
IRIX® Device Driver
Programmer’s Guide

Document Number 007-0911-210

CONTRIBUTORS
Written by David Cortesi, John Raithel, Bill Tuthill, and Anita Manders

Updated by Julie Boney and Steven Levine

Illustrated by Dany Galgani, Cheri Brown, and Chrystie Danzer

Production by Karen Jacobson

COPYRIGHT
© 1998-2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in
third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or
create derivative works from the contents of this electronic documentation in any manner, in
whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND
The electronic (software) version of this document was developed at private expense; if
acquired under an agreement with the USA government or any contractor thereto, it is acquired
as "commercial computer software" subject to the provisions of its applicable license agreement,
as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b)
48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto.
Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain
View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS
Silicon Graphics, SGI, the SGI logo, Challenge, Indigo, IRIS, IRIX, O2, Octane, Onyx, Onyx2,
and Origin are registered trademarks and Indigo2, Indigo2 Maximum Impact, IRIS InSight,
Power Challenge, Power Channel, Power Indigo2, Power Onyx, and REACT/pro are
trademarks of Silicon Graphics, Inc., in the United States and/or other countries worldwide.
Indy is a registered trademark, used under license in the United States and owned by Silicon
Graphics, Inc. in other countries worldwide.

IBM is a trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. MC6800, MC68000, and VERSAbus are trademarks of Motorola
Corporation. MIPS, R4000, and R8000 are registered trademarks and R5000 and R10000 are
trademarks of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Sun and
SunOS are trademarks of Sun Microsystems, Inc. UNIX, the X device, and X Window System
are registered trademarks of the Open Group in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical
Publications.

007-0911-210 iii

New Features in This Guide

This rewrite of the IRIX Device Driver Programmer’s Guide supports the IRIX 6.5.22 release.

New Features Documented

This manual includes information on using a PCI driver to interrogate a PCI Bus in
“Interrogating a PCI Bus” on page 757.

007-0911-210 v

Record of Revision

Version Description

120 July 1998

Incorporates information for the IRIX 6.5 release.

130 October 1998
Incorporates information for the IRIX 6.5.2 release.

140 February 1999

Incorporates information for the IRIX 6.5.3 release.

150 April 2000
Incorporates information for the IRIX 6.5.8 release.

160 June 2000

Incorporates information for the IRIX 6.5.9 release.

170 December 2000
Incorporates information for the IRIX 6.5.11 release.

180 May 2001

Incorporates information for the IRIX 6.5.12 release.

190 July 2002
Incorporates information for the IRIX 6.5.17 release.

200 August 2003

Incorporates information for the IRIX 6.5.21 release.

210 November 2003
Incorporates information for the IRIX 6.5.22 release.

007-0911-210 vii

Contents

Examples . xxvii

Figures . xxix

Tables . xxxi
What You Need to Know to Write Device Drivers xxxvii

Updating Device Drivers from Previous Releases to IRIX 6.5xxxviii
Updating a Device Driver from IRIX 6.2xxxviii

Updating a Device Driver from IRIX 6.3 xxxix
Updating a Device Driver from IRIX 6.4 xxxix

What This Guide Contains . xl
Other Sources of Information xli

Developer Program . xli
Internet Resources . xli

Standards Documents . xlii
Important man pages. xlii

Additional Reading . xliii
Reader Comments . xliv

viii 007-0911-210

Contents

PART I IRIX Device Integration

1. Physical and Virtual Memory 3
CPU Access to Memory and Devices. 3

CPU Modules . 4
CPU Access to Memory . 5

Processor Operating Modes 6
Virtual Address Mapping 6

Address Space Creation . 7
Address Exceptions . 8

CPU Access to Device Registers 8
Direct Memory Access . 10

PIO Addresses and DMA Addresses 11
Cache Use and Cache Coherency 13

The 32-Bit Address Space . 14
Segments of the 32-bit Address Space 15

Virtual Address Mapping 17
User Process Space—kuseg 17

Kernel Virtual Space—kseg2 18
Cached Physical Memory—kseg0 18

Uncached Physical Memory—kseg1 18
The 64-Bit Address Space . 19

Segments of the 64-Bit Address Space 19
Compatibility of 32-Bit and 64-Bit Spaces 21

64-Bit Address Format . 21
Virtual Address Mapping 22

User Process Space—xkuseg 23
Supervisor Mode Space—xksseg 23

Kernel Virtual Space—xkseg 23
Physical Address . 24

Cache-Controlled Physical Memory—xkphys 24

Contents

007-0911-210 ix

Address Space Usage in SGI Origin 2000 Systems 26

User Process Space and Kernel Virtual Space 26
Uncached and Special Address Spaces 26

Cached Access to Physical Memory 27
Uncached Access to Memory 29

Synchronization Access to Memory 29
Device Driver Use of Memory 31

Allowing for 64-Bit Mode 31
Memory Use in User-Level Drivers 32

Memory Use in Kernel-Level Drivers 34

2. Device Configuration . 37

Device Special Files . 37
Devices as Files . 38

Block and Character Device Access 38
Multiple Device Names . 39

Major Device Number . 40
Minor Device Number . 41

Creating Conventional Device Names 42
Hardware Graph . 44

UNIX Hardware Assumptions, Old and New. 44
Hardware Graph Features 45

/hw Filesystem . 48
Driver Interface to Hwgraph 49

Hardware Inventory . 50
Using the Hardware Inventory 50

Creating an Inventory Entry. 53
Using ioconfig for Global Controller Numbers 53

Configuration Files . 57
Master Configuration Database 57

Kernel Configuration Files 58
System Tuning Parameters 61

X Display Manager Configuration 61

x 007-0911-210

Contents

3. Device Control Software . 63

User-Level Device Control . 63
PCI Mapping Support. 64

EISA Mapping Support . 64
VME Mapping Support . 65

User-Level DMA From the VME Bus 65
User-Level Control of SCSI Devices 65

Managing External Interrupts 66
Kernel-Level Device Control . 66

Kinds of Kernel-Level Drivers 66
Typical Driver Operations 67

Upper and Lower Halves . 75
Layered Drivers . 77

Combined Block and Character Drivers 77
Drivers for Multiprocessors 77

Loadable Drivers . 78

PART II Device Control From Process Space

4. User-Level Access to Devices 83
PCI Programmed I/O . 83

Mapping a PCI Device Into Process Address Space 84
PCI Device Special Files . 84

Using mmap() With PCI Devices 86
PCI Bus Hardware Errors. 87

PCI PIO Example . 87
EISA Programmed I/O . 89

Mapping an EISA Device Into Memory 89
EISA PIO Bandwidth . 91

VME Programmed I/O . 92
Mapping a VME Device Into Process Address Space 92

VME PIO Access . 95
VME User-Level DMA. 96

Using the DMA Library Functions 97

Contents

007-0911-210 xi

5. User-Level Access to SCSI Devices. 99

Overview of the dsreq Driver100
Generic SCSI Device Special Files100

Major and Minor Device Numbers in /dev/scsi101
Form of Filenames in /dev/scsi.101

Creating Additional Names in /dev/scsi102
Relationship to Other Device Special Files103

The dsreq Structure .103
Values for ds_flags .105

Data Transfer Options .107
Return Codes and Status Values107

Testing the Driver Configuration110
Using the Special DS_RESET and DS_ABORT Calls111

Using DS_ABORT .111
Using DS_RESET .112

Using dslib Functions .112
dslib Functions .112

Using dsopen() and dsclose()113
Issuing a Request With doscsireq()115

SCSI Utility Functions .115
Using Command-Building Functions117

Example dslib Program .124

6. Control of External Interrupts135

External Interrupts in Challenge and Onyx Systems135
Generating Outgoing Signals136

Responding to Incoming External Interrupts137
External Interrupts In Origin 2000 and Origin 200.141

Generating Outgoing Signals142
Responding to Incoming External Interrupts144

xii 007-0911-210

Contents

PART III Kernel-Level Drivers

7. Structure of a Kernel-Level Driver 149
Summary of Driver Structure 150

Entry Point Naming and lboot 150
Entry Point Summary . 153

Driver Flag Constant . 156
Flag D_MP . 156

Flag D_MT . 157
Flag D_PCI_HOT_PLUG_ATTACH. 157

Flag D_PCI_HOT_PLUG_DETACH. 157
Flag D_WBACK . 158

Flag D_OLD Not Supported 158
Initialization Entry Points . 158

When Initialization Is Performed 159
Entry Point init() . 159

Entry Point edtinit() . 160
Entry Point start() . 161

Entry Point reg() . 161
Attach and Detach Entry Points 162

Entry Point attach() . 162
Entry Point detach() . 166

Open and Close Entry Points 167
Entry Point open() . 167

Entry Point close() . 170
Control Entry Point . 171

Choosing the Command Numbers 172
Supporting 32-Bit and 64-Bit Callers 172

User Return Value . 172
Data Transfer Entry Points 173

Entry Points read() and write() 173
Entry Point strategy() . 175

Contents

007-0911-210 xiii

Poll Entry Point .176

Use and Operation of poll(2)177
Entry Point poll() .178

Memory Map Entry Points .180
Concepts and Use of mmap()180

Entry Point map() .181
Entry Point mmap() .183

Entry Point unmap() .184
Interrupt Entry Point and Handler185

Associating Interrupt to Driver186
Interrupt Handler Operation186

Interrupts as Threads .188
Mutual Exclusion .189

Interrupt Performance and Latency190
Support Entry Points .190

Entry Point unreg() .190
Entry Point unload() .190

Entry Point halt() .191
Entry Point size() .192

Entry Point print() .192
Handling 32-Bit and 64-Bit Execution Models193

Designing for Multiprocessor Use194
The Multiprocessor Environment194

Synchronizing Within Upper-Half Functions196
Coordinating Upper-Half and Interrupt Entry Points197

Converting a Uniprocessor Driver199

xiv 007-0911-210

Contents

8. Device Driver/Kernel Interface 201

Important Data Types . 202
Hardware Graph Types 202

Address Types . 203
Address/Length Lists . 203

Structure uio_t . 204
Structure buf_t . 206

Lock and Semaphore Types 208
Device Number Types 209

Important Header Files . 211
Kernel Memory Allocation 213

General-Purpose Allocation 213
Allocating Memory in Specific Nodes of a Origin2000 System 214

Allocating Objects of Specific Kinds 215
Transferring Data . 217

General Data Transfer. 217
Transferring Data Through a uio_t Object 219

Managing Virtual and Physical Addresses 220
Managing Mapped Memory 220

Working With Page and Sector Units 221
Using Address/Length Lists 223

Setting Up a DMA Transfer 226
Testing Device Physical Addresses 231

Hardware Graph Management 231
Interrogating the hwgraph 232

Extending the hwgraph 233
Attaching Information to Vertexes 239

User Process Administration 242
Sending a Process Signal 243

Contents

007-0911-210 xv

Waiting and Mutual Exclusion244

Mutual Exclusion Compared to Waiting244
Basic Locks .245

Long-Term Locks .247
Reader/Writer Locks .250

Priority Level Functions .252
Waiting for Time to Pass .253

Waiting for Memory to Become Available255
Waiting for Block I/O to Complete255

Waiting for a General Event257
Semaphores .260

Using Kernel Threads .262

9. Building and Installing a Driver267

Defining Device Numbers .267
Selecting a Major Number268

Selecting Minor Numbers268
Defining Device Special Files.269

Static Definition of Device Special Files269
Dynamic Definition of Device Special Files269

Compiling and Linking .270
Platform Support .270

Using /var/sysgen/Makefile.kernio270
Compiler Variables .271

Compiler Options .272
Configuring a Nonloadable Driver273

How Names Are Used in Configuration274
Placing the Object File in /var/sysgen/boot274

Describing the Driver in /var/sysgen/master.d274
Configuring a Kernel .278

Generating a Kernel .278

xvi 007-0911-210

Contents

Configuring a Loadable Driver 279

Public Global Variables 280
Compile Options for Loadable Drivers 280

Master File for Loadable Drivers. 280
Loading . 281

Registration. 282
Unloading . 283

10. Testing and Debugging a Driver 285
Preparing the System for Debugging 285

Placing symmon in the Volume Header 285
Enabling Debugging in irix.sm 287

Generating a Debugging Kernel 289
Specifying a Separate System Console 290

Verifying the Debugging Tools 290
Producing Diagnostic Displays 291

Using cmn_err . 291
Using printf() . 293

Using ASSERT . 293
Using symmon . 293

How symmon Is Entered 294
Commands of symmon 296

Syntax of Command Elements 296
Commands for Symbol Conversion and Lookup 297

Commands to Control Execution Flow 298
Commands to Manage Virtual Memory 299

Commands to Display Memory 300
Commands to Display the hwgraph. 301

Utility Commands . 302

Contents

007-0911-210 xvii

Using idbg .302

Loading and Invoking idbg303
Commands of idbg .304

Commands to Display Memory and Symbols305
Commands to Display Process Information306

Commands to Display Locks and Semaphores307
Commands to Display I/O Status308

Commands to Display buf_t Objects308
Commands to Display STREAMS Structures309

Commands to Display Network-Related Structures309
Using icrash .310

11. Driver Example .311
Installing the Example Driver311

Obtaining the Source Files312
Compiling the Example Driver312

Configuring the Example Driver312
Creating Device Special Files313

Verifying Driver Operation313
Example Driver Source Files .315

Descriptive File .315
System File. .316

Header File .316
Driver Source .320

User Program Source .336

PART IV VME Device Drivers

12. VME Device Attachment on Origin 2000/Onyx2343
Overview of the VME Bus .344

VME History .344
VME Features .344

xviii 007-0911-210

Contents

About VME Bus Attachment 346

The VME Bus Controller 347
VME PIO Operations . 348

VME DMA Operations 349
Operation of the DMA Engine 349

About VME Bus Addresses and System Addresses 350
User-Level and Kernel-Level Addressing 351

PIO Addressing and DMA Addressing 351
About VME in the Origin2000 353

About the VME Controller 354
Universe II Controller Chip 356

Configuring VME Devices. 358
VME Bus and Interrupt Naming 358

Directing VME Interrupts. 359
VME Device Naming . 360

Defining VME Devices with the VECTOR Statement 360

13. Services for VME Drivers on Origin 2000/Onyx2 365

About VME Drivers . 366
About VME Support Functions 366

Initializing the Driver . 368
Initializing a VME Device . 368

Information in the edt_t Structure 369
Setting Up the Hardware Graph 371

Dealing with Initialization Errors 374
Creating and Using PIO Maps 374

Allocating and Freeing PIO Maps 375
Using a PIO Map for PIO 378

Using a PIO Map for Block Copy 379
Creating and Using DMA Maps 379

Allocating a DMA Map 380
Using a DMA Map for One Buffer 381

Using a DMA Map with Address/Length Lists 382

Contents

007-0911-210 xix

Handling VME Interrupts .382

Connecting the Interrupt Handler383
Porting From IRIX 6.2 .386

Sample VME Device Driver .387

14. VME Device Attachment on Challenge/Onyx463

Overview of the VME Bus .464
VME History .464

VME Features .464
VME Bus in Challenge and Onyx Systems466

The VME Bus Controller .466
VME PIO Operations .467

VME PIO Bandwidth .468
VME DMA Operations .468

Operation of the DMA Engine469
DMA Engine Bandwidth.470

VME Bus Addresses and System Addresses471
User-Level and Kernel-Level Addressing471

PIO Addressing and DMA Addressing472
PIO Addressing in Challenge and Onyx Systems473

DMA Addressing .477
Mapping DMA Addresses477

Configuring VME Devices .479
Configuring Device Addresses480

Configuring the System Files480
Allocating an Interrupt Vector Dynamically482

VME Hardware in Challenge and Onyx Systems484
VME Hardware Architecture485

Maximum Latency .487
VME Bus Numbering. .487

VMEbus Channel Adapter Module (VCAM) Board487
VME Interface Features and Restrictions490

VME Hardware Features and Restrictions493

xx 007-0911-210

Contents

15. Services for VME Drivers on Challenge/Onyx 497

Kernel Services for VME . 497
Mapping PIO Addresses 497

Mapping DMA Addresses 501
Allocating an Interrupt Vector Dynamically 503

Supporting Early IO4 Cache Problems 505
Sample VME Device Driver 506

PART V SCSI Device Drivers

16. SCSI Device Drivers . 521

SCSI Support in SGI Systems 522
SCSI Hardware Support 522

IRIX Kernel SCSI Support 523
SCSI Devices in the hwgraph. 523

Hardware Administration 527
Host Adapter Facilities . 529

Purpose of the Host Adapter Driver. 529
Host Adapter Concepts 529

Overview of Host Adapter Functions 531
How the Host Adapter Functions Are Found 531

Using scsi_info() . 534
Using scsi_alloc() . 534

Using scsi_free() . 535
Using scsi_command() 536

Using scsi_abort() . 542

Contents

007-0911-210 xxi

Designing a SCSI Driver .543

Configuring a SCSI Driver544
About Registration .544

About Attaching a Device546
Opening a SCSI Device .547

Accessing a SCSI Device .548
About Detaching a Device548

About Unloading a SCSI Driver.548
Creating Device Aliases .549

SCSI Reference Data .549
SCSI Error Messages .550

SCSI Error Message Tables550
A Note on FibreChannel Drivers556

PART VI Network Drivers

17. Network Device Drivers .559

Overview of Network Drivers560
Application Interfaces .561

Protocol Stack Interfaces .561
Device Driver Interfaces .562

Network Driver Interfaces .562
Kernel Facilities .563

Principal ifnet Header Files563
Debugging Facilities .564

Information Sources .564
Network Inventory Entries565

Interface Changes for IRIX 6.5566
Multiprocessor Considerations568

Ineffective spl*() Functions568
Multiprocessor Locking Macros.568

Compiler Flags for MP TCP/IP569
Mutual Exclusion Macros569

Example ifnet Driver .570

xxii 007-0911-210

Contents

PART VII EISA Drivers

18. EISA Device Drivers . 601
The EISA Bus in SGI Systems 601

EISA Bus Overview . 601
EISA Request Arbitration 603

EISA Interrupts . 603
EISA Data Transfers . 603

EISA Address Spaces . 603
EISA Locked Cycles . 604

EISA Byte Ordering . 604
EISA Product Identifier 604

EISA Support in Indigo2 and Challenge M Series 606
Available Card Slots . 606

EISA Address Mapping 607
Interrupt Priority Scheduling 607

EISA Configuration . 607
Configuring the Hardware 607

Configuring IRIX . 608
Kernel Functions for EISA Support 611

Mapping PIO Addresses 611
Allocating IRQs and Channels 613

Programming Bus-Master DMA 616
Programming Slave DMA 617

Sample EISA Driver Code . 618
Initialization Sketch . 619

Complete EISA Character Driver 621

PART VIII GIO Drivers

19. GIO Device Drivers . 683
GIO Bus Overview . 683

GIO Bus Address Spaces 684

Contents

007-0911-210 xxiii

Configuring a GIO Device .685

GIO VECTOR Line .685
Writing a GIO Driver .686

GIO-Specific Kernel Functions686
splgio0, splgio1, splgio2 .688

GIO Driver edtinit() Entry Point688
GIO Driver Interrupt Handler690

Using PIO .690
Using DMA .691

Memory Parity Workarounds696
Example GIO Driver .698

PART IX PCI Drivers

20. PCI Device Attachment .713

PCI Bus in SGI Workstations .714
PCI Bus and System Bus .714

Buses, Slots, Cards, and Devices715
Architectural Implications716

Byte Order Considerations717
PCI Implementation in O2 Workstations719

Unsupported PCI Signals720
Configuration Register Initialization720

Address Spaces Supported721
Slot Priority and Bus Arbitration722

Interrupt Signal Distribution722
PCI Implementation in Origin Servers723

Latency and Operation Order723
Configuration Register Initialization724

Unsupported PCI Signals724
Address Spaces Supported725

Bus Arbitration .726
Interrupt Signal Distribution727

xxiv 007-0911-210

Contents

21. Services for PCI Drivers . 729

IRIX 6.5 PCI Drivers . 730
About PCI Drivers . 730

About Registration . 731
About Attaching a Device 732

About Unloading . 733
Using PIO Maps . 734

PIO Mapping Functions 734
Allocating PIO Maps . 735

Performing PIO With a PIO Map 738
Using One-Step PIO Translation 740

Accessing the Device Configuration. 740
Interrogating PIO Maps 743

PCI Drivers for the O2 (IP32) Platform 743
Using DMA Maps . 746

Allocating DMA Maps 748
Using a DMA Map . 749

Interrogating DMA Maps. 751
Registering an Interrupt Handler. 752

Creating an Interrupt Object 752
Connecting the Handler 753

Disconnecting the Handler 755
Interrogating an Interrupt Handler 755

Registering an Error Handler 756
Interrogating a PCI Device 757

Interrogating a PCI Bus . 757
Example PCI Driver . 760

Other Code Examples . 775

Contents

007-0911-210 xxv

PART X STREAMS Drivers

22. STREAMS Drivers .779
Driver Exported Names .780

Streamtab Structure .780
Driver Flag Constant .780

Initialization Entry Points780
Entry Point open() .781

Entry Point close() .781
Put Functions wput() and rput()782

Service Functions rsrv() and wsrv().783
Building and Debugging .784

Special Considerations for Multiprocessing785
Expanded Termio Interface .786

Special Considerations for IRIX787
Extension of Poll and Select787

Support for Pipes .787
Service Scheduling .788

Supplied STREAMS Modules788
No #idefs .788

Different I/O Hardware Model789
Different Network Model789

Support for CLONE Drivers789
Summary of Standard STREAMS Functions792

STREAMS Modules for X Input Devices794
The X Input Subsystem .794

Xsgi Shared Memory Input Queue795
Xsgi and the IDEV Interface796

Xsgi Input Device Naming796
Opening Xsgi Input Devices797

Device Controls .798

A. SGI Driver/Kernel API .801

Driver Exported Names .802

xxvi 007-0911-210

Contents

Kernel Data Structures and Declarations 803

Kernel Functions . 805

B. Challenge DMA with Multiple IO4 Boards 825

The IO4 Problem . 825
Software Fix . 826

Software Not Affected 826
Fixing the IO4 Problem . 827

Glossary . 829

Index . 841

007-0911-210 xxvii

Examples

Example 2-1 Testing the Hardware Inventory in a Shell Script 51
Example 2-2 Function Returning Type Code for CPU Module 52
Example 4-1 PCI Configuration Space Dump 87
Example 5-1 Testing the Generic SCSI Configuration111
Example 5-2 Code of the testunitread00() Function123
Example 5-3 Program That Uses dslib Functions124
Example 6-1 Challenge Function to Test and Set External Interrupt Pulse Width .139
Example 7-1 Compiling Driver Prefix as a Macro151
Example 7-2 Entry Point Name Macros152
Example 7-3 Hypothetical pfxread() entry in a Character/Block Driver . . .174
Example 7-4 pfxpoll() Code for Hypothetical Driver179
Example 7-5 Edited Fragment of flash_map()183
Example 7-6 Hypothetical Call to pollwakeup()187
Example 7-7 Entry Point pfxprint()192
Example 7-8 Conditional Choice of Mutual Exclusion Lock Type198
Example 7-9 Uniprocessor Upper-Half Wait Logic199
Example 8-1 Typical Code to Get Device Info232
Example 8-2 Hypothetical Code for a Single Vertex234
Example 8-3 Hypothetical Code for Multiple Vertexes237
Example 8-4 LIFO Queue Using Basic Locks246
Example 8-5 Skeleton Code for Use of SV_WAIT259
Example 8-6 Creation and Operation of a Typical System Thread263

Example 8-7 XTHREAD FLOAT Entry265
Example 8-8 XTHREAD CPU Entry265
Example 9-1 Defining Variables in Master Descriptive File277
Example 10-1 Verifying Presence of symmon286
Example 10-2 Debugging Macros Using cmn_err()292
Example 10-3 Invoking idbg Interactively303

xxviii 007-0911-210

Examples

Example 10-4 Invoking idbg with a Log File 303
Example 11-1 Startup Messages from snoop Driver 313
Example 11-2 Driver Administration Statement in snoop.sm 313
Example 11-3 Typical Output of snoop Driver Unit Test 314
Example 12-1 Hypothetical VME Configuration File 362
Example 13-1 Adding a Vertex to the Hardware Graph 373
Example 13-2 Sample VME Driver. 387
Example 14-1 Comparing pio_badaddr() to pio_badaddr_val() 475
Example 15-1 Comparing pio_badaddr() to pio_badaddr_val() 499
Example 15-2 Example VME Character Driver 506
Example 17-1 Skeleton ifnet Driver 570
Example 18-1 Sketch of EISA Initialization 619
Example 18-2 Master File /var/sysgen/rap for RAP-10 Driver 621
Example 18-3 Configuration File /var/sysgen/rap.sm for RAP-10 Driver . . 621
Example 18-4 Installation Script for RAP-10 Driver 622
Example 18-5 Program to Test RAP-10 Driver 622
Example 18-6 Complete EISA Character Driver for RAP-10 624
Example 19-1 GIO Driver edtinit() Entry Point 689
Example 19-2 Hypothetical PIO Routine for GIO 690
Example 19-3 Strategy Code for Hypothetical Scatter/Gather GIO Device . . 692
Example 19-4 Strategy() Code for GIO Device Without Scatter/Gather . . . 694
Example 19-5 Disabling SysAD Parity Checking During PIO 698
Example 19-6 Complete Driver for Hypothetical GIO Device 698
Example 20-1 Declaration of Memory Copy of Configuration Space 718
Example 21-1 Driver Registration 732
Example 21-2 Allocation of PCI PIO Map. 736
Example 21-3 Function to Read Using a Map 739
Example 21-4 Configuration Access Macros 741
Example 21-5 Reading PCI Configuration Space. 742
Example 21-6 Non-O2 PCI PIO Code Example 744
Example 21-7 O2 PCI PIO Code Example. 745
Example 21-8 Setting Up a PCI Interrupt Handler 754

Example 21-9 Obtaining Bus Information. 760
Example 22-1 Testing Pipe Configuration 787

007-0911-210 xxix

Figures

Figure 1-1 CPU Access to Memory 5

Figure 1-2 CPU Access to Device Registers (Programmed I/O) 9
Figure 1-3 Device Access to Memory 10

Figure 1-4 Device Access Through a Bus Adapter 11
Figure 1-5 The 32-Bit Address Space 16

Figure 1-6 MIPS 32-Bit Virtual Address Format 17
Figure 1-7 Main Parts of the MIPS R10000 Microprocessor 64-Bit Address

Space 20

Figure 1-8 Selecting the MIPS 64-Bit Address Space Segments 22
Figure 1-9 MIPS 64-Bit Virtual Address Format 22

Figure 1-10 Address Decoding for Physical Memory Access 24
Figure 1-11 SGI Origin 2000 Physical Address Decoding 28

Figure 1-12 SGI Origin 2000 Fetch-and-Op Address Decoding 30
Figure 2-1 Part of a Typical Hwgraph 46

Figure 3-1 Overview of Device Open 68
Figure 3-2 Overview of Device Control 69

Figure 3-3 Overview of Programmed Kernel I/O 70
Figure 3-4 Overview of Memory Mapping 72

Figure 3-5 Overview of DMA I/O 73
Figure 5-1 Bit Assignments in SCSI Device Minor Numbers101

Figure 8-1 Address/Length List Concepts204
Figure 12-1 Relationship of VME Bus to System Bus.347

Figure 12-2 VME Bus Enclosure and Cable to an Origin 2000 Deskside . . .354
Figure 12-3 VME Bus Connection to System Bus355

Figure 14-1 Relationship of VME Bus to System Bus.467
Figure 14-2 VMECC, the VMEbus Adapter488

Figure 14-3 I/O Address to System Address Mapping492

xxx 007-0911-210

Figures

Figure 14-4 VMECC Contribution to VME Handshake Cycle Time. . . . 494

Figure 16-1 SCSI Vertexes and Data Structures 532
Figure 17-1 Overview of Network Architecture 560

Figure 18-1 High-Level Overview of EISA Bus in Indigo2 602
Figure 18-2 Encoding of the EISA Manufacturer ID 605

Figure 19-1 The SysAD Bus in Relation to GIO 697
Figure 20-1 PCI Bus In Relation to System Bus 715

007-0911-210 xxxi

Tables

Table 1-1 CPU Modules and System Names 4

Table 1-2 Number of TLB Entries by Processor Type 7
Table 1-3 Cache Algorithm Selection 25

Table 1-4 Special Address Spaces in SGI Origin 2000 27
Table 1-5 SGI Origin 2000 Fetch-and-Op Operations 30

Table 4-1 PCI Device Special File Names for User Access. 85
Table 4-2 EISA Bus PIO Bandwidth (32-Bit Slave, 33-MHz GIO Clock) . . . 92

Table 4-3 EISA Bus PIO Bandwidth (16-Bit Slave, 33-MHz GIO Clock) . . . 92
Table 4-4 Data Width Names in VME Special Device Names 94

Table 5-1 Fields of the dsreq Structure104
Table 5-2 Flag Values for ds_flags105

Table 5-3 Return Codes From SCSI Operations107
Table 5-4 SCSI Status Codes109

Table 5-5 SCSI Message Byte Values.109
Table 5-6 Fields of the dsconf Structure110

Table 5-7 dslib Function Summary112
Table 5-8 Lookup Tables in dslib.117

Table 6-1 Functions for Outgoing External Signals in Challenge.136
Table 6-2 Functions for Incoming External Interrupts137

Table 6-3 Functions for Fixed External Levels in Origin 2000.142
Table 6-4 Functions for Pulses and Pulse Trains in Origin 2000143

Table 6-5 Functions for Outgoing External Signals in Origin 2000143
Table 6-6 Functions for Incoming External Interrupts in Challenge144

Table 7-1 Entry Points in Alphabetic Order.153
Table 8-1 Accessible Fields of buf_t Objects207

Table 8-2 Functions to Manipulate Device Numbers210
Table 8-3 Header Files Often Used in Device Drivers211

xxxii 007-0911-210

Tables

Table 8-4 Functions for Kernel Virtual Memory 213

Table 8-5 Functions for Kernel Memory In Specific Nodes 215
Table 8-6 Functions for Allocating pollhead Structures 215

Table 8-7 Functions for Allocating buf_t Objects and Buffers 216
Table 8-8 Functions for General Data Transfer 217

Table 8-9 Functions Moving Data Using uio_t 219
Table 8-10 Functions to Manipulate a vhandl_t Object 220

Table 8-11 Constants and Macros for Page and Sector values 221
Table 8-12 Functions to Convert Bytes to Sectors or Pages 222

Table 8-13 Functions to Explicitly Manage Alenlists. 223
Table 8-14 Functions to Populate Alenlists 224

Table 8-15 Functions to Manage Alenlist Cursors 225
Table 8-16 Functions to Use an Alenlist Based on a Cursor 225

Table 8-17 Functions to Map Buffer Pages 229
Table 8-18 Functions Related to Cache Coherency 230

Table 8-19 Functions to Test Physical Addresses 231
Table 8-20 Functions to Query the Hardware Graph 232

Table 8-21 Functions to Construct Edges and Vertexes 233
Table 8-22 Functions to Manage Attributes 241

Table 8-23 Functions for User Process Management 242
Table 8-24 Functions for Basic Locks 245

Table 8-25 Functions for Mutex Locks 247
Table 8-26 Functions for Sleep Locks 249

Table 8-27 Functions for Reader/Writer Locks 251
Table 8-28 Functions to Set Interrupt Levels 252

Table 8-29 Functions for Timed Delays 253
Table 8-30 Functions for Synchronizing Block I/O 255

Table 8-31 Functions for Synchronization: sleep/wakeup 257
Table 8-32 Functions for Synchronization: Synchronization Variables . . 258

Table 8-33 Functions for Semaphores 260
Table 9-1 Compiler Variables Tested by System Header Files. 271

Table 9-2 Compiler Options Kernel Modules 272
Table 9-3 Fields of Descriptive Line in Master File 275

Tables

007-0911-210 xxxiii

Table 9-4 Flag Values for Nonloadable Drivers275

Table 9-5 Flag Values for Loadable Drivers.280
Table 10-1 Commands for Symbol Conversion and Lookup297

Table 10-2 Commands to Control Execution298
Table 10-3 Commands to Manage Virtual Memory300

Table 10-4 Commands to Display Memory300
Table 10-5 Utility Commands301

Table 10-6 Utility Commands302
Table 10-7 Commands to Display Memory and Symbols305

Table 10-8 Commands to Display Process Information.306
Table 10-9 Commands to Display Locks and Semaphores307

Table 10-10 Commands to Display I/O Status308
Table 10-11 Commands to Display buf_t Objects308

Table 10-12 Commands to Display STREAMS Structures309
Table 10-13 Commands to Display Network-Related Structures309

Table 12-1 Accessible VME PIO Addresses on Any Bus352
Table 12-2 Universe II Register Settings357

Table 13-1 Functions of the VME I/O Infrastructure367
Table 13-2 VME Driver Contents of edt_t Structure.369

Table 13-3 VME Driver Contents of iospace_t Structures370
Table 13-4 Functions to Create and Use PIO Maps375

Table 13-5 Address Space and Modifiers Available for PIO377
Table 13-6 Functions That Operate on DMA Maps379

Table 13-7 Address Space and Modifiers Available for DMA381
Table 13-8 Functions for Interrupt Control383

Table 13-9 VME Kernel Function Compatibility Summary.386
Table 14-1 VME Bus PIO Bandwidth468

Table 14-2 VME Bus Bandwidth, DMA Engine, D32 Transfer470
Table 14-3 Functions to Create and Use PIO Maps474

Table 14-4 Functions That Operate on DMA Maps478
Table 14-5 Accessible VME Addresses in Challenge and Onyx Systems . . .480

Table 14-6 Functions to Manage Interrupt Vector Values483
Table 15-1 Functions to Create and Use PIO Maps498

xxxiv 007-0911-210

Tables

Table 15-2 Functions That Operate on DMA Maps 502

Table 15-3 Functions to Manage Interrupt Vector Values 504
Table 16-1 Host Adapter Function Summary 531

Table 16-2 Macro Access to SCSI Information 533
Table 16-3 Input Fields of the scsi_request Structure 536

Table 16-4 Values for the sr_flags Field of a scsi_request 537
Table 16-5 Values Returned From a SCSI Command 539

Table 16-6 Software Status Values From a SCSI Request 540
Table 16-7 SCSI Status Bytes 541

Table 16-8 Host Adapter Status After a SCSI Request 541
Table 16-9 SCSI Device Type Numbers 544

Table 16-10 Adapter Error Codes 551
Table 16-11 Primary Sense Key Error Table 552

Table 16-12 Additional Sense Code Table 553
Table 17-1 Important Reference Pages Related to Network Drivers . . . 565

Table 17-2 Mutual Exclusion Macros for ifnet Drivers 569
Table 18-1 Functions to Create and Use PIO Maps 611

Table 18-2 Functions for IRQ and Channel Allocation 614
Table 18-3 Functions That Operate on DMA Maps 617

Table 18-4 Functions for EISA DMA 618
Table 19-1 GIO Slot Names and Addresses 684

Table 20-1 PIO Byte Order in 32-bit Transfer 718
Table 20-2 PCI Interrupt Distribution to System Interrupt Numbers . . . 723

Table 20-3 PCI Card Interrupt Pin Distribution 727
Table 21-1 Functions for PIO Maps for the PCI Bus 735

Table 21-2 PIO Map Address Space Constants 737
Table 21-3 Functions for Interrogating PIO Maps 743

Table 21-4 Functions for Simple DMA Maps for PCI 746
Table 21-5 Functions for Interrogating DMA Maps 751

Table 21-6 Functions for Managing PCI Interrupt Handlers 752
Table 21-7 Functions for Interrogating an Interrupt Object 755

Table 21-8 Declaration Used In Setting Up PCI Error Handlers 756
Table 21-9 Functions for Interrogating a PCI Device. 757

Tables

007-0911-210 xxxv

Table 21-10 Functions for Interrogating a PCI bus758

Table 21-11 Macros for Extracting PCI Bus Information759
Table 22-1 Multiprocessing STREAMS Functions785

Table 22-2 Kernel Entry Points792
Table A-1 Driver Exported Names802

Table A-2 Device Driver Interface Objects803
Table A-3 STREAMS Driver Interface Objects804

Table A-4 Kernel Functions805

007-0911-210 xxxvii

About This Guide

This guide describes the ways in which hardware devices are integrated into and
controlled from an SGI computer system running the IRIX operating system version 6.5
and later.

Note: This edition applies only to IRIX versions 6.5 and later, and discusses only
hardware supported by those versions. If your device driver will work with a different
release or other hardware, you should use the version of this manual appropriate to that
release (see “Internet Resources” on page xli for a way to read all versions online).

Three general classes of device-control software exist in an IRIX system: process-level
drivers, kernel-level drivers, and STREAMS drivers.

• A process-level driver executes as part of a user-initiated process. An example is the
use of the dslib library to control a SCSI device from a user program.

• A kernel-level driver is loaded as part of the IRIX kernel and executes in the kernel
address space, controlling devices in response to calls to its read, write, and ioctl
(control) entry points.

• A STREAMS driver is dynamically loaded into the kernel address space to monitor
or modify a stream of data passing between a device and a user process.

All three classes are discussed in this guide, although the greatest amount of attention is
given to kernel-level drivers.

What You Need to Know to Write Device Drivers

In order to write a process-level driver, you must be an experienced C programmer with
a thorough understanding of the use of UNIX system services and, of course, detailed
knowledge of the device to be managed.

xxxviii 007-0911-210

About This Guide

In order to write a kernel-level driver or a STREAMS driver, you must be an experienced
C programmer who knows UNIX system administration, and especially IRIX system
administration, and who understands the concepts of UNIX device management.

Updating Device Drivers from Previous Releases to IRIX 6.5

With the release of IRIX 6.5, the same operating system runs on all SGI supported
platforms. The following sections summarize device driver differences between IRIX
releases 6.2, 6.3, 6.4, and 6.5 to help you port existing drivers to IRIX 6.5:

• “Updating a Device Driver from IRIX 6.2” on page xxxviii

• “Updating a Device Driver from IRIX 6.3” on page xxxix

• “Updating a Device Driver from IRIX 6.4” on page xxxix

Updating a Device Driver from IRIX 6.2

If you are updating a device driver from IRIX 6.2:

• Familiarize yourself with the hardware graph—a new way to map devices that was
introduced with IRIX 6.4. Refer to hwgraph.intro(4) and Chapter 2 of this guide.

• Note that the SCSI host adapter interface has changed and SCSI drivers should now
be written as described in Chapter 16 of this guide.

• Note that the VME driver interface has changed with the SGI Origin and Onyx2
platforms. See “Porting From IRIX 6.2” on page 386. VME drivers written for
Challenge and Onyx platforms under IRIX 6.2 should work without modification
under IRIX 6.5 on the same platforms.

• Note that PCI bus support is now a part of IRIX (see Chapter 20, “PCI Device
Attachment,” and Chapter 21, “Services for PCI Drivers”).

• If you are using poll(), refer to “Entry Point poll()” on page 178 and the poll(D2)
man page for the discussion of the genp argument.

• Beginning with IRIX 6.4, there is no restriction on which kernel services you can call
from driver lower-half code. Refer to “Upper and Lower Halves” on page 75.

• Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation, but not on a multiprocessor system.

About This Guide

007-0911-210 xxxix

• Mapped driver routines (for example, v_mapphys) are now located in
ksys/ddmap.h (not /sys/region.h), which also contains some new routines
(see ksys/ddmap.h).

Updating a Device Driver from IRIX 6.3

If you are updating a device driver from IRIX 6.3:

• Familiarize yourself with the hardware graph—a new way to map devices that was
introduced with IRIX 6.4. Refer to hwgraph.intro(4) and Chapter 2 of this guide.

• Note that the SCSI host adapter interface has changed and SCSI drivers should now
be written as described in Chapter 16 of this guide.

• Note that PCI drivers will have to be modified to work with the PCI interface as
documented in Chapter 20, “PCI Device Attachment,” and Chapter 21, “Services for
PCI Drivers” of this guide.

• If you are using poll(), refer to “Entry Point poll()” on page 178 and the poll(D2)
man page for the discussion of the genp argument.

• Beginning with IRIX 6.4, there is no restriction on which kernel services you can call
from driver lower-half code. Refer to “Upper and Lower Halves” on page 75.

• Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation, but not on a multiprocessor system.

• Mapped driver routines (for example, v_mapphys) are now located in
ksys/ddmap.h (not /sys/region.h) which also contains some new routines (see
ksys/ddmap.h).

Updating a Device Driver from IRIX 6.4

If you are updating a device driver from IRIX 6.4:

• Note that IRIX 6.5 covers all supported platforms. If you want your driver to
support multiple platforms, refer to “Platform Support” on page 270.

• Note that the third-party SCSI drivers are supported as documented in Chapter 16.

• Note that PCI drivers for the O2 platform should be written as described in “PCI
Drivers for the O2 (IP32) Platform” on page 743, and user-level PCI drivers should

xl 007-0911-210

About This Guide

be updated to support the pciba interface instead of usrpci (see “PCI
Programmed I/O” on page 83 of this guide).

• Mapped driver routines (for example, v_mapphys) are now located in
ksys/ddmap.h (not /sys/region.h), which also contains some new routines
(see ksys/ddmap.h).

• If you are using poll (), refer to “Entry Point poll()” on page 178 and the poll(D2)
man page for the discussion of the genp argument.

• VME drivers support either Origin and Onyx2 (refer to Chapter 12 and Chapter 13),
or Challenge and Onyx (refer to Chapter 14 and Chapter 15).

What This Guide Contains

This guide is divided into the following major parts.

Part I How devices are attached to SGI computers,
configured to IRIX, and initialized at boot time.

Part II Details of user-level handling of PCI devices and
SCSI control using dslib.

Part III How kernel-level drivers are designed, compiled,
loaded, and tested. Survey of driver kernel services.

Part IV Kernel-level drivers for the VME bus.

Part V Kernel-level drivers for the SCSI bus.

Part VI Kernel-level drivers for network interfaces.

Part VII Kernel-level drivers for the EISA bus.

Part VIII Kernel-level drivers for the GIO bus.

Part IX Kernel-level drivers for the PCI bus.

Part X Design of STREAMS drivers.

Appendix A Summary of kernel functions with compatibility
notes.

Appendix B VME I/O considerations for Challenge and Onyx
systems.

About This Guide

007-0911-210 xli

In the printed book, you can locate these parts using the table of contents. Using the
online InfoSearch tool, each part is a top-level division in the clickable table of contents,
or you can jump to any part by clicking the blue cross-references in the list above.

Other Sources of Information

Developer Program

Information and support are available through the SGI Developer Program. The
Developer Toolbox CD contains numerous code examples. To join the program, contact
the Developer Response Center at 800-770-3033 or e-mail devprogram@sgi.com.

Internet Resources

A great deal of useful material can be found on the Internet. Some starting points are in
the following list.

Earlier versions of this book as well as all
other SGI technical manuals to read or
download.

http://docs.sgi.com

SGI patches, examples, and other material. http://www.sgi.com

Network of pages of information about SGI
products

http://www.sgi.com

Computer graphics pointers at the UCSC
Perceptual Science Laboratory.

http://mambo.ucsc.edu

Pointers to binaries and sources at The
National Research Council of Canada’s
Institute For Biodiagnostics.

http://zeno.ibd.nrc.ca:80/~sgi/

IEEE Catalog and worldwide ordering
information.

http://standards.ieee.org

MIPS processor manuals in HTML form. http://www.mips.com/

Home page of the PCI bus standardization
organization

http://www.pcisig.com

xlii 007-0911-210

About This Guide

Standards Documents

The following documents are the official standard descriptions of buses:

• PCI Local Bus Specification, Version 2.1, available from the PCI Special Interest Group,
P.O. Box 14070, Portland, OR 97214 (fax: 503-234-6762).

• ANSI/IEEE standard 1014-1987 (VME Bus), available from IEEE Customer Service,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 (but see also “Internet
Resources” on page xli).

Important man pages

The following man pages contain important details about software tools and practices
that you need.

alenlist(d4x) Overview of address/length list functions

getinvent(3) The interface to the inventory database

hinv(1) The use of the inventory display command

hwgraph.intro(d4x) Overview of the hardware graph and kernel functions for it

intro(7) The conventions used for special device filenames

ioconfig(1M) The startup program that creates device special files

master(4) Syntax of files in /var/sysgen/master.d

system(4) Syntax of files in /var/sysgen/system/*.sm

prom(1) Commands of the “miniroot” and other features of the boot
PROM, which you use to bring up the system when testing a
new device driver

udmalib(3) Functions for performing user-level DMA from VME

uli(3) Functions for registering and using a user-level interrupt
handler (installs with the REACT/Pro product)

usrvme(7) Naming conventions for mappable VME device special files

About This Guide

007-0911-210 xliii

Additional Reading

The following books, obtainable from SGI, can be helpful when designing or testing a
device driver:

• MIPSpro N32/64 Compiling and Performance Tuning Guide, document number
007-2360-nnn, tells how to use the C compiler and related tools.

• MIPSpro Assembly Language Programmer’s Guide, document number 007-2418-nnn,
tells how to compile assembly-language modules.

• MIPSpro 64-Bit Porting and Transition Guide, document number 007-2391-nnn,
documents the implications of the 64-bit execution mode for user programs.

• MIPSpro N32 ABI Handbook, document number 007-2816-nnn, gives details of the
code generated when the -n32 compiler option is used.

• MIPS R4000 Microprocessor User’s Guide (2nd ed.) by Joe Heinrich, document
007-2489-001, gives detailed information on the MIPS instruction set and hardware
registers for the processor used in many IRIX systems (also available on
http://www.mips.com/).

• MIPS R10000 User’s Guide by Joe Heinrich gives detailed information on the MIPS
instruction set and hardware registers for the processor used in certain high-end
systems. Available only in HTML form from http://www.mips.com/.

The following books, obtainable from bookstores or libraries, can also be helpful.

• Lenoski, Daniel E. and Wolf-Dietrich Weber. Scalable Shared-Memory Multiprocessing.
Morgan Kaufmann Publishers, San Francisco, 1995. ISBN 1-55860-315-8.

• Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX Device Driver. John Wiley &
Sons, 1992.

• Leffler, Samuel J., et alia. The Design and Implementation of the 4.3BSD UNIX
Operating System. Palo Alto, California: Addison-Wesley Publishing Company, 1989.

• A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts, Third Edition.
Addison Wesley Publishing Company, 1991.

• Heath, Steve. VMEbus User’s Handbook. CRC Press, Inc, 1989. ISBN 0-8493-7130-9.

• Device Driver Reference, UNIX SVR4.2, UNIX Press 1992.

• UNIX System V Release 4 Programmer’s Guide, UNIX SVR4.2. UNIX Press, 1992.

• STREAMS Modules and Drivers, UNIX SVR4.2, UNIX Press 1992. ISBN 0-13-066879.

xliv 007-0911-210

About This Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in the following ways:

• Send e-mail to the following address:

techpubs@sgi.com

• Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://docs.sgi.com

• Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

• Send mail to the following address:

Technical Publications
SGI
1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

• Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

PART ONE

IRIX Device Integration I

Chapter 1, “Physical and Virtual Memory”
An overview of physical memory, virtual address space management, and
device addressing in SGI/MIPS systems.

Chapter 2, “Device Configuration”
How IRIX locates devices, and how devices are represented in software.

Chapter 3, “Device Control Software”
A survey of the ways in which you can control devices under IRIX, from
user-level processes and from kernel-level drivers of different kinds.

007-0911-210 3

Chapter 1

1. Physical and Virtual Memory

This chapter gives an overview of the management of physical and virtual memory in
SGI systems based on the MIPS R5000 and R10000 processors. The purpose is to give you
the background to understand terms used in device driver header files and reference
pages, and to understand the limitations and special conventions used by some kernel
functions.

This information is only of academic interest if you intend to control a device from a
user-level process. (See Chapter 3, “Device Control Software,” for the difference between
user-level and kernel-level drivers.) For a deeper level of detail on SGI Origin 2000
memory hardware, see the hardware manuals listed under “Additional Reading” on
page xliii.

The following main topics are covered in this chapter.

• “CPU Access to Memory and Devices” on page 3 summarizes the hardware
architecture by which the CPU accesses memory.

• “The 32-Bit Address Space” on page 14 describes the parts of the physical address
space when 32-bit addressing is used.

• “The 64-Bit Address Space” on page 19 describes the 64-bit physical address space.

• “Address Space Usage in SGI Origin 2000 Systems” on page 26 gives an overview of
how physical memory is addressed in the complex architecture of the SGI Origin
2000.

CPU Access to Memory and Devices

Each SGI computer system has one or more CPU modules. A CPU reads data from
memory or a device by placing an address on a system bus, and receiving data back from
the addressed memory or device. An address can be translated more than once as it
passes through multiple layers of bus adapters. Access to memory can pass through
multiple levels of cache.

4 007-0911-210

1: Physical and Virtual Memory

CPU Modules

A CPU is a hardware module containing a MIPS processor chip such as the R8000,
together with system interface chips and possibly a secondary cache. SGI CPU modules
have model designation of the form IPnn; for example, the IP22 module is used in the
Indy workstation. The CPU modules supported by IRIX 6.5 are listed in Table 1-1.

Modules with the same IP designation can be built in a variety of clock speeds, and they
can differ in other ways. (For example, an IP27 can have 0, 1 or 2 R10000 modules
plugged into it.) Also, the choice of graphics hardware is independent of the CPU model.
However, all these CPUs are basically identical as seen from software.

Interrogating the CPU Type

At the interactive command line, you can determine which CPU module a system uses
with the following command:

hinv -c processor

Table 1-1 CPU Modules and System Names

Module MIPS Processor System Families

IP19 R4x00 Challenge (other than S model), Onyx

IP20 R4x00 Indigo

IP21 R8000 Power Challenge, Power Onyx

IP22 R4x00 Indigo, Indy, Challenge S

IP25 R10000 Power Challenge R10000

IP26 R8000 Power Indigo

IP27 R10000 SGI Origin 2000

IP28 R10000 Power Indigo2 R10000

IP30 R10000 Octane

IP32 R10000 O2

IP35 R12000 SGI Origin 3000

CPU Access to Memory and Devices

007-0911-210 5

Within a shell script, it is more convenient to process the terse output of

uname -m

(See the uname(1) and hinv(1) reference pages.)

Within a program, you can get the CPU model using the getinvent() function. For an
example, see “Testing the Inventory In Software” on page 51.

CPU Access to Memory

The CPU generates the address of data that it needs—the address of an instruction to
fetch, or the address of an operand of an instruction. It requests the data through a
mechanism that is depicted in simplified form in Figure 1-1.

Figure 1-1 CPU Access to Memory

1

2

3

4

Execution unit
and registers

Translation
lookaside
buffer

Primary
cache

Secondary
cache

System bus

Memory

CPU module
(IPnn)

MIPS R4X00,
R5000, R8000 or R10000

6 007-0911-210

1: Physical and Virtual Memory

1. The address of the needed data is formed in the processor execution or
instruction-fetch unit. Most addresses are then mapped from virtual to real through
the Translation Lookaside Buffer (TLB). Certain ranges of addresses are not
mapped, and bypass the TLB.

2. Most addresses are presented to the primary cache, a cache in the processor chip. If a
copy of the data with that address is found, it is returned immediately. Certain
address ranges are never cached; these addresses pass directly to the bus.

3. When the primary cache does not contain the data, the address is presented to the
secondary cache. If it contains a copy of the data, the data is returned immediately.
The size and the architecture of the secondary cache differ from one CPU model to
another.

4. The address is placed on the system bus. The memory module that recognizes the
address places the data on the bus.

The process in Figure 1-1 is correct for an SGI Origin 2000 system when the addressed
data is in the local node. When the address applies to memory in another node, the
address passes out through the connection fabric to a memory module in another node,
from which the data is returned.

Processor Operating Modes

The MIPS processor under IRIX operates in one of two modes: kernel and user. The
processor enters the more privileged kernel mode when an interrupt, a system
instruction, or an exception occurs. It returns to user mode only with a “Return from
Exception” instruction.

Certain instructions cannot be executed in user mode. Certain segments of memory can
be accessed only in kernel mode, and other segments only in user mode.

Virtual Address Mapping

The MIPS processor contains an array of Translation Lookaside Buffer (TLB) entries that
map, or translate, virtual addresses to physical ones. Most memory accesses are first
mapped by reference to the TLB. This permits the IRIX kernel to relocate parts of the
kernel’s memory and to implement virtual memory for user processes. The translation
scheme is summarized in the following sections and covered in detail in the hardware
manuals listed under “Additional Reading” on page xliii.

CPU Access to Memory and Devices

007-0911-210 7

TLB Misses and TLB Sizes

Each TLB entry describes a segment of memory containing two adjacent pages. When the
input address falls in a page described by a TLB entry, the TLB supplies the physical
memory address for that page. The translated address, now physical instead of virtual,
is passed on to the cache, as shown in Figure 1-1.

When the input address is not covered by any active TLB entry, the MIPS processor
generates a “TLB miss” interrupt, which is handled by an IRIX kernel routine. The kernel
routine inspects the address. When the address has a valid translation to some page in
the address space, the kernel loads a TLB entry to describe that page, and restarts the
instruction.

The size of the TLB is important for performance. The size of the TLB in different
processors is shown in Table 1-2.

Address Space Creation

There are not sufficient TLB entries to describe the entire address space of even a single
process. The IRIX kernel creates a page table in kernel memory for each process. The page
table contains one entry for each virtual memory page in the address space of that
process. Whenever an executing program refers to an address for which there is no
current TLB entry, the CPU traps to the TLB miss handler. The handler loads one TLB
entry from the appropriate page table entry of the current process, in order to describe
the needed virtual address. Then it resumes execution with the failed instruction.

Table 1-2 Number of TLB Entries by Processor Type

Processor Type Number of TLB Entries

R4x00 96

R5000 96

R8000 384

R10000 128

R12000 128

8 007-0911-210

1: Physical and Virtual Memory

In order to extend a virtual address space, the kernel takes the following two steps.

• It allocates unused page table entries to describe the needed pages. This defines the
virtual addresses the pages will have.

• It allocates page frames in memory to contain the pages themselves, and puts their
physical addresses in the page table entries.

Address Exceptions

When the CPU requests an invalid address—because the processor is in the wrong mode,
or an address does not translate to a valid location in the address space, or an address
refers to hardware that does not exist in the system—an addressing exception occurs. The
processor traps to a particular address in the kernel.

An addressing exception can also be detected in the course of handling a TLB miss. If
there is no page table entry assigned for the desired address, that address is not part of
the address space of the process.

When a user-mode process caused the addressing exception, the kernel sends the process
a SIGSEGV (see the signal(5) reference page), usually causing a segmentation fault.
When kernel-level code such as a device driver causes the exception, the kernel executes
a “panic,” taking a crash dump and shutting down the system.

CPU Access to Device Registers

The CPU accesses a device register using programmed I/O (PIO), a process illustrated in
Figure 1-2. Access to device registers is always uncached. It is not affected by
considerations of cache coherency in any system (see “Cache Use and Cache Coherency”
on page 13).

CPU Access to Memory and Devices

007-0911-210 9

Figure 1-2 CPU Access to Device Registers (Programmed I/O)

1. The address of the device is formed in the Execution unit. It may or may not be an
address that is mapped by the TLB.

2. A device address, after mapping if necessary, always falls in one of the ranges that is
not cached, so it passes directly to the system bus.

3. The device or bus attachment recognizes its physical address and responds with
data.

The PIO process shown in Figure 1-2 is correct for an SGI Origin 2000 system when the
addressed device is attached to the same node. When the device is attached to a different
node, the address passes through the connection fabric to that node, and the data returns
the same way.

1

2

3

Execution unit
and registers

Translation
lookaside
buffer

Primary
cache

Secondary
cache

System bus

Memory

Processor unit
(IPnn)

Device

MIPS R4X00,
R5000, R8000 or R10000

10 007-0911-210

1: Physical and Virtual Memory

Direct Memory Access

Some devices can perform direct memory access (DMA), in which the device itself, not the
CPU, reads or writes data into memory. A device that can perform DMA is called a bus
master because it independently generates a sequence of bus accesses without help from
the CPU.

In order to read or write a sequence of memory addresses, the bus master has to be told
the proper physical address range to use. This is done by storing a bus address and
length into the device’s registers from the CPU. When the device has the DMA
information, it can access memory through the system bus as shown in Figure 1-3.

Figure 1-3 Device Access to Memory

1. The device places the next physical address, and data, on the system bus.

2. The memory module stores the data.

In a SGI Origin 2000 system, the device and the memory module can be in different
nodes, with address and data passing through the connection fabric between nodes.

When a device is programmed with an invalid physical address, the result is a bus error
interrupt. The interrupt is taken by some CPU that is enabled for bus error interrupts.
These interrupts are not simple to process for two reasons. First, the CPU that receives
the interrupt is not necessarily the CPU from which the DMA operation was
programmed. Second, the bus error can occur a long time after the operation was
initiated.

1

2

System bus

Memory

Device

CPU Access to Memory and Devices

007-0911-210 11

PIO Addresses and DMA Addresses

Figure 1-3 is too simple for some devices that are attached through a bus adapter. A bus
adapter connects a bus of a different type to the system bus, as shown in Figure 1-4.

Figure 1-4 Device Access Through a Bus Adapter

For example, the PCI bus adapter connects a PCI bus to the system bus. Multiple PCI
devices can be plugged into the PCI bus and use the bus to read and write. The bus
adapter translates the PCI bus protocol into the system bus protocol. (For details on the
PCI bus adapter, see Part IX, “PCI Drivers.”)

Each bus has address lines that carry the address values used by devices on the bus.
These bus addresses are not related to the physical addresses used on the system bus. The
issue of bus addressing is made complicated by three facts:

• Bus-master devices independently generate memory-read and memory-write
commands that are intended to access system memory.

• The bus adapter can translate addresses between addresses on the bus it manages,
and different addresses on the system bus it uses.

• The translation done by the bus adapter can be programmed dynamically, and can
change from one I/O operation to another.

This subject can be simplified by dividing it into two distinct subjects: PIO addressing,
used by the CPU to access a device, and DMA addressing, used by a bus master to access
memory. These addressing modes need to be treated differently.

2

3

System bus

Memory Bus adapter

1

Device

12 007-0911-210

1: Physical and Virtual Memory

PIO Addressing

Programmed I/O (PIO) is the term for a load or store instruction executed by the CPU
that names an I/O device as its operand. The CPU places a physical address on the
system bus. The bus adapter repeats the read or write command on its bus, but not
necessarily using the same address bits as the CPU put on the system bus.

One task of a bus adapter is to translate between the physical addresses used on the
system bus and the addressing scheme used within the proprietary bus. The address
placed on the target bus is not necessarily the same as the address generated by the CPU.
The translation is done differently with different bus adapters and in different system
models.

In some older SGI systems, the translation was hard-wired. For a simple example, the
address translation from the Indigo2 system bus to the EISA bus was hardwired, so that,
for example, CPU access to a physical address of 0x0000 4010 was always translated to
location 0x0010 in the I/O address space of EISA slot 4.

With the more sophisticated PCI and VME buses, the translation is dynamic. Both of
these buses support bus address spaces that are as large or larger than the physical
address space of the system bus. It is impossible to hard-wire a translation of the entire
bus address space.

In order to use a dynamic PIO address, a device driver creates a software object called a
PIO map that represents that portion of bus address space that contains the device
registers the driver uses. When the driver wants to use the PIO map, the kernel
dynamically sets up a translation from an unused part of physical address space to the
needed part of the bus address space. The driver extracts an address from the PIO map
and uses it as the base for accessing the device registers. PIO maps are discussed in
Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2,” and in Chapter 20, “PCI
Device Attachment.”

DMA Addressing

A bus-master device on the PCI or VME bus can be programmed to perform transfers to
or from memory independently and asynchronously. A bus master is programmed using
PIO with a starting bus address and a length. The bus master generates a series of
memory-read or memory-write operations to successive addresses. But what bus
addresses should it use in order to store into the proper memory addresses?

CPU Access to Memory and Devices

007-0911-210 13

The bus adapter translates the addresses used on the proprietary bus to corresponding
addresses on the system bus. Considering Figure 1-4, the operation of a DMA device is
as follows:

1. The device places a bus address and data on the PCI or VME bus.

2. The bus adapter translates the address to a meaningful physical address, and places
that address and the data on the system bus.

3. The memory modules stores the data.

The translation of bus virtual to physical addresses is done by the bus adapter and
programmed by the kernel. A device driver requests the kernel to set up a dynamic
mapping from a designated memory buffer to bus addresses. The map is represented by
a software object called a DMA map.

The driver calls kernel functions to establish the range of memory addresses that the bus
master device will need to access—typically the address of an I/O buffer. When the
driver activates the DMA map, the kernel sets up the bus adapter hardware to translate
between some range of bus addresses and the desired range of memory space. The driver
extracts from the DMA map the starting bus address, and (using PIO) programs that bus
address into the bus master device.

Cache Use and Cache Coherency

The primary and secondary caches shown in Figure 1-1 are essential to CPU
performance. There is an order of magnitude difference in the speed of access between
cache memory and main memory. Execution speed remains high only as long as a very
high proportion of memory accesses are satisfied from the primary or secondary cache.

The use of caches means that there are often multiple copies of data: a copy in main
memory, a copy in the secondary cache (when one is used) and a copy in the primary
cache. Moreover, a multiprocessor system has multiple CPU modules like the one shown,
and there can be copies of the same data in the cache of each CPU.

The problem of cache coherency is to ensure that all cache copies of data are true reflections
of the data in main memory. Different SGI systems use different hardware designs to
achieve cache coherency.

14 007-0911-210

1: Physical and Virtual Memory

In most cases, cache coherence is achieved by the hardware, without any effect on
software. In a few cases, specialized software, such as a kernel-level device driver, must
take specific steps to maintain cache coherency.

Cache Coherency in Multiprocessors

Multiprocessor systems have more complex cache coherency protection because it is
possible to have data in multiple caches. In a multiprocessor system, the hardware
ensures that cache coherency is maintained under all conditions, including DMA input
and output, without action by the software. However, in some systems the cache
coherency hardware works correctly only when a DMA buffer is aligned on a
cache-line-sized boundary. You ensure this by using the KM_CACHEALIGN flag when
allocating buffer space with kmem_alloc() (see “Kernel Memory Allocation” on page 213
and the kmem_alloc(D3) reference page).

Cache Coherency in Uniprocessors

In some uniprocessor systems, it is possible for the CPU cache to have newer information
than appears in memory. This is a problem only when a bus master device is going to
perform DMA. If the bus master reads memory, it can get old data. If it writes memory,
the input data can be destroyed when the CPU writes the modified cache line back to
memory.

In systems where this is possible, a device driver calls a kernel function to ensure that all
cached data has been written to memory prior to DMA output (the dki_dcache_wb(D3)
reference page). The device driver calls a kernel function to ensure that the CPU receives
the latest data following a DMA input (see the dki_dcache_inval(D3) reference page). In
a multiprocessor these functions do nothing, but it is always safe to call them.

The 32-Bit Address Space

The MIPS processors can operate in one of two address modes: 32-bit and 64-bit. The
choice of address mode is independent of other features of the instruction set architecture
such as the number of available registers and the precision of integer arithmetic. For
example, programs compiled to the n32 binary interface use 32-bit addresses but 64-bit
integers. The implications for user programs are documented in manuals listed under
“Additional Reading” on page xliii.

The 32-Bit Address Space

007-0911-210 15

The addressing mode can be switched dynamically; for example, the IRIX kernel can
operate with 64-bit addresses, but the kernel can switch to 32-bit address when it
dispatches a user program that was compiled for that mode. The 32-bit address space is
the range of all addresses that can be used when in 32-bit mode. This space is discussed
first because it is simpler and more familiar than the 64-bit space.

Segments of the 32-bit Address Space

When operating in 32-bit mode, the MIPS architecture uses addresses that are 32-bit
unsigned integers from 0x0000 0000 to 0xFFFF FFFF. However, this address space is not
uniform. The MIPS hardware divides it into segments, and treats each segment
differently. The ranges are shown graphically in Figure 1-5.

16 007-0911-210

1: Physical and Virtual Memory

Figure 1-5 The 32-Bit Address Space

The address segments differ in three characteristics:

• whether access to an address is mapped; that is, passed through the translation
lookaside buffer (TLB)

• whether an address can be accessed when the CPU is operating in user mode or in
kernel mode

0xBFFF FFFF

0x9FFF FFFF

0x7FFF FFFF

0xA000 0000

0x8000 0000

0x0000 0000

0x FFFF FFFF

0xC000 0000

kseg2 - 1 GB kernel virtual space,
 mapped and cached

kseg1 - 512 MB unmapped,
 uncached window on
 physical memory

kseg0 - 512 MB unmapped, but
 cached, window on
 physical memory

kuseg - 2 GB user process
 virtual space, mapped
 and cached

The 32-Bit Address Space

007-0911-210 17

• whether access to an address is cached; that is, looked up in the primary and
secondary caches before it is sent to main memory

Virtual Address Mapping

In the mapped segments, each 32-bit address value is treated as shown in Figure 1-6.

Figure 1-6 MIPS 32-Bit Virtual Address Format

The three most significant bits of the address choose the segment among those drawn in
Figure 1-5. When bit 31 is 0, bits 30:12 select a virtual page number (VPN) from 219 possible
pages in the address space of the current user process. When bits 31:30 are 11, bits 29:12
select a VPN from 218 possible pages in the kernel virtual address space.

User Process Space—kuseg

The total 32-bit address space is divided in half. Addresses with a most significant bit of
0 constitute the 2 GB user process space. When executing in user mode, only addresses
in kuseg are valid; an attempt to use an address with bit 31=1 causes an addressing
exception.

Access to kuseg is always mapped through the TLB. The kernel creates a unique address
space for each user process. Of the 219 possible pages in an address space, most are
typically unassigned—few processes ever occupy more than a fraction of kuseg—and
many are shared pages of program text from dynamic shared objects (DSOs) that are
mapped into the address space of every process that needs them.

31 30 29

0 x x kuseg
1 0 0 kseg0
1 0 1 kseg1
1 1 x kseg2

12 11

OffsetVirtual page number (VPN)

18 007-0911-210

1: Physical and Virtual Memory

Kernel Virtual Space—kseg2

When bits 31:30 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space. References to this space are translated through the TLB. The
kernel uses the TLB to map kernel pages in memory as required, possibly in
noncontiguous locations. Although pages in kernel space are mapped, they are always
associated with real memory. Kernel memory is never paged to secondary storage.

This is the space in which the IRIX kernel allocates such objects as stacks, user page
tables, and per-process data that must be accessible on context switches. This area
contains automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
kseg2 that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

Cached Physical Memory—kseg0

When address bits 31:29 contain 100, access is directed to physical memory through the
cache. If the addressed location is not in the cache, bits 28:0 are placed on the system bus
as a physical memory address, and the data presented by memory or a device is returned.
Kseg0 contains the exception address to which the MIPS processor branches it when it
detects an exception such as an addressing exception or TLB miss.

Since only 29 bits are available for mapping physical memory, only 512 MB of physical
memory space can be accessed through this segment in 32-bit mode. Some of this space
must be reserved for device addressing. It is possible to gain cached access to wider
physical addresses by mapping through the TLB into kseg2, but systems that need access
to more physical memory typically run in 64-bit mode (see “Cache-Controlled Physical
Memory—xkphys” on page 24).

Uncached Physical Memory—kseg1

When address bits 31:29 contain 101, access is directly to physical memory, bypassing the
cache. Bits 28:0 are placed on the system bus for memory or device transfer.

The kernel refers to kseg1 when performing PIO to devices because loads or stores from
device registers should not pass through cache memory. The kernel also uses kseg1 when
operating on certain data structures that might be volatile. Kernel-level device drivers

The 64-Bit Address Space

007-0911-210 19

sometimes need to write to uncached memory, and must take special precautions when
doing so (see “Uncached Memory Access in the IP26 and IP28” on page 34).

Portions of kseg0 or kseg1 can be mapped into kuseg by the mmap() function. This is
covered at more length under “Memory Use in User-Level Drivers” on page 32.

The 64-Bit Address Space

The 64-bit mode is an upward extension of 32-bit mode. All MIPS processors from the
R4000 on support 64-bit mode. However, this mode was not used in SGI software until
IRIX 6.0 was released.

Segments of the 64-Bit Address Space

This section refers to the 64-bit address spaces provided by the MIPS R10000
microprocessor. When operating in 64-bit mode, the MIPS architecture uses addresses
that are 64-bit unsigned integers from 0x0000 0000 0000 0000 to 0xFFFF FFFF FFFF FFFF.
This is an immense span of numbers—if it were drawn to a scale of 1 millimeter per
terabyte, the drawing would be 16.8 kilometers long (just over 10 miles).

The MIPS hardware divides the address space into segments based on the most
significant bits, and treats each segment differently. The ranges provided by the MIPS
R10000 microprocessor are shown graphically in Figure 1-7. These major segments
define only a fraction of the 64-bit space. Most of the possible addresses are undefined
and cause an addressing exception (segmentation fault) if used.

20 007-0911-210

1: Physical and Virtual Memory

Figure 1-7 Main Parts of the MIPS R10000 Microprocessor 64-Bit Address Space

0xBE0000FFFFFFFFFF

0x40000FFFFFFFFFFF

0x00000FFFFFFFFFFF

0x8000000000000000

0x4000000000000000

0x0000000000000000

0xC0000FFFFFFFFFFF

0xC000000000000000

xkseg - 16 TB kernel virtual space,
mapped and cached

32-bit kseg, kseg0, kseg1, kseg2, not to scale

32-bit kuseg, not to scale

xkphys - Unmapped, cache-controled
physical memory access
(see text)

xksseg - 16 TB supervisor-mode
virtual space, mapped
and cached (not used)

xkuseg - 16 TB user process
virtual space, mapped
and cached

Unused addresses

Unused addresses

Unused addresses

The 64-Bit Address Space

007-0911-210 21

As in the 32-bit space, these major segments differ in three characteristics:

• whether access to an address is mapped; that is, the address is virtual and is passed
through the translation lookaside buffer (TLB) to translate the virtual address into a
physical address

• whether an address can be accessed when the CPU is operating in user mode or in
kernel mode

• whether access to an address is cached; that is, looked up in the primary and
secondary caches before it is sent to main memory

Compatibility of 32-Bit and 64-Bit Spaces

The MIPS-3 instruction set (which is in use when the processor is in 64-bit mode) is
designed so that when a 32-bit instruction is used to generate or to load an address, the
32-bit operand is automatically sign-extended to fill the high-order 32 bits.

As a result, any 32-bit address that falls in the user segment kuseg, and which must have
a sign bit of 0, is extended to a 64-bit integer with 32 high-order 0 bits. This automatically
places the 32-bit kuseg in the bottom of the 64-bit xkuseg, as shown in Figure 1-7.

A 32-bit kernel address, which must have a sign bit of 1, is automatically extended to a
64-bit integer with 32 high-order 1 bits. This places all kernel segments shown in
Figure 1-5 at the extreme top of the 64-bit address space. However, these 32-bit kernel
spaces are not used by a kernel operating in 64-bit mode.

64-Bit Address Format

The two most significant bits of a 64-bit address select the major segments, as shown in
Figure 1-7. The xkuseg, xksseg, and xkseg segments access memory using mapped (virtual)
addresses and the xkphys segment accesses memory using physical addresses. Virtual
and physical addresses use different formats as shown in Figure 1-9 and Figure 1-10.

22 007-0911-210

1: Physical and Virtual Memory

Figure 1-8 Selecting the MIPS 64-Bit Address Space Segments

Virtual Address Mapping

In the mapped segments, each 64-bit virtual address value is formatted as shown in
Figure 1-9.

Note: Some systems that run the MIPS R10000 microprocessors only support virtual
address bits 39:0.

Figure 1-9 MIPS 64-Bit Virtual Address Format

The two most significant bits select the mapped major segment (compare these to the
address boundaries in Figure 1-7). For the xkuseg and xksseg segments, bits 61:44 must all
be 0. For the xkseg segment, bits 61:44 must all be 0 or bits 61:31 must all be 1, which

63 62

0 0 xkuseg
0 1 xksseg
1 0 xkphys
1 1 xkseg

Format depends on address space segment

0

63 62 44 43

0 0 xkuseg
0 1 xksseg
1 1 xkseg

14 13

OffsetAll-0 for xkuseg and xksseg Virtual page number (VPN)

31

All-1 for xkseg

All-0 for xkseg or ...

The 64-Bit Address Space

007-0911-210 23

references the kernel compatibility spaces where the kernel stack is located. (In principle,
references to 32-bit kernel segments would have bits 61:40 all 1, but these segments are
not used in 64-bit mode.)

The size of a page of virtual memory can vary from system to system and release to
release, so always determine it dynamically. In a user-level program, call the
getpagesize() function (see the getpagesize(2) reference page). In a kernel-level driver,
use the ptob() kernel function (see the ptob(D3) reference page) or the constant NBPP
declared in sys/immu.h.

When the page size is 16 KB, bits 13:0 of the address represent the offset within the page,
and bits 43:14 select a VPN from the 226, or 64 M, pages in the virtual segment.

User Process Space—xkuseg

The first 16 TB of the address space are devoted to user process space. Access to xkuseg is
always mapped through the TLB. The kernel creates a unique address space for each user
process. Of the 226 possible pages in a process’s address space, most are typically
unassigned, and many are shared pages of program text from dynamic shared objects
(DSOs) that are mapped into the address space of every process that needs them.

Supervisor Mode Space—xksseg

The MIPS architecture permits three modes of operation: user, kernel, and supervisor.
When operating in kernel or supervisor mode, the 16 TB space beginning at
0x4000 0000 0000 0000 is accessible. IRIX does not employ the supervisor mode, and does
not use xksseg. If xksseg were used, it would be mapped and cached.

Kernel Virtual Space—xkseg

When bits 63:62 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space, a 16 TB segment starting at 0xC000 0000 0000 0000.
References to this space are translated through the TLB, and cached. The kernel uses the
TLB to map kernel pages in memory as required, possibly in noncontiguous locations.
Although pages in kernel space are mapped, they are always associated with real
memory. Kernel pages are never paged to secondary storage.

24 007-0911-210

1: Physical and Virtual Memory

This is the space in which the IRIX kernel allocates such objects as stacks, per-process
data that must be accessible on context switches, and user page tables. This area contains
automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
xkseg that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

Physical Address

A 64-bit physical address is formatted as shown in Figure 1-10.

Cache-Controlled Physical Memory—xkphys

One-quarter of the 64-bit address space—all addresses with bits 63:62 containing 10—are
devoted to special access to one or more 1 TB physical address spaces. Any reference to
the other spaces (xkuseg and xkseg) is transformed by the TLB into a reference to xkphys.
Addresses in this space are interpreted as shown in Figure 1-10.

Figure 1-10 Address Decoding for Physical Memory Access

63 62 57 40 39

Must be 0 Physical address

1 0

a a a x x

Cache
algorithm

Uncached
address
spaces

The 64-Bit Address Space

007-0911-210 25

Bits 39:0 select a physical address in a 1 TB range. Bits 57:40 must always contain 0. Bits
61:59 select the hardware cache algorithm to be used. The only values defined for these
bits are summarized in Table 1-3.

Only the 010 (uncached) and 110 (cached) algorithms are implemented on all systems.
The others may or may not be implemented on particular systems.

Bits 58:57 must be 00 unless the cache algorithm is 010 (uncached) or 111(uncached
accelerated). Then bits 58:57 can in principle be used to select four other properties to
qualify the uncached operation. These bits are first put to use in the SGI Origin 2000
system, described under “Uncached and Special Address Spaces” on page 26.

It is not possible for a user process to access either xkphys or xkseg; and not possible for a
kernel-level driver to access xkphys directly. Portions of xkphys and xkseg can be mapped
to user process space by the mmap() function. This is covered in more detail under
“Memory Use in User-Level Drivers” on page 32. Portions of xkphys can be accessed by
a driver using DMA-mapping and PIO-mapping functions (see “PIO Addresses and
DMA Addresses” on page 11).

Table 1-3 Cache Algorithm Selection

Address 61:59 Algorithm Meaning

010 Uncached This is the 64-bit equivalent of kseg1 in 32-bit
mode—uncached access to physical memory.

110 Cacheable coherent exclusive
on write

This is the 64-bit equivalent of kseg0 in 32-bit
mode—cached access to physical memory,
coherent access in a multiprocessor.

011 Cacheable non-coherent Data is cached; on a cache miss the processor
issues a non-coherent read (one without regard
to other CPUs).

100 Cacheable coherent exclusive Data is cached; on a read miss the processor
issues a coherent read exclusive.

101 Cacheable coherent update on
write

Same as 110, but updates memory on a store hit
in cache.

111 Uncached Accelerated Same as 010, but the cache hardware is permitted
to defer writes to memory until it has collected a
larger block, improving write utilization.

26 007-0911-210

1: Physical and Virtual Memory

Address Space Usage in SGI Origin 2000 Systems

An SGI Origin 2000 system contains one or more nodes. Each node can contain one or
two CPUs as well as up to 2 GB of memory. There is a single, flat, address space that
contains all memory in all nodes. All memory can be accessed from any CPU. However,
a CPU can access memory in its own node in less time than it can access memory in a
different node.

The node hardware provides a variety of special-purpose access modes to make kernel
programming simpler. These special modes are described here at a high level. For details
refer to the hardware manuals listed in “Additional Reading” on page xliii. These special
addressing modes are a feature of the SGI Origin 2000 node hardware, not of the R10000
CPU chip. As such they are available only in the SGI Origin 2000 and Origin200 systems.

User Process Space and Kernel Virtual Space

Virtual addresses with bits 63:62 containing 00 are references to the user process address
space. The kernel creates a virtual address space for each user process as described before
(see “Virtual Address Mapping” on page 6). The SGI Origin 2000 architecture adds the
complication that the location of a page, relative to the location where the process
executes, has an effect on the performance of the process. The kernel uses a variety of
strategies to locate pages of memory in the same node as the CPU that is running the
process.

Kernel virtual addresses (in which bits 63:62 contain 11) are mapped as already described
(see “Kernel Virtual Space—xkseg” on page 23). Certain important data structures may
be replicated into each node for faster access.

The stack and data areas used by device drivers are in xkseg. A driver has the ability to
request memory allocation in a particular node, in order to make sure that data about a
device is stored in the same node where the device is attached and where device
interrupts are taken (see “Kernel Memory Allocation” on page 213).

Uncached and Special Address Spaces

A physical address in xkphys (bits 63:62 contain 10) has different meanings depending on
the settings of bits 61:57 (see Figure 1-10 and Table 1-3). In the SGI Origin 2000
architecture, these bits are interpreted by the memory control circuits of the node,

Address Space Usage in SGI Origin 2000 Systems

007-0911-210 27

external to the CPU. The possibilities are listed in Table 1-4. Some are covered in more
detail in following topics.

Cached Access to Physical Memory

When the CPU emits a translated virtual address with bits 63:62 containing 10 and bits
61:59 specifying cached access, the address is a cached reference to physical memory.
When the referenced location is not contained in the secondary cache, it is fetched from
memory in the node that contains it. This is the normal outcome of the translation of a
user or kernel virtual address through the TLB.

The actual address is the physical address in bits 39:0, interpreted as shown in
Figure 1-11.

Table 1-4 Special Address Spaces in SGI Origin 2000

Address 61:59
(Algorithm) Address 58:57 Meaning

110 (cached) n.a. Cached access to physical memory

010 (uncached) 00 Node special memory areas including directory cache, ECC,
PROM, and other node hardware locations.

010 (uncached) 01 I/O space: addresses that can be mapped into the address
space of any bus adapter.

010 (uncached) 10 Synchronization access to memory.

010 (uncached) 11 Uncached access to physical memory.

28 007-0911-210

1: Physical and Virtual Memory

Figure 1-11 SGI Origin 2000 Physical Address Decoding

The node hardware can operate in either of two modes, called ‘M’ and ‘N’.

Mode ‘M’ Bits 39:32 select one of 256 nodes. Remaining bits select an address in as
much as 4 GB of memory in that node.

Mode ‘N’ Bits 39:31 select one of 512 nodes. Remaining bits select an address in as
much as 2 GB of memory in that node.

Either mode places the memory that is part of each node in a flat address space with a
potential size of 1 TB. All locations are accessed in the same way—there is a single
address space for the entire system. For example, the memory that is part of node 1
begins at 0x0000 0001 0000 0000 (in mode ‘M’) or 0x0000 0000 8000 0000 (in mode ‘N’).

64 60
56

52
48

44
40

36
32

28
24

20
16

12
8

4
0

1PB

1TB

1GB

1MB

1KB

Node memory address

Mode "M"Mode "N"

Nodenumber

1024

1024

1024

1024

1024

1024

Address Space Usage in SGI Origin 2000 Systems

007-0911-210 29

The node hardware implements one special case: addresses in the range 0-63 MB (0
through 0x0000 0000 03ff ffff) are always treated as a reference to the current node. In
effect, the current node number is logically ORed with the address. This allows trap
handlers and other special code to refer to node-specific data without having to know
the number of the node in which they execute.

Uncached Access to Memory

A physical address in xkphys (bits 63:62 contain 10) that has the uncached algorithm (bits
61:59 contain 010) always bypasses the secondary cache. An address of this form can
access physical memory in either of two ways.

When bits 58:57 contain 11, the address bits 39:0 are decoded as shown in Figure 1-11. In
this mode there is no aliasing of addresses in the range 0-63 MB to the current node; the
node number must be given explicitly.

However, when bits 58:57 contain 00, an address in the range 0-768 MB is interpreted as
uncached access to the memory in the current node. In effect, the node number is ORed
into the address. Also in this mode, access to the lowest 64 KB is swapped between the
two CPUs in a node. CPU 0 access to addresses 0x0 0000 through 0x1 ffff is directed to
those addresses. But CPU 1 access to 0x0 0000 goes to 0x1 0000, and access to 0x1 0000
goes to 0x0 0000—reversing the use of the first two 64 KB blocks. This helps trap handlers
that need quick access to a 64 KB space that is unique to the CPU.

Synchronization Access to Memory

An uncached physical address with bits 58:57 containing 10 is an atomic
fetch-and-modify access. Bits 39:6 select a memory unit of 64 bytes (half a cache line) and
bits 5:3 select an operation, as shown in Figure 1-12.

30 007-0911-210

1: Physical and Virtual Memory

Figure 1-12 SGI Origin 2000 Fetch-and-Op Address Decoding

The first word or doubleword (depending on the instruction being executed) of the
addressed unit is treated as shown in Table 1-5.

Table 1-5 SGI Origin 2000 Fetch-and-Op Operations

Instruction Address 5:3 Operation

Load 000 An uncached read of the location.

Load 001 Fetch-and-increment: the old value is fetched and the memory value
is incremented.

Load 010 Fetch-and-decrement: the old value is fetched and the memory value
is decremented.

Load 011 Fetch-and-zero: the old value is returned and zero is stored.

Store 000 An uncached store of the location.

64 60
56

52
48

44
40

36
32

28
24

20
16

12
8

4
0

1PB

1TB

1GB

1MB

1KB

1024

1024

Node memory address

Mode "M"Mode "N"

Nodenumber

1024

1024

1024

1024

Op

Device Driver Use of Memory

007-0911-210 31

These are atomic operations; that is, no other CPU can perform an interleaved operation
to the same 64-byte unit. The kernel can use this addressing mode to implement locks
and other synchronization operations. A user-level library is also available so that
normal programs can use these facilities when they are available; see the fetchop(3)
reference page.

Device Driver Use of Memory

Memory use by device drivers is simpler than the details in this chapter suggest. The
primary complication for the designer is the use of 64-bit addresses, which may be
unfamiliar.

Allowing for 64-Bit Mode

You must take account of a number of considerations when porting an existing C
program to an environment where 64-bit mode is used, or might be used. This can be an
issue for all types of drivers, kernel-level and user-level alike. For detailed discussion, see
the MIPSpro 64-Bit Porting and Transition Guide listed in “Additional Reading” on
page xliii.

The most common problems arise because the size of a pointer and of a long integer
changes between a program compiled with the -64 option and one compiled -32. When
you use pointers, longs, or types derived from longs, in structures, the field offsets differ
between the two modes.

Store 001 Increment: the memory location is incremented.

Store 010 Decrement: the memory location is decremented.

Store 011 AND: memory data is ANDed with the store data.

Store 100 OR: memory data is ORed with the store data.

Table 1-5 SGI Origin 2000 Fetch-and-Op Operations (continued)

Instruction Address 5:3 Operation

32 007-0911-210

1: Physical and Virtual Memory

When all programs in the system are compiled to the same mode, there is no problem.
This is the case for a system in which the kernel is compiled to 32-bit mode: only 32-bit
user programs are supported. However, a kernel compiled to 64-bit mode executes user
programs in 32-bit or 64-bit mode. A structure prepared by a 32-bit program—a structure
passed as an argument to ioctl(), for example—does not have fields at the offsets
expected by a 64-bit kernel device driver. For more on this specific problem, see
“Handling 32-Bit and 64-Bit Execution Models” on page 193.

The basic strategy to make your code portable between 32-bit and 64-bit kernels is to be
extremely specific when declaring the types of data. You should almost never declare a
simple “int” or “char.” Instead, use a data type that is explicit as to the precision and the
sign of the variable. The header files sgidefs.h and sys/types.h define type names
that you can use to declare structures that always have the same size. The type __psint_t,
for example, is an integer the same size as a pointer; you can use it safely as alias for a
pointer. Similarly, the type __uint32_t is guaranteed to be an unsigned, 32-bit, integer in
all cases.

Memory Use in User-Level Drivers

When you control a device from a user process, your code executes entirely in user
process space, and has no direct access to any of the other spaces described in this
chapter.

Depending on the device and other considerations, you may use the mmap() function to
map device registers into the address space of your process (see the mmap(2) reference
page). When the kernel maps a device address into process space, it does it using the TLB
mechanism. From mmap() you receive a valid address in process space. This address is
mapped through a TLB entry to an address in segment that accesses uncached physical
memory. When your program refers to this address, the reference is directed to the
system bus and the device.

Portions of kernel virtual memory (kseg0 or xkseg) can be accessed from a user process.
Access is based on the use of device special files (see the mem(7) reference page). Access
is done using two models, a device model and a memory map model.

Device Driver Use of Memory

007-0911-210 33

Access Using a Device Model

The device special file /dev/mem represents physical memory. A process that can open
this device can use lseek() and read() to copy physical memory into process virtual
memory. If the process can open the device for output, it can use write() to patch physical
memory.

The device special file /dev/kmem represents kernel virtual memory (kseg0 or xkseg). It
can be opened, read and written similarly to /dev/mem. Clearly both of these devices
should have file permissions that restrict their use even for input.

Access Using mmap()

The mmap() function allows a user process to map an open file into the process address
space (see the mmap(2) reference page). When the file that is mapped is /dev/mem, the
process can map a specified segment of physical memory. The effect of mmap() is to set
up a page table entry and TLB entry so that access to a range of virtual addresses in user
space is redirected to the mapped physical addresses in cached physical memory (kseg0
or the equivalent segment of xkphys).

The /dev/kmem device, representing kernel virtual memory, cannot be used with
mmap(). However, a third device special, /dev/mmem (note the double “m”), represents
access to only those addresses that are configured in the file
/var/sysgen/master.d/mem. As distributed, this file is configured to allow access to
the free-running timer device and, in some systems, to graphics hardware.

For an example of mapped access to physical memory, see the example code in the
syssgi(2) reference page related to the SGI_QUERY_CYCLECNTR option. In this
operation, the address of the timer (a device register) is mapped into the process’s
address space using a TLB entry. When the user process accesses the mapped address,
the TLB entry converts it to an address in kseg1/xkphys, which then bypasses the cache.

Mapped Access Provided by a Device Driver

A kernel-level device driver can provide mapped access to device registers or to memory
allocated in kernel virtual space. An example of such a driver is shown in Part III,
“Kernel-Level Drivers.”

34 007-0911-210

1: Physical and Virtual Memory

Memory Use in Kernel-Level Drivers

When you control a device from a kernel-level driver, your code executes in kernel
virtual space. The allocation of memory for program text, local (stack) variables, and
static global variables is handled automatically by the kernel. Besides designing data
structures so they have a consistent size, you have to consider these special cases:

• dynamic memory allocation for data and for buffers

• transferring data between kernel space and user process space

• getting addresses of device registers to use for PIO

The kernel supplies utility functions to help you deal with each of these issues, all of
which are discussed in Chapter 8, “Device Driver/Kernel Interface.”

Uncached Memory Access in SGI Origin 2000 and in Challenge and Onyx Series

Access to uncached memory is not supported in these systems, in which cache coherency
is maintained by the hardware, even under access from CPUs and concurrent DMA.
There is never a need (and no approved way) to access uncached memory in these
systems.

Uncached Memory Access in the IP26 and IP28

The IP26 CPU module is used in the SGI Power Indigo2 workstation and the Power
Challenge M workstation. Both are deskside workstations using the R8000 processor
chip. These remarks also apply to the IP28 CPU used in the Power Indigo2 R10000
workstation. In these machines, extra care must be taken in cache management.

Cache Invalidation and Writeback

When an I/O device is going to perform DMA input to memory, the device driver must
invalidate any cached copies of the buffer that will receive the data. If this is not done,
the CPU could go on using the “stale” data in the cache, ignoring the input data placed
in memory by the device. This is done by calling the dki_dcache_inval() function to
invalidate the range of addresses where DMA input is planned.

In the IP28 CPU, the delayed and speculative execution features of the R10000 processor
make it necessary for the driver to invalidate the cache twice: once before initiating the
DMA input, and once again immediately after DMA ends.

Device Driver Use of Memory

007-0911-210 35

Before initiating DMA output, the driver must force all cached data to memory by calling
dki_dcache_wb(). This ensures that recent data in the cache is also present in memory
before the device begins to access memory. The use of both these functions is discussed
further under “Managing Memory for Cache Coherency” on page 230.

Cache invalidation is handled automatically when you use the userdma() and undma()
functions to lock memory for DMA (see “Setting Up a DMA Transfer” on page 226).

Program Access to Uncached Memory

The Indigo2 systems use ECC memory (error-correcting code memory, which can correct
for single-bit errors on the fly). ECC memory is also used in large multiprocessor systems
from SGI, where it has no effect on performance.

In the IP26 and IP28, although ECC memory has no impact on the performance of
normal, cached memory access, uncached access can be permitted only when the CPU is
placed in a special, “slow” access mode.

A device driver may occasionally need to write directly to uncached memory (although
it is better to write to cached memory and then use dki_dcache_wb()). Before doing so,
the driver must put the CPU in “slow” mode by calling the function
ip26_enable_ucmem(). As soon as the uncached store is complete, return the system to
“fast” mode by calling ip26_return_ucmem(). (See the ip26_ucmem(D3) reference page.)
While the CPU is in “slow” mode, several clock cycles are added to every memory access,
so do not keep it in “slow” mode any longer than necessary.

These functions can be called in any system. They do nothing unless the CPU is an IP26
or IP28.

007-0911-210 37

Chapter 2

2. Device Configuration

This chapter discusses how IRIX represents devices to software, and how it establishes
the inventory of available hardware.

This information is essential when your work involves attaching a new device or a new
class of devices to IRIX. The information is helpful background material when you intend
to control a device from a user-level process.

The following primary topics are covered in this chapter.

• “Device Special Files” on page 37 describes the traditional UNIX method of
representing a device as a special kind of file, and defines such important terms as
major and minor device number.

• “Hardware Graph” on page 44 describes the internal database of devices and its
external representation as the /hw filesystem.

• “Hardware Inventory” on page 50 describes the interface to the hardware inventory
database through the hinv command and getinvent() function.

• “Configuration Files” on page 57 summarizes the files used for system generation
and kernel configuration.

In addition to the discussion here, you can find the system administrator’s perspective
on these issues in the books IRIX Admin: Disks and Filesystems and IRIX Admin: System
Configuration and Operation.

Device Special Files

A device is represented in a UNIX system is as a device special file in a certain directory
(historically, the /dev directory). Beginning with IRIX 6.4 the implementation of device
special files has been changed and expanded, but the basic purpose—to treat a device as
a special case of a file—is not changed.

38 007-0911-210

2: Device Configuration

Devices as Files

A device special file consists of a filename and access permissions, but no associated disk
data. The access permissions, owner ID, and group ID of the file control whether the file
can be opened. A device special file can be used like a regular file in most IRIX
commands; for example, a device file can be the target of a symbolic link, the destination
of redirected input or output, authorized by chmod, and so on. A process opens a device
by passing the pathname of the device special file to the open() function (see the open(2)
reference page).

Historically, a device special file contained three items of information about a device:

The device numbers are no longer relevant, but the distinction between block and
character access still exists. To display the details of all block and character devices in a
system using the /hw filesystem (described under “Hardware Graph” on page 44) use a
command such as the following:

find /hw \(-type c -o -type b \) -exec ls -l {} \; | more

Block and Character Device Access

IRIX supports two classes of device. A block device such as a disk drive transfers data in
fixed size blocks between the device and memory, and usually has some ability to
reposition the medium so as to read or write the same data again. The driver for a block
device typically has to manage buffering, and it is free to schedule I/O operations in a
different sequence than they are requested.

A character device such as a printer accepts or returns data as a stream of bytes, and
usually acts as a sink or source of data—the medium cannot be repositioned and read
again. The driver for a character device typically transfers data as soon as it is requested
and completes one operation before accepting another request. Character devices are
also called raw devices, because their input is not buffered.

Block or Character A flag showing which of two types of access, block or
character, applies to this device.

Major device number A numeric code for the device driver that controls this device.

Minor device number A number passed to the device driver to distinguish this
device from others of the same type.

Device Special Files

007-0911-210 39

The two kinds of devices are supported by two different kinds of kernel-level device
drivers, block and character drivers. The two kinds of drivers are expected to offer
different kinds of service. For example, a block device driver is expected to provide a
“strategy” entry point where it schedules asynchronous, buffered, transfers of data in
units of 512 bytes. A character device driver is expected to provide read and write entry
points that synchronously transfer any quantity of data from 1 byte upward.

Some device drivers offer both kinds of access. In particular, the disk device drivers
support block-type access to data partitions of the disk, and character-type read/write
access to the disk volume header.

Multiple Device Names

When a single device is accessed in different modes, the device is described by multiple
device special files. Each device special file represents one way of accessing the device.
Some reasons for using multiple names are as follows:

• By convention, UNIX system supply certain default device names, and this is done
by creating extra symbolic links. For example, the default device /dev/tapens is a
link to the first device file in /dev/rmt/*.

• When a device supports both block and character modes of access, there is a
separate device special file for each mode. For example, the following (edited)
pathnames provide block and character access to one partition of a SCSI device:

/hw/.../scsi_ctlr/0/target/1/lun/0/disk/partition/0/block
/hw/.../scsi_ctlr/0/target/1/lun/0/disk/partition/0/char

• When a device can be treated as independent, logical partitions, each partition is
given an independent device special file name, although the device is the same in
each case. The following (edited) pathnames provide block access to, respectively,
an entire disk volume, partition 0 (root), partition 1 (swap), and the volume header
(label) of the same disk:

/hw/.../scsi_ctlr/0/target/1/lun/0/disk/volume/block
/hw/.../scsi_ctlr/0/target/1/lun/0/disk/partition/0/block
/hw/.../scsi_ctlr/0/target/1/lun/0/disk/partition/1/block
/hw/.../scsi_ctlr/0/target/1/lun/0/disk/volume_header/block

• When a device needs different treatment at different times, it can have one device
special file for each kind of treatment. The following pathnames all provide access
to the identical tape drive. The user can open a different name for each combination
of byte-swapped and non-byte-swapped I/O with fixed or variable record lengths:

40 007-0911-210

2: Device Configuration

/hw/tape/tps0d3stat
/hw/tape/tps0d3s
/hw/tape/tps0d3sc
/hw/tape/tps0d3nrs
/hw/tape/tps0d3nrsc
/hw/tape/tps0d3ns
/hw/tape/tps0d3nsc
/hw/tape/tps0d3
/hw/tape/tps0d3c
/hw/tape/tps0d3nrns
/hw/tape/tps0d3nrnsc
/hw/tape/tps0d3nr
/hw/tape/tps0d3nrc
/hw/tape/tps0d3sv
/hw/tape/tps0d3svc
/hw/tape/tps0d3nrsv
/hw/tape/tps0d3nrsvc
/hw/tape/tps0d3nsv
/hw/tape/tps0d3nsvc
/hw/tape/tps0d3v
/hw/tape/tps0d3vc
/hw/tape/tps0d3nrnsv
/hw/tape/tps0d3nrnsvc
/hw/tape/tps0d3nrv
/hw/tape/tps0d3nrvc

Major Device Number

The major device number was, in traditional UNIX architecture, a numeric key that related
a device special file to the device driver that managed it. When special file was opened,
IRIX selected the driver to handle the device based on the major device number. In the
newer /hw filesystem, a different means is used. The major number is no longer relevant.

The major number in all device special files in /hw is always 0. The device special files in
/hw are created dynamically, by the device drivers, as the devices are attached. The
identity of the device driver is stored in the device special files at this time, but not as a
number. When a process opens a device special file in /hw (or a name in /dev that is a
symbolic link to /hw), the kernel can tell directly which driver to call.

Device Special Files

007-0911-210 41

Minor Device Number

In conventional UNIX, and in versions of IRIX previous to IRIX 6.4, a minor device number
was encoded in the device special file and was passed to the device driver. The major and
minor numbers were passed together in an integer called a dev_t. The driver could extract
the minor device number by passing the dev_t value to the geteminor() function.

Historical Use of Minor Number

Prior to IRIX 6.4, the minor device number served as an argument to help the device
driver distinguish one device from another. Many devices can have the same major
number and be serviced by the same driver. Using the minor number, the driver could
distinguish the particular device being serviced.

Some device drivers treated the minor device number as a logical unit number, while
other drivers used it to contain multiple, encoded bit fields. For example:

• The IRIX tape device driver used the minor device number to encode the options for
rewind or no-rewind, byte-swap or nonswap, and fixed or variable blocking, along
with the logical unit number.

• The IRIX disk device drivers encoded the disk partition number into the minor
device number along with a disk unit number.

• Both disk and tape devices encoded the SCSI adapter number in the minor number.

With STREAMS drivers, the minor device number can be chosen arbitrarily during a
CLONE open—see “Support for CLONE Drivers” on page 789.

Present Use of Minor Numbers

Beginning with IRIX 6.4, the minor device number has little importance because the
driver has a direct way to distinguish each device and its special needs, through the
hardware graph (see “Hardware Graph” on page 44.)

The minor number in device special files in /hw is an arbitrary integer with no relation
to the device itself. The device special files in /hw are created dynamically, by the device
drivers, as the devices are attached. The device driver stores any information it needs to
distinguish one device from another, directly in the device special file itself. When a
process opens a device special file in /hw (or a name in /dev that is a symbolic link to
/hw), the driver can retrieve the information directly, without needing to decode the
minor number.

42 007-0911-210

2: Device Configuration

Creating Conventional Device Names

Starting with IRIX 6.4, there is a complete filesystem, /hw, that is devoted to device
special files. However, the use of /hw is both new and unique to IRIX. For the sake of
compatibility, the conventional device special files in the /dev filesystem that are used
in UNIX systems generally and in previous release of IRIX are retained. This topic
describes these conventional names. See also “/hw Filesystem” on page 48.

Many device special files are created automatically at boot time by execution of the script
/dev/MAKEDEV. Additional device special files can be created with administrator
commands.

IRIX Conventional Device Names

Conventions for the format of device special filenames are spelled out in the following
reference pages: intro(7), dks(7), dsreq(7), and tps(7). For example, the components of a
disk device name in /dev/dsk include

Programs throughout the system rely on the conventions for these device names. In
addition, by convention the associated major and minor numbers agree with the names.
For example, the logical unit and partition numbers that appear in a disk name are also
encoded into the minor number.

Beginning with IRIX 6.4, these highly-compressed conventional names are unpacked
into longer pathnames in the /hw filesystem. However, the older, encoded names in
/dev are retained for compatibility and portability.

dksc Constant prefix “dks” followed by bus adapter number c.

du Constant letter “d” followed by disk SCSI ID number u.

ln Optionally, letter “l” (ell) and logical unit number n (used
only when disk u controls multiple drives).

sp or vh or vol Constant letter “s” and partition number p, or else “vh” for
volume header, or “vol” for (entire) volume.

Device Special Files

007-0911-210 43

The Script MAKEDEV

The conventions for all the IRIX device special names are written into the script
/dev/MAKEDEV. This is a make file, but unlike most make files, it is not used to compile
executable programs. It contains the logic to prepare device special names and their
associated major and minor numbers and file permissions.

The MAKEDEV script is executed during IRIX startup from a script in /etc/rc2.d. It
is executed after all device drivers have been initialized, so it can use the output of the
hinv command to construct device names to suit the actual configuration.

