modified. A custom culling volume for the pfChannel can be set (pfChannel::setCullPtope).

Different queries can be made about the pfChannel (pfChannel::get*) and user-defined traversal func-
tions and mode can be set (pfChannel::set*). Functions are provided to control IRIS Performer’s level-
of-detail (LOD) behavior by specifying view position, field-of-view, and viewport pixel size (-
pfChannel::setLOD* and pfChannel::getLOD*). pfChannel::setStress can be used to specify when the
system is at stress so that the LOD behavior is suitably modified.

The pfScene and the pfEarthSky that the pfChannel culls and draws are set using pfChannel::setScene
and pfChannel::setESky, respectively. The pfChannel’s pfGeoState and pfGeoStateTable can also be
specified. Screen to world-space ray intersections on a pfChannel’s scene can be performed using
pfChannel::pick and related functions.

IRIS Performer can also sort the database into "bins" which are rendered in a user-specified order. In
addition, geometry within a bin may be sorted by graphics state like texture or by range for front-to-back
or back-to-front rendering. Functions are provided to achieve this behavior (pfChannel::setBinSort and
friends).

new pfChannel(pfPipe *p);

pfType* pfChannel::getClassType();

int pfChannel::getFrustType()const;

void pfChannel::setAspect(int which, float xyaspect);

float pfChannel::getAspect();

void pfChannel::getFOV(float *fovH, float *fovV)const;

void pfChannel::setNearFar(float n, float f);

void pfChannel::getNearFar(float *n, float *f)const;

void pfChannel::getNear(pfVec3& ll, pfVec3& Ir, pfVec3& ul, pfVec3& ur)const;
void pfChannel::getFar(pfVec3& 11, pfVec3& Ir, pfVec3& ul, pfVec3& ur)const;
void pfChannel::getPtope(pfPolytope *dst)const;

int pfChannel::getEye(pfVec3& eye)const;

void pfChannel::makePersp(float |, float r, float b, float t);

void pfChannel::makeOrtho(float], float r, float b, float t);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfChannel::makeSimple(float fov);

void pfChannel::orthoXform(pfFrustum *fr, const pfMatrix& mat);
int pfChannel::contains(const pfVec3& pt)const;

int pfChannel::contains(const pfSphere *sphere)const;

int pfChannel::contains(const pfBox *box)const;

int pfChannel::contains(const pfCylinder *cyl)const;

void pfChannel::apply();

pfPipe* pfChannel::getPipe()const;

pfPipeWindow* pfChannel::getPWin();

int pfChannel::getPWinIndex();

void pfChannel::setFOV (float fovH, float fovV);

void pfChannel::setViewport(float], float r, float b, float t);

void pfChannel::getViewport(float *1, float *r, float *b, float *t)const;
void pfChannel::getOrigin(int *xo, int *yo)const;

void pfChannel::getSize(int *xs, int *ys)const;

void pfChannel::setShare(uint mask);

uint pfChannel::getShare()const;

void pfChannel::setAutoAspect(int which);

int pfChannel::getAutoAspect()const;

void pfChannel::getBaseFrust(pfFrustum *frust)const;

void pfChannel::setViewOffsets(pfVec3& xyz, pfVec3& hpr);
void pfChannel::getViewOffsets(pfVec3& xyz, pfVec3& hpr)const;
void pfChannel::setView(pfVec3& vp, pfVec3& vd);

void pfChannel::getView(pfVec3& vp, pfVec3& vd);

void pfChannel::setViewMat(pfMatrix& mat);

void pfChannel::getViewMat(pfMatrix& mat)const;

void pfChannel::getOffsetViewMat(pfMatrix& mat)const;

void pfChannel::setCullPtope(const pfPolytope *vol);

void pfChannel::getCullPtope(pfPolytope *vol)const;

void* pfChannel::allocChanData(int size);

void pfChannel::setChanData(void *data, size_t size);

void* pfChannel::getChanData()const;

size_t pfChannel::getChanDataSize()const;

void pfChannel::setTravFunc(int trav, pfChanFuncType func);
pfChanFuncType pfChannel::getTravFunc(int trav)const;

void pfChannel::setTravMode(int trav, int mode);

int pfChannel::getTravMode(int trav)const;

void pfChannel::setTravMask(int which, uint mask);

uint pfChannel::getTravMask(int which)const;

void pfChannel::setStressFilter(float frac, float low, float high, float s, float max);

XXiii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

pfEarthSky C++ API

XXiv

void
void
float
float
void
pfScene*
void
pfEarthSky*
void
pfGeoState*
void
pfList*
void
float
void
void
void
pfList*
int
pfFrameStats*
void

int

void

int

int

int

void

int

void
void

int

pfChannel::
pfChannel:
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel:
pfChannel::
pfChannel:
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel:
pfChannel::
pfChannel::
pfChannel::
pfChannel::

getStressFilter(float *frac, float *low, float *high, float *s, float *max)const;
setStress(float stress);

getStress()const;

getLoad()const;

setScene(pfScene *s);

getScene()const;

setESky(pfEarthSky *es);

getESky()const;

setGState(pfGeoState *gstate);

getGState()const;

:setGStateTable(pfList *list);

getGStateTable()const;

setLODAttr(int attr, float val);

getLODAttr(int attr)const;

setLODState(const pfLODState *1s);

getLODState(pfLODState *Is)const;

setLODStateList(pfList *stateList);

getLODStateList()const;

setStatsMode (uint mode, uint val);

getFStats();

setBinSort(int bin, int sortType, int *sortOrders);

getBinSort(int bin, int *sortOrders);

setBinOrder(int bin, int order);

getBinOrder(int bin)const;

attach(pfChannel *chanl);

detach(pfChannel *chanl);

passChanData();

pick(int mode, float pXx, float py, float radius, pfHit **pickList[]);
clear();

drawStats();

isect(pfNode *node, pfSegSet *segSet, pfHit **hits[], pfMatrix *ma);

These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects like fog and clouds.

new

pfEarthSky();

pfType* pfEarthSky::getClassType();

void

pfEarthSky::setMode(int mode, int val);

int pfEarthSky::getMode(int mode);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfEarthSky::setAttr(int mode, float val);

float pfEarthSky::getAttr(int mode);

void pfEarthSky::setColor(int which, float r, float g, float b, float a);
void pfEarthSky::getColor(int which, float *r, float *g, float *b, float *a);
void pfEarthSky::setFog(int which, pfFog *fog);

pfFog* pfEarthSky::getFog(int which);

pfNode C++ API
A pfNode is an abstract type which cannot be explicitly created. The pfNode routines operate on the
common aspects of other IRIS Performer node types which are derived from pfNode. IRIS Performer
provides four major traversals of the scene graph: ISECT, APP, CULL, and DRAW. These functions (-
pfNode::setTrav*) can be used to set which nodes are traversed, the functions to be invoked during the
traversal, when the traversal is initiated and what data is provided to the traversal.

pfType* pfNode::getClassType();

void pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);

pfNode* pfNode::find(const char *name, pfType *type);

int pfNode::setName(const char *name);

const char* pfNode::getName()const;

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);

void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post)const;

void pfNode::setTravData(int which, void *data);

void* pfNode::getTravData(int which)const;

uint pfNode::getTravMask(int which)const;

void pfNode::setBufferMode(int mode, int val);

int pfNode:getBufferMode(int mode)const;

pfGroup* pfNode::getParent(int i)const;

int pfNode::getNumParents()const;

void pfNode::setBound(pfSphere *sph, int mode);

int pfNode:getBound(pfSphere *sph);

pfNode* pfNode::lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

int pfNode::flatten(int mode);

pfNode* pfNode::clone(int mode);
pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

pfGroup C++ API
A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. The
functions allow children to be added to and deleted from a pfGroup node and queries to be made about a
pfGroup node’s children.

XXV

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

new pfGroup();
pfType* pfGroup::getClassType();

int pfGroup::addChild(pfNode *child);

int pfGroup:insertChild(int index, pfNode *child);

int pfGroup::removeChild(pfNode *child);

int pfGroup::replaceChild(pfNode *oldn, pfNode *newn);
int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);
pfNode* pfGroup::getChild(int i)const;

int pfGroup::getNumChildren()const;

int pfGroup::searchChild(pfNode *n)const;

pfScene C++ API

A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfGeoStates
can be attached to and removed from a pfScene.

new pfScene();

pfType* pfScene::getClassType();

void pfScene::setGState(pfGeoState *gs);
pfGeoState* pfScene::getGState()const;

void pfScene::setGStateIndex(int gs);
int pfScene::getGStateIndex()const;

pfSCS C++ API

These functions manipulate the matrix associated with a pfSCS node. A pfSCS node represents a static
coordinate system -- a modeling transform that cannot be changed once created.

new pfSCS(pfMatrix& m);
pfType* pfSCS::getClassType();
void pfSCS::getMat(pfMatrix& m);

const pfMatrix* pfSCS::getMatPtr();

pfDCS C++ AP

XXVi

These functions manipulate the matrix associated with a pfDCS node. A pfDCS node represents a
dynamic coordinate system -- a modeling transform that can be changed after it is created.

new pfDCS();

pfType* pfDCS::getClassType();

void pfDCS::getMat(pfMatrix& m);
const pfMatrix* pfDCS::getMatPtr();

void pfDCS::setMatType(uint val);
uint pfDCS::getMatType()const;

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void
void
void
void
void
void

new
pfType*
void
float

int

pfLODState*

pfLOD C++ AP

pfDCS::setMat(pfMatrix& m);
pfDCS::setCoord(pfCoord *c);
pfDCS::setRot(float h, float p, float r);
pfDCS::setTrans(float x, float y, float z);
pfDCS::setScale(float s);
pfDCS::setScale(float xs, float ys, float zs);

pfLODState C++ API
A pfLODState is a definition of how an LOD or group of LODs should respond to range and stress. The
functions form an interface to create LOD states, set their attributes and give them names.

pfLODState();
pfLODState::getClassType();
pfLODState::setAttr(int attr, float val);
pfLODState::getAttr(int attr);
pfLODState::setName(const char *name);
const char* pfLODState::getName()const;

pfLODState::find (const char *findName);

Level-of-detail is a technique for manipulating model complexity based on image quality and rendering
speed. IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Each
pfLOD node has the different levels-of-detail as its children. The pfGroup API can be used to manipulate
this child list. A particular LOD is picked based on a transition range. These transition ranges can be set
by pfLOD::setRange and pfLOD::setTransition to ensure smooth transitions between different LODs. A
given pfLOD can also be associated with a pfLODState.

new
pfType*
void

void

void

int

float

void

int

float

void
pfLODState*
void

pfLOD

pfLOD::
pfLOD::
pfLOD::
pfLOD::
pfLOD::
pfLOD::
pfLOD::
pfLOD::
pfLOD::

pfLOD
pfLOD
pfLOD

0

getClassType();
setCenter(pfVec3& c);
getCenter(pfVec3& c)const;
setRange(int index, float range);
getNumRanges()const;
getRange(int index)const;
setTransition(int index, float delta);
getNumTransitions()const;
getTransition(int index)const;
::setLODState(pfLODState *1s);
:getLODState()const;
usetLODStateIndex(int index);

XXVii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

int pfLOD::getLODStateIndex()const;
float pfLOD::evaluate(const pfChannel *chan, const pfMatrix *offset);

pfSwitch C++ API

The functions manipulate pfSwitch nodes which are interior nodes in the IRIS Performer node hierarchy
that select one, all, or none of their children. The mode of selection is set by pfSwitch::setVal.

new pfSwitch();

pfType* pfSwitch::getClassType();
int pfSwitch::setVal(int val);
int pfSwitch::getVal()const;

pfMorph C++ API

A pfMorph node manipulates the geometric attributes of pfGeoSets and other geometric primitives. Its
primary use is for geometric morphing where the colors, normals, texture coordinates and coordinates of
geometry are smoothly changed over time to simulate actions such as facial and skeletal animation, ocean
waves, morph level-of-detail, and special effects. The attributes of a pfMorph node, the method of access-
ing the source arrays of a pfMorph attribute (non-indexed or indexed) and the weights attached to these
attributes can be set and queried by these functions.

new pfMorph();
pfType* pfMorph:getClassType();

int pfMorph:setAttr(int index, int attr, int nelts, void *dst, int nsrcs, float *alist[], ushort *ilist[],
intn[]);

int pfMorph::getNumAttrs()const;

int pfMorph::getSrc(int index, int src, float **alist, ushort **ilist, int *n)const;

int pfMorph::getNumSrcs(int index)const;

void* pfMorph:getDst(int index)const;

int pfMorph::setWeights(int index, float *weights);

int pfMorph::getWeights(int index, float *weights)const;

void pfMorph::evaluate();

pfSequence C++ API

XXViii

A pfSequence node is a pfGroup node that sequences through a range of its children, drawing each child
for a certain length of time. Children are added to a pfSequence using normal pfGroup APL The length
of time to draw each child and the range of children to sequence through are set by these functions.

new pfSequence();

pfType* pfSequence::getClassType();

void pfSequence::setDuration(float sp, int nRep);

void pfSequence::getDuration(float *sp, int *nRep)const;
void pfSequence::setInterval(int imode, int beg, int e);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfSequence::getInterval(int *imode, int *beg, int *e)const;
void pfSequence::setMode(int m);

int pfSequence:getMode()const;

void pfSequence::setTime(int index, double time);

double pfSequence:getTime(int index)const;

int pfSequence::getFrame(int *rep)const;

pfLayer C++ API
A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar geometry on IRIS
platforms so as to prevent distracting artifacts caused by numerical precision when rendering coplanar
geometry on Z-buffer based machines. These functions create pfLayers and define the base layer and the
other (decal) layers.

new pfLayer();

pfType* pfLayer:getClassType();
void pfLayer::setBase(pfNode *n);
pfNode* pfLayer:getBase()const;

void pfLayer::setDecal (pfNode *n);
pfNode* pfLayer:getDecal()const;
void pfLayer:setMode(int mode);
int pfLayer::getMode()const;

pfPartition C++ API
A pfPartition node is a type of pfGroup node which organizes the scene graphs of its children into a
static data structure which can be more efficient for intersections. pfPartition::build constructs a spatial
partitioning based on the value of type. The other functions update a partition and control the values of its
attributes.

new pfPartition();
pfType* pfPartition::getClassType();
void pfPartition::setVal(int which, float val);
float pfPartition::getVal(int which);
void pfPartition::setAttr(int which, void *attr);
void* pfPartition::getAttr(int which);
void pfPartition::build();
void pfPartition::update();
pfLightPoint C++ API
A pfLightPoint is a pfNode that contains one or more light points. A light point is visible as one or more
self-illuminated small points but does not illuminate surrounding objects. These functions form an inter-
face to create light points and control various light point parameters like size, number, shape, direction,
color, position and intensity in a fog.

XXiX

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

XXX

new pfLightPoint(int n);

pfType* pfLightPoint:getClassType();

int pfLightPoint::getNumPoints()const;

void pfLightPoint::setSize(float s);

float pfLightPoint::getSize()const;

void pfLightPoint::setFogScale(float onset, float opaque);

void pfLightPoint::getFogScale(float *onset, float *opaque)const;
void pfLightPoint::setRot(float azim, float elev, float roll);

void pfLightPoint::getRot(float *azim, float *elev, float *roll)const;
void pfLightPoint::setShape(int dir, float he, float ve, float f);
void pfLightPoint::getShape(int *dir, float *he, float *ve, float *f)const;
pfGeoSet* pfLightPoint:getGSet()const;

void pfLightPoint::setPos(int i, pfVec3& p);

void pfLightPoint::getPos(int i, pfVec3& p)const;

void pfLightPoint::setColor(int i, pfVec4& clr);

void pfLightPoint::getColor(int i, pfVec4& clr)const;

pfLightSource C++ API
A pfLightSource is a pfNode which can illuminate geometry in a pfScene. The pfLightSource routines
create pfLightSources,

new
pfType*
void
void
void
void
void
void
void
void
void
void
void
void
void
void

int

void

int

pfLightSource();

pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::
pfLightSource::

getClassType();

setColor(int which, float 1, float g, float b);
getColor(int which, float* r, float* g, float* b);
setAmbient(float r, float g, float b);
getAmbient(float* r, float* g, float* b);
setPos(float X, float y, float z, float w);
getPos(float* x, float* y, float* z, float* w);
setAtten(float a0, float al, float a2);
getAtten(float* a0, float* al, float* a2);
setSpotDir(float x, float y, float z);
getSpotDir(float* x, float* y, float* z);
setSpotCone(float f1, float £2);
getSpotCone(float* f1, float* £2);

on();

off();

isOn();

setMode(int mode, int val);

getMode(int mode)const;

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfLightSource::setVal(int mode, float val);
float pfLightSource::getVal(int mode)const;
void pfLightSource::setAttr(int attr, void *obj);
void* pfLightSource:getAttr(int attr)const;

pfGeode C++ API
A pfGeode is a leaf node in the IRIS Performer scene graph hierarchy. It is a list of pfGeoSets which it
draws and intersects with. Functions are provided to creates pfGeode and manipulate the list of
pfGeoStates attached to them.

new pfGeode();

pfType* pfGeode:getClassType();

int pfGeode::addGSet(pfGeoSet *gset);

int pfGeode:insertGSet(int index, pfGeoSet *gset);

int pfGeode:replaceGSet(pfGeoSet *oldgs, pfGeoSet *newgs);
int pfGeode:removeGSet(pfGeoSet *gset);

pfGeoSet* pfGeode::getGSet(int i)const;

int pfGeode::getNumGSets()const;

pfText C++ API
A pfText node is a list of pfStrings much as a pfGeode is a list of pfGeoSets. The two APIs are also simi-
lar - a new pfText node can be created and the list of pfStrings attached to it can be manipulated by addi-
tion, insertion, removal or replacement.

new pfText();

pfType* pfText::getClassType();

int pfText::addString(pfString *str);

int pfText::insertString(int index, pfString *str);

int pfText:replaceString(pfString *oldgs, pfString *newgs);
int pfText:removeString(pfString *str);

pfString* pfText::getString(int i)const;

int pfText::getNumStrings()const;

pfBillboard C++ API
A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for representing complex objects which are roughly symmetrical about one or more axes. A pfBillboard
can contain any number of pfGeoSets which can be added to and removed from the pfBillboard using
pfGeode API. Further, the position, mode and axis of rotation of a pfBillboard can also be manipulated.

new piBillboard();

pfType* pfBillboard::getClassType();
void pfBillboard::setAxis(const pfVec3& axis);

XXXi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

void pfBillboard::getAxis(pfVec3& axis);

void pfBillboard::setMode(int mode, int val);

int pfBillboard::getMode(int mode);

void pfBillboard::setPos(int i, const pfVec3& pos);
void pfBillboard::getPos(int i, pfVec3& pos);

pfPath C++ API
A pfPath is a dynamically-sized array of pfNode pointers that defines a specific path or chain of nodes
through a scene graph. new pfPath creates a new path.

new pfPath();
pfType* pfPath:getClassType();
void pfCullResult(int result);

int pfGetParentCullResult(void);
int pfGetCullResult(void);
int pfCullPath(pfPath *path, pfNode *root, int mode);

pfTraverser C++ API
These functions are provided as a means to obtain information about the behavior of the IRIS Performer
traversal routines. They can be used to determine the pfChannel or pfNode currently being culled or
drawn, set the matrix for the current traversal, determine the path from the root of the scene graph to the
node currently being traversed and the results of culling the node currently being traversed and the
parent of the current node.

pfChannel* pfTraverser:getChan()const;

pfNode* pfTraverser::getNode()const;
void pfTraverser:getMat(pfMatrix & mat)const;
int pfTraverser::getIndex()const;

const pfPath* pfTraverser::getPath()const;

pfFrameStats C++ API
A pfFrameStats structure contains a pfStats class as well as additional statistics classes and support for
tracking frame related tasks. Many of the functions correspond directly to similar functions for the
pfStats class.

new pfFrameStats();

pfType* pfFrameStats::getClassType();

uint pfFrameStats::setClass(uint mask, int val);

uint pfFrameStats::getClass(uint emask);

uint pfFrameStats::setClassMode(int class, uint mask, int val);

uint pfFrameStats::getClassMode(int class);
void pfFrameStats::setAttr(int attr, float val);

XXXii

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

float
uint
uint
uint
void
void
void
void
void
int

int

void
void

LIBPR

pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats::
pfFrameStats:

Initialization Routines
These routines initialize and configure Performer to use multiple processors and graphics pipelines. All
libpf appliciations must call pfInit and pfConfig before creating a scene graph or initiating rendering
with pfFrame. pflInit initializes shared memory and the clock. pfConfig creates multiple processes based
on the requested configuration and sets up internal data structures for frame-accurate propagation of
data between the processes.

void prInit(void);
void prExit(void);

Shared Memory
This is an interface to creating and manipulating a shared memory area to house the data structures
shared by the different IRIS Performer processes. pfInitArenas creates a shared memory arena that can
be used to allocate memory, locks and semaphores from. The other functions free this arena, control the
directory where it is created, return handles to the shared memory and the semaphore memory and set
the base address and size of these shared memory areas.

getAttr(int attr);

getOpen(uint emask);

open(uint enmask);

close(uint enmask);

reset();

clear(uint which);
accumulate(pfFrameStats* src, uint which);
average(pfFrameStats* src, uint which, int num);
count(pfGeoSet *gset);

query(uint which, void *dst, int size);
mQuery(uint *which, void *dst, int size);
draw(pfChannel *chan);

:countNode(int class, uint mode, pfNode * node);

int pfInitArenas(void);
int pfFreeArenas(void);
PF_USPTR_T*

pfGetSemaArena(void);
void pfSemaArenaSize(size_t size);
size_t pfGetSemaArenaSize(void);
void pfSemaArenaBase(void *base);
void* pfGetSemaArenaBase(void);

XXXiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

void* pfGetShared Arena(void);

void pfShared ArenaSize(size_t size);
size_t pfGetShared ArenaSize(void);
void pfShared ArenaBase(void *base);
void* pfGetShared ArenaBase(void);
void pfTmpDir(char *dir);

const char * pfGetTmpDir(void);

Draw Modes
IRIS Performer supports a large number of drawing modes like shading, transparency, anti-aliasing and
coplanar geometry. These functions define these modes and enable and disable them.

void pfShadeModel(int model);

int pfGetShadeModel(void);

void pfTransparency(int type);

int pfGetTransparency(void);

void pfAlphaFunc(float ref, int func);

void pfGetAlphaFunc(float* ref, int* func);
void pfAntialias(int type);

int pfGetAntialias(void);

void pfDecal(int mode);

int pfGetDecal(void);

void pfCullFace(int cull);

int pfGetCullFace(void);

void pfEnable(int target);

void pfDisable(int target);

int pfGetEnable(int target);

void pfClear(int which, const pfVec4 col);
void pfClear(int which, const pfVec4 *col);
void pfGLOverride(int mode, float val);
float pfGetGLOverride(int mode);

GL Matrix Stack
These functions operate on the graphics library matrix stack. Various standard operations on matrices are
supported.

void pfScale(float x, float y, float z);
void pfTranslate(float x, float y, float z);
void pfRotate(int axis, float degrees);
void pfPushMatrix(void);

void pfPushldentMatrix(void);

XXXiV

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfPopMatrix(void);
void pfLoadMatrix(const pfMatrix m);
void pfMultMatrix(const pfMatrix m);

Notification
These functions provide a general purpose error message and notification handling facility for applica-
tions using IRIS Performer. User-defined functions can be used as notifiers.

void pfNotifyHandler(pfNotifyFuncType handler);
pfNotifyFuncType pfGetNotifyHandler(void);

void pfDefaultNotifyHandler(pfNotifyData *notice);
void pfNotifyLevel(int severity);

int pfGetNotifyLevel(void);

void pfNotify(int severity, int error, char *format,

Clock Routines
These routines provide a simple and consistent interface to the high resolution hardware-specific timers
available on most SGI platforms.

double pfGetTime(void);

pid_t pfInitClock(double time);
void pfWrapClock(void);
void pfClockName(char *name);
const char* pfGetClockName(void);
void pfClockMode(int mode);
int pfGetClockMode(void);
File Paths
These functions can be used to specify a UNIX-style file path to search for files in and to find files in such
a path.
void pfFilePath(const char* path);
const char* pfGetFilePath(void);
int pfFindFile(const char* file, char path[PF_MAXSTRING], int amode);

Video Clock Routines
These functions provide an interface to the video retrace clock attached to each graphics pipeline. Once a
video clock is initialised, its current value can be determined and it can be used to synchronize a process
with a time barrier.

int pfStartVClock(void);
void pfStopVClock(void);

XXXV

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

void pfInitVClock(int ticks);

void pfVClockOffset(int offset);

int pfGetVClockOffset(void);

int pfGetVClock(void);

int pfVClockSync(int rate, int offset);

pfWindow Routines
IRIS Performer provides a system-independent window paradigm. The prInitGfx function may be called
to initialize the graphics subsystem and acquire the graphics attributes Performer requires. Use
pfGetCurWin to gain access to the current window.

void prInitGfx(void);
pfWindow * pfGetCurWin(void);

Window System Routines
The pfWSConnection data structure encapsulates the workstation-independent frame-buffer (window)
facility in IRIS Performer. These functions serve to define specific windowing attributes necessary for the
application, to open and close windows, and to manipulate the window parameters.

void pfCloseWSConnection(pfWSConnection dsp);

pfFBConfig pfChooseFBConfig(pfWSConnection dsp, int screen, int *attr);

pfFBConfig pfChooseFBConfigData(void **dst, pfWSConnection dsp, int screen, int *attr,
void *arena);

void pfSelectWSConnection(pfWSConnection);

pfWSConnection pfOpenWSConnection(const char *str, int shared);
pfWSConnection pfOpenScreen(int screen, int shared);
pfWSConnection pfGetCurWSConnection(void);

const char* pfGetWSConnectionName (pfWSConnection);
void pfGetScreenSize(int screen, int *x, int *y);

Query Features
Use the QueryFeature routines to determine the presence, absence, or limitations of features in the under-
lying graphics implementation, like the availability of attenuation in the lighting model or the availability
of multiple graphics pipes.

int pfQueryFeature(int which, int *dst);
int pfMQueryFeature(int *which, int *dst);
void pfFeature(int which, int val);

Query System
Use the QuerySys routines to determine the capacity and limitations of the underlying graphics imple-
mentation, like the size of texture memory or the number of stencil planes available.

XXXVi

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

int pfQuerySys(int which, int *dst);
int pfMQuerySys(int *which, int *dst);
pfObject C++ API
A pfObject is the abstract data type from which the major IRIS Performer data structures are derived.

Although pfObjects cannot be created directly, most IRIS Performer data structures are derived from
them and thus inherit the functionality of the pfObject routines and those for pfMemory.

pfType* pfObject::getClassType();

void pfObject::setCopyFunc(pfCopyFuncType func);
pfCopyFuncType pfObject::getCopyFunc();

void pfObject::setDeleteFunc(pfDeleteFuncType func);
pfMergeFuncType pfObject:getMergeFunc();

void pfObject::setMergeFunc(pfMergeFuncType func);
pfDeleteFuncType pfObject:getDeleteFunc();

void pfObject::setPrintFunc(pfPrintFuncType func);
pfPrintFuncType pfObject::getPrintFunc();

int pfObject::getGLHandle(const pfObject *obj);

void pfObject::setUserData(pfObject* obj, void* data);
void* pfObject::getUserData(pfObject* obj);

pfType C++ API
Al IRIS Performer data types that derive from pfObject/pfMemory have an associated pfType. The
pfType can be used to determine the class ancestory of both built-in and add-on data types.

new pfType(pfType *parent, char *name);
pfType* pfType:getParent();
int pfType:iisDerivedFrom(pfType *ancestor);
void pfType:setMaxTypes(int n);
pfFog* pfGetCurFog(void);
pfFog C++ API
pfFog is used to simulate atmospheric phenomena such as fog and haze and for depthcueing. The fog

color is blended with the color that is computed for rendered geometry based on the geometry’s range
from the eyepoint. IRIS Performer provides functions for defining fog color, ranges, and other attributes.

new(void *arena) pfFog();

pfType* pfFog:getClassType();

void pfFog::setFogType(int type);

int pfFog::getFogType()const;

void pfFog:setRange(float onset, float opaque);

void pfFog:getRange(float* onset, float* opaque)const;

XXXVii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
void
void
void
void
void
float
void
pfColortable*

pfFog::setOffsets(float onset, float opaque);

pfFog::getOffsets(float *onset, float *opaque)const;

pfFog::setRamp(int points, float* range, float* density, float bias);
pfFog::getRamp(int* points, float* range, float* density, float* bias)const;
pfFog::setColor(float 1, float g, float b);

pfFog::getColor(float* r, float* g, float* b)const;

pfFog::getDensity(float range)const;

pfFog::apply();

pfGetCurCtab(void);

pfColortable C++ API

A pfColortable is a “color indexing’ mechanism used by pfGeoSets. pfGeoSets can be drawn with the
colors defined in the current globally active pfColortable rather than by using the pfGeoset’s own local
color list. This facility can be used for instant large-scale color manipulation of geometry in a scene.

new(void *arena) pfColortable(int size);

PfT ype*
int

int

int
pfVec4*
void

pfColortable::getClassType();
pfColortable::getCtabSize()const;
pfColortable::setColor(int index, pfVec4& acolor);
pfColortable::getColor(int index, pfVec4& acolor)const;
pfColortable::getColors()const;

pfColortable::apply();

pfDataPool C++ API

A pfDataPool is similar to a shared memory malloc arena but adds the ability to lock/unlock pfDataPool
memory for multiprocessing applications. The pfDataPool functions allow related or unrelated processes
to share data and provide a means for locking data blocks to eliminate data collision.

XXXViii

pfDataPool*
pfDataPool*
pfType*
const char*
void

void*

int

volatile void*
volatile void*
int

int

int

int

pfDataPool::create(uint size, char* name);
pfDataPool::attach(char* name);
pfDataPool::getClassType();
pfDataPool::getName();
pfDataPool::setAttachAddr(void *addr);
pfDataPool::getAttachAddr();
pfDataPool::getDPoolSize();
pfDataPool::alloc(uint size, int id);
pfDataPool:find(int id);
pfDataPool:free(void* dpmem);
pfDataPool:release();
pfDataPool::lock(void* dpmem);
pfDataPool::lock(void* dpmem, int spins, int block);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfDataPool::unlock(void* dpmem);
int pfDataPool::test(void* dpmem);
pfDispList* pfGetCurDList(void);

void pfDrawGLODbj(GLOBJECT obj);

pfDispList C++ API
A pfDispList is a display list that once open, captures certain libpr commands, such as pfTransparency,
pfTexture::apply, or pfGeoSet::draw. After it is closed, it may be executed through Performer to perform
the recorded commands. pfDispLists are designed for multiprocessing, where one process builds a
display list of the visible scene and another process draws it.

new(void *arena) pfDispList(int type, int size);

pfType* pfDispList::getClassType();

int pfDispList::getSize()const;

int pfDispList::getDListType()const;

int pfDispList:draw();

void pfDispList::open();

void pfDispList::close();

void pfDispList::reset();

void pfDispList::addCmd(int cmd);

void pfDispList::callback(pfDListFuncType callback, int bytes, void* data);

pfFont C++ API
The pfFont facility provides the capability to load fonts for 3-D rendering with the string drawing rou-
tines from pfString and pfText. IRIS Performer uses this facility to provide wireframe, flat, extruded,
and textured-quad fonts in three dimensions.

new(void *arena) pfFont();

pfType* pfFont:getClassType();

void pfFont::setCharGSet(int ascii, pfGeoSet *gset);
pfGeoSet* pfFont::getCharGSet(int ascii);

void pfFont::setCharSpacing(int ascii, pfVec3 & spacing);
const pfVec3* pfFont::getCharSpacing(int ascii);

void pfFont:setAttr(int which, void *attr);

void* pfFont::getAttr(int which);

void pfFont:setVal(int which, float val);

float pfFont:getVal(int which);

void pfFont:setMode(int mode, int val);

int pfFont:getMode(int mode);

pfGeoSet C++ API
The pfGeoSet (short for "Geometry Set") is a fundamental IRIS Performer data structure. Each pfGeoSet
is a collection of geometry with one primitive type, such as points, lines, triangles, and homogeneous
attribute bindings, such as "untextured with colors per vertex and normals per primitive," so that each
pfGeoSet may be presented to the graphics subsystem with as little overhead as possible, using an

XXXiX

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

x|

optimized draw routine, one for each type of pfGeoSet.

new(void *arena) pfGeoSet();

pfType* pfGeoSet::getClassType();

void pfGeoSet::setNumPrims(int n);

int pfGeoSet::getNumPrims()const;

void pfGeoSet::setPrimType(int type);

int pfGeoSet::getPrimType()const;

void pfGeoSet::setPrimLengths(int *lengths);

int* pfGeoSet::getPrimLengths()const;

void pfGeoSet:setAttr(int attr, int bind, void* alist, ushort* ilist);
int pfGeoSet::getAttrBind(int attr)const;

void pfGeoSet::getAttrLists(int attr, void** alist, ushort** ilist)const;
int pfGeoSet::getAttrRange(int attr, int *min, int *max)const;
void pfGeoSet::setDrawMode(int mode, int val);

int pfGeoSet::getDrawMode(int mode)const;

void pfGeoSet::setGState(pfGeoState *gstate);

pfGeoState* pfGeoSet::getGState()const;

void pfGeoSet:setGStateIndex(int id);

int pfGeoSet::getGStateIndex()const;

void pfGeoSet:setHlight(pfHighlight *hlight);

pfHighlight* pfGeoSet::getHlight()const;

void pfGeoSet:setLineWidth(float width);

float pfGeoSet::getLineWidth()const;

void pfGeoSet:setPntSize(float s);

float pfGeoSet::getPntSize()const;

void pfGeoSet::setlsectMask(uint mask, int setMode, int bitOp);
uint pfGeoSet::getlsectMask()const;

void pfGeoSet::setDrawBin(short bin);

int pfGeoSet::getDrawBin()const;

void pfGeoSet::setBound(pfBox* box, int mode);

int pfGeoSet::getBound(pfBox* box);

void pfGeoSet:draw();

int pfGeoSet::query(uint which, void *dst)const;

int pfGeoSet:mQuery(uint *which, void *dst)const;

int pfGeoSet:isect(pfSegSet *segSet, pfHit **hits[]);

void pfGeoSet::drawHlightOnly();

void pfGeoSet::setPassFilter(uint mask);

uint pfGeoSet::getPassFilter();

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

pfHit C++ API

These routines support the testing of intersections of line segments with geometry in pfGeoSets.

pfType*
int
int

pfHit::getClassType();
pfHit:query(uint which, void *dst)const;
pfHit:mQuery(uint *which, void *dst)const;

pfGeoState* pfGetCurGState(void);
pfGeoState* pfGetCurlndexedGState(int index);

pfList*
pfGeoState C++ API

pfGetCurGStateTable(void);

pfGeoState is an encapsulation of libpr graphics modes and attributes, and is normally bound to
pfGeoSets. The pfGeoState represents a complete graphics state, allowing IRIS Performer to draw
pfGeoSets in an arbitrary order and evaluate state changes in a lazy fashion to reduce overhead caused
by changing graphics state.

new(void *arena) pfGeoState();

pfType*
void

int

int

int

void
float
float
float
void
uint
void
void*
void*
void*
void
void
void
void
pfHighlight *

pfHighlight C++ API

pfGeoState:
pfGeoState::
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:
pfGeoState:

:getClassType();

setMode(int attr, int a);

:getMode(int attr)const;

:getCurMode(int attr)const;

:getCombinedMode(int attr, const pfGeoState *combState)const;
:setVal(int attr, float a);

:getVal(int attr)const;

:getCurVal(int attr)const;

:getCombinedVal(int attr, const pfGeoState *combState)const;
:setInherit(uint mask);

:getInherit()const;

:setAttr(int attr, void* a);

:getAttr(int attr)const;

:getCurAttr(int attr)const;

:getCombinedAttr(int attr, const pfGeoState *combState)const;
:load();

:apply();

:makeBasic();

:applyTable(pfList *gstab);

pfGetCurHlight(void);

IRIS Performer supports a mechanism for highlighting individual objects in a scene with a variety of spe-
cial drawing styles that are activated by applying a pfHighlight state structure. Highlighting makes use
of outlining of lines and polygons and of filling polygons with patterned or textured overlays.

xli

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

xlii

new(void *arena) pfHighlight();

pfType*
void
uint
pfGeoState*
void
void
int
void
void
void
float
void
void
void
float
void
float
void
ushort
void
void
void
pfTexture*
void
pfTexEnv*
void
pfTexGen*
void
int

pfLight C++ API

pfHighlight::getClassType();

pfHighlight::setMode(uint mode);
pfHighlight::getMode()const;
pfHighlight::getGState()const;
pfHighlight::setGState(pfGeoState *gstate);
pfHighlight::setGStateIndex(int id);
pfHighlight::getGStateIndex()const;
pfHighlight::setColor(uint which, float r, float g, float b);
pfHighlight::getColor(uint which, float *r, float *g, float *b)const;
pfHighlight::setAlpha(float a);
pfHighlight::getAlpha()const;
pfHighlight::setNormalLength(float len, float bboxScale);
pfHighlight::getNormalLength(float *len, float *bboxScale)const;
pfHighlight::setLineWidth(float width);
pfHighlight::getLineWidth()const;
pfHighlight::setPntSize(float size);
pfHighlight::getPntSize()const;
pfHighlight::setLinePat(int which, ushort pat);
pfHighlight::getLinePat(int which)const;
pfHighlight:setFillPat(int which, uint *fillPat);
pfHighlight::getFillPat(int which, uint *pat)const;
pfHighlight::setTex(pfTexture *tex);
pfHighlight::getTex()const;
pfHighlight::setTEnv(pfTexEnv *tev);
pfHighlight::getTEnv()const;
pfHighlight::setTGen(pfTexGen *tgen);
pfHighlight::getTGen()const;

pfHighlight::apply();

pfGetCurLights(pfLight *lights|PF_MAX_LIGHTS]);

A pfLight is a light source that illuminates scene geometry, generating realistic shading effects. A
pfLight cannot itself be seen but attributes such as color, spotlight direction, and position can be set to
provide illuminative effects on scene geometry.

new(void *arena) pfLight();

pfType*
void
void

pfLight:getClassType();
pfLight::setColor(int which, float r, float g, float b);
pfLight::getColor(int which, float* r, float* g, float* b)const;

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void
void
void
void
void
void
void
void
void
void
void
void
int
pfLightModel*

pfLight::
pfLight::
pfLight::
pfLight:
pfLight:
pfLight::
pfLight::
pfLight:
pfLight:
pfLight::
pfLight:
pfLight:
pfLight::

setAmbient(float r, float g, float b);
getAmbient(float* r, float* g, float* b)const;
setPos(float x, float y, float z, float w);
getPos(float* x, float* y, float* z, float* w)const;
setAtten(float a0, float al, float a2);
getAtten(float* a0, float* al, float* a2)const;
setSpotDir(float x, float y, float z);
getSpotDir(float* x, float* y, float* z)const;
setSpotCone(float f1, float £2);
getSpotCone(float* f1, float* f2)const;

on();

off();

isOn();

pfGetCurLModel(void);

pfLightModel C++ API
A pfLightModel defines characteristics of the hardware lighting model used to illuminate geometry, such
as attenuation, local vs. global lighting model, and ambient energy.

new(void *arena) pfLightModel();

pfLightModel::getClassType();
pfLightModel::setLocal(int 1);
pfLightModel::getLocal()const;
pfLightModel::setTwoSide(int t);
pfLightModel::getTwoSide()const;
pfLightModel::setAmbient(float 1, float g, float b);
pfLightModel::getAmbient(float* r, float* g, float* b)const;
pfLightModel::setAtten(float a0, float al, float a2);
pfLightModel::getAtten(float* a0, float* al, float* a2)const;
pfLightModel::apply();

pfGetCurLPState(void);

pfLPointState C++ API
A pfLPointState is a libpr data structure which, in conjunction with a pfGeoSet of type PFGS_POINTS,
supports a sophisticated light point primitive type. Examples of light points are stars, beacons, strobes,
and taxiway lights. Light points are different from light sources in that a pfLight is not itself visible but
illuminates scene geometry, whereas a light point is visible as a self-illuminated small point that does not
illuminate surrounding objects.

pfType*
void

int

void

int

void
void
void
void
void
pfLPointState*

new(void *arena) pfLPointState();
pfLPointState::getClassType();

pfType*

xliii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

xliv

void
int

void
float
void
void

void
void
void
void
void
pfMaterial*

pfMaterial C++ API

pfLPointState::
pfLPointState::
pfLPointState::
pfLPointState::
pfLPointState::
pfLPointState::

setMode(int mode, int val);

getMode(int mode)const;

setVal(int attr, float val);

getVal(int attr)const;

setShape(float horiz, float vert, float roll, float falloff, float ambient);
getShape(float *horiz, float *vert, float *roll, float *falloff,

float *ambient)const;

pfLPointState
pfLPointState
pfLPointState
pfLPointState
pfLPointState

usetBackColor(float r, float g, float b, float a);
:getBackColor(float *r, float *g, float *b, float *a);
=apply();

:makeRangeTex(pfTexture *tex, int size, pfFog* fog);
:makeShapeTex(pfTexture *tex, int size);

pfGetCurMtl(int side);

In conjunction with other lighting parameters, a pfMaterial defines the appearance of illuminated
geometry. A pfMaterial defines the reflectance characteristics of surfaces such as diffuse color and shini-

ness.

new(void *arena) pfMaterial();

pfType*
void

int

void
float
void
float
void
void
void

int

void
pfSprite*

pfSprite C++ API

pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial::
pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial:
pfMaterial:

:getClassType();

:setSide(int side);

:getSide();

:setAlpha(float alpha);
:getAlpha();
:setShininess(float shininess);

getShininess();

:setColor(int acolor, float r, float g, float b);
:getColor(int acolor, float* r, float* g, float* b);
:setColorMode(int side, int mode);
:getColorMode(int side);

:apply();

pfGetCurSprite(void);

pfSprite is an intelligent transformation and is logically grouped with other libpr transformation primi-
tives like pfMultMatrix. pfSprite rotates geometry orthogonal to the viewer, so the viewer only sees the
"front" of the model. As a result, complexity is saved in the model by omitting the "back" geometry. A
further performance enhancement is to incorporate visual complexity in a texture map rather than in
geometry. Thus, on machines with fast texture mapping, sprites can present very complex images with
very little geometry. Classic examples of textured sprites use a single quadrilateral that when rotated
about a vertical axis simulate trees and when rotated about a point simulate clouds or puffs of smoke.

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

new(void *arena) pfSprite();

pfType*
void
int
void
void
void
void
void
void
pfState*
void
void
void
void
void
void
uint
void
void
void
void
void
void
void
void
void
float

pfState C++ API

pfSprite::getClassType();
pfSprite::setMode(int which, int val);
pfSprite::getMode(int which)const;
pfSprite::setAxis(float x, float y, float z);
pfSprite::getAxis(float *x, float *y, float *z);
pfSprite::begin();

pfSprite::end();

pfSprite::position(float x, float y, float z);
pfInitState(usptr_t* arena);
pfGetCurState(void);
pfPushState(void);

pfPopState(void);
pfGetState(pfGeoState *gstate);
pfFlushState(void);

pfBasicState(void);

pfOverride(uint mask, int val);
pfGetOverride(void);
pfModelMat(pfMatrix mat);
pfGetModelMat(pfMatrix mat);
pfViewMat(pfMatrix mat);
pfGetViewMat(pfMatrix mat);
pfTexMat(pfMatrix mat);
pfGetTexMat(pfMatrix mat);
pfInvModelMat(pfMatrix mat);
pfGetInvModelMat(pfMatrix mat);
pfNearPixDist(float pd);
pfGetNearPixDist(void);

IRIS Performer manages a subset of the graphics library state for convenience and improved perfor-
mance, and thus provides its own API for manipulating graphics state such as transparency, antialiasing,
or fog. Attributes not set within a pfGeoState are inherited from the pfState.

new(NULL)
pfType*
void

void

void

pfString C++ API

pfState();
pfState::getClassType();
pfState::select();
pfState::load();
pfState::attach(pfState *statel);

pfString provides a pfGeoSet like facility for encapsulating geometry to display a string in 3-D with attri-
butes such as color, arbitrary transformation matrix, and font (see pfFont).

xlv

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

xlvi

new(void *arena)

pfType*

int

void

int

void

pfFont*

void

const char*

const pfGeoSet*

const pfVec3*

void

void

void

const pfGeoState*

void

void

void

const pfBox*

void

void

void

uint

void

void

int

pfTexture*
pfTexture C++ API

pfString();

pfString::getClassType();
pfString::getStringLength()const;

pfString::setMode(int mode, int val);
pfString::getMode(int mode)const;
pfString::setFont(pfFont* fnt);

pfString::getFont()const;

pfString::setString(const char* cstr);
pfString::getString()const;

pfString::getCharGSet(int index)const;
pfString::getCharPos(int index)const;
pfString::setSpacingScale(float sx, float sy, float sz);
pfString::getSpacingScale(float *sx, float *sy, float *sz)const;
pfString::setGState(pfGeoState *gs);
pfString::getGState()const;

pfString::setColor(float r, float g, float b, float a);
pfString::getColor(float *r, float *g, float *b, float *a)const;
pfString::setBBox(const pfBox* newbox);
pfString::getBBox()const;

pfString::setMat(const pfMatrix & mat);
pfString::getMat(pfMatrix & mat)const;
pfString::setlsectMask(uint mask, int setMode, int bitOp);
pfString::getIsectMask()const;

pfString::draw();

pfString::flatten();

pfString:isect(pfSegSet *segSet, pfHit **hits[]);
pfGetCurTex(void);

pfTexture encapsulates texturing data and attributes such as the texture image itself, the texture data for-
mat and the filters for proximity and distance.

new(void *arena)
pfType*

void

const char*

void

void

void

uint*

pfTexture();

pfTexture::getClassType();

pfTexture::setName(const char *name);

pfTexture::getName()const;

pfTexture:setlmage(uint* image, int comp, int sx, int sy, int sz);
pfTexture::getlmage(uint* image, int* comp, int* sx, int* sy, int* sz)const;
pfTexture::setLoadImage(uint* image);

pfTexture::getLoadImage()const;

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfTexture::setBorderColor(pfVec4 clr);

void pfTexture::getBorderColor(pfVec4 *clr);

void pfTexture:setBorderType(int type);

int pfTexture::getBorderType();

void pfTexture::setFormat(int format, int type);

int pfTexture::getFormat(int format)const;

void pfTexture:setFilter(int filt, int type);

int pfTexture:getFilter(int filt)const;

void pfTexture::setRepeat(int wrap, int type);

int pfTexture::getRepeat(int wrap)const;

void pfTexture:setSpline(int type, pfVec2 *pts, float clamp);

void pfTexture::getSpline(int type, pfVec2 *pts, float *clamp)const;

void pfTexture:setDetail(int 1, pfTexture *detail);

void pfTexture::getDetail(int *1, pfTexture **detail)const;

pfTexture* pfTexture:getDetail Tex()const;

void pfTexture:setDetailTexTile(int j, int k, int m, int n, int scram);

void pfTexture::getDetailTexTile(int *j, int *k, int *m, int *n, int *scram)const;

void pfTexture:setList(pfList *list);

pfList* pfTexture::getList()const;

void pfTexture:setFrame(float frame);

float pfTexture::getFrame()const;

void pfTexture::setLoadMode(int mode, int val);

int pfTexture::getLoadMode(int mode)const;

void pfTexture:setLevel(int level, pfTexture* ltex);

pfTexture* pfTexture:getLevel(int level);

void pfTexture::setLoadOrigin(int which, int xo, int yo);

void pfTexture::getLoadOrigin(int which, int *xo, int *yo);

void pfTexture::setLoadSize(int xs, int ys);

void pfTexture::getLoadSize(int *xs, int *ys)const;

void pfTexture:apply();

void pfTexture:format();

void pfTexture:load();

void pfTexture:loadLevel(int level);

void pfTexture::subload(int source, uint *image, int xsrc, int ysrc, int xdst, int ydst,
int xsize, int ysize);

void pfTexture::subloadLevel(int source, uint *image, int xsrc, int ysrc, int xdst, int ydst,
int xsize, int ysize, int level);

int pfTexture:loadFile(char* fname);

void pfTexture:freeImage();

void pfTexture:idle();

xlvii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

int pfTexture::isLoaded()const;
int pfTexture::isFormatted()const;
pfTexEnv* pfGetCurTEnv(void);

pfTexEnv C++ API

pfTexEnv encapsulates the texture environment and how the texture should interact with the colors of
the geometry to which it is bound, i.e. how graphics coordinates are transformed into texture coordinates.

new(void *arena) pfTexEnv();

pfType* pfTexEnv::getClassType();

void pfTexEnv:setMode(int mode);

int pfTexEnv::getMode()const;

void pfTexEnv::setComponent(int comp);

int pfTexEnv::getComponent()const;

void pfTexEnv::setBlendColor(float 1, float g, float b, float a);
void pfTexEnv::getBlendColor(float* 1, float* g, float* b, float* a);
void pfTexEnv:apply();

pfTexGen* pfGetCurTGen(void);

pfTexGen C++ API

The pfTexGen capability is used to automatically generate texture coordinates for geometry, typically for
special effects like projected texture, reflection mapping, and lightpoints (see pfLPointState).

new(void *arena) pfTexGen();

pfType* pfTexGen::getClassType();

void pfTexGen:setMode(int texCoord, int mode);

int pfTexGen::getMode(int texCoord)const;

void pfTexGen::setPlane(int texCoord, float x, float y, float z, float d);
void pfTexGen::getPlane(int texCoord, float* x, float* y, float* z, float* d);
void pfTexGen:apply();

pfCycleMemory C++ API

xlviii

The pfCycleMemory data type is the low-level memory object used by pfCycleBuffers to provide the
illusion of a single block of memory that can have a different value for each process that references it at
one instant in time. For example, a pfGeoSet might have vertex position, normal, color, or texture arrays
that are being morphed in process A, culled in process B, drawn in process C, and intersected with in pro-
cess D, all with different values due to temporal reasons. Refer to the pfCycleBuffer overview for a
description of how the two features work in concert.

pfType* pfCycleMemory::getClassType();
pfCycleBuffer* pfCycleMemory::getCBuffer();
int pfCycleMemory::getFrame()const;

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

pfCycleBuffer C++ API

pfCycleBuffer supports efficient management of dynamically modified data in a multi-stage multipro-
cessed pipeline. A pfCycleBuffer logically contains multiple pfCycleMemorys. Each process has a global
index which selects the currently active pfCycleMemory in each pfCycleBuffer. This index can be
advanced once a frame by pfCycleBuffer::setCurlndex so that the buffers "cycle". By advancing the index
appropriately in each pipeline stage, dynamic data can be frame-accurately propagated down the pipe-

line.

new(void *arena) pfCycleBuffer(size_t nbytes);
pfCycleBuffer:getClassType();

pfType*

pfCycleMemory*

void*
void
void
int
int
int
int
int
void

pfCycleBuffer*

pfCycleBuffer:getCMem(int index)const;

pfCycleBuffer::getCurData()const;
pfCycleBuffer::changed();
pfCycleBuffer:init(void *data);
pfCycleBuffer:config(int numBuffers);
pfCycleBuffer:getConfig();
pfCycleBuffer:frame();
pfCycleBuffer:getFrameCount();
pfCycleBuffer:getCurlndex();
pfCycleBuffer:setCurlndex(int index);

pfMemory C++ API

pfCycleBuffer:getCBuffer(void *data);

A pfMemory is the data type from which the major IRIS Performer types are derived and also provides
the primary mechanism for allocating memory used by pfMalloc.

pfType*
void*
void*
char*
void*
size_t
void*

void

void*
pfMemory*
const char*
pfType*
int

int

pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::
pfMemory::

getClassType();

malloc(size_t nbytes, void *arena);
calloc(size_t numelem, size_t elsize, void *arena);
strdup(const char *str, void *arena);
realloc(void *data, size_t nbytes);
getSize(void *data);

getArena(void *data);

free(void *data);

getData(const void *data);

getMemory(const void *data);
getTypeName(const void *data);
getType(const void *data);

isOfType(const void *data, pfType *type);
isExactType(const void *data, pfType *type);

xlix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

int pfMemory::ref(void* mem);
int pfMemory::unref(void* mem);
ushort pfMemory::getRef(const void* mem);
int pfMemory::compare(const void* mem1, const void* mem?2);
int pfMemory::print(const void* mem, uint travMode, uint verbose, FILE* file);
int pfMemory::checkDelete(void* mem);
int pfMemory::unrefDelete(void* mem);
int pfMemory::copy(void* dst, const void* src);
pfFile* pfOpenFile(char* fname, int oflag,
pfFile C++ API

pfFile provides a non-blocking, multiprocessing mechanism for file I/O with a similar interface to the
standard UNIX file I/O functions. The difference is that these routines return immediately without block-
ing while the physical file-system access operation completes and also that instead of an integer file
descriptor, a pfFile handle is used.

pfFile* pfFile:create(char* fname, mode_t mode);
pfType*
pfFile::getClassType();
int pfFile::getStatus(int attr)const;
int pfFile:read(char* buf, int nbyte);
int pfFile:write(char* buf, int nbyte);
off t pfFile:seek(off_t off, int whence);
int pfFile::close();

pfList C++ API
A pfList is a dynamically-sized array of arbitrary, but homogeneously-sized, elements. IRIS Performer
provides the facility to create, manipulate, and search a pfList.

new(void *arena) pfList(int eltSize, int listLength);

pfType* pfList:getClassType();

int pfList::getEltSize()const;
void** pfList:getArray()const;

void pfList:setArrayLen(int alen);
int pfList:getArrayLen()const;
void pfList::setNum (int newNum);
int pfList::getNum()const;

void pfList::set(int index, void *elt);
void* pfList::get(int index)const;
void pfList:reset();

void pfList:combine(const pfList *a, const pfList *b);

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

void
void
int
int
void
int
int
void
int

pfWindow C++ API

pfList::add(void *elt);
pfList::insert(int index, void *elt);

pfList::searc

h(void *elt)const;

pfList::remove(void *elt);
pfList::removelndex(int index);
pfList::move(int index, void *elt);
pfList::fastRemove(void *elt);
pfList::fastRemovelndex(int index);
pfList::replace(void *oldElt, void *newElt);

These functions provide a single API for creating and managing windows that works across the IRIS GL,
IRIS GLX Mixed Mode, and OpenGL-X environments. Window system independent types have been
provided to match the X Window System types to provide complete portability between the IRIS GL and
OpenGL-X windowing environments.

new(void *arena) pfWindow();

pfType*
void

const char*
void

int

void

uint
pfState*
void

void

void

void

void

void

void

void

void

void

void
pfWindow*
void
pfWindow*
void

pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::
pfWindow::

getClassType();

setName(const char *name);
getName()const;

setMode(int mode, int val);

getMode(int mode)const;
setWinType(uint type);
getWinType()const;

getCurState()const;

setAspect(int x, int y);

getAspect(int *x, int *y)const;
setOriginSize(int xo, int yo, int xs, int ys);
setOrigin(int xo, int yo);

getOrigin(int *xo, int *yo)const;
setSize(int xs, int ys);

getSize(int *xs, int *ys)const;
setFullScreen();

getCurOriginSize(int *xo, int *yo, int *xs, int *ys);
getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);
setOverlayWin(pfWindow *ow);
getOverlayWin()const;
setStatsWin(pfWindow *ow);
getStatsWin()const;

setScreen(int s);

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

int pfWindow::getScreen()const;

void pfWindow::setShare(uint mode);

uint pfWindow::getShare()const;

void pfWindow::setWSWindow (pfWSConnection dsp, pfWSWindow wsWin);
pfWSWindow pfWindow::getWSWindow()const;

void pfWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable wsWin);
pfWSDrawable pfWindow::getWSDrawable()const;

pfWSDrawable pfWindow::getCurWSDrawable()const;

void pfWindow::setWSConnectionName(const char *name);

const char* pfWindow::getWSConnectionName()const;

void pfWindow::setFBConfigData(void *data);

void* pfWindow::getFBConfigData();

void pfWindow::setFBConfigAttrs(int *attr);

int* pfWindow::getFBConfigAttrs()const;

void pfWindow::setFBConfig(pfFBConfig vinfo);
pfFBConfig pfWindow::getFBConfig()const;

void pfWindow::setFBConfigld(int vId);

int pfWindow::getFBConfigld()const;

void pfWindow::setIndex(int index);

int pfWindow::getIndex()const;

pfWindow* pfWindow::getSelect();

void pfWindow::setGLCxt(pfGLContext gCxt);
pfGLContext pfWindow::getGLCxt()const;

void pfWindow::setWinList(pfList *wl);
pfList* pfWindow::getWinList()const;

void pfWindow::open();

void pfWindow::close();

void pfWindow::closeGL();

int pfWindow::attach(pfWindow *wl);

int pfWindow::detach(pfWindow *w1);
pfWindow* pfWindow::select();

void pfWindow::swapBuffers();

pfFBConfig pfWindow::chooseFBConfig(int *attr);

int pfWindow::isOpen()const;

int pfWindow::query(int which, int *dst);

int pfWindow:: mQuery(int *which, int *dst);
pfWindow* pfWindow::openNewNoPort(const char *name, int screen);
pfStats* pfGetCurStats(void);

pfStats C++ API
These functions are used to collect, manipulate, print, and query statistics on state operations, geometry,
and graphics and system operations. IRIS Performer has the ability to keep many types of statistics.
Some statistics can be expensive to gather and might possibly influence other statistics. To alleviate this

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

problem, statistics are divided into different classes based on the tasks that they monitor. The specific
statistics classes of interest may be selected with pfStats::setClass.

new(void *arena) pfStats();

pfType*
uint
uint
void
float
uint
uint
uint
uint
uint
void
void
void
void
void
void
int
int
void
float
void
void
uint
void
float
void
float
float
float
float
float

pfVec2 C++ API

pfStats:
pfStats:
pfStats::getClassMode(int class);
pfStats::
pfStats::
pfStats::setClass(uint enmask, int val);
pfStats::
pfStats::
pfStats::open(uint enmask);
pfStats::
pfStats::
pfStats::
pfStats:
pfStats::
pfStats::copy(const pfStats *src, uint which);
pfStats::
pfStats::
pfStats::
pfStats:
pfStats::
pfStats::
pfStats:

pfStats:

:getClassType();
:setClassMode(int class, uint mask, int val);

setAttr(int attr, float val);
getAttr(int attr);

getClass(uint enmask);
getOpen(uint enmask);

close(uint enmask);
reset();

:clear(uint which);
:accumulate(pfStats* src, uint which);

average(pfStats* src, uint which, int num);

count(pfGeoSet * gset);
query(uint which, void *dst, int size);

:mQuery(uint * which, void *dst, int size);
:setHwAttr(int attr, float val);

getHwAttr(int attr);

:enableHw (uint which);
:disableHw (uint which);
:getHwEnable(uint which);

pfFPConfig(int which, float val);
pfGetFPConfig(int which);
pfSinCos(float arg, float* s, float* c);
pfTan(float arg);

pfArcTan2(float y, float x);
pfArcSin(float arg);

pfArcCos(float arg);

pfSqrt(float arg);

Math functions for 2-component vectors. Most of these routines have macro equivalents which are
described in the pfVec2 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

liv

void
void
int

int

void
float
void
void
void
void
void
float
float
float
float

pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:
pfVec2:

pfVec3 C++ API
Math functions for 3-component vectors. Most of these routines have macro equivalents which are
described in the pfVec3 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

void
void
int

int

void
float
void
void
void
void
void
float
float
float
float
void
void
void
void

pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:
pfVec3:

:set(float x, float y);

:copy(const pfVec2& v);

:equal(const pfVec2& v)const;
:almostEqual(const pfVec2& v, float tol)const;
:negate(const pfVec2& v);

:dot(const pfVec2& v)const;

:add(const pfVec2& v1, const pfVec2& v2);

sub(const pfVec2& v1, const pfVec2& v2);

:scale(float s, const pfVec2& v);

addScaled(const pfVec2& v1, float s, const pfVec2& v2);

:combine(float a, const pfVec2& v1, float b, const pfVec2& v2);
:sqrDistance(const pfVec2& v)const;

:normalize();

:length()const;

:distance(const pfVec2& v)const;

set(float x, float y, float z);

copy(const pfVec3& v);

equal(const pfVec3& v)const;

almostEqual(const pfVec3& v, float tol)const;
negate(const pfVec3& v);

dot(const pfVec3& v)const;

add(const pfVec3& v1, const pfVec3& v2);

sub(const pfVec3& v1, const pfVec3& v2);

scale(float s, const pfVec3& v);

addScaled(const pfVec3& v1, float s, const pfVec3& v2);
combine(float a, const pfVec3& v1, float b, const pfVec3& v2);
sqrDistance(const pfVec3& v)const;

normalize();

length()const;

distance(const pfVec3& v)const;

cross(const pfVec3& v1, const pfVec3& v2);
xformVec(const pfVec3& v, const pfMatrix& m);
xformPt(const pfVec3& v, const pfMatrix& m);
fullXformPt(const pfVec3& v, const pfMatrix& m);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

pfVec4 C++ API
Math functions for 4-component vectors. Most of these routines have macro equivalents which are
described in the pfVec4 man page. The man page also describes C++ arithmetic and indexing operators
which are not listed here.

void pfVecd:set(float x, float y, float z, float w);

void pfVecd:copy(const pfVecd& v);

int pfVec4:equal(const pfVec4& v)const;

int pfVec4::almostEqual(const pfVec4& v, float tol)const;

void pfVecd:negate(const pfVecd& v);

float pfVec4::dot(const pfVecd& v)const;

void pfVecd:add(const pfVecd& v1, const pfVecd& v2);

void pfVecd:sub(const pfVec4& v1, const pfVecd& v2);

void pfVecd:scale(float s, const pfVecd& v);

void pfVecd::addScaled(const pfVecd& v1, float s, const pfVecd& v2);
void pfVecd:combine(float a, const pfVec4& v1, float b, const pfVecd& v2);
float pfVecd:sqrDistance(const pfVec4& v)const;

float pfVec4:normalize();

float pfVec4::length()const;

float pfVec4::distance(const pfVec4& v)const;

void pfVecd:xform(const pfVecd& v, const pfMatrix& m);

pfMatrix C++ API
The pfMatrix data type represents a complete 4x4 real matrix. Most accesses to pfMatrix go through
pfMatrix::operator[], but pfMatrix is a public struct whose data member mat is directly accessible, e.g. for
passing to a routine expecting a float* such as glLoadMatrixf. These routines create transformation
matrices based on multiplying a row vector by a matrix on the right, i.e. the vector v transformed by m is
v *m. Many actions will go considerably faster if the last column is (0,0,0,1).

Some of these routines have macro equivalents which are described in the pfMatrix man page. The man
page also describes C++ arithmetic and indexing operators which are not listed here.

void pfMatrix:set(float *m);

int pfMatrix::getMatType()const;

void pfMatrix::setRow(int r, const pfVec3& v);

void pfMatrix::setRow(int r, float x, float y, float z, float w);
void pfMatrix::getRow(int r, pfVec3& dst);

void pfMatrix::getRow(int r, float *x, float *y, float *z, float *w);
void pfMatrix::setCol(int c, const pfVec3& v);

void pfMatrix::setCol(int ¢, float x, float y, float z, float w);

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
void
void
void
void
void
void
void
void
void
void
void
void
int

int

void
void
void
void
void
void
void
int

void
void
void
void
void
void
void
void
void
void

pfMatrix
pfMatrix
pfMatrix

pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::
pfMatrix::

pfQuat C++ API
pfQuat represents a quaternion as the four floating point values (x, y, z, w) of a pfVec4. Some of these
routines have macro equivalents which are described in the pfMatrix man page. The man page also
describes C++ arithmetic and indexing operators which are not listed here.

:getCol(int ¢, pfVec3& dst);

:getCol(int ¢, float *x, float *y, float *z, float *w);
::getOrthoCoord(pfCoord* dst);

makeldent();

makeEuler(float hdeg, float pdeg, float rdeg);
makeRot(float degrees, float X, float y, float z);
makeTrans(float x, float y, float z);

makeScale(float x, float y, float z);
makeVecRotVec(const pfVec3& v1, const pfVec3& v2);
makeCoord(const pfCoord* c);
getOrthoQuat(pfQuaté& dst);

makeQuat(const pfQuat& q);

copy(const pfMatrix& v);

equal(const pfMatrix& m)const;

almostEqual(const pfMatrix& m?2, float tol)const;
transpose(pfMatrix& m);

mult(const pfMatrix& m1, const pfMatrix & m?2);
add(const pfMatrix& m1, const pfMatrix & m?2);
sub(const pfMatrix& m1, const pfMatrix & m2);
scale(float s, const pfMatrix & m);

postMult(const pfMatrix& m);

preMult(const pfMatrix& m);

invertFull(pfMatrix& m);

invertAff(const pfMatrix& m);

invertOrtho(const pfMatrix& m);

invertOrthoN (pfMatrix& m);

invertldent(const pfMatrix& m);

preTrans(float x, float y, float z, pfMatrix& m);
postTrans(const pfMatrix& m, float x, float y, float z);
preRot(float degrees, float x, float y, float z, pfMatrix& m);
postRot(const pfMatrix& m, float degrees, float X, float y, float z);
preScale(float xs, float ys, float zs, pfMatrix& m);
postScale(const pfMatrix& m, float xs, float ys, float zs);

void pfQuat::getRot(float *angle, float *x, float *y, float *z);

Ivi

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

void pfQuat:
void pfQuat:
float pfQuat:
void pfQuat:
void pfQuat:
void pfQuat:
void pfQuat:
void pfQuat:
void pfQuat::
void pfQuat:
void pfQuat:

makeRot(float angle, float x, float y, float z);
conj(const pfQuat& v);

length()const;

mult(const pfQuat& g1, const pfQuat& q2);
div(const pfQuat& q1, const pfQuaté& q2);
invert(const pfQuaté& ql);

exp(const pfQuat& q);

log(const pfQuaté& q);

slerp(float t, const pfQuat& q1, const pfQuaté& q2);

squad(float t, const pfQuaté& q1, const pfQuaté& q2, const pfQuaté& a, const pfQuat& b);

meanTangent(const pfQuat& q1, const pfQuaté& g2, const pfQuat& g3);

pfMatStack C++ API
These routines allow the creation and manipulation of a stack of 4x4 matrices.

new(void *arena) pfMatStack(int size);

pfType*
void
pfMatrix*
int

void

int

int

void
void
void
void
void
void
void
void
void

pfSeg C++ API

pfMatStack::getClassType();
pfMatStack::get(pfMatrix& m)const;
pfMatStack::getTop()const;
pfMatStack::getDepth()const;

pfMatStack::reset();

pfMatStack::push();

pfMatStack:pop();

pfMatStack::load(const pfMatrix& m);
pfMatStack::preMult(const pfMatrix& m);
pfMatStack::postMult(const pfMatrix& m);
pfMatStack::preTrans(float x, float y, float z);
pfMatStack::postTrans(float x, float y, float z);
pfMatStack::preRot(float degrees, float X, float y, float z);
pfMatStack::postRot(float degrees, float x, float y, float z);
pfMatStack::preScale(float xs, float ys, float zs);
pfMatStack::postScale(float xs, float ys, float zs);

A pfSeg represents a line segment starting at pos, extending for a length length in the direction dir. The
routines assume that dir is of unit length, otherwise the results are undefined. pfSeg is a public struct
whose data members pos, dir and length may be operated on directly.

void pfSeg::makePts(const pfVec3& p1, const pfVec3& p2);
void pfSeg::makePolar(const pfVec3& pos, float azi, float elev, float len);
void pfSeg:clip(const pfSeg *seg, float d1, float d2);

Ivii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

Iviii

int pfSeg:closestPtsOn(const pfSeg *seg, pfVec3& dstl, pfVec3& dst2)const;

pfPlane C++ API

A pfPlane represents an infinite 2D plane as a normal and a distance offset from the origin in the normal
direction. A point on the plane satisfies the equation normal dot (x, y, z) = offset. pfPlane is a public struct
whose data members normal and offset may be operated on directly.

void pfPlane::
void pfPlane::
void pfPlane::
int pfPlane:
int pfPlane:
int pfPlane:
int pfPlane:
void pfPlane::
void pfPlane::
int pfPlane:
int pfPlane:

pfSphere C++ API

makePts(const pfVec3& pl, const pfVec3& p2, const pfVec3& p3);
makeNormPt(const pfVec3& norm, const pfVec3& pos);
displace(float d);

contains(const pfBox *box)const;

contains(const pfSphere *sph)const;

contains(const pfCylinder *cyl)const;

contains(const pfVec3& pt)const;

orthoXform(const pfPlane *pln, const pfMatrix& m);
closestPtOn(const pfVec3& pt, pfVec3& dst)const;
isect(const pfSeg *seg, float *d)const;

isect(const pfSeg *seg, float *d1, float *d2)const;

pfSpheres are typically used as bounding volumes in a scene graph. These routines allow bounding
spheres to be created and manipulated.

void pfSphere::makeEmpty();

int pfSphere:contains(const pfVec3& pt)const;

int pfSphere:contains(const pfSphere *sph)const;

int pfSphere:contains(const pfCylinder *cyl)const;

void pfSphere::around(const pfVec3* pts, int npt);

void pfSphere::around(const pfSphere **sphs, int nsph);

void pfSphere::around(const pfBox **boxes, int nbox);

void pfSphere::around(const pfCylinder **cyls, int ncyl);

void pfSphere::extendBy(const pfVec3& pt);

void pfSphere::extendBy(const pfSphere *sph);

void pfSphere::extendBy(const pfCylinder *cyl);

void pfSphere::orthoXform(const pfSphere *sph, const pfMatrix& m);
int pfSphere:isect(const pfSeg *seg, float *d1, float *d2)const;

pfCylinder C++ API
A pfCylinder represents a cylinder of finite length. The routines listed here provide means of creating
and extending cylinders for use as bounding geometry around groups of line segments. The cylinder is
defined by its center, radius, axis and halfLength. The routines assume axis is a vector of unit length, other-

wise results are
fLength may be

undefined. pfCylinder is a public struct whose data members center, radius, axis and hal-
operated on directly.

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

void
int

void
void
void
void
void
void
void
void
int

pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::
pfCylinder::

pfBox C++ API
A pfBox is an axis-aligned box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<=x <= max|[0], min[1] <= y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data
members min and max may be operated on directly.

void
int

int

void
void
void
void
void
void
void
int

makeEmpty();

contains(const pfVec3& pt)const;
orthoXform(const pfCylinder *cyl, const pfMatrix& m);
around(const pfVec3 *pts, int npt);
around(const pfSeg **segs, int nseg);
around(const pfSphere **sphs, int nsph);
around(const pfBox **boxes, int nbox);
extendBy(const pfSphere *sph);
extendBy(const pfCylinder *cyl);
extendBy(const pfVec3& pt);

isect(const pfSeg *seg, float *d1, float *d2)const;

pfBox:makeEmpty();

pfBox::contains(const pfVec3& pt)const;
pfBox:contains(const pfBox *inbox);
pfBox:xform(const pfBox *box, const pfMatrix& xform);
pfBox::around(const pfVec3 *pts, int npt);
pfBox::around(const pfSphere **sphs, int nsph);
pfBox::around(const pfBox **boxes, int nbox);
pfBox::around(const pfCylinder **cyls, int ncyl);
pfBox::extendBy(const pfVec3& pt);
pfBox::extendBy(const pfBox *box);

pfBox:isect(const pfSeg *seg, float *d1, float *d2)const;

pfPolytope C++ API
A pfPolytope is a set of half spaces whose intersection defines a convex, possibly semi-infinite, volume
which may be used for culling and other intersection testing where a tighter bound than a pfBox,
pfSphere, or pfCylinder is of benefit.

new(void *arena) pfPolytope();
pfType*

int
int
int
int

pfPolytope::getClassType();
pfPolytope::getNumFacets();
pfPolytope::setFacet(int i, const pfPlane *p);
pfPolytope::getFacet(int i, pfPlane *p);
pfPolytope::removeFacet(int i);

lix

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
int
int
int
int
int

pfFrustum C++ API

pfPolytope::orthoXform(const pfPolytope *src, const pfMatrix& mat);
pfPolytope::contains(const pfVec3& pt)const;
pfPolytope::contains(const pfSphere *sphere)const;
pfPolytope::contains(const pfBox *box)const;
pfPolytope::contains(const pfCylinder *cyl)const;
pfPolytope::contains(const pfPolytope *ptope)const;

A pfFrustum represents a viewing and or culling volume bounded by left, right, top, bottom, near and far

planes.

new(void *arena) pfFrustum();

pfType*
int
void
float
void
void
void
void
void
void
void
int
void
void
void
void
int
int
int
int
void

Triangle Intersection

pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum::
pfFrustum:

getClassType();

getFrustType()const;

setAspect(int which, float widthHeightRatio);
getAspect()const;

getFOV(float* fovh, float* fovv)const;

setNearFar(float nearDist, float farDist);

getNearFar(float* nearDist, float* farDist)const;
getNear(pfVec3& 11, pfVec3& Ir, pfVec3& ul, pfVec3& ur)const;
getFar(pfVec3& 11, pfVec3& Ir, pfVec3& ul, pfVec3& ur)const;
getPtope(pfPolytope *dst)const;

getGLProjMat(pfMatrix & mat)const;

getEye(pfVec3& eye)const;

makePersp(float left, float right, float bot, float top);
makeOrtho(float left, float right, float bot, float top);
makeSimple(float fov);

orthoXform(const pfFrustum* fr2, const pfMatrix& mat);
contains(const pfVec3& pt)const;

contains(const pfSphere *sphere)const;

contains(const pfBox *box)const;

contains(const pfCylinder *cyl)const;

:apply()const;

This routine returns the intersection of a triangle with a line segment and is the basis for Performer’s per-
forming intersection testing and picking against geometry contained in pfGeoSets.

int pfTrilsectSeg(const pfVec3 ptl, const pfVec3 pt2, const pfVec3 pt3, const pfSeg* seg, float* d);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

LIBPFDU
Database Conversions
IRIS Performer provides an extensive array of converters which load file-based geometry formats into a
pfScene hierarchical scene graph. These functions also provide the capability to set attributes which
modify the behavior of individual loaders.

pfNode* pfdLoadFile(const char *file);

int pfdStoreFile(pfNode *root, const char *file);
pfNode* pfdConvertFrom(void *root, const char *ext);
void* pfdConvertTo(pfNode* root, const char *ext);

int pfdInitConverter(const char *ext);

int pfdExitConverter(const char *ext);

FILE* pfdOpenFile(const char *file);

void pfdAddExtAlias(const char *ext, const char *alias);

void pfdConverterMode(const char *ext, int mode, int value);
int pfdGetConverterMode(const char *ext, int mode);

void pfdConverterAttr(const char *ext, int which, void *attr);
void* pfdGetConverterAttr(const char *ext, int which);

void pfdConverterVal(const char *ext, int which, float val);
float pfdGetConverterVal(const char *ext, int which);

void pfdPrintSceneGraphStats(pfNode *node, double elapsedTime);

Generate pfGeoSets
These routines are provided to conveniently construct pfGeoSets for various geometric objects. The
resulting objects are always positioned and sized in canonical ways. The user can then apply a transfor-
mation to these pfGeoSets to achieve the desired shape and position.

pfGeoSet * pfdNewCube(void *arena);

pfGeoSet * pfdNewSphere(int ntris, void *arena);

pfGeoSet * pfdNewCylinder(int ntris, void *arena);

pfGeoSet * pfdNewCone(int ntris, void *arena);

pfGeoSet * pfdNewPipe(float botRadius, float topRadius, int ntris, void *arena);
pfGeoSet * pfdNewPyramid(void *arena);

pfGeoSet * pfdNewArrow(int ntris, void *arena);

pfGeoSet * pfdNewDoubleArrow(int ntris, void *arena);

pfGeoSet * pfdNewCircle(int ntris, void *arena);

pfGeoSet * pfdNewRing(int ntris, void *arena);

void pfdXformGSet(pfGeoSet *gset, pfMatrix mat);

void pfdGSetColor(pfGeoSet *gset, float 1, float g, float b, float a);

Mesh Triangles
Forming independent triangles into triangle strips (or meshes) can significantly improve rendering per-
formance on IRIS systems. Strips reduce the amount of work required by the CPU, bus, and graphics
subsystem. IRIS Performer provides this utility facility for converting independent triangles into strips.

Ixi

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

Ixii

pfGeoSet* pfdMeshGSet(pfGeoSet *gset);

void pfdMesherMode(int mode, int val);
int pfdGetMesherMode(int mode);
void pfdShowStrips(pfGeoSet *gset);

Optimize Scene Graphs

pfdCleanTree and pfdStaticize optimize the scene graph. pfdCleanTree removes pfGroups with one or
fewer child and pfSCSes with identity transformations. pfdStaticize conditionally converts pfDCSes to
pfSCSes, usually in preparation for pfFlatten.

pfNode* pfdCleanTree(pfNode *node, pfuTravFuncType doitfunc);

void pfdReplaceNode(pfNode *oldn, pfNode *newn);

void pfdInsertGroup(pfNode *oldn, pfGroup *grp);

void pfdRemoveGroup(pfGroup *oldn);

pfNode* pfdFreezeTransforms(pfNode *node, pfuTravFuncType doitfunc);

Breakup Scene Graphs

pfdBreakup is provided as a utility to break unstructured scene geometry into a spacially subdivided
scene hierarchy. Spacially subdivided geometry is more easily culled and less time is spent drawing
geometry which does not contribute to the final image.

pfNode* pfdBreakup(pfGeode *geode, float geodeSize, int stripLength, int geodeChild);

Generate Hierarchies

For performance reasons, it is desirable that the geometry in a scene be organized into a spatial hierarchy.
However, it is often easiest to model geometry using logical, rather than spatial, divisions.
pfdTravGetGSets and pfdSpatialize can be used to partition an already constructed scene.

pfList* pfdTravGetGSets(pfNode *node);
pfGroup*
pfdSpatialize(pfGroup *group, float maxGeodeSize, int maxGeoSets);

Share pfGeoStates

It is obviously desirable to share state between database objects in IRIS Performer whenever possible.
The notion of pervasive state sharing underpins the entire pfGeoState mechanism. Common data such
as texture, materials, and lighting models are often duplicated in many different objects throughout a
database. This collection of functions provides the means necessary to easily achieve sharing among
these objects by automatically producing a non-redundant set of states.

pfdShare* pfdNewShare(void);
int pfdCleanShare(pfdShare *share);
void pfdDelShare(pfdShare *share, int deepDelete);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfdPrintShare(pfdShare *share);

int pfdCountShare(pfdShare *share);

pfList* pfdGetSharedList(pfdShare *share, pfType* type);
pfObject* pfdNewSharedObject(pfdShare *share, pfObject *object);
pfObject* pfdFindSharedObject(pfdShare *share, pfObject *object);

int pfdAddSharedObject(pfdShare *share, pfObject *object);
void pfdMakeShared(pfNode *node);

void pfdMakeSharedScene(pfScene *scene);

int pfdCleanShare(pfdShare *share);

int pfdRemoveSharedObject(pfdShare *share, pfObject *object);

pfList* pfdGetNodeGStateList(pfNode *node);

Combine pfLayers

When multiple sibling layer nodes have been created, efficiency will be improved by combining them
together. pfdCombineLayers provides for exactly this kind of optimization.

void pfdCombineLayers(pfNode *node);

Combine pfBillboards

The

The performance of pfBillboard nodes is enhanced when they contain several pfGeoSets each as opposed
to a scene graph with a large number of single pfGeoSet pfBillboards. The pfdCombineBillboards()
traversal creates this efficient situation by traversing a scene graph and combining the pfGeoSets of
sibling pfBillboard nodes into a single pfBillboard node.

void pfdCombineBillboards(pfNode *node, int sizeLimit);

Geometry Builder

It is seldom the case that database models are expressed directly in internal Performer structures (-
pfGeoSets). Instead, models are generally described in geometric constructs defined by the modeller.
The Performer GeoBuilder is meant to simplify the task of translating model geometry into Performer
geometry structures. The GeoBuilder can also create many kinds of polygon mesh (e.g. triangle-strips)
pfGeoSets, which can significantly improve performance.

pfdGeom* pfdNewGeom(int numV);

void pfdResizeGeom(pfdGeom *geom, int numV);

void pfdDelGeom(pfdGeom *geom);

int pfdReverseGeom(pfdGeom *geom);

pfdGeoBuilder* pfdNewGeoBldr(void);

void pfdDelGeoBldr(pfdGeoBuilder* bldr);

void pfdGeoBldrMode(pfdGeoBuilder* bldr, int mode, int val);
int pfdGetGeoBldrMode(pfdGeoBuilder* bldr, int mode);

int pfdTriangulatePoly(pfdGeom *pgon, pfdPrim *triList);

Ixiii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
void
void
void
void
void
void
void
void
void
void
void
void
int
const pfList*
void

The Scene Builder

pfdAddGeom(pfdGeoBuilder *bldr, pfdGeom *Geom, int num);
pfdAddLineStrips(pfdGeoBuilder *bldr, pfdGeom *lineStrips, int num);
pfdAddLines(pfdGeoBuilder *bldr, pfdGeom *lines);
pfdAddPoints(pfdGeoBuilder *bldr, pfdGeom *points);
pfdAddPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
pfdAddIndexedLineStrips(pfdGeoBuilder *bldr, pfdGeom *lines, int num);
pfdAddIndexedLines(pfdGeoBuilder *bldr, pfdGeom *lines);
pfdAddIndexedPoints(pfdGeoBuilder *bldr, pfdGeom *points);
pfdAddIndexedPoly(pfdGeoBuilder *bldr, pfdGeom *poly);
pfdAddIndexedTri(pfdGeoBuilder *bldr, pfdPrim *tri);
pfdAddLine(pfdGeoBuilder *bldr, pfdPrim *line);
pfdAddPoint(pfdGeoBuilder *bldr, pfdPrim *Point);
pfdAddTri(pfdGeoBuilder *bldr, pfdPrim *tri);
pfdGetNumTris(pfdGeoBuilder *bldr);

pfdBuildGSets(pfdGeoBuilder *bldr);

pfdPrintGSet(pfGeoSet *gset);

The Performer Builder is meant to manage most of the details of constructing efficient runtime structures
from input models. It provides a simple and convenient interface for bringing scene data into the applica-
tion without the need for considering how best to structure that data for efficient rendering in Performer.
The Builder provides a comprehensive interface between model input code (such as database file parsers)
and the internal mechanisms of scene representation in Performer. In addition to handling input
geometry, as the GeoBuilder does, the Builder also manages the associated graphics state.

void

void
pfdBuilder *
void

void
pfdBuilder *
void

void

int

void

void *
pfObject *
void

void

void

pfdInitBldr(void);

pfdExitBldr(void);

pfdNewBldr(void);
pfdDelBldr(pfdBuilder *bldr);
pfdSelectBldr(pfdBuilder *bldr);
pfdGetCurBldr(void);
pfdBldrDeleteNode(pfNode *node);
pfdBldrMode(int mode, int val);
pfdGetBldrMode(int mode);
pfdBldrAttr(int which, void *attr);
pfdGetBldrAttr(int which);
pfdGetTemplateObject(pfType *type);
pfdResetObject(pfObject *obj);
pfdResetAllTemplateObjects(void);
pfdMakeDefaultObject(pfObject *obj);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfdResetBldrGeometry(void);

void pfdResetBldrShare(void);

void pfdCleanBldrShare(void);

void pfdCaptureDefaultBldrState(void);

void pfdResetBldrState(void);

void pfdPushBldrState(void);

void pfdPopBldrState(void);

void pfdSaveBldrState(void *name);

void pfdLoadBldrState(void *name);

void pfdBldrGState(const pfGeoState *gstate);
const pfGeoState * pfdGetBldrGState(void);

void pfdBldrStateVal(int which, float val);
float pfdGetBldrStateVal(int which);

void pfdBldrStateMode(int mode, int val);

int pfdGetBldrStateMode(int mode);

void pfdBldrStateAttr(int which, const void *attr);
const void * pfdGetBldrStateAttr(int attr);

void pfdBldrStateInherit(uint mask);

uint pfdGetBldrStateInherit(void);

void pfdSelectBldrName(void *name);

void * pfdGetCurBldrName(void);

void pfdAddBldrGeom(pfdGeom *p, int n);
void pfdAddIndexedBldrGeom(pfdGeom *p, int n);
pfNode * pfdBuild(void);

pfNode * pfdBuildNode(void *name);

void pfdDefaultGState(pfGeoState *def);

const pfGeoState* pfdGetDefaultGState(void);
void pfdMakeSceneGState(pfGeoState *sceneGState,
void pfdOptimizeGStateList(pfList *gstateList,

Haeberli Font Extensions
This is Paul Haeberli’s cool font extension header file - Performer uses Paul’s font library to load fonts
into pfFont structures.

pfFont* pfdLoadFont(const char *ftype, const char *name, int style);
pfFont* pfdLoadFont_typel(const char *name, int style);

Texture Callbacks
These routines are now obsolete in that Performer now supports the notion of texture coordinate genera-
tion in pfGeoStates via the pfTexGen pfObject. However, these routines are still a good example of how
to implement functionality in the draw process through callbacks. Similarly this set of routines also fits
into the builder state extension mechanism - see the pfdBuilder man pages.

Ixv

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

int pfdPreDrawTexgenExt(pfTraverser *trav, void *data);

int pfdPostDrawTexgenExt(pfIraverser *trav, void *data);

int pfdPreDrawReflMap(pfTraverser *trav, void *data);

int pfdPostDrawReflMap(pfIraverser *trav, void *data);

int pfdPreDrawContourMap(pfTraverser *trav, void *data);

int pfdPostDrawContourMap(pfIraverser *trav, void *data);

int pfdPreDrawLinearMap(pfTraverser *trav, void *data);

int pfdPostDrawLinearMap(pfIraverser *trav, void *data);

void pfdTexgenParams(const float *newParamsX, const float *newParamsY);

Function Extensors

pfdExtensors provide a framework for extending application functionality. They allow generalized call-
backs to be attached to the model database. These callbacks can be called from any Performer traversal.
The following functions are used to manipulate and install extensors.

int

void

pfNodeTravFuncType
int

int

pfdExtensor*
pfdExtensorType*
int

int

void

pfdExtensor*
pfdExtensorType*
void *

LIBPFUI

Ixvi

void pfilnit(void);
pfiMotionCoord

pfdAddState(void *name, long dataSize, void (*initialize)(void *data),
void (*deletor)(void *data), int (*compare)(void *datal, void *data2),
long (*copy)(void *dst, void *src), int token);

pfdStateCallback(int stateToken, int whichCBack,
pfNodeTravFuncType callback);

pfdGetStateCallback(int stateToken, int which);

pfdGetStateToken(void *name);

pfdGetUniqueStateToken(void);

pfdNewExtensor(int which);

pfdNewExtensorType(int token);

pfdCompareExtensor(void *a, void *b);

pfdCompareExtraStates(void *lista, void *listb);

pfdCopyExtraStates(pfList *dst, pfList *src);

pfdGetExtensor(int token);

pfdGetExtensorType(int token);

pfdUniqifyData(pfList *dataList, const void *data, long dataSize,
void *(*newData)(long), int (*compare)(void *, void *),
long (*copy)(void *, void *), int *compareResult);

pfType* pfiGetMotionCoordClassType(void);
pfiMotionCoord * pfiNewMotionCoord(void *arena);

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

pfilnputCoord
pfType*

pfiGetInputCoordClassType(void);

pfilnputCoord * pfiNewInputCoord(void *arena);

void
void

pfilnputXform

pfilnputCoordVec(pfilnputCoord *ic, float *vec);
pfiGetInputCoordVec(pfilnputCoord *ic, float *vec);

Building user interfaces requires managing user input events. These functions provide a window system
independent means of handling event streams.

pfilnput *
void

const char *
void

int

void

int

void

void
void
void
void
void

void
void
void
int
pfilnputXform *
void
int
void
void
void
void

pfiNewInput(void *arena);

pfilnputName(pfilnput *in, const char *name);

pfilsIXGetName(pfilnput *in);

pfilnputFocus(pfilnput *in, int focus);

pfiGetInputFocus(pfilnput *in);

pfilnputEventMask(pfilnput *in, int emask);

pfiGetInputEventMask(pfilnput *in);

pfilnputEventStreamCollector(pfilnput *in,
pfiEventStreamHandlerType func, void *data);

pfiGetInputEventStreamCollector(pfilnput *in,
pfiEventStreamHandlerType *func, void **data);

pfilnputEventStreamProcessor(pfilnput *in,
pfiEventStreamHandlerType func, void *data);

pfiGetInputEventStreamProcessor(pfilnput *in,
pfiEventStreamHandlerType *func, void **data);

pfilnputEventHandler(pfilnput *in, pfuEventHandlerFuncType func,
void *data);

pfiGetInputEventHandler(pfilnput *in, pfuEventHandlerFuncType *func,
void **data);

pfiResetInput(pfilnput *in);

pfiCollectInputEvents(pfilnput *in);

pfiProcessInputEvents(pfilnput *in);

pfiHaveFastMouseClick(pfuMouse *mouse, int button, float msecs);

pfiNewIXform(void *arena);

pfilXformFocus(pfilnputXform *in, int focus);

pfilsIXformInMotion(pfilnputXform *ix);

pfiStopIXform(pfilnputXform *ix);

pfiResetIXform(pfilnputXform *ix);

pfiUpdateIXform(pfilnputXform *ix);

pfilXformMode(pfilnputXform *ix, int mode, int val);

Ixvii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

Ixviii

int

void
void
void
void
pfilnput*
void
pfilnputCoord*
void
void
void
void
void
void
void
void

void

void

void

void

void

void

void

void

void

void
pfilnputXformTrackball *
void

int
pfilnputXformTrackball *

int

pfType *

pfiGetIXformMode(pfilnputXform *ix, int mode);
pfiResetIXformPosition(pfilnputXform *ix);
pfilXformMat(pfilnputXform *ix, pfMatrix mat);
pfiGetIXformMat(pfilnputXform *ix, pfMatrix mat);
pfilXformInput(pfilnputXform *ix, pfilnput *in);
pfiGetIXformInput(pfilnputXform *ix);
pfilXformInputCoordPtr(pfilnputXform *ix, pfilnputCoord *xcoord);
pfiGetIXformInputCoordPtr(pfilnputXform *ix);
pfilXformMotionCoord(pfilnputXform *ix, pfiMotionCoord *xcoord);
pfiGetIXformMotionCoord(pfilnputXform *ix, pfiMotionCoord *xcoord);
pfilXformResetCoord(pfilnputXform *ix, pfCoord *resetPos);
pfiGetIXformResetCoord(pfilnputXform *ix, pfCoord *resetPos);
pfilXformCoord(pfilnputXform *ix, pfCoord *coord);
pfiGetIXformCoord(pfilnputXform *ix, pfCoord *coord);
pfilXformStartMotion(pfilnputXform *xf, float startSpeed, float startAccel);
pfiGetIXformStartMotion(pfilnputXform *xf, float *startSpeed,
float *startAccel);
pfilXformMotionLimits(pfilnputXform *xf, float maxSpeed, float angularVel,
float maxAccel);
pfiGetIXformMotionLimits(pfilnputXform *xf, float *maxSpeed,
float *angularVel, float *maxAccel);
pfilXformDBLimits(pfilnputXform *xf, pfBox *dbLimits);
pfiGetIXformDBLimits(pfilnputXform *xf, pfBox *dbLimits);
pfilXformBSphere(pfilnputXform *xf, pfSphere *sphere);
pfiGetIXformBSphere(pfilnputXform *xf, pfSphere *sphere);
pfilXformUpudateFunc(pfilnputXform *ix,
pfilnputXformUpdateFuncType func, void *data);
pfiGetIXformUpudateFunc(pfilnputXform *ix,
pfilnputXformUpdateFuncType *func, void **data);
pfilXformMotionFuncs(pfilnputXform *ix, pfilnputXformFuncType start,
pfilnputXformFuncType stop, void *data);
pfiGetIXformMotionFuncs(pfilnputXform *ix, pfilnputXformFuncType *start,
pfilnputXformFuncType *stop, void **data);
pfiNewIXformTrackball(void *arena);
pfilXformTrackballMode(pfilnputXformTrackball *tb, int mode, int val);
pfiGetIXformTrackballMode(pfilnputXformTrackball *tb, int mode);
pfiCreate2DIXformTrackball(void *arena);
pfiUpdate2DIXformTrackball(pfilnputXform *tb, pfilnputCoord *icoord,
void *data);
pfiGetIXformTravelClassType(void);

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

pfType *

pfType *

pfType *
pfilnputXformDrive *
void

int

void

float
pfilnputXformDrive *
int

pfilnputXformFly *
void

int
pfilnputXformFly *
int

pfiCollide

pfiGetIXformDriveClassType(void);
pfiGetIXformFlyClassType(void);
pfiGetIXformTrackballClassType(void);
pfiNewIXformDrive(void *arena);
pfilXformDriveMode(pfilnputXformDrive *drive, int mode, int val);
pfiGetIXformDriveMode(pfilnputXformDrive *drive, int mode);
pfilXformDriveHeight(pfilnputXformDrive* drive, float height);
pfiGetIXformDriveHeight(pfilnputXformDrive* drive);
pfiCreate2DIXformDrive(void *arena);
pfiUpdate2DIXformDrive(pfilnputXform *drive, pfilnputCoord *icoord,
void *data);
pfiNewIXFly(void *arena);
pfilXformFlyMode(pfilnputXformFly *fly, int mode, int val);
pfiGetIXformFlyMode(pfilnputXformFly *fly, int mode);
pfiCreate2DIXformFly(void *arnea);
pfiUpdate2DIXformFly(pfilnputXform *{ly, pfilnputCoord *icoord,
void *data);

For realistic motion through a scene, an application must detect collisions between the viewer and the
scene. These functions provide that functionality. Typical uses of these utilities are to prevent movement
through walls and to maintain a constant "driving" distance above the ground.

pfType * pfiGetCollideClassType(void);

pfiCollide * pfiNewCollide(void *arena);

void pfiEnableCollide(pfiCollide *collide);

void pfiDisableCollide(pfiCollide *collide);

int pfiGetCollideEnable(pfiCollide *collide);

void pfiCollideMode(pfiCollide *collide, int mode, int val);

int pfiGetCollideMode(pfiCollide *collide, int mode);

void pfiCollideStatus(pfiCollide *collide, int status);

int pfiGetCollideStatus(pfiCollide *collide);

void pfiCollideDist(pfiCollide *collide, float dist);

float pfiGetCollideDist(pfiCollide *collide);

void pfiCollideHeightAboveGrnd(pfiCollide *collide, float dist);
float pfiGetCollideHeightAboveGrnd(pfiCollide *collide);

void pfiCollideGroundNode(pfiCollide *collide, pfNode* ground);
pfNode* pfiGetCollideGroundNode(pfiCollide *collide);

void pfiCollideObjNode(pfiCollide *collide, pfNode* db);
pfNode* pfiGetCollideObjNode(pfiCollide *collide);

Ixix

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

Ixx

void
void
void
int
pfiPick

pfiGetCollideMotionCoord (pfiCollide *collide, pfiMotionCoord* xcoord);
pfiCollideFunc(pfiCollide *collide, pfiCollideFuncType func, void *data);
pfiGetCollisionFunc(pfiCollide *collide, pfiCollideFuncType *func, void **data);
pfiUpdateCollide(pfiCollide *collide);

The pfiPick utility facilitates user interaction and manipulation of a scene. It provides a means to translate
mouse locations on the screen into the coordinate space of the world being viewed. Having done this, it
can also determine what objects are being pointed to by the mouse.

pfType *
pfiPick *
void

int

void
void
void
void
void

int
pfNode *
pfGeoSet *
void

int

void

pfiXformer

pfiGetPickClassType(void);

pfiNewPick(void *arena);

pfiPickMode(pfiPick *pick, int mode, int val);
pfiGetPickMode(pfiPick *pick, int mode);
pfiPickHitFunc(pfiPick *pick, pfiPickFuncType func, void *data);
pfiGetPicktHitFunc(pfiPick *pick, pfiPickFuncType *func, void **data);
pfiAddPickChan(pfiPick *pick, pfChannel *chan);
pfilnsertPickChan(pfiPick *pick, int index, pfChannel *chan);
pfiRemovePickChan(pfiPick *pick, pfChannel *chan);
pfiGetPickNumHits(pfiPick *pick);

pfiGetPickNode(pfiPick *pick);

pfiGetPickGSet(pfiPick *pick);

pfiSetupPickChans(pfiPick *pick);

pfiDoPick(pfiPick *pick, int x, int y);

pfiResetPick(pfiPick *pick);

pfiXformer objects provide a simple means for user-controlled motion in a scene. The pfiXformer
updates a transformation matrix based on a selected motion model and user input. This transformation
matrix can be used by the application for whatever purposes it desires. In particular, the matrix can be
used to update the viewpoint defined for a pfChannel or the transformation of a pfDCS node.

pfType* pfiGetXformerClassType(void);

pfiXformer * pfiNewXformer(void* arena);

void pfiXformerModel(pfiXformer* xf, int index, pfilnputXform* model);
void pfiSelectXformerModel(pfiXformer* xf, int which);

pfilnputXform* pfiGetXformerCurModel(pfiXformer* xf);

int pfiGetXformerCurModelIndex(pfiXformer* xf);

int pfiRemoveXformerModel(pfiXformer* xf, int index);

int pfiRemoveXformerModelIndex(pfiXformer* xf, pfilnputXform* model);
void pfiStopXformer(pfiXformer* xf);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfiResetXformer(pfiXformer* xf);

void pfiResetXformerPosition(pfiXformer* xf);

void pfiCenterXformer(pfiXformer* xf);

void pfiXformerAutoInput(pfiXformer* xf, pfChannel* chan, pfuMouse* mouse,
pfuEventStream* events);

void pfiXformerMat(pfiXformer* xf, pfMatrix mat);

void pfiGetXformerMat(pfiXformer* xf, pfMatrix mat);

void pfiXformerModelMat(pfiXformer* xf, pfMatrix mat);

void pfiGetXformerModelMat(pfiXformer* xf, pfMatrix mat);

void pfiXformerCoord(pfiXformer* xf, pfCoord *coord);

void pfiGetXformerCoord(pfiXformer* xf, pfCoord *coord);

void pfiXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);

void pfiGetXformerResetCoord(pfiXformer* xf, pfCoord *resetPos);

void pfiXformerNode(pfiXformer* xf, pfNode *node);

pfNode * pfiGetXformerNode(pfiXformer* xf);

void pfiXformerAutoPosition(pfiXformer* xf, pfChannel *chan, pfDCS *dcs);

void pfiGetXformerAutoPosition(pfiXformer* xf, pfChannel **chan, pfDCS **dcs);

void pfiXformerLimits(pfiXformer* xf, float maxSpeed, float angularVel,
float maxAccel, pfBox* dbLimits);

void pfiGetXformerLimits(pfiXformer* xf, float *maxSpeed, float *angularVel,
float *maxAccel, pfBox* dbLimits);

void pfiEnableXformerCollision(pfiXformer* xf);

void pfiDisableXformerCollision(pfiXformer* xf);

int pfiGetXformerCollisionEnable(pfiXformer* xf);

void pfiXformerCollision(pfiXformer* xf, int mode, float val, pfNode* node);

int pfiGetXformerCollisionStatus(pfiXformer* xf);

void pfiUpdateXformer(pfiXformer* xf);

int pfiCollideXformer(pfiXformer* xf);

pfType* pfiGetTDFXformerClassType(void);

pfiTDEXformer * pfiNewTDFXformer(void* arena);

pfiXformer * pfiCreateTDFXformer(pfilnputXformTrackball *tb,
pfilnputXformDrive *drive, pfilnputXformFly *fly, void *arena);

void pfiTDFXformerStartMotion(pfiTDFXformer* xf, float startSpeed,
float startAccel, float accelMult);

void pfiGetTDFXformerStartMotion(pfiTDFXformer* xf, float *startSpeed,
float *startAccel, float *accelMult);

void pfiTDFXformerFastClickTime(pfiTDFXformer* xf, float time);

float pfiGetTDFXformerFastClickTime(pfiXformer* xf);

void pfiTDFXformerTrackball(pfiTDFXformer *xf, pfilnputXformTrackball *tb);

pfilnputXformTrackball * pfiGetTDFXformerTrackball(pfiTDFXformer *xf);

Ixxi

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
pfilnputXformFly *
void
pfilnputXformDrive *
int

void
void

void

LIBPFUTIL
libpfutil Management

pfiTDFXformerDrive(pfiTDFXformer *xf, pfilnputXformDrive *tb);
pfiGetTDFXformerFly(pfiTDFXformer *xf);
pfiTDFXformerFly(pfiTDFXformer *xf, pfilnputXformFly *tb);
pfiGetTDFXformerDrive(pfiTDFXformer *xf);
pfiProcessTDFXformerMouseEvents(pfilnput *, pfuEventStream *,
void *data);
pfiProcessTDFXformerMouse(pfiTDFXformer *xf, pfuMouse *mouse,
pfChannel *inputChan);
pfiProcessTDFTrackballMouse(pfiTDFXformer *xf,
pfilnputXformTrackball *trackball, pfuMouse *mouse);
pfiProcessTDFTravelMouse(pfiTDFXformer *xf, pfilnputXformTravel *tr,
pfuMouse *mouse);

Before using any libpfutil utilities, the library must be initialized. These functions provide for proper ini-
tialization and control of libpfutil.

void pfulnitUtil(void);
pfDataPool* pfuGetUtilDPool(void);
void pfuExitUtil(void);

void pfuDPoolSize(long size);
long pfuGetDPoolSize(void);

volatile void* pfuFindUtilDPData(int id);

Processor Control

In certain circumstances, users may wish to control which CPU a particular IRIS Performer subprocess
runs on. They might even wish to exclusively devote a particular processor to a given subprocess. These
functions provide control of the scheduling of IRIS Performer subprocesses on a machine’s processors.

int pfuFreeCPUs(void);

int pfuRunProcOn(int cpu);

int pfuLockDownProc(int cpu);
int pfuLockDownApp(void);

int pfuLockDownCull(pfPipe *);
int pfuLockDownDraw(pfPipe *);
int pfuPrioritizeProcs(int onOff);

Multiprocess Rendezvous

These rendezvous functions provide the functionality necessary for synchronizing master and slave
processes in a multiprocessing environment.

Ixxii

IRIS Performer 2.0 C++ Reference Pages

Performer(3pf)

void pfulnitRendezvous(pfuRendezvous *rvous, int numSlaves);
void pfuMasterRendezvous(pfuRendezvous *rvous);
void pfuSlaveRendezvous(pfuRendezvous *rvous, int id);

GLX Mixed Mode

The libpfutil GLX routines are now provided for compatibility with previous versions of Performer. New
development should be done based on the pfWindow and pfPipeWindow API that provides a single API
for managing IrisGL, Mixed Mode, and OpenGL windows.

pfuXDisplay *
pfuGLXWindow *
void

const char *

void

int

void

void
void
void
void
pfFBConfig

Input Handling

pfuOpenXDisplay(int screen);

pfuGLXWinopen(pfPipe *p, pfPipeWindow *pw, const char *name);

pfuGetGLXWin(pfPipe *pipe, pfuGLXWindow *gIxWin);

pfuGetGLXDisplayString(pfPipe *pipe);

pfuGLMapcolors(pfVec3 *clrs, int start, int num);

pfuGLXAllocColormap(pfuXDisplay *dsp, pfuXWindow w);

pfuGLXMapcolors(pfuXDisplay *dsp, pfuXWindow w, pfVec3 *clrs, int loc,
int num);

pfuMapWinColors(pfWindow *w, pfVec3 *clrs, int start, int num);

pfuMapPWinColors(pfPipeWindow *pwin, pfVec3 *clrs, int start, int num);

pfuPrintWinFBConfig(pfWindow *win, FILE *file);

pfuPrintPWinFBConfig(pfPipeWindow *pwin, FILE *file);

pfuChooseFBConfig(Display *dsp, int screen, int *constraints, void *arena);

These functions provide an interface for managing X and GL event streams.

pfuEventQueue *
void

void

void

void

void
pfuEventStream *
void

void

void

int

void

void

int

void

pfuNewEventQ(pfDataPool *dp, int id);
pfuResetEventStream(pfuEventStream *es);
pfuResetEventQ(pfuEventQueue *eq);
pfuAppendEventQ(pfuEventQueue *eq0, pfuEventQueue *eql);
pfuAppendEventQStream(pfuEventQueue *eq, pfuEventStream *es);
pfuEventQStream(pfuEventQueue *eq, pfuEventStream *es);
pfuGetEventQStream(pfuEventQueue *eq);
pfuGetEventQEvents(pfuEventStream *events, pfuEventQueue *eq);
pfulncEventQFrame(pfuEventQueue *eq);
pfuEventQFrame(pfuEventQueue *eq, int val);
pfuGetEventQFrame(pfuEventQueue *eq);
pfulncEventStreamFrame(pfuEventStream *es);
pfuEventStreamFrame(pfuEventStream *es, int val);
pfuGetEventStreamFrame(pfuEventStream *es);
pfulnitInput(pfPipeWindow *pw, int mode);

Ixxiii

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

void pfuExitInput(void);

int pfuMapMouseToChan(pfuMouse *mouse, pfChannel *chan);

int pfuMouseInChan(pfuMouse *mouse, pfChannel *chan);

void pfuCollectInput(void);

void pfuCollectGLEventStream(pfuEventStream *events, pfuMouse *mouse,
int handlerMask, pfuEventHandlerFuncType handlerFunc);

void pfuCollectXEventStream(pfWSConnection dsp, pfuEventStream *events,

pfuMouse *mouse, int handlerMask,
pfuEventHandlerFuncType handlerFunc);

void pfuGetMouse(pfuMouse *mouse);
void pfuGetEvents(pfuEventStream *events);
void pfulnputHandler(pfuEventHandlerFuncType userFunc, uint mask);

void pfuMouseButtonClick(pfuMouse *mouse,
void pfuMouseButtonRelease(pfuMouse *mouse,
double pfuMapXTime(double xtime);

Cursor Control

Each window managed by Performer, both pfWindows and pfPipeWindows, can have an associated
cursor. These functions can be used to manage the various cursors desired by an application.

Cursor pfuGetInvisibleCursor(void);

void pfuLoadPWinCursor(pfPipeWindow *w, Cursor c);
void pfuLoadWinCursor(pfWindow *w, Cursor c);
Cursor pfuCreateDftCursor(int index);

void pfuCursor(Cursor ¢, int index);

Cursor pfuGetCursor(int index);

void pfulnitGUICursors(void);

void pfuGUICursor(int target, Cursor c);

Cursor pfuGetGUICursor(int target);

void pfuGUICursorSel(Cursor sel);

Cursor pfuGetGUICursorSel(void);

void pfuUpdateGUICursor(void);

OpenGL X Fonts

IXxiv

It is convenient to be able to draw text in Performer windows. When programming with OpenGL, an
application must use X fonts for this purpose. These functions simplify the use of X fonts for this purpose
by hiding much of the low-level font management.

void pfuLoadXFont(char *fontName, pfuXFont *fnt);
void pfuMakeXFontBitmaps(pfuXFont *fnt);
void pfuMakeRasterXFont(char *fontName, pfuXFont *font);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfuSetXFont(pfuXFont *);

void pfuGetCurXFont(pfuXFont *);

int pfuGetXFontWidth(pfuXFont *, const char *);

int pfuGetXFontHeight(pfuXFont *);

void pfuCharPos(float x, float y, float z);

void pfuDrawString(const char *s);

void pfuDrawStringPos(const char *s, float X, float y, float z);

Simple GUI

Many applications require a simple user interface. Their needs are often far more restricted than the func-
tionality provided by user interface libraries such as Motif. For those cases in which a simple and efficient
user interface is required, these functions can be used to provide one.

void

void

void

void

void

void

void

int

void

void

void

void
pfHighlight *
pfuPanel*
void

void

void
pfuWidget *
int

void

void

int

void

void

void

int

const char *

pfulnitGUI(pfPipeWindow *pw);

pfuExitGUI(void);

pfuEnableGUI(int en);

pfuUpdateGUI(pfuMouse *mouse);
pfuRedrawGUI(void);

pfuGUIViewport(float 1, float r, float b, float t);
pfuGetGUIViewport(float *1, float *r, float *b, float *t);
pfulnGUI(int x, int y);

pfuFitWidgets(int val);

pfuGetGUIScale(float *x, float *y);
pfuGetGUITranslation(float *x, float *y);
pfuGUIHIlight(pfHighlight *hlight);
pfuGetGUIHlight(void);

pfuNewPanel(void);

pfuEnablePanel(pfuPanel *p);

pfuDisablePanel(pfuPanel *p);
pfuGetPanelOriginSize(pfuPanel *p, float *xo, float *yo, float *xs, float *ys);
pfuNewWidget(pfuPanel *p, int type, int id);
pfuGetWidgetType(pfuWidget *w);
pfuEnableWidget(pfuWidget *w);
pfuDisableWidget(pfuWidget *w);
pfuGetWidgetld(pfuWidget *w);
pfuWidgetDim(pfuWidget *w, int xo, int yo, int xs, int ys);
pfuGetWidgetDim(pfuWidget *w, int *xo, int *yo, int *xs, int *ys);
pfuWidgetLabel(pfuWidget *w, const char *label);
pfuGetWidgetLabelWidth(pfuWidget *w);
pfuGetWidgetLabel(pfuWidget *w);

IXXV

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void

void

float

void

void

void

void
pfuWidgetActionFuncType
pfuWidgetSelectFuncType
pfuWidgetDrawFuncType
void

void
int

void
void
void
int

void
void
void
void
void

void

void

Scene Graph Traversal
Traversals are widely applicable to many tasks required in Performer applications. These functions pro-
vide a customizable, recursive traversal of an IRIS Performer scene graph.

IXXVvi

pfuWidgetRange(pfuWidget *w, int mode, float min, float max, float val);
pfuWidgetValue(pfuWidget *w, float val);
pfuGetWidgetValue(pfuWidget *w);
pfuWidgetDefaultValue(pfuWidget *w, float val);
pfuWidgetDrawFunc(pfuWidget *w, pfuWidgetDrawFuncType func);
pfuWidgetSelectFunc(pfuWidget *w, pfuWidgetSelectFuncType func);
pfuWidgetActionFunc(pfuWidget *w, pfuWidgetActionFuncType func);
pfuGetWidgetActionFunc(pfuWidget *w);
pfuGetWidgetSelectFunc(pfuWidget *w);
pfuGetWidgetDrawFunc(pfuWidget *w);
pfuWidgetSelections(pfuWidget *w, pfuGUIString *attrList, int *valList,
void (*funcList)(pfuWidget *w), int numSelections);
pfuWidgetSelection(pfuWidget *w, int index);
pfuGetWidgetSelection(pfuWidget *w);
pfuWidgetDefaultSelection(pfuWidget *w, int index);
pfuWidgetDefaultOnOff(pfuWidget * w, int on);
pfuWidgetOnOff(pfuWidget *w, int on);
pfulsWidgetOn(pfuWidget *w);
pfuResetGUI(void);
pfuResetPanel(pfuPanel *p);
pfuResetWidget(pfuWidget *w);
pfuDrawTree(pfChannel *chan, pfNode *node, pfVec3 panXYScale);
pfuDrawMessage(pfChannel *chan, const char *msg, int rel, int just, float x,
float y, int size, int cmode);
pfuDrawMessageCI(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, int textClr, int shadowClr);
pfuDrawMessageRGB(pfChannel *chan, const char *msg, int rel, int just,
float x, float y, int size, pfVec4 textClr, pfVec4 shadowClr);

int pfuTravCountNumVerts(pfNode *node);

int pfuTraverse(pfNode *node, pfuTraverser *trav);

void pfulnitTraverser(pfuTraverser *trav);

void pfuTravCalcBBox(pfNode *node, pfBox *box);

void pfuTravCountDB(pfNode *node, pfFrameStats *fstats);
void pfuTravGLProf(pfNode *node, int mode);

void pfuTravNodeAttrBind(pfNode *node, uint attr, uint bind);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

void pfuTravNodeHlight(pfNode *node, pfHighlight *hl);
void pfuTravPrintNodes(pfNode *node, const char *fname);
int pfuCalcDepth(pfNode *node);

void pfuTravCachedCull(pfNode* node, int numChans);

MultiChannel Option
These functions serve as a generic way of initializing channels when using the Multi-Channel Option
(MCO) available on RealityEngine graphics systems.

void pfuTileChans(pfChannel **chn, int nChans, int ntilesx, int ntilesy);

void pfuConfigMCO(pfChannel **chn, int nChans);

int pfuGetMCOChannels(pfPipe *p);

void pfuTileChan(pfChannel **chn, int thisChan, int nChans, float |, float 1, float b, float t);

MultiPipe Statistics
pfuManageMPipeStats provides a simple mechanism for acquiring frame timing statistics over a period
of time and saving them to a disk file.

int pfuManageMPipeStats(int nFrames, int nSampledPipes);

Path Following
Automated path following can greatly simplify the construction of interactive walkthrough applications.
These functions provide the means for creating and using automated paths.

pfuPath * pfuNewPath(void);

pfuPath * pfuSharePath(pfuPath *path);
pfuPath * pfuCopyPath(pfuPath *path);
pfuPath * pfuClosePath(pfuPath *path);

int pfuFollowPath(pfuPath *path, float seconds, pfVec3 where, pfVec3 orient);
int pfuPrintPath(pfuPath *path);

int pfuAddPath(pfuPath *path, pfVec3 first, pfVec3 final);

int pfuAddArc(pfuPath *path, pfVec3 center, float radius, pfVec2 angles);

int pfuAddFillet(pfuPath *path, float radius);

int pfuAddSpeed(pfuPath *path, float desired, float rate);

int pfuAddDelay(pfuPath *path, float delay);

int pfuAddFile(pfuPath *path, char *name);

Collision Detection
This is the old utility for collision detection. These functions are provided to ease the transition of existing
Performer-based applications to the new API. They should not be used in developing new software and
are likely to be removed in a future release. Refer to the reference pages for more information.