The system administrator can invoke MAKEDEV to construct device special files.
Administrator use of MAKEDEV is described in IRIX Admin: System Configuration and
Operation.

Making Conventional Device Files

You or a system administrator can create device special files explicitly using the
commands mknod or install. Either command can be used in a make file such as you
might create as part of the installation script for a product.

For details of these commands, see the install(1) and mknod(1M) reference pages, and
IRIX Admin: System Configuration and Operation. The following is a hypothetical example
of install:

install -m 644 -u root -g sys -root /dev -chr 62,0

The -chr option specifies a character device, and 62,0 are the major and minor device
numbers, respectively.

Tip: The mknod command is portable, being used in most UNIX systems. The install
command is unique to IRIX, and has a number of features and uses beyond those of
mknod. Examples of both can be found by reading /dev/MAKEDEV.

44 007-0911-210

2: Device Configuration

Hardware Graph

Conventional UNIX software is designed based on the assumption that the computer has
only a small, fixed set of peripheral devices under undemanding reliability constraints.
IRIX 6.5 is designed to handle a system with a large complement of devices that can
change dynamically, under high demands for reliability. To meet the new requirements,
IRIX introduced the hwgraph (hardware graph) to represent system devices, and the /hw
filesystem as the externally visible form of the hwgraph.

UNIX Hardware Assumptions, Old and New

Historically, UNIX was designed to support small computer systems that were
administered by the same group of people that used them. When there are only a few, or
a few dozen, peripheral devices, it is acceptable to:

• Represent all devices as brief names in the /dev filesystem

• Use a limited range of major device numbers to specify all possible device drivers

• Use an 18-bit integer (the minor device number) as the sole parameter to represent a
device’s identify and access mode

• Leave the details of device addressing to be specified in configuration files or by
hard-coding in the source of device drivers.

When devices are only rarely added to or removed from the system, it is acceptable to
require that the administrator shut the system down, modify a configuration file, and
reboot, in order to remove or add a device. When the system has a small number of
tolerant users, it is acceptable to shut the system down and restart it to make small
changes in the I/O configuration.

All of these assumptions are challenged by the kinds of large-scale systems that can be
built using the Silicon Graphics Origin2000 architecture.

• It is possible to build very large Origin2000 systems with many independent nodes,
each with a number of attached devices.

• Because of the rich possibilities for interconnecting Origin2000 nodes, the topology
of a Origin2000 system can be complex, with devices addressed by lengthy paths,
and sometimes with multiple possible paths from a CPU to a device.

Hardware Graph

007-0911-210 45

• The hardware configuration of a Origin2000 system can change dynamically while
the system runs, by adding and removing entire nodes, or single buses, or single
cards on a PCI bus.

• Origin2000 is designed to be the basis of systems that are available a very high
percentage of the time, on which frequent or casual reboots are not allowed.

In this environment it is no longer acceptable to require downtime on any change, nor to
require the administrator to issue detailed commands or to edit configuration files to
make simple changes. Previous release of IRIX addressed some of these points through
the MAKEDEV script (see “The Script MAKEDEV” on page 43), which creates device
special files automatically for many types of hardware.

IRIX 6.4 moves away from the conventional UNIX model by creating the hwgraph, and
by requiring all kernel-level device drivers to maintain the hwgraph as devices are
attached and detached.

Hardware Graph Features

The hwgraph is an in-memory, graph-structured database that describes all hardware
units that are addressable by the system. For a very concise overview of the hwgraph, see
the hwgraph(4) reference page.

Hwgraph Nomenclature

“In-memory” means that the hwgraph is contained in kernel memory. It is reconstructed
dynamically in memory each time the system boots up, and is kept current in memory as
the hardware configuration changes.

“Graph-structured” means that the hwgraph is topologically a directed graph, consisting
of a set of “vertexes” (points) that represent devices, and “edges” (lines) that connect the
vertexes. Each edge is a one-way linkage from a source vertex to a target vertex (this is
the definition of a directed graph). Each edge has a label, a character string that names
the edge. A small part of a typical hwgraph is depicted in Figure 2-1.

46 007-0911-210

2: Device Configuration

Figure 2-1 Part of a Typical Hwgraph

Figure 2-1 shows the part of the graph that represents block-mode and character-mode
access to the whole-volume partition of a disk. The more familiar path notation for the
same graph would be as follows:

/hw/module/1/io/pci/slot/0/scsi_ctlr/0/target/1/lun/0/disk/volume/char
/hw/module/1/io/pci/slot/0/scsi_ctlr/0/target/1/lun/0/disk/volume/block
/hw/module/1/io/dks0d0vol/block
/hw/module/1/io/dks0d0vol/char

block

char

volume

disk

dksOdOvol

lun

O

1

scsi_ctlr

O

target

pci

slot

module

hw

1

io

O

Hardware Graph

007-0911-210 47

Figure 2-1 is color-coded to show when the parts of graph are built:

• The parts of the hwgraph built by the kernel during bootup are shown in blue.

• The parts shown in cyan are built by the PCI bus adapter as it probes the bus.

• The parts in magenta are built by the host adapter driver for the SCSI controller, to
reflect the addressable units on the SCSI bus.

• The parts shown in green are built by the disk device driver as it attaches the disk—
including a shorthand link from /hw/module/1/io to the volume vertex.

Properties of Edges and Vertexes

An edge in the hwgraph originates in one vertex (the source vertex) and points to another
vertex (the target vertex). The only property of an edge is its label.

A vertex in the hwgraph stores information about an addressable unit of hardware in the
system. A vertex can contain the following kinds of information:

• A pointer to an information structure supplied by the device driver.

• One or more inventory_t objects, representing information to be reported out by the
hinv command (see the hinv(1) reference page).

• One or more labelled attributes, containing information that can be reported out by
the attr command (see the attr(1) reference page).

• One or more labelled attributes that are not exported for availability by attr.

• The edges leading out of this vertex.

Not all vertexes have all this information.

Additional Edges

The basic hwgraph—as constructed by the kernel and by built-in drivers such as the PCI
bus adapter—is highly detailed and explicit, and is generally tree-structured. However,
kernel-level drivers are free to add edges between any two vertexes. A driver can add
extra edges in order to provide short-circuit paths for convenient access to vertexes deep
in the hwgraph.

48 007-0911-210

2: Device Configuration

Many device drivers distributed with IRIX create convenience vertexes and edges; and
device drivers provided by OEMs are welcome to do so as well. One problem is that often
a driver needs to label a convenience edge with a unique number—a controller number,
a port number, or a line number of some kind. At the time a driver is initializing and
creating vertexes, the total hardware complement is not known and it is impossible to
decide which number of this kind to use. This problem is alleviated by a program like
ioconfig; see “Using ioconfig for Global Controller Numbers” on page 53.

Implicit Edges

Every vertex has one implicit edge with the label “..” which leads back to a parent vertex.
Every vertex has one implicit edge with the label “.” which leads to the vertex itself. This
is deliberately the same convention used in a filesystem, where every directory contains
“..” and “.” entries. No other edges are required.

A vertex that has only the implicit edges is a leaf vertex. A leaf vertex can stand for a
device, so that a user process can name a leaf vertex in an open() call in order to open the
device. A user process cannot open a non-leaf vertex, just as a process cannot open a
directory as a file.

/hw Filesystem

The /hw filesystem is a visible reflection of the hwgraph. The /hw filesystem is a
filesystem, on a par with an EFS or XFS filesystem, but of a different type. It is built
dynamically (it has no disk contents) and changes to reflect changes in the hwgraph. (You
can compare the /hw filesystem to another artificial, dynamic filesystem, /proc, which
is an externally visible representation of the currently executing user processes.)

Any user can navigate the /hw filesystem using commands such as cd, ls, find, and
file. Users can browse the /hw filesystem to discover the hardware configuration.
Names in the /hw filesystem have access permissions that are applied in the same way
as in other filesystems. Pathnames beginning /hw can be used wherever other filesystem
pathnames are used, and in particular,

• A process can use a /hw pathname with the open() function to open a device.

• An /hw pathname can be used to construct a symbolic link.

Hardware Graph

007-0911-210 49

The use of symbolic links to /hw paths is important. All the device special filenames that
are conventionally expected to exist in /dev are implemented by creating symbolic links
from /dev to /hw. Here is a typical link:

lrwxr-xr-x 1 root sys 13 Aug 16 11:23 /dev/root -> /hw/disk/root

However, a symbolic link is not a perfect alias. Links are given special treatment by
commands such as ls, tar, and chmod; and by the system function stat() on which the
commands are based (see the stat(2) reference page). What is needed is a way to make a
functional alias for a device special file under a different name. That is supplied by
mknod.

Driver Interface to Hwgraph

A kernel-level device driver can make use of a variety of kernel functions for examining
and modifying the hwgraph. These functions are covered in detail in “Hardware Graph
Management” on page 231. The kernel offers functions by which a driver can:

• Traverse the hwgraph, following edges by name from vertex to vertex.

• Create new vertexes.

• Create new edges from existing vertexes to new vertexes.

• Set, change, or retrieve the address of driver-defined data from a vertex.

• Add hardware inventory data to a vertex.

• Set, change, retrieve or remove labelled attributes, and specify whether the
attributes should be accessible to the attr command or not.

• Remove edges and destroy vertexes.

Some device drivers do not have to perform these functions, but most kernel-level
drivers do need to create at least a few edges and vertexes to provide access to devices.
Vertexes are typically created when the driver is called at its pfxattach() entry point
(driver entry points are covered in detail in Chapter 7, “Structure of a Kernel-Level
Driver.”) Vertexes are typically destroyed when the driver is called at its pfxdetach()
entry point.

50 007-0911-210

2: Device Configuration

Hardware Inventory

In IRIX previous to IRIX 6.4, during bootstrap, each device driver probed the hardware
attachments for which it was responsible, and added information to a hardware
inventory table. The kernel maintained a hardware inventory table in kernel virtual
memory. The table could be queried by users and by programs.

Beginning with IRIX 6.4, what was once a simple table of devices has expanded into the
hwgraph (“Hardware Graph” on page 44). Device drivers create the hardware inventory
by adding vertexes to the hwgraph. However, existing programs continue to query the
hardware inventory using the old programming interface, as well as new ones.

Using the Hardware Inventory

The hardware inventory is used by users, administrators, and programmers.

Contents of the Inventory

Using database terminology, the hardware inventory consists of a single table with the
following columns:

Of these values,

• The Class and Type are arbitrary codes that are defined in
/usr/include/invent.h. Only the defined codes can be interpreted by the
hinv command.

• The Controller and Unit are small integers. The hinv command formats them based
the Class code. For example, when Class is INV_DISK, hinv might report “Disk
drive: unit 4 on SCSI controller 56.” When Class is INV_NETWORK and Type is

Class A code for the class of device; for example, audio, disk, processor, or
network.

Type A code for the type of device within its class; for example, FPU and CPU
types within the processor class.

Controller When applicable, the number of the controller, board, or attachment.

Unit When applicable, the logical unit or device within a Controller number.

State A descriptive number, such as the CPU model number.

Hardware Inventory

007-0911-210 51

INV_NET_ETHER, hinv might report “Integral Ethernet controller: et2, Ebus
slot 11.”

• The Controller number is used to distinguish between identical controllers. The
device driver can assign a controller number when it attaches inventory data to a
device vertex; or the controller numbers can be assigned dynamically at boot time,
as discussed under “Using ioconfig for Global Controller Numbers” on page 53.

Displaying the Inventory with hinv

The hinv command formats all or selected rows of the inventory table for display (see
the hinv(1) reference page), translating the numbers to readable form. The user or system
administrator can use command options to select a class of entries or certain specific
device types by name. The class or type can be qualified with a unit number and a
controller number. For example, the following command displays information about
disk 4 on controller 1:

hinv -c disk -b 1 -u 4

You can use hinv to check the result of installing new hardware. The new hardware
should show up in the report after the system is booted following installation, provided
that the associated device driver was called and was written correctly.

A full inventory report (hinv -mv) is almost mandatory documentation for a software
problem report, either submitted by your user to you, or by you to Silicon Graphics.

Testing the Inventory In Software

Within a shell script, you can test the output of hinv most conveniently in the command
exit status. The command sets exit status of 0 when it finds or reports any items. It sets
status of 1 when it finds no items. The code in Example 2-1 could be used in a shell script
to test the existence of a disk controller.

Example 2-1 Testing the Hardware Inventory in a Shell Script

if hinv -s -c disk -b 1;
then ;
else echo No second disk controller;

fi ;

52 007-0911-210

2: Device Configuration

You can access the inventory table in a C program using the functions documented in the
getinvent(3) reference page. The only access method supported is a sequential scan over
the table, viewing all entries. Three functions permit access:

These functions use static variables and should only be used by a single process within
an address space. Reentrant forms of the same functions, which can safely be used in a
multithreaded process, are also available (see getinvent(3)). Example 2-2 demonstrates
the use of these functions.

The format of one inventory table row is declared as type inventory_t in the
sys/invent.h header file. This header file also supplies symbolic names for all the
class and type numbers that can appear in the table, as well as containing commentary
explaining the meanings of some of the numbers.

Example 2-2 Function Returning Type Code for CPU Module

#include <stddef.h> /* for NULL */
#include <invent.h> /* includes sys/invent.h */
int getIPtypeCode()
{

inv_state_t * pstate = NULL;
inventory_t * work;
int ret = 0;
setinvent_r(&pstate);
do {

work = getinvent_r(pstate);
if ((INV_PROCESSOR == work->inv_class)
&& (INV_CPUBOARD == work->inv_type))

ret = work->inv_state;
} while (!ret);
endinvent_r(pstate); /* releases pstate-> */
return ret;

}

setinvent() initializes or reinitializes the scan to the first row

getinvent() returns the next table row in sequence

endinvent() releases storage allocated by setinvent()

Hardware Inventory

007-0911-210 53

Creating an Inventory Entry

Device drivers supplied by Silicon Graphics add information to the hardware inventory
by adding vertexes to the hwgraph (see “Driver Interface to Hwgraph” on page 49) and
then by attaching inventory_t structures to vertexes using the device_inventory_add()
function. This and other hwgraph functions are discussed on the hwgraph.inv(d3x)
reference page, and under “Hardware Graph Management” on page 231.

The inventory_t structure is declared in the header file sys/invent.h, along with the
inventory type and class numbers that are valid.

Drivers written for releases prior to IRIX 6.4 called the add_to_inventory() kernel
function in order to add a row to the inventory table. This function is supported in IRIX
6.5 in a limited way. When called, it attaches the inventory information to the root of the
hwgraph (to the /hw directory itself). As a result, thehinv command does see and report
the added inventory information, but the information is not physically associated with
the hwgraph vertex to which it applies.

Note: The only valid inventory types and classes are those declared in sys/invent.h.
Only those numbers can be decoded and displayed by the hinv command, which prints
an error message if it finds an unknown device class, and which prints nothing at all for
an unknown device type within a known class. There is no provision for adding new
device-class or device-type values for third-party devices.

However, it is possible now for a driver to add any arbitrary descriptive string desired to
any vertex. These labelled attributes can be retrieved by the attr command and in
software by the attr_get() function (see attr(1) and attr_get(2)).

Using ioconfig for Global Controller Numbers

An Origin2000 system can be reconfigured dynamically, so the complement of devices
can change from day to day or even minute to minute—a primary motive for creating the
hwgraph. However, the dynamic nature of the hardware complement makes it difficult
to define a stable, predictable numbering scheme for hardware devices. This need is met
by the ioconfig command (see reference page ioconfig(1M)).

54 007-0911-210

2: Device Configuration

Need for Stable Numbering

As discussed under “IRIX Conventional Device Names” on page 42, a conventional
name for a disk device in the /dev/dsk directory is dksCdulnsp. The number C is the
“controller” number, which in previous systems represented a fixed, well-known
numbering of SCSI bus adapters. No such fixed numbering is inherent in the Origin2000
architecture. Controller cards can be added to and removed from modules, and entire
modules can be added to and removed from the system.

Users of network interface cards, serial ports, bus adapters, and other devices need a
predictable, static naming scheme for devices. The name /dev/ttyf2 should represent
the same serial port tomorrow that it does today. A related problem is that some device
drivers want to place extra, short-circuit vertexes under /hw to allow simpler access to
their devices (see “Additional Edges” on page 47). Typically such short-circuit names
ought to be distinguished by a predictable number.

However, it is impossible to assign stable, repeatable controller numbers dynamically at
boot time, while the system is discovering the I/O complement. All the CPUs in the
system boot at the same time. Bus controllers and device drivers are initialized in parallel
on the nodes to which the hardware is connected. The sequence in which this happens is
unpredictable; and in any case the hardware connections can change from boot to boot.
A driver cannot know, when it is called to attach a device, what controller number it
ought to specify in the hardware inventory.

Design of ioconfig

In order to solve these problems, theioconfig command is invoked automatically, after
device drivers have been initialized and the hwgraph has been initialized, but before user
processes are started.

Operating in parallel for speed, ioconfig traverses the entire hwgraph, inspecting the
hardware inventory data at each vertex. At a vertex where the hardware inventory Class
value indicates a controller that should be numbered, ioconfig assigns a number, and
updates the hardware inventory Controller value to reflect the assigned number. Then
the program opens the device and optionally causes an ioctl() function. This results in an
entry to the open() entry point, and optionally the ioctl() entry point., of the device driver
(for an overview of this interaction, see “Overview of Device Open” on page 67 and
“Overview of Device Control” on page 69).

Hardware Inventory

007-0911-210 55

In these entry points, the device driver can recognize that its device now has an assigned
Controller number. The driver can use this information to create extra hwgraph vertexes
and edges if it wishes. (For an overview of how the distributed SCSI drivers use this
facility, see “SCSI Devices in the hwgraph” on page 523.)

Configuration Control File

The ioconfig program uses three disk files. The first, /etc/ioconfig.conf, in
which it records the controller numbers it has assigned and the related /hw pathnames.
When it needs to assign a number, ioconfig first looks up the current hwgraph path in
/etc/ioconfig.conf. If the path appears, ioconfig assigns the same controller
number that it used last time. If the path does not appear, ioconfig assigns the lowest
number that has never been assigned in this device Class, and adds the path and its
number to /etc/ioconfig.conf.

This procedure ensures that a given device always receives the same controller number,
even if the device is removed and later replaced. Users can inspect
/etc/ioconfig.conf at any time to discover the numbering, and so can infer the
relationship of a controller number in /dev/dsk (for example) to a vertex in the
hwgraph. Alternatively, the system administrator can cause all numbers to be reassigned
simply by removing the file /etc/ioconfig.conf.

Permissions Control File

The ioconfig command also can be used to set ownership and permissions on the
device special files. This enables the administrator to specify ownership and permissions
for device names that are created dynamically, each time the system boots.

Assignment of permissions is driven by the file/etc/ioperms. Its format (as described
in ioconfig(1M)) has four fields:

device_name A path in /hw or /dev. The path can include wildcards so it applies
to many devices.

permissions The device file permissions, as an octal number, as described in
chmod(1) or chmod(2).

owner_name A valid userid to own the device, usually root.

group_name A valid group name to own the device, usually sys.

56 007-0911-210

2: Device Configuration

There is no requirement that /etc/ioperms describe only existing devices; it can
describe devices that are not currently in the system. Also it can describe devices defined
by third parties other than Silicon Graphics.

Device Management File

The ioconfig command has built-in knowledge of Silicon Graphics network and disk
controllers and other devices. However, you can cause ioconfig to assign a controller
number to an OEM device, and to call your driver when it does so. You do this by placing
a file in the directory /var/sysgen/ioconfig.

All files in that directory are processed by ioconfig. A noncomment line in any of these
files has the following seven fields (not 8 fields, as some editions of the ioconfig(1M)
reference page show):

By placing a file in /var/sysgen/ioconfig, you can cause ioconfig to assign a
controller number to devices that you support, and to open each device and optionally
execute an ioctl call against each device, so the device driver can take note of the assigned
number.

class The inventory Class value that is found in a vertex of this kind, as an
integer number.

type The inventory Type value that is found in a vertex of this kind, as an
integer number. Use -1 for “any.”

state The inventory State value that is found in a vertex of this kind, as an
integer number. Use -1 for “any.”

suffix A suffix to be added to the hwgraph path name when opening the device.
Use the two characters -1 to mean “none.”

pattern A hwgraph path prefix that defines the set of controller numbers for this
Class, Type, and State of device. Use the characters -1 to mean “use the
hwgraph base path string.”

start_num The lowest (first) controller number to be assigned to devices of this
Class, Type, and State; the first number assigned under pattern.

ioctl_num The ioctl command number to pass in an ioctl call after opening the
device, as decimal or hexadecimal integer. Use -1 to say “no ioctl.”

Configuration Files

007-0911-210 57

Configuration Files

IRIX uses a number of configuration files to supplement its knowledge of devices and
device drivers. This is a summary of the files. The use of each file for device driver
purposes is described in more detail in other chapters. (The uses of these files for other
system administration tasks is covered in IRIX Admin: System Configuration and
Operation.)

Most configuration files used by the IRIX kernel are located in the directory
/var/sysgen. Files used by the X11 display system are generally in /usr/lib/X11.
With regard to device drivers, the important files are:

Master Configuration Database

Every configurable module of the kernel (this includes kernel-level device drivers and
other optional kernel modules) is represented by a single file in the directory
/var/sysgen/master.d.

A file in master.d describes the attributes of a module of the kernel which is to be
loaded at boot time (or loaded later). The general syntax of the file is documented in
detail in the master(4) reference page. Only a subset of the syntax is used to describe a
device driver module. In general, the master.d file specifies device driver attributes
such as:

• the driver’s prefix, a name that qualifies all its entry points

• whether it is a block, character, or STREAMS driver

• the major number serviced by the driver

• whether the driver can be loaded dynamically as needed

/var/sysgen/master.d/* Descriptions of the attributes of kernel modules

/var/sysgen/boot/* Kernel object modules

/var/sysgen/system/*.sm Kernel configuration directions

/var/sysgen/mtune/* Values and limits of tunable parameters

/var/sysgen/stune New values for tunable parameters

/var/sysgen/ioconfig/* Directives to iconfig program

/usr/lib/X11/input/config/* Initialization commands for Xdm input modules

58 007-0911-210

2: Device Configuration

• whether the driver is multiprocessor-aware

• which of the possible driver entry points the driver supplies

For each module described in a master.d file there should be a corresponding object
module in /var/sysgen/boot. The creation of device driver modules and the syntax
of master.d files is covered in detail in Chapter 9, “Building and Installing a Driver.”

Kernel Configuration Files

The files /var/sysgen/system/*.sm direct the lboot command in loading the
modules of the kernel at boot time. Although there are normally several files with the
names of subsystems, all the files in this directory are treated as one single file. The exact
syntax of these files is documented in the system(4) reference page.

Use of Configuration Files by lboot

The contents of the files direct lboot in loading components that are described by files
in /var/sysgen/master.d, and in probing for devices to see if they exist. (For details
of the operation of lboot, see the lboot(1M) and autoconfig(1M) reference pages.)

The VECTOR statement in a kernel configuration file directs lboot to probe for the
existence of hardware at a stated address, and to include a device driver only when the
hardware existed. Starting with IRIX 6.3, the kernel automatically probes the PCI bus and
other attachments in which the hardware devices can identify themselves dynamically.
The VECTOR statement is used only for VME and EISA devices (in systems that support
them) because these cannot identify themselves automatically.

Storing Device and Driver Attributes

The system administrator can place statements in any file in /var/sysgen/system.
These statements cause labelled attributes to be placed in the hardware graph, where
device drivers can retrieve them (see “Driver Interface to Hwgraph” on page 49 and the
system(4) reference page).

The DEVICE_ADMIN statement is used to attach an attribute giving information about
a particular device. The attribute is attached to a specific device special file in the
hwgraph. Its syntax is as follows:

DEVICE_ADMIN : /hw/path label = value [, label = value]...

Configuration Files

007-0911-210 59

The colon (:) is required; do not overlook it. The values you supply are:

The path is terminated by white space. The label is terminated by the “=” or by white
space. The value is terminated by a comma or by the end of the line, so the value can
contain white space and special characters other than the comma. As one example of the
use of DEVICE_ADMIN, you can find the following in
/var/sysgen/system/irix.sm:

DEVICE_ADMIN: /hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0
ql_request_queue_depth=1024

The path specifies a particular SCSI controller. The label is “ql_request_queue_depth,”
and the value is 1024.

The DRIVER_ADMIN statement is used to pass a value directly to a device driver. Its
syntax is as follows:

DRIVER_ADMIN : prefix label = value [, label = value]...

The values you supply are:

The prefix is terminated by white space. The label is terminated by the “=” or by white
space. The value is terminated by a comma or by the end of the line, so the value can
contain white space and special characters other than the comma.

These two statements can be placed in any file in /var/sysgen/system, but typically
appear in the irix.sm file. The device driver must expect to receive labeled values, and
must request them using the interface described under “Retrieving Administrator
Attributes” on page 241.

path Completion of a path to a device special file in the /hw filesystem.

label The label for which the device driver will ask.

value The value, a character string, the driver will retrieve.

prefix The prefix string that identifies a driver (see “Driver Name Prefix” on page 151).

label The label for which the device driver will ask.

value The value, a character string, the driver will retrieve.

60 007-0911-210

2: Device Configuration

Setting Interrupt Targets and Levels

The DEVICE_ADMIN statement is used to perform general administration of device
interrupts. These uses are documented with examples in
/var/sysgen/system/irix.sm:

• DEVICE_ADMIN: CPU-path NOINTR=1 blocks all interrupts from that CPU.

• DEVICE_ADMIN: device-path INTR_TARGET=CPU-path directs all interrupts from
a device to a CPU.

• DEVICE_ADMIN: device-path INTR_SWLEVEL=n sets the dispatching priority for
the thread that executes the interrupt handler for a device. The default is 230 and
normally should not be changed.

Setting 32-bit Direct Mapping Node

The DEVICE_ADMIN statement is also used to administer 32-bit direct mapping.

Note: The following information does not apply to O2 or Octane systems.

When a PCI driver uses 32-bit direct mapping (with the pciio_dmatrans_addr() and
pciio_dmatrans_list() functions), the memory space that is being mapped must be on
one specific node. The default is node zero. You can use the DEVICE_ADMIN statement
to change the mapping node for a specific PCI bus.

Caution: This change occurs at the PCI bus level, not the device level. This means that
each device on that PCI bus will be affected by the change.

These uses are documented with examples in /var/sysgen/system/irix.sm:

• DEVICE_ADMIN: pcibus-hwgraph-path
PCIBUS_DMATRANS_NODE=node-hwgraph-path sets the node to be used by the
specified PCI bus, for all 32-bit direct mapping.

Configuration Files

007-0911-210 61

• The following example applies to SGI Origin 2000 systems only:

DEVICE_ADMIN: /hw/module/1/slot/io11/xtalk_pci/pci PCIBUS_DMATRANS_NODE=/hw/nodenum/2

• The following example applies to SGI Origin 3000 systems only:

DEVICE_ADMIN: /hw/module/006p05/Pbrick/xtalk/8/pci PCIBUS_DMATRANS_NODE=/hw/nodenum/1

System Tuning Parameters

The IRIX kernel supports a variety of tunable parameters, some of which can be
interrogated by device drivers. The current values of the parameters are recorded in files
in /var/sysgen/mtune/* (one file per major subsystem).

You or the system administrator can view the current settings using the systune
command (see the systune(1M) reference page). The system administrator can use
systune to request changes in parameters. Some changes take effect at once; others are
recorded in a modified kernel that is loaded the next time the system boots.

To retrieve certain tuning parameters from within a kernel-level device driver, include
the header file sys/var.h.

The use of systune and its related files is covered in IRIX Admin: System Configuration
and Operation.

X Display Manager Configuration

Most files related to the configuration of the X Display Manager Xdm are held in
/var/X11. These files are documented in reference pages such as xdm(1) and in the
programming manuals related to the X Windows System.

One set of files, in /usr/lib/X11/input/config, controls the initialization of
nonstandard input devices. These devices use STREAMS modules, and their
configuration is covered in Chapter 22, “STREAMS Drivers.”

007-0911-210 63

Chapter 3

3. Device Control Software

IRIX provides for two general methods of controlling devices, at the user level and at the
kernel level. This chapter describes the architecture of these two software levels and
points out the different abilities of each. This is important background material for
understanding all types of device control. The chapter covers the following main topics:

• “User-Level Device Control” summarizes five methods of device control for
user-initiated processes.

• “Kernel-Level Device Control” on page 66 sets the concepts needed to understand
kernel-level drivers.

User-Level Device Control

In IRIX terminology, a user-level process is one that is initiated by a user (possibly the
superuser). A user-level process runs in an address space of its own. Except for explicit
memory-sharing agreements, a user-level process has no access to the address space of
any other process or to the kernel’s address space.

In particular, a user-level process has no access to physical memory (which includes
access to device registers) unless the kernel allows the process to share part of the kernel’s
address space. (For more on physical memory, see Chapter 1, “Physical and Virtual
Memory.”)

There are several ways in which a user-level process can control devices, which are
summarized in the following topics:

• “PCI Mapping Support” on page 64 summarizes PIO access to the PCI bus.

• “EISA Mapping Support” on page 64 summarizes PIO access to the EISA bus.

• “VME Mapping Support” on page 65 summarizes PIO access to the VME bus.

64 007-0911-210

3: Device Control Software

• “User-Level DMA From the VME Bus” on page 65 summarizes DMA I/O managed
from a user-level process.

• “User-Level Control of SCSI Devices” on page 65 summarizes DMA and command
access to the SCSI bus.

• “Managing External Interrupts” on page 66 summarizes access to the external
interrupt ports on Challenge and Onyx systems.

PCI Mapping Support

In systems that support the PCI bus, IRIX contains a kernel-level device driver which
supports general-purpose mapping of PCI bus addresses into the address space of a user
process (see “Overview of Memory Mapping” on page 71). The kernel-level drivers for
specific devices can also provide support for mapping the registers of the devices they
control into user process space.

You can write a program that maps a portion of the VME bus address space into the
program address space. Then you can load and store from device registers directly.

For more details of PIO to the PCI bus, see Chapter 4, “User-Level Access to Devices.”

EISA Mapping Support

In the Silicon Graphics Indigo2 workstation line (including the Indigo2 Maximum Impact,
Power Indigo2, and Indigo2 R10000), IRIX contains a kernel-level device driver that
allows a user-level process to map EISA bus addresses into the address space of the user
process (see “Overview of Memory Mapping” on page 71).

This means that you can write a program that maps a portion of the EISA bus address
space into the program address space. Then you can load and store from device registers
directly.

For more details of PIO to the EISA bus, see Chapter 4, “User-Level Access to Devices.”

User-Level Device Control

007-0911-210 65

VME Mapping Support

In systems that support the VME bus, IRIX contains a kernel-level device driver that
supports general-purpose mapping of VME bus addresses into the address space of a
user process (see “Overview of Memory Mapping” on page 71). The kernel-level drivers
for specific devices can also provide support for mapping the registers of the devices they
control into user process space.

You can write a program that maps a portion of the VME bus address space into the
program address space. Then you can load and store from device registers directly.

For more details of PIO to the VME bus, see Chapter 4, “User-Level Access to Devices.”

User-Level DMA From the VME Bus

The Challenge L, Challenge XL, and Onyx systems and their Power versions contain a
DMA engine that manages DMA transfers from VME devices, including VME slave
devices that normally cannot do DMA.

The DMA engine in these systems can be programmed directly from code in a user-level
process. Software support for this facility is contained in the udmalib package.

For more details of user DMA, see Chapter 4, “User-Level Access to Devices” and the
udmalib(3) reference page.

User-Level Control of SCSI Devices

IRIX contains a special kernel-level device driver whose purpose is to give user-level
processes the ability to issue commands and read and write data on the SCSI bus. By
using ioctl() calls to this driver, a user-level process can interrogate and program devices,
and can initiate DMA transfers between buffers in user process memory and devices.

The low-level programming used with the dsreq device driver is eased by the use of a
library of utility functions documented in the dslib(3) reference page. The source code of
the dslib library is distributed with IRIX.

For more details on user-level SCSI access, see Chapter 5, “User-Level Access to SCSI
Devices.”

66 007-0911-210

3: Device Control Software

Managing External Interrupts

The Challenge L, Challenge XL, and Onyx systems and their Power versions have four
external-interrupt output jacks and four external-interrupt input jacks on their back
panels. Origin2000 systems also support one or more external interrupt inputs and
outputs.

In all these systems, the device special file /dev/ei represents a device driver that
manages access to external interrupt ports.

Using ioctl() calls to this device (see “Overview of Device Control” on page 69), your
program can

• enable and disable the detection of incoming external interrupts

• set the strobe length of outgoing signals

• strobe, or set a fixed level, on any of the four output ports

In addition, library calls are provided that allow very low-latency detection of an
incoming signal.

For more information on external interrupt management, see Chapter 6, “Control of
External Interrupts” and the ei(7) reference page.

Kernel-Level Device Control

IRIX supports the conventional UNIX architecture in which a user process uses a kernel
service to request a data transfer, and the kernel calls on a device driver to perform the
transfer.

Kinds of Kernel-Level Drivers

There are three distinct kinds of kernel-level drivers:

• A character device driver transfers data as a stream of bytes of arbitrary length. A
character device driver is invoked when a user process issuing a system function
call such as read() or ioctl().

Kernel-Level Device Control

007-0911-210 67

• A block device driver transfers data in blocks of fixed size. Often a block driver is not
called directly to support a user process. User reads and writes are directed to files,
and the filesystem code calls the block driver to read or write whole disk blocks.
Block drivers are also called for paging operations.

• A STREAMS driver is not a device driver, but rather can be dynamically installed to
operate on the flow of data to and from any character device driver.

Overviews of the operation of STREAMS drivers are found in Chapter 22, “STREAMS
Drivers.” The rest of this discussion is on character and block device drivers.

Typical Driver Operations

There are five different kinds of operations that a device driver can support:

• The open interaction is supported by all drivers; it initializes the connection
between a process and a device.

• The control operation is supported by character drivers; it allows the user process to
modify the connection to the device or to control the device.

• A character driver transfers data directly between the device and a buffer in the user
process address space.

• Memory mapping enables the user process to perform PIO data transfers for itself.

• A block driver transfers one or more fixed-size blocks of data between the device
and a buffer owned by a filesystem or the memory paging system.

The following topics present a conceptual overview of the relationship between the user
process, the kernel, and the kernel-level device driver. The software architecture that
supports these interactions is documented in detail in Part III, “Kernel-Level Drivers,”
especially Chapter 7, “Structure of a Kernel-Level Driver.”

Overview of Device Open

Before a user process can use a kernel-controlled device, the process must open the
device as a file. A high-level overview of this process, as it applies to a character device
driver, is shown in Figure 3-1.

68 007-0911-210

3: Device Control Software

Figure 3-1 Overview of Device Open

The steps illustrated in Figure 3-1 are:

1. The user process calls the open() kernel function, passing the name of a device
special file (see “Device Special Files” on page 37 and the open(2) reference page).

2. The kernel notes the device major and minor numbers from the inode of the device
special file (see “Devices as Files” on page 38). The kernel uses the major device
number to select the device driver, and calls the driver’s open entry point, passing
the minor number and other data.

3. The device driver verifies that the device is operable, and prepares whatever is
needed to operate it.

4. The device driver returns a return code to the kernel, which returns either an error
code or a file descriptor to the process.

It is up to the device driver whether the device can be used by only one process at a time,
or by more than one process. If the device can support only one user, and is already in
use, the driver returns the EBUSY error code.

Kernel

1

2

3

4

User
process

Device
driver

fd = open ("dev/...")

Kernel-Level Device Control

007-0911-210 69

The open() interaction on a block device is similar, except that the operation is initiated
from the filesystem code responding to a mount() request, rather than coming from a
user process open() request (see the mount(1) reference page).

There is also a close() interaction so a process can terminate its connection to a device.

Overview of Device Control

After the user process has successfully opened a character device, it can request control
operations. Figure 3-2 shows an overview of this operation.

Figure 3-2 Overview of Device Control

The steps illustrated in Figure 3-2 are:

1. The user process calls the ioctl() kernel function, passing the file descriptor from
open and one or more other parameters (see the ioctl(2) reference page).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number, the request number, and an
optional third parameter from ioctl().

Kernel

1

2

3

4

User
process

Device
driver

ioctl (fd, req#,...)

70 007-0911-210

3: Device Control Software

3. The device driver interprets the request number and other parameter, notes changes
in its own data structures, and possibly issues commands to the device.

4. The device driver returns an exit code to the kernel, and the kernel (then or later)
redispatches the user process.

Block device drivers are not asked to provide a control interaction. The user process is
not allowed to issue ioctl() for a block device.

The interpretation of ioctl request codes and parameters is entirely up to the device
driver. For examples of the range of ioctl functions, you might review some reference
pages in volume 7, for example, termio(7), ei(7), and arp(7P).

Overview of Character Device I/O

Figure 3-3 shows a high-level overview of data transfer for a character device driver that
uses programmed I/O.

Figure 3-3 Overview of Programmed Kernel I/O

Kernel

1

2

3

5

4

User
process

Device
driver

read (fd,)

Kernel-Level Device Control

007-0911-210 71

The steps illustrated in Figure 3-3 are:

1. The user process invokes the read() kernel function for the file descriptor returned
by open() (see the read(2) and write(2) reference pages).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and other information.

3. The device driver directs the device to operate by storing into its registers in
physical memory.

4. The device driver retrieves data from the device registers and uses a kernel function
to store the data into the buffer in the address space of the user process.

5. The device driver returns to the kernel, which (then or later) dispatches the user
process.

The operation of write() is similar. A kernel-level driver that uses programmed I/O is
conceptually simple since it is basically a subroutine of the kernel.

Overview of Memory Mapping

It is possible to allow the user process to perform I/O directly, by mapping the physical
addresses of device registers into the address space of the user process. Figure 3-4 shows
a high-level overview of this interaction.

72 007-0911-210

3: Device Control Software

Figure 3-4 Overview of Memory Mapping

The steps illustrated in Figure 3-4 are:

1. The user process calls the mmap() kernel function, passing the file descriptor from
open and various other parameters (see the mmap(2) reference page).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and certain other parameters from
mmap().

3. The device driver validates the request and uses a kernel function to map the
necessary range of physical addresses into the address space of the user process.

4. The device driver returns an exit code to the kernel, and the kernel (then or later)
redispatches the user process.

5. The user process accesses data in device registers by accessing the virtual address
returned to it from the mmap() call.

Memory mapping can be supported only by a character device driver. (When a user
process applies mmap() to an ordinary disk file, the filesystem maps the file into memory.
The filesystem may call a block driver to transfer pages of the file in and out of memory,
but to the driver this is no different from any other read or write call.)

Kernel

1

2 3
4

5

User
process

Device
driver

mmap (fd,options,...)

Kernel-Level Device Control

007-0911-210 73

Memory mapping by a character device driver has the purpose of making device
registers directly accessible to the process as memory addresses. A memory-mapping
character device driver is very simple; it needs to support only open(), mmap(), and
close() interactions. Data throughput can be higher when PIO is performed in the user
process, since the overhead of the read() and write() system calls is avoided.

Silicon Graphics device drivers for the VME and EISA buses support memory mapping.
This enables user-level processes to perform PIO to devices on these buses. Character
drivers for the PCI bus are allowed to support memory mapping.

It is possible to write a kernel-level driver that only maps memory, and controls no device
at all. Such drivers are called pseudo-device drivers. For examples of psuedo-device
drivers, see the prf(7) and imon(7) reference pages.

Overview of Block I/O

Block devices and block device drivers normally use DMA (see “Direct Memory Access”
on page 10). With DMA, the driver can avoid the time-consuming process of transferring
data between memory and device registers. Figure 3-5 shows a high-level overview of a
DMA transfer.

Figure 3-5 Overview of DMA I/O

Kernel

1

2

3

4
6

5

User
process

Device
driver

read (fd,)

74 007-0911-210

3: Device Control Software

The steps illustrated in Figure 3-5 are:

1. The user process invokes the read() kernel function for a normal file descriptor (not
necessarily a device special file). The filesystem (not shown) asks for a block of data.

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and other information.

3. The device driver uses kernel functions to create a DMA map that describes the
buffer in physical memory; then programs the device with target addresses by
storing into its registers.

4. The device driver returns to the kernel after telling it to put to sleep the user process
that called the driver.

5. The device itself stores the data to the physical memory locations that represent the
buffer in the user process address space. While this is going on, the kernel may
dispatch other processes.

6. When the device presents a hardware interrupt, the kernel invokes the device
driver. The driver notifies the kernel that the user process can now resume
execution. It resumes in the filesystem code, which moves the requested data into
the user process buffer.

DMA is fundamentally asynchronous. There is no necessary timing relation between the
operation of the device performing its operation and the operation of the various user
processes. A DMA device driver has a more complex structure because it must deal with
such issues as

• making a DMA map and programming a device to store into a buffer in physical
memory

• blocking a user process, and waking it up when the operation is complete

• handling interrupts from the device

• the possibility that requests from other processes can occur while the device is
operating

• the possibility that a device interrupt can occur while the driver is handling a
request

The reward for the extra complexity of DMA is the possibility of much higher
performance. The device can store or read data from memory at its maximum rated
speed, while other processes can execute in parallel.

Kernel-Level Device Control

007-0911-210 75

A DMA driver must be able to cope with the possibility that it can receive several
requests from different processes while the device is busy handling one operation. This
implies that the driver must implement some method of queuing requests until they can
be serviced in turn.

The mapping between physical memory and process address space can be complicated.
For example, the buffer can span multiple pages, and the pages need not be in contiguous
locations in physical memory. If the device does not support scatter/gather operations, the
device driver has to program a separate DMA operation for each page or part of a page—
or else has to obtain a contiguous buffer in the kernel address space, do the I/O from that
buffer, and copy the data from that buffer to the process buffer. When the device supports
scatter/gather, it can be programmed with the starting addresses and lengths of each
page in the buffer, and read and write into them in turn before presenting a single
interrupt.

Upper and Lower Halves

When a device can produce hardware interrupts, its kernel-level device driver has two
distinct logical parts, called the “upper half” and the “lower half” (although the upper
“half” is usually much more than half the code).

Driver Upper Half

The upper half of a driver comprises all the parts that are invoked as a result of user
process calls: the driver entry points that execute in response to open(), close(), ioctl(),
mmap(), read() and write().

These parts of the driver are always called on behalf of a specific process. This is referred
to as “having user context,” which means that the entry point is executed under the
identity of a specific process. In effect, the driver code is a subroutine of the user process.

Upper half code can request kernel services that can be delayed, or “sleep.” For example,
code in the upper half of a driver can call kmem_alloc() to request memory in kernel
space, and can specify that if memory is not available, the driver can sleep until memory
is available. Also, code in the upper half can wait on a semaphore until some event
occurs, or can seize a lock knowing that it may have to sleep until the lock is released.

In each case, the entire kernel does not “sleep.” The kernel marks the user process as
blocked, and dispatches other processes to run. When the blocking condition is

76 007-0911-210

3: Device Control Software

removed—when memory is available, the semaphore is posted, or the lock is released—
the driver is scheduled for execution and resumes.

Driver Lower Half

The lower half of a driver comprises the code that is called to respond to a hardware
interrupt. An interrupt can occur at almost any time, including large parts of the time
when the kernel is executing other services, including driver upper and lower halves.

The kernel is not in a known state when executing a driver lower half, and there is no
process context. In conventional UNIX systems and in previous versions of IRIX, the lack
of user context meant that the lower-half code could not use any kernel service that could
sleep. Because of this restriction, you will find that the reference pages for driver kernel
services always state whether the service can sleep or not—a service that might sleep
could never be called from an interrupt handler.

Starting with IRIX 6.4, the IRIX kernel is threaded; that is, all kernel code executes under
a thread identity. When it is time to handle an interrupt, a kernel thread calls the driver’s
interrupt handler code. In general this makes very little difference to the design of a
device driver, but it does mean that the driver lower half has an identity that can sleep.
In other words, starting with IRIX 6.4, there is no restriction on what kernel services you
can call from driver lower-half code.

In all systems, an interrupt handler should do as little as possible and do it as quickly as
possible. An interrupt handler will typically get the device status; store it where the
top-half code expects it; possibly post a semaphore to release a blocked user process; and
possibly start the next I/O operation if one is waiting.

Relationship Between Halves

Each half has its proper kind of work. In general terms, the upper half performs all
validation and preparation, including allocating and deallocating memory and copying
data between address spaces. It initiates the first device operation of a series and queues
other operations. Then it waits on a semaphore.

The lower half verifies the correct completion of an operation. If another operation is
queued, it initiates that operation. Then it posts the semaphore to awaken the upper half,
and exits.

Kernel-Level Device Control

007-0911-210 77

Layered Drivers

IRIX allows for “layered” device drivers, in which one driver operates the actual
hardware and the driver at the higher layer presents the programming interface. This
approach is implemented for SCSI devices: actual management of the SCSI bus is
delegated to a set of Host Adapter drivers. Drivers for particular kinds of SCSI devices
call the Host Adapter driver through an indirect table to execute SCSI commands. SCSI
drivers and Host Adapter drivers are discussed in detail in Chapter 16, “SCSI Device
Drivers.”

Combined Block and Character Drivers

A block device driver is called indirectly, from the filesystem, and it is not allowed to
support the ioctl() entry point. In some cases, block devices can also be thought of as
character devices. For example, a block device might return a string of diagnostic
information, or it might be sensitive to dynamic control settings.

It is possible to support both block and character access to a device: block access to
support filesystem operations, and character access in order to allow a user process
(typically one started by a system administrator) to read, write, or control the device
directly.

For example, the Silicon Graphics disk device drivers support both block and character
access to disk devices. This is why you can find every disk device represented as a block
device in the /dev/dsk directory and again as a character device in /dev/rdsk (“r” for
“raw,” meaning character devices).

Drivers for Multiprocessors

All but a few Silicon Graphics computers have multiple CPUs that execute concurrently.
The CPUs share access to the single main memory, including a single copy of the kernel
address space. In principle, all CPUs can execute in the kernel code simultaneously. In
principle, the upper half of a device driver could be entered simultaneously by as many
different processes are there are CPUs in the system (up to 36 in a Challenge or Onyx
system).

A device driver written for a uniprocessor system cannot tolerate concurrent execution
by multiple CPUs. For example, a uniprocessor driver has scalar variables whose values
would be destroyed if two or more processes updated them concurrently.

78 007-0911-210

3: Device Control Software

In versions previous to IRIX 6.4, IRIX made special provision to support uniprocessor
character drivers in multiprocessors. It forced a uniprocessor driver to use only CPU 0 to
execute calls to upper-half code. This ensured that at most one process executed in any
upper half at one time. And it forced interrupts for these drivers to execute on CPU 0.
These policies had a detrimental effect on driver and system performance, but they
allowed the drivers to work.

Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation but you cannot use the same driver design on a
multiprocessor.

It is not difficult to design a kernel-level driver to execute safely in any CPU of a
multiprocessor. Each critical data object must be protected by a lock or semaphore, and
particular techniques must be used to coordinate between the upper and lower halves.
These techniques are discussed in “Designing for Multiprocessor Use” on page 194.

When you have made a driver multiprocessor-safe, you compile it with a particular flag
value that IRIX recognizes. For example, drivers are sometimes compiled for Origin2000
systems with the -DSN and -DSN0 flags. Multiprocessor-safe drivers work properly on
uniprocessor systems with very little, if any, extra overhead.

Loadable Drivers

Some drivers are needed whenever the system is running, but others are needed only
occasionally. IRIX allows you to create a kernel-level device driver or STREAMS driver
that is not loaded at boot time, but only later when it is needed.

A loadable driver has the same purposes as a nonloadable one, and uses the same
interfaces to do its work. A loadable driver can be configured for automatic loading
when its device is opened. Alternatively it can be loaded on command using the ml
program (see the ml(1) and mload(4) reference pages).

A loadable driver remains in memory until its device is no longer in use, or until the
administrator uses ml to unload it. A loadable driver remains in memory indefinitely,
and cannot be unloaded, unless it provides a pfxunload() entry point (see “Entry Point
unload()” on page 190).

There are some small differences in the way a loadable driver is compiled and configured
(see “Configuring a Loadable Driver” on page 279).

Kernel-Level Device Control

007-0911-210 79

One operational difference is that a loadable driver is not available in the miniroot, the
standalone system administration environment used for emergency maintenance. If a
driver might be required in the miniroot, it can be made nonloadable, or it can be
configured for “autoregistration” (see “Registration” on page 282).

PART TWO

Device Control From Process Space II

Chapter 4, “User-Level Access to Devices”
How a user-level process can access and control devices on the VME and EISA
buses.

Chapter 5, “User-Level Access to SCSI Devices”
How a user-level process can execute commands and transfer data to a SCSI
device.

Chapter 6, “Control of External Interrupts”
How a user-level process creates or responds to external interrupt signals in the
Challenge and Power Challenge systems.

007-0911-210 83

Chapter 4

4. User-Level Access to Devices

Programmed I/O (PIO) refers to loading and storing data between program variables
and device registers. This is done by setting up a memory mapping of a device into the
process address space, so that the program can treat device registers as if they were
volatile memory locations.

This chapter discusses the methods of setting up this mapping, and the performance that
can be obtained. The main topics are as follows:

• “PCI Programmed I/O” on page 83 discusses PIO mapping of PCI devices.

• “EISA Programmed I/O” on page 89 discusses PIO mapping of EISA bus devices in
the Indigo2 workstation line.

• “VME Programmed I/O” on page 92 discusses PIO mapping of VME devices.

• “VME User-Level DMA” on page 96 discusses the use of the VME DMA engine.

Normally, PIO programs are designed in synchronous fashion; that is, the process issues
commands to the device and then polls the device to find out when the action is
complete. (However, it is possible for a user process to receive interrupts from some
mapped devices if you have purchased the optional REACT software.)

A user-level process can perform DMA transfers from a VME bus master or (in the
Challenge or Onyx series) a VME bus slave, directly into the process address space. The
use of these features is covered under “VME User-Level DMA” on page 96.

PCI Programmed I/O

Note: For an overview of the PCI bus and its hardware implementation in SGI systems,
see Chapter 20, “PCI Device Attachment.” For syntax details of the user interface to PCI,
see the pciba(7M) reference page. As of IRIX 6.5, the pciba user-level PCI bus adapter
interface has replaced the usrpci facility.

84 007-0911-210

4: User-Level Access to Devices

Mapping a PCI Device Into Process Address Space

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address, or range of addresses, in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between an address on an
I/O bus and an arbitrary location in the address space of a user-level process. When this
has been done, the bus location appears to be a variable in memory. The program can
assign values to it, or refer to it in expressions.

The PCI bus addresses managed by a device are not wired or jumpered into the board;
they are established dynamically at the time the system attaches the device. The assigned
bus addresses can vary from one day to the next, as devices are added to or removed
from that PCI bus adapter. For this reason, you cannot program the bus addresses of a
PCI device into software or into a configuration file.

In order to map bus addresses for a particular device, you must open the device special
file that represents that device. You pass the file descriptor for the opened device to the
mmap() function. If the device driver for the device supports memory mapping—
mapping is an optional feature of a PCI device driver—the mapping is set up.

The PCI bus defines three address spaces: configuration space, I/O space, and memory
space. It is up to the device driver which of the spaces it allows you to map. Some device
drivers may set up a convention allowing you to map in different spaces.

PCI Device Special Files

Device special files for PCI devices are established in the /hw filesystem by the PCI
device driver when the device is attached; see “Hardware Graph” on page 44. These
pathnames are dynamic. Typically, the system administrator also creates stable,
predictable device special files in the /dev filesystem. The path to a specific device is
determined by the device driver for that device.

The PCI bus adapter also creates a set of generic PCI device names for each PCI slot in
the system. The names of these special files can be displayed by the following command:

find /hw -name pci -print -exec ls -l {} \;
/hw/module/1/slot/io1/xwidget/pci/0
total 0
crw------- 0 root sys 0, 78 Aug 12 15:27 config
crw------- 0 root sys 0, 79 Aug 12 15:27 default
crw------- 0 root sys 0, 77 Aug 12 15:27 io

PCI Programmed I/O

007-0911-210 85

crw------- 0 root sys 0, 75 Aug 12 15:27 mem
/hw/module/1/slot/io1/xwidget/pci/1
total 0
crw------- 0 root sys 0, 85 Aug 12 15:27 config
crw------- 0 root sys 0, 86 Aug 12 15:27 default
crw------- 0 root sys 0, 84 Aug 12 15:27 io
crw------- 0 root sys 0, 82 Aug 12 15:27 mem

The names are not leaf vertexes and cannot be opened. However, the names config, io,
mem, and default are character special devices that can be opened from a process with
the correct privilege. The names represent the following bus addresses:

Note: With pciba under IRIX 6.5 it is no longer possible to access config space directly
by means of mmap() I/O—ioctl() calls must be used instead.

Opening a Device Special File

Either kind of pathname is passed to the open() system function, along with flags
representing the type of access (see the open(2) reference page). You can use the returned
file descriptor for any operation supported by the device driver. The pciba device driver
supports only the mmap() and unmap() functions.

A driver for a specific PCI device may or may not support mmap(), read() and write(), or
ioctl() operations.

Table 4-1 PCI Device Special File Names for User Access

Name PCI Bus Address Space Offset in mmap() Call

config Configuration space or spaces on the card in this slot. Offset in config space.

default PCI bus memory space defined by the first base address
register (BAR) on the card.

Added to BAR.

io PCI bus I/O space defined by this card. Offset in I/O space.

mem PCI bus 32-bit or 64-bit memory address space allocated
to this card when it was attached.

Offset in total allocated
memory space.

86 007-0911-210

4: User-Level Access to Devices

Using mmap() With PCI Devices

When you have successfully opened a pciba device special file, you use the file
descriptor as the primary input parameter in a call to the mmap() system function.

This function is documented for all its many uses in the mmap(2) reference page. For
purposes of mapping a PCI device into memory, the parameters should be as follows
(using the names from the reference page):

The meaning of the off value depends on the PCI bus address space represented by the
device special file, as indicated in Table 4-1.

The value returned by mmap() is the virtual address that corresponds to the starting PCI
bus address. When the process accesses that address, the access is implemented by PIO
data transfer to or from the PCI bus.

Map Size Limits

There are limits to the amount and location of PCI bus address space that can be mapped
for PIO. The system architecture can restrict the span of mappable addresses, and kernel
resource constraints can impose limits. In order to create the map, the PCI device driver
has to create a software object called a PIO map. In some systems, only a limited number
of PIO maps can be active at one time.

addr Should be NULL to permit the kernel to choose an address in user process
space.

len The length of the span of PCI addresses to map.

prot PROT_READ for input, PROT_WRITE for output, or the logical sum of those
names when the device will be used for both input and output.

flags MAP_SHARED. Add MAP_PRIVATE if this mapping is not to be visible to
child processes created with the sproc() function (see the sproc(2) reference
page).

fd The file descriptor returned from opening the device special file.

off The offset into the device address space.

PCI Programmed I/O

007-0911-210 87

PCI Bus Hardware Errors

When the PCI bus adapter reports an addressing or access error, the error is reflected
back to the device driver. This can take place long after the instruction that initiated the
error transaction. For example, a PIO store to a memory-mapped PCI device can (in
certain hardware architectures) pass through several layers of translation. An error could
be detected several microseconds after the CPU store that initiated the write. By that
time, the CPU could have executed hundreds more instructions.

When the pciba device driver is notified of a PCI Bus error, it looks up the identities of
all user processes that had mapped the part of PCI address space where the error
occurred. The driver then sends a SIGBUS signal to each such process. As a result of this
policy, your process could receive a SIGBUS for an error it did not cause; and when your
process did cause the error, the signal could arrive a long time after the erroneous
transaction was initiated.

PCI PIO Example

The code in X demonstrates how to dump the standard configuration space registers of
a device in PCI slot 1 on an Origin200 (PCI slot 1 is XIO bus slot 5 on this system).

Example 4-1 PCI Configuration Space Dump

/*
 * Use pciba to dump the registers found
 * using base address register 0.
 *
 * See pciba(7m).
 */

#include <sys/types.h>
#include <sys/mman.h>
#include <sys/fcntl.h>
#include <sys/prctl.h>
#include <unistd.h>
#include <stdio.h>
/*
 * Path assumes O2000/Onyx2 PCI shoebox installed
 * in first CPU module.
 */
#define MEMPATH "/hw/module/1/slot/io2/pci_xio/pci/2/base/0"
#define MEMSIZE (128)

88 007-0911-210

4: User-Level Access to Devices

extern int errno;
main(int argc, char *argv[])
{
 volatile u_int *word_addr;
 int fd;
 char *path;
 int size, newline = 0;

 path = MEMPATH;
 size = MEMSIZE;
 fd = open(path, O_RDWR);
 if (fd < 0) {
 perror("open ../base/0 ");
 return errno;
 } else {
 printf("Successfully opened %s fd: %d\n", path, fd);
 printf("Trying mmap\n");

 word_addr = (unsigned int *)
 mmap(0,size,PROT_READ|PROT_WRITE,MAP_SHARED,fd,0);
 if (word_addr == (unsigned int *)-1) {
 perror("mmap");
 } else {
 int i;
 volatile int x;

 printf("Dumping registers \n");
 for (i = 0; i < 32; i++){
 x = *(volatile int *)(word_addr + i) ;
 if (newline == 0) {
 printf("0x%2.2x:", i*4);
 }
 printf(" 0x%8.8x", x);
 if ((++newline%4) == 0){
 newline = 0;
 printf("\n");
 }
 }
 }
 close (fd);
 }
 exit(0);
}

EISA Programmed I/O

007-0911-210 89

EISA Programmed I/O

The EISA bus is supported in SGI Indigo2 workstations only. For an overview of the EISA
bus and its implementation in SGI systems, see Chapter 18, “EISA Device Drivers.”

Mapping an EISA Device Into Memory

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address or range of addresses in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between the bus address of
a device register and an arbitrary location in the address space of a user-level process.
When this has been done, the device register appears to be a variable in memory—the
program can assign values to it, or refer to it in expressions.

Learning EISA Device Addresses

In order to map an EISA device for PIO, you must know the following points:

• which EISA bus adapter the device is on

In all SGI systems that support it, there is only one EISA bus adapter, and its
number is 0.

• whether you need access to the EISA bus memory or I/O address space

• the address and length of the desired registers within the address space

You can find all these values by examining files in the /var/sysgen/system directory,
especially the /var/sysgen/system/irix.sm file, in which each configured EISA
device is specified by a VECTOR line. When you examine a VECTOR line, note the
following parameter values:

bustype Specified as EISA for EISA devices. The VECTOR statement can be
used for other types of buses as well.

adapter The number of the bus where the device is attached (0).

iospace,
iospace2,
iospace3

Each iospace group specifies the address space, starting bus address,
and the size of a segment of bus address space used by this device.

90 007-0911-210

4: User-Level Access to Devices

Within each iospace parameter group you find keywords and numbers for the address
space and addresses for a device. The following is an example of a VECTOR line (which
must be a single physical line in the system file):

VECTOR: bustype=EISA module=if_ec3 ctlr=1
iospace=(EISAIO,0x1000,0x1000)
exprobe_space=(r,EISAIO, 0x1c80,4,0x6010d425,0xffffffff)

This example specifies a device that resides in the I/O space at offset 0x1000 (the slot-1
I/O space) for the usual length of 0x1000 bytes. The exprobe_space parameter
suggests that a key device register is at 0x1c80.

Opening a Device Special File

When you know the device addresses, you can open a device special file that represents
the correct range of addresses. The device special files for EISA mapping are found in
/dev/eisa.

The naming convention for these files is as follows: Each file is named eisaBaM, where

The device special file for the device described by the example VECTOR line in the
preceding section would be /dev/vme/eisa0aio.

In order to map a device on a particular bus and address space, you must open the
corresponding file in /dev/eisa.

Using the mmap() Function

When you have successfully opened the device special file, you use the file descriptor as
the primary input parameter in a call to the mmap() system function.

This function is documented for all its many uses in the mmap(2) reference page. For
purposes of mapping EISA devices, the parameters should be as follows (using the
names from the reference page):

B is a digit for the bus number (0)

M is the modifier, either io or mem

addr Should be NULL to permit the kernel to choose an address in user process
space.

EISA Programmed I/O

007-0911-210 91

The value returned by mmap() is the virtual memory address that corresponds to the
starting bus address. When the process accesses that address, the access is implemented
by data transfer to the EISA bus.

Note: When programming EISA PIO, you must always be aware that EISA devices
generally store 16-bit and 32-bit values in “small-endian” order, with the least-significant
byte at the lowest address. This is opposite to the order used by the MIPS CPU under
IRIX. If you simply assign to a C unsigned integer from a 32-bit EISA register, the value
will appear to be byte-inverted.

EISA PIO Bandwidth

The EISA bus adapter is a device on the GIO bus. The GIO bus runs at either 25 MHz or
33 MHz, depending on the system model. Each EISA device access takes multiple GIO
cycles, as follows:

• The base time to do a native GIO read (of up to 64 bits) is 1 microsecond.

• A 32-bit EISA slave read adds 15 GIO cycles to the base GIO read time; hence one
EISA access takes 19 GIO cycles, best case.

• A 4-byte access to a 16-bit EISA device requires 10 more GIO cycles to transfer the
second 2-byte group; hence a 4-byte read to a 16-bit EISA slave requires 25 GIO
cycles.

• Each wait state inserted by the EISA device adds four GIO cycles.

len The length of the span of bus addresses, as documented in the iospace
group in the VECTOR line.

prot PROT_READ, or PROT_WRITE, or the logical sum of those names when
the device is used for both input and output.

flags MAP_SHARED, with the addition of MAP_PRIVATE if this mapping is not
to be visible to child processes created with the sproc() function (see the
sproc(2) reference page).

fd The file descriptor from opening the device special file in /dev/eisa.

off The starting bus address, as documented in the iospace group in the
VECTOR line.

92 007-0911-210

4: User-Level Access to Devices

Table 4-2 summarizes best-case (no EISA wait states) data rates for reading and writing
a 32-bit EISA device, based on these considerations.

Table 4-3 summarizes the best-case (no wait state) data rates for reading and writing a
16-bit EISA device.

VME Programmed I/O

The VME bus is supported by Origin2000 systems. For an overview of the VME bus and
its hardware implementation in SGI systems, see Chapter 12, “VME Device Attachment
on Origin 2000/Onyx2.”

Mapping a VME Device Into Process Address Space

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address, or range of addresses, in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between the bus address of
a device register and a location in the address space of a user-level process. When this has
been done, the device register appears to be a variable in memory. The program can
assign values to it, or refer to it in expressions.

Table 4-2 EISA Bus PIO Bandwidth (32-Bit Slave, 33-MHz GIO Clock)

Data Unit Size Read Write

1 byte 0.68 MB/sec 1.75 MB/sec

2 byte 1.38 MB/sec 3.51 MB/sec

4 bytes 2.76 MB/sec 7.02 MB/sec

Table 4-3 EISA Bus PIO Bandwidth (16-Bit Slave, 33-MHz GIO Clock)

Data Unit Size Read Write

1 byte 0.68 MB/sec 1.75 MB/sec

2 byte 1.38 MB/sec 3.51 MB/sec

4 bytes 2.29 MB/sec 4.59 MB/sec

VME Programmed I/O

007-0911-210 93

Learning VME Device Addresses

In order to map a VME device for PIO, you must know the following points:

• The VME bus number on which the device resides. IRIX supports as many as five
VME buses. On Challenge and Onyx systems the first VME bus is number 0; on
Origin and Onyx2 systems the first VME bus is number 1. Use the hinv command
to see the numbers of others (and see “About VME Bus Addresses and System
Addresses” on page 350).

• The VME address space in which the device resides

This will be either A16, A24, or A32.

• VME address space modifier that the device uses—either supervisory (s) or
nonprivileged (n)

• The VME bus addresses associated with the device

This must be a sequential range of VME bus addresses that spans all the device
registers you need to map.

This information is normally documented in VECTOR lines found in a file in the
/var/sysgen/system/ directory (see “Defining VME Devices with the VECTOR
Statement” on page 360).

Opening a Device Special File

When you know the device addresses, you can open a device special file that represents
the correct range of addresses. The device special files for VME mapping are found in the
hardware graph at paths having the form:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/usrvme/assm/width

The naming convention for these hwgraph paths is documented in the usrvme(7)
reference page. Briefly, each path contains these variable elements:

mod The Origin or Onyx2 module number.

n The XIO slot number of the VME adapter.

ss The address space, either 16, 24, or 32.

m VME address modifier, s for supervisory or n for nonprivileged.

width Data width to be used, for example d32; covered in later table.

94 007-0911-210

4: User-Level Access to Devices

Shorter names are also created in the form

/hw/vme/busnumber/usrvme/assm/width

Tip: In previous versions of IRIX, comparable device special files were defined in the
/dev directory using names such as /dev/vme/vme0a16n and the like. If you have
code that depends on these names—or if you prefer the shorter names in /dev—feel free
to create compatible names in /dev in the form of symbolic links to the /hw.../usrvme
names.

The data width that is designated in the pathname as width can be selected from the
values shown in Table 4-4.

Opening a device for DMA use is described under “VME User-Level DMA” on page 96.

Tip: You can display all the usrvme devices in the system using the find command in
the /hw directory, as in

find /hw -name /hw/vme/*/usrvme/*/* -type c -print

Using the mmap() Function

When you have successfully opened the device special file, you use the file descriptor as
the primary input parameter in a call to the mmap() system function.

Table 4-4 Data Width Names in VME Special Device Names

Address Space in Pathname Supported Widths in Pathname

a16n, a16s d16, d32

a24n, a24s d16, d32

a32n, a32s opened for PIO access d8, d16, d32_single

a32n, a32s opened for DMA access d8, d16, d32_single, d32_block, d64_single, d64_block

VME Programmed I/O

007-0911-210 95

This function has many different uses, all of which are documented in the mmap(2)
reference page. For purposes of mapping a VME device into memory, the parameters
should be as follows (using the names from the reference page):

The value returned by mmap() is the virtual address that corresponds to the starting
VME bus address. When the process accesses that address, the access is implemented by
data transfer to the VME bus.

Limits on Maps

There are limits to the amount and location of VME bus address space that can be
mapped for PIO. The system architecture can restrict the span of mappable addresses.
Kernel resource constraints can impose limits on the number of VME maps that are
simultaneously active. You must always inspect the return code from the mmap() call.

VME PIO Access

Once a VME device has been mapped into memory, your program reads from the device
by referencing the mapped address, and writes to the device by storing into the mapped
address.

Typically you organize the mapped space using a data structure that describes the layout
of registers. Two key points to note about the mapped space are:

addr Should be NULL to permit the kernel to choose the address in user process
space.

len The length of the span of VME addresses, as documented in the iospace
group in the VECTOR line.

prot PROT_READ for input, PROT_WRITE for output, or the logical sum of
those names when the device will be used for both.

flags MAP_SHARED. Add MAP_PRIVATE if this mapping is not to be visible to
child processes created with the sproc() function.

fd The file descriptor returned from opening the device special file.

off The starting VME bus address, as documented in the iospace group in
the VECTOR line.

96 007-0911-210

4: User-Level Access to Devices

• You should always declare register variables with the C keyword volatile. This
forces the C compiler to generate a reference to memory whenever the register value
is needed.

• The VME PIO hardware does not support 64-bit integer load or store operations.
For this reason you must not:

– Declare a VME item as long long, because the C compiler generates 64-bit loads
and stores for such variables

– Apply library functions such as bcopy(), bzero(), or memmove() to the VME
mapped registers, because these optimized routines use 64-bit loads and stores
whenever possible.

On an Origin or Onyx2 system, a PIO read can take one or more microseconds to
complete—a time in which the R10000 CPU can process many instructions from memory.
The R10000 continues to execute instructions following the PIO load until it reaches an
instruction that requires the value from that load. Then it stalls until the PIO data arrives
from the device.

A PIO write is asynchronous at the hardware level. The CPU executes a register-store
instruction that is complete as soon as the physical address and data have been placed on
the system bus. The actual VME write operation on the VME bus can take 1 or more
microseconds to complete. During that time the CPU can execute dozens or even
hundreds more instructions from cache memory.

VME User-Level DMA

A DMA engine is included as part of each VME bus adapter in an SGI Origin2000 system.
The DMA engine can perform efficient, block-mode, DMA transfers between system
memory and VME bus slave cards—cards that would normally be capable of only PIO
transfers.

You can use the udma functions to access a VME Bus Master device, if the device can
respond in slave mode. However, this would normally be less efficient than using the
Master device’s own DMA circuitry.

The DMA engine greatly increases the rate of data transfer compared to PIO, provided
that you transfer at least 32 contiguous bytes at a time. The DMA engine can perform D8,
D16, D32, D32 Block, and D64 Block data transfers in the A16, A24, and A32 bus address
spaces.

VME User-Level DMA

007-0911-210 97

Using the DMA Library Functions

All DMA engine transfers are initiated by a special device driver. However, you do not
access this driver through open/read/write system calls. Instead, you program it
through a library of functions. The functions are documented in the vme_dma_engine(3)
reference page. They are used in the following sequence:

1. Call vme_dma_engine_alloc() to initialize DMA access to a particular VME bus
adapter, specified by device special file name (see “Opening a Device Special File”
on page 93). You can create an engine for each available bus.

2. Call vme_dma_engine_buffer_alloc() to allocate storage to use for DMA buffers.
This function pins the memory pages of the buffers to prevent swapping.

3. You can call vme_dma_engine_buffer_addr_get() to return the address of a buffer
allocated by the preceding function.

4. Call vme_dma_engine_transfer_alloc() to create a descriptor for an operation,
including the buffer, the length, and the direction of transfer as well as several other
attributes. The handle can be used repeatedly.

5. Call vme_dma_engine_schedule() to schedule one transfer (as described to
vme_dma_engine_transfer_alloc()) for future execution. The transfer does not
actually start at this time. This function can be called from multiple, parallel
threads.

6. Call vme_dma_engine_commit() to commence execution of all scheduled transfers.
If you specify a synchronous transfer, the function does not return until the transfer
is complete.

7. If you specify an asynchronous transfer, call vme_dma_engine_rendezvous() after
starting all transfers. This function does not return until all transfers are complete.

In prior releases, user-level DMA was provided through a comparable library of
functions with different names and calling sequences. That library of functions is
supported in the current release (see a prior edition of this manual, and the udmalib(3)
reference page if installed). The new library described here is recommended.

007-0911-210 99

Chapter 5

5. User-Level Access to SCSI Devices

IRIX contains a programming library, called dslib, that allows you to control SCSI
devices from a user-level process. This chapter documents the functions in dslib,
including the following topics:

• “Overview of the dsreq Driver” on page 100 gives a summary of the features and
use of the generic SCSI device driver.

• “Generic SCSI Device Special Files” on page 100 documents the format of the names
and major and minor numbers of generic SCSI files.

• “The dsreq Structure” on page 103 gives details of the request structure that is the
primary input to the generic SCSI driver.

• “Testing the Driver Configuration” on page 110 documents the use of the DS_CONF
ioctl() operation.

• “Using the Special DS_RESET and DS_ABORT Calls” on page 111 describes two
special functions of the generic SCSI driver.

• “Using dslib Functions” on page 112 describes the functions that make it simpler to
use the generic SCSI driver.

• “Example dslib Program” on page 124 shows a simple example of use.

You must understand the SCSI interface in order to command a SCSI device. For several
SCSI information resources, see “Other Sources of Information” on page xli.

If you are specifically interested in using audio data from a CDROM or DAT drive, you
should use the special-purpose libraries for CDROM and DAT that are included in the
IRIS Digital Media Development Environment. These libraries are built upon the generic
SCSI driver, but provide convenient, audio-oriented functions. For more information on
these libraries, see the IRIS Digital Media Programming Guide, document number
008-1799-040.

If your interest is in controlling SCSI devices at the kernel level, see Part V, “SCSI Device
Drivers.”

100 007-0911-210

5: User-Level Access to SCSI Devices

Overview of the dsreq Driver

IRIX includes a generic SCSI device driver, the dsreq driver, through which a user-level
program can issue SCSI commands to SCSI devices. This is a character device driver that
supports only open(), close() and ioctl() operations (see “Kinds of Kernel-Level Drivers”
on page 66, and also the open(2), close(2) and ioctl(2) reference pages).

The formal documentation of the dsreq driver is found in the ds(7) reference page. In
order to invoke its services, you prepare a dsreq data structure describing the operation
and pass it to the device driver using an ioctl() call. The device driver issues the SCSI
command you specify, and sleeps until it has completed. Then it returns the status in the
dsreq structure.

You can request operations for input and output as well as issuing control and diagnostic
commands. The dsreq structure for input and output operations specifies a buffer in
memory for data transfer. The dsreq driver handles the task of locking the buffer into
memory (if necessary) and managing a DMA transfer of data.

The programming interface supported by the generic SCSI driver is quite primitive. A
library of higher-level functions makes it easier to use. This library is formally
documented in the dslib(3) reference page, and is described under “Using dslib
Functions” on page 112.

Generic SCSI Device Special Files

The creation and use of device special files is discussed under “Device Special Files” on
page 37. A device special file represents a device, and is the mechanism for associating a
device with a kernel-level device driver.

The device special files in the /dev/scsi directory are all associated with the dsreq
driver. A basic set of these names is created automatically by the /dev/MAKEDEV script
(see “The Script MAKEDEV” on page 43). You have to create additional device special
files if you need to control logical units other than logical unit 0.

Generic SCSI Device Special Files

007-0911-210 101

Major and Minor Device Numbers in /dev/scsi

Device special files in /dev/scsi have one of the following major device numbers:

• 195 for devices on a SCSI bus (files /dev/scsi/sc*).

• 196 for devices on a jag (VME) SCSI bridge (files /dev/scsi/jag*).

The minor number of these files encodes the adapter number, the SCSI ID, and the LUN,
using the bit assignments shown in Figure 5-1.

Figure 5-1 Bit Assignments in SCSI Device Minor Numbers

Form of Filenames in /dev/scsi

Each device special filename in the /dev/scsi directory reflects the values of the
device’s adapter (bus) number, SCSI ID, and logical unit number (LUN).

Tip: The character between the SCSI ID and the LUN in these names is the letter “l.”
When reading or copying these device names, take care not to write a digit 1 instead. This
is a frequent error.

Names of SCSI Devices on a SCSI Bus

Devices attached directly to a SCSI bus have names in this form:

sc Prefix “sc” for SCSI attachment.

0 to 137 Number of the SCSI adapter, typically 0 or 1.

d Constant letter “d” for device.

E D C B A 9 8 7 6 5 4 3 2 1 0

7-bit
adapter (bus)

number

3-bit
logical unit

number

4-bit
SCSI

ID

C C C C C C C L L L I I I I

102 007-0911-210

5: User-Level Access to SCSI Devices

A typical device name would be /dev/scsi/sc1d3l0 meaning a SCSI device
configured as ID 3 on SCSI bus 1. Either this device has no logical units, or this is the first
logical unit on device 3.

Names of SCSI Devices on the Jag (VME Bus) Controller

Machines in the Challenge and Onyx systems can optionally have SCSI devices attached
to the VME bus through a bridge using the jag device driver. These devices are also
represented in /dev/scsi with names of the following form:

A typical device name would be /dev/scsi/jag1d3l0 meaning a SCSI device
configured as ID 3 on VME bus 1. Either the device has no logical units, or this is the first
logical unit on device 3.

Creating Additional Names in /dev/scsi

The script /dev/MAKEDEV, which runs each time the system boots, creates 16 files for
each existing SCSI or jag bus. These files represent the possible SCSI ID numbers 0-15 on
each bus, with a logical number of 0. If you want to control a device with LUN 0, the
device special file exists.

In order to control a device with a LUN of 1-7, you must create an additional device
special file, using the mknode or install command (see the install(1) reference page).

0 to 7 (to 15 for
wide SCSI)

SCSI ID of the target device or control unit, as set by switches on
the device itself.

l (letter ell) Constant letter “l” for logical unit.

0 to 7 Logical unit number (LUN) of this device, typically 0.

jag Prefix “jag” for VME/SCSI attachment.

0 to 4 Number of the VME adapter, typically 0 or 1.

d Constant letter “d” for device.

0 to 7 (to 15 for
wide SCSI)

SCSI ID of the target device or control unit, as set by switches on
the device itself.

l (letter ell) Constant letter “l” for logical unit.

0 to 7 Logical unit number (LUN) of this device, typically 0.

The dsreq Structure

007-0911-210 103

For example, before you can operate logical unit 2 of device 5 on SCSI bus 1, you must
create /dev/scsi/sc1d5l2 using a command such as

install -F /dev/scsi -m 600 -u root -g sys \
-chr 195,165 sc1d5l2

Relationship to Other Device Special Files

The files in /dev/scsi describe many of the same devices that are described by files in
/dev/dsk, /dev/tape, and other directories. There is a security exposure in that a
user-level program could use a /dev/scsi file to do almost anything to a disk or tape,
including total erasure.

The dsreq device driver forces exclusivity with itself; that is, a given /dev/scsi file can
be opened only by one process at a time. However, a device could be open through the
dsreq driver at the same time it is open by another process, or by a filesystem, through a
different device special file and device driver. For example, a disk volume could be
simultaneously open through the name /dev/scsi/sc0d0l0 and through
/dev/rdsk/dks0d1s0.

The process that opens a generic SCSI device can request exclusivity using the O_EXCL
option to open(). In that case, the open is rejected when the device is already open
through another driver; and no other driver can open the device until the generic device
file is closed.

The dsreq Structure

The primary input to most dsreq ioctl() calls, as well as the primary input to most dslib
functions, is the dsreq structure. This structure is declared in
/usr/include/sys/dsreq.h, a header file that rewards careful study.

The important fields of the dsreq structure are shown in Table 5-1. Some of the field values
are expanded in the following topics. The sys/dsreq.h file declares macros for access

104 007-0911-210

5: User-Level Access to SCSI Devices

to many of the fields. Use these macros (listed in Table 5-1) in both expressions and
assignments in order to insulate your code against future changes.

Table 5-1 Fields of the dsreq Structure

Field Name Macro Purpose

ds_flags FLAGS(dp) Bits used to determine device driver actions. See “Values for
ds_flags” on page 105.

ds_time TIME(dp) Timeout value in milliseconds. If the command does not
complete, it is ended with an error code. The driver sets a
default of 5000 (5 seconds) when this is set to zero. dsopen()
initializes it to 10000.

ds_private PRIVATE(dp) Field for use by the calling program. dsopen() uses this field to
point to its “context” data (see “Using dsopen() and dsclose()”
on page 113).

ds_cmdbuf CMDBUF(dp) Address of SCSI command string to be sent.

ds_cmdlen CMDLEN(dp) Length of the SCSI command string.

ds_databuf DATABUF(dp) Address of a single data buffer. See “Data Transfer Options” on
page 107.

ds_datalen DATALEN(dp) Length of data buffer.

ds_sense
buf

SENSEBUF(dp) Address to receive sense data after an error.

ds_sense
len

SENSELEN(dp) Length of sense buffer in bytes.

ds_iovbuf IOVBUF(dp) Address of an iov_t structure. See “Data Transfer Options” on
page 107.

ds_iovlen IOVLEN(dp) Length of data described by ds_iovbuf.

ds_link This field is not supported, and should be zero-filled.

ds_synch This field is not supported, and should be zero-filled.

ds_revcode Intended for the version code of the dsreq driver, not currently
set to a useful value.

ds_ret RET(dp) Return code for the requested operation. See Table 5-3.

ds_status STATUS(dp) SCSI status byte from the operation. See Table 5-4.

The dsreq Structure

007-0911-210 105

The dslib library contains functions to simplify the preparation and execution of a dsreq
request; see “Using dslib Functions” on page 112.

Values for ds_flags

The possible flag values in the ds_flags field are listed in Table 5-2. The flag values are
designed for the most flexible, capable type of bus, device, and device driver. Not all
values are supported, and different host adapters can support different combinations.

ds_msg MSG(dp) The first byte of a message returned by the target. See Table 5-5.

ds_cmdsent CMDSENT(dp) Length of command string actually sent (same as ds_cmdlen,
unless an error occurs).

ds_datasent DATASENT(dp) Length of data transferred.

ds_sensesent SENSESENT(dp) Length of sense data received.

Table 5-2 Flag Values for ds_flags

Constant Name
Supported by
Any Driver? Meaning When Set to 1

DSRQ_ASYNC Yes Return at once, do not sleep until the operation is
complete.

DSRQ_SENSE Yes Get sense data following an error on the requested
command.

DSRQ_TARGET No Act as the SCSI target, not the SCSI initiator.

DSRQ_SELATN Yes Select with ATN.

DSRQ_DISC Yes Allow identify disconnect.

DSRQ_SYNXFR Yes Negotiate a synchronous transfer if possible. Needed only
to switch into synchronous mode. Repeated negotiation is
wasteful.

Table 5-1 Fields of the dsreq Structure (continued)

Field Name Macro Purpose

106 007-0911-210

5: User-Level Access to SCSI Devices

In order to find out which flags are supported by a particular driver, use the DS_CONF
operation (see “Testing the Driver Configuration” on page 110).

DSRQ_ASYNXFR Yes Negotiate an asynchronous transfer. Needed only to
return to asynch after a synchronous transfer. Repeated
negotiation is wasteful.

DSRQ_SELMSG No A specific select is coded in the message. This feature is
not supported.

DSRQ_IOV Yes Use the iov_t from ds_iovbuf, not the single buffer from
ds_databuf (see “Data Transfer Options” on page 107).

DSRQ_READ Yes This is a data input command (as opposed to an
immediate command or an output).

DSRQ_WRITE Yes This is a data output command (as opposed to an
immediate command or an input).

DSRQ_MIXRDWR No This command can both read and write.

DSRQ_BUF No Buffer the input and copy to the supplied buffer, instead
of direct input to the buffer.

DSRQ_CALL No Notify completion (with DSRQ_ASYNC).

DSRQ_ACKH No Hold ACK asserted.

DSRQ_ATNH No Hold ATN asserted.

DSRQ_ABORT No Send ABORT messages until the bus is clear.Useful only
with SCSI commands that have the immediate bit set.

DSRQ_TRACE Yes Trace this request (accepted but has no effect).

DSRQ_PRINT Yes Print this request (accepted but has no effect).

DSRQ_CTRL1 Yes Request with host control bit 1.

DSRQ_CTRL2 Yes Request with host control bit 2.

Table 5-2 Flag Values for ds_flags (continued)

Constant Name
Supported by
Any Driver? Meaning When Set to 1

The dsreq Structure

007-0911-210 107

Data Transfer Options

When reading or writing data, you have two design options:

• You can transfer a single segment of data directly between the device and a buffer
you supply (set neither DSRQ_BUF nor DSRQ_IOV).

• You can transfer segments of data between the device and a series of one or more
memory locations based on an iov_t object (set DSRQ_IOV).

All read/write requests are done using DMA. The “scatter/gather” support of
DSRQ_IOV is presently restricted to only one memory segment, so it is not greatly
different from single-buffer I/O. If you elect to use it, the iov_t structure is declared in
sys/iov.h (see also the part of the read(2) reference page that deals with the readv()
function).

During a direct transfer using either a single buffer or scatter/gather, the data buffer
spaces are locked in memory.

The maximum amount of data you can transfer in one operation is set by the host adapter
driver for the bus, and can be retrieved with an ioctl() (see “Testing the Driver
Configuration” on page 110). The maximum length for a buffered transfer is returned by
the same ioctl(). It can be less than the direct-transfer size because there may be a limit
on the size of kernel memory that can be allocated.

Return Codes and Status Values

A zero return code in the ds_ret field signifies success. The possible nonzero return codes
are summarized in Table 5-3 and are declared in sys/dsreq.h. Not all return codes are
possible with every driver.

Table 5-3 Return Codes From SCSI Operations

Constant Name Meaning

DSRT_DEVSCSI General failure from SCSI driver.

DSRT_MULT General software failure, typically a SCSI-bus request.

DSRT_CANCEL Operation cancelled in host adapter driver.

DSRT_REVCODE Software level mismatch, recompile application.

108 007-0911-210

5: User-Level Access to SCSI Devices

DSRT_AGAIN Try again, recoverable SCSI-bus error.

DSRT_HOST Failure reported by host adapter driver for the bus in use.

DSRT_NOSEL No unit responded to select.

DSRT_SHORT Incomplete transfer (not an error). See ds_datasent.

DSRT_OK Not returned at this time.

DSRT_SENSE Command returned with status; sense data successfully retrieved
from SCSI host (see ds_sensesent).

DSRT_NOSENSE Command with status, error occurred while trying to get sense data
from SCSI host.

DSRT_TIMEOUT Command did not complete in the time allowed by ds_timeout.

DSRT_LONG Data transfer overran bounds (ds_datalen).

DSRT_PROTO Miscellaneous protocol failure.

DSRT_EBSY Busy dropped unexpectedly; protocol error.

DSRT_REJECT Message rejected; protocol error.

DSRT_PARITY Parity error on SCSI bus; protocol error.

DSRT_MEMORY Memory error in system memory.

DSRT_CMDO Protocol error during command phase.

DSRT_STAI Protocol error during status phase.

DSRT_UNIMPL Command not implemented; protocol error.

Table 5-3 Return Codes From SCSI Operations (continued)

Constant Name Meaning

The dsreq Structure

007-0911-210 109

The possible SCSI status value in the ds_status field are summarized in Table 5-4.

The possible SCSI message byte values in the ds_msg field are summarized in Table 5-5.

Table 5-4 SCSI Status Codes

Constant Name Meaning

STA_GOOD The target has successfully completed the SCSI command.

STA_CHECK An error or exception was detected. Sense was attempted if DSRQ_SENSE
was specified.

STA_BUSY Command not attempted; addressed unit is busy.

STA_IGOOD Linked SCSI command completed.

STA_RESERV Command aborted because it tried to access a logical unit or an extent within
a logical unit that reserves that type of access to another SCSI device.

Table 5-5 SCSI Message Byte Values

Constant Name Meaning

MSG_COMPL Command complete.

MSG_XMSG Extended message (only byte returned).

MSG_SAVEP Initiator should save data pointers.

MSG_RESTP Initiator restore data pointers.

MSG_DISC Disconnect.

MSG_IERR Initiator detected error.

MSG_ABORT Abort.

MSG_REJECT Optional message rejected, not supported.

MSG_NOOP Empty message.

MSG_MPARITY Parity error during Message In phase.

MSG_LINK Linked command complete.

MSG_LINKF Linked command complete with flag.

110 007-0911-210

5: User-Level Access to SCSI Devices

Testing the Driver Configuration

Different buses have different host adapter drivers that can have different features. The
dsreq device driver supports an ioctl() call that retrieves the configuration of the driver
for the bus where the device resides. This call fills in the fields of a structure of type dsconf
(declared in sys/dsreq.h) listed in Table 5-6.

The code in Example 5-1 shows a function that tests if a particular flag is supported by a
particular bus. The input arguments are a file descriptor for an open device special file,
and a flag value (or values) from sys/dsreq.h.

MSG_BRESET Bus device reset.

MSG_IDENT Value 0x80, first of the 0x80-0xFF identifier messages.

Table 5-6 Fields of the dsconf Structure

Field Name Contents

dsc_flags DSRQ flags honored by this driver (see Table 5-2).

dsc_preset DSRQ preset values (defaults) that are merged with the input ds_flags using
logical OR in any request.

dsc_bus Number of this SCSI bus, as encoded in the device minor number.

dsc_imax Maximum target ID for this bus (7 for SCSI, 15 for wide SCSI).

dsc_lmax Maximum number LUN values per ID on this bus.

dsc_iomax Maximum length of a single I/O transfer.

dsc_biomax Maximum length of a buffered I/O transfer.

Table 5-5 SCSI Message Byte Values (continued)

Constant Name Meaning

Using the Special DS_RESET and DS_ABORT Calls

007-0911-210 111

Example 5-1 Testing the Generic SCSI Configuration

uint
test_dsreq_flags(int dev_fd, uint flag)
{

dsconf_t config;
int ret;
ret = ioctl(dev_fd, DS_CONF, &config);
if (!ret) { /* no problem in ioctl */

return (flag & config.dsc_flags);
} else { /* ioctl failure */

return 0; /* not supported, it seems */
}

}

A program could use the function in Example 5-1 to find out if a particular feature is
supported. For example, a test of support for the DSRQ_SYNXFER feature could be
coded as follows:

if (test_dsreq_flags(the_dev, DSRQ_SYNXFER)) {
/* synchronous negotiation is supported */...

Using the Special DS_RESET and DS_ABORT Calls

Two special functions of the generic SCSI driver are available only as ioctl() calls, not
through dslib functions.

Using DS_ABORT

The DS_ABORT ioctl() sends a SCSI ABORT message to the bus, target, and LUN defined
by the file descriptor. The resulting status is returned in the dsreq that is also specified.
The host adapter driver waits until no commands are pending on that bus, so there is no
point in using this function to cancel anything but an immediate command such as a
rewind. And example of this call is as follows:

ioctl(dev_fd, DS_ABORT, &some_dsreq);

112 007-0911-210

5: User-Level Access to SCSI Devices

Using DS_RESET

The DS_RESET ioctl() function causes a reset of the SCSI bus specified by the file
descriptor. The resulting status is returned in the dsreq that is also specified. This
powerful operation should be used with great care, because it terminates all pending
activity on the bus.

Using dslib Functions

The functions in the dslib library are built upon calls to the dsreq device driver, and
simplify the process of allocating a dsreq structure, setting values in it, and executing
commands. The formal documentation of the library is found in dslib(3). The source code
is distributed with the system in the /usr/share/src/irix/examples/scsi
directory so that you can read and extend it. (This directory installs as part of the irix_dev
software component, and the examples directory does not install by default.)

dslib Functions

In order to use the functions in the library, you include /usr/include/dslib.h in
your code, and link with the -lds option so as to link /usr/lib/libds.so. Then the
functions summarized in Table 5-7 are available.

Table 5-7 dslib Function Summary

Function Name Purpose

ds_ctostr Look up a string in a table using an integer key.

ds_vtostr Look up a string in a table using an integer key.

dsopen Open a device special file and allocate a dsreq for use with it.

dsclose Free the dsreq structure and close the device.

doscsireq Perform an operation on a device as specified in a dsreq.

filldsreq Set values in fields of a dsreq structure.

fillg0cmd Set up the dsreq structure for a group 0 SCSI command.

Using dslib Functions

007-0911-210 113

Using dsopen() and dsclose()

The dsopen() function opens a device special file for a generic SCSI device, and allocates
a dsreq structure initialized for use with that device. The function prototype is

struct dsreq* dsopen(char *opath, int oflags);

fillg1cmd Set up the dsreq structure for a group 1 SCSI command.

inquiry12 Issue an Inquiry command and retrieve information from
the device concerning such things as its type.

modeselect15 Issue a group 0 Mode Select command to a SCSI device.

modesense1a Send a group 0 Mode Sense command to a device to retrieve
a parameter page from the device.

read08 Issue a group 0 Read command in disk-drive form.

readextended28 Issue a group 1 Read command in disk-drive form.

readcapacity25 Issue a Read Capacity command.

requestsense03 Issue a Request Sense command and test or probe for the
device.

reserveunit16 Issue a Reserve Unit command.

releaseunit17 Issue a Release Unit command.

senddiagnostic1d Issue a Send Diagnostic command to test if the device or the
SCSI bus is online, or run a self-test on the device.

testunitready00 Issue a Test Unit Ready command to the SCSI device.

write0a Issue a group 0 Write command to the SCSI device.

writeextended2a Issue an extended Write command to the SCSI device.

Table 5-7 dslib Function Summary (continued)

Function Name Purpose

114 007-0911-210

5: User-Level Access to SCSI Devices

The arguments are

If the open() call fails or memory cannot be allocated, the function returns NULL.
Otherwise it allocates a dsreq structure as well as generous buffers for command and
sense strings. The following fields of the dsreq are initialized:

Other fields of the dsreq are cleared to zero.

Note: Other functions in dslib assume that a dsreq has been initialized by dsopen(). In
particular they assume the ds_private value points to a context block. You should not
attempt to use any dsreq structure with a dslib function except one returned by dsopen();
and you should not use a dsreq opened for one file with another file.

The dsclose() function releases the dsreq structure and close the device. Its prototype is

void dsclose(struct dsreq *dsp);

The only argument is the dsreq created by dsopen().

opath The name of the device special file as a character string, for example
“/dev/scsi/jag0d7l0” (see “Form of Filenames in /dev/scsi” on
page 101).

oflags The oflag value expected by open() when opening this device special
file. O_EXCL has special meaning; see “Relationship to Other Device
Special Files” on page 103.

ds_time Set to 10000 (10 second timeout).

ds_private Set to the address of the context that contains the dsreq as well as the
command and sense buffers.

ds_cmdbuf Set to the address of the command buffer.

ds_cmdlen Set to the length of the allocated command buffer.

ds_sensebuf Set to the address of the allocated sense buffer.

ds_senselen Set to the length of the sense buffer.

Using dslib Functions

007-0911-210 115

Issuing a Request With doscsireq()

The doscsireq() function issues a SCSI request by passing a dsreq to the SCSI device
driver using an ioctl() call. The dsreq must have been prepared completely beforehand.
The function prototype is

int doscsireq(int fd, struct dsreq *dsp);

The arguments are as follows:

Normally the returned value is the SCSI status byte. When the requested operation ends
with Busy or Reserve Conflict status, the function sleeps 2 seconds and tries the operation
up to four times. The returned value is -1 when the device driver rejects the ioctl() or the
third retry ends in failure.

SCSI Utility Functions

The functions filldsreq(), fillg0cmd(), fillg1cmd(), ds_vtostr(), and ds_ctostr() are not
oriented toward particular SCSI operations, but are used to construct your own
task-oriented SCSI functions.

Using filldsreq()

The filldsreq() function is used to set the ds_flags, ds_databuf, and ds_datalen members of
a dsreq structure. Its prototype is

void filldsreq(struct dsreq *dsp, uchar_t *data,long datalen, long flags)

The arguments are as follows:

The bits in flags are added to ds_flags with an OR; they do not replace the contents of the
field.

fd The file descriptor for the open device file.

dsp The address of the dsreq prepared by dsopen().

dsp The address of a dsreq prepared by dsopen().

data The address of a buffer area.

datalen The length of the buffer area.

flags Flag values for ds_flags (see “Values for ds_flags” on page 105).

116 007-0911-210

5: User-Level Access to SCSI Devices

Note: Besides the specified values, the function also sets 10000 in ds_timeout and clears
ds_link, ds_synch, and ds_ret to zero.

Using fillg0cmd() and fillg1cmd()

The fillg0cmd() function stores a group 0 (6-byte) SCSI command in a command buffer.
The fillg1cmd() stores a group 1 (10-byte) SCSI command in the buffer. Both functions
set the ds_cmdbuf and ds_cmdlen fields of a dsreq. The function prototypes are:

void fillg0cmd(struct dsreq *dsp, uchar_t *cmdbuf, b0, ..., b5)
void fillg1cmd(struct dsreq *dsp, uchar_t *cmdbuf, b0, ..., b9)

The arguments are as follows:

In typical use, the arguments are as follows:

A typical call resembles the following:

fillg0cmd(dsp, (uchar_t *)CMDBUF(dsp), G0_INQU, 1, inq_page, 0, B1(datalen),0);

The macros B1(), B2(), and B4() defined in sys/dsreq.h are useful for expressing
halfword and word values as byte sequences.

Using ds_vtostr() and ds_ctostr()

The dslib library module contains six static tables that can be used to convert between
numeric values and character strings for message display. The tables are summarized in
Table 5-8. The table definitions are in the source file dstab.c.

dsp The address of any dsreq.

cmdbuf The address of a buffer to receive the command string.

b0, b1,... Expressions for the successive bytes of a SCSI command.

dsp The address of a dsreq initialized by dsopen().

cmdbuf The command buffer allocated by dsopen(), whose address is stored in
the ds_cmdbuf field of the dsreq.

b0 A SCSI command verb expressed as one of the constants declared in
dslib.h, for example G0_INQU.

Using dslib Functions

007-0911-210 117

The ds_vtostr() function searches any of the five vtab tables for the string matching an
integer key. The ds_ctostr() function searches a ctab (currently, only sensekeytab is a ctab)
for the string matching a key. The function prototypes are

char * ds_vtostr(unsigned long v, struct vtab *table);
char * ds_ctostr(unsigned long v, struct ctab *table);

Each function searches the specified table for a row containing the numeric value v, and
returns address of the corresponding string. If there is no such row, the functions return
the address of a zero-length string.

Using Command-Building Functions

The remaining functions in dslib each construct and execute a specific type of common
SCSI command. Each function follows this general pattern:

1. Use fillg0cmd() or fillg1cmd() to set up the command string, based on the
function’s arguments.

2. Use filldsreq() to set up the remaining fields of the dsreq structure.

3. Execute the command using doscsireq().

4. Return the value returned by doscsireq().

Table 5-8 Lookup Tables in dslib

External Name Type Table Contents

cmdnametab vtab Names for SCSI command bytes, for example “Test Unit.”

cmdstatustab vtab Names for SCSI status byte codes, for example “BUSY.”

dsrqnametab vtab Descriptions of flag values from ds_flags, for example “select with
(without) atn” for DSRQ_SELATN.

dsrtnametab vtab Descriptions of return values in ds_ret, for example “parity error on
SCSI bus” for DSRT_PARITY.

msgnametab vtab Descriptions of SCSI message bytes, for example “Save Pointers.”

sensekeytab ctab Descriptions of SCSI sense byte values, for example “Illegal Request.”

118 007-0911-210

5: User-Level Access to SCSI Devices

You can construct similar, additional functions using the utility functions in this same
way. In particular you are likely to need to construct your own function to issue Read
commands.

inquiry12()—Issue an Inquiry Command

The inquiry12() function prepares and issues an Inquiry command to retrieve
device-specific information. The function prototype is

int inquiry12(struct dsreq *dsp, caddr_t data, long datalen, int vu);

The arguments are as follows:

modeselect15()—Issue a Group 0 Mode Select Command

The modeselect15() function prepares and issues a group 0 Mode Select command. This
command is used to control a variety of standard and vendor-specific device parameters.
Typically, modesense1A() is first used to retrieve the current parameters. The function
prototype is

int modeselect15(struct dsreq *dsp, caddr_t data, long datalen,
int save, int vu);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopen().

data The address of a buffer to receive the inquiry response.

datalen The length of the buffer, at least 36 and typically 64.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

dsp The address of a dsreq structure prepared by dsopen().

data The address of a mode data page to send.

datalen The length of the data.

save The least significant bit sets the SP bit in the command.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

Using dslib Functions

007-0911-210 119

modesense1a()—Send a Group 0 Mode Sense Command

The modesense1a() function prepares and issues a group 0 Mode Sense command to a
SCSI device to retrieve a page of device-dependent information. The function prototype:

int modesense1a(struct dsreq *dsp, caddr_t data, long datalen,
int pagectrl, int pagecode, int vu);

The arguments are as follows:

For reference, the PCF codes are as follows:

For reference, some page numbers are as follows:

dsp The address of a dsreq structure prepared by dsopen().

data The address of a buffer to receive the page of data.

datalen The length of the buffer.

pagectrl The least significant 2 bits are set as the PCF bits in the command.

pagecode The least significant 6 bits are set as the page number.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

0 Current values.

1 Changeable values.

2 Default values.

3 Saved values.

0 Vendor unique.

1 Read/write error recovery.

2 Disconnect/reconnect.

3 Direct access device format; parallel interface; measurement units.

4 Rigid disk geometry; serial interface.

5 Flexible disk; printer options.

6 Optical memory.

7 Verification error.

120 007-0911-210

5: User-Level Access to SCSI Devices

read08() and readextended28()—Issue a Read Command

The read08() and readextended28() functions prepare and issue particular forms of SCSI
Read commands. The Read and extended Read commands have so many variations that
it is unlikely that either of these functions will work with your device. However, you can
use them as models to build additional variations on Read. Do not preempt the function
names.

The function prototypes are

int
read08(struct dsreq *dsp, caddr_t data, long datalen,

long lba, int vu);
int
readextended28(struct dsreq *dsp, caddr_t data, long datalen,

long lba, int vu);

The arguments are as follows:

The functions set the transfer length in the command to the number of bytes given by
datalen. This is often incorrect; many devices want a number of blocks of some size.
Function read08() sets only 16 bits from lba as the logical block number, although the
SCSI command format permits another 5 bits to be encoded in the command. For these
and other reasons you are likely to need to create customized Read functions of your
own.

8 Caching.

9 Peripheral device.

63 (0x3f) Return all pages supported.

dsp The address of a dsreq structure prepared by dsopen().

data The address of a buffer to receive the data.

datalen The length of the buffer (not exceeding 255 for read08).

lba The logical block address for the start of the read (not exceeding 16 bits
for read08).