IXxvii

Performer(3pf)

IRIS Performer 2.0 C++ Reference Pages

void
pfChannel*
void

int

int

int

Timer Control
Tracking the passage of time is essential for interactive applications. Performer provides pfuTimer
objects, which are both real-time and independent of frame rate.

pfuTimer*
void

void
void
void
int
int

Hash Tables
Hash tables are an ubiquitous data structure. They are used internally by Performer, and many Per-
former applications will find them very useful. These functions provide a simple hash table facility to all
Performer-based systems.

pfuCollisionChan(pfChannel *chan);

pfuGetCollisionChan(void);

pfuCollideSetup(pfNode *node, int mode, int mask);

pfuCollideGrnd(pfCoord *coord, pfNode *node, pfVec3 zpr);

pfuCollideGrndObj(pfCoord *coord, pfNode *grndNode, pfVec3 zpr, pfSeg *seg,
pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

pfuCollideObj(pfSeg *seg, pfNode *objNode, pfVec3 hitPos, pfVec3 hitNorm);

pfuNewTimer(void *arena, int size);

pfulnitTimer(pfuTimer *timer, double start, double delta, void (*func)(pfuTimer®),
void *data);

pfuStartTimer(pfuTimer *timer);

pfuStopTimer(pfuTimer *timer);

pfuEvalTimers(void);

pfuEvalTimer(pfuTimer *timer);

pfuActiveTimer(pfuTimer * timer);

pfuHashTable* pfuNewHTable(int numb, int eltsize, void* arena);

void
void

pfuDelHTable(pfuHashTable* ht);
pfuResetHTable(pfuHashTable* ht);

pfuHashElt* pfuEnterHash(pfuHashTable* ht, pfuHashEIt* elt);

int
int
int
int

pfuRemoveHash(pfuHashTable* ht, pfuHashEIt* elt);
pfuFindHash(pfuHashTable* ht, pfuHashEIt* elt);
pfuHashGSetVerts(pfGeoSet *gset);
pfuCalcHashSize(int size);

Geometric Simplification
These functions can be used to automatically generate very simple level-of-detail representations of a sub-
graph from the bounding boxes of the geometric objects contained in that subgraph.

Ixxviii

pfLOD*

pfuBoxLOD(pfGroup *grp, int flat, pfVec4* clr);

pfGeoSet* pfuMakeBoxGSet(pfBox *box, pfVec4 clr, int flat);

IRIS Performer 2.0 C++ Reference Pages Performer(3pf)

Texture Loading
These functions assist in the sharing and downloading of textures, both of which are important for perfor-
mance. Sharing of texture data reduces memory requirements and can subsequently increase efficiency.
For consistent frame rates, it is also very important to download textures into the graphics pipeline’s phy-
sical texture memory before beginning simulation.

pfTexture* pfuNewSharedTex(const char *filename, void *arena);
pfList* pfuGetSharedTexList(void);

pfList * pfuMakeTexList(pfNode *node);

pfList * pfuMakeSceneTexList(pfScene *node);

void pfuDownloadTexList(pfList *list, int style);

int pfuGetTexSize(pfTexture *tex);

Texture Animation
It may be necessary to animate textures to achieve specific visual effects. These functions allow the appli-
cation to setup sequences of textures which define an animation.

void pfuNewTexList(pfTexture *tex);

pfList * pfuLoadTexListFiles(pfList “movieTexList, char nameList[][PF_MAXSTRING], int len);
pfList * pfuLoadTexListFmt(pfList “movieTexList, const char *fmtStr, int start, int end);
pfSequence * pfuNewProjector(pfTexture *handle);

int pfuProjectorPreDrawCB(pfTraverser *trav, void *travData);

Random Numbers
Generating good random numbers is very important for many simulation tasks. These functions provide
a portable interface to the system random number generator which is somewhat more convenient than
random.

void pfuRandomize(int seed);
long pfuRandomLong(void);
float pfuRandomFloat(void);
void pfuRandomColor(pfVec4 rgba, float minColor, float maxColor);

Flybox Control
These routines provide a simple interface to the BG Systems flybox but do not provide a flight model
based on the flybox.

int pfuOpenFlybox(char *p);

int pfuReadFlybox(int *dioval, float *inbuf);
int pfuGetFlybox(float *analog, int *but);
int pfuGetFlyboxActive(void);

int pfulnitFlybox(void);

IXXix

Performer(3pf) IRIS Performer 2.0 C++ Reference Pages

Smoke Simulation

These functions simulate the appearance of smoke and fire. They are included both as a utility in simula-
tions as well as a demonstration of how to model such phenomena.

void pfulnitSmokes(void);

pfuSmoke * pfuNewSmoke(void);

void pfuSmokeType(pfuSmoke *smoke, int type);

void pfuSmokeOrigin(pfuSmoke* smoke, pfVec3 origin, float radius);

void pfuSmokeDir(pfuSmoke* smoke, pfVec3 dir);

void pfuSmokeVelocity(pfuSmoke* smoke, float turbulence, float speed);

void pfuGetSmokeVelocity(pfuSmoke* smoke, float *turbulence, float *speed);
void pfuSmokeMode(pfuSmoke* smoke, int mode);

void pfuDrawSmokes(pfVec3 eye);

void pfuSmokeTex(pfuSmoke* smoke, pfTexture* tex);

void pfuSmokeDuration(pfuSmoke* smoke, float dur);

void pfuSmokeDensity(pfuSmoke* smoke, float dens, float diss, float expansion);
void pfuGetSmokeDensity(pfuSmoke* smoke, float *dens, float *diss, float *expansion);
void pfuSmokeColor(pfuSmoke* smoke, pfVec3 bgn, pfVec3 end);

LightPointState Utilities

These functions can derive a texture image from a pfLightPoint specification.

void pfuMakeLPStateShapeTex(pfLPointState *Ips, pfTexture *tex, int size);
void pfuMakeLPStateRangeTex(pfLPointState *Ips, pfTexture *tex, int size, pfFog *fog);

Draw Styles

IXXX

These functions demonstrate how to use multi-pass rendering to achieve various special drawing effects.
Hidden line elimination and haloed lines are two examples of effects which can be created using these
functions.

void pfuPreDrawStyle(int style, pfVec4 scribeColor);

void pfuPostDrawStyle(int style);

void pfuCalcNormalizedChanXY (float* px, float* py, pfChannel”* chan, int xpos, int ypos);
int pfuSaveImage(char* name, int xorg, int yorg, int xsize, int ysize, int saveAlpha);

libpf

libpf is a high-level library for
real-time graphics and visual
simulation.

This library provides a scene graph
structure and database traversals
including view culling, rendering
and collision detection in a
multiprocessed environment.

IRIS Performer 2.0 libpf C++ Reference Pages pfBillboard(3pf)

NAME

pfBillboard - Create and update automatic rotation billboard nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfBillboard.h>

pfBillboard::pfBillboard();

static pfType *

void
void
void
int

void

void

int
int
int
int
pfGeoSet *
int

pfBillboard::getClassType(void);

pfBillboard::setPos(int i, const pfVec3 &xyzOrigin);

pfBillboard::getPos(int i, pfVec3 &xyzOrigin);
pfBillboard::setMode(int mode, int val);
pfBillboard::getMode(int mode);
pfBillboard::setAxis(const pfVec3 &axis);
pfBillboard::getAxis(pfVec3 &axis);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfBillboard is derived from the parent class pfGeode, so each of these member
functions of class pfGeode are also directly usable with objects of class pfBillboard. This is also true for
ancestor classes of class pfGeode.

pfGeode::
pfGeode::
pfGeode::
pfGeode::
pfGeode::
pfGeode:

addGSet(pfGeoSet* gset);
removeGSet(pfGeoSet* gset);
insertGSet(int index, pfGeoSet* gset);
replaceGSet(pfGeoSet* old, pfGeoSet* new);
getGSet(int index);

:getNumGSets(void);

Since the class pfGeode is itself derived from the parent class pfNode, objects of class pfBillboard can
also be used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

getParent(int i);
getNumParents(void);
setBound(pfSphere *bsph, int mode);
getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);
flatten(int mode);

setName(const char *name);

pfBillboard(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

const char *
pfNode*
pfNode*
int

void

uint

void

void

void

void *

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfBillboard can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfBillboard can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int
const char *
int

int

void

int
void*
int

int

int
ushort
int

void *
int

pfMemory::getData(const void *ptr);
pfMemory::getType();
pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory::copy(pfMemory *src);
pfMemory::compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);
pfMemory::getArena();

pfMemory::ref();

pfMemory::unref();
pfMemory::unrefDelete();
pfMemory:getRef();
pfMemory::checkDelete();
pfMemory::getArena();

pfMemory::getSize();

IRIS Performer 2.0 libpf C++ Reference Pages pfBillboard(3pf)

DESCRIPTION
A pfBillboard is a pfGeode in which each pfGeoSet rotates to follow the eyepoint. Billboards are useful
for complex objects which are roughly symmetrical about one or more axes. The billboard tracks the
viewer by rotating about an axis or a point to present the same image to the viewer using far fewer
polygons than a solid model. A classic example is a textured billboard of a single quadrilateral represent-
ing a tree.

A pfBillboard can contain any number of pfGeoSets. pfGeoSets are added to and removed from the
pfBillboard using the pfGeode::addGSet and pfGeode::removeGSet routines used with pfGeodes. Each
pfGeoSet rotates independently to follow the viewer. By convention, the pfGeoSet is rotated about the +Z
axis so that the +Y axis points towards the eye point.

new pfBillboard creates and returns a handle to a pfBillboard. Like other pfNodes, pfBillboards are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfBill-
boards should be deleted using pfDelete rather than the delete operator.

pfBillboard::getClassType returns the pfType* for the class pfBillboard. The pfType* returned by
pfBillboard::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfBillboard. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfBboardPos specifies the position xyzOrigin for the pfGeoSet with index i. pfBillboard::getPos copies
the position of the pfGeoSet with index 7 into xyzOrigin.

Billboards can either rotate about an axis or a point.

Axial billboards rotate about the axis specified by pfBillboard::setAxis. The rotation is about the origin
(0,0,0) of the pfGeoSet. In all cases, the geometry is modeled in the XZ plane, with +Y forward. When
rendered, the billboard is rotated so that the -Y axis points back to the eye point. The +Z axis is the
pfGeoSet’s axis of rotation. An axial rotate billboard is specified by setting the PFBB_ROT mode of the
billboard to the value PFBB_AXIAL_ROT using pfBillboard::setMode. The axis of rotation (x, y, z) is
specified using pfBillboard::setAxis. pfBillboard::getAxis returns the axis of the pfBillboard.

Point rotate billboards are useful for spherical objects or special effects such as smoke. They come in two
varieties depending on how the remaining rotational degree of freedom is determined (rotating the -Y
axis towards the eye, still leaves an arbitrary rotation about the pfGeoSet’s Y axis).

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_EYE, the billboard is
rotated so that the +Z axis of the pfGeoSet stays upright on the screen.

If the PFBB_ROT mode on the billboard is set to PFBB_POINT_ROT_WORLD, the billboard is

pfBillboard(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

rotated so that the angle between the +Z axis of the pfGeoSet and axis specified with
pfBillboard::setAxis is minimized.

Both PFBB_AXIAL_ROT and PFBB_POINT_ROT_WORLD billboards may "spin" about the Y axis of
the pfGeoSet when viewed along the rotation or alignment axis.

After the first pfSync, the number of pfGeoSets, the number and length of the primitives, and planarity of
the vertices should not be changed.

Some database formats may place a transformation above each billboard for positioning it. As with a
pfGeode containing a small amount of geometry, having many billboards with transformation matrices
above them can be expensive.

Since billboards always rotate towards the eyepoint, billboards in adjacent channels with the same
eyepoint have the same orientation. Channels with different eyepoints will have different billboard orien-

tations.

BUGS
Intersection traversals test only the pfBillboard’s bounding volume, not its individual pfGeoSets.
pfFlatten only transforms the position of a billboard, not the axis and applies only a uniform scale to the
billboard geometry.

SEE ALSO

pfChannel, pfGeode, pfNode, pfScene, pfTransparency, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)

NAME
pfBuffer, pfAsyncDelete, pfGetCurBuffer — Create, select, and merge a pfBuffer.

FUNCTION SPECIFICATION
#include <Performer/pf/pfBuffer.h>

pfBuffer:pfBuffer();
void pfBuffer:select(void);
static int pfBuffer::merge(void);
void pfBuffer::setScope(pfObject *obj, int scope);
int pfBuffer::getScope(pfObject *obj);
static int pfBuffer::add(void *parent, void *child);
static int pfBuffer:remove(void *parent, void *child);
static int pfBuffer:insert(void *parent, int index, void *child);

static int pfBuffer:replace(void *parent, void *oldChild, void *newChild);

int pfAsyncDelete(void *mem);
pfBuffer* pfGetCurBuffer(void);
PARAMETERS

buf identifies a pfBuffer
obj identifies a pfObject

DESCRIPTION
A pfBuffer is a data structure that logically encompasses libpf objects such as pfNodes. Newly created
objects are automatically "attached" to the current pfBuffer specified by pfBuffer::select. Later, any
objects created in the pfBuffer may be merged into the main IRIS Performer processing stream with
pfBuffer::merge. In conjunction with a forked DBASE process (see pfMultiprocess and pfDBaseFunc),
the pfBuffer mechanism supports asynchronous parallel creation and deletion of database objects. This is
the foundation of a real-time database paging system.

new pfBuffer creates and returns a handle to a pfBuffer. pfBuffers cannot be created statically, on the
stack, from the heap or in arrays.

pfBuffer:select makes the pfBuffer the current pfBuffer. Once the pfBuffer is current, all subsequently
created libpf objects will be automatically associated with the pfBuffer and these objects may only be
accessed through IRIS Performer routines when the pfBuffer is the current pfBuffer (except for
pfGroup::bufferAddChild and pfGroup::bufferRemoveChild, see the pfGroup man page). A given
pfBuffer should only be current in a single process at any given time. In this way, a pfBuffer restricts
access to a given object to a single process, avoiding hard-to-find errors due to multiprocessed data colli-
sions. pfGetCurBuffer returns the current pfBuffer.

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

Only libpf objects are subject to pfBuffer access restrictions. libpf objects include pfNodes such as
pfGroup, pfGeode and pfUpdatables such as pfLODState, pfChannel, pfEarthSky. libpr objects such as
pfGeoSets, pfGeoStates, and pfMaterials have no pfBuffer restrictions so they may be accessed by any
process at any time although care must be taken by the application to avoid multiprocessed collisions on
these data structures.

pfBuffer:merge merges the current pfBuffer with the main IRIS Performer pfBuffer. This main pfBuffer
is created by pfConfig and will resist deletion and merging and should only be made current in the APP
process (however, it is legal to select a different buffer in the APP process). If called in a process other
than the APP, pfBuffer::merge will block until the APP calls pfSync, at which time the APP will merge
the current pfBuffer into the main pfBuffer and then allow the process that requested the merge to con-
tinue. If called in the APP, pfBuffer::merge will immediately execute the merge. After pfBuffer:: merge
returns, any objects that were created in the current pfBuffer may only be accessed in the APP process
when the APP pfBuffer has been selected as the current pfBuffer. In other words, the merged pfBuffer
has been "reset" and its objects now "exist" only in the APP pfBuffer. The addresses of libpf objects are
not changed by pfBuffer:: merge.

Any number of pfBuffers may be used and merged (pfBuffer::merge) by any number of processes for
multithreaded database manipulation, subject to the following restrictions:

1. A given pfBuffer should be current (via pfBuffer::select) in only a single process at any
given time.
2. Each process which selects a pfBuffer must be forked, not sproced.

Specifically, pfBuffer usage is not restricted to the DBASE process (see pfConfig).

pfGroup::bufferAddChild and pfGroup::bufferRemoveChild provide access to nodes that do not exist
in the current pfBuffer. Either, none, or both of the pfBuffer and node may exist outside the current
pfBuffer. pfGroup::bufferAddChild and pfGroup::bufferRemoveChild act just like their non-buffered
counterparts pfGroup::addChild and pfGroup::removeChild except that the addition or removal request
is not carried out immediately but is recorded by the current pfBuffer. The request is delayed until the
first pfBuffer::merge when both the parent pfGroup and node are found in the main IRIS Performer
pfBuffer. The list of pfGroup::bufferAddChild and pfGroup::bufferRemoveChild requests is traversed
in pfBuffer::merge after all nodes have been merged. pfGroup::bufferAddChild and
pfGroup::bufferRemoveChild return TRUE if the request was recorded and FALSE otherwise.

In addition to the pfGroup-specific pfGroup::bufferAddChild and pfGroup::bufferRemoveChild rou-
tines, a pfBuffer allows generic list management for pfGroup, pfGeode, pfText, and pfPipeWindow
objects. These functions, pfGroup::bufferAdd, pfGroup::bufferRemove, pfGroup::bufferInsert,
pfGroup::bufferReplace can be used to manage a pfGroup’s list of pfNodes, a pfGeode’s list of
pfGeoSets, a pfText’s list of pfStrings, or a pfPipeWindow’s list of pfChannels respectively. These rou-
tines infer the proper action to take from the argument types. For example, the following code fragment

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)

is equivalent to group->bufferAddChild(geode):

pf Gr oup *gr oup;
pf Geode *geode;

pf Buf f er: : add(gr oup, geode);

pfGroup::bufferAdd, pfGroup::bufferRemove, pfGroup::bufferInsert, pfGroup::bufferReplace all act
similarly in that they do not have effect until pfBuffer::merge is called and all parties have been merged
into the main IRIS Performer buffer. They return -1 if the argument types are not consistent (e.g.,
pfBuffer:remove(group, geoset)), 0 if the request is immediately processed (this happens when all parties
already have scope in the current pfBuffer), and 1 if the request is buffered until the next pfBuffer::merge.

pfBuffer::setScope sets the scope of obj with respect to the pfBuffer. If scope is TRUE, then obj is "added"
to the pfBuffer so that when the pfBuffer is made current (pfBuffer::select) in a process, obj may be
accessed through IRIS Performer routines in that same process. When scope is FALSE, obj is "removed"
from the pfBuffer. pfBuffer::setScope’s primary purpose is to move objects between pfBuffers, particu-
larly from the main APP pfBuffer into an application pfBuffer typically used for asynchronous database
manipulations. In this case the object’s scope would be set to FALSE in the old pfBuffer and TRUE in the
new pfBuffer. Itis undefined when an object has scope in multiple pfBuffers since this violates the mul-
tiprocessing data exclusion requirement of IRIS Performer. pfBuffer:getScope returns TRUE or FALSE
indicating the scope of obj in pfBuffer the pfBuffer.

When using pfBuffers for database paging, it is sometimes desirable to retain certain, common database
models ("library models") in memory. Examples are trees, houses, and other "culture" which are
instanced on paged terrain patches. One instancing mechanism is to create the library models in one
pfBuffer and later use pfGroup::bufferAddChild to attach the models to scene graphs created in another
pfBuffer. This is classic instancing which uses transformations (pfSCS) to properly position the models.
However, this mechanism suffers from 2 performance problems:

1. pfBuffer::merge will adversely impact the APP process, proportional to the number of
pfBuffer:addChild and pfBuffer:removeChild requests.

2. Transformations in the scene graph reduce IRIS Performer’s ability to sort the database
(see pfChannel::setBinSort) and matrix operations have some cost in the graphics pipe-
line.

An alternative to classic instancing is "flattening” which creates a clone of the instanced subtree and then
applies the transformation to all geometry in the cloned subtree. This method eliminates the performance
problems listed above but does increase memory usage.

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf)

is a version of pfNode::clone which clones the pfBuffer and its subtree, which resides in buf, into the
current pfBuffer. mode is the same argument as that passed to pfNode::clone (it is currently ignored).
Once cloned, a subtree may be flattened with pfNode::flatten.:

Example 1: Instancing with pfGroup::bufferAddChild

libraryBuffer = new pfBuffer;
l'i braryBuffer->select();

| oadLi braryQj ects();

pagi ngBuf fer = new pfBuffer;
pagi ngBuf fer->sel ect ();

whi l e (!done)

{
pf Node *newst uf f;
pf SCS *treelLocati on;
/* Load new terrain tile or whatever */
newStuff = | oadStuff();
/* Create pfSCS which is |ocation of tree */
treeLocati on = new pf SCS(treeMatri x);
/* Add library model of a tree to treeLocation */
treelLocati on->buffer AddChil d(libraryTree);
/* Add instanced tree to newy | oaded stuff */
newSt uf f - >addChi | d(treeLocati on);

}

Example 2: Instancing with pfBufferClone and pfFlatten

l'i braryBuffer = new pfBuffer;
I'i braryBuffer->select();

| oadLi braryQj ects();

10

IRIS Performer 2.0 libpf C++ Reference Pages

pfBuffer(3pf)

pagi ngBuf fer = new pfBuffer;
pagi ngBuf f er - >sel ect () ;

whil e (!done)
{
pf Node *newst uf f;
pf SCS *treelLocation;

/* Load new terrain tile or whatever */
newSt uff = loadStuff();

/* Create pfSCS which is location of tree */
treeLocati on = new pf SCS(treeMatri x);

/* Cone tree nodel fromlibrary into current, paging buffer */
newlree = libraryTree->bufferdone(0, libraryBuffer);

/* Transformcloned tree */
treeLocati on->addChi | d(newTr ee) ;
treeLocation->flatten();

/* Get rid of unneeded treelLocation */
treeLocati on->r enoveChi | d(newTr ee) ;
pf Del ete(treeLocation);

/* Add cloned, flattened tree to newy | oaded stuff */
newsSt uf f - >addChi | d(newTr ee) ;

pfAsyncDelete is a special version of pfDelete which is useful for asynchronous database deletion.
Instead of having immediate effect, pfAsyncDelete simply registers a deletion request at the time of invo-
cation. These deletion requests are then processed in the DBASE trigger routine, pfDBase (pfDBase is
automatically called if you have not registered a DBASE callback with pfDBaseFunc). Thus, if the
DBASE processing stage is configured as its own process via pfMultiprocess, then the deletion will be
carried out asynchronously without affecting (slowing down) the main processing pipelines.

pfAsyncDelete may be called from any process and returns -1 if mem is NULL or not derived from
pfMemory and returns TRUE otherwise. Note that unlike pfDelete pfAsyncDelete does not check mem’s
reference count and return TRUE or FALSE indicating whether mem was successfully deleted or not.
Instead, the reference count check is delayed until the next call to pfDBase. At this time there is no way

11

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

12

to query the success of an pfAsyncDelete request.

Note that pfDBase should only be called from within the database callback function (pfDBaseFunc) in
the DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and
DRAW callbacks respectively (pfChanTravFunc).

Example 2: How to use a pfBuffer

/* Must create these in shared nmenory */
static pfGoup **Tiles;
static int *Til eSt at us;

/*
* Load new tiles and del ete ol d ones.
*/
voi d
pageDBase(voi d *dat a)
{
static pfBuffer *puf = NULL;
pf Group *root;

if (buf == NULL)

{
buf = new pfBuffer;
buf - >sel ect ();

/* Asynchronously del ete unneeded tiles and update their status */
for (all UnneededTil es)

{
/*
* Scene does not have scope in 'buf’ so use pfBufferRenpveChild
* Tiles[i] is not really renoved until pfMergeBuffer
*/

Scene->buf f er RemoveChi l d(Tiles[i]);

/* Delete Tiles[i] at pfDBase tine if Tiles[i] only has Scene as
a parent.

*/

pf AsyncDel ete(Tiles[i]);

/* Update tile status */
TileStatus[i] = TILE_DELETED;

IRIS Performer 2.0 libpf C++ Reference Pages pfBuffer(3pf)

/*

* Synchronously | oad needed tiles and update their status.
*/

LoadNeededDat abaseTil es(Tiles, TileStatus);

for (allLoadedTil es)

{
/*
* Scene does not have scope in 'buf’ so use pfBufferAddChild
* | oadedTile[i] is not really added until pfMergeBuffer
*/
Scene- >buf f er AddChi | d(| oadedTile[i]);
}
/*

* Merge newy loaded tiles into main pfBuffer then carry out
* all pfBufferAdd/ RenoveChild requests.

*/

pfBuf fer::nerge();

/*

* Carry out pfAsyncDel ete requests. Call *after* pfBuffer::nerge()
* so that all pfBufferRenoveChild requests have been processed

* and child reference counts have been properly decrenented.

*/

pf DBase() ;

pflnit();

Tiles = pfMalloc(sizeof (pf Goup*) * NUMTILES, pfGetSharedArena());
TileStatus = pfMlloc(sizeof(int) * NUMTILES, pfGetSharedArena());
pf Mul ti process(PFMP_APP_CULL_DRAW | PFMP_FORK_DBASE) ;

pf Config();

pf DBaseFunc(pageDBase) ;
whi | e(! done)

{
pf Sync();

13

pfBuffer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

/* Renmove and request del etion of unneeded tiles */
Updat eTil eStatus(Tiles, TileStatus);

pf Frane();

NOTES
pfGetCurBuffer will return the APP pfBuffer immediately after pfConfig returns.

SEE ALSO
pfBuffer, pfConfig, pfDBaseFunc, pfFrame, pfMultiprocess, pfGroup

14

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

NAME

pfChannel, pfApp, pfCull, pfDraw, pfDrawBin, pfNodePickSetup — Set and get pfChannel definition

parameters.

FUNCTION SPECIFICATION
#include <Performer/pf/pfChannel.h>

pfChannel::;pfChannel();

static pfType * pfChannel::getClassType(void);
pfPipe * pfChannel::getPipe(void);
void pfChannel::setViewport(float], float r, float b, float t);
void pfChannel::getViewport(float*], float* r, float* b, float* t);
void pfChannel::getOrigin(int *xo, int *yo);
void pfChannel::getSize(int *xs, int *ys);
void pfChannel::setLODState(const pfLODState *1s);
void pfChannel::getLODState(pfLODState *1s);
void pfChannel::setLODStateList(pfList *IsList);
pfList* pfChannel::getLODStateList(void);
int pfChannel::getPWinIndex(void);
pfPipeWindow *
pfChannel::getPWin(void);
void pfChannel::setTravFunc(int trav, pfChanFuncType func);
pfChanFuncType
pfChannel::getTravFunc(int trav);
void * pfChannel::allocChanData(int size);
void pfChannel::setChanData(void *data, size_t size);
void * pfChannel::getChanData(void);
size_t pfChannel::;getChanDataSize(void);
void pfChannel::passChanData(void);
void pfChannel::clear(void);
int pfChannel::attach(pfChannel* chanl);
int pfChannel::detach(pfChannel* chanl);

15

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

void pfChannel::setShare(uint mask);

uint pfChannel::getShare(void);

void pfChannel::setFOV (float horiz, float vert);

void pfChannel::getFOV (float* horiz, float* vert);

void pfChannel::setNearFar(float near, float far);

void pfChannel::getNearFar(float* near, float* far);

void pfChannel::setAutoAspect(int which);

int pfChannel::getAutoAspect(void);

void pfChannel::getBaseFrust(pfFrustum *frust);

void pfChannel::getPtope(pfPolytope *ptope);

void pfChannel::makePersp(float left, float right, float bottom, float top);
void pfChannel::makeOrtho(float left, float right, float bottom, float top);
void pfChannel::makeSimple(float fov);

int pfChannel::getFrustType(void);

void pfChannel::setAspect(int which, float widthHeightRatio);

float pfChannel::getAspect(void);

void pfChannel::orthoXform(pfChannel* src, const pfMatrix &mat);

void pfChannel::getNear(pfVec3 &ll, pfVec3 &Ir, pfVec3 &ul, pfVec3 &ur);
void pfChannel::getFar(pfVec3 &ll, pfVec3 &lr, pfVec3 &ul, pfVec3 &ur);
int pfChannel::getEye(pfVec3 &eye);

void pfChannel::apply(void);

int pfChannel::contains(const pfVec3 &pt, pfChannel* chan);

int pfChannel::contains(const pfSphere* sph);

int pfChannel::contains(const pfCylinder* cyl);

int pfChannel::contains(const pfBox* box);

void pfChannel::setCullPtope(const pfPolytope *ptope);

void pfChannel::getCullPtope(pfPolytope *ptope);

int pfChannel::pick(int mode, float px, float py, float radius, pfHit **picklist[]);
int pfChannel::isect(pfNode *node, pfSegSet *segSet, pfHit **hits[], pfMatrix *mat);

16

IRIS Performer 2.0 libpf C++ Reference Pages

pfChannel(3pf)

void
pfScene *
void
pfEarthSky *
void
pfGeoState*
void
pfList*
void
void
void
float
float
void

int

void

uint

void

int

void

int

void
void
void
void
void
void

void

pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel:
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::
pfChannel::

setScene(pfScene *scene);

getScene(void);

setESky(pfEarthSky *sky);

getESky(void);

setGState(pfGeoState *gstate);

getGState(void);

setGStateTable(pfList *gstable);
getGStateTable(void);

setStressFilter(float frac, float low, float high, float scale, float max);
getStressFilter(float *frac, float *low, float *high, float *scale, float *max);
setStress(float stress);

getStress(void);

getLoad(void);

setTravMode(int trav, int mode);
getTravMode(int trav);

setTravMask(int trav, uint mask);
getTravMask(int trav);

setBinSort(int bin, int sortType, int *sortOrders);
getBinSort(int bin, int *sortOrders);
setBinOrder(int bin, int order);

getBinOrder(int bin);

setView(pfVec3 &xyz, pfVec3 &hpr);
getView(pfVec3 &xyz, pfVec3 &hpr);
setViewMat(pfMatrix &mat);
getViewMat(pfMatrix &mat);
setViewOffsets(pfVec3 &xyz, pfVec3 &hpr);
getViewOffsets(pfVec3 &xyz, pfVec3 &hpr);
getOffsetViewMat(pfMatrix &mat);

pfFrameStats * pfChannel::getFStats(void);

17

pfChannel(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

int

void
void
float
void
void
void
void

void

pfChannel::setStatsMode (uint mode, uint val);
pfChannel::drawStats(void);
pfChannel::setLODAttr(int attr, float val);
pfChannel::getLODAttr(int attr);
pfApp(void);

pfCull(void);

pfDraw(void);

pfDrawBin(int bin);
pfNodePickSetup(pfNode *node);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfChannel is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfChannel. This is also true for
ancestor classes of class pfObject.

18

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfChannel can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

void

int
void*

int

int

int
ushort
int

pfMemory::getData(const void *ptr);
pfMemory::getType();

pfMemory::isOf Type(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory::copy(pfMemory *src);
pfMemory::compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);
pfMemory:getArena();

pfMemory::ref();

pfMemory::unref();
pfMemory::unrefDelete();
pfMemory::getRef();
pfMemory::checkDelete();

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS

chan identifies a pfChannel.

node identifies a pfNode.

trav is a symbolic token identifying a traversal:
PFTRAV_CULL

PFTRAV_DRAW

DESCRIPTION
A pfChannel is essentially a view onto a scene. pfNewChan creates a new pfChannel on the pfPipe
identified by pipe. The new pfChannel will be rendered by the pipe into a pfPipeWindow window associ-
ated with pipe (See pfConfigPWin). new pfChannel creates and returns a handle to a pfChannel.
pfChannels are always allocated from shared memory and cannot be created statically, on the stack or in
arrays.

pfChannel::getClassType returns the pfType* for the class pfChannel. The pfType* returned by
pfChannel::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfChannel. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

PIPE WINDOWS, PIPES, AND CHANNELS
pfChannel::getPipe returns the parent pfPipe of the pfChannel. pfChannel::getPWin returns the pfPi-
peWindow of the pfChannel.

Multiple pfChannels may be rendered by a single pfPipe into a single pfPipeWindow. It is recommended
that multiple pfChannels rather than multiple pfPipes be used to render multiple views on a single
hardware pipeline. If necessary, multiple pfPipeWindows can be rendered by a single pfPipe on a single
hardware pipeline. The handle returned by new pfChannel should be used to identify the pfChannel in
IRIS Performer routines.

Upon creation, pfChannels are automatically assigned to the first pfPipeWindow of its parent pfPipe.
pfChannel::getPWin will return the pfPipeWindow of the pfChannel.

Channels of a pfPipeWindow are drawn in the order in which they are assigned to the pfPipeWindow.
pfChannel::getPWinIndex can be used to get the position of a channel in its pfPipeWindow list. A return
value of (-1) indicates that the channel is not assigned to a pfPipeWindow. Channels can be re-ordered in
their pfPipeWindow, or moved to other pfPipeWindows via list style API on pfPipeWindows. See the

19

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

20

pfPipeWindow man page for more information.

All active pfChannels are culled and drawn by pfFrame. A pfChannel is by default active but can be
selectively turned on and off by PFDRAW_ON and PFDRAW_OFF arguments to
pfChannel::setTravMode. Multiple pfChannels on a pfPipe will be drawn only if they are assigned to a
pfPipeWindow and will be drawn in the order they were assigned to that pfPipeWindow.

pfChannel::setViewport specifies the fractional viewport used by the pfChannel. |, r, b, t specify the left,
right, bottom, and top extents of a viewport in the range 0.0 to 1.0. The fractional viewport is relative to
the parent pfPipe’s graphics window. Channel viewports on a single pfPipe may overlap. Viewport
extents are clamped to the range 0.0 to 1.0.

pfChannel::getViewport copies the fractional viewport of the pfChannel into /, 7, b, t.

pfChannel::getOrigin copies the window coordinates of the origin of chan’s viewport into xo and yo.

pfChannel::getSize copies the X and Y pixel sizes of the pfChannel’s viewport into xs and ys.

APPLICATION-DEFINED CALLBACKS AND DATA

Although IRIS Performer normally handles all culling and drawing, invocation of user written and
registered extension functions (callback functions) is supported to allow custom culling and drawing by the
application. Furthermore, IRIS Performer manages callback data such that when configured for multipro-
cessing, data contention and synchronization issues are handled transparently.

pfChannel::setTravFunc sets the application, cull or draw-process callback functions for the pfChannel.
The trav argument specifies which traversal is to be set and is one of: PFTRAV_APP, PFTRAV_CULL or
PFTRAV_DRAW. User-data that is passed to these functions is allocated on a per-channel basis by
pfChannel::allocChanData. pfChannel::allocChanData returns a pointer to a word-aligned buffer of
shared memory of size bytes. Alternately, applications can provide passthrough data with
pfChannel::setChanData. data is a memory block of size bytes which should be allocated from a shared
malloc arena visible to all IRIS Performer processes when multiprocessing (see pfMultiprocess).

pfChannel::getChanDataSize returns the size of the pfChannel’s passthrough data block.
pfChannel::getChanData returns a pointer to a buffer that was set by pfChannel::setChanData or allo-
cated by pfChannel::allocChanData or NULL if no buffer has been allocated or set.
pfChannel::setTravFunc returns the app, cull or draw callback functions for chan or NULL if the callback
has not been set.

In order to propagate user data downstream to the cull and draw callbacks, pfChannel::passChanData
should be called whenever the user data is changed to indicate that the data should be "passed through"
the IRIS Performer rendering pipeline. The next call to pfFrame will copy the channel buffer into internal
IRIS Performer memory so that the application will then be free to modify data in the buffer without fear

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

of corruption.

In the cull phase of the rendering pipeline, IRIS Performer invokes the cull callback with a pointer to the
pfChannel being culled and a pointer to the pfChannel’s data buffer. The cull callback may modify data
in the buffer. The potentially modified buffer is then copied and passed to the user’s draw callback.
Modifications to the data buffer are not visible upstream. For example, changes made by the cull or draw
process are not seen by the application process.

When IRIS Performer is configured for multiprocessing (see pfMultiprocess), it is important to realize
that the cull and draw callbacks may be invoked from different processes and thus may run in parallel
with each other as well as with the main application process. IRIS Performer provides both shared arenas
(see pfGetSemaArena and pfGetSharedArena) and channel data (pfChannel::allocChanData) for inter-
process communication.

With user callbacks, it is possible to extend or even completely replace IRIS Performer actions with cus-
tom traversal, culling and drawing. pfApp, pfCull and pfDraw trigger the default IRIS Performer pro-
cessing. This default processing is invoked automatically in the absence of any user callbacks specified by
pfChannel::setTravFunc, otherwise the user callback usually invokes them directly.

pfApp carries out the application traversal for the channel and should only be invoked in the application
callback specified by pfChannel::setTravFunc. The application callback is invoked once for each channel
group that is sharing PFCHAN_APPFUNC.

pfCull should only be called in the cull callback and causes IRIS Performer to cull the current channel and
generate an IRIS Performer display list (see pfDispList) suitable for rendering if the
PFMP_CULL_DL_DRAW multiprocessing mode is enabled (see pfMultiprocess). Then, in the draw
callback only, pfDraw will traverse the pfDispList and send rendering commands to the graphics
hardware, thus drawing the scene.

If the PFMP_CULL_DL_DRAW multiprocessing mode is not set then all display-listable operations will
be applied directly to the graphics pipeline rather than accumulated in a pfDispList for subsequent draw-
ing. In essence, the draw process does the work of both pfCull and pfDraw without the intermediate
step of building a pfDispList. This mode avoids the overhead of building and traversing a pfDispList but
consequently is not suitable for multipass renderings which require multiple invocations of pfDraw.

When the draw callback is invoked, the graphics context will already have been properly configured for
drawing the pfChannel. Specifically, the viewport, perspective and viewing matrices are set to the correct
values. In addition, graphics library light sources corresponding to the active pfLightSources in the scene
will be enabled so that geometry rendered in the draw callback will be properly lit. User modifications of
this initial state are not reset by pfDraw.

If a draw callback is specified, IRIS Performer will not automatically clear the viewport, leaving control of
this to the application. pfChannel::clear called from the draw callback will clear the channel viewport. If

21

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

the pfChannel has a pfEarthSky (see pfChannel::setESky), then the pfEarthSky will be drawn. Other-
wise, the viewport will be cleared to black and the z-buffer cleared to its maximum value.

By default, pfFrame causes pfCull and pfDraw to be invoked for each active pfChannel. It is legal for the
draw callback to call pfDraw more than once for multipass renderings.

Example 1: Set up channel callbacks and passthrough data

typedef struct
{

int val ;
} PassDat a;

voi d cul | Func(pf Channel *chan, void *data);
voi d dr awFunc(pf Channel *chan, void *data);

int
mai n()
{
PassDat a *pd;

/* Initialize IRIS Performer */

pflnit();
pf Config();

/* Create and initialize pfChannel ’'chan’ */

chan = new pf Channel (pf Get Pi pe(0));

/* Setup channel passthrough data */

pd = (PassDat a*) chan->al | ocChanDat a(si zeof (PassData)) ;
/* Bind cull and draw cal |l back functions to channel */
chan- >set TravFunc(PFTRAV_CULL, cull Func);

chan- >set Tr avFunc(PFTRAV_DRAW dr awFunc) ;

pd->val = 0;

chan- >passChanbDat a() ;
pf Frane() ;

voi d

22

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

cul | Func(pf Channel *chan, void *data)

{
PassDat a *pd = (PassDat a*) dat a;
pd- >val ++;
pfCull();
}
voi d
dr awFunc(pf Channel *chan, void *data)
{
PassDat a *pd = (PassDat a*) dat a;
fprintf(stderr, "%d\n", pd->val);
chan->cl ear ();
pf Draw() ;
}

SHARING ATTRIBUTES THROUGH CHANNEL GROUPS
IRIS Performer supports the notion of a ‘channel group” which is a collection of pfChannels that share cer-
tain attributes. A channel group is created by attaching a pfChannel to another with pfChannel::attach.
If the pfChannel or chanl are themselves members of a channel group, then all channels that are grouped
with either the pfChannel or chanl are combined into a single channel group. All attached channels
acquire the share mask and shared attributes of the channel group. A channel is removed from a channel
group by pfChannel::detach.

The attributes shared by the members of a channel group are specified by the mask argument to
pfChannel::setShare. By definition, all channels in a group have the same share mask. A pfChannel that
is attached to a channel group inherits the share mask of the group. mask is a bitwise OR of the following
tokens which enumerate the attributes that can be shared:

PFCHAN_FOV
Horizontal and vertical fields of view are shared.

PFCHAN_VIEW
The view position and orientation are shared.

PFCHAN_VIEW_OFFSETS
The XYZ and HPR offsets from the view direction are shared.

PFCHAN_NEARFAR
The near and far clip planes are shared.

23

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

24

PFCHAN_SCENE
All channels display the same scene.

PFCHAN_EARTHSKY
All channels display the same earth-sky model.

PFCHAN_STRESS
All channels use the same stress filter parameters.

PFCHAN_LOD
All channels use the same LOD modifiers.

PFCHAN_SWAPBUFFERS
All channels swap buffers at the same time, even when the channels are on multiple
pfPipes.

PFCHAN_SWAPBUFFERS_HW
All channels swap buffers at the same time. The GANGDRAW feature of the
mswapbuffers function is used to synchronize buffer swapping through hardware inter-
locking. This feature can synchronize graphics pipelines across multiple machines.

PFCHAN_STATS_DRAWMODE
All channels draw the same statistics graph.

PFCHAN_APPFUNC
The application callback is invoked once for all channels sharing PFECHAN_APPFUNC.

PFCHAN_CULLFUNC
All channels invoke the same channel cull callback.

PFCHAN_DRAWFUNC
All channels invoke the same channel draw callback.

PFCHAN_VIEWPORT
All channels use the same viewport specification.

pfChannel::getShare returns the share mask of the pfChannel. The default attributes cause channels
within a share group to share all attributes except PFCHAN_VIEW_OFFSETS, PFCHAN_VIEWPORT
and PFCHAN_SWAPBUFFERS_HW.

Channel groups are useful for multichannel simulations where many of the viewing parameters are the
same across pfChannels. For example, a 3-channel simulation consisting of left, middle, and right views
typically shares the near and far clipping planes. With a channel group, the clipping planes need only be
set on a single pfChannel, say the middle one, and all other pfChannels in the group will acquire the same
settings.

Example 1: Set up a single pipe, 3-channel simulation

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

left new pf Channel (pf Get Pi pe(0));
m ddl e = new pf Channel (pf Get Pi pe(0));
ri ght = new pf Channel (pf Get Pi pe(0));

/* Form channel group with nmiddle as the "master" */
m ddl e->attach(l eft);
m ddl e->attach(right);

/* Set FOV of all channels */
m ddl e- >makeSi npl e(45. 0f) ;
m ddl e- >set Aut oAspect (PFFRUST_CALC VERT) ;

/* Set clipping planes of all channels */
m ddl e- >set Near Far (1. Of, 2000. 0f) ;

hpr O f set s- >set (0. 0f, 0.0f, 0.0f);
xyzOF f sets->set (0. 0f, 0.0f, 0.0f);

/*

* Set up viewport and view ng of fsets.

* Note that these are not shared by default.
*/

| eft->setViewort(0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hpr O fsets[PF_H = 45.0f;
left->setViewOfsets(xyzOfsets, hprOfsets);

m ddl e- >set Vi ewport (1. 0f /3. 0f, 2.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 0.0f;
m ddl e- >set Vi ewX f set s(xyzOf fsets, hprOffsets);

ri ght->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);
hpr O fset s[PF_H] = -45. 0f;
ri ght->setViewfsets(xyzOfsets, hprOfsets);

VIEWING FRUSTUM
Many pfChannel frustum routines are borrowed from pfFrustum (but not inherited). These routines have
the identical prototype as the pfFrustum routines but operate on the pfChannel’s internal viewing frus-
tum: makeSimple, makePersp, makeOrtho, setNearFar, getNearFar, getFOV, setAspect, getAspect,
getFrustType, orthoXform, getNear, getFar, getEye, apply, and contains. The reader is referred to the
pfFrustum man page for details on the function descriptions.

25

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

26

In addition to the pfFrustum routines, IRIS Performer provides the pfChannel::setFOV and
pfChannel::setAutoAspect convenience routines.

The horiz and vert arguments to pfChannel::setFOV specify total horizontal and vertical fields of view
(FOV) in degrees. If either angle is <= 0.0 or >= 180.0, IRIS Performer will automatically compute that
field of view based on the other specified field of view and the aspect ratio of the pfChannel viewport. If
both angles are defaulted in this way, IRIS Performer will use its default of horiz=45.0 with vert matched
to the aspect ratio of the pfChannel. Note that the aspect ratio of a pfChannel is defined by its fractional
viewport as well as the pixel size of its physical display window.

pfChannel::setFOV constructs a on-axis frustum, one where the line from the eyepoint passing through
the center of the image is perpendicular to the projection plane. pfChannel::makeSimple also creates an
on-axis frustum but both horizontal and vertical fields of view are specified with fov.

pfChannel::getFOV copies the total horizontal and vertical fields of view into horiz and vert respectively.
If an angle is matched to the aspect ratio of the pfChannel, then the computed angle is returned.

The which argument to pfChannel::setAutoAspect specifies which FOV extent to automatically match to
the aspect ratio of the pfChannel’s viewport. which is a symbolic token and is one of:

PFFRUST_CALC_NONE
Do not automatically modify field of view.

PFFRUST_CALC_HORIZ
Automatically modify horizontal FOV to match channel aspect.

PFFRUST_CALC_VERT
Automatically modify vertical FOV to match channel aspect.

Automatic aspect ratio matching is useful for situations where the initial size of the display window is not
known or where the display window may change size during runtime. Aspect ratio matching guarantees
that the image will not be distorted in either horizontal or vertical dimensions. pfChannel::makePersp
and pfChannel::makeOrtho disable automatic aspect ratio matching since it is assumed that the viewing
frustum aspect ratio is completely specified by these commands.

pfChannel::setNearFar specifies the near and far clip distances of the viewing frustum. near and far are

the positive, world-coordinate distances along the viewing ray from the eye point to the near and far clip-
ping planes which are parallel to the viewing plane. pfChannel::getNearFar copies the near and far clip-
ping distances into near and far. The default values are 1.0 for the near plane and 1000.0 for the far plane.

pfChannel::getBaseFrust copies the base viewing frustum of the pfChannel into frust. The base viewing
frustum has its eyepoint at the origin and its viewing direction as the +Y axis. The base frustum of a
pfChannel is transformed into world coordinates by the viewing transformation (see
pfChannel::setView). pfChannel::orthoXform transforms the base frustum of src by mat and copies the
result into the base frustum of the dst pfChannel. pfChannel::getPtope copies the transformed base

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

frustum into dst.
Example 1: Two equivalent ways of defining a typical viewing channel.

This method is the easiest and most common.

/* Set up a sinple viewi ng frustum?®*/
chan = new pf Channel (pi pe0);

/*

* Set horizontal FOV to 45 degrees and autonatically match
* vertical FOV to channel viewport.

*/

chan->set FOV(45. 0f, -1.0f);

Here’s how to do the same thing using the basic primitives.

/* Set up a sinple viewi ng frustum*/
chan = new pf Channel (pi pe0);

/*
* Set horizontal FOV to 45 degrees and automatically match
* vertical FOV to channel viewport.
*/

chan- >nmakeSi npl e(45. 0f) ;

chan- >set Aut oAspect (PFFRUST_CALC VERT) ;

Example 2: Set up a 4 channel, 4 pipe video wall with total horizontal and vertical FOVs of 90 degrees.

/*
* ul == upper left ur == upper right
* |l == lower left Ir == lower right
*/

Il Chan = new pf Channel (pf Get Pi pe(0));
I rChan = new pf Channel (pf Get Pi pe(1));
ur Chan = new pf Channel (pf Get Pi pe(2));
ul Chan = new pf Channel (pf Get Pi pe(3));

/* Form channel group with urChan as the "master" */
ur Chan->attach(I | Chan);
ur Chan->at t ach(| r Chan);
ur Chan- >at t ach(ul Chan);

27

pfChannel(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

28

/*

* Share viewport but not field of view
* in addition to the default shared attributes.

*/

share = ur Chan->get Share();
ur Chan- >set Share((share & “PFCHAN FOV) | PFCHAN_VI EWPORT);

/*

* Set up off-axis viewing frusta which "tile" video wall.
* pf Channel viewport aspect ratio nust be 1:1 or inmage wll

* be distorted.
*/

I I Chan- >makePer sp(- 1. Of ,
I r Chan- >makePer sp(0. Of,
ur Chan- >makePer sp(0. Of ,
ul Chan- >makePer sp(- 1. Of ,

ur Chan- >set Near Far (1. Of ,

0.0f, -1.0f, 0.0f);
1.0f, -1.0f, 0.0f);
1.0f, 0.0f, 1.0f);
0.0f, 0.0f, 1.0f);

2000. 0f) ;

Example 3: Set up a single pipe, 3-channel simulation.

left = new pf Channel (pf Get Pi pe(0));
m ddl e = new pf Channel (pf Get Pi pe(0));
right = new pf Channel (pf Get Pi pe(0));

/* Form channel group with mddle as the "naster" */
m ddl e->attach(left);
m ddl e->attach(right);

/* Set FOV of all

channel s */
m ddl e- >makeSi npl e(45. 0f) ;
m ddl e- >set Aut oAspect (PFFRUST_CALC _VERT) ;

/* Set clipping planes of all channels */

m ddl e- >set Near Far (1. Of ,

hpr O f set s[PF_P]
hpr O f set s[PF_R]

0. Of ;
0. Of ;

xyzOf f set s- >set (0. Of, 0. Of,

/*

2000. 0f);

0.0f);

* Set up viewport and view ng of fsets.

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

* Note that these are not shared by default.
*/

| eft->setViewort(0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 45.0f;
left->setViewdOfsets(hprOfsets, xyzOfsets);

m ddl e- >set Vi ewport (1. 0f /3. 0f, 2.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 0.0f;
m ddl e- >set Vi ewX f set s(hprOf f sets, xyzOffsets);

ri ght->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);
hpr O fset s[PF_H] = -45. 0f;
ri ght->setViewffsets(hprOfsets, xyzOfsets);

Example 4: Custom culling to pfChannel viewing frustum.
/ *
* User-supplied cull callback (see pfChannel::setTravFunc)
*/
extern void
nyCul | Func(pf Channel *chan, void *data)

{
pf Box *boundi ngBox = (pfBox*)dat a;
i f (chan->cont ai ns(boundi ngBox))
dr awGSet sW t hi nBoundi ngBox() ;
}

pfChannel::getAutoAspect returns the aspect ratio matching mode of the pfChannel.

A pfChannel normally uses its viewing frustum for culling its pfScene (pfChannel::setScene). However,
a custom culling volume may be specified by pfChannel::setCullPtope. If non-NULL, ptope identifies a
pfPolytope which is used for scene culling. A copy of ptope, internal to the pfChannel, is transformed by
chan’s viewing matrix before culling. If ptope is NULL, the pfChannel will use its view frustum for culling.
A pfPolytope is a set of half spaces whose intersection defines a convex volume. Culling performance will
be proportional to the number of facets in ptope. pfChannel::getCullPtope copies the culling polytope of
the pfChannel into ptope.

29

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

30

PICKING

pfChannel::pick is used for screen to world-space ray intersections on a pfChannel’s scene. This opera-
tion is often referred to as picking. Intersections will only occur with parts of the database that are within
the viewing frustum, and that are enabled for picking intersections. The return value of pfChannel::pick
is the number of successful intersections with the channel scene according to mode.

picklist is a user-supplied pointer. Upon return, the address of an array of pointers to pfHit objects is
stored there. The pfHit objects come from an internally maintained pool and are reused on subsequent
calls. Hence, the contents are only valid until the next invocation of pfChannel::pick in the current pro-
cess. They should not be deleted by the application.

The contents of the pfHit object are queried using pfHit::query and pfHit::mQuery. See the man pages
for pfHit and pfNode for a description of the queries.

mode specifies the behavior of the traversal and type of information that will be returned from the picking
process.

mode is a bitwise OR of tokens. In addition to those tokens that can be specified to pfNode::isect in the
mode field of the pfSegSet, the following values are also allowed:

PFPK_M_NEAREST
Return the picking intersection closest to the viewpoint.

PFPK_M_ALL
Return all picking intersections.

PFTRAV_LOD_CUR
When traversing pfLODs, select the child to traverse based on range in the specified chan-
nel.

When PFPK_M_ALL is set, picklist will contain all of the successful picking intersections in order of
increasing distance from the viewer eyepoint. See the pfNode manual page for information on the PFIS_
intersection tokens.

px, py identify a 2-dimensional point in normalized channel screen coordinates in the range 0.0 to 1.0
(with the lower left corner being (0.0, 0.0)), that corresponds to the channel location to be used for picking.
This 2-dimensional point is used to create a ray from the viewer eyepoint through the near clipping plane
to intersect with the channel scene.

radius is the radius of the picking region in normalized channel coordinates used for the picking of lines.
This argument is provided for coarse picking, and possibly for eventual picking of lines and points which
is currently not implemented. If radius is non-zero, then the mode argument must not specify the
PFTRAV_IS_PRIM mode.

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

pfNodePickSetup enables the entire database tree under node for picking intersections and should be
called with a pointer to the pfChannel’s scene graph. This effectively calls pfNode::setTravMask with
PFIS_SET_PICK. Selective picking can be done by calling pfNode::setTravMask, setting the traversal to
PFTRAV_ISECT and including PFIS_SET_PICK in the intersection mask for nodes that are to be enabled
for picking intersections. The picking traversal will not continue past any node that has not been enabled
for picking intersections. See the pfNode::setTravMask manual page for more information on intersec-
tion setup.

pfChannel:isect is identical to pfNode::isect except a pfChannel is provided for evaluating pfLODs dur-
ing the intersection traversal. In addition, mat specifies an initial transform, allowing intersection traver-
sals to begin at non-root nodes. All line segments in segSet will be transformed by mat. mat may be NULL
if no initial transform is needed.

EARTH AND SKY
pfChannel::setScene and pfChannel::setESky set the pfScene and pfEarthSky that the pfChannel will
cull and draw. pfChannel::setScene increments the reference count of scene so that scene must first be
removed from the pfChannel by pfChannel::setScene(INULL) before scene can be deleted with pfDelete.

pfChannel::getScene and pfChannel::getESky return the current pfScene and pfEarthSky for the
pfChannel.

Example 1: Setting a pfChannel’s pfScene.

voi d
cul | Func(pf Channel *chan, void *data)

{
pfQull ()

}

voi d
dr awFunc(pf Channel *chan, void *data)

{

chan->cl ear () ;
pf Draw() ;
}

/* somewhere in application setup phase */

/* set channel’s scene */
chan- >set Scene(scene);

/* bind cull and draw process cal |l backs */
chan- >set TravFunc(PFTRAV_CULL, cull Func);

31

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

32

chan- >set Tr avFunc(PFTRAV_DRAW dr awFunc) ;

GEOSTATES

pfChannel::setGState sets the pfChannel’s pfGeoState to gstate. If non-NULL, gstate is loaded before the
pfChannel’s DRAW callback is invoked. Specifically, gstate is loaded with pfGeoState::load so that the
state encapsulated by gstate becomes the global state that may be inherited by other pfGeoStates within
the scene graph. The pfGeoState state inheritance mechanism is described in detail in the pfGeoState man
page. Note that the channel pfGeoState is loaded before any scene pfGeoState so that state elements in
the scene pfGeoState override those in the channel’s pfGeoState. pfChannel::getGState returns the
pfGeoState of the pfChannel.

pfChannel::setGStateTable sets the pfChannel’s pfGeoState table to gstable. If non-NULL, gstable is made
the global pfGeoState table with pfGeoState::applyTable before the pfChannel’s DRAW callback is
invoked. Any indexed pfGeoStates, either referenced by a pfScene (pfScene::setGStateIndex) or by scene
pfGeoSets (pfGeoSet::setGStateIndex) will be accessed through gstable. Indexed pfGeoStates are useful
for efficiently managing a single database with multiple appearances, e.g., a normal vs. an infrared view
of a scene would utilize 2 pfGeoState tables, each referencing a different set of pfGeoStates.

STRESS PROCESSING AND LEVEL-OF-DETAIL

IRIS Performer attempts to maintain the fixed frame rate set with pfFrameRate by manipulating levels-
of-detail (LODs) to reduce graphics load when rendering time approaches a frame period. At the end of
each frame, IRIS Performer computes a load metric for each pfChannel based on the length of time it took
to render the pfChannel. Load is simply the actual rendering time divided by the desired frame interval.

pfChannel::setLODState specifies a global pfLODState to be used for this channel.

pfChannel::setLODStateList specifies a pfList of pfLODStates to be indexed into by pfLODs that have
specified indexes via pfLOD::setLODStateIndex. (See pfLOD and pfLODState).

If stress processing is enabled, IRIS Performer uses the load metric and a user-defined stress filter to com-
pute a stress value which multiplies effective LOD ranges (see pfLOD) for the next frame. Stress > 1.0
"pushes out” LOD ranges so that coarser models are drawn and graphics load is reduced. Stress ==1.0
means the system is not in stress and LODs are not modified.

pfChannel::setStressFilter sets the stress filter used by the pfChannel. frac is the fraction of a frame
period the pfChannel is expected to take to render. frac should be 1.0 if only a single pfChannel is drawn
on a pfPipe and should be > 0.0 and < 1.0 for multichannel simulations. frac allows the application to
apportion rendering time amongst multiple channels so that a channel drawing a complex scene may be
allocated more time than a channel drawing a simple one. pfChannel::getStressFilter returns the stress
filter parameters for the pfChannel.

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

low and high define a hysteresis band for system load. When load is >= low and <= high, stress is held con-
stant. When load is < low or > high, IRIS Performer will reduce or increase stress respectively until load
stabilizes within the hysteresis band. low should be <= high and they both should be positive. Stress is
computed using the following algorithm:

/* increase stress when above high | oad | evel */

if (load > high)
S[i] = minimum(S[i-1] + scale*| oad, max);

el se

/* decrease stress when bel ow low | oad | evel */

if (load < low)
Sli] = maximum(S[i-1] - scale*|l oad, 0.0f);

el se

/* stress unchanged when between low and high | oad | evel s */
S[i] = §[i-1];

where S[i] == stress for frame i and load = time[i] * frameRate / frac. By default, scale =0.0 and max =1.0
so that stress is disabled. Stress is clamped to the range [1.0, max].

pfChannels in a channel group may share a stress filter (PFCHAN_STRESS), and LOD behavior (-
PFCHAN_LOD) (see pfChannel::attach). It is useful for pfChannels which draw into adjacent displays
to share LOD behavior. In this case, the LOD multiplier used by all pfChannels in the channel group is
the maximum of each individual pfChannel. This ensures that LOD’s which straddle displays will always
be drawn at the same LOD on each display.

pfChannel::getLoad will return the last computed load for the pfChannel. The load value is defined as
time * frameRate / frac.

The application may choose to not use the default IRIS Performer stress filter by calling
pfChannel::setStress to explicitly set the stress value. Stress values set by pfChannel::setStress will
override the default stress values computed by the stress filter shown above.

pfChannel::getStress returns the last computed stress value for the pfChannel. The individual stress
value is returned regardless of pfChannel attribute sharing (pfChannel::setShare).

CUSTOMIZING SCENE GRAPH TRAVERSAL
A pfChannel directs two important traversals: cull and draw. In the cull traversal, the pfChannel defines
the viewing frustum that the database is culled to and also defines other parameters that modify level-of-
detail behavior. When drawing, the pfChannel defines the parameters of the "camera" which views the
scene. Inboth cases, a pfChannel traverses a pfScene which is attached to the pfChannel via
pfChannel::setScene. A pfScene is a hierarchy of pfNodes that defines the visual database.

33

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

pfChannel::setTravMode sets the traversal mode of the pfChannel. trav specifies a traversal type and is
either PFTRAV_CULL or PFTRAV_DRAW, for the culling and drawing traversal respectively. mode
specifies the corresponding traversal mode. The culling mode is a bitwise OR of:

PFCULL_VIEW
When set, PECULL_VIEW enables culling to the viewing frustum. If not set, the entire
database will be rendered every frame. For best drawing performance it is recommended
that PFCULL_VIEW be set. Unless PFCULL_GSET is also set, IRIS Performer culls the
database only down to the pfGeode level.

PFCULL_SORT
When PFCULL_SORT is set, IRIS Performer sorts the database into "bins" which are ren-
dered in a user-specified order. In addition, geometry within a bin may be sorted by graph-
ics state like texture or by range for front-to-back or back-to-front rendering. Unless the cull
stage of the IRIS Performer pipeline becomes the bottleneck or PEMP_CULLoDRAW mode
is used, PECULL_SORT should be set for optimal drawing performance. Further sorting
details are described below.

PFCULL_GSET
When PFCULL_GSET is set, IRIS Performer culls individual pfGeoSets within pfGeodes.
At the expense of some extra culling time, this can provide a significantly tighter cull both
because of the finer granularity and because pfGeoSet culling uses bounding boxes rather
than bounding spheres. However, when traversing portions of the scene graph under a
transformation (pfSCS or pfDCS), IRIS Performer reverts back to a cull which stops at the
pfGeode level.

PFCULL_IGNORE_LSOURCES
When PFCULL_IGNORE_LSOURCES is not set, IRIS Performer will traverse all paths in
the scene hierarchy which end at a pfLightSource node before proceeding with the normal
cull traversal (see pfLightSource). This is required for pfLightSources to illuminate the
scene and will ensure that graphics hardware lighting is properly configured before the
user’s draw callback is invoked (see pfChannel::setTravFunc). If it is set, any pfLight-
Sources in the pfScene will be ignored.

The pfLightSource cull traversal obeys all traversal rules such as node callbacks, traversal
masks, transformations (pfSCS and pfDCS nodes), and selectors (pfSwitch and pfLOD).

For drawing, mode is either PFDRAW_OFF or PFEDRAW_ON. PFDRAW_OFF essentially turns off chan.
No culling or drawing traversal will take place. Drawing is enabled by default.
pfChannel::getTravMode returns the mode corresponding to trav or -1 if trav is an illegal or unknown
traversal type.

The PFTRAV_MULTIPASS traversal mode is only active when the pfChannel’s scene has one or more

pfLightSources which use projected texture-type lighting. See the pfLightSource man page for more
details.

34

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

By default, culling to the viewing frustum, culling to pfGeoSet bounding boxes, pfLightSource culling,
and sorting is enabled: (PFCULL_VIEW | PFCULL_GSET | PFCULL_SORT) For convenience, this
default bitmask is provided by the PFCULL_ALL token.

pfChannel::setTravMask sets the pfChannel’s drawing mask and is used in conjunction with
pfNode::setTravMask for selective culling and drawing of scene graphs on a per-pfChannel basis. Dur-
ing the traversal, the bitwise AND of the traversal mask and the node mask is computed. If the result is
non-zero, the node is culled or drawn as usual. If off (zero), the behavior is as follows depending on trav:

PFTRAV_CULL
Node is not culled and is considered to be entirely within the viewing frustum. The cull
traversal traverses the node and its children without any view culling.

PFTRAV_DRAW
Node is completely ignored. Both cull and draw traversals skip the node and its children.

Node traversal masks are set by pfNode::setTravMask. The default pfNode and pfChannel masks are
Oxtffttfff so that a pfChannel culls and draws all pfNodes.

pfChannel::getTravMask returns the drawing traversal mask for the specified pfChannel. trav is either
PFTRAV_CULL or PFTRAV_DRAW.

As mentioned above, pfChannels can sort the database for improved image quality and improved render-
ing performance. Database sorting consists of two steps:

1. Partition database into "bins" which are rendered in a particular order.
2. Sort database within each bin by:
2a. Graphics state, in which case there is no particular rendering order or,

2b. Range from the eyepoint in which case the database is rendered either front-to-back or
back-to-front.

During the cull traversal, pfGeoSets are placed into the appropriate bin according to their bin identifier
that was set by pfGeoSet::setDrawBin. If the bin identifier is >= 0, the cull traversal will place that
pfGeoSet into the bin with that identifier. If the bin identifier is < 0, then the cull traversal will decide in
which default bin the pfGeoSet belongs.

IRIS Performer provides 2 default bins: PESORT_OPAQUE_BIN and PFSORT_TRANSP_BIN for
opaque and transparent geometry respectively. Transparent geometry is that which uses
PFTR_BLEND_ALPHA type of pfTransparency. PFTR_MS_ALPHA-type transparency is considered to
be opaque for purposes of binning.

Each draw bin has a rendering order set by pfChannel::setBinOrder. If order is < 0, then bin is not
ordered at all - pfGeoSets which belong to bin are not stored in the bin but are rendered immediately. If

35

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

36

order is >=0, it defines the order in which the bin is rendered, 0 == first, 1 == second etc. The
PFSORT_OPAQUE_BIN bin has a default rendering order of 0 and the PFSORT_TRANSP_BIN bin has
a default rendering order of 1 so that transparent surfaces are rendered after opaque surfaces. It is legal to
change the rendering order of the default bins and for different bins to have the same rendering order
although the relative order of these bins is undefined.

Normally, pfDraw renders all bins in the appropriate order. Individual bins may be rendered with
pfDrawBin when called in the pfChannel’s draw callback (see pfChannel::setTravFunc).

pfChannel::setBinSort defines how pfGeoSets are sorted with a bin. sortType is a symbolic token which
identifies the sorting method for bin:

PFSORT_NO_SORT
Do not sort the bin. sortOrders is ignored.

PFSORT_FRONT_TO_BACK
Sort the pfGeoSets in the bin in increasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

PFSORT_BACK_TO_FRONT
Sort the pfGeoSets in the bin in decreasing range from the eyepoint. Range is computed as
the distance from the pfChannel eyepoint to the center of the pfGeoSet’s bounding box. sor-
tOrders is ignored.

PFSORT_BY_STATE
Sort the pfGeoSets in the bin by graphics state. The pfGeoSets in bin are first sorted by
pfGeoState. Then if sortOrders is not NULL, the pfGeoSets will be further sorted by the
ordered list of PFSTATE_* elements in sortOrders. In this case, sortOrders should consist of a
PFSORT_STATE_BGN token followed by 0 or more PFSTATE_* tokens followed by a
PFSORT_STATE_END token followed by a PFSORT_END token to end the list. The
PFSTATE_* tokens define a sorting hierarchy. The elements in sortOrders are copied into
the pfChannel data structure, so in this case it is acceptable to pass static or automatic data
not allocated through pfMalloc.

Example 1: Sorting configuration example

int

sort Order s[PFSORT_MAX_KEYS], i = 0,

sortOrders[i++] = PFSORT_STATE BG\;
sort Orders[i ++] = PFSTATE FOG
sortOrders[i ++] = PFSTATE_MATERI AL;
sortOrders[i++] = PFSTATE_TEXTURE;
sortOrders[i++] = PFSORT_STATE_END;
sortOrders[i++] = PFSORT_END;

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

chan- >set Bi nSor t (PFSORT_CPAQUE_BI N, PFSORT_BY_STATE, sortOrders);
chan- >set Bi nSor t (PFSORT_TRANSP_BI N, PFSORT_BACK_TO FRONT, NULL);

The default sorting order for the PESORT_OPAQUE_BIN bin is by pfGeoState only and the default sort-
ing order for the PFESORT_TRANSP_BIN bin is PFSORT_BACK_TO_FRONT.

Sorting by state is limited to the scope of a transformation (pfDCS or pfSCS) or a node with draw call-
backs, i.e. - pfGeoSets affected by different transformations or draw callbacks are not sorted together.
However, range sorting spans both transformation and draw callback boundaries. Thus a range-sorted
scene graph with many transformations and expensive draw callbacks may suffer reduced performance
due to an increased number of transformation and draw callback changes.

VIEWPOINT AND CAMERA SPECIFICATION
pfChannel::setView specifies both the origin and direction of view for a pfChannel. xyz specifies the
X,y,z position of the viewpoint in world coordinates and hpr specifies the Euler angles (heading, pitch,
and roll) in degrees of the viewing direction relative to the nominal view (as defined below). The order of
application of these angles is ROTy(roll) * ROTx(pitch) * ROTz(heading) where ROTa(angle) is a rotation
matrix about world axis a of angle degrees. In all cases a positive rotation is counterclockwise by the right
hand rule. The nominal viewing coordinate system is +Y = forward, +Z = up, +X =right. For example, a
roll of 90 degrees and a heading of -90 degrees would align the view direction with the +X world axis and
the up direction with the -Y world axis.

pfChannel::setViewMat provides another means of specifying view point and direction. mat is a 4x4
homogeneous matrix which defines the view coordinate system such that the upper 3x3 submatrix
defines the coordinate system axes and the bottom vector defines the coordinate system origin. IRIS Per-
former defines the view direction to be along the positive Y axis and the up direction to be the positive Z
direction, e.g., the second row of mat defines the viewing direction and the third row defines the up direc-
tion in world coordinates. mat must be orthonormal or results are undefined.

The actual viewing direction used for culling and drawing is modified by the offsets specified by
pfChannel::setViewOffsets. The argument xyz defines a translation from the nominal eyepoint. The
Euler angles given in hpr define an additional rotation of the viewing direction from that specified by
pfChannel::setView and pfChannel::setViewMat. Although this has similar functionality to
pfChannel::setView, it is specifically useful for applications which render the same scene into adjacent
displays using multiple pfChannels. Two examples where one would use pfChannel::setViewOffsets as
well as pfChannel::setView are offset-eye stereo image viewing applications, and for video wall applica-
tions.

Example 1: Set up a single pipe, 3-channel simulation using pfChanViewOffsets.

37

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

|l eft new pf Channel (pf Get Pi pe(0));
m ddl e = new pf Channel (pf Get Pi pe(0));
ri ght = new pf Channel (pf Get Pi pe(0));

/* Form channel group with mddle as the "nmaster" */
m ddl e->attach(left);
m ddl e->attach(right);

/* Set FOV of all channels */
m ddl e- >makeSi npl e(45. 0f , 45. 0f) ;
m ddl e- >set Aut oAspect (PFFRUST_CALC VERT) ;

/* Set clipping planes of all channels */
m ddl e- >set Near Far (1. 0f, 2000. 0f);

hpr O f set s[PF_P] 0. Of ;
hpr O f set s[PF_R] 0. Of ;
xyzOf f sets->set (0. 0f, 0.0f, 0.0f);

/*

* Set up viewport and view ng of fsets.

* Note that these are not shared by default.
*/

| eft->setViewport (0.0f, 1.0f/3.0f, 0.0f, 1.0f);
hpr O fsets[PF_H = 45.0f;
left->setViewXfsets(hprOfsets, xyzOffsets);

m ddl e- >set Vi ewport (1. 0f /3. 0f, 2.0f/3.0f, 0.0f, 1.0f);
hprO fsets[PF_H = 0.0f;
m ddl e->set Viewf f set s(hprOf f sets, xyzOffsets);

ri ght->setViewport(2.0f/3.0f, 1.0f, 0.0f, 1.0f);
hprOf fsets[PF_H = -45.0f;
right->setViewdfsets(hprOfsets, xyzOfsets);

Both translation and rotational offsets are encoded in the graphics library’s ModelView matrix. This
ensures that fogging is consistent across multiple, adjacent pfChannels. However, proper lighting
requires a lighting model which specifies a local viewer. Otherwise, geometry which spans multiple
pfChannels will be lit differently on each pfChannel.

Example 2: Local viewer lighting model

38

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

pfLi ght Model *I'm

I m = new pf Li ght Model ;
| m >set Local (1);
I m>appl y();

pfChannel::getView copies the view point/direction into xyz and hpr.
pfChannel::getViewMat copies the viewing matrix (without viewing offsets) into mat.

pfChannel::getViewOffsets copies the view positional and rotational offsets into the indicated arrays

(xyz and hpr).

pfChannel::getOffsetViewMat copies the combined nominal and offset viewing matrices into mat. This
combined viewing matrix is that used for culling and for configuring the graphics library with the
appropriate transformation. It is defined as offset * nominal where offset is specified by
pfChannel::setViewOffsets and nominal is specified by either pfChannel::setViewMat or
pfChannel::setView.

DRAWING FRAME STATISTICS
IRIS Performer keeps track of times spent, and operations done, in the application, cull, and draw stages
of the rendering pipeline and accumulates the data in a pfFrameStats structure. pfChannel::getFStats is
used to get this pfFrameStats structure from the indicated channel. pfChannel::setStatsMode selects
which of the enabled statistics classes should be displayed in that channel by pfChannel::drawStats or
pfFrameStats::draw.

pfChannel::drawStats or pfFrameStats::draw must be called during each frame that a statistics display is
desired and may be called from any of IRIS Performer’s application, cull, or draw processes. This manual
page give some pointers on how to interpret the statistics to help in tuning your database. Refer to the
IRIS Performer Programming Guide for more detailed information.

pfChannel::setStatsMode takes mode, which is currently just PFECSTATS_DRAW, and the corresponding
value for val, which is a statistics class enabling bitmask. The statistics classes displayed by
pfChannel::drawStats or pfFrameStats::draw are those statistics classes that have been enabled by
pfChannel::setStatsMode for display, and are also enabled for collection. pfChannel::drawStats
displays the contents of the enabled statistics classes of the pfFrameStats structure for channel the
pfChannel, according to the current channel stats draw mode (specified with pfChannel::setStatsMode).

At the top of the display is the actual frame rate being achieved and the frame rate set by pfFrameRate

and the phase set by pfPhase. If statistics collection of process frame times has been disabled, then the
actual frame rate will not be known and "???" will be shown. When the graphics statistics class is enabled

39

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

40

for collection, the average number of pfGeoSets and triangles being displayed is also shown on the top of
the statistics display. See the pfStats::setClass manual page for more information on enabling statistics
classes.

For the Process Frame Times Statistics class, pfChannel::drawStats displays the amount of time, on aver-
age, spent by each process on a single frame, as well as the number of frames that missed the goal, or
extended beyond the time for the specified goal frame rate. When the PFFSTATS_PFTIMES_HIST mode
is enabled (on by default), a timing diagram of previous frames is displayed.

Red vertical lines indicate video retrace intervals and green ones indicate frame boundaries. Horizontal
bars indicate the time taken by pipeline stages. The three different stages: APP, CULL, AND draw are
separated vertically and stages belonging to the same frame are the same color. Each stage of each frame
is labeled with the name of the stage and its offset from the current frame. For example, the current appli-
cation stage is labeled app0 and draw-3 is the draw stage of three frames back. Stages that are in the same
process are connected by thin vertical lines while stages that are a single process by themselves are not.

The bar for the application stage is split into a total of five pieces: time spent cleaning the scene
graph from changes made by the user (drawn at raised level), time spent waiting for the next
frame boundary when the phase is PFPHASE_LOCK or PFPHASE_FLOAT (drawn with thin,
pale, dashed line), the critical time spent between pfSync and pfFrame, the time spent inside
pfFrame possibly cleaning the scene graph again and updating and setting off tasks in forked cull
and intersection processes (drawn in thin elevated line), and the time spent after pfFrame in the
user’s application code.

The cull bar is divided into two pieces: first the time spent getting updates from the application
process (slightly raised), and the time spent culling the scene graph.

The draw timing bar is divided into four pieces: the lowest piece represents the time actually
spent in pfDraw() rendering the scene; the darkened parts before and after the pfDraw() line
represent time spent in the user’s channel draw callback routine; the final part displays the time
drawing channel statistics.

The draw timing bar is somewhat inaccurate because the time stamps are taken from the host and
do not reflect when the graphics pipeline actually finished rendering. Therefore, time for graph-
ics work done in one part of the draw might be counted in a following part when the graphics
pipeline FIFO filled up and caused the host to wait. This means that some pfDraw() time could
be counted in the following user callback time, or in the time to draw the statistics. This statistics
class is enabled by default.

When fill statistics are enabled, the main channel will be painted in colors ranging from blue to pink that
indicate per-pixel depth-complexity. The brightest (pinkest) areas are those pixels that have been written
many times. The statistics displayed, in green, include average total depth complexity (total number of
pixel writes), as well as the average, minimum, and maximum number of times a given pixel is written.

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

When the Graphics Statistics class is enabled for collection and display, detailed statistics on numbers of
primitives, attributes, state changes, and matrix transformations are all displayed. These statistics show
what is being drawn by the graphics pipeline. When the PESTATS_GFX_TSTRIP_LENGTHS mode is
enabled, a histogram of triangle strip lengths showing the percentage of triangles in the scene in strips of
given lengths is also displayed. For the strip length statistics, quads are counted as strips of length two
and independent triangles are counted as strips of length one. For graphics performance, it is good to
have much of the database as possible in triangle strips, and making those triangle strips as long as possi-
ble. On a system with RealityEngine graphics, pay special attention to the numbers for texture loads and
number of bytes loaded. If these numbers are non-zero, then it means that hardware texture memory is
being overflowed and swapped regularly and this will degrade graphics performance.

The CPU statistics display will show some of the statistics seen in osview(1). Graphics context switches
occur when there are multiple active graphics windows on the same screen. An application needing high
fixed frame rates should not be encurring graphics context switches. Another useful indicator of graphics
overload is the fifonowait and fifowait numbers. An excessive number of times seen waiting on the
graphics FIFO could indicate a graphics bottleneck and fill statistics should be examined. If there are an
excessive number of process context switches, then it might help performance to restrict the draw process
to a single processor and then isolate that processor. IRIS Performer will not do this automatically; how-
ever, there are utilities in the IRIS Performer utility library, libpfutil (see pfuLockCPU), that enable you
to do this. These utilities are demonstrated in the IRIS Performer Perfly sample application. These utili-
ties use the IRIX REACT extensions via sysmp(2).

When the Database Statistics class is enabled for collection and display, the number of displayed and
evaluated nodes for each node type is shown. When the cull statistics are displayed, a table showing the
total number of nodes and pfGeoSets traversed by the cull process, the number of node bounding sphere
and pfGeoSet bounding boxes tested, and the total number of nodes, and pfGeoSets, (of those traversed)
that were trivially rejected as being outside the viewing frustum, the number that were fully inside the
viewing frustum, and the number that intersected the viewing frustum. The database and culling statis-
tics together can show the efficiency of the database hierarchy. If many of the nodes in the database are
being traversed by the cull process when only a small percentage are actually visible, then this indicates
that the database hierarchy is not spatially coherent. If there are many pfGeoSets in each pfGeode, and
many pfGeoSets are being rejected by the cull, then adding more database hierarchy above current nodes
may actually speed up the culling traversal because cull tests on nodes would be able to accept or reject
large pieces of the database without traversing lower nodes. If the number of pfLOD nodes evaluated is
much more then the number that are actually drawn, then adding LOD hierarchy might help to reduce
the total number of LOD range calculations, which are fairly expensive.

If there are few nodes in the database relative to the number of pfGeoSets and the cull is taking a small
amount of time but the draw is taking longer than desired, then adding more nodes and using a database
hierarchy that is spatially coherent should improve the accuracy of the cull and speed up the draw traver-
sal. If there are only a few pfGeoSets per pfGeode and the cull is taking longer than the draw in multipro-
cess mode, or is taking a significant amount of time in a process shared with the draw, then it might
benefit to not cull down to the pfGeoSet level. Refer to the pfChannel::setTravMode reference page for

41

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

42

information on setting cull traversal modes.

Graphics load is displayed in the lower portion of the statistics window. The load hysteresis band (see
pfChannel::setStress) is drawn in white and the previous 3 seconds of graphics load is drawn in red.
Load is not scaled and ranges from 0.0 to 1.0 within the lower portion of the statistics window.

If stress is active, the display shows a graph of the previous 3 seconds of stress which is drawn in white.
Stress is drawn into the upper portion and is scaled to fit.

The pfChannel::drawStats display is very useful for debugging and profiling a particular application and
also for visualizing the behavior of differing multiprocessing modes and pfPipe phases.

pfChannel::drawStats and pfFrameStats::draw do not actually draw the diagram but set a flag so that
the diagram is drawn just before IRIS Performer swaps image buffers.

Drawing the timing diagram does take a small amount of time in the draw process, so it will perturb the
frame rate and timing data to some degree.

IRIS Performer level-of-detail behavior is primarily dependent on pfChannel viewing parameters such as
view position, field-of-view, and viewport pixel size. IRIS Performer assumes that LODs are modeled for
a canonical FOV of 45 degrees and a viewport size of 1024 pixels. IRIS Performer computes an internal
scale value for pfChannels whose FOV or viewport size differ from these defaults. This scale value is
used to modify LOD ranges so that correct LOD behavior is maintained. If your LODs were not modeled
with the above defaults you may use PFLOD_SCALE (see below) to adjust the LOD ranges.

Other LOD modification parameters are set with pfChannel::setLODALttr. attr is a symbolic token that
specifies which LOD parameter to set and is one of the following:

PFLOD_SCALE
val multiplies the range computed between chan’s eyepoint and all pfLOD’s drawn by the
pfChannel. This is used to globally increase or decrease level of detail on a per-pfChannel
basis. The default LOD scale is 1.0. See the pfLODState and pfLOD man page for more
details.

PFLOD_FADE
val specifies the global fade scale used to fade between levels of detail. Fade is enabled
when val > 0, and is disabled when val <= 0. Fade is disabled by default. Note that when
computing the actual "fade" or transition distances, this scale is multiplied by individual
fade distance values that are specified via pfLOD::setTransition. Default pfLOD transition
ranges are 1.0. See the pfLODState and pfLOD man page for more details.

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

PFLOD_STRESS_PIX_LIMIT
System stress (pfChannel::setStress) will not affect LOD’s whose projected pixel size
exceeds val pixels. This feature is disabled by default.

PFLOD_FRUST_SCALE
The range multiplier based on the pfChannel’s viewport and FOV is multipled by val. Typi-
cally, this feature is enabled with a value of 1.0 and disabled with a value of 0.0.

LOD fade is useful for avoiding distracting LOD switches. When within the fade range, LODs are drawn
semi-transparent so that adjacent LODs smoothly blend together. Fade determines the transparency of an
two independent levels of detail. Here is an example for a pfLOD with 3 levels-of-detail and fade range
of 30 database units:

Swi t ch Range

[20/ 80 LODO/ LODL . |
100% LODO [40% LOD2
50/ 50 LODL/ LOD2

=== indi cates where fading is active.

Fade transparency is complementary so that fading the same LOD child with (fade) and (1.0 - fade) will
generate a fully opaque image. As an example, a fade of 0.7 will cover 70% of the screen area while a fade
of (1.0 - fade) = (1.0 - 0.7) = 0.3 will cover the remaining 30% of the screen area.

IRIS Performer ensures that LODs whose switch range is <= 0.0 do not fade in and also clamps the user-
specified fade range to half the distance between LOD switches. For example, if a pfLOD is specified with
switch ranges 0.0, 100.0, 400.0 and the fade range is 80.0, the result will be:

Example 2: Fade clamping

Range LOD(s) drawn
0 -> 50 100% LODO
50 -> 100 100% -> 50% LOD0 + 0% -> 50% LOD1
100 -> 180 50%-> 0% LOD0 + 50%-> 100% LOD1
180 -> 320 100% LOD1
320 -> 400 100% - > 50% LOD1
400 -> 480 50%-> 0% LOD1

43

pfChannel(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

44

Use fade with discretion since it increases rendering time because two LODs instead of one are drawn
when range is within the fade interval.

pfChannel::getLODAttr returns the value of the LOD modification parameter specified by attr.

IRIS Performer computes a stress value based on graphics load (pfChannel::setStress) to modify LODs.
Specifically, when the system approaches overload, simpler LODs are drawn in order to reduce graphics
load. However, in some situations image fidelity considerations make it undesirable to draw low levels-
of-detail of objects which are close to the viewer and thus occupy considerable screen space.
PFLOD_STRESS_PIX_LIMIT limits the effects of stress to LODs whose projected pixel size is less than
val. Projected pixel size is based on the bounding volume of the LOD and is approximate. When val <
0.0, the stress pixel limit is disabled.

PFLOD_SCALE is a global scale that is useful for debugging and for adapting LODs modeled at one FOV
and viewport size to the canonical FOV and viewport size used by IRIS Performer. A val of 0.0 will cause
only the highest LODs are displayed, since the effective distance will be uniformly scaled to 0.0.

All pfChannels on a pfPipe are rendered into a single graphics window so that they can share hardware
resources such as textures. Additionally, each channel is rendered in succession rather than in parallel to
avoid costly graphics context switching.

For best performance, channel buffers allocated by pfChannel::allocChanData should be as small as pos-
sible and pfChannel::passChanData should be called only when necessary to reduce copying overhead.

When configured as a process separate from the draw, the cull callback should not invoke IRIS GL or
OpenGL graphics calls since only the draw process is attached to a graphics context. However, the
display listable libpr commands invoked in the cull callback will be correctly added to the current IRIS
Performer libpr display list being built for later processing by the draw process.

Callbacks should not modify the IRIS Performer database but may use pfList::get routines to inquire
information as desired.

Draw callbacks should not attempt to perform framebuffer swapping operations directly since IRIS Per-
former must control this to handle frame and channel synchronization. If user control of buffer swapping
is required, register a pfPipe::setSwapFunc callback to cause the named user written function to be used
by IRIS Performer for swapping buffers.

Sorting back-to-front is required for accurate rendering of PFTR_BLEND_ALPHA surfaces. The ordering
mechanism described above provides range sorting on a per-pfGeoSet, not a per-triangle basis so some
anomalies may be apparent when rendering transparent surfaces. These anomalies may be reduced by
rejecting back-facing polygons (see pfCullFace and PFSTATE_CULLFACE).

The IRIS Performer world coordinate system is +X = East, +Y = North, +Z = Up and viewing coordinate

IRIS Performer 2.0 libpf C++ Reference Pages pfChannel(3pf)

system is +X = Right, +Y = Forward, +Z = Up. Note that this is not the same as the IRIS GL or OpenGL
default coordinate system which uses +X = Right, +Y = Up, +Z = Out of the screen. IRIS Performer inter-
nally manages the transformation required to go from a "Z-up’ world to a "Y-up’ world.

Fade-based level of detail transition is supported only on RealityEngine systems and then only when mul-
tisampling is enabled.

BUGS
Intersections, and thus picking, with lines and points is not yet implemented.

SEE ALSO
pfPipeWindow, pfPipe, pfNode, pfGeoState, pfStats, pfConfig, pfCullFace, pfDispList, pfEarthSky,
pfESkyFog, pfObject, pfFrame, pfFrameRate, pfFrustum, pfGetSemaArena, pfLightSource, pfLOD,
pfMultipipe, pfMultiprocess, pfPolytope, pfPhase, pfScene, pfGetSemaArena, pfTransparency, pfu-
LockCPU

45

pfConfig(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfMultipipe, pfGetMultipipe, pfMultithread, pfGetMultithread, pfMultiprocess, pfGetMultiprocess,
pfConfig, pfGetPID, pfGetPipe, pfInitPipe, pfGetStage, pfStageConfigFunc, pfGetStageConfigFunc,
pfConfigStage, pfHyperpipe, pfGetHyperpipe, pfGetPipeHyperld — Configure process and pipeline
models, get pfPipe handle and process ID.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

int

int

int

int

int

int

int
pid_t
pfPipe *
int

uint
void
pfStageFuncType
void
void

int

int

pfMultipipe(int num);

pfGetMultipipe(void);

pfMultithread(int pipe, uint stage, int nprocs);
pfGetMultithread (int pipe, uint stage);
pfMultiprocess(int mode);

pfGetMultiprocess(void);

pfConfig(void);

pfGetPID(int pipe, uint stage);

pfGetPipe(int pipe);

pfInitPipe(pfPipe *pipe, pfPipeFuncType configFunc);
pfGetStage(pid_t pid, int *pipe);
pfStageConfigFunc(int pipe, uint stageMask, pfStageFuncType configFunc);
pfGetStageConfigFunc(int pipe, uint stageMask);
pfConfigStage(int pipe, uint stageMask);
pfHyperpipe(int n);

pfGetHyperpipe(pfPipe *pipe);
pfGetPipeHyperld(const pfPipe *pipe);

t ypedef void (*pfStageFuncType) (int pipe, uint stage);

DESCRIPTION

An IRIS Performer application renders images using one or more pfPipes. A pfPipe is a software render-
ing pipeline that traverses, culls, and draws one or more pfChannels into a single graphics context. The
software rendering pipeline is composed of three functional stages:

46

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)

APP Application processing
CULL Database culling and level-of-detail selection
DRAW Drawing geometry produced by CULL

In addition, IRIS Performer has a separate intersection stage which can operate either synchronously or
asynchronously with the rendering pipeline (see pfIsectFunc).

All stages may be combined into a single process or split into multiple processes for enhanced perfor-
mance on multiprocessing systems. pfMultiprocess controls the partitioning of functional stages into
processes. mode is a bitwise OR of the following tokens:

PFMP_FORK_ISECT
PFMP_FORK_CULL
PFMP_FORK_DRAW
PFMP_FORK_DBASE
PFMP_CULLoDRAW
PFMP_CULL_DL_DRAW

These tokens specify which stages to fork into separate processes and what multiprocessing communica-
tion mechanism to use between the cull and draw processes.

The process from which all other processes are spawned is known as the application process, or APP.
This process is the one that invokes pfConfig and controls the rendering and intersection pipelines
through pfFrame.

User code in the intersection, database, cull, and draw processes are "triggered" by calling pfFrame.
pfFrame causes IRIS Performer to invoke the user callbacks associated with each process. These callbacks
are established by pfIsectFunc, pfDBaseFunc, pfChanTravFunc respectively. See pfFrame for more
details.

Each pfPipe has a CULL and DRAW stage which may be configured as either one or two processes. The
ISECT and DBASE stages are independent of any pfPipe and may run in the same process as the applica-
tion process or as separate processes (PFMP_FORK_ISECT, PFMP_FORK_DBASE). In the latter case,
the user may further multiprocess intersection traversals through any IRIX multiprocessing mechanism
such as fork, sproc, or m_fork. Database processing utilizing the pfBuffer mechanism may be further
parallelized through fork only (See pfBuffer).

For additional performance gains when a pfPipe contains multiple pfChannels, the CULL stage may be
further parallelized on a per-pfChannel basis. When the stage argument to pfMultithread is
PFPROC_CULL, the CULL stage of the pipeth rendering pipeline is split into nprocs, forked, processes
each of which operates singly on a pfChannel. Thus this extra parallelization is only effective when both

47

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

48

nprocs and the number of pfChannels on pipe are greater than 1. nprocs need not be equal to the number of
pfChannels. Currently, pfMultithread only accepts a stage argument of PFPROC_CULL, returns 1 on
success and -1 otherwise. The CULL is not automatically multithreaded if PFMP_DEFAULT is specified
as the pfMultiprocess mode.

When multithreading the CULL, care must be taken to avoid data collisions in user callback functions. In
particular, pfChannel and pfNode CULL callbacks (pfChanTravFunc, pfNodeTravFuncs) may be
invoked in parallel.

pfGetMultithread returns the number of processes in the processing stage identified by stage on the
pipeth rendering pipeline. Currently, pfGetMultithread only accepts a stage argument of
PFPROC_CULL and returns -1 otherwise.

Thus, the number of processes an application uses is dependent on:
1. The multiprocessing modes set by pfMultiprocess and pfMultithread.
2. The number of rendering pipelines set by pfMultipipe.

3. The number of user-spawned processes.

The following table indicates the number of processes that are implied by each multiprocessing mode
combination as a function of the number of IRIS Performer pfPipes specified.

FORK_ISECT | FORK_CULL | FORK_DRAW # Processes

No No No 1

No No Yes 2

No Yes No 1 + numPipes
No Yes Yes 1 + 2*numPipes
Yes No No 2

Yes No Yes 3

Yes Yes No 2 + numPipes
Yes Yes Yes 2 + 2*numPipes

Here is an example configuration which would be used to generate a high-performance stereo display
using two pfPipes, each associated with a hardware graphics pipeline. In this situation the output of one
pipeline will be displayed for the viewer’s left eye, and the other will go to the right eye. Here, mul-
tithreading the CULL is of no use since each pfChannel is handled by its own pfPipe.

Example 1: Two pfPipe stereo configuration

/* configure two hardware pipelines */
pf Mul ti pi pe(2);

/* operate all processing tasks in parallel */

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)

pf Ml ti process(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_| SECT);

The processing mode configured by this example looks like:

CULL ---> DRAW left eye

I SECT CULL ---> DRAW right eye

Example 2: One pfPipe stereo configuration using multithreaded CULL

/* operate all processing tasks in parallel */
pf Mul ti process(PFMP_FORK_CULL | PFMP_FORK_DRAW | PFMP_FORK_| SECT) ;

pfMul tithread(0, PFPROC CULL, 2);

The processing mode configured by this example looks like:

CULL left eye

/ CULL right eye

PFMP_CULL_DL_DRAW and PFMP_CULLoDRAW specify how the cull and draw stages should com-
municate.

If PEMP_CULL_DL_DRAW is set the cull stage will build up an IRIS Performer display list (pfDispList)
which contains the entire frame’s worth of data. The draw stage then traverses this pfDispList when
pfDraw is called and sends commands to the graphics hardware. When the cull and draw stages are dif-
ferent processes (PFMP_FORK_DRAW) this mode is always enabled. However, when the cull and draw
stages are the same process, the display list construction may add some overhead. If, in this case,
PFMP_CULL_DL_DRAW is not specified, the cull stage will be delayed until pfDraw is called. pfDraw
will then cull and draw the scene in immediate mode and not use a pfDispList.

49

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

PFMP_CULL_DL_DRAW is disabled by default but should be used for applications which use multipass
rendering techniques that require multiple calls to pfDraw.

The "0” in PFMP_CULLoDRAW is short for ‘overlap’ and when this bit is set, the multiprocessed cull and
draw stages of the same frame will be overlapped. The cull process (the producer) writes to a FIFO
(implemented as a ring buffer) while the draw process (the consumer) simultaneously reads commands
from the ring buffer.

The main benefit of this configuration is that latency will be reduced a full frame time over the pipelined
(non-overlapped) case. A disadvantage is that the draw process may suffer from reduced throughput if
the cull process cannot keep up. This condition is exacerbated when the cull sorts the database by draw
bin or by graphics state. In each case, the cull retains the database in internal data structures and does not
add drawing commands to the display list until the cull is completed. Consequently, to get the best
throughput from PFMP_CULLoDRAW, database mode sorting and ordering should be disabled.

Example 3: Reasonable sorting setup for PFMP_CULLoDRAW

pf Mul ti process(PFMP_APP_CULL_DRAW | PFMP_CULLODRAW ;

/* Draw opaque geonetry imrediately into CULLODRAW s pf Di spLi st
* Transparent geonetry is still saved and drawn after opaque. */
pf ChanBi nOr der (chan, PFSORT_OPAQUE_BI N, PFSORT_NO ORDER) ;

/* PFCULL_SORT nust be enabled for transparent geonetry to be
ordered, i.e. - drawn last. */
pf ChanTr avMbde(chan, PFTRAV_CULL, PFCULL_ALL);

PFMP_CULLoDRAW is ignored if the cull and draw stages are in the same process.

For convenience, other tokens are provided for common multiprocessing modes:

PFMP_APPCULLDRAW
All stages are combined into a single process. A pfDispList is not used. pfDraw both culls
and renders the scene.

PFMP_APPCULL_DL_DRAW
All stages are combined into a single process. A pfDispList is built by pfCull and rendered
by pfDraw.

50

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)

PFMP_APP_CULLDRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is not used. pfDraw both culls and renders the scene. Equivalent to
(PFMP_FORK_CULL).

PFMP_APP_CULL_DL_DRAW
The cull and draw stages are combined in a process that is separate from the application
process. A pfDispList is built by pfCull and rendered by pfDraw. Equivalent to (-
PFMP_FORK_CULL | PFMP_CULL_DL_DRAW).

PFMP_APPCULL_DRAW
The application and cull stages are combined in a process that is separate from the draw
process. Equivalent to (PFMP_FORK_DRAW).

PFMP_APPCULLoDRAW
The application and cull stages are combined in a process that is separate from, but over-
laps, the draw process. Equivalent to (PFMP_FORK_DRAW | PEMP_CULLoDRAW).

PFMP_APP_CULL_DRAW
The application, cull, and draw stages are each separate processes. Equivalent to (-
PFMP_FORK_CULL | PEMP_FORK_DRAW).

PFMP_APP_CULLoDRAW
The application, cull, and draw stages are each separate processes and the cull and draw
process are overlapped. Equivalent to (PFMP_FORK_CULL | PEMP_FORK_DRAW |
PFMP_CULLoDRAW).

PFMP_DEFAULT
IRIS Performer will choose a multiprocessing mode based on the number of pipelines
required and the number of unrestricted processors available. This is also the default mode
if pfMultiprocess is not called. PEMP_DEFAULT will attempt to use as many available
processors as possible except the CULL will not be automatically multithreaded.

By default IRIS Performer uses a single pfPipe. If multiple rendering pipelines are required (in most cases
this will be for machines with multiple hardware pipelines), use pfMultipipe to specify the number of
pfPipes that are created by pfConfig. Multipipe operation absolutely requires that all participating
hardware pipelines be genlocked. Otherwise reduced throughput and increased latency will result.

The multiprocessing mode set by pfMultiprocess is used for all rendering pipelines. However, IRIS Per-
former never multi-threads the application process although the application may choose to do so. If the
application itself multiprocesses, all IRIS Performer calls must be made from the process which calls
pfConfig or results are undefined. When using multiple pipelines, the cull stage must be forked (-
PFMP_FORK_CULL). If not, IRIS Performer defaults to PFMP_APP_CULL_DRAW.

pfMultiprocess, pfMultithread, and pfMultipipe must be called after pfInit but before pfConfig.
pfConfig configures IRIS Performer according to the required number of pipelines and multiprocessing

51

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

52

modes, forks the appropriate number of IRIS Performer processes and returns control to the single-
threaded application. pfConfig should be called only once between pfInit and pfExit.

IRIS Performer uses fork to split off processes and will create the specified number of separate processes
only when pfConfig is called. Forked processes do not share the same address space as sproc’ed
processes so the application must establish shared memory communication mechanisms between
processes or use the shared memory features provided by IRIS Performer (see pfPassChanData,
pfMalloc, pfGetShared Arena, pfDataPool).

In particular, care must be taken when the DBASE stage is configured as a separate process. Although
deletion requests (pfDelete) may be made in any process, DBASE frees all the memory so if DBASE is
forked it can only free memory that was allocated out of IRIS Performer’s shared memory arena (-
pfGetSharedArena) or from some other memory arena that is visible to the DBASE process. Conse-
quently it is safest to allocate all objects from a shared memory arena when using a forked DBASE pro-
cess.

In addition to forking processes, pfConfig initializes the number of pfCycleBuffer copies (-
pfCBufferConfig) appropriate to the multiprocessing mode and also initializes the video clock (-
pfInitVClock) to 0.

After pfConfig is called, pfGetPipe should be used to get handles to pfPipes for subsequent use in IRIS
Performer routines. pipe identifies a pipe and ranges from 0 to numPipes - 1 where numPipes is the
number of pipes specified in pfMultipipe.

After pfConfig spawns other processes, pfGetPID will return the process id of a specific pipeline stage or
-1 to indicate error. pipe specifies which pipeline the stage is in and ranges from 0 to numPipes - 1. stage is
a bitmask which identifies one or more stages in the multiprocessing pipeline and may consist of:

Token Stage Description

PFPROC_ISECT The intersection stage
PFPROC_DBASE The database stage
PFPROC_APP The application stage
PFPROC_CULL The cull stage
PFPROC_DRAW The draw stage
PFPROC_CLOCK | The clock process

If stage identifies multiple stages, such as (PFPROC_CULL | PFPROC_DRAW), then the process id will
be returned only if an exact match is made which in this example is only possible if the multiprocessing
mode is PFMP_APP_CULLDRAW. Otherwise a -1 is returned.

pipe is ignored if stage identifies the PFPROC_ISECT, PFPROC_DBASE, or PFPROC_APP stages since
these stages are not associated with any IRIS Performer pipe.

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)

pfGetStage is the "inverse" of pfGetPID. Given a process id, pid, pfGetStage will return a bitmask which
identifies the stages that are performed by process pid and will copy into pipe the number of the pipeline
that pid is in if pipe is not NULL. pfGetStage returns -1 if pid is not a known IRIS Performer process.

The stage bitmask used in pfGetPID and pfGetStage identifies the thread number (pfMultithread) as
well as the processing stage(s). The thread ID is OR’ed into the upper bits of the stage bitmask as follows:

threadld = (stage & PFPROC_THREAD MASK) >> PFPROC_THREAD SHI FT;

The PFPROC_THREAD1-7 tokens are provided as a convenience (more than 8 threads are supported).

pfGetMultiprocess and pfGetMultipipe return the multiprocess mode and number of pfPipes
configured.

pfInitPipe is an obsolete routine for initializing the graphics subsystem for a pfPipe. A callback function
configFunc could be provided for initializing pipe in the draw process and was used for opening windows
in the draw process for the pfPipe. This function has been obsoleted by the pfPipeWindow primitive
which can be used to configure windows in either or both the application process and draw process, and
by pfConfigStage which provides a mechanism for initializing any IRIS Performer process or pfPipe
stage. See the pfPipeWindow man page for more information on creating and opening IRIS Performer
windows.

After pfConfig, stage configuration callbacks may be specified with pfStageConfigFunc and triggered
with pfConfigStage. Configuration callbacks are typically used for process initialization, e.g, assign non-
degrading priorities and locking processes to processors or downloading textures in the DRAW stage
callback. The stageMask argument to pfStageConfigFunc is a bitmask which identifies one or more IRIS
Performer stages (see pfGetPID above). If >= 0, the pipe argument to pfStageConfigFunc selects stage(s)
on a particular pfPipe (pfGetPipe(pipe)). If pipe is < 0 it selects stages of all pfPipes. Note that pipe is
ignored for the PFPROC_ISECT, PFPROC_APP, and PFPROC_DBASE stages since they are not associ-
ated with any pfPipe. configFunc is the callback function to be invoked for the indicated stages.
pfGetStageConfigFunc returns the configuration function used for the stage identified by pipe and
stageMask.

pfConfigStage causes the callback functions to be invoked for the identified stages at the start of process-
ing the current application frame. The current application frame gets to the next stage at the next call to
pfFrame. pipe and stageMask are treated identically as in pfStageConfigFunc. When multiprocessing, the
callback functions are invoked in the appropriate processes.

Example 4: Stage configuration

53

pfConfig(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

voi d
configFunc(int pipe, uint stage)
{
/* Fix CULL processes to processor 1 and 3 */
if (stage == PFPROC_CULL)
sysnp(MP_MJSTRUN, 2*pi pe+l);

/* Fi x DRAW processes to processor 2 and 4 */
else if (stage == PFPROC_DRAW
sysnp(MP_MJSTRUN, 2*pi pe+2);

pf Ml ti pi pe(2);
pf Mul ti process(PFMP_APP_CULL_DRAW ;
pf Config();

pf St ageConfi gFunc(-1, PFPROC_CULL|PFPROC_DRAW confi gFunc);
pf Confi gSt age(-1, PFPROC_CULL|PFPROC_DRAW ;

pf Frame();

pfHyperpipe supports the hyperpipe hardware feature of VGXT/Skywriter and Onyx/RealityEngine2
research systems. n indicates the number of pfPipes that should be configured together in hyperpipe
mode. Hyperpipes will run at a fraction of the system frame rate as defined by pfFrameRate. For exam-
ple, if n is 2, then each pfPipe in the hyperpipe group will run at half the system frame rate so their aggre-
gate rate will be equal to the system frame rate.

pfGetHyperpipe returns the total number of pfPipes in the hyperpipe group that pipe belongs to.
pfGetPipeHyperld returns the position of pipe in its hyperpipe group. The following example configures
a two-pipeline hyperpipe system:
Example 5: Hyperpipe Example

pf Hyper pi pe(2);

pf Config();
pf Get Hyper pi pe(pf Get Pi pe(0)); /* This returns 2 */
pf Get Pi peHyper | d(pf Get Pi pe(1)); /* This returns 1 */

54

IRIS Performer 2.0 libpf C++ Reference Pages pfConfig(3pf)

NOTES

BUGS

In practice, user callbacks in the intersection process call only pfNodelsectSegs and user callbacks in the
database process uses the pfBuffer mechanism to asynchronously create and delete scene graphs to
implement database paging.

If PEMP_DEFAULT is not used, it is up to the application to tailor the number of IRIS Performer
processes to the number of processors. Care must be taken to avoid thrashing, starvation, and deadlock.

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly
fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

When using PFMP_CULLoDRAW, multipass algorithms (e.g. - landing lights on RealityEngine) which
call pfDraw more than once per frame will not work.

If PEMP_CULLoDRAW is used, modifications to pfChannel passthrough data (see pfPassChanData)
made by the cull callback will not be passed along to the draw callback. However, modifications made by
the application process will still make it to both cull and draw callbacks.

PFMP_CULLoDRAW usually has no effect when IRIS Performer is in the free-running frame rate control
mode specified by pfPhase(PFPHASE_FREE_RUN). Instead, use PFPHASE_FLOAT or
PFPHASE_LOCK.

When in PFMP_CULLoDRAW mode, the draw time recorded by IRIS Performer statistics does not
include the time the draw process spends waiting for the cull process to begin filling the ring buffer.

pfHyperpipe assumes that the pfPipe to hardware pipe association is ordered, e.g. that pipe 0 renders to
screen 0, pipe 1 renders to screen 1, and so on.

SEE ALSO

fork, m_fork, pfChannel, pfCycleBuffer, pfInit, pflsectFunc, pfDBaseFunc, pfPipe, sproc

55

pfDBaseFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfDBaseFunc, pfGetDBaseFunc, pfAllocDBaseData, pfGetDBaseData, pfPassDBaseData, pfDBase —
Set database callback, allocate and pass database data.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

void pfDBaseFunc(pfDBaseFuncType func);
pfDBaseFuncType pfGetDBaseFunc(void);

void * pfAllocDBaseData(int bytes);

void * pfGetDBaseData(void);

void pfPassDBaseData(void);

void pfDBase(void);

typedef void (*pfDBaseFuncType) (void *userData);

DESCRIPTION

56

The func argument to pfDBaseFunc specifies the database callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocDBaseData. If a
separate process is allocated for database processing by the PFMP_FORK_DBASE mode to
pfMultiprocess, then pfFrame will cause func to be called in the separate (DBASE) process.
pfGetDBaseFunc returns the database callback or NULL if none is set.

The database function’s primary purpose is to provide asynchronous database creation and deletion
when using the pfBuffer mechanism and a forked DBASE process (see PFMP_FORK_DBASE,
pfMultiprocess, and new pfBuffer).

When the database function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the database function takes more than a frame time, the rendering pipe-
line will not be affected.

If a database function has been specified by pfDBaseFunc, it must call pfDBase to carry out default IRIS
Performer database processing. pfDBase should only be called from within the DBASE callback in the
DBASE process just like pfCull and pfDraw should only be called in the pfChannel CULL and DRAW
callbacks (pfChannel::setTravFunc) respectively. If a database function has not been specified or is
NULL, IRIS Performer automatically calls pfDBase from pfFrame.

pfAllocDBaseData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer
may be used to communicate information between the database function and application. Database data
should only be allocated once. pfGetDBaseData returns the previously allocated database data.

IRIS Performer 2.0 libpf C++ Reference Pages pfDBaseFunc(3pf)

When the database function is forked, pfPassDBaseData should be used to copy the database data into
internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the application
may modify data in the database data buffer without fear of colliding with the forked database function.
However, modifications to the database data chunk made by the DBASE process will not be visible to the
APP process, i.e, there is no "upstream" propagation of passthrough data.

NOTES
Currently, pfDBase carries out asynchronous deletion requests made with pfAsyncDelete.

SEE ALSO
pfAsyncDelete, pfConfig, pfFrame, pfMultiprocess, new, pfBuffer

57

pfDCS(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfDCS - Create, modify and get the matrix of a dynamic coordinate system.

FUNCTION SPECIFICATION
#include <Performer/pf/pfDCS.h>

pfDCS:
static pfType * pfDCS::
void pfDCS::
void pfDCS::
void pfDCS::
void pfDCS::
void pfDCS::
void pfDCS::
void pfDCS::
const pfMatrix*

pfDCS::
void pfDCS::
uint pfDCS::

PARENT CLASS FUNCTIONS
The IRIS Performer class pfDCS is derived from the parent class pfSCS, so each of these member func-
tions of class pfSCS are also directly usable with objects of class pfDCS. This is also true for ancestor

classes of class pfSCS.

58

void

:pfDCS();

getClassType(void);
setTrans(float x, float y, float z);
setRot(float h, float p, float r);
setCoord(pfCoord *coord);
setScale(float s);

setScale(float x, float y, float z);
setMat(pfMatrix &m);

:getMat(pfMatrix &m);

getMatPtr(void);
setMatType(uint val);
getMatType();

pfSCS::getMat(pfMatrix &mat);
const pfMatrix* pfSCS::getMatPtr(void);

Since the class pfSCS is itself derived from the parent class pfGroup, objects of class pfDCS can also be
used with these functions designed for objects of class pfGroup.

int
int
int
int
int

pfNode * pfGroup::

pfGroup::addChild(pfNode *child);

pfGroup:insertChild(int index, pfNode *child);

pfGroup::replaceChild(pfNode *old, pfNode *new);
pfGroup::removeChild(pfNode* child);
pfGroup::searchChild (pfNode* child);

getChild(int index);

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)

int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfDCS can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode:getParent(int i);

int pfNode:getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode:getBound(pfSphere *bsph);

pfNode* pfNode::clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

int pfNode:flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode::getName(void);

pfNode* pfNode:find(const char *pathName, pfType *type);
pfNode* pfNode:lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode:getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfDCS can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfDCS can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory:getData(const void *ptr);
pfType* pfMemory::getType();
int pfMemory::isOfType(pfType *type);

59

pfDCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

60

A pfDCS (Dynamic Coordinate System) is a pfSCS whose matrix can be modified.

new pfDCS creates and returns a handle to a pfDCS. Like other pfNodes, pfDCSes are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfDCSes should be
deleted using pfDelete rather than the delete operator.

pfDCS::getClassType returns the pfType* for the class pfDCS. The pfType* returned by
pfDCS::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfDCS. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

The initial transformation is the identity matrix. The transformation of a pfDCS can be set by specifying a
matrix or translation, scale and rotation. When independently setting translation, rotation, and scale, the
pfDCS matrix is computed as S*R*T, where S is the scale, R is the rotation, and T is the translation. The
order of effect is then scale followed by rotation followed by translation.

pfDCS operations are absolute rather than cumulative. For example:

dcs->set Trans(2. 0f, 0.0f, 0.0f);
dcs->set Trans(1. 0f, 0.0f, 0.0f);

specifies a translation by 1 unit along the X coordinate axis, not 3 units.

By default a pfDCS uses a bounding sphere which is dynamic, so it is automatically updated when the
pfDCS transformation is changed or when children are added, deleted or changed. This behavior may be
changed using pfNode::setBound. The bound for a pfDCS encompasses all B(i)*S*R*T, where B(i) is the
bound for the child 'i” and S*R*T represents the scale, rotation, and translation transformation of the

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)

pfDCS.

pfDCS::setTrans sets the translation part of the pfDCS to (x, y, z). The rotational portion of the matrix is
unchanged.

pfDCS::setScale sets the scale portion of the pfDCS to scale uniformly by a scale factor s. This supersedes
the previous scale leaving the rotation and translation unchanged. pfDCS::setScale specifies a non-
uniform scale of x, y, z.

pfDCS::setRot sets the rotation portion of the matrix:
h Specifies heading, the rotation about the Z axis.
p Specifies pitch, the rotation about the X axis.

r Specifies roll, rotation about the Y axis.

The matrix created is R*P*H, where R is the roll transform, P is the pitch transform and H is the heading
transform. The new (h,p,r) combination replaces the previous specification, leaving the scale and transla-
tion unchanged. The convention is natural for a model in which +Y is "forward," +Z is "up" and +Xis
"right". To maintain 1/1000 degree resolution in the single precision arithmetic used internally for sine
and cosine calculations, the angles h, p, r should be in the range of -7500 to +7500 degrees.

pfDCS::setCoord sets the rotation and translation portion of the pfDCS according to coord. This is
equivalent to:

dcs- >set Rot (coord->hpr[0], coord->hpr[1], coord->hpr[2]);
dcs- >set Trans(coord- >xyz[0], coord->xyz[1], coord->xyz[2]);

pfDCS::setMat sets the transformation matrix for the pfDCS to m.

Normally pfDCS::setMat is used as a replacement for the above routines which individually set the scale,
rotation and translational components. The mechanisms can be combined but only if the supplied matrix
can be represented as scale followed by a rotation followed by a translation (e.g. a point pt is transformed
by the matrix as: pt’ = pt*S*R*T), which implies that no shearing or non-uniform scaling is present.

:setMatType allows the specification of information about the type of transformation the matrix
represents. This information allows Performer to speed up some operations. The matrix type is specified
as the OR of

61

pfDCS(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

62

PFMAT_TRANS:
matrix may include a translational component in the 4th row.

PFMAT_ROT
matrix may include a rotational component in the left upper 3X3 submatrix.

PFMAT_SCALE
matrix may include a uniform scale in the left upper 3X3 submatrix.

PFMAT_NONORTHO
matrix may include a non-uniform scale in the left upper 3X3 submatrix.

PFMAT_PROJ
matrix may include projections.

PFMAT_HOM_SCALE
matrix may include have mat[4][4] != 1.

PFMAT_MIRROR
matrix may include mirroring transformation that switches between right handed and left
handed coordinate systems.

pfDCS::getMatType returns the matrix type as
set by pfDCS::setMatType. If no matrix type is set the default is "0, corresponding to a general
matrix.