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

Using dslib Functions

007-0911-210 121

readcapacity25()—Issue a Read Capacity Command

The readcapacity25() function prepares and issues a Read Capacity command to a SCSI
device. The function prototype is

int
readcapacity25(struct dsreq *dsp, caddr_t data, long datalen,

long lba, int pmi, int vu);

The arguments are as follows:

When pmi is 0, lba should be given as 0 and the command returns the device capacity.
When pmi is 1, the command returns the last block following block lba before which a
delay (seek) will occur.

requestsense03()—Issue a Request Sense Command

The requestsense03() function prepares and issues a Request Sense command. If you
include DSRQ_SENSE in the flag argument to doscsireq(), a Request Sense is sent
automatically after an error in a command. The function prototype is

int
requestsense03(struct dsreq *dsp, caddr_t data,

long datalen, int vu);

The arguments are:

dsp The address of a dsreq structure prepared by dsopen().

data The address of a buffer to receive the capacity data.

datalen The length of the buffer, typically 8.

lba Last block address, 0 unless pmi is nonzero.

pmi The least-significant bit is used to set the partial medium indicator
(PMI) bit of the command.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

dsp The address of a dsreq structure prepared by dsopen().

data The address of a buffer to receive the sense data.

datalen The length of the buffer.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

122 007-0911-210

5: User-Level Access to SCSI Devices

reserveunit16() and releaseunit17()—Control Logical Units

The reserveunit16() function prepares and issues a Reserve Unit command to reserve a
logical unit, causing it to return Reservation Conflict status to requests from other
initiators. The releaseunit17() function prepares and issues a Release Unit command to
release a reserved unit. The function prototypes are

int
reservunit16(struct dsreq *dsp, caddr_t data, long datalen,

int tpr, int tpdid, int extent, int res_id, int vu);
int
releaseunit17(struct dsreq *dsp,

int tpr, int tpdid, int extent, int res_id, int vu);

The arguments are as follows:

senddiagnostic1d()—Issue a Send Diagnostic Command

The senddiagnostic1d() function prepares and issues a Send Diagnostic command. The
function prototype is

int
senddiagnostic1d(struct dsreq *dsp, caddr_t data, long datalen,

int self, int dofl, int uofl, int vu);

dsp The address of a dsreq structure prepared by dsopen().

data The address of data to send with the Reserve Unit. (This may be NULL
for reservunit16() which does not normally transfer data.)

datalen The length of the data (typically 0).

tpr The least-significant bit is used to set the Third-Party Reservation bit in
the command: 1 means the reservation is on behalf of another initiator.

tpdid The device ID for the device to hold the reservation: 0 unless tpr is 1.

extent The least-significant bit sets the least-significant bit of byte 1 of the
command string.

res_id Passed as byte 2 of the command string.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

Using dslib Functions

007-0911-210 123

The arguments are as follows:

When self is 1, the status reflects the success of the self-test. You should either set the
DSRQ_SENSE flag in the dsreq so that if the self-test fails, a Sense command will be
issued, or be prepared to call requestsense03(). When self is 0, you can use a Read
Diagnostic command to return detailed results of the test (however, dslib does not
contain a predefined function for Read Diagnostic).

testunitready00—Issue a Test Unit Ready Command

The testunitready00() function prepares and issues a Test Unit Ready command to a SCSI
device. The function prototype is

int
testunitready00(struct dsreq *dsp);

This function is reproduced here in Example 5-2 as an example of how other
command-oriented functions can be created.

Example 5-2 Code of the testunitread00() Function

int
testunitready00(struct dsreq *dsp)
{

fillg0cmd(dsp, CMDBUF(dsp), G0_TEST, 0, 0, 0, 0, 0);
filldsreq(dsp, 0, 0, DSRQ_READ|DSRQ_SENSE);
return(doscsireq(getfd(dsp), dsp));

}

dsp The address of a dsreq structure prepared by dsopen().

data The address of a page or pages of diagnostic parameter data to be sent.

datalen The length of the data (0 if none).

self The least-significant bit sets the Self Test (ST) bit in the command: 1
means return status from the self-test; 0 means hold the results.

dofl The least-significant bit sets the Device Offline bit of the command: 1
authorizes tests that can change the status of other logical units.

uofl The least-significant bit sets the Unit Offline bit of the command: 1
authorizes tests that can change the status of the logical unit.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

124 007-0911-210

5: User-Level Access to SCSI Devices

write0a() and writeextended2a()—Issue a Write Command

The write0a() function prepares and issues a group 0 Write command. The
writeextended2a() function prepares and issues an extended (10-byte) Write command.
As with Read commands (see “read08() and readextended28()—Issue a Read
Command” on page 120), Write commands have many device-specific features, and you
will very likely have to create your own customized version of these functions.

The function prototypes are

int
write0a(struct dsreq *dsp, caddr_t data, long datalen,

long lba, int vu);
int
writeextended2a(struct dsreq *dsp, caddr_t data, long datalen,

long lba, int vu);

The arguments are as follows:

Example dslib Program

The program in Example 5-3 illustrates the use of the dslib functions. This is an edited
version of a program that can be obtained in full from Dave Olson’s home page,
http://reality.sgi.com/employees/olson/Olson/index.html.

Example 5-3 Program That Uses dslib Functions

#ident "scsicontrol.c: $Revision $"

#include <sys/types.h>
#include <stddef.h>
#include <stdlib.h>
#include <unistd.h>

dsp The address of a dsreq structure prepared by dsopen().

data The address of the data to be sent.

datalen The length of the data (at most 255 for write0a).

lba The logical block address (at most 16 bits for write0a).

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

Example dslib Program

007-0911-210 125

#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <dslib.h>

typedef struct
{

unchar pqt:3; /* peripheral qual type */
unchar pdt:5; /* peripheral device type */
unchar rmb:1, /* removable media bit */

dtq:7; /* device type qualifier */
unchar iso:2, /* ISO version */

ecma:3, /* ECMA version */
ansi:3; /* ANSI version */

unchar aenc:1, /* async event notification supported */
trmiop:1, /* device supports 'terminate io process' msg */
res0:2, /* reserved */
respfmt:3; /* SCSI 1, CCS, SCSI 2 inq data format */

unchar ailen; /* additional inquiry length */
unchar res1; /* reserved */
unchar res2; /* reserved */
unchar reladr:1, /* supports relative addressing (linked cmds) */

wide32:1, /* supports 32 bit wide SCSI bus */
wide16:1, /* supports 16 bit wide SCSI bus */
synch:1, /* supports synch mode */
link:1, /* supports linked commands */
res3:1, /* reserved */
cmdq:1, /* supports cmd queuing */
softre:1; /* supports soft reset */

unchar vid[8]; /* vendor ID */
unchar pid[16]; /* product ID */
unchar prl[4]; /* product revision level*/
unchar vendsp[20]; /* vendor specific; typically firmware info */
unchar res4[40]; /* reserved for scsi 3, etc. */
/* more vendor specific information may follow */

} inqdata;

struct msel {
unsigned char rsv, mtype, vendspec, blkdesclen; /* header */
unsigned char dens, nblks[3], rsv1, bsize[3]; /* block desc */
unsigned char pgnum, pglen; /* modesel page num and length */
unsigned char data[240]; /* some drives get upset if no data requested

on sense*/
};

126 007-0911-210

5: User-Level Access to SCSI Devices

#define hex(x) "0123456789ABCDEF" [(x) & 0xF]

/* only looks OK if nperline a multiple of 4, but that's OK.
* value of space must be 0 <= space <= 3;
*/
void
hprint(unsigned char *s, int n, int nperline, int space)
{

int i, x, startl;

for(startl=i=0;i<n;i++) {
x = s[i];
printf("%c%c", hex(x>>4), hex(x));
if(space)

printf("%.*s", ((i%4)==3)+space, " ");
if (i%nperline == (nperline - 1)) {

putchar('\t');
while(startl < i) {

if(isprint(s[startl]))
putchar(s[startl]);

else
putchar('.');

startl++;
}
putchar('\n');

}
}
if(space && (i%nperline))

putchar('\n');
}

/* aenc, trmiop, reladr, wbus*, synch, linkq, softre are only valid if
* if respfmt has the value 2 (or possibly larger values for future
* versions of the SCSI standard). */

static char pdt_types[][16] = {
"Disk", "Tape", "Printer", "Processor", "WORM", "CD-ROM",
"Scanner", "Optical", "Jukebox", "Comm", "Unknown"

};

#define NPDT (sizeof pdt_types / sizeof pdt_types[0])

void
printinq(struct dsreq *dsp, inqdata *inq, int allinq)
{

if(DATASENT(dsp) < 1) {
printf("No inquiry data returned\n");

Example dslib Program

007-0911-210 127

return;
}
printf("%-10s", pdt_types[(inq->pdt<NPDT) ? inq->pdt : NPDT-1]);
if (DATASENT(dsp) > 8)

printf("%12.8s", inq->vid);
if (DATASENT(dsp) > 16)

printf("%.16s", inq->pid);
if (DATASENT(dsp) > 32)

printf("%.4s", inq->prl);
printf("\n");
if(DATASENT(dsp) > 1)

printf("ANSI vers %d, ISO ver: %d, ECMA ver: %d; ",
inq->ansi, inq->iso, inq->ecma);

if(DATASENT(dsp) > 2) {
unchar special = *(inq->vid-1);
if(inq->respfmt >= 2 || special) {

if(inq->respfmt < 2)
printf("\nResponse format type %d, but has "
"SCSI-2 capability bits set\n", inq->respfmt);

printf("supports: ");
if(inq->aenc)

printf(" AENC");
if(inq->trmiop)

printf(" termiop");
if(inq->reladr)

printf(" reladdr");
if(inq->wide32)

printf(" 32bit");
if(inq->wide16)

printf(" 16bit");
if(inq->synch)

printf(" synch");
if(inq->synch)

printf(" linkedcmds");
if(inq->cmdq)

printf(" cmdqueing");
if(inq->softre)

printf(" softreset");
}
if(inq->respfmt < 2) {

if(special)
printf(". ");

printf("inquiry format is %s",
inq->respfmt ? "SCSI 1" : "CCS");

128 007-0911-210

5: User-Level Access to SCSI Devices

}
}
putchar('\n');
printf("Device is ");
/* do test unit ready only if inquiry successful, since many

devices, such as tapes, return inquiry info, even if
not ready (i.e., no tape in a tape drive). */

if(testunitready00(dsp) != 0)
printf("%s\n",

(RET(dsp)==DSRT_NOSEL) ? "not responding" : "not ready");
else

printf("ready");
printf("\n");

}

/* inquiry cmd that does vital product data as spec'ed in SCSI2 */
int
vpinquiry12(struct dsreq *dsp, caddr_t data, long datalen, char vu, int page)
{
fillg0cmd(dsp, (uchar_t *)CMDBUF(dsp), G0_INQU, 1, page, 0, B1(datalen),
B1(vu<<6));

filldsreq(dsp, (uchar_t *)data, datalen, DSRQ_READ|DSRQ_SENSE);
return(doscsireq(getfd(dsp), dsp));

}

int
startunit1b(struct dsreq *dsp, int startstop, int vu)
{
fillg0cmd(dsp,(uchar_t *)CMDBUF(dsp),0x1b,0,0,0,(uchar_t)startstop,B1(vu<<6));
filldsreq(dsp, NULL, 0, DSRQ_READ|DSRQ_SENSE);
dsp->ds_time = 1000 * 90; /* 90 seconds */
return(doscsireq(getfd(dsp), dsp));

}

int
myinquiry12(struct dsreq *dsp, uchar_t *data, long datalen, int vu, int neg)
{
fillg0cmd(dsp, (uchar_t *)CMDBUF(dsp), G0_INQU, 0,0,0, B1(datalen), B1(vu<<6));
filldsreq(dsp, data, datalen, DSRQ_READ|DSRQ_SENSE|neg);
dsp->ds_time = 1000 * 30; /* 90 seconds */
return(doscsireq(getfd(dsp), dsp));

}

int
dsreset(struct dsreq *dsp)
{
return ioctl(getfd(dsp), DS_RESET, dsp);

Example dslib Program

007-0911-210 129

}

void
usage(char *prog)
{

fprintf(stderr,
"Usage: %s [-i (inquiry)] [-e (exclusive)] [-s (sync) | -a (async)]\n"
"\t[-l (long inq)] [-v (vital proddata)] [-r (reset)] [-D (diagselftest)]\n"
"\t[-H (halt/stop)] [-b blksize]\n"
"\t[-g (get host flags)] [-d (debug)] [-q (quiet)] scsidevice [...]\n",

prog);
exit(1);

}

main(int argc, char **argv)
{

struct dsreq *dsp;
char *fn;
/* int because they must be word aligned. */
int errs = 0, c;
int vital=0, doreset=0, exclusive=0, dosync=0;
int dostart = 0, dostop = 0, dosenddiag = 0;
int doinq = 0, printname = 1;
unsigned bsize = 0;
extern char *optarg;
extern int optind, opterr;

opterr = 0; /* handle errors ourselves. */
while ((c = getopt(argc, argv, "b:HDSaserdvlgCiq")) != -1)
switch(c) {
case 'i':

doinq = 1; /* do inquiry */
break;

case 'D':
dosenddiag = 1;
break;

case 'r':
doreset = 1; /* do a scsi bus reset */
break;

case 'e':
exclusive = O_EXCL;
break;

case 'd':
dsdebug++; /* enable debug info */
break;

case 'q':

130 007-0911-210

5: User-Level Access to SCSI Devices

printname = 0; /* print devicename only if error */
break;

case 'v':
vital = 1; /* set evpd bit for scsi 2 vital product data */
break;

case 'H':
dostop = 1; /* send a stop (Halt) command */
break;

case 'S':
dostart = 1; /* send a startunit/spinup command */
break;

case 's':
dosync = DSRQ_SYNXFR; /* attempt to negotiate sync scsi */
break;

case 'a':
dosync = DSRQ_ASYNXFR; /* attempt to negotiate async scsi */
break;

default:
usage(argv[0]);

}

if(optind >= argc || optind == 1) /* need at 1 arg and one option */
usage(argv[0]);

while (optind < argc) { /* loop over each filename */
fn = argv[optind++];
if(printname) printf("%s: ", fn);
if((dsp = dsopen(fn, O_RDONLY|exclusive)) == NULL) {

/* if open fails, try pre-pending /dev/scsi */
char buf[256];
strcpy(buf, "/dev/scsi/");
if((strlen(buf) + strlen(fn)) < sizeof(buf)) {

strcat(buf, fn);
dsp = dsopen(buf, O_RDONLY|exclusive);

}
if(!dsp) {

if(!printname) printf("%s: ", fn);
fflush(stdout);
perror("cannot open");
errs++;
continue;

}
}
/* try to order for reasonableness; reset first in case
* hung, then inquiry, etc. */

Example dslib Program

007-0911-210 131

if(doreset) {
if(dsreset(dsp) != 0) {

if(!printname) printf("%s: ", fn);
printf("reset failed: %s\n", strerror(errno));
errs++;

}
}
if(doinq) {

int inqbuf[sizeof(inqdata)/sizeof(int)];
if(myinquiry12(dsp, (uchar_t *)inqbuf, sizeof inqbuf, 0, dosync)) {

if(!printname) printf("%s: ", fn);
printf("inquiry failure\n");
errs++;

}
else

printinq(dsp, (inqdata *)inqbuf, 0);
}
if(vital) {

unsigned char *vpinq;
int vpinqbuf[sizeof(inqdata)/sizeof(int)];
int vpinqbuf0[sizeof(inqdata)/sizeof(int)];
int i, serial = 0, asciidef = 0;
if(vpinquiry12(dsp, (char *)vpinqbuf0,

sizeof(vpinqbuf)-1, 0, 0)) {
if(!printname) printf("%s: ", fn);
printf("inquiry (vital data) failure\n");
errs++;
continue;

}
if(DATASENT(dsp) <4) {

printf("vital data inquiry OK, but says no"
"pages supported (page 0)\n");

continue;
}
vpinq = (unsigned char *)vpinqbuf0;
printf("Supported vital product pages: ");
for(i = vpinq[3]+3; i>3; i--) {

if(vpinq[i] == 0x80)
serial = 1;

if(vpinq[i] == 0x82)
asciidef = 1;

printf("%2x ", vpinq[i]);
}
printf("\n");
vpinq = (unsigned char *)vpinqbuf;

132 007-0911-210

5: User-Level Access to SCSI Devices

if(serial) {
if(vpinquiry12(dsp, (char *)vpinqbuf,

sizeof(vpinqbuf)-1, 0, 0x80) != 0) {
if(!printname) printf("%s: ", fn);
printf("inquiry (serial #) failure\n");
errs++;

}
else if(DATASENT(dsp)>3) {

printf("Serial #: ");
fflush(stdout);
/* use write, because there may well be
*nulls; don't bother to strip them out */
write(1, vpinq+4, vpinq[3]);
printf("\n");

}
}

if(asciidef) {
if(vpinquiry12(dsp, (char *)vpinqbuf,
sizeof(vpinqbuf)-1, 0, 0x82) != 0) {
if(!printname) printf("%s: ", fn);
printf("inquiry (ascii definition) failure\n");
errs++;
}
else if(DATASENT(dsp)>3) {
printf("Ascii definition: ");
fflush(stdout);
/* use write, because there may well be
*nulls; don't bother to strip them out */
write(1, vpinq+4, vpinq[3]);
printf("\n");
}

}
}
if(dostop && startunit1b(dsp, 0, 0)) {

if(!printname) printf("%s: ", fn);
printf("stopunit fails\n");
errs++;

}
if(dostart && startunit1b(dsp, 1, 0)) {

if(!printname) printf("%s: ", fn);
printf("startunit fails\n");
errs++;

}
if(dosenddiag && senddiagnostic1d(dsp, NULL, 0, 1, 0, 0, 0)) {

Example dslib Program

007-0911-210 133

if(!printname) printf("%s: ", fn);
printf("self test fails\n");
errs++;

}
dsclose(dsp);

}
return(errs);

}

007-0911-210 135

Chapter 6

6. Control of External Interrupts

Some SGI computer systems can generate and receive external interrupt signals. These are
simple, two-state signal lines that cause an interrupt in the receiving system.

The external interrupt hardware is managed by a kernel-level device driver that is
distributed with IRIX and automatically configured when the system supports external
interrupts. The driver provides two abilities to user-level processes:

• The ability to change the state of an outgoing interrupt line, so as to interrupt the
system to which the line is connected.

• The ability to capture an incoming interrupt signal with low latency.

External interrupt support is closely tied to the hardware of the system. The features
described in this chapter are hardware-dependent and in many cases cannot be ported
from one system type to another without making software changes. System architectures
are covered in separate sections:

• “External Interrupts in Challenge and Onyx Systems” on page 135 describes
external interrupt support in that architectural family.

• “External Interrupts In Origin 2000 and Origin 200” on page 141 describes external
interrupt support in systems that use the IOC3 board.

External Interrupts in Challenge and Onyx Systems

The hardware architecture of the Challenge/Onyx series supports external interrupt
signals as follows:

• Four jacks for outgoing signals are available on the master IO4 board. A user-level
program can change the level of these lines individually.

• Two jacks for incoming interrupt signals are also provided. The input lines are
combined with logical OR and presented as a single interrupt; a program cannot
distinguish one input line from another.

136 007-0911-210

6: Control of External Interrupts

The electrical interface to the external interrupt lines is documented at the end of the ei(7)
reference page.

A program controls the outgoing signals by interacting with the external interrupt device
driver. This driver is associated with the device special file /dev/ei, and is documented
in the ei(7) reference page.

Generating Outgoing Signals

A program can generate an outgoing signal on any one of the four external interrupt
lines. To do so, first open /dev/ei. Then apply ioctl() on the file descriptor to switch the
outgoing lines. The principal ioctl command codes are summarized in Table 6-1.

In the Challenge and Onyx series, the level on an outgoing external interrupt line is set
directly from a CPU. The device driver generates a pulse (function EIIOCSTROBE) by
asserting the line, then spinning in a disabled loop until the specified pulse time has
elapsed, and finally deasserting the line. Clearly, if the pulse width is set to much more
than the default of 5 microseconds, pulse generation could interfere with the handling of
other interrupts in that CPU.

The calls to assert and deassert the outgoing lines (functions EIIOCSETHI and
EIIOCSETLO) do not tie up the kernel. Direct assertion of the outgoing signal should be
used only when the desired signal frequency and pulse duration are measured in
milliseconds or seconds. No user-level program, running in a CPU that is not isolated
and reserved, can hope to generate repeatable pulse durations measured in

Table 6-1 Functions for Outgoing External Signals in Challenge

Operation Typical ioctl() Call

Set pulse width to N microseconds. ioctl(eifd, EIIOCSETOPW, N)

Return current output pulse width. ioctl(eifd,EIIOCGETOPW,&var)

Send a pulse on some lines M.a

a. M is an unsigned integer whose bits 0, 1, 2, and 3 correspond to the external interrupt lines
0, 1, 2, and 3. At least one bit must be set.

ioctl(eifd, EIIOCSTROBE, M)

Set a high (active, asserted) level on lines M. ioctl(eifd, EIIOCSETHI, M)

Set a low (inactive, deasserted) level on lines M. ioctl(eifd, EIIOCSETLO, M)

External Interrupts in Challenge and Onyx Systems

007-0911-210 137

microseconds using these functions. (A single interrupt occurring between the call to
assert the signal and the call to deassert it can stretch the intended pulse width by as
much as 200 microseconds.) A real-time program, running in a CPU that is reserved and
isolated from interrupts—perhaps a program that uses the Frame Scheduler—could
generate repeatable millisecond-duration pulses using these functions.

Responding to Incoming External Interrupts

An important feature of the Challenge and Onyx external input line is that interrupts are
triggered by the level of the signal, not by the transition from deasserted to asserted. This
means that, whenever external interrupts are enabled and any of the input lines are in the
asserted state, an external interrupt occurs. The interface between your program and the
external interrupt device driver is affected by this hardware design. The functions for
incoming signals are summarized in Table 6-2.

Table 6-2 Functions for Incoming External Interrupts

Operation Typical ioctl() Call

Enable receipt of external interrupts. ioctl(eifd, EIIOCENABLE)
eicinit();

Disable receipt of external interrupts. ioctl(eifd, EIIOCDISABLE)

Specify which CPU will handle external
interrupts.

ioctl(eifd, EIIOCINTRCPU, cpu)

Specify which CPU will execute driver ioctl
calls, or -1 for the CPU where the call is made.

ioctl(eifd, EIIOCSETSYSCPU, cpu)

Block in the driver until an interrupt occurs. ioctl(eifd, EIIOCRECV, &eiargs)

Request a signal when an interrupt occurs. ioctl(eifd, EIIOCSTSIG, signumber)

Wait in an enabled loop for an interrupt. eicbusywait(1)

Set expected pulse width of incoming signal. ioctl(eifd, EIIOCSETIPW, microsec)

Set expected time between incoming signals. ioctl(eifd, EIIOCSETSPW, microsec)

Return current expected time values. ioctl(eifd, EIIOCGETIPW, &var)
ioctl(eifd, EIIOCGETSPW, &var)

138 007-0911-210

6: Control of External Interrupts

Directing Interrupts to a CPU

In real-time applications, certain CPUs can be reserved for critical processing. In this case
you may want to use EIIOCINTRCPU, either to direct interrupt handling away from a
critical CPU, or to direct onto a CPU that you know has available capacity. Use of this
ioctl requires installation of patch 1257 or a successor patch.

Detecting Invalid External Interrupts

The external interrupt handler maintains two important numbers:

• the expected input pulse duration in microseconds

• the minimum pulse-to-pulse interval, called the “stuck” pulse width because it is
used to detect when an input line is “stuck” in the asserted state

When the external interrupt device driver is entered to handle an interrupt, it waits with
interrupts disabled until time equal to the expected input pulse duration has passed
since the interrupt occurred. The default pulse duration is 5 microseconds, and it
typically takes longer than this to recognize and process the interrupt, so no time is
wasted in the usual case. However, if a long expected pulse duration is set, the interrupt
handler might have to waste some cycles waiting for the end of the pulse.

At the end of the expected pulse duration, the interrupt handler counts one external
interrupt and returns to the kernel, which enables interrupts and returns to the
interrupted process.

Normally the input line is deasserted within the expected duration. However, if the input
line is still asserted when the time expires, another external interrupt occurs immediately.
The external interrupt handler notes that it has been reentered within the “stuck” pulse
time since the last interrupt. It assumes that this is still the same input pulse as before. In
order to prevent the stuck pulse from saturating the CPU with interrupts, the interrupt
handler disables interrupts from the external interrupt signal.

External interrupts remain disabled for one timer tick (10 milliseconds). Then the device
driver re-enables external interrupts. If an interrupt occurs immediately, the input line is
still asserted. The handler disables external interrupts for another, longer delay. It
continues to delay and to test the input signal in this manner until it finds the signal
deasserted.

External Interrupts in Challenge and Onyx Systems

007-0911-210 139

Setting the Expected Pulse Width

You can set the expected input pulse width and the minimum pulse-to-pulse time using
ioctl(). For example, you could set the expected pulse width using a function like the one
shown in Example 6-1.

Example 6-1 Challenge Function to Test and Set External Interrupt Pulse Width

int setEIPulseWidth(int eifd, int newWidth)
{

int oldWidth;
if ((0==ioctl(eifd, EIIOCGETIPW, &oldWidth))
&& (0==ioctl(eifd, EIIOCSETIPW, newWidth)))

return oldWidth;
perror("setEIPulseWidth");
return 0;

}

The function retrieves the original pulse width and returns it. If either ioctl() call fails, it
returns 0.

The default pulse width is 5 microseconds. Pulse widths shorter than 4 microseconds are
not recommended.

Since the interrupt handler keeps interrupts disabled for the duration of the expected
width, you want to specify as short an expected width as possible. However, it is also
important that all legitimate input pulses terminate within the expected time. When a
pulse persists past the expected time, the interrupt handler is likely to detect a “stuck”
pulse, and disable external interrupts for several milliseconds.

Set the expected pulse width to the duration of the longest valid pulse. It is not necessary
to set the expected width longer than the longest valid pulse. A few microseconds are
spent just reaching the external interrupt handler, which provides a small margin for
error.

Setting the Stuck Pulse Width

You can set the minimum pulse-to-pulse width using code like that in Example 6-1, using
constants EIIOCGETSPW and EIIOCSETSPW.

140 007-0911-210

6: Control of External Interrupts

The default stuck-pulse time is 500 microseconds. Set this time to the nominal
pulse-to-pulse interval, minus the largest amount of “jitter” that you anticipate in the
signal. In the event that external signals are not produced by a regular oscillator, set this
value to the expected pulse width plus the duration of the shortest expected “off” time,
with a minimum of twice the expected pulse width.

For example, suppose you expect the input signal to be a 10 microsecond pulse at
1000 Hz, both numbers plus or minus 10%. Set the expected pulse width to
10 microseconds to ensure that all pulses are seen to complete. Set the stuck pulse width
to 900 microseconds, so as to permit a legitimate pulse to arrive 10% early.

Receiving Interrupts

The external interrupt device driver offers you four different methods of receiving
notification of an interrupt. You can

• have a signal of your choice delivered to your process

• test for interrupt-received using either an ioctl() call or a library function

• sleep until an interrupt arrives or a specified time expires

• spin-loop until an interrupt arrives

You would use a signal (EIIOCSETSIG) when interrupts are infrequent and irregular, and
when it is not important to know the precise arrival time. Use a signal when, for example,
the external interrupt represents a human-operated switch or some kind of out-of-range
alarm condition.

The EIIOCRECV call can be used to poll for an interrupt. This is a relatively expensive
method of polling because it entails entry to and exit from the kernel. The overhead is not
significant if the polling is infrequent—for example, if one poll call is made every 60th of
a second.

The EIIOCRECV call can be used to suspend the caller until an interrupt arrives or a
timeout expires (see the ei(7) reference page for details). Use this method when interrupts
arrive frequently enough that it is worthwhile devoting a process to handling them. An
unknown amount of time can pass between the moment when the interrupt handler
unblocks the process and the moment when the kernel dispatches the process. This
makes it impossible to timestamp the interrupt at the microsecond level.

External Interrupts In Origin 2000 and Origin 200

007-0911-210 141

In order to poll for, or detect, an incoming interrupt with minimum overhead, use the
library function eicbusywait() (see the ei(7) reference page). You use the eicinit()
function to open /dev/ei and prepare to use eicbusywait().

The eicbusywait() function does not switch into kernel mode, so it can perform a
low-overhead poll for a received interrupt. If you ask it to wait until an interrupt occurs,
it waits by spinning on a repeated test for an interrupt. This monopolizes the CPU, so this
form of waiting is normally used by a process running in an isolated CPU. The benefit is
that control returns to the calling process in negligible time after the interrupt handler
detects the interrupt, so the interrupt can be handled quickly and timed precisely.

External Interrupts In Origin 2000 and Origin 200

The miscellaneous I/O attachment logic in the Origin 2000 and Origin 200 architecture is
provided by the IOC3 ASIC. Among many other I/O functions, this chip dedicates one
input line and one output line for external interrupts.

There is one IOC3 chip on the motherboard in a Origin 200 deskside unit. There is one
IOC3 chip on the IO6 board which provides the base I/O functions in each Origin 2000
module; hence in a Origin 2000 system there can be as many unique external interrupt
signal pairs as there are physical modules.

The electrical interface to the external interrupt line is documented at the end of the ei(7)
reference page.

A program controls the outgoing signals by interacting with the external interrupt device
driver. This driver is associated with device special files
/hw/external_interrupt/n, where n is an integer. The name
/hw/external_interrupt/1 designates the only external interrupt device in a
Origin 200, or the external interrupt device on the system console module of a Origin
2000 system.

There is also a symbolic link /dev/ei that refers to /hw/external_interrupt/1.

142 007-0911-210

6: Control of External Interrupts

Generating Outgoing Signals

A program can generate an outgoing signal—as a level, a pulse, a pulse train, or a square
wave—on any external interrupt line. To do so, first open the device special file. Then
apply ioctl() on the file descriptor to command the output.

A command to initiate one kind of output (level, pulse, pulse train or square wave)
automatically terminates any other kind of output that might be going on. When all
processes have closed the external interrupt device, the output line is forced to a low
level.

In the Origin 2000 and Origin 200 systems, the level on an outgoing external interrupt
line is set by the IOC3 chip. The device driver issues a command by PIO to the chip, and
the pulse or level is generated asynchronously while control returns to the calling
process. Owing to the speed of the R10000 CPU and its ability to do out-of-order
execution, it is entirely possible for your program to enter the device driver, command a
level, and receive control back to program code before the output line has had time to
change state.

Generating Fixed Output Levels

The ioctl command codes for fixed output levels are summarized in Table 6-3.

Direct assertion of the outgoing signal (using EIIOCSETHI and EIIOCSETLO) should be
used only when the desired signal frequency and pulse duration are measured in
milliseconds or seconds. A typical user-level program, running in a CPU that is not
isolated and reserved, cannot hope to generate repeatable pulse durations measured in
microseconds using these functions. A real-time program, running in a CPU that is
reserved and isolated from interrupts may be able to generate repeatable
millisecond-duration pulses using these functions.

Table 6-3 Functions for Fixed External Levels in Origin 2000

Operation Typical ioctl() Call

Set a high (active, asserted) level. ioctl(eifd, EIIOCSETHI)

Set a low (inactive, deasserted) level. ioctl(eifd, EIIOCSETLO)

External Interrupts In Origin 2000 and Origin 200

007-0911-210 143

Generating Pulses and Pulse Trains

You can command single pulse of this width, or a train of pulses with a specified
repetition period. The ioctl functions are summarized in Table 6-4.

The IOC3 supports only one pulse width: 23.4 microseconds. The EIIOCSETOPW
command is accepted for compatibility with the Challenge driver, but is ignored. The
EIIOCGETOPW function always returns 23 microseconds.

The repetition period can be as short as 23.4 microseconds (pass N=24) or as long as
slightly more than 500000 microseconds (0.5 second). Any period is truncated to a
multiple of 7,800 nanoseconds.

Generating a Square Wave

You can command a square wave at a specified frequency. The ioctl functions are
summarized in Table 6-5.

Table 6-4 Functions for Pulses and Pulse Trains in Origin 2000

Operation Typical ioctl() Call

Set pulse width to N microseconds (ignored). ioctl(eifd, EIIOCSETOPW, N)

Return current output pulse width (23). ioctl(eifd,EIIOCGETOPW,&var)

Send a 23.4 microsecond pulse. ioctl(eifd, EIIOCSTROBE)

Set the repetition interval to N microseconds. ioctl(eifd, EIIOCSETPERIOD, N)

Return the current repetition interval. ioctl(eifd,EIIOCGETPERIOD,&var)

Initiate regular pulses at the current period. ioctl(eifd, EIIOCPULSE)

Table 6-5 Functions for Outgoing External Signals in Origin 2000

Operation Typical ioctl() Call

Set the toggle interval to N microseconds. ioctl(eifd, EIIOCSETPERIOD, N)

Return the current toggle interval. ioctl(eifd,EIIOCGETPERIOD,&var)

Initiate a square wave. ioctl(eifd, EIIOCSQUARE)

144 007-0911-210

6: Control of External Interrupts

The period set by EIIOCSETPERIOD determines the interval between changes of state on
the output—in other words, the period of the square wave is twice the interval. The
repetition period can be as short as 23.4 microseconds (pass N=24) or as long as slightly
more than 500000 microseconds (0.5 second). Any period is truncated to a multiple of
23.4 microseconds.

Responding to Incoming External Interrupts

The IOC3 external input line (unlike the input to the Challenge and Onyx external input
line) is edge-triggered by a transition to the asserted state, and has no dependence on the
level of the signal. There is no concept of an “expected” pulse width or a “stuck” pulse
width as in the Challenge (see “Detecting Invalid External Interrupts” on page 138).

The external interrupt device driver offers you four different methods of receiving
notification of an interrupt. You can

• have a signal of your choice delivered to your process

• test for interrupt-received using either an ioctl() call or a library function

• sleep until an interrupt arrives or a specified time expires

• spin-loop until an interrupt arrives

The functions for incoming signals are summarized in Table 6-6. The details of the
function calls are found in the ei(7) reference page.

Table 6-6 Functions for Incoming External Interrupts in Challenge

Operation Typical Function Call

Enable receipt of external interrupts. ioctl(eifd, EIIOCENABLE)

eicinit();

eihandle = eicinit_f(eifd);

Disable receipt of external interrupts. ioctl(eifd, EIIOCDISABLE)

Request a signal when an interrupt occurs, or clear
that request by passing signumber=0.

ioctl(eifd, EIIOCSETSIG, signumber)

Poll for an interrupt received. eicbusywait(0);

eicbusywait_f(eifd,0);

ioctl(eifd,EIIOCRECV,&eiargs)

External Interrupts In Origin 2000 and Origin 200

007-0911-210 145

You would use a signal (EIIOCSETSIG) when interrupts are infrequent and irregular, and
when it is not important to know the precise arrival time. Use a signal when, for example,
the external interrupt represents a human-operated switch or some kind of out-of-range
alarm condition.

The EIIOCRECV call can be used to poll for an interrupt. This is a relatively expensive
method of polling because it entails entry to and exit from the kernel. This is not
significant if the polling is infrequent—for example, if one poll call is made every 60th of
a second.

The EIIOCRECV call can be used to suspend the caller until an interrupt arrives or a
timeout expires (see the ei(7) reference page for details). Use this method when interrupts
arrive frequently enough that it is worthwhile devoting a process to handling them. An
unknown amount of time can pass between the moment when the interrupt handler
unblocks the process and the moment when the kernel dispatches the process. This
makes it impossible to timestamp the interrupt at the microsecond level.

In order to poll for, or detect, an incoming interrupt with minimum overhead, use the
library function eicbusywait() (see the ei(7) reference page). You use the eicinit()
function to open /dev/ei and prepare to use eicbusywait(); or you can open one of the
other special device files and pass the file descriptor to eicinit_f().

The eicbusywait() function does not switch into kernel mode, so it can perform a
low-overhead poll for a received interrupt. If you ask it to wait until an interrupt occurs,
it waits by spinning on a repeated test for an interrupt. This monopolizes the CPU, so this
form of waiting is normally used by a process running in an isolated CPU. The benefit is
that control returns to the calling process in negligible time after the interrupt handler
detects the interrupt, so the interrupt can be handled quickly and timed precisely.

Block in the driver until an interrupt occurs, or
until a specified time has elapsed.

ioctl(eifd,EIIOCRECV,&eiargs)

Wait in an enabled loop for an interrupt. eicbusywait(1);

eicbusywait_f(eihandle,1);

Table 6-6 Functions for Incoming External Interrupts in Challenge (continued)

Operation Typical Function Call

PART THREE

Kernel-Level Drivers III

Chapter 7, “Structure of a Kernel-Level Driver”
The software structure of a block or character device driver: the entry points it
provides for kernel use, and how it communicates with user-level processes.

Chapter 8, “Device Driver/Kernel Interface”
A topical survey of the facilities the IRIX kernel provides to device drivers.

Chapter 9, “Building and Installing a Driver”
How a kernel-level driver is compiled, loaded, and linked with the IRIX kernel.

Chapter 10, “Testing and Debugging a Driver”
How a kernel-level driver is tested and debugged using symmon and other
facilities.

Chapter 11, “Driver Example”
Annotated code of a simple device driver with no hardware dependencies.

007-0911-210 149

Chapter 7

7. Structure of a Kernel-Level Driver

A kernel-level device driver consists of a module of subroutines that supply services to
the kernel. The subroutines are public entry points in the driver. When an event occurs,
the kernel calls one of these entry points. The driver takes action and returns a result
code.

This chapter discusses when the driver entry points are called, what parameters they
receive, and what actions they are expected to take. For a conceptual overview of the
kernel and drivers, see “Kernel-Level Device Control” on page 66. For details on how a
driver is compiled, linked, and added to IRIX, see Chapter 9, “Building and Installing a
Driver.”

Note: This chapter concentrates on device drivers. Entry points unique to STREAMS
drivers are covered in Chapter 22, “STREAMS Drivers.”

The primary topics covered in this chapter are:

• “Summary of Driver Structure” on page 150 summarizes the entry points and how
they are made known to the kernel.

• “Driver Flag Constant” on page 156 describes the public constant that documents
the driver type for lboot and mload.

• “Initialization Entry Points” on page 158 discusses the entry points at which a
driver initializes its own data and its devices.

• “Attach and Detach Entry Points” on page 162 discusses the entry points that
handle dynamic attachment of Peripheral Component Interconnect (PCI) devices.

• “Open and Close Entry Points” on page 167 discusses the entry points called by the
open() and close() kernel functions.

• “Control Entry Point” on page 171 documents the entry point called by the ioctl()
kernel function.

150 007-0911-210

7: Structure of a Kernel-Level Driver

• “Data Transfer Entry Points” on page 173 documents the entry points called by the
read() and write() kernel functions.

• “Poll Entry Point” on page 176 documents the entry point called by the poll() kernel
function.

• “Memory Map Entry Points” on page 180 tells how a driver supports memory
mapping of devices and buffers.

• “Interrupt Entry Point and Handler” on page 185 discusses the design and
operation of interrupt handlers.

• “Support Entry Points” on page 190 describes several entry points that support
kernel operations.

• “Handling 32-Bit and 64-Bit Execution Models” on page 193 covers the techniques
of supporting user processes that have different execution models.

• “Designing for Multiprocessor Use” on page 194 covers the techniques of making a
driver work in a multiprocessor, multithreading environment.

Summary of Driver Structure

A driver consists of a binary object module in ELF format stored in the
/var/sysgen/boot directory. As a program, the driver consists of a set of functional
entry points that supply services to the IRIX kernel. There is a large set of entry points to
cover different situations. Some entry points are historical relics, while others were first
defined in IRIX 6.4. No single driver supports all possible entry points.

The entry points that a driver supports must be named according to a specified
convention. The lboot command uses entry point names to build tables used by the
kernel.

Entry Point Naming and lboot

The device driver makes known which entry points it supports by giving them public
names in its object module. The lboot command links together the object modules of
drivers and other kernel modules to make a bootable kernel. lboot recognizes the entry
points by the form of their names. (See the lboot(1M) and autoconfig(1M) reference
pages.)

Summary of Driver Structure

007-0911-210 151

Driver Name Prefix

A device driver must be described by a file in the /var/sysgen/master.d directory
(see “Master Configuration Database” on page 57). In that configuration file you specify
the driver prefix, a string of 1 to 14 characters that is unique to that driver. For example,
the prefix of the SCSI driver is scsi_.

The prefix string is defined in the /var/sysgen/master.d file only. The string does
not have to appear as a constant in the driver, and the name of the driver object file does
not have to correspond to the prefix (although the object module typically has a related
name).

The lboot command recognizes driver entry points by searching the driver object
module for public names that begin with the prefix string. For example, the entry point
for the open() operation must have a name that consists of the prefix string followed by
the letters “open.”

In this book, entry point names are written as follows: pfxopen(), where pfx stands for the
driver’s prefix string.

Driver Name Prefix as a Compiler Constant

The driver prefix string appears as part of the name of each public entry point. In
addition, you sometimes need the driver prefix string as a character string literal, for
example in a PCI driver as an argument to pciio_driver_register(). You would like to
define the prefix string in one place and then generate it automatically where needed in
the code. The C macro code in Example 7-1 accomplishes this goal.

Example 7-1 Compiling Driver Prefix as a Macro

#define PREFIX_NAME(name) sample_ ## name
/* ----- driver prefix: ^^^^^^^ defined there only */
#define PREFIX_ONLY PREFIX_NAME()
#define STRINGIZER(x) # x
#define PREFIX_STRING STRINGIZER(PREFIX_ONLY)

A macro call to PREFIX_STRING generates a character literal (“sample_” in this case).
You can use this macro wherever a character literal is allowed, for example, as a function
argument. The “##” operator is ANSI C syntax for string concatenation.

Further down, in the STRINGIZER macro, the “#” operator is ANSI C syntax for string
(double quoted) substitution.

152 007-0911-210

7: Structure of a Kernel-Level Driver

A call to PREFIX_NAME(name) generates an identifier composed of the prefix
concatenated to name. You can define the init entry point as follows:

PREFIX_NAME(init)()
{ ... }

However, this can be confusing to read. You can also define one macro for each entry
point, as shown in Example 7-2.

Example 7-2 Entry Point Name Macros

#define PFX_INIT PREFIX_NAME(init)
#define PFX_START PREFIX_NAME(start)

Using macros such as these you can define an entry point as follows:

PFX_INIT()
{ ... }

Kernel Switch Tables

The IRIX kernel maintains tables that allow it to dispatch calls to device drivers quickly.
These tables are built by lboot based on the names of the driver entry points. The tables
are named as follows:

Conceptually, the tables for block and character drivers have one row for each driver, and
one column for each possible driver entry point. (Historically, the major device number
was the driver’s row number in the switch table. This simple data structure is no longer
used.)

As lboot loads a driver, it fills in that driver’s row of a switch table with the addresses
of the driver’s entry points. Where an entry point is not defined in the driver object file,
lboot leaves the address of a null routine that returns the ENODEV error code. Thus no
driver needs to define all entry points—only the ones it can support in a useful way.

bdevsw Table of block device drivers

cdevsw Table of character device drivers

fmodsw Table of STREAMS drivers

vfssw Table of filesystem modules (not related to device drivers)

Summary of Driver Structure

007-0911-210 153

The sizes of the switch tables are fixed at boot time in order to minimize kernel data
space. The table sizes are tunable parameters that can be set with systune (see the
systune(1) reference page).

When a driver is loaded dynamically (see “Configuring a Loadable Driver” on page 279),
the associated row of the switch table is not filled at link time but rather is filled when the
driver is loaded. When you add new, loadable drivers, you might need to specify a larger
switch table. The book IRIX Admin: System Configuration and Operation documents these
tunable parameters.

Entry Point Summary

The names of all possible driver entry points and their purposes are summarized in
Table 7-1. The entry point names are in alphabetic order, not logical order. Device driver
entry points are discussed in this chapter. Entry points to STREAMS drivers are
discussed in Chapter 22, “STREAMS Drivers.”

Table 7-1 Entry Points in Alphabetic Order

Entry Point Purpose Discussion Reference Page

pfxattach Attach a new device to the system. “Entry Point attach()” on page 162

pfxclose Note the device is not in use. “Entry Point close()” on page 170 close(D3)

pfxdevflag Constant flag bits for driver features. “Driver Flag Constant” on page 156 devflag(D1)

pfxdetach Detach a device from the system. “Entry Point detach()” on page 166

pfxedtinit Initialize EISA or VME driver from VECTOR
statement.

“Entry Point edtinit()” on page 160 edtinit(D2)

pfxhalt Prepare for system shutdown. “Entry Point halt()” on page 191 halt(D2)

pfxinit Initialize driver globals at load or boot time. “Entry Point init()” on page 159 init(D2)

pfxintr Handle device interrupt (not used). “Interrupt Entry Point and Handler” on
page 185

intr(D2)

pfxioctl Implement control operations. “Control Entry Point” on page 171 ioctl(D2)

pfxmap Implement memory-mapping (IRIX). “Entry Point map()” on page 181 map(D2)

154 007-0911-210

7: Structure of a Kernel-Level Driver

Entry Point Usage

No driver supports all entry points. Typical entry point usage is as follows:

• A minimal driver for a character device supports pfxinit(), pfxopen(), pfxread(),
pfxwrite(), and pfxclose(). The pfxioctl() and pfxpoll() entry points are optional.

pfxmmap Implement memory-mapping (SVR4). “Entry Point mmap()” on page 183 mmap(D2)

pfxopen Connect a process to a device.
Connect a stream module.

“Entry Point open()” on page 167
“Entry Point open()” on page 781

open(D2)

pfxpoll Implement device event test. “Entry Point poll()” on page 178 poll(D2)

pfxprint Display diagnostic about block device. “Entry Point print()” on page 192 print(D2)

pfxread Character-mode input. “Entry Points read() and write()” on
page 173

read(D2)

pfxreg Register a driver at load or boot time. “Entry Point reg()” on page 161

pfxrput STREAMS message on read queue. “Put Functions wput() and rput()” on
page 782

put(D2)

pfxsize Return logical size of block device. “Entry Point size()” on page 192 size(D2)

pfxsrv STREAMS service queued messages. “Service Functions rsrv() and wsrv()” on
page 783

srv(D2)

pfxstart Initialize driver at load or boot time. “Entry Point start()” on page 161 start(D2)

pfxstrategy Block-mode input and output. “Entry Point strategy()” on page 175 strategy(D2)

pfxunload Prepare loadable module for unloading. “Entry Point unload()” on page 190 unload(D2)

pfxunmap Note the end of a memory mapping. “Entry Point unmap()” on page 184 unmap(D2)

pfxunreg Undo driver registration prior to unloading. “Entry Point unreg()” on page 190

pfxwput STREAMS message on write queue. “Put Functions wput() and rput()” on
page 782

put(D2)

pfxwrite Character-mode output. “Entry Points read() and write()” on
page 173

write(D2)

Table 7-1 Entry Points in Alphabetic Order (continued)

Entry Point Purpose Discussion Reference Page

Summary of Driver Structure

007-0911-210 155

• A minimal block device driver supports pfxopen(), pfxsize(), pfxstrategy(), and
pfxclose().

• A minimal pseudo-device driver supports pfxstart(), pfxopen(), pfxmap(),
pfxunmap(), and pfxclose() (the latter two possibly as mere stubs).

In addition:

• All drivers need a pfxdevflag constant.

• Loadable drivers may support pfxunreg() and pfxunload().

• A block or character driver for a PCI device should support pfxattach(), pfxdetach(),
and pfxreg(). The pfxenable(), pfxdisable(), and pfxerror() entry points are optional.

• A block or character driver for aVME, EISA or GIO device should support
pfxedtinit().

Entry Point Calling Sequence

Entry points of a nonloadable driver are called as follows.

• The first call is to pfxinit() if it exists.

• A driver for a VME, EISA, or GIO bus device is then called at its pfxedtinit() entry
points once for each VECTOR line that specifies that driver.

• The pfxstart() entry point is called, if it exists.

• The pfxreg() entry point is called, if it exists.

• A driver for a PCI device is called at its pfxattach() entry point once for each device
that it supports, as the kernel discovers the devices.

• The pfxopen() entry point is called whenever any process opens a device controlled
by this driver.

• The pfxread(), pfxwrite(), pfxstrategy(), pfxmap(), pfxpoll() and pfxioctl() calls are
exercised as long as any device is open.

• The pfxunmap() entry point is called when all processes have unmapped a given
segment of memory.

• The pfxclose() entry point is called when the last process closes a device, so the
device is known to be no longer in use.

• The pfxdetach() entry point can be called only when a device has been closed.

156 007-0911-210

7: Structure of a Kernel-Level Driver

The sequence of entry points called for a loadable driver is similar, with additional calls
that are discussed under “Entry Point unreg()” on page 190 and “Entry Point unload()”
on page 190.

Driver Flag Constant

Any device driver or STREAMS module must define a public name pfxdevflag as a static
integer. This integer contains a bitmask with one or more of the following flags, which
are declared in sys/conf.h:

A typical definition would resemble the following:

int testdrive_devflag = D_MP+D_MT;

A STREAMS module should also provide this flag, but the only relevant bit value for a
STREAMS driver is D_MP (see “Driver Flag Constant” on page 780).

The flag value is saved in the kernel switch table with the driver’s entry points (see
“Kernel Switch Tables” on page 152).

When a driver (or STREAMS module) does not define a pfxdevflag, or defines one
containing 0, lboot refuses to load it as part of the kernel.

Flag D_MP

You specify D_MP in pfxdevflag to tell lboot that your driver is designed to operate in
a multiprocessor system. The top half of the driver is designed to cope with multiple
concurrent entries in multiple CPUs. The top and bottom halves synchronize through the

D_MP The driver is prepared for multiprocessor systems.

D_MT The driver is prepared for a multithreaded kernel.

D_PCI_HOT_PLUG_ATTACH The driver supports the PCI Hot Plug insertion of its
devices.

D_PCI_HOT_PLUG_DETACH The driver supports the PCI Hot Plug removal of its
devices.

D_WBACK The driver handles its own cache-writeback
operations.

Driver Flag Constant

007-0911-210 157

use of semaphores or locks and do not rely on interrupt masking for critical sections.
These issues are discussed further under “Designing for Multiprocessor Use” on
page 194.

All drivers must be designed in this fashion and confirm it with D_MP, even drivers
written for uniprocessor workstations.

Flag D_MT

Driver interrupt routines execute as independent, preemptable threads of control within
the kernel address space (see “Interrupts as Threads” on page 188). D_MT indicates that
this driver understands that it can be run as one or more cooperating threads, and uses
kernel synchronization primitives to serialize access to driver common data structures.

In IRIX 6.4, D_MT does not commit a driver to anything beyond the meaning of D_MP.

Flag D_PCI_HOT_PLUG_ATTACH

This driver supports the PCI Hot Plug insertion of its devices by providing an attach()
function that initializes the device hardware and software from a powered-down state
while the system is running. A driver can support Hot Plug insertion, Hot Plug removal,
or both. This flag has meaning only on an SGI Origin 3000 server series and is ignored on
non-PCI drivers.

Flag D_PCI_HOT_PLUG_DETACH

This driver supports the PCI Hot Plug removal of its devices by providing a detach()
function that terminates operation of the device hardware and releases all software
resources so the device can be powered down while the system is running. A driver can
support Hot Plug insertion, Hot Plug removal, or both. This flag has meaning only on an
SGI Origin 3000 server series and is ignored on non-PCI drivers.

158 007-0911-210

7: Structure of a Kernel-Level Driver

Flag D_WBACK

You specify D_WBACK in pfxdevflag to tell lboot that a block driver performs any
necessary cache write-back operations through explicit calls to dki_dcache_wb() and
related functions (see the dki_dcache_wb(D3) reference page).

When D_WBACK is not present in pfxdevflag, the physiock() function ensures that all
cached data related to buf_t structures is written back to main memory before it enters the
driver’s strategy routine. (See the physiock(D3) reference page and “Entry Point
strategy()” on page 175.)

Flag D_OLD Not Supported

In IRIX versions before IRIX 6.4, a driver was allowed to have no pfxdevflag, or to have
one containing only a flag named D_OLD. This flag, or the absence of a flag, requested
compatibility handling for an obsolete driver interface. Support for this interface has
been withdrawn effective with IRIX 6.4.

Initialization Entry Points

The kernel calls a driver to initialize itself at four different entry points, as follows:

Historically, these calls were made at different times in the boot process and the driver
had different abilities at each time. Now they are all called at nearly the same time. A
driver may define any combination of these entry points. Typically a PCI driver will
define pfxinit() and pfxreg(), while a VME or EISA device will define pfxinit() and
pfxedtinit().

pfxinit Initialize self-defining hardware or a pseudo-device.

pfxedtinit Initialize a hardware device based on VECTOR data.

pfxstart General initialization.

pfxreg For a driver that supports the pfxattach() entry point, register the
driver as ready to attach devices.

Initialization Entry Points

007-0911-210 159

When Initialization Is Performed

The initialization entry points of ordinary (nonloadable) drivers are called during system
startup, after interrupts have been enabled and before the message “The system is
coming up” is displayed on the console. In all cases, interrupts are enabled and basic
kernel services are available at this time. However, other loadable or optional kernel
modules might not have been initialized, depending on the sequence of statements in the
files in /var/sysgen/system.

Whenever a driver is initialized, the entry points are called in the following sequence:

1. pfxinit() is called.

2. pfxedtinit() is called once for each VECTOR statement in reverse order of the
VECTOR statements found in /var/sysgen/system files.

3. pfxstart() is called.

4. pfxreg() is called.

Initialization of Loadable Drivers

A loadable driver (see “Loadable Drivers” on page 78) is initialized any time it is loaded.
This can occur more than once, if the driver is loaded, unloaded, and reloaded. When a
loadable driver is configured for autoregister, it is loaded with other drivers during
system startup. (For more information on autoregister, see “Configuring a Loadable
Driver” on page 279.) Such a driver is initialized at system startup time along with the
nonloadable drivers.

Entry Point init()

The pfxinit() entry point is called once during system startup or when a loadable driver
is loaded. It receives no input arguments; its prototype is simply:

void pfxinit(void);

You can use this entry point for any of the following purposes:

• To initialize global data used by more than one entry point or with more than one
device.

160 007-0911-210

7: Structure of a Kernel-Level Driver

• To initialize a hardware device that is self-defining; that is, all the information the
driver needs is either coded into the driver, or can be gotten by probing the device
itself.

• To initialize a pseudo-device driver; that is, a driver that does not have real
hardware attached.

A driver that is brought into the system by a USE or INCLUDE line in a system
configuration file (see “Configuring a Kernel” on page 278) typically initializes in the
pfxinit() entry point.

Entry Point edtinit()

The pfxedtinit() entry is designed to initialize devices that are configured using the
VECTOR statement in the system configuration file (see “Kernel Configuration Files” on
page 58). This includes GIO, EISA, and VME devices. The entry point name is a
contraction of “early device table initialization.”

The VECTOR statement specifies hardware details about a device on the VME, GIO, or
EISA bus, including such items as iospace addresses, interrupt level, bus number, and a
driver-defined integer value referred to as the controller number. The VECTOR
statement also specifies the driver that is to manage the device; and it can specify probe
operations that let the kernel test for the existence of the device.

When the kernel processes a VECTOR statement during bootstrap, it executes the probe,
if one is specified. When the probe is successful (or no probe is given), the kernel makes
sure that the specified driver is loaded. Then it stores the hardware parameters from the
VECTOR statement in a structure of type edt_t. (This structure is declared in
sys/edt.h.)

The kernel calls the specified driver’s pfxedtinit() entry one time for each VECTOR
statement that named that driver and had a successful probe (or had no probe). VECTOR
statements are processed in reverse sequence to the order in which they are coded in
/var/sysgen/system files.

The prototype of the pfxedtinit() entry is

void pfxedtinit(edt_t *e);

Initialization Entry Points

007-0911-210 161

The edt_t contains at least the following fields (see the system(4) reference page for the
corresponding VECTOR parameters):

The VME form of the VECTOR statement for IRIX 6.4 is discussed at length under
“Defining VME Devices with the VECTOR Statement” on page 360. The operation of the
pfxedtinit() entry for VME is discussed under “Initializing a VME Device” on page 368.

Entry Point start()

The pfxstart() entry point is called at system startup, and whenever a loadable driver is
loaded. It is called after pfxedtinit() and pfxinit(), but before any other entry point such
as pfxopen(). The pfxstart() entry point receives no arguments; its prototype is simply

void pfxstart(void);

The pfxstart() entry point is a suitable place to allocate a poll-head structure using
phalloc(), as discussed in “Use and Operation of poll(2)” on page 177.

Entry Point reg()

The pfxreg() entry point is specifically intended to allow a driver that supports the
pfxattach() entry point (see “Entry Point attach()” on page 162) to register with the kernel.
At present, the only buses that support device attachment and registration (accessible to
OEMs) are the PCI and SCSI buses. The functions used to register as a PCI driver are
discussed in “Configuration Register Initialization” on page 720.

e_bus_type Integer specifying the bus type; constant values are declared in
sys/edt.h, for example ADAP_VME, ADAP_GIO, or
ADAP_EISA.

e_adap For EISA or VME, an integer specifying the adapter (bus) number.

e_ctlr Value from the VECTOR ctlr= parameter; typically a device
number used to distinguish one device from another.

e_space Array of up to three I/O space structures of type iospace_t.

162 007-0911-210

7: Structure of a Kernel-Level Driver

Attach and Detach Entry Points

First defined in IRIX 6.3, the pfxattach() entry point informs the driver that the kernel has
found a device that matches the driver. This is the time at which the driver initializes data
that is unique to one instance of a device. The pfxdetach() entry point informs the driver
that the device has been removed from the system. The driver undoes whatever
pfxattach() did for that device instance.

Entry Point attach()

The pfxattach() entry point is called to notify the driver that the PCI bus adapter has
located a device that has a vendor and device ID for which the driver has registered (see
“Entry Point reg()” on page 161).

This entry point is typically called during bootstrap, while the kernel is probing the PCI
bus. However, for a PCI Hot Plug insert operation it can occur at a later time, if the device
is physically plugged in or activated after the system has initialized. In an Origin2000
system, the entry point is executed in the hardware node closest to the device being
attached. (See “Allocating Memory in Specific Nodes of a Origin2000 System” on
page 214.)

The purpose of the entry point is to make the device usable, including making it visible
in the hwgraph by creating vertexes and edges to represent it.

Matching A Device to A Driver

When the system boots up, the kernel probes the PCI bus configuration space and takes
a census of active devices. For each device it notes

• Vendor and device ID numbers

• Requested size of memory space

• Requested size of I/O space

The kernel assigns starting bus addresses for memory and I/O space and sets these
addresses in the Base Address Registers (BARs) in the device. Then the kernel looks for
a driver that has registered a matching set of vendor and device IDs using
pciio_driver_register() (for discussion, see “Configuration Register Initialization” on
page 720).

Attach and Detach Entry Points

007-0911-210 163

If no matching driver has registered, the device remains inactive. For example, the driver
might be a loadable driver that has not been loaded as yet. When the driver is loaded and
registers, the kernel will match it to any unattached devices.

When the kernel matches a device to its registered driver, the kernel calls the driver’s
pfxattach() entry point. It passes one argument, a handle to the hwgraph vertex
representing the hardware connection point for the device. This handle is used to:

• Request PIO and DMA maps on the device

• Register an interrupt handler for the device

Completing the hwgraph

The handle passed to pfxattach() addresses the hwgraph vertex that represents a slot on
a bus. This is not informative to users, because a card can be plugged into any slot. Nor
is this a reliable target for a symbolic link from /dev. In any case, the driver cannot store
information in this vertex. At attach time the driver needs to create at least one additional
hwgraph vertex in order to:

• Create a device vertex for use by user programs.

• Provide a vertex to hold the device information.

• Establish a well-known, convenient names high up in the /hw filesystem.

• Provide extra device names that represent different aspects of the same device (for
example, different partitions), or different access modes to the device (a character
device and a block device), or different treatments of the device (for example,
byte-swapped and nonswapped).

• Establish predictable names that satisfy symbolic links that exist in /dev.

Each leaf vertex you create in the hwgraph is a device special file the user can open. You
create a leaf vertex by calling hwgraph_block_device_add() or
hwgraph_char_device_add(). You can make each leaf vertex distinct by attaching
distinct information to it using device_info_set().

You create additional vertexes and edges using the functions discussed under
“Hardware Graph Management” on page 231.

164 007-0911-210

7: Structure of a Kernel-Level Driver

Allocating Storage for Device Information

A driver needs to save information about each device, usually in a structure. Fields in a
typical structure might include:

• Locks or semaphores used for mutual exclusion among upper-half entry points and
between them and the interrupt handler.

• Addresses of allocated PIO and DMA maps for this device (see “PIO Address
Mapping” on page 725 and “DMA Address Mapping” on page 722).

• Address of an interrupt connection object for the device (see “Interrupt Signal
Distribution” on page 722).

• In a block driver, anchors for a queue of buf_t objects being filled or emptied.

• Device status flags.

A problem is that at initialization time a driver does not know how many devices it will
be asked to manage. In the past this problem has been handled by allocating an array of
a fixed number of information structures, indexed by the device minor number.

In a PCI driver, you dynamically allocate memory for an information structure to hold
information about the one device being attached. (See “General-Purpose Allocation” on
page 213.) You save the address of the structure in the leaf vertex you create, using the
device_info_set() function, which associates an arbitrary pointer with a vertex_hdl_t (see
hwgraph(d3x) and “Extending the hwgraph” on page 233).

The information structure can easily be recovered in any top-half routine; see
“Interrogating the hwgraph” on page 232.

Inserting Hardware Inventory Data

You attach the hardware inventory data for the attached device to the hwgraph vertex
passed to the pfxattach() entry point—see “Creating an Inventory Entry” on page 53.

Return Value from Attach

The return code from pfxattach() is tested by the kernel. The driver can reject an
attachment. When your driver cannot allocate memory, or fails due to another problem,
it should:

• Use cmn_err() to document the problem (see “Using cmn_err” on page 291)

Attach and Detach Entry Points

007-0911-210 165

• Release any objects such as PIO and DMA maps that were created.

• Release any space allocated to the device such as a device information structure.

• Return an informative return code which might be meaningful in future releases.

• A loadable driver’s reg() entry point will be called after a driver has been loaded
into memory, but before the load process is considered successful. In its reg()
function, a typical driver will register itself as supporting a specific device type; for
PCI devices this registration is made by a call to pciio_driver_register(). The driver
registration results in the driver’s attach() entry point being immediately called for
any installed matching device type. If a driver’s attach() function returns an error
code for any device, the driver remains registered and the load process continues
without error.

More than one driver can register to support the same vendor ID and device ID. When
the first driver fails to complete the attachment, the kernel continues on to test the next,
until all have refused or one accepts. The pfxdetach() entry point can only be called if the
pfxattach() entry point returns success (0).

PCI Hot Plug Insert Operation

A PCI Hot Plug insert operation calls the device driver attach() function registered for the
device being inserted. That driver must provide a complete attach() function that can
initialize the device from a powered-down state while the system is running. A driver
must indicate that it supports the PCI Hot Plug insertion by setting the
D_PCI_HOT_PLUG_ATTACH flag in its pfxdevflag constant. Only drivers that indicate
that they support the Hot Plug insert will have their attach() function called for a Hot
Plug insert operation that targets one of their devices.

The device initialization process includes the device hardware configuration and the
allocation of software resources. The resources that are normally available at system
startup, such as memory on a specific node, may not be available once the system is
running. An attach() function that uses Hot Plug must plan for and handle this possible
failure scenario. If a Hot Plug insert fails, the driver must clean up and return all
resources that were allocated as part of the failed insert operation; the kernel will not try
to recover from a failed Hot Plug insert operation.

The attach() function returns a status code that indicates if the attach was successful or
not. A nonzero code from sys/errno.h indicates the specific error and the device is
marked as having an incomplete startup. An incomplete startup (Hot Plug insert)

166 007-0911-210

7: Structure of a Kernel-Level Driver

operation can be retried, so the driver should leave the device and its software resources
in a state where a subsequent attempt to insert (startup) the device can succeed.

Entry Point detach()

The pfxdetach() entry point is called when the kernel decides to detach a device. As of
IRIX 6.4 this is only done for PCI devices. The need to detach can be created by a
hardware failure or a PCI Hot Plug removal operation. If the entry point is not defined,
the device cannot be detached.

In general, the detach entry point must undo as much as possible of the work done by
the pfxattach() entry point (see “Entry Point attach()” on page 162). This includes such
actions as:

• Disconnect a registered interrupt handler.

• If any I/O operations are pending on the device, cancel them. If any top-half entry
points are waiting on the completion of these operations, wake them up.

• Release all software objects allocated, such as PIO maps, DMA maps, and interrupt
objects.

• Release any allocated kernel memory used for buffers or for a device information
structure.

• Detach and release any edges and vertexes in the hwgraph created at attach time.

The state of the device itself is not known. If the detach code attempts to reset the device
or put it in a quiescent state, the code should be prepared for errors to occur.

PCI Hot Plug Detach Operation

A PCI Hot Plug removal operation calls the device driver detach() function registered for
the device being removed. That driver must provide a complete detach() function that
can terminate the device while the system is running. A device driver must indicate that
it supports the PCI Hot Plug removal by setting the D_PCI_HOT_PLUG_DETACH flag
in its pfxdevflag constant. Only drivers that indicate that they support Hot Plug removal
will have their detach() function called when a Hot Plug removal operation targets one
of their devices.

The device termination process includes releasing any software resources that are
allocated to the device and setting the device hardware to a state where the device can be

Open and Close Entry Points

007-0911-210 167

powered down. If a Hot Plug removal fails, the driver must leave the device and its
software resources in a stable state; the kernel will not try to recover from a failed Hot
Plug removal operation.

The detach() function returns a status code that indicates if it was successful or not. A
nonzero code from sys/errno.h indicates the specific error and the device is marked
as having an incomplete shutdown. An incomplete shutdown (Hot Plug removal)
operation can be retried, so the driver should leave the device and its software resources
in a state where a subsequent attempt to remove (shutdown) the device can succeed.

Open and Close Entry Points

The pfxopen() and pfxclose() entries for block and character devices are called when a
device comes into use and when use of it is finished. For a conceptual overview of the
open() process, see “Overview of Device Open” on page 67.

Entry Point open()

The kernel calls a device driver’s pfxopen() entry when a process executes the open()
system call on any device special file (see the open(2) reference page). It is also called
when a process executes the mount() system call on a block device (see the mount(2)
reference page). (For the pfxopen() entry point of a STREAMS driver, see “Entry Point
open()” on page 781.)

The prototype of pfxopen() is as follows:

int pfxopen(dev_t *devp, int oflag, int otyp, cred_t *crp);

The argument values are

*devp Pointer to a dev_t value, actually a handle to a leaf vertex in the hwgraph.

otyp An integer flag specifying the source of the call: a user process opening a
character device or block device, or another driver.

oflag Flag bits specifying user mode options on the open() call.

crp A cred_t object—an opaque structure for use in authentication. Standard
access privileges to the special device file have already been verified.

168 007-0911-210

7: Structure of a Kernel-Level Driver

Note: In releases before IRIX 6.4, a driver’s pfxdevflag constant could contain D_OLD.
In that case, the first argument to pfxopen() was a dev_t value, not a pointer to a dev_t
value. However, this compatibility mode is no longer supported. The first argument to
pfxopen() is always a pointer to a dev_t.

The open(D2) reference page discusses the kind of work the pfxopen() entry point can do.
In general, the driver is expected to verify that this user process is permitted access in the
way specified in otyp (reading, writing, or both) for the device specified in *devp. If access
is not allowable, the driver returns a nonzero error code from sys/errno.h, for
example ENOMEM or EBUSY.

Use of the Device Handle

The dev_t value input to pfxopen() and all other top-half entry points is the key parameter
that specifies the device. You use the dev_t to locate the hwgraph vertex that is being
opened. From that vertex you extract the address of the device information structure that
was stored when the device was attached (see “Allocating Storage for Device
Information” on page 164). In pfxopen() or any other top-half entry point, the driver
retrieves the device information by applying device_info_get() to the dev_t value (see
“Interrogating the hwgraph” on page 232).

Use of the Open Type

The otyp flag distinguishes between the following possible sources of this call to
pfxopen() (the constants are defined in sys/open.h).

• a call to open a character device (OTYP_CHR)

• a call to open a block device (OTYP_BLK)

• a call to a mount a block device as a filesystem (OTYP_MNT)

• a call to open a block device as swapping device (OTYP_SWP)

• a call direct from a device driver at a higher level (OTYP_LYR)

Typically a driver is written only to be a character driver or a block driver, and can be
called only through the switch table for that type of device. When this is the case, the otyp
value has little use.

Open and Close Entry Points

007-0911-210 169

It is possible to have the same driver treated as both block and character, in which case
the driver needs to know whether the open() call addressed a block or character special
device. It is possible for a block device to support different partitions with different uses,
in which case the driver might need to record the fact that a device has been mounted, or
opened as a swap device.

With all open types except OTYP_LYR, pfxopen() is called for every open or mount
operation, but pfxclose() is called only when the last close or unmount occurs. The
OTYP_LYR feature is used almost exclusively by drivers distributed with IRIX, like the
host adapter SCSI driver (see “Host Adapter Concepts” on page 529). For each open of
this type, there is one call to pfxclose().

Use of the Open Flag

The interpretation of the open mode flags is up to the designer of the driver. Four modes
can be requested (declared in sys/file.h):

You decide which of the flags have meaning with respect to the abilities of this device.
You can return an EINVAL error when an unsupported mode is requested.

A key decision is whether the device can be opened only by one process at a time, or by
multiple processes. If multiple opens are supported, a process can still request exclusive
access with the FEXCL mode.

When the device can be used by only one process, or when FEXCL access is supported,
the driver must keep track of the fact that the device is open. When the device is busy, the
driver can test the FNDELAY and FNONBLOCK flags; if either is set, it can return
EBUSY. Otherwise, the driver should sleep until the device is free; this requires
coordination with the pfxclose() entry point.

FREAD Input access wanted.

FWRITE Output access wanted (both FREAD and FWRITE may be set,
corresponding to O_RDWR mode).

FNDELAY or
FNONBLOCK

Return at once, do not sleep if the open cannot be done
immediately.

FEXCL Request exclusive use of the device.

170 007-0911-210

7: Structure of a Kernel-Level Driver

Use of the cred_t Object

The cred_t object passed to pfxopen(), pfxclose(), and pfxioctl() can be used with the
drv_priv() function to find out if the effective calling user ID is privileged or not (see the
drv_priv(D3) reference page). Do not examine the object in detail, since its contents are
subject to change from release to release.

Saving the Size of a Block Device

In a block device driver, the pfxsize() entry point will be called soon after pfxopen() (see
“Entry Point size()” on page 192). It is typically best to calculate or read the device
capacity at open time, and save it to be reported from pfxsize().

Completing the hwgraph

Some device drivers distributed with IRIX test, at open time, to see if this is the first open
since the attachment of the specified device. For these devices, the first open() call is
guaranteed to come from the ioconfig program after it has assigned a stable controller
number (see “Using ioconfig for Global Controller Numbers” on page 53). When these
drivers detect the first open for a device, they retrieve the assigned controller number
from the device vertex using device_controller_num_get() (see hwgraph.inv(d3x), and
possibly add convenience vertexes to the hwgraph.

Entry Point close()

The kernel calls the pfxclose() entry when the last process calls close() or umount() for
the device special file. It is important to know that when the device can be opened by
multiple processes, pfxclose() is not called for every close() function, but only when the
last remaining process closes the device and no other processes have it open. The
function prototype and arguments of pfxclose() are

int pfxclose(dev_t dev, int flag, int otyp, cred_t *crp);

The arguments are the same as were passed to pfxopen(). However, the flag argument is
not necessarily the same as at any particular call to open().

It is up to you to design the meaning of “close” for this type of device. The close(D2)
reference page discusses some of the actions the driver can do. Some considerations are:

Control Entry Point

007-0911-210 171

• If the device is opened and closed frequently, you may decide to retain dynamic
data structures.

• If the device can perform an action such as “rewind” or “eject,” you decide whether
that action should be done upon close. Possibly the choice of acting or not acting
can be set by an ioctl() call; or possibly the choice can be encoded into the device
minor number—for example, the no-rewind-on-close option is encoded in certain
tape minor device numbers.

• If the pfxopen() entry point supports exclusive access, and it can be waiting for the
device to be free, pfxclose() must release the wait.

When a device can do DMA, the pfxclose() entry point is the appropriate place to make
sure that all I/O has terminated. Since all processes have closed the device, there is no
reason for it to continue transmitting data into memory; and if it does continue, it might
corrupt memory.

The pfxclose() entry can detect an error and report it with a return code. However, the file
is closed or unmounted regardless.

Control Entry Point

The pfxioctl() entry point is called by the kernel when a user process executes the ioctl()
system call (see the ioctl(2) reference page). This entry point is allowed in character
drivers only. Block device drivers do not support it. STREAMS drivers pass control
information as messages.

For an overview of the relationship between the user process, kernel, and the control
entry point, see “Overview of Device Control” on page 69.

The prototype of the entry point is

int pfxioctl(dev_t dev, int cmd, void *arg,
int mode, cred_t *crp, int *rvalp);

The argument values are

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

cmd The request value specified in the ioctl() call.

172 007-0911-210

7: Structure of a Kernel-Level Driver

It is up to the device driver to interpret the cmd and arg values in the light of the mode and
other arguments. When the arg value is a pointer to data in the process address space, the
driver uses the copyin() kernel function to copy the data into kernel space, and the
copyout() function to return updated values. (See the copyin(D3) and copyout(D3)
reference pages, and also “Transferring Data” on page 217.)

Choosing the Command Numbers

The command numbers supported by pfxioctl() are arbitrary; but the recommended
practice is to make sure that they are different from those of any other driver. One method
to achieve this is suggested in the ioctl(D2) reference page.

Supporting 32-Bit and 64-Bit Callers

The ioctl() entry point may need to interpret a structure prepared in the user process. In
a 64-bit system, the user process can be either a 32-bit or a 64-bit program. For discussion
of this issue, see “Handling 32-Bit and 64-Bit Execution Models” on page 193.

User Return Value

The kernel returns 0 to the ioctl() system function unless the pfxioctl() function returns
an error code. In the event of an error, the kernel may also return the code the driver
places in *rvalp, if any, or -1. To ensure that the user process sees a specific error code, it
is a good idea to set the code in *rvalp, and return that value. If your device driver does
not define a pfxdevflag or sets it to D_OLD, see “Driver Flag Constant” on page 156.

arg The optional argument value specified in the ioctl() call, or NULL if none was
specified.

mode Flag bits specifying the open() mode, as associated with the file descriptor
passed to the ioctl() system function.

crp A cred_t object—an opaque structure for use in authentication, describing the
process that is in-context. Standard access privileges to the special device file
have already been verified.

*rvalp The integer result to be returned to the user process.

Data Transfer Entry Points

007-0911-210 173

Data Transfer Entry Points

The pfxread() and pfxwrite() entry points are supported by character device drivers and
pseudo-device drivers that allow reading and writing. They are called by the kernel
when the user process calls the read(), readv(), write(), or writev() system function.

The pfxstrategy() entry point is required of block device drivers. It is called by the kernel
when either a filesystem or the paging subsystem needs to transfer a block of data.

Entry Points read() and write()

The pfxread() and pfxwrite() entry points are similar to each other—only the direction of
data transfer differs. The prototypes of the functions are

int pfxread (dev_t dev, uio_t *uiop, cred_t *crp);
int pfxwrite(dev_t dev, uio_t *uiop, cred_t *crp);

The arguments are

Data Transfer for a PIO Device

A character device driver using PIO transfers data in the following steps:

1. If there is a possibility of a timeout, start a timeout delay (see “Waiting for Time to
Pass” on page 253).

2. Initiate the device operation as required.

3. Transfer data between the device and the buffer represented by the uio_t (see
“Transferring Data Through a uio_t Object” on page 219).

4. If it is necessary to wait for an interrupt, put the process to sleep (see “Waiting and
Mutual Exclusion” on page 244).

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

*uiop A uio_t object—a structure that defines the user’s buffer memory areas.

crp A cred_t object—an opaque structure for use in authentication. Standard
access privileges to the special device file have already been verified.

174 007-0911-210

7: Structure of a Kernel-Level Driver

5. When data transfer is complete, or when an error occurs, clear any pending timeout
and return the final status of the operation. If the return code is 0, the final state of
the uio_t determines the byte count returned by the read() or write() call.

Calling Entry Point strategy() From Entry Point read() or write()

A device driver that supports both character and block interfaces must have a
pfxstrategy() routine in which it performs the actual I/O.

For example, the IRIX disk drivers support both character and block driver interfaces,
and perform all I/O operations in the pfxstrategy() function. However, the pfxread(),
pfxwrite() and pfxioctl() entries supported for character-type access also need to perform
I/O operations. They do this by calling the pfxstrategy() routine indirectly, using the
kernel function physiock() or uiophysio() (see the physiock(D3) and uiophysio(D3)
reference pages, and see “Waiting for Block I/O to Complete” on page 255).

Both the physiock() and uiophysio() functions takes care of the housekeeping needed to
interface to the pfxstrategy() entry, including the work of allocating a buffer and a buf_t
structure, locking buffer pages in memory and waiting for I/O completion. Both routines
require the uio_t to describe only a single segment of data (uio_iovcnt of 1). Although they
are very similar, the two functions differ in the following ways:

• physiock() returns EINVAL if the initial offset is not a multiple of 512 bytes. If this is
a requirement of your pfxstrategy() routine, use physiock(); if not, use uiophysio().

• physiock() is compatible with SVR4, while uiophysio() is unique to IRIX.

Example 7-3 shows the skeleton of a hypothetical driver in which the pfxread() entry
does its work through the pfxstrategy() entry.

Example 7-3 Hypothetical pfxread() entry in a Character/Block Driver

hypo_read (dev_t dev, uio_t *uiop, cred_t *crp)
{

// ...validate the operation... //
return physiock(hypo_strategy, /* our strategy entry */

0, /* allocate temp buffer & buf_t */
dev, /* dev_t arg for strategy */
B_READ, /* direction flag for buf_t */
uiop);

}

The pfxwrite() entry would be identical except for passing B_WRITE instead of B_READ.

Data Transfer Entry Points

007-0911-210 175

This dual-entry strategy is required only in a driver that supports both character and
block access.

Entry Point strategy()

A block device driver does not directly support system calls by user processes. Instead,
it provides services to a filesystem such as XFS, or to the memory paging subsystem of
IRIX. These subsystems call the pfxstrategy() entry point to read data in whole blocks.

Calls to pfxstrategy() are not directly related in time to system functions called by a user
process. For example, a filesystem may buffer many blocks of data in memory, so that the
user process may execute dozens or hundreds of write() calls without causing an entry
to the device driver. When the user function closes the file or calls fsync()—or when for
unrelated reasons the filesystem needs to free some buffers—the filesystem calls
pfxstrategy() to write numerous blocks of data.

In a driver that supports the character interface as well, the pfxstrategy() entry can be
called indirectly from the pfxread(), pfxwrite() and pfxioctl() entries, as described under
“Calling Entry Point strategy() From Entry Point read() or write()” on page 174.

The prototype of the pfxstrategy() entry point is

int pfxstrategy(struct buf *bp);

The argument is the address of a buf_t structure, which gives the strategy routine the
information it needs to perform the I/O:

• The dev_t, from which the driver can get major and minor device numbers or the
device information from the hwgraph vertex

• The direction of the transfer (read or write)

• The location of the buffer in kernel memory

• The amount of data to transfer

• The starting block number on the device

For more on the contents of the buf_t structure, see “Structure buf_t” on page 206 and the
buf(D4) reference page.

The driver uses the information in the buf_t to validate the data transfer and programs
the device to start the transfer. Then it stores the address of the buf_t where the interrupt

176 007-0911-210

7: Structure of a Kernel-Level Driver

handler can find it (see “Interrupt Entry Point and Handler” on page 185) and calls
biowait() to wait for the operation to complete. For the next step, see “Completing Block
I/O” on page 187 (see also the biowait(D3) reference page).

Poll Entry Point

The pfxpoll() entry point is called by the kernel when a user process calls the poll() or
select() system function asking for status on a character special device. To implement it,
you need to understand the IRIX implementation of poll().

Poll Entry Point

007-0911-210 177

Use and Operation of poll(2)

The IRIX version of poll() allows a process to wait for events of different types to occur
on any combination of devices, files, and STREAMS (see the poll(2) and select(2)
reference pages). It is possible for multiple processes to be waiting for events on the same
device.

It is up to you as the designer of a driver to decide which of the events that are
documented in poll(2) are meaningful for your device. Other requested events simply
never happen to the device.

Much of the complexity of poll() is handled by the IRIX kernel, but the kernel requires
the assistance of any device driver that supports poll(). The driver is expected to allocate
and hold a pollhead structure (declared in sys/poll.h) for each minor device that it
supports. Allocation is simple; the driver merely calls the phalloc() kernel function. (The
pfxstart() entry point is a suitable place for this call; see “Entry Point start()” on page 161.)

There are two phases to the operation of poll(). When the system function is called, the
kernel calls the pfxpoll() entry point to find out if any requested events are pending at
this time. If the kernel finds any event s pending (on this or any other polled object), the
poll() function returns to the user process. Nothing further is required.

However, when no requested event has happened, the user process expects the poll()
function to block until an event has occurred. The kernel must implement this delay. It
would be too inefficient for the kernel to repeatedly test for events. The kernel must rely
on device drivers to notify it when an event has occurred.

Use of pollwakeup()

A device driver that supports pfxpoll() is required to notify the kernel whenever an event
that the driver supports has occurred. The driver does this by calling a kernel function,
pollwakeup(), passing the pollhead structure for the affected device, and bit flags for the
events that have taken place. In the event that one or more user processes are blocked in
a poll(), waiting for an event from this device, the call to pollwakeup() will release the
sleeping processes. For an example, see “Calling pollwakeup()” on page 187.

178 007-0911-210

7: Structure of a Kernel-Level Driver

Use of pollwakeup() Without Interrupts

If the device in question does not support interrupts, the driver cannot support poll()
unless it can somehow get control to discover an event and report it to pollwakeup().
One possibility is that the driver could simulate interrupts by setting a succession of
itimeout() delays. On each timeout the driver would test its device for a change of status,
call pollwakeup() when an event has occurred; and schedule a new delay. (See “Waiting
for Time to Pass” on page 253.)

Entry Point poll()

The prototype for pfxpoll() is as follows:

int pfxpoll(dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp,
unsigned int *genp);

The argument values are

Example 7-4 shows the pfxpoll() code of a hypothetical device driver. Only three event
tests are supported: POLLIN and POLLRDNORM (treated as equivalent) and
POLLOUT. The device driver maintains an array of pollhead structures, one for each
supported minor device. These are presumably allocated during initialization.

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

events Bit-flags for the events the user process is testing, as passed to poll()
and declared in sys/poll.h.

*reventsp A field to receive the bit-flags of events that have occurred, or to
receive 0x0000 if no requested events have occurred.

anyyet and *phpp When anyyet is zero and no events have occurred, the kernel requires
the address of the pollhead structure for this minor device to be
returned in *phpp.

*genp A pointer to an unsigned integer that is used by the driver to store
the current value of the pollhead’s generation number at the time of
the poll. (New in IRIX 6.5.)

Poll Entry Point

007-0911-210 179

Example 7-4 pfxpoll() Code for Hypothetical Driver

struct pollhead phds[MAXMINORS];
#define OUR_EVENTS (POLLIN|POLLOUT|POLLRDNORM)
hypo_poll(dev_t dev, short events, int anyyet,

short *reventsp, struct pollhead **phpp, unsigned int *genp)
{

minor_t dminor = geteminor(dev);
short happened = 0;
short wanted = events & OUR_EVENTS;

 *genp = POLLGEN(&phds[dminor])
if (wanted & (POLLIN|POLLRDNORM))
{

if (device_has_data_ready(dminor))
happened |= (POLLIN|POLLRDNORM);

}
if (wanted & POLLOUT)
{

if (device_ready_for_output(dminor))
happened |= POLLOUT;

}
if (device_pending_error(dminor))

happened |= POLLERR;
if (0 == (*reventsp = happened))
{

if (anyyet) *phpp = &phds[dminor]
}
return 0;

}

The code in Example 7-4 begins by discarding any unsupported event flags that might
have been requested, and passes back the driver’s pollhead generation number before
probing the device. Then it tests the remaining flags against the device status. If the
device has an uncleared error, the code inserts the POLLERR event. If no events were
detected, and if the kernel requested it, the address of the pollhead structure for this minor
device is returned.

If no requested event has occurred, the process will queue awaiting the requested events,
provided that no event has occurred in the interim—before it is able to queue. This is
determined by comparing the pollhead generation number at the time of queueing with
the pollhead generation number passed back at the initial request. Since a call to
pollwakeup() increments the pollhead generation number, any difference in the current
pollhead generation number to the one at the time of the initial request indicates a device
event has occurred, and the device must be queried again to determine if it was a

180 007-0911-210

7: Structure of a Kernel-Level Driver

requested event. If the values of the previous and current pollhead generation numbers
are equal, the process queues.

Memory Map Entry Points

A user process requests memory mapping by calling the system function mmap(). When
the mapped object is a character device special file, the kernel calls the pfxmmap() or
pfxmap() entry to validate and complete the mapping. To understand these entry points,
you must understand the mmap() system function.

Concepts and Use of mmap()

The purpose of the mmap() system function (see the mmap(2) reference page) is to make
the contents of a file directly accessible as part of the virtual address space of the user
process. The results depend on the kind of file that is mapped:

• When the mapped object is a normal file, the process can load and store data from
the file as if it were an array in memory.

• When the mapped object is a character device special file, the process can load and
store data from device registers as if they were memory variables.

• When the mapped object is a block of memory owned and prepared by a
pseudo-device driver, the process gains access to some special piece of memory data
that it would not normally be able to access.

In all cases, access is gained through normal load and store instructions, without the
overhead of calling system functions such as read(). Furthermore, the same mapping can
be executed by other processes, in which case the same memory, or file, or device is
shared by multiple, concurrent processes. This is how shared memory segments are
achieved.

Memory Map Entry Points

007-0911-210 181

Use of mmap()

The mmap() system function takes four key parameters:

• the file descriptor for an open file, which can be either a normal disk file or a device
special file

• an offset within that file at which the mapped data is to start. For a normal file, this
is a file offset; for a device file, it represents an address in the address space of the
device or the bus

• the length of data to be mapped

• protection flags, showing whether the mapped data is read-only or read-write

When the mapped object is a normal file, the filesystem implements the mapping. The
filesystem does not call the block device driver for assistance in mapping a file. It does
call the block device driver pfxstrategy() entry to read and write blocks of file data as
necessary, but the mapping of pages of data into pages of memory is controlled in the
filesystem code.

When the mapped object is a device special file, the mmap() parameters are passed to the
device driver at either its pfxmmap() or pfxmap() entry point. The device driver interprets
the parameters in the context of the device, and uses a kernel function to create the
mapping.

Persistent Mappings

Once a device or kernel memory has been mapped into some user address space, the
mapping persists until the user process terminates or calls unmap() (see the unmap(2)
reference page). In particular, the mapping does not end simply because the device
special file is closed. You cannot assume, in the pfxclose() or pfxunload() entry points,
that all mappings to devices have ended.

Entry Point map()

The pfxmap() entry point can be defined in either a character or a block driver (it is the
only mapping entry point that a block driver can supply). The function prototype is

int pfxmap(dev_t dev, vhandl_t *vt,
off_t off, int len, int prot);

182 007-0911-210

7: Structure of a Kernel-Level Driver

The argument values are

The first task of the driver is to verify that the access specified in prot is allowed. The next
task is to validate the off and len values: do they fall in the valid address space of the
device?

When the device driver approves of a mapping, it uses a kernel function, v_mapphys(),
to establish the mapping. This function (documented in the v_mapphys(D3) reference
page) takes the vhandle_t, an address in kernel cached or uncached memory, and a length.
It makes the specified region of kernel space a part of the address space of the user
process.

For example, a pseudo-device driver that intends to share kernel virtual memory with
user processes would first allocate the memory:

caddr_t *kaddr = kmem_alloc (len, KM_CACHEALIGN);

It would then use the address of the allocated memory with the vhandle_t value it had
received to map the allocated memory into the user space:

v_mapphys (vt, kaddr, len)

Note: There are no special precautions to take when mapping cached memory into user
space, or when mapping device registers or bus addresses. However, you should almost
never map uncached memory into user space. The effects of uncached memory access are
hardware dependent and differ between multiprocessors and uniprocessors. Among
uniprocessors, the IP26 and IP28 CPU modules have highly restrictive rules for the use
of uncached memory (see “Uncached Memory Access in the IP26 and IP28” on page 34).
In general, mapping uncached memory makes a driver nonportable and is likely to lead
to subtle failures that are hard to resolve.

dev A dev_t value from which you can extract both the major and minor
device numbers.

vt The address of an opaque structure that describes the assigned address
in the user process address space. The structure contents are subject to
change.

off, len The offset and length arguments passed to mmap() by the user process.

prot Flags showing the access intentions of the user process.

Memory Map Entry Points

007-0911-210 183

Example 7-5 contains an edited fragment of code from a Silicon Graphics device driver.
This pseudo-device driver, whose prefix is flash_, provides access to “flash” PROM in
certain computer models. It allows a user process to map the PROM into user space.

Example 7-5 Edited Fragment of flash_map()

int flash_map(dev_t dev, vhandl_t *vt, off_t off, long len)
{

long offset = (long) off; /*Actual offset in flash prom*/
/* Don’t allow requests which exceed the flash prom size */

if ((offset + len) > FLASHPROM_SIZE)
return ENOSPC;

/* Don’t allow non page-aligned offsets */
if ((offset % NBPC) != 0)

return EIO;
/* Only allow mapping of entire pages */

if ((len % NBPC) != 0)
return EIO;

return v_mapphys(vt, FLASHMAP_ADDR + offset, len);
}

Note: Because there is no way for a driver to retract a successful call to v_mapphys(),
your driver must return success to a pfxmap() call if v_mapphys() succeeds. In other
words, you should make the call to v_mapphys() the last part of your pfxmap() routine,
and only call it if you have determined that there have been no errors in any previous
part of this routine. If there have been errors, the routine should return an error and not
call v_mapphys(). If there have been no errors, then pfxmap() can return error or success
based on the call to v_mapphys().

When the driver allocates some memory resource associated with the mapping, and
when more than one mapping can be active at a time, the driver needs to tag each
memory resource so it can be located when the pfxunmap() entry point is called. One
answer is to use the v_gethandle() macro defined in ksys/ddmap.h. This macro takes
a pointer to a vhandle_t and returns a unique pointer-sized integer that can be used to tag
allocations. No other information in ksys/ddmap.h is supported for driver use.

Entry Point mmap()

The pfxmmap() (note: two letters “m”) entry can be used only in a character device driver.
The prototype is

184 007-0911-210

7: Structure of a Kernel-Level Driver

int pfxmmap(dev_t dev, off_t off, int prot);

The argument values are

The function is expected to return the page frame number (PFN) that corresponds to the
offset off in the device address space. A PFN is an address divided by the page size. (See
“Working With Page and Sector Units” on page 221 for page unit conversion functions.)

This entry point is supported only for compatibility with SVR4. When the kernel needs
to map a character device, it looks first for pfxmap(). It calls pfxmmap() only when
pfxmap() is not available. The differences between the two entry points are as follows:

• This entry point receives no vhandl_t argument, so it cannot use v_mapphys(). It
must calculate a page frame number, which means that it has to be aware of the
current page size, obtainable from the ptob() kernel function, see ptob(D3).

• This entry point does not receive a length argument, so it has to assume a default
length for every map (typically the page size).

• When a mapping is created with this entry point, the pfxunmap() entry is not called.

Entry Point unmap()

The kernel calls the pfxunmap() entry point after a mapping is created using the pfxmap()
entry point. This entry should be supplied, even if it is an empty function, when the
pfxmap() entry point is supplied. If it is not supplied, the munmap() system function
returns the ENODEV error to the user process.

The pfxunmap() entry point is only called when the mapped region has been completely
unmapped by all processes. For example, suppose a parent process calls mmap() to map
a device. Then the parent creates one or more child processes using sproc(). Each child
shares the address space, including the mapped segment. A process in the share group
can terminate, or can explicitly unmap() the segment or part of the segment, but these
actions do not result in a call to pfxunmap(). Only when the last process with access to
the segment has fully unmapped the segment is pfxunmap() called.

dev A dev_t value from which you can extract both the major and minor device
numbers.

off The offset argument passed to mmap() by the user process.

prot Flags showing the access intentions of the user process.

Interrupt Entry Point and Handler

007-0911-210 185

On entry, the kernel has completed unmapping the object from the user process address
space. This entry point does not need to do anything to affect the user address space; it
only needs to release any resources that were allocated to support the mapping. The
prototype is

int pfxunmap(dev_t dev, vhandl_t *vt);

The argument values are

If the driver allocated no resources to support a mapping, no action is needed here; the
entry point can consist of a “return 0” statement.

When the driver does allocate memory or a PIO map to support a mapping, and supports
multiple mappings, the driver needs to identify the resource associated with this
particular mapping in order to release it. The vt_gethandle() function returns a unique
number based on the vt argument; this can be used to identify resources.

Interrupt Entry Point and Handler

In traditional UNIX, when a hardware device presents an interrupt, the kernel locates the
device driver for the device and calls the pfxintr() entry point (see the intr(D2) reference
page). In current practice, an entry point named pfxintr() is not given any special
treatment—although driver writers often give this name to the interrupt-handling
function even so.

A device driver must register a specific interrupt handler for each device. The kernel
functions for doing this are bus-specific, and are discussed in the bus-specific chapters.
For example, the means of registering a VME interrupt handler is discussed in
Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2”. However, the discussion
of interrupts that follows is still relevant to any interrupt handler.

In principle an interrupt can happen at any time. Normally an interrupt occurs because
at some previous time, the driver initiated a device operation. Some devices can interrupt
without a preceding command.

dev A dev_t value from which you can extract both the major and minor device
numbers.

vt The address of an opaque structure that describes the assigned address in
the user process address space.

186 007-0911-210

7: Structure of a Kernel-Level Driver

Associating Interrupt to Driver

The association between an interrupt and the driver is established in different ways
depending on the hardware.

• The VECTOR statement establishes the interrupt level and the associated driver for
devices on the EISA and VME busses.

• For some VME devices, the interrupt level is set dynamically using vme_ivec_set()
(see Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2”).

• For devices on the SCSI bus, all interrupts are handled by a single, low-level driver
which notifies a callback function (see Chapter 16, “SCSI Device Drivers”).

• For devices on the PCI bus, the driver registers an interrupt handler using
pci_intr_connect() at the time the device is attached (“Interrupt Signal Distribution”
on page 722).

In all cases, the driver specifies the interrupt handler as the address of a function to be
called, with an argument to be passed to the function when it is called. This argument
value is typically the address of a data structure in which the driver has stored
information about the device. Alternatively, it could be the dev_t that names the device—
from which the interrupt handler can get device information, see “Allocating Storage for
Device Information” on page 164.

Interrupt Handler Operation

In general, the interrupt handler implements the following tasks.

• When the driver supports multiple logical units, use its argument value to locate the
data structure for the interrupting unit.

• Determine the reason for the interrupt by interrogating the device. This is typically
done with PIO loads and stores of device registers.

• When the interrupt is a response to an I/O operation, note the success or failure of
the operation.

• When the driver top half is waiting for the interrupt, waken it.

• If the driver supports polling, and the interrupt represents a pollable event, call
pollwakeup().

• If the device is not in an error state and another operation is waiting to be started,
start it.

Interrupt Entry Point and Handler

007-0911-210 187

The details of each of these tasks depends on the hardware and on the design of the data
structures used by the driver top half. In general, you should design an interrupt handler
so that it does the least possible and exits as quickly as possible.

Completing Block I/O

In a block device driver, an I/O operation is represented by the buf_t structure. The
pfxstrategy() routine starts operations and waits for them to complete (see “Entry Point
strategy()” on page 175).

The interrupt entry point sets the residual count in b_resid. It can post an error using
bioerror(). It posts the operation complete and wakens the pfxstrategy() routine by
calling biodone(). If the pfxstrategy() entry has set the address of a completion callback
function in the b_iodone field of the buf_t, biodone() invokes it. (For more discussion, see
“Waiting for Block I/O to Complete” on page 255.)

Completing Character I/O

In a character device driver, the driver top half typically awaits an interrupt by sleeping
on a semaphore or synchronizing variable, and the interrupt routine posts the semaphore
(see “Waiting for a General Event” on page 257). Error information must be passed in
driver variables according to some local convention.

Calling pollwakeup()

When the interrupt represents an event that can be reported by the driver’s pfxpoll()
entry point (see “Entry Point poll()” on page 178), the interrupt handler must report the
event to the kernel, in case some user process is waiting in a poll() call. Hypothetical code
to do this is shown in Example 7-6.

Example 7-6 Hypothetical Call to pollwakeup()

hypo_intr(int ivec)
{

struct hypo_dev_info *pinfo;
if (! pinfo = find_dev_info(ivec))

return; /* not our device */
...
if (pinfo->have_data_flag)

pollwakeup (pinfo->phead, POLLIN, POLLRDNORM);
if (pinfo->output_ok_flag)

pollwakeup (pinfo->phead, POLLOUT);
...

188 007-0911-210

7: Structure of a Kernel-Level Driver

Note: It’s important that the call to pollwakeup() occurs after any state has been updated
by the event interrupt routine.

Interrupts as Threads

In traditional UNIX design, and in versions of IRIX preceding IRIX 6.4, an interrupt is
handled as an asynchronous trap. The hardware trap handler calls the driver’s interrupt
function as a subroutine. In these systems, when the interrupt handler code is entered the
system is in an unknown state. As a result, the interrupt handler can use only a restricted
set of kernel services, and no services that can sleep.

Starting with IRIX 6.4, the IRIX kernel does all its work under control of lightweight
executable entities called “kernel threads.” When a device driver registers an interrupt
handler, the kernel allocates a thread to execute that handler. The thread begins execution
by waiting on an internal semaphore.

When a hardware interrupt occurs, the trap code merely posts the semaphore on which
the handler’s thread is waiting. Soon thereafter, the interrupt thread is scheduled to
execute, and it calls the function registered by the driver.

The differences from previous releases are small. It is still true that the interrupt handler
code is entered unpredictably, at a high priority; does little; and exits quickly. However,
there are the following differences compared to earlier systems:

• The interrupt handler can be preempted by kernel threads running at higher
priorities.

Previously, an interrupt handler in a uniprocessor system could only be preempted
by an interrupt from a device with higher hardware priority. In IRIX 6.4, the handler
can be preempted by kernel threads running daemons and high-priority real-time
tasks, in addition to other interrupt threads.

• There are no restrictions on the kernel services an interrupt handler may call.

In particular, the interrupt handler is permitted to call services that could sleep.
However, this is still typically not a good idea. For example, an interrupt handler
should almost never allocate memory.

• Mutual exclusion between the interrupt handler the driver top half can be done
with mutex locks, instead of requiring the use of spinlocks.

Interrupt Entry Point and Handler

007-0911-210 189

• The handler can do more work, and more elaborate work, if that leads to a better
design for the driver.

In IRIX 6.4, the driver writer has no control over the selection of interrupt thread priority.
The kernel assigns a high relative priority to threads that execute interrupt handlers.
However, higher priorities exist, and an interrupt thread can be preempted.

Mutual Exclusion

In historical UNIX systems, which were uniprocessor systems, when the only CPU is
executing the interrupt handler, nothing else is executing. The hardware architecture
ensured that top-half code could not preempt the interrupt handler; and the top half
could use functions such as splhi() to block interrupts during critical sections (see
“Priority Level Functions” on page 252). An interrupt handler could only be preempted
by an interrupt of higher priority—which would be an interrupt for a different driver,
and so would have no conflicts with this driver over the use of data.

None of these comfortable assumptions are tenable any longer.

Hardware Exclusion Is Ineffective

In a multiprocessor, an interrupt can be taken on any CPU, while other CPUs continue to
execute kernel or user code. This means that the top half code cannot block out interrupts
using a function such as splhi(), because the interrupt could be taken on another CPU.
Nor can the interrupt handler assume that it is safe; another CPU could be executing a
top-half entry point to the same driver, for the same device, as an interrupt handler.

With the threaded kernel of IRIX 6.4, it is even possible for a process with an extremely
high priority, in the same CPU (or in the only CPU of a uniprocessor), to enter the driver
top half, preempting the thread that is executing the interrupt handler.

It is theoretically possible in a threaded kernel for a device to interrupt; for the kernel
thread to be scheduled and enter the interrupt handler; and for the device to interrupt
again, resulting in multiple concurrent entries to the same interrupt handler. However,
IRIX prevents this. The interrupt handler for a device is entered serially. If you register
the same handler function for multiple devices, it can be entered concurrently when
different devices present interrupts at the same time.

190 007-0911-210

7: Structure of a Kernel-Level Driver

Using Locking Between Top and Bottom Half

The only solution possible is that you must use a software lock of some kind to protect
the data objects that can be accessed concurrently by top-half code and the interrupt
handler. Before using that shared data, a function must acquire the lock. Options for the
type of lock are discussed under “Designing for Multiprocessor Use” on page 194.

Interrupt Performance and Latency

Another interrupt cannot be handled from the same device until the interrupt handler
function returns. The interrupt thread runs at very nearly the highest priority, so all but
the most essential work is suspended in the interrupted CPU until the handler returns.

Support Entry Points

Certain driver entry points are used to support the operations of the kernel or the
administration of the system.

Entry Point unreg()

The pfxunreg() entry point is called in a loadable driver, prior to the call to the
pfxunload() entry point. This entry point is used by drivers that support the pfxattach()
entry point (see “Attach and Detach Entry Points” on page 162). Such drivers have to
register with the kernel as supporting devices of certain types. Before unloading, a driver
needs to retract this registration, so the kernel will not call the driver to attach another
device.

If pfxunreg() returns a nonzero error code, the driver is not unloaded.

Entry Point unload()

The pfxunload() entry point is called when the kernel is about to dynamically remove a
loadable driver from the running system. A driver can be unloaded either because all its
devices are closed and a timeout has elapsed, or because the operator has used the ml
command (see the ml(1) reference page). The kernel calls pfxunload() only when no

Support Entry Points

007-0911-210 191

device special files managed by the driver are open. If any device had been opened, the
pfxclose() entry has been called.

It is not easy to retain state information about the device over the time when the driver
is not in memory. The entire text and data of a loadable driver, including static variables,
are removed and reloaded. Global variables defined in the descriptive file (see
“Describing the Driver in /var/sysgen/master.d” on page 274) remain in memory after
the driver is unloaded, as do any allocated memory addressed from a hwgraph vertex
(see “Attaching Information to Vertexes” on page 239). Be sure not to store any addresses
of driver code or driver static variables in global variables or vertex structures, since the
driver addresses will be different when the driver is reloaded.

Other than data addressed from the hwgraph, allocated dynamic memory should be
released. The driver should also release any process handles (see “Sending a Process
Signal” on page 243).

The driver is not required to unload. If the driver should not be unloaded at this time, it
returns a nonzero return code to the call, and the kernel does not unload it. There are
several reasons why a driver should not be unloaded.

A driver should never permit unloading when there is any kind of pointer to the driver
held in any kernel data structure. It is a frequent design error to unload when there is a
live pointer to the driver. Unpredictable kernel panics often result.

One example of a live pointer to a driver is a pending callback function. Any pending
itimeout() or bufcall() timers should be cancelled before returning 0 from pfxunload().
Another example is a registered interrupt handler. The driver must disconnect any
interrupt handler before unloading; or else refuse to unload.

Entry Point halt()

The kernel calls the pfxhalt() entry point, if one exists, while performing an orderly
system shutdown (see the halt(1) reference page). No other driver entry points are called
after this one. The prototype is simply

void pfxhalt(void);

Since the system is shutting down, there is no point in returning allocated memory. The
only purpose this entry point can serve is to leave the device in a safe and stable

192 007-0911-210

7: Structure of a Kernel-Level Driver

condition. For example, this is the place at which a disk driver could command the heads
of the drive to move to a safe zone for power off.

The driver cannot assume that interrupts are disabled or enabled. The driver cannot
block waiting for device actions, so whatever commands it issues to the device must take
effect immediately.

Entry Point size()

The pfxsize() entry point is required of block device drivers. It reports the size of the
device in “sector” units, where a “sector” size is declared as NBPSCTR in sys/param.h
(currently 512). The prototype is

int pfxsize(dev_t dev);

The device major and minor numbers can be extracted from the dev argument. The entry
point is not called until pfxopen() has been called. Typically the driver will calculate the
size of the medium during pfxopen().

Since the int return value is 32 bits in all systems, the largest possible block device is 1,024
gigabytes ((231*512)/1,0243).

Entry Point print()

The pfxprint() entry point is called from the kernel to display a diagnostic message when
an error is detected on a block device. The prototype and the complete logic of the entry
point is shown in Example 7-7.

Example 7-7 Entry Point pfxprint()

#include <sys/cmn_err.h>
#include <sys/ddi.h>
int hypo_print(dev_t dev, char *str)
{

cmn_err(CE_NOTE,"Error on dev %d: %s\n",geteminor(dev),str);
return 0;

}

Handling 32-Bit and 64-Bit Execution Models

007-0911-210 193

Handling 32-Bit and 64-Bit Execution Models

The pfxioctl() entry point can be passed a data structure from the user process address
space; that is, the arg value can be a pointer to a structure or an array of data. In order to
interpret such a structure, the driver has to know the execution model for which the user
process was compiled.

The execution model is specified when code is compiled. The 32-bit model (compiler
option -32 or -n32) uses 32-bit address values and a long int contains 32 bits. The 64-bit
model (compiler option -64) uses 64-bit address values and a long int contains 64 bits.
(The size of an unqualified int is 32 bits in both models.) The execution model is
sometimes casually called the “ABI” (Authorized Binary Interface), but this is an
improper use of that term—an ABI comprises calling conventions, public names, and
structure definitions, as well as the execution model.

An IRIX kernel compiled to the 32-bit model contains 32-bit drivers and supports only
32-bit user processes. A kernel compiled to the 64-bit model contains 64-bit drivers, but
it supports user processes compiled to either 32-bit or 64-bit models. Therefore, in a 64-bit
kernel, a driver can be asked to interpret data produced by a 32-bit program.

This is true only of the pfxioctl() entry point. Other driver entry points move data to and
from user space as streams or blocks of bytes—not as a structure with fields to be
interpreted.

Since in other respects it is easy to make your driver portable between 64-bit and 32-bit
systems, you should design your driver so that it can handle the case of operating in a
64-bit kernel, receiving ioctl() requests alternately from 32-bit and 64-bit programs.

The simplest way to do this is to define the arguments passed to the entry points in such
a way that they have the same precision in either system. However, this is not always
possible. To handle the general case, the driver must know to which model the user
process was compiled.

In any top-half entry point (where there is a user process context), you find this out by
calling the userabi() function (for which there is no reference page available). The
prototype of userabi() (declared in sys/ddi.h) is

int userabi(__userabi_t *);

194 007-0911-210

7: Structure of a Kernel-Level Driver

If there is no user process context, userabi() returns ESRCH. Otherwise it fills out a
__userabi_t structure and returns 0. The structure of type __userabi_t (declared in
sys/types.h) contains the fields listed below:

Store the value of uabi_szptr when opening a device. Then you can use it to choose
between 32-bit and 64-bit declarations of a structure passed to pfxioctl() or an address
passed to pfxpoll().

In any part of the driver, including interrupt threads, you can get the current ABI by
calling the kernel function get_current_abi(). It takes no argument. It returns an
unsigned character value that can be decoded using macros and constants that are
declared in the header file sys/kabi.h.

Designing for Multiprocessor Use

Multiprocessor computers are central to the Silicon Graphics product line and are
becoming increasingly common. A device driver that is not multiprocessor-ready can be
used in a multiprocessor, but it is likely to cause a performance bottleneck. By contrast, a
multiprocessor-ready driver works well in a uniprocessor with no cost in performance.

The Multiprocessor Environment

A multiprocessor has two or more CPU modules, all of the same type. The CPUs execute
independently, but all share the same main memory. Any CPU can execute the code of
the IRIX kernel, and it is common for two or more CPUs to be executing kernel code,
including driver code, simultaneously.

Uniprocessor Assumptions

Traditional UNIX architecture assumes a uniprocessor hardware environment with a
hierarchy of interrupt levels. Ordinary code could be preempted by an interrupt, but an
interrupt handler could only be preempted by an interrupt at a higher level.

uabi_szint Size of a user int (4).

uabi_szlong Size of a user long (4 or 8).

uabi_szptr Size of a user address (4 or 8).

uabi_szlonglong Size of a user long long (8).

Designing for Multiprocessor Use

007-0911-210 195

This assumed hardware environment was reflected in the design of device drivers and
kernel support functions.

• In a uniprocessor, an upper-half driver entry point such as pfxopen() cannot be
preempted except by an interrupt. It has exclusive access to driver variables except
for those changed by the interrupt handler.

• Once in an interrupt handler, no other code can possibly execute except an interrupt
of a higher hardware level. The interrupt handler has exclusive access to driver
variables.

• The interrupt handler can use kernel functions such as splhi() to set the hardware
interrupt mask, blocking interrupts of all kinds, and thus getting exclusive access to
all memory including kernel data structures.

All of these assumptions fail in a multiprocessor.

• Upper-half entry points can be entered concurrently on multiple CPUs. For
example, one CPU can be executing pfxopen() while another CPU is in pfxstrategy().
Exclusive use of driver variables cannot be assumed.

• An interrupt can be taken on one CPU while upper-half routines or a timeout
function execute concurrently on other CPUs. The interrupt routine cannot assume
exclusive use of driver variables.

• Interrupt-level functions such as splhi() are meaningless, since at best they set the
interrupt mask on the current CPU only. Other CPUs can accept interrupts at all
levels. The interrupt handler can never gain exclusive access to kernel data.

The process of making a driver multiprocessor-ready consists of changing all code whose
correctness depends on uniprocessor assumptions.

Protecting Common Data

Whenever a common resource can be updated by two processes concurrently, the
resource must be protected by a lock that represents the exclusive right to update the
resource. Before changing the resource, the software acquires the lock, claiming exclusive
access. After changing the resource, the software releases the lock.

The IRIX kernel provides a set of functions for creating and using locks. It provides
another set of functions for creating and using semaphore objects, which are like locks but
sometimes more flexible. Both sets of functions are discussed under “Waiting and
Mutual Exclusion” on page 244.

196 007-0911-210

7: Structure of a Kernel-Level Driver

Sleeping and Waking

Sometimes the lock is not available—some other process executing in another CPU has
acquired the lock. When this happens, the requesting process is delayed in the lock
function until the lock is free. To delay, or sleep, is allowed for upper-half entry points,
because they execute (in effect) as subroutines of user processes.

Interrupt handlers and timeout functions are not permitted to sleep. They have no
process identity and so there is no mechanism for saving and restoring their state. An
interrupt handler can test a lock, and can claim the lock conditionally, but if a lock is
already held, the handler must have some alternate way of storing data.

Synchronizing Within Upper-Half Functions

When designing an upper-half entry point, keep in mind that it could be executed
concurrently with any other upper-half entry point, and that the one entry point could
even be executed concurrently by multiple CPUs. Only a few entry points are immune:

• The pfxinit(), pfxedtinit(), and pfxstart() entry points cannot be entered concurrently
with each other or any other entry point (pfxstart() could be entered concurrently
with the interrupt handler).

• The pfxunload() and pfxhalt() entry points cannot be entered concurrently with any
other entry point except for stray interrupts.

• Certain entry points have no cause to use shared data; for example, pfxsize() and
pfxprint() normally do not need to take any precautions.

Other upper-half entry points, and all STREAMS entry points, can be entered
concurrently by multiple CPUs, when the driver is multiprocessor-aware. In earlier
versions of IRIX, you could place a flag in the pfxdevflag of a character driver that made
the kernel run the driver only on CPU 0. This effectively serialized all use of that driver.
That feature is no longer supported. You must deal with concurrency.

Serializing on a Single Lock

You can create a single lock for upper-half serialization. Each upper-half function begins
with read-only operations such as extracting the device minor number, getting device
information from the hwgraph vertex, and testing and validating arguments. You allow
these to execute concurrently on any CPU.

Designing for Multiprocessor Use

007-0911-210 197

In each entry point, when the preliminaries are complete, you acquire the single lock, and
release it just before returning. The result is that processes are serialized for I/O through
the driver. If the driver supports only a single device, processes would be serialized in
any case, waiting for the device to operate. Since the upper half can execute on any CPU,
latency is more predictable.

Serializing on a Lock Per Device

When the driver supports multiple minor devices, you will normally have a data
structure per device. An upper-half routine is concerned only with one device. You can
define a lock in the data structure for each device instance, and acquire that lock as soon
as the device information structure is known.

This method permits concurrent execution of upper-half requests for different minor
devices, but it serializes access to any one device.

Coordinating Upper-Half and Interrupt Entry Points

Upper-half entry points prepare work for the device to do, and the interrupt handler
reports the completion of the device action (see “Interrupt Handler Operation” on
page 186). In a block device driver, this communication is relatively simple. In a character
driver, you have more design options. The kernel functions mentioned in the following
topics are covered under “Waiting and Mutual Exclusion” on page 244.

Coordinating Through the buf_t

In a block device driver, the pfxstrategy() routine initiates a read or a write based on a
buf_t structure (see “Entry Point strategy()” on page 175), and leaves the address of the
buf_t where the interrupt routine can find it. Then pfxstrategy() calls the biowait() kernel
function to wait for completion.

The pfxintr() entry point updates the buf_t (using pfxbioerror() if necessary) and then
uses biodone() to mark the buf_t as complete. This ends the wait for pfxstrategy().

Coordination in a Character Driver

In a character driver that supports interrupts, you design your own coordination
mechanism. The simplest (and not recommended) would be based on using the kernel

198 007-0911-210

7: Structure of a Kernel-Level Driver

function sleep() in the upper half, and wakeup() in the interrupt routine. It is better to
use a semaphore and use psema() in the upper half and vsema() in the interrupt handler.

If you need to allow for timeouts in addition to interrupts, you have to deal with the
complication that the timeout function can be called concurrently with an interrupt. In
this case it is better to use synchronization variables (see “Using Synchronization
Variables” on page 258).

Choice of Lock Type

In versions before IRIX 6.4, interrupt handlers must not use kernel services that can sleep.
This prevented you from using normal locks to provide mutual exclusion between the
upper half and the interrupt handler. The lock had to be a basic lock (see “Basic Locks”
on page 245), a type that is implemented as a spinning lock in a multiprocessor.

Now that interrupt handlers execute as kernel threads, they have the ability to sleep if
necessary. This means that you can now use mutex locks (see “Using Mutex Locks” on
page 247) between the upper half and interrupt handler. Although you do not want an
interrupt handler to be delayed, it is much better for a kernel thread to sleep briefly while
waiting for a lock, than for it to spin in a tight loop. In general, mutex locks are more
efficient than spinning locks.

In the event you must maintain a multiprocessor driver that operates in both IRIX 6.4 and
an earlier, nonthreaded version, you can make the choice of lock type dynamically using
conditional compilation. Example 7-8 shows one technique.

Example 7-8 Conditional Choice of Mutual Exclusion Lock Type

#ifdef INTR_KTHREADS
#define INT_LOCK_TYPE mutex_t
#define INT_LOCK_INIT(p) MUTEX_INIT(p,MUTEX_DEFAULT,”DRIVER_NAME”)
#define INT_LOCK_LOCK(p) MUTEX_LOCK(p,-1)
#define INT_LOCK_FREE(p) MUTEX_UNLOCK(p)
#else /* not a threaded kernel */
#define INT_LOCK_TYPE struct{lock_t lk, int cookie}
#define INT_LOCK_INIT(p)
LOCK_INIT(&p->lk,(uchar_t)-1,plhi,(lkinfo_t)-1)
#define INT_LOCK_LOCK(p) (p->cookie=LOCK(&p->lk,plhi))
#define INT_LOCK_FREE(p) UNLOCK(&p->lk,p->cookie)
#endif

Designing for Multiprocessor Use

007-0911-210 199

Converting a Uniprocessor Driver

As a general approach, you can convert a uniprocessor driver to make it
multiprocessor-safe in the following steps:

1. If it currently uses the D_OLD flag, or has no pfxdevflag constant, convert it to use
the current interface, with a pfxdevflag of D_MP.

2. Make sure it works in the original uniprocessor at the current release of IRIX.

3. Begin adding semaphores, locks, and other exclusion and synchronization tools.
Continue to test the driver on the uniprocessor. It will never wait for a lock, but the
coordination between upper half and interrupt handler should work.

4. Test on a multiprocessor.

In performing the conversion, you can look for calls to spl*() functions as marking points
at which work is needed. These functions are used for mutual exclusion in a
uniprocessor, but they are all ineffective or unnecessary in a multiprocessor-safe driver.

The code in Example 7-9 shows typical logic in a uniprocessor character driver.

Example 7-9 Uniprocessor Upper-Half Wait Logic

s = splvme();
flag |= WAITING;
while (flag & WAITING) {

sleep(&flag, PZERO);
}
splx(s);

The upper half calls the splvme() function with the intention of blocking interrupts, and
thus preventing execution of this driver’s interrupt handler while the flag variable is
updated. In a multiprocessor this is ineffective because at best it sets the interrupt level
on the current CPU. The interrupt handler can execute on another CPU and change the
variable. The corresponding interrupt handler is shown in the following example.

if (flag & WAITING) {
wakeup(&flag);
flag &= ~WAITING;

}

200 007-0911-210

7: Structure of a Kernel-Level Driver

The interrupt handler could execute on another CPU, and test the flag after the upper
half has called splvme() and before it has set WAITING in flag. The interrupt is effectively
lost. This would happen rarely and would be hard to repeat, but it would happen and
would be hard to trace. A more reliable, and simpler, technique is to use a semaphore.
The driver defines a global semaphore:

static sema_t sleeper;

A driver with multiple devices would have a semaphore per device, perhaps as an array
of sema_t items indexed by device minor number. The semaphore (or array) would be
initialized to a starting value of 1 in the pfxinit() or pfxstart() entry:

void hypo_start()
{
...

initnsema(&sleeper,1,"sleeper");
}

After the upper half started a device operation, it would await the interrupt using
psema():

psema(sleeper,PZERO);

The PZERO argument makes the wait immune to signals. If the driver should wake up
when a signal is sent to the calling process (such as SIGINT or SIGTERM), the second
argument can be PCATCH. A return value of -1 indicates the semaphore was posted by
a signal, not by a vsema() call. The interrupt handler would use vsema() to post the
semaphore.

007-0911-210 201

Chapter 8

8. Device Driver/Kernel Interface

The programming interface between a device driver and the IRIX kernel is founded on
the AT&T System V Release 4 DDI/DKI, and it remains true that a working device driver
for an SVR4 system can be ported to IRIX with relatively little difficulty. However, as both
SGI hardware and the IRIX kernel have evolved into far greater complexity and
sophistication, the driver interface has been extended. A driver can now call upon nearly
as many IRIX extended kernel functions as it can SVR4-compatible ones.

The function prototypes and detailed operation of all kernel functions are documented
in the reference pages in volume “D.” The aim of this chapter is to provide background,
context, and an overview of the interface under the following headings:

• “Important Data Types” on page 202 describes the data types that are exchanged
between the kernel and a driver.

• “Important Header Files” on page 211 summarizes the C header files that are
frequently included in a driver source file.

• “Kernel Memory Allocation” on page 213 discusses allocating kernel memory in
general and for objects of specific types.

• “Transferring Data” on page 217 discusses the problems of copying data between
user and kernel address spaces, and block-copy operations within the kernel.

• “Managing Virtual and Physical Addresses” on page 220 discusses functions for
testing and translating addresses in different spaces, for using address/length lists,
and for setting up DMA transfers.

• “Hardware Graph Management” on page 231 discusses the kernel function used to
create and modify hwgraph vertexes.

• “User Process Administration” on page 242 tells how to test the attributes of a
calling process and how to send a signal.

• “Waiting and Mutual Exclusion” on page 244 details the kinds of locks and
semaphores available, and the methods of waiting for events to occur.

202 007-0911-210

8: Device Driver/Kernel Interface

Important Data Types

In order to understand the driver/kernel interface, you need first of all to understand the
data types with which it deals.

Hardware Graph Types

As discussed under “Hardware Graph Features” on page 45, the hwgraph is composed
of vertexes connected by labelled edges. The functions for working with the hwgraph are
discussed under “Hardware Graph Management” on page 231.

Vertex Handle Type

There is no data type associated with the edge as such. The data type of a graph vertex is
the vertex_hdl_t, an opaque, 32-bit number. When you create a vertex, a vertex_hdl_t is
returned. When you store data in a vertex, or get data from one, you pass a vertex_hdl_t
as the argument.

Vertex Handle and dev_t

The device number type, dev_t, is an important type in classical driver design (see
“Device Number Types” on page 209). In IRIX 6.4, the dev_t and the vertex_hdl_t are
identical. That is, when a driver is called to open or operate a device that is represented
as a vertex in the hardware graph, the value passed to identify the device is simply the
handle to the hwgraph vertex for that device.

When a driver is called to open a device that is only represented as a special file in /dev
(as in IRIX 6.3 and earlier—there are no such devices supported by IRIX 6.4, but such
support is provided for third-party drivers in IRIX 6.5), the identifying value is an
o_dev_t, containing major and minor numbers and identical to the traditional dev_t.

Graph Error Numbers

Most hwgraph functions have graph error codes as their explicit result type. The
graph_error_t is an enumeration declared in sys/graph.h (included by
sys/hwgraph.h) having these values:

GRAPH_SUCCESS Operation successful. This success value is 0, as is
conventional in C programming.

Important Data Types

007-0911-210 203

Address Types

Device drivers deal with addresses in different address spaces. When you store
individual addresses, it is a good idea to use a data type specific to the address space. The
following types are declared in sys/types.h to use for pointer variables:

It is a very good idea to always store a pointer in a variable with the correct type. It makes
the intentions of the program more understandable, and helps you think about the
complexities of address translation.

Address/Length Lists

An address/length list, or alenlist, is a software object you use to store the address and size
of each segment of a buffer. An alenlist is a list in which each list item is a pair composed
of an address and a related length. All the addresses in the list refer to the same address
space, whether that is a user virtual space, the kernel virtual space, physical memory
space, or the address space of some I/O bus. An alenlist cursor is a pointer that ranges
over the list, selecting one pair after another.

GRAPH_DUP Data to be added already exists.

GRAPH_NOT_FOUND Data requested does not exist.

GRAPH_BAD_PARAM Typically a null value where an address is required, or
other unusable function parameter.

GRAPH_HIT_LIMIT Arbitrary limit on, for example, number of edges.

GRAPH_CANNOT_ALLOC Unable to allocate memory to expand vertex or other
data structure, possibly because “no sleep” specified.

GRAPH_ILLEGAL_REQUEST Improper or impossible request.

GRAPH_IN_USE Cannot deallocate vertex because there are references
to it.

caddr_t Any memory (“core”) address in user or kernel space.

daddr_t A disk offset or address (64 bits).

paddr_t A physical memory address.

iopaddr_t An address in some I/O bus address space.

204 007-0911-210

8: Device Driver/Kernel Interface

Figure 8-1 Address/Length List Concepts

The conceptual relationship between an alenlist and a buffer is illustrated in Figure 8-1.
A buffer area that is a single contiguous segment in virtual memory may consist of
scattered page frames in physical memory. The alenlist_t data type is a pointer to an
alenlist.

The kernel provides a variety of functions for creating alenlists, for loading them with
addresses and lengths, and for translating the addresses (see “Using Address/Length
Lists” on page 223). These functions and the alenlist_t data type are declared in
sys/alenlist.h.

Structure uio_t

The uio_t structure describes data transfer for a character device:

• The pfxread() and pfxwrite() entry points receive a uio_t that describes the buffer of
data.

Address

Length

Address

Length

Address

Length

Address

Length

alenlist-cursor

Important Data Types

007-0911-210 205

• Within an pfxioctl() entry point, you might construct a uio_t to represent data
transfer for control purposes.

• In a hybrid character/block driver, the physiock() function translates a uio_t into a
buf_t for use by the pfxstrategy() entry point.

The fields and values in a uio_t are declared in sys/uio.h, which is included by
sys/ddi.h. For a detailed discussion, see the uio(D4) reference page. Typically the
contents of the uio_t reflect the buffer areas that were passed to a read(), readv(), write(),
or writev() call (see the read(2) and write(2) reference pages).

Data Location and the iovec_t

One uio_t describes data transfer to or from a single address space, either the address
space of a user process or the kernel address space. The address space is indicated by a
flag value, either UIO_USERSPACE or UIO_SYSSPACE, in the uio_segflg field.

The total number of bytes remaining to be transferred is given in field uio_resid. Initially
this is the total requested transfer size.

Although the transfer is to a single address space, it can be directed to multiple segments
of data within the address space. Each segment of data is described by a structure of type
iovec_t. An iovec_t contains the virtual address and length of one segment of memory.

The number of segments is given in field uio_iovcnt. The field uio_iov points to the first
iovec_t in an array of iovec_t structures, each describing one segment. of data. The total
size in uio_resid is the sum of the segment sizes.

For a simple data transfer, uio_iovcnt contains 1, and uio_iov points to a single iovec_t
describing a buffer of 1 or more bytes. For a complicated transfer, the uio_t might describe
a number of scattered segments of data. Such transfers can arise in a network driver
where multiple layers of message header data are added to a message at different levels
of the software.

Use of the uio_t

In the pfxread() and pfxwrite() entry points, you can test uio_segflag to see if the data is
destined for user space or kernel space, and you can save the initial value of uio_resid as
the requested length of the transfer.

206 007-0911-210

8: Device Driver/Kernel Interface

In a character driver, you fetch or store data using functions that both use and modify the
uio_t. These functions are listed under “Transferring Data Through a uio_t Object” on
page 219. When data is not immediately available, you should test for the FNDELAY or
FNONBLOCK flags in uio_fmode, and return when either is set rather than sleeping.

Structure buf_t

The buf_t structure describes a block data transfer. It is designed to represent the transfer
(in or out) of a sequence of adjacent, fixed-size blocks from a random-access device to a
block of contiguous memory. The size of one device block is NBPSCTR, declared in
sys/param.h. For a detailed discussion of the buf_t, see the buf(D4) reference page.

The buf_t is used internally in IRIX by the paging I/O system to manage queues of
physical pages, and by filesystems to manage queues of pages of file data. The paging
system and filesystems are the primary clients of the pfxstrategy() entry point to a block
device driver, so it is only natural that a buf_t pointer is the input argument to
pfxstrategy().

Tip: The idbg kernel debugging tool has several functions related to displaying the
contents of buf_t objects. See “Commands to Display buf_t Objects” on page 308.

Fields of buf_t

The fields of the buf_t are declared in sys/buf.h, which is included by sys/ddi.h.
This header file also declares the names of many kernel functions that operate on buf_t
objects. (Many of those functions are not supported as part of the DDI/DKI. You should
only use kernel functions that have reference pages.)

Because buf_t is used by so many software components, it has many fields that are not
relevant to device driver needs, as well as some fields that have multiple uses. The
relevant fields are summarized in Table 8-1.

Important Data Types

007-0911-210 207

No other fields of the buf_t are designed for use by a driver. In Table 8-1, “read-only”
access means that the driver should never change this field in a buf_t that is owned by the
kernel. When the driver is working with a buf_t that the driver has allocated (see
“Allocating buf_t Objects and Buffers” on page 216) the driver can do what it likes.

Using the Logical Block Number

The logical block number is the number of the 512-byte block in the device. The “device”
is encoded by the minor device number that you can extract from b_edev. It might be a
complete device surface, or it might be a partition within a larger device (for example,
the IRIX disk device drivers support different minor device numbers for different disk
partitions).

The pfxstrategy() routine may have to translate the logical block number based on the
driver’s information about device partitioning and device geometry (sector size, sectors
per track, tracks per cylinder).

Table 8-1 Accessible Fields of buf_t Objects

Field Name Access Purpose and Contents

b_edev read-only dev_t giving device major and minor numbers.

b_flags read-only Operational flags; for a detailed list see buf(D4).

b_forw, b_back,
av_forw, av_back

read-write Queuing pointers, available for driver use within the
pfxstrategy() routine.

b_un.b_addr read-only Sometimes the kernel virtual address of the buffer, depending on
the b_flags setting BP_ISMAPPED.

b_bcount read-only Number of bytes to transfer.

b_blkno read-only Starting logical block number on device (for a disk, relative to the
partition that the device represents).

b_iodone read-write Address of a driver internal function to be called on I/O
completion.

b_resid read-write Number of bytes not transferred, set at completion to 0 unless an
error occurs.

b_error read-write Error code, set at completion of I/O.

208 007-0911-210

8: Device Driver/Kernel Interface

Buffer Location and b_flags

The data buffer represented by a buf_t can be in one of two places, depending on bits in
b_flags.

When the macro BP_ISMAPPED(buf_t-address) returns true, the buffer is in kernel virtual
memory and its virtual address is in b_un.b_addr.

When BP_ISMAPPED(buf_t-address) returns false, the buffer is described by a chain of
pfdat structures (declared in sys/pfdat.h, but containing no fields of any use to a
device driver). In this case, b_un.b_addr contains only an offset into the first page frame
of the chain. See “Managing Buffer Virtual Addresses” on page 228 for a method of
mapping an unmapped buffer.

Lock and Semaphore Types

The header files sys/sema.h and sys/types.h declare the data types of locks of
different types, including the following:

These lock types should be treated as opaque objects because their contents can change
from release to release (and in fact their contents are different in IRIX 6.2 from previous
releases).

The families of locking and synchronization functions contain functions for allocating,
initializing, and freeing each type of lock. See “Waiting and Mutual Exclusion” on
page 244.

lock_t Basic lock, or spin-lock, used with LOCK() and related functions.

mutex_t Sleeping lock, used for mutual exclusion between upper-half instances.

sema_t Semaphore object, used for general locking.

mrlock_t Reader-writer locks, used with RW_RDLOCK() and related functions.

sv_t Synchronization variable, used with SV_WAIT and related functions.

Important Data Types

007-0911-210 209

Device Number Types

In the /dev filesystem (but not in the /hw filesystem), two numbers are carried in the
inode of a device special file: a major device number of up to 9 bits, and a minor device
number of up to 18 bits. The numbers are assigned when the device special file is created,
either by the /dev/MAKEDEV script or by the system administrator. The contents and
meaning of device numbers is discussed under “Devices as Files” on page 38.

In traditional UNIX practice, the dev_t has been an unsigned integer containing the
values of the major and minor numbers for the device that is to be used. When a device
is represented in IRIX only as a device special file in /dev, this is still the case.

When a device is represented by a vertex of the hwgraph, visible as a name in the /hw
filesystem, the major number is always 0 and the minor number is arbitrary. When a
device is opened as a special file in /hw, the dev_t received by the driver is composed of
major 0 and an arbitrary minor number. In fact, the dev_t is a vertex_hdl_t, a handle to the
hwgraph vertex that represents the device.

Historical Use of the Device Numbers

Historically, a driver used the major device number to learn which device driver has been
called. This was important only when the driver supported multiple interfaces, for
example both character and block access to the same hardware.

Also historically, the driver used the minor device number to distinguish one hardware
unit from another. A typical scheme was to have an array of device-information
structures indexed by the minor number. In addition, mode of use options were encoded
in the minor number, as described under “Minor Device Number” on page 41.

You can still use major and minor numbers the same way, but only when the device is
represented by a device special file that is created with the mknod command, so that it
contains meaningful major and minor numbers. The kernel functions related to dev_t use
are summarized in Table 8-2.

210 007-0911-210

8: Device Driver/Kernel Interface

The most important of the functions in Table 8-2 are

• getemajor(), which extracts the major number from a dev_t and returns it as a
major_t

• geteminor(), which extracts the minor number from a dev_t and returns it as a
minor_t

The makedevice() function, which combines a major_t and a minor_t to form a traditional
dev_t, is useful only when creating a “clone” driver (see “Support for CLONE Drivers”
on page 789).

Contemporary Device Number Use

When the device is represented as a hwgraph vertex, the driver does not receive useful
major and minor numbers. Instead, the driver uses the device-unique information that
the driver itself has stored in the hwgraph vertex.

An historical driver makes only historical use of the dev_t, using the functions listed in
the preceding topic. Such a driver makes no use of the hwgraph, and can only manage
devices that are opened as device special files in /dev.

Table 8-2 Functions to Manipulate Device Numbers

Function Header Files Purpose

etoimajor(D3) ddi.h Convert external to internal major device number.

getemajor(D3) ddi.h Get external major device number.

geteminor(D3) ddi.h Get external minor device number.

getmajor(D3) ddi.h Get internal major device number.

getminor(D3) ddi.h Get internal minor device number.

itoemajor(D3) ddi.h Convert internal to external major device number.

makedevice(D3) ddi.h Make device number from major and minor numbers.

Important Header Files

007-0911-210 211

A contemporary driver creates hwgraph vertexes to represent its devices (see “Extending
the hwgraph” on page 233); makes no use of the major and minor device numbers; and
uses the dev_t as a handle to a hwgraph vertex. Such a driver can only manage devices
that are opened as device special files in /hw, or devices that are opened through
symbolic links in /dev that refer to /hw.

It might possibly be necessary to merge the two approaches. This can be done as follows.
In each upper-half entry point, apply getemajor() to the dev_t. When the result is
nonzero, the dev_t is conventional and geteminor() will return a useful minor number.
Use it to locate the device-specific information.

When getemajor() returns 0, the dev_t is a vertex handle. Use device_info_get() to
retrieve the address of device-specific information.

Important Header Files

The header files that are frequently needed in device driver source modules are
summarized in Table 8-3.

Table 8-3 Header Files Often Used in Device Drivers

Header File Reason for Including

sys/alenlist.h The address/length list type and related functions.

sys/buf.h The buf_t structure and related constants and functions (included by
sys/ddi.h).

sys/cmn_err.h The cmn_err() function.

sys/conf.h The constants used in the pfxdevflags global.

sys/ddi.h Many kernel functions declared. Also includes sys/types.h,
sys/uio.h, and sys/buf.h.

sys/debug.h Defines the ASSERT macro and others.

sys/dmamap.h Data types and kernel functions related to DMA mapping.

sys/edt.h Declares the edt_t type passed to pfxedtinit().

sys/eisa.h EISA-bus hardware constants and EISA kernel functions.

sys/errno.h Names for all system error codes.

212 007-0911-210

8: Device Driver/Kernel Interface

sys/file.h Names for file mode flags passed to driver entry points.

sys/hwgraph.h Hardware graph objects and related functions.

sys/immu.h Types and macros used to manage virtual memory and some kernel
functions.

sys/kmem.h Constants like KM_SLEEP used with some kernel functions.

sys/ksynch.h Functions used for sleep-locks.

sys/log.h Types and functions for using the system log.

sys/major.h Names for assigned major device numbers.

sys/mman.h Constants and flags used with mmap() and the pfxmmap() entry
point.

sys/param.h Constants like PZERO used with some kernel functions.

sys/PCI/pciio.h PCI bus interface functions and constants.

sys/pio.h VME PIO functions.

sys/poll.h Types and functions for pollhead allocation and poll callback.

sys/scsi.h Types and functions used to call the inner SCSI driver.

sys/sema.h Types and functions related to semaphores, mutex locks, and basic
locks.

sys/stream.h STREAMS standard functions and data types.

sys/strmp.h STREAMS multiprocessor functions.

sys/sysmacros.h Macros for conversion between bytes and pages, and similar values.

sys/systm.h Kernel functions related to system operations.

sys/types.h Common data types and types of system objects (included by
sys/ddi.h).

sys/uio.h The uio_t structure and related functions (included by sys/ddi.h).

sys/vmereg.h VME bus hardware constants and VME-related functions.

Table 8-3 Header Files Often Used in Device Drivers (continued)

Header File Reason for Including

Kernel Memory Allocation

007-0911-210 213

Kernel Memory Allocation

A device or STREAMS driver can allocate memory statically, as global variables in the
driver module, and this is a good way to allocate any object that is always needed and
has a fixed size.

When the number or size of an object can vary, but can be determined at initialization
time, the driver can allocate memory in the pfxinit(), pfxedtinit(), pfxattach(), or pfxstart()
entry point.

You can allocate memory dynamically in any upper-half entry point. When this is
necessary, it should be done in an entry point that is called infrequently, such as
pfxopen(). The reason is that memory allocation is subject to unpredictable delays. As a
general rule, you should avoid the need to allocate memory in an interrupt handler.

General-Purpose Allocation

General-purpose allocation uses the kmem_alloc() function and associated functions
summarized in Table 8-4.

The most important of these functions is kmem_alloc(). You use it to allocate blocks of
virtual memory at any time. It offers these important options, controlled by a flag
argument:

• Sleeping or not sleeping when space is not available. You specify not-sleeping when
holding a basic lock, but you must be prepared to deal with a return value of NULL.

• Physically-contiguous memory. The memory allocated is virtual, and when it spans
multiple pages, the pages are not necessarily adjacent in physical memory. You need

Table 8-4 Functions for Kernel Virtual Memory

Function Name Header Files Purpose

kmem_alloc(D3) kmem.h &
types.h

Allocate space from kernel free memory.

kmem_free(D3) kmem.h &
types.h

Free previously allocated kernel memory.

kmem_zalloc(D3) kmem.h &
types.h

Allocate and clear space from kernel free memory.

214 007-0911-210

8: Device Driver/Kernel Interface

physically contiguous pages when doing DMA with a device that cannot do
scatter/gather. However, contiguous memory is harder to get as the system runs, so
it is best to obtain it in an initialization routine.

• Cache-aligned memory. By requesting memory that is a multiple of a cache line in
size, and aligned on a cache-line boundary, you ensure that DMA operations will
affect the fewest cache lines (see “Setting Up a DMA Transfer” on page 226).

The kmem_zalloc() function takes the same options, but offers the additional service of
zero-filling the allocated memory.

In porting an old driver you may find use of allocation calls beginning with “kern.” Calls
to the “kern” group of functions should be upgraded as follows:

Allocating Memory in Specific Nodes of a Origin2000 System

In the nonuniform memory of a Origin2000 system, there is a time penalty for access to
memory that is physically located in a node different from the node where the code is
executing. However, kmem_alloc() attempts to allocate memory in the same node where
the caller is executing. The pfxedtinit() and pfxattach() entry points execute in the node
that is closest to the hardware device. If you allocate per-device structures in these entry
points using kmem_alloc(), the structures will normally be in memory on the same node
as the device. This provides the best performance for the interrupt handler, which also
executes in the closest node to the device.

Other upper-half entry points execute in the node used by the process that called the
entry point. If you allocate memory in the open() entry point, for example, that memory
will be close to the user process.

When it is essential to allocate memory in a specific node and to fail if memory in that
node is not available, you can use one of the functions summarized in Table 8-5.

kern_malloc(n) Change to kmem_alloc(n,KM_SLEEP).

kern_calloc(n,s) Change to kmem_zalloc(n*s,KM_SLEEP)

kern_free(p) Change to kmem_free(p)

Kernel Memory Allocation

007-0911-210 215

These functions are available in all systems. In systems with a uniform memory, they
behave the same as the normal kernel allocation functions.

Allocating Objects of Specific Kinds

The kernel provides a number of functions with the purpose of allocating and freeing
objects of specific kinds. Many of these are variants of kmem_alloc() and kmem_free(),
but others use special techniques suited to the type of object.

Allocating pollhead Objects

Table 8-6 summarizes the functions you use to allocate and free the pollhead structure that
is used within the pfxpoll() entry point (see “Entry Point poll()” on page 178). Typically
you would call phalloc() while initializing each minor device, and call phfree() in the
pfxunload() entry point.

Table 8-5 Functions for Kernel Memory In Specific Nodes

Function Name Header Files Purpose

kmem_alloc_node() kmem.h &
types.h

Allocate space from kernel free memory in specific
node.

kmem_zalloc_node() kmem.h &
types.h

Allocate and clear space from kernel free memory in
specific node.

Table 8-6 Functions for Allocating pollhead Structures

Function Name Header Files Purpose

phalloc(D3) ddi.h & kmem.h & poll.h Allocate and initialize a pollhead structure.

phfree(D3) ddi.h & poll.h Free a pollhead structure.

216 007-0911-210

8: Device Driver/Kernel Interface

Allocating Semaphores and Locks

There are symmetrical pairs of functions to allocate and free all types of lock and
synchronization objects. These functions are summarized together with the other locking
functions under “Waiting and Mutual Exclusion” on page 244.

Allocating buf_t Objects and Buffers

The argument to the pfxstrategy() entry point is a buf_t structure that describes a buffer
(see “Entry Point strategy()” on page 175 and “Structure buf_t” on page 206).

Ordinarily, both the buf_t and the buffer are allocated and initialized by the kernel or the
filesystem that calls pfxstrategy(). However, some drivers need to create a buf_t and
associated buffer for special uses. The functions summarized in Table 8-7 are used for
this.

To allocate a buf_t and its associated buffer in kernel virtual memory, use either geteblk()
or ngeteblk(). Free this pair of objects using brelse(), or by calling biodone().

You can allocate a buf_t to describe an existing buffer—one in user space, statically
allocated in the driver, or allocated with kmem_alloc()—using getrbuf(). Free such a
buf_t using freerbuf().

Table 8-7 Functions for Allocating buf_t Objects and Buffers

Function Name Header Files Purpose

geteblk(D3) ddi.h Allocate a buf_t and a buffer of 1024 bytes.

ngeteblk(D3) ddi.h Allocate a buf_t and a buffer of specified size.

brelse(D3) ddi.h Return a buffer header and buffer to the system.

getrbuf(D3) ddi.h Allocate a buf_t with no buffer.

freerbuf(D3) ddi.h Free a buf_t with no buffer.

Transferring Data

007-0911-210 217

Transferring Data

The device driver executes in the kernel virtual address space, but it must transfer data
to and from the address space of a user process. The kernel supplies two kinds of
functions for this purpose:

• functions that transfer data between driver variables and the address space of the
current process

• functions that transfer data between driver variables and the buffer described by a
uio_t object

Warning: The use of an invalid address in kernel space with any of these functions
causes a kernel panic.

All functions that reference an address in user process space can sleep, because the page
of process space might not be resident in memory. As a result, such functions cannot be
used while holding a basic lock, and should be avoided in an interrupt handler.

General Data Transfer

The kernel supplies functions for clearing and copying memory within the kernel virtual
address space, and between the kernel address space and the address space of the user
process that is the current context. These general-purpose functions are summarized in
Table 8-8.

Table 8-8 Functions for General Data Transfer

Function Name Header Files Purpose

bcopy(D3) ddi.h Copy data between address locations in the kernel.

bzero(D3) ddi.h Clear memory for a given number of bytes.

copyin(D3) ddi.h Copy data from a user buffer to a driver buffer.

copyout(D3) ddi.h Copy data from a driver buffer to a user buffer.

fubyte(D3) systm.h & types.h Load a byte from user space.

fuword(D3) systm.h & types.h Load a word from user space.

218 007-0911-210

8: Device Driver/Kernel Interface

Block Copy Functions

The bcopy() and bzero() functions are used to copy and clear data areas within the kernel
address space, for example driver buffers or work areas. These are optimized routines
that take advantage of available hardware features.

The bcopy() function is not appropriate for copying data between a buffer and a device;
that is, for copying between virtual memory and the physical memory addresses that
represent a range of device registers (or indeed any uncached memory). The reason is
that bcopy() uses doubleword moves and any other special hardware features available,
and devices many not be able to accept data in these units. The hwcpin() and hwcpout()
functions copy data in 16-bit units; use them to transfer bulk data between device space
and memory. (Use simple assignment to move single words or bytes.)

The copyin() and copyout() functions take a kernel virtual address, a process virtual
address, and a length. They copy the specified number of bytes between the kernel space
and the user space. They select the best algorithm for copying, and take advantage of
memory alignment and other hardware features.

If there is no current context, or if the address in user space is invalid, or if the address
plus length is not contained in the user space, the functions return -1. This indicates an
error in the request passed to the driver entry point, and the driver normally returns an
EFAULT error.

hwcpin(D3) systm.h & types.h Copy data from device registers to kernel memory.

hwcpout(D3) systm.h & types.h Copy data from kernel memory to device registers.

subyte(D3) systm.h & types.h Store a byte to user space.

suword(D3) systm.h & types.h Store a word to user space.

Table 8-8 Functions for General Data Transfer (continued)

Function Name Header Files Purpose

Transferring Data

007-0911-210 219

Byte and Word Functions

The functions fubyte(), subyte(), fuword(), and suword() are used to move single items
to or from user space. When only a single byte or word is needed, these functions have
less overhead than the corresponding copyin() or copyout() call. For example you could
use fuword() to pick up a parameter using an address passed to the pfxioctl() entry point.
When transferring more than a few bytes, a block move is more efficient.

Transferring Data Through a uio_t Object

A uio_t object defines a list of one or more segments in the address space of the kernel or
a user process (see “Structure uio_t” on page 204). The kernel supplies three functions for
transferring data based on a uio_t, and these are summarized in Table 8-9.

The uiomove() function moves multiple bytes between a buffer in kernel virtual space—
typically, a buffer owned by the driver—and the space or spaces described by a uio_t. The
function takes a byte count and a direction flag as arguments, and uses the most efficient
mechanism for copying.

The ureadc() and uwritec() functions transfer only a single byte. You would use them
when transferring data a byte at a time by PIO. When moving more than a few bytes,
uiomove() is faster.

All of these functions modify the uio_t to reflect the transfer of data:

• uio_resid is decremented by the amount moved

• In the iovec_t for the current segment, iov_base is incremented and iov_len is
decremented

• As segments are used up, uio_iov is incremented and uio_iovcnt is decremented

Table 8-9 Functions Moving Data Using uio_t

Function Header Files Purpose

uiomove(D3) ddi.h Copy data using uio_t.

ureadc(D3) ddi.h Copy a character to space described by uio_t.

uwritec(D3) ddi.h Return a character from space described by uio_t.

220 007-0911-210

8: Device Driver/Kernel Interface

The result is that the state of the uio_t always reflects the number of bytes remaining to
transfer. When the pfxread() or pfxwrite() entry point returns, the kernel uses the final
value of ui_resid to compute the count returned to the read() or write() function call.

Managing Virtual and Physical Addresses

The kernel supplies functions for querying the address of hardware registers and for
performing memory mapping. The most helpful of these functions involve the use of
address/length lists.

Managing Mapped Memory

The pfxmap() and pfxunmap() entry points receive a vhandl_t object that describes the
region of user process space to be mapped. The functions summarized in Table 8-10 are
used to manipulate that object.

The v_mapphys() function actually performs a mapping between a kernel address and a
segment described by a vhandl_t (see “Entry Point map()” on page 181).

The v_getaddr() function has hardly any use except for logging and debugging. The
address in user space is normally undefined and unusable when the pfxmap() entry point
is called, and mapped to kernel space when pfxunmap() is called. The driver has no
practical use for this value.

Table 8-10 Functions to Manipulate a vhandl_t Object

Function Name Header Files Purpose

v_getaddr(D3) ddmap.h &
types.h

Get the user virtual address associated with a vhandl_t.

v_gethandle(D3) ddmap.h &
types.h

Get a unique identifier associated with a vhandl_t.

v_getlen(D3) ddmap.h &
types.h

Get the length of user address space associated with a
vhandl_t.

v_mapphys(D3) ddmap.h &
types.h

Map kernel address space into user address space.

Managing Virtual and Physical Addresses

007-0911-210 221

The v_getlen() function is useful only in the pfxunmap() entry point—the pfxmap() entry
point receives a length argument specifying the desired region size.

The v_gethandle() function returns a number that is unique to this mapping (actually,
the address of a page table entry). You use this as a key to identify multiple mappings, so
that the pfxunmap() entry point can properly clean up.

Caution: Be careful when mapping device registers to a user process. Memory
protection is available only on page boundaries, so configure the addresses of I/O cards
so that each device is on a separate page or pages. When multiple devices are on the same
page, a user process that maps one device can access all on that page. This can cause
system security problems or other problems that are hard to diagnose.

Note: In previous releases of IRIX, the header file sys/region.h contained these
functions. As of IRIX 6.5, the header file sys/region.h is removed and these same
functions are declared in ksys/ddmap.h.

Working With Page and Sector Units

In a 32-bit kernel, the page size for memory and I/O is 4 KB. In a 64-bit kernel, the
memory page size is typically 16 KB, but can vary. Also, the size of “page” used for I/O
operations can be different from the size of page used for virtual memory. Because of
hardware constraints in Challenge and Onyx systems, a 4 KB page is used for I/O
operations in these machines.

The header files sys/immu.h andsys/sysmacros.h contain constants and macros for
working with page units. Some of the most useful are listed in Table 8-11.

Table 8-11 Constants and Macros for Page and Sector values

Function Name Header File Purpose

BBSIZE param.h Size of a “basic block,” the assumed disk sector size (512).

BTOBB(bytes) param.h Converts byte count to basic block count, rounding up.

BTOBBT(bytes) param.h Converts byte count to basic block count, truncating.

222 007-0911-210

8: Device Driver/Kernel Interface

The names listed in Table 8-11 are defined at compile-time. If you use them, the binary
object file is dependent on the compile-time variables for the chosen platform, and may
not run on a different platform.

The operations summarized in Table 8-12 are provided as functions. Use of them does
not commit your driver to a particular platform.

When examining an existing driver, be alert for any assumption that a virtual memory
page has a particular size, or that an I/O page is the same size as a memory page.

OFFTOBB(bytes) param.h Converts off_t count to basic blocks, rounding.

OFFTOBBT(bytes) param.h Converts off_t count to basic blocks, truncating.

BBTOOFF(bbs) param.h Converts count of basic blocks to an off_t byte count.

NBPP immu.h Number of bytes in a virtual memory page (defined from
_PAGESZ; see “Compiler Variables” on page 271).

IO_NBPP immu.h Number of bytes in an I/O page, can differ from NBPP.

io_numpages(addr, len) sysmacro
s.h

Number of I/O pages that span a given address for a
length.

io_ctob(x) sysmacro
s.h

Return number of bytes in x I/O pages (rounded up).

io_ctobt(x) sysmacro
s.h

Return number of bytes in x I/O pages (truncated).

Table 8-12 Functions to Convert Bytes to Sectors or Pages

Function Name Header Files Purpose

btop(D3) ddi.h Return number of virtual pages in a byte count (truncate).

btopr(D3) ddi.h Return number of virtual pages in a byte count (round up).

ptob(D3) ddi.h Convert size in virtual pages to size in bytes.

Table 8-11 Constants and Macros for Page and Sector values (continued)

Function Name Header File Purpose

Managing Virtual and Physical Addresses

007-0911-210 223

Using Address/Length Lists

The concepts behind alenlists are described under “Address/Length Lists” on page 203
and in more detail in the reference page alenlist(d4x).

You can use alenlists to unify the handling of buffer addresses of all kinds. In general you
use an alenlist as follows:

• Create the alenlist object, either with an explicit function call or implicitly as part of
filling the list.

• Fill the list with addresses and lengths to describe a buffer in some address space.

• Apply a translation function to translate all the addresses into the address space of
an I/O bus.

• Use an alenlist cursor to read out the translated address/length pairs, and program
them into a device so it can do DMA.

Creating Alenlists

The functions summarized in Table 8-13 are used to explicitly create and manage
alenlists. For details see reference page alenlist_ops(d3x).

Typically you create an alenlist implicitly, as a side-effect of loading it (see next topic).
However you can use alenlist_create() to create an alenlist. Then you can be sure that
there will never be an unplanned delay for memory allocation while using the list.

Whenever the driver is finished with an alenlist, release it using alenlist_destroy().

Table 8-13 Functions to Explicitly Manage Alenlists

Function Name Header Files Purpose

alenlist_create() alenlist.h Create an empty alenlist.

alenlist_destroy() alenlist.h Release memory of an alenlist.

alenlist_clear() alenlist.h Empty an alenlist.

224 007-0911-210

8: Device Driver/Kernel Interface

Loading Alenlists

The functions summarized in Table 8-14 are used to populate an alenlist with one or
more address/length pairs to describe memory.

Each of the functions buf_to_alenlist(), kvaddr_to_alenlist(), and uvaddr_to_alenlist()
take an alenlist address as their first argument. If this address is NULL, they create a new
list and use it. If the input list is too small, any of the functions in Table 8-14 can allocate
a new list with more entries. Either of these allocations may sleep. In order to avoid an
unplanned delay, you can create an alenlist in advance, fill it to a planned size with null
items, and clear it.

The functions buf_to_alenlist(), kvaddr_to_alenlist(), and uvaddr_to_alenlist() add
entries to an alenlist to describe the physical address of a buffer. Before using
uvaddr_to_alenlist() you must be sure that the pages of the user buffer are locked into
memory (see “Converting Virtual Addresses to Physical” on page 228).

Translating Alenlists

The kernel support for the PCI bus includes functions that translate an entire alenlist
from physical memory addresses to corresponding addresses in the address space of the
target bus. For PCI functions see “Mapping an Address/Length List” on page 750.

Table 8-14 Functions to Populate Alenlists

Function Name Header Files Purpose

buf_to_alenlist() alenlist.h Fill an alenlist with entries that describe the buffer
controlled by a buf_t object.

kvaddr_to_alenlist() alenlist.h Fill an alenlist with entries that describe a buffer in kernel
virtual address space.

uvaddr_to_alenlist() alenlist.h Fill an alenlists with entries that describe a buffer in a user
virtual address space.

alenlist_append() alenlist.h Add a specified address and length as an item to an
existing alenlist.

Managing Virtual and Physical Addresses

007-0911-210 225

Using Alenlist Cursors

You use a cursor to read out the address/length pairs from an alenlist. The cursor
management functions are summarized in Table 8-15 and detailed in reference page
alenlist_ops(d3x).

Each alenlist includes a built-in cursor. If you know that only one process or thread is
using the alenlist, you can use this built-in cursor. When more than one process or thread
might use the alenlist, each must create an explicit cursor. A cursor is associated with one
alenlist and must always be used with that alenlist.

The functions that retrieve data based on a cursor are summarized in Table 8-16.

The alenlist_get() function is the key function for extracting data from an alenlist. Each
call returns one address and its associated length. However, these address/length pairs
are not required to match exactly to the items in the list. You can extract address/length
pairs in smaller units. For example, suppose the list contains address/length pairs that
describe 4 KB pages. You can read out sequential address/length pairs with maximum
lengths of 512 bytes, or any other smaller length. The cursor remembers the position in
the list to the byte level.

Table 8-15 Functions to Manage Alenlist Cursors

Function Name Header Files Purpose

alenlist_cursor_create() alenlist.h Create an alenlist cursor and associate it with a
specified list.

alenlist_cursor_init() alenlist.h Set a cursor to point at a specified list item.

alenlist_cursor_destroy() alenlist.h Release memory of a cursor.

Table 8-16 Functions to Use an Alenlist Based on a Cursor

Function Name Header Files Purpose

alenlist_get() alenlist.h Retrieve the next sequential address and length from
a list.

alenlist_cursor_offset(D3) alenlist.h Query the effective byte offset of a cursor in the buffer
described by its list.

226 007-0911-210

8: Device Driver/Kernel Interface

You pass to alenlist_get() a maximum length to return. When that is 0 or large, the
function returns exactly the address/length pairs in the list. When the maximum length
is smaller than the current address/length pair, the function returns the address and
length of the next sequential segment not exceeding the maximum. In addition, when the
maximum length is an integral power of two, the function restricts the returned length
so that the returned segment does not cross an address boundary of the maximum
length.

These features allow you to read out units of 512 bytes (for example), never crossing a
512-byte boundary, from a list that contains address/length pairs in other lengths. The
alenlist_cursor_offset() function returns the byte-level offset between the first address in
the list and the next address the cursor will return.

Setting Up a DMA Transfer

A DMA transfer is performed by a programmable I/O device, usually called bus master
(see “Direct Memory Access” on page 10). The driver programs the device with the
length of data to transfer, and with a starting address. Some devices can be programmed
with a list of addresses and lengths; these devices are said to have scatter/gather capability.

There are two issues in preparing a DMA transfer:

• Calculating the addresses to be programmed into the device registers. These
addresses are the bus addresses that will properly target the memory buffers.

• In a uniprocessor, ensuring cache coherency. A multiprocessor handles cache
coherency automatically.

The most effective tool for creation of target addresses is the address/length list (see
“Using Address/Length Lists,” the preceding topic):

1. You collect the addresses and lengths of the parts of the target buffer in an alenlist.

2. You apply a single translation function to replace that alenlist with one whose
contents are based on bus virtual addresses.

3. You use an alenlist cursor to read out addresses and lengths in unit sizes
appropriate to the device, and program these into the device using PIO.

Managing Virtual and Physical Addresses

007-0911-210 227

The functions you use to translate the addresses in an alenlist are different for different
bus adapters, and are discussed in the following chapters:

• The functions to set up DMA from a VME device are covered in Chapter 13,
“Services for VME Drivers on Origin 2000/Onyx2.”

• The functions to set up DMA from a SCSI device are covered in Chapter 16, “SCSI
Device Drivers.”

• The functions to set up DMA from a PCI device are covered in Chapter 20, “PCI
Device Attachment.”

DMA Buffer Alignment

In some systems, the buffers used for DMA must be aligned on a boundary the size of a
cache line in the current CPU. Although not all system architectures require cache
alignment, it does no harm to use cache-aligned buffers in all cases. The size of a cache
line varies among CPU models, but if you obtain a DMA buffer using the
KMEM_CACHEALIGN flag of kmem_alloc(), the buffer is properly aligned. The buffer
returned by geteblk() (see “Allocating buf_t Objects and Buffers” on page 216) is
cache-aligned.

Why is cache alignment necessary? Suppose you have a variable, X, adjacent to a buffer
you are going to use for DMA write. If you invalidate the buffer prior to the DMA write,
but then reference the variable X, the resulting cache miss brings part of the buffer back
into the cache. When the DMA write completes, the cache is stale with respect to memory.
If, however, you invalidate the cache after the DMA write completes, you destroy the
value of the variable X.

Maximum DMA Transfer Size

The maximum size for a single DMA transfer can be set by the system tuning variable
maxdmasz, using the systune command (see the systune(1) reference page). A single
I/O operation larger than this produces the error ENOMEM.

The unit of measure for maxdmasz is the page, which varies with the kernel. Under IRIX
6.2, a 32-bit kernel uses 4 KB pages while a 64-bit kernel uses 16 KB pages. In both
systems, maxdmasz is shipped with the value 1024 decimal, equivalent to 4 MB in a 32-bit
kernel and 16 MB in a 64-bit kernel.

228 007-0911-210

8: Device Driver/Kernel Interface

Converting Virtual Addresses to Physical

There are no legitimate reasons for a device driver to convert a kernel virtual memory
address to a physical address in IRIX 6.5. This translation is fraught with complexity and
strongly dependent on the hardware of the system. For these and other reasons, the
kernel provides a wide variety of address-translation functions that perform the kinds of
translations that a driver requires.

In the simpler hardware architectures of past systems, there was a straightforward
mapping between the addresses used by software and the addresses used by a bus
master for DMA. This is no longer the case. Some of the complexities are sketched under
the topic “PIO Addresses and DMA Addresses” on page 11. In the Origin2000
architecture, the address used by a bus master can undergo two or three different
translations on its way from the device to memory. There is no way in which a device
driver can get the information to prepare the translated address for the device to use.

Instead, the driver uses translations based on opaque software objects such as PIO maps,
DMA maps, and alenlists. Translations are bus-specific, and the functions for them are
presented in the chapters on those buses.

You can load an alenlist with physical address/length pairs based on a kernel virtual
address using buftoalenlist() (see “Loading Alenlists” on page 224). Some older drivers
might still contain use of the kvtophys() function, which takes a kernel virtual address
and returns the corresponding system bus physical address. This function is still
supported (see the kvtophys(D3) reference page). However, you should be aware that the
physical address returned is useless for programming an I/O device.

Managing Buffer Virtual Addresses

Block device drivers operate upon data buffers described by buf_t objects (see “Structure
buf_t” on page 206). Kernel functions to manipulate buffer page mappings are
summarized in Table 8-17.

Managing Virtual and Physical Addresses

007-0911-210 229

When a pfxstrategy() routine receives a buf_t that is not mapped into memory (see “Buffer
Location and b_flags” on page 208), it must make sure that the pages of the buffer space
are in memory, and it must obtain valid kernel virtual addresses to describe the pages.
The simplest way is to apply the bp_mapin() function to the buf_t. This function allocates
a contiguous range of page table entries in the kernel address space to describe the buffer,
creating a mapping of the buffer pages to a contiguous range of kernel virtual addresses.
It sets the virtual address of the first data byte in b_un.b_addr, and sets the flags so that
BP_ISMAPPED() returns true—thus converting an unmapped buffer to a mapped case.

Note: The reference page for the userdma() function is out of date as shipped in IRIX 6.4.
The correct prototype for this function, as coded in sys/buf.h, is

int userdma(void *usr_v_addr, size_t num_bytes, int rw, void *MBZ);

The fourth argument must be a zero. The return value is not the same as stated. The
function returns 0 for success and a standard error code for failure.

Table 8-17 Functions to Map Buffer Pages

Function Name Header Files Purpose

bp_mapin(D3) buf.h Map buffer pages into kernel virtual address space,
ensuring the pages are in memory and pinned.

bp_mapout(D3) buf.h Release mapping of buffer pages.

clrbuf(D3) buf.h Clear the memory described by a mapped-in buf_t.

buf_to_alenlist(D3) alenlist.h Fill an alenlist with entries that describe the buffer
controlled by a buf_t object.

undma(D3) ddi.h Unlock physical memory after I/O complete.

userdma(D3) ddi.h Lock physical memory in user space.

230 007-0911-210

8: Device Driver/Kernel Interface

Managing Memory for Cache Coherency

Some kernel functions used for ensuring cache coherency are summarized in Table 8-18.

The functions for cache invalidation are essential when doing DMA on a uniprocessor.
They cost very little to use in a multiprocessor, so it does no harm to call them in every
system. You call them as follows:

• Call dki_dcache_inval() prior to doing DMA input. This ensures that when you
refer to the received data, it will be loaded from real memory.

• Call dki_dcache_wb() prior to doing DMA output. This ensures that the latest
contents of cache memory are in system memory for the device to load.

• Call dki_dcache_wbinval() prior to a device operation that samples memory and
then stores new data.

In the IP28 CPU you must invalidate the cache both before and after a DMA input; see
“Uncached Memory Access in the IP26 and IP28” on page 34.

The flushbus() function is needed because in some systems the hardware collects output
data and writes it to the bus in blocks. When you write a small amount of data to a device
through PIO, delay, then write again, the writes could be batched and sent to the device
in quick succession. Use flushbus() after PIO output when it is followed by PIO input
from the same device. Use it also between any two PIO outputs when the device is
supposed to see a delay between outputs.

Table 8-18 Functions Related to Cache Coherency

Function Name Header Files Purpose

dki_dcache_inval(D3) systm.h &
types.h

Invalidate the data cache for a given range of
virtual addresses.

dki_dcache_wb(D3) systm.h &
types.h

Write back the data cache for a given range of
virtual addresses.

dki_dcache_wbinval(D3) systm.h &
types.h

Write back and invalidate the data cache for a given
range of virtual addresses.

flushbus(D3) systm.h &
types.h

Make sure contents of the write buffer are flushed
to the system bus.

Hardware Graph Management

007-0911-210 231

Testing Device Physical Addresses

A family of functions, summarized in Table 8-19, is used to test a physical address to find
out if it represents a usable device register.

The functions return a nonzero value when the address is bad, that is, unusable. These
functions are normally used in the pfxedtinit() entry point to verify the bus address
values passed in from a VECTOR statement. They are only usable with VME devices.

Hardware Graph Management

A driver is concerned about the hardware graph in two different contexts:

• When called at an operational entry point such as pfxopen(), pfxwrite(), or pfxmap(),
the driver gets information about the device from the hwgraph.

• When called to initialize a device at pfxedtinit() or pfxattach(), the driver extends the
hwgraph with vertexes to represent the device, and stores device and inventory
information in the hwgraph.

Table 8-19 Functions to Test Physical Addresses

Function Name Header Files Purpose

badaddr(D3) systm.h Test physical address for input.

badaddr_val(D3) systm.h Test physical address for input and return the
input value received.

wbadaddr(D3) systm.h Test physical address for output.

wbadaddr_val(D3) systm.h Test physical address for output of specific value.

pio_badaddr(D3) pio.h & types.h Test physical address for input through a map.

pio_badaddr_val(D3) pio.h & types.h Test physical address for input through a map
and return the input value received.

pio_wbadaddr(D3) pio.h & types.h Test physical address through a map for output.

pio_wbadaddr_val(D3) pio.h & types.h Test physical address through a map for output of
specific value.

232 007-0911-210

8: Device Driver/Kernel Interface

The hwgraph concepts and terms are covered under “Hardware Graph Features” on
page 45. You should also read the hwgraph(4) and hwgraph_intro(d4x) reference pages.

Interrogating the hwgraph

When a driver is called at an operational entry point, the first argument is always a dev_t.
This value stands for the specific device on which the driver should work. In older
versions of IRIX, the dev_t was an integer encoding the major and minor device numbers.
In current IRIX, the device is opened through a path in /hw (or a symbolic link to /hw),
and the dev_t is a handle to a vertex of the hwgraph—usually a vertex created by the
device driver. The dev_t is used as input to the functions summarized in Table 8-20.

When initializing the device, the driver stores the address of a device information
structure in the vertex using device_info_set() (see “Allocating Storage for Device
Information” on page 164). This address can be retrieved using device_info_get().
Typical code at the beginning of any entry point resembles Example 8-1.

Example 8-1 Typical Code to Get Device Info

typedef struct devInfo_s {
... fields of data unique to one device ...
} devInfo_t;
pfx_entry(dev_t dev,...)

devInfo_t *pdi = device_info_get(dev);

Table 8-20 Functions to Query the Hardware Graph

Function Name Header Files Purpose

device_info_get()
(hwgraph.dev(d3x))

hwgraph.h Return device info pointer stored in vertex.

device_inventory_get_next()
(hwgraph.inv(d3x))

hwgraph.h Retrieve inventory_t structures that have been
attached to a vertex.

device_controller_num_get()
(hwgraph.inv(d3x))

hwgraph.h Retrieve the Controller field of the first or only
inventory_t structure in a vertex.

hwgraph_edge_get()
(hwgraph.edge(d3x))

hwgraph.h Follow an edge by name to a destination
vertex.

hwgraph_traverse() hwgraph.h Follow a path from a starting vertex to its
destination.

Hardware Graph Management

007-0911-210 233

if (!pdi) return ENODEV;
MUTEX_LOCK(pdi->devLock); /* get exclusive use */

...

When the driver creates the vertexes for a device, the driver can attach inventory
information. This can be read out later using device_inventory_get_next().

Extending the hwgraph

When a driver is called at the pfxattach() entry point, it receives a vertex handle for the
point at which its device is connected to the system—for example, a vertex that
represents a bus slot. When a driver is called at the pfxedtinit() entry point, it receives an
edt_t from which it can extract a vertex handle that again represents the point at which
this device is attached to the system (refer to “VME Device Naming” on page 360, “Entry
Point attach()” on page 162 and “Entry Point edtinit()” on page 160).

At these times, the driver has the responsibility of extending the hwgraph with at least
one edge and vertex to provide access to this device. The label of the edge supplies a
visible name that a user process can open. The vertex contains the inventory data and the
driver’s own device information. Often the driver needs to add multiple vertexes and
edges. (For an example of how a SGI driver extends the hwgraph, see “SCSI Devices in
the hwgraph” on page 523.)

Construction Functions

The basic functions for constructing edges and vertexes are summarized in Table 8-21.
The most commonly-used are hwgraph_char_device_add() and
hwgraph_block_device_add(), functions that create leaf vertexes that users can open.

Table 8-21 Functions to Construct Edges and Vertexes

Function Name Header Files Purpose

device_info_set()
(hwgraph.dev(d3x))

hwgraph.h Store the address of device information in a
vertex.

device_inventory_add()
(hwgraph.inv(d3x))

invent.h Add hardware inventory data to a vertex.

hwgraph_char_device_add()
(hwgraph.dev(d3x))

hwgraph.h Create a character device special file under a
specified vertex.

234 007-0911-210

8: Device Driver/Kernel Interface

Extending the Graph With a Single Vertex

Suppose the kernel is probing a PCI bus and finds a veeble device plugged into slot 2.
The kernel knows that a driver with the prefix veeble_ has registered to handle this type
of device. The kernel calls veeble_attach(), passing the handle of the vertex that
represents the point of attachment, which might be /hw/module/1/io/pci/slot/2.

Suppose that a veeble device permits only character-mode access and there are no
optional modes of use. In this simple case, the driver needs to add only one vertex, a
device special file connected by one edge having a label such as “veeble.” The result will
be that the device can be opened under the pathname
/hw/module/1/io/pci/slot/2/veeble. Parts of the code in veeble_attach() would
resemble Example 8-2.

Example 8-2 Hypothetical Code for a Single Vertex

int veeble_attach(vertex_hdl_t vh)
{

VeebleDevInfoStruct_t * vdis;
vertex_hdl_t vv;
graph_error_t ret;
/* allocate memory for per-device structure */
vdis = kmem_zalloc(sizeof(*vdis),KM_SLEEP);
if (!vdis) return ENOMEM;
/* create device vertex below connect-point */
ret = hwgraph_char_device_add(vh, "veeble", "veeble_", &vv);
if (ret != GRAPH_SUCCESS)

{ kmem_free(vdis); return ret; }
/* here initialize contents of vdis->information struct */

hwgraph_block_device_add()
(hwgraph.dev(d3x))

hwgraph.h Create block device special file under a
specified vertex.

hwgraph_vertex_create()
(hwgraph.vertex(d3x))

hwgraph.h Create a new, empty vertex, and return its
handle.

hwgraph_edge_add()
(hwgraph.edge(d3x))

hwgraph.h Add a labelled edge between two vertexes.

hwgraph_edge_remove()
(hwgraph.edge(d3x))

hwgraph.h Remove an edge by name from a vertex.

Table 8-21 Functions to Construct Edges and Vertexes (continued)

Function Name Header Files Purpose

Hardware Graph Management

007-0911-210 235

/* here initialize the device itself */
/* set info struct in the device vertex */
device_info_set(vv,vdis);
return 0;

}

In Example 8-2, the important variables are:

The steps performed are:

• Allocate memory for a device information structure, and terminate with the
standard ENOMEM return code if allocation is not possible.

• Create a character device vertex, connected to vertex vh by an edge labelled
“veeble,” storing the handle of the new vertex in vv. If this fails, free the info
structure memory and return the same error.

• Initialize the contents of the information structure: for example, initialize locks and
flag values, and create PIO and/or DMA maps.

• Initialize the device itself. Possibly set up an interrupt handler and an error handler
(these operations are specific to the bus and the device).

• Set the address of the initialized device information structure into the device vertex.

An additional step not shown is the storing of hardware inventory information that can
be reported by hinv using device_inventory_add().

A point to note is that in a multiprocessor system, a user process could try to open the
new “veeble” vertex as soon as (or even before) hwgraph_char_device_add() returns.
This would result in an entry to the veeble_open() entry point of the driver, concurrent
with the continued execution of the veeble_attach() entry point. However, note the two
statements in Example 8-1:

devInfo_t *pdi = device_info_get(dev);
if (!pdi) return ENODEV;

At any time before veeble_attach() executes its call to device_info_set(), a call to
veeble_open() for this vertex returns ENODEV. Needless to say, all the hwgraph

vh Handle of the connection-point vertex passed to the function as a parameter.

vdis Pointer to a structure of type “VeebleDevInfoStruct”—defined by the writer
of this device driver to suit the application.

vv Handle of the device vertex created by the function.

236 007-0911-210

8: Device Driver/Kernel Interface

functions are multiprocessor-aware and use locking as necessary to avoid race
conditions.

Extending the Graph With Multiple Vertexes

In a more complicated case, a vooble device permits access as a block device or as a
character device. The device should be accessible under names vooble/char and
vooble/block. In this case the driver proceeds as follows:

1. Create a vertex to be the primary representation of the device using
hwgraph_vertex_create().

2. Connect this primary vertex to the point of attachment with an edge named
“vooble” using hwgraph_edge_add().

3. Add new vertexes, connected by edges “block” and “char” to the primary vertex
using hwgraph_block_device_add() and hwgraph_char_device_add().

The subordinate block and character vertexes are device special files that can be opened
by user code. Handles to these vertexes will be passed in to other driver entry points.
There are a variety of ways to store device information in the three vertexes:

• Store a pointer to a single information structure in both leaf vertexes.

• Create separate “block” and “char” information structures and store one in each leaf
vertex. Perhaps create a separate structure of information that is common to both
block and character access, and point to it from both block and char structures.

As you plan this arrangement of data structures, bear in mind that the pfxopen() entry
point receives a flag telling it whether the open is for block or character access (see “Entry
Point open()” on page 167); and that other entry points are called only for block, or only
for character, devices.

Vertexes for Modes of Use

Possibly the device has multiple modes of use, as for example a tape device has
byte-swapped and non-swapped access, fixed-block and variable-block access, and so
on. Traditionally these modes of access were encoded in the device minor number as well
as in the device name (see “Creating Conventional Device Names” on page 42). Current
practice is to create a separate vertex for each mode of use (see “Multiple Device Names”
on page 39).

Hardware Graph Management

007-0911-210 237

When using the hwgraph, you represent each mode of access as a separate name in the
/hw filesystem. Suppose that a PCI device of type flipper supports two modes of use,
“flipped” and “flopped.” It is the job of the flipper_attach() entry point to set up
hwgraph vertexes so that one device can be opened under different pathnames such as
/hw/module/1/io/pci/slot/2/flipper/flipped and
/hw/module/1/io/pci/slot/2/flipper/flopped. The problem is very similar to
creating separate block and character vertexes for one device, with the additional
problem that the device information stored in each vertex should reflect the desired
mode of use, flipped or flopped. The code might resemble in part that shown in
Example 8-3.

Example 8-3 Hypothetical Code for Multiple Vertexes

typedef struct flipperDope_s {
vertex_hdl_t floppedMode; /* vertex for flopped */
...many other fields for management of one flipper dev...

} flipperDope_t;
int flipper_attach(vertex_hdl_t connv)
{

flipperDope_t *pfd = NULL;
vertex_hdl_t masterv = GRAPH_VERTEX_NONE;
vertex_hdl_t flippedv = GRAPH_VERTEX_NONE;
vertex_hdl_t floppedv = GRAPH_VERTEX_NONE;
graph_error_t ret = 0;
if (!pfd = kmem_zalloc(sizeof(*pfd),KM_SLEEP))
{ ret = ENOMEM; goto done; }
ret = hwgraph_vertex_create(&masterv);
if (ret != GRAPH_SUCCESS) goto done;
ret = hwgraph_edge_add(connv,masterv,"flipper");
if (ret != GRAPH_SUCCESS) goto done;
ret = hwgraph_char_device_add(masterv, "flipped", "flipper_", &flippedv);
if (ret != GRAPH_SUCCESS) goto done;
ret = hwgraph_char_device_add(masterv, "flopped", "flipper_", &floppedv);
if (ret != GRAPH_SUCCESS) goto done;
pfd->floppedMode = floppedv; /* note which vertex is "flopped" */

...here initialize other fields of pfd->flipperDope...
device_info_set(flippedv,pfd);
device_info_set(floppedv,pfd);

done: /* If any error, undo all partial work */
if (ret)
{

if (floppedv != GRAPH_VERTEX_NONE) hwgraph_vertex_destroy(floppedv);
if (flippedv != GRAPH_VERTEX_NONE) hwgraph_vertex_destroy(flippedv);
if (masterv != GRAPH_VERTEX_NONE)

238 007-0911-210

8: Device Driver/Kernel Interface

{
hwgraph_edge_remove(rootv,"flipper",NULL);
hwgraph_vertex_destroy(masterv);

}
if (pfd) kmem_free(pfd);

}
return ret;

}

After successful completion of flipper_attach() there are two character special devices
with paths /hw/.../flipper/flipped and /hw/.../flipper/flopped. A
pointer to a single device information structure (a flipperDope_t object) is stored in both
vertexes. However, the vertex handle of the flopped vertex is saved in the floppedMode
field of the structure. Whenever the device driver is entered, it can retrieve the device
information with a statement such as the following:

flipperDope_t *pfd = device_info_get(dev);

Whenever the driver needs to distinguish between “flipped” and “flopped” modes of
access, it can do so with code such as the following:

if (dev == pfd->floppedMode)
{ ...this is flopped-mode...}
else
{ ...this is flipped-mode...}

Vertexes for User Convenience

The driver is allowed to create vertexes and attach them anywhere in the hwgraph. The
connection point of a device is often at the end of a long path that is hard for a human to
read or type. The driver can use hwgraph_vertex_create() and hwgraph_edge_add() to
create a shorter, more readable path to any of the leaf vertexes it creates. For example, the
hypothetical veeble_ driver of Example 8-2 might like to make the devices it attaches
available via paths like /hw/veebles/1 and /hw/veebles/2.

At the time a driver is called to attach a device, the driver has no way to tell how many
of these devices exist in the system. Also, recall that the pfxattach() entry point can be
called concurrently on multiple CPUs to attach devices in different slots on different
buses. The attach code has no basis on which to assign ordinal numbers to devices; that
is, no way to know that a particular device is device 1, and another is device 2. These
questions cannot be answered until the entire hardware complement has been found and
attached.

Hardware Graph Management

007-0911-210 239

The purpose of the ioconfig command is to call drivers one more time, before user
processes start but after the hwgraph is complete, so they can create convenience
vertexes. This use of ioconfig is described under “Device Management File” on
page 56. You direct ioconfig to assign controller numbers to your devices. After it does
so, it opens each device (resulting in the first entry to pfxopen() for that device vertex),
and optionally issues an ioctl against the open device passing a command number you
specify. Upon either the first open of a device or in pfxioctl(), you can create convenience
vertexes that include the assigned controller number of the device to make the names
unique.

The assigned controller numbers are stable from one boot time to the next, so you can
also create symbolic links in /dev naming them.

Attaching Information to Vertexes

The driver can attach several kinds of information to any vertex it creates:

• Device information defined by the driver itself.

• Hardware inventory information to be used by hinv.

• Labelled attribute values.

The driver can also retrieve information that was set in the hwgraph by the
administrator.

Attaching Device Information

The use of device_info_set() is discussed under two other topics: “Allocating Storage for
Device Information” on page 164 and “Extending the Graph With a Single Vertex” on
page 234. Every device needs such an information structure—if for no other reason than
to contain a lock used to ensure that each upper-half entry point has exclusive use of the
device.

When the driver creates multiple vertexes for a particular device, the driver can store the
same address in every vertex (as shown in Example 8-2 and Example 8-3). Yet another
design option is to have each vertex contain the address of a small structure containing
optional information unique to that view of the device, and a pointer to a single common
structure for the device.

240 007-0911-210

8: Device Driver/Kernel Interface

Attaching Inventory Information

The device_inventory_add() function stores the fields of one inventory_t record in a
vertex. The driver can store multiple inventory_t records in a single vertex, but it is
customary to store only one. There is no facility to delete an inventory record from a
vertex.

The device_inventory_get_next() function is used to read out each of the inventory_t
structures in turn. Normally the driver does not have any reason to inspect these.
However, the function does not return a copy of the structure; it returns the address of
the actual structure in the vertex. The fields of the structure can be modified by the driver.

One field of the inventory_t is particularly important: the controller number is
conventionally used to provide ordinal numbering of similar devices. The
device_controller_number_get() function returns the controller number from the first
(and usually the only) inventory_t structure in a vertex. It fails if there is no inventory data
in the vertex.

When the driver can assign an ordinal numbering to multiple devices, it should record
that numbering by setting unique controller numbers in each master vertex for the
similar devices. This can be done most easily by calling device_controller_number_set().
Typically this would be done in an ioctl call from the application that has determined a
stable, global numbering of devices (see “Device Management File” on page 56).

Attaching Attributes

A file attribute is an arbitrary block of information associated with a file inode. Attributes
were introduced with the XFS filesystem (see the attr(1) and attr_get(2) reference pages),
but the /hw filesystem also supports them. You can store file attributes in hwgraph
vertexes, and they can be retrieved by user processes.

The functions that a driver uses to manage attributes are summarized in Table 8-22 (all
are detailed in the reference page hwgraph.lblinfo(d3x)).

Hardware Graph Management

007-0911-210 241

An attribute consists of a name (a character string), a pointer-sized integer, and a length.
When the length is zero, the attribute is “unexported,” that is, not visible to the attr
command nor to the attr_get() function. All attributes are initially unexported. An
unexported attribute can be retrieved by a driver, but not by a user process.

The value of an attribute is just a pointer; it can be an integer, a vertex handle, or an
address of any kind of information. You can use attributes to hold any kind of
information you want to associate with a vertex. (For one example, you could use an
attribute to contain mode-bits that determine how a device should be treated.)

Attribute storage is not sophisticated. Attribute names are stored sequentially in a string
table that is part of the vertex, and looked up in a sequential search. The attribute scheme
is meant for convenient storage of a few attributes per vertex, each having a short name.

When you export an attribute, you assert that the value of the attribute is a valid address
in kernel virtual memory, and the export length is its correct length. The attr_get()
function relies on these points. A user process can retrieve a copy of an attribute by
calling attr_get(). The attribute value is copied from the kernel address space to the user
address space. This is a convenient route by which you can export driver internal data to
user processes, without the complexity of memory mapping or ioctl calls.

Retrieving Administrator Attributes

The system administrator can use the DEVICE_ADMIN statement to attach a labelled
attribute to any device special file in the hwgraph, and can use DRIVER_ADMIN to store

Table 8-22 Functions to Manage Attributes

Function Name Header Files Purpose

hwgraph_info_add_LBL() hwgraph.h Attach a labelled attribute to a vertex.

hwgraph_info_get_LBL() hwgraph.h Retrieve an attribute by name.

hwgraph_info_replace_LBL() hwgraph.h Replace the value of an attribute by name.

hwgraph_info_remove_LBL() hwgraph.h Remove an attribute from a vertex.

hwgraph_info_export_LBL() hwgraph.h Make an attribute visible to user code.

hwgraph_info_unexport_LBL() hwgraph.h Make an attribute invisible.

242 007-0911-210

8: Device Driver/Kernel Interface

a labelled attribute for the driver (see “Storing Device and Driver Attributes” on
page 58).

These statements are processed at boot time. At this time, the driver might not be loaded,
and the device special file might not have been created in the hwgraph. However, the
attributes are saved. When a driver creates a hwgraph vertex that is the target of a
DEVICE_ADMIN statement, the labelled attributes are attached to the vertex
automatically.

Your driver can request an administrator attribute for a specific device using
hwgraph_info_get_LBL() directly, as described above under “Attaching Attributes” on
page 240. Or you can call device_admin_info_get() (see the reference page
hwgraph.admin(d3x)). The returned value is the address of a read-only copy of the value
string.

Your driver can request an attribute that was addressed to the driver with
DRIVER_ADMIN using device_driver_admin_info_get(). The returned value is the
address of a read-only copy of the value string from the DRIVER_ADMIN statement.

User Process Administration

The kernel supplies a small group of functions, summarized in Table 8-23, that help a
driver upper-half routine learn about the current user process.

Table 8-23 Functions for User Process Management

Function Name Header Files Purpose

drv_getparm(D3) ddi.h Retrieve kernel state information.

drv_priv(D3) ddi.h Test for privileged user.

drv_setparm(D3) ddi.h Set kernel state information.

proc_ref(D3) ddi.h Obtain a reference to a process for signaling.

proc_signal(D3) ddi.h &
signal.h

Send a signal to a process.

proc_unref(D3) ddi.h Release a reference to a process.

User Process Administration

007-0911-210 243

Note: When porting an older driver, you may find direct reference to a user structure.
That is no longer available. Any reference to a user structure should be eliminated or
replaced by one of the functions in Table 8-23.

Use drv_getparm() to retrieve certain miscellaneous bits of information including the
process ID of the current process. In a character device driver, the current process is the
user process that caused entry to the driver, for example by calling the open(), ioctl(), or
read() system functions. In a block device driver, the current process has no direct
relationship to any particular user; it is usually a daemon process of some kind.

The drv_setparm() function is primarily of use to terminal drivers.

The drv_priv() function tests a cred_t object to see if it represents a privileged user. A
cred_t object is passed in to several driver entry points, and the address of the current one
can be retrieved drv_getparm().

Sending a Process Signal

In traditional UNIX kernels, a device driver identified the current user process by the
address of the proc_t structure that the kernel uses to represent a process. Direct use of
the proc_t is no longer supported by IRIX. The reason is that the contents of the proc_t
change from release to release, and also differ between 64-bit and 32-bit kernels.

The most common use of the proc_t by a driver was to send a signal to the process. This
capability is still supported. To do it, take three steps:

1. Call proc_ref() to get a process handle, a number unique to the current process. The
returned value must be treated as an arbitrary number (in some releases of IRIX it
was the proc_t address, but this is not the defined behavior of the function).

2. Use the process handle as an argument to proc_signal(), sending the signal to the
process.

3. Release the process handle by calling proc_unref().

The third step is important. In order to keep the process handle valid, IRIX retains
information about the process to which it is related. However, that process could
terminate (possibly as a result of the signal the driver sends) but until the driver
announces that it is done with the handle, the kernel must try to retain process
information.

244 007-0911-210

8: Device Driver/Kernel Interface

It is especially important to release a process handles before unloading a loadable driver
(see “Entry Point unload()” on page 190).

Waiting and Mutual Exclusion

The kernel supplies a rich variety of functions for waiting and for mutual exclusion. In
order to use these features well, you must understand the different purposes for which
they are designed. In particular, you must clearly understand the distinction between
waiting and mutual exclusion (or locking).

Mutual Exclusion Compared to Waiting

Mutual exclusion allows one entity to have exclusive use of a global resource, temporarily
denying use of the resource to other entities. Mutual exclusion normally does not require
waiting when software is carefully designed—the resource is normally free when it is
requested. A driver that calls a mutual exclusion function expects to proceed without
delay—although there is a chance that the resource is in use, and the driver will have to
wait.

The kernel offers an array of functions for mutual exclusion, and the choice among them
can be critical to performance. The functions are reviewed in the following topics:

• “Basic Locks” on page 245 covers basic locks, once required by device drivers, and
useful in multiprocessors.

• “Long-Term Locks” on page 247 covers sleep locks, which can be held for longer
periods.

• “Reader/Writer Locks” on page 250 covers a class of locks that allow multiple,
concurrent, read-only access to resources that are infrequently changed.

• “Priority Level Functions” on page 252 discusses the traditional UNIX method of
mutual exclusion, now obsolete and dangerous.

Waiting allows a driver to coordinate its actions with a specific event or action that occurs
asynchronously. A driver can wait for a specified amount of time to pass, wait for an I/O
action to complete, and so on. When a driver calls a waiting function, it expects to wait for
something to happen—although there is a chance that the expected event has already
happened, and the driver will be able to continue at once.

Waiting and Mutual Exclusion

007-0911-210 245

The kernel offers several functions that allow you to wait for specific events; and also
offers functions for general synchronization. These are covered in the following topics:

• “Waiting for Time to Pass” on page 253 covers timer-related functions.

• “Waiting for Memory to Become Available” on page 255 covers memory allocation
waits.

• “Waiting for Block I/O to Complete” on page 255 covers waits used in the
pfxstrategy() entry point.

• “Waiting for a General Event” on page 257 covers the general-purpose functions
that you can adapt to any synchronization problem.

The most general facility, the semaphore, can be used for synchronization and for
locking. This topic is covered under “Semaphores” on page 260.

Basic Locks

IRIX supports basic locks using functions compatible with SVR4. These functions are
summarized in Table 8-24.

Table 8-24 Functions for Basic Locks

Function Name Header Files Purpose

LOCK(D3) ksynch.h &
types.h

Acquire a basic lock, waiting if necessary.

LOCK_ALLOC(D3) ksynch.h,kme
m.h & types.h

Allocate and initialize a basic lock.

LOCK_DEALLOC(D3) ksynch.h &
types.h

Deallocate an instance of a basic lock.

LOCK_INIT(D3) ksynch.h &
types.h

Initialize a basic lock that was allocated statically, or
reinitialize an allocated lock.

LOCK_DESTROY(D3) ksynch.h &
types.h

Uninitialize a basic lock that was allocated statically.

246 007-0911-210

8: Device Driver/Kernel Interface

Basic locks are objects of type lock_t. Although functions are provided for allocating and
freeing them, a basic lock is a very small object. Locks are typically allocated as fields of
structures or as global variables.

Call LOCK() to seize a lock and gain possession of the resource for which it stands.
Release the lock with UNLOCK(). These functions are optimized for mutual exclusion in
the available hardware, and may be implemented differently in uniprocessors and
multiprocessors. However, the programming and binary interface is the same in all
systems.

Basic locks are implemented as spinning locks in multiprocessors. In releases before
IRIX 6.4, the basic lock was the only kind of lock that you could use for mutual exclusion
between the upper half of a driver and its interrupt handler (because the interrupt
handler could not sleep). Now, interrupt handlers run as threads and can sleep, so you
have a choice between basic locks and mutex locks for this purpose.

The code in Example 8-4 illustrates the use of LOCK and UNLOCK in implementing a
simple last-in-first-out (LIFO) queueing package. In these functions, the time between
locking a queue head and releasing it is only a few microseconds.

Example 8-4 LIFO Queue Using Basic Locks

typedef struct qitem {
qitem *next; ...other fields...

} qitem_t;
typedef struct lifo {

qitem *latest;
lock_t grab;

} lifo_t;
void putlifo(lifo_t *q, qitem_t *i)
{

int lockpl = LOCK(&q->grab,plhi);
i->next = q->latest;
q->latest = i;

TRYLOCK(D3) types.h &
ksynch.h

Try to acquire a basic lock, returning a code if the lock is
not currently free.

UNLOCK(D3) types.h &
ksynch.h

Release a basic lock.

Table 8-24 Functions for Basic Locks (continued)

Function Name Header Files Purpose

Waiting and Mutual Exclusion

007-0911-210 247

UNLOCK(&q->grab,lockpl);
}
qitem_t *poplifo(lifo_t *q)
{

int lockpl = LOCK(&q->grab,plhi);
qitem_t *ret = q->latest;
q->latest = ret->next;
UNLOCK(&q->grab,lockpl);
return ret;

}

This is a typical use of basic locks: to ensure that for a brief period, only one thread in the
system can update a queue. Basic locks are optimized for such uses. If they are used in
situations where they can be held for significant lengths of time (100 microseconds or
longer), system performance can suffer, because one or more CPUs can be “spinning” on
the locks and this can delay useful processing.

Long-Term Locks

IRIX provides three types of locks that can suspend the caller when the lock is claimed:
mutex locks, sleep locks, and reader-writer locks. Of these, mutex locks are preferred.

Using Mutex Locks

As their name suggests, mutex locks are designed for mutual exclusion. The IRIX
implementation of mutex locks is compatible with the kmutex_t lock type of SunOS, but
optimized for use in SGI hardware systems. The mutex functions are summarized in
Table 8-25.

Table 8-25 Functions for Mutex Locks

Function Name Header Files Purpose

MUTEX_ALLOC(D3) types.h & kmem.h & ksynch.h Allocate and initialize a mutex
lock.

MUTEX_INIT(D3) types.h & ksynch.h Initialize an existing mutex lock.

MUTEX_DESTROY(D3) types.h & ksynch.h Deinitialize a mutex lock.

248 007-0911-210

8: Device Driver/Kernel Interface

Although allocation and deallocation functions are supplied, a mutex_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
MUTEX_INIT() operation prepares a statically-allocated mutex_t for use.

Once initialized, a mutex lock is used to gain exclusive use of the resource with which
you have associated it. The mutex lock has the following important advantages over a
basic lock:

• The mutex lock can safely be held over a call to a function that sleeps.

• The mutex lock supports inquiry functions such as MUTEX_OWNED or
MUTEX_MINE.

• When a debugging kernel is used (see “Including Lock Metering in the Kernel
Image” on page 288) a mutex lock can be instrumented to keep statistics of its use.

The mutex lock implementation provides priority inheritance. When a low-priority
process (or kernel thread) owns a mutex lock and a high-priority process or thread
attempts to seize the lock and is blocked, the process holding the lock is temporarily
given the higher priority of the blocked process. This hastens the time when the lock can
be released, so that a low-priority process does not needlessly impede a higher-priority
process.

MUTEX_DEALLOC(D3) types.h & ksynch.h Deinitialize and free a
dynamically allocated mutex
lock.

MUTEX_LOCK(D3) types.h & kmem.h & ksynch.h Claim a mutex lock.

MUTEX_TRYLOCK(D3) types.h & ksynch.h Conditionally claim a mutex lock.

MUTEX_UNLOCK(D3) types.h & ksynch.h Release a mutex lock.

MUTEX_OWNED(D3) types.h & ksynch.h Query if a mutual exclusion lock
is available.

MUTEX_MINE(D3) types.h & ksynch.h Test if a mutex lock is owned by
this process.

Table 8-25 Functions for Mutex Locks (continued)

Function Name Header Files Purpose

Waiting and Mutual Exclusion

007-0911-210 249

In order to implement priority inheritance and retain high performance, the mutex lock
is subject to the restriction that it must be unlocked by the same process or thread that
locked it. It cannot be locked in one process or thread identity and unlocked in another.

You can use mutex locks to coordinate the use of global variables between upper-half
entry points of a driver, and between the upper-half code and the interrupt handler. You
should prefer a mutex lock to a basic lock in any case where the worst-case program path
could hold the lock for a time of 100 microseconds or more.

Mutex locks become inefficient when there is high contention for the lock (that is, when
the probability of having to wait is high), because when a process has to wait for a lock,
a thread switch takes place. When there is high contention for a lock, it is usually better
to use a basic lock, because waiting threads simply spin; they do not execute a context
switch.

Using Sleep Locks

IRIX supports sleep lock functions that are compatible with SVR4. These functions are
summarized in Table 8-26.

Table 8-26 Functions for Sleep Locks

Function Name Header Files Purpose

SLEEP_ALLOC(D3) types.h & kmem.h & ksynch.h Allocate and initialize a sleep
lock.

SLEEP_DEALLOC(D3) types.h & ksynch.h Deinitialize and deallocate a
dynamically allocated sleep lock.

SLEEP_INIT(D3) types.h & ksynch.h Initialize an existing sleep lock.

SLEEP_DESTROY(D3) types.h & ksynch.h Deinitialize a sleep lock.

SLEEP_LOCK(D3) types.h & ksynch.h & param.h Acquire a sleep lock, waiting if
necessary until the lock is free.

SLEEP_LOCKAVAIL(D3) types.h & ksynch.h Query whether a sleep lock is
available.

SLEEP_LOCK_SIG(D3) types.h & ksynch.h & param.h Acquire a sleep lock, waiting if
necessary until the lock is free or a
signal is received.

250 007-0911-210

8: Device Driver/Kernel Interface

Although allocation and deallocation functions are supplied, a sleep_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
SLEEP_INIT() operation prepares a statically-allocated sleep_t for use. (In IRIX 6.2, a
sleep_t is identical to a sema_t, but this situation could change in a future release.)

A sleep lock is similar to a mutex lock in that it is used for mutual exclusion between
processes, and can be held across a function call that sleeps. A sleep lock does not have
either the advantages or the restrictions of a mutex lock:

• A sleep lock can be seized by one process and released by another.

• A sleep lock can be set in an upper-half entry point and released in an interrupt
routine.

• A sleep lock does not provide priority inheritance. When a low-priority process
holds a sleep lock, a higher-priority process can be blocked, causing a priority
inversion.

• A sleep lock does not support the instrumentation or the query functions supported
for mutex locks.

Reader/Writer Locks

Reader/writer locks are similar to sleep locks in that they are designed for mutually
exclusive control of resources for relatively long periods of time. However,
Reader/Writer locks are optimized for the case in which the resource is often used by
processes that only interrogate it (readers), but only rarely used by processes that modify
it (writers).

SLEEP_TRYLOCK(D3) types.h & ksynch.h Try to acquire a sleep lock,
returning a code if it is not free.

SLEEP_UNLOCK(D3) types.h & ksynch.h Release a sleep lock.

Table 8-26 Functions for Sleep Locks (continued)

Function Name Header Files Purpose

Waiting and Mutual Exclusion

007-0911-210 251

Reader/writer locks compatible with SVR4 are introduced in IRIX 6.2. The functions are
summarized in Table 8-27.

Although allocation and deallocation functions are supplied, a mrlock_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
RW_INIT() operation prepares a statically-allocated mrlock_t for use.

A process that intends to modify a resource uses RW_WRLOCK to claim it. This process
waits until the resource is not in use by any process, then it gains exclusive access. Only
one process is allowed to hold a reader/writer lock as a writer. All other processes,
readers or writers, wait until the writer releases the lock.

Table 8-27 Functions for Reader/Writer Locks

Function Name Header Files Purpose

RW_ALLOC(D3) types.h & kmem.h & ksynch.h Allocate and initialize a
reader/writer lock.

RW_DEALLOC(D3) types.h & ksynch.h Deallocate a reader/writer lock.

RW_INIT(D3) types.h & ksynch.h Initialize an existing
reader/writer lock.

RW_DESTROY(D3) types.h & ksynch.h Deinitialize an existing
reader/writer lock.

RW_RDLOCK(D3) types.h & ksynch.h & param.h Acquire a reader/writer lock as
reader, waiting if necessary.

RW_TRYRDLOCK(D3) types.h & ksynch.h Try to acquire a reader/writer
lock as reader, returning a code if
it is not free.

RW_TRYWRLOCK(D3) types.h & ksynch.h Try to acquire a reader/writer
lock as writer, returning a code if
it is not free.

RW_UNLOCK(D3) types.h & ksynch.h Release a reader/writer lock as
reader or writer.

RW_WRLOCK(D3) types.h & ksynch.h & param.h Acquire a reader/writer lock as
writer, waiting if necessary.

252 007-0911-210

8: Device Driver/Kernel Interface

A process that intends only to interrogate a resource uses RW_RDLOCK to gain access.
If a writer holds the lock, the process waits. When the lock is free, or is held only by other
readers, the process continues. More than one reader can hold a reader/writer lock at one
time. It is also valid for a reader to “double-trip” a reader/writer lock; that is, claim it two
or more times. The reader must release the lock as many times as it claimed the lock.

A reader/writer lock serves the same basic purpose as a sleep lock, but it is more efficient
in a multiprocessor when there are frequent, read-only uses of a resource.

Priority Level Functions

In traditional UNIX systems, one set of functions served all purposes of synchronization
and locking: the set-priority-level, or spl, functions. These functions are still available in
IRIX, and are summarized in Table 8-28.

Calls to these functions are commonly found in device drivers being ported from
uniprocessors. Such drivers rely on the use of splhi() to guarantee exclusive use of global
resources.

The spl functions listed in Table 8-28 are supported by IRIX, but you are strongly advised
not to use them. In a multiprocessor, the functions affect only the interrupt handling of
the current CPU. Other CPUs in the system continue to handle interrupts, including
interrupts initiated by the driver that called splhi().

A driver should use locks, synchronization variables, and other tools to control access to
resources. Such a driver never needs an spl function. This improves performance in a
multiprocessor, does not harm performance in a uniprocessor, and reduces the latency of
all interrupts.

Table 8-28 Functions to Set Interrupt Levels

Function Name Header Files Purpose

splbase(D3) ddi.h Block no interrupts.

splhi(D3) ddi.h Block all I/O interrupts.

splx(D3) ddi.h Restore previous interrupt level.

Waiting and Mutual Exclusion

007-0911-210 253

Waiting for Time to Pass

The kernel offers functions for timed delays, as summarized in Table 8-29.

Time Units

The basic time unit is the “tick.” Its value can differ between hardware platforms and
between versions of IRIX. The drvhztousec() and drvusectohz() functions convert
between ticks and microseconds in the current system. Use them in order to schedule a
delay in a portable manner. (However, the timer function precision is the tick, not the
microsecond.)

The “fast tick” is a fraction of a tick. Like the tick, the fast tick’s value can differ between
systems. Use fasthzto() to convert from microseconds to fast ticks.

Table 8-29 Functions for Timed Delays

Function Name Header Files Purpose

delay(D3) ddi.h Delay for a specified number of clock ticks.

drv_hztousec(D3) ddi.h Convert clock ticks to microseconds.

drv_usectohz(D3) ddi.h Convert microseconds to clock ticks.

drv_usecwait(D3) ddi.h Busy-wait for a specified interval.

dtimeout(D3) ddi.h & ksynch.h Schedule a function execute on a specified processor
after a specified length of time.

itimeout(D3) ddi.h & ksynch.h Schedule a function to be executed after a specified
number of clock ticks.

fast_itimeout() ddi.h & ksynch.h Same as itimeout() but takes an interval in “fast
ticks.”

fasthzto() types.h & time.h Returns the value of a struct timeval as a count of
“fast ticks.”

timeout(D3) ddi.h & ksynch.h Schedule a function to be executed after a specified
number of clock ticks.

untimeout(D3) ddi.h Cancel a previous itimeout or fast_itimeout request.

untimeout_func(D3) ddi.h Cancel a previous itimeout or fast_itimeout request
by function name.