The transformation of a pfDCS affects all its children. As the hierarchy is traversed from top to
bottom, each new matrix is pre-multiplied to create the new transformation. For example, if
DCSb is below DCSa in the scene graph, any geometry G below DCSa is transformed as
G*DCSb*DCSa.

pfNode::flatten cannot flatten pfDCSes since they may change at run-time. In this case
pfNode::flatten will compute a pfSCS representing the accumulated static transformation that the
pfDCS inherits and insert it above the pfDCS. Static transformations below a pfDCS are flattened
as usual. See pfNode::flatten for more details.

The presence of transformations in the scene graph impacts the performance of intersection, cul-
ling and drawing. pfGeoSet culling (see PFCULL_GSET in pfChannel::setTravMode) is disabled
in portions of the scene graph below pfDCSes.

Both pre and post CULL and DRAW callbacks attached to a pfDCS (pfNode::setTravFuncs) will
be affected by the transformation represented by the pfDCS, i.e. - the pfDCS matrix will already
have been applied to the matrix stack before the pre callback is called and will be popped only
after the post callback is called.

pfDCS::getMat copies the transformation matrix value from the pfDCS into the matrix m. For
faster matrix access, pfDCS::getMatPtr can be used to get a const pointer to the pfDCS’s matrix.

IRIS Performer 2.0 libpf C++ Reference Pages pfDCS(3pf)

SEE ALSO
pfCoord, pfGroup, pfChannel, pfMatrix, pfNode, pfSCS, pfScene, pfTraverser, pfDelete

63

pfEarthSky(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfEarthSky — Create and control weather, Earth-Sky model, and screen clearing.

FUNCTION SPECIFICATION
#include <Performer/pf/pfEarthSky.h>

pfEarthSky::pfEarthSky();

static pfType * pfEarthSky::getClassType(void);

void
int

void
float
void
void
void

pfFog *

pfEarthSky::setMode(int mode, int val);

pfEarthSky::getMode(int mode);

pfEarthSky:setAttr(int attr, float val);

pfEarthSky:getAttr(int mode);

pfEarthSky::setColor(int which, float r, float g, float b, float a);
pfEarthSky:getColor(int which, float *r, float *g, float *b, float *a);
pfEarthSky::setFog(int which, pfFog *fog);

pfEarthSky::getFog(int which);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfEarthSky is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfEarthSky. This is also true for
ancestor classes of class pfObject.

64

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfEarthSky can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

void

int

pfMemory::getData(const void *ptr);
pfMemory::getType();

pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory::copy(pfMemory *src);
pfMemory:compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);

IRIS Performer 2.0 libpf C++ Reference Pages pfEarthSky(3pf)

void* pfMemory::getArena();

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory:getRef();

int pfMemory::checkDelete();

void * pfMemory::getArena();

int pfMemory::getSize();
PARAMETERS

esky identifies a pfEarthSky.
DESCRIPTION

These functions provide a means to clear the frame and Z-buffer, draw a sky, horizon and ground plane,
and to implement various weather effects. Once the earth-sky is set in a channel, it should be the first
thing drawn when a scene is rendered.

new pfEarthSky creates and returns a handle to a pfEarthSky. Like other pfNodes, pfLayers are always
allocated from shared memory and cannot be created statically, on the stack or in arrays. pfEarthSkies
should be deleted using pfDelete rather than the delete operator.

new pfEarthSky creates a pfEarthSky and sets up reasonable defaults. To render the earth and sky
model, it must be added to a pfChannel. By default, the mode is to render a full screen clear unless either
the sky or ground is turned on. pfEarthSky is called automatically in the draw process, unless a draw
callback is present, in which case, it must be explicitly called using pfChannel::clear.

pfEarthSky::getClassType returns the pfType* for the class pfEarthSky. The pfType* returned by
pfEarthSky::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfEarthSky. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfEarthSky::setMode is used to set the earth-sky rendering mode. pfEarthSky:getMode is used to
obtain the earth-sky rendering mode. These functions currently accept the two mode arguments
PFES_BUFFER_CLEAR, and PFES_CLOUDS.

PFES_BUFFER_CLEAR may have the following values:

PFES_FAST
The default mode. This simply clears the color and Z buffers. The clear color can
be set using pfEarthSky::setColor. Dithering is turned off during the clear.

65

pfEarthSky(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

PFES_TAG Initializes the framebuffer to a known state very
rapidly. Has an effect only when multisampling. Often, this mode is used as an
optimization before rendering a background that covers the entire screen. See
pfClear for the details and restrictions of the mode PFCL_MSDEPTH.

PFES_SKY
Causes a sky and horizon backdrop to be drawn. These are drawn using large
polygons that are recalculated each frame, using information about the clipping
planes, field of view, and eyepoint vertical position for the selected channel. They
are drawn instead of a screen clear, forcing the Z buffer to a known state. If the
viewpoint goes below the ground plane, the area below the horizon will not be
cleared. In the case of PFES_SKY, the screen is never cleared below the lower edge
of the horizon.

PFES_SKY_GRND
Add a ground plane to the sky and horizon model drawn by PFES_SKY.

PFES_SKY_CLEAR
Draw the sky and horizon, and clear the screen below the edge of the horizon.

PFES_CLOUDS is used to set the type of cloud layer. Currently, the only value supported is:

PFES_OVERCAST
This cloud type is a non-textured, opaque region that has a color and both top and
bottom dimensions. This, being the only choice at present, is the default type.

pfEarthSky::setColor is used to set the colors referenced by the earth-sky rendering routines.
pfEarthSky::getColor returns the indicated color component of the earth-sky mode. The components are:

PFES_SKY_TOP The color of the sky directly above the viewpoint.
PFES_SKY_BOT The color of the sky where it joins the horizon.
PFES_HORIZ The color of the bottom edge of the horizon.
PFES_GRND_FAR The color of the ground plane where it meets the horizon.
PFES_GRND_NEAR The color of the ground plane directly below the viewer.
PFES_CLOUD_BOT The color of the bottom of the opaque cloud layer.
PFES_CLOUD_TOP The color of the top of the opaque cloud layer.
PFES_CLEAR The color for simple screen clearing.

The fog color is set as explained in the pfFog reference page.

pfEarthSky::setAttr is used to set a number of attributes. The companion function pfEarthSky::getAttr is
used to return these same attribute values. The tokens and their meanings are listed below:

66

IRIS Performer 2.0 libpf C++ Reference Pages pfEarthSky(3pf)

PFES_GRND_HT Set the ground height for the ground plane that is
used when PFES_SKY_GRND is enabled and defines the bottom edge of the horizon which
is used in all of the modes that draw a sky. The ground plane extends from the eyepoint to
the horizon with a width greater than the field of view. Note that objects placed on the
ground with the same height may not Z buffer correctly. Also, as objects move into the dis-
tance, the Z buffer resolution for those pixels will decrease, making proper priority resolu-
tion of small distances between the ground plane and objects less likely.

PFES_HORIZ_ANGLE Set the vertical displacement of the horizon band
in degrees. The horizon band is blended into the sky bottom color so it may appear to be
less than this angle. This angle remains constant for any heading. To simulate directional
horizon glow, the angle and color can be changed each frame to achieve the correct appear-
ance.

PFES_CLOUD_TOP Set the cloud layer upper position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_CLOUD_BOT Set the cloud layer lower position. The cloud layer
is enabled when the cloud base is less than the cloud top. By default, it is disabled (base >
top). Each token is followed by a height value. The cloud layer is opaque. The cloud layer
thickness is simply (top - bottom).

PFES_TZONE_TOP Set the transition zone for exiting a cloud layer.
Provided to allow a smooth transition out of clouds. This transition is enabled by making
the transition height greater than the cloud top. It is disabled by doing the opposite or by
disabling the cloud layer. By default, the transition zone is disabled.

PFES_TZONE_BOT Set the transition zone for entering a cloud layer.
Provided to allow a smooth transition into clouds. This transition is enabled by making the
transition height less than the cloud bottom. It is disabled by doing the opposite or by disa-
bling the cloud layer. By default, the transition zone is disabled.

PFES_GRND_FOG_TOP Set the height of the ground fog layer. Ground
fog is enabled when a valid pfFog is set. By default ground fog is disabled.

pfESkyFog sets which type of fog to use when in ground fog or general visibility. The token may be one
of the following values:

PFES_GRND

PFES_GENERAL
pfEarthSky::getFog returns the indicated fog selection.

Several different fog functions may be defined at initialization, then just switched in using this routine.

Distant haze and different curves would be done this way. If ground fog is enabled, and the viewer is
transitioning out of the ground fog layer, the fog will be blended into clear visibility or PFES_GENERAL

67

pfEarthSky(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

fog.

Due to the design of the graphics library, fog would be discontinuous in adjacent channels which use
rotational viewing offsets (See pfChannel::setViewOffsets). However, when attached to a pfChannel
(see pfChannel::setESky) that has a rotational viewing offset, a pfEarthSky will automatically adjust the
ranges of the pfFog set by pfEarthSky::setFog to account for any rotational offsets so that fog is continu-
ous across adjacent channels.

pfEarthSky does not work properly for off-axis viewing frusta.

Because PFES_TAG only has effect when multisampling, care must be taken for cross-platform portabil-
ity. Background renderings that rely on the depth buffer having been reset (e.g. backgrounds that do not
disable z buffering with zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in
OpenGL) may need to request a normal depth buffer clear when not multisampling.

When multisamling, PFES_SKY_GND and PFES_SKY are significantly faster than PFES_SKY_CLEAR.
In IRIX 5.3 IRIS GL on Indigo2/Extreme systems the Z-buffer is not fully updated after a window is

moved unless a full Z-clear operation is performed. In such cases your software must detect REDRAW
events and fully clear the Z-buffer.

SEE ALSO

68

pfChannel, pfClear, pfFog, pfNewChan, zfunction, glDepthFunc, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)

NAME
pfFrameRate, pfGetFrameRate, pfFieldRate, pfGetFieldRate, pfVideoRate, pfGetVideoRate, pfSync,
pfFrame, pfAppFrame, pfGetFrameCount, pfFrameTimeStamp, pfGetFrameTimeStamp, pfPhase,
pfGetPhase — Set and get system frame and video rate, phase, and frame count. Synchronize and initiate
frame.

FUNCTION SPECIFICATION
#include <Performer/pf.h>

float pfFrameRate(float rate);

float pfGetFrameRate(void);

int pfFieldRate(int fields);

int pfGetFieldRate(void);

void pfVideoRate(float vrate);

float pfGetVideoRate(void);

int pfSync(void);

int pfFrame(void);

int pfAppFrame(void);

int pfGetFrameCount(void);

void pfFrameTimeStamp(double time);
double pfGetFrameTimeStamp(void);
void pfPhase(int phase);

int pfGetPhase(void);

DESCRIPTION
IRIS Performer is designed to run at a fixed frame rate. The rate argument to pfFrameRate specifies the
desired rate in units of frames per second. The actual rate used is based on the video timing of the
display hardware. rate is rounded to the nearest frame rate which corresponds to an integral multiple of
video fields.

For a 60Hz video rate, possible frame rates are (in Hz) 60.0, 30.0, 20.0, 15.0, 12.0, 10.0, 8.57, 7.5, 6.67, and
6.0. These rates would mean that the number of fields per frame would range from 1 (for 60Hz) to 10 (for
6Hz). pfFrameRate returns the actual frame rate used or -1.0 if it is called before pfConfig.

pfVideoRate specifies the system video rate as vrate fields per second. If pfVideoRate is not called, then
IRIS Performer determines the video field rate at pfConfig time and will not be aware of changes in video

timing made during application run-time until pfVideoRate is called.

pfGetVideoRate returns the video timing in number of video fields per second or -1.0 if it is called before

69

pfFrame(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

70

the video rate has been determined. The IRIS Performer video clock (see pfInitVClock) runs at this video
field rate and is initialized to 0 by pfConfig.

An alternate way of specifying a desired frame rate is pfFieldRate. fields is the number of video fields per
simulation frame. The corresponding frame rate will then be the video field rate (see pfGetVideoRate)
divided by fields. pfGetFieldRate returns the number of video fields per simulation frame.

Frame rate is a per-machine metric and is used by all pfPipes. It controls the rate at which multiprocess-
ing pipelines run and affects computed system load and related stress metrics (see pfChannel::setStress).
Since frame rate is global it follows that all hardware pipelines used by a single IRIS Performer applica-
tion should be genlocked, i.e., the video signals are synchronized by hardware. Otherwise the video sig-
nals of the pipes will be out of phase, reducing graphics throughput and increasing latency. Genlock is
crucial for proper multipipe operation and requires some simple, platform-specific cabling and software
configuration through the setmon call.

Depending on the phase as is discussed below, pfSync synchronizes the application process with the
frame rate specified by pfFrameRate (when phase is PFPHASE_LOCK or PFPHASE_FLOAT), or to the
system rendering rate (when phase is PFPHASE_FREE_RUN or PFPHASE_LIMIT). In the first case,
pfSync sleeps until the next frame boundary, then awakens and returns control to the application. In the
second case, pfSync sleeps until the draw process begins rendering a new frame or returns immediately if
in single-process operation. pfSync returns the current frame count and should only be called by the
application process when multiprocessing.

pfFrame initiates a new frame of IRIS Performer processing by doing the following:

Triggers all processing stages that are configured as a separate process.
Inlines all processing stages that are not configured as a separate process.

Sets the current, global pfCycleBuffer index (see pfCycleBuffer::setCurlndex) which is
guaranteed not to be in use by any other IRIS Performer process.

4. Sets the frame’s time stamp (pfFrameTimeStamp).

pfFrame triggers all IRIS Performer processing stages (APP, ISECT, DBASE, CULL, and DRAW). If a
stage is partitioned into a separate process, pfFrame will allow that process to run. Otherwise, pfFrame
itself will carry out the processing associated with the stage. pfFrame will directly invoke all user call-
backs that are in the same process as that which called pfFrame. Otherwise, a callback will be invoked by
the process of which it is a part, e.g., the ISECT callback will be invoked by the ISECT process if
PFMP_FORK_ISECT is set in the argument to pfMultiprocess.

AILIRIS Performer stage callbacks have a block of associated data known as "user data.” User data is
passed as an argument to the stage callback. To simplify data flow in a multiprocessing environment, IRIS
Performer copies user data into internal buffers and propagates the data down multiprocessing pipelines.

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)

To restrict data copying to only those frames in which user data changes, use the pfPass<*>Data and
pfChannel::passChanData functions. pfPass<*>Data and pfChannel::passChanData signify that the user
data has changed and needs to be copied. pfFrame will then copy the data into its internal buffer and the
stage callback will receive the updated user data. Stage callbacks and user data functions are listed
below.

Stage Callback Allocation Pass

APP pfChannel::setTravFunc | pfChannel::allocChanData | pfChannel::passChanData
CULL | pfChannel:setTravFunc | pfChannel::allocChanData | pfChannel::passChanData
DRAW | pfChannel:setTravFunc | pfChannel::allocChanData | pfChannel::passChanData
ISECT pflsectFunc pfAlloclsectData pfPasslsectData
DBASE pfDBaseFunc pfAllocDBaseData pfPassDBaseData

pfFrame triggers the APP, CULL and DRAW stages of all pfPipes so it must be called every frame a new
display is desired. IRIS Performer will attempt to cull and draw all active pfChannels on all pfPipes
within a single frame period. Multiple pfChannels on a single pfPipe will be processed in the order they
were added to the pfPipe. pfFrame returns the current frame count and should only be called by the
application process when multiprocessing.

If specified, pfChannel cull and draw callbacks (pfChannel::setTravFunc) will be invoked by the
appropriate process which may or may not be the same process that called pfFrame. If these callbacks
are not specified, pfCull and pfDraw will be called instead. pfChannel passthrough data which is passed
to pfChannel function callbacks (see pfChannel::passChanData) is copied into internal memory at
pfFrame time.

In typical operation, pfFrame should closely follow pfSync in the main application loop. Since the CULL
does not start until pfFrame is called, considerable processing between pfSync and pfFrame can reduce
system throughput. However, any updates to the database or view made at this time will be applied to
the current frame so latency is reduced for these updates. Updates made after pfFrame will be applied to
the next frame. pfFrame returns the current frame count.

pfFrame will automatically call pfSync if the application did not call pfSync before calling pfFrame. This
means the application need not call pfSync.

It is crucial to keep the time spent in the application process less than a frame’s time so the system can
meet the desired frame rate. If the application process exceeds a single frame’s time, pfFrame will not be
called often enough to meet the frame rate.

The following code fragment is an example of an application’s main processing loop:

Example 1: Main simulation loop.

71

pfFrame(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

72

pf FraneRat e(30. 0f) ; /* Set desired frame rate to 30Hz */
whi l e (!done)
{
app_funcs(); /* Performapplication-specific functions */

update_positions(); /* Update noving nodels for frame N */

pf Sync(); /* Sleep until next frane boundary */
updat e_vi ew() ; /* Set view for frame N */
pf Frane(); /* Trigger cull and draw for frame N */

pfAppFrame triggers a traversal that updates the state of the scene graph for the next frame. This
includes updating the state of pfSequence nodes and invoking APP callbacks on nodes in the scene graph.
If pfAppFrame is not invoked directly, pfSync or pfFrame invokes it automatically. Note that when the
view is not set until after pfSync, as in the example above, the view point in the channel during the appli-
cation traversal contains the eye point from the previous frame.

pfGetFrameCount returns the current frame count. The frame count is initialized to 0 by pfConfig and is
incremented by each call to pfFrame.

pfGetFrameRate returns the current system frame rate (possibly rounded) previously set by
pfFrameRate. Note that this is not necessarily the same as the achieved frame rate.

pfSync synchronizes the application process to a particular rate. This rate may be fixed, for example a
steady 20Hz or may vary with the rendering rate. In addition, the drawing process may be synchronized
to either a steady or a varying rate. pfPhase specifies the synchronization methods used by pfSync and
the drawing process (if it is a separate process). phase is a symbolic constant that specifies the phase of all
process pipeline(s). It can take on the following values:

PFPHASE_LOCK
pfSync synchronizes to the next frame boundary and the drawing process begins drawing
and swaps its rendering buffers only at fixed frame boundaries.

PFPHASE_FLOAT
pfSync synchronizes to the next frame boundary but the drawing process can begin draw-
ing and swap its rendering buffers at non-frame boundaries.

PFPHASE_FREE_RUN
pfSync synchronizes to the rendering rate so the application runs at its peak (and usually
non-constant) capability.

IRIS Performer 2.0 libpf C++ Reference Pages pfFrame(3pf)

PFPHASE_LIMIT
pfSync synchronizes to the rendering rate but the rendering rate is limited to that frame
rate specified by pfFrameRate.

If locked, the drawing process will swap buffers only on frame boundaries. A benefit of locking is that
such pipelines are self-regulating so synchronizing two pfPipes together is simple, even across different
machines. Another benefit is that latency is minimized and predictable. The major drawback is that if a
view takes slightly longer than a frame to render (it has ‘frame-extended’), then an entire frame is skipped
rather than a single vertical retrace period. However, if minimal distraction is crucial, the phase can float
so that buffer swapping may happen on non-frame boundaries. In this case it is not guaranteed that the
windows on pfPipes will swap together; they may get out of phase resulting in inconsistent images if the
displays are adjacent and are displaying the same scene.

The difference between phase lock and phase float becomes less apparent with increasing frame rate. At
a rate equal to the vertical retrace rate, there is no difference. Also, if pfPipes do not 'frame extend’, then
there is no difference.

Applications which do not require a fixed frame rate may use PFPHASE_FREE_RUN or
PFPHASE_LIMIT. PFPHASE_FREE_RUN essentially disables IRIS Performer’s fixed frame rate
mechanisms and will cause the application to run at its rendering rate so it slows down when rendering
complex scenes and speeds up when rendering simple scenes. In this case, the frame rate specified by
pfFrameRate no longer affects the system frame rate but is still used to compute system load and stress.

PFPHASE_LIMIT is equivalent to PFPHASE_FREE_RUN except that the application can go no faster
than the frame rate specified by pfFrameRate although it may go slower. Thus fixed frame rate behavior
is achieved if the time required to process a frame never takes longer than that specified by pfFrameRate.

pfPhase may be called any time after pfConfig.

pfGetPhase returns the current phase. The default phase is PFPHASE_FREE_RUN.

pfFrameTimeStamp sets the time stamp of the current frame to fime. The frame time stamp is used when
evaluating all pfSequences. Normally, pfFrame sets the frame time stamp immediately before returning

control to the application although the application may set it to account for varying latency in a non-
constant frame rate situation. Time is relative to pfInit when the system clock is initialized to 0.

SEE ALSO
pfChannel, pfConfig, pflsectFunc, pfInitVClock, pfCycleBuffer, pfGetTime

73

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME
pfFrameStats — Specify pfFrameStats modes and get collected values.

FUNCTION SPECIFICATION

#include <Performer/pf/pfFrameStats.h>

pfFrameStats::pfFrameStats();
static pfType* pfFrameStats::getClassType(void);
void pfFrameStats::draw(pfChannel *chan);
void pfFrameStats::copy(uint dSel, pfFrameStats *src, uint sSel, uint classes);
uint pfFrameStats::getOpen(pfFrameStats *fstats, uint emask);
uint pfFrameStats::open(pfFrameStats *fstats, uint enmask);
uint pfFrameStats::close(uint enmask);
void pfFrameStats::countNode(int class, uint mode, pfNode * node);
uint pfFrameStats::setClass(uint enmask, int val);
uint pfFrameStats::getClass(uint enmask);
uint pfFrameStats::setClassMode(int class, uint mask, int val);
uint pfFrameStats::getClassMode(int class);
void pfFrameStats::setAttr(int attr, float val);
float pfFrameStats::getAttr(int attr);
void pfFrameStats::copy(pfFrameStats *src, uint dSel, uint sSel, uint classes);
void pfFrameStats::reset(void);
void pfFrameStats::clear(uint which);
void pfFrameStats::count(pfGeoSet * gset);
void pfFrameStats::accumulate(pfFrameStats* src, uint which);
void pfFrameStats::average(pfFrameStats* src, uint which, int num);
int pfFrameStats::query(uint which, float *dst, int size);
int pfFrameStats::mQuery(uint *which, float *dst, int size);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfFrameStats is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfFrameStats. This is
also true for ancestor classes of class pfObject.

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfFrameStats
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory:getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory:isExactType(pfType *type);
const char * pfMemory:getTypeName();
int pfMemory:copy(pfMemory *src);
int pfMemory:compare(const pfMemory *mem);
void pfMemory:print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

The pfFrameStats utilities provide for the collection of statistics about all parts of IRIS Performer process-
ing of a scene for a given frame. These statistics can be kept automatically on every pfChannel or Users
may accumulate and store their own statistics. Routines for operating on, displaying, and printing statis-
tics are also provided.

The frame statistics for a channel are gotten by first getting the pointer to the channel’s statistics structure
with pfChannel::getFStats, and then enabling the desired statistics classes. When a channel is automati-
cally accumulating frame statistics, it enables the necessary statistics hardware and statistics accumula-
tion in the correct processes.

The resulting collected statistics can then be displayed in a channel, queried, or printed. These statistics
may be accumulated and averaged over a specified number of frames or seconds. The pfFrameStats
declarations are contained in pfstats.h. The class of process frame timing statistics for each of the IRIS
Performer processes of application, cull and draw, is enabled by default.

new pfFrameStats creates and returns a handle to a pfFrameStats. pfFrameStats are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfFrameStats should be

75

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

76

deleted using pfDelete rather than the delete operator.

pfFrameStats::getClassType returns the pfType* for the class pfFrameStats. The pfType* returned by
pfFrameStats::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfFrameStats. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

A pfFrameStats structure contains pfStats statistics as well as additional statistics classes and support for
tracking frame related tasks. Many pfFrameStats member functions are borrowed (but not inherited)
from the pfStats class: accumulate, average, clear, close, copy, getOpen, setAttr, setClass,
setClassMode, getClassMode, count, getAttr, getClass, mQuery, open, query, reset.

These functions accept identical parameters to their counterparts in pfStats. The reader is referred to the
pfStats man page for details on the routine description.

Only the additional support for pfFrameStats above and beyond that of new pfStats is discussed here.
The pfFrameStats structure stores accumulated statistics in several buffers. The following is a list of the
frame statistics buffers:

PFFSTATS_BUF_PREV Statistics for previous completed frame
PFFSTATS_BUF_CUR Buffer for current statistics collection
PFFSTATS_BUF_CUM Statistics accumulated since last update
PFFSTATS_BUF_AVG Statistics averaged over previous update period

These different buffers can be queried with pfFrameStats::query and printed with pfMemory::print. The
desired PFFSTATS_BUF_* token is simply bitwise OR-ed with the desired statistics value token.

The following table of additional frame statistics classes, their naming token, and their enable token for
forming bitmasks. Notice that pfFrameStats tokens start with PEFSTATS*.

Frame Statistics Class Table
Class PFSTATS_* Token PFSTATS_EN* token
Process frame times | PFFSTATS_PFTIMES | PFFSTATS_ENPFTIMES

Database PFFSTATS_DB PFFSTATS_ENDB

Cull PFFSTATS_CULL PFFSTATS_ENCULL

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)

This table lists the frame statistics modes and tokens.

Frame Statistics Class Mode Table
Class PFSTATS_ Token Modes

Process frame times | PFFSTATS_PFTIMES | PFFSTATS_PFTIMES_BASIC
PFFSTATS_PFTIMES_HIST

Database PFFSTATS_DB PFFSTATS_DB_VIS
PFFSTATS_DB_EVAL

Cull PFFSTATS_CULL PFFSTATS_CULL_TRAV

pfFrameStats::draw displays the pfFrameStats structure fstats in the channel specified by chan. This is
useful for displaying the statistics in a special channel separate from the main scene channel.
pfChannel::drawStats may be called from IRIS Performer’s application, cull, or draw processes and must
be called each frame a statistics display is desired. See pfChannel::drawStats for a detailed explanation
of the channel statistics display.

pfFrameStats::setClass takes a pointer to a statistics structure, fstats, and will set the classes specified in
the bitmask, enmask, according to the val, which is one of the following:

PFSTATS_ON Enables the specified classes.

PFSTATS_OFF Disables the specified classes.
PFSTATS_DEFAULT Sets the specified classes to their default values.
PFSTATS_SET Sets the class enable mask to enmask.

All stats collection can be set at once to on, off, or the default by using PFSTATS_ALL for the bitmask
and the appropriate value for the enable flag. For example, the following function call will enable all
frame statistics, as well as basic statistics classes, with their current class mode settings.

fstats->setd ass(PFSTATS_ALL, PFSTATS ON);

Only statistics classes that are enabled with pfFStatsClass are able to be printed with pfMemory::print,
collected, copied, accumulated, averaged, and queried.

pfFrameStats::getClass takes the statistics classes of interest specified in the bitmask, enmask. The frame
statistics classes are enabled through pfFrameStats::setClass and the frame statistics class bitmasks may
be combined with the basic statistics classes. If any of the statistics classes specified in enmask are enabled,
then pfFrameStats::getClass will return the bitmask of those classes, and will otherwise return zero.

77

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

78

pfFrameStats::setClassMode takes the name of the class to set, class, a mask of class modes, mask, and the
value for those modes, val. The pfFrameStats classes include all of the pfStats classes. If class is
PFSTATS_CLASSES, then all pfFrameStats classes will have their modes set according to mask and val.
Each statistics class has its own mode tokens that may be used for mask. mask may also be one of
PFSTATS_ALL or 0x0. val is one of the statistics value tokens: PFSTATS_ON, PFSTATS_OFF,
PFSTATS_SET, or PFSTATS_DEFAULT. See the pfStats reference page for more general information on
pfStats statistics classes and value tokens under pfStats::setClassMode. The following describes the
additional classes for frame statistics and their corresponding modes.

Process Frame Times Modes:

PFFSTATS_PFTIMES_BASIC
This mode enables a running average of the time for each IRIS Performer process of applica-
tion, cull, and draw to complete the tasks for a single frame. This mode is enabled by
default.

PFFSTATS_PFTIMES_HIST
In this mode, a history of time stamps for different tasks within each of the IRIS Performer
process of application, cull, draw, and the intersection process, is maintained. Examples of
time stamps include when each processes starts and ends processing a frame, and the appli-
cation frame number for that frame for that processes. There are special additional time
stamps for each process. For the application processes there are time stamps to mark when
the application starts and finishes cleaning the scene in pfSync, a time stamp when the
application wakes up to sync to the next frame boundary (done when the application is run-
ning with phase set to PFPHASE_LOCK or PFPHASE_FLOAT), and a time stamp to mark
when the application returns after setting off a forked CULL or ISECT process. The time
stamps for each process are defined in the pfFStatsValPFTimes* data type and queried by
providing the corresponding PEFSTATSVAL_PFTIMES_HIST_* tokens to
pfFrameStats::query.

Database Statistics Modes:

PFFSTATS_DB_VIS
This mode enables tracking of how many pfNodes of each different type are visible and
drawn in a given frame. This mode is enabled by default. These statistics are queried by
providing the desired PFFSTATSVAL_VISIBLE* token to pfFrameStats::query.

PFFSTATS_DB_EVAL
This mode enables tracking of how many pfNodes of each different type have special
evaluations in a given frame. Node types that require special evaluation steps include
pfBillboard, pfSCS, pfDCS, pfLayer, pfLightPoint, pfLightSource, pfPartition, and pfSe-
quence. There are also query tokens to query what processes the evaluation step for a given
node type is done in. This mode is enabled by default. These statistics are queried by pro-
viding the desired PFFSTATSVAL_EVALUATED* token to pfFrameStats::query.

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)

Cull Statistics Modes:

PFFSTATS_CULL_TRAV
There is only one cull frame statistics mode and it tracks culling traversal statistics: how
many pfGeoSets and pfNodes of each type are traversed in the cull operation, how many
pfNodes are trivially in or out of the viewing frustum, and how many must pass through a
bounding sphere or bounding box test. These statistics are queried by providing one of the
PFFSTATSVAL_CULLTRAY tokens to pfFrameStats::query. There are also statistics on
the test results of the cull traversal, queried with the PFFSTATSVAL_CULLTEST* tokens.

pfFrameStats::getClassMode takes the name of the class to query, class. The return value is the mode of
class.

pfFrameStats::setAttr takes the name of the attribute to set, attr, and the attribute value, val. Frame statis-
tics provide additional attributes beyond the basic pfStats attributes. These attributes are only relevant
when automatic statistics collection is being done by a parent channel. These attributes are:

PFFSTATS_UPDATE_FRAMES
The number of frames over which statistics should be averaged. The default value is 2. If
val is 0, statistics accumulation and averaging is disabled and only the CUR and PREV
statistics for enabled classes will be maintained. This is recommended for applications that
are not using the averaged statistics and require a high, fixed frame rate.

PFFSTATS_UPDATE_SECS
The number of seconds, over which statistics should be averaged. The default uses the
number of frames. As with PFFSTATS_UPDATE_FRAMES, if val is 0, statistics accumula-
tion and averaging is disabled and only the CUR and PREYV statistics for enabled classes
will be maintained.

PFFSTATS_PFTIMES_HIST_FRAMES
For the Process Frame Times Statistics, PFFSTATS_PFTIMES, the number of frames of
time-stamp history to keep. The default value is 4.

pfFrameStats::getAttr takes the name of the attribute to query, attr. The return value is that of attribute
attr.

pfFrameStats::query: which isa PFSTATSVAL_* or PFFSTATSVAL_* token that specifies the value or
values to query in which, and dst destination buffer that is a pointer to a float, a pfStatsVal* or pfFStatsVal*
structure. The size of the expected return data is specified by size and if non-zero, will prevent
pfFrameStats::query from writing beyond a buffer that is too small. The return value is the number of
bytes written to the destination buffer. The return value is the number of bytes written to the destination
buffer. A single PFFSTATS_BUF_* token should be bitwise OR-ed into the which flag to select a frame
stats buffer: PREV, CUR, AVG, or CUM. If no frame statistics buffer is selected, then the query accesses
the CUR buffer by default. If multiple stats buffers are selected, no results will be written and a warning
message will be printed. In a running application, one should query frame statistics in the application

79

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

process and query the PREV and AVG statistics buffers. The pfFrameStats query structures and tokens
are all defined in pfstats.h. Frame statistics queries may be mixed with standard statistics queries. There
are tokens for getting back all of the statistics, entire sub-structures, and individual values.

pfFrameStats::mQuery takes a pointer to the start of an array of query tokens in which, and a destination
buffer dst. The size of the expected return data is specified by size and if non-zero, will prevent
pfFrameStats::query from writing beyond a buffer that is too small. The return value is the number of
bytes written to the destination buffer. The return value is the number of bytes written to the destination
buffer. If at any point in the query, an error is encountered, the query will return and not finish the rest of
the requests.

pfFrameStats::copy: The dSel and sSel arguments explicitly specify the statistics buffers for both source
and destination pfFrameStats structures. If either of these values are 0, then the current pfFrameStats
buffer is used for the corresponding pfFrameStats structure. The classes argument is a _EN* statistics
class enable bitmask. Any buffer select token is included with the class bitmask is ignored.

pfFrameStats::countNode will count node in the specified stats class for the specified mode of the
pfFrameStats. Only one class and mode may be specified, and children of node are not traversed.

pfFrameStats::count works as documented for the pfStats statistics structure and accumulates the statis-
tics into the CUR statistics buffer.

The pfFrameStats::clear, pfFrameStats::accumulate, pfFrameStats::average routines work as docu-
mented for the basic pfStats statistics structure. However, for operating on a pfFrameStats structure, these
routines need to know which pfFrameStats buffer to access. A pfFrameStats buffer is selected by OR-ing
in a _BUF_ token with the statistics class enable. The same pfFrameStats buffer is used for both source
and destination pfFrameStats structures. If no pfFrameStats buffer is selected with a _BUF_ token, the
current pfFrameStats buffer is used.

EXAMPLES

80

For a class of statistics to be collected, the following must be true:
1. A pfFrameStats structure must be gotten from the channel of interest, or created.

2. The corresponding statistics class must be enabled with pfFrameStats::setClass. No statis-
tics classes are enabled by default.

3. The corresponding statistics class mode must be enabled with pfFrameStats::setClassMode
However, each statistics class does have a reasonable set of statistics modes enabled by
default.

Here a pfFrameStats structure is obtained by the channel of interest and then database, cull, and graphics
statistics are enabled.

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)

pf FrameStats *fstats = NULL;
fstats = chan->get FStats();
st at s- >set O ass(PFSTATS_ENGFX | PFFSTATS_ENDB | PFFSTATS_ENCULL, PFSTATS_ON);

This example shows how to enable and display just the frame times and the number of triangles per
frame. This is a very efficient configuration.

pf FrameStats *fstats = NULL;
fstats = chan->get FStats();

/* first, turn off the frame history stats */
fstats- >set O assMbde(PFFSTATS_PFTI MES, PFFSTATS PFTI MES_HI ST, PFSTATS_OFF):

/* Only enable the geonetry counts in the graphics stats */
fstats->set d assMode(PFSTATS_GFX, PFSTATS _GFX_CGEOM PFSTATS_SET);

/* disable the display of the verbose graphics stats

* and just have the total tris nunber at the top of your display.
*/

chan- >set St at sMbde(PFCSTATS_DRAW PFFSTATS_ENPFTI MVES) ;

The following is an example of querying a few specific statistics. Note that if the corresponding stats class
and mode is not enabled then the query will simply return 0 for that value.

uint qtnp[5];
float ftmp[5];
pf FrameStats *fstats = NULL;

fstats = chan->get FStats();

qt np[0] = PFFSTATS_BUF_AVG | PFSTATSVAL_GFX_GEOM TR S;

qtnp[1] = PFFSTATS_BUF_AVG | PFFSTATSVAL_PFTI MES_PROC_TOTAL;
gt np[2] = PFFSTATS_BUF_AVG | PFSTATSVAL_CPU_SYS_BUSY;

gt np[3] = NULL;

fstats->mQuery(qtnp, ftnp, sizeof(ftnp));

fprintf(stderr, "Query numtris: %O0f\n", ftnmp[0]);
fprintf(stderr, "Query frame tinme: % O0f nsecs\n", ftnp[1]*1000.0f);
fprintf(stderr, "Query sys busy: %0f%®An", ftnp[2]);

This example shows using a very inexpensive pfFrameStats mode to track frame rates and frames that

81

pfFrameStats(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

missed the goal frame rate.

/* enable only the nost mininmal stats - tracking of process frane tinmes */
pf FraneStats *fstats = chan->get FStats();

fstats->set O ass(PFFSTATS_ENPFTI MES, PFSTATS_SET) ;

f stats->set d assMode(PFFSTATS_PFTI MES, PFFSTATS _PFTI MES_BASI C, PFSTATS_SET);

/* turn off accunul ati on and averagi ng of stats */
fstats->set Attr (PFFSTATS_UPDATE_FRAMES, 0. 0f);

#def i ne STAMPS 0

#define TIMES 1

#define M SSES 2

static uint query[] ={
PFFSTATS BUF_PREV | PFFSTATSVAL_PFTI MES_APPSTANP,
PFFSTATS BUF_PREV | PFFSTATSVAL_PFTI MES_PRCC,
PFFSTATS BUF_PREV | PFFSTATSVAL_PFTI MES_M SSES, NULL

}s

static pfFStatsVal Proc dst[3];
int i;
if (!FraneStats)

initFraneStats();

/* get the prev frame tines and corresponding app frane stanps */
fstats->muery(query, dst, sizeof(dst));

/* record the collected data here */
NOTES
pfFrameStats::draw does not actually draw the diagram but sets a flag so that the diagram is drawn just

before IRIS Performer swaps buffers.

The CPU statistics from the pfStats class PESTATSHW_CPU are obtained from IRIX process accounting
data at the start and end of the update period. They are then copied into the CUR and AVG buffers.

pfFrameStats::open and pfFrameStats::close cannot be executed on a pfFrameStats structure. All actual
frame statistics collection is done only by individual pfChannels. Frame statistics can be copied and accu-

mulated into additional pfFrameStats structures.

The pfDrawChanStats manual page gives some pointers on how to interpret the statistics to help in tun-
ing your database. Refer to the IRIS Performer Programming Guide for more detailed information.

82

IRIS Performer 2.0 libpf C++ Reference Pages pfFrameStats(3pf)

BUGS
The checking of size in pfFrameStats::query and pfFrameStats::mQuery is not yet implemented.

SEE ALSO
pfChannel, pfStats, pfDelete

83

pfGeode(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

84

pfGeode — Create, modify, and query a geometry node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfGeode h>

pfGeode:pfGeode();

static pfType *

int
int
int
int
pfGeoSet *

int

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void

void *

pfGeode:getClassType(void);

pfGeode::addGSet(pfGeoSet* gset);
pfGeode:removeGSet(pfGeoSet* gset);

pfGeode:insertGSet(int index, pfGeoSet* gset);
pfGeode::replaceGSet(pfGeoSet* old, pfGeoSet* new);
pfGeode::getGSet(int index);
pfGeode::getNumGSets(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGeode is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGeode. This is also true for
ancestor classes of class pfNode.

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

getParent(int i);

getNumParents(void);

setBound(pfSphere *bsph, int mode);

getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);

flatten(int mode);

setName(const char *name);

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

IRIS Performer 2.0 libpf C++ Reference Pages pfGeode(3pf)

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGeode can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGeode can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory:isExactType(pfType *type);
const char * pfMemory:getTypeName();
int pfMemory:copy(pfMemory *src);
int pfMemory:compare(const pfMemory *mem);
void pfMemory:print(uint which, uint verbose, FILE *file);
int pfMemory:getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS
geode identifies a pfGeode.
DESCRIPTION

The name "pfGeode" is short for Geometry Node. A pfGeode is a leaf node in the IRIS Performer scene
graph hierarchy and is derived from pfNode so it can use pfNode API. A pfGeode is simply a list of
pfGeoSets which it draws and intersects with. A pfGeode is the smallest cullable unit unless
PFCULL_GSET is set by pfChannel::setTravMode in which case IRIS Performer will cull individual
pfGeoSets within pfGeodes.

The bounding volume of a pfGeode is that which surrounds all its pfGeoSets. Unless the bounding
volume is considered static (see pfNode::setBound), IRIS Performer will compute a new volume when
the list of pfGeoSets is modified by pfGeode::addGSet, pfGeode::removeGSet, pfGeode::insertGSet or
pfGeode::replaceGSet. If the bounding box of a child pfGeoSet changes, call pfNode::setBound to tell
IRIS Performer to update the bounding volume of the pfGeode.

85

pfGeode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

86

new pfGeode creates and returns a handle to a pfGeode. Like other pfNodes, pfGeodes are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfGeodes can be
deleted using pfDelete.

pfGeode::getClassType returns the pfType* for the class pfGeode. The pfType* returned by
pfGeode::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfGeode. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfGeode::addGSet appends gset to the pfGeode’s pfGeoSet list. pfGeode::removeGSet removes gset
from the list and shifts the list down over the vacant spot. For example, if gset had index 0, then index 1
becomes index 0, index 2 becomes index 1 and so on. pfGeode::removeGSet returns a 1 if gset was actu-
ally removed and 0 if it was not found in the list. pfGeode::addGSet and pfGeode::removeGSet will
cause IRIS Performer to recompute new bounding volumes for the pfGeode unless it is configured to use
static bounding volumes.

pfGeode:insertGSet will insert gset before the pfGeoSet with index index. index must be within the range
0 to pfGeode::getNumGSets(). pfGeode::replaceGSet replaces old with new and returns 1 if the opera-
tion was successful or 0 if old was not found in the list. pfGeode::insertGSet and pfGeode::replaceGSet
will cause IRIS Performer to recompute new bounding volumes for the pfGeode unless it is configured to
use static bounding volumes.

pfGeode::getNumGSets returns the number of pfGeoSets in the pfGeode. pfGeode::getGSet returns a
handle to the pfGeoSet with index index or NULL if the index is out of range.

If database sorting is disabled, that is if the PFECULL_SORT mode of pfChannel::setTravMode is not set,
the pfGeoSets in a pfGeode will be drawn in the order they appear on the list. If sorting is enabled, there
is no guarantee about the drawing order, since the reordering of GeoSets for minimum state-changing
overhead is one of the primary design motivations of IRIS Performer’s libpf and libpr.

pfGeode geometry is not multibuffered by IRIS Performer when in multiprocessing mode in order to save
memory. Therefore there are some restrictions on dynamic geometry. Modified vertex positions will be
culled properly only if a static bound is defined which surrounds all possible excursions of the dynamic
geometry. Since the draw process may be drawing the geometry at the same time the application process
is modifying it, cracks may appear between polygons which share a dynamic vertex. Creation and dele-
tion of vertices are not currently supported by IRIS Performer. However, the application may handle its
own multibuffering of pfGeodes through mutual exclusion with locks or through the use of parallel data
structures and pfSwitch nodes to achieve any kind of dynamic geometry.

IRIS Performer 2.0 libpf C++ Reference Pages pfGeode(3pf)

The shifting behavior of pfGeode::removeGSet can cause some confusion. The following sample code
shows how to remove all pfGeoSets from geode:

i nt i
int n = geode->get NunGSet s();
for (i =0; i <n; i++)

geode- >r enoveGSet (geode- >get GSet (0)); /* 0, not i */

Alternately, you can traverse the list from back to front, in which case the shift never hits the fan.

i nt i;
int n = geode->get NunGSet s();
for (i =n-1; i >=0; i--)

geode- >r enoveGSet (geode->get GSet (i)); /* i, not 0 */

When sorting is enabled (see pfChannel::setTravMode and PFCULL_SORT), transparent pfGeoSets are
drawn last unless the pfGeode has a pre or post draw callback (see pfNode::setTravFuncs). Drawing
transparent pfGeoSets after opaque geometry reduces artifacts when blended transparency (see
pfTransparency) is used and can improve fill rate performance.

SEE ALSO
pfChannel, pfGeoSet, pfNode, pfTransparency, pfDelete

87

pfGetld(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME
pfGetld, pfUpdatable — Get unique id of libpf object.

FUNCTION SPECIFICATION
#include <Performer/pf/pfUpdatable.h>
virtual int pfUpdatable:pf_getpfId(void);

DESCRIPTION
AILIRIS Performer objects defined in the libpf library have a unique integer identifier. The virtual
member function pfUpdatable:pf_getpfld returns the identifier of a libpf object derived from class
pfUpdatable.

SEE ALSO
pfNode, pfUpdatable

88

IRIS Performer 2.0 libpf C++ Reference Pages pfGroup(3pf)

NAME

pfGroup — Create, modify, and query a group node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfGroup.h>

pfGroup:pfGroup();

static pfType * pfGroup::getClassType(void);

int
int
int
int
int
pfNode *
int
int

int

pfGroup::addChild(pfNode *child);
pfGroup:insertChild(int index, pfNode *child);
pfGroup::replaceChild(pfNode *old, pfNode *new);
pfGroup::removeChild(pfNode* child);
pfGroup::searchChild (pfNode* child);
pfGroup::getChild(int index);
pfGroup::getNumChildren(void);
pfGroup::bufferAddChild(pfNode *child);
pfGroup::bufferRemoveChild(pfNode *child);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfGroup is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfGroup. This is also true for
ancestor classes of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

pfNode::getParent(int i);

pfNode::getNumParents(void);

pfNode::setBound(pfSphere *bsph, int mode);
pfNode::getBound(pfSphere *bsph);

pfNode:clone(int mode);

pfNode::bufferClone(int mode, pfBuffer *buf);

pfNode::flatten(int mode);

pfNode::setName(const char *name);

pfNode::getName(void);

pfNode:find(const char *pathName, pfType *type);
pfNode::lookup(const char *name, pfType* type);
pfNode:isect(pfSegSet *segSet, pfHit **hits[]);
pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);
pfNode::getTravMask(int which);

pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);

89

pfGroup(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

void pfNode:getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);
void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfGroup can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfGroup can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory:getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory:getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS

group identifies a pfGroup.

DESCRIPTION

90

A pfGroup is the internal node type of the IRIS Performer hierarchy and is derived from pfNode. A
pfGroup has a list of children which are traversed when group is traversed. Children may be any pfNode
which includes both internal nodes (pfGroups) and leaf nodes (pfNodes). Other nodes which are derived
from pfGroup may use pfGroup API. IRIS Performer nodes derived from pfGroup are:

pfScene

pfSwitch

pfLOD

IRIS Performer 2.0 libpf C++ Reference Pages pfGroup(3pf)

pfSequence
pfLayer
pfSCS
pfDCS
pfMorph

new pfGroup creates and returns a handle to a pfGroup. Like other pfNodes, pfGroups are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfGroups should
be deleted using pfDelete rather than the delete operator.

pfGroup::getClassType returns the pfType* for the class pfGroup. The pfType* returned by
pfGroup::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfGroup. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfGroup::addChild appends child to the pfGroup and increments the reference count of child.
pfGroup::removeChild removes child from the list and shifts the list down over the vacant spot, e.g. - if
child had index 0, then index 1 becomes index 0, index 2 becomes index 1 and so on.
pfGroup::removeChild returns a 1 if child was actually removed and 0 if it was not found in the list.
pfGroup::removeChild decrements the reference count of child but does not delete child if its reference
count reaches 0.

pfGroup:insertChild inserts child before the child with index index. index must be within the range 0 to
pfGroup::getNumChildreny().

pfGroup::replaceChild replaces old with new and returns 1 if the operation was successful or 0 if old is not
a child of the pfGroup.

pfGroup::searchChild returns the index of child if it was found in the children list of the pfGroup or -1 if
it was not found.

pfGroup::getNumChildren returns the number of children in the pfGroup. pfGroup::getChild returns a
handle to the child with index index or NULL if the index is out of range.

The bounding volume of a pfGroup encompasses all its children. Modifications to the child list of a
pfGroup will cause IRIS Performer to recompute new bounding volumes for the pfGroup unless it is
configured to use static bounding volumes (see pfNode::setBound).

pfGroup::bufferAddChild and pfGroup::bufferRemoveChild provide access to nodes that do not exist

in the current pfBuffer (See the pfBuffer man page). Either, none, or both of the pfBuffer and node may
exist outside the current pfBuffer. pfGroup::bufferAddChild and pfGroup::bufferRemoveChild act just

91

pfGroup(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

like their non-buffered counterparts pfGroup::addChild and pfGroup::removeChild except that the
addition or removal request is not carried out immediately but is recorded by the current pfBuffer. The
request is delayed until the first pfBuffer::merge when both the parent pfGroup and node are found in the
main IRIS Performer pfBuffer. The list of pfGroup::bufferAddChild and pfGroup::bufferRemoveChild
requests is traversed in pfBuffer::merge after all nodes have been merged. pfGroup::bufferAddChild
and pfGroup::bufferRemoveChild return TRUE if the request was recorded and FALSE otherwise.

SEE ALSO

92

pfNode, pfBuffer, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages pfinit(3pf)

NAME

pfInit, pfExit — Initialize and terminate IRIS Performer processes.

FUNCTION SPECIFICATION

#include <Performer/pf.h>
int pfInit(void);
void pfExit(void);

DESCRIPTION

NOTES

pflnit initializes internal IRIS Performer data structures and must be the first IRIS Performer call in an
application except for the following:

pfNotifyLevel
pfShared ArenaSize
pfShared ArenaBase

pfTmpDir

pflInit is required by all Performer applications whether they use libpf or not. But pfInit has slightly dif-
ferent behavior applications that only use libpr and do not include pf.h. for these applications, pfInit
does not set up any shared memory arenas. If shared memory is required, it should be explicitly set up
by calling pfInitArenas before pfInit.

pfExit closes graphics windows, frees all IRIS Performer data structures, deletes all IRIS Performer shared
memory arenas (see pfGetSharedArena), kills all spawned IRIS Performer processes, then returns control
to the application. pfExit also turns off the video retrace clock (see pfVClock). After calling pfExit an
application may restart IRIS Performer with pfInit.

User processes forked or sproced after pfConfig will be terminated by pfExit. Those forked or sproced
before pfConfig will be sent a SIGCLD signal.

Since pfExit deletes all shared memory arenas, any memory used by the application that was created out
of IRIS Performer shared memory is now invalid.

BUGS
Currently pfExit returns directly to the operating system, terminating the simulation application as well.
However, it does turn off video retrace CPU interrupts while exiting (see pfVClock).

SEE ALSO

pfConfig, pfGetShared Arena, pfMalloc, pfVClock

93

pflsectFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pflsectFunc, pfGetlsectFunc, pfAllocIsectData, pfGetlsectData, pfPassIsectData — Set intersection call-
back, allocate and pass intersection data.

FUNCTION SPECIFICATION

#include <Performer/pf.h>

void pfIsectFunc(pflsectFuncType func);
pflIsectFuncType pfGetlsectFunc(void);

void * pfAllocIsectData(int bytes);

void * pfGetlsectData(void);

void pfPasslIsectData(void);

typedef void (*pflsect FuncType) (void *userData);

DESCRIPTION

94

The func argument to pfIsectFunc specifies the intersection callback function. This function will be
invoked by pfFrame and will be passed a pointer to a data buffer allocated by pfAllocIsectData. If a
separate process is allocated for intersections by the PFMP_FORK_ISECT mode to pfMultiprocess, then
pfFrame will cause func to be called in the separate process. pfGetIsectFunc returns the intersection call-
back or NULL if none is set.

Within the intersection callback, the user may further multiprocess intersection queries through any IRIX
multiprocessing mechanism such as fork, sproc, or m_fork. All of these processes may call pfNode::isect
in parallel.

When the intersection function is in a separate process, it will run asynchronously with the rest of the
rendering pipeline. Specifically, if the intersection function takes more than a frame time, the rendering
pipeline will not be affected and the next invocation of the intersection function will be delayed until trig-
gered by the next pfFrame. Changes to the scene graph made by the application process are only pro-
pagated to the intersection process after the intersection function returns.

Any modifications made to the scene graph by a forked intersection function will not be reflected in the
scene graph that is seen by any other IRIS Performer functions. To be safe, only pfNode:isect (which
does not modify the scene graph) should be called from within the intersection function.

pfAllocIsectData returns a pointer to a chunk of shared memory of bytes bytes. This memory buffer may
be used to communicate information between the intersection function and application. Intersection data

should only be allocated once. pfGetlsectData returns the previously allocated intersection data.

When the intersection function is forked, pfPassIsectData should be used to copy the intersection data

IRIS Performer 2.0 libpf C++ Reference Pages

pflsectFunc(3pf)

into internal IRIS Performer memory when the next pfFrame is called. Once pfFrame is called, the appli-
cation may modify data in the intersection data buffer without fear of colliding with the forked intersec-
tion function.

Example 1: Multiprocessed intersections.

typedef struct

{

}

voi d

int frameCount ; /* For frame stanping collisions */
pf Node *col | i dee; /* pfNode to collide with */
int nuntCol i sions; /* Nunmber of collision vectors */
pf Seg *col | i si onVecs[MAXCOLLI SI ONS] ;

| sect Stuff;

i sect Func(voi d *dat a)

{

IsectStuff istuff = (IsectStuff*) data;

i stuff->collidee->isect(etc...);

pf Mul ti process(PFMP_FORK_| SECT | PFMP_APP_CULL_DRAW ;
pf Config();

pf | sect Func(i sect Func);
isectData = (IsectStuff*) pfAlloclsectData(sizeof(lsectStuff));

i sect Dat a->col | i dee = (pf Node*) scene;

whil e (!done)

{
pf Sync(); /* Sleep until next frane boundary */
update_view(); /* Set view for frame N */

i sect Dat a- >f rameCount = pf Get FranmeCount () ;

pf Passl sectData(); /* Pass intersection data to */
/* intersection process */

pf Frane(); /* Trigger cull, intersection for frame N */

95

pflsectFunc(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

app_funcs(); /* Performapplication-specific functions */
update_positions(); /* Update noving nodels for frame N + 1 */

/*
* Act on result of previous collisions and set up isectData
* for nore collisions.
*/

updat e_col | i sions(isectData);

If pfIsectFunc is called before pfConfig and the multiprocessing mode is PFMP_DEFAULT, then
pfConfig will fork the intersection process if there are enough processors. Otherwise, you must explicitly

fork the intersection process by setting the PFMP_FORK_ISECT bit in the argument passed to
pfMultiprocess.

SEE ALSO
pfContfig, pfMultiprocess, pfNode

96

IRIS Performer 2.0 libpf C++ Reference Pages

pfLOD(3pf)

NAME

pfLOD - Create, modify, and query level of detail nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLOD.h>

pfLOD:
static pfType * pfLOD::
void pfLOD::
float pfLOD::
int pfLOD::
void pfLOD::
float pfLOD::
int pfLOD::
void pfLOD:
void pfLOD::
void pfLOD::
void pfLOD::
void pfLOD::
void pfLOD::
float pfLOD::

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLOD is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfLOD. This is also true for ancestor
classes of class pfGroup.

int
int
int
int
int
pfNode *
int
int
int

:pfLODY();

getClassType(void);

setRange(int index, float range);
getRange(int index);
getNumRanges(void);
setTransition(int index, float distance);
getTransition(int index);

getNumTransitions(void);

:setCenter(pfVec3 ¢er);

getCenter(pfVec3 ¢er);
setLODState(pfLODState *Is);
getLODState(void);
setLODStateIndex(int index);
getLODStateIndex(void);

evaluate(const pfChannel *chan, const pfMatrix *offset);

pfGroup::addChild(pfNode *child);
pfGroup::insertChild(int index, pfNode *child);
pfGroup::replaceChild(pfNode *old, pfNode *new);
pfGroup::removeChild(pfNode* child);
pfGroup::searchChild (pfNode* child);
pfGroup::getChild(int index);
pfGroup::getNumChildren(void);
pfGroup::bufferAddChild(pfNode *child);
pfGroup::bufferRemoveChild(pfNode *child);

97

pfLOD(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

98

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLOD can also be
used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void

void *

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

getParent(int i);

getNumParents(void);

setBound(pfSphere *bsph, int mode);

getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);

flatten(int mode);

setName(const char *name);

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLOD can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLOD can also
be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

pfMemory::getData(const void *ptr);
pfMemory::getType();
pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory::copy(pfMemory *src);
pfMemory::compare(const pfMemory *mem);

IRIS Performer 2.0 libpf C++ Reference Pages pfLOD(3pf)

void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory:getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS
lod identifies a pfLOD.
DESCRIPTION

A pfLOD is a level-of-detail (LOD) node. Level-of-detail is a technique for manipulating model complex-
ity based on image quality and rendering speed. Typically, a model is drawn in finer detail when close to
the viewer (occupies large screen area) than when it is far away (occupies little screen area). In this way,
costly detail is drawn only when necessary.

Additionally, IRIS Performer can adjust LODs based on rendering load. If a scene is taking too long to
draw, IRIS Performer can globally modify LODs so that they are drawn coarser and render time is
reduced (see pfChannel::setStress).

IRIS Performer uses range-based LOD and adjusts for field-of-view and viewport pixel size. Range is
computed as the distance from the pfChannel eyepoint which is drawing the scene to a point designated
as the center of a pfLOD. This range is then potentially modified by pfChannel attributes (see
pfChannel::setLODALttr, pfChannel::setStress). This range indexes the pfLOD range list to select a sin-
gle child to draw.

pfLOD is derived from pfGroup so it can have children and use pfGroup API to manipulate its child list.
In addition to a list of children, a pfLOD has a list of ranges which specify the transition points between
levels-of-detail. new pfLOD creates and returns a handle to a pfLOD. Like other pfNodes, pfLODs are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLODs
should be deleted using pfDelete rather than the delete operator.

pfLOD::getClassType returns the pfType* for the class pfLOD. The pfType* returned by
pfLOD::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfLOD. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfLOD::setCenter sets the object-space point which defines the center of the pfLOD. center is affected by
any transforms in the hierarchy above the pfLOD (see pfSCS). pfLOD::getCenter copies the LOD center

99

pfLOD(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

100

point into center.

pfLOD::setRange sets the value of range list element index to range which is a floating point distance
specified in world coordinates. A child is selected based on the computed range (LODRange) from the
eyepoint to the pfLOD center and the range list (Ranges) according to the following pseudocode decision
test:

if (LODRange < Ranges[0])
dr aw not hi ng;

el se

if (LODRange >= Ranges[i] && LODRange < Ranges[i +1])
draw Child[i];

el se

if (LODRange >= Ranges[N-1] where N is length of Ranges)
dr aw not hi ng;

Ranges specified by pfLOD::setRange must be positive and increasing with index or results are
undefined. pfLOD::getRange returns the range with index index and pfLOD::getNumRanges returns the
number of ranges currently set.

Normally, LOD transitions are abrupt switches that can cause distracting visual artifacts. On hardware
which supports it, IRIS Performer can blend between levels-of-detail for a smooth transition. Blended
level-of-detail transitions are enabled by setting a non-zero transition range with pfChannel::setLODA ttr.
Blending is discussed in greater depth in the pfChannel::setLODAttr reference page.

pfLOD::setTransition sets the distance over which IRIS Performer should transition or "fade" between an
lod’s children. The number of transitions is equal to the number of LOD children + 1. Thus Transi-
tions[0] specifies the distance over which LOD child 0 should fade in. Transitions[1] specifies the distance
over which IRIS Performer will fade between child 0 and child 1. Transitions[N] specifies the distance
over which the last lod child will fade out. Note that performer will regulate the transition such that the
fade will be centered based on the ranges specified by pfLODRange. It is also important to note the
pfLODTransition distances should be specified such that there is no overlap between transitions or rea-
sonable, but undefined, behavior will result. Thus, it is important to consider pfLODRanges when speci-
fying transition distances. pfLOD::getTransition returns the range with index index and
pfLOD::getNumRanges returns the number of ranges currently set.

Note that in practice IRIS Performer will multiply this transition distance by a global transition scale (this
scale is set by calls to pfChannel::setLODAttr with the PFLOD_FADE token).

The default behavior of pfLODTransition is that each transition is set to a distance of 1.0 (except Transi-
tions[0] which is set to 0.0 by default). This makes it easy to specify a "global fade range" by controlling a
pfChannel::setLODALtr attribute - PFELOD_FADE. By setting PFLOD_FADE to 10.0, all transitions that

IRIS Performer 2.0 libpf C++ Reference Pages pfLOD(3pf)

have not be explicitly set will use 10.0 * 1.0 = 10.0 as their fade distance (except Transitions[0] which will
not fade at all).

Note that if one does not desire control over individual lod transitions, it is not necessary to call
pfLOD::setTransition.

pfLOD::setLODState associates the given pfLOD and pfLODState. This enables the control of how a par-
ticular pfLOD responds to stress and range. pfLOD::getLODState returns the pfLODState associated
with lod if there is one or NULL if one does not exist.

pfLOD::setLODStateIndex allows pfLODStates to be indexed on a per channel basis. index is an index
into an pfList of pfLODStates specified via pfChannel::setLODStateList. pfLOD::getLODStateIndex
returns the index currently specified for the pfLOD or -1 if no index has been specified.

Note that if an out of range index is specified for a given pfLOD then the pfLODState specified as the glo-
bal pfLODState for that channel will be used.

pfLOD::evaluate returns the index of the child that the Performer Cull traversal would produce given a
specific channel and matrix offset. The integer portion of the return value represents the selected child,
while the floating point portion of the return is used to distinguish the fade ratio between two visible lods
if lod fading is turned on for the given channel (see pfChannel::setLODAttr). Thus an index of 1.0 would
correspond to Performer’s decision to draw only child one. A value of 1.25 would mean Performer
would be 25% across the FADE transition between child one and child two - meaning that child one
would be 75% opaque while child two would be 25% opaque. Similarly a value of 3.9 would represent
child three being 10% opaque (solid) while child four was 90% opaque. The value -1.0 is returned when
no children are visible. Note that negative floating point values (like -.3) mean that Performer is currently
fading in child 0 and that it is 70% opaque. Thus return values will range from -1.0 <= return value < N+1
where N is the number of children for the LOD. (See pfChannel and pfLODState)

NOTES
Intersection traversals currently always intersect with an LODRange of 0. To intersect with other ranges,
a pfSwitch with the same parent and children as the pfLOD can be created with the pfLOD used for
drawing and the pfSwitch used for intersecting (see pfChannel::setTravMask).

SEE ALSO
pfChannel, pfGroup, pfLODState, pfNode, pfDelete

101

pfLODState(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfLODState — Create, modify, and query level of detail state.

FUNCTION SPECIFICATION

#include <Performer/pf/pfLODState.h>
pfLODState::pfLODState();
static pfType * pfLODState::getClassType(void);

void pfLODState::setAttr(long attr, float val);
float pfLODState::getAttr(long attr);
int pfLODState::setName(const char *name);

const char * pfLODState::getName(void);
pfLODState * pfLODState::find(const char *name);

PARENT CLASS FUNCTIONS

102

The IRIS Performer class pfLODState is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfLODState. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLODState
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

int pfMemory::isOf Type(pfType *type);

int pfMemory::isExactType(pfType *type);

const char * pfMemory::getTypeName();

int pfMemory::copy(pfMemory *src);

int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

void* pfMemory:getArena();

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

IRIS Performer 2.0 libpf C++ Reference Pages pfLODState(3pf)

ushort pfMemory:getRef();

int pfMemory::checkDelete();

void * pfMemory::getArena();

int pfMemory::getSize();
PARAMETERS

Is identifies a pfLODState.
DESCRIPTION

pfLODState encapsulates a definition of how an LOD or group of LODs should respond to distance from
the eyepoint and stress. Currently, there are 8 attributes that can be used to define LOD child selection
and child transition distance based on a LOD'’s distance from the channel’s viewpoint and the channel’s
stress (see pfChannel and pfChannel::setStress).

new pfLODState creates and returns a handle to a pfLODState. pfLODStates are always allocated from
shared memory and cannot be created statically, on the stack or in arrays. pfLODStates should be deleted
using pfDelete rather than the delete operator.

pfLODState::getClassType returns the pfType* for the class pfLODState. The pfType* returned by
pfLODState::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfLODState. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfLODState::setAttr and pfLODState::getAttr are used to set and get the following attributes:

PFLODSTATE_RANGE_RANGESCALE, PFLODSTATE_RANGE_RANGEOFFSET
directly modify the geometric range used to determine the current LOD child.

PFLODSTATE_RANGE_STRESSSCALE, PFLODSTATE_RANGE_STRESSOFFSET
modify the way the current channel stress affects the range computation.

PFLODSTATE_TRANSITION_RANGESCALE, PFLODSTATE_TRANSITION_RANGEOFFSET
directly modify the transition widths set by pfLOD::setTransition.

PFLODSTATE_TRANSITION_STRESSSCALE, PFLODSTATE_TRANSITION_STRESSOFFSET
modify the way transition widths are adjusted by the channel stress value.

These scale and offset values adjust the LOD selection process in the following way, presented in pseu-
docode:

ef fectiveRange =
Overal | LODScal e *
(Range * RANGE_RANGESCALE + RANGE_RANGEOFFSET) *
(Stress * RANGE_STRESSSCALE + RANGE_STRESSOFFSET) ;

103

pfLODState(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

104

effectiveTransitionWdth[i] =
Over al | FadeScal e *
(Trans[i] * TRANSITION_RANGESCALE + TRANSITION_RANGEOFFSET) /
(Stress * TRANSITION_STRESSSCALE + TRANSITION_STRESSOFFSET) ;

OverallLODScale and OverallFadeScale are the PFLOD_SCALE and PFLOD_FADE attributes set with
pfChanLODALttr. Both are global values that affect the switching and transition ranges of all pfLODs in

the scene.

The default values for all SCALE and OFFSET attributes are 1.0 and 0.0 respectively except
TRANSITION_STRESSSCALE and TRANSITION_STRESSOFFSET which are 0.0 and 1.0 respec-
tively, i.e., transition ranges are not scaled by stress by default.

A pfLODState influences a pfLOD’s behavior in one of 3 ways:

1.

Direct reference. A pfLOD may directly reference a pfLODState with
pfLOD::setLODState.

Indexed. A pfLOD may index a pfLODState with pfLOD::setLODStateIndex. When the
LOD is evaluated, the indexth entry of the evaluating pfChannel’s pfLODState table is
used. A pfChannel’s pfLODState table is set with (pfChannel::setLODStateList). With
indexed pfLODStates, different pfChannels can have different LOD behavior by using
different pfLODState tables, e.g., an infrared channel may not "see" cold objects as well as
a visual channel so "cold" pfLODs will index a different pfLODState in the infrared chan-
nel than in the visual channel.

Inherited from pfChannel. A pfLOD which does not directly reference or index a pfLOD-
State will use the pfLODState of the evaluating pfChannel (pfChannel::setLODState).
This is the default pfLOD behavior.

When a pfLOD references or indexes a pfLODState, the SCALE and OFFSET parameters of the pfLOD-
State are multiplied and added, respectively, to the corresponding SCALE and OFFSET parameters of the
evaluating pfChannel’s pfLODState, e.g., effective RANGE_RANGESCALE = pfLODState’s
RANGE_RANGESCALE * pfChannel’'s RANGE_RANGESCALE.

Multiple pfLODs may share the same pfLODState reference or index.

pfLODState::setName and pfLODState::getName set and get the name of a particular pfLODState while
pfLODState::find will return the first pfLODState defined with the given name.

IRIS Performer 2.0 libpf C++ Reference Pages pfLODState(3pf)

SEE ALSO
pfLOD, pfChannel

105

pfLayer(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfLayer — Create, modify, and query layer nodes for decals and coplanar polygons.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLayer.h>

pfLayer::pfLayer();

static pfType * pfLayer::getClassType(void);

void

int

void
pfNode *
void
pfNode *

pfLayer::setMode(int mode);
pfLayer::getMode(void);
pfLayer::setBase(pfNode *base);
pfLayer:getBase(void);
pfLayer::setDecal(pfNode *decal);
pfLayer::getDecal(void);

PARENT CLASS FUNCTIONS

The IRIS Performer class pfLayer is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfLayer. This is also true for
ancestor classes of class pfGroup.

106

int
int
int
int
int
pfNode *
int
int
int

pfGroup::addChild(pfNode *child);
pfGroup:insertChild(int index, pfNode *child);
pfGroup::replaceChild(pfNode *old, pfNode *new);
pfGroup::removeChild(pfNode* child);
pfGroup::searchChild (pfNode* child);
pfGroup::getChild(int index);
pfGroup::getNumChildren(void);
pfGroup::bufferAddChild(pfNode *child);
pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfLayer can also be
used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int

pfNode*

pfNode::getParent(int i);
pfNode::getNumParents(void);
pfNode::setBound(pfSphere *bsph, int mode);
pfNode::getBound(pfSphere *bsph);
pfNode::clone(int mode);

IRIS Performer 2.0 libpf C++ Reference Pages pfLayer(3pf)

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode:getName(void);

pfNode* pfNode:find(const char *pathName, pfType *type);
pfNode* pfNode:lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode:getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLayer can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLayer can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

int pfMemory::isOfType(pfType *type);

int pfMemory::isExactType(pfType *type);

const char * pfMemory:getTypeName();

int pfMemory:copy(pfMemory *src);

int pfMemory::compare(const pfMemory *mem);
void pfMemory:print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

void* pfMemory::getArena();

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory::getRef();

int pfMemory::checkDelete();

107

pfLayer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

void * pfMemory:getArena();
int pfMemory::getSize();
DESCRIPTION

On Z-buffer based machines, numerical precision can cause distracting artifacts when rendering coplanar
geometry. A pfLayer is a node derived from pfGroup that supports proper drawing of coplanar
geometry on IRIS platforms.

A pfLayer can be thought of as a stack of geometry where each layer has visual priority over the
geometry beneath it in the stack. An example of a 3 layer stack consists of stripes which are layered over
a runway which is layered over the ground. The bottommost layer is called the "base" while the other
layers are called "decals". When using certain hardware mechanisms (PFDECAL_BASE_STENCIL) to
implement pfLayers, the "base" is special because it defines the depth values which are used to determine
pfLayer visibility with respect to other scene geometry and which are written to the depth buffer.

new pfLayer creates and returns a handle to a pfLayer. Like other pfNodes, pfLayers are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfLayers should be
deleted using pfDelete rather than the delete operator.

pfLayer::getClassType returns the pfType* for the class pfLayer. The pfType* returned by
pfLayer::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfLayer. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

Since pfLayer is derived from pfGroup, pfGroup API may be used to manipulate its child list. IRIS Per-
former considers child 0 to be the base geometry and children 1 through N-1 to be decals. Decals are ren-
dered in order such that decal[i+1] is drawn atop decal[i]. In other words, decal[i+1] has visual priority
over decal[i] even though they are coplanar. pfLayer:setBase and pfLayer::setDecal are convenience
routines for setting the base and decal children of the pfLayer in the common case where there is only one
decal child. pfLayer::getBase and pfLayer::getDecal return the base and first child of the pfLayer.

The mode argument to pfLayer::setMode specifies which hardware mechanism to use and is one of:

PFDECAL_BASE_DISPLACE
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. Each decal is displaced more than its

predecessor to properly resolve priority between decals. The maximum number of decals is
8.

PFDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET
Use slope-based polygon displacement to slightly displace the depth values of decal
geometry closer to the eye so they have visual priority. In addition, decal geometry is offset
a constant amount to eliminate anomalies caused by geometry which is nearly

108

IRIS Performer 2.0 libpf C++ Reference Pages pfLayer(3pf)

perpendicular to the view. Each decal is displaced and offset more than its predecessor to
properly resolve priority between decals. The maximum number of decals is 8.

PFDECAL_BASE_STENCIL
Use the stencil-buffer logic to determine visibility of decal geometry. There is no limit to the
number of decals.

PFDECAL_BASE_FAST
Use a decaling mechanism appropriate to the hardware that produces the fastest, but not
necessarily the highest quality, decaling.

PFDECAL_BASE_HIGH_QUALITY
Use a decaling mechanism appropriate to the hardware that produces the highest quality,
but not necessarily the fastest, decaling.

The default layer mode is PFDECAL_BASE_FAST. pfLayer::getMode returns the mode of the pfLayer.

The different pfLayer modes offer quality-feature tradeoffs listed in the table below:

DISPLACE | STENCIL | (DISPLACE | OFFSET)
Quality medium high high
Sorting enabled disabled enabled
Coplanarity | notrequired | required not required
Multipass ok not ok ok
Containment | notrequired | required not required

The STENCIL mechanism offers the best image quality but at a performance cost since the base and layer
geometry must be rendered in order, obviating any benefits of sorting by graphics state offered by
pfChannel::setBinSort. When multisampling on RealityEngine, this mechanism also significantly reduces
pixel fill performance. An additional constraint is that STENCILed layers must be coplanar or decal
geometry may incorrectly show through base geometry. A subtle but important issue with STENCILed
layers is that they are unsuitable for multipass renderings (projected textures) since multiple surfaces are
visible at a given pixel. For proper results, each layer in the "stack” must be completely contained within
the boundaries of the base geometry.

The DISPLACE mechanism offers the best performance since layers can be sorted by graphics state,
because the displace call itself is usually faster than other mode changes, and because there is no pixel fill
rate penalty when it is in use. However, in IRIS GL the displace mechanism is only slope-based, so when
geometry becomes nearly perpendicular to the view, i.e., has little or no slope, the displacement is too lit-
tle to conclusively determine visibility. To solve this problem, the OFFSET mechanism adds a constant
offset to the decal geometry. This mode can be very expensive (RealityEngine) so when using it the data-
base should be sorted with PESTATE_DECAL as the first sorting key (see pfChannel::setBinSort). Both
DISPLACE mechanisms do not require that geometry within a single layer be coplanar and also produce
a single visible surface at each pixel for multipass renderings. The main disadvantage is that decal

109

pfLayer(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

geometry may incorrectly poke through other geometry due to the displacement of the decal geometry.
Another disadvantage is that the maximum number of decals is 8.

The performance differences between STENCIL and DISPLACE modes are hardware-dependent so
some experimentation and benchmarking is required to determine the most suitable method for your
application.

Using PFDECAL_BASE_STENCIL for pfLayer nodes requires several steps for proper operation. First,
the graphics hardware must support stencil plane rendering. Secondly, the graphics context must be
configured with at least one stencil plane, and the lowest order bit of the allocated stencil planes be
reserved for IRIS Performer use. pfInitGfx configures the graphics context in just this way.

The use of displacements for rendering coplanar geometry can cause visual artifacts such as decals "Z
fighting" or "flimmering" when viewed perpendicularly, and the "punching through" of decals that
should mask base geometry when both are viewed obliquely. The former artifact can be eliminated by
specifying PFDECAL_BASE_DISPLACE | PFDECAL_LAYER_OFFSET as the layer mode. If unaccept-
able artifacts still persist, the database should be modified to eliminate the need for coplanar rendering or
PFDECAL_BASE_HIGH_QUALITY should be used.

When using PFDECAL_LAYER_OFFSET, the minimum depth buffer range set with Isetdepth must be
incremented an extra 1024 * max layers so the negative displacement of the layers does not wrap.
pfInitGfx does this automatically.

BUGS
IRIS Performer properly renders coplanar geometry only on machines that have a hardware stencil buffer
allocated or which support displaced polygon rendering.

SEE ALSO

110

pfChannel, pfDecal, pfGroup, pfInitGfx, pfLookupNode, pfNode, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages

pfLightPoint(3pf)

NAME

pfLightPoint — Set and get pfLightPoint size, color, shape, rotation and position.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLightPoint.h>

pfLightPoint::pfLightPoint(int num);

static pfType * pfLightPoint::getClassType(void);

int

void
float
void
void
void
void
void
void
void
void
void
void

pfGeoSet*

pfLightPoint::getNumPoints(void);

pfLightPoint::setSize(float size);

pfLightPoint::getSize(void);

pfLightPoint::setColor(int index, pfVec4 &clr);
pfLightPoint::getColor(int index, pfVec4 &clr);
pfLightPoint::setRot(float azim, float elev, float roll);
pfLightPoint::getRot(float *azim, float *elev, float *roll);
pfLightPoint::setShape(int dir, float henv, float venv, float falloff);
pfLightPoint::getShape(int *dir, float *henv, float *venv, float *falloff);
pfLightPoint::setFogScale(float onsetScale, float opaqueScale);
pfLightPoint::getFogScale(float *onsetScale, float *opaqueScale);
pfLightPoint::setPos(int index, pfVec3 &pos);
pfLightPoint::getPos(int index, pfVec3 &pos);
pfLightPoint::getGSet(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightPoint is derived from the parent class pfNode, so each of these member
functions of class pfNode are also directly usable with objects of class pfLightPoint. This is also true for
ancestor classes of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

pfNode::getParent(int i);
pfNode::getNumParents(void);
pfNode::setBound(pfSphere *bsph, int mode);
pfNode::getBound(pfSphere *bsph);
pfNode:clone(int mode);
pfNode::bufferClone(int mode, pfBuffer *buf);
pfNode::flatten(int mode);
pfNode::setName(const char *name);

111

pfLightPoint(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

const char * pfNode:getName(void);
pfNode* pfNode:find(const char *pathName, pfType *type);
pfNode* pfNode:lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode:getTravMask(int which);

void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode:getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightPoint can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightPoint
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

int pfMemory::isOfType(pfType *type);

int pfMemory::isExactType(pfType *type);

const char * pfMemory::getTypeName();

int pfMemory::copy(pfMemory *src);

int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

void* pfMemory::getArena();

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory:getRef();

int pfMemory::checkDelete();

void * pfMemory::getArena();

int pfMemory::getSize();

112

IRIS Performer 2.0 libpf C++ Reference Pages pfLightPoint(3pf)

DESCRIPTION
pfLightPoint is now obsoleted in favor of the libpr primitive pfLPointState. pfLightPoint::getGSet
returns the underlying pfGeoSet from which the pfLPointState can be found:

gset = | point->getGSet();
gstate = gset->getGState();
| pstate = gstate->get Attr(PFSTATE_LPQO NTSTATE) ;

A pfLightPoint is a pfNode that contains one or more light points. The light point node is quite different
from a pfLightSource; it is visible as one or more self-illuminated small points but these points do not
illuminate surrounding objects. In contrast to this, a pfLightSource does illuminate scene contents but is
itself not a visible object. All the light points in a pfLightPoint node share all their attributes except point
location and color.

new pfLightPoint creates and returns a handle to a pfLightPoint. Like other pfNodes, pfLightPoints are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLight-
Points should be deleted using pfDelete rather than the delete operator. num specifies the maximum
number of individual light points the node may contain. The function pfLightPoint::getNumPoints
returns this maximum number of light points that the pfLightPoint node can hold. This is the value set
when the light point node was created using new pfLightPoint and is the size of the internal position and
color arrays used to represent the light points.

pfLightPoint::getClassType returns the pfType* for the class pfLightPoint. The pfType* returned by
pfLightPoint::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLightPoint. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfLightPoint::setSize sets the screen size of each point of light in the pfLightPoint. size is specified in pix-
els and is used as the argument to pntsizef. Whenever possible, antialiased points are used but the actual
representation of a light point depends on the hardware being used. See the pntsizef man page for a
description of available light point sizes on IRIS hardware. pfLightPoint::getSize returns the size of the
pfLightPoint.

pfLightPoint::setColor sets the color of light point index in the pfLightPoint to clr. The actual color
displayed depends on light point direction, shape, position, and fog. clr specifies red, green, blue and
alpha in the range 0.0 to 1.0. A pfLightPoint is turned off with an alpha of 0.0 since it will be rendered as
completely transparent. pfLightPoint::getColor copies the indexth color into clr.

pfLightPoint::setRot is used for directional lights. The direction of all light points in the pfLightPoint is

113

pfLightPoint(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

114

the positive Y axis, rotated about the X axis by elev then rotated about the Z axis by azim. roll only affects
the light envelope as described below. The direction vector is rotated by any transformations (see pfSCS,
pfDCS) above the pfLightPoint in the hierarchy.

pfLightPoint::getRot copies the pfLightPoint’s rotation into azim, elev, and roll.

pfLightPoint::setShape describes the intensity distribution of a light point about its direction vector. dir
is a symbolic token:

PFLP_OMNIDIRECTIONAL
the pfLightPoint will be drawn as omnidirectional light points. Light distribution is equal
in all directions. All other arguments are ignored.

PFLP_UNIDIRECTIONAL
the pfLightPoint will be drawn as unidirectional point lights. Light distribution is an ellipti-
cal cone centered about the light direction vector.

PFLP_BIDIRECTIONAL
the pfLightPoint will be drawn as bidirectional light points. Light distribution is two ellipti-
cal cones centered about the positive and negative light direction vectors.

henv and venv are total angles (not half-angles) in degrees which specify the horizontal and vertical
envelopes about the direction vector. An envelope is a symmetric angular spread in a specific plane
about the light direction vector. The default direction is along the positive Y axis so the horizontal
envelope is in the X plane and the vertical in the Z plane. Both direction and envelopes are rotated by the
pfLightPoint::setRot and any inherited transformations. The default envelope angles are 360.0 degrees
which is equivalent to an omnidirectional light.

When the vector from the eyepoint to the light position is outside a light’s envelope, the light point is not
displayed. If within, the intensity of the light point is computed based on the location of the eye within
the elliptical cone. Intensity ranges from 1.0 when the eye lies on the light direction vector to 0.0 on the
edge of the cone. falloff is an exponent which modifies the intensity. A value of 0 indicates that there is no
falloff and values > 0 increase the falloff rate. The default falloffis 4. As intensity decreases, the light
point’s transparency increases.

pfLightPoint::getShape copies the pfLightPoint’s shape parameters into dir, henv, venv, and falloff.

In general, the real world intensity of emissive light points is much greater than that of reflective surfaces.
Consequently, when fog is active, light points should be more visible through the fog.
pfLightPoint::setFogScale sets the fog range scale factors that affects all light points in the pfLightPoint.
onsetScale and opaqueScale multiply the onset and opaque ranges (pfFog::setRange) of the currently active
fog. Thus if the scale factors are greater than 1.0, the light points will be more visible through fog than
reflective surfaces. The default fog scale factors are both 4.0. pfLightPoint::getFogScale copies the fog
scale factors of the pfLightPoint into onsetScale and opaqueScale.

IRIS Performer 2.0 libpf C++ Reference Pages pfLightPoint(3pf)

NOTES

pfLightPoint::setPos sets the position of light point with index index to pos. index is clamped to the range
[0, num-1]. All positions are transformed by any inherited transformations. The final position and orien-
tation of a light point i is transformed by R * T[index] * M where R is a rotation matrix defined by
pfLightPoint::setRot, T[i] is the position of light point i, and M is the transformation inherited by the
pfLightPoint from its hierarchy.

pfLightPoint::getPos copies the indexth position into pos.

Light point processing in IRIS Performer has been subsumed by the new pfLPointState mechanism,
which is both more powerful and more efficient. Application developers are encouraged to transition to
these new light point facilities.

pfLightPoint nodes, unlike pfLPointState GeoSets, do not provide size or intensity modulation based on
distance to the viewer and the viewport size. Also, directional lights are significantly more expensive to
cull than omnidirectional lights.

Falloff distribution is cosine(incidence angle) " falloff.
When sorting is enabled (see pfChannel::setTravMode and PFCULL_SORT), light points are drawn after

opaque geometry unless the pfLightPoint node has a pre-draw or post-draw callback (see
pfNode::setTravFuncs).

SEE ALSO

pfNode, pfLPointState

115

pfLightSource(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfLightSource — Create pfLightSource, specify pfLightSource properties.

FUNCTION SPECIFICATION
#include <Performer/pf/pfLightSource.h>

static pfType *
void
void
void
void
void
void
void
void
void
void
void
void
void
void
int
void
int
void
float
void

void*

pfLightSource::pfLightSource();
pfLightSource::getClassType(void);
pfLightSource::setAmbient(float r, float g, float b);
pfLightSource::getAmbient(float* r, float* g, float* b);
pfLightSource::setColor(int which, float r, float g, float b);
pfLightSource::getColor(int which, float* r, float* g, float* b);
pfLightSource::setAtten(float constant, float linear, float quadratic);
pfLightSource::getAtten(float *constant, float *linear, float *quadratic);
pfLightSource::setSpotDir(float x, float y, float z);
pfLightSource::getSpotDir(float* x, float* y, float* z);
pfLightSource::setSpotCone(float f1, float £2);
pfLightSource::getSpotCone(float* f1, float* {2);
pfLightSource::setPos(float x, float y, float z, float w);
pfLightSource::getPos(float* x, float* y, float* z, float* w);
pfLightSource::on(void);

pfLightSource::off(void);

pfLightSource::isOn(void);

pfLightSource::setMode(int mode, int val);
pfLightSource::getMode(int mode);
pfLightSource::setVal(int mode, float val);
pfLightSource::getVal(int mode);

pfLightSource::setAttr(int attr, void *obj);
pfLightSource::getAttr(int attr);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfLightSource is derived from the parent class pfNode, so each of these
member functions of class pfNode are also directly usable with objects of class pfLightSource. This is
also true for ancestor classes of class pfNode.

116

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)

pfGroup * pfNode:getParent(int i);

int pfNode:getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode:getBound(pfSphere *bsph);

pfNode* pfNode:clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode:getName(void);

pfNode* pfNode:find(const char *pathName, pfType *type);
pfNode* pfNode:lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode:getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfLightSource can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfLightSource
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

int pfMemory::isOfType(pfType *type);

int pfMemory::isExactType(pfType *type);

const char * pfMemory:getTypeName();

int pfMemory:copy(pfMemory *src);

int pfMemory:compare(const pfMemory *mem);

void pfMemory:print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

void* pfMemory::getArena();

117

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory::getRef();

int pfMemory::checkDelete();

void * pfMemory:getArena();

int pfMemory::getSize();
DESCRIPTION

118

A pfLightSource is a pfNode which can illuminate geometry in a pfScene. In addition, pfLightSource sup-
ports a technique known as "projected texturing" which can simulate high quality, real time spotlights
and shadows on certain graphics hardware.

new pfLightSource creates and returns a handle to a pfLightSource. Like other pfNodes, pfTexts are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfLight-
Sources should be deleted using pfDelete rather than the delete operator.

pfLightSource::getClassType returns the pfType* for the class pfLightSource. The pfType* returned by
pfLightSource::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfLightSource. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

Most pfLightSource routines are borrowed from pfLight (but not inherited): setAmbient, getAmbient,
setColor, getColor, setAtten, getAtten, setPos, getPos, setSpotCone, getSpotCone, setSpotDir, getSpot-
Dir, on, off, isOn. The reader is referred to the pfLight man page for details on the routine description.

When enabled by pfLightSource::on, a pfLightSource influences all geometry that is in the same pfScene
if it is not culled during the cull traversal. Its position in the hierarchy does not affect its area of influence.
A pfLightSource is enabled by default and is explicitly disabled with pfLightSource::off.

pfLightSources are processed somewhat differently than other nodes. If the
PFCULL_IGNORE_LSOURCES mode is not enabled by pfChannel::setTravMode, the cull stage will
begin with a special traversal of all paths which lead from the current pfScene to pfLightSources before it
traverses the pfScene geometry. This initial traversal is no different from the ordinary cull traversal
except that the traversal order is path-directed rather than an in-order traversal. Specifically, all switches
(pfSwitch, pfLOD, pfSequence) and transformations (pfSCS, pfDCS) will affect the traversal. Note that
nodes that lie on paths to pfLightSource nodes will be traversed multiple times; specifically, any cull or
draw callbacks (pfNode::setTravFuncs) will be invoked multiple times.

pfLightSources are culled to the viewing frustum only if they have been assigned a non-null bounding
volume (pfNode::setBound). If a pfLightSource has a null bounding volume (radius < 0) then it is not

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)

culled and has global effect over its pfScene. By default pfLightSources have null bounding volumes.
After the pfLightSource traversal comes the database traversal which (usually) visually culls the current
pfScene and ignores pfLightSources.

A pfLightSource inherits the current transformation from any pfSCSes and pfDCSes above it in the hierar-
chy. This matrix transforms the light source’s position and direction depending on the light’s type, i.e.- if
it is a local, infinite, or spotlight.

All hardware lights corresponding to pfLightSources in a pfScene will be properly configured before the
pfChannel’s draw callback is invoked (see pfChannel::setTravFunc). Consequently, all geometry ren-
dered in the pfChannel draw callback will be illuminated by the pfScene’s light sources. However, any
draw callback assigned to the pfLightSource node by pfNode::setTravFuncs will be invoked before the
pfChannel draw callback is invoked so that anything drawn in the node callback will be obscured if the
channel viewport is cleared (see pfClearChan). Example 1: Adding a pfLightSource to a pfScene.

sun = new pf Li ght Sour ce;

/* Set slightly yellow color */
sun->set Col or (PFLT_DI FFUSE, 1.0f, 1.0f, .8f);

/* Set a high anbient |evel */
sun->set Col or (PFLT_AMBI ENT, .4f, .4f, .3f);

/* Time of day is high noon */
sun->set Pos(0.0f, 1.0f, 0.0f, 0.0f);

scene- >addcChi | d(sun);

A pfLightSource supports 3 different lighting mechanisms as listed in the following table:

Lighting | Normals | Texture | Effects Are | Shadows | Extra Draw

Method Used Required Per-? Pass(es)

pfLight Yes No Vertex No None
PROJTEX No Yes Pixel No +(0-1)
SHADOW No Auto Pixel Yes +(0-2)

The normal use of a pfLightSource is as a pfLight which computes lighting at geometry vertices, taking
into account the surface curvature as represented by geometry normals. This kind of lighting offers the
highest performance but does not produce per-pixel effects or shadows. Lighting using projected tex-
tures, referred to as PROJTEX, produces high quality spotlights since the spotlight boundary is computed
on a per-pixel, rather than a per-vertex basis as it is with pfLight. However, PROJTEX lighting does not
take surface normals into account, requires hardware texture mapping for decent performance, and

119

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

120

requires that textured geometry be rendered twice, once with their normal texture and once with the pro-
jected texture. SHADOW lighting is similar to PROJTEX but adds shadows at the cost of an additional
rendering pass. In this case a special texture map, called a shadow map, is automatically generated by the
pfLightSource and then projected onto the scene. Typically, pfLight-type lighting is used in conjunction
with PROJTEX or SHADOW so that lighting is a function of both per-pixel projected texturing and per-
vertex surface curvature.

SHADOW and PROJTEX lighting are separately enabled and disabled with the
PFLS_SHADOW_ENABLE and PFLS_PROJTEX_ENABLE tokens to pfLightSource::setMode. val
should be either PF_ON or PF_OFF. When either is enabled, pfChannels rendering the pfLightSource’s
scene automatically enter "multipass mode" since multiple renderings of the scene are usually required.

pfChannel::setTravMode with the PFTRAV_MULTIPASS traversal token offers some control over the
multiple renderings of the scene. The PEMPASS_GLOBAL_AMBIENT bit indicates that the alpha bit-
planes of the pfChannel’s viewport contain the ambient intensity of the scene. Note that the pfChannel
will not clear the viewport alpha to this intensity but expects it to have already been properly cleared. If
using a pfEarthSky to clear the viewport, you can specify the ambient alpha with pfEarthSky::setColor.
Global ambient is not required and does have some extra cost. It is not particularly useful for PROJTEX
lighting since ambient intensity can be easily incorporated in the projected texture (instead of black, just
use gray outside the spotlight) but is useful for SHADOWS which otherwise would be completely black.

By default, emissive surfaces (including light points) are attenuated by PROJTEX and SHADOW lighting
which is not correct since emissive surfaces should shine even if in shadow or outside the cone of a pro-
jected spotlight. If a scene has emissive surfaces, set the PEMPASS_EMISSIVE_PASS bit in the
PFTRAV_MULTIPASS mode and the emissive surfaces will be properly rendered. Note that the emis-
sive rendering pass is not a full pass - rather it is a pass of only the emissive surfaces.

In situations where the scene is entirely non-textured, PFMPASS_NONTEX_SCENE can be specified as
part of the PFTRAV_MULTIPASS traversal mode of a pfChannel. In this case a complete rendering pass
is eliminated so that the total number of rendering passes is numProjLights + 2 *
numNonFrozenShadowLights.

PROJTEX lighting requires that a pfTexture be specified with the PFLS_PROJ_TEX token to
pfLightSource::setAttr. obj should be an intensity-alpha (2-component) pfTexture* with identical intensity
and alpha components. If the pfLightSource is the only pfLightSource in the scene using PROJTEX light-
ing, the texture may be a full-color, 4-component texture.

SHADOW lighting does not require a pfTexture, rather one is automatically created and configured by
the pfLightSource. The size of the texture(shadow) map may be specified with the
PFLS_SHADOW_SIZE token to pfLightSource::setVal. val is then the square size of the texture map.
The size of the shadow map greatly influences the quality and performance of SHADOW lighting. Large
shadow map sizes increase quality but decrease performance. The default shadow map size is 256. SHA-
DOW lighting requires that the viewport of each pfChannel which renders the pfLightSource’s scene be at

IRIS Performer 2.0 libpf C++ Reference Pages pfLightSource(3pf)

least as big as the shadow map. Otherwise, shadows will be clipped and visual anomalies will occur.

Both SHADOW and PROJTEX lighting require that a pfFrustum be specified with the
PFLS_PROJ_FRUSTUM token to pfLightSource::setAttr. obj defines the projection of the texture (sha-
dow) map and should be a nominal, i.e., non-transformed pfFrustum®*. For SHADOW lighting, the field-
of-view and near and far clipping planes should bracket the scene to be shadowed as tightly as possible
for best results. A sloppy fit of pfFrustum to scene will result in blocky, poor-quality shadows.

By default, SHADOW lighting requires that the scene be rendered from the point of view of the pfLight-
Source to produce a shadow map. By default, pfChannels automatically do this for each SHADOW
pfLightSource in their scene. However, a new shadow map is only required if the pfLightSource or
objects in the scene change. In the special case where the pfLightSource and scene are totally static (e.g.,
the sun illuminating a sleepy town), the shadow map need not be recomputed. In this case
Isource.setMode(PFLS_FREEZE_SHADOWS, PF_ON) will disable the automatic recomputation of the
shadow map, increasing performance.

For best results, SHADOW lighting requires that the scene be slightly displaced in depth when rendering
the shadow map. This reduces artifacts such as "self-shadowing". The
PFLS_SHADOW_DISPLACE_SCALE and PFLS_SHADOW_DISPLACE_OFFSET tokens to
pfLightSource::setVal specify displacement values. The default values are 1.0 and 256.0 respectively but
experimentation is required for best results (both values should be positive).

For pfLightSources which are near the eye, a pfFog can be used to simulate range-attenuation of the light.
Range-attenuation is enabled with the PFLS_FOG_ENABLE token to pfLightSource::setMode and by
specifying a pfFog with the PFLS_PROJ_FOG token to pfLightSource:setAttr. The pfFog color should
be the ambient color of the projected texture. Only a single range-attenuated projected pfLightSource is
supported for a given pfChannel.

A pfLightSource’s intensity is set with the PFLS_INTENSITY token to pfLightSource::setVal. val simply
scales the color(s) of all 3 lighting types: pfLight, PROJTEX, SHADOW. A scene containing multiple,
full-intensity pfLightSources can be easily saturated so setting pfLightSource intensities is a simple way to
"normalize" lighting within a scene. For example, when using 3 pfLightSources to illuminate a scene, an
intensity of .33 would be reasonable. Example 2: Range-attenuated, projected texture lighting for landing
light

pf Li ght Sour ce *spot;
pf Text ure *spot Tex;
pf Frust um *spot Fr ust ;

pf Fog *spot Fog;
pf DCS *spot DCS;
pf Channel *chan;

pf Ear t hSky *esky;

121

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

/1 Create and | oad 2-conponent spotlight
spot Tex = new pf Text ure;
spot Tex- >l oadFi | e("spot.inta");

/! Create and configure projected texture frustum
spot Frust = new pf Frustum

spot Frust - >makeSi npl e(60. 0f) ;

spot Frust - >set Near Far (1. 0f, 100. 0f);

/1l Create and configure range-attenuati on fog nodel
spot Fog = new pf Fog;

spot Fog- >set Col or (0. 1f, 0.1f, 0.1f);

spot Fog- >set Range(0. Of , 100. Of);

/1 Create and configure projected texture |light source
spot = new pfLi ght Sour ce;

spot - >set Attr (PFLS_PRQJ_TEX, spot Tex);

spot - >set Attr (PFLS_PRQJ_FRUST, spotFrust);

spot - >set Attr (PFLS_PRQJ_FOG, spot Fog);

spot - >set Mode(PFLS_PROITEX_ENABLE, 1);

/] Set spotDCS to viewing matrix to nove |light around with eye
spot DCS = new pf DCS;

spot DCS- >addChi | d(spot);

scene->addChi | d(spot DCS) ;

/1 Enabl e em ssive pass since scene has em ssive surfaces
chan- >set Tr avhMbde(PFTRAV_MULTI PASS,
PFMPASS_EM SSI VE_PASS|PFMPASS_GLOBAL_AMBI ENT) ;

/1 Set anmbient intensity to .1
esky->set Col or (PFES_CLEAR, r, g, b, .1f);
chan- >set ESky(esky) ;

Example 3: Multiple, shadow-casting, colored pfLightSources

pf Li ght Sour ce *shad0O, *shadl;

pf DCS *shadDCS0, *shadDCS1;
pf Frust um *shadFr ust ;

pf Channel *chan;

pf Ear t hSky *esky;

122

IRIS Performer 2.0 libpf C++ Reference Pages

pfLightSource(3pf)

// Create and configure shadow frustum
shadFrust = new pf Frustum

shadFr ust - >makeSi npl e(60. 0f) ;

shadFr ust - >set Near Far (1. 0Of, 100. 0f) ;

// Create and configure shadow casting |ight sources
shad0 = new pf Li ght Sour ce;

shad0- >set Mode(PFLS_SHADOW ENABLE, 1);

shad0- >set Att r (PFLS_PRQJ_FRUST, shadFrust);

shad0- >set Col or (PFLT_DI FFUSE, 1.0f, 0.0f, 0.0f);
shad0- >set Val (PFLS_I NTENSI TY, .5f);

shadl = new pf Li ght Sour ce;

shadl- >set Mode(PFLS_SHADOW ENABLE, 1);
shadl->set Attr (PFLS_PRQJ_FRUST, shadFrust);
shadl- >set Col or (PFLT_DI FFUSE, 0.0f, 0.0f, 1.0f);
shadl- >set Val (PFLS_I NTENSI TY, .5f);

/'l Set DCSes to nove |ights around
shadDCSO = new pf DCS;

shadDCS0- >addChi | d(shad0) ;
scene->addChi | d(shadDCS0) ;

shadDCS1 = new pf DCS;
shadDCS1- >addChi | d(shadl);
scene->addChi | d(shadDCS1) ;

/1 Enabl e gl obal anbi ent
chan- >set Tr avMode(PFTRAV_MULTI PASS, PFMPASS GLOBAL_AMBI ENT) ;

// Set anbient intensity to .1

esky->set Col or (PFES_CLEAR, r, g, b, .1f);
chan- >set ESky(esky) ;

NOTES

To respect the limited number of active light sources allowed by graphics library implementations, IRIS

Performer supports at most PF_MAX_LIGHTS active light sources.

If you want light sources to affect only portions of the scene, then set one or more pfLights on the pfGeo-
States which are attached to the pfGeoSets that you wish to illuminate (see pfGeoState::setAttr and

PFSTATE_LIGHTS for further details).

123

pfLightSource(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

Shadows are supported only by RealityEngine when using IRIS GL.

PROJTEX and SHADOW lighting on RealityEngine require local lighting for proper effects (-
pfLightModel::setLocal).

SHADOW lighting on RealityEngine requires the depth buffer to be configured with 32 bits (zbsize()).
Note that it is legal to have multisample buffers allocated in addition, the only requirement is that the
non-multisampled depth buffer be 32 bits. Also note that on RealityEngine, a 32-bit depth buffer requires
12-bit color.

On RealityEngine, shadows and projected textures are not clipped or properly computed behind the
pfLightSource. Instead, geometry behind the pfLightSource will be textured randomly. The only wor-
karound is to ensure that all geometry behind the pfLightSource is not visible to the pfChannel.

Local lighting results in improper shading of flat-shaded triangle and line strips (-
PFGS_FLAT_TRISTRIPS, PFGS_LINE_TRISTRIPS) which often manifests itself as "faceting" of planar
polygons. The only solution is either to use infinite lighting or not use FLAT primitives. Note that when
using the IRIS Performer triangle meshing routine, pfdMeshGSet, the construction of non-FLAT strips is
easily enforced with pfdMesherMode(PFDMESH_LOCAL_LIGHTING, 1).

SEE ALSO

124

pfChannel, pfNode, pfSCS, pfDCS, pfGeoSet, pfGeoState, pfLight, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)

NAME

pfMorph - Create, modify, and query a pfMorph node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfMorph.h>

static pfType *

int

int
int
int
int
int
void *

void

pfMorph::pfMorph();
pfMorph::getClassType(void);

pfMorph::setAttr(int index, int floatsPerElt, int nelts, void *dst, int nsrcs, float *alist[],
ushort *ilist[], int nlist[]);

pfMorph::setWeights(int index, float *weights);
pfMorph::getWeights(int index, float *weights);
pfMorph::getNumA_ttrs(void);

pfMorph::getSrc(int index, int src, float **alist, ushort **ilist, int *nlist);
pfMorph::getNumSrcs(int index);

pfMorph::getDst(int index);

pfMorph::evaluate(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfMorph is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfMorph. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);

int pfGroup::insertChild(int index, pfNode *child);

int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild (pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfMorph can also
be used with these functions designed for objects of class pfNode.

pfGroup * pfNode::getParent(int i);
int pfNode::getNumParents(void);

125

pfMorph(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

126

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void
uint
void
void
void
void *

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

setBound(pfSphere *bsph, int mode);

getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);

flatten(int mode);

setName(const char *name);

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfMorph can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfMorph can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

void

int
void*
int

int

pfMemory::getData(const void *ptr);
pfMemory::getType();
pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory::copy(pfMemory *src);
pfMemory::compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);
pfMemory::getArena();

pfMemory::ref();

pfMemory::unref();

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)

int pfMemory::unrefDelete();

ushort pfMemory:getRef();

int pfMemory::checkDelete();

void * pfMemory::getArena();

int pfMemory::getSize();
DESCRIPTION

A pfMorph node does not define geometry; rather, it manipulates geometric attributes of pfGeoSets and
other geometric primitives. While pfMorph is very general, its primary use is for geometric morphing
where the colors, normals, texture coordinates and coordinates of geometry are smoothly changed over
time to simulate actions such as facial and skeletal animation, ocean waves, continuous level-of-detail,
and advanced special effects. In these situations, the rigid body transformations provided by matrices do
not suffice - instead, efficient per-vertex manipulations are required.

A pfMorph consists of one or more "sources" and a single "destination"” which together are termed an
"attribute”. Both sources and destination are arrays of "elements" where each element consists of 1 or
more floating point numbers, e.g., an array of pfVec3 coordinates. The pfMorph node produces the desti-
nation by computing a weighted sum of the sources. By varying the source weights and using the morph
destination as a pfGeoSet attribute array, the application can achieve smooth, geometric animation. A
pfMorph can "morph" multiple attributes.

new pfMorph creates and returns a handle to a pfMorph. Like other pfNodes, pfMorphs are always allo-
cated from shared memory and cannot be created statically, on the stack or in arrays. pfMorphs should
be deleted using pfDelete rather than the delete operator.

pfMorph::getClassType returns the pfType* for the class pfMorph. The pfType* returned by
pfMorph::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfMorph. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfMorph::setAttr configures the indexth attribute of the pfMorph. floatsPerElt specifies how many float-
ing point numbers comprise a single attribute element. For example, when morphing pfGeoSet coordinate
and texture coordinate arrays (PFGS_COORD3, PFGS_TEXCOORD?), floatsPerElt would be 3 and 2
respectively. nelts specifies how many attribute elements are in the destination array. If the required
number of pfGeoSet coordinates is 33, then nelts would be 33, not 33 * 3 = 99. dst is a pointer to the desti-
nation array which should be at least of size floatsPerElt * nelts * sizeof(float). If dst is NULL, then the
pfMorph will automatically create and use a pfCycleBuffer of appropriate size. (pfCycleBuffers are use-
ful when IRIS Performer is configured to multiprocess.)

There are 2 distinct methods of accessing the source arrays of a pfMorph attribute: non-indexed and
indexed. Indexing provides a means of efficiently applying sparse changes to the destination array. The

127

pfMorph(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

128

nsrcs argument to pfMorph::setAttr specifies how many source arrays are provided in alist, i.e., alist[i] is
the i’th source and is treated as an array of elements where each element consists of floatsPerElt floating
point numbers. Index arrays and their lengths are provided in ilist and nlist respectively. If ilist is NULL
then all sources are non-indexed. If ilist is non-NULL, it contains a list of index lists corresponding to the
source lists in alist. If nlist is NULL, then the index lists are assumed to be nelts long and if non-NULL, the
length of each index list is specified in nlist. ilist may contain NULL pointers to mix indexed and non-
indexed source arrays.

All source arrays referenced in alist and ilist are reference counted by pfMorph::setAttr.

pfMorph::setWeights specifies the source weights of the indexth attribute of the pfMorph in the array
weights. weights should consist of nsrcs floating point numbers where nsrcs is the number of attribute
sources specified in pfMorph::setAttr. If index is < 0, then weights is used for all attributes of the pfMorph.
pfMorph::getWeights copies the weights of the indexth attribute of the pfMorph into weights. weights
should be an array of at least nsrcs floats.

A pfMorph node is evaluated, i.e., its destination array is computed, during the APP traversal which is
triggered directly by the application through pfAppFrame (see pfAppFrame) or indirectly by pfSync.
Alternately, the pfMorph node may be explicitly evaluated by calling the function pfMorph::evaluate. In
all cases, destination elements are computed as in the following pseudocode:

zero destination array;

for (s=0; s<nsrcs; s++)

{

if (ilist == NULL || ilist[s] == NULL)
{

/* Source is non-indexed */

for (i=0; i<nelts; i++)

for (e=0; e<floatsPerElt; e++)
dst[i][e] += weights[s] * alist[s][i][e];

}
el se
{

/* Source is indexed */

int ni ndex;

if (nlist == NULL)
ni ndex = nelts;
el se
ni ndex = nlist[s];

IRIS Performer 2.0 libpf C++ Reference Pages pfMorph(3pf)

for (i=0; i<nindex; i++)
for (e=0; e<floatsPerElt; e++)
dst[ilist{s][i]][e] += weights[s] * alist{s][i][e];

Note that the actual implementation is much more efficient than above, particularly for the special
weights of 0 and 1.

Since pfMorph is a pfGroup, it is guaranteed to be evaluated before its children in the APP traversal. The
pfMorph is only evaluated by the APP traversal when its weights change.

pfMorph::getNumAttrs returns the number of the pfMorph’s attributes.

pfMorph::getSrc returns the srcth source parameters of the indexth attribute of the pfMorph. The source
attribute array and index array pointers are copied into alist and ilist respectively. The size of the srcth
index array is copied into nlist and the number of floats per element is returned by pfMorph::getSrc.

pfMorph::getNumSrcs returns the number of sources of the indexth attribute of the pfMorph.

pfMorph::getDst returns the indexth destination array of morph. The destination array is either that pro-
vided earlier by pfMorph::setAttr or the pfCycleBuffer automatically created when NULL was passed as
the dst argument to pfMorph::setAttr.

SEE ALSO
pfAppFrame, pfCycleBuffer, pfGroup, pfDelete, pfNode

129

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME
pfNode — Set and get pfNode parents and bounding spheres.

FUNCTION SPECIFICATION
#include <Performer/pf/pfNode h>

static pfType * pfNode::getClassType(void);
pfGroup * pfNode::getParent(int i);

int pfNode::getNumParents(void);

void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode::getBound(pfSphere *bsph);

pfNode* pfNode::clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode::getName(void);

pfNode* pfNode::find(const char *pathName, pfIype *type);

pfNode* pfNode::lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre,
pfNodeTravFuncType post);

void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre,
pfNodeTravFuncType *post);

void pfNode::setTravData(int which, void *data);

void * pfNode::getTravData(int which);

which identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,
denoting the intersection, application,

DESCRIPTION
A pfNode is an abstract type. IRIS Performer does not provide any means to explicitly create a pfNode.
Rather, the pfNode routines operate on the common aspects of other IRIS Performer node types.

The complete list of IRIS Performer nodes (all derived from pfNode) is:

130

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)

pfLightPoint
pfText
pfGeode
pfBillboard
pfLightSource
pfGroup
pfSCS
pfDCS
pfPartition
pfScene
pfSwitch
pfLOD
pfSequence
pfLayer

Any IRIS Performer node is implicitly a pfNode, and a pointer to any of the above nodes may be used
wherever a pfNode* is required as an argument.

The various pfNode types have certain common properties such as a set of parents, a name, an intersec-
tion mask, bounding geometry, callback functions and callback data.

pfNode::getClassType returns the pfType* for the class pfNode. The pfType* returned by
pfNode::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfNode. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfNode::getNumParents returns the number of parents the pfNode has in the scene graph. A node may
have multiple parents because it was explicitly added to multiple parents with pfGroup::addChild. In
such cases it said to be “instanced’. Also, leaf geometry nodes such as pfGeodes, pfLightPoints, and
pfBillboards, may have multiple parents as a result of a pfNode::clone. pfNode::getParent returns the ith
parent of the pfNode or NULL if 7 is out of the range 0 to pfNode::getNumParents - 1.

pfNode::setBound sets the bounding volume of the pfNode. Each pfNode has an associated bounding
volume used for culling and intersection testing and a bounding mode, either static or dynamic. By
definition, the bounding volume of a node encloses all the geometry parented by node, which means that
the node and all its children fit within the node’s bounding volume.

131

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

132

Only a subset of the pfNode types actually contain geometry. These are known as "leaf nodes" in IRIS
Performer. They are:

pfBillboard

pfGeode

pfLightPoint

These and other nodes may indirectly contain geometry through user-supplied function callbacks set by
pfNode::setTravFuncs.

Normally IRIS Performer automatically computes bounding volumes but provides routines to explicitly
set bounding volumes. This is useful for pfNodes which draw custom geometry through node callbacks
(pfNode::setTravFuncs).

The bsph argument to pfNode::setBound is the bounding sphere of the pfNode. If the bsph is NULL, IRIS
Performer will compute the bounding sphere of the pfNode.

The mode argument to pfNode::setBound specifies whether or not the bounding volume for the pfNode
should be recomputed when an attribute of the pfNode changes or something in the scene graph below
the pfNode changes (if the pfNode is a pfGroup). If the mode is PFBOUND_STATIC, IRIS Performer
will not modify the bound once it is set or computed. If the mode is PFBOUND_DYNAMIC, IRIS Per-
former will recompute the bound after children are added or deleted or after the matrix in a pfDCS
changes. Changes in pfSwitches, pfLODs and pfSequences do not affect bounds above them in the scene
graph.

pfNode::getBound returns the current bounding mode and copies into bsph a pfSphere which encloses
the pfNode and its children The return value is the bounding mode which is either
PFBOUND_DYNAMIC or PFBOUND_STATIC indicating whether or not the bounding volume is
updated automatically when its children change.

IRIS Performer supports two methods of node instancing. The first method is to simply add a node to
more than one parent using pfGroup::addChild or pfGroup::replaceChild (see pfGroup). In this case
the graph rooted by the instanced node is shared by all its parents. This type of instancing is called shared
instancing.

pfNode:clone provides instancing which shares geometry but not variable state like transformations
(pfDCS) and switches (pfSwitch). pfNode:clone copies the entire scene graph from the pfNode down to,
but not including, leaf geometry nodes such as pfGeodes, pfBillboards and pfLightPoints. These leaf
nodes are instanced by reference in the cloned scene graph. pfNode::clone returns the root pfNode of the
cloned graph or NULL to indicate error. This type of instancing is called common geometry instancing. An
attempt to clone a leaf geometry node simply returns the handle to that node.

Cloning is recommended for instances of dynamic and articulated models. For example: Shared instances
of a model with pfDCSes in its hierarchy will share the pfDCSes as well as the geometry. This means that

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)

all instances will have the exact same articulation. However, a common geometry instance will share
only geometry and as a result of the cloning process will have its own pfDCSes allowing manipulation
independently of any other instances. This example creates a cloned instance:

if ((clone = carModel ->cl one(0)) != NULL)
car DCS_3- >addChi | d(cl one);

The mode argument to pfNode::clone is reserved for future extensions and must be 0 in this release of
IRIS Performer.

When cloning, if the global copy function (pfObject::setCopyFunc) is NULL, user data pointers (-
pfObject::setUserData) are copied to each new node and the reference counts of pfMemory-derived user
data are incremented. If pfObject::setCopyFunc is not NULL, it will be invoked with the destination and
source nodes as arguments. It is then the responsibility of the copy function to handle the copy of user
data.

pfNode::bufferClone is identical to pfNode:clone but allows cloning across pfBuffers. buf identifies the
pfBuffer which containsthe pfNode and its subtree. The clone of the pfNode and its subtree is placed in
the current buffer set by pfBuffer::select. See the pfBuffer man page for more details.

pfNode:flatten is a database pre-processing step which ‘flattens’ the transformation hierarchy of the
scene graph rooted by the pfNode. Coordinates and normals contained in leaf geometry nodes such as
pfGeodes, pfBillboards and pfLightPoints are transformed by any inherited static transformations
(pfSCS). pfNode:flatten automatically clones any pfNode or pfGeoSet that is multiply referenced.
Specifically, if the pfNode has multiple parents, node and its entire subtree will be cloned. If a pfDCS is
encountered, pfNode::flatten inserts a pfSCS in between the pfDCS and its parent.