254 007-0911-210

8: Device Driver/Kernel Interface

Timer Support

Timer support is based on the idea of a “callback” function. You specify the following to
dtimeout(), itimeout(), timeout() or fast_itimeout():

• an interval in clock ticks or fast ticks

• a function to be called at the expiration of the interval

• one or more arguments to be passed to the function

• a priority (interrupt) level at which the function should run

After a delay of at least the length requested, the function is called. The function is
entered asynchronously. On a uniprocessor, it can interrupt execution of an upper-half
routine. On a multiprocessor, it can execute concurrently with an upper-half routine or
with an interrupt handler or a different timeout function. (Use locks or mutexes for
mutual exclusion.)

The difference between itimeout() and timeout() is that the latter takes no argument
values to be passed to the function when it is called. In order to get a repeated series of
timer events, start a new timeout from the callback function.

The untimeout() and untimeout_func() functions cancel a pending timeout. In a
loadable driver that has an pfxunload() entry point, cancel any pending timeouts before
unloading.

The STREAMS_TIMOUT macro supplies similar timeout capability for a STREAMS
driver (see “Special Considerations for Multiprocessing” on page 785).

Short-Term Delay Support

In rare circumstances, a driver needs to pause briefly between two hardware operations.
For example, the SGI support for external interrupts in the Challenge and Onyx
computers sometimes needs to set a high output level, wait for a brief, precise interval,
then set a low output level.

The drv_usecwait() function supports this type of very short, precisely-timed delay. It
“spins” for a specified number of microseconds, then returns to the caller. The CPU does
nothing else during this period, so clearly a delay of more than a few microseconds can
interfere with other work. Furthermore, if interrupts are disabled during the wait, the
response to another interrupt is delayed also—the delay contributes directly to the
“latency” of interrupt handling.

Waiting and Mutual Exclusion

007-0911-210 255

Waiting for Memory to Become Available

Whenever you request memory of any kind, you must allow for the possibility that the
memory will not be available. When you allocate memory in bulk (see “General-Purpose
Allocation” on page 213) using kmem_alloc() you have the option of receiving a null
response, or of waiting for the memory to be available.

When you request memory for specific object types (see “Allocating Objects of Specific
Kinds” on page 215) there is usually no choice; the functions sleep until they can acquire
an object of the requested type.

Within a STREAMS driver you have the ability to schedule a callback function to be
entered when memory for a message buffer becomes available (see the bufcall(D3)
reference page).

Waiting for Block I/O to Complete

The pfxstrategy() routine initiates the I/O operation to fill a buffer based on a buf_t
structure. Then it has to wait for the I/O to complete. The functions for managing this
synchronization are summarized in Table 8-30.

Table 8-30 Functions for Synchronizing Block I/O

Function Name Header Files Purpose

biodone(D3) ddi.h Release buffer after I/O and wake up waiting process.

bioerror(D3) ddi.h Manipulate error fields in a buf_t.

biowait(D3) ddi.h Suspend process pending completion of I/O.

geterror(D3) ddi.h Retrieve error number from a buf_t.

physiock(D3) ddi.h Validate a raw I/O request and pass to a strategy function.

uiophysio(D3) ddi.h Validate a raw I/O request and pass to a strategy function.

undma(D3) ddi.h Unlock physical memory after I/O complete.

userdma(D3) ddi.h Lock physical memory in user space.

256 007-0911-210

8: Device Driver/Kernel Interface

How the strategy() Entry Point Is Called

The pfxstrategy() entry point is called directly from the filesystem or virtual memory
management, or it can be called indirectly from a pfxread() or pfxwrite() entry point (see
“Calling Entry Point strategy() From Entry Point read() or write()” on page 174).

Strategies of the strategy() Entry Point

Typically the pfxstrategy() routine must interact with its interrupt handler. The
pfxstrategy() routine can be designed in either of two ways, synchronous or
asynchronous.

The synchronous pfxstrategy() routine initiates every I/O operation. Its interrupt handler
is responsible only for detecting and signalling the completion of one I/O. The
pfxstrategy() routine proceeds as follows:

1. Lock the data buffer in memory using userdma().

2. Place the address of the buf_t where the pfxintr() entry point can find it.

3. Program the device (see “Setting Up a DMA Transfer” on page 226) and initiate the
I/O activity.

4. Call biowait().

When the interrupt handler is entered, the handler uses bioerror() if necessary, and
biodone() to signal the completion of the I/O. Then it exits. The strategy code, which is
waiting in the call to biowait(), regains control following the call to biodone(), and can
use geterror() to check the results.

The asynchronous pfxstrategy() routine only initiates the first I/O operation of a series,
and never waits. It proceeds as follows:

1. Lock the data buffer in memory using userdma().

2. Append the address of the buf_t to a queue shared with the interrupt handler.

3. If the queue was empty, no I/O is in progress. Call a subroutine that programs the
device and initiates the I/O.

4. Return to the caller. The caller (a filesystem or paging system or uiophysio()) waits
using biowait().

When the interrupt occurs, the handler proceeds as follows:

Waiting and Mutual Exclusion

007-0911-210 257

1. The first queued buf_t has completed. Remove it from the queue.

2. Apply bioerror() if necessary, and biodone() to the buf_t. This releases the caller of
the strategy routine from biowait().

3. If any operations remain in the queue, call a subroutine to program and initiate the
next one.

Waiting for a General Event

There are causes for synchronization other than time, block I/O, and memory allocation.
For example, there is no defined interface comparable to biowait()/biodone() to mediate
between an interrupt handler and the pfxread() or pfxwrite() entry points. You must
design a mechanism of your own, using either a synchronization variable or the
sleep()/wakeup() function pair.

Using sleep() and wakeup()

The sleep() and wakeup() function pair are the simplest, oldest, and least efficient of the
general synchronization mechanisms. They are summarized in Table 8-31.

Used carefully, these functions are suitable for simple character device drivers. However,
when you are writing new code or converting a driver to multiprocessing you should
avoid them and use synchronization variables instead (see “Using Synchronization
Variables” on page 258).

The basic concept is that the upper-layer routine calls sleep(n) in order to wait for an
event that is keyed to an arbitrary address n. Typically n is a pointer to a data structure
related to an I/O operation. The interrupt handler executes wakeup(n) to cause the
sleeping process to resume execution.

Table 8-31 Functions for Synchronization: sleep/wakeup

Function Name Header Files Purpose

sleep(D3) ddi.h & param.h Suspend execution pending an event.

wakeup(D3) ddi.h Waken a process waiting for an event.

258 007-0911-210

8: Device Driver/Kernel Interface

The main reason to avoid sleep() is that, in a multiprocessor system, it is hard to ensure
that sleeping always begins before wakeup() is called. The usual intended sequence of
events is as follows:

1. Upper-half routine initiates a device operation that will lead to an interrupt.

2. Upper-half routine executes sleep(n).

3. Interrupt occurs, and handler executes wakeup(n).

In a multiprocessor-aware driver (one with D_MP in its pfxdevflag constant; see “Driver
Flag Constant” on page 156), there is a small chance that the interrupt can occur, calling
wakeup(n), before the sleep(n) call has been completed. Because sleep() has not been
called, the wakeup() is lost. When the sleep() call completes, the process sleeps forever.
Synchronization variables are designed to handle this case.

Using Synchronization Variables

Synchronization variables, a feature of UNIX SVR4, are supported by IRIX beginning
with release 6.2. These functions are summarized in Table 8-32.

Table 8-32 Functions for Synchronization: Synchronization Variables

Function Name Header Files Purpose

SV_ALLOC(D3) types.h & sema.h Allocate and initialize a synchronization
variable.

SV_DEALLOC(D3) types.h & sema.h Deinitialize and deallocate a synchronization
variable.

SV_INIT(D3) types.h & sema.h Initialize an existing synchronization variable.

SV_DESTROY(D3) types.h & sema.h Deinitialize a synchronization variable.

SV_BROADCAST(D3) types.h & sema.h Wake all processes sleeping on a synchronization
variable.

SV_SIGNAL(D3) types.h & sema.h Wake one process sleeping on a synchronization
variable.

SV_WAIT(D3) types.h & sema.h Sleep until a synchronization variable is
signalled.

SV_WAIT_SIG(D3) types.h & sema.h Sleep until a synchronization variable is
signalled or a signal is received.

Waiting and Mutual Exclusion

007-0911-210 259

A synchronization variable is a memory object of type sv_t, representing the occurrence
of an event. You can allocate objects of this type dynamically, or declare them as static
variables or as fields of structures.

One or more processes may wait for an event using SV_WAIT(). An interrupt handler or
timer callback function can signal the occurrence of an event using SV_SIGNAL (to wake
up only one waiting process) or SV_BROADCAST (to wake up all of them).

SV_WAIT is specifically designed to handle the difficult case that arises when the driver
needs to initiate an I/O operation and then sleep, and do these things in such a way that
it always begins to sleep before the SV_SIGNAL can possibly be issued. The procedure
is done as follows:

1. The driver seizes a basic lock (see “Basic Locks” on page 245) or a mutex lock (see
“Using Mutex Locks” on page 247) that is also used by the interrupt handler.

A LOCK() call returns an integer that is needed later.

2. The driver initiates an I/O operation that can lead to an interrupt.

3. The driver calls SV_WAIT, passing the lock it holds and an integer, either the value
returned by LOCK() or a zero if the lock is a mutex lock.

4. In one indivisible operation, SV_WAIT releases the lock and begins waiting on the
synchronization variable.

5. The interrupt handler or other process is entered, and seizes the lock.

This step ensures that, if the interrupt handler or other process is entered preceding
the SV_WAIT call, it will not proceed until SV_WAIT has completed.

6. The interrupt handler or other process does its work and calls SV_SIGNAL to
release the waiting driver.

This process is sketched in Example 8-5.

Example 8-5 Skeleton Code for Use of SV_WAIT

lock_t seize_it;
sv_t wait_on_it;
initiator(...)
{

int lock_cookie;
for(as often as necessary)
{

lock_cookie = LOCK(&seize_it,PL_ZERO);

260 007-0911-210

8: Device Driver/Kernel Interface

[do something that causes a later interrupt]
SV_WAIT(&wait_on_it, 0, &seize_it, lock_cookie);
[interrupt has been handled]

}
}

void handler(...)
{

int lock_cookie = LOCK(&seize_it,PL_ZERO);
[handle the interrupt]
SV_SIGNAL(&wait_on_it);
UNLOCK(&seize_it);

}

If it is necessary to use a semaphore as the lock, the header file sys/sema.h declares
versions of SV_WAIT that accept a semaphore and a synchronization variable. The
combination of a mutual exclusion object and a synchronization variable ensures that
even in a multiprocessor, the interrupt handler cannot exit before the driver has entered
a predictable wait state.

Tip: When a debugging kernel is used, you can display statistics about the use of a given
synchronization variable. See “Including Lock Metering in the Kernel Image” on
page 288.

Semaphores

The semaphore is a generalized tool that can be used for both mutual exclusion and for
waiting. The IRIX kernel support for semaphores is summarized in Table 8-33.

Table 8-33 Functions for Semaphores

Function Name Header Files Purpose

cpsema(D3) sema.h & types.h Conditionally perform a “P” or wait semaphore
operation.

cvsema(D3) sema.h & types.h Conditionally perform a “V” or release semaphore
operation.

freesema(D3) sema.h & types.h Free the resources associated with a semaphore.

Waiting and Mutual Exclusion

007-0911-210 261

Conceptually, a semaphore contains an integer. The “P” operation claims the semaphore,
decrementing its count by 1 (mnemonic: dePlete). If the count is 0 or less, the process
waits until the count is greater than 0 before it decrements the semaphore and returns.

The “V” operation increments the semaphore count (mnemonic: reViVe) and wakens any
process that is waiting.

Tip: When a debugging kernel is used, you can display statistics about the use of a given
semaphore. See “Including Lock Metering in the Kernel Image” on page 288.

Note: In releases before IRIX 6.2, initnsema_mutex() was used to initialize a semaphore
in a special way that got the performance of a basic lock in a multiprocessor. Since
IRIX 6.2, this function is simply a macro that initializes the semaphore to a count of 1.

Using a Semaphore for Mutual Exclusion

To use a semaphore for locking, initialize it to 1. (This reflects the idea that a process
calling a locking function expects to continue.) When you require exclusive use of the
associated resource, call psema(). Typically this finds a semaphore count of 1, reduces it
to 0, and returns.

When you are finished with the resource, call vsema() to increment the semaphore count,
and release any process that is blocked in a psema() call for the same semaphore.

initnsema(D3) sema.h & types.h Initialize a semaphore to a given value.

initnsema_mutex(D3) sema.h & types.h Initialize a semaphore to a value of 1.

psema(D3) sema.h & types.h &
param.h

Perform a “P” or wait semaphore operation.

valusema(D3) sema.h & types.h Return the value associated with a semaphore.

vsema(D3) sema.h & types.h Perform a “V” or signal semaphore operation.

Table 8-33 Functions for Semaphores (continued)

Function Name Header Files Purpose

262 007-0911-210

8: Device Driver/Kernel Interface

For locking, a semaphore is comparable to a sleep lock. In some systems, the performance
of semaphore operations may not be as good as the performance of a mutex lock. In other
systems, mutex locks may be implemented using semaphores.

Using a Semaphore for Waiting

To use a semaphore for waiting, initialize it to 0. Then call psema(). Because the
semaphore count is 0, the process waits. When the desired event occurs, typically in the
interrupt handler, call vsema() to release the waiting process.

This synchronization method is as reliable as a synchronization variable, but it has
slightly different behavior. When a synchronization variable is used correctly (see “Using
Synchronization Variables” on page 258), if the interrupt handler is entered before the
SV_WAIT call completes, the interrupt handler waits on a LOCK call.

When a semaphore is used, if the interrupt handler is entered before the psema() call
completes, the vsema() operation is done immediately and the interrupt handler
continues without waiting. The fact that vsema() was called is stored as a count within
the semaphore, where psema() will find it. Because the semaphore can contain this state
information, the interrupt handler does not have to be synchronized in time using a lock.

Note: In releases before IRIX 6.2, the vpsema() function was used in a way similar to
synchronization variables are used: to release one semaphore and wait on another in an
atomic operation. This function is no longer supported; replace it with synchronization
variable.

Using Kernel Threads

This section describes kernel system threads and their configuration.

Kernel System Threads

IRIX uses interrupt threads to handle most of its physical interrupts. The section titled
“Interrupt Entry Point and Handler” in Chapter 7 describes how to create a kernel thread
and how to link it to a physical interrupt in one action. Some drivers perform
background processing of events and queues that are not tied to particular physical
interrupts. User-mode programs that do this are typically called daemons.

Waiting and Mutual Exclusion

007-0911-210 263

For systems running IRIX 6.5.17 and later, drivers can create kernel threads not
associated with particular interrupts. These "system" threads can take all types of locks,
block on events or resources, and do anything else that interrupt threads can do. For
details on their creation and destruction, see the drv_thread_create(D3) and
drv_thread_exit(D3) man pages .

Unlike interrupt handlers, most system threads should not return from their starting
function until they are ready to destroy their thread. Most threads should use some form
of loop, alternating between processing data and waiting for more data from user
programs or from interrupt threads. The following example illustrates the creation and
operation of a typical system thread:

Example 8-6 Creation and Operation of a Typical System Thread

...

#include <sys/cmn_err.h>
#include <sys/ddi.h>
...

void
example_system_thread(void * arg0,
 void * arg1,
 void * arg2,
 void * arg3)
{
 /*
 * Loop processing events and sleeping waiting for more
 */
 while (1) {
 /*
 * Wait for more events to occur
 */

 /*
 * Do background work
 */
 }

 /*
 * If we need to exit this thread for some reason
 * we call the below. This is equivalent to just
 * calling return() from the base function.
 */

264 007-0911-210

8: Device Driver/Kernel Interface

 drv_thread_exit();
}

void
example_init(void)
{
 int error;
 void * myarg0, * myarg1;
...
 /*
 * Create a system thread to do background work
 */
 error = drv_thread_create("MyThread", 0, 0, 0,
 example_system_thread,
 myarg0, myarg1, NULL, NULL);

 if (error) {
 cmn_err(CE_WARN, "Creation of MyThread failed\n");
 }
...
}

Custom Configurations for Kernel Threads

When the irix.sm DEVICE_ADMIN INTR_TARGET directive is used to direct a
physical interrupt, it also binds its interrupt handlers to the target CPU. In some
situations, such as when running with the SGI Frame Rate Scheduler (FRS), it is desirable
to put interrupt handler threads on CPUs in locations other than where their physical
interrupts are directed. Systems running IRIX 6.5.16 or later can use the XThread Control
Interface (XTCI) to control special behaviors such as this. Users can add XTHREAD entries
in the /var/sysgen/system/irix.sm file. Kernel threads not given entries operate
with default behavior. After irix.sm is modified, you should runlboot to reconfigure
the system.

To preserve compatibility, in the event that conflicting entries are found, XTCI entries will
defer to the legacy /var/sysgen/master.d/sgi interface. As in the master.d/sgi
interface, system threads can be specified but they can later change their behavior;
whereas interrupt threads must adhere throughout their lifetime.

Specific interface entries are of the following format:

XTHREAD: name[*] [BOOT] [FLOAT] [STACK s] [PRI p] [CPU m...n]

Waiting and Mutual Exclusion

007-0911-210 265

Entry descriptions are as follows:

XTHREAD: Indicates that any line beginning with XTHREAD: controls kernel
threads. All of the information must be on the same line.

name[*] Indicates that any thread with a name equal to name is affected by
the directives that follow it. If * follows, any thread whose name
begins with name is affected.

BOOT Indicates that the thread stays within the boot cpuset, if one exists.

FLOAT Indicates that the thread will never be bound to a CPU.

STACK s Specifies the thread stack size.

PRI p Specifies the starting thread CPU scheduling priority.

CPU m...n Specifies a list of CPUs on which to attempt to place the thread, if
possible. Threads that cannot be placed on their CPU list will be
considered FLOAT. This is comparable to the sysmp()
MP_MUSTRUN command for user threads. You can list up to four
processors.

Note: At boot time the XTCI mechanism is enabled before IRIX enables its device drivers
but after some of the core IRIX services are initialized. Therefore some kernel threads,
such as the timeout threads, are not affected by XTCI entries for them.

The following examples illustrate the use of XTHREAD entries:

Example 8-7 XTHREAD FLOAT Entry

XTHREAD: ioc3* FLOAT

On SGI Origin series systems, this entry prevents all of the interrupt handler threads for
the IOC3 hardware (including the mouse and keyboard handlers) from being bound to a
CPU. This entry is useful for the previously described situation of routing the physical
interrupt for the external interrupt (and thus, also the keyboard and mouse) to a CPU
running the FRS. Because the FRS controls the CPU, it will not allow mouse and
keyboard handlers to run. The FLOAT directive allows them to run on a different CPU.

Example 8-8 XTHREAD CPU Entry

XTHREAD: vme_intrd0 CPU 2

This example forces the kernel interrupt thread for level 0 VME interrupts to run on
processor 2.

007-0911-210 267

Chapter 9

9. Building and Installing a Driver

After a kernel-level driver has been designed and coded, it must be compiled, linked, and
installed. The topics in this chapter describe the major steps of this process, as follows:

• “Defining Device Numbers” on page 267 covers the choice of major and minor
device numbers.

• “Defining Device Special Files” on page 269 describes options for creating the file or
files controlled by the driver.

• “Compiling and Linking” on page 270 covers the compiler and linker options used
for driver modules.

• “Configuring a Nonloadable Driver” on page 273 describes the configuration files
used to set up a driver loaded at boot time.

• “Configuring a Loadable Driver” on page 279 describes the additional
configuration needed for a loadable driver.

Defining Device Numbers

The topics “Major Device Number” on page 40 and “Minor Device Number” on page 41
cover the purpose and use of the device numbers. Major and minor numbers were once
very important in the device driver design because they were the primary input that
distinguished a device to a device driver upper-half entry point. In current IRIX, this is
only the case for legacy drivers in older machines. Contemporary drivers take their input
from a vertex of the hwgraph (see “Hardware Graph” on page 44).

268 007-0911-210

9: Building and Installing a Driver

The historical use of device numbers can be summarized as follows:

• Both numbers are encoded in the inode of a device special file in /dev.

• The major number selects the device driver.

• The minor number specifies the logical unit, and can encode device features.

• Both numbers are passed as a parameter to driver entry points.

Part of creating and installing a device driver is the selection of device numbers and the
definition of device special files.

Selecting a Major Number

If your driver does not use the hwgraph, you must select a major number to stand for
your driver. The numbers that already exist are listed in sys/major.h. However, the
major number should not be coded into the driver. Typically the driver code does not
need to know its major number, and if it does, the driver should discover its major
number dynamically. A method of doing this is discussed under “Variables Section” on
page 276.

A driver is associated with its major number in the master.d configuration file. When
the driver discovers this number dynamically, the system administrator is free to change
major numbers in /var/sysgen/master.d files to correct conflicts between one
product and another.

Selecting Minor Numbers

When a driver is called to service a device special file defined only in /dev, it receives a
device minor number comprising 18 bits of information. You design the content of these
numbers to give your driver the information it needs about each device special file.
Typically you encode a unique device unit number so the driver can index device
information from an array. (When the hwgraph is used, a pointer to the device
information is stored in the hwgraph vertex instead.)

Examine the /dev/MAKEDEV script to see some techniques for assembling minor
numbers dynamically based on the hardware inventory and other commands.

Defining Device Special Files

007-0911-210 269

Defining Device Special Files

As described under “Device Special Files” on page 37, the association between a device
and a driver is established when a process opens a device special file in the /hw or /dev
directory. Without at least one device special file, a device can never be opened.

Static Definition of Device Special Files

The system administrator can create device special files using mknod or install (see
“Making Conventional Device Files” on page 43). This can be done manually, or through
an installation script, or as an exit operation of the software manager program. The
device special files can be created at any time—whether or not the device driver is
installed, and whether or not the hardware exists. The special device files continue to
exist until the administrator removes them.

Dynamic Definition of Device Special Files

A more sophisticated approach is to have the device special files created, or recreated,
dynamically each time the system boots. This was the purpose for which
/dev/MAKEDEV (see “The Script MAKEDEV” on page 43) was introduced—it removes
and redefines device special files based on information in the hardware inventory. In
current IRIX, all entries in the /hw filesystem are created dynamically by device drivers
as devices are attached.

Definition and Use of /hw Entries

The kernel creates the upper levels of the hardware graph to represent addressable units
of hardware in the basic system—modules, buses, and slots. While probing buses, it finds
devices, and calls upon device drivers to attach them (see “Entry Point attach()” on
page 162 and “Entry Point edtinit()” on page 160). At these times, the driver has the
responsibility of extending the hwgraph with vertexes that provide access to the device
(see “Extending the hwgraph” on page 233).

Because hwgraph entries are always created dynamically, and can be created and
destroyed while the system is running, the initial set of pathnames in /hw are not stable
and should not be written into user scripts and source code. Your driver can create
additional vertexes in the hwgraph (see “Extending the hwgraph” on page 233), both

270 007-0911-210

9: Building and Installing a Driver

when attaching a device and later, when ioconfig runs (see “Using ioconfig for Global
Controller Numbers” on page 53).

Compiling and Linking

You compile a kernel device driver to an ELF binary using shared libraries. The compile
options differ between 32-bit and 64-bit modules.

Platform Support

If you are building a device driver that you wish to use on multiple platforms, you
should build a different driver for each CPU board type (for example, IP22) that you
want to run it on. You can use the hinv command to determine the host architecture (see
hinv(1M)) and then specify the board type in the Makefile as described in the next
section.

Using /var/sysgen/Makefile.kernio

The file /var/sysgen/Makefile.kernio is a sample Makefile for compiling kernel
modules. You can include it from a Makefile of your own to set the definitions of
compiler variables and compiler options appropriately for different CPUs and module
types.

The Makefile.kernio file tests the following environment variables, which you set:

The purpose of the rules in Makefile.kernio is to set numerous compiler variables
appropriately for the CPU type and execution model. It also sets compiler options into a
Make variable CFLAGS. Owing to the number of compiler variables and the importance
of getting them right for each CPU type, Silicon Graphics strongly recommends that you
invoke Makefile.kernio from your own makefile.

CPUBOARD Set to the type of CPU used in the target system, for
example IP19, IP22, IP27 (see the sys/cpu.h header
file).

COMPILATION_MODEL Set to 64 for a 64-bit kernel module, or to 32 for a 32-bit
kernel module.

Compiling and Linking

007-0911-210 271

Note: Makefile.kernio is designed for nonloadable drivers. In particular it sets the
compiler option -G8, which is valid for nonloadable drivers. For loadable drivers, use the
file /var/sysgen/Makefile.kernloadio as a sample Makefile. This sets the -G0
flag and other options appropriate for loadable drivers.

Compiler Variables

The compiler variables listed in Table 9-1 are tested in system header files. They are
usually defined on the compiler command line. The rules in Makefile.kernio set
definitions of these variables appropriately for different CPU types.

Table 9-1 Compiler Variables Tested by System Header Files

Variable Meaning

_KERNEL Compile for a kernel module, not a user program.

MP Compile for a multiprocessor.

_MP_NETLOCKS Compile network driver (only) for multiprocessor TCP/IP.

STATIC=static Use of pseudo-declarator STATIC is converted to real static.

_PAGESZ=16384 Compile for a kernel using 16K memory pages.

_PAGESZ=4096 Compile for a kernel using 4K memory pages.

_MIPS3_ADDRSPACE Kernel for a MIPS3 machine.

R10000 Target machine is the R10000.

TFP Target machine is the R8000.

R4000 Target machine is the R4000.

IPnn Target machine uses the IPnn CPU module, one of IP19, IP20,
IP21, IP22, IP25, IP26, IP27, IP28, IP30, and IP35 are currently
supported.

EVEREST Compile for a Challenge or Onyx system.

BADVA_WAR, JUMP_WAR,
PROBE_WAR

Compile workaround code for bugs in certain R4x00 revisions.

272 007-0911-210

9: Building and Installing a Driver

Compiler Options

Some of the cc and ld options needed to compile and link a kernel-level driver are
shown in Table 9-2. The complete and most current set is defined in Makefile.kernio.

_IP26_SYNC_WAR,
_NO_UNCCHED_MEM_WAR

Compile workaround code for IP26 bugs.

R10000_SPECULATION_WAR Compile workaround code for bug in certain R10000 revisions.

USE_PCI_PIO Compile workaround for IP32 PIO bug (see
sys/PCI/pciio.h).

Table 9-2 Compiler Options Kernel Modules

Option Purpose

-non_shared Do not compile for shared libraries (no dynamic
linking).

-elf Compile and link an ELF binary.

-64 Set for any kernel using the 64-bit execution model.
32-bit kernel does not set any specific flag.

-mips4 , -mips2 Select the MIPS4 instruction set only for the R10000
CPU. Use MIPS2 for others.

-G 8 In a nonloadable driver, use the global table for
objects up to 8 bytes.

-G 0 In a loadable driver, do not use the global table.
Refer to the gp_overflow(5) reference page for a
discussion of the global table.

-r Linker to retain symbols—for all drivers (required
by loadable drivers, and needed for lboot).

-d Force definition of common storage even though-r
used.

-Wc,-pic0 Do not allocate stack space used by shared objects.

Table 9-1 Compiler Variables Tested by System Header Files (continued)

Variable Meaning

Configuring a Nonloadable Driver

007-0911-210 273

Configuring a Nonloadable Driver

When the driver is not loadable, it is linked as part of the IRIX kernel. The following steps
are needed to make the driver usable:

1. Place the driver executable file in /var/sysgen/boot.

2. Place a descriptive file in /var/sysgen/master.d.

3. Place a directive file in /var/sysgen/system (or simply add a line to
/var/sysgen/system/irix.sm).

4. Run autoconfig to generate a new kernel.

5. Reboot the system.

Some of these steps are elaborated in the following topics.

-jalr In loadable drivers only, use jalr (jump-and-link
register) instead of jal, whose 26-bit operand may
not be enough for subroutine calls from a loaded
module to the kernel.

-TARG:t5_no_spec_stores Crucial setting for Indigo2 R10000 only; without it,
kernel memory corruption can occur.

-TENV:kernel

-TENV:misalignment=1

Execution environment options for 64-bit compiler.

-OPT:space

-OPT:quad_align_branch_targets=F
ALSE

-OPT:quad_align_with_memops=FALS
E

-OPT:unroll_times=0

Specific optimization constraints for 64-bit
compiler.

Table 9-2 Compiler Options Kernel Modules (continued)

Option Purpose

274 007-0911-210

9: Building and Installing a Driver

How Names Are Used in Configuration

The process of naming a kernel-level driver begins in a file in /var/sysgen/system,
such as /var/sysgen/system/irix.sm. Names are used as follows:

• A USE, INCLUDE, or VECTOR statement in /var/sysgen/system specifies a
name, for example

USE hypothetical

• This statement directs lboot to read a file of the same name in
/var/sysgen/master.d. In this example, the file would be
/var/sysgen/master.d/hypothetical.

• The file in /var/sysgen/master.d specifies the prefix for driver entry points, for
example hypo_.

• The same name with the suffix .o, is searched for in /var/sysgen/boot—in this
example, /var/sysgen/boot/hypothetical.o. This object file is linked with
the kernel.

• The public symbols in the object file are searched for names that start with the
prefix, for example hypo_attach(). These are noted in the kernel switch table so the
driver can be called as needed.

Placing the Object File in /var/sysgen/boot

The /var/sysgen/boot directory, where the kernel object modules reside, is actually
a symbolic link to one of the directories /usr/cpu/sysgen/IPnnboot, where nn is the
number of one of the CPU modules supported by the current release of IRIX (see “CPU
Modules” on page 4). When you place the object file of a driver in /var/sysgen/boot,
you actually place it in the CPU directory for the system in use.

Describing the Driver in /var/sysgen/master.d

You describe your driver in a file with the name of the driver in
/var/sysgen/master.d. The format of these files is described in two places: the
master(4) reference page, and in /var/sysgen/master.d/README. In addition, you
can examine the many examples in the distributed system.

Configuring a Nonloadable Driver

007-0911-210 275

Descriptive Line

The first noncomment line of the master file contains a series of fields, delimited by white
space, to describe the driver. These fields are listed in Table 9-3.

The important flag values for nonloadable drivers are listed in Table 9-4.

The s (software-only) flag tells lboot not to attempt to probe for hardware. This is the
case with software-only (pseudo-device) drivers, and with SCSI drivers. If lboot tries to
probe for a SCSI device, it fails, and assumes that the device is not present, and does not
include your SCSI device driver.

Additional flags (d, r, D, N, R) for loadable drivers are discussed later in the section
“Configuring a Loadable Driver” on page 279.

Table 9-3 Fields of Descriptive Line in Master File

Field Number Usage Details

1 Flags See Table 9-4.

2 Prefix The string of 1-14 characters that identify the public symbols of
driver entry points.

3 Major number The major device number found in device special files managed
by this driver. When the driver uses the hwgraph, this field
contains only a hyphen (-).

4 Number of
sub-devices

Size of the driver’s static arrays of device information, or given
as a hyphen “-” when the driver stores device information in the
hwgraph.

5 Dependencies A list of other modules that must be in the kernel for this driver
to work—usually omitted except for SCSI drivers.

Table 9-4 Flag Values for Nonloadable Drivers

Letter Meaning

b or c Block (b) or character (c) device. One or the other is essential for any device driver.

f or m STREAMS driver (f) or STREAMS module (m). Omit for device driver.

s Software driver, either a pseudo-device or a SCSI driver.

276 007-0911-210

9: Building and Installing a Driver

Listing Dependencies

The descriptive line ends with a comma-separated list of other loadable kernel modules
on which this driver depends. The lboot command makes sure that it will not load this
module if it fails to load a dependency.

In most cases, an OEM driver does not have any dependencies. However, a SCSI driver
(see Chapter 16, “SCSI Device Drivers”) should list the name scsi, since it depends on
the inner SCSI driver. A STREAMS driver might list the name of a STREAMS support
module such as clone (see “Support for CLONE Drivers” on page 789).

It is possible for you to design a driver in the form of multiple, loadable modules. In that
case, you would name your support modules in this field.

Stubs Section

Noncomment lines that follow the descriptive line and precede a line beginning “$” are
used by library modules—not by device drivers or STREAMS drivers. Each such line
specifies an entry point that this module provides, and which is used by the kernel or
some other loadable module. These lines instruct lboot in how to create a harmless
“stub” function in the event that this driver is not included in the kernel—for example,
because it is specified by an EXCLUDE line in the system file. The format is discussed in
the master(4) reference page.

Since a device or STREAMS driver provides only standard entry points that are accessed
via the switch tables rather than by linking, drivers do not need to define any stubs.

Variables Section

Following the descriptive line (and the stubs section, if any), you can place a line that
begins with “$” and, following this, you can write definitions of global variables using C
syntax. This text is compiled into a module linked with the kernel. You refer to these
variables as extern in the driver source code.

Configuring a Nonloadable Driver

007-0911-210 277

The advantage of defining global variables in the master file is that the initializing
expressions for these variables can include values taken from the descriptive line. The
following special symbols can be used:

You can use these symbols to compile run-time values for the major device number and
the number of supported sub-devices, as specified in the descriptive line of the file,
without coding them as constants in the driver. In the source code you can write

extern major_t myMajNum;
extern int myDevLimit;

In the master file you can implement the variables using the code in Example 9-1.

Example 9-1 Defining Variables in Master Descriptive File

$$$
major_t myMajNum = ##E;
int myDevLimit = ##C;

(In a loadable driver this technique requires one additional step; see “Master File for
Loadable Drivers” on page 280.)

##E The integer coded as the major number in the descriptive line. The first
integer, if a list of major numbers is given.

##C The number of controllers (bus adapters) of this type.

##D The number of sub-devices as coded in the fourth field of the descriptive line.

278 007-0911-210

9: Building and Installing a Driver

Configuring a Kernel

Once you have placed the binary in /var/sysgen/boot and the master file in
/var/sysgen/master.d, you can configure and generate a new kernel. This is done
using the autoconfig command, which in turn calls lboot to actually create a new
bootable file.

The lboot program only loads modules that are specified in a file in
/var/sysgen/system. One command is required to specify the new driver; the
command is one of the following:

The form of these commands is detailed in the system(4) reference page. In addition, you
should examine the distributed files in /var/sysgen/system, especially irix.sm,
which contains many comments on the meaning and use of different entries. Specific
uses of the VECTOR statement are discussed in the following topics: The form of
VECTOR lines for VME devices is discussed under “Configuring VME Devices” on
page 358.

You could place the VECTOR, USE, or INCLUDE line for your driver in irix.sm.
However, since lboot treats all files in /var/sysgen/system as a single file, you can
create a small file unique to your driver. The name of this file is not significant, but a good
name is the driver name with the suffix .sm.

Generating a Kernel

The autoconfig script invokes lboot to read the system files, read the master files,
and link all the kernel executables. Provided there are no errors, the output is a new file
/unix.install. At boot time this file is moved to the name /unix and used as the
kernel.

During the testing period you may want to keep the original kernel file available as
/unix.original. A simple way to retain this file is to create a link to it using the ln
command.

VECTOR To specify hardware details, to request a hardware probe at boot time, to
load the driver and invoke pfxedtinit().

INCLUDE To load the driver and invoke pfxinit().

USE To load the driver and invoke pfxinit() only if the master file exists in
master.d.

Configuring a Loadable Driver

007-0911-210 279

Configuring a Loadable Driver

You compile and configure a loadable driver very much as you would a nonloadable
driver (so you should read “Configuring a Nonloadable Driver” on page 273 before
reading this section). The differences are as follows:

• You provide an additional global variable with the public name pfxmversion.

• You use a few different compile options.

• You decide when the driver should be loaded, and use appropriate flags in the
descriptive line in the master file.

For more background on loadable modules, see the mload(4) and ml(1) reference pages.

Note: You may not call sthread_create() in a loadable driver, because the stack must be
in direct mapped (K0) space. The sthreads facility has been superseded by pthreads(5).

280 007-0911-210

9: Building and Installing a Driver

Public Global Variables

To be loadable, a driver must specify a pfxdevflag entry point containing the D_MP or
D_MT flag (see “Driver Flag Constant” on page 156).

Any loadable module must define a public name pfxmversion, declared as follows:

#include <sys/mload.h>
char *pfxmversion = M_VERSION;

Note the exact spelling of the variable; it is easy to overlook the letter “m” after the prefix.
If the variable does not exist or is incorrectly spelled, an attempt to load the driver will
fail.

Compile Options for Loadable Drivers

Use the -G 0 option when compiling and linking a loadable driver, since the global
option table is not available to a loadable driver. You must also use the -jalr option in
a loadable driver (see “Compiler Options” on page 272).

In a loadable driver, link using the -r and -d options to retain the symbol table yet
generate a bss segment.

Master File for Loadable Drivers

The file in /var/sysgen/master.d for a loadable driver has different flags.

In the flags field of the descriptive line of the master file (see “Descriptive Line” on
page 275), you specify that the driver is loadable, and when it should be loaded. The
possible flags are listed in Table 9-5.

Table 9-5 Flag Values for Loadable Drivers

Letter Meaning

b or c Block (b) or character (c) device. One or the other is essential for any device driver.

form STREAMS driver (f) or STREAMS module (m). Omit for device driver.

s Software driver, either a pseudo-device or a SCSI driver.

Configuring a Loadable Driver

007-0911-210 281

When the d flag is given for an included module, lboot parses the master file for the
driver. Global variables defined in the variables section of the master file (see “Variables
Section” on page 276) are defined and included in the kernel. However, object code of the
driver is not included in the kernel, and the names of its entry points are not entered into
the kernel switch table.

Such a driver has to be manually loaded with the ml or lboot command before it can be
used; and it cannot be used from the miniroot.

Loading

A loadable driver can be loaded by the lboot command at boot time, and by the ml
command while the system is running. The following steps occur when a driver is
loaded:

1. The object file header is read.

2. Memory is allocated for the driver’s text, data, and bss segments.

3. The driver’s text and data are read.

4. The text and data are relocated. References to kernel names and to global variables
named in the master file are resolved.

5. Entry points are noted in the appropriate kernel switch table.

6. The pfxinit() entry point is called if one is defined.

7. If the driver is named in a VECTOR statement and has a pfxedtinit() entry point,
that entry point is called for each VECTOR statement that names the driver.

8. The pfxstart() entry point, if any, is called.

d Specifies that this is a loadable driver.

R Auto-register the module (discussed in text).

D Load, then unload, at boot time, in order to let the driver initialize the hardware
inventory.

N Prevent this module from being automatically unloaded even when it has a pfxunload()
entry point.

Table 9-5 Flag Values for Loadable Drivers (continued)

Letter Meaning

282 007-0911-210

9: Building and Installing a Driver

9. The pfxreg() entry point, if any, is called.

Space allocated for the module’s text, data, and bss is located in node 0 of an Origin2000
system. Static buffers in loadable modules are not necessarily physically contiguous in
memory.

A variety of errors can occur when a module is loaded. See the mload(4) reference page
for a list of possible causes.

Effect of ‘D’ Flag

Normally a loadable driver is not loaded at boot time. It must be loaded sometime after
boot using the ml command. When the D flag is included in the descriptive line in the
descriptive file, lboot loads the driver at boot time, and immediately after calling
pfxstart(), unloads the driver. This permits the driver to test the hardware and set up the
hwgraph and hardware inventory.

Registration

A loadable module is “registered” by loading it, then placing a stub entry in the pfxopen()
and pfxattach() column of its row of the switch table, and unloading it again. The stub
entry points are invoked when the driver is needed, and the code of the entry points
initiates a load of the driver.

Registration of this kind can be done automatically during bootstrap, or later using the
ml command. Once it has been registered, a driver is loaded automatically the first time
the kernel needs to attach a device supported by this driver, or the first time a process
attempts to open a device special file managed by this driver. You can also load a
registered driver in advance of any use with the ml command—loading implies
registration.

Note: Try not to confuse this “registration” with a driver’s registration with the kernel
to handle a particular type of device.

Registration is done automatically for each master descriptive file that contains the d
(loadable) and R (register) flags. Autoregistration is done at bootstrap phase 2. It is
initiated by the script /etc/rc2/S23autoconfig. Registration can be initiated

Configuring a Loadable Driver

007-0911-210 283

manually at any time after bootstrap by using the ml or lboot command with the reg
option (see the ml(1M) and lboot(1M) reference pages).

Reloading

When a registered driver is reloaded, the sequence of events listed under “Loading” on
page 281 occurs again. There is one exception: the pfxreg() entry point is not called when
a registered driver is reloaded from a stub. (The complete sequence occurs when an
unregistered driver is explicitly loaded by the ml command.)

Unloading

A module can be unloaded only when it provides an pfxunload() entry point (see “Entry
Point unload()” on page 190). The N flag can be specified in the master file to prevent
automatic unloading in any case.

A loaded module is automatically unloaded following a delay after the last close of a
device it supports. The delay is configurable using systune, as the module_unld_delay
variable (see the systune(1) reference page). You can use ml to specify an unloading delay
for a particular module.

The lboot or ml command can be used to unload a module before the delay expires, or
to manually override the N flag.

The unload sequence is as follows:

1. The kernel verifies that all opens of the driver’s devices have been closed. The
driver cannot be unloaded if it has open devices or active mmaps.

2. The pfxunreg() entry point is called, if one exists. This gives the driver a chance to
unregister as a provider of service for a particular device type. If pfxunreg() returns
nonzero, the process stops.

3. The pfxunload() entry point is called. If it returns nonzero, the process stops.

4. The module is removed from memory. If it had been registered (R flag), stubs are
again placed in the pfxopen() and pfxattach() column of its row of the switch table.

Experience has shown that most of the problems with loadable drivers arise from
unloading and reloading. The precautions to take are described under “Entry Point
unload()” on page 190.

007-0911-210 285

Chapter 10

10. Testing and Debugging a Driver

As a critical system component, a driver deserves careful testing, but because it is part of
the kernel, the normal testing tools are not available. This chapter describes some of the
available testing tools and methods, in the following major topics:

• “Preparing the System for Debugging” on page 285 describes how to set up the
kernel for use of the debugging tools.

• “Producing Diagnostic Displays” on page 291 covers the kernel functions your
driver can use to generate diagnostic output as it executes.

• “Using symmon” on page 293 describes the use of the standalone debugger.

• “Using idbg” on page 302 describes some uses of the kernel-display command.

Preparing the System for Debugging

The standalone debugger symmon is a key tool for driver programming. It must be
installed in the volume header of the boot disk. In order for it to be useful you must boot
a “debugging” kernel, that is, one that retains symbols, and contains the display
modules, that are used by debugging tools. Normally these modules and symbols are
eliminated to save space. You modify the irix.sm file to enable debugging, and then
generate a new kernel.

All these steps should be performed before you attempt to install your device driver.

Placing symmon in the Volume Header

The symmon standalone debugger resides in the volume header of a disk—not in a
normal IRIX filesystem. The volume header is disk partition 8. It always contains a label
record (sgilabel). On a bootable disk, the volume header contains the standalone shell
sash that manages the bootstrap operation. Some bootable disks may also contain the

286 007-0911-210

10: Testing and Debugging a Driver

ide program, a PROM-level diagnostic program. If symmon is to be available, it, too,
must be placed in the volume header.

Normally you acquire symmon by installing the debugging kernel feature
(eoe.sw.kdebug) in the IRIX Developer Option software distribution. You can verify that
this feature has been installed by executing the command

versions eoe.sw.kdebug

The response should confirm the presence of this component (it does not show symmon
by name). When you install the kernel debug feature, the symmon program file is copied
to the volume header of the current boot disk automatically.

You can verify the presence ofsymmon in the volume header through the use ofdvhtool
(described in the dvhtool(1) reference page). The results should be similar to the display
in Example 10-1. The response to the “l” (list) command shows that the volume header
of this disk contains sgilabel, ide, sash, and symmon.

Example 10-1 Verifying Presence of symmon

dvhtool -v list /dev/rvh
Current contents:

File name Length Block #
sgilabel 512 2
ide 281600 278
sash 281600 828
symmon 248320 1378

In the event you need to install symmon in the volume header of a disk without using the
software manager, you can copy the standalone program to the volume header using
dvhtool. However, you first need to get a copy of the program in the form of a UNIX
file.

Starting from a volume that currently has a copy ofsymmon (verified as in Example 10-1),
use dvhtool to extract a copy of symmon into a convenient spot.

dvhtool -v g symmon /var/tmp/symmon.IPxx

There is a unique version of symmon for each CPU module, so it is a good idea to qualify
the filename with the CPU module type. Once the program is available as a normal file,
you can use dvhtool to install it in the volume header of some other disk.

Preparing the System for Debugging

007-0911-210 287

In the event there is not enough room in partition 0 (the volume header) of the target disk,
it is safe to use dvhtool to delete the ide program from the volume header. The ide
application can be booted manually from a CDROM if it is ever required.

Enabling Debugging in irix.sm

In order to make debugging symbols available in the kernel, you must make two
changes, one required and one optional, in the file /var/sysgen/system/irix.sm.
As superuser, make a hard link to the file /var/sysgen/system/irix.sm as
irix.sm.nondebug. This enables you to return easily to a nondebugging kernel.

Including Symbols in the Kernel Image

Edit /var/sysgen/system/irix.sm. Near the end, note the lines that resemble the
following:

* Compilation and load flags
* To load a kernel that can be co-resident with symmon
* (for breakpoint debugging) replace LDOPTS
* with the following. You must also INCLUDE prf and idbg.
*
*LDOPTS: -non_shared -N -e start -G 8 -elf -woff 84 -woff 47 -woff 17
-mips2 -o32 -nostdlib -T 88069000

The active LDOPTS statement (the one without an initial asterisk) appears a few lines
later. Remove the asterisk from the front of the debugging LDOPTS to make it active.
Insert an asterisk to convert the original LDOPTS into a comment.

Tip: Despite the residual comment in the irix.sm file, you need not include module prf
in a debugging kernel. It is only used for kernel profiling.

Including idbg in the Kernel Image

The symbol-display routines used by the command-line kernel display tool, idbg, are
contained in optional kernel modules. (See “Using idbg” on page 302.) You can change
/var/sysgen/system/irix.sm so that support for idbg is always present in the
kernel. Alternatively, you can load these modules manually with ml before you use them
(see the ml(1) reference page).

288 007-0911-210

10: Testing and Debugging a Driver

If you are entering an extended debugging period, make the modules permanent. Look
for the lines in /var/sysgen/system/irix.sm that resemble the following:

*
* Kernel debugging tools (see profiler(1M) and idbg(1M))
*
EXCLUDE: idbg
EXCLUDE: dmiidbg, grioidbg, xfsidbg, xlvidbg, cachefsidbg, mloadidbg

Change these lines, if necessary, so that all modules ending in idbg is marked
INCLUDE, not EXCLUDE. (INCLUDE is preferred to USE in order to get an error
message if they are not found.) Verify that the corresponding object files
/var/sysgen/boot/*idbg.o exist. They are normally installed with the debugging
kernel feature, although some of them may be installed with specific products.

Parts of the idbg support that are unique to particular filesystems are in the other
modules listed in this area of irix.sm. Modules such as xlvidbg are useful to SGI
developers but are not likely to be helpful to developers of third-party drivers. However,
it does no harm to change those modules from EXCLUDE to USE also.

Including Lock Metering in the Kernel Image

In addition to the display support included by the idbg modules, you can include
modules that support lock metering. This causes the kernel to keep statistics on the use
of each semaphore, basic lock, and reader/writer lock, so you can display the statistics
through idbg commands. To enable lock metering, find lines in
/var/sysgen/system/irix.sm that resemble the following:

* Required kernel modules
...
* ksync - kernel synchronization routines (mutex_lock, sv_wait,
psema...)
* or
* ksync_metered - metered kernel synchronization routines
...
*
KERNEL: kernel
INCLUDE: os, disp, mem, zero
INCLUDE: ksync
EXCLUDE: ksync_metered

Reverse the state of the two “ksync” lines so that ksync is excluded and ksync_metered
is included.

Preparing the System for Debugging

007-0911-210 289

Then find a line that resembles

INCLUDE hardlocks

Change this line to a comment, and add a line that says

INCLUDE dhardlocks

(Inserting the initial letter “d” in the module name.) This is the module that implements
basic locks as spinlocks, and dhardlocks is the metered version.

Generating a Debugging Kernel

Run the autoconfig command to generate a new kernel that will reflect the changes
made in irix.sm. The result is a new kernel file, /unix.install, that will be renamed
to /unix and used when the system is booted. This kernel can support idbg but is not
yet ready for standalone debugging with symmon.

The setsym command copies the symbol table from a kernel file and stores it as data
within the kernel, so that symmon can find it. After autoconfig has created
/unix.install, apply the setsym command to it, as follows:

#setsym /unix.install

If this command returns an error message about “symbol table overflow,” it means you
have neglected to activate the debugging LDOPTS statement in
/var/sysgen/irix.sm.

Tip: You can use setsymwith the -d option to generate a list of all symbols in the kernel
being modified. The list is very long; direct it to a file for later reference.

At this time, you may wish to create a link to the current, nondebugging kernel so you
can retrieve it easily. You can also return to a nondebugging kernel by restoring the
original irix.sm file and running autoconfig again.

290 007-0911-210

10: Testing and Debugging a Driver

Specifying a Separate System Console

In order to use the standalone debugger, you must have an ASCII terminal as a separate
system console device. Install a terminal next to the system or workstation and connect
it to the first serial port (of a workstation) or the system console serial port (of a server).

You may have to modify the file /etc/inittab so that the line for the alternate console
is active (see the inittab(4) reference page). Alternatively, you can use the System
Manager application from the 4D desktop. Select the icon for Port Setup. Select the port
and click Connect. You can then configure the port for baud rate and terminal type
interactively.

Verify the terminal’s operation by logging in to the system. When you know the terminal
works, use the nvram command to change the nonvolatile RAM variable console from a
letter “g” to a letter “d,” as follows:

nvram console
g
nvram console d
nvram console
d

The nvram command is used to report and change the contents of the nonvolatile RAM
variables used by the boot PROM and standalone shell (see the nvram(1) reference page).

Verifying the Debugging Tools

After performing the preceding steps, restart the system. Messages from sash appear on
the attached terminal, rather than on the graphics screen. If symmon is present, it
announces itself on the console terminal also.

To verify operation of idbg, issue the idbg command and display the process list:

idbg
idbg> plist
active process list:
34:672:"xdm" pri(60) SLEEP flags: load uload siglck recalc sv
0:0:"sched" ndpri(39) SLEEP flags: sys nwake load uload sv
31:193:"inetd" pri(60) SLEEP flags: load uload siglck recalc sv
...

Producing Diagnostic Displays

007-0911-210 291

To verify operation of symmon, press control-A at the console terminal. The prompt
string DBG: should appear. At this time the system is frozen and no longer responds to
mouse or keyboard input. Type the letter c (for continue) and press return (in a
multiprocessor, use c all). The system returns to life.

Producing Diagnostic Displays

Normally a device or STREAMS driver produces display output in only two cases:

• To advise the operator or administrator of a serious problem.

• To display debugging information during software development.

Both of these purposes are served by the cmn_err() function. It brings to a kernel-level
module the abilities that a user-level process gets from printf() and syslog().

Using cmn_err

The details of cmn_err() usage are in the cmn_err(D3) reference page. The function
prototype and the constant values it uses are declared in sys/cmnerr.h.

In summary, cmn_err() takes two or more arguments:

• A severity code that specifies how the message should be treated when it is written
to the system log.

• A message string, which can have substitution points in the style of printf().

• As many numeric values as are needed to substitute into the message string.

The first character of the message string specifies the destination of the message, either
an in-memory buffer or the system log, or both.

Displaying to the System Log

The message is sent to the system log daemon whenever the first message character (after
substitution) is not an exclamation mark (“!”). The message is written only to the system
log when the first message character is a circumflex (“^”).

292 007-0911-210

10: Testing and Debugging a Driver

This is basically the same service that a user-level process receives from the syslog()
function. (Compare the syslog(3) and cmn_err(D3) reference pages, and examine the
sys/cmnerr.h header file; the relationship is clear.) The first argument to cmn_err() is
a severity code which corresponds to one of the severity codes supported by syslog():
CE_WARN equals LOG_WARN, and so on.

Use cmn_err() to write log messages to record serious errors (with CE_ALERT severity)
or to advise the administrator of conditions that should be changed (using CE_NOTE).

Displaying to the Circular Message Buffer

The message is stored in the next available position in a circular buffer in kernel memory
whenever the first message character (after substitution) is not a circumflex (“^”). The
message is stored only in the memory buffer when the first message character is an
exclamation mark (“!”).

The name of the circular buffer (as a symbol to idbg or symmon) is putbuf. The contents
of putbuf can be displayed with the pb command of either idbg or symmon (see“Using
symmon” on page 293 and “Using idbg” on page 302), or in a post-mortem dump using
icrash (see “Using icrash” on page 310). Use cmn_err() to store debugging trace data in
the circular buffer, and extract it after a stop or breakpoint with symmon, or use idbg to
look at it while the system is running.

Using cmn_err() Through Macros

The inventive C programmer can think of many ways to invoke cmn_err() using macros.
One method is illustrated in the example driver displayed in Chapter 11, “Driver
Example.” It contains the code shown in Example 10-2.

Example 10-2 Debugging Macros Using cmn_err()

#ifdef DEBUG
#define DBGMSG0(s) cmn_err(CE_DEBUG,s)
#define DBGMSG1(s,x) cmn_err(CE_DEBUG,s,x)
#define DBGMSG2(s,x,y) cmn_err(CE_DEBUG,s,x,y)
#define DBGMSG3(s,x,y,z) cmn_err(CE_DEBUG,s,x,y,z)
#else
#define DBGMSG0(s)
#define DBGMSG1(s,x)
#define DBGMSG2(s,x,y)
#define DBGMSG3(s,x,y,z)
#endif

Using symmon

007-0911-210 293

Using printf()

You can call the printf() function from a kernel module. The kernel version of printf() is
basically a call to cmn_err() with severity CE_CONT. In general it is better to use
cmn_err() explicitly.

Using ASSERT

The assert() macro is familiar to many C programmers; it terminates a program with a
message if its argument evaluates to false (see the assert(3X) reference page). This normal
assert() macro does not work in a kernel module because the normal C library is not
available. However, a similar function is available as the ASSERT() macro in the header
file sys/debug.h.

The ASSERT() macro compiles to null code unless the compiler variable DEBUG is not
only defined, but defined as YES. When it compiles to executable code, ASSERT() tests
its argument. If the argument evaluates to false, a kernel panic is forced.

Clearly ASSERT() must be used with care, testing conditions that are truly essential to the
integrity of the system. When reporting conditions that are merely operational errors, use
a call to cmn_err() with the CE_WARN option.

Using symmon

The symmon program is a standalone debug monitor that can display and modify
memory, and stop, start, and trace execution, without using any kernel facilities. Using
symmon you can set breakpoints in your driver, single-step its execution, and display the
contents of driver and kernel variables.

The facilities of symmon are unsophisticated compared to the high-level debuggers you
might use to debug a user-level application. For example, symmon does not understand
C syntax, so it cannot display data structures as structures. Execution tracing is done at
the level of machine instructions, not at the level of C statements.

However, you can usesymmon to examine the operations of a kernel module in a running
system, and resume execution of the system. This is an invaluable facility when
debugging a new driver.

294 007-0911-210

10: Testing and Debugging a Driver

How symmon Is Entered

When the system boots a debugging kernel with symmon installed, control can pass into
the debug monitor under several different circumstances:

• Early in the bootstrap process, if certain environment variables are set in the
stand-alone shell (see “Entering symmon at Boot Time” on page 295).

• Whenever a control-A character is typed at the system console terminal.

• Whenever a breakpoint is reached or a watchpoint is tripped (see “Commands to
Control Execution Flow” on page 298).

• Whenever a kernel module calls the kernel function debug(uchar_t *msg).

• When a non-maskable interrupt (NMI) is detected.

• When a kernel panic is detected or forced with cmn_err().

When symmon gains control, it displays its “DBG:” prompt at the console terminal and
waits for a command.

To resume execution at the point of interruption, enter the c (continue) command.

Using symmon in a Uniprocessor Workstation

In a single-processor workstation, no IRIX execution takes place while symmon is
running. The mouse and keyboard are unresponsive. (One keystroke may be stored in
the keyboard hardware to be processed when the system resumes execution.) As a result,
time-dependent processes can fail; for example, the system clock is not updated.
Network interrupts are not taken, so if the workstation is acting as an NFS server, it will
appear to be dead to other systems.

Using symmon in a Multiprocessor Workstation

In a multiprocessor, the CPU that was interrupted runs symmon and nothing else. For
example, the CPU that executes the breakpoint, or the CPU that handles the interrupt
that returns the control-A character, or the CPU in which debug() was called, comes
under the control of symmon. Other CPUs continue to execute normally. However, if the
symmon CPU holds a lock, other CPUs may come to a halt waiting for the lock to be
released.

Using symmon

007-0911-210 295

The symmon breakpoint table is shared by all CPUs. A breakpoint set from one CPU can
be taken by another CPU, or by multiple other CPUs. It is possible to run multiple
instances of symmon concurrently. The output from all instances of symmon is
multiplexed onto the system console terminal. However, only one CPU at a time issues
the DBG: prompt. Use the cpu command with no argument to find out which CPU is
prompting. Use the cpu command with a cpu number to switch to a different CPU. (See
“Commands to Control Execution Flow” on page 298.)

Entering symmon at Boot Time

You can cause the kernel to stop during initialization and enter symmon during the
bootstrap process. In order to do this, you must use the miniroot to set environment
variables.

1. Restart the system, for example by giving the commands sync and halt.
Eventually, the 5-item PROM menu is displayed at the console terminal.

2. Select item 5, “Enter the Command Monitor.”

3. Set one or both of the environment variables dbgstop and symstop to 1, using
commands such as the following:

>> setenv symstop 1

4. Return to the PROM menu by entering the command exit.

5. Select menu item 1, “Start System.”

In either case, symmon seizes the system and displays its DBG: prompt at the system
console during bootstrap. When the dbgstop variable is set, symmon takes control of the
system very early in the bootstrap process. Symbolic names are not initialized at this
point. However, breakpoints can be set and memory can be displayed using explicit
addresses.

When the symstop variable is set, symmon takes control after symbols are defined, but
before driver initialization is begun. At this stop, you can display memory and set
breakpoints based on entry point names of your driver.

296 007-0911-210

10: Testing and Debugging a Driver

Commands of symmon

The exact set of commands supported by symmon changes from release to release and
from CPU model to CPU model. Many symmon commands are useful only to SGI
engineers who are debugging hardware and kernel problems. For a complete list of
commands, see the symmon(1M) reference page, or enter symmon and give the help
command. You can use control-S and control-Q on the console terminal to pause the
scrolling display.

The commands described in this section are generally useful and are available on all CPU
models under IRIX 6.2. These commands can be grouped into the following categories:

• Conversion between symbols and memory addresses.

• Execution control, including commands for stopping, starting, and setting
breakpoints.

• Display and modification of memory, including the display of machine registers
and of system data structures such as the buf_t and proc_t objects.

• Management of the virtual memory system and the TLB.

Syntax of Command Elements

The symmon commands all have the same form: a keyword, usually followed by one or
more arguments separated by spaces.

Many commands take an address value. An address argument value can have one of the
following forms:

Decimal number A number starting with 1-9 is decimal, for example 4095.

Octal number A number starting with 0 and a digit is octal, for example 033.

Hex number A number starting 0x is hexadecimal, for example 0xffff8000.

Binary number A number starting 0b is binary, for example 0b0100.

Symbol A word starting with a non-digit is looked up in the kernel
symbol table, and its address is the value; for example dk_open.

Register A word starting with “$” is taken as a register name, Its value is
the contents of the register at the last interrupt; for example $a2.

Value and offset A value plus or minus a number is a value, for example
$a2-0x100 or dk_open+128.

Using symmon

007-0911-210 297

Some commands accept a range of addresses. A range can be written in one of two ways:

• As value1:value2, meaning an inclusive range of addresses from value1 through
value2, for example prtbuf:prtbuf+4095.

• As value1#count2, meaning a range of count2 bytes beginning at value1, for example
prtbuf#4095.

The register names that symmon accepts and shows in various displays are the
conventional names used in MIPS assembly language programming. Refer to the
MIPSpro Assembly Language Programmer’s Guide and the processor manuals listed under
“Additional Reading” on page xliii.

Commands for Symbol Conversion and Lookup

The commands summarized in Table 10-1 are used to convert between symbolic names
and their corresponding addresses.

Table 10-1 Commands for Symbol Conversion and Lookup

Command Example Operation

hx name hx dk_read
dk_read 0xffffffff882b0510

The name is looked up on the symbol table
and if it is found, its address is displayed.

lkaddr addr lkaddr 0x882b0510
0x882af910 lockdisptab
0x882b0510 dk_read
0x882b051c dk_write

Symbols near to the specified addr are listed.
Use this command to find out the symbolic
location of an unexpected stop.

lkup letters hx dk_rea
0x880d5f10 dk_readcap
0x882b0510 dk_read
0x332b0528 dk_readcapacity

Every symbol that contains the specified
letters at any point is listed. There is no way
to anchor the search to the beginning or end
of the name.

msyms ident msyms 13
Symbols for module 13 (prefix tcl)
tclinit 0xc0403d9c
tclmversion 0xc0405fe0

The symbols for the loadable module ident
are listed. Use the ml command with no
arguments to list all modules and their ident
numbers.

nm addr nm 0xc0403da0
0xc0403da0 tclinit+0x4

The symbol nearest to the specified addr is
listed.

298 007-0911-210

10: Testing and Debugging a Driver

Note: When symmon displays an address it normally shows a full 64 bits. In a 32-bit
kernel, the most-significant 32 bits of a kernel virtual address are all-binary-1, from
extension of the sign bit of the 32-bit address—as shown in the example of hx in
Table 10-1. When you enter an address to a command in a 32-bit system, you only need
to type the significant 32-bit value.

Commands to Control Execution Flow

The commands summarized in Table 10-2 stop, start, and single-step kernel execution.

Table 10-2 Commands to Control Execution

Command Example Operation

brk brk List all breakpoints currently set.

brk addr brk dk_read Set a breakpoint at the specified addr.

c c Restart execution at the point of interruption in the
current CPU.

c cpuid [cpuid]...
c all

c 0 Restart execution in the specified CPU, or in all
stopped CPUs. Available in multiprocessors only.

call addr [args] call geteminor 0 Call a kernel function and report the contents of the
result register on return.

cpu cpu Displays the cpu ID of the currently-executing
CPU. Available in multiprocessors only.

cpu cpuid cpu 0 Force symmon execution to the specified CPU. That
CPU must be executing symmon. Other CPUs
executing symmon wait. Available in
multiprocessors only.

goto addr goto geteminor Set a temporary breakpoint at addr and then
continue execution as for the c command (in effect
“go until addr is reached”).

quit quit Return to the boot PROM, forcing an instant reboot.

Using symmon

007-0911-210 299

Tip: One way to force a memory dump from symmon is the command call dumpsys.

Following a break or a watchpoint, use the bt command to display the stack history and
use printreg to display the registers (see “Commands to Display Memory” on
page 300).

The hardware watchpoint used by the wpt command uses hardware registers in the
MIPS R4000 and R10000 processors (the R8000 does not support the watchpoint
registers). When a read or write access is addressed to any byte in the doubleword
specified by the physical address, symmon gains control and displays the instruction that
is attempting the access on the console terminal.

The argument of wpt must be a physical memory address and a multiple of 8. Use
tlbvtop to get the physical equivalent of an address in a user address space (see
“Commands to Manage Virtual Memory” on page 299). In a 32-bit kernel, the physical
equivalent of an address in kernel space is obtained by changing the most significant hex
digit to 0.

Commands to Manage Virtual Memory

The commands summarized in Table 10-3 are used to display and manage the virtual
memory translation system.

s [count] s 8 Single-step through 1 or count instructions,
displaying each instruction and register contents it
uses. A branch and the instruction in “delay slot”
following it count as 1. Steps into subroutines.

S [count] S 8 Single-step through 1 or count instructions as for
the s command, but do not step into subroutines.

unbrk n unbrk 2 Remove break point number n. Use brk with no
argument to list break points by number.

wpt {r|w|rw} physaddr wpt r 0x0841f608 Set a hardware watchpoint on a physical address.

Table 10-2 Commands to Control Execution (continued)

Command Example Operation

300 007-0911-210

10: Testing and Debugging a Driver

Commands to Display Memory

The commands summarized in Table 10-4 are used to display memory or variables.

Table 10-3 Commands to Manage Virtual Memory

Command Example Operation

cacheflush range cacheflush $6:$6+4096 Flush both the instruction and data caches when
they contain data that falls in range.

tlbdump [lo:hi] tlbdump 1:3 Display the contents of the TLB registers. When a
range of numbers is given, the registers from lo
through hi-1 are displayed.

tlbflush [lo:hi] tlbflush Flush (nullify) the TLB registers specified. The
registers are reloaded as required during
subsequent execution.

tlbpid tlbpid
Current dbgmon pid = 79

Display the process slot number of the process
whose context is in the TLB.

tlbvtop addr tlbptov 0xffffc000 Display the TLB register that maps addr.

Table 10-4 Commands to Display Memory

Command Example Operation

bt [frames] bt 4 Display the calling function, the arguments, and the
name of the called function for up to frames stack
frames. Most useful after a break or interrupt.

dis range dis geteminor Disassemble and display the instructions over the
specified range.

dump [-b|-h|-w]
[-o|-d|-x|-c] range

dump 0xc0000000 Display memory over a specified range. The options -b,
-h, and -w specify how memory is grouped, as units of
1, 2, or 4 bytes. The options -o, -d, -x, and -c specify
translation into octal, decimal, hex and character.

kp [routine] kp plist Invoke a kernel print routine loaded with the idbg
kernel module. If no routine is given, all available
names are displayed.

Using symmon

007-0911-210 301

The display routines available to the kp command are discussed under “Using idbg” on
page 302. The names that idbg accepts as commands are all available under symmon
through the kp command.

Use the dump command under symmon. Under idbg, use the hd command for the same
purpose.

Commands to Display the hwgraph

The commands in Table 10-5 are used to display the contents of the hwgraph (see
“Hardware Graph” on page 44).

printregs printregs Display all the registers as they were when the
debugger was entered.

string range [max] string $v1 0x80 Display memory as an ASCII string in quotes. Display
stops at the first null byte, or, when max is specified,
after at most max bytes.

Table 10-5 Utility Commands

Command Example Operation

graph graph List summary of graph debugging commands.

gsumm gsumm Summarize a graph (default graph is /hw).

ghdls ghdls List all handles to a graph (/hw by default).

gvertex gvertex 0x004 List edges and attributes of a vertex given its handle.

gname gname 0x004 Display name of a vertex given its handle.

Table 10-4 Commands to Display Memory (continued)

Command Example Operation

302 007-0911-210

10: Testing and Debugging a Driver

Utility Commands

The commands summarized in Table 10-6 are general-purpose utilities.

Using idbg

The idbg command is a utility that provides much of the display capability of symmon
but from the command line of a user process, without stopping the system. Many details
of idbg use are covered in the idbg(1M) reference page. Keep in mind that all idbg
commands are available under the standalone debugger through the kp command (see
“Commands to Display Memory” on page 300).

Table 10-6 Utility Commands

Command Example Operation

calc calc Starts a simple stack-oriented calculator (see
text).

clear clear Clear the screen of the system console terminal.

help help List one-line summaries of all available
commands. Use control-S and control-Q to
control the scrolling of the display.

g [-b|-h|-w | -d]
[addr | $regname]

g $a1
0x882fadf8:
4294967295 0xffffffff

Display one byte, halfword, word or
doubleword (default word) of memory, or the
contents of one register at the time symmon was
entered, in decimal and hex.

p [-b|-h|-w | -d]
[addr | $regname] value

p -w 0xc0000000 4095 Write a byte, halfword, word, or doubleword
(default word) into a saved register or into
memory at the specified address.

Using idbg

007-0911-210 303

Loading and Invoking idbg

Superuser privilege is required to invoke idbg, because it maps kernel memory. The
command is ineffective unless its support modules have been made part of the kernel.
This can be done permanently by changing the irix.sm file (see “Including idbg in the
Kernel Image” on page 287). Alternatively, you can load the needed modules
dynamically using the ml command, as follows:

ml ld -i /var/sysgen/boot/idbg.o

Dynamic loading is discussed at more length in the idbg(1M) and ml(1M) reference
pages.

When the support modules are loaded, idbg can be invoked in three styles.

Invoking idbg for Interactive Use

Invoking the command with no arguments causes it to enter interactive mode,
prompting for one command after another from standard input, as shown in
Example 10-3.

Example 10-3 Invoking idbg Interactively

idbg
idbg> plist 187
pid 187 is in proc slot 31
idbg> quit
#

The command terminates when quit is entered or when control-D (end of file) is
pressed.

Invoking idbg with a Log File

Invoking the command with the -r option and a filename causes it to write all its output
to the specified file, as shown in Example 10-4.

Example 10-4 Invoking idbg with a Log File

idbg -r /var/tmp/idbg.save
idbg> plist 187
pid 187 is in proc slot 31
idbg> proc 31

304 007-0911-210

10: Testing and Debugging a Driver

proc: slot 31 addr 0x8832db30 pid 187 ppid 1 uid 0 abi IRIX5
 SLEEP flags: load uload siglck recalc sv
...
idbg> ^D
cat /var/tmp/idbg.save
pid 187 is in proc slot 31
proc: slot 31 addr 0x8832db30 pid 187 ppid 1 uid 0 abi IRIX5
 SLEEP flags: load uload siglck recalc sv
...
#

You can use this method to collect a series of displays in a single file as you test a driver.

Invoking idbg for a Single Command

You can invoke idbg with a command on the command line. The output of the single
command is written to standard output, where it can be captured or piped to another
program.

The following example shows one simple use of this feature.

idbg plist | fgrep -c tcsh
3
#

Since the displays of idbg are very rich, there are endless opportunities to use this mode
to generate data within shell scripts, and to process it using tools such as awk and perl.
Using perl you could write an intelligent display routine that showed the status of your
driver’s private data structures using your own terminology and display format.

Commands of idbg

Almost all idbg commands are concerned with displaying kernel memory data in
different ways. There are commands to display almost every type of kernel data.

The vocabulary of commands changes from release to release, and can change within
releases by software patches. Also, the commands available depend on which support
modules are loaded; for example lock and semaphore meters cannot be displayed unless
the ksynch_meter module is loaded (see “Including Lock Metering in the Kernel
Image” on page 288). Only a few commands are listed in the idbg(1M) reference page.

Using idbg

007-0911-210 305

The commands summarized in this book are generally useful and available on all
platforms in the current release of IRIX. For a complete (but cursory) list, use the
command itself.

idbg help | lp

In general, commands take zero or one argument. Typically the argument is a number,
which can be any of the following:

• A kernel symbol, optionally +offset

• A number in hexadecimal (starting with 0x)

• A number in octal (starting with 0)

• A number in decimal.

The number is interpreted in the context of the command: sometimes it represents a
process ID (pid), sometimes a process “slot” number or a buffer number. Often
commands treat positive numbers as slot numbers or table indexes, while negative
numbers are treated as addresses in kernel space.

Commands to Display Memory and Symbols

The commands summarized in Table 10-7 are used to display memory based on specific
addresses or symbols, and to display the addresses for kernel symbols.

Table 10-7 Commands to Display Memory and Symbols

Command Operation

dsym addr [length] Dump memory by words, starting at addr. When a word of memory data is
reasonably close to the value of a kernel symbol, the symbol plus offset is
displayed instead of the hex value.

hd addr [length] Dump memory in bytes, with ASCII translation, starting at addr. When length
is given, it is a count of words (not bytes) to be displayed.

pb Display the strings in the circular putbuf (see “Displaying to the Circular
Message Buffer” on page 292).

string addr [max] Display memory as an ASCII string. Display stops at the first null byte, or,
when max is specified, after at most max bytes.

306 007-0911-210

10: Testing and Debugging a Driver

When you display the circular buffer, there is no special indication to show which line is
the newest. You have to deduce the boundary between the newest and oldest lines from
the content.

Commands to Display Process Information

The commands summarized in Table 10-8 are concerned with displaying the status of
processes. Processes are recorded in an array of “slots.” The plist command gives the
slot number for a given process ID. Many other commands take process addresses.

Table 10-8 Commands to Display Process Information

Command Operation

eframe [addr] Displays the contents of an exception frame. With no argument,
displays the last exception taken for the current process. Otherwise
displays the exception associated with the process specified by address
addr (negative number).

pchain PID Display the slot numbers of sibling processes to process number PID.

plist [PID] With no argument, displays a one-line summary of every active process
slot, including slot number and process ID. Given a nonzero PID,
displays the slot containing that process number.

ptree [PID | addr] With a PID number (greater than zero), finds the process structure for
that process. Otherwise tries to use the process structure at addr, not
always reliably. Displays the command name and arguments for that
process and for all processes that descend from it.

proc [PID | addr] Displays all fields of a process structure specified by process number
PID or address addr (negative number).

signal [PID | addr] Displays information about pending signals for the process specified by
process number PID or address addr (negative number).

slpproc [-2 | -4 | -8] Displays a summary of all processes with p_stat of SSLEEP or SXBRK.
When an argument is given, its absolute value is used as a mask: 2
ignores processes in wait(); 4 ignores processes without upages; 8
ignores processes on a sleep semaphore.

Using idbg

007-0911-210 307

Commands to Display Locks and Semaphores

The commands summarized in Table 10-9 display the state of semaphores and locks of
different kinds, including metering information when the metered-lock module is
included in the kernel.

ubt slot Displays a backtrace of the call stack of the sleeping process in the
specified slot.

user [PID | addr] Displays the user area associated with the process specified either by
process number PID or address addr (negative number). Less useful
now that the user structure has been eliminated.

Table 10-9 Commands to Display Locks and Semaphores

Command Operation

lock addr Display the state of the spinlock at addr. This command is available only in
multiprocessor systems.

mrlock addr Display the state of the reader/writer lock at addr.

mutex addr Display the state of the mutual exclusion lock at addr.

sema addr Display the state of the semaphore at addr.

smeter addr Display metering information about the semaphore at addr. When addr is positive,
it is taken as an index to the semaphore metering array.

sv addr Display the state of the synchronizing variable at addr, including waiting processes
and metering information.

Table 10-8 Commands to Display Process Information (continued)

Command Operation

308 007-0911-210

10: Testing and Debugging a Driver

Commands to Display I/O Status

The commands summarized in Table 10-10 can be used to display the status of an I/O
device or driver.

Commands to Display buf_t Objects

The commands summarized in Table 10-11 are used to display the state of buf_t objects
and the queue of buf_t objects maintained by the kernel.

Table 10-10 Commands to Display I/O Status

Command Operation

file [addr] When addr is omitted, displays a summary of all entries of the kernel table of open
files. When addr is the address of a file structure, displays only that entry.

scsi addr Display the contents of the scsi_request structure at addr.

uio addr Display the contents of the uio_t object at addr.

Table 10-11 Commands to Display buf_t Objects

Command Operation

buf [addr] If addr is omitted, print the entire buffer chain. When addr is supplied as the
address of a buf_t, dump that structure.

findbuf blkno Display any buf_t in the buffer chain with b_blkno containing blkno.

qbuf eminor Find and display all buf_t objects that are queued to the device with external minor
number eminor.

Using idbg

007-0911-210 309

Commands to Display STREAMS Structures

The commands summarized in Table 10-12 are concerned with displaying STREAMS
data structures such as message buffers.

Commands to Display Network-Related Structures

The commands summarized in Table 10-13 display data structures that are related in one
way or another to networking and network device drivers.

Table 10-12 Commands to Display STREAMS Structures

Command Operation

datab addr Display the contents of the STREAMS data block at addr.

mbuf addr Display the contents of the STREAMS mbuf structure at addr.

modinfo addr Display the contents of the module info structure at addr.

msgb addr Display the contents of the STREAMS message block at addr.

qband addr Display the contents of the qband_t object at addr.

qinfo addr Display the contents of the qinit structure at addr.

strh addr Display the contents of the stdata structure at addr.

strfq addr Display the contents of the queue_t object at addr.

Table 10-13 Commands to Display Network-Related Structures

Command Operation

ifnet addr Display the contents of the ifnet object at addr.

rawcb addr Display the contents of the rawcb structure at addr.

rawif addr Display the contents of the rawif structure at addr.

sock addr Display the sockbuf structure at addr. When addr is positive, it is taken as a physical
address; otherwise it is a kernel address.

310 007-0911-210

10: Testing and Debugging a Driver

Using icrash

The icrash utility generates detailed kernel information in an easy-to-read format,
enabling the generation of reports about system crash dumps created by savecore(1M).
Depending on the type of system crash dump, icrash can create unique reports that
contain information about what happened when the system crashed. Theicrash utility
can be run on live systems or with a namelist and core file specified on the command line.
The default namelist is /unix, used when analyzing a live system.

The icrash program may be used as a post-mortem tool for analyzing system crashes.
For post-mortem analysis of a system crash, specify /var/adm/crash/unix* as
namelist. You can also use icrash to generate a wide variety of reports and displays
based on a kernel panic dump from a crashed system. For example, you can display the
putbuf message buffer using the stat command of icrash. For more information, see
the icrash(1M) reference page for the current release.

007-0911-210 311

Chapter 11

11. Driver Example

This chapter displays the code of a complete device driver. The driver has no hardware
dependencies, so it can be used for experimentation in any IRIX 6.5 system.

Note: This driver is not intended to have a practical use, and it should not be installed
in a production system.

The example driver has the following purposes:

• You can use it as an experimental animal with the symmon and idbg debugging
tools.

• You can use it to experiment with loading and unloading a driver.

• You can modify the source code and use it to try out different kernel function calls,
especially to the hwgraph package.

Installing the Example Driver

Use the following steps to install and test the example driver. Each step is expanded in
the following topics.

1. Obtain the source code files.

2. Compile the source to obtain an object file.

3. Set up the appropriate configuration files.

4. Reboot the system and verify driver operation using the supplied unit-test program.

312 007-0911-210

11: Driver Example

Obtaining the Source Files

The example driver consists of the following five source files:

These files, and other example code in this book, are available from the SGI TechPubs
server, http://techpubs.sgi.com/ (it requires patience to recreate the files by copying and
pasting from the online manual).

Compiling the Example Driver

Compile using the techniques described under “Compiling and Linking” on page 270.

When the driver is compiled with the -DDEBUG option, all its informational displays are
enabled. Without that option, it only displays messages related to unexpected error
returns from kernel functions.

Configuring the Example Driver

Before you configure the example driver into the kernel, you should set the system with
a debugging kernel, as described under “Preparing the System for Debugging” on
page 285.

Configure the example driver to IRIX by copying files as follows:

• Copy the object file, snoop.o, to /var/sysgen/boot.

• Edit the descriptive file, snoop.master, and make any desired changes—for
example, making the driver nonloadable.

• Copy the edited descriptive file to /var/sysgen/master.d/snoop (do not use
the .master suffix on the filename).

snoop.h Header file that declares ioctl command codes, data structures,
and macros used in the driver.

snoop.c Driver source module.

snoop.master Descriptive file for /var/sysgen/master.d.

snoop.sm A USE statement for /var/sysgen/system.

usnoop.c User-level program to exercise the driver.

Installing the Example Driver

007-0911-210 313

• Review the snoop.sm file. It must contain the statement USE snoop. You can also
insert a DRIVER_ADMIN statement, as described under “Creating Device Special
Files” on page 313.

• Copy the snoop.sm file to /var/sysgen/system.

• Run the autoconfig program to build a new kernel. Run setsym to install
symbols in the kernel. Reboot the system.

If you compiled the example driver with -DDEBUG, it displays several informational
lines to the system console from its pfxinit(), pfxstart(), and pfxreg() entry points, as
shown in Example 11-1.

Example 11-1 Startup Messages from snoop Driver

snoop_: created /snoop
snoop_: added device edge, base 0xa80000002044d800
snoop_: added device attr, base 0xa80000002044d980
snoop_: added device hinv, base 0xa80000002044db00
snoop_: start() entry point called
snoop_: reg() entry point called

To disable the driver later, change USE to EXCLUDE, run autoconfig, and reboot.

Creating Device Special Files

The driver creates three vertexes in the hwgraph. By default they are named
/hw/snoop/edge, /hw/snoop/attr, and /hw/snoop/hinv. The three device names
“edge,” “attr,” and “hinv” are fixed, but the path leading to them is under your control.
To use a path other than /hw/snoop, for example /hw/dtest/snoop, you place a
DRIVER_ADMIN statement in the snoop.sm file, as shown in Example 11-2.

Example 11-2 Driver Administration Statement in snoop.sm

TO BE SUPPLIED - API UNDER DESIGN

Verifying Driver Operation

You can verify operation of the driver by operating the usnoop program. Compile the
usnoop.c source file. Run it with root privileges. If you have changed the path for the
snoop devices as described in the preceding topic, specify the changed path as the
command argument. At the prompt “path:” enter an absolute or relative path in /hw.

314 007-0911-210

11: Driver Example

Example 11-3 Typical Output of snoop Driver Unit Test

./usnoop
enter path: /hw/rdisk

Path read:
/hw/rdisk

Edges:
dks0d1s0
dks0d1s1
swap
root
volume_header
dks0d1vol
dks0d1vh

Attrs:

Hinv:
enter path: volume_header

Path read:
/hw/scsi_ctlr/0/target/1/lun/0/disk/volume_header/char

Edges:

Attrs:

Hinv:
enter path: ../../..

Path read:
/hw/scsi_ctlr/0/target/1/lun/0

Edges:
scsi
disk

Attrs:

Hinv:
enter path:

Example Driver Source Files

007-0911-210 315

When the snoop driver is compiled with -DDEBUG, numerous debugging messages
appear on the console terminal at the same time. If you run usnoop from the console
terminal, the debugging messages are interspersed with usnoop output.

Example Driver Source Files

The four source files of the example driver are displayed in the following topics:

• “Descriptive File” on page 315 displays the /var/sysgen/master.d file that
describes the driver to lboot.

• “System File” on page 316 displays the /var/sysgen/system file that contains
the VECTOR statements to initialize the driver.

• “Header File” on page 316 displays the driver’s header file.

• “Driver Source” on page 320 displays the source of the kernel driver.

• “User Program Source” on page 336 displays the unit-test program usnoop.

Descriptive File

*
* IRIX 6.4 Example driver "snoop" descriptive file
* Store in /var/sysgen/master.d/snoop
*
* Flags used:
* c: character type device (only)
* d: dynamically loadable kernel module
* R: autoregister loadable driver
* n: driver is semaphored
* s: software device driver
* w: driver is prepared to perform any cache write back operation (none
)
*
* External major number (SOFT) is an arbitrary choice from
* the range of numbers reserved for customer drivers.
*
* #DEV is passed in to the driver and used to configure its info array.
*
*FLAG PREFIX SOFT #DEV DEPENDENCIES
cdnswR snoop_ 77 -b

$$$

316 007-0911-210

11: Driver Example

System File

*
* Lboot config file for IRIX 6.4 example driver "snoop"
* Store as /var/sysgen/system/snoop.sm
*
USE: snoop

Header File

/**
* *
* Copyright (C) 1993, Silicon Graphics, Inc. *
* *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without the prior written consent of Silicon Graphics, Inc. *
* *
**/

#ifndef __SNOOP_H__
#define __SNOOP_H__
#ifdef __cplusplus
extern "C" {
#endif
/**
| The driver creates character special device nodes in the hwgraph, by
| default at /hw/snoop/{edge,attr,hinv} However you can place a statement
| in the /var/sysgen/system/irix.sm file to establish a different path,
| for example:
| DRIVER_ADMIN snoop_ hwpath = /hw/admin/snoopy/nodes
| The driver prefix must be given exactly, as must the name "hwpath".
| The argument must be a valid /hw path that does not exist when the
| driver initializes. The following constant gives the attr-name used:
***/
#define ADMIN_LABEL "hwpath"
/**
| The following definitions establish the ioctl() command numbers that
| are recognized by this driver. See ioctl(D2) for comments. Ascii
| uppercase letters, minus 64, fit in 5 bits, so the command #s are:
| 0b0000 0000 0sss ssnn nnno oooo #### ####
| These definitions are useful in client code as well as the driver.
***/

Example Driver Source Files

007-0911-210 317

#define IOCTL_BASE ((('S'-64)<<18)|(('N'-64)<<13)|(('O'-64)<<8))
#define IOCTL_MASTER_TEST (IOCTL_BASE + 1)
#define IOCTL_MASTER_GO (IOCTL_BASE + 2)
#define IOCTL_CLOSING (IOCTL_BASE + 6)
#define IOCTL_PATH_READ (IOCTL_BASE + 9)
#define IOCTL_VERTEX_GET (IOCTL_BASE + 15)
#define IOCTL_VERTEX_SET (IOCTL_BASE + 16)

#ifdef _KERNEL /* remainder is only useful to the driver */
#include <sys/types.h> /* all kinds of types inc. vertex_hdl_t */
#include <sys/kmem.h> /* kmem_zalloc, kmem_free */
#include <sys/ksynch.h> /* locks */
#include <sys/ddi.h> /* many utility functions */
#include <sys/invent.h> /* inventory_t */
#include <sys/hwgraph.h> /* hwgraph functions */
#include <sys/driver.h> /* driver_admin functions */
#include <sys/cred.h> /* for cred_t used in open/read/write */
#include <sys/cmn_err.h> /* for cmn_err and its constants */
#include <sys/errno.h> /* error constants */
#include <sys/mload.h> /* mload version string */
/**
| The purpose of the following macros are to make it possible to define
| the driver prefix in exactly one place (the PREFIX_NAME macro) and then
| to invoke that prefix anywhere else -
| - as part of function names, e.g. <prefix>open(), <prefix>init().
| - as a character literal, as in pciio_driver_register(..."prefix")
| - automatically as part of other macros for example debug displays
***/
#define PREFIX_NAME(name) snoop_ ## name
/* ----- driver prefix: ^^^^^^ defined here only */
/* utility macros, not to be used directly */
#define PREFIX_ONLY PREFIX_NAME()
#define STRINGIZER(x) # x
#define EVALUEIZER(x) STRINGIZER(x)
#define PREFIX_STRING EVALUEIZER(PREFIX_ONLY)
/*
| Define driver entry point macros in alpha order. This is your basic
| character driver: open-read-write-ioctl-close.
*/
#define PFX_CLOSE PREFIX_NAME(close)
#define PFX_DEVFLAG PREFIX_NAME(devflag)
#define PFX_INIT PREFIX_NAME(init)
#define PFX_IOCTL PREFIX_NAME(ioctl)
#define PFX_MVERSION PREFIX_NAME(mversion)
#define PFX_OPEN PREFIX_NAME(open)

318 007-0911-210

11: Driver Example

#define PFX_READ PREFIX_NAME(read)
#define PFX_REG PREFIX_NAME(reg)
#define PFX_START PREFIX_NAME(start)
#define PFX_UNLOAD PREFIX_NAME(unload)
#define PFX_WRITE PREFIX_NAME(write)
/**
| Debug display macros: one each for cmn_err calls with 0, 1, 2, 3 or 4
| arguments. The macros generate the PREFIX_STRING, colon, space at the
| front of the message and \n on the end. For example,
| DBGMSG2("one %d two %x",a,b) is the same as
| cmn_err(CE_DEBUG,"snoop_: one %d two %x\n",a,b)
|**/
#ifndef DEBUG
#define DBGMSG0(s)
#define DBGMSG1(s,x)
#define DBGMSG2(s,x,y)
#define DBGMSG3(s,x,y,z)
#define DBGMSG4(s,x,y,z,w)
#else
#define DBGMSGX(s) cmn_err(CE_DEBUG,PREFIX_STRING ": " s "\n"
#define DBGMSG0(s) DBGMSGX(s))
#define DBGMSG1(s,x) DBGMSGX(s) ,x)
#define DBGMSG2(s,x,y) DBGMSGX(s) ,x,y)
#define DBGMSG3(s,x,y,z) DBGMSGX(s) ,x,y,z)
#define DBGMSG4(s,x,y,z,w) DBGMSGX(s) ,x,y,z,w)
#endif
/**
| The ERRMSGn macros are the same as the DGBMSGn macros, except they are
| always defined (not conditional on DEBUG) and use CE_WARN status.
|**/
#define ERRMSGX(s) cmn_err(CE_WARN,PREFIX_STRING ": " s "\n"
#define ERRMSG0(s) ERRMSGX(s))
#define ERRMSG1(s,x) ERRMSGX(s) ,x)
#define ERRMSG2(s,x,y) ERRMSGX(s) ,x,y)
#define ERRMSG3(s,x,y,z) ERRMSGX(s) ,x,y,z)
#define ERRMSG4(s,x,y,z,w) ERRMSGX(s) ,x,y,z,w)
/**
| One instance of the following structure is created when any of our
| devices is opened. The structure is by default allocated in
| the node where the open() is executed. The structure is protected by a
| lock because it is possible for multiple threads in a pgroup to attempt
| concurrent read/write/ioctl calls to the same FD.
| use_lock : ensure only one thread modifies structure at a time
| read_ptr : address of data to return to read()
| read_len : length of data remaining to read()

Example Driver Source Files

007-0911-210 319

| v_current : hwgraph vertex being snooped (initially /hw)
| v_last_edge : vertex at end of last-scanned edge
| edge_place : position in edge list, for /hw/snoop/edge
| info_place : position in the info list, for /hw/snoop/attr
| hinv_place : position in the hinv list, for /hw/snoop/hinv
| scratch : buffer to hold maximal /hw path on write() call
| Only one of the _place fields is used in any one structure, but the
| memory saved by making a union of them is not worth the coding bother.
|**/
typedef struct snoop_user_s {

mutex_t use_lock;
char * read_ptr;
unsigned int read_len;
vertex_hdl_t v_current;
vertex_hdl_t v_last_edge;
graph_edge_place_t edge_place;
graph_info_place_t info_place;
invplace_t hinv_place;
char scratch[HWGRAPH_VPATH_LEN_MAX*LABEL_LENGTH_MAX];

} snoop_user_t;
/**
| One instance of the following structure is created for each char device
| we create (3 in all), and its address is saved with device_info_set().
| dev_lock : for controlled access to the device data
| val_func : function to set up data for a read
| nopen : number of opened/allocated users
| user_list : vector of pointers to snoop_user structs
| Use of this structure is controlled by a reader/writer lock. Only the
| open & close entries modify the user list, and so claim the writer lock.
| Other entries claim it as readers.
|
| The reason for making user_list a fixed array (as opposed to linking
| the snoop_user structs in a chain) is because each snoop_user_t can be
| in a different module, and we want to touch only the one for the caller.
|**/
#define MAX_PGID 20
typedef void (*val_func)(snoop_user_t *puser);
typedef struct snoop_base_s {

rwlock_t dev_lock;
val_func vector;
unsigned nopen;
struct {

pid_t user; /* pgid at open() time */
int generation; /* number of occupants of this slot */
snoop_user_t *work; /* -> corresponding work area */

320 007-0911-210

11: Driver Example

} user_list[MAX_PGID];
} snoop_base_t;

#ifdef __cplusplus
}
#endif
#endif /* _KERNEL */
#endif /* __SNOOP_H__ */

Driver Source

/**
|
| This is snoop.c, a pseudo-device driver for IRIX 6.4 and later.
|
| At snoop_init(), create three char device vertexes in the hwgraph,
| /hw/snoop/{edge,attr,hinv}. Each device supports open, read, write,
| close, and ioctl.
|
| At most one open() from any process group is accepted for any device.
| Second attempts are rejected with EBUSY. However, multiple processes
| and POSIX threads in a process group may use the open FD concurrently.
|
| The driver maintains a current status for each process group open of
| each device. The two key status variables are:
| a position on a current vertex in the hwgraph
| a scan position for reading out edges, attributes, or inventory_t's
|
| Each read() of /hw/snoop/edge returns the next (first) edge from the
| current vertex as a character string. If the read length is less than
| the string length, the byte position is remembered and the rest of the
| string is returned on the next read.
|
| Each read() of /hw/snoop/attr returns the first/next attribute label
| from the current vertex under the same rule as edges.
|
| Each read() of /hw/snoop/hinv returns the first/next invent_t ditto.
| Note that an invent_t is binary data, not ascii.
|
| For any device, a call to write() must present an absolute or relative
| path in the /hw filesystem. The device moves to the selected vertex
| and initializes the input scan of edges, attrs, or hinvs. For example,
| write(FD,"/hw/snoop") moves to that vertex.

Example Driver Source Files

007-0911-210 321

| write(FD,"..") moves back to /hw
| write(FD,"snoop/edge") moves down to /hw/snoop/edge.
|
| The following IOCTL calls are supported (declared in snoop.h):
|
| IOCTL_MASTER_TEST returns 0 if a "master" vertex exists, or ENOENT
|
| IOCTL_MASTER_GO moves the current vertex to its master, if any
|
| IOCTL_PATH_READ sets to return the complete "/hw..." path of the
| current vertex on the next read() call, in place
| of the next edge/attr/hinv.
|
| IOCTL_CLOSING notifies the driver that this process group is
| about to close the device. Subsequent attempts to
| use that open file are rejected. Interesting
| mutual-exclusion problems arise here.
|
| IOCTL_VERTEX_GET retrieve the current vertex handle. Argument is
| an address in user memory to place the handle.
|
| IOCTL_VERTEX_SET set a new current vertex. Argument is an address
| in user memory where a handle sits, presumably
| one retrieved with IOCTL_VERTEX_GET.
|
|**/
#include "snoop.h" /* all #includes are inside this header */
int PFX_DEVFLAG = D_MP;
char * PFX_MVERSION = M_VERSION;
/* Function Directory */
static int

alloc_user(snoop_base_t *pbase); /* make & init snoop_user_t on open */
static pid_t

get_pgroup(void); /* get PGID of client */
static int

get_user_index(snoop_base_t *pbase, pid_t pgroup); /* get index of client */
static snoop_user_t *

get_user(snoop_base_t *pbase); /* locate snoop_user_t for client */
static int

init_dev(char *name, vertex_hdl_t v_snoop, val_func func);
static void

reset_scans(snoop_user_t *puser); /* reset input scans for client */
static void

val_attr(snoop_user_t *puser); /* scan next attr for read() */
static void

322 007-0911-210

11: Driver Example

val_edge(snoop_user_t *puser); /* scan next edge for read() */
static void

val_hinv(snoop_user_t *puser); /* scan next inventory_t for read() */
int

PFX_INIT(); /* init() entry point */
int

PFX_OPEN(dev_t *devp, int oflag, int otyp, cred_t *crp);
int

PFX_REG(); /* reg() entry point */
int

PFX_START(); /* start() entry point */
int

PFX_WRITE(dev_t dev, uio_t *uiop, cred_t *crp);
int
PFX_IOCTL(dev_t dev, int cmd, void *arg, int mode, cred_t *crp, int *rvalp);
/**
| Get the process group ID for the client process. The pgid is used as
| a key to search the user_list.
|**/
static pid_t
get_pgroup(void)
{

ulong_t val = 0;
(void)drv_getparm(PPGRP,&val);
return (pid_t) val;

}
/**
| Get the index of the snoop_user_t for the client process in the
| user_list. Return -1 if the specified pgid is not found. "Not Found"
| is the expected result when this function is called from the
| pfx_open() entry. It is a possible result in other entry points, but
| only when the client calls ioctl(IOCTL_CLOSING) and then continues
| to use the file descriptor.
|**/
static int
get_user_index(snoop_base_t *pbase, pid_t pgid)
{

int j;

for (j=0 ;j<MAX_PGID;++j) {
if (pbase->user_list[j].user == pgid)

return j;
}
return -1;

}

Example Driver Source Files

007-0911-210 323

/**
| Locate the snoop_user_t for the client process. The caller is assumed
| to hold pbase->dev_lock as reader at least.
|**/
static snoop_user_t *
get_user(snoop_base_t *pbase)
{

snoop_user_t *puser = NULL;
int j;
if (-1 != (j = get_user_index(pbase, get_pgroup())))

puser = pbase->user_list[j].work;
return puser;

}
/**
| Reset all three data scans for this user. Only one scan is actually in
| use on a given device, but it's less trouble to have a single function.
|**/
static void
reset_scans(snoop_user_t *puser)
{

puser->read_len = 0;
puser->v_last_edge = GRAPH_VERTEX_NONE;
puser->edge_place = EDGE_PLACE_WANT_REAL_EDGES;
puser->info_place = GRAPH_INFO_PLACE_NONE;
puser->hinv_place = INVPLACE_NONE;

}
/**
| Allocate a snoop_user_t for the calling process and install it in the
| user_list. The caller must hold dev_lock as a writer. Errors:
| if the calling pgroup already has this device open, EBUSY
| if there is no open slot in the user_list, EMFILE
| if kmem_alloc fails, ENOMEM
| Initialize the lock and all 3 data scans before setting the pointer.
| Increment the generation count of the slot.
|**/
static int
alloc_user(snoop_base_t *pbase)
{

snoop_user_t *puser;
pid_t pgroup = get_pgroup();
int j = get_user_index(pbase,pgroup);

if (j != -1) {
DBGMSG0("rejecting open, pgid in list");
return EBUSY;

324 007-0911-210

11: Driver Example

}
for(j=0 ;j<MAX_PGID;++j) { /* find empty user_list slot */

if (!(pbase->user_list[j].user)) break;
}
if (j>=MAX_PGID) {

DBGMSG0("user list full at open");
return EMFILE;

}
puser = kmem_alloc(sizeof(*puser),KM_SLEEP+KM_CACHEALIGN);
if (!puser) {

ERRMSG0("unable to allocate user struct at open");
return ENOMEM;

}
MUTEX_INIT(&puser->use_lock,MUTEX_DEFAULT,PREFIX_STRING);
puser->v_current = hwgraph_root; /* "/hw" vertex, see hwgraph.h */
reset_scans(puser);
pbase->user_list[j].user = pgroup;
pbase->user_list[j].generation += 1;
pbase->user_list[j].work = puser;
DBGMSG3("user for pgid %d at 0x%x in slot %d",pgroup,puser,j);
++ pbase->nopen;
DBGMSG1(" now %d open",pbase->nopen);
return 0;

}
/**
| Set up the next edge label from the current vertex as the read data.
| If there is no next edge label, set up to return 0 bytes.
| This function is used for read() to the device /hw/snoop/edge.
| The caller, snoop_read(), has checked that puser->read == 0.
|**/
static void
val_edge(snoop_user_t *puser)
{

graph_error_t err;
if (puser->v_current != GRAPH_VERTEX_NONE) {

err = hwgraph_edge_get_next(
puser->v_current, /* in source vertex */
puser->scratch, /* out big buffer for string */
&puser->v_last_edge, /* out save destination vertex */
&puser->edge_place); /* inout scan position */

if (!err) { /* we got a string... */
puser->read_ptr = puser->scratch; /* ..set up as read data */
puser->read_len = 1+strlen(puser->scratch); /* incl. null */

}

Example Driver Source Files

007-0911-210 325

else { /* no edge string, leave len=0 */
if (err != GRAPH_NOT_FOUND) /* ..unexpected cause? */

ERRMSG1("hwgraph_edge_get_next err %d", err);
}

}
}
/**
| Set up the next attr label from the current vertex as the read data.
| If there is no next attr label, set up to return 0 bytes.
| This function is used for read() to the device /hw/snoop/attr.
|**/
static void
val_attr(snoop_user_t *puser)
{

graph_error_t err;
arbitrary_info_t junk;

if (puser->v_current != GRAPH_VERTEX_NONE) {
err = hwgraph_info_get_next_LBL(

puser->v_current, /* in source vertex */
puser->scratch, /* out big buffer for string */
&junk, /* don't want the info ptr */
&puser->info_place); /* inout scan position */

if (!err) { /* we got a string... */
puser->read_ptr = puser->scratch; /* ..set up as read data */
puser->read_len = 1+strlen(puser->scratch); /* incl. null */

}
else { /* no edge string, leave len=0 */

if (err != GRAPH_NOT_FOUND) /* ..unexpected cause? */
ERRMSG1("hwgraph_info_get_next err %d\n", err);

}
}

}
/**
| Set up the next inventory_t from the current vertex as the read data.
| If there is no next data, set up to return 0 bytes.
| This function is used for read() to the device /hw/snoop/hinv.
|**/
static void
val_hinv(snoop_user_t *puser)
{

graph_error_t err;
inventory_t *invp;

if (puser->v_current != GRAPH_VERTEX_NONE) {

326 007-0911-210

11: Driver Example

err = hwgraph_inventory_get_next(
puser->v_current, /* in source vertex */
&puser->hinv_place, /* inout scan position */
&invp); /* out ->inventory_t */

if (!err) {
puser->read_ptr = (char*)invp;
puser->read_len = sizeof(inventory_t);

}
else { /* no inv data, leave len=0 */

if (err != GRAPH_NOT_FOUND) /* ..unexpected cause? */
ERRMSG1("hwgraph_info_get_next err %d\n", err);

}
}

}
/**
| At initialization time, create a char special device "/hw/snoop/<name>"
| The <name> is "edge," "attr," or "hinv." v_snoop is the handle of the
| master node, expected to be "/hw/snoop."
|**/
static int
init_dev(char *name, vertex_hdl_t v_snoop, val_func func)
{

graph_error_t err;
vertex_hdl_t v_dev = GRAPH_VERTEX_NONE;
snoop_base_t *pbase = NULL;
/*
|| See if the device already exists.
*/
err = hwgraph_edge_get(v_snoop,name,&v_dev);
if (err != GRAPH_SUCCESS) { /* it does not. create it. */

err = hwgraph_char_device_add(
v_snoop, /* starting vertex */
name, /* path, in this case just a name */
PREFIX_STRING, /* our driver prefix */
&v_dev); /* out: new vertex */

if (err) {
ERRMSG2("char_device_add(%s) error %d",name,err);
return err;

}
DBGMSG2("created device %s, vhdl 0x%x",name,v_dev);

}
else

DBGMSG2("found device %s, vhdl 0x%x",name,v_dev);
/*
|| The device vertex exists. See if it already contains a snoop_base_t

Example Driver Source Files

007-0911-210 327

|| from a previous load. If the vertex was only just created,
|| this returns NULL and we need to aallocate a base struct.
*/
pbase = device_info_get(v_dev);
if (!pbase) { /* no device info yet */

pbase = kmem_zalloc(sizeof(*pbase),KM_SLEEP);
if (!pbase) {

ERRMSG0("failed to allocate base struct");
return ENOMEM;

}
RW_INIT(&pbase->dev_lock, PREFIX_STRING);

}
DBGMSG1(" base struct at 0x%x",pbase);
/*
|| This is a key step: on a reload, we must refresh the address
|| of the value function, which is different from when we last loaded.
*/
pbase->vector = func;
device_info_set(v_dev,pbase);
return 0;

}
/**
| At the pfx_init() entry point we establish our hwgraph presence
| consisting of three character special devices. The base path string
| is "/hw/snoop" by default, however we accept input from the
| driver-administration interface.
| Unload/reload issues: hwgraph_path_add and hwgraph_char_device_add do
| not return error codes when called to add an existing path! The only
| way to tell if our device paths exist already -- meaning we have been
| unloaded and reloaded -- is to test for them explicitly.
|**/
int
PFX_INIT()
{

int err;
char * path;
vertex_hdl_t v_snoop;
char testpath[256];
char * admin;
admin = device_driver_admin_info_get(PREFIX_STRING,ADMIN_LABEL);
if (admin)

path = admin;
else

path = "/snoop";
/*

328 007-0911-210

11: Driver Example

|| The following call returns success when the requested path
|| exists already, or when the path can be created at this time.
*/
err = hwgraph_path_add(

GRAPH_VERTEX_NONE, /* start at /hw */
path, /* this is the path */
&v_snoop); /* put vertex there */

DBGMSG2("adding path %s returns %d",path,err);
if (!err) err = init_dev("edge",v_snoop,val_edge);
if (!err) err = init_dev("attr",v_snoop,val_attr);
if (!err) err = init_dev("hinv",v_snoop,val_hinv);
return err;

}
/**
| The pfx_start() entry point is only included to prove it is called.
|**/
int
PFX_START()
{

DBGMSG0("start() entry point called");
return 0;

}
/**
| The pfx_reg() entry point is only included to prove it is called.
|**/
int
PFX_REG()
{

DBGMSG0("reg() entry point called");
return 0;

}
/**
| The pfx_unload() entry point is not supposed to be called unless all
| uses of our devices have been closed and pfx_close called. That had
| better be right, because there is no convenient way for us at this time
| to double-check. If this was not a loadable driver, we could keep
| static pointers to our snoop_base_t structures, and a static count of
| open files, for that matter. However, static variables are zero'd
| following a reload. So those would only be good until the first
| unload/reload sequence.
|**/
int
PFX_UNLOAD()
{

DBGMSG0("unload() entry point called");

Example Driver Source Files

007-0911-210 329

return 0;
}
/**
| At the pfx_open() entry point we allocate a work structure for the
| client process group, if possible. This requires getting a writer lock
| on the dev_lock. It is possible, in principle, for this entry point
| to be called while the init() entry point is still running, after the
| vertex has been created and before the device info has been stored.
| So in this entry point only, we check to make sure device info exists.
|**/
int
PFX_OPEN(dev_t *devp, int oflag, int otyp, cred_t *crp) {

int ret;
vertex_hdl_t v_dev = (vertex_hdl_t)*devp;
snoop_base_t *pbase = device_info_get(v_dev);

if (!pbase) return ENODEV;

DBGMSG3("open(dev=0x%x, oflag=0x%x, otyp=0x%x...)",v_dev,oflag,otyp);
RW_WRLOCK(&pbase->dev_lock);
ret = alloc_user(pbase);
RW_UNLOCK(&pbase->dev_lock);
return ret;

}
/**
| The pfx_close() entry point is called only when >>all<< processes have
| closed a device. The entire user_list array can be cleared out and
| any remaining snoop_user structs freed.
|**/
int
PFX_CLOSE(dev_t dev, int flag, int otyp, cred_t *crp)
{

vertex_hdl_t v_dev = (vertex_hdl_t)dev;
snoop_base_t *pbase = device_info_get(v_dev);
unsigned j;

DBGMSG2("close(dev=0x%x, %d opens)",v_dev,pbase->nopen);
RW_WRLOCK(&pbase->dev_lock);
for (j=0;j<MAX_PGID;++j) {

if (pbase->user_list[j].user) {
kmem_free(pbase->user_list[j].work,sizeof(snoop_user_t));
pbase->user_list[j].user = 0;
pbase->user_list[j].work = 0;

}
}

330 007-0911-210

11: Driver Example

pbase->nopen = 0;
RW_UNLOCK(&pbase->dev_lock);
return 0;

}
/**
| The pfx_read() entry point finds some data by calling the one (of 3)
| scan functions appropriate to this device. If data is found, it is
| copied to the user buffer, up to min(data length, user buffer size).
| This function does not modify the snoop_base, so it needs only the
| reader lock. It does modify the snoop_user, so has to lock that because
| multiple user threads can read the same FD concurrently.
|**/
int
PFX_READ(dev_t dev, uio_t *uiop, cred_t *crp)
{

vertex_hdl_t v_dev = (vertex_hdl_t)dev;
snoop_base_t *pbase = device_info_get(v_dev);
snoop_user_t *puser;

RW_RDLOCK(&pbase->dev_lock); /* block out open, close on device */
puser = get_user(pbase);
if (!puser) { /* very unlikely */

DBGMSG0("reject read - no user");
RW_UNLOCK(&pbase->dev_lock);
return EINVAL;

}
MUTEX_LOCK(&puser->use_lock,-1); /* block other threads from work area */
DBGMSG2("read request %d bytes to 0x%x",

uiop->uio_resid,uiop->uio_iov->iov_base);
if (0 == puser->read_len) { /* need to rustle up some data */

pbase->vector(puser);
}
if (puser->read_len) { /* we have some data (now) */

int j, ret;
j = (uiop->uio_resid>puser->read_len)?puser->read_len:uiop->uio_resid;
ret = uiomove(puser->read_ptr,j,UIO_READ,uiop);
if (0==ret) {

puser->read_len -= j;
puser->read_ptr += j;
DBGMSG1(" moved %d bytes",j);

}
else {

ERRMSG1("error %d from uiomove",ret);
}

}

Example Driver Source Files

007-0911-210 331

else {
DBGMSG0(" no data available");

}
MUTEX_UNLOCK(&puser->use_lock);
RW_UNLOCK(&pbase->dev_lock);
return 0;

}
/**
| The pfx_write() entry point accepts data into the scratch area. No matter
| what happens, the input scan on this user is going to be reset, so if
| there is residual data in the scratch area, it can be overwritten.
| All the write data is moved to scratch and treated as a hwgraph path.
| It can be absolute or relative to the current vertex. We traverse
| to that vertex and if it is found, make it the current vertex.
|**/
int
PFX_WRITE(dev_t dev, uio_t *uiop, cred_t *crp)
{

vertex_hdl_t v_dev = (vertex_hdl_t)dev;
snoop_base_t *pbase = device_info_get(v_dev);
snoop_user_t *puser;
int ret = 0;
int user_lock = 0;
int len;

RW_RDLOCK(&pbase->dev_lock); /* block out open, close on device */
puser = get_user(pbase);
if (!puser) { /* very unlikely */

DBGMSG0("reject write - no user");
ret = EINVAL;

}
if (!ret) { /* user (pgroup) is valid */

len = uiop->uio_resid;
DBGMSG2("write request %d bytes from 0x%x",

len, uiop->uio_iov->iov_base);
if (len >= sizeof(puser->scratch)) {

ret = ENOSPC;
DBGMSG0(" rejected, path too long");

}
else if (!len) { /* write for 0 bytes? */

ret = EINVAL;
DBGMSG0(" rejected, 0 length");

}

}

332 007-0911-210

11: Driver Example

if (!ret) { /* data length is acceptable */
MUTEX_LOCK(&puser->use_lock,-1); /* block others from work area */
user_lock = 1; /* remember to unlock it */
reset_scans(puser); /* now we lose scan positioning */
ret = uiomove(puser->scratch,len,UIO_WRITE,uiop);
if (0 == ret) {

puser->scratch[len] = '\0'; /* terminate string */
}
else { /* couldn't move it? */

ERRMSG1("error %d from uiomove",ret);
}

}
if (!ret) { /* path data has been copied */

vertex_hdl_t v_end;
char * path = puser->scratch;
if (*path == '/') { /* absolute path */

v_end = hwgraph_path_to_vertex(path);
if (v_end == GRAPH_VERTEX_NONE)

ret = GRAPH_NOT_FOUND;
}
else { /* relative path to current vertex */

ret = hwgraph_traverse(puser->v_current,path,&v_end);
}
if (!ret) { /* v_end is a valid endpoint */

(void)hwgraph_vertex_unref(puser->v_current);
puser->v_current = v_end;

}
else {

DBGMSG2("lookup (%s) = %d",puser->scratch,ret);
ret = ESPIPE; /* "illegal seek" */

}
}
if (user_lock)

MUTEX_UNLOCK(&puser->use_lock);
RW_UNLOCK(&pbase->dev_lock);
return ret;

}
/**
| the pfx_ioctl() entry point receives ioctl() calls. Cleverly, all the
| supported ioctl calls are designed to use no "arg" parameters, thus
| avoiding all questions of user ABI.
***/
int
PFX_IOCTL(dev_t dev, int cmd, void *arg, int mode, cred_t *crp, int *rvalp)
{

Example Driver Source Files

007-0911-210 333

vertex_hdl_t v_dev = (vertex_hdl_t)dev;
snoop_base_t *pbase = device_info_get(v_dev);
snoop_user_t *puser;
vertex_hdl_t v_mast;
int ret = 0;

RW_RDLOCK(&pbase->dev_lock); /* block out open, close on device */
puser = get_user(pbase);
if (!puser) { /* very unlikely */

DBGMSG0("reject ioctl - no user");
RW_UNLOCK(&pbase->dev_lock);
return (*rvalp = EINVAL);

}
MUTEX_LOCK(&puser->use_lock,-1); /* block out other threads on file */
switch(cmd) {

case IOCTL_MASTER_TEST: {
/*
|| Request the master vertex and return either 0 or ENOENT.
*/

v_mast = device_master_get(puser->v_current);
if (v_mast == GRAPH_VERTEX_NONE)

ret = ENOENT;
DBGMSG1("IOCTL_MASTER_TEST: %d",ret);
break;

}
case IOCTL_MASTER_GO: {
/*
|| Request the master vertex and if we get it, make it current.
*/

v_mast = device_master_get(puser->v_current);
if (v_mast != GRAPH_VERTEX_NONE) {

hwgraph_vertex_unref(puser->v_current);
reset_scans(puser);
puser->v_current = v_mast;

}
else

ret = ENOENT;
DBGMSG1("IOCTL_MASTER_GO: %d",ret);
break;

}
case IOCTL_VERTEX_GET: {
/*
|| <arg> is a pointer to user space where we store a vertex handle.
*/

if (copyout(&puser->v_current,arg,sizeof(puser->v_current)))

334 007-0911-210

11: Driver Example

ret = EINVAL;
DBGMSG2("IOCTL_VERTEX_GET(0x%x): %d",arg,ret);
break;

}
case IOCTL_VERTEX_SET: {
/*
|| <arg> is a pointer to a vertex handle in user memory,
|| hopefully one retrieved with IOCTL_VERTEX_GET.
|| Use hwgraph_vertex_ref() for a quick validity check,
|| and make it the current vertex.
*/

vertex_hdl_t temp;
if (copyin(arg,&temp,sizeof(temp)))

ret = EINVAL;
if (!ret) { /* copy was ok */

ret = hwgraph_vertex_ref(temp);
if (ret==GRAPH_SUCCESS) { /* it's a real vertex */

(void) hwgraph_vertex_unref(puser->v_current);
puser->v_current = temp;
ret = 0;

}
else { /* bogus */

DBGMSG2("vertex_ref(%d) -> %d",temp,ret);
ret = EINVAL;

}
}
DBGMSG2("IOCTL_VERTEX_SET(0x%x): %d",arg,ret);
break;

}
case IOCTL_PATH_READ: {
/*
|| Request the "canonical name" of the current vertex. There are
|| cases in which that name cannot be formed, in which event we
|| return EBADF (seems logical). Otherwise, we reset the input
|| scan and set the new path as the input. The pfx_read() entry
|| will return this data until it is consumed.
|| This function has to reset the scans because it has to use
|| the generous puser->scratch buffer. The alternative is to
|| allocate an equally generous work area on the stack, and to
|| copy the result to scratch only when hwgraph_vertex_name_get
|| succeeds. However, one, it almost always succeeds, and two,
|| that would use too much driver stack space.
*/

reset_scans(puser); /* ensure no pending data in scratch */
ret = hwgraph_vertex_name_get(

Example Driver Source Files

007-0911-210 335

puser->v_current,puser->scratch,sizeof(puser->scratch));
if (!ret) {

puser->read_ptr = puser->scratch;
puser->read_len = 1+strlen(puser->scratch);

}
else { /* cannot work out path for current */

DBGMSG1("hwgraph_vertex_name_get ret %d",ret);
ret = EBADF;

}
DBGMSG1("IOCTL_PATH_READ: %d",ret);
break;

}
case IOCTL_CLOSING: {
/*
|| The client process (on behalf of its pgroup) promises to close
|| this device, permitting us to dispose of its work area in
|| advance of a call to pfx_close(), which only comes when all
|| clients close their files.
|| In order to free the work area we must be sure not only that
|| no other process is using it, but that no other process is
|| waiting on its lock! Do that by releasing both locks and
|| getting the base lock as Writer. However, in the interval
|| after releasing the lock, strange things could happen!
*/

pid_t pgroup = get_pgroup();
int index_now = get_user_index(pbase,pgroup);
int gen_now = pbase->user_list[index_now].generation;
int index_then;

MUTEX_UNLOCK(&puser->use_lock);
RW_UNLOCK(&pbase->dev_lock);
/*
|| Right here, another thread of the pgroup could call this
|| operation and complete it, leaving us holding a stale puser.
|| Even stranger, it could then CLOSE the device and
|| reOPEN it, ending up in a different, or even in the SAME,
|| slot of user_list.
*/
RW_WRLOCK(&pbase->dev_lock); /* block all other use of dev */
index_then = get_user_index(pbase,pgroup);
if ((gen_now == pbase->user_list[index_now].generation)
&& (index_now == index_then)) { /* no races going on */

kmem_free(puser,sizeof(snoop_user_t));
pbase->user_list[index_now].user = 0;
pbase->user_list[index_now].work = NULL;

336 007-0911-210

11: Driver Example

puser = NULL; /* don't try to unlock, it's gone... */
}
else

ret=EBUSY;
DBGMSG1("IOCTL_CLOSING: %d",ret);
break;

}
default: {

ret = EINVAL;
}

}
if (puser) /* not IOCTL_CLOSING */

MUTEX_UNLOCK(&puser->use_lock);
RW_UNLOCK(&pbase->dev_lock);
return (*rvalp = ret);

}

User Program Source

/*
| usnoop [snoop_path]
|
| Elementary unit-test of the snoop_ device driver.
|
| 1. Open all three /hw/snoop devices. Use snoop_path, if given,
| as the base path to the edge, attr, and hinv devices.
| 2. In a loop:
| a. Prompt the user for a path. Quit on null input.
| b. Use write() to position the edge device to the given path.
| c. Use ioctl to position the other two devices to that vertex.
| d. Use read() on all 3 and dump the results.
*/
#include <stdio.h>
#include <errno.h> /* for errno */
#include <sys/types.h> /* for vertex_hdl_t */
#include <sys/stat.h> /* wanted by open */
#include <fcntl.h> /* open */
#include <unistd.h> /* for read, write */
#include <invent.h> /* for inventory_t */
#include "snoop.h" /* KERNEL is not defined */
#define SNOOPATH "/hw/snoop/"
#define BIG 65536
#define FAIL(x) {perror(x);fflush(stderr);return errno;}
static int edgeFD, attrFD, hinvFD; /* FD's of three devices */

Example Driver Source Files

007-0911-210 337

int open3(char *snoop)
{ /* open all three special devices, store FD's */
 int ret;
 char snoopath[256];

 sprintf(snoopath,"%s/%s",snoop,"edge");
 edgeFD = open(snoopath, O_RDWR);
 if (-1 == edgeFD) FAIL("open edge");
 sprintf(snoopath,"%s/%s",snoop,"attr");
 attrFD = open(snoopath, O_RDWR);
 if (-1 == attrFD) FAIL("open attr");
 sprintf(snoopath,"%s/%s",snoop,"hinv");
 hinvFD = open(snoopath, O_RDWR);
 if (-1 == hinvFD) FAIL("open hinv");
 return 0;
}

338 007-0911-210

11: Driver Example

int point3(char *hwpath)
{ /* position all 3 device FD's at the given path */
 int ret;
 unsigned long long v_targ;
 int len = strlen(hwpath); /* assumes nonzero length */
 ret = write(edgeFD,hwpath,len);
 if (-1 == ret) FAIL("write edge");
 /* read back the vhandle of each device - to see if we can */
 ret = ioctl(edgeFD,IOCTL_VERTEX_GET,&v_targ);
 if (ret) FAIL("ioctl(edge,IOCTL_VERTEX_GET)");
 ret = ioctl(attrFD,IOCTL_VERTEX_SET,&v_targ);
 if (ret) FAIL("ioctl(attr,IOCTL_VERTEX_SET)");
 ret = ioctl(hinvFD,IOCTL_VERTEX_SET,&v_targ);
 if (ret) FAIL("ioctl(hinv,IOCTL_VERTEX_SET)");
 return 0;
}
int dump3()
{ /* read all data from all 3 device FD's and display */
 int ret;
 int len;
 inventory_t *i;
 char buf[BIG];
 /* Read & display canonical path of current vertex */
 ret = ioctl(edgeFD,IOCTL_PATH_READ);
 if (ret) FAIL("ioctl(edge,IOCTL_PATH_READ)");
 puts("\nPath read:");
 len = read(edgeFD,buf,BIG);
 if (-1 == len) FAIL("read edge path");
 puts(buf);
 puts("\nEdges:");
 do { /* display all edges from current vertex */
 len = read(edgeFD,buf,BIG);
 if (-1 == len) FAIL("read edge");
 if (len) puts(buf);
 } while (len);
 puts("\nAttrs:");
 do { /* display all labelled attributes at this vertex */
 len = read(attrFD,buf,BIG);
 if (-1 == len) FAIL("read attr");
 if (len) puts(buf);
 } while (len);
 puts("\nHinv:");

Example Driver Source Files

007-0911-210 339

 do { /* dump all inventory records at this vertex */
 len = read(hinvFD,buf,BIG);
 if (-1 == len) FAIL("read hinv");
 if (len)
 {
 i = (inventory_t *)&buf[0];
 printf("class:%d type%d controller:%d unit:%d state:%d\n",
 i->inv_class,i->inv_type,i->inv_controller,i->inv_unit,i->inv_state);
 }
 } while(len);
 return 0;
}
int main(int argc, char *argv[])
{
 int ret = 0;
 char ans[256];
 ret = open3((argc>1)?argv[1]:SNOOPATH);
 while (0==ret)
 {
 printf("enter path: ");
 gets(ans);
 if (0==strlen(ans)) break;
 ret = point3(ans);
 if (!ret) ret = dump3();
 }
 return ret;
}

PART FOUR

VME Device Drivers IV

Chapter 12, “VME Device Attachment on Origin 2000/Onyx2”
How the VME bus is configured in different SGI systems.

Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2”
Kernel functions available specifically to VME device drivers.

Chapter 14, “VME Device Attachment on Challenge/Onyx.”
How the VME bus is configured in different SGI systems.

Chapter 15, “Services for VME Drivers on Challenge/Onyx”
Kernel functions available specifically to VME device drivers.

007-0911-210 343

Chapter 12

12. VME Device Attachment on Origin 2000/Onyx2

This chapter describes IRIX 6.5 VME support for Origin 2000 and Onyx2 systems. This
chapter gives a high-level overview of the VME bus, and describes how the VME bus is
attached to an Origin 2000 or Onyx2 system and how it is configured.

Note: This chapter has no information about VME in Challenge and Onyx systems. For
those systems, refer to Chapter 14, “VME Device Attachment on Challenge/Onyx,” and
Chapter 15, “Services for VME Drivers on Challenge/Onyx.”

This chapter contains important details on VME operation if you are writing a
kernel-level VME device driver. It contains useful background information if you plan to
control a VME device from a user-level program.

• “Overview of the VME Bus” on page 344 summarizes the history and features of the
VME bus architecture.

• “About VME Bus Attachment” on page 346 gives a conceptual overview of how
VME support is provided in all SGI systems that have it.

• “About VME Bus Addresses and System Addresses” on page 350 describes the
important relationship between addresses on the VME bus and addresses in the
physical address space of the system.

• “About VME in the Origin2000” on page 353 documents the hardware details of the
VME implementation on Origin 2000 and Origin 200 systems.

• “Configuring VME Devices” on page 358 tells how to configure a device so that
IRIX 6.4 can recognize it and initialize its device driver.

More information about VME device control appears in these chapters:

• Chapter 4, “User-Level Access to Devices,” covers PIO and DMA access from the
user process.

• Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2,”discusses the kernel
services used by a kernel-level VME device driver, and contains an example.

344 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

Overview of the VME Bus

The VME bus was standardized in the early 1980s. It was designed as a flexible
interconnection between multiple master and slave devices using a variety of address
and data precisions. While VME is not the fastest bus design available, its well-defined
protocols, comparatively low signaling speeds, and ample board dimensions make it an
easy bus to design for, whether to create intelligent I/O devices or special-purpose and
one-off interfaces. As a result, VME has become a popular standard bus used in a variety
of general-purpose and embedded products.

In its original applications, the VME bus was used as the primary system bus, with a CPU
card as the principal (or only) bus master. In SGI systems, however, the VME bus is
treated as an I/O device—it is never the main system bus.

VME History

The VME bus descends from the VERSAbus, a bus design published by Motorola, Inc.,
in 1980 to support the needs of the MC68000 line of microprocessors. The bus timing
relationships and some signal names still reflect this heritage, although the VME bus is
used by devices from many manufacturers today.

The original VERSAbus design specified a large form factor for pluggable cards. Because
of this, it was not popular with European designers. A bus with a smaller form factor but
similar functions and electrical specifications was designed for European use, and
promoted by Motorola, Phillips, Thompson, and other companies. This was the
VersaModule European, or VME, bus. Beginning with rev B of 1982, the bus quickly
became an accepted standard. (For ordering information on the standards documents,
see “Standards Documents” on page xlii.)

VME Features

A VME bus is a set of parallel conductors that interconnect multiple processing devices.
The devices can exchange data in units of 8, 16, 32 or 64 bits during a bus cycle.

VME Address Spaces

Each VME device associates itself with a range of bus addresses. A bus address has either
16, 24, 32, or 64 bits of precision. Each width of address forms a separate address space.

Overview of the VME Bus

007-0911-210 345

That is, the same numeric value can refer to one device in the 24-bit address space, and
to a different device in the 32-bit address space. Typically, a device operates in only one
address space, but some devices can be configured into multiple address spaces.

Each VME bus cycle contains the bits of an address. The address is qualified by sets of
address-modifier bits that specify the following:

• the address space (A16, A24, A32, or A64)

• whether the operation is single or a block transfer

• whether the access is to what, in the MC68000 architecture, would be data or code,
in a supervisor or user area. SGI systems support only data area transactions,
supervisor-data or user-data.

Master and Slave Devices

Each VME device acts as either a bus master or a bus slave. Typically a bus master is a
programmable device with a microprocessor—for example, a disk controller. A slave
device is typically a nonprogrammable device like a memory board or set of A/D inputs.

Each data transfer is initiated by a master device. The master

• asserts ownership of the bus

• specifies the address modifier bits for the transfer, including the address space,
single/block mode, and supervisor/normal mode

• specifies the address for the transfer

• specifies the data unit size for the transfer (8, 16, 32 or 64 bits)

• specifies the direction of the transfer with respect to the master

The VME bus design permits multiple master devices to exist on the bus, and provides a
hardware-based arbitration system so that they can share the bus in alternation.

A slave device responds to a master when the master specifies one of the slave’s
addresses. The addressed slave accepts data, or provides data, as directed.

346 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

VME Transactions

The VME design allows for four types of data transfer bus cycles:

• A read cycle returns data from the slave to the master.

• A write cycle sends data from the master to the slave.

• A read-modify-write cycle takes data from the slave, and on the following bus cycle
sends it back to the same address, possibly altered.

• A block-transfer transaction sends multiple data units to adjacent addresses in a
burst of consecutive bus cycles.

The VME design also allows for interrupts. A device can raise an interrupt on any of
seven interrupt levels. The interrupt is acknowledged by a bus master. The bus master
interrogates the interrupting device in an interrupt-acknowledge bus cycle, and the
device returns an interrupt vector number.

In SGI systems, VME interrupts are received by the VME controller. If the controller has
been configured by a VECTOR statement (see “Entry Point edtinit()” in Chapter 7) to
handle a given interrupt level, it acknowledges the interrupt and sends an interrupt to
one of the CPUs in the system.

If the controller has not been configured to acknowledge an interrupt level, the interrupt
level is ignored and can be handled by another device on the VME bus.

About VME Bus Attachment

The VME bus was designed as the system backplane for a workstation, supporting one
or more CPU modules along with the memory and I/O modules they used. However, no
SGI computer uses the VME bus as the system backplane. In all SGI computers, the main
system bus that connects CPUs to memory is a proprietary bus design. The VME bus is
attached to the system as an I/O device.

This section provides a conceptual overview of the design of the VME bus in any SGI
system. It is sufficient background for most users of VME devices. A more detailed look
at the hardware follows in later topics

About VME Bus Attachment

007-0911-210 347

The VME Bus Controller

A VME bus controller is attached to the system bus to act as a bridge between the system
bus and the VME bus. This arrangement is shown in Figure 12-1.

Figure 12-1 Relationship of VME Bus to System Bus

On the SGI system bus, the VME bus controller acts as an I/O device. On the VME bus,
the bus controller acts as a VME bus master. The VME controller has several tasks. Its
most important task is mapping—that is, translating—some range of physical addresses
in the SGI system address space to a range of VME bus addresses. The VME controller
performs a variety of other duties for different kinds of VME access.

Secondary
cache

System bus

Memory

Processor unit
(IPnn)

MIPS R4x00,
R8000 or
R10000

VME
bus

VME bus
controller

VME bus
device

348 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

VME PIO Operations

During programmed I/O (PIO) to the VME bus, software in the CPU loads or stores the
contents of CPU registers to a device on the VME bus. The operation of a CPU load from
a VME device register is as follows:

1. The CPU executes a load from a system physical address.

2. The physical address is placed on a system bus.

3. The VME controller recognizes the address as one it has been programmed to map.

4. The VME controller translates the system address to an address in one of the VME
bus address spaces.

5. Acting as a VME bus master, the VME bus controller starts a read cycle on the VME
bus, using the translated address.

6. A device on the VME bus responds to the VME address and returns data.

7. The VME controller initiates a system bus cycle to return the data packet to the CPU,
thus completing the load operation.

A VME device store is similar except it performs a VME bus write; no data is returned.

PIO Latency and R10000 Execution

PIO input and output are fundamentally different in the following way: PIO input
requires two system bus cycles—one to request the data and one to return it—separated
by the cycle time of the VME bus. PIO output takes only one system bus cycle, and the
VME bus write cycle run concurrently with the next system bus cycle. As a result, PIO
input always takes at least twice as much time as PIO output.

The MIPS R10000 CPU can execute instructions out of sequence, leaving a memory-load
operation pending while executing instructions that logically follow, provided that those
instructions do not depend on loaded data. PIO input requires a microsecond or more, a
time during which an R10000 can execute 200 or more instructions. An R10000 can
execute many instructions following a PIO load before the CPU has to stall and wait for
the PIO data to arrive. In a similar way, the R10000 CPU can execute hundreds of
instructions after the beginning of a PIO write, concurrently with the output operation.

About VME Bus Attachment

007-0911-210 349

VME DMA Operations

A VME device that can act as a bus master can perform DMA into system memory. The
general sequence of operations in this case is as follows:

1. The device driver allocates a DMA map object to represent the operation. When the
kernel creates the DMA map, it programs the VME controller to map a certain range
of VME bus addresses to a range of system memory locations.

2. The device driver uses PIO to program the device registers of the VME device,
instructing it to perform DMA to the assigned range of VME bus address for a
specified length of data.

3. The VME bus master device initiates the first read, write, block-read, or block-write
cycle on the VME bus.

4. The VME controller, recognizing a mapped address, responds as a slave device on
the VME bus.

5. If the bus master is writing, the VME controller accepts the data and initiates a
system bus cycle to write the data to system memory at the mapped address.

If the bus master is reading, the VME controller uses a system bus cycle to read data
from system memory, and returns the data to the bus master.

6. The bus master device continues to use the VME controller as a slave device until it
has completed the DMA transfer.

During a DMA transaction, the VME bus controller operates independently of any CPU.
CPUs in the system execute software concurrently with the data transfer. Since the
system bus is faster than the VME bus, the data transfer typically takes place at the
maximum data rate that the VME bus master can sustain.

Operation of the DMA Engine

In the Origin2000 and Onyx2 systems (and in the Challenge and Onyx lines), the VME
controller contains an additional “DMA Engine” that can be programmed to perform
DMA-type transfers between memory and a VME device that is a slave, not a bus master.
The general course of operations in a DMA engine transfer is as follows:

350 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

1. The VME bus controller is programmed to perform a DMA transfer to a certain
physical memory address for a specified amount of data from a specified device
address in VME address space.

2. The VME bus controller, acting as the VME bus master, initiates a block read or
block write to the specified device.

3. As the slave device responds to successive VME bus cycles, the VME bus controller
transfers data to or from memory using the system bus.

The DMA engine transfers data independently of any CPU, and at the maximum rate the
VME bus slave can sustain. In addition, the VME controller collects smaller data units
into blocks of the full system bus width, minimizing the number of system bus cycles
needed to transfer data. For both these reasons, DMA engine transfers are faster than PIO
transfers for all but very short transfer lengths. (For details, see “DMA Engine
Bandwidth” on page 72.)

About VME Bus Addresses and System Addresses

Devices on the VME bus exist in one of the following address spaces:

• The 16-bit space (A16) permits addresses from 0x0000 to 0xffff.

• The 24-bit space (A24) permits addresses from 0x00 0000 to 0xff ffff.

• The 32-bit space (A32) permits addresses 0x0000 0000 to 0xffff ffff.

• The 64-bit space (A64), defined in the revision D specification, uses 64-bit addresses.

The SGI system bus uses 64-bit numbers to address memory and other I/O devices on
the system bus (discussed in Chapter 1). Much of the physical address space is used to
address system memory. Portions of physical address space are set aside dynamically to
represent VME addresses. Parts of the VME address spaces are mapped, that is,
translated, into these ranges of physical addresses.

The translation is performed by the VME bus controller: It is programmed to recognize
certain ranges of addresses on the system bus and translate them into VME bus
addresses; and it recognizes certain VME bus addresses and translates them into physical
addresses on the system bus.

About VME Bus Addresses and System Addresses

007-0911-210 351

The entire A32 or A64 address space cannot be mapped into the physical address space.
No SGI system can provide access to all VME address spaces at one time. Only parts of
the VME address spaces are available at any time. The limits on how many addresses can
be mapped at any time are different in different architectures.

User-Level and Kernel-Level Addressing

In a user-level program you can perform PIO and certain types of DMA operations (see
Chapter 4, “User-Level Access to Devices”). You call on the services of a kernel-level
device driver to map a portion of VME address space into the address space of your
process. The requested segment of VME space is mapped dynamically to a segment of
your user-level address space—a segment that can differ from one run of the program to
the next.

In a kernel-level device driver, you request mappings for both PIO and DMA operations
using maps—software objects that represent a mapping between kernel virtual memory
and a range of VME bus addresses.

Note: The remainder of this chapter has direct meaning only for kernel-level drivers.

PIO Addressing and DMA Addressing

The addressing needs of PIO access and DMA access are different.

PIO deals in small amounts of data, typically single words. PIO is directed to device
registers that are identified with specific VME bus addresses. The association between a
device register and its VME address is fixed, typically by setting jumpers or switches on
the VME card.

DMA deals with extended segments of kilobytes or megabytes. The addresses used in
DMA are not fixed in the device, but are programmed into it just before the data transfer
begins. For example, a disk controller can be programmed to read a certain disk sector
and write the sector data to a range of 512 consecutive bytes in the VME bus address
space. The programming of the disk controller is done by storing numbers into its
registers using PIO. While the registers respond only to fixed addresses that are
configured into the board, the address for sector data is just a number that is
programmed into the controller before a transfer is to start.

352 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

These are the key differences between PIO addresses and addresses used for DMA:

• PIO addresses are relatively few in number and cover small spans of data, while
DMA addresses can span large ranges of data.

• PIO addresses are closely related to the hardware architecture of the device and are
configured by hardware or firmware, while DMA addresses are simply parameters
programmed into the device before each operation.

In systems supported by IRIX 6.4, all mappings from VME address spaces to system
physical memory are dynamic, assigned as needed. Kernel functions are provided to
create and use map objects that represent the translation between designated VME
addresses and kernel addresses (described in detail in Chapter 13, “Services for VME
Drivers on Origin 2000/Onyx2”). An Origin2000 system can support a maximum of five
VME bus adapters per module. Although a system can comprise numerous modules,
there is also a limit of five VME bus adapters, total, per system.

Available PIO Addresses

Normally a VME card can be programmed to use different VME addresses for PIO, based
on jumper or switch settings on the card. Each device plugged into a single VME bus
must be configured to use unique addresses. Errors that are hard to diagnose can arise
when multiple cards respond to the same bus address. Devices on different VME buses
can of course use the same addresses.

Not all parts of each address space are accessible. The accessible parts are summarized in
Table 12-1.

There are additional limits on the maximum size of any single PIO map and limits on the
aggregate size of all maps per bus. These limits differ between the Origin 2000 and the
Challenge architectures; the details are given in the discussion of allocating maps.

Table 12-1 Accessible VME PIO Addresses on Any Bus

Address Space Origin2000 Systems Challenge and Onyx Systems

A16 All All

A24 0x80 0000–0xFE 0000 0x80 0000–0xFF FFFF

A32 0x0000 0000–0x7FFF FFFF 0x0000 0000–0x7FFF FFFF

About VME in the Origin2000

007-0911-210 353

In general, however, when configuring the devices on a bus, it is best if you can locate all
device registers in a single, relatively compact, range of addresses. This economizes on
kernel resources used for mapping.

Available DMA Addresses

When you program a bus master to perform DMA, you load it with a starting target
address in one of the VME address spaces, and a length. This address and length is
dynamically mapped to a corresponding range of memory addresses. You can obtain a
map to memory for a range of addresses in any of the A16, A24, or A32 data address
spaces. The A64 address space is not available for either PIO or DMA on Origin 2000 or
Onyx2 systems.

About VME in the Origin2000

In the Origin 2000 (including Origin Deskside) and Onyx2 systems, external I/O is
provided through the XIO interface. The VME bus and adapter is an external I/O device
interfaced through one XIO slot. A typical installation is shown in Figure 12-2.

For more information about the external features, options, and availability of the VME
Expansion unit, you can consult one of these sources:

Marketing Information http://www.sgi.com/Products/software/REACT/vme.html

Owner’s Guide VME Option Owner’s Guide, document number 007-3618-nnn

354 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

Figure 12-2 VME Bus Enclosure and Cable to an Origin 2000 Deskside

About the VME Controller

The VME controller for Origin 2000 is physically located on a VME board plugged into
the VME bus enclosure. It is logically connected to the system as shown in Figure 12-3.

6-U 21-slot
VME enclosure

Origin deskside
system

VME XIO board

VME Interface board

About VME in the Origin2000

007-0911-210 355

Figure 12-3 VME Bus Connection to System Bus

Secondary
cache

System bus Memory

Processor unit
(IPnn)

MIPS R10000

VME
bus

VME controller

VME bus
device

XIO to
PCI bridge

XIO interface

356 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

As suggested by Figure 12-3, data to and from the VME bus passes through multiple
layers of bus protocols. For example, on a PIO write from the CPU to a VME device, the
following functional units are involved:

1. The CPU sends a word to a physical memory address.

In the Origin 2000 architecture, physical addressing is managed by the Hub chip on
the node board (not shown). The Hub chip directs the word to the XIO interface.

2. The XIO interface passes the word down the Craylink cable (see Figure 12-2) to the
VME controller board, which is a VME 6U or 9U card mounted in the card cage.

3. On the VME controller board, an XIO-to-PCI converter called a Bridge chip. The
transaction is converted to a PCI bus write.

4. The sole device on the PCI bus is the VME controller, a PCI-to-VME bridge chip.

5. The VME controller operates the signal and data lines of the VME enclosure to
execute a write the desired VME address.

Universe II Controller Chip

The VME controller chip is a PCI-to-VME bridge named the Universe II, produced by
Tundra Semiconductor Corporation (http://www.tundra.com).

Universe II Features

The Universe II contains:

• FIFO buffers for asynchronous staging of data between the two buses.

• Mapping registers for translating VME bus addresses.

• A DMA engine comparable to the DMA engine in the Challenge systems, with the
added ability to handle linked lists of data (scatter/gather). This engine is accessible
only to user-level processes through the udmalib interface.

• The ability to pack and unpack multiple D8, D16 and D32 data units from 64-bit PCI
data words.

About VME in the Origin2000

007-0911-210 357

It is important to note that although the data path spans three different bus protocols and
multiple bus controller chips, none of these controllers are directly accessible to a VME
device driver. The device driver calls on the kernel to create software objects called maps,
either PIO maps or DMA maps. When the kernel creates a map, it sets up all the multiple
layers of hardware needed to implement that map. The driver uses the map to obtain
physical addresses that can be used as if they were wired directly to the VME bus. All the
layers of protocol translation between memory and the VME device are transparent to
the device driver.

Kernel Settings of Universe II Registers

In the event you possess the Tundra Corp Data book describing the Universe II, the
settings of important Universe II control registers is listed in Table 12-2. This table is
provided for information only. The Universe II registers are loaded by the kernel VME
support, and none of these settings is accessible to the device driver. Also, this
information is subject to change from release to release.

Table 12-2 Universe II Register Settings

Register Field Purpose Setting

MAST_CTL PWON Max posted write length 4096

MAST_CTL VRL VMEbus Request Level 3

MAST_CTL VRM VMEbus Request Mode demand

MAST_CTL VREL VMEbus Release Mode On-request

MAST_CTL VOWN VME ownership n.a.

MAST_CTL PABS PCI Burst Size 128 bytes

MISC_CTL VBTO Vmebus timeout 64us

MISC_CTL VARB VMEbus arbitration type priority

MISC_CTL VARBTO VMEbus arbitration timeout 16us

MISC_CTL RESCIND VMEbus DTACK* release rescind

MISC_CTL SYSCON Universe is system controller at power-up on

MISC_CTL V64AUTO Auto slot ID n.a.

358 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

Configuring VME Devices

You (or the system administrator) must configure a VME bus and device to the IRIX
system in order to direct interrupts and to associate each VME device with its device
driver. In order to configure the bus you need to know how VME devices are represented
in the hardware graph (see “Hardware Graph” on page 44).

VME Bus and Interrupt Naming

Each VME bus is entered into the IRIX hardware graph during bootstrap, as a connection
point for devices and as a source of interrupts.

VME Bus Paths in the Hardware Graph

The actual hardware graph path to a VME bus has this form:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/

The integer mod is the number of the Origin module to which the VME option is attached.
Vertex ion designates the XIO slot to which the VME option is cabled.

The hwgraph vertex named vmebus represents the VME controller. Vertexes for devices
on the bus are found under that vertex. A convenience path is also created for each bus
in the form:

/hw/vme/b/

VME Bus Numbers Assigned by ioconfig

The bus number b is assigned by the ioconfig command (see “Using ioconfig for
Global Controller Numbers” on page 53). The number b is arbitrarily assigned the first
time ioconfig runs after a VME option is added to the system. The first VME bus must
be number 1 (not 0).

The bus numbers as assigned are recorded in the ioconfig database file
/etc/ioconfig.config (see “Configuration Control File” on page 55). The
administrator can edit that file to change the numbering, for example to force a certain
bus to be number 1.

Configuring VME Devices

007-0911-210 359

VME Bus Interrupt Level Names

In order to direct VME bus interrupt levels to specified CPUs, you need to be able to
name the interrupt levels of a bus. For this purpose, the kernel creates names of the
following form in the hwgraph:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/ipl/i

Seven of these names appear under each vmebus vertex, with i ranging from 1 to 7. Each
vertex represents one VME bus interrupt priority level.

The same vertexes are accessible under the convenience names:

/hw/vme/b/ipl/i

You can use either of these pathnames in a DEVICE_ADMIN command to direct VME
interrupts.

Directing VME Interrupts

VME interrupts are handled in two phases. The first phase, which executes at a high
priority and is extremely quick, involves acknowledging the interrupt and locating the
device driver interrupt handler that should be notified. In the second phase, the device
driver’s specified handler executes as an independent thread (see “Handling VME
Interrupts” on page 382).

The first phase of processing executes on the CPU to which the interrupt is directed by
hardware. When nothing is done, all interrupts from a VME bus controller are directed
to CPU 0 in the Origin module to which the VME bus is attached.

The system administrator can use the DEVICE_ADMIN statement to direct VME
interrupts to a specific CPU. The DEVICE_ADMIN statement is placed in a file in the
/var/sysgen/system directory, possibly (but not necessarily)
/var/sysgen/system/irix.sm. The form of the statement to direct interrupts is:

DEVICE_ADMIN: device_path INTR_TARGET=cpu_path

The device_path is the hwgraph path specifying one of the VME interrupt levels for a bus
(see “VME Bus and Interrupt Naming” on page 358). The cpu_path is the hwgraph path
that specifies a CPU. For example, to send VME level-7 interrupts from the first VME bus
to CPU 12, you could write

DEVICE_ADMIN: /hw/vme/1/ipl/7 INTR_TARGET=/hw/cpunum/12

360 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

Although there are seven VME interrupt levels, only six unique redirections of this type
can be supported for any VME bus. In other words, you can direct the seven levels to at
most six different CPUs. You must send at least two levels to the same CPU. (Typically
you direct all the levels to a single CPU.)

The DEVICE_ADMIN statement directs interrupt detection. The device driver itself
specifies the CPU in which the interrupt handler code executes. By default this is the
same CPU where detection takes place.

VME Device Naming

VME devices are entered as vertexes in the hwgraph while the VECTOR statements are
processed during system startup. The kernel creates a vertex for each device with the
following form:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/assm/addr/

The vertex shown here as assm is the name of the VME address space, one of a16s, a16n,
a24s, a24n, a32s, or a32n. The vertex addr is the primary address of the device, from its
VECTOR statement. The address is in hexadecimal digits with leading zeros suppressed.
For example, a device located at 0x00108000 in the A32 non-supervisory space would
appear in the hwgraph as

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/a32n/108000

The same vertex appears also under the convenience vertex for that bus:

/hw/vme/b/a32n/108000

This kernel-created vertex is the “connection point” that is passed to the device driver
when the driver is called to initialize the device. The device driver is allowed
(encouraged) to create additional vertexes with more meaningful names (the
initialization process is described under “Initializing a VME Device” on page 368).

Defining VME Devices with the VECTOR Statement

Devices on the VME bus do not identify themselves to the system automatically (as
devices on the PCI bus do). You must tell IRIX that a device exists, or should exist. You
do this using the VECTOR statement. The VECTOR statement is placed in a file in the
directory /var/sysgen/system (see “Kernel Configuration Files” on page 58). For
VME, the syntax of the VECTOR statement is as follows:

Configuring VME Devices

007-0911-210 361

VECTOR: bustype=VME module=modname [adapter=b [ctlr=c]]
[ipl=i] [vector=v]

iospace=(AnnM,addr,size)
[iospace2=(AnnM,addr,size)]
[iospace3=(AnnM,addr,size)]
[exprobe=((cmd,paddr,width,value,mask) [,...]]

The variable elements of this statement, in order of appearance, are as follows:

Numeric values (variables b, c, i, v, nn, addr, size, paddr, width, value and mask) can be
written in decimal, or in hexadecimal with a prefix of “0x.”

Note: The VECTOR statement is written as a single physical line in a text file. In this
book, VECTOR statements are broken across multiple lines for readability. Do not break
a VECTOR statement across multiple text lines in a configuration file.

modname Name of the configuration file for the device driver for this type of device (see
“Master Configuration Database” on page 57).

b Number of the VME bus as assigned by ioconfig (see “VME Bus and
Interrupt Naming” on page 358)

c Arbitrary number to distinguish this device to the driver.

i Interrupt priority level used by this device, if it produces interrupts.

v Interrupt vector value returned by this device, when that is known (some
devices are dynamically configured with vector numbers by the driver).

AnnM Name of the address space used by this device, one of A16S, A16NP, A24S,
A24NP, A32S, A32NP

addr Lowest address in a range of addresses used by the device.

size Number of bytes in the range of addresses.

cmd Probe command, either w meaning write, r meaning read and test equal, or
rn meaning read and test not-equal.

paddr Address to probe (in the address space given by iospace).

width The width of data to read or write in the probe: 1, 2, 4 or 8 bytes.

value A value to be written, or to be compared to the data returned by read.

mask A mask to be ANDed with the value before writing, or to be ANDed with the
data returned by a read before comparison.

362 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

Example VME Configuration

As an example, imagine you have two VME boards on bus number 1, with these features:

• Reside in A32NP address spaces starting 0x001008000 and 0x00108020 respectively.

• Support 8, 4-byte registers.

• Writing a zero word into the first register resets a board; after which the least
significant bit of the eighth register should be zero.

• The driver for this type of board is configured in a file named
/var/sysgen/master.d/vme_examp.

• Jumpered to generate interrupts on IPL 5 with vectors of 0x0e and 0x0f respectively.

To configure these boards you could prepare a file named
/var/sysgen/system/twoboards.sm with these contents:

Example 12-1 Hypothetical VME Configuration File

* First board, "controller" 0, base 10 8000, vector 0e
VECTOR: bustype=VME module=vme_examp adapter=1 ctlr=0

ipl=5 vector=0x0e iospace=(A32NP,0x00108000,32)
exprobe=((w,0x001080000,4,0,0),(r,0x0010801c,4,0,1))

* Second board, "controller" 1, base 10 8020, vector 0f
VECTOR: bustype=VME module=vme_examp adapter=1 ctlr=1

ipl=5 vector=0x0f iospace=(A32NP,0x00108020,32)
exprobe=((w,0x001080020,4,0,0),(r,0x0010803c,4,0,1))

Using the exprobe Parameter

You use the exprobe= parameter to specify one or more PIO writes and reads to the bus.
You can use the parameter to initialize multiple registers, and to test the values in
multiple registers before or after writing.

The primary purpose of the exprobe parameter is to make the call to a device driver
conditional on the presence of the device. When the probe fails because a read did not
return the expected value, the kernel assumes the device is not present (or is not
operating correctly, or is the wrong type of device), and the kernel does not call the device
driver to initialize the device.

Configuring VME Devices

007-0911-210 363

When you do not specify a probe sequence, the kernel assumes the device exists, and
calls the driver to initialize the device. In this case, the driver can be called when no
device is present. You must write code into the driver to verify that a device of expected
type is actually present on the bus. (See “Verifying Device Addresses” on page 371.)

Using the adapter=b Parameter

VECTOR statements are processed in two sets, depending on whether or not the
adapter=b parameter is present. The presence or absence of this parameter has an
important effect on the scope and timing of device initialization.

When you omit adapter=b, the kernel applies the VECTOR statement to every VME bus
in the system. The exprobe, if one is given, is executed against every VME bus found, as
soon as the bus is found. The device driver is called when a probe succeeds on a bus. The
driver is called for every bus when no probe is given

When you specify adapter=b, the kernel does not execute the VECTOR statement until
after all buses have been found, and ioconfig has run to apply numbering to the buses.
Then the kernel executes these VECTOR statements, applying each one only to the bus
you specify.

The differences are that, with adapter=b, the probe is executed and the driver called only
for the specified bus, and this occurs quite a bit later in the startup sequence. It is almost
always a better idea to code adapter=b than to omit it.

Initialization Process

Assuming that adapter=b is supplied, the following steps take place:

• The kernel discovers each VME bus and builds a hwgraph vertexes for it.

• The ioconfig program runs and numbers the buses.

• The kernel processes the VECTOR statements.

• The kernel executes the specified probes; for example, assuming the first statement
in Example 12-1, the kernel writes a word of zero to A32NP address 0x0010080000,
then reads a word from address 0x001008001c, ANDs the returned data with 1, and
compares the result to 0. If the comparison is equal, the device exists.

364 007-0911-210

12: VME Device Attachment on Origin 2000/Onyx2

• When the probe succeeds, the kernel creates hwgraph vertices for the device; given
Example 12-1 it might build:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/a32n/1008000
/hw/vme/1/a32n/1008000

• The kernel loads the specified device driver (if necessary) and calls it to initialize the
device, passing it much of the information from the VECTOR statement.

007-0911-210 365

Chapter 13

13. Services for VME Drivers on Origin 2000/Onyx2

This chapter provides an overview of the kernel services needed by a kernel-level VME
device driver on Origin 2000 and Onyx2 systems. The following topics are covered:

• “About VME Drivers” on page 366 relates the structure of VME drivers to other
chapters in this book.

• “Initializing the Driver” on page 368 describes the process of initializing a driver.

• “Initializing a VME Device” on page 368 describes the steps of attaching a VME
device when the kernel finds one.

• “Creating and Using PIO Maps” on page 374 describes the use of PIO map objects
to access VME device registers.

• “Creating and Using DMA Maps” on page 379 describes how to set up and initiate
DMA access to VME.

• “Handling VME Interrupts” on page 382 describes two ways to establish an
interrupt handler function.

• “Porting From IRIX 6.2” on page 386 documents the changes in VME support
between IRIX 6.5 and previous releases.

• “Sample VME Device Driver” on page 387 displays the source code of a VME
device driver for Origin 2000.

Chapter 12, “VME Device Attachment on Origin 2000/Onyx2,” describes the hardware
implementation for VME devices. Chapter 4, “User-Level Access to Devices,” covers
operation of VME devices from user-level processes.

Note: For information about VME in Challenge and Onyx systems, refer to Chapter 14,
“VME Device Attachment on Challenge/Onyx,” and Chapter 15, “Services for VME
Drivers on Challenge/Onyx.”

366 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

About VME Drivers

A kernel-level VME device driver is an executable module with the structure described
in Chapter 7, “Structure of a Kernel-Level Driver.” It uses the driver/kernel interface
described in Chapter 8, “Device Driver/Kernel Interface.” In general it is configured into
IRIX as described in Chapter 9, “Building and Installing a Driver.”

The general sequence of operations of a VME driver is as follows:

1. In the pfxinit() entry point, the driver prepares any global variables.

2. When the kernel processes a VECTOR statement naming this driver (see “Defining
VME Devices with the VECTOR Statement” on page 360), it calls the pfxedtinit()
entry point of the driver. Here the driver initializes its own per-device data
structures, sets up the hardware graph to represent the device, and initializes the
device itself, if necessary.

3. The driver operates the device and transfers data in the normal upper-half entry
points such as pfxopen(), pfxread(), pfxwrite(), and pfxstrategy().

These steps are covered in the following topics.

If you are porting a driver from an earlier version of IRIX, the driver will use other
functions than the ones described here. See “Porting From IRIX 6.2” on page 386 for
function equivalents. Also, an older driver will not make use of the concept of the
hwgraph (see “Hardware Graph” on page 44). It is almost essential to integrate a VME
driver for Origin 2000 systems with the hwgraph. This is done during device
initialization.

About VME Support Functions

Table 13-1 summarizes in alphabetic order the functions that are unique to the I/O
infrastructure for VME. Their uses are mentioned in the following topics. Formal
documentation of the functions can be found in the vmeio(D3) reference page.

About VME Drivers

007-0911-210 367

Table 13-1 Functions of the VME I/O Infrastructure

Function Purpose

vmeio_dmamap_addr() Activate a DMA map and set the target buffer address.

vmeio_dmamap_alloc() Allocate a DMA map object.

vmeio_dmamap_done() Deactivate a DMA map.

vmeio_dmamap_free() Release a DMA map object.

vmeio_dmamap_list() Activate a DMA map and set a list of target buffers.

vmeio_intr_alloc() Allocate an interrupt object and optionally a VME interrupt
vector number.

vmeio_intr_connect() Establish an interrupt handler function for a given vector.

vmeio_intr_disconnect() Block interrupts to a handler.

vmeio_intr_free() Release an interrupt object.

vmeio_intr_vector_get() Retrieve the allocated vector number from an interrupt object.

vmeio_piomap_addr() Activate a PIO map and get a mapped memory address from it.

vmeio_piomap_alloc() Create a PIO map.

vmeio_pio_bcopyin() Block-copy PIO data to memory using a PIO map.

vmeio_pio_bcopyout() BLock-copy PIO data to the bus, using a PIO map.

vmeio_piomap_done() Deactivate a PIO map.

vmeio_piomap_free() Release a PIO map.

368 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

Initializing the Driver

When the driver has a pfxinit() entry point, that entry point is called during the boot
process before any other driver entry point. The driver can initialize global variables at
this time. The driver cannot depend on the state of the hardware graph, however. The
VME bus attachments may or may not be defined in the hardware graph.

If the driver has a pfxstart() entry point, that entry point is called late in the initialization
process, after all device initialization is complete.

For more discussion of these entry points, see “When Initialization Is Performed” on
page 159, “Entry Point init()” on page 159, and “Entry Point start()” on page 161.

Initializing a VME Device

The device driver does not know in advance how many devices it will be asked to
manage. There might be none configured, or only one, or many. The devices might all be
on one VME bus, or they can be on different buses.

The kernel calls the driver’s pfxedtinit() entry point once for each VME VECTOR
statement it finds (see “Defining VME Devices with the VECTOR Statement” on
page 360 for a discussion of the VECTOR statement).

For an overview of the duties and actions of the pfxedtinit() entry point, see “Entry Point
edtinit()” on page 160. An important part of initializing the device is setting up the
hwgraph. For an overview of hwgraph facilities, see “Hardware Graph Management” on
page 231.

In summary, at device initialization time the driver

• Creates hwgraph vertexes to represent the device

• Allocates and initializes a data structure to hold per-device information

• Allocates PIO maps and (optionally) DMA maps to use in addressing the device

• If necessary, registers an interrupt handler

• Initializes the device itself

Initializing a VME Device

007-0911-210 369

The allocation and use of PIO and DMA maps, and the registration of an interrupt
handler, are covered separately in following topics.

Information in the edt_t Structure

The argument to pfxedtinit() is an edt_t structure containing the information listed in
Table 13-2. The edt_t structure is declared in the sys/edt.h header file; and the constant
values passed in the structure are declared in sys/vme/vmeio.h and
sys/vmeregs.h.

The driver is allowed to retain a pointer to the edt_t in memory. A unique copy of the
structure is built for each call to pfxedtinit(). The structure is writable and continues to
exist after the pfxedtinit() entry point returns.

Identifying the Bus

If the adapter=b parameter was coded in the VECTOR statement, e_adap contains the
number. When e_adap is zero, the bus number is unspecified at this time. The driver is

Table 13-2 VME Driver Contents of edt_t Structure

Field Contents

e_bus_type The constant ADAP_VME.

e_adap The VME bus number from VECTOR adapter=b. If the adapter= parameter was
omitted, this field contains 0.

e_ctlr The value from VECTOR ctrl=c, or 0 if none was given.

e_bus_info Pointer to a structure of type vme_intrs_t (declared in sys/vmeregs.h). This
structure contains the values from VECTOR ipl=i vector=v.

e_space[] Array of three structures of type iospace_t, discussed in a following topic.

e_connectpt Handle for the hwgraph vertex representing this device (see “VME Device
Naming” on page 360).

e_master Handle for the hwgraph vertex representing the VME bus.

e_device_desc Pointer to a device descriptor structure containing information about interrupt
handling for this device.

370 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

being called early in the startup process, before ioconfig has assigned sequential bus
numbers (see “Using the adapter=b Parameter” on page 363).

In any event, the handle in e_master is unique to the bus. If you need to compare two
devices to see if they are on the same bus, you can compare their e_master values.

Using the Controller Number

The number in e_ctlr comes from the ctrl=c parameter of the VECTOR statement, when
used. This number has no hardware significance; it is a numeric parameter to the driver
that you can use for any purpose. Typically it is used as a way of giving each device a
unique number that can be displayed, for example, in error messages.

If you want to pass more than a few bits of information to the driver, consider using the
DEVICE_ADMIN and DRIVER_ADMIN statements (see “Retrieving Administrator
Attributes” on page 241).

Using the iospace List

Each iospace_t value in the e_space array describes one iospace parameter given in the
VECTOR statement. Normally at least one such value is given. If none are given, the
address space, base, and size values must be hard-coded into the driver—not usually a
good plan.

The values in each iospace_t structure are listed in Table 13-3.

Table 13-3 VME Driver Contents of iospace_t Structures

Field Contents

ios_type Address space constant declared in vmeio.h such as VMEIO_SPACE_A16N.
VMEIO_SPACE_NONE appears for an unused structure.

ios_iopaddr Base address from VECTOR statement.

ios_size Size of address range from VECTOR statement.

ios_vaddr Not initialized, but available for driver use.

Initializing a VME Device

007-0911-210 371

Verifying Device Addresses

When no probe is coded in the VECTOR statement, you have no assurance that the
device exists (see “Using the exprobe Parameter” on page 362). When a driver attempts
to access a nonexistent VME address, a bus error results, causing a kernel panic.
Accordingly it is an excellent idea to test at least the lowest and highest PIO addresses in
each iospace using the functions summarized under “Testing Device Physical
Addresses” on page 231.

Setting Up the Hardware Graph

The handle in e_connectpt represents the hwgraph vertex built by the kernel for this
VECTOR statement. The driver needs to create another vertex attached to this one with
a meaningful product-related name. That is the vertex that programs will open; it is also
the vertex in which the driver can store its per-device information.

Note: Under IRIX 6.4 only, depending on the system patch level, it may be possible for
the pfxedtinit() entry point to be called when no device exists. The sign that this has
happened is that e_connectpt contains 0. For IRIX 6.4 only you may need to place test
such as the following near the beginning of device initialization:

if (!(edt->e_connectpt)) return; /* invalid call */

For an overview of hardware graph modification see “Hardware Graph Management”
on page 231, and in particular “Extending the Graph With a Single Vertex” on page 234.
Using the example devices under “Example VME Configuration” on page 362, the kernel
creates the connection point

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/a32n/1008000

This same vertex is also visible to the user with the convenience path

/hw/vme/1/a32n/1008000

However, this vertex is not a device vertex and the user cannot open it. Your driver needs
to create a device vertex for this purpose.

You know that the device is in fact a character device, a Frummage Corp model AD6. You
want to add a single character device vertex named ad6. In that vertex you can store a
pointer to a device information structure you call ad6_stuff_t. This is the vertex that is

372 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

passed to entry points such as pfxread(), and the device information will be available at
those times.

The code in Example 13-1 is a hypothetical (i.e. untested) fragment that might appear in
your pfxedtinit() entry point, somewhere after the point at which you know the device
exists.

Initializing a VME Device

007-0911-210 373

Example 13-1 Adding a Vertex to the Hardware Graph
ad6_stuff_t * ad6;
vertex_hdl_t vert;
...

/* allocate memory for per-device structure */
ad6 = kmem_zalloc(sizeof(*ad6),KM_SLEEP);
if (!ad6) goto SayDie;
/* create device vertex below connect-point */
ret = hwgraph_char_device_add(edt->e_connectpt,

"ad6", "ad6_", &vert);
if (ret != GRAPH_SUCCESS) goto SayDie;

...
/* set info struct in the device vertex */
device_info_set(vert,ad6); ...

SayDie:
/* release all allocated objects and exit */

Following this step, the new vertex is visible in the hwgraph under the two paths:

/hw/module/mod/slot/ion/baseio/vme_xtown/pci/7/vmebus/a32n/1008000/ad6
/hw/vme/1/a32n/1008000/ad6

Note that you did not have to worry about uniqueness, since there can be only one path
to this particular bus, address space, and base address. However, even the shorter of
these paths is cumbersome. You would like to create an alias that is even shorter, for
example, /hw/Frummage/ad6. However, you cannot be sure that there is only this one
AD6 board in the system. There might be several, and if there are, you cannot predict the
order in which they are initialized. Initialization calls might even occur in parallel on
different CPUs.

What you need to create is a path /hw/Frummage/n/ad6, where n is certain to be
unique among all Frummage devices. The simplest way to create a unique numbering is
through the ctlr=c parameter of the VECTOR statement.

The steps to create this convenience path would include:

• Use hwgraph_traverse() to test if /hw/Frummage has been created yet.

• If it has not, create a new vertex using hwgraph_vertex_create(), and connect it to
the root of the hwgraph by an edge “Frummage” using hwgraph_edge_add().

• Convert the controller number (or a unique integer from some other source) into a
character string “n” for use as a unique edge.

374 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

• Connect an edge, named with the unique numeric string, between the
/hw/Frummage vertex and the newly-created ad6 vertex, using
hwgraph_edge_add(). (If this fails, it is probably because the number is not unique
after all and the edge already exists.)

Dealing with Initialization Errors

The initialization process can encounter many possible errors, for example:

• No iospace information in the edt_t.

• Unable to allocate a PIO map, a DMA map, or some other data structure.

• Unable to verify a device address (device does not exist).

• Unable to create a hwgraph vertex or edge.

You do not expect these errors to occur and usually they will not, but when one inevitably
does occur you want the driver to behave sensibly and to be informative. Plan in advance
for this; there are a variety of coding techniques you can use.

Creating and Using PIO Maps

A PIO map is a system object that represents a range of addresses in one VME address
space. After creating a PIO map, a device driver can use it in the following ways:

• Obtain mapped addresses in kernel virtual address space that represent the device.
These can be used to load or store data words between the CPU and the device, or
they can be mapped into user process space for loading or storing.

• Copy data between the device and memory, or perform compare-and-swap to the
device, without learning the specific kernel addresses involved.

The kernel virtual address returned by PIO mapping is not a physical memory address,
and it bears no relationship to the VME bus address. The kernel virtual address and the
VME bus address need not have any bits in common.

Creating and Using PIO Maps

007-0911-210 375

The functions used with PIO maps are summarized in Table 13-4.The syntax of these
functions is given in the vmeio(D3) reference page.

The expected sequence of use is:

• During device initialization, allocate a PIO map for the device.

• To use a map (during initialization or at any other entry point), get the base address
of the device using vmeio_piomap_addr(). Use the returned address for PIO, or
request block copy operations.

• When finished accessing device addresses at any one entry point, ensure
completion of all PIO operations by calling vmeio_piomap_done().

• When shutting down the device or system, release the map with
vmeio_piomap_free().

Allocating and Freeing PIO Maps

A driver creates a PIO map by calling vmeio_piomap_alloc(). This function performs
memory allocation and it associates the PIO map with a “VME slave image” in the VME
controller. Either of these operations can encounter a delay. You specify whether the
function should return an error when a resource is not available, or should wait.

Typically your driver creates its PIO map in the pfxedtinit() entry point, where the driver
first learns about the device addresses from the contents of the edt_t structure. At this
time a delay is usually acceptable. Unless the device registers are scattered widely in its
address space, one PIO map is usually sufficient.

Table 13-4 Functions to Create and Use PIO Maps

Function Purpose

vmeio_piomap_addr() Get a mapped memory address for a device address.

vmeio_piomap_alloc() Create a PIO map.

vmeio_piomap_done() Deactivate a PIO map.

vmeio_piomap_free() Release a PIO map.

vmeio_pio_bcopyin() Block-copy PIO data to memory using a PIO map.

vmeio_pio_bcopyout() Block-copy PIO data to the bus, using a PIO map.

376 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

The parameters to vmeio_piomap_alloc() are as follows:

When the VMEIO_NOSLEEP flag is used, it is possible for the function to fail and return
a NULL pointer. In this case, the PIO map could not be allocated.

Typically a driver creates a PIO map and stores its address in a structure with other
information about one VME device. A pointer to that structure is stored in the device
vertex in the hwgraph (see “Setting Up the Hardware Graph” on page 371). In any entry
point, the address of the device structure, and the PIO map address, are easily retrieved.

Specifying the Address Space and Modifiers

Any PIO map operates in one VME address space using one address modifier. You
specify these with a combination of constant names as the am parameter to
vmeio_piomap_alloc(). The allowed combinations are listed Table 13-5. Other
combinations of space and modifier are not supported.

vme_conn Hwgraph connection point of the device, as passed in the e_connpt
field of edt_t (see “Information in the edt_t Structure” on page 369).

dev_desc Current device descriptor for the device. This can be obtained from
the e_device_desc field of the edt_t, or by calling
device_desc_default_get() with the connection point.

am Constants specifying the VME address space modifier, discussed
below.

vmeaddr Base address of a range of VME bus addresses, typically the
ios_iopaddr field of an iospace_t structure (see “Using the iospace List”
on page 370).

byte_count Size of the address range to be mapped, typically the ios_size field of
an iospace_t structure.

byte_count_max Maximum size to be presented to vmeio_piomap_addr() at any time.

flags Zero (0) or VME_DEBUG depending on whether integrity checking
should be done, with a slight performance penalty.

Creating and Using PIO Maps

007-0911-210 377

Testing the Target Addresses

Merely creating a map does not guarantee that any device exists at that bus address.
Device addresses passed in the VECTOR statement can only be trusted if the VECTOR
statement also contains a thorough set of exprobe= commands to probe the bus.

Table 13-5 Address Space and Modifiers Available for PIO

Address
Modifier Value of am Parameter Description

0x29 VMEIO_AM_A16 + VMEIO_AM_N + (either
VMEIO_AM_D8 or VMEIO_AM_D16)

A16 nonprivileged

0x2D VMEIO_AM_A16 + VMEIO_AM_S + (either
VMEIO_AM_D8 or VMEIO_AM_D16)

A16 supervisory

0x39 VMEIO_AM_A24 + VMEIO_AM_N + (one of
VMEIO_AM_D8, VMEIO_AM_D16,
VMEIO_AM_D32)

A24 nonprivileged

0x3D VMEIO_AM_A24 + VMEIO_AM_S+ (one of
VMEIO_AM_D8, VMEIO_AM_D16,
VMEIO_AM_D32)

A24 supervisory

0x09 VMEIO_AM_A32 + VMEIO_AM_N +
VMEIO_AM_SINGLE + VMEIO_AM_D32

A32 nonprivileged 32-bit data

0x0B VMEIO_AM_A32 + VMEIO_AM_N +
VMEIO_AM_BLOCK + VMEIO_AM_D32

A32 nonprivileged32-bit block data

0x08 VMEIO_AM_A32 + VMEIO_AM_N +
VMEIO_AM_BLOCK + VMEIO_AM_D64

A32 nonprivileged 64-bit block

0x0D VMEIO_AM_A32 + VMEIO_AM_S +
VMEIO_AM_SINGLE + VMEIO_AM_D32

A32 supervisory 32-bit data

0x0F VMEIO_AM_A32 + VMEIO_AM_S +
VMEIO_AM_BLOCK + VMEIO_AM_D32

A32 supervisory 32-bit block data

0x0C VMEIO_AM_A32 + VMEIO_AM_S +
VMEIO_AM_BLOCK + VMEIO_AM_D64

A32 supervisory 64-bit block data

378 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

In order to test the validity of a VME bus address, you must create a PIO map and test
the mapped addresses using one of the functions listed under “Testing Device Physical
Addresses” on page 231. The following is the recommended sequence of operations
when initializing a device:

• Allocate a PIO map.

• Activate the PIO map, retrieving the base address for the device.

• Test the valid low and high extremes of the device address range using a function
such as badaddr().

• If an address is not valid the device does not exist or is not the type of device you
expected. In this case:

– Document the error with a message (“Producing Diagnostic Displays” on
page 291).

– Release the PIO map and any other objects that have been allocated.

– Terminate the initialization (see “Dealing with Initialization Errors” on
page 374).

• When the extreme addresses test valid, continue to initialize the device and
complete initialization with a call to vmeio_piomap_done().

Freeing a PIO Map

As long as the PIO map object is safely anchored from the device vertex, there is no need
to release the object. A loadable driver can unload and reload, the map is still available.
If a PIO map is created on the fly, it can be released with a call to vmeio_piomap_free().

Using a PIO Map for PIO

You get a kernel virtual address from a map for use with PIO by applying
vmeio_piomap_addr(). In this function call you specify the lowest VME address of
interest at this time, and the total range of VME addresses that you want to access at this
time. Typically these two numbers are the same as the vmeaddr and byte_count parameters
to vmeio_piomap_alloc().

The value returned by vmeio_piomap_addr() is an address in kernel virtual space that is
associated with the requested base address on the VME bus. Stores and fetches to the
mapped address range are executed on the VME bus.

Creating and Using DMA Maps

007-0911-210 379

When the driver does not need further PIO for a period of time that might be long, the
driver should call vmeio_piomap_done(). This call does not return until all PIO output
has reached the device. In some systems it may release temporary resources.

Mapping a PIO Map into a User Process

In the pfxmap() entry point (see “Concepts and Use of mmap()” on page 180), you can
also use a mapped PIO address with the v_mapphys() function to map the range of
device addresses into the address space of a user process. When you do this, the PIO map
remains in use for an indefinite time. You can release the PIO map in the pfxunmap()
entry point (see “Entry Point unmap()” on page 184).

Using a PIO Map for Block Copy

The vmeio_pio_bcopyin() and vmeio_pio_bcopyout() functions copy a range of data
between memory and a device using a PIO map. These functions are optimized to the
hardware that exists, and they do all transfers in the largest size possible (32 or 64 bits per
transfer). If you need to transfer data in specific sizes of 1 or 2 bytes, create a PIO map for
that width and use direct loads and stores to the mapped addresses.

Creating and Using DMA Maps

A DMA map is a system object that can represent a mapping between a buffer in kernel
virtual space and a range of VME bus addresses. After creating a DMA map, a driver uses
the map to specify the target address and length to be programmed into a VME bus
master before a DMA transfer.

The functions that operate on DMA maps are summarized in Table 13-6.

Table 13-6 Functions That Operate on DMA Maps

Function Purpose

vmeio_dmamap_addr() Activate a DMA map and set the target buffer address.

vmeio_dmamap_alloc() Allocate a DMA map object.

vmeio_dmamap_done() Deactivate a DMA map.

380 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

Allocating a DMA Map

A device driver allocates a DMA map using vmeio_dmamap_alloc(). This is typically
done in the pfxedtinit() entry point, provided that the maximum I/O size is known at
that time. The arguments to this function are as follows:

Specifying the Type of Access

The VME support code assumes that a DMA map is used for one of two kinds of access:

• Command-type access in which relatively small quantities of command or status
information are exchanged between the device and word-aligned buffers.

Command-type access is characterized by short, infrequent transfers that are not
necessarily aligned on a cache line boundary. For example, if the device can load its
own scatter/gather register set using DMA, or if the device uses DMA to store a
block of status information, this is command-type DMA access.

• Data-type access in which relatively large amounts of data are exchanged between
the device and buffers that are at least a cache-line in length and typically aligned to
cache boundaries.

Data-type access is characterized by long, multiple-cache-line bursts of data.

vmeio_dmamap_free() Release a DMA map object.

vmeio_dmamap_list() Activate a DMA map and set a list of target buffers.

vme_conn Hwgraph connection point of the device, as passed in the e_connpt
field of edt_t (see “Information in the edt_t Structure” on page 369).

dev_desc Current device descriptor for the device. This can be obtained from
the e_device_desc field of the edt_t, or by calling
device_desc_default_get() with the connection point.

space Constant specifying the address space, discussed below.

byte_count_max Largest range of addresses to be mapped at any time.

flags Zero (0) or VME_DEBUG depending on whether integrity checking
should be done, and VMEIO_DMA_CMD or VMEIO_DMA_DATA to
describe the use of the map.

Table 13-6 Functions That Operate on DMA Maps (continued)

Function Purpose

Creating and Using DMA Maps

007-0911-210 381

You state the type of DMA access by specifying either VMEIO_DMA_CMD or
VMEIO_DMA_DATA in the flags parameter when allocating the map. When the kernel
schedules I/O through a data-type DMA map, it sets up the XIO and PCI interfaces for
best bandwidth under the assumption that multiple cache lines will be transferred. When
the kernel schedules I/O through a command-type DMA map, it sets up the interfaces
for quickest coherent access to data.

Specifying the Address Space

Any DMA map operates in one VME address space. You specify the space with a value
in the space parameter to vmeio_dmamap_alloc(). The available spaces are shown in
Table 13-7.

The data width is determined by the VME bus master device when it initiates the bus
transactions.

Using a DMA Map for One Buffer

A DMA map is used prior to a DMA transfer into or out of a buffer in kernel virtual
space. The function vmeio_dmamap_addr() takes a DMA map, a buffer address, and a
length. It assigns a span of contiguous VME addresses of the specified length. It
programs the VME bus controller to map that range of VME addresses into the physical
addresses that represent the specified buffer. The buffer may span two or more physical
pages.

The value returned by vmeio_dmamap_addr() is the VME bus virtual address that
represents the first byte of the buffer. This is the address you program into the bus master
device (using a PIO store), in order to set its starting transfer address. Then you can
initiate the DMA transfer (again by storing a command into a device register using PIO).

Table 13-7 Address Space and Modifiers Available for DMA

Constant in vmeio.h Description

VMEIO_AM_A24 + VMEIO_AM_N A24 nonprivileged

VMEIO_AM_A24 + VMEIO_AM_S A24 supervisory

VMEIO_AM_A32 + VMEIO_AM_N A32 nonprivileged data

VMEIO_AM_A32 + VMEIO_AM_S A32 supervisory data

382 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

It is possible for vmeio_dmamap_addr() to fail. The kernel needs to allocate resources in
the VME controller in order to set up and maintain the mapping. If the resources are not
available, the function returns 0. You must always test the returned value for zero and
not attempt the DMA operation when that value appears.

Using a DMA Map with Address/Length Lists

IRIX now supports the very convenient and useful address/length list (alenlist) functions
described under “Using Address/Length Lists” on page 223. You can use an alenlist to
represent a series of one or more buffer areas separated in kernel virtual memory. In
particular, the buf_to_alenlist() function returns an alenlist describing a kernel memory
buffer.

When your buffer is defined by an alenlist, you can map all components in the list in a
single operation by calling vmeio_dmamap_list(). This function creates an alenlist in
which the same segments of memory are represented as a list of VME bus addresses.
(Note that the new list can have more or fewer address/length pairs than the original
list.) The function returns the list containing translated addresses. This is a newly
allocated alenlist object unless you specify VMEIO_INPLACE in the flags argument.

You can read out VME bus address segments from the list one at a time and program
them into the device for DMA. If the device has multiple target registers
(“scatter/gather” registers) you can program it with all the segments from the translated
list. If the device can handle only one transfer at a time, you have to program each list
element as a separate operation.

Handling VME Interrupts

When a VME interrupt occurs, the VME bus controller directs the interrupt signal to one
of the CPUs in the Origin 2000 system (see “Directing VME Interrupts” on page 359).

The kernel VME support in that CPU fetches the interrupt vector presented during the
interrupt acknowledge (IACK) cycle on the VME bus. Then the kernel looks to see if any
VME driver has asked to receive interrupts with that vector on that priority level. If a
driver has registered a handler for this interrupt, the kernel schedules the driver’s
handler to execute asynchronously as a kernel thread. This phase of acknowledgment
and scheduling runs as a trap handler in the CPU that receives the hardware signal. The
driver’s handler function can execute in that same CPU (by default) or in another one.

Handling VME Interrupts

007-0911-210 383

In order to receive control on an interrupt, you must consider these issues:

• Establish the VME interrupt priority level the device uses.

• Establish the VME interrupt vector the device presents during an interrupt
acknowledge cycle.

• Create an interrupt handler function to be called when the device interrupts.

• Notify the kernel to call the handler when the interrupt occurs.

Connecting the Interrupt Handler

You establish an interrupt handler by creating and using an interrupt object. This
dynamic method of connecting a handler has the following advantages:

• You decide when interrupts will be accepted.

• You can disconnect the handler when interrupts are not wanted (for example, when
the driver needs to unload).

• You can allocate an interrupt vector dynamically, for programming into a device
that has a programmable vector number.

The functions used for interrupt control are summarized in Table 13-8.

Table 13-8 Functions for Interrupt Control

Function Purpose

vmeio_intr_alloc() Allocate an interrupt object, and optionally allocate a vector
number.

vmeio_intr_vector_get() Retrieve the vector number specified to, or allocated by
vmeio_intr_alloc().

vmeio_intr_connect() Establish an interrupt handler and enable interrupts.

vmeio_intr_disconnect() Block interrupts so that the handler is no longer called.

vmeio_intr_free() Release an interrupt object.

384 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

Allocating an Interrupt Object

During initialization of the device in the edtinit() entry point, allocate an object to
represent the expected interrupt. This is the purpose of vmeio_intr_alloc(). The
parameters to this function are as follows:

The priority level and vector number can be passed in the VECTOR statement (see
“Information in the edt_t Structure” on page 369), or they can be coded into the driver.
When the device can be programmed with a vector number, you can request the
assignment of an unused vector number by passing VMEIO_INTR_VECTOR_NONE.
You can retrieve the assigned (or specified) vector number by calling
vmeio_intr_vector_get(), then program it into the device by PIO.

Note: According to the VME standard, the interrupt vector can be a data item of 8, 16, or
32 bits. However, Silicon Graphics systems accept only an 8-bit vector, and its value must
fall in the range 1-254 inclusive. (0x00 and 0xFF are excluded because they could be
generated by a hardware fault.)

Typically you should store the address of the interrupt object in the device information
structure for future use.

vme_conn Hwgraph connection point of the device, as passed in the e_connpt field
of the edt_t (see “Information in the edt_t Structure” on page 369).

dev_desc Current device descriptor for the device. This can be obtained from the
e_device_desc field of the edt_t, or by calling device_desc_default_get()
with the connection point.

vec Interrupt vector value, or VMEIO_INTR_VECTOR_NONE to request
allocation of an unused vector.

level Interrupt priority level used by the device, typically passed indirectly
through the e_bus_info field of the edt_t structure.

owner_dev Any hwgraph vertex that the system should display when reporting an
error in interrupt handling. Typically the device vertex created by the
driver.

flags Zero (0) or VME_DEBUG depending on whether integrity checking
should be done, with a slight performance penalty.

Handling VME Interrupts

007-0911-210 385

Using the Device Descriptor

The use of the device_desc data type is described in two reference pages, device_desc(d4x)
and device_desc_ops(d3x). Where a device descriptor is required, you can obtain a
default descriptor handle by calling device_desc_default_get(). However, you can also
obtain a writable copy of the device descriptor and modify it with a function such as
device_desc_intr_target_set().

The device descriptor that you pass to vmeio_intr_alloc() determines the CPU on which
your interrupt handler will execute. Normally the default interrupt CPU is appropriate.
If you have a good reason to know that the handler should execute on a particular CPU,
you can modify the device descriptor before calling vmeio_intr_alloc().

Connecting the Handler

Once you have created an interrupt object, you can enable calls to your handler function
by calling vmeio_intr_connect(). The important parameters to this function are:

• The interrupt object, which indirectly specifies the device, level, and vector.

• The address of the handler function, which can have any name you choose.

• An argument to be passed to the function, typically the handle of the device
information structure you have prepared.

Although the function also takes a “thread” parameter, there is no current support for
operating the interrupt handler on a specific kernel thread. It is called at a high priority,
but not necessarily the highest priority (see “Interrupts as Threads” on page 188).

Disconnecting the Handler

When you want to ensure that the interrupt handler will not be called, apply
vmeio_intr_disconnect(). Following interrupts from the device are discarded until you
once again call vmeio_intr_connect().

You must disconnect interrupts in a loadable driver before unloading the driver.

386 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

Porting From IRIX 6.2

The kernel services for VME programming changed substantially for Origin and Onyx2
systems. This section lists the Challenge and Onyx kernel functions and relates them to
the Origin and Onyx2 interface as it is described in the preceding topics. Refer to
Chapter 14, “VME Device Attachment on Challenge/Onyx,” and Chapter 15, “Services
for VME Drivers on Challenge/Onyx” for information on writing VME device drivers
for Challenge and Onyx systems.

Table 13-9 lists the kernel functions used under IRIX 5.3, IRIX 6.0, IRIX 6.1, and IRIX 6.2
to program the VME interface on the Challenge and Onyx systems, in alphabetical
order.After the name of the function is a brief summary of its purpose; in the third
column is a summary of the comparable facility introduced in IRIX 6.5.

When you begin porting a VME driver from IRIX 6.2 or earlier, look each function up in
Table 13-9. Rewrite the driver to use the function or functions listed in the rightmost
column.

Table 13-9 VME Kernel Function Compatibility Summary

Old Function Purpose Replacement Facility

dma_map() Map a buffer for DMA. vmeio_dmamap_addr() and
vmeio_dmamap_list()

dma_mapaddr() Get the VME bus address for a
mapped buffer.

vmeio_dmamap_addr() and
vmeio_dmamap_list()

dma_mapalloc() Allocate a DMA map. vmeio_dmamap_alloc()

dma_mapbp() Map a system buffer for DMA. buf_to_alenlist(), then
vmeio_dmamap_list()

dma_mapfree() Release a DMA map. vmeio_dmamap_free()

pio_and[bhw]_rmw() Perform read-AND-writeback. No replacement

pio_bcopyin() Block-copy PIO data to memory. vmeio_pio_bcopyin()

pio_bcopyout() Block-copy PIO data to device. vmeio_pio_bcopyout()

pio_mapaddr() Position PIO map in VME address
space.

vmeio_piomap_addr()

pio_mapalloc() Allocate a PIO map. vmeio_piomap_alloc()

Sample VME Device Driver

007-0911-210 387

Sample VME Device Driver

In Example 13-2 you can read the code of a complete VME driver provided courtesy of
the VME Microsystems International Corporation (VMIC). The code of this driver may
also be installed as part of VME support in the directory /usr/src/vme. Sample driver
code may also be made available from SGI Developer Support.

The sample driver has been set up for conditional compilation on either IRIX 6.2 or
IRIX 6.4. The statements

jjjjj#if SN
#define VMEIO 1
#endif

set up the value of the VMEIO compiler variable. This variable is used to select code for
either the older IRIX 6.2 or the newer IRIX 6.5.

Example 13-2 Sample VME Driver

/*
* SGI would like to thank VME Microsystems International Corporation
* (VMIC) for providing source code to the device driver for their
* VMIVME-5588DMA Reflective Memory Card. Reflective memory is a
* real-time network that supports low latency data transfers among
* heterogenous systems via either PCI or VME. Data written to a
* reflective memory board location is atomatically sent to all

pio_mapfree() Release a PIO map. vmeio_piomap_free()

pio_or[bhw]_rmw() Perform read-OR-writeback. No replacement

vme_adapter() Get number of VME bus for device. No replacement

vme_ivec_alloc() Reserve unused VME vector
number.

vmeio_intr_alloc()

vme_ivec_free() Release VME vector number. vmeio_intr_free()

vme_ivec_set() Register interrupt handler for VME
vector.

vmeio_intr_connect()

Table 13-9 VME Kernel Function Compatibility Summary (continued)

Old Function Purpose Replacement Facility

388 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

* reflective memory boards in the network. This is all done by the
* Reflective Memory hardware. No software messaging or CPU cycles are
* required. For more information, contact VMIC at:
*
* VME Microsystems Int’l Corp
* 12090 South Memorial Parkway
* Huntsville AL 35803 USA
* (800) 322-3616
* http://www.vmic.com
*--
* COPYRIGHT NOTICE
*
* Copyright (C) 1996 VME Microsystems International Corporation
* International copyright secured. All rights reserved.
*--
* VMIVME/SW-5550-ABC-205 Device Driver for IRIX-6.4
*--
* FYI: All non-static symbols must, must, *MUST*, begin with "rfm_".
*--
*/
#ifndef lint
static char rfm_c_sccs_id[] = "@(#)rfm.c 1.60 96/07/23 VMIC";
#endif /* lint */
#include <sys/types.h>
#include <sys/debug.h>
#include <sys/param.h>
#include <sys/immu.h>
#include <ksys/ddmap.h>
#include <sys/conf.h>
#include <sys/edt.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ksynch.h> /* For SV_ALLOC(D3DK), et. al. */
#include <sys/sema.h>
#include <sys/file.h>
#include <sys/uio.h>
#include <fcntl.h>
#include <sys/mload.h>
#include <sys/buf.h>
#include <sys/dir.h>
#include <sys/signal.h>
#include <sys/mman.h>
#include <sys/sg.h>

Sample VME Device Driver

007-0911-210 389

#include <sys/kmem.h>
#include <sys/ddi.h>
#include <sys/vmereg.h>
#include <stdarg.h>
#if SN
#define VMEIO 1
#endif
#if VMEIO
#include <sys/ioerror.h>
#include <sys/alenlist.h>
#include <sys/vme/vmeio.h>
#else /* Challenge */
#include <sys/pio.h>
#include <sys/dmamap.h>
#include <sys/user.h> /* The header file is gone from 6.4 on */
#endif
#include <rfm_reg.h>
#include <rfm_io.h>
#include "spaces.h"
#include "bflags.h"
#if VMEIO
#define RFM_PREFIX "rfm_"
#define EDGE_LBL_RFM "rfm"
#define NEW(ptr) (ptr = kmem_alloc(sizeof (*(ptr)), KM_SLEEP))
#define DEL(ptr) (kmem_free(ptr, sizeof (*(ptr))))
#endif
#if VMEIO
typedef vmeio_piomap_t rfm_piomap_t;
#else
typedef piomap_t *rfm_piomap_t;
#endif
#if VMEIO
typedef vmeio_dmamap_t rfm_dmamap_t;
#else
typedef dmamap_t *rfm_dmamap_t;
#endif
#if VMEIO
/* vmeio_dmamap_alloc returns "0" for errors */
#define DMAMAP_FAILED ((rfm_dmamap_t) 0L)
#else
/* dmamap_alloc returns "-1" for errors */
#define DMAMAP_FAILED ((rfm_dmamap_t) -1L)
#endif
/*
*==

390 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

* Configuraion constants (you may change these, if needed)
*==
*/
/*
*--
* NRFM is the number of devices which we will support. Making this
* too big uses only a little extra memory.
#if VMEIO
* When usint VMEIO, NRFM is ignored.
#endif
*--
*/
#ifndef NRFM
#define NRFM 2 /* Support 2 boards */
#endif /* NRFM */
/*
*--
* EVENTPATIENCE is the default number of seconds to which an event
* timeout is limited.
*--
*/
#ifndef EVENTPATIENCE
#define EVENTPATIENCE 20 /* Timeout limit (seconds) */
#endif /* EVENTPATIENCE */
/*
*--
* RFMSLEEP is the priority level at which the driver will sleep during
* timeouts. If you don’t want a signal (such as happen when you type a ^C
* on the keyboard) from interrupting the wait, then uncomment the
* definition below *without* "PCATCH". However, if you don’t allow
* signals to interrupt the wait and the event never happens, you’ll have
* to reboot the system in order to kill your applications program.
*--
*/
#if 1
#define RFMSLEEP (PCATCH|(PZERO+1)) /* ^C interrupts wait */
#else /* NOPE */
#define RFMSLEEP (PZERO-1) /* Nothing interrupts */
#endif /* NOPE */
/*
*--
* The SMALLEST_DMA symbol gives the size (in bytes) of the smallest DMA
* transfer we will perform. Any attempted read(2)’s or write(2)’s shorter
* than this will be handled by programmed I/O (copying the data via the
* CPU). The rationale is this: the DMA setup, interrupt processing, and

Sample VME Device Driver

007-0911-210 391

* DMA teardown takes a certain amount of time. For shorter transfers this
* overhead is greater than the time it would take to just move the data
* using the CPU. You may want to experiment with this value to determine
* the optimal limit for your system.
*
* The SMALLEST_DMA_IREQ symbol gives the size (in bytes)of the smallest
* DMA which will use a DMA complete interrupt; transfers smaller than
* this will simply poll the DMA engine’s complete flag. You may want to
* experiment with this value to determine the optimal limit for your
* system. In view of the relatively large overhead incurred in processing
* any interrupt, you may want this value to be fairly high so that you
* reduce the transfer latency (although this might saturate the CPU).
* Your mileage may vary :-)
*--
*/
#define SMALLEST_DMA (1024) /* Smallest DMA we will do */
#define SMALLEST_DMA_IREQ (2048) /* Smallest DMA using interrupt */
/*
*--
* The following data structure defines the default DMA configuration
* options used unless the application program uses an RFM_DMAINFO
* ioctl(2) command to change them.
*--
*/
static rfmdmainfo_t defaultDmaInfo = {

1, /* U-seconds between DMA polls */
64, /* DMA burst cycle length (0=64) */
RDI_RELMODE_ROR, /* DMA release mode */
0, /* Burst interleave (x250 nsec) */
3, /* VMEbus request level */
SMALLEST_DMA, /* Minimum size to use DMA */
SMALLEST_DMA_IREQ /* Minimum DMA w/interrupt size */

};
/*
*==
* PLEASE DO NOT ALTER ANYTHING PAST THIS POINT
*==
*/
/* IRIX 6.2 has some missing prototypes */
void MUTEX_LOCK(mutex_t *lockp, int priority);
void SV_WAIT(sv_t *svp, void *lkp, int rv);
int badaddr(volatile void *addr, int size);/* In "systm.h", can’t use it */
/* Use our own min/max macros, not whatever happens to be lying around */
#undef min
#undef max

392 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

#undef bounds
#define max(a,b) ((a) > (b) ? (a) : (b))
#define min(a,b) ((a) < (b) ? (a) : (b))
/*
*--
* Number of bytes transferred with each DMA cycle
*--
*/
#define DMAWIDTH 8 /* Must be power of two! */
/*
*--
* We encode the size of the reflective memory device in the low-order
* bytes of the minor device number.
*--
*/
#define RFMUNIT(dev) getminor(dev)
/*
*--
* Macros to win friends and influence people
*--
*/
#define USECONDS ((clock_t) 1000000UL) /* Usec per second */
#define WHENDEBUG(x) if((x) & rfmDebug)
static uint_t rfmDebug = RFM_DBERROR; /* Debug output level */
#if 0
static uint_t rfmDebug = RFM_DBINIT | RFM_DBOPEN | RFM_DBCLOSE | RFM_DBREAD |

RFM_DBWRITE | RFM_DBSTRAT | RFM_DBIOCTL | RFM_DBMMAP |
RFM_DBCALLBACK | RFM_DBTIMER | RFM_DBINTR |
RFM_DBERROR | RFM_DBSLOW | RFM_DBMUTEX;

#endif
/*
*--
* Interrupt enable flags for all four interrupts. We setup the BIM to
* enable all interrupts and to automatically clear the interrupt when the
* interrupt occurs. We also the the BIM’s "FLAG" as an indication that
* the associated interrupt occurred. We need this because we will have
* to poll the device, since IRIX 5.X may share interrupts among VME
* devices.
*--
*/
#define A_ENABLE (RFM_BIM_IRE | RFM_BIM_AUTO | RFM_BIM_F | RFM_BIM_FAC)
#define B_ENABLE (RFM_BIM_IRE | RFM_BIM_AUTO | RFM_BIM_F | RFM_BIM_FAC)
#define C_ENABLE (RFM_BIM_IRE | RFM_BIM_AUTO | RFM_BIM_F | RFM_BIM_FAC)
#define F_ENABLE (RFM_BIM_IRE | RFM_BIM_AUTO | RFM_BIM_F | RFM_BIM_FAC)
#define D_ENABLE (RFM_BIM_IRE | RFM_BIM_AUTO | RFM_BIM_F | RFM_BIM_FAC)

Sample VME Device Driver

007-0911-210 393

/*
*--
* Multiprocessor access to the top half of the driver routines (like
* rfmopen(), rfmread(), and the like) are coordinated by a mutual
* exclusion (mutex) lock. The lock is initialized while booting, so
* everyone can use it. Because all of the top-level (i. e. system call
* routines) are mutually exclusive, we can allow multiple user-level open
* calls without worrying about access collisions.
*--
*/
#define TOPHALF_LOCK(ucb) MUTEX_LOCK(&(ucb)->ucb_mutex, (-1))
#define TOPHALF_UNLOCK(ucb) MUTEX_UNLOCK(&(ucb)->ucb_mutex)
/*
*--
* Coordination between the bottom (interrupt level) half of the driver
* and the upper (base level) half is coordinated by a lock and a
* synchronization variable. Since all of the upper halves use a mutex,
* there is only one active upper level context active. By gating the
* interrupt handler with the synchronization variable, we achieve
* interrupt lockout of the upper half.
*--
*/
#define RFM_LOCK_INIT(ucb) LOCK_INIT(&(ucb)->ucb_rfmLock, 0, 0, 0)
#define RFM_LOCK(ucb,level) LOCK(&(ucb)->ucb_rfmLock, (level))
#define RFM_UNLOCK(ucb,cookie) UNLOCK(&(ucb)->ucb_rfmLock, (cookie))
#define RFM_WAIT(ucb,cookie) SV_WAIT(&(ucb)->ucb_rfmSv, \

&(ucb)->ucb_rfmLock, (cookie))
#define RFM_TELLONE(ucb) SV_SIGNAL(&(ucb)->ucb_rfmSv)
#define RFM_TELLALL(ucb) SV_BROADCAST(&(ucb)->ucb_rfmSv)
#define RFM_EVENTGRAB(ucb,pri) psema(&(ucb)->ucb_eventSema, (pri))
#define RFM_EVENTFREE(ucb) cvsema(&(ucb)->ucb_eventSema)
/*
*--
* The ‘rfm_devflag’ is used by the kernel to determine some facts about
* the driver. This driver is now MP safe.
*--
*/
int rfm_devflag = (D_MP);
/*
*--
* The ‘rfm_mversion’ variable is required to signal that this is a
* loadable device driver.
*--
*/
char *rfm_mversion = M_VERSION;

394 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

/*
*--
* Shape of per-instance unit control block (UCB)
*--
*/
typedef struct ucb_s {
#if VMEIO

vertex_hdl_t ucb_conn; /* Connection point */
vertex_hdl_t ucb_vertex; /* My vertex */
vmeio_intr_t ucb_intr; /* VMEIO interrupt handle */

#endif
struct edt *ucb_e; /* ‘e’ address */
int ucb_adapter; /* VMEbus adapter number */
int ucb_unit; /* Minor device number */
struct buf *ucb_bp; /* Backlink to I/O buf */
uint_t ucb_flags; /* Activity flags */
vmeio_am_t ucb_am;

#define UCB_FLAGS_OPEN (1U << 0) /* Device is opened */
#define UCB_FLAGS_ETIMEO (1U << 1) /* Device timeout occurred */
#define UCB_FLAGS_AWAIT (1U << 2) /* Event A wanted */
#define UCB_FLAGS_BWAIT (1U << 3) /* Event B wanted */
#define UCB_FLAGS_CWAIT (1U << 4) /* Event C wanted */
#define UCB_FLAGS_FWAIT (1U << 5) /* FIFO event wanted */
#define UCB_FLAGS_AINFO (1U << 6) /* Event A notification wanted */
#define UCB_FLAGS_BINFO (1U << 7) /* Event B notification wanted */
#define UCB_FLAGS_CINFO (1U << 8) /* Event C notification wanted */
#define UCB_FLAGS_FINFO (1U << 9) /* Event D notification wanted */
#define UCB_FLAGS_DONE (1U << 10) /* DMA complete */
#define UCB_FLAGS_BERR (1U << 11) /* DMA had bus error */
#define UCB_FLAGS_FOUND (1U << 12) /* Hardware probed OK */

uint_t ucb_pending; /* What went on */
#define UCB_PENDING_A (1U << 0) /* Event A pending */
#define UCB_PENDING_B (1U << 1) /* Event B pending */
#define UCB_PENDING_C (1U << 2) /* Event C pending */
#define UCB_PENDING_F (1U << 3) /* Event F pending */

dev_t ucb_dev; /* Device major and minor id’s */
RFM ucb_rfm; /* Address of board’s registers */
off_t ucb_rfmSize; /* Total size of reflective mem */
int ucb_mynodeid; /* RFM node number of my device */
int ucb_bid; /* Local copy of board ID */
int ucb_sender; /* Node ID sending last ireq */
int ucb_ilev; /* Interrupt priority level */
int ucb_ivec; /* Common interrupt vector */
toid_t ucb_eventTimeoutId;/* Id of event timeout */
clock_t ucb_eventWait; /* Event timeout (usec) */

Sample VME Device Driver

007-0911-210 395

int ucb_errno; /* Status from last syscall */
char ucb_name[32]; /* Name of this device */
char ucb_msg[256]; /* Local message buffer */
rfm_perfstat_t ucb_perfstat; /* Statistics; don’t clear */
void *ucb_userProc[RFM_NEVENT];/* Process to alert */
int ucb_signal[RFM_NEVENT];/* Per-event signals */
rfm_dmamap_t ucb_dmaMap; /* DMA map */
int ucb_xferCount; /* Size of current DMA transfer */
caddr_t ucb_dmaAddr; /* Current DMA address */
off_t ucb_dmaOffset; /* Relative window DMA offset */
rfmdmainfo_t ucb_dmaInfo; /* DMA information */
int ucb_lockedSize; /* Bytes locked for user DMA */
__userabi_t ucb_userabi; /* Description of user process */
mutex_t ucb_mutex; /* Upper-half exclusion lock */
sema_t ucb_eventSema; /* Event coordination */
sema_t ucb_stratSema; /* Strategy routine serializer */
lock_t ucb_rfmLock; /* Locks access to board regs */
sv_t ucb_rfmSv; /* Synchronizes access to board */
rfm_piomap_t ucb_piomap; /* How to get to board registers */

} ucb_t, *UCB;
#define UNULL ((UCB) NULL) /* A UCB-typed null address */
/*
*--
* Per-device storage for each instance of the reflective memory driver
*--
*/
static ucb_t ucbs[NRFM]; /* One per device */
/*
*--
* debugMsg: format and display error messages (similar to cmn_err & printf)
*--
* The first character of the format string is special: ‘!’ messages go
* only to the "putbuf"; ‘^’ messages go only to the console; and ‘?’
* always goes to the "putbuf" and to the console iff we were booted in
* verbose mode.
*
* N.B.: ideally, this could have been written as either a <stdarg.h> or
* a <varargs.h> routine. This would not compile under 5.3, so I have
* hand-crafted a work-alike. To restore the original intent, include the
* <stdarg.h> file and change: 1) the declaration of ‘ap’ to be
* va_list ap’; and 2) the vsprintf() call to be ‘vsprintf(bp, fmt, ap)’
*--
*/
static char *me = "rfm"; /* Generic driver name */
static void

396 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

debugMsg(
register UCB ucb, /* Per-device info */
char *fmt, /* Printf-style format */
... /* Args as required */