Flattening can substantially improve performance, especially when pfSCSes are being used to instance a
relatively small amount of geometry since the cost of the transformation approaches the cost of drawing
the geometry. However, it can also increase the size of the database since it copies instanced nodes and
geometry. Flattening is highly recommended for pfBillboards. Flattening also increases the ability of IRIS
Performer to sort the database by mode (see pfChannel::setBinSort), often a major performance enhance-
ment, since sorting does not cross transformation boundaries.

pfNode:flatten does not remove pfSCSes from the hierarchy; instead it sets their transformations to the
identity matrix. For improved traversal performance, these flattened pfSCS nodes should be removed
from the hierarchy.

The mode argument to pfFlatten is currently ignored and should be 0.

Al IRIS Performer database nodes may be assigned a character string name. Individual node names need
not be unique but to access a node with a non-unique name, an unambiguous pathname to the node must

133

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

be given. The pathname doesn’t need to be a full path. All that’s required is enough to distinguish the
node from others with the same name.

pfNode::setName sets the name of the pfNode to the string name. If the name is unique a 1 will be
returned and if the name is not unique, a 0 will be returned. Node names are kept in a global table which
is used for resolving the first path component of a path name by pfNode::lookup. In this case, unambigu-
ous resolution is only possible if the first path component is unique. pfNode::getName returns the name
of the node or NULL if the name has not been set.

pfNode:find is a general search routine for finding named pfNodes. pfNode:find begins searching for
the node of type type and identified by a ' /’-separated path name pathName. The search begins at the
pfNode and uses a depth-first traversal. pfNode::find returns NULL if it cannot find the node. Note that
the type checking performed by pfNode::find is equivalent to pfMemory::isOfType, not
pfMemory::isExactType, e.g. searching for a pfGroup includes derived classes such as pfSwitch.

The string pathName can be either a name or a /’-separated pathname. If the name contains no "/’ charac-
ters, it is assumed to be unique and the global name table is searched. If pathName contains '/’ characters,
it is assumed to be a path. Paths are searched by first finding the node corresponding to the first com-
ponent of the path in a global name table. The find routine then traverses the subtree rooted at that node,
searching for the rest of the path. The first node encountered during the search traversal which matches
pathName is returned.

Example 1:

pf Node *newhouse, *newdoor;
pf DCS *door;

/* Create "house" nodel with named subparts including "door" */

/* Create a new i nstance of "house" */
newhouse = house->cl one(0);

/* G ve cloned house a new nanme */
newhouse- >set Nanme(" newhouse") ;

/* Find the door part of the new house */
door = (pfDCS*) newhouse->find("door", pfDCS::getd assType());

pfNode:isect intersects a group of line segments with a scene or portion thereof. The intersection opera-
tion traverses the scene graph, testing a group of segments against bounding geometry and eventually
model geometry within pfGeoSets.

134

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)

pfNode:isect returns the number of segments which intersected something. hits is an empty array sup-
plied by the user through which results are returned. The array must have an entry for each segment in
segSet. Upon return, hits[i][0] is a pfHit* which gives the intersection result for the ith segment in segSet.
The pfHit objects come from an internally maintained pool and are reused on subsequent requests.
Hence, the contents are only valid until the next invocation of pfGSetlsectSegs in the current process.
They should not be freed by the application.

segSet is a pfSegSet structure specifying the intersection request. In the structure, segs is an array of line
segments to be intersected against the pfGeoSet. activeMask is a bit vector specifying which segments in
the pfSegSet are to be active for the current request. If bit[i] of the activeMask is set to 1, it indicates the
corresponding segment in the segs array is active.

The bit vector mode specifies the behavior of the intersection operation and is a bitwise OR of the follow-
ing:
PFTRAV_IS_PRIM
Intersect with quads or triangle geometry.

PFTRAV_IS_GSET
Intersect with pfGeoSet bounding boxes.

PFTRAV_IS_GEODE
Intersect with pfGeode bounding sphere.

PFTRAV_IS_NORM
Return normals in the pfHit structure.

PFTRAV_IS_CULL_BACK
Ignore back-facing polygons.

PFTRAV_IS CULL_FRONT
Ignore front-facing polygons.

PFTRAV_IS_PATH
Retain traversal path information.

PFTRAV_IS_NO_PART
Do not use partitions for intersections.

For several types of pfGroups, the traversal of children can be controlled for the traversal.

For pfSwitches, the default is to traverse only the child or children specified by the current switch value.
This can be changed OR-ing one of the following into the mode argument.

PFTRAV_SW_ALL
Traverse all children of pfSwitches.

135

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

136

PFTRAV_SW_NONE
Don’t traverse any children of pfSwitches.

For pfSequences, the default is to traverse only the current child in the sequence. This can be changed
OR-ing one of the following into the mode argument.

PFTRAV_SEQ_ALL
Intersect with all children of pfSequences.

PFTRAV_SEQ_NONE
Intersect with no children of pfSequences.

For pfLODs, the default is to traverse only the child that would be active at range 0. This can be changed
OR-ing one of the following into the mode argument. Also, see pfChannel::isect for child selection based
on range.

PFTRAV_LOD_ALL
Intersect with all children of pfLODs (default is range 0).

PFTRAV_LOD_NONE
Intersect with no children of pfLODs (default is range 0).

For pfLayers, the default is to traverse all children. This can be changed OR-ing one of the following into
the mode argument.

PFTRAV_LAYER_NONE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_BASE
Intersect with no children of pfLayers (default is all).

PFTRAV_LAYER_DECAL
Intersect with no children of pfLayers (default is all).

The bit fields PFTRAV_IS_PRIM, PFTRAV_IS_GSET, and PFTRAV_IS_GEODE indicate the level at
which intersections should be evaluated and discriminator callbacks, if any, invoked. If none of these
three fields are specified, no intersection testing is done.

In the pfSegSet, isectMask is another bit vector which directs the intersection traversal. At each stage of
the intersection operation, the mask is bit-wise AND-ed with the mask of the pfNode or pfGeoSet. If the
mask is non-zero the intersection continues with the next object, either a pfNode within a pfGroup or a
primitive within a pfGeoSet. The mask of a pfNode is set using pfNode::setTravMask and that of a
pfGeoSet by pfGeoSet::setIsectMask. The mask can be used to distinguish parts of the scene graph
which might respond differently to vision or collision. For example, as a wall would stop a truck but
shrubbery would not.

The bound field in a pfSegSet is an optional user-provided bounding volume around the set of segments.

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)

Currently, the only supported volume is a cylinder. To use a bounding cylinder, perform a bitwise OR of
PFTRAV_IS_BCYL into the mode field of the pfSegSet and assign the pointer to the bounding volume to
the bound field.

pfCylinder::around will construct a cylinder around the segments. When a bounding volume is sup-
plied, the intersection traversal may use the cylinder to improve performance. The largest improvement
is for groups of at least several segments which are closely grouped segments. Placing a bounding
cylinder around small groups or widely dispersed segments can decrease performance.

The userData pointer allows an application to associate other data with the pfSegSet. Upon return and in
discriminator callbacks, the pfSegSet’s userData pointer can be obtained from the returned pfHit with
pfODbject::getUserData.

discFunc is a user supplied callback function which provides a more powerful means for controlling inter-
sections than the simple mask test.

If discFunc is NULL, the default behavior clips the end of the segment after each successful intersection at
the finest resolution (pfGeode bounding volume , pfGeoSet bounding box, pfGeoSet geometry) specified
in mode. Thus, the segment is clipped by each successful intersection so that the intersection point nearest
the starting point of the segment is returned upon completion.

If a discriminator callback is specified, whenever an intersection occurs, the discFunc callback is invoked
with a pfHit structure containing information about the intersection. The discriminator may then return a
value which indicates whether and how the intersection should continue. The continuation selectors are
PFTRAV_CONT, PFTRAV_PRUNE, and PFTRAV_TERM.

PFTRAV_CONT
Indicates that the traversal should continue traversing the pfGeoSets beneath a pfGeode.
The discriminator function can examine information about candidate intersections and
judge their validity and control the continuation of the traversal with its return value.

PFTRAV_PRUNE
Indicates the traversal should return from the current level of the search and continue. If
returned on a pfGeoSet primitive or bounding box test, PFTRAV_PRUNE stops further
testing of the line segment against that pfGeoSet. If returned on the test against a pfGeode
bounding volume, the pfGeode is not traversed for that line segment.

PFTRAV_TERM
Indicates that the search should terminate for this segment of the pfSegSet. To have
PFTRAV_TERM or PFTRAV_PRUNE apply to all segments, PFTRAV_IS_ALL_SEGS can
be OR-ed into the discriminator return value. This causes the entire traversal to be ter-
minated or pruned.

The callback may OR other bitfields into the status return value:

137

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

138

PFTRAV_IS_IGNORE
Indicates that the current intersection should be ignored, otherwise the intersection is taken
as valid.

PFTRAV_IS_CLIP_START
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to start at the current intersection point.

PFTRAV_IS_CLIP_END
Indicates for pruned and continued traversals that before proceeding the segment should be
clipped to end at the current intersection point.

If discFunc is NULL, the behavior is the same as if the discriminator returned PFTRAV_CONT |
PFTRAV_IS_CLIP_END, so that the intersection nearest the start of the segment will be returned.

In addition to the discriminator callback, pre- and post- intersection callbacks are available for each node.
These behave identically to the pre- and post-callbacks for the cull traversal and can be used to prune,
continue or terminate the traversal at any node.

Both pfNode::isect and the discriminator callback return information about an intersection in a pfHit
object which can be examined using the pfHit::query and pfHit::mQuery calls. The information includes
the intersection point, current matrix transformation, scene graph, and path. See the reference page for
pfHit for further details.

In multiprocess applications, pfNode:isect should be called from the APP process or from the ISECT
process (in the callback specified by pfIsectFunc). When called in the APP process, pfNode::isect should
be called after pfFrame and before pfSync for best system throughput.

pfNode::setTravMask sets the traversal masks of node which are used to control traversal during the
intersection, cull, and draw traversals. If the bitwise AND of the node’s mask for that traversal type and
the mask for the current traversal is zero, the traversal is disabled at that node. By default, the node
masks are all 1’s. Traverser masks are set by pfNode::isect/ pfChanNodelsectSegs for the intersection
traversal and pfChannel::setTravMask for the CULL and DRAW traversals. pfNode::getTravMask
returns the specified traversal mask for the node.

Bits in the setMode argument indicate whether the set operation should be carried out for just the specified
pfNode (PFTRAV_SELF), just its descendents (PFTRAV_DESCEND) or both itself and descendents.
The descendent traversal goes down into pfGeoSets.

The bitOp argument is one of PF_AND, PF_OR, or PF_SET and indicates whether the new mask should
be AND-ed with the old mask, OR-ed with the old mask or set outright, respectively.

Efficient intersections require that information be cached for each pfGeoSet to be intersected with. To
create this cache, PFTRAV_IS_CACHE should be OR-ed into the setMode when first setting the

IRIS Performer 2.0 libpf C++ Reference Pages pfNode(3pf)

NOTES

intersection mask. Because of the computation involved, the cache is best created at setup time. Subse-
quent changes to the masks themselves do not require PFTRAV_IS_CACHE to be specified. However,
for dynamic objects whose geometry changes (e.g. pfGeoSets whose vertex arrays are being changed),
additional calls with the PFTRAV_IS_CACHE in setMode should be used to recompute the cached infor-
mation. PFTRAV_IS_UNCACHE can be OR-ed into the setMode to disable caching.
PFTRAV_IS_CACHE and PFTRAV_IS_UNCACHE can only be specified when which is
PFTRAV_ISECT.

pfNode::setTravFuncs specify the user supplied functions which are to be invoked during the traversal
indicated by which. For each traversal, there is a pre and post traversal callback. pre is invoked before node
and its children are processed while post is invoked after. The pre- and post- methodology supports save
and restore or push and pop programming constructs. Node callbacks are passed pointers to the user
supplied traversal data pointer for that node and a pfIraverser which defines the current traversal state.
pfNode:getTravFuncs copies the pfNode’s pre and post callbacks of traversal type which into pre and post
respectively.

The data argument to pfNode::setTravData is the pointer which is passed to the traversal callbacks indi-
cated by which. Both pre- and post-callbacks will be passed data in addition to a pfTraverser*. When mul-
tiprocessing, data should point to memory in a shared arena. pfNode::getTravData returns the current
data pointer for the specified traversal.

When instanced geometry is flattened, the copy created by pfNode::flatten shares pfGeoSet attribute
arrays with the original when possible. This means that the newly flattened pfGeoSet may share some
arrays (e.g. color array), but not other arrays (e.g. the vertex array) with the original.

The post-cull callback is a good place to implement custom level-of-detail mechanisms.

Currently, nodes use spheres as the default bounding volume. This may change in a future release.
libpfutil contains sample code for computing the bounding box for a subgraph of the scene.

It’s an interesting fact that although a node’s bounding volume completely contains the geometry of the
nodes that it parents, it may well not completely contain the bounding volumes of those same nodes. Do
you understand when this situation would occur?

Finding a node by name can be expensive, particularly for path based searches. These functions are pri-
marily intended to get handles to nodes which are loaded from disk and should be used sparingly at

simulation time.

In Performer 2.0, pfNode::lookup replaces a number of functions from 1.2, e.g. pfLookupBboard. See the
scripts in /usr/share/Performer/src/tools for help in porting code.

139

pfNode(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

BUGS

If the graph under a node cloned by pfNode::clone contains an object instanced within the graph, (i.e. a
node having two or more parents within the graph), the new graph will contain multiple copies of the
instanced node rather than duplicating the connectivity of the original graph.

pfNode::flatten transforms the vertex arrays of non-instanced geometry in place. If a pfGeoSet belongs to
multiple pfGeodes or a vertex array is shared between pfGeoSets the array is still flattened in place.

It is not possible to get multiple intersection results per segment without a discriminator callback.

Bounding cylinders do not work when non-orthonormal transformations are present in the pfDCS and
pfSCS nodes of a scene graph.

The path returned by pfGetTravPath is valid only when invoked from a cull callback.

SEE ALSO

140

pfCylinder, pfGroup, pfHit, pfNode, pfBuffer, pfObject, pfChannel, pfGeoSet, pfBillboard, pfDCS,
pfFrame, pfGeode, pflsectFunc, pfLightPoint, pfScene, pfSCS, pfSeg, pfGSetlsectSegs, pfSync, pfTraverser

IRIS Performer 2.0 libpf C++ Reference Pages pfPartition(3pf)

NAME
pfPartition — Create and update pfPartition spatial partitioning node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPartition.h>

pfPartition::pfPartition();
static pfType * pfPartition::getClassType(void);

void pfPartition::setVal(int which, float val);
float pfPartition::getVal(int which);

void pfPartition::setAttr(int which, void *attr);
void* pfPartition::getAttr(int which);

void pfPartition::build();

void pfPartition::update(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPartition is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfPartition. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);

int pfGroup::insertChild(int index, pfNode *child);

int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild (pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfPartition can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfNode:getParent(int i);

int pfNode:getNumParents(void);
void pfNode:setBound(pfSphere *bsph, int mode);
int pfNode:getBound(pfSphere *bsph);

pfNode* pfNode::clone(int mode);

141

pfPartition(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

142

pfNode*
int

int

const char *
pfNode*
pfNode*
int

void
uint
void
void
void
void *

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

bufferClone(int mode, pfBuffer *buf);

flatten(int mode);

setName(const char *name);

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfPartition can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPartition can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

void

int
void*
int

int

int
ushort
int

pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo
pfMemo

ry::getData(const void *ptr);
ry::getType();

ry::isOfType(pfType *type);
ry::isExactType(pfIype *type);
ry:getTypeName();
ry::copy(pfMemory *src);
ry::compare(const pfMemory *mem);
ry:print(uint which, uint verbose, FILE *file);
ry::getArena(void *ptr);
ry:getArena();

ry::ref();

ry:unref();

ry:unrefDelete();

ry:getRef();

ry::checkDelete();

IRIS Performer 2.0 libpf C++ Reference Pages pfPartition(3pf)

void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

A pfPartition is a type of pfGroup for organizing the subgraph of a scene into a static data structure
which is more efficient for intersection testing with pfNodelsectSegs for some databases. pfPartition
does not affect culling performance nor does it improve intersection performance under transformation
nodes, pfSwitch nodes, pfMorph nodes or pfSequence nodes.

new pfPartition creates and returns a handle to a pfPartition. Like other pfNodes, pfPartitions are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. pfParti-
tions should be deleted using pfDelete rather than the delete operator.

pfPartition::getClassType returns the pfType* for the class pfPartition. The pfType* returned by
pfPartition::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfPartition. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

pfPartition::build constructs a 2D spatial partitioning based on the type.

Within the confines of the parameters set by pfPartition::setAttr, IRIS Performer attempts to construct an
optimal partition based on the distribution of vertices within the pfGeoSets in the subgraph of the scene
rooted at the partition. Information about the selected partitioning is displayed when the pfNotifyLevel
is debug or higher. Because the search for the optimal partitioning is compute intensive, once the parti-
tioning has been determined for a particular database, the range of the search should be restricted using
pfPartition::setAttr.

pfPartition::update causes the scene graph under the partition to be traversed and any changes incor-
porated into the spatial partitioning. The partitioning itself does not change.

pfPartition::setAttr sets the partition attribute attr to the attribute attr. Partition attributes are:

PFPART_MIN_SPACING
attr points to a pfVec3 specifying the minimum spacing between partition dividers in each
dimension. If not specified, the default is 1/20th of the bounding box diagonal. When a
partition is built, a search is made between PFPART_MAX_SPACING and
PFPART_MIN_SPACING.

PFPART_MAX_SPACING
attr points to a pfVec3 specifying the maximum spacing between partition dividers in each
dimension. If not specified, the default is 1/10th of the bounding box diagonal. When a
partition is built, a search is made between PEPART_MAX_SPACING and
PFPART_MIN_SPACING.

143

pfPartition(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

BUGS

PFPART_ORIGIN
attr points to a pfVec3 specifying an origin for the partition. If not specified, a search is
done to find an optimal origin.

pfPartition::getAttr returns the partition attribute attr.

pfPartition::setVal sets the partition value val to the value val. Partition values are:

PFPART_FINE
A value between 0.0 and 1.0 which indicates how fine of a partitioning should be con-
structed. The subdivision is limited by PFPART_MIN_SPACING adn
PFPART_MAX_SPACING. 1.0 causes extremely fine subdivision. 0.0 causes no subdivi-
sion. 0.5 is usually a good value and is the default.

pfPartition::getVal returns the partition value val.

A pfPartition behaves like a pfGroup when the mode in the pfSegSet used with pfNodelsectSegs
includes PFTRAV_IS_NO_PART.

pfPartitions are primarily useful for databases containing many axis-aligned objects for which bounding
spheres are a poor fit and when only one or two segments are made per call to pfNodelsectSegs. For
example, terrain following on gridded terrain is likely to benefit. For databases such as this which them-
selves have a regular grid, it is also important for performance that the origin and spacing of the partition
align exactly the terrain grid. pfPartitions do not currently help with the problem pfGeoSets containing
too much geometry.

The search for an optimal grid is very thorough so that it takes a very long time if the search domain is
large. Once a good partitioning for a database is determined, the PFPART_MIN_SPACING,
PFPART_MAX_SPACING and PFPART_ORIGIN can be set equal for much faster building.

Currently only partitionings in the XY plane are supported.

SEE ALSO

144

pfGroup, pfNode, pfNodelsectSegs, pfNotifyLevel, pfScene

IRIS Performer 2.0 libpf C++ Reference Pages pfPath(3pf)

NAME
pfPath, pfCullPath — Create, modify, and maintain a node path.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPath.h>

pfPath:pfPath();
static pfType * pfPath::getClassType(void);
int pfCullPath(pfPath *path, pfNode *node, int mode);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPath is derived from the parent class pfList, so each of these member func-
tions of class pfList are also directly usable with objects of class pfPath. This is also true for ancestor
classes of class pfList.

void pfList::add(void* elt);

void pfList:combine(const pfList *a, const pfList *b);
int pfList:fastRemove(void* elt);

void pfList:fastRemovelndex(int index);
void * pfList:get(int index);

const void ** pfList:getArray(void);

int pfList::getArrayLen(void);

int pfList::getEltSize(void);

int pfList:getNum(void);

void pfList::insert(int index, void* elt);
void pfList::move(int index, void *elt);
void pfList::setArrayLen(int len);

void pfList::setNum (int num);

int pfList::remove(void* elt);

void pfList::removelndex(int index);

int pfList::replace(void* old, void* new);
void pfList::reset(void);

int pfList::search(void* elt);

void pfList::set(int index, void *elt);

Since the class pfList is itself derived from the parent class pfObject, objects of class pfPath can also be

used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);

145

pfPath(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPath can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

146

A pfPath is a dynamically-sized array of pointers. A pfPath consisting of pfNode pointers can define a
specific path or chain of nodes through a scene graph.

new pfPath creates and returns a handle to a pfPath. pfPaths are usually allocated from shared memory.
The path element size is sizeof(void*) and the initial number of elements in the path is 4. pfPaths can be
deleted using pfDelete.

pfPath::getClassType returns the pfType* for the class pfPath. The pfType* returned by
pfPath::getClassType is the same as the pfType* returned by invoking the virtual function getType on

any instance of class pfPath. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfCullPath traverses and culls the chain of nodes specified in path, beginning at root. If path is NULL,
then root will be traversed in-order. If root is NULL, then the exact chain of nodes specified in path will be
traversed. If neither root nor path is NULL, then the paths traversed will be all paths emanating from root
which reach the first node in path and then continue down the nodes specified in path.

mode is a bitmask indicating which type of "switching" nodes (pfLOD, pfSequence, pfSwitch) to evaluate

IRIS Performer 2.0 libpf C++ Reference Pages pfPath(3pf)

and may be either:

PFPATH_IGNORE_SWITCHES
Do not evaluate any switches in the node path.

or else it is the bitwise OR of the following:

PFPATH_EVAL_LOD
Evaluate any pfLOD nodes in the node path.

PFPATH_EVAL_SEQUENCE
Evaluate any pfSequence nodes in the node path.

PFPATH_EVAL_SWITCH
Evaluate any pfSwitch nodes in the node path.

When an enabled switch node is encountered, traversal will terminate if the next node in the path is not
one selected by the switch. As a convenience, PFPATH_EVAL_SWITCHES is defined to enable all three
of these switchs (PFPATH_EVAL_LOD, PFPATH_EVAL_SWITCH, and PFPATH_EVAL_SEQUENCE).

Example 1: Path culling

scene
/ o\ \
|/ scs0 groupO
\ / \
swi tch0 geode?2
I\
/ \
geode0 geodel

path = new pf Pat h;

pat h- >add(swi t ch0);
pat h- >add(geodel) ;

/*
* In cull callback. This will cull the follow ng paths:

* scene -> switchO -> geodel
* scene -> scs0 -> switchO -> geodel

* Note that both path traversals will term nate at sw tchO
* if the pfSwitch’s switch value is not 1.

147

pfPath(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

*/
pf Cul | Pat h(path, scene, PFPATH EVAL_SW TCHES);

pfCullPath should only be called in the cull callback function set by pfChannel::setTravFunc. The
pfChannel passed to the cull callback will be used to traverse the path, that is its LOD attributes will affect
the pfLODs traversed and nodes will be culled to its viewing frustum.

SEE ALSO
pfChannel, pfCull, pfList

148

IRIS Performer 2.0 libpf C++ Reference Pages pfPipe(3pf)

NAME
pfPipe — Initialize and get window information for a pfPipe.

FUNCTION SPECIFICATION
#include <Performer/pf/pfPipe.h>

void pfPipe::getSize(int *xsize, int *ysize);

static pfType * pfPipe::getClassType(void);

void pfPipe::setScreen(int screen);

int pfPipe::getScreen(void);

int pfPipe::movePWin(pfPipeWindow *pwin);
pfPipeWindow * pfPipe::getPWin(int which);

void pfPipe::setSwapFunc(pfPipeSwapFuncType func);
pfPipeSwapFuncType pfPipe:getSwapFunc(void);

int pfPipe:getNumPWins(void);

int pfPipe::getNumChans(void);

pfChannel * pfPipe::getChan(int which);

/* pfPipe-specific types */
typedef void (*pfPi peFuncType) (pf Pi pe *p);
typedef void (*pfPi peSwapFuncType) (pf Pi pe *p, pfPi peW ndow *pw);

DESCRIPTION
A pfPipe is a software rendering pipeline which renders one or more pfChannels into one or more pfPi-
peWindows. A pfPipe can be configured as multiple processes for increased throughput on multiproces-
sor systems. Multiple pfPipes can operate in parallel in support of platforms with multiple graphics pipe-
lines. The number of pfPipes and the multiprocessing mode used are set by pfMultipipe and
pfMultiprocess respectively (see pfConfig).

A pfPipe references one or more pfPipeWindows which in turn reference one or more pfChannels. A
pfChannel is simply a view of a scene which is rendered into a viewport of a pfPipeWindow. A pfPi-

peWindow is a graphics window managed by its parent pfPipe.

pfPipes, pfPipeWindows, and pfChannels form a hierarchy with the following rules:

149

pfPipe(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

1. Ascreen (i.e. hardware graphics display) can have multiple pfPipes but should only have
one drawing to it

A pfPipe may only draw to one screen

A pfPipe may render to multiple pfPipeWindows

A pfPipeWindow belongs to a single fixed pfPipe and thus also to a single fixed screen
A pfPipeWindow may have multiple pfChannels

AL

A pfChannel always belongs to a pfPipe but may change pfPipeWindows or might not
belong to any pfPipeWindow. a channel not assigned to a pfPipeWindow is culled but not
drawn.

The following is an example pfPipe->pfPipeWindow->pfChannel configuration.

Example 1:

The screen:

har dwar e screen/ graphi cs pipeline

pf Channel 2 | |

pf Pi peW ndow0 | | I

150

IRIS Performer 2.0 libpf C++ Reference Pages

pfPipe(3pf)

The hi erarchy:

screenO

|
|

pfPiped -------mmmmiiiaa o

/ \
/ \
/ \
pf Pi peW ndow0 pf Pi peW ndowl
/ \ \
/ \ \

pf Channel 0 pf Channel 1 pf Channel 2 pf Channel 3
(not drawn)

The code: (in application process)

/* Calls that create the hierarchy: */

pf Pi pe *pi pe = pf Get Pi pe(0);
pf Pi peW ndow *pwi N0 = new pf Pi peW ndow(pi pe) ;
pf Pi peW ndow *pwi n1 = new pf Pi peW ndow(pi pe) ;

pf Channel *chanO new pf Channel (pi pe);
pf Channel *chanl new pf Channel (pi pe);
pf Channel *chan2 = new pf Channel (pi pe);

pwi n0- >addChan(chan0);
pwi n0- >addChan(chanl);
pwi nl->addChan(chan2);

/* Calls that cause the window to be opened at next

pw n0- >open() ;
pw nl->open();
pf Frane() ;

pf Franme()

*/

If a pfPipe has no windows at the time pfFrame is called, a full screen pfPipeWindow will be opened for

151

pfPipe(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

152

pipe and all pfChannels of pipe will be assigned to that pfPipeWindow.

pfPipe::getClassType returns the pfType* for the class pfPipe. The pfType* returned by
pfPipe::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfPipe. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfPipe::setScreen specifies the hardware screen, screen, (graphics pipeline) used for rendering by the
pfPipe, the pfPipe. The screen of the pfPipe may be specified in the application process before the call to
open or configure any pfPipeWindows (pfPipeWindow::open, pfPipeWindow::config) on the pfPipe, or
may be specified implicitly by the screen of the first opened pfPipeWindow. A pfPipe is tied to a specific
hardware pipeline and the screen of a pfPipe cannot be changed once determined. For single pipe opera-
tion, if the screen of a pfPipe or pfPipeWindow is never explicitly set in single pipe configuration, the
screen will be taken from the default screen of the current pfWSConnection, or current X Display. For
multipipe operation, if the screen of a pfPipe or pfPipeWindow is never explicitly set and pfMultipipe()
has been used to configure multiple pfPipes, then pfPipes will automatically be assigned to hardware
screens in order, i.e., pfGetPipe(0) -> screen 0, pfGetPipe(1) -> screen 1, etc. If a custom mapping of
pfPipes to screens is desired, the screens of all pfPipes must be specified before the configuration of the
first pfPipe which will happen at the first call to pfFrame. See the pfGetCurWSConnection reference
page for more details on how to manage X display connections.

pfPipe::setWSConnectionName allows you to specify both a window server target and screen for the
pfPipe. This is useful for doing remote rendering, or for running on a system with multiple window
servers. This call should be made in the application process, before the first call to pfFrame.
pfPipe::getWSConnectionName will return the current window server target name. A window server
target specified on a pfPipe will take precedence over any such targets specified on pfPipeWindows of
that pfPipe. If the window server target of a pfPipe has not been set, it may be implicitly set from the first
such setting on a child pfPipeWindow. The window server target of a pfPipe may not be changed after
the first call to pfFrame. See the pfGetCurWSConnection reference page for more details on how to
manage X display connections.

pfPipe::getScreen can be used to get the screen of a pfPipe. A return value of (-1) indicates that the
screen of the pfPipe is undefined. pfPipe::getSize returns the size of the screen used by the pfPipe.

For best performance only one pfPipe should render to a given hardware pipeline. If multiple views on a
single screen are desired, use multiple pfChannels, and if necessary, multiple pfPipeWindows.

Normally a pfPipe swaps the color buffers at the end of each frame. However, if special control is needed
over buffer swapping, pfPipe::setSwapFunc will register func as the buffer swapping function for the
pfPipe. Instead of swapping buffers, func will be called and will be expected to swap the color buffers of
the provided pfPipeWindow. pfPipe::getSwapFunc returns the buffer swapping function of the pfPipe
or NULL if none is set.

IRIS Performer 2.0 libpf C++ Reference Pages pfPipe(3pf)

If you wish to frame lock multiple pfPipes so that each pfPipe swaps its color buffers at the same time,
then you should create a channel group consisting of one or more pfChannels on each pfPipe and make
sure PFCHAN_SWAPBUFFERS is shared. In addition, separate hardware graphics pipelines *must* be
genlocked for proper frame-locking.

pfPipe::getPWin returns the pointer to the pfPipeWindow at the location specified by which in the pfPi-
peWindow list on the pfPipe.

pfPipe::getNumPWins returns the number of pfPipeWindows that have been created on the pfPipe.
pfPipe::getNumChans returns the number of pfChannels that have been created on the pfPipe.

pfPipe::movePWin moves the specified pfPipeWindow pwin to the location specified by where in the pfPi-
peWindow list on the pfPipe. The move includes removing pwin from its current location by moving up
the elements in the list that follow it and then inserting pwin into its new location. If pwin is attached to
the pfPipe, (-1) is returned and pwin is not inserted into the list. Otherwise, where is returned to indicate
success. where must be within the range [0 .. n] where n is the number returned by
pfPipe::getNumPWins(), or else (-1) is returned and no move is executed.

pfPipe::getChan returns the pointer to the pfChannel at location which in the list of pfChannels on the
pfPipe.

Example 2: How to frame lock pfPipes

| eft Chan = new pf Channel (pf Get Pi pe(0));
ri ght Chan = new pf Channel (pf Get Pi pe(1));

/* BPFCHAN_SWAPBUFFERS is shared by default */
| ef t Chan->at t ach(ri ght Chan);

/* Pipe 0 and pipe 1 are now frane-|ocked */

NOTES
pfPipes cannot be deleted.

SEE ALSO
pfChannel, pfConfig, pfMultipipe, pfMultiprocess, pfPipeWindow, pfGetCurWSConnection

153

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME
pfPipeWindow, pfInitGfx — Initialize and manipulate pfPipeWindows within a pfPipe

FUNCTION SPECIFICATION
#include <Performer/pf/pfPipeWindow.h>

pfPipeWindow::pfPipeWindow();
static pfType* pfPipeWindow:getClassType(void);

void pfPipeWindow::setAspect(int x, int y);

void pfPipeWindow::setConfigFunc(pfPWinFuncType func);
void pfPipeWindow::setFBConfig(XVisuallnfo* vi);

void pfPipeWindow::setFBConfigAttrs(int *attr);

void pfPipeWindow::setFBConfigData(void *data);

void pfPipeWindow::setFBConfigld(int id);

void pfPipeWindow::setFullScreen(void);

void pfPipeWindow::setGLCxt(pfGLContext gc);

void pfPipeWindow::setIndex(int index);

void pfPipeWindow::setMode(int mode, int val);

void pfPipeWindow::setName(const char *name);

void pfPipeWindow::setOrigin(int xo, int yo);

void pfPipeWindow::setOriginSize(int xo, int yo, int xs, int ys);
void pfPipeWindow::setOverlayWin(pfWindow *ow);

void pfPipeWindow::setScreen(int screen);

void pfPipeWindow::setShare(int mode);

void pfPipeWindow::setSize(int xs, int ys);

void pfPipeWindow::setStatsWin(pfWindow *sw);

void pfPipeWindow::setWSConnectionName(const char *name);
void pfPipeWindow::setWSDrawable(pfWSConnection dsp, pfWSDrawable gxw);
void pfPipeWindow::setWSWindow (pfWSConnection dsp, pfWSWindow wsw);
void pfPipeWindow::setWinList(pfList *wlist);

void pfPipeWindow:setWinType(uint type);

154

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

void pfPipeWindow::getAspect(int *x, int *y);
pfChannel* pfPipeWindow:getChan(int which);
int pfPipeWindow::getChanIndex(pfChannel *chan);
pfPWinFuncType
pfPipeWindow::getConfigFunc(void);
void pfPipeWindow::getCurOriginSize(int *xo, int *yo, int *xs, int *ys);
void pfPipeWindow::getCurScreenOriginSize(int *xo, int *yo, int *xs, int *ys);
pfState* pfPipeWindow::getCurState(void);
pfWSDrawable

pfPipeWindow::getCurWSDrawable(void);
XVisuallnfo* pfPipeWindow:getFBConfig(void);

int* pfPipeWindow::getFBConfigAttrs(void);
void* pfPipeWindow::getFBConfigData(void);
int pfPipeWindow::getFBConfigld(void);
pfGLContext pfPipeWindow::getGLCxt(void);

int pfPipeWindow::getIndex(void);

int pfPipeWindow::getMode(int mode);
const char* pfPipeWindow::getName(void);

int pfPipeWindow::getNumChans(void);
void pfPipeWindow::getOrigin(int *xo, int *yo);
pfWindow* pfPipeWindow::getOverlayWin(void);
pfPipe* pfPipeWindow::getPipe(void);

int pfPipeWindow::getPipeIndex(void);

int pfPipeWindow::getScreen(void);
pfWindow* pfPipeWindow::getSelect(void);

uint pfPipeWindow::getShare(void);

void pfPipeWindow::getSize(int *xs, int *ys);

pfWindow* pfPipeWindow::getStatsWin(void);
const char* pfPipeWindow::getWSConnectionName(void);

155

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

pfWSDrawable
pfPipeWindow::getWSDrawable(void);
Window pfPipeWindow:getWSWindow(void);
pfList* pfPipeWindow::getWinList(void);
uint pfPipeWindow::getWinType(void);
int pfPipeWindow::attach(pfPipeWindow *pw);
int pfPipeWindow::attachWin(pfWindow *w);
int pfPipeWindow:detach(pfPipeWindow *pw);
int pfPipeWindow::detachWin(pfWindow *w);
pfFBConfig pfPipeWindow::chooseFBConfig(pfWSConnection dsp, int screen, int *attr);
void pfPipeWindow::close(void);
void pfPipeWindow::closeGL(void);
void pfPipeWindow::config(void);
int pfPipeWindow:isOpen(void);
int pfPipeWindow::mQuery(int *which, int *dst);
void pfPipeWindow::open(void);
int pfPipeWindow::query(int which, int *dst);
pfWindow* pfPipeWindow::select(void);
void pfPipeWindow::swapBuffers(void);
void pfPipeWindow::addChan(pfChannel *chan);
void pfPipeWindow:insertChan(int where, pfChannel *chan);
void pfPipeWindow:: moveChan(int where, pfChannel *chan);
void pfPipeWindow::removeChan(pfChannel *chan);

externvoid pfInitGfx(void);

/* pfPi peW ndow specific types */
typedef void (*pfPW nFuncType) (pf Pi peW ndow *pw) ;

/* X-Wndow system based Perforner types */

typedef Display *pf WeConnect i on;
typedef XVisuallnfo pf FBConfi g;
typedef W ndow pf WBW ndow,
typedef Drawabl e pf WEDr awabl e;

156

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

#ifdef IR SGL

typedef int pf GLCont ext ;
#el se /* OPENGL */

t ypedef G.XCont ext pf GLCont ext ;
#endi f

PARENT CLASS FUNCTIONS
The IRIS Performer class pfPipeWindow is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfPipeWindow. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfPipeWindow
can also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory:copy(pfMemory *src);
int pfMemory:compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS

pwin identifies a pfPipeWindow.
dsp identifies a pfWSConnection.

157

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

wsw identifies a pfWSWindow.
gxw identifies a pfWSDrawable.
gc identifies a pfGLContext.

DESCRIPTION

158

IRIS Performer programs render a pfChannel to a pfPipeWindow of the same parent pfPipe. Multiple
pfPipeWindows can be open on a single pfPipe. A pfPipe and all of its windows have the same screen, or
hardware graphics pipeline. By default, pfChannels are assigned to the first pfPipeWindow of a pfPipe.
pfChannels can be removed from the pfPipeWindow and assigned to other pfPipeWindows. pfPipeWin-
dows can be opened/closed and created at any time. Refer to the pfPipe reference page for more infor-
mation on how pfPipeWindows fit into the hierarchy of pfPipes, pfPipeWindows, and pfChannels.

pfPipeWindows are similar to pfWindows but are tracked /maintained by libpf and are needed by libpf to
draw pfChannels. Because of their similarity, many of the pfPipeWindow routines are identical to pfWin-
dow routines accept for the fact that the pfPWin<*> routines operate on a pfPipeWindow and the
pfWin<*> routines operate on a pfWindow. These corresponding routines are listed in the table below
and their functionality is documented in the pfWindow reference page.

IRIS Performer 2.0 libpf C++ Reference Pages

pfPipeWindow(3pf)

pfPipeWindow routine pfWindow routine
pfPWinAspect pfWinAspect
pfPWinFBConfig pfWinFBConfig
pfPWinFBConfigAttrs pfWinFBConfigAttrs
pfPWinFBConfigData pfWinFBConfigData
pfPWinFBConfigld pfWinFBConfigld
pfPWinFullScreen pfWinFullScreen
pfPWinGLCxt pfWinGLCxt
pfPWinIndex pfWinIndex
pfPWinMode pfWinMode
pfPWinName pfWinName
pfPWinOrigin pfWinOrigin
pfPWinOriginSize pfWinOriginSize
pfPWinOverlayWin pfWinOverlayWin
pfPWinScreen pfWinScreen
pfPWinShare pfWinShare
pfPWinSize pfWinSize
pfPWinStatsWin pfWinStatsWin
pfPWinWSConnectionName pfWinWSConnectionName
pfPWinWSDrawable pfWinWSDrawable
pfPWinWSWindow pfWinWSWindow
pfGetPWinAspect pfGetWinAspect

pfGetPWinCurOriginSize
pfGetPWinCurScreenOriginSize
pfGetPWinCurState
pfGetPWinCurWSDrawable
pfGetPWinFBConfig
pfGetPWinFBConfigAttrs
pfGetPWinFBConfigData
pfGetPWinFBConfigld
pfGetPWinGLCxt
pfGetPWinIndex
pfGetPWinList
pfGetPWinMode
pfGetPWinName
pfGetPWinOrigin
pfGetPWinOverlayWin
pfGetPWinScreen
pfGetPWinSelect
pfGetPWinShare
pfGetPWinSize

pfGetWinCurOriginSize
pfGetWinCurScreenOriginSize
pfGetWinCurState
pfGetWinCurWSDrawable
pfGetWinFBConfig
pfGetWinFBConfigAttrs
pfGetWinFBConfigData
pfGetWinFBConfigld
pfGetWinGLCxt
pfGetWinIndex
pfGetWinList
pfGetWinMode
pfGetWinName
pfGetWinOrigin
pfGetWinOverlayWin
pfGetWinScreen
pfGetWinSelect
pfGetWinShare
pfGetWinSize

159

pfPipeWindow(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

160

pfPipeWindow routine pfWindow routine
pfGetPWinStatsWin pfGetWinStatsWin
pfGetPWinType pfGetWinType
pfGetPWinWSConnectionName | pfGetWinWSConnectionName
pfGetPWinWSDrawable pfGetWinWSDrawable
pfGetPWinWSWindow pfGetWinWSWindow
pfChoosePWinFBConfig pfChooseWinFBConfig
pfAttachPWin pfAttachWin
pfSelectPWin pfSelectWin
pfSwapPWinBuffers pfSwapWinBuffers
pfIsPWinOpen pfIsWinOpen
pfQueryPWin pfQueryWin
pfMQueryPWin pfMQueryWin

pfPipeWindow::new creates and returns a handle to a pfPipeWindow on the screen managed by pipe.
Like other pfUpdatables, pfPipeWindows are always allocated from shared memory. new pfPipeWin-
dow creates and returns a handle to a pfPipeWindow. Like other pfUpdatables, pfPipeWindows are
always allocated from shared memory and cannot be created statically, on the stack or in arrays. The
pipe of a pfPipeWindow cannot be changed. pfGetPWinPipe returns a pointer to the pfPipe of pwin.
Like other pfObjects, pfPipeWindows must be created in the application process.

pfPipeWindow::getClassType returns the pfType* for the class pfPipeWindow. The pfType* returned
by pfPipeWindow::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfPipeWindow. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member
function isOfType to test if an object is of a type derived from a Performer type rather than to test for
strict equality of the pfType*’s.

pfWindow::setFBConfigld allows you to directly set the OpenGL X visual id to be used in configuring
the resulting OpenGL/X window. pfWindow::getFBConfigld will return the current OpenGL visual id
of the window (or -1 if the id is not known, or if running under IRIS GL). This routine is useful in mul-
tiprocess operation if you want to be able to directly specify the framebuffer configuration of an X win-
dow in the application process. See the XVisualIDFromVisual(3X11) and XGetVisualInfo(3X11) refer-
ence pages for more information about X visuals. This functionality is not supported under IRIS GL
operation.

pfPipeWindow::setscreen will set the screen of the pfPipeWindow and on the parent pfPipe. Once set,
the screen cannot be changed. If the screen of the parent pfPipe had already been set when the pfPi-
peWindow was created, the pfPipeWindow will inherit that screen setting and will not accept another.

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

The pfPipeWindow will direct all rendering comments to the hardware graphics pipeline specified by
screen. As with pfWindows, if a screen is never set, the default screen of the current window system con-
nection will be set as the screen when the window is opened with pfPipeWindow::open.
pfPipeWindow::getScreen will return the screen of the pfPipeWindow. If the screen has not yet been set,
(-1) will be returned. See the pfGetCurWSConnection reference page for more information on the
specification of a default screen. See the pfPipe::setScreen reference page for special restrictions and
proper specification of pfPipe and pfPipeWindow screens in multipipe configurations.

pfPipeWindow::setWSConnectionName allows you to specify the exact window server and default
screen for the successive opening of the window. This can be used for specifying remote displays or on
machines running more than one window server. pfPipeWindow::getWSConnectionName will return
the name specifying the current window server target. As with the setting of screens, a window server
target specified on a pfPipe will take precedence over a target set on a pfPipeWindow. If a window server
target is not specified for the parent pfPipe of a pfPipeWindow, the parent pfPipe will inherit the window
setting. Because of these restrictions, this routine must be called in the application process, before the
first call to pfFrame. See the pfPipe::setScreen reference page for special restrictions and proper
specification of pfPipe and pfPipeWindow screens in multipipe configurations.

pfPipeWindow::getIndex returns the index of the pfPipeWindow in the pfPipeWindow list of the parent
pfPipe.

pfChannels are assigned to a pfPipeWindow upon their creation. pfPipeWindows also have list-style API
for adding, removing, inserting, and reordering pfChannels on a pfPipeWindow:
pfPipeWindow::addChan will append chan as the last pfChannel of the pfPipeWindow.
pfPipeWindow:insertChan will insert chan as the whereth pfChannel of the pfPipeWindow.
pfPipeWindow:: moveChan will move chan from its current position in the pfChannel list of the pfPi-
peWindow to position where. If chan does not belong to the pfPipeWindow, no action is taken and an
error flag of (-1) is returned; otherwise, where is returned. pfPipeWindow::removeChan will remove chan
from the pfPipeWindow. If chan does not belong to the pfPipeWindow, no action is done and an error
flag of (-1) is returned. Otherwise, the previous index of chan is returned. pfPipeWindow::getChan
returns a pointer to the indexth pfChannel of the pfPipeWindow. pfPipeWindow::getNumChans returns
the number of pfChannels attached to the pfPipeWindow. pfPipeWindow::getChanIndex returns the
index of the chan in the channel list, or (-1) if the pfChannel is not attached to the pfPipeWindow.

pfPipeWindow::close can be called from the application process to close a window. However, if addi-
tional draw process work is needed to be done, a pfPipeWindow::config draw process callback should be
used.

pfPipeWindow::config, called from the application process, will trigger the configuration callback func-

tion to be called in the draw process for the current frame. If no user configuration callback function has
been specified, a default configuration function will be called that will open and initialize the pfPipeWin-
dow. pfPipeWindow::setConfigFunc, called from the application process, specifies a draw process call-
back function, func, to configure the pfPipeWindow. The configure function can be used to make draw

161

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

162

process calls to open, initialize, and close pfPipeWindows. In this window configuration callback func-
tion pfPipeWindow::open can be called on the pfPipeWindow, or an IRIS GL or OpenGL window can be
created and assigned to the pfPipeWindow. pfGetPWinConfigFunc returns the pointer to the user-
specified window configuration callback function, or NULL of no such function has been set.

pfPipeWindow::open will cause the pfPipeWindow to be opened and initialized via pfInitGfx. If called
from the application process, the pfPipeWindow will be automatically opened in the draw process for the
corresponding frame. If called in the draw process, the pfPipeWindow will be opened automatically.
Similarly, pfPipeWindow::close and pfPipeWindow::closeGL can be called from either the application
process or the draw process and will cause the the pfPipeWindow or the graphics context, respectively, to
be closed in the draw process for the given frame. If application specific work needs to be done in the
draw process for manipulating pfPipeWindows, pfPipeWindow::config should be used.

IRIS Performer automatically calls pfInitGfx for windows that it creates and opens. For pfPipeWindows,
pfInitGfx does the same operations as for pfWindows, and in addition, will apply a default material and
a default MODULATE texture environment (pfTexEnv::apply), and enable backface culling (pfCullFace(-
PFCF_BACK)).

pfPipeWindow::setWinList can be used to specify a pfList of pfWindows, wlist, that can draw into a sin-
gle pfPipeWindow. This enables a pfPipeWindow to maintain a list of alternate framebuffer
configurations for the base pfPipeWindow. A pfPipeWindow always maintains a default main graphics
pfWindow and a pfWindow list. Two of the windows in this list are so commonly needed that they have
special names and can be created automatically for the user: OVERLAY and STATS. The user can also
add his own pfWindows to the pfWindow list for additional configurations. This list may only hold
pfWindows, NOT pfPipeWindows. With window lists, we have an effective pfWindow hierarchy of:
screen->pfPipe->pfPipeWindow|[graphics, stats, overlay, ...]->pfChannel(s). See the pfWinList reference
page for more information on these alternate framebuffer configuration windows.

pfPipeWindow::setIndex selects pfWindow index from the alternate configuration window list to be the
current pfWindow the pfPipeWindow shall render to. All the pfChannels attached to the pfPipeWindow
will automatically be drawn into this current pfWindow. See pfWindow::setIndex for more details of
this operation. pfPipeWindow::getIndex will return the current index of the pfPipeWindow.

pfPipeWindow::setWinType sets the type of a pfPipeWindow where type is an or-ed bitmask that may
contain the type constants listed below. pfPipeWindow::getWinType returns the type of a pfPipeWin-
dow. A change in the type of a pfPipeWindow takes effect upon the call to pfPipeWindow::open. The
type of an open pfPipeWindow cannot be changed. The pfWindow type attributes all start with
PFPWIN_TYPE_and are:

PFPWIN_TYPE_X
has identical characteristics to the PFWIN_TYPE_X specification for pfWindows. See the
pfWindow::setType reference page for more information.

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

PFPWIN_TYPE_SHARE
Specifies that this window should be automatically attached to the first pfPipeWindow
on the parent pfPipe. See the pfWindow::attach reference page for more details.

PFPWIN_TYPE_STATS
has identical characteristics to the PFWIN_TYPE_STATS specification for pfWindows.
See the pfWindow::setType reference page for more information.
Note that the pfWindow type settings of PFWIN_TYPE_NOPORT and PFWIN_TYPE_OVERLAY are
not supported for pfPipeWindows. pfPipeWindow::getWinType will return the type of the pfPipeWin-
dow.

EXAMPLES
The following is an example of basic pfPipeWindow creation:

{ /* in the application process after pfConfig() */
pf Pi peW ndow * pw;
pw = new pf Pi peW ndow(pf Get Pi pe(0));
pw >set Name(" Pi peWn");
pw >set Ori gi nSi ze(0, 0, 500, 500);
pw >set W nType(PFPW N_TYPE_X) ;
pw->open() ;
/* set off the draw process to open w ndow */
pf Franme();

If special draw process operations are to be done with the opening of the window, a pfConfigPWin call-
back function should be used.

{

/* in the application process pfPipeWndow init callback */
pw >set Conf i gFunc(OpenPi peW n) ;
/* trigger the draw process to call the config callback
* for this frane
*/
pw >config();
}
/* in the draw process pfPi peWndow init callback */
voi d OpenPi peW n(pf Pi peW ndow * pw)
{
pw >open() ;
/* do other application specific draw process work,
* such as downl oadi ng scene textures, displaying
* wel cone nessages, etc.

163

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

*/

The following is an example that shows the creation of multiple pfPipeWindows for a single pfPipe and
the assignment of pfChannels to the different windows:

{

pf Channel *chan[MAX_CHANS] ;
pf Pi peW ndow *pwi n[MAX_PW NS ;
pf Pi pe *p = pf Get Pi pe(0);

for (int l1oop=0; loop < NumA ns; | oop++)

{
pf Pi peW ndow * pw,
char str[PF_MAXSTRI NG ;
pwi n[| oop] = new pf Pi peW ndow p);
sprintf(str, "IRIS Performer - Wn %", |oop);
pwi n[| oop] - >set Nane(str);
pwi n[| oop] - >set Ori gi nSi ze((| oop&0x1)*315, ((I oop&Ox2)>>1)*340, 300, 300);
pwi n[| oop] - >set Confi gFunc(OpenPi peW n) ;
pwi n[| oop] - >config();
}

/* Create and configure a pfChannel for each pfPi peWndow. */
for (int 1oop=0; loop < NumA ns; | oop++)
{

chan[| oop] = new pf Channel (p);

pwi n[| oop] - >addChan(chan[| oop]);

/* set off the draw process */
pf Frane() ;

pfOpenPWin and pfClosePWin can both be called from the application process, or from the draw pro-
cess. The following example demonstrates using pfConfigPWin to close a pfPipeWindow:

{

164

/* in the application process specify a close config func */
pf PW nConf i gFunc(pw, Cl osePi peW n) ;
pf Conf i gPW n(pw) ;

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

/* in the draw process pfPipeWndow init callback */
voi d d osePi peW n(pf Pi peW ndow * pw)
{
pf O osePW n(pw);
/* do other application specific draw process calls */

The following example demonstrates using pfConfigPWin to close a pfPipeWindow:

{
/* in the application process specify a close config func */
pw >set Confi gFunc(d osePi peWn) ;
pw->config();

}

/* in the draw process pfPi peWndow init callback */
voi d d osePi peW n(pf Pi peW ndow * pw)
{
pw >cl ose();
/* do other application specific draw process calls */

NOTES
pfPipeWindows handle the multiprocessing details of IRIS Performer applications for pfWindows. pfPi-
peWindows must be created in the application process. However, with some minor exceptions, pfPi-
peWindows may be configured, opened, closed, and edited in either the application process or draw pro-
cess. Typically, a pfPipeWindow is created and configured in the application process. Custom graphics
state is initialized in a pfPipeWindow::setConfigFunc callback function. The pfPipeWindow of a channel
or a channel’s position in a pfPipeWindow list may only be modified in the application process. The
specification of the current drawing window with pfPipeWindow::select must be done in the drawing
process. Explicit specification of the pfGLContext or pfFBConfig must be done in the drawing process.
pfPipeWindow queries are also best done in the draw process as the query may have to access the graph-
ics context to provide the requested information.

165

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

The following table shows from which process pfPipeWindow routines may be called.

pfPipeWindow routine Application Process | Draw Process
pfNewPWin Yes No
pfPWinAspect Yes Yes
pfPWinConfigFunc Yes No
pfPWinFBConfig Yes No
pfPWinFBConfigAttrs Yes Yes
pfPWinFBConfigData No Yes
pfPWinFBConfigld Yes Yes
pfPWinFullScreen Yes Yes
pfPWinGLCxt No Yes
pfPWinIndex Yes Yes
pfPWinList Yes Yes
pfPWinMode Yes Yes
pfPWinName Yes Yes
pfPWinOrigin Yes Yes
pfPWinOriginSize Yes Yes
pfPWinOverlayWin Yes Yes
pfPWinScreen Yes Yes
pfPWinShare Yes Yes
pfPWinSize Yes Yes
pfPWinStatsWin Yes Yes
pfPWinType Yes Yes
pfPWinWSConnectionName | Yes No
pfPWinWSDrawable Yes Yes
pfPWinWSWindow Yes Yes

166

IRIS Performer 2.0 libpf C++ Reference Pages pfPipeWindow(3pf)

BUGS

pfPipeWindow routine | Application Process | Draw Process
pfAttachPWin Yes Yes
pfClosePWin Yes Yes
pfClosePWinGL Yes Yes
pfConfigPWin Yes Yes
pfOpenPWin Yes Yes
pfIsPWinOpen Yes Yes
pfMQueryPWin No Yes
pfQueryPWin No Yes
pfChoosePWinFBConfig | No Yes
pfSelectPWin No Yes
pfSwapPWinBuffers No Yes
pfGetNumChans Yes Yes
pfAddChan Yes No
pfGetChan Yes Yes
pfInsertChan Yes No
pfMoveChan Yes No
pfRemoveChan Yes No

Note that whenever any pfObjects are given to a pfPipeWindow, such as pfPipeWindow::setWinList, the
data must be valid for access by the graphics process. This data, such as pfLists and pfWindows, should
always be allocated from shared memory. Structures provided by X, such as that returned by
pfPipeWindow::chooseFBConfig, or pfChooseFBConfig, will not have been allocated in shared memory.
Therefore, those routines must be called from the draw process. Under OpenGL operation,
pfWindow::setFBConfigld can be used to set the framebuffer configuration of an X window in the appli-
cation proceess.

pfPipeWindows support windows in the multiprocessed libpf environment and are the glue between
pfChannels and pfPipes. There are times when you might want to use pfWindows, instead of pfPipeWin-
dows, even in a libpf application. For example, popping up a simple dialog window in the draw process
should use pfWindows and not pfPipeWindows. Additionally, if you want to maintain alternate win-
dows with different visual (framebuffer) configurations for your pfPipeWindow, you use pfWindows
that are alternate framebuffer configurations for the base pfPipeWindow. The PFWIN_STATS_WIN,
PFWIN_OVERLAY_WIN, and other pfPWinList windows must themselves be pfWindows and not pfPi-
peWindows. See the pfPWinList routine below and the pfWindow man page for more information.

pfPipeWindows cannot be deleted.

167

pfPipeWindow(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

SEE ALSO
pfChannel, pfPipe, pfWindow, pfGetCurWSConnection, XGetVisuallnfo, XVisuallDFromVisual

168

IRIS Performer 2.0 libpf C++ Reference Pages pfSCS(3pf)

NAME

pfSCS — Create and get matrix for a static coordinate system node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSCS.h>

pfSCS::pfSCS(pfMatrix mat);
static pfType * pfSCS::getClassType(void);
pfSCS::getMat(pfMatrix &mat);

void

const pfMatrix*

int pfGroup::
int pfGroup::
int pfGroup::
int pfGroup::
int pfGroup::
pfNode * pfGroup::

pfSCS::getMatPtr(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSCS is derived from the parent class pfGroup, so each of these member func-
tions of class pfGroup are also directly usable with objects of class pfSCS. This is also true for ancestor
classes of class pfGroup.

addChild(pfNode *child);

insertChild(int index, pfNode *child);
replaceChild(pfNode *old, pfNode *new);
removeChild(pfNode* child);
searchChild(pfNode* child);

getChild(int index);

int pfGroup::getNumChildren(void);
int pfGroup::bufferAddChild(pfNode *child);
int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSCS can also be
used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode:
pfNode:

getParent(int i);
getNumParents(void);
setBound(pfSphere *bsph, int mode);
getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);
flatten(int mode);

setName(const char *name);

:getName(void);
:find(const char *pathName, pfType *type);

169

pfSCS(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

pfNode* pfNode::lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode:getTravMask(int which);

void pfNode::setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode:getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode::getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSCS can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject:getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSCS can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

170

A pfSCS node represents a static coordinate system -- a modeling transform that cannot be changed once
created. pfSCS nodes are similar to but less flexible than pfDCS nodes. What they lack in changeability
they make up in performance.

new pfSCS creates and returns a handle to a pfSCS. Like other pfNodes, pfSCSes are always allocated

IRIS Performer 2.0 libpf C++ Reference Pages pfSCS(3pf)

from shared memory and cannot be created statically, on the stack or in arrays. pfSCSes should be
deleted using pfDelete rather than the delete operator.

new pfSCS creates a pfSCS using mat as the transformation matrix.