)
{

char *text; /* Which buffer we actually use */
register char *bp; /* Walks down output buffer */
static char buf[256]; /* Private messaging area */
va_list ap; /* Address of arg on stack */
va_start(ap, fmt);
/* Use message buffer in the UCB if we have one */
if(ucb) {

/* Use message area specific to this device */
text = bp = ucb->ucb_msg;

} else {
/* Don’t have a UCB, so use our own private area */
text = bp = buf;

}
/* The first character of message is special to cmn_err(9F) */
switch(fmt[0] & 0xFF) {
case ‘!’: /* syslog only */

/*FALLTHROUGH*/
case ‘^’: /* console only */

/*FALLTHROUGH*/
case ‘?’: /* syslog and verbose console */

*bp++ = *fmt++;
break;

default:
break;

}
/* Prepend "rfm" and optional device numbers to message */
if(ucb) {

/* I know the numbers! */
sprintf(bp, "%s%d: ", me, ucb->ucb_unit);

} else {
/* This is an anonymous message */
sprintf(bp, "%s: ", me);

}
while(*bp) ++bp; /* Advance to NULL at end */
vsprintf(bp, fmt, ap); /* Output user’s text */
cmn_err(CE_CONT, "%s.\n", text);/* Write to console */
/*
* Allow message to reach the syslogd() if we must. We do this by
* blindly waiting about 0.25 seconds after each message. This

Sample VME Device Driver

007-0911-210 397

* should work OK, even if we happen to be in an interrupt
* routine; some random process will be delayed, but who cares?
* Our interrupt handlers take care to clear this flag while they
* are running.
*
* On IRIX 6.4 and beyond our interrupt runs as a thread, so
* that random process can continue running on some other
* CPU while we sit and spin here.
*/

#if 0
if(rfmDebug & RFM_DBSLOW) {

drv_usecwait(USECONDS / 4);
}

#endif /* SLOW */
}
/*
*--
* eventTimedOut: signal that the operation has timed out
*--
*/
static void
eventTimedOut(

caddr_t arg /* Really UCB */
)
{

register UCB ucb = (UCB) arg;
WHENDEBUG(RFM_DBTIMER) {

debugMsg(ucb, "event timedout");
}
ucb->ucb_flags |= UCB_FLAGS_ETIMEO;
if(!ucb->ucb_errno) {

ucb->ucb_errno = ETIMEDOUT;
}
RFM_EVENTFREE(ucb); /* Wake up event waiter */

}
/*
*--
* startEventTimer: schedule an event timeout
*--
*/
static void
startEventTimer(

register UCB ucb, /* Per-board info */
clock_t usec /* Length of timeout */

)

398 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

{
WHENDEBUG(RFM_DBTIMER) {

debugMsg(ucb, "scheduling %d-usecond event timeout", usec);
}
ucb->ucb_flags &= ~UCB_FLAGS_ETIMEO;
ucb->ucb_eventTimeoutId = itimeout(eventTimedOut, (void *) ucb,

(long) drv_usectohz(usec), plhi, 0, 0, 0);
}
/*
*--
* stopEventTimer: cancel a pending event timeout call
*--
*/
static void
stopEventTimer(

register UCB ucb /* Per-board info */
)
{

toid_t tid;
tid = ucb->ucb_eventTimeoutId;
ucb->ucb_eventTimeoutId = NULL;
untimeout(tid);
WHENDEBUG(RFM_DBTIMER) {

debugMsg(ucb, "event timeout cancelled");
}

}
/*
*--
* record_sender: record node id that sent this interrupt
*--
*/
static void
record_sender(

register UCB ucb /* Per-device info */
)
{

register RFM rfm = ucb->ucb_rfm;
/* Record the originating node (if possible) */
switch(rfm->rfm_bid) {
case RFM_5550_MAGIC: ucb->ucb_sender = ~0; break;
case RFM_5576_MAGIC: ucb->ucb_sender = rfm->rfm_sid1; break;
case RFM_5578_MAGIC: ucb->ucb_sender = rfm->rfm_sid1; break;
case RFM_5588_MAGIC: ucb->ucb_sender = rfm->rfm_sid1; break;
case RFM_5588DMA_MAGIC: ucb->ucb_sender = rfm->rfm_sid1; break;
}

Sample VME Device Driver

007-0911-210 399

WHENDEBUG(RFM_DBINTR) {
debugMsg(ucb, "interrupt sent by node %d", ucb->ucb_sender);

}
}
/*
*--
* ireqFhandler: FIFO interrupt handler
*--
* NB: return values from interrupt handlers are ignored.
*--
*/
static void
ireqFhandler(

register UCB ucb /* Per-device info */
)
{

register RFM rfm = ucb->ucb_rfm; /* Find the board */
int orfmDebug = rfmDebug; /* Incoming debug flags */
rfm->rfm_cr0 |= F_ENABLE; /* Set the flag again */
stopEventTimer(ucb); /* Cancel any timeout */
rfmDebug &= ~RFM_DBSLOW; /* Prevent waiting */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "transmit FIFO’s half full");
}
++(ucb->ucb_perfstat.rps_nfireq); /* Count the interrupt */
if(ucb->ucb_flags & UCB_FLAGS_FINFO) {

/* Send target process the desired signal */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "sending event F notification");
}
if(ucb->ucb_userProc[RFM_EVENT_F] &&
proc_signal(ucb->ucb_userProc[RFM_EVENT_F],
ucb->ucb_signal[RFM_EVENT_F]) == -1) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"error sending event F notification");
}

}
} else if(ucb->ucb_flags & UCB_FLAGS_FWAIT) {

/* Wake up the process holding on the FIFO event */
RFM_EVENTFREE(ucb);
/* Clear pending flags */
ucb->ucb_pending &= ~UCB_PENDING_F;

} else {
/* Slow down access to let the FIFO drain */

400 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

register int retries;
ucb->ucb_pending |= UCB_PENDING_F;
for(retries = 4; retries-- > 0;) {

if((rfm->rfm_csr & RFM_CSR_TXHALF) != 0) break;
drv_usecwait(USECONDS / 4);

}
}
rfmDebug = orfmDebug; /* Restore original debug flags */

}
/*
*--
* interfaceSignal: release 1 process holding synchronization variable
*--
*/
static void
interfaceSignal(

register UCB ucb /* Per-device info */
)
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "waking up process holding sv");

}
(void) RFM_TELLONE(ucb);

}
/*
*--
* dmaIreqHandler: dma complete handler
*--
*/
static void
dmaIreqHandler(

register UCB ucb /* Per-board local storage */
)
{

register RFM rfm = ucb->ucb_rfm;
int orfmDebug = rfmDebug;/* Incoming debug flags */
unsigned char int04; /* Local copy of register */
++(ucb->ucb_perfstat.rps_ndireq); /* Count the interrupt */
rfmDebug &= ~RFM_DBSLOW; /* Prevent waiting */
int04 = rfm->rfm_int04; /* Get a local copy */
if(int04 & (RFM_INT04_BERR | RFM_INT04_LBERR)) {

/* VMEbus error on the transfer */
ucb->ucb_flags |= UCB_FLAGS_BERR;
rfm->rfm_int04 = (int04 & ~(RFM_INT04_BERR | RFM_INT04_LBERR));

} else if(int04 & RFM_INT04_DONE) {

Sample VME Device Driver

007-0911-210 401

/* DMA complete with no errors */
ucb->ucb_flags |= UCB_FLAGS_DONE;
ucb->ucb_flags |= (int04 & ~RFM_INT04_DONE);

}
/* Wake up process waiting on DMA interrupt */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "waking up process");
}
interfaceSignal(ucb);
/* Clean up the DMA-related flags */
rfm->rfm_int04 = (int04 & ~(RFM_INT04_BERR | RFM_INT04_LBERR |

RFM_INT04_DONE));
/* Set the flag again, but don’t enable the interrupt */
rfm->rfm_cr4 = ((D_ENABLE & ~RFM_BIM_IRE) | ucb->ucb_ilev);
/* Restore debug flags */
rfmDebug = orfmDebug;

}
/*
*--
* ireqAhandler: error interrupt handler
*--
* NB: return values from interrupt handlers are ignored.
*--
*/
static void
ireqAhandler(

register UCB ucb /* Per-board local storage */
)
{

register RFM rfm = ucb->ucb_rfm;/* Find the board */
int orfmDebug = rfmDebug;/* Incoming debug flags */
record_sender(ucb); /* Record originating node */
/* Clean up the rest */
rfm->rfm_cr1 |= F_ENABLE; /* Set the flag again */
stopEventTimer(ucb); /* Cancel any timeout */
rfmDebug &= ~RFM_DBSLOW; /* Prevent waiting */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "event A");
}
++(ucb->ucb_perfstat.rps_naireq); /* Count the interrupt */
if(ucb->ucb_flags & UCB_FLAGS_AINFO) {

/* Send target process the desired signal */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "sending event A notification");
}

402 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

if(ucb->ucb_userProc[RFM_EVENT_A] &&
proc_signal(ucb->ucb_userProc[RFM_EVENT_A],
ucb->ucb_signal[RFM_EVENT_A]) == -1) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"error sending event A notification");
}

}
} else if(ucb->ucb_flags & UCB_FLAGS_AWAIT) {

/* Wake up the process holding on the A event */
RFM_EVENTFREE(ucb);
/* Clear pending flags */
ucb->ucb_pending &= ~UCB_PENDING_A;

} else {
ucb->ucb_pending |= UCB_PENDING_A;

}
rfmDebug = orfmDebug; /* Restore original debug flags */

}
/*
*--
* ireqBhandler: transfer complete interrupt
*--
*/
static void
ireqBhandler(

register UCB ucb /* Per-board local storage */
)
{

register RFM rfm = ucb->ucb_rfm;/* Find the board */
int orfmDebug = rfmDebug;/* Incoming debug flags */
record_sender(ucb); /* Record originating node */
/* Clean up the rest */
rfm->rfm_cr2 |= F_ENABLE; /* Set the flag again */
stopEventTimer(ucb); /* Cancel any timeout */
rfmDebug &= ~RFM_DBSLOW; /* Prevent waiting */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "event B");
}
++(ucb->ucb_perfstat.rps_nbireq); /* Count the interrupt */
if(ucb->ucb_flags & UCB_FLAGS_BINFO) {

/* Send target process the desired signal */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "sending event B notification");
}
if(ucb->ucb_userProc[RFM_EVENT_B] &&

Sample VME Device Driver

007-0911-210 403

proc_signal(ucb->ucb_userProc[RFM_EVENT_B],
ucb->ucb_signal[RFM_EVENT_B]) == -1) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"error sending event B notification");
}

}
} else if(ucb->ucb_flags & UCB_FLAGS_BWAIT) {

/* Wake up the process holding on the B event */
RFM_EVENTFREE(ucb);
/* Clear pending flags */
ucb->ucb_pending &= ~UCB_PENDING_B;

} else {
ucb->ucb_pending |= UCB_PENDING_B;

}
rfmDebug = orfmDebug; /* Restore original debug flags */

}
/*
*--
* ireqChandler: restart interrupt handler
*--
*/
static void
ireqChandler(

register UCB ucb /* Per-board local storage */
)
{

register RFM rfm = ucb->ucb_rfm;/* Find the board */
int orfmDebug = rfmDebug;/* Incoming debug flags */
record_sender(ucb); /* Record originating node */
/* Clean up the rest */
rfm->rfm_cr3 |= F_ENABLE; /* Set the flag again */
stopEventTimer(ucb); /* Cancel any timeout */
rfmDebug &= ~RFM_DBSLOW; /* Prevent waiting */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "event C");
}
++(ucb->ucb_perfstat.rps_ncireq); /* Count the interrupt */
if(ucb->ucb_flags & UCB_FLAGS_CINFO) {

/* Send target process the desired signal */
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "sending event C notification");
}
if(ucb->ucb_userProc[RFM_EVENT_C] &&
proc_signal(ucb->ucb_userProc[RFM_EVENT_C],

404 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

ucb->ucb_signal[RFM_EVENT_C]) == -1) {
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"error sending event C notification");

}
}

} else if(ucb->ucb_flags & UCB_FLAGS_CWAIT) {
/* Wake up the process holding on the C event */
RFM_EVENTFREE(ucb);
/* Clear pending flags */
ucb->ucb_pending &= ~UCB_PENDING_C;

} else {
ucb->ucb_pending |= UCB_PENDING_C;

}
rfmDebug = orfmDebug; /* Restore original debug flags */

}
/*
*--
* interfaceLock: lock a basic lock, return the cookie
*--
*/
static int
interfaceLock(

register UCB ucb, /* Per-device info */
pl_t pl /* Priority level */

)
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "locking interface");

}
return(RFM_LOCK(ucb, pl));

}
/*
*--
* interfaceUnlock: release lock on the interface
*-------------------- x--
*/
static void
interfaceUnlock(

register UCB ucb, /* Per-device info */
int cookie /* Cookie from "interfaceLock()" */

)
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "unlocking interface");

Sample VME Device Driver

007-0911-210 405

}
RFM_UNLOCK(ucb, cookie);

}
/*
*--
* interfaceWait: wait on synchronization variable
*--
*/
static int
interfaceWait(

register UCB ucb, /* Per-device info */
pl_t pl, /* Level to grab lock */
int cookie /* Cookie from "interfaceLock()" */

)
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "about to wait on synch variable");

}
RFM_WAIT(ucb, cookie);
WHENDEBUG(RFM_DBMUTEX) {

debugMsg(ucb, "got the sync variable");
}
return(RFM_LOCK(ucb, pl));

}
/*
*--
* rfm_intr: common code to all interrupts
*--
*/
int
rfm_intr(
#if VMEIO

intr_arg_t arg /* arbitrary pattern */
#else

int unit /* Unit number */
#endif
)
{
#if VMEIO

UCB ucb = (UCB)arg;
#else

register UCB ucb = &ucbs[unit];
#endif

register RFM rfm = ucb->ucb_rfm;
int x; /* Incoming SPL level */

406 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

x = interfaceLock(ucb, plhi);
if((rfm->rfm_cr4 & RFM_BIM_F) == 0) dmaIreqHandler(ucb);
else if((rfm->rfm_cr0 & RFM_BIM_F) == 0) ireqFhandler(ucb);
else if((rfm->rfm_cr1 & RFM_BIM_F) == 0) ireqAhandler(ucb);
else if((rfm->rfm_cr2 & RFM_BIM_F) == 0) ireqBhandler(ucb);
else if((rfm->rfm_cr3 & RFM_BIM_F) == 0) ireqChandler(ucb);
else WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb, "suprious interrupt");
}
interfaceUnlock(ucb, x);
return(0); /* Value is ignored, but lint complains */

}
/*
*--
* probeDevice: verify that the RFM device is present
*--
* We verify that the device exists by reading the board ID register
* located at the same relative offset on every type of reflective memory
* device.
*--
*/
static int
probeDevice(

register UCB ucb /* Per-board storage */
)
{

register RFM rfm = ucb->ucb_rfm;/* Address of this device */
unsigned char bid = rfm->rfm_bid;/* Suspected board ID */
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "board ID register = 0x%X", bid);
}
switch((ucb->ucb_bid = bid)) {
default: /* Unknown board ID */

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"board at 0x%X on VME %d is not an RFM board (bid
=0x%X)",

ucb->ucb_e->e_space[0].ios_iopaddr,
ucb->ucb_e->e_adap,
bid);

}
return(-1);

case RFM_5588DMA_MAGIC: /* Fiber-optic interconnect */
ucb->ucb_mynodeid = rfm->rfm_nid;/* Get my node ID */
rfm->rfm_csr = 0; /* Turn off the LED */

Sample VME Device Driver

007-0911-210 407

break;
case RFM_5588_MAGIC: /* Fiber-optic interconnect */

ucb->ucb_mynodeid = rfm->rfm_nid;/* Get my node ID */
rfm->rfm_csr = 0; /* Turn off the LED */
break;

case RFM_5578_MAGIC: /* Fiber-optic interconnect */
ucb->ucb_mynodeid = rfm->rfm_nid;/* Get my node ID */
rfm->rfm_csr = 0; /* Turn off the LED */
break;

case RFM_5576_MAGIC: /* Fiber-optic interconnect */
ucb->ucb_mynodeid = rfm->rfm_nid;/* Get my node ID */
rfm->rfm_csr = 0; /* Turn off the LED */
break;

case RFM_5550_MAGIC: /* Metallic interconnect */
ucb->ucb_mynodeid = rfm->rfm_csr & 0xF;/* Get my node ID */
rfm->rfm_csr = 0; /* Turn off the LED */
break;

}
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "probe of 0x%X succeeded", rfm);
}
return(0);

}
/*
*--
* setupHardware: clear the board, dump interrupts
*--
*/
static int
setupHardware(

register UCB ucb /* Per-board info */
)
{

register RFM rfm = ucb->ucb_rfm;/* Make easy to find */
unsigned char bid; /* Observed board ID */
/* Turn on the failure LED while we poke around */
rfm->rfm_csr = RFM_CSR_LED; /* Works whatever board type */
/* Disable all interrupts */
rfm->rfm_cr0 = 0;
rfm->rfm_cr1 = 0;
rfm->rfm_cr2 = 0;
rfm->rfm_cr3 = 0;
rfm->rfm_cr4 = 0;
ucb->ucb_pending = 0; /* Nothing is now pending */
/* Reset the interface */

408 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

switch((bid = rfm->rfm_bid)) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb, "unknown board id (0x%X)",
bid);

}
return((ucb->ucb_errno = EINVAL));

}
/*NOTREACHED*/

case RFM_5550_MAGIC: /* Metallic 5550 */
{

strcpy(ucb->ucb_name, "VMIVME-5550");
}
break;

case RFM_5576_MAGIC: /* Fiber-optic 5576 */
{

strcpy(ucb->ucb_name, "VMIVME-5576");
/*
* Drop anything that may be in the board’s
* receive FIFO’s. Do this by first clearing the
* CSR’s flags and then doing a benign write to
* the board (we’ll use the board ID register, but
* any location in the first RFM_REGSIZ bytes
* would work, but writing the board ID register
* won’t really change anything on tbe board). Any
* write to the board (even to the registers) is
* propagated around the fiber optic ring. We poke
* the board and then check that we saw our write
* come back around.
*/
rfm->rfm_csr = 0; /* Clear all flags */
rfm->rfm_bid = RFM_5576_MAGIC;
rfm->rfm_bid = RFM_5576_MAGIC;
rfm->rfm_bid = RFM_5576_MAGIC;
drv_usecwait(1 + (USECONDS / 100));
if(rfm->rfm_csr & RFM_OCSR_OWNDAT) {

/* Flush the interrupt FIFO’s */
rfm->rfm_sid1 = 0;
rfm->rfm_sid2 = 0;
rfm->rfm_sid3 = 0;

} else WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "fiber-optic ring not intact");

}
}

Sample VME Device Driver

007-0911-210 409

break;
case RFM_5578_MAGIC: /* Fiber-optic 5578 */

{
strcpy(ucb->ucb_name, "VMIVME-5578");
/* Clear the violation bit if needed */
if(rfm->rfm_irs & RFM_IRS_VIOLAT) {

/* Strobe RFM_IRS_RPL to resync PLL */
rfm->rfm_irs = (RFM_IRS_RPL|RFM_IRS_LVIOLAT);
rfm->rfm_irs;
rfm->rfm_irs = (RFM_IRS_LVIOLAT);
rfm->rfm_irs;

}
/*
* Drop anything that may be in the board’s
* receive FIFO’s. Do this by first clearing the
* CSR’s flags and then doing a benign write to
* the board (we’ll use the node ID register, but
* any location in the first RFM_REGSIZ bytes
* would work, but writing the node ID register
* won’t really change anything on tbe board). Any
* write to the board (even to the registers) is
* propagated around the fiber optic ring. We poke
* the board and then check that we saw our write
* come back around.
*/
rfm->rfm_csr = 0; /* Clear all flags */
rfm->rfm_nid = 0;
rfm->rfm_nid = 0;
rfm->rfm_nid = 0;
drv_usecwait(1 + (USECONDS / 100));
if(rfm->rfm_csr & RFM_OCSR_OWNDAT) {

/* Flush the interrupt FIFO’s */
rfm->rfm_sid1 = 0;
rfm->rfm_sid2 = 0;
rfm->rfm_sid3 = 0;

} else WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "fiber-optic ring not intact");

}
}
break;

case RFM_5588DMA_MAGIC: /* Fiber-optic 5588 w/DMA */
/*FALLTHROUGH*/

case RFM_5588_MAGIC: /* Fiber-optic 5588 */
{

strcpy(ucb->ucb_name,

410 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

((bid == RFM_5588DMA_MAGIC) ?
"VMIVME-5588DMA" : "VMIVME-5588"));

/* Clear the violation bit if needed */
if(rfm->rfm_irs & RFM_IRS_VIOLAT) {

/* Strobe RFM_IRS_RPL to resync PLL */
rfm->rfm_irs = (RFM_IRS_RPL|RFM_IRS_LVIOLAT);
rfm->rfm_irs;
rfm->rfm_irs = (RFM_IRS_LVIOLAT);
rfm->rfm_irs;

}
/*
* Drop anything that may be in the board’s
* receive FIFO’s. Do this by first clearing the
* CSR’s flags and then doing a benign write to
* the board (we’ll use the node ID register, but
* any location in the first RFM_REGSIZ bytes
* would work, but writing the node ID register
* won’t really change anything on tbe board). Any
* write to the board (even to the registers) is
* propagated around the fiber optic ring. We poke
* the board and then check that we saw our write
* come back around.
*/
rfm->rfm_csr = 0; /* Clear all flags */
rfm->rfm_nid = 0;
rfm->rfm_nid = 0;
rfm->rfm_nid = 0;
drv_usecwait(1 + (USECONDS / 100));
if(rfm->rfm_csr & RFM_OCSR_OWNDAT) {

/* Flush the interrupt FIFO’s */
rfm->rfm_sid1 = 0;
rfm->rfm_sid2 = 0;
rfm->rfm_sid3 = 0;

} else WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "fiber-optic ring not intact");

}
}
break;

}
/* Get the interrupt vector and set as common vector */
rfm->rfm_vr0 = ucb->ucb_ivec;
rfm->rfm_vr1 = ucb->ucb_ivec;
rfm->rfm_vr2 = ucb->ucb_ivec;
rfm->rfm_vr3 = ucb->ucb_ivec;
rfm->rfm_vr4 = ucb->ucb_ivec;

Sample VME Device Driver

007-0911-210 411

/* Get the interrupt csr values and set them on board */
rfm->rfm_cr0 = F_ENABLE | ucb->ucb_ilev;
rfm->rfm_cr1 = A_ENABLE | ucb->ucb_ilev;
rfm->rfm_cr2 = B_ENABLE | ucb->ucb_ilev;
rfm->rfm_cr3 = C_ENABLE | ucb->ucb_ilev;
rfm->rfm_cr4 = C_ENABLE | ucb->ucb_ilev;
rfm->rfm_csr = 0; /* Turn off the failure LED */
return(0);

}
/*
*--
* loadDmaInfo: setup DMA control registers
*--
*/
static void
loadDmaInfo(

register UCB ucb /* Per-board info */
)
{

register RFM rfm = ucb->ucb_rfm;
int bid; /* Observed board ID */
switch((bid = rfm->rfm_bid)) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"loadDmaInfo() didn’t recognize board ID of 0x%X",

bid);
}

}
break;

case RFM_5588DMA_MAGIC:
{

unsigned char dmac0;/* Local copy */
unsigned char dmac1;/* Local copy */
/* Construct DMAC0 */
dmac0 = ucb->ucb_dmaInfo.rdi_burst & RFM_DMAC0_BMASK;
/* Construct DMAC1 */
dmac1 = 0;
switch(ucb->ucb_dmaInfo.rdi_relmode) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"unknown rdi_relmode of %d",

412 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

ucb->ucb_dmaInfo.rdi_relmode);
}

}
break;

case RDI_RELMODE_ROR:
dmac1 |= RFM_DMAC1_RELMD_ROR;
break;

case RDI_RELMODE_RWD:
dmac1 |= RFM_DMAC1_RELMD_RWD;
break;

case RDI_RELMODE_ROC:
dmac1 |= RFM_DMAC1_RELMD_ROC;
break;

case RDI_RELMODE_BCAP:
dmac1 |= RFM_DMAC1_RELMD_BCAP;
break;

}
dmac1 |= (ucb->ucb_dmaInfo.rdi_busreq <<

RFM_DMAC1_LEVEL_SHIFT) & RFM_DMAC1_LEVEL_MASK;
dmac1 |= (ucb->ucb_dmaInfo.rdi_intrLeave <<

RFM_DMAC1_ILEAV_SHIFT) & RFM_DMAC1_ILEAV_MASK;
/* Update the hardware */
rfm->rfm_dmac0 = dmac0;
rfm->rfm_dmac1 = dmac1;

}
break;

case RFM_5588_MAGIC:
break;

case RFM_5578_MAGIC:
break;

case RFM_5576_MAGIC:
break;

case RFM_5550_MAGIC:
break;

}
}
/*
*--
* rfm_init: preliminary initialization
*--
* This routine cannot be called concurrently, so no mutex is needed.
*--
*/
void
rfm_init(

Sample VME Device Driver

007-0911-210 413

void
)
{

/* everything that was in here,
* has moved to rfm_edtinit().
*/
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "driver initializing");
}

}
/*
*--
* rfm_edtinit: early device table (init board & interrupts at boot time)
*--
#if VMEIO
* This routine may be called concurrently for devices on different
* VME busses; a mutex may be required if global data is modified.
#else
* This routine cannot be called concurrently, so no mutex is needed.
#endif
*--
*/
int
rfm_edtinit(edt_t *e)
{

vme_intrs_t *intrs = e->e_bus_info;
vmeio_am_t am;
iopaddr_t vmeaddr = e->e_space[0].ios_iopaddr;
size_t size = e->e_space[0].ios_size;

#if VMEIO
int unit = e->e_ctlr;
vertex_hdl_t conn = e->e_connectpt;
vmeio_intr_t intr;
int rv;
graph_error_t rc;
vertex_hdl_t rfm;
char mutexName[512];
char semaName[512];
char svName[512];
char stratName[512];

#else
int unit = intrs->v_unit;

#endif
int ivec = intrs ? intrs->v_vec : 0;
int ilev = intrs ? intrs->v_brl : 0;

414 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

register UCB ucb;
#if VMEIO

if (conn == 0) {
/* no connection point in edt ...
* probably called from edt_init().
*/
return -1;

}
WHENDEBUG(RFM_DBINIT) {

debugMsg(NULL, "%v: rfm_attach()", conn);
}
NEW(ucb);
ASSERT(ucb != 0);
ucb->ucb_conn = conn;
am = iospace_to_vmeioam(e->e_space[0].ios_type);

#else
/* Fill in enough of the UCB to allow us to print */
ucb = &ucbs[unit];
ucb->ucb_dev = makedevice(0, unit);

#endif
ucb->ucb_unit = unit;
ucb->ucb_flags = 0;
/*
* Using information from the VECTOR: line, we establish a
* fixed I/O map to allow us to access the device’s registers.
* Notice that we don’t specifically define the size of the register
* space; this gets picked up from the ‘rfm.sm’ master file entry.
* Therefore, the ‘rfm.sm’ IOSPACE entry must include the size of
* the *entire* reflective memory, not just the RFM_REGSIZ bytes
* in the front of it.
*/
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb,
"busType=%d, adapter=%d, unit=%d, am=0x%x, iopbaddr=0x%lX, size=0

x%X",
e->e_bus_type, e->e_adap, unit,
am, vmeaddr, size);

}
#if VMEIO

ASSERT(am == VMEIO_AM_A32 | VMEIO_AM_S);
ucb->ucb_am = am;
ucb->ucb_piomap = vmeio_piomap_alloc

(conn, 0, am, vmeaddr, size, size, 0);
#else

ucb->ucb_piomap = pio_mapalloc(e->e_bus_type, e->e_adap,

Sample VME Device Driver

007-0911-210 415

&e->e_space[0], PIOMAP_FIXED, "rfm");
#endif

if (ucb->ucb_piomap == 0) {
/*
* This could fail because the adapter isn’t valid
* or invalid addresses or there are no more fixed
* mappings available in the case of A32.
*/
debugMsg(ucb, "cannot map device registers");
return(0);

}
ucb->ucb_e = e;

#if VMEIO
e->e_base = vmeio_piomap_addr

(ucb->ucb_piomap, vmeaddr, size);
#else

e->e_base = pio_mapaddr(ucb->ucb_piomap, vmeaddr);
#endif

if (e->e_base == 0) {
debugMsg(ucb, "can alloc PIO map");

}
ucb->ucb_rfm = (RFM) e->e_base;
ucb->ucb_rfmSize = (off_t) size;
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "VMEaddr=0x%lX, kernel=0x%lX",
(unsigned long) vmeaddr,
(unsigned long) ucb->ucb_rfm);

}
/*
* Now that we think that we know where the board is, check
* to see if it’s one of ours.
*/
if(badaddr(&(ucb->ucb_rfm->rfm_bid), 1) || probeDevice(ucb)) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "board not found at 0x%X on VME bus %d",

ucb->ucb_e->e_space[0].ios_iopaddr,
ucb->ucb_e->e_adap);

}
goto BailOut;

}
#if VMEIO

/* Now that we know the device is here, add it
* to the hardware graph.
*/
rc = hwgraph_char_device_add(conn, EDGE_LBL_RFM, "rfm_", &rfm);

416 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

if (rc != GRAPH_SUCCESS) {
ASSERT(0);
return(-1);

}
ucb->ucb_vertex = rfm;
device_info_set(rfm, ucb);
/* [try to] create the convenience link.
*/
{

vertex_hdl_t cvhdl;
char name[32];
cvhdl = GRAPH_VERTEX_NONE;
hwgraph_path_add(hwgraph_root, EDGE_LBL_RFM, &cvhdl);
sprintf(name, "%d", unit);
if (cvhdl != GRAPH_VERTEX_NONE)

hwgraph_edge_add(cvhdl, rfm, name);
}

#endif
ucb->ucb_adapter = e->e_adap;

#if VMEIO
/* VMEIO can use levels and vectors that we
* assign, or it can assign them if we tell
* it to do so.
*/
intr = vmeio_intr_alloc

(conn, 0, ivec, ilev, rfm, 0);
if (intr == 0) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "cannot allocate interrupt resource");

}
goto BailOut;

}
ucb->ucb_intr = intr;
/* Find out the vector vmeio has assigned us;
* complain if the result is not appropriate.
*/
if (ivec == VMEIO_INTR_VECTOR_ANY)

ivec = vmeio_intr_vector_get(intr);
else if (ivec != vmeio_intr_vector_get(intr))

cmn_err(CE_WARN, "rfm%d intr alloc error:\n"
"\twanted interrupt vector %d\n"
"\tgot interrupt vector %d\n",
unit, ivec, vmeio_intr_vector_get(intr));

#if 0
/* vmeio_intr_level_get doesn’t exist. (yet?) */

Sample VME Device Driver

007-0911-210 417

if (ilev == VMEIO_INTR_LEVEL_NONE)
ilev = vmeio_intr_level_get(intr);

else if (ilev != vmeio_intr_level_get(intr))
cmn_err(CE_WARN, "rfm%d intr alloc error:\n"

"\twanted interrupt level %d\n"
"\tgot interrupt level %d\n",
unit, ilev, vmeio_intr_level_get(intr));

#endif
#else

ivec = vme_ivec_alloc(ucb->ucb_adapter);
if (ucb->ucb_ivec == -1) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "cannot allocate interrupt vector");

}
goto BailOut;

}
#endif

ucb->ucb_ilev = ilev;
ucb->ucb_ivec = ivec;
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "vector=0x%X, level=%d", ivec, ilev);
}

#if VMEIO
rv = vmeio_intr_connect

(intr, (intr_func_t) rfm_intr, (intr_arg_t)ucb, 0);
if (rv == -1) {

debugMsg(ucb, "cannot connection interrupt handler");
goto BailOut;

}
#else

vme_ivec_set(ucb->ucb_adapter, ucb->ucb_ivec,
(int (*)(int)) rfm_intr, unit);

#endif
/* Initialize the software state and the board */
ucb->ucb_flags = UCB_FLAGS_FOUND;
/* Setup for the DMA */
ucb->ucb_dmaMap = DMAMAP_FAILED;

if(setupHardware(ucb)) {
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb, "unknown board type; not installed");
}
goto BailOut;

}
/* Load the random board registers */

418 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

ucb->ucb_rfm->rfm_dmac2 = RFM_DMAC2_DWID_D64
#if VMEIO

| VMEbus_AMR_A32SMBLT
#else

| addrSpaces[unit].vs_vmeAmr
#endif

;
/* Ok */
WHENDEBUG(RFM_DBOPEN) {

debugMsg(ucb, "device is a %ld-Kbyte %s",
ucb->ucb_rfmSize / 1024L,
ucb->ucb_name);

}
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "creating mutex’s and sema’s");
}
sprintf(mutexName, "rfm%d", ucb->ucb_unit);
MUTEX_INIT(&ucb->ucb_mutex, MUTEX_DEFAULT, mutexName);
/* more per-UCB date initialization */
/* The "EVENT" semaphore is initially not available */
sprintf(semaName, "rfm%d", ucb->ucb_unit);
initnsema(&ucb->ucb_eventSema, 0, semaName);
/* The "STRAT" semaphone is initially available */
sprintf(stratName, "rfm%d", ucb->ucb_unit);
initnsema(&ucb->ucb_stratSema, 1, stratName);
/* The "SV" is used for DMA locking */
sprintf(svName, "rfm%d", ucb->ucb_unit);
SV_INIT(&ucb->ucb_rfmSv, SV_DEFAULT, svName);
RFM_LOCK_INIT(ucb);
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "rfm_edtinit() finished");
}
return (RFM_REGSIZ);
/*
*==
* Some error is preventing us from installing ourselves so we
* need to clean up as well as we can.
*==
*/

BailOut:
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "edtinit failed");
}
if(ucb->ucb_flags & UCB_FLAGS_FOUND) {

WHENDEBUG(RFM_DBINIT) {

Sample VME Device Driver

007-0911-210 419

debugMsg(ucb, "freeing adapter %d vector %d",
ucb->ucb_adapter, ucb->ucb_ivec);

}
#if VMEIO

if (ucb->ucb_intr)
vmeio_intr_free(ucb->ucb_intr);

#else
vme_ivec_free (ucb->ucb_adapter, ucb->ucb_ivec);

#endif
}
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "unmapping device registers");
}

#if VMEIO
if (ucb->ucb_piomap)

vmeio_piomap_free(ucb->ucb_piomap); /* Unmap the device registers
*/
#else

pio_mapfree(ucb->ucb_piomap);
#endif

ucb->ucb_rfm = 0; /* Forget where device is */
ucb->ucb_piomap = 0; /* Forget the map, also */

#if VMEIO
DEL(ucb);

#endif
return(0);

}
/*
*--
* rfm_start: called after rfminit() and rfmedtinit()
#if VMEIO
* In the VMEIO world, rfm_start() is rather useless
* since it gets called before we find any dynamically
* located VME busses (like the XIO-VME adapter).
#endif
*--
* This routine cannot be called concurrently, although interrupts are
* alive at this point.
*--
*/
void
rfm_start(void)
{

WHENDEBUG(RFM_DBINIT) {
debugMsg(UNULL, "started");

420 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

}
}
/*
*--
* topHalfLock: set mutual exclusion of top-half of system call handlers
*--
*/
static void
topHalfLock(register UCB ucb) /* Per-device info */
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "locking top half");

}
TOPHALF_LOCK(ucb);

}
/*
*--
* topHalfUnlock: unlock top half of system call handlers
*--
*/
static void
topHalfUnlock(

register UCB ucb /* Per-device info */
)
{

WHENDEBUG(RFM_DBMUTEX) {
debugMsg(ucb, "unlocking top half");

}
TOPHALF_UNLOCK(ucb);

}
/*
*--
* rfm_open: called in response to the open(2) system call
*--
* Only the ‘dev’ argument is really used. The others are all ignored,
* except for ‘otyp’ -- we look at that to catch layered opens. Multiple
* user-level open’s are OK.
*--
*/
int
rfm_open(

dev_t *devp, /* Complex device number addr */
int oflag, /* Open(2) flags (not used) */
int otyp, /* Open(2) type */
cred_t *crp /* Credentials (not used) */

Sample VME Device Driver

007-0911-210 421

)
{

dev_t dev = *devp;
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */
vertex_hdl_t conn = ucb->ucb_conn; /* for vmeio */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
#if !VMEIO

if(unit > NRFM) {
WHENDEBUG(RFM_DBOPEN) {

debugMsg(NULL, "no such unit (%d)", unit);
}
return(ENODEV);

}
#endif

topHalfLock(ucb);
if(ucb->ucb_rfm == (RFM) NULL) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "attempt to open missing unit %d", unit);

}
topHalfUnlock(ucb);
return(ENODEV);

}
if(otyp == OTYP_BLK) {

WHENDEBUG(RFM_DBOPEN) {
debugMsg(ucb, "illegal open type (%d)", otyp);

}
topHalfUnlock(ucb);
return(EINVAL);

}
if((ucb->ucb_flags & UCB_FLAGS_OPEN) == 0) {

/* Not opened before */
int eventId; /* Loops across notifications */
/* Make sure that there are no notifications left over */
ucb->ucb_pending = 0;
for(eventId = 0; eventId < RFM_NEVENT; ++eventId) {

ucb->ucb_userProc[eventId] = 0;
}
/* Set the default event wait time */
ucb->ucb_eventWait = EVENTPATIENCE * USECONDS;

422 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

/* Set the default DMA wait time */
ucb->ucb_dmaInfo = defaultDmaInfo;
ucb->ucb_dev = dev;
if(userabi(&ucb->ucb_userabi)) {

/* Somehow we got called without a user context! */
WHENDEBUG(RFM_DBOPEN) {

debugMsg(ucb, "no userabi context");
}
topHalfUnlock(ucb);
return(ESRCH);

}
WHENDEBUG(RFM_DBOPEN) {

debugMsg(ucb,
"userabi(int=%d,long=%d,ptr=%d,longlong=%d)",
ucb->ucb_userabi.uabi_szint,
ucb->ucb_userabi.uabi_szlong,
ucb->ucb_userabi.uabi_szptr,
ucb->ucb_userabi.uabi_szlonglong);

}
loadDmaInfo(ucb);
if(setupHardware(ucb) != 0) {

int errno = ucb->ucb_errno;
topHalfUnlock(ucb);
return(errno);

}
/* Create the DMA mapping window if board supports DMA */
if(ucb->ucb_rfm->rfm_bid == RFM_5588DMA_MAGIC) {

WHENDEBUG(RFM_DBOPEN) {
debugMsg(ucb, "allocating DMA map");

}
#if VMEIO

ucb->ucb_dmaMap = vmeio_dmamap_alloc
(conn, 0, ucb->ucb_am, ucb->ucb_rfmSize, 0);

#else
ucb->ucb_dmaMap = dma_mapalloc(

addrSpaces[unit].vs_type,
ucb->ucb_adapter,
(int) btopr(ucb->ucb_rfmSize), 0);

#endif
if (ucb->ucb_dmaMap == DMAMAP_FAILED) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"cannot create %d-page dma map"
,

btopr(ucb->ucb_rfmSize));

Sample VME Device Driver

007-0911-210 423

}
topHalfUnlock(ucb);
return(ENOMEM);

}
} else {

/* Does not support DMA, so don’t need a DMA map */
ucb->ucb_dmaMap = DMAMAP_FAILED;

}
ucb->ucb_flags |= UCB_FLAGS_OPEN;

}
topHalfUnlock(ucb);
return(0);

}
/*
*--
* disableRfmInterrupts: disable all interrupts on the reflective memory
*--
*/
static void
disableRfmInterrupts(

register UCB ucb /* Per-board info address */
)
{

register RFM rfm = ucb->ucb_rfm;
/*
* It is not too difficult to disable interrupts, just zero
* the interrupt enables in each BIM control register. Just
* to be thorough, we will also clean up the UCB, but this
* really isn’t necessary since interrupts are being disabled
* only because the device is being closed.
*/
rfm->rfm_cr0 = 0;
rfm->rfm_cr1 = 0;
rfm->rfm_cr2 = 0;
rfm->rfm_cr3 = 0;
rfm->rfm_cr4 = 0;
ucb->ucb_pending = 0;

}
/*
*--
* notificationControl: turn notification on or off
*--
*/
static int
notificationControl(

424 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

register UCB ucb, /* Per-device local storage */
RFM_EVENT evp /* Event control pointer */

)
{

int flag; /* Event flag bit */
char *eventName; /* Name of the event */
int *sigp; /* Addr of signal action */
int eventId; /* Event code (subscript) */
switch((eventId = evp->event)) {
default:

{
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "unknown event code %d",
eventId);

}
ucb->ucb_errno = EINVAL;

}
return(-1);

case RFM_EVENT_A:
{

eventName = "A";
flag = UCB_FLAGS_AINFO;

}
break;

case RFM_EVENT_B:
{

eventName = "B";
flag = UCB_FLAGS_BINFO;

}
break;

case RFM_EVENT_C:
{

eventName = "C";
flag = UCB_FLAGS_CINFO;

}
break;

case RFM_EVENT_F:
{

eventName = "F";
flag = UCB_FLAGS_FINFO;

}
break;

case RFM_EVENT_DMA:
{

WHENDEBUG(RFM_DBERROR) {

Sample VME Device Driver

007-0911-210 425

debugMsg(ucb,
"no DMA interrupt notification");

}
ucb->ucb_errno = EINVAL;

}
return(-1);

}
/* Disconnect from user process (even if this isn’t our event) */
if(ucb->ucb_userProc[eventId]) {

proc_unref(ucb->ucb_userProc[eventId]);
ucb->ucb_userProc[eventId] = 0;

}
/* Manipulate the notification event */
sigp = &ucb->ucb_signal[evp->event];
if(evp->sig == 0) {

WHENDEBUG(RFM_DBIOCTL) {
debugMsg(ucb, "event %s notification disabled",

eventName);
}
ucb->ucb_flags &= ~flag;
*sigp = 0;

} else {
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"send signal %d for event %s notification",
evp->sig, eventName);

}
ucb->ucb_userProc[eventId] = proc_ref();
*sigp = evp->sig;
ucb->ucb_flags |= flag;

}
return(0);

}
/*
*--
* removeNotifications: cancel all notifications for a process
*--
*/
static void
removeNotifications(

register UCB ucb /* Per-device info */
)
{

int eventId; /* Event loop controller */
for(eventId = 0; eventId < RFM_NEVENT; ++eventId) {

426 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

rfm_event_t eventInfo;
/* Build packet to turn off notification */
if(eventId != RFM_EVENT_DMA) {

eventInfo.event = eventId;
eventInfo.sig = 0;
(void) notificationControl(ucb, &eventInfo);

}
}

}
/*
*--
* rfm_close: called after last process having device open close(2)’s it.
*--
*/
int
rfm_close(

dev_t dev, /* Complex device number */
int openflags, /* Open(2) flags (not used) */
int otyp, /* Open(2) type (not used) */
cred_t *credp /* Credentials (ignored) */

)
{
#if VMEIO

vertex_hdl_t rfm = dev_to_vhdl(dev);
UCB ucb = device_info_get(rfm);
int unit = ucb->ucb_unit; /* for printing */
vertex_hdl_t conn = ucb->ucb_conn; /* for vmeio */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
topHalfLock(ucb);
WHENDEBUG(RFM_DBCLOSE) {

debugMsg(ucb, "rfm%d closing device", unit);
}
/* Clean up the UCB (keep only UCB_FLAGS_FOUND flag) */
ucb->ucb_flags &= UCB_FLAGS_FOUND;
ucb->ucb_pending = 0;
removeNotifications(ucb);
/* Clean up the hardware */
disableRfmInterrupts(ucb);
/* If a DMA map was allocated, we can free it now */
if (ucb->ucb_dmaMap != DMAMAP_FAILED) {

WHENDEBUG(RFM_DBCLOSE) {
debugMsg(ucb, "freeing DMA map");

Sample VME Device Driver

007-0911-210 427

}
#if !VMEIO

dma_mapfree(ucb->ucb_dmaMap);
#else

vmeio_dmamap_free(ucb->ucb_dmaMap);
#endif /* VMEIO */

}
WHENDEBUG(RFM_DBCLOSE) {

debugMsg(ucb, "so long until tomorrow");
}
topHalfUnlock(ucb);
return (0);

}
/*
*--
* uioDump: decode UIO structure and write to syslog
*--
*/
static void
uioDump(

register UCB ucb, /* Per-board info */
struct uio *uio, /* User-I/O structure */
char *why /* Kind of I/O being done */

)
{

int i; /* Generic loop counter */
char *space; /* Address space name */
switch(uio->uio_segflg) {
default: space = "UNKNOWN"; break;
case UIO_SYSSPACE: space = "UIO_SYSSPACE"; break;
case UIO_USERSPACE: space = "UIO_USERSPACE"; break;
}
debugMsg(ucb, "%s UIO dump", why);
debugMsg(ucb, "uio_segflg = %s", space);
debugMsg(ucb, "uio_fmode = 0%o", uio->uio_fmode);
debugMsg(ucb, "uio_offset = 0x%lX", (long) uio->uio_offset);
debugMsg(ucb, "uio_resid = 0x%lX", (long) uio->uio_resid);
debugMsg(ucb, "uio_iovcnt = 0x%X", uio->uio_iovcnt);
for(i = 0; i < uio->uio_iovcnt; ++i) {

iovec_t *iov = &uio->uio_iov[i];
debugMsg(ucb, "uio_iov[%d] = (base 0x%lX, len 0x%lX)",

i, (long) iov->iov_base, (long) iov->iov_len);
}

}
/*

428 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

*--
* copyRfmData: copy buffer using optimal transfers
*--
*/
static int
copyRfmData(

UCB ucb, /* Per-board info */
register caddr_t src, /* Source buffer KVA */
register caddr_t dst, /* Destination buffer KVA */
register long len /* Number of bytes */

)
{

register RFM rfm = ucb->ucb_rfm;
register int retries;
/* Make sure transmit FIFO’s are not too full */

DrainFIFO:
retries = 0;
while((rfm->rfm_csr & RFM_CSR_TXHALF) == 0) {

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "txhalf");

}
if(retries-- <= 0) {

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "rfm clogged");

}
return(EIO);

}
drv_usecwait(25);

}
/* Try to advance to next ‘32-bit’ boundary */
while((len > 0) && ((((long)src) % sizeof(int32_t)) != 0)) {

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb,
"a-copy (src=0x%X, dst=0x%X, len=0x%X)",

src, dst, len);
}
*dst++ = *src++;
--len;

}
/* Try 32-bit transfers if possible */
if((rfm->rfm_csr & RFM_CSR_TXHALF) == 0) {

goto DrainFIFO;
}
if((len >= sizeof(int32_t)) &&
((((long)src)|((long)dst)) % sizeof(int32_t)) == 0) {

Sample VME Device Driver

007-0911-210 429

register int32_t *isrc;
register int32_t *idst;
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "32-copy (src=0x%X, dst=0x%X, len=0x%X)",
src, dst, len);

}
/* Aligned to an ‘int’ boundary */
isrc = (int32_t *) src;
idst = (int32_t *) dst;
while(len >= sizeof(int32_t)) {

*idst++ = *isrc++;
len -= sizeof(int32_t);

}
src = (caddr_t) isrc;
dst = (caddr_t) idst;

}
/* Try 16-bit transfers if possible */
if((rfm->rfm_csr & RFM_CSR_TXHALF) == 0) {

goto DrainFIFO;
}
if((len >= sizeof(int16_t)) &&
((((long)src)|((long)dst)) % sizeof(int16_t)) == 0) {

register int16_t *isrc;
register int16_t *idst;
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"16-copy (src=0x%X, dst=0x%X, len=0x%X)",
src, dst, len);

}
/* Aligned to a ‘int16_t’ boundary */
isrc = (int16_t *) src;
idst = (int16_t *) dst;
while(len >= sizeof(int16_t)) {

*idst++ = *isrc++;
len -= sizeof(int16_t);

}
src = (caddr_t) isrc;
dst = (caddr_t) idst;

}
/* Copy any remaining bytes */
if(len > 0) {

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "8-copy (src=0x%X, dst=0x%X, len=0x%X)",

src, dst, len);
}

430 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

if((rfm->rfm_csr & RFM_CSR_TXHALF) == 0) {
goto DrainFIFO;

}
while(len-- > 0) {

*dst++ = *src++;
}

}
return(0);

}
/*
*--
* generalStrategy: perform physical I/O based on buffer descriptor
*--
*/
static int
generalStrategy(

register struct buf *bp /* Buffer descriptor address */
)
{

dev_t dev = bp->b_edev;
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
register RFM rfm = ucb->ucb_rfm;
int err; /* I/O results */
int x; /* Previous CPU interrupt level */
int hasDma; /* True if RFM has DMA engine */
int Pass;
caddr_t userBuffer; /* Walks down the user area */
/* Since there is only one DMA resource, serialize this routine */
psema(&ucb->ucb_stratSema, PZERO+1);
/* Decode the buffer structure if we are asked */
WHENDEBUG(RFM_DBSTRAT) {

char msg[512];
char *mp = msg;
int flags;
BFLAGS bfp;
BFLAGS lbfp;
int leadin;
flags = bp->b_flags;

Sample VME Device Driver

007-0911-210 431

leadin = ‘\0’;
for(bfp = bflags, lbfp = bflags + Nbflags;
bfp < lbfp; ++bfp) {

if(flags & bfp->bf_value) {
char *tp = bfp->bf_name;
if(leadin) {

*mp++ = leadin;
}
while((*mp++ = *tp++)) continue;
--mp;
flags &= ~(bfp->bf_value);
leadin = ‘,’;

}
}
if(flags) {

sprintf(mp, "[leftover=0x%X]", flags);
while(*mp) ++mp;

}
*mp = ‘\0’;
debugMsg(ucb, "bp->b_flags = 0x%X (%s)", bp->b_flags, msg);

}
/* Decide if we can DMA at all */
hasDma = (rfm->rfm_bid == RFM_5588DMA_MAGIC);
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "rfm board %s do DMA",
(hasDma ? "can" : "cannot"));

}
/* Whole buffer remains to be transferred */
bp->b_resid = bp->b_bcount;
/* NB. The SGI "how to write a driver" documents say that the
driver can change the "bp->b_dmaaddr" field. Well, you can’t if
you’re using the "uiophysio" interface like we are! */
userBuffer = bp->b_dmaaddr;
/* Disable interrupts */
x = interfaceLock(ucb, plhi);
if(hasDma) {

if(bp->b_flags & B_READ) {
/* Map region as DMA readable */
rfm->rfm_dmac0 &= ~RFM_DMAC0_H2RFM;

} else {
/* Map region as DMA writable */
rfm->rfm_dmac0 |= RFM_DMAC0_H2RFM;

}
}
/* Do until all tranfers are done or until an error */

432 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

Pass = 1;
for(err = 0; (err == 0) && (bp->b_resid > 0);) {

long quadAlignment; /* Byte alignment within 64-bits */
long nbytes; /* Byte count of data to move */
int useDma; /* True if use DMA engine */
int useIrq; /* True if use DMA interrupt */
off_t rfmLeft; /* Bytes to end of RFM space */
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"Pass=%d, bp_resid=%lu, ucb_dmaOffset=0x%lX",
Pass++, (long) bp->b_resid,
(long) ucb->ucb_dmaOffset);

}
/* Limit the transfer to amount of RFM that is left */
rfmLeft = ucb->ucb_rfmSize - ucb->ucb_dmaOffset;
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"ucb_rfmSize=0x%lX, ucb_dmaOffset=0x%lX, rfmLeft=0x%lX",

(long) ucb->ucb_rfmSize,
(long) ucb->ucb_dmaOffset,
(long) rfmLeft);

}
if(rfmLeft <= 0) break;
/* Decide if signs and portents are conducive to DMA */
quadAlignment = ((long) userBuffer) & (long) (DMAWIDTH-1);
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "quadAlignment=0x%lX", quadAlignment);
}
if(hasDma == 0) {

/*
* No DMA, don’t bother trying.
*/
useDma = 0;
nbytes = min(bp->b_resid, rfmLeft);
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "%ld-byte hobson’s choice PIO",
nbytes);

}
} else if(quadAlignment !=
(ucb->ucb_dmaOffset & (long) (DMAWIDTH-1))) {

/*
* Not aligned to same offset within a quadword.
*/
useDma = 0;
nbytes = min(bp->b_resid, rfmLeft);

Sample VME Device Driver

007-0911-210 433

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "%ld-byte unaligned PIO",

nbytes);
}

} else if(quadAlignment) {
/*
* Although both ends of the DMA are aligned to
* the same byte of a quadword, we are not yet
* aligned to the beginning of a quadword. Compute
* the number of bytes to get us to the next
* quadword boundary (via PIO) and then try again
* to DMA.
*/
useDma = 0;
nbytes = min(bp->b_resid, (DMAWIDTH-quadAlignment));
nbytes = min(nbytes, rfmLeft);
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "making %ld-byte quad alignment",
nbytes);

}
} else {

/*
* Well, well, both ends of the DMA transfer are
* now aligned to a quadword boundary. Depending
* on the actual number of bytes to be
* transferred, we may actually get to do the DMA.
* Since this driver does DMA in D64 mode, we can
* only transfer multiples of 64-bits.
*/
nbytes = min(bp->b_resid, rfmLeft) & RFM_DMAL_MASK;
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "considering dma of 0x%lX bytes",
nbytes);

}
if(nbytes < DMAWIDTH) {

/* Too short for DMA, use PIO */
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"shorter than a quad (0x%lX)",
nbytes);

}
useDma = 0;
nbytes = min(bp->b_resid, rfmLeft);

} else if(nbytes <
ucb->ucb_dmaInfo.rdi_minDma) {

434 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

/* Would not be worth the trouble */
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"avoiding runt dma (%lu bytes), using PIO instead",

nbytes);
}
useDma = 0;
nbytes = min(bp->b_resid, (long) rfmLeft);

} else if(nbytes <
ucb->ucb_dmaInfo.rdi_minDmaIreq) {

/* DMA is OK, but don’t use interrupt */
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"%lu-byte dma doesn’t qualify for interrupt",

nbytes);
}
useDma = hasDma;
useIrq = 0;

} else {
/* Must be quite a long, aligned block */
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"interrupts OK for %lu-byte dma",

nbytes);
}
useDma = hasDma;
useIrq = 1;

}
}
/* Perform either a DMA transfer or a PIO copy */
if(useDma) {

ViaDMA:
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "beginning DMA operations");
}

#if VMEIO
#if 0

/* here’s the simple way to do it:
*/
rfm->rfm_vdma = (unsigned int)

vmeio_dmamap_addr(ucb->ucb_dmaMap,
kvtophys(userBuffer),
nbytes);

#else
{

Sample VME Device Driver

007-0911-210 435

/* Here’s the more complex way to do it,
* using alenlists and such:
*/
alenlist_t al;
alenlist_t vme_al;
iopaddr_t vmeaddr;
size_t byte_count;

al = kvaddr_to_alenlist(0,
userBuffer,
nbytes,
0);

ASSERT(al != 0);
vme_al = vmeio_dmamap_list(ucb->ucb_dmaMap,

al,
VMEIO_INPLACE);

/* Note that if the userBuffer crosses a
* page boundary, the initial list will
* be broken up into one block per
* physical page involved; and INPLACE
* will prevent combining of consecutive
* blocks. In other words, alenlist_size
* will not be "1" and byte_count will
* be less than, not equal to, nbytes.
*/

ASSERT(vme_al == al);
ASSERT(alenlist_size(vme_al) == 1);
alenlist_cursor_init(vme_al, 0, 0);
alenlist_get(vme_al, 0, 0,

(alenaddr_t *) &vmeaddr,
&byte_count,
0);

ASSERT(byte_count == nbytes);
alenlist_done(vme_al);
rfm->rfm_vdma = (unsigned) vmeaddr;

}
#endif

#else
nbytes = dma_map(ucb->ucb_dmaMap, userBuffer,

(int) nbytes);
#endif

WHENDEBUG(RFM_DBSTRAT) {

436 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

debugMsg(ucb, "dma map length = 0x%lX",
nbytes);

}
#if VMEIO

if (rfm->rfm_vdma == 0) {
#else

if(nbytes <= 0) {
#endif

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "dma_map failed");

}
#if VMEIO

vmeio_dmamap_done(ucb->ucb_dmaMap);
#endif

err = EIO;
break;

}
/* Clear DMA status flags */
rfm->rfm_int04 &= ~(RFM_INT04_BERR | RFM_INT04_LBERR |

RFM_INT04_DONE);
/* RFM has DMA engine and I/O is long enough */

#if VMEIO
rfm->rfm_dmac2 = RFM_DMAC2_DWID_D64 |

VMEbus_AMR_A32SMBLT;
#else

rfm->rfm_dmac2 = RFM_DMAC2_DWID_D64 |
addrSpaces[ucb->ucb_unit].vs_vmeAmr;

#endif
/* Setup each end of the DMA pipe */
rfm->rfm_ldma = (uint32_t) ucb->ucb_dmaOffset;

#if !VMEIO
rfm->rfm_vdma = (uint32_t) dma_mapaddr(ucb->ucb_dmaMap,

userBuffer);
#endif

rfm->rfm_dmal = (uint32_t) nbytes;
if(useIrq) {

WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "interrupt dma go");

}
/* Pend for DMA complete interrupt */
ucb->ucb_flags &= ~(UCB_FLAGS_DONE |

UCB_FLAGS_BERR);
rfm->rfm_cr4 = (D_ENABLE | ucb->ucb_ilev);
rfm->rfm_dmac3 = RFM_DMAC3_GO;
/*

Sample VME Device Driver

007-0911-210 437

*==
* There is no DMA timeout because there
* is no way to abort a DMA operation; it
* just darn well better happen. For this
* reason, we don’t bother to catch
* signals either; there’s nothing we
* could to with it anyway.
*==
*/
x = interfaceWait(ucb, plhi, x);
if(ucb->ucb_flags & UCB_FLAGS_BERR) {

/* Bus error on one end or other */
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb, "dma bus error");
}
err = EFAULT;
nbytes = 0;

} else WHENDEBUG(RFM_DBSTRAT) {
debugMsg(ucb, "interrupt dma done");

}
} else {

unsigned char int04;
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "polled dma go");
}
rfm->rfm_cr4 = ((D_ENABLE & ~RFM_BIM_IRE) |

ucb->ucb_ilev);
rfm->rfm_dmac3 = RFM_DMAC3_GO;
for(; ;) {

int04 = rfm->rfm_int04;
if(int04 & RFM_INT04_DONE) {

break;
}
/*
* Don’t stare at the board, the
* CPU will hog the bus and fight
* the DMA engine for cycles.
*/
if(ucb->ucb_dmaInfo.rdi_polling > 0) {

drv_usecwait(
ucb->ucb_dmaInfo.rdi_polling);

}
}
if(int04 &
(RFM_INT04_BERR | RFM_INT04_LBERR)) {

438 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

err = EFAULT;
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"polled dma bus error");

}
} else WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb, "polled dma complete");
}
/* Clear the DMA status flags */
rfm->rfm_int04 &= ~(RFM_INT04_BERR |

RFM_INT04_LBERR | RFM_INT04_DONE);
}

} else {
/* No DMA or not long enough, use PIO */

ViaPIO:
WHENDEBUG(RFM_DBSTRAT) {

debugMsg(ucb,
"%lu-byte PIO transfer to offset 0x%lX",
nbytes,
(long) ucb->ucb_dmaOffset);

}
/* Move the data manually */
if(bp->b_flags & B_READ) {

/* User wants some data */
err = copyRfmData(ucb,
((caddr_t) rfm) + ucb->ucb_dmaOffset,

userBuffer, nbytes);
} else {

/* Use has data we want */
err = copyRfmData(ucb,

userBuffer,
((caddr_t) rfm) + ucb->ucb_dmaOffset,

nbytes);
}

}
if(err) break;
userBuffer += nbytes;
bp->b_resid -= nbytes;
ucb->ucb_dmaOffset += nbytes;

}
Fini:

interfaceUnlock(ucb, x); /* Allow interrupt-level access */
if(err) {

bioerror(bp, err);
}

Sample VME Device Driver

007-0911-210 439

biodone(bp); /* Release uiophysio() */
vsema(&ucb->ucb_stratSema); /* Release this routine */
return(err);

}
/*
*--
* rfm_read: called by kernel to service a read(2) system call
*--
*/
int
rfm_read(

dev_t dev, /* Complex device numbers */
struct uio *uio, /* User-I/O structure */
cred_t *credp /* Credentials (IGNORED) */

)
{
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
int results;
topHalfLock(ucb);
WHENDEBUG(RFM_DBREAD) {

uioDump(ucb, uio, "rfmread");
}
ucb->ucb_dmaOffset = uio->uio_offset;
results = uiophysio(generalStrategy, (struct buf *) NULL, dev,

B_READ, uio);
topHalfUnlock(ucb);
return(results);

}
/*
*--
* rfm_write: called by kernel to service a write(2) system call
*--
*/
int
rfm_write(

dev_t dev, /* Complex device number */
struct uio *uio, /* User-I/O structure */
cred_t *credp /* Credentials (IGNORED) */

440 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

)
{
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
int results;
topHalfLock(ucb);
WHENDEBUG(RFM_DBWRITE) {

uioDump(ucb, uio, "rfmwrite");
}
ucb->ucb_dmaOffset = uio->uio_offset;
results = uiophysio(generalStrategy, (struct buf *) NULL, dev,

B_WRITE, uio);
topHalfUnlock(ucb);
return(results);

}
/*
*--
* awaitSpecificEvent: pend waiting for specific event to happen
*--
*/
static void
awaitSpecificEvent(

register UCB ucb, /* Per-board local storage */
register uint_t pending, /* Event indication pending */
register uint_t wants, /* Event indication wanted */
char *spelling /* Name of event (for debug) */

)
{

if(ucb->ucb_pending & pending) {
/* At least one event of this type is outstanding */
ucb->ucb_pending &= ~pending;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "using stored event %s indication",
spelling);

}
} else {

/*
* No event of that type just yet, so flag that we want
* it, schedule a timeout (if a period is defined), and

Sample VME Device Driver

007-0911-210 441

* then wait for the event to happen
*/
ucb->ucb_flags |= wants;
startEventTimer(ucb, ucb->ucb_eventWait);
if(psema((sema_t *) &ucb->ucb_eventSema, RFMSLEEP)) {

/* Got a signal before we saw the event */
stopEventTimer(ucb);
WHENDEBUG(RFM_DBTIMER) {

debugMsg(ucb,
"event %s wait interrupted by signal",
spelling);

}
ucb->ucb_errno = EINTR;
ucb->ucb_flags |= UCB_FLAGS_ETIMEO;

}
/*
* If we have a timeout flag, then we didn’t get the event
* because of a timeout or a signal.
*/
if((ucb->ucb_flags & UCB_FLAGS_ETIMEO) &&
(ucb->ucb_errno == 0)) {

ucb->ucb_errno = ETIMEDOUT;
}

}
ucb->ucb_flags &= ~wants; /* Don’t want it anymore */

}
/*
*--
* dumpdmaInfo: print a decoded version of DMA info for debug purposes
*--
*/
static void
dumpDmaInfo(

register UCB ucb, /* Per-board info */
volatile rfmdmainfo_t *rdi /* RFM dma information */

)
{

char *spelling; /* Generic name pointer */
debugMsg(ucb, "dma polling interval is %d usec", rdi->rdi_polling);
debugMsg(ucb, "dma burst length is %d cycles", rdi->rdi_polling);
switch(rdi->rdi_relmode) {
default: spelling = "UNKNOWN"; break;
case RDI_RELMODE_ROR: spelling = "ROR"; break;
case RDI_RELMODE_RWD: spelling = "RWD"; break;
case RDI_RELMODE_ROC: spelling = "ROC"; break;

442 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

case RDI_RELMODE_BCAP: spelling = "BCAP"; break;
}
debugMsg(ucb, "%s bus release mode (%d)", spelling, rdi->rdi_relmode);
debugMsg(ucb, "burst interleave is %d (%d nsec)", rdi->rdi_intrLeave,

rdi->rdi_intrLeave * 250);
debugMsg(ucb, "bus request level is %d", rdi->rdi_busreq);
debugMsg(ucb, "minimum DMA transfer is %d bytes", rdi->rdi_minDma);
debugMsg(ucb, "minimum DMA transfer w/interrupt is %d bytes",

rdi->rdi_minDmaIreq);
}
/*
*--
* rfm_ioctl: called by kernel to service an ioctl(2) system call
*--
*/
int
rfm_ioctl(

dev_t dev, /* Complex device number */
int cmd, /* Command code */
void *arg, /* Argument to command */
int mode, /* Open(2) flags (IGNORED) */
cred_t *crp, /* Credentials (IGNORED) */
int *rvalp /* Return value pointer (UNUSED) */

)
{
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
register RFM rfm = ucb->ucb_rfm;
char *spelling = "UNKNOWN";/* Name of ioctl command */
int retval; /* Results of system call */
topHalfLock(ucb);
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "ioctl arg = 0x%X", (caddr_t) arg);
}
ucb->ucb_errno = 0;
/* Dispatch based on the command code */
switch(cmd) {
default:

{

Sample VME Device Driver

007-0911-210 443

WHENDEBUG(RFM_DBIOCTL) {
debugMsg(ucb,

"unknown ioctl(2) command = 0x%X",
cmd);

}
if(!ucb->ucb_errno) ucb->ucb_errno = ENOTTY;

}
break;

case RFM_RESET: /* Reset the interrupt stuff */
{

spelling = "RFM_RESET";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s: board reset", spelling);
}
setupHardware(ucb);

}
break;

case RFM_ENABL_DIAG_MSG: /* Turn on all debug messages */
{

spelling = "RFM_ENABL_DIAG_MSG";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s: enable messages",
spelling);

}
rfmDebug = ~0;

}
break;

case RFM_DISABL_DIAG_MSG: /* Turn off all debug messages */
{

spelling = "RFM_DISABL_DIAG_MSG";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s: disable messages",
spelling);

}
rfmDebug = 0;

}
break;

case RFM_DEBUG: /* Set new debug flags */
{

uint_t debug;
spelling = "RFM_DEBUG";
if(copyin((caddr_t) arg, (caddr_t) &debug,
sizeof(debug)))

goto BadCopy;
WHENDEBUG(RFM_DBIOCTL) {

444 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

debugMsg(ucb, "%s: new debug level = 0x%X",
spelling, debug);

}
rfmDebug = debug;

}
break;

case RFM_GDEBUG: /* Return current debug flags */
{

spelling = "RFM_GDEBUG";
if(copyout((caddr_t) &rfmDebug, (caddr_t) arg,

sizeof(rfmDebug))) goto BadCopy;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s debug level = 0x%X",
spelling, rfmDebug);

}
}
break;

case RFM_PERFSTAT: /* Retrieve performance stats */
{

spelling = "RFM_PERFSTAT";
if(copyout((caddr_t) &ucb->ucb_perfstat,
(caddr_t) arg, sizeof(rfm_perfstat_t))) goto BadCopy;

}
break;

case RFM_ZEROSTAT: /* Clear the performance stats */
{

spelling = "RFM_ZEROSTAT";
bzero((caddr_t) &ucb->ucb_perfstat,

sizeof(rfm_perfstat_t));
}
break;

case RFM_DUMP_REGS: /* Copy device regs to console */
{

spelling = "RFM_DUMP_REGS";
WHENDEBUG(RFM_DBIOCTL) debugMsg(ucb, "%s", spelling);
ucb->ucb_errno = EINVAL;

}
break;

case RFM_EVTA_WAIT: /* Wait on event A */
{

spelling = "RFM_EVTA_WAIT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
awaitSpecificEvent(ucb, UCB_PENDING_A,

Sample VME Device Driver

007-0911-210 445

UCB_FLAGS_AWAIT, "A");
}
break;

case RFM_EVTB_WAIT: /* Wait on event B */
{

spelling = "RFM_EVTB_WAIT";
WHENDEBUG(RFM_DBIOCTL) debugMsg(ucb, "%s",

spelling);
awaitSpecificEvent(ucb, UCB_PENDING_B,

UCB_FLAGS_BWAIT, "B");
}
break;

case RFM_EVTC_WAIT: /* Wait on event C */
{

spelling = "RFM_EVTC_WAIT";
WHENDEBUG(RFM_DBIOCTL) debugMsg(ucb, "%s",

spelling);
awaitSpecificEvent(ucb, UCB_PENDING_C,

UCB_FLAGS_CWAIT, "C");
}
break;

case RFM_FIFO_WAIT: /* Wait on event F */
{

spelling = "RFM_FIFO_WAIT";
WHENDEBUG(RFM_DBIOCTL) debugMsg(ucb, "%s",

spelling);
awaitSpecificEvent(ucb, UCB_PENDING_F,

UCB_FLAGS_FWAIT, "F");
}
break;

#if 0 /* THIS IS A DUPLICATED ALIAS */
case RFM_RTN_MEM_SIZE: /* Get size of reflective memory */

#endif /* THIS IS A DUPLICATED ALIAS */
case RFM_GMEMSIZE: /* Get size of reflective memory */

{
int memory = (int) ucb->ucb_rfmSize;
spelling = "RFM_GMEMSIZE";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyout((caddr_t) &memory, (caddr_t) arg,
sizeof(memory))) goto BadCopy;

}
break;

case RFM_PEEK:

446 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

{
rfm_atom_t ra; /* Atomic operation descriptor */
spelling = "RFM_PEEK";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &ra,
sizeof(ra))) goto BadCopy;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "peek offset = 0x%X, size=%d",
ra.ra_offset, ra.ra_size);

}
/* Validate parameters */
if(ra.ra_offset > ucb->ucb_rfmSize) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"attempted peek offset (0x%lX) > rfm size (0x%lX)",
(long) ra.ra_offset,
(long) ucb->ucb_rfmSize);

}
ucb->ucb_errno = EINVAL;
goto Fini;

}
/* Get the RFM contents */
switch(ra.ra_size) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"bad peek size (%d) at offset 0x%X",

ra.ra_size,
ra.ra_offset);

}
ucb->ucb_errno = EINVAL;

}
goto Fini;

case 1:
{

ra.ra_contents =
rfm->U.b[ra.ra_offset];

}
break;

case 2:
{

ra.ra_contents =

Sample VME Device Driver

007-0911-210 447

rfm->U.w[ra.ra_offset/2];
}
break;

case 4:
{

ra.ra_contents =
rfm->U.l[ra.ra_offset/4];

}
break;

}
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"%d bytes at offset 0x%X are 0x%X",
ra.ra_size, ra.ra_offset,
ra.ra_contents);

}
if(copyout((caddr_t) &ra, (caddr_t) arg,
sizeof(ra))) goto BadCopy;

}
break;

case RFM_POKE:
{

rfm_atom_t ra; /* Atomic operation descriptor */
spelling = "RFM_POKE";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &ra,
sizeof(ra))) goto BadCopy;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"poke offset=0x%X, size=%d, data=0x%X",
ra.ra_offset, ra.ra_size,
ra.ra_contents);

}
/* Validate parameters */
if(ra.ra_offset > ucb->ucb_rfmSize) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"attempted poke offset (0x%lX) > rfm size (0x%lX)",
(long) ra.ra_offset,
(long) ucb->ucb_rfmSize);

}
ucb->ucb_errno = EINVAL;
goto Fini;

448 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

}
/* Set the RFM contents */
switch(ra.ra_size) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"bad poke size (%d) at offset 0x%X",

ra.ra_size,
ra.ra_offset);

}
ucb->ucb_errno = EINVAL;

}
goto Fini;

case 1:
{

rfm->U.b[ra.ra_offset] =
ra.ra_contents;

}
break;

case 2:
{

rfm->U.w[ra.ra_offset/2] =
ra.ra_contents;

}
break;

case 4:
{

rfm->U.l[ra.ra_offset/4] =
ra.ra_contents;

}
break;

}
}
break;

case RFM_SET_TIMEOUT: /* Set timeout period (seconds) */
{

uint_t secs; /* Timeout value in seconds */
clock_t usec; /* Timeout value in microseconds */
spelling = "RFM_SET_TIMEOUT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &secs,
sizeof(secs))) goto BadCopy;

Sample VME Device Driver

007-0911-210 449

usec = secs * USECONDS;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"event timeout is now %d seconds (%lu usec)",

secs, usec);
}
ucb->ucb_eventWait = usec;

}
break;

case RFM_GET_TIMEOUT: /* Get timeout period (seconds) */
{

uint_t secs;
uint_t usec;
spelling = "RFM_GET_TIMEOUT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
secs = ucb->ucb_eventWait / USECONDS;
usec = ucb->ucb_eventWait % USECONDS;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"event timeout is now %d.06d seconds",
secs, usec);

}
if(copyout((caddr_t) &secs, (caddr_t) arg,
sizeof(secs))) {

goto BadCopy;
}

}
break;

case RFM_TIMEOUT: /* Set timeout period (usec) */
{

clock_t usec; /* Timeout value in microseconds */
spelling = "RFM_TIMEOUT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &usec,
sizeof(usec))) goto BadCopy;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"event timeout is now %d usec", usec);

}
ucb->ucb_eventWait = usec;

}

450 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

break;
case RFM_GTIMEOUT: /* Get timeout period (usec) */

{
spelling = "RFM_GTIMEOUT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "event timeout is now %lu usec",
ucb->ucb_eventWait);

}
if(copyout((caddr_t) &ucb->ucb_eventWait,
(caddr_t) arg, sizeof(ucb->ucb_eventWait))) {

goto BadCopy;
}

}
break;

case RFM_DMAINFO:
{

rfmdmainfo_t rdi;
int bad;
spelling = "RFM_DMAINFO";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &rdi,
sizeof(rdi))) goto BadCopy;
/* Validate the user’s information */
bad = 0;
if(rdi.rdi_burst > 64) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"dma burst length limited to 64, not %d",
rdi.rdi_burst);

}
++bad;

}
switch(rdi.rdi_relmode) {
default:

{
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb,
"unknown bus release mode %d",

rdi.rdi_relmode);
}

Sample VME Device Driver

007-0911-210 451

++bad;
}
break;

case RDI_RELMODE_ROR:
case RDI_RELMODE_RWD:
case RDI_RELMODE_ROC:
case RDI_RELMODE_BCAP:

break;
}
if(rdi.rdi_intrLeave > 15) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,

"dma interleave range is (0..15), not %d",
rdi.rdi_intrLeave);

}
++bad;

}
if(rdi.rdi_busreq > 3) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,
"VMEbus request level (%d) not 0..3",

rdi.rdi_busreq);
}
++bad;

}
if(!bad) {

ucb->ucb_dmaInfo = rdi;
WHENDEBUG(RFM_DBIOCTL) {

dumpDmaInfo(ucb, &ucb->ucb_dmaInfo);
}
loadDmaInfo(ucb);

}
}
break;

case RFM_GDMAINFO:
{

spelling = "RFM_GDMAINFO";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
WHENDEBUG(RFM_DBIOCTL) {

dumpDmaInfo(ucb, &ucb->ucb_dmaInfo);
}
if(copyout((caddr_t) &ucb->ucb_dmaInfo,
(caddr_t) arg, sizeof(ucb->ucb_dmaInfo))) {

452 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

goto BadCopy;
}

}
break;

case RFM_CMD_INT: /* Send interrupt to chassis */
{

char cmd_data[2];
spelling = "RFM_CMD_INT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyin((caddr_t) arg, (caddr_t) &cmd_data,
sizeof(cmd_data))) goto BadCopy;
switch(rfm->rfm_bid) {
default:

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb, "unknown board ID=0x%X",

rfm->rfm_bid);
}
ucb->ucb_errno = EINVAL;
break;

case RFM_5588_MAGIC:
/*FALLTHRU*/

case RFM_5578_MAGIC:
/*FALLTHRU*/

case RFM_5576_MAGIC:
rfm->rfm_cmn = cmd_data[1];
/*FALLTHRU*/

case RFM_5550_MAGIC:
rfm->rfm_cmd = cmd_data[0];
break;

}
}
break;

case RFM_INTERRUPT: /* Send interrupt to node(s) */
{

rfm_dnode_t rdn; /* Holds node info */
if(copyin((caddr_t) arg, (caddr_t) &rdn,
sizeof(rdn))) {

goto BadCopy;
}
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "sending event %d to node %d",
rdn.rdn_channel, rdn.rdn_node);

}

Sample VME Device Driver

007-0911-210 453

/* Cannot send an interrupt to ourselves */
if(rdn.rdn_node == ucb->ucb_mynodeid) {

WHENDEBUG(RFM_DBERROR) {
debugMsg(ucb,
"node %d cannot interrupt node %d",

ucb->ucb_mynodeid,
rdn.rdn_node);

}
ucb->ucb_errno = EINVAL;
goto Fini;

}
/* Validate the channel */
switch(rdn.rdn_channel) {
default:

WHENDEBUG(RFM_DBIOCTL) {
debugMsg(ucb, "invalid channel %d",

rdn.rdn_channel);
}
ucb->ucb_errno = EINVAL;
goto Fini;

case RFM_CHANNEL_A: break;
case RFM_CHANNEL_B: break;
case RFM_CHANNEL_C: break;
}
if(rdn.rdn_node == RFM_BROADCAST) {

rdn.rdn_channel |= (1 << 6);
rdn.rdn_node = 0;

}
switch(ucb->ucb_bid) {
default:

if(rdn.rdn_node < 0 || rdn.rdn_node > 15) {
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"invalid channel %d",
rdn.rdn_channel);

}
ucb->ucb_errno = EINVAL;
goto Fini;

}
rfm->rfm_cmd = ((rdn.rdn_node << 2) |

rdn.rdn_channel);
break;

case RFM_5576_MAGIC:/* VMIVME-5576 */
/* FALLTHRU */

case RFM_5578_MAGIC:/* VMIVME-5578 */

454 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

/* FALLTHRU */
case RFM_5588_MAGIC:/* VMIVME-5588 */

if(rdn.rdn_node < 0 || rdn.rdn_node > 255) {
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"invalid channel %d",

rdn.rdn_channel);
}
ucb->ucb_errno = EINVAL;
goto Fini;

}
rfm->rfm_cmn = rdn.rdn_node;
rfm->rfm_cmd = rdn.rdn_channel;
break;

}
}
break;

case RFM_INTR_INIT: /* Purge interrupts */
{

spelling = "RFM_INTR_INIT";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
setupHardware(ucb);

}
break;

case RFM_INT_SENDER: /* Return last interrupt sender */
{

spelling = "RFM_INT_SENDER";
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s", spelling);
}
if(copyout((caddr_t) &ucb->ucb_sender, (caddr_t) arg,
sizeof(ucb->ucb_sender))) {

goto BadCopy;
}

}
break;

case RFM_NOTIFY: /* Reset the interrupt stuff */
{

rfm_event_t eventInfo;/* Info to use */
spelling = "RFM_NOTIFY";
if(copyin((caddr_t) arg, (caddr_t) &eventInfo,
sizeof(eventInfo))) {

goto BadCopy;

Sample VME Device Driver

007-0911-210 455

}
if(notificationControl(ucb, &eventInfo)) {

goto Fini;
}

}
break;

case RFM_GNOTIFY: /* Return notification status */
{

int flag;
char *eventName;
char *state;
rfm_event_t eventInfo;/* Info to use */
spelling = "RFM_GNOTIFY";
if(copyin((caddr_t) arg, (caddr_t) &eventInfo,
sizeof(eventInfo))) {

goto BadCopy;
}
switch(eventInfo.event) {
default:

{
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"unknown event code %d",
eventInfo.event);

}
ucb->ucb_errno = EINVAL;

}
goto Fini;

case RFM_EVENT_A:
{

eventName = "A";
flag = UCB_FLAGS_AINFO;

}
break;

case RFM_EVENT_B:
{

eventName = "B";
flag = UCB_FLAGS_BINFO;

}
break;

case RFM_EVENT_C:
{

eventName = "C";
flag = UCB_FLAGS_CINFO;

}

456 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

break;
case RFM_EVENT_F:

{
eventName = "F";
flag = UCB_FLAGS_FINFO;

}
break;

}
if(ucb->ucb_flags & flag) {

state = "enabled";
eventInfo.sig =

ucb->ucb_signal[eventInfo.event];
} else {

state = "disabled";
eventInfo.sig = 0;

}
WHENDEBUG(RFM_DBINTR) {

debugMsg(ucb,
"event=%s(%d) signal=%d state=%s",
eventName, eventInfo.event,
eventInfo.sig, state);

}
if(copyout((caddr_t) &eventInfo, (caddr_t) arg,
sizeof(eventInfo))) {

goto BadCopy;
}

}
break;

}
Fini:

retval = ucb->ucb_errno;
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb, "%s complete (retval=%d)", spelling, retval);
}
topHalfUnlock(ucb);
return(retval);

BadCopy:
WHENDEBUG(RFM_DBIOCTL) {

debugMsg(ucb,
"bad ioctl(2) arg address for %s", spelling);

}
retval = ucb->ucb_errno = EFAULT;
topHalfUnlock(ucb);
return(retval);

}

Sample VME Device Driver

007-0911-210 457

/*
*--
* rfm_map: called by kernel to service a mmap(2) system call
*--
*/
int
rfm_map(

dev_t dev, /* Device to be mmap’ed */
vhandl_t *vt, /* Handle to caller’s space */
off_t off, /* Beginning offset info region */
int len /* Length to map */

)
{
#if VMEIO

vertex_hdl_t vhdl = dev_to_vhdl(dev);
UCB ucb = device_info_get(vhdl);
int unit = ucb->ucb_unit; /* for printing */

#else
int unit = RFMUNIT(dev); /* Extract unit number */
UCB ucb = &ucbs[unit];

#endif
register RFM rfm = ucb->ucb_rfm;
caddr_t addr; /* Virtual address to map */
int pva; /* Process virtual address */
topHalfLock(ucb);
/* Validate that the region is within the device */
if((off+len) > ucb->ucb_rfmSize) {

WHENDEBUG(RFM_DBMMAP) {
debugMsg(ucb,
"rfmmap(..., %d, %d, ...) failed; rfm=%ld bytes",

len, off, (long) ucb->ucb_rfmSize);
}
topHalfUnlock(ucb);
return(ENOMEM);

}
/* Compute origin address to map */
addr = ((caddr_t) ucb->ucb_rfm) + off;
/* Attempt to map the region into the user’s application */
if((pva = v_mapphys(vt, addr, len))) {

/* Failed for some region */
WHENDEBUG(RFM_DBMMAP) {

debugMsg(ucb, "v_mapphys(vt, 0x%X, 0x%X) failed",
addr, len);

}
topHalfUnlock(ucb);

458 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

return(ENOMEM);
}
/* Ok, the region is yours... */
WHENDEBUG(RFM_DBMMAP) {

debugMsg(ucb, "mapped %d bytes at offset %d to 0x%X", len,
off, pva);

}
ucb->ucb_errno = 0;
topHalfUnlock(ucb);
return(pva);

}
/*
*--
* rfm_unmap: do any local cleanup for the munmap(2) system call
*--
* Although this routine can be called concurrently, it doesn’t touch any
* shared data, so there is no need to lock it.
*--
*/
int
rfm_unmap(

dev_t dev, /* Device number */
vhandl_t *vt /* Mapped address (ignored) */

)
{

WHENDEBUG(RFM_DBMMAP) {
debugMsg(UNULL, "unmapped");

}
return(0); /* Nothing to it, really! */

}
/*
*--
* rfm_unload: release resources and prepare to be removed from memory
*--
* This routine cannot be called concurrently.
*--
*/
int
rfm_unload(

void
)
{

register UCB ucb; /* Per-device info */
register UCB lucb; /* Last info + 1 */
WHENDEBUG(RFM_DBINIT) {

Sample VME Device Driver

007-0911-210 459

debugMsg(UNULL, "checking for open devices");
}
for(ucb = ucbs, lucb = ucb+NRFM; ucb < lucb; ++ucb) {

if(ucb->ucb_flags & UCB_FLAGS_OPEN) {
/* Someone is still open, so bail out */
WHENDEBUG(RFM_DBERROR) {

debugMsg(ucb, "still busy; cannot unload");
}
return(1);

}
}
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "checking pending timeouts");
}
for(ucb = ucbs, lucb = ucb+NRFM; ucb < lucb; ++ucb) {

toid_t tid; /* ID of existing timeout */
disableRfmInterrupts(ucb);
if((tid = ucb->ucb_eventTimeoutId)) {

ucb->ucb_eventTimeoutId = NULL;
untimeout(tid);
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "discarded timeout");
}

}
}
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "destroying mutex’s");
}
for(ucb = ucbs, lucb = ucb+NRFM; ucb < lucb; ++ucb) {

WHENDEBUG(RFM_DBINIT) {
debugMsg(UNULL, "destroying mutex");

}
MUTEX_DESTROY((mutex_t *) &ucb->ucb_mutex);

}
/* Release VME interrupt vector */
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "freeing VMEbus interrupt vectors");
}
for(ucb = ucbs, lucb = ucb+NRFM; ucb < lucb; ++ucb) {

if(ucb->ucb_flags & UCB_FLAGS_FOUND) {
WHENDEBUG(RFM_DBINIT) {

#if VMEIO
debugMsg(ucb,

"freeing adapter=%v, vector=0x%X",
ucb->ucb_vertex, ucb->ucb_ivec);

460 007-0911-210

13: Services for VME Drivers on Origin 2000/Onyx2

#else
debugMsg(ucb,

"freeing adapter=%d, vector=0x%X",
ucb->ucb_adapter, ucb->ucb_ivec);

#endif p
}

#if VMEIO
vmeio_intr_free(ucb->ucb_intr);

#else
vme_ivec_free (ucb->ucb_adapter, ucb->ucb_ivec);

#endif
ucb->ucb_flags &= ~UCB_FLAGS_FOUND;

}
}
/* Unmap device registers */
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "unmapping registers");
}
for(ucb = ucbs, lucb = ucb+NRFM; ucb < lucb; ++ucb) {

if(ucb->ucb_piomap) {
WHENDEBUG(RFM_DBINIT) {

debugMsg(ucb, "freeing register map");
}

#if VMEIO
vmeio_piomap_free(ucb->ucb_piomap);

#else
pio_mapfree(ucb->ucb_piomap);

#endif
ucb->ucb_rfm = 0;
ucb->ucb_piomap = 0;

}
}
return(0);

}
/*
*--
* rfm_halt: system is about to halt
*--
* This routine cannot be called concurrently.
*--
*/
void
rfm_halt(

void
)

Sample VME Device Driver

007-0911-210 461

{
WHENDEBUG(RFM_DBINIT) {

debugMsg(UNULL, "halted");
}

}

007-0911-210 463

Chapter 14

14. VME Device Attachment on Challenge/Onyx

This chapter gives a high-level overview of the VME bus, and describes how the VME
bus is attached to, and operated by Challenge and Onyx systems.

Note: For information on hardware device issues on the Origin 2000 and Onyx2
platforms, refer to Chapter 12, “VME Device Attachment on Origin 2000/Onyx2,” and
Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2.”.

This chapter contains useful background information if you plan to control a VME device
from a user-level program. It contains important details on VME addressing if you are
writing a kernel-level VME device driver.

• “Overview of the VME Bus” on page 464 summarizes the history and features of the
VME bus architecture.

• “VME Bus in Challenge and Onyx Systems” on page 466 gives an overview of how
the VME bus is integrated into Challenge and Onyx computer systems.

• “VME Bus Addresses and System Addresses” on page 471 discusses the
relationship between addresses on the VME bus and addresses in the physical
address space of the system.

• “Configuring VME Devices” on page 479 tells how to configure a device so that
IRIX can recognize it and initialize its device driver.

• “VME Hardware in Challenge and Onyx Systems” on page 484 documents the
hardware details of the VME implementation on those systems.

More information about VME device control appears in these chapters:

• Chapter 4, “User-Level Access to Devices,” covers PIO and DMA access from the
user process.

• Chapter 15, “Services for VME Drivers on Challenge/Onyx,”discusses the kernel
services used by a kernel-level VME device driver, and contains an example.

464 007-0911-210

14: VME Device Attachment on Challenge/Onyx

Overview of the VME Bus

The VME bus dates to the early 1980s. It was designed as a flexible interconnection
between multiple master and slave devices using a variety of address and data
precisions, and has become a popular standard bus used in a variety of products. (For
ordering information on the standards documents, see “Standards Documents” on
page xlii.)

In Silicon Graphics systems, the VME bus is treated as an I/O device, not as the main
system bus.

VME History

The VME bus descends from the VERSAbus, a bus design published by Motorola, Inc.,
in 1980 to support the needs of the MC68000 line of microprocessors. The bus timing
relationships and some signal names still reflect this heritage, although the VME bus is
used by devices from many manufacturers today.

The original VERSAbus design specified a large form factor for pluggable cards. Because
of this, it was not popular with European designers. A bus with a smaller form factor but
similar functions and electrical specifications was designed for European use, and
promoted by Motorola, Phillips, Thompson, and other companies. This was the
VersaModule European, or VME, bus. Beginning with rev B of 1982, the bus quickly
became an accepted standard.

VME Features

A VME bus is a set of parallel conductors that interconnect multiple processing devices.
The devices can exchange data in units of 8, 16, 32 or 64 bits during a bus cycle.

VME Address Spaces

Each VME device identifies itself with a range of bus addresses. A bus address has either
16, 24, or 32 bits of precision. Each address width forms a separate address space. That is,
the same numeric value can refer to one device in the 24-bit address space but a different
device in the 32-bit address space. Typically, a device operates in only one address space,
but some devices can be configured to respond to addresses in multiple spaces.

Overview of the VME Bus

007-0911-210 465

Each VME bus cycle contains the bits of an address. The address is qualified by sets of
address-modifier bits that specify the following:

• the address space (A16, A24, or A32)

• whether the operation is single or a block transfer

• whether the access is to what, in the MC68000 architecture, would be data or code,
in a supervisor or user area (Silicon Graphics systems support only supervisor-data
and user-data requests)

Master and Slave Devices

Each VME device acts as either a bus master or a bus slave. Typically a bus master is a
device with some level of programmability, usually a microprocessor. A disk controller
is an example of a master device. A slave device is typically a nonprogrammable device
like a memory board.

Each data transfer is initiated by a master device. The master

• asserts ownership of the bus

• specifies the address modifier bits for the transfer, including the address space,
single/block mode, and supervisor/normal mode

• specifies the address for the transfer

• specifies the data unit size for the transfer (8, 16, 32 or 64 bits)

• specifies the direction of the transfer with respect to the master

The VME bus design permits multiple master devices to use the bus, and provides a
hardware-based arbitration system so that they can use the bus in alternation.

A slave device responds to a master when the master specifies the slave’s address. The
addressed slave accepts data, or provides data, as directed.

VME Transactions

The VME design allows for four types of data transfer bus cycles:

• A read cycle returns data from the slave to the master.

• A write cycle sends data from the master to the slave.

466 007-0911-210

14: VME Device Attachment on Challenge/Onyx

• A read-modify-write cycle takes data from the slave, and on the following bus cycle
sends it back to the same address, possibly altered.

• A block-transfer transaction sends multiple data units to adjacent addresses in a
burst of consecutive bus cycles.

The VME design also allows for interrupts. A device can raise an interrupt on any of
seven interrupt levels. The interrupt is acknowledged by a bus master. The bus master
interrogates the interrupting device in an interrupt-acknowledge bus cycle, and the
device returns an interrupt vector number.

In Silicon Graphics systems, it is always the Silicon Graphics VME controller that
acknowledges interrupts. It passes the interrupt to one of the CPUs in the system.

VME Bus in Challenge and Onyx Systems

The VME bus was designed as the system backplane for a workstation, supporting one
or more CPU modules along with the memory and I/O modules they used. However, no
Silicon Graphics computer uses the VME bus as the system backplane. In all Challenge
and Onyx computers, the main system bus that connects CPUs to memory is a
proprietary bus design, with higher speed and sometimes wider data units than the VME
bus provides. The VME bus is attached to the system as an I/O device.

This section provides an overview of the design of the VME bus in any Challenge and
Onyx system. It is sufficient background for most users of VME devices. For a more
detailed look at the Challenge and Onyx implementation of VME, see “VME Hardware
in Challenge and Onyx Systems” on page 484.

The VME Bus Controller

A VME bus controller is attached to the system bus to act as a bridge between the system
bus and the VME bus. This arrangement is shown in Figure 14-1.

On the system bus, the VME bus controller acts as an I/O device. On the VME bus, the
bus controller acts as a VME bus master. The VME controller has several tasks. Its most
important task is mapping; that is, translating some range of physical addresses in the
system address space to a range of VME bus addresses. The VME controller performs a
variety of other duties for different kinds of VME access.

VME Bus in Challenge and Onyx Systems

007-0911-210 467

Figure 14-1 Relationship of VME Bus to System Bus

VME PIO Operations

During programmed I/O (PIO) to the VME bus, software in the CPU loads or stores the
contents of CPU registers to a device on the VME bus. The operation of a CPU load from
a VME device register is as follows:

1. The CPU executes a load from a system physical address.

2. The system recognizes the physical address as one of its own.

3. The system translates the physical address into a VME bus address.

4. Acting as a VME bus master, the system starts a read cycle on the VME bus.

5. A slave device on the VME bus responds to the VME address and returns data.

6. The VME controller initiates a system bus cycle to return the data packet to the CPU,
thus completing the load operation.

Secondary
cache

System bus

Memory

Processor unit
(IPnn)

MIPS R4x00,
R8000 or
R10000

VME
bus

VME bus
controller

VME bus
device

468 007-0911-210

14: VME Device Attachment on Challenge/Onyx

A store to a VME device is similar except that it performs a VME bus write, and no data
is returned.

PIO input requires two system bus cycles—one to request the data and one to return it—
separated by the cycle time of the VME bus. PIO output takes only one system bus cycle,
and the VME bus write cycle run concurrently with the next system bus cycle. As a result,
PIO input always takes at least twice as much time as PIO output.

VME PIO Bandwidth

On a Challenge L or Onyx system, the maximum rate of PIO output is approximately
750K writes per second. The maximum rate of PIO input is approximately 250K reads per
second. The corresponding data rate depends on the number of bytes transferred on each
operation, as summarized in Table 14-1.

Note: The numbers in Table 14-1 were obtained by doing continuous reads, or
continuous writes, to a device in the Challenge chassis. When reads and writes alternate,
add approximately 1 microsecond for each change of direction. The use of a repeater to
extend to an external card cage would add 200 nanoseconds or more to each transfer.

VME DMA Operations

A VME device that can act as a bus master can perform DMA into memory. The general
sequence of operations in this case is as follows:

Table 14-1 VME Bus PIO Bandwidth

Data Unit Size Read Write

D8 0.25 MB/second 0.75 MB/second

D16 0.5 MB/second 1.5 MB/second

D32 1 MB/second 3 MB/second

VME Bus in Challenge and Onyx Systems

007-0911-210 469

1. Kernel software uses PIO to program device registers of the VME device, telling it to
perform DMA to a certain VME bus address for a specified length of data.

2. The VME bus master initiates the first read, write, block-read, or block-write cycle
on the VME bus.

3. The VME controller, responding as a slave device on the VME bus, recognizes the
VME bus address as one that corresponds to a physical memory address in the
system.

4. If the bus master is writing, the VME controller accepts the data and initiates a
system bus cycle to write the data to system memory.

If the bus master is reading, the VME controller uses a system bus cycle to read data
from system memory, and returns the data to the bus master.

5. The bus master device continues to use the VME controller as a slave device until it
has completed the DMA transfer.

During a DMA transaction, the VME bus controller operates independently of any CPU.
CPUs in the system execute software concurrently with the data transfer. Since the
system bus is faster than the VME bus, the data transfer takes place at the maximum data
rate that the VME bus master can sustain.

Operation of the DMA Engine

In the Challenge and Onyx lines, the VME controller contains a “DMA Engine” that can
be programmed to perform DMA-type transfers between memory and a VME device
that is a slave, not a bus master.

The general course of operations in a DMA engine transfer is as follows:

1. The VME bus controller is programmed to perform a DMA transfer to a certain
physical address for a specified amount of data from a specified device address in
VME address space.

2. The VME bus controller, acting as the VME bus master, initiates a block read or
block write to the specified device.

3. As the slave device responds to successive VME bus cycles, the VME bus controller
transfers data to or from memory using the system bus.

The DMA engine transfers data independently of any CPU, and at the maximum rate the
VME bus slave can sustain. In addition, the VME controller collects smaller data units

470 007-0911-210

14: VME Device Attachment on Challenge/Onyx

into blocks of the full system bus width, minimizing the number of system bus cycles
needed to transfer data. For both these reasons, DMA engine transfers are faster than PIO
transfers for all but very short transfer lengths.

DMA Engine Bandwidth

The maximum performance of the DMA engine for D32 transfers is summarized in
Table 14-2. Performance with D64 Block transfers is somewhat less than twice the rate
shown in Table 14-2. Transfers for larger sizes are faster because the setup time is
amortized over a greater number of bytes.

Note: The throughput that can be achieved in VME DMA is very sensitive to several
factors:

• The other activity on the VME bus.

• The blocksize (larger is better).

• Other overhead in the loop requesting DMA operations.

The loop used to generate the figures in Table 14-2 contained no activity except calls
to dma_start().

Table 14-2 VME Bus Bandwidth, DMA Engine, D32 Transfer

Transfer Size Read Write Block Read Block Write

32 2.8 MB/sec 2.6 MB/sec 2.7 MB/sec 2.7 MB/sec

64 3.8 MB/sec 3.8 MB/sec 4.0 MB/sec 3.9 MB/sec

128 5.0 MB/sec 5.3 MB/sec 5.6 MB/sec 5.8 MB/sec

256 6.0 MB/sec 6.7 MB/sec 6.4 MB/sec 7.3 MB/sec

512 6.4 MB/sec 7.7 MB/sec 7.0 MB/sec 8.0 MB/sec

1024 6.8 MB/sec 8.0 MB/sec 7.5 MB/sec 8.8 MB/sec

2048 7.0 MB/sec 8.4 MB/sec 7.8 MB/sec 9.2 MB/sec

4096 7.1 MB/sec 8.7 MB/sec 7.9 MB/sec 9.4 MB/sec

VME Bus Addresses and System Addresses

007-0911-210 471

• the response time of the target VME board to a read or write request, in particular
the time from when the VME adapter raises Data Strobe (DS) and the time the slave
device raises Data Acknowledge (DTACK).

For example, if the slave device takes 500 ns to raise DTACK, there will always be
fewer than 2 M data transfers per second.

VME Bus Addresses and System Addresses

Devices on the VME bus exist in one of the following address spaces:

• The 16-bit space (A16) contains numbers from 0x0000 to 0xffff.

• The 24-bit space (A24) contains numbers from 0x00 0000 to 0xff ffff.

• The 32-bit space (A32) uses numbers from 0x0000 0000 to 0xffff ffff.

• The 64-bit space (A64), defined in the revision D specification, uses 64-bit addresses.

The system bus also uses 32-bit or 64-bit numbers to address memory and other I/O
devices on the system bus. In order to avoid conflicts between the meanings of address
numbers, certain portions of the physical address space are reserved for VME use. The
VME address spaces are mapped, that is, translated, into these ranges of physical
addresses.

The translation is performed by the VME bus controller: It recognizes certain physical
addresses on the system bus and translates them into VME bus addresses; and it
recognizes certain VME bus addresses and translates them into physical addresses on the
system bus.

Even with mapping, the entire A32 or A64 address space cannot be mapped into the
physical address space. As a result, the system does not provide access to all of the VME
address spaces. Only parts of the VME address spaces are available at any time.

User-Level and Kernel-Level Addressing

In a user-level program you can perform PIO and certain types of DMA operations (see
Chapter 4, “User-Level Access to Devices”), but you do not program these in terms of the
physical addresses mapped to the VME bus. Instead, you call on the services of a
kernel-level device driver to map a portion of VME address space into the address space
of your process. The requested segment of VME space is mapped dynamically to a

472 007-0911-210

14: VME Device Attachment on Challenge/Onyx

segment of your user-level address space—a segment that can differ from one run of the
program to the next.

In a kernel-level device driver, you program PIO and DMA operations in terms of
specific addresses in kernel space—memory addresses that are mapped to specified
addresses in the VME bus address space. The mapping is either permanent, established
by the system hardware, or dynamic, set up temporarily by a kernel function.

Note: The remainder of this chapter has direct meaning only for kernel-level drivers,
which must deal with physical mappings of VME space.

PIO Addressing and DMA Addressing

The addressing needs of PIO access and DMA access are different.

PIO deals in small amounts of data, typically single bytes or words. PIO is directed to
device registers that are identified with specific VME bus addresses. The association
between a device register and its bus address is fixed, typically by setting jumpers or
switches on the VME card.

DMA deals with extended segments of kilobytes or megabytes. The addresses used in
DMA are not fixed in the device, but are programmed into it just before the data transfer
begins. For example, a disk controller device can be programmed to read a certain sector
and to write the sector data to a range of 512 consecutive bytes in the VME bus address
space. The programming of the disk controller is done by storing numbers into its
registers using PIO. While the registers respond only to fixed addresses that are
configured into the board, the address to which the disk controller writes its sector data
is just a number that is programmed into it each time a transfer is to start.

The key differences between addresses used by PIO and those used for DMA are:

• PIO addresses are relatively few in number and cover small spans of data, while
DMA addresses can span large ranges of data.

• PIO addresses are closely related to the hardware architecture of the device and are
configured by hardware or firmware, while DMA addresses are simply parameters
programmed into the device before each operation.

VME Bus Addresses and System Addresses

007-0911-210 473

In Challenge and Onyx systems, all VME mappings are dynamic, assigned as needed.
Kernel functions are provided to create and release mappings between designated VME
addresses and kernel addresses.

PIO Addressing in Challenge and Onyx Systems

The Challenge and Onyx systems and their Power versions support from one to five
VME buses. It is impossible to fit adequate segments of five separate A16, A24, and A32
address spaces into fixed mappings in the 40-bit physical address space available in these
systems.

The VME controller in Challenge and Onyx systems uses programmable mappings. The
IRIX kernel can program the mapping of twelve separate 8 MB “windows” on VME
address space on each bus (a total of 96 MB of mapped space per bus). The kernel sets up
VME mappings by setting the base addresses of these windows as required. A
kernel-level VME device driver asks for and uses PIO mappings through the functions
documented in “Mapping PIO Addresses” on page 325. Mapping PIO Addresses

A PIO map is a system object that represents the mapping from a location in the kernel’s
virtual address space to some small range of addresses on a VME or EISA bus. After
creating a PIO map, a device driver can use it in the following ways:

• Use the specific kernel virtual address that represents the device, either to load or
store data, or to map that address into user process space.

• Copy data between the device and memory without learning the specific kernel
addresses involved.

• Perform bus read-modify-write cycles to apply Boolean operators efficiently to
device data.

The kernel virtual address returned by PIO mapping is not a physical memory address
and is not a bus address. The kernel virtual address and the VME or EISA bus address
need not have any bits in common.

474 007-0911-210

14: VME Device Attachment on Challenge/Onyx

The functions used with PIO maps are summarized in Table 14-3.

A kernel-level device driver creates a PIO map by calling pio_mapalloc(). This function
performs memory allocation and so can sleep. PIO maps are typically created in the
pfxedtinit() entry point, where the driver first learns about the device addresses from the
contents of the edt_t structure (see “Entry Point edtinit()” on page 160).

Table 14-3 Functions to Create and Use PIO Maps

Function Header Files
Can
Sleep Purpose

pio_mapalloc(D3) pio.h & types.h Y Allocate a PIO map.

pio_mapfree(D3) pio.h & types.h N Free a PIO map.

pio_badaddr(D3) pio.h & types.h N Check for bus error when reading an
address.

pio_badaddr_val(D3) pio.h & types.h N Check for bus error when reading an
address and return the value read.

pio_wbadaddr(D3) pio.h & types.h N Check for bus error when writing to an
address.

pio_wbadaddr_val(D3) pio.h & types.h N Check for bus error when writing a
specified value to an address.

pio_mapaddr(D3) pio.h & types.h N Convert a bus address to a virtual
address.

pio_bcopyin(D3) pio.h & types.h Y Copy data from a bus address to kernel’s
virtual space.

pio_bcopyout(D3) pio.h & types.h Y Copy data from kernel’s virtual space to
a bus address.

pio_andb_rmw(D3) pio.h & types.h N Byte read-and-write.

pio_andh_rmw(D3) pio.h & types.h N 16-bit read-and-write.

pio_andw_rmw(D3) pio.h & types.h N 32-bit read-and-write.

pio_orb_rmw(D3) pio.h & types.h N Byte read-or-write.

pio_orh_rmw(D3) pio.h & types.h N 16-bit read-or-write.

pio_orw_rmw(D3) pio.h & types.h N 32-bit read-or-write.

VME Bus Addresses and System Addresses

007-0911-210 475

The parameters to pio_mapalloc() describe the range of addresses that can be mapped in
terms of

• the bus type, ADAP_VME or ADAP_EISA from sys/edt.h

• the bus number, when more than one bus is supported

• the address space, using constants such as PIOMAP_A24N or PIOMAP_EISA_IO
from sys/pio.h

• the starting bus address and a length

This call also specifies a “fixed” or “unfixed” map. The usual type is “fixed.” For the
differences, see “Fixed PIO Maps” on page 476 and “Unfixed PIO Maps” on page 477.

A call to pio_mapfree() releases a PIO map. PIO maps created by a loadable driver must
be released in the pfxunload() entry point (see “Entry Point unload()” on page 190 and
“Unloading” on page 283).

Testing the PIO Map

The PIO map is created from the parameters that are passed. These are not validated by
pio_mapalloc(). If there is any possibility that the mapped device is not installed, not
active, or improperly configured, you should test the mapped address.

The pio_badaddr() and pio_badaddr_val() functions test the mapped address to see if it
is usable for input. Both functions perform the same operation: operating through a PIO
map, they test a specified bus address for validity by reading 1, 2, 4, or 8 bytes from it.
The pio_badaddr_val() function returns the value that it reads while making the test.
This can simplify coding, as shown in Example 14-1.

Example 14-1 Comparing pio_badaddr() to pio_badaddr_val()

unsigned int gotvalue;
piomap_t *themap;
/* Using only pio_badaddr() */

if (!pio_badaddr(themap,CTLREG,4)
{

(void) pio_bcopyin(themap,CTLREG,&gotvalue,4,4,0);
...use "gotvalue"

/* Using pio_badaddr_val() */
if (!pio_badaddr_val(themap,CTLREG,4,&gotvalue))
{

...use "gotvalue"

476 007-0911-210

14: VME Device Attachment on Challenge/Onyx

The pio_wbadaddr() function tests a mapped device address for writability. The
pio_wbadaddr_val() not only tests the address but takes a specific value to write to that
address in the course of testing it.

Using the Mapped Address

From a fixed PIO map you can recover a kernel virtual address that corresponds to the
first bus address in the map. The pio_mapaddr() function is used for this.

You can use this address to load or store data into device registers. In the pfxmap() entry
point (see “Concepts and Use of mmap()” on page 180), you can use this address with the
v_mapphys() function to map the range of device addresses into the address space of a
user process.

You cannot extract a kernel address from an unfixed PIO map, as explained under
“Unfixed PIO Maps” on page 477.

Using the PIO Map in Functions

You can apply a variety of kernel functions to any PIO map, fixed or unfixed. The
pio_bcopyin() and pio_bcopyout() functions copy a range of data between memory and
a fixed or unfixed PIO map. These functions are optimized to the hardware that exists,
and they do all transfers in the largest size possible (32 or 64 bits per transfer). If you must
transfer data in specific sizes of 1 or 2 bytes, use direct loads/stores to mapped addresses.

The series of functions pio_andb_rmw() and pio_orb_rmw() perform a
read-modify-write cycle on the VME bus. You can use them to set or clear bits in device
registers. A read-modify-write cycle is faster than a load followed by a store since it uses
fewer system bus cycles.

Fixed PIO Maps

On a Challenge or Onyx system, a PIO map can be either “fixed” or “unfixed.” This
attribute is specified when the map is created.

The Challenge and Onyx architecture provides for a total of 15 separate, 8 MB windows
on VME address space for each VME bus. Two of these are permanently reserved to the
kernel, and one window is reserved for use with unfixed mappings. The remaining 12
windows are available to implement fixed PIO maps.

VME Bus Addresses and System Addresses

007-0911-210 477

When the kernel creates a fixed PIO map, the map is associated with one of the 12
available VME mapping windows. The kernel tries to be clever, so that whenever a PIO
map falls within an 8 MB window that already exists, the PIO map uses that window. If
the desired VME address is not covered by an open window, one of the twelve windows
for that bus is opened to expose a mapping for that address.

It is possible in principle to configure thirteen devices that are scattered so widely in the
A32 address space that twelve, 8 MB windows cannot cover all of them. In that unlikely
case, the attempt to create the thirteenth fixed PIO map will fail for lack of a mapping
window.

In order to prevent this, simply configure your PIO addresses into a span of at most
96 MB per bus (see “Configuring Device Addresses” on page 480).

Unfixed PIO Maps

When you create an unfixed PIO map, the map is not associated with any of the twelve
mapping windows. As a result, the map cannot be queried for a kernel address that
might be saved, or mapped into user space.

You can use an unfixed map with kernel functions that copy data or perform
read-modify-write cycles. These functions use the one mapping window that is reserved
for unfixed maps, repositioning it in VME space if necessary.

The lboot command uses an unfixed map to perform the probe and exprobe
sequences from VECTOR statements (see “Configuring the System Files” on page 480).
As a result, these probes do not tie up mapping windows.

DMA Addressing

DMA is supported only for the A24 and A32 address spaces. DMA addresses are always
assigned dynamically in the Challenge and Onyx systems.

Mapping DMA Addresses

A DMA map is a system object that represents a mapping between a buffer in kernel
virtual space and a range of VME bus addresses. After creating a DMA map, a driver uses

478 007-0911-210

14: VME Device Attachment on Challenge/Onyx

the map to specify the target address and length to be programmed into a VME bus
master before a DMA transfer.

The functions that operate on DMA maps are summarized in Table 14-4.

A device driver allocates a DMA map using dma_mapalloc(). This is typically done in
the pfxedtinit() entry point, provided that the maximum I/O size is known at that time
(see “Entry Point edtinit()” on page 160). The important argument to dma_mapalloc() is
the maximum number of pages (I/O pages, the unit is IO_NBPP declared in
sys/immu.h) to be mapped at one time.

Note: In the Challenge and Onyx systems, a limit of 64 MB of mapped DMA space per
VME adapter is imposed by the hardware. Some few megabytes of this are taken early
by system drivers. Owing to a bug in IRIX 5.3 and 6.1, a request for 64 MB or more is not

Table 14-4 Functions That Operate on DMA Maps

Function Header Files Can Sleep Purpose

dma_map(D3) dmamap.h &
types.h &
sema.h

N Load DMA mapping registers for an imminent
transfer.

dma_mapbp(D3) dmamap.h &
types.h &
sema.h

N Load DMA mapping registers for an imminent
transfer.

dma_mapaddr(D3
)

dmamap.h &
types.h &
sema.h

N Return the “bus virtual” address for a given
map and address.

dma_mapalloc(D3
)

dmamap.h &
types.h &
sema.h

Y Allocate a DMA map.

dma_mapfree(D3) dmamap.h &
types.h &
sema.h

N Free a DMA map.

vme_adapter(D3) vmereg.h &
types.h

N Determine VME adapter that corresponds to a
given memory address.

Configuring VME Devices

007-0911-210 479

rejected, but waits forever. However, in any release, a call to dma_mapalloc() that
requests a single map close to the 64 MB limit is likely to wait indefinitely for enough
map space to become available.

DMA maps created by a loadable driver should be released in the pfxunload() entry point
(see “Entry Point unload()” on page 190 and “Unloading” on page 283).

Using a DMA Map

A DMA map is used prior to a DMA transfer into or out of a buffer in kernel virtual
space. The function dma_map() takes a DMA map, a buffer address, and a length. It
assigns a span of contiguous VME addresses of the specified length, and sets up a
mapping between that range of VME addresses and the physical addresses that represent
the specified buffer.

When the buffer spans two or more physical pages (IO_NBPP units), dma_map() sets up
a scatter/gather operation, so that the VME bus controller will place the data in the
appropriate page frames.

It is possible that dma_map() cannot map the entire size of the buffer. This can occur only
when the buffer spans two or more pages, and is caused by a shortage of mapping
registers in the bus adapter. The function maps as much of the buffer as it can, and
returns the length of the mapped data. You must always anticipate that dma_map()
might map less than the requested number of bytes, so that the DMA transfer has to be
done in two or more operations.

Following the call to dma_map(), you call dma_mapaddr() to get the bus virtual address
that represents the first byte of the buffer. This is the address you program into the bus
master device (using a PIO store), in order to set its starting transfer address. Then you
initiate the DMA transfer (again by storing a command into a device register using PIO).

Configuring VME Devices

To install a VME device in a Challenge or Onyx system, you need to configure the device
itself to respond to PIO addresses in a supported range of VME bus addresses, and you
need to inform IRIX of the device addresses.

480 007-0911-210

14: VME Device Attachment on Challenge/Onyx

Configuring Device Addresses

Normally a VME card can be programmed to use different VME addresses for PIO, based
on jumper or switch settings on the card. The devices on a single VME bus must be
configured to use unique addresses. Errors that are hard to diagnose can arise when
multiple cards respond to the same bus address. Devices on different VME buses can use
the same addresses. Not all parts of each address space are accessible. The accessible
parts are summarized in Table 14-5.

Within the accessible ranges, certain VME bus addresses are used by VME devices. You
can find these addresses documented in the /var/sysgen/system/irix.sm file. You
must configure OEM devices to avoid the addresses used by Silicon Graphics devices
that are installed on the same system.

Finally, on the Challenge and Onyx systems, take care to cluster PIO addresses in the A32
space so that they occupy at most a 96 MB span of addresses. The reasons are explained
under “Fixed PIO Maps” on page 476.

Configuring the System Files

Inform IRIX and the device driver of the existence of a VME device by adding a VECTOR
statement to a file in the directory /var/sysgen/system (see “Kernel Configuration
Files” on page 58). The syntax of a VECTOR statement is documented in two places:

• The /var/sysgen/system/irix.sm file itself contains descriptive comments on
the syntax and meaning of the statement, as well as numerous examples.

• The system(4) reference page gives a more formal definition of the syntax.

In addition to the VECTOR statement, you may need to code an IPL statement.

Table 14-5 Accessible VME Addresses in Challenge and Onyx Systems

Address Space Challenge and Onyx Systems

A16 All

A24 0x80 0000–0xFF FFFF

A32 0x0000 0000–0x7FFF FFFF (maximum of 96 MB in 8 MB units)

Configuring VME Devices

007-0911-210 481

Coding the VECTOR Statement

The important elements in a VECTOR line are as follows:

Use the probe or exprobe parameter to program a test for the existence of the device at
boot time. If the device does not respond (because it is offline or because it has been
removed from the system), thelboot command will not invoke the device driver for this
device.

The device driver specified by the module parameter is invoked at its pfxedtinit() entry
point, where it receives most of the other information specified in the VECTOR statement
(see “Entry Point edtinit()” on page 160).

Omit the vector parameter in either of two cases: when the device does not cause
interrupts, or when it supports a programmable interrupt vector (see “Allocating an
Interrupt Vector Dynamically” on page 482).

bustype Specified as VME for VME devices. The VECTOR statement can be
used for other types of buses as well.

module The base name of the device driver for this device, as used in the
/var/sysgen/master.d database (see “Master Configuration
Database” on page 57 and “How Names Are Used in Configuration”
on page 274).

adapter The number of the VME bus where the device is attached—the bus
number in a Challenge or Onyx machine.

ipl The interrupt level at which the device causes interrupts, from 0 to 7.

vector An 8-bit value between 1 and 254 that the device returns during an
interrupt acknowledge cycle.

ctlr The “controller” number is simply an integer parameter that is passed
to the device driver at boot time. It can be used for example to specify
a logical unit number.

iospace,
iospace2,
iospace3

Each iospace group specifies the VME address space, the starting
bus address, and the size of a segment of VME address space used by
this device.

probe or
exprobe

Specify a hardware test that can be applied at boot time to find out if
the device exists.

482 007-0911-210

14: VME Device Attachment on Challenge/Onyx

Use the iospace parameters to pass in the exact VME bus addresses that correspond to
this device, as configured in the device. Up to three address space ranges can be passed
to the driver. This does not restrict the device—it can use other ranges of addresses, but
the device driver has to deduce their addresses from other information. The device driver
typically uses this data to set up PIO maps (see “PIO Addressing in Challenge and Onyx
Systems” on page 473)

Using the IPL Statement

In a Challenge or Onyx system, you can direct VME interrupts to specific CPUs. This is
done with the IPL statement, also written into a file in /var/sysgen/system. The IPL
statement, which like the VECTOR statement is documented in both the system(4)
reference page and the /var/sysgen/system/irix.sm file itself, has only two
parameters:

The purpose of the IPL statement is to send interrupts from specific devices to a specific
CPU. There are two contradictory reasons for doing this:

• That CPU is dedicated to handling those interrupts with minimum latency

• Those interrupts would disrupt high-priority work being done on other CPUs if
they were allowed to reach the other CPUs.

The IPL statement cannot direct interrupts from a specific device; it directs all interrupts
that occur at the specified level.

Allocating an Interrupt Vector Dynamically

When a VME device generates an interrupt, the Silicon Graphics VME controller initiates
an interrupt acknowledge (IACK) cycle on the VME bus. During this cycle, the
interrupting device presents a data value that characterizes the interrupt. This is the
interrupt vector, in VME terminology.

According to the VME standard, the interrupt vector can be a data item of 8, 16, or 32 bits.
However, Challenge and Onyx systems accept only an 8-bit vector, and its value must fall

level The VME interrupt level to be directed, 0 to 7 (the same value that is
coded as ipl= in the VECTOR statement.

cpu The number of the CPU that should handle all VME interrupts at this
level.

Configuring VME Devices

007-0911-210 483

in the range 1-254 inclusive. (0x00 and 0xFF are excluded because they could be
generated by a hardware fault.)

The interrupt vector returned by some VME devices is hard-wired or configured into the
board with switches or jumpers. When this is the case, the vector number should be
written as the vectorparameter in the VECTOR statement that describes the device (see
“Configuring the System Files” on page 480).

Some VME devices are programmed with a vector number at runtime. For these devices,
you omit the vector parameter, or give its value as an asterisk. In the device driver, you
use the functions in Table 14-6 to choose a vector number.

Allocating a Vector

In the pfxedtinit() entry point, the device driver selects a vector number for the device to
use. The best way to select a number is to call vme_ivec_alloc(), which returns a number
that has not been registered for that bus, either dynamically or in a VECTOR line.

The driver then uses vme_ivec_set() to register the chosen vector number. This function
takes parameters that specify

• The vector number

• The bus number to which it applies

• The address of the interrupt handler for this vector—typically but not necessarily
the name of the pfxintr() entry point of the same driver

• An integer value to be passed to the interrupt entry point—typically but not
necessarily the vector number

The vme_ivec_set() function simply registers the number in the kernel, with the
following two effects:

Table 14-6 Functions to Manage Interrupt Vector Values

Function Header Files Can Sleep Purpose

vme_ivec_alloc(D3) vmereg.h & types.h N Allocate a VME bus interrupt vector.

vme_ivec_free(D3) vmereg.h & types.h N Free a VME bus interrupt vector.

vme_ivec_set(D3) vmereg.h & types.h N Register a VME bus interrupt vector.

484 007-0911-210

14: VME Device Attachment on Challenge/Onyx

• The vme_ivec_alloc() function does not return the same number to another call
until the number is released.

• The specified handler is called when any device presents this vector number on an
interrupt.

Multiple devices can present the identical vector, provided that the interrupt handler has
some way of distinguishing one device from another.

Note: If you are working with both the VME and EISA interfaces, it is worth noting that
the number and types of arguments of vme_ivec_set() differ from the similar EISA
support function eisa_ivec_set().

Releasing a Vector

There is a limit of 254 vector numbers per bus, so it is a good idea for a loadable driver,
in its pfxunload() entry point, to release a vector by calling vme_ivec_free() (see “Entry
Point unload()” on page 190 and “Unloading” on page 283).

Vector Errors

A common problem with programmable vectors in the Challenge or Onyx systems is the
appearance of the following warning in the SYSLOG file:

Warning: Stray VME interrupt: vector =0xff

One possible cause of this error is that the board is emitting the wrong interrupt vector;
another is that the board is emitting the correct vector but with the wrong timing, so that
the VME bus adapter samples all-binary-1 instead. Both these conditions can be verified
with a VME bus analyzer. In the Challenge or Onyx hardware design, the most likely
cause is the presence of empty slots in the VME card cage. All empty slots must be
properly jumpered in order to pass interrupts correctly.

VME Hardware in Challenge and Onyx Systems

The overview topic, “VME Bus in Challenge and Onyx Systems” on page 466, provides
sufficient orientation for most users of VME devices. However, if you are designing

VME Hardware in Challenge and Onyx Systems

007-0911-210 485

hardware or a high-performance device driver specifically for the Challenge and Onyx
systems, the details in this topic are important.

Note: For information on physical cabinets, panels, slot numbering, cables and jumpers,
and data about dimensions and airflow, refer to the Owner’s Guide manual for your
machine. For example, see the POWER CHALLENGE AND CHALLENGE XL Rackmount
Owner’s Guide (007-1735) for the physical layout and cabling of VME busses in the large
Challenge systems.

VME Hardware Architecture

The VME bus interface circuitry for Challenge and Onyx systems resides on a mezzanine
board called the VMEbus Channel Adapter Module (VCAM) board. One VCAM board
is standard in every system and mounts directly on top of the IO4 board in the system
card cage.

The IO4 board is the heart of the I/O subsystem. The IO4 board supplies the system with
a basic set of I/O controllers and system boot and configuration devices such as serial
and parallel ports, and Ethernet.

486 007-0911-210

14: VME Device Attachment on Challenge/Onyx

In addition, the IO4 board provides these interfaces:

• two Flat Cable Interconnects (FCIs) for connection to Card Cage 3 (CC3)

• two SCSI-2 cable connections

• two Ibus connections

A Challenge or Onyx system can contain multiple IO4 boards, which can operate in
parallel. (Early versions of the IO4 have a possible hardware problem that is described in
Appendix B, “”.)

Main System Bus

The main set of buses in the Challenge and Onyx system architecture is the Everest
address and data buses, Ebus for short. The Ebus provides a 256-bit data bus and a 40-bit
address bus that can sustain a bandwidth of 1.2 GB per second.

The 256-bit data bus provides the data transfer capability to support a large number of
high-performance RISC CPUs. The 40-bit address bus is also wide enough to support
16 GB of contiguous memory in addition to an 8 GB I/O address space.

Ibus

The 64-bit Ibus (also known as the HIO bus) is the main internal bus of the I/O subsystem
and interfaces to the high-power Ebus through a group of bus adapters.The Ibus has a
bandwidth of 320 MB per second that can sufficiently support a graphics subsystem, a
VME64 bus, and as many as eight SCSI channels operating simultaneously.

Bus Interfacing

Communication with the VME and SCSI buses, the installed set or sets of graphics
boards, and Ethernet takes place through the 64-bit Ibus. The Ibus interfaces to the main
system bus, the 256-bit Ebus, through a set of interface control devices, an I address (IA)
and four I data (ID). The ID ASICs latch the data, and the IA ASIC clocks the data from
each ID to the Flat Cable Interface (FCI) through the F controller (or F chip).

Two FCI controllers (or F controllers) help handle the data transfers to and from an
internal graphics board set (if present) and any VMEbus boards in optional CC3
applications. The SCSI-2 (S1) controller serves as an interface to the various SCSI-2 buses.
The Everest peripheral controller (EPC) device manages the data movement to and from
the Ethernet, a parallel port, and various types of on-board PROMs and RAM.

VME Hardware in Challenge and Onyx Systems

007-0911-210 487

Maximum Latency

The worst-case delay for the start of a VME access, if all of the devices on the IO4
simultaneously request the IO channel for a 128 byte write and the VME adapter receives
the grant last, the VME access start could be delayed for a total of about 2 microseconds.
Only a VME read would suffer this delay; a VME write would not.

There is a another potential delay from an independent cause, which depends on the
number of bus master (IO4 and CPU) boards on the system bus. If all the E-bus masters
in a fairly large configuration hit the bus at once, a VME read or write could be held up
by as much as 1 microsecond in a large system.

VME Bus Numbering

The Challenge and Onyx systems support up to five independent VME buses in a single
system. The numbering of these buses is not sequential.

There is always a VME bus number 0. This is the bus connected to the system midplane.
It is always connected by the primary IO4 board (the IO4 board attached to the highest
slot on the system bus). Bus numbers for other VME buses depend on the Ebus slot
number where their IO4 is attached, and on the I/O adapter number of the VCAM card
on the IO4. Each IO4 board supports adapter numbers from 1 to 7, but a VME bus can
only be attached to adapter number 2, 3, 5, or 6. These four adapters are given VME index
numbers of 0, 1, 2, and 3 respectively.

The bus number of a VME bus is given by E*4+A, where E is the Ebus slot of the IO4 card,
and A is the index of the adapter on the IO4. A VME bus attached through adapter 3 on
the IO4 in Ebus slot 13 is bus number 53, from the sum of adapter index 1 and 4 times the
slot number.

VMEbus Channel Adapter Module (VCAM) Board

The VCAM board provides the interface between the Ebus and the VMEbus and
manages the signal level conversion between the two buses. The VCAM also provides a
pass-through connection that ties the graphics subsystem to the Ebus. The VCAM can
operate as either a master or a slave. It supports DMA-to-memory transactions on the
Ebus and programmed I/O (PIO) operations from the system bus to addresses on the
VMEbus. In addition, the VCAM provides virtual address translation capability and a
DMA engine that increases the performance of non-DMA VME boards.

488 007-0911-210

14: VME Device Attachment on Challenge/Onyx

VMECC

The VMECC (VME cache controller) gate array is the major active device on the VCAM.
The VMECC interfaces and translates host CPU operations to VMEbus operations (see
Figure 14-2). The VMECC also decodes VMEbus operations to translate for the host side.

Figure 14-2 VMECC, the VMEbus Adapter

The VMECC provides the following features:

• an internal DMA engine to speed copies between physical memory and VME space
(see “Operation of the DMA Engine” on page 469)

• a 16-entry deep PIO FIFO to smooth writing to the VME bus from the host CPUs

• a built-in VME interrupt handler and built-in VME bus arbiter

• an explicit internal delay register to aid in spacing PIOs for VME controller boards
that cannot accept back-to-back operations

• support for issuing A16, A24, A32, and A64 addressing modes as a bus master
during PIO

• support for single-item transfers (D8, D16, D32, and D64) as bus master during PIO

• support for response as a slave to A24, A32, and A64 addressing modes to provide
DMA access to the Ebus

Control

registers

Interru
pt

DMA to

Memory

VMEbus

Controller

VMECC

on VCAM

Master logic:

Generate

VME-bus

read/write

Slave logic:

Hold interrupt

and pass to host

Slave logic:

Decode as

mory board

o host

load/store

operation

Host

CPU

VME Hardware in Challenge and Onyx Systems

007-0911-210 489

• support for single-item transfers (D8, D16, and D32) as a slave during DMA access
to the Ebus

• support for block item transfers (D8, D16, D32, and D64) as a slave during DMA
access to the Ebus

The VMECC also provides four levels of VMEbus request grants, 0-3 (3 has the highest
priority), for DMA arbitration. Do not confuse these bus request levels with the interrupt
priority levels 1-7. Bus requests prioritize the use of the physical lines representing the
bus and are normally set by means of jumpers on the interface board.

F Controller ASIC

Data transfers between VME controller boards and the host CPU(s) takes place through
the VMECC on the VCAM board, then through a flat cable interface (FCI), and onto the
F controller ASIC.

The F controller acts as an interface between the Ibus and the Flat Cable Interfaces (FCIs).
This device is primarily composed of FIFO registers and synchronizers that provide
protocol conversion and buffer transactions in both directions and translate 34-bit I/O
addresses into 40-bit system addresses.

Two configurations of the F controller are used on the IO4 board; the difference between
them is the instruction set they contain. One version is programmed with a set of
instructions designed to communicate with the GFXCC (for graphics); the other version
has instructions designed for the VMECC. All communication with the GFXCC or
VMECC ICs is done over the FCI, where the F controller is always the slave. Both
versions of F controller ASICs have I/O error-detection and handling capabilities. Data
errors that occur on either the Ibus or the FCI are recorded by the F controller and sent to
the VMECC or GFXCC.

ICs must report an error to the appropriate CPU and log any specific information about
the operation in progress. FCI errors are recorded in the error status register, which
provides status of the first error that occurred, and the cause of the most recent FCI reset.

VMEbus Interrupt Generation

The VME bus supports seven levels of prioritized interrupts, 1 through 7 (where 7 has
the highest priority). The VMECC has a register associated with each level. When the
system responds to the VMEbus interrupt, it services all devices identified in the
interrupt vector register in order of their VMEbus priority (highest number first).

490 007-0911-210

14: VME Device Attachment on Challenge/Onyx

The following list outlines how a VMEbus interrupt is generated:

1. A VME controller board asserts a VME interrupt on one of the IRQ levels.

2. The built-in interrupt handler in the VMECC chip checks if the interrupt level is
presently enabled by an internal interrupt mask.

3. The interrupt handler in the VMECC issues a bussed IACK (interrupt acknowledge)
response and acquires the vector from the device. The 3-bit response identifies one
of the seven VME levels.

4. If multiple VME boards are present, the bussed IACK signal is sent to the first VME
controller as an IACKIN. When the first controller is not the requesting master, it
passes the IACKIN signal to the next board (in the daisy-chain) as IACKOUT.

5. The requesting board responds to IACKIN by issuing a DTACK* (data acknowledge
signal), blocking the IACKOUT signal to the next board, and placing an 8-bit
interrupt vector number on the data bus.

6. The VMECC latches the interrupt vector, and an interrupt signal is sent over the FCI
interface to the F-chip and is queued awaiting completion of other F-chip tasks.

7. The F controller ASIC requests the I-bus and sends the interrupt to the IA chip.

8. The IA chip requests the Ebus and sends the interrupt over the Ebus to the CC chip
on the IP19/IP21 board.

9. The CC chip interrupts an R4400/R8000, provided the interrupt level is not masked.

The time for this to complete is normally less than 3 microseconds, but will be queued to
await completion of other VME activities.

VME Interface Features and Restrictions

The Challenge and Onyx VME interface supports all protocols defined in Revision C of
the VME specification plus the A64 and D64 modes defined in Revision D. The D64 mode
allows DMA bandwidths of up to 60 MB. This bus also supports the following features:

• seven levels of prioritized processor interrupts

• 16-bit, 24-bit, and 32-bit data addresses and 64-bit memory addresses

• 16-bit and 32-bit accesses (and 64-bit accesses in MIPS III mode)

• 8-bit, 16-bit, 32-bit, and 64-bit data transfer

• DMA to and from main memory

VME Hardware in Challenge and Onyx Systems

007-0911-210 491

DMA Multiple Address Mapping

In the Challenge and Onyx series, a DMA address from a VME controller goes through a
two-level translation to generate an acceptable physical address. This requires two levels
of mapping. The first level of mapping is done through the map RAM on the IO4 board.
The second level is done through the map tables in system memory. This mapping is
shown in Figure 14-3.

Note: The second level mapping requires system memory to be reserved for the
mapping tables. The current limit on the number of pages that is allocated for map tables
is 16 pages and the maximum memory allotted for the map tables is 64 KB. The R4400
provides a 4 KB page size for 16 pages (4 KB * 16 pages= 64 KB). The R8000 provides a
16 KB page size for 4pages (16 KB * 4 pages = 64 KB).

Each second-level map table entry corresponds to 4 KB of physical memory. In addition,
each second-level map table entry is 4 bytes. With 64 KB of mapping table, there are a
total of 16 K entries translating a maximum of 64 MB of DMA mapping, setting a limit of
64 MB that can be mapped at any time for each VME bus. This does not set any limit on
the amount of DMA that can be done by a board during its operation.

Referring to the top of Figure 14-3, bits 32 and 33 from the IBus address come from the
VMECC. These two bits determine a unique VMEbus number for systems with multiple
VME buses. Of the remaining 32 bits (31 to 0), 12 are reserved for an offset in physical
memory, and the other 20 bits are used to select up to 220 or 1 million pages into the main
memory table. However, as stated earlier only 64 KB is allocated for map tables.

As shown in Figure 14-3, thirteen bits go to the static RAM table. Recall that two of the
thirteen bits are from the VMECC to identify the VMEbus number. The static RAM table
then generates a 29-bit identifier into the main memory table. These 29 bits select a table
in the main memory table. An additional nine bits select an entry or element within the
table. A 00 (two zeros) are appended to form a 40-bit address into the main memory table.

The main memory table then generates 28-bit address which is then appended to the
12-bit offset of the IBus to form the final 40-bit physical address.

492 007-0911-210

14: VME Device Attachment on Challenge/Onyx

Figure 14-3 I/O Address to System Address Mapping

Static RAM table

Mapping level bit

"00"
/9

/29

/13

from
IBus

Main memory table

/12

/28

01112202133

Table aligned
on 2KB boundary

IBus address

40-bit Final physical EVEREST address

1 1

32

VME Hardware in Challenge and Onyx Systems

007-0911-210 493

VME Interrupt Priority

Interrupts within the Challenge/Onyx architecture are managed by a set of interrupt
vectors. An interrupt generated by an I/O device like a VME controller in turn generates
an interrupt to the CPU on one of the previously assigned levels.

Each IRQ on each VME bus is assigned an internal interrupt level, and by default all these
levels are at the same priority. If multiple interrupts arrive simultaneously within a single
bus, for example IRQ 3 and IRQ 4 at once, priority is given to the higher-numbered IRQ.

All VME interrupts are made to go to CPU 0 (unless configured differently with IPL
statements). This prevents one interrupt level from preempting the driver handling a
different VME interrupt level.

VME Hardware Features and Restrictions

When designing an OEM hardware board to interface to the Challenge or Onyx VME
bus, observe the following restrictions:

• Devices should require 8-bit interrupt vectors only. This is the only interrupt vector
size that is supported by the VMECC or recognized by the IRIX kernel.

• Devices must not require UAT (unaligned transfer or tri-byte) access.

• Devices in slave mode must not require address modifiers other than
Supervisory/Nonprivileged data access.

• While in master mode, a device must use only nonprivileged data access or
nonprivileged block transfers.

• The Challenge or Onyx VME bus does not support VSBbus boards. In addition,
there are no pins on the back of the VME backplane. This area is inaccessible for
cables or boards.

• Metal face plates or front panels on VME boards may prevent the I/O door from
properly closing and can possibly damage I/O bulkhead. (In some VME enclosures,
a face plate supplies required EMI shielding. However, the Challenge chassis
already provides sufficient shielding, so these plates are not necessary.)

494 007-0911-210

14: VME Device Attachment on Challenge/Onyx

Designing a VME Bus Master for Challenge and Onyx Systems

The following notes are related to the design of a VME bus master device to work with a
machine in the Challenge/Onyx series. A VME bus master, when programmed using the
functions described in “Mapping DMA Addresses” on page 477, can transfer data
between itself and system memory.

The setup time at the start of a DMA transfer is as follows:

• First word of a read is delivered to the master in 3 to 8 microseconds.

• First word of a write is retrieved from the master in 1 to 3 microseconds.

The F controller does the mapping from A32 mode into system memory and
automatically handles the crossing of page boundaries. The VME Bus Master is not
required to make AS go high and then low on 4 KB boundaries. However, when using
A64 addressing, the device may have to change the address on the 4 KB boundaries and
cause a transition on AS low to high, and then back to low. This incurs new setup delays.

The important parts of the VME handshake cycle are diagrammed in Figure 14-4.

Figure 14-4 VMECC Contribution to VME Handshake Cycle Time

Intervals 1 and 3 represent the response latency in the bus slave (the VMECC). Intervals
2 and 4 represent the latency in the VME Bus Master. In the Challenge and Onyx systems,

• part 1 is approximately 40 nanoseconds

• part 3 is approximately 25 nanoseconds

The total contribution by the VMECC is approximately 65 nanoseconds. If the total of the
four intervals can be held to 125 nanoseconds, the absolute peak transfer rate (in D64
mode) is 64 MB per second.

1 2 3 4

DS-

DTAC-

VME Hardware in Challenge and Onyx Systems

007-0911-210 495

Note: Startup and latency numbers are averages and may occasionally be longer. The
system design does not have any guaranteed latency.

The VME specification provides for a burst length of 265 bytes in D8, D16, and D32
modes, or 2 KB in D64. The burst length is counted in bytes, not transfer cycles.

Operating at this burst length, the duration of a single burst of 2 KB would be 256
transfers at 125 nanoseconds each, plus a startup of roughly 5 microseconds, giving a
total of 37 microseconds per burst. Continuous, back-to-back bursts could achieve at
most 55 MB per second.

However, the Challenge and Onyx VMECC uses a 20-bit burst counter allowing up to
2 MB in a burst of any data size. Suppose the bus master transfers 64 KB per burst,
transferring 4-byte data words. The duration of a single burst would be 8,192 times 125
nanoseconds, plus 5 microseconds startup, or 1,029 microseconds per burst. Continuous
bursts of this size achieve a data rate of 63.7 MB per second.

The use of long bursts violates the VME standard, and a bus master that depends on long
bursts is likely not to work in other computers. If you decide to exceed the VME bus
specifications, you should condition this feature with a field in a control register on the
VME board, so that it can be disabled for use on other VME systems.

007-0911-210 497

Chapter 15

15. Services for VME Drivers on Challenge/Onyx

This chapter provides an overview of the kernel services needed by a kernel-level VME
device driver on Challenge and Onyx systems. It contains a complete example driver.

Note: For information on writing VME device drivers for Origin and Onyx2 systems,
refer to Chapter 13. For information on porting IRIX 6.2 drivers to IRIX 6.5, refer to
“Porting From IRIX 6.2” on page 386.

Kernel Services for VME

The kernel provides services for mapping the VME bus into the kernel virtual address
space for PIO or DMA, and for transferring data using maps. It also provides services for
allocating interrupt vector numbers.

Mapping PIO Addresses

A PIO map is a system object that represents the mapping from a location in the kernel’s
virtual address space to some small range of addresses on a VME or EISA bus. After
creating a PIO map, a device driver can use it in the following ways:

• Use the specific kernel virtual address that represents the device, either to load or
store data, or to map that address into user process space.

• Copy data between the device and memory without learning the specific kernel
addresses involved.

• Perform bus read-modify-write cycles to apply Boolean operators efficiently to
device data.

498 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

The kernel virtual address returned by PIO mapping is not a physical memory address
and is not a bus address. The kernel virtual address and the VME or EISA bus address
need not have any bits in common.

The functions used with PIO maps are summarized in Table 15-1.

A kernel-level device driver creates a PIO map by calling pio_mapalloc(). This function
performs memory allocation and so can sleep. PIO maps are typically created in the

Table 15-1 Functions to Create and Use PIO Maps

Function Header Files Can Sleep Purpose

pio_mapalloc(D3) pio.h & types.h Y Allocate a PIO map.

pio_mapfree(D3) pio.h & types.h N Free a PIO map.

pio_badaddr(D3) pio.h & types.h N Check for bus error when reading an
address.

pio_badaddr_val(D3) pio.h & types.h N Check for bus error when reading an
address and return the value read.

pio_wbadaddr(D3) pio.h & types.h N Check for bus error when writing to an
address.

pio_wbadaddr_val(D3) pio.h & types.h N Check for bus error when writing a
specified value to an address.

pio_mapaddr(D3) pio.h & types.h N Convert a bus address to a virtual address.

pio_bcopyin(D3) pio.h & types.h Y Copy data from a bus address to kernel’s
virtual space.

pio_bcopyout(D3) pio.h & types.h Y Copy data from kernel’s virtual space to a
bus address.

pio_andb_rmw(D3) pio.h & types.h N Byte read-and-write.

pio_andh_rmw(D3) pio.h & types.h N 16-bit read-and-write.

pio_andw_rmw(D3) pio.h & types.h N 32-bit read-and-write.

pio_orb_rmw(D3) pio.h & types.h N Byte read-or-write.

pio_orh_rmw(D3) pio.h & types.h N 16-bit read-or-write.

pio_orw_rmw(D3) pio.h & types.h N 32-bit read-or-write.

Kernel Services for VME

007-0911-210 499

pfxedtinit() entry point, where the driver first learns about the device addresses from the
contents of the edt_t structure (see “Entry Point edtinit()” on page 160).

The parameters to pio_mapalloc() describe the range of addresses that can be mapped in
terms of

• the bus type, ADAP_VME or ADAP_EISA from sys/edt.h

• the bus number, when more than one bus is supported

• the address space, using constants such as PIOMAP_A24N or PIOMAP_EISA_IO
from sys/pio.h

• the starting bus address and a length

This call also specifies a “fixed” or “unfixed” map. The usual type is “fixed.” For the
differences, see “Fixed PIO Maps” on page 500 and “Unfixed PIO Maps” on page 501.

A call to pio_mapfree() releases a PIO map. PIO maps created by a loadable driver must
be released in the pfxunload() entry point (see “Entry Point unload()” on page 190 and
“Unloading” on page 283).

Testing the PIO Map

The PIO map is created from the parameters that are passed. These are not validated by
pio_mapalloc(). If there is any possibility that the mapped device is not installed, not
active, or improperly configured, you should test the mapped address.

The pio_badaddr() and pio_badaddr_val() functions test the mapped address to see if it
is usable for input. Both functions perform the same operation: operating through a PIO
map, they test a specified bus address for validity by reading 1, 2, 4, or 8 bytes from it.
The pio_badaddr_val() function returns the value that it reads while making the test.
This can simplify coding, as shown in Example 15-1.

Example 15-1 Comparing pio_badaddr() to pio_badaddr_val()

unsigned int gotvalue;
piomap_t *themap;
/* Using only pio_badaddr() */

if (!pio_badaddr(themap,CTLREG,4)
{

(void) pio_bcopyin(themap,CTLREG,&gotvalue,4,4,0);
...use "gotvalue"

/* Using pio_badaddr_val() */

500 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

if (!pio_badaddr_val(themap,CTLREG,4,&gotvalue))
{

...use "gotvalue"

The pio_wbadaddr() function tests a mapped device address for writability. The
pio_wbadaddr_val() not only tests the address but takes a specific value to write to that
address in the course of testing it.

Using the Mapped Address

From a fixed PIO map you can recover a kernel virtual address that corresponds to the
first bus address in the map. The pio_mapaddr() function is used for this.

You can use this address to load or store data into device registers. In the pfxmap() entry
point (see “Concepts and Use of mmap()” on page 180), you can use this address with the
v_mapphys() function to map the range of device addresses into the address space of a
user process.

You cannot extract a kernel address from an unfixed PIO map, as explained under
“Unfixed PIO Maps” on page 501.

Using the PIO Map in Functions

You can apply a variety of kernel functions to any PIO map, fixed or unfixed. The
pio_bcopyin() and pio_bcopyout() functions copy a range of data between memory and
a fixed or unfixed PIO map. These functions are optimized to the hardware that exists,
and they do all transfers in the largest size possible (32 or 64 bits per transfer). If you need
to transfer data in specific sizes of 1 or 2 bytes, use direct loads and stores to the mapped
addresses.

The series of functions pio_andb_rmw() and pio_orb_rmw() perform a
read-modify-write cycle on the VME bus. You can use them to set or clear bits in device
registers. A read-modify-write cycle is faster than a load followed by a store since it uses
fewer system bus cycles.

Fixed PIO Maps

On a Challenge or Onyx system, a PIO map can be either “fixed” or “unfixed.” This
attribute is specified when the map is created.

Kernel Services for VME

007-0911-210 501

The Challenge and Onyx architecture provides for a total of 15 separate, 8 MB windows
on VME address space for each VME bus. Two of these are permanently reserved to the
kernel, and one window is reserved for use with unfixed mappings. The remaining 12
windows are available to implement fixed PIO maps.

When the kernel creates a fixed PIO map, the map is associated with one of the 12
available VME mapping windows. The kernel tries to be clever, so that whenever a PIO
map falls within an 8 MB window that already exists, the PIO map uses that window. If
the desired VME address is not covered by an open window, one of the twelve windows
for that bus is opened to expose a mapping for that address.

It is possible in principle to configure thirteen devices that are scattered so widely in the
A32 address space that twelve, 8 MB windows cannot cover all of them. In that unlikely
case, the attempt to create the thirteenth fixed PIO map will fail for lack of a mapping
window.

In order to prevent this, simply configure your PIO addresses into a span of at most
96 MB per bus (see “Available PIO Addresses” on page 352).

Unfixed PIO Maps

When you create an unfixed PIO map, the map is not associated with any of the twelve
mapping windows. As a result, the map cannot be queried for a kernel address that
might be saved, or mapped into user space.

You can use an unfixed map with kernel functions that copy data or perform
read-modify-write cycles. These functions use the one mapping window that is reserved
for unfixed maps, repositioning it in VME space if necessary.

The lboot command uses an unfixed map to perform the probe and exprobe
sequences from VECTOR statements (see “Configuring VME Devices” on page 358). As
a result, these probes do not tie up mapping windows.

Mapping DMA Addresses

A DMA map is a system object that represents a mapping between a buffer in kernel
virtual space and a range of VME bus addresses. After creating a DMA map, a driver uses
the map to specify the target address and length to be programmed into a VME bus
master before a DMA transfer.

502 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

The functions that operate on DMA maps are summarized in Table 15-2.

A device driver allocates a DMA map using dma_mapalloc(). This is typically done in
the pfxedtinit() entry point, provided that the maximum I/O size is known at that time
(see “Entry Point edtinit()” on page 160). The important argument to dma_mapalloc() is
the maximum number of pages (I/O pages, the unit is IO_NBPP declared in
sys/immu.h) to be mapped at one time.

Note: In the Challenge and Onyx systems, a limit of 64 MB of mapped DMA space per
VME adapter is imposed by the hardware. Some few megabytes of this are taken early
by system drivers. Owing to a bug in IRIX 5.3 and 6.1, a request for 64 MB or more is not
rejected, but waits forever. However, in any release, a call to dma_mapalloc() that
requests a single map close to the 64 MB limit is likely to wait indefinitely for enough
map space to become available.

Table 15-2 Functions That Operate on DMA Maps

Function Header Files Can Sleep Purpose

dma_map(D3) dmamap.h &
types.h &
sema.h

N Load DMA mapping registers for an imminent
transfer.

dma_mapbp(D3) dmamap.h &
types.h &
sema.h

N Load DMA mapping registers for an imminent
transfer.

dma_mapaddr(D3) dmamap.h &
types.h &
sema.h

N Return the “bus virtual” address for a given
map and address.

dma_mapalloc(D3) dmamap.h &
types.h &
sema.h

Y Allocate a DMA map.

dma_mapfree(D3) dmamap.h &
types.h &
sema.h

N Free a DMA map.

vme_adapter(D3) vmereg.h &
types.h

N Determine VME adapter that corresponds to a
given memory address.

Kernel Services for VME

007-0911-210 503

DMA maps created by a loadable driver should be released in the pfxunload() entry point
(see “Entry Point unload()” on page 190 and “Unloading” on page 283).

Using a DMA Map

A DMA map is used before a DMA transfer into or out of a buffer in kernel virtual space.

The function dma_map() takes a DMA map, a buffer address, and a length. It assigns a
span of contiguous VME addresses of the specified length, and sets up a mapping
between that range of VME addresses and the physical addresses that represent the
specified buffer.

When the buffer spans two or more physical pages (IO_NBPP units), dma_map() sets up
a scatter/gather operation, so that the VME bus controller will place the data in the
appropriate page frames.

It is possible that dma_map() cannot map the entire size of the buffer. This can occur only
when the buffer spans two or more pages, and is caused by a shortage of mapping
registers in the bus adapter. The function maps as much of the buffer as it can, and
returns the length of the mapped data.

You must always anticipate that dma_map() might map less than the requested number
of bytes, so that the DMA transfer has to be done in two or more operations.

Following the call to dma_map(), you usually call dma_mapaddr() to get the bus virtual
address that represents the first byte of the buffer. This is the address you program into
the bus master device (using a PIO store), in order to set its starting transfer address.
Then you initiate the DMA transfer (again by storing a command into a device register
using PIO).

Allocating an Interrupt Vector Dynamically

When a VME device generates an interrupt, the Silicon Graphics VME controller initiates
an interrupt acknowledge (IACK) cycle on the VME bus. During this cycle, the
interrupting device presents a data value that characterizes the interrupt. This is the
interrupt vector, in VME terminology.

According to the VME standard, the interrupt vector can be a data item of 8, 16, or 32 bits.
However, Silicon Graphics systems accept only an 8-bit vector, and its value must fall in

504 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

the range 1-254 inclusive. (0x00 and 0xFF are excluded because they could be generated
by a hardware fault.)

The interrupt vector returned by some VME devices is hard-wired or configured into the
board with switches or jumpers. When this is the case, the vector number should be
written as the vectorparameter in the VECTOR statement that describes the device (see
“Configuring VME Devices” on page 358).

Some VME devices are programmed with a vector number at runtime. For these devices,
you omit the vector parameter, or give its value as an asterisk. In the device driver, you
use the functions in Table 15-3 to choose a vector number.

Allocating a Vector

In the pfxedtinit() entry point, the device driver selects a vector number for the device to
use. The best way to select a number is to call vme_ivec_alloc(), which returns a number
that has not been registered for that bus, either dynamically or in a VECTOR line. The
driver then uses vme_ivec_set() to register the chosen vector number. This function takes
parameters that specify

• The vector number

• The bus number to which it applies

• The address of the interrupt handler for this vector—typically but not necessarily
the name of the pfxintr() entry point of the same driver

• An integer value to be passed to the interrupt entry point—typically but not
necessarily the vector number

The vme_ivec_set() function simply registers the number in the kernel, with the
following two effects:

Table 15-3 Functions to Manage Interrupt Vector Values

Function Header Files Can Sleep Purpose

vme_ivec_alloc(D3) vmereg.h & types.h N Allocate a VME bus interrupt vector.

vme_ivec_free(D3) vmereg.h & types.h N Free a VME bus interrupt vector.

vme_ivec_set(D3) vmereg.h & types.h N Register a VME bus interrupt vector.

Kernel Services for VME

007-0911-210 505

• The vme_ivec_alloc() function does not return the same number to another call
until the number is released.

• The specified handler is called when a device presents this vector number on an
interrupt.

Multiple devices can present the identical vector, provided that the interrupt handler has
some way of distinguishing one device from another.

Note: If you are working with both the VME and EISA interfaces, it is worth noting that
the number and types of arguments of vme_ivec_set() differ from the similar EISA
support function eisa_ivec_set().

Releasing a Vector

There is a limit of 254 vector numbers per bus, so it is a good idea for a loadable driver,
in its pfxunload() entry point, to release a vector by calling vme_ivec_free() (see “Entry
Point unload()” on page 190 and “Unloading” on page 283).

Vector Errors

A common problem with programmable vectors in the Challenge or Onyx systems is the
appearance of the following warning in the SYSLOG file:

Warning: Stray VME interrupt: vector =0xff

One possible cause of this error is that the board is emitting the wrong interrupt vector;
another is that the board is emitting the correct vector but with the wrong timing, so that
the VME bus adapter samples all-binary-1 instead. Both these conditions can be verified
with a VME bus analyzer. In the Challenge or Onyx hardware design, the most likely
cause is the presence of empty slots in the VME card cage. All empty slots must be
properly jumpered in order to pass interrupts correctly.

Supporting Early IO4 Cache Problems

VME drivers that support DMA to buffers that are not cache-aligned multiples of a
cache-line need to take special precautions in a Challenge system; see Appendix B, “”.

506 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

Sample VME Device Driver

The source module displayed in Table 15-2 contains a complete character device driver
for a hypothetical VME device. Although it is a character driver, it contains a strategy
routine (the cdev_strategy() function). Both the pfxread() and pfxwrite() entry points call
the strategy routine to perform the actual I/O. As a result, this driver could be installed
as either a block device driver or a character driver, or as both.

The driver is multiprocessor-aware, so its pfxdevflag global contains D_MP. It uses two
locks. A basic lock (board.cd_lock) is used for short-term mutual exclusion, to block a
potential race between the strategy routine and the interrupt routine. A semaphore
(board.cd_rwsema) is used for long-term mutual exclusion to make sure that only one
process uses the device for reading or writing at any time.

Example 15-2 Example VME Character Driver

/***\
* File: cdev.c *
* The following is an example of how a device driver for a VME *
* character device might be written. The sample driver *
* illustrates how to write code which performs DMA into both *
* kernel and user address space, as well as how a sample *
* driver’s registers would be mapped into user address space. *
* *
***/
#include <sys/types.h> /* Contains basic kernel typedefs */
#include <sys/param.h>
#include <sys/immu.h> /* Contains VM-specific definitions (map) */
#include <sys/region.h> /* Contains VM data structure defs (map) */
#include <sys/conf.h> /* Contains cdevsw and driver flag defs */
#include <sys/vmereg.h> /* Contains VME bus-specific definitions */
#include <sys/edt.h> /* Contains definition of edt structs */
#include <sys/dmamap.h> /* Definitions for dma structs and routines */
#include <sys/pio.h> /* Definitions for pio structs and routines */
#include <sys/cmn_err.h> /* Definitions for cmn_err constants */
#include <sys/errno.h> /* Define classic error numbers */
#include <sys/open.h> /* Define open types used in otyp open parm */
#include <sys/cred.h> /* Contains credential structure declaration */
#include <sys/ksynch.h> /* Define ddi-compliant synch primitives */
#include <sys/sema.h> /* Include semaphore prototypes */
#include <sys/ddi.h> /* Include the ddi-compliant stuff */
/* Some constants used throughout the driver */
#define CDEV_MAX_XFERSIZE 65536

Sample VME Device Driver

007-0911-210 507

#define VALID_DEVICE 0x0acedeed
/* The following structure is provided so that we can memory map the
* device’s control registers. For purposes of illustration, we
* provide a couple of generic registers; a real device would have
* completely different mappings.
*/
#define CMD_READ 0x1
#define CMD_WRITE 0x2
#define CMD_CLEAR_INTR 0x4
#define CMD_RESET 0x8
typedef struct deviceregs_s {

volatile unsigned short cr_status; /* The device’s status register */
volatile unsigned short cr_cmd; /* The device’s command register */
volatile unsigned int cr_dmaaddr;/* The DMA address */
volatile unsigned int cr_count; /* The number of bytes to xfer */
volatile unsigned int cr_devid; /* The device ID register */
volatile unsigned int cr_parm; /* A device parameter */

} deviceregs_t;
/* The cdevboard structure contains about a device which the
* driver needs to maintain. In general, each instance of a
* device in the system has an associated cdevboard structure
* which contains driver-specific information about that board.
*/
#define STATUS_PRESENT 0x1
#define STATUS_OPEN 0x2
#define STATUS_INTRPENDING 0x4
#define STATUS_TIMEOUT 0x8
#define FLAG_SET(_x, _y) (((_x)->cd_status) |= (_y))
#define FLAG_CLEAR(_x, _y) (((_x)->cd_status) &= (~(_y)))
#define FLAG_TEST(_x, _y) (((_x)->cd_status) & (_y))
typedef struct cdevboard_s {

lock_t cd_lock; /* Used for mutual exclusion */
sema_t cd_rwsema; /* Prevents simult. read & write */
volatile deviceregs_t *cd_regs; /* Memory-mapped control regs */
dmamap_t *cd_map; /* DMA Map for this device */
unsigned int cd_ctlr; /* The controller # of this device */
unsigned int cd_status; /* The board’s status. */
unsigned int cd_strayintr; /* Counts stray interrupts */
struct buf *cd_buf; /* Pointer to buffer */
unsigned int cd_count; /* Count of bytes being transferred */
toid_t cd_tout; /* Timeout handle */

} cdevboard_t;
/* We need to tell the kernel what kind of interface this driver
* expects. For a simple, non-MP driver, the devflag can be set to
* 0. Since we’re going to be a little more ambitious, we’ll tell

508 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

* the kernel that we are capable of running MP.
*/
int cdev_devflag = D_MP;
/* Forward declarations of general driver functions */
int cdev_intr(int board);
int cdev_strategy(struct buf *bp);
void cdev_timeout(cdevboard_t *board);
/* Driver global data structures; to minimize memory use, we create
* an array of pointers to audioboard structures and only allocate the
* actual structure if the corresponding board is configured.
*/
#define CDEV_MAX_BOARDS 4
static cdevboard_t *CDevBoards[CDEV_MAX_BOARDS + 1];
#if DEBUG
#define DPRINTF(_x) debug_printf _x
void debug_printf(char *fmt, ...)
{

va_list ap;
extern void icmn_err();
va_start(ap, fmt);
icmn_err(CE_NOTE, fmt, ap);
va_end(ap);

}
#else
#define DPRINTF(_x)
#endif

/**
* edtinit is the first routine all VME drivers need to provide.
* This function is called early during kernel initialization, and
* drivers generally use it to set up driver-global data structures
* and device mappings for any devices which exist. The kernel calls
* it once for each VECTOR line in the appropriate .sm file.
*/
void
cdev_edtinit(struct edt *e)
{

piomap_t *piomap; /* Control register mapping descriptor */
dmamap_t *dmamap; /* DMA mapping for read/write buffers */
volatile deviceregs_t *base; /* Base address of device’s control regs */
vme_intrs_t *intrs; /* Pointer to VME interrupt information */
int intr_vec; /* Actual vector to use */
int ctlr; /* Board number to be configured */
cdevboard_t *board; /* New board data structure */
/* Make sure that the the controller number is within range */

Sample VME Device Driver

007-0911-210 509

ctlr = e->e_ctlr;
if (ctlr < 0 || ctlr > CDEV_MAX_BOARDS) {

cmn_err(CE_WARN, “cdev%d: controller number is invalid”, ctlr);
return;

}
/* Allocate a programmed I/O mapping structure for the particular
* device. The kernel uses the data in the e_space field to figure
* out both the VME base address and the total size of the register area.
*/
piomap = pio_mapalloc(e->e_bus_type, e->e_adap, e->e_space,

PIOMAP_FIXED, “cdev”);
/* XXX Check for the success of piomap allocation */
if (piomap == (piomap_t *)NULL){

cmn_err(CE_WARN, “cdev%d: Could not allocate piomap”, ctlr);
return;

}
/* Now that the map is allocated, we position it so that it overlays
* the device’s hardware registers. Since this is a fixed map, we
* just pass in the base address of the control register range.
* iobase comes from the VECTOR line in the .sm file.
*/
base = (volatile deviceregs_t*) pio_mapaddr(piomap, e->e_iobase);
/* We’re going to need to DMA map the user’s buffer during read and
* write requests, so we preallocate a fixed number of dma mapping
* entries based on the constant CDEV_MAX_XFERSIZE. If we allowed
* multiple users to perform reads and writes simultaneously we’d
* probably want to allocate one map for reads and one for writes.
* Since we only allow one operation to occur at any given time,
* though, we can get away with only one.
*
* IMPORTANT NOTE: There are only a limited number of dma mapping
* registers available in a system; you should be somewhat conservative
* in your use of them. It is reasonable to consume up to 100 per
* device (you can use more if you expect that only a couple devices
* will be attached for each driver. If, for example, this driver
* will never control more than two devices, you could probably use
* up to 512 mapping registers for each device. If however, you’d expect
* to see hundreds of devices, you’d need to be more conservative.
*/
dmamap = dma_mapalloc(DMA_A24VME, e->e_adap,

io_btoc(CDEV_MAX_XFERSIZE) + 1, 0);
if (dmamap == (dmamap_t*) NULL) {

cmn_err(CE_WARN, “cdev%d: Could not allocate dmamaps”, ctlr);
pio_mapfree(piomap);
return;

510 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

}
/* The next step would be to probe the device to determine whether
* it is actually present. To do this, we attempt to read some
* registers which behave in a manner unique to this particular
* hardware. We need to protect ourselves in the event that the
* device isn’t actually present, however, so we use the badaddr
* and wbadaddr routines. For our example, we assume that the
* device is present if it’s device
*/
if ((badaddr(&(base->cr_devid), 4) == 0) &&

(base->cr_devid == VALID_DEVICE)) {
DPRINTF((“cdev%d: found valid device”, ctlr));

} else {
/* It doesn’t look like the device is there. */
cmn_err(CE_WARN, “cdev%d: cannot find actual device”, ctlr);
pio_mapfree(piomap);
dma_mapfree(dmamap);
return;

}
/* Now we set up the interrupt for this device.
* It is possible to specify a vector and priority level on the
* VECTOR line in the .sm file, so we check to see if such was the case.
*/
intrs = (vme_intrs_t*) e->e_bus_info;
intr_vec = intrs->v_vec;
/* If intr_vec is non-zero, user specified specific vec in .sm file.
* If the interrupt was specified on the VECTOR line, the kernel has
* already established a vector for us, so we don’t need to do it
* ourselves.
*/
if (intr_vec == 0) {

intr_vec = vme_ivec_alloc(e->e_adap);
/* Make sure that we got a good interrupt vector */
if (intr_vec == -1) {

cmn_err(CE_WARN, “cdev%d: could not allocate intr vector\n”, ctlr);
pio_mapfree(piomap);
dma_mapfree(dmamap);
return;

}
/* Associate this driver’s interrupt routine with the acquired vec */
vme_ivec_set(e->e_adap, intr_vec, cdev_intr, 0);

}
/* Initialize the board structure for this board */
board = (cdevboard_t*) kmem_alloc(sizeof(cdevboard_t));
if (board == (void*) 0) {

Sample VME Device Driver

007-0911-210 511

cmn_err(CE_WARN, “cdev%d: kmem_alloc failed”, ctlr);
pio_mapfree(piomap);
dma_mapfree(dmamap);
/* XXX Need to check whether it is allocated?? */
vme_ivec_free(e->e_adap, intr_vec);
return;

}
board = CDevBoards[ctlr];
board->cd_regs = base;
board->cd_ctlr = ctlr;
board->cd_status = STATUS_PRESENT;
board->cd_strayintr = 0;
board->cd_map = dmamap;
initnsema(&board->cd_rwsema, 1, “CDevRWM”);
/* Finally, call any one-time-only device initialization routines;
* this particular device doesn’t have any.
*/
return;

}
/**
* cdev_open -- When opening a device, we need to check for mutual
* exclusion (if desired) and then set up an additional data structures
* if this is the first time the device has been opened. Remember that
* the OS usually doesn’t call close until all users close the device,
* so you can’t count on being able to set up unique data for each user
* of the device unless you either disallow multiple opens at the same time
* or mark the device as being a layered (otype = O_LYR) device.
*/
int
cdev_open(dev_t *dev, int flag, int otyp, cred_t *cred)
{

minor_t ctlr; /* Controller # of cdev being opened */
cdevboard_t *board; /* per-board data for opened cdev*/
int s; /* Opaque lock value */
/* We assume that the minor number encodes the ctlr number, so
* we just go ahead and use it to index the CDevBoards array once
* we’ve validated it.
*/
ctlr = geteminor(*dev);
if (ctlr > CDEV_MAX_BOARDS) {

DPRINTF((“cdev%d: open: minor number out of range”, ctlr));
return ENXIO;

}
board = CDevBoards[ctlr];
if (FLAG_TEST(board, STATUS_PRESENT) || (board->cd_ctlr != ctlr)) {

512 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

DPRINTF((“cdev%d: open: device not found”, ctlr));
return ENXIO;

}
/* If exclusiveness is desired, we now need to atomically insure that
* we are the owners of the device.
*/
s = LOCK(&board->cd_lock, splhi);
if (FLAG_TEST(board, STATUS_OPEN)) {

UNLOCK(&board->cd_lock, s);
return EBUSY;

} else {
ASSERT(board->cd_status == STATUS_PRESENT);
FLAG_SET(board, STATUS_OPEN);

}
UNLOCK(&board->cd_lock, s);
return 0;

}

/**
* cdev_close -- Called when the open reference count drops to zero.
* Cleans up any leftover data structure and marks the device as
* available.
*/
int
cdev_close(dev_t dev, int flag, int otyp, cred_t *cred)
{

int ctlr; /* Controller # of dev being closed */
cdevboard_t *board; /* per-board data structure */
ctlr = geteminor(dev);
ASSERT(ctlr <= CDEV_MAX_BOARDS);
board = CDevBoards[ctlr];
ASSERT(board && FLAG_TEST(board, STATUS_OPEN|STATUS_PRESENT));
/* Do any cleanup required here */
/* Reset the board’s status flags (to clear the OPEN flag) */
FLAG_CLEAR(board, STATUS_OPEN);
return 0;

}
/**
* cdev_intr -- Called when an interrupt occurs. We check to see if
* a process was waiting for an I/O operation to complete and
* re-activate that process if such is the case.
*/
#ifdef EVEREST /* IO4 fix for Challenge */
extern int io4_flush_cache(caddr_t piomap);
#endif

Sample VME Device Driver

007-0911-210 513

int
cdev_intr(int ctlr)
{

cdevboard_t *board; /* per-board data structure pointer */
int s; /* lock return value */

/* Make sure that the controller value is legitimate */
ASSERT(ctlr <= CDEV_MAX_BOARDS);
board = CDevBoards[ctlr];
ASSERT(board && FLAG_TEST(board, STATUS_PRESENT));

#ifdef EVEREST /* flush IO4 cache */
(void)io4_flush_cache((caddr_t)board->cd_regs);

#endif
/*
* Get exclusive use of the board. This ensures that the strategy
* routine is completely finished setting STATUS_INTRPENDING before
* we examine it.
*/
s = LOCK(&board->cd_lock, splhi);

/* It’s possible that we could get a stray interrupt if the hardware
* is flaky, so we keep a count of bogus interrupts and ignore them.
*/
if (FLAG_TEST(board, STATUS_OPEN|STATUS_INTRPENDING)) {

board->cd_strayintr++;
return 0;

}
/* Acknowledge the interrupt from the device */
board->cd_regs->cr_cmd = CMD_CLEAR_INTR;
FLAG_CLEAR(board, STATUS_INTRPENDING);
/* Remove the timeout request */
untimeout(board->cd_tout);
/* Update the buffer’s parameters */
ASSERT(board->cd_buf->b_bcount > 0);
board->cd_buf->b_bcount -= board->cd_count;
board->cd_buf->b_dmaaddr += board->cd_count;
/* Release the mutual exclusion on the board. */
UNLOCK(&board->cd_lock,s);
/* If the transfer count is 0, then we’ve transferred all of the
* bytes in the request, so we call iodone to awaken the user process.
* Otherwise, we call cdev_strat to initiate another transfer.
*/
if (board->cd_buf->b_bcount == 0)

iodone(board->cd_buf);
else

cdev_strategy(board->cd_buf);
return 0;

514 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

}
/**
* cdev_read -- reads data from the device. We employ the uiophysio
* routine to perform all the requisite mapping of the buffer
* for us and then call the cdev_strat routine. The big advantage
* of uiophysio() is that it sets up memory such that the device can
* DMA directly into the user address space. The strategy routine
* is responsible for actually setting up and initiating the transfer.
* The process will block in uiophysio until the interrupt handler
* calls iodone() on buffer pointer.
*/
int
cdev_read(dev_t dev, uio_t *uio, cred_t *cred)
{

int ctlr;
cdevboard_t *board;
int error = 0;
ASSERT(ctlr >= 0 && ctlr <= CDEV_MAX_BOARDS);
ctlr = geteminor(ctlr);
ASSERT(board && FLAG_TEST(board, STATUS_OPEN|STATUS_PRESENT));
board = CDevBoards[ctlr];
/* Since we allocated only a single DMA buffer, we need to block
* if a previous transfer hasn’t completed.
*/
psema(&board->cd_rwsema, PZERO+1);
error = uiophysio(cdev_strat, NULL, dev, B_READ, uio);
/* Check to see if the transfer timed out */
if (FLAG_TEST(board, STATUS_TIMEOUT)) {

FLAG_CLEAR(board, STATUS_TIMEOUT);
error = EIO;

}
vsema(&board->cd_rwsema);
return error;

}
/**
* cdev_write -- writes data from a user buffer to the device.
* We employ the uiophysio routine to set up the mappings for us.
* Once the mappings are established, uiophysio will call the
* given strategy routine (cdev_strat) with a buffer pointer.
* The strategy routine is then responsible for kicking off the
* transfer. The process will block in uiophysio until the
* interrupt handler calls iodone() on the buffer pointer.
*/
int
cdev_write(dev_t dev, uio_t *uio, cred_t *cred)

Sample VME Device Driver

007-0911-210 515

{
int ctlr;
cdevboard_t *board;
int error = 0;
ASSERT(ctlr >= 0 && ctlr <= CDEV_MAX_BOARDS);
ctlr = geteminor(ctlr);
ASSERT(board && FLAG_TEST(board, STATUS_OPEN|STATUS_PRESENT));
board = CDevBoards[ctlr];
psema(&board->cd_rwsema, PZERO+1);
error = uiophysio(cdev_strat, NULL, dev, B_WRITE, uio);
/* Check to see if the transfer timed out */
if (FLAG_TEST(board, STATUS_TIMEOUT)) {

FLAG_CLEAR(board, STATUS_TIMEOUT);
error = EIO;

}
vsema(&board->cd_rwsema);
return error;

}
/**
* cdev_strat -- Called by uiophysio, cdev_strat actually performs all
* the device-specific actions needed to initiate the transfer,
* such as establishing the DMA mapping of the transfer buffer and
* actually programming the device. There is an implicit assumption
* that the device will interrupt at some later point when the I/O
* operation is complete.
*/
int
cdev_strategy(struct buf *bp)
{

int ctlr; /* Controller # being accessed */
cdevboard_t *board; /* Board data structure */
int mapcount; /* Count */
int s; /* opaque lock value */

/* Get a reference to the actual board structure */
ctlr = geteminor(bp->b_edev);
ASSERT(ctlr >= 0 && ctlr <= CDEV_MAX_BOARDS);
board = CDevBoards[ctlr];
ASSERT(board && FLAG_TEST(board, STATUS_OPEN|STATUS_PRESENT));
/* We start by mapping the appropriate region into VME address space.
* Because of the mapping registers we don’t have to worry about the
* fact that the physical pages backing the data regions may be
* physically discontinuous; in effect, the DMA mapping is taking the
* place of scatter/gather hardware. Nonetheless, in order to avoid
* consuming an excessive number of translation entries we limit the

516 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

* size of the transfer to CDEV_MAX_XFERSIZE.
*/
mapcount = MIN(bp->b_bcount, CDEV_MAX_XFERSIZE);
mapcount = dma_map(board->cd_map, bp->b_dmaaddr, mapcount);
ASSERT(mapcount > 0);
/* Before starting the I/O, get exclusive use of the board struct.
* This ensures that, if this CPU is interrupted and we are slow to
* set STATUS_INTRPENDING, cdev_intr() will be locked out until we do.
*/
s = LOCK(&board->cd_lock, splhi);
/* Now we start the transfer by writing into memory-mapped registers */
board->cd_regs->cr_dmaaddr = dma_mapaddr(board->cd_map, bp->b_dmaaddr);
board->cd_regs->cr_count = mapcount;
board->cd_regs->cr_cmd = ((bp->b_flags & B_WRITE) ? CMD_WRITE : CMD_READ);
/* Schedule a timeout, just in case the device decides to hang forever */
itimeout(cdev_timeout, board, 2000, splhi);
/* Finally, we update some of the board data structures */
board->cd_buf = bp;
board->cd_count = mapcount;
FLAG_SET(board, STATUS_INTRPENDING);
/* Release the board struct, so the interrupt handler can use it. */
UNLOCK(&board->cd_lock, s);
/* Upon returning, uiophysio will block until cdev_intr calls iodone() */
return 0;

}
/**
* cdev_ioctl -- Not too exciting. We’ll assume that the device has
* one controllable parameter which can be both written and received.
* To help users avoid errors, we use unusual constants for the ioctl
* values. In a real driver, the CDIOC definitions would go into a
* header file.
*/
#define CDIOC_SETPARM 0xcd01
#define CDIOC_GETPARM 0xcd02
int
cdev_ioctl(dev_t dev, int cmd, int arg, int mode, cred_t *cred)
{

int ctlr; /* Controller number */
cdevboard_t *board; /* Per-controller data */
int error = 0; /* Error return value */
ctlr = geteminor(dev);
ASSERT(ctlr >= 0 && ctlr <= CDEV_MAX_BOARDS);
board = CDevBoards[ctlr];
ASSERT(board && FLAG_TEST(board, STATUS_OPEN|STATUS_PRESENT));
switch (cmd) {

Sample VME Device Driver

007-0911-210 517

case CDIOC_SETPARM:
board->cd_regs->cr_parm = arg;
break;

case CDIOC_GETPARM:
{

int value;
value = board->cd_regs->cr_parm;
if (copyout(&value, (void*) arg, sizeof(int)))

error = EFAULT;
}
break;

default:
error = EINVAL;
break;

}
return error;

}
/**
* cdev_timeout -- If an I/O request takes a really long time to complete
* for some reason (if, for example, someone takes the device offline),
* it is better to warn the user than to simply hang. This timeout
* routine will cancel any pending I/O requests and display a message.
* A more sophisticated routine might try resetting the device and
* re-executing the operation.
*/
void
cdev_timeout(cdevboard_t *board)
{

/* Clear the pending request from the device. This operation
* is extremely dependent on the actual device. This driver
* pretends that we simply can use the reset command.
*/
board->cd_regs->cr_cmd = CMD_RESET;
/* Make a note that the operation timed out */
FLAG_SET(board, STATUS_TIMEOUT);
/* Display a warning */
cmn_err(CE_WARN, “cdev%d: device timed out”, board->cd_ctlr);
/* Notify the user process that the operation has “finished”. */
iodone(board->cd_buf);

}
/**
* cdev_map -- For illustrative purposes, we show how one would go about
* mapping the device’s control registers.
*/
int

518 007-0911-210

15: Services for VME Drivers on Challenge/Onyx

cdev_map(dev_t dev, vhandl_t *vt, off_t off, int len, int prot)
{

int ctlr; /* Controller number */
cdevboard_t *board; /* Per-controller data */
ctlr = geteminor(dev);
ASSERT(ctlr >= 0 && ctlr <= CDEV_MAX_BOARDS);
board = CDevBoards[ctlr];
ASSERT(board && FLAGS_TEST(board, STATUS_OPEN|STATUS_PRESENT));
if (v_mapphys(vt, (void*) board->cd_regs, len))

return ENOMEM;
else

return 0;
}

/**
* cdev_unmap -- Called when a region is unmapped. We don’t actually
* need to do anything.
*/
int
cdev_unmap(dev_t dev, vhandl_t *vt)
{

/* No need to do anything here; unmapping is handled by upper levels
* of the kernel.
*/
return 0;

}

PART FIVE

SCSI Device Drivers V

Chapter 16, “SCSI Device Drivers”
Actual control of the SCSI bus is managed by one or more Host Adapter drivers.
This chapter tells how SCSI device drivers use these facilities.

007-0911-210 521

Chapter 16

16. SCSI Device Drivers

All SGI systems support the small computer systems interface (SCSI) bus for the
attachment of disks, tapes, and other devices. This chapter details the kernel-level
support for SCSI device drivers.

If your aim is to control a SCSI device from a user-level process, this chapter contains
some useful background information to supplement Chapter 5, “User-Level Access to
SCSI Devices.” If you are designing a kernel-level SCSI driver, this chapter contains
essential information on kernel support. The major topics in this chapter are as follows:

• “SCSI Support in SGI Systems” on page 522 gives an overview of the hardware and
software support for SCSI.

• “Host Adapter Facilities” on page 529 documents the use of the host adapter driver
to access a SCSI device.

• “Designing a SCSI Driver” on page 543 provides information on how to design a
third party SCSI device drivers.

• “SCSI Reference Data” on page 549 tabulates SCSI codes and messages for
reference.

• “A Note on FibreChannel Drivers” on page 556 correlates writing SCSI device
Drivers with writing FibreChannel device drivers.

In addition, you may want to review the following additional sources:

intro(7) reference page Documents the naming conventions for
disk and tape device special files.

dksc(7) reference page Documents the SGI disk volume
partition layout and the ioctl support in
the base-level SCSI drivers.

ANSI X3.131-1986 and X3T9.2/85-52 Rev 4B. SCSI standards documents.

http://scitexdv.com:8080/SCSI2/ Web page containing the complete
SCSI-2 standard in HTML form.

master.d/scsi Driver registration tables used for
registering third party drivers.

522 007-0911-210

16: SCSI Device Drivers

SCSI Support in SGI Systems

All current SGI systems rely on the SCSI bus as the primary attachment for disks and
tapes. The IRIX kernel also provides support for OEM drivers for SCSI devices.

As used here, the term “adapter” means a SCSI controller such as the Western Digital
W93 chip, which attaches a unique chain of SCSI devices. In this sense, a SCSI adapter
and a SCSI bus are the same. “Adapter number” is used instead of “bus number.”

SCSI Hardware Support

The SGI computer systems supported by IRIX 6.5 can attach multiple SCSI adapters, as
follows:

• The Origin 2000 and Onyx2 systems have two SCSI controllers on each Base I/O
module. Several additional SCSI controllers can be added to each module.

• The Origin 200 system has two SCSI controllers per chassis and the possibility of
optional SCSI controllers using PCI and MSCSI interfaces.

• The Octane workstation has two SCSI controllers, one for the internal disks and one
for the external chain. In addition, PCI and MSCSI controllers can be added.

• The Indy workstation has at least one SCSI adapter on its motherboard, and can
have up to two additional adapters on a GIO option board.

• The Indigo2 series supports two SCSI adapters on the motherboard.

• The Challenge S system has two SCSI adapters on the motherboard, and can have
one or two additional on each of one or two additional GIO option boards, for a
maximum of six adapters.

• The Challenge M system supports one SCSI adapter on the CPU board and can have
up to two additional adapters on a GIO option board.

• The Power Channel-2 (IO4) boards used in the Challenge and Onyx series support
two SCSI adapters, plus many as six additional SCSI adapters on mezzanine cards,
for a maximum of eight adapters per IO4.

In all systems, DMA mapping hardware allows a SCSI adapter to treat discontiguous
memory locations as if they were a contiguous buffer, providing scatter and gather
support.

SCSI Support in SGI Systems

007-0911-210 523

IRIX Kernel SCSI Support

The IRIX kernel contains two levels of SCSI support. An inner SCSI driver, the host adapter
driver, manages all communication with a SCSI hardware adapter. The kernel-level SCSI
device driver for a particular device prepares SCSI commands and calls on the host
adapter driver to execute them. This design centralizes the management of SCSI
adapters. Centralization is necessary because the use of the SCSI bus is shared by many
devices, while recovery and error-handling are handled at the adapter level. In addition,
use of the host adapter driver makes it simpler to write a SCSI device driver.

Host Adapter Drivers

Different host adapter drivers are loaded, depending on the hardware in the system.
Some examples of host adapter drivers are wd93 and ql.

The host adapter drivers support all levels of the SCSI standard: SCSI-1, the Common
Command Set (CCS, superceded by SCSI-2), and SCSI-2. Not all optional features of the
standard are supported. Different systems support different feature combinations (such
as synchronous, fast, and wide SCSI), depending on the available hardware.

The host adapter drivers handle the low-level communication over the SCSI interface,
such as programming the SCSI interface chip or board, negotiating synchronous or wide
mode, and handling disconnect and reconnect.

A host adapter driver is not, strictly speaking, a proper device driver because it does not
support all the entry points documented in Chapter 7, “Structure of a Kernel-Level
Driver.” You can think of it as a specialized library module for SCSI-bus management or
as a device driver, whichever you prefer. The software interface to the host adapter driver
is documented under “Host Adapter Facilities” on page 529.

SCSI Devices in the hwgraph

When planning a SCSI device driver, it is informative to spend some time exploring the
rather complex network of hwgraph vertexes that is set up by the existing SCSI drivers.
Your tools for this are the find and grep commands. For example:

find /hw -print | grep scsi | grep -v disk

524 007-0911-210

16: SCSI Device Drivers

The result is voluminous even on a relatively small system and reveals that there are
many vertexes created for each logical unit (LUN) on each controller. Here is a sample
with repetitions edited out:

houston 30% find /hw -print | grep scsi | grep -v disk
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/bus
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/0
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/0/scsi
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/1
...
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/2
...
/hw/module/1/slot/io1/baseio/pci/1/scsi_ctlr
...
/hw/scsi_ctlr
/hw/scsi_ctlr/0
/hw/scsi_ctlr/1
/hw/scsi
/hw/scsi/sc0d1l0
/hw/scsi/sc0d2l0

Controller Vertexes

Paths of the form /hw/.../scsi_ctlr/... are hwgraph vertexes that represent SCSI
host adapters (controllers) discovered during boot time. Each of these is presented to a
host adapter at its pfxattach() entry point (see “Entry Point attach()” on page 162). All the
other hwgraph paths that contain the word scsiwere created by the host adapter driver
or by SCSI device drivers (see “Extending the hwgraph” on page 233).

Target Vertexes and LUN Vertexes

Paths that contain scsi_ctlr/N/target/N were created by the host adapter driver to
represent each target that it discovered while probing its bus at attach time. Attached to
these are paths containing lun/N, for example:

/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/0/scsi

SCSI Support in SGI Systems

007-0911-210 525

Whenever a target is found to have logical units, a vertex is created for each, and when
the LUN responds, a character device vertex is created for it.

ls -l /hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/0
total 0
drwxr-xr-x 2 root sys 0 Mar 12 14:30 disk
crw------- 1 root sys 0,116 Mar 12 14:30 scsi

The character device scsi represents the addressable LUN. The vertex disk was
installed by the disk device driver. It is the attachment vertex for a number of device
vertexes that represent the parts of a disk volume, such as disk/partition/1/block
and disk/partition/1/char, character and block access to a disk (see “Block and
Character Device Access” on page 38).

Convenience Vertexes

In addition to the lengthy pathnames, there are shortcut names:

% ls -l /hw/scsi
total 0
crw------- 1 root sys 0,116 Mar 12 14:41 sc0d1l0
crw------- 1 root sys 0,133 Mar 12 14:41 sc0d2l0
crw------- 1 root sys 0,150 Mar 12 14:41 sc0d3l0
crw------- 1 root sys 0,167 Mar 12 14:41 sc0d4l0
crw------- 1 root sys 0,184 Mar 12 14:41 sc0d5l0

These were created by the SCSI driver as shortcut links to the lun/N/scsi vertexes, as
you can verify with the -S option of ls:

% ls -S /hw/scsi/sc0d1l0
/hw/scsi/sc0d1l0 ->
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0/target/1/lun/0/scsi

In the system used to create this example, a second SCSI controller exists but has no
LUNs. If it had LUNs, there would be shortcut names sc1d1l0 and so forth in
/hw/scsi, as well.

At boot time, the host adapter driver creates a vertex and adds an edge labelled “scsi”
from the root vertex to the new vertex. The ioconfig command (see “Using ioconfig for
Global Controller Numbers” on page 53) then adds edges from it labelled “sc0d1l0,”
“sc0d2l0,” and so forth, each ending at one of the lun/N/scsi vertexes.

526 007-0911-210

16: SCSI Device Drivers

Although it is created dynamically, the shortcut name /hw/scsi is the target of a
symbolic link in /dev. Thus all convenience links such as /hw/scsi/sc0d1l0 can also
be addressed as /dev/scsi/sc0d1l0 and so on.

ls -l /dev/scsi
lrwxr-xr-x 1 root sys 8 Jan 10 15:33 /dev/scsi->/hw/scsi
% ls -l /dev/scsi/sc0d1l0
crw------- 1 root sys 0,116 Mar 12 15:21 /dev/scsi/sc0d1l0

Additional convenience vertexes are created to point to the controllers themselves. These
can be used by scsiha to pass requests to the scsi host adapter drivers to perform
activities that aren’t related to the SCSI commands (see scsiha(7M) and scsiha(1M).

% ls -l /hw/scsi_ctlr
total 0
lrw------- 1 root sys 47 Mar 12 14:42 0 ->
/hw/module/1/slot/io1/baseio/pci/0/scsi_ctlr/0
lrw------- 1 root sys 47 Mar 12 14:42 1 ->
/hw/module/1/slot/io1/baseio/pci/1/scsi_ctlr/0

These were also created by ioconfig for each of the controller vertexes (controller 0 in
PCI slot 0, later controller 0 in PCI slot 1). When they were created, the driver:

1. Created a vertex.

2. Added an edge from the root vertex with the label “scsi_ctlr,” ending at the new
vertex.

3. Added an edge labelled “0” from that vertex ending at the controller vertex.

The next time the driver found the /hw/scsi_ctlr edge already existed, and only
added the new edge “1” pointing to its controller vertex.

Disk Driver Vertexes

Bring more command-line utilities to bear on the task of displaying the vertexes built by
the disk device driver:

% find /hw -print | grep scsi | grep disk | \
sed ‘s/hw.*_ctlr/.../’ | more
/.../0/target/1/lun/0/disk
/.../0/target/1/lun/0/disk/volume
/.../0/target/1/lun/0/disk/volume/char
/.../0/target/1/lun/0/disk/volume_header
/.../0/target/1/lun/0/disk/volume_header/block

SCSI Support in SGI Systems

007-0911-210 527

/.../0/target/1/lun/0/disk/volume_header/char
/.../0/target/1/lun/0/disk/partition
/.../0/target/1/lun/0/disk/partition/0
/.../0/target/1/lun/0/disk/partition/0/block
/.../0/target/1/lun/0/disk/partition/0/char
/.../0/target/1/lun/0/disk/partition/1
/.../0/target/1/lun/0/disk/partition/1/block
/.../0/target/1/lun/0/disk/partition/1/char
/.../0/target/2/lun/0/disk
...

These names are created dynamically, but at a slightly different time. The names reflect
the actual layout of the disk volume. For example, a disk could be reformatted to have
more or fewer partitions. The disk device driver removes and rebuilds all the names that
depend on the volume format (such as .../lun/0/disk/partition/0/block) each
time the disk volume header is read into memory. That normally occurs only the first
time the disk is opened—which is usually done by ioconfig.

Note that similar to the creation and removal of hwgraph entries by the host adapter
driver, a third-party SCSI device driver must also create and remove hwgraph entries as
described in “Designing a SCSI Driver” on page 543.

Hardware Administration

Some bus protocol features such as connect and disconnect are controlled by
configuration files that are used by the host adapter drivers. For example, the wd93
driver has a number of configurable options coded in the descriptive file
/var/sysgen/master.d (for the format of descriptive files, see “Describing the Driver
in /var/sysgen/master.d” on page 274).

The QLogic driver ql takes its options by the more modern route of the
DEVICE_ADMIN statement (see “Storing Device and Driver Attributes” on page 58 and
“Retrieving Administrator Attributes” on page 241). You can peruse
/var/sysgen/system/irix.sm to see DEVICE_ADMIN statements addressed to
“ql_” and associated comments.

528 007-0911-210

16: SCSI Device Drivers

Note: The connect/disconnect strategy is enabled on any SCSI bus by default (the option
is controlled by a constant defined in the host adapter driver descriptive file in
/var/sysgen/master.d). When disconnect is enabled on a bus, and a device on that
bus refuses to disconnect, it can cause timeouts on other devices.

Host Adapter Facilities

007-0911-210 529

Host Adapter Facilities

The principal difference between a SCSI driver and other kernel-level drivers is that,
while other kinds of drivers are expected to control devices directly using PIO and DMA,
a SCSI driver operates its devices indirectly, by making function calls to the host adapter
driver. This section documents the functional interface to the host adapter driver.

Purpose of the Host Adapter Driver

IRIX uses host adapter drivers because the SCSI bus is shared among multiple devices of
different types, each type controlled by a different driver. A disk, a tape, a CDROM, and
a scanner could all be cabled from the same SCSI adapter. Each device has a different
driver, but each driver needs to use the adapter, a single chip-set, to communicate with
its device.

If IRIX allowed multiple drivers to operate the host adapter, there would be confusion
and errors from the conflicting uses. IRIX puts the management of each host adapter
under the control of a host adapter driver, whose job is to issue commands on its bus and
report the results. The host adapter driver is tailored to the hardware of the particular
host adapter and to the architecture of the host system.

The interface to the host adapter driver is the same no matter what type of hardware the
adapter uses. This insulates the individual device drivers from details of the adapter
hardware.

The driver for each type of device is responsible for preparing the SCSI command bytes
for its device, for passing the command requests to the correct host adapter driver, and
for interpreting sense and status data as it comes back.

Host Adapter Concepts

The host adapter driver is the driver that is called by the kernel to attach the SCSI
controller at boot time while the kernel is exploring the hardware and building the
hwgraph (see “Entry Point attach()” on page 162).

The host adapter driver places information in the hwgraph vertex that represents the
controller, and extends the hwgraph with subordinate vertexes that represent targets and
LUNs (see “SCSI Devices in the hwgraph” on page 523).

530 007-0911-210

16: SCSI Device Drivers

A SCSI driver is called to manage one or more SCSI target devices. Each target is
physically connected to a SCSI adapter. The hwgraph echoes this connectivity: the SCSI
target vertex is connected to the SCSI adapter vertex. Thus when the SCSI driver knows
its target device vertex, it can access the corresponding host adapter vertex, and through
this vertex, can invoke the host adapter driver.

Target Numbers

The purpose of a host adapter driver is to carry communications between a SCSI driver
and a target. A target is a device on the SCSI chain that responds to SCSI commands. A
target can be a single device, or it can be a controller that in turn manages other devices.

A target is identified by a number between 0 and 15. Normally this number is configured
into the device with switches or jumpers. The SCSI controller itself has a target number
(usually number 0), but it cannot be used as a target.

The SCSI device driver needs to know the number of its target in order to format a
request structure. The target number is accessible from the target vertex, as shown under
“Using the Function Vector Macros” on page 533.

Logical Unit Numbers (LUNs)

When the target is a controller, it manages one or more subdevices, each one a logical unit
of that target. The logical unit being addressed is identified by a logical unit number
(LUN). When the target is a single device, its LUN is 0.

A SCSI device driver needs the unit number of a device when it formats a request
structure. The unit number is accessible from the vertex for the LUN, as shown under
“Using the Function Vector Macros” on page 533.

Host Adapter Facilities

007-0911-210 531

Overview of Host Adapter Functions

Each host adapter driver provides the same functional interface and supports the four
functions listed in Table 16-1.

Note: The scsi_reset() function that formerly existed has been removed.

How the Host Adapter Functions Are Found

A SCSI device driver can be asked to manage devices on different adapters. Different
adapters may use the same or different hardware, and be managed by the same or
different host adapter drivers. How does the driver locate the correct host adapter
function for a given device?

The answer is that each host adapter driver places a set of vectors to its functions in the
hwgraph vertex for the controller. Using macros defined in sys/scsi.h, the driver
invokes the function it needs indirectly, by way of pointers stored in the controller vertex.

Table 16-1 Host Adapter Function Summary

Function
Header
Files Purpose

scsi_info(D3) scsi.h Issue the SCSI Inquiry command and return the results.

scsi_alloc(D3) scsi.h Open a connection between a driver and a target device.

scsi_free(D3) scsi.h Release connection to a target device.

scsi_command(D3) scsi.h Transmit a SCSI command on the bus and return results.

scsi_abort() scsi.h Transmit a SCSI ABORT command (no reference page).

scsi_ioctl() scsi.h Implement arbitrary control operations.

scsi_dump() scsi.h Called by the kernel to notify the host adapter driver that the
kernel is shutting down for a panic dump, and that subsequent
operations will be for writing the dump and other diagnostic
files, and should be performed synchronously.

532 007-0911-210

16: SCSI Device Drivers

Vertex Information Structures

The host adapter driver constructs the arrangement of hwgraph vertexes and data
structures illustrated in Figure 16-1.

Figure 16-1 SCSI Vertexes and Data Structures

The main features of this arrangement are as follows:

• The vertex for the controller anchors a scsi_ctlr_info_t, which contains the vectors to
the host adapter functions.

• The vertex for any target anchors a scsi_targ_info_t, which contains the target
number and a pointer to the scsi_ctlr_info_t for that target’s controller.

lun

0

target

hw

scsi_ctlr

7

0

7

0

scsi_lun_info_t
handle
LUN number: 0
pointer:

scsi_ctlr_info_t
handle

scsi_alloc()
scsi_free()
scsi_info()
scsi_command()
scsi_ioctl()
scsi_dump()

scsi_targ_info_t
handle
target number: 0
pointer:

Host Adapter Facilities

007-0911-210 533

• The vertex for any LUN anchors a scsi_lun_info_t, which contains the unit number
and a pointer to the scsi_targ_info_t for that LUN’s target.

Using the Function Vector Macros

A device driver, given a handle to a vertex for a LUN, a target, or a controller, can always
access the vectors to the host adapter functions. These connections are used by macros
defined in sys/scsi.h, as listed in Table 16-2.

Table 16-2 Macro Access to SCSI Information

Desired Datum scsi_ctlr_info_t *pci scsi_targ_info_t *pti scsi_lun_info_t *pli

adapter number SCI_ADAP(pci) SCI_ADAP(
STI_CTLR_INFO(pti))

SLI_ADAP(pli)

adapter vertex SCI_CTLR_VHDL(pci) SCI_CTLR_VHDL(
STI_CTLR_INFO(pti))

SLI_CTLR_VHDL(pli)

target number STI_TARG(pti) SLI_TARG(pli)

target vertex STI_TARG_VHDL(pti) STI_TARG_VHDL(
SLI_TARG_INFO(pli))

unit number SLI_LUN(pli)

LUN vertex SLI_LUN_VHDL(pli)

scsi_abort() SCI_ABORT(pci) SCI_ABORT(
STI_CTLR_INFO(pti))

SCI_ABORT(
SLI_CTLR_INFO(pli))

scsi_alloc() SCI_ALLOC(pci)() SCI_ALLOC(
STI_CTLR_INFO(pti))

SCI_ALLOC(
SLI_CTLR_INFO(pli))

scsi_command() SCI_COMMAND(pci)() SCI_COMMAND(
STI_CTLR_INFO(pti))

SCI_COMMAND(
SLI_CTLR_INFO(pli))

scsi_free() SCI_FREE(pci)() SCI_FREE(
STI_CTLR_INFO(pti))

SCI_FREE(
SLI_CTLR_INFO(pli))

scsi_ioctl SCI_IOCTL(pci) SCI_IOCTL(
STI_CTLR_INFO(pti))

SCI_IOCTL(
SLI_CTLR_INFO(pli))

scsi_info() SCI_INQ(pci)() SCI_INQ(
STI_CTLR_INFO(pti))

SCI_INQ(

SLI_CTRL_INFO(pli)

534 007-0911-210

16: SCSI Device Drivers

Study the macro definitions in sys/scsi.h—for example, the definition of
SLI_ALLOC, with reference to the arrangement shown in Figure 16-1—to see the pattern.
Additional macros can be defined using the same pattern.

Using scsi_info()

Before a SCSI driver tries to access a device, it must call the host adapter scsi_info()
function, passing the vertex handle for the LUN. This function issues an Inquiry
command to the adapter, target, and logical unit. If the Inquiry is not successful—or if the
adapter, target, or LUN are not valid—the return value is NULL. Otherwise, the return
value is a pointer to a scsi_target_info structure.

The SCSI driver can learn the following things from a call to scsi_info():

• If the return is NULL, there is a serious problem with the device or the information
about it. Write a descriptive log message with cmn_err() and return ENODEV.

• The si_inq field points to the Inquiry bytes returned by the device. Examine them for
device-dependent information.

• The value in si_maxq is the default limit on pending SCSI commands that can be
queued to this host adapter driver. (You can specify a higher limit to scsi_alloc().)

• Test the bits in si_ha_status for information about the capabilities and error status of
the host adapter itself. The possible bits are declared in sys/scsi.h. For example,
SRH_NOADAPSYNC indicates that the specified target, or possibly the host
adapter itself, does not support synchronous transfer. Not all bits are supported by
all host adapter drivers.

You can also call scsi_info() at other times; some of the returned information can be
useful in error recovery. However, be aware that scsi_info() for some host adapters is
slow, and can use serialized access to hardware. (See also reference page scsi_info(d3x).)

Using scsi_alloc()

Depending on its particular design, the host adapter driver may need to allocate memory
for data structures, DMA maps, or buffers for sense and inquiry data, before it is ready
to execute commands to a particular target. The call to scsi_alloc() gives the host adapter
driver the opportunity to prepare in these ways. (See also reference page scsi_alloc(d3x).)

Host Adapter Facilities

007-0911-210 535

Because the host adapter driver may allocate virtual memory, it may sleep. Some host
adapter drivers allocate all the resources they need on the first call to scsi_alloc() and do
little or nothing on subsequent calls.

A call to scsi_alloc() specifies these parameters:

The option parameter may include the SCSIALLOC_EXCLUSIVE flag to request
exclusive use of the target. If another driver has allocated a path to the same device,
scsi_alloc() returns EBUSY. For example, a tape device driver might require exclusive
access, while a disk device driver would not.

The option parameter may include SCSIALLOC_NOSYNC to specify that this device
should not, or cannot, use synchronous transfer mode. That setting can be overridden for
single commands by a flag to scsi_command() (see Table 16-4).

The option parameter can also include a small integer value indicating the maximum
queue depth (the number of SCSI commands the driver would like to start before any
have completed). The call to scsi_info() returns the default queue depth that will be used
if you do not pass a nonzero value here (typically the default is 1).

The callback function address can be specified as NULL. The specified callback function
is called only when sense data is gotten from the allocated device (regardless of which
driver initiated the command that resulted in sense data). Only one driver that allocates
a path to a device can specify a callback function. If the path is not held exclusively, any
other drivers must specify a null address for their callback functions.

Using scsi_free()

A SCSI driver typically calls scsi_free() from the pfxclose() entry point. That is the time
when the driver knows that no processes have the device open, so the host adapter
should be allowed to release any resources it is holding just for this device.

lun_vhdl Vertex handle of the LUN, from which the target and
controller can be identified.

option An integer comprising two parameters, a flag, and a count.

callback Address of a function to be called whenever sense data is
gotten from the device.

536 007-0911-210

16: SCSI Device Drivers

In addition, scsi_free() releases the device for use by other drivers, if the driver had
allocated it for exclusive use.

Using scsi_command()

A SCSI device driver sends SCSI commands to its device by storing information in a
scsi_request structure and passing the structure to the scsi_command() function for the
adapter. The host adapter driver schedules the command on the SCSI bus that it
manages, and returns to the caller. When the command completes, a notify function is
invoked. (See also reference page scsi_command(d3x).)

Tip: When debugging a driver using a debugging kernel (see “Preparing the System for
Debugging” on page 285), you can display the contents of a scsi_request structure using
symmon or idbg (see “Commands to Display I/O Status” on page 308).

Input to scsi_command()

The device driver prepares the scsi_request fields shown in Table 16-3.

Table 16-3 Input Fields of the scsi_request Structure

Field Name Contents

sr_dev_vhdl The vertex handle of the LUN vertex. This field is required.

sr_ctlr The adapter number.

sr_target The target number.

sr_lun The logical unit number.

sr_tag If this target supports the SCSI-2 tagged-queue feature, and this command is
directed to a queue, this field contains the queue tag message. Constant names
for queue messages are in sys/scsi.h: SC_TAG_SIMPLE and two others.

sr_command Address of the bytes of the SCSI command to issue.

sr_cmdlen The length of the string at *sr_command. Constants for the common lengths are in
sys/scsi.h: SC_CLASS0_SZ (6), SC_CLASS1_SZ (10), and SC_CLASS2_SZ
(12).

sr_flags Flags for data direction and DMA mapping; see Table 16-4.

Host Adapter Facilities

007-0911-210 537

Although the unit, target, and controller numbers can be discovered from the handle in
sr_dev_vhdl, this would be time-consuming. Therefore the driver is still required to
provide all three numbers in addition to the handle.

The callback function address in sr_notify must be specified. (Device drivers for versions
of IRIX previous to 6.4 may set a NULL in this field; that is no longer permitted.)

The possible flag bits that can be set in sr_flags are listed in Table 16-4.

sr_timeout Number of ticks (HZ units) to wait for a response before timing out. The host
adapter driver supplies a minimum value if this field is zero or too small.

sr_buffer Address of first byte of data. Must be zero when sr_bp is supplied and
SRF_MAPBP is specified in sr_flags.

sr_buflen Length of data or buffer space.

sr_sense Address of space for sense data, in case the command ends in a check condition.

sr_senselen Length of the sense area.

sr_notify Address of the callback function, called when the command is complete. A
callback address is required on all commands (this is a change in IRIX 6.4).

sr_bp Address of a buf_t object, when the command is called from a block driver’s
pfxstrategy() entry point and buffer mapping is requested in sr_flags.

sr_dev Address of additional information that could be useful in the callback routine
*sr_notify.

Table 16-4 Values for the sr_flags Field of a scsi_request

Flag Constant Purpose

SRF_DIR_IN Data will be received in memory. If this flag is absent, the
command sends data from memory to the device.

SRF_FLUSH The data cache for the buffer area should be flushed (for output) or
marked invalid (for input) prior to the command. This flag should
be used whenever the buffer is local to the driver, not mapped by
a buf_t object. It causes no extra overhead in systems that do not
require cache flushing.

Table 16-3 Input Fields of the scsi_request Structure