By default a pfSCS uses a dynamic bounding volume so it is automatically updated when children are
added, deleted or changed. This behavior may be changed using pfNode::setBound. The bound for a
pfSCS encompasses all B(i)*mat, where B(i) is the bound for the child i” and mat is the transformation
matrix of the pfSCS.

pfSCS::getClassType returns the pfType* for the class pfSCS. The pfType* returned by
pfSCS::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfSCS. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

The transformation of a pfSCS affects all its children. As the hierarchy is traversed from top to bottom,
each new matrix is pre-multiplied to create the new transformation. For example, if SCSb is below SCSa
in the scene graph, any geometry G below SCSa is transformed as G*SCSb*SCSa.

Static transformations represented by pfSCSes may be 'flattened’ in a pre-processing step for improved
intersection, culling, and drawing performance. pfNode::flatten accumulates transformations in a scene
graph, applies them to geometry, and sets flattened pfSCSes to the identity matrix. Flattening is recom-
mended when available memory and scene graph structure allow it. See pfNode for more details.

pfSCS::getMat copies the transformation matrix for the pfSCS into mat. For faster matrix access,
pfSCS::getMatPtr returns a const pointer to the pfSCS’s matrix.

Both pre and post CULL and DRAW callbacks attached to a pfSCS (pfNode::setTravFuncs) will be
affected by the transformation represented by the pfSCS, i.e. - the pfSCS matrix will already have been
applied to the matrix stack before the pre callback is called and will be popped only after the post callback
is called.

SEE ALSO
pfGroup, pfMatrix, pfNode, pfTraverser, pfDelete

171

pfScene(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NAME
pfScene — Create a scene or root node, set and get scene pfGeoState or pfGeoState index.

FUNCTION SPECIFICATION
#include <Performer/pf/pfScene.h>

pfScene::pfScene();
static pfType * pfScene::getClassType(void);

void pfScene::setGState(pfGeoState *gstate);
pfGeoState * pfScene::getGState(void);

void pfScene:setGStateIndex(int index);

int pfScene::getGStateIndex(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfScene is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfScene. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);

int pfGroup:insertChild(int index, pfNode *child);

int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild (pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfScene can also be
used with these functions designed for objects of class pfNode.

pfGroup * pfNode:getParent(int i);

int pfNode:getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode:getBound(pfSphere *bsph);

pfNode* pfNode::clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);
int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

172

IRIS Performer 2.0 libpf C++ Reference Pages pfScene(3pf)

const char *
pfNode*
pfNode*
int

void

uint

void

void

void

void *

pfNode::getName(void);

pfNode:find(const char *pathName, pfType *type);

pfNode:lookup(const char *name, pfType* type);

pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);
pfNode::getTravMask(int which);

pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
pfNode::setTravData(int which, void *data);

pfNode:getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfScene can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfScene can
also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int
const char *
int

int

void

int
void*
int

int

int
ushort
int

void *
int

pfMemory:getData(const void *ptr);
pfMemory::getType();
pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfType *type);
pfMemory::getTypeName();
pfMemory:copy(pfMemory *src);
pfMemory:compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);
pfMemory::getArena();

pfMemory::ref();

pfMemory::unref();
pfMemory::unrefDelete();
pfMemory::getRef();
pfMemory::checkDelete();
pfMemory::getArena();

pfMemory::getSize();

173

pfScene(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

PARAMETERS

gstate identifies a pfGeoState.

DESCRIPTION

174

A pfScene is the root of a hierarchical database which may be drawn or intersected with. pfScene is
derived from pfGroup so it can use pfGroup and pfNode APIL. A pfScene may have children like a
pfGroup but it cannot be a child of another node. Its special purpose is to serve as the root node of a scene
graph.

new pfScene creates and returns a handle to a pfScene. Like other pfNodes, pfTexts are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfScenes should be
deleted using pfDelete rather than the delete operator.

pfScene::getClassType returns the pfType* for the class pfScene. The pfType* returned by
pfScene::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfScene. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

IRIS Performer will automatically carry out the APP, CULL, and DRAW traversals on pfScenes which are
attached to pfChannels by pfChanScene. The CULL and DRAW traversals are directly or indirectly trig-
gered by pfFrame while the APP traversal is triggered by pfAppFrame.

Multiple pfChannels may reference the same pfScene but each pfChannel references only a single
pfScene.

pfScene::setGState attaches gstate to the pfScene. The pfGeoState of a pfScene defines the "global state"
which may be inherited by other pfGeoStates. This state inheritance mechanism is further described in the
pfGeoState man page.

The scene pfGeoState is defined as the global state by pfGeoState::load. This pfGeoState will be loaded
before the pfChannel DRAW callback (pfChannel::setTravFunc) is invoked so any custom rendering in
the callback will inherit the state set by the scene pfGeoState. pfScene::getGState returns the directly
referenced pfGeoState of the pfScene or the appropriate pfGeoState in the global table if the pfScene
indexes its pfGeoState or NULL if the index cannot be resolved.

The scene pfGeoState may be indexed through a global table by assigning an index with
pfScene::setGStateIndex and specifying the table with pfGeoState::applyTable. Usually this table is pro-
vided by the pfChannel (pfChannel::setGStateTable). pfScene::getGStateIndex returns the pfGeoState
index of the pfScene or -1 if the pfScene directly references its pfGeoState.

It is not necessary to provide a scene pfGeoState, but it is a convenient way to specify the default

IRIS Performer 2.0 libpf C++ Reference Pages pfScene(3pf)

inheritable values for all pfGeoState elements on a per-scene basis.

SEE ALSO
pfChannel, pfGeoState, pfGroup, pfDelete

175

pfSequence(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfSequence — Control animation sequence nodes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSequence h>

pfSequence:pfSequence();
static pfType * pfSequence::getClassType(void);
void pfSequence::setTime(int frame, double time);
double pfSequence::getTime(int frame);
void pfSequence::setInterval(int mode, int begin, int end);
void pfSequence::getInterval(int *mode, int *begin, int *end);
void pfSequence::setDuration(float speed, int nReps);
void pfSequence::getDuration(float *speed, int *nReps);
void pfSequence::setMode(int mode);
int pfSequence::getMode(void);
int pfSequence::getFrame(int *repeat);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSequence is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfSequence. This is also true for
ancestor classes of class pfGroup.

176

int pfGroup::addChild(pfNode *child);

int pfGroup:insertChild(int index, pfNode *child);

int pfGroup::replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild (pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSequence can
also be used with these functions designed for objects of class pfNode.

pfGroup * pfNode:getParent(int i);

IRIS Performer 2.0 libpf C++ Reference Pages pfSequence(3pf)

int pfNode:getNumParents(void);
void pfNode::setBound(pfSphere *bsph, int mode);
int pfNode:getBound(pfSphere *bsph);

pfNode* pfNode:clone(int mode);

pfNode* pfNode::bufferClone(int mode, pfBuffer *buf);

int pfNode::flatten(int mode);

int pfNode::setName(const char *name);

const char * pfNode:getName(void);

pfNode* pfNode:find(const char *pathName, pfType *type);
pfNode* pfNode:lookup(const char *name, pfType* type);

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode:setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode::getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode:getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSequence can
also be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSequence can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);

pfType * pfMemory::getType();

int pfMemory::isOfType(pfType *type);

int pfMemory::isExactType(pfType *type);

const char * pfMemory:getTypeName();

int pfMemory:copy(pfMemory *src);

int pfMemory:compare(const pfMemory *mem);
void pfMemory:print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);

void* pfMemory::getArena();

int pfMemory::ref();

177

pfSequence(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory::getRef();

int pfMemory::checkDelete();

void * pfMemory:getArena();

int pfMemory::getSize();
DESCRIPTION

178

A pfSequence is a pfGroup that sequences through a range of its children, drawing each child for a certain
length of time. Its primary use is for animations, where a sequence of objects or geometry (children)
represent a desired visual event. new pfSequence creates and returns a handle to a pfSequence. Like
other pfNodes, pfSequences are always allocated from shared memory and cannot be created statically,
on the stack or in arrays. pfSequences should be deleted using pfDelete rather than the delete operator.

pfSequence::getClassType returns the pfType* for the class pfSequence. The pfType* returned by
pfSequence::getClassType is the same as the pfType* returned by invoking the virtual function getType
on any instance of class pfSequence. Because IRIS Performer allows subclassing of built-in types, when
decisions are made based on the type of an object, it is usually better to use the member function
isOfType to test if an object is of a type derived from a Performer type rather than to test for strict equal-
ity of the pfType*’s.

Children are added to a pfSequence using normal pfGroup API (pfGroup::addChild). The length of time
that a child is drawn is specified by pfSequence::setTime. frame is the index of a child that should be
drawn for time seconds. If frame < 0, then all children will be displayed for time seconds. If time = 0.0 or
time is not specified for a particular child, then it will not be drawn at all. If time < 0.0 the sequence will
pause at child frame and draw it repeatedly until the sequence is resumed or stopped (see
pfSequence::setMode below). pfSequence::getTime returns the time for frame frame.

pfSequence::setInterval specifies the interval or range of frames (children) to sequence. begin and end
specify the beginning and ending indexes of the pfSequence respectively. Indexes are inclusive and
should be in the range 0, numChildren - 1. An index < 0 is equivalent to numChildren - 1 for conveni-
ence. end may be less than begin for reverse sequences. The default sequence interval is 0, numChildren -
1.

mode specifies how seq is sequenced over the range from begin to end if it is a repeating sequence.

PFSEQ_CYCLE
seq will go from begin to end then restart at begin.

PFSEQ_SWING
seq will go back and forth from begin to end. The endpoint frames are drawn only once
when the swing changes directions.

The default mode is PFSEQ_CYCLE. pfSequence::getInterval copies the interval parameters into mode,
begin, and end.

IRIS Performer 2.0 libpf C++ Reference Pages pfSequence(3pf)

pfSequence::setDuration controls the duration of an sequence. speed divides the time that each sequence
frame is displayed. Values < 1.0 slow down the sequence while values > 1.0 speed up the sequence. The
default speed is 1.0. nReps is the number of times seq repeats before stopping. If nReps is < 0, seq will
sequence indefinitely and if == 0 the sequence is disabled. If nReps is > 1, seq will sequence for nReps
cycles or swings depending on the sequencing mode set by pfSequence::setInterval.

The number of repetitions for both PFSEQ_CYCLE and PFSEQ_SWING is increased by 1 every time an
endpoint of the sequence is reached. Therefore PFSEQ_CYCLE begins to repeat itself after 1 repetition
while PFSEQ_SWING repeats itself after 2 repetitions. Note that for 1 repetition, both modes are
equivalent.

The default value for nReps is 1. pfSequence::getDuration copies the duration parameters into speed and
nReps.

pfSequence::setMode controls the run-time execution of the pfSequence. mode is a symbolic token:

PFSEQ_START
Restarts the sequence from its beginning. Once started, a sequence may be stopped,
paused, or started again in which case it is restarted from its beginning.

PFSEQ_STOP
Stops the sequence. After an sequence is stopped, it is reset so that further executions of the
sequence begin from the starting index.

PFSEQ_PAUSE
Pauses the sequence without resetting it. When paused, the current child will be drawn
until the sequence is either stopped or resumed.

PFSEQ_RESUME
Resumes a paused sequence.

Sequences are evaluated once per frame by pfAppFrame. The time used in the evaluation is that set by
pfFrameTimeStamp. This time is automatically set by pfFrame but it may be overridden by the applica-
tion to account for varying latency due to non-constant frame rates.

pfSequence::getMode returns the mode of the pfSequence. The mode will automatically be set to
PFSEQ_STOP if the sequence completes the number of repetitions set by pfSequence::setDuration.

pfSequence::getFrame returns the index of the child which the pfSequence is currently drawing and also
copies the number of repetitions it has completed into repeat.

SEE ALSO
pfAppFrame, pfFrame, pfFrameTimeStamp, pfGroup, pfNode, pfDelete

179

pfSwitch(3pf)

IRIS Performer 2.0 libpf C++ Reference Pages

NAME

pfSwitch — Create, modify, and query a switch node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfSwitch.h>

pfSwitch::pfSwitch();

static pfType * pfSwitch::getClassType(void);

int

int

pfSwitch::isetVal(int val);
pfSwitch::getVal(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfSwitch is derived from the parent class pfGroup, so each of these member
functions of class pfGroup are also directly usable with objects of class pfSwitch. This is also true for
ancestor classes of class pfGroup.

int pfGroup::addChild(pfNode *child);

int pfGroup:insertChild(int index, pfNode *child);

int pfGroup:replaceChild(pfNode *old, pfNode *new);
int pfGroup::removeChild(pfNode* child);

int pfGroup::searchChild (pfNode* child);

pfNode * pfGroup::getChild(int index);

int pfGroup::getNumChildren(void);

int pfGroup::bufferAddChild(pfNode *child);

int pfGroup::bufferRemoveChild(pfNode *child);

Since the class pfGroup is itself derived from the parent class pfNode, objects of class pfSwitch can also
be used with these functions designed for objects of class pfNode.

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*

180

pfNode::getParent(int i);
pfNode::getNumParents(void);
pfNode::setBound(pfSphere *bsph, int mode);
pfNode::getBound(pfSphere *bsph);
pfNode::clone(int mode);
pfNode::bufferClone(int mode, pfBuffer *buf);
pfNode::flatten(int mode);
pfNode::setName(const char *name);
pfNode::getName(void);

pfNode:find(const char *pathName, pfType *type);
pfNode:lookup(const char *name, pfType* type);

IRIS Performer 2.0 libpf C++ Reference Pages pfSwitch(3pf)

int pfNode:isect(pfSegSet *segSet, pfHit **hits[]);

void pfNode::setTravMask(int which, uint mask, int setMode, int bitOp);

uint pfNode::getTravMask(int which);

void pfNode:setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
void pfNode:getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
void pfNode::setTravData(int which, void *data);

void * pfNode:getTravData(int which);

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfSwitch can also
be used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject:setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfSwitch can
also be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory:copy(pfMemory *src);
int pfMemory:compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory:checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

A pfSwitch is an interior node in the IRIS Performer node hierarchy that selects one, all, or none of its
children. It is derived from pfGroup so it can use pfGroup API to manipulate its child list.

new pfSwitch creates and returns a handle to a pfSwitch. Like other pfNodes, pfSwitches are always

allocated from shared memory and cannot be created statically, on the stack or in arrays. pfSwitches
should be deleted using pfDelete rather than the delete operator.

181

pfSwitch(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

NOTES

pfSwitch::getClassType returns the pfType* for the class pfSwitch. The pfType* returned by
pfSwitch::getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfSwitch. Because IRIS Performer allows subclassing of built-in types, when deci-
sions are made based on the type of an object, it is usually better to use the member function isOfType to
test if an object is of a type derived from a Performer type rather than to test for strict equality of the
pfType*’s.

pfSwitch::isetVal sets the switch value of the pfSwitch to val. val may be an integer ranging from 0 to N-1
with N being the number of children of the pfSwitch or it may be a symbolic token: PESWITCH_ON or
PFSWITCH_OFF in which case all children or no children are selected. pfSwitch::getVal returns the
current switch value.

The validity of the switch value delayed until the switch is actually evaluated (usually by a traversal such

as CULL). For example, it is legal to set a switch value of 2 on a pfSwitch node with no children, provided
at least 2 children are added before the pfSwitch is evaluated.

PF_ON and PF_OFF tokens will NOT work with pfSwitch::setVal.

SEE ALSO

182

pfGroup, pfNode, pfScene, pfDelete

IRIS Performer 2.0 libpf C++ Reference Pages pfText(3pf)

NAME

pfText — Create, modify, and query a 3D text node.

FUNCTION SPECIFICATION
#include <Performer/pf/pfText.h>

pfText:pfText();

static pfType *

int
int
int
int
pfString *

int

pfGroup *
int

void

int
pfNode*
pfNode*
int

int

const char *
pfNode*
pfNode*
int

void

uint

void

void

void

void *

pfText:getClassType(void);

pfText::addString(pfString* string);

pfText:removeString(pfString* str);

pfText:insertString(int index, pfString* str);

pfText:replaceString(pfString* old, pfString* new);

pfText:getString(int index);

pfText::getNumStrings(const pfString* string);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfText is derived from the parent class pfNode, so each of these member func-
tions of class pfNode are also directly usable with objects of class pfText. This is also true for ancestor
classes of class pfNode.

pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::
pfNode::

getParent(int i);

getNumParents(void);

setBound(pfSphere *bsph, int mode);

getBound(pfSphere *bsph);

clone(int mode);

bufferClone(int mode, pfBuffer *buf);

flatten(int mode);

setName(const char *name);

getName(void);

find(const char *pathName, pfType *type);

lookup(const char *name, pfType* type);

isect(pfSegSet *segSet, pfHit **hits[]);

setTravMask(int which, uint mask, int setMode, int bitOp);

getTravMask(int which);

setTravFuncs(int which, pfNodeTravFuncType pre, pfNodeTravFuncType post);
getTravFuncs(int which, pfNodeTravFuncType *pre, pfNodeTravFuncType *post);
setTravData(int which, void *data);

getTravData(int which);

183

pfText(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

Since the class pfNode is itself derived from the parent class pfObject, objects of class pfText can also be
used with these functions designed for objects of class pfObject.

void* pfObject::operator new(size_t);
void pfObject::setUserData(void *data);
void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfText can also
be used with these functions designed for objects of class pfMemory.

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOfType(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
PARAMETERS
string identifies a pfString.
DESCRIPTION

184

A pfText is analogous to a pfGeode. A pfText encapsulates pfStrings in a scene graph as a pfGeode
encapsulates pfGeoSets. A pfText is a leaf node in the IRIS Performer scene graph hierarchy and is
derived from pfNode so it can use pfNode API. A pfText is simply a list of pfStrings.

The bounding volume of a pfText is that which surrounds all its pfStrings. Unless the bounding volume
is considered static (see pfNode::setBound), IRIS Performer will compute a new volume when the list of
pfStrings is modified by pfText::addString, pfText::removeString, pfText:insertString or

pfText::replaceString. If the bounding box of a child pfString changes, call pfNode::setBound to tell IRIS
Performer to update the bounding volume of the pfText.

new pfText creates and returns a handle to a pfText. Like other pfNodes, pfTexts are always allocated
from shared memory and cannot be created statically, on the stack or in arrays. pfTexts should be deleted

IRIS Performer 2.0 libpf C++ Reference Pages pfText(3pf)

using pfDelete rather than the delete operator.

pfText:getClassType returns the pfType* for the class pfText. The pfType* returned by
pfText:getClassType is the same as the pfType* returned by invoking the virtual function getType on
any instance of class pfText. Because IRIS Performer allows subclassing of built-in types, when decisions
are made based on the type of an object, it is usually better to use the member function isOfType to test if
an object is of a type derived from a Performer type rather than to test for strict equality of the pfType*’s.

pfText::addString appends str to the pfText’s pfString list. pfText::removeString removes str from the
list and shifts the list down over the vacant spot. For example, if str had index 0, then index 1 becomes
index 0, index 2 becomes index 1 and so on. pfText::removeString returns a 1 if str was actually removed
and 0 if it was not found in the list. pfText::addString and pfText::removeString will cause IRIS Per-
former to recompute new bounding volumes for the pfText unless it is configured to use static bounding
volumes.

pfText:insertString will insert str before the pfString with index index. index must be within the range 0
to pfText:getNumStrings(). pfText::replaceString replaces old with new and returns 1 if the operation
was successful or 0 if old was not found in the list. pfText:insertString and pfText::replaceString will
cause IRIS Performer to recompute new bounding volumes for the pfText unless it is configured to use
static bounding volumes.

pfText::getNumStrings returns the number of pfStrings in the pfText. pfText::getString returns a handle
to the pfString with index index or NULL if the index is out of range.

Here is a sample code snippet demonstrating how to use pfText, pfFont, and pfString to add 3D text to a
scene graph:

/* Initialize Perforner and create pfScene "scene" */

/* Get shared nenory arena */
arena = pf Get SharedArena();

/* Append standard directories to Perforner search path, PFPATH */
pfFilePath(".:/usr/share/Performer/data");

/* Create 3D nessage and place in scene. */
text = new pf Text;
scene->addChi I d(text);
if (pfFindFile("Times-Elfin.of", path, R CK))
{
str = new pfString;
str->set Mode(PFSTR_DRAWSTYLE, PFSTR_EXTRUDED) ;

185

pfText(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

str->set Mode(PFSTR_JUSTI FY, PFSTR_M DDLE);
str->set Col or (1. 0f, 0.0f, 0.8f, 1.0f);
str->setString("Welcome to IRIS Perforner");
str->flatten();

text->addString(str);

}

el se

{
pf Not i f y(PFNFY_WARN, PFNFY_PRI NT, "Coul dn’t find font file.");
exit(0);

}

SEE ALSO
pfGeoSet, pfNode, pfString, pfFont, pfDelete

186

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)

NAME
pfTraverser, pfCullResult, pfGetCullResult, pfGetParentCullResult — Set and get traversal masks, call-
back functions and callback data, and get pfTraverser attributes.

FUNCTION SPECIFICATION
#include <Performer/pf/pfNode.h>

pfChannel * pfTraverser::getChan(void);

void pfTraverser:getMat(pfMatrix &mat);
pfNode * pfTraverser:getNode(void);
int pfTraverser:getIndex(void);

const pfPath * pfTraverser::getPath(void);

void pfCullResult(int result);
int pfGetCullResult(void);
int pfGetParentCullResult(void);

typedef int (*pfNodeTravFuncType) (pfTraverser *trav, void *userData);

PARAMETERS
which identifies the traversal: PFTRAV_ISECT, PFTRAV_APP, PFTRAV_CULL or PFTRAV_DRAW,
denoting the intersection, application, cull or draw traversals respectively.

DESCRIPTION
IRIS Performer provides four major traversals: intersection, application, cull, and draw that are often
abbreviated as ISECT, APP, CULL, and DRAW. A traversal is typically an in-order traversal of a
directed acyclic graph of pfNodes otherwise known as a subgraph. The actual traversal method,
traverser structure, and traversal initiation used depends on the traversal type as well as the multipro-
cessing mode as shown in the following table.

187

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

188

Traversal Traverser Traversee Trigger
PFTRAV_ISECT pfSegSet subgraph | pfNode:isect(),
pfChanNodelsectSegs
PFTRAV_APP pfTraverser | pfScene pfApp()
CULL_DL_DRAW is set
PFTRAV_CULL pfChannel | pfScene pfCull()
PFTRAV_DRAW pfChannel | pfDispList | pfDraw()

CULL_DL_DRAW is not set
PFTRAV_CULL pfChannel | pfScene pfDraw()
PFTRAV_DRAW

Typical traversal callback usage:

ISECT
Collision detection, terrain following, line of sight

APP Application-specific behavior, motors

CULL
Custom level-of-detail selection, culling

DRAW
Custom rendering

When PFMPCULL_DL_DRAW is not set in the multiprocessing mode argument to pfMultiprocess (and
the cull and draw stages are in the same process), then pfDraw simultaneously culls and draws the
pfScene attached to the pfChannel by pfChannel::setScene. Otherwise, pfCull culls and builds up a
pfDispList which is later rendered by pfDraw.

If the traversal CULL mask and node CULL mask AND to zero at a node, the CULL traversal disables
view culling and trivially accepts the node and all its descendents. Note that unlike other traversals, a
mask result of 0 does not prune the node.

If the traversal DRAW mask and node DRAW mask AND to zero at a node, the CULL traversal prunes
the node, so descendents are neither CULL-traversed nor drawn.

If the traversal APP mask and the node APP mask AND to zero, the APP traversal prunes the node and
its descendents.

If the ISECT masks AND to zero, the ISECT traversal prunes the node. The intersection mask is typically
used to control traversals of different types of objects, e.g. different bits may indicate ground, water, foli-
age, and buildings, so they may be intersected selectively. See (pfNode::setTravMask).

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)

In many respects a traversal appears to the user as an atomic action. The user configures a traverser,
triggers it with the appropriate routine and awaits the results. Node callbacks are supported to provide
user extensibility and configuration into this scenario. They are user-supplied routines that are invoked
in the course of a traversal. Callbacks return a value which can control traversal on a coarse-grained
basis. In addition, draw callbacks can render custom geometry and cull callbacks can substitute custom
culling for the default IRIS Performer culling.

The pre- or post-callbacks for the cull and intersection traversals may return PFTRAV_CONT,
PFTRAV_PRUNE, PFTRAV_TERM to indicate that traversal should continue normally, skip this node
or terminate the traversal, respectively. PFTRAV_PRUNE is equivalent to PFTRAV_CONT for the
post-callback. Currently, the return value from the draw callbacks is ignored.

pfCullResult, pfGetCullResult, and pfGetParentCullResult can all be called in the pre-cull callback and
all but pfCullResult may be called in the post-cull callback. pfGetCullResult returns the result of the
cull for the node that the cull callback is associated with. pfGetParentCullResult returns the cull result
for the parent of the node that the cull callback is associated with. When called within the pre-cull call-
back, pfCullResult specifies the result of cull for the node that the pre-cull callback is associated with.
This essentially replaces default IRIS Performer cull processing with user-defined culling. result is a token
which specifies the result of the cull test and should be one of:

PFIS_FALSE
Node is entirely outside the viewing frustum and should be pruned.

PFIS_MAYBE | PFIS_TRUE
Node is partially inside the viewing frustum and the children of the node should be cull-
tested.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN
Node is totally inside the viewing frustum so all the children of the node should be trivially
accepted without further cull testing.

If pfCullResult is not called within the pre-cull callback, IRIS Performer will use its default geometric cul-
ling mechanism that compares node bounding volumes to the current culling frustum to determine if the

node may be within view.

In the post-cull callback pfGetCullResult will return the result of the cull set by pfCullResult or the
result of the default cull if pfCullResult was not called.

The evaluation order of the cull and draw traversal masks and callbacks is illustrated in the following
pseudo-code:

Example 1: Cull and draw traversal mask and callback evaluation order.

189

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

/* Return if draw nmask test fails */
if ((drawvask & nodeDrawVask) == 0)
return PFTRAV_CONT;

/* Call pre-cull callback */
if (precull)

rtn = (*preCull)(traverser, cullData);

if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;

else if (rtn == PFTRAV_TERM
return PFTRAV_TERM

/* Disable viewculling if cull nmask test fails */
if ((cull Mask & nodeCul | Mask) == 0)
di sabl eVi enCul | i ng();

/* Performdefault culling if pfCull Result was not called */
if (luserCalledpfCull Resul tInThePreCul |l Cal | back)

cull Result = cul |l Test (node);

if (cull Result == PFIS_FALSE)

{
/* Call post-cull callback */
if (postCull)
{
rtn = (*postCull)(traverser, cullData);
if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;
else if (rtn == PFTRAV_TERM
return PFTRAV_TERM
}
return PFTRAV_CONT,;
}
el se
/* Trivially accept node and all its children */

if (cull Result == PFIS_ALL_IN)
di sabl eVi enCul | i ng();

/* Call pre-draw call back */

190

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)

if (preDraw
(*preDraw) (traverser, drawbata);

eval uat eNodeAndIl t sChi I dren();
/* Call post-draw call back */
i f (postDraw)

(*postDraw) (traverser, drawbata);

/* Call post-cull callback */

if (postCull)
{
rtn = (*postCull)(traverser, cullData);
if (rtn == PFTRAV_PRUNE)
return PFTRAV_CONT;
el se
if (rtn == PFTRAV_TERM
return PFTRAV_TERM
}

return PFTRAV_CONT,

Example 2: Use of DRAW callbacks to save and restore state.

extern int
preDraw(pf Traverser *trav, void *data)
{

pf PushState();
pf Enabl e(PFEN_TEXGEN) ;
((pf TexGen*) dat a) - >appl y;

return PFTRAV_CONT;
extern int
post Draw(pf Traverser *trav, void *data)
{

pf PopState();

return PFTRAV_CONT;

191

pfTraverser(3pf) IRIS Performer 2.0 libpf C++ Reference Pages

/*

* Set up draw cal |l backs and user data to draw 'geode’ in
* EYE_LI NEAR t exgen node.

*/

pf TexGen *tgen;
tgen = new pf TexGen(pf Get SharedArena());

t gen- >set Mbde(PF_S, PFTG EYE_LI NEAR) ;
t gen- >set Mbde(PF_T, PFTG EYE_LI NEAR) ;

geode- >set TravFuncs(PFTRAV_DRAW preDraw, postDraw);
geode- >set Tr avDat a(PFTRAV_DRAW tgen);

libpr graphics calls like pfTexGen::apply should be made in a DRAW callback only. Specifically, libpr
graphics calls made in a CULL callback are not legal and have undefined behavior.

The intersection, application, cull and draw callbacks are passed a pfTraverser which can be used to
query the channel, current transformation matrix and current node. pfTraverser:getChan returns the
current channel for the cull, and draw traversal. It returns the current channel for intersection traversals
initiated with pfChanNodelsectSegs and NULL for intersection traversals initiated with pfNode::isect.

pfTraverser:getMat sets mat to the current transformation matrix, which is the concatenation of the
matrices from the root of the scene down to and including the current node. Since no transformation
hierarchy is retained in the draw process, in a draw callback, the current matrix should be queried using
the getmatrix or pfGetModelMat/pfGetViewMat routines.

pfTraverser:getNode returns the current node being traversed and pfTraverser::getIndex returns the
child index of the current node, i.e.- the index of the current node in its parent’s list of children.
pfTraverser:getPath returns a pointer to the list of nodes which defines the path from the scene graph
root to the current node.

NOTES
The post-cull callback is a good place to implement custom level-of-detail mechanisms.

BUGS
The path returned by pfGetTravPath is valid only when invoked from a cull callback.

192

IRIS Performer 2.0 libpf C++ Reference Pages pfTraverser(3pf)

SEE ALSO
pfGroup, pfClone, pfFrame, pfNode

193

libpr

libpr is a low-level library for
high-performance graphics
applications.

This library provides a wide range of
functions useful functions including
optimized rendering, graphics state
management, math functions, and
shared memory utilities.

IRIS Performer 2.0 libpr C++ Reference Pages pfAlphaFunc(3pf)

NAME
pfAlphaFunc, pfGetAlphaFunc — Specify alpha function and reference value

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAlphaFunc(float ref, int mode);
void pfGetAlphaFunc(float *ref, int *mode);

PARAMETERS
ref is a reference value with which to compare source alpha at each pixel. This value should be a float
in the range 0 through 1.

mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn.

DESCRIPTION
pfAlphaFunc sets the alpha function mode and reference value which affects all subsequent geometry.
mode is a symbolic constant that specifies the conditional comparison that source alpha and ref must pass
for a pixel to be drawn. For example:

if (source al pha mode ref)
draw t he pi xel

where the alpha value boolean function mode is be one of:
PFAF_ALWAYS
PFAF_EQUAL
PFAF_GEQUAL
PFAF_GREATER
PFAF_LEQUAL
PFAF_LESS
PFAF_NEVER
PFAF_NOTEQUAL
PFAF_OFF

If it was desired to only draw pixels whose alpha value was greater than or equal to 50% of the represent-
able range, then a mode of PEAF_GEQUAL and a ref of 0.5 would produce the hardware pixel rendering
conditional:

if (source al pha PFAF_GEQUAL 0.5)
draw t he pi xel

The the default mode is PEAF_OFF and default ref value is 0. The alpha function and reference value state
elements are identified by the PESTATE_ALPHAFUNC and PFSTATE_ALPHAREEF tokens respectively.
Use these tokens with pfGeoState::setMode and pfGeoState::getMode, to set the alpha function and

197

pfAlphaFunc(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

reference value of a pfGeoState and with pfOverride to override subsequent alpha function and reference
value changes.

Here is an example:
/*
* Setup pfGeoState so that only pixels whose al pha is > 40
* are drawn once the pfCGeoState is applied with pfGeoState::apply.
*/
gst at e- >set Mode(PFSTATE_ALPHAFUNC, PFAF_GREATER) ;
gst at e- >set Val (PFSTATE_ALPHAREF, (40.0f/255.0f));

/*

* Override al pha function. The al pha reference value can still
* be changed.

*/

pf Overri de(PFSTATE_ALPHAFUNC, PF_ON);

/*

* Al subsequent attenpts to set alpha function will be ignored
* until pfOverride is called to unlock it.

*/

pfAlphaFunc is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfAlphaFunc will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGetAlphaFunc copies the current alpha function reference value and mode into ref and mode respec-
tively.

NOTES
pfAlphaFunc is typically used for textures with alpha that simulate trees and other complicated geometry
having many holes. See the IRIS GL afunction(3g) or OpenGL glAlphaFunc manual page for further
details.

SEE ALSO
afunction, glAlphaFunc, pfDispList, pfGeoState, pfState

198

IRIS Performer 2.0 libpr C++ Reference Pages pfAntialias(3pf)

NAME
pfAntialias, pfGetAntialias — Specify antialiasing mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfAntialias(int mode);
int pfGetAntialias(void);

PARAMETERS
mode is a symbolic constant and is one of:
PFAA_OFF Antialiasing will be disabled.
PFAA_ON Antialiasing will be enabled. The antialiasing mechanism used depends on
the machine type.
DESCRIPTION

pfAntialias sets the hardware antialiasing mode. Geometry drawn subsequent to calling pfAntialias will
be antialiased according to mode. The antialiasing mechanism used is machine-dependent: multisampling
on RealityEngine systems and non-multisampling on all others. In addition, if available, pfAntialias will
enable a special hardware mode that efficiently renders points using multisampled circles rather than
squares. See the IRIS GL multisample(3g) reference page and the SGIS_multisample section of the
OpenGL glintro(3g) reference page for more detailed information on multisampled antialiasing.

If mode is PFAA_ON, then antialiasing will be enabled. On machines which do not support multisam-
pling, PEAA_ON will enable line and point antialiasing. Polygons will not be antialiased. In this case it is
recommended that pfAntialias be enabled only for points and lines since it may reduce the speed of
polygon rendering.

In pure IRIS GL windows (not GLX), the framebuffer will be reconfigured as needed and as possible to
support multisampling. Since pfAntialias may configure hardware buffers, it is best called at initializa-
tion time for performance reasons. On RealityEngine systems, multisample buffers are configured and
multisampling is enabled if the combination of Video Output Format and Raster Manager count support
multisampling. Specifically, pfAntialias will attempt to configure the IRIS GL window with 12 bit color
buffers, 8 subsamples, 24 bits of depth buffer, and 4 bits of stencil. If this is not available, 1 bit of stencil
will be used. Non-multisample buffers, configured by such IRIS GL calls as zbsize(3g) and stensize(3g)
are all deallocated. If the hardware configuration does not support 8 subsamples then pfAntialias will
attempt to acquire 4 subsamples.

If mode is PFAA_OFF, for pure IRIS GL windows, pfAntialias will deallocate all multisample buffers and
allocate non-multisample buffers accordingly: 12-bit color buffer, 32 bit depth buffer, 4 bit stencil buffer.

X windows cannot have their framebuffer resources reconfigured. X windows for both IRIS GL and

OpenGL are, by default, created with multisample buffers if they are available in the current hardware
configuration. The default configuration, if available will be 8 subsamples, 24 bits of depth buffer, and 4

199

pfAntialias(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

NOTES

200

bits of stencil. If this is not available, 1 bit of stencil will be used, and then 4 subsamples will be allocated
if 8 are not still available. The exact framebuffer configuration of windows can be specified via
pfWindow::setFBConfigAttrs.

For X windows, if mode is PFAA_OFF, the antialiasing mode will be disabled but the buffers cannot be
deallocated and there might be associated framebuffer operations that are not truly disabled. Because of
this, the full performance benefit expected by turning off antialiasing may not be achieved.

The antialiasing mode state element is identified by the PFSTATE_ANTIALIAS token. Use this token
with pfGeoState::setMode to set the antialiasing mode of a pfGeoState and with pfOverride to override
subsequent antialiasing mode changes.

pfAntialias is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfAntialias will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

pfGetAntialias returns the current antialiasing mode.

Example 1:

/* Set up 'antialiased pfGeoState */
gst at e- >set Mode(PFSTATE_ANTI ALI AS, PFAA _ON);

/* Attach gstate to gset */
gset->set GSt ate(gstate);

/* Draw antialiased gset */
gset->draw();

Example 2:

/* Override antialiasing node to PFAA _OFF */
pf Anti al i as(PFAA_CFF) ;
pf Overri de(PFSTATE_ANTI ALI AS, PF_QON);

pfQueryFeature can be used to determined what features are available on the current hardware
configuration. pfQuerySys can be used to query the exact extent of hardware resources, such as number
of subsamples available for multisampling.

When using antialiasing without multisampling, blending is used which may conflict with other tran-
sparency modes. Specifically, all geometry will be blended which may cause artifacts and may

IRIS Performer 2.0 libpr C++ Reference Pages pfAntialias(3pf)

substantially reduce performance. For this reason pfAntialias should be used with discretion on all but
RealityEngine systems.

For pure IRIS GL windows, since pfAntialias may configure hardware buffers, it is best called at initiali-
zation time for performance reasons.

In the default framebuffer configurations, the 4 bit of stencil buffer is allocated to support depth complex-
ity fill statistics; see the pfStats reference man page for more information. 1 bit of stencil is required for
the support of high quality decals; see the pfDecal reference page for more information.

Not all machines support stencil planes and in these cases, stencil bits will not be allocated. Indy plat-
forms under IRIS GL operation do not support stencil. Additionally, the Extreme graphics platforms only
support stencil with reduced depth buffer resolution and so stencil will not be allocated by default.

Under OpenGL operation, if a window has been configured with multisample buffers, the state of pfAn-
tialias() is used internally to track whether or not multisampling is being done. This knowledge is used
for doing the fast TAG clear pfClear(), and for drawing multisampled points. IRIS Performer will not
detect a GL call made to enable or disable multisampling so if you do this you must return state to match
IRIS Performer’s internal state or the results will be undefined.

SEE ALSO
blendfunction, glBlendFunc, linesmooth, glHint(GL_LINE_SMOOTH_HINT), pntsmooth,
glHint(GL_POINT_SMOOTH_HINT), mssize, multisample, glintro, pfQueryFeature, pfQuerySys, pfWin-
dow, pfChooseFBConlfig, pfDispList, pfGeoState, pfOverride, pfState

201

pfBox(3pf)

IRIS Performer 2.0 libpr C++ Reference Pages

NAME

DESCRIPTION

202

pfBox — Operate on axis-aligned bounding boxes

FUNCTION SPECIFICATION
#include <Performer/pr/pfGeoMath.h>

void*

void*

void
void
void
void
void
void
void
int

int

int

void

pfBox:
pfBox:
pfBox:
pfBox::
pfBox::
pfBox:
pfBox:
pfBox:
pfBox:
pfBox::
pfBox:
pfBox::
pfBox:
pfBox:

:operator new(size_t);

operator new(size_t, void *arena);
pfBox();

makeEmpty(void);
extendBy(const pfVec3 &pt);
extendBy(const pfBox *box);
around(const pfVec3 *pts, int npt);

around(const pfBox **boxes, int nbox);

:around(const pfSphere **sphs, int nsph);

around(const pfCylinder **cyls, int ncyl);
contains(const pfVec3 &pt);
contains(const pfBox *box2);

isect(const pfSeg* seg, float* d1, float* d2);

:xform(const pfBox *box, const pfMatrix &xform);

struct pfBox

{

pf Vec3
pf Vec3

A pfBox is an axis-alighed box which can be used for intersection tests and for maintaining bounding
information about geometry. A box represents the axis-aligned hexahedral volume: (x, y, z) where min[0]
<= x <= max[0], min[1] <=y <= max[1] and min[2] <= z <= max[2]. pfBox is a public struct whose data

members min and max may be operated on directly.

The default constructor pfBox() is empty and does no initialization. new(arena) allocates a pfBox from
the specified memory arena, or from the heap if arena is NULL. new allocates a pfBox from the default
memory arena (see pfGetSharedArena). pfBoxes can also be created automatically on the stack or stati-
cally. pfBoxes allocated with new can be deleted with delete or pfDelete.

IRIS Performer 2.0 libpr C++ Reference Pages pfBox(3pf)

pfBox:makeEmpty sets the pfBox to appear empty to extend operations.
pfBox::extendBy extends the size of the pfBox to include the point pt.
pfBox::extendBy extends the size of the pfBox to include the box box.

The variations of the member function pfBox::around set the pfBox to be an axis-aligned box encompass-
ing the given primitives. npt, nbox, ncyls and nsph are the number of points, boxes, and spheres in the
respective primitive lists.

pfBox::contains(const pfVec3, ...) returns TRUE or FALSE depending on whether the point pt is in the
interior of the specified box.

The return value from pfBox::contains(const pfBox*, ...) is the OR of one or more bit fields. The returned
value may be:

PFIS_FALSE:
The intersection of the box argument and the box is empty.

PFIS_MAYBE:
The intersection of the box argument and the box might be non-empty.

PFIS_MAYBE | PFIS_TRUE:
The intersection of the box argument and the box is definitely non-empty.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN:
The box argument is non-empty and lies entirely inside the box.

pfBox:isect intersect the line segment seg with the volume of an axis-aligned pfBox. The possible return
values include all of the above as well as:

PFIS_FALSE:
seg lies entirely in the exterior.

PFIS_MAYBE | PFIS_TRUE | PFIS_START_IN:
The starting point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_END_IN:
The ending point of seg lies in the interior.

PFIS_MAYBE | PFIS_TRUE | PFIS_ALL_IN | PFIS_START_IN | PFIS_END_IN:
Both end points of seg lie in the interior.

If d1 and d2 are non-NULL, on return from pfBox::isect they contain the starting and ending positions of
the line segment (0 <= d1 <= d2 <= seg->length) intersected with the specified volume.

pfBox::xform sets the pfBox to a box which contains box as transformed by the matrix xform, i.e. a box
around (box * xform). Because transformed boxes must be axis-aligned, most rotations cause the box to

203

pfBox(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

grow, and the transformation is not reversed by the inverse rotation.

NOTES

The bit fields returned by the contains functions are structured so that bitwise AND-ing the results of

sequential tests can be used to compute composite results, e.g. testing exclusion against a number of half
spaces.

Because pfBoxes are axially aligned, they tend to grow when transformed. Hence, they are best for static
geometry or other cases in which the bounding geometry does not need to be transformed.

SEE ALSO
pfSeg, pfSphere

204

IRIS Performer 2.0 libpr C++ Reference Pages pfClear(3pf)

NAME
pfClear — Clear specified graphics buffers

FUNCTION SPECIFICATION
void pfClear(int which, const pfVec4 color);

PARAMETERS
which is a mask that specifies which buffers are to be cleared. which is a bitwise OR of:
PFCL_COLOR Clear color buffer to color.
PFCL_DEPTH Clear depth buffer to maximum value of our defined depth range.

PFCL_MSDEPTH Fast clear of the multisample depth buffer.
PFCL_STENCIL Clear stencil buffer to 0.

PFCL_DITHER Enable dithering during the color clear. By default, pfClear turns off dith-
ering for color clears.

color specifies the red, green, blue, and alpha components of the color buffer clear color. Each com-
ponent is defined in the range 0.0 to 1.0. If color is NULL then a black fully opaque color will be
used.

DESCRIPTION
pfClear clears the buffers specified by which in the current graphics window. The actual screen area
cleared depends on many GL state settings including viewport and screen or scissor mask (IRIS GL
scrmask or OpenGL glScissor), current draw buffer (front, back, left, right, overlay, etc.), and the
existence of a depth buffer for PFCL_DEPTH and stencil buffer for PFCL_STENCIL. See the IRIS GL
clear(3g) or OpenGL glClear(3g) reference page for more details.

If which includes PFCL_COLOR and color is NULL, then any selected color buffer will be cleared to black
fully opaque pixels using cpack(0xff000000) in IRIS GL and glColor4£(0,0,0,1) in OpenGL.

PFCL_MSDEPTH has effect only when multisampling (See pfAntialias). In this case, instead of writing
the maximum depth value into each individual pixel subsample, each pixel is "tagged" as having the max-
imum depth value. This clear is much faster than a full depth buffer clear; however, the color buffer is
not cleared so results from previous frames will be left in the color buffer if not redrawn. This requires
that each pixel in the viewport be covered by geometry. Often this is accomplished by drawing one or
more large background polygons (often textured) at the far clip plane to "clear" the framebuffer to an
interesting background rather than depth buffer and then incurring the additional cost of clearing draw-
ing background polygons. This requires that the background rendering disable depth buffer testing (e.g.
zfunction(ZF_ALWAYS) in IRIS GL or glDepthFunc(GL_ALWAYS) in OpenGL). Otherwise, a normal
depth buffer clear will be required if multisampling is not in use or not supported in the current frame-
buffer configuration. Note that the background drawing should leave depth buffering enabled so that it’s
depth values will be written.

The follow example shows how to clear all buffers with one pfClear call:

205

pfClear(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

/*

* Clear color buffer to black, depth buffer to the nmaxi mumdepth val ue,
* and stencil buffer to O.

*/

pf A ear (PFCL_DEPTH | PFCL_COLOR | PFCL_STENCI L, NULL);

pfClear is a display-listable command. If a pfDispList has been opened by pfDispList::open, pfClear
will not have immediate effect but will be captured by the pfDispList and will only have effect when that
pfDispList is later drawn with pfDispList::draw.

NOTES
PFCL_MSDEPTH is only available on RealityEngine systems, and then only in the multisample antialias-
ing mode. For performance reasons, the depth buffer for the entire window rather than just the current
viewport is cleared with OpenGL on Indy, i.e. scissoring is disabled. Also, Indy depth buffer clears are
significantly slower under IRIS GL than under OpenGL.

SEE ALSO
pfAntialias, pfDispList, glClear, glDepthFunc, clear, multisample, gconfig, zclear, zfunction, czclear

206

IRIS Performer 2.0 libpr C++ Reference Pages

pfColortable(3pf)

NAME

pfColortable, pfGetCurCtab — Specify color table properties Color table class and related functions

FUNCTION SPECIFICATION
#include <Performer/pr/pfColortable.h>

pfColortable::pfColortable()
pfColortable::pfColortable(int size)

static pfType * pfColortable::getClassType(void);

int

void

int

int
pfVecd *

pfColortable::getCtabSize();
pfColortable::apply();

pfColortable::setColor(int index, pfVec4 &color);
pfColortable::getColor(int index, pfVec4 &color);
pfColortable::getColors();

pfColortable * pfGetCurCtab(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfColortable is derived from the parent class pfObject, so each of these member
functions of class pfObject are also directly usable with objects of class pfColortable. This is also true for
ancestor classes of class pfObject.

void* pfObject::operator new(size_t);

void* pfObject::operator new(size_t, void *arena);
void pfObject:setUserData(void *data);

void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfColortable

can also be used with these functions designed for objects of class pfMemory.

void*
pfType *
int

int

const char *
int

int

void

int

pfMemory::getData(const void *ptr);
pfMemory:getType();

pfMemory::isOfType(pfType *type);
pfMemory::isExactType(pfIype *type);
pfMemory::getTypeName();
pfMemory:copy(pfMemory *src);
pfMemory:compare(const pfMemory *mem);
pfMemory::print(uint which, uint verbose, FILE *file);
pfMemory::getArena(void *ptr);

207

pfColortable(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

void* pfMemory:getArena();

int pfMemory::ref();

int pfMemory::unref();

int pfMemory::unrefDelete();

ushort pfMemory::getRef();

int pfMemory::checkDelete();

void * pfMemory:getArena();

int pfMemory::getSize();
DESCRIPTION

208

A pfColortable is a ‘color indexing” mechanism used by pfGeoSets. It is not related to the graphics library
hardware rendering notion of color index mode. If pfColortable operation is enabled, pfGeoSets will be
drawn with the colors defined in the current globally active pfColortable rather than using the pfGeoSet’s
own local color list. This facility can be used for instant large-scale color manipulation of geometry in a
scene.

new(arena) allocates a pfColortable from the specified memory arena, or from the process heap if arena is
NULL. new allocates a pfColortable from the default memory arena (see pfGetSharedArena). Like other
pfObjects, pfColortables cannot be created statically, automatically on the stack or in arrays. The default
constructor returns a pfColortable of 256 entries. Or an argument size may be provided to the construc-
tor, where size is the number of pfVec4 color elements to allocate for the pfColortable. pfColortables
should be deleted with pfDelete rather than the delete operator.

The number of color elements in the pfColortable is returned by pfColortable::getCtabSize.

pfColortable::getClassType returns the pfType* for the class pfColortable. The pfType* returned by
pfColortable::getClassType is the same as the pfType* returned by invoking the virtual function
getType on any instance of class pfColortable. Because IRIS Performer allows subclassing of built-in
types, when decisions are made based on the type of an object, it is usually better to use the member func-
tion isOfTypeto test if an object is of a type derived from a Performer type rather than to test for strict
equality of the pfType*’s.

Use a pfColortable’s apply member function to select it as the current, global color table. If colorindex
mode is enabled (pfEnable(PFEN_COLORTABLE)), then all subsequent pfGeoSets will use the pfVec4
array supplied by the global color table rather than their own local color array. Colorindex mode works
for both indexed and non-indexed pfGeoSets.

pfColortable::apply is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfColortable::apply will not have immediate effect but will be captured by the pfDispList and will only
have effect when that pfDispList is later drawn with pfDispList::draw.

pfGetCurCtab returns the currently active pfColortable or NULL if there is none active.

IRIS Performer 2.0 libpr C++ Reference Pages pfColortable(3pf)

Colors in a pfColortable are pfVec4’s which specify red, green, blue, and alpha in the range [0..1]. The
member functions setColor and getColor respectively set and get the color at index index. To support
high performance manipulation of colortables, IRIS Performer allows direct access to the array of pfVec4
colors of a pfColortable. The member function getColors returns a pointer to this array which may be
manipulated directly. However care must be taken not to write data outside the array limits.

The pfColortable state element is identified by the PFSTATE_COLORTABLE token. Use this token with
pfGeoSet:setAttr to set the pfColortable of a pfGeoState and with pfOverride to override subsequent
colortable changes.

Example 1:

/* Set up 'colorindexed pfGeoState */
gst at e- >set At t r (PFSTATE_COLORTABLE, ctab);
gst at e- >set Mode(PFSTATE_ENCOLORTABLE, PF_ON);

/* Attach gstate to gset */
gset->set GState(gstate);

/* Draw gset col orindexed with ctab */
gset->draw);

Example 2:

pf Enabl e(PFEN_COLORTABLE) ;
ct ab->appl y();

/*

* Qverride active pfColortable to 'ctab’ and col ori ndex enable
* to PF_ON.

*/

pf Overri de(PFSTATE_COLORTABLE | PFSTATE_ENCOLORTABLE, PF_QN);

NOTES
pfColortables can be used to simulate FLIR (Forward Looking Infrared) and NVG (Night Vision Goggles)
and for monochrome display devices which separate video components for stereo display purposes.
More flexible FLIR and NVG simulation is available through the use of indexed pfGeoStates.

209

pfColortable(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

SEE ALSO
pfDelete, pfDispList, pfEnable, pfGeoSet, pfGeoState, pfOverride, pfState

210

IRIS Performer 2.0 libpr C++ Reference Pages pfCullFace(3pf)

NAME
pfCullFace, pfGetCullFace — Specify face culling mode

FUNCTION SPECIFICATION
#include <Performer/pr.h>

void pfCullFace(int mode);
int pfGetCullFace(void);

PARAMETERS
mode is a symbolic constant and is one of:
PFCF_OFF Face culling is off,
PFCF_BACK Polygons that are back-facing will be culled.
PFCF_FRONT Polygons that are front-facing will be culled.
PFCF_BOTH Polygons that are front and back-facing will be culled.
DESCRIPTION

pfCullFace sets the face culling mode used to cull all subsequent polygons. A polygon is considered to
be backfacing if its vertices are in clockwise order (screen coordinates). Frontfacing polygon vertex order-
ing is counterclockwise.

pfGetCullFace returns the current face culling mode.

The face culling mode state element is identified by the PFSTATE_CULLFACE token. Use this token
with pfGeoState::setMode to set the face culling mode of a pfGeoState and with pfOverride to override
subsequent face culling mode changes.

pfCullFace is a display-listable command. If a pfDispList has been opened by pfDispList::open,
pfCullFace will not have immediate effect but will be captured by the pfDispList and will only have
effect when that pfDispList is later drawn with pfDispList::draw.

Example 1:

/* Set up 'face-culled pfGeoState */
gst at e- >set Mode(PFSTATE_CULLFACE, PFCF_BACK) ;

/* Attach gstate to gset */
gset->set GState(gstate);

/* Draw face-culled gset */
gset->draw) ;

211

pfCullFace(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

Example 2:

/* Override face culling node to PFCF_OFF */
pf Cul | Face(PFCF_OFF) ;
pf Overri de(PFSTATE_CULLFACE, PF_ON);

NOTES
Backface culling with pfCullFace(PFCF_BACK) can significantly improve performance for "solid" data-
bases whose polygons are oriented consistently and where objects are closed. With these databases you
cannot see backfacing polygons since they are always obscured by nearer front-facing ones. The graphics
hardware can quickly reject backfacing polygons so use of backface culling is strongly encouraged to
increase performance.

Face culling should be disabled when using two-sided lighting, since the two-sided lighting is only useful
for distinguishing backfacing objects.

SEE ALSO
backface, frontface, pfDispList, pfGeoState, pfOverride, pfState

212

IRIS Performer 2.0 libpr C++ Reference Pages pfCycleBuffer(3pf)

NAME
pfCycleBuffer, pfCycleMemory — Create, initialize, manage pfCycleBuffer and pfCycleMemory memory

FUNCTION SPECIFICATION
#include <Performer/pr/pfCycleBuffer.h>

pfCycleBuffer:pfCycleBuffer(size_t nbytes)
static pfType * pfCycleBuffer:getClassType(void);

void * pfCycleBuffer:getCurData();
pfCycleMemory *

pfCycleBuffer:getCMem(int index);
void pfCycleBuffer::changed();
void pfCycleBuffer:init(void *data);
int pfCycleBuffer::config(int numBuffers);
int pfCycleBuffer:getConfig(void);
int pfCycleBuffer:frame(void);
int pfCycleBuffer:getFrameCount(void);
int pfCycleBuffer:getCurlndex(void);
void pfCycleBuffer:setCurlndex(int index);

pfCycleBuffer * pfCycleBuffer::getCBuffer(void *data);
static pfType * pfCycleMemory::getClassType(void);
int pfCycleMemory::getFrame(void);
pfCycleBuffer * pfCycleMemory::getCBuffer(void);

PARENT CLASS FUNCTIONS
The IRIS Performer class pfCycleBuffer is derived from the parent class pfObject, so each of these
member functions of class pfObject are also directly usable with objects of class pfCycleBuffer. This is
also true for ancestor classes of class pfObject.

void* pfObject::operator new(size_t);

void* pfObject::operator new(size_t, void *arena);
void pfObject::setUserData(void *data);

void* pfObject::getUserData(pfObject *obj);

Since the class pfObject is itself derived from the parent class pfMemory, objects of class pfCycleBuffer
can also be used with these functions designed for objects of class pfMemory.

213

pfCycleBuffer(3pf) IRIS Performer 2.0 libpr C++ Reference Pages

void* pfMemory::getData(const void *ptr);
pfType * pfMemory::getType();
int pfMemory::isOf Type(pfType *type);
int pfMemory::isExactType(pfType *type);
const char * pfMemory::getTypeName();
int pfMemory::copy(pfMemory *src);
int pfMemory::compare(const pfMemory *mem);
void pfMemory::print(uint which, uint verbose, FILE *file);
int pfMemory::getArena(void *ptr);
void* pfMemory::getArena();
int pfMemory::ref();
int pfMemory::unref();
int pfMemory::unrefDelete();
ushort pfMemory::getRef();
int pfMemory::checkDelete();
void * pfMemory::getArena();
int pfMemory::getSize();
DESCRIPTION

214

Together, pfCycleBuffer and pfCycleMemory provide an automated mechanism for managing dynamic
data in a pipelined, multiprocessing environment. In this kind of environment, data is typically modified
at the head of the pipeline and must propagate down it in a "frame-accurate” fashion. For example,
assume the coordinates of a pfGeoSet are modified for facial animation. If a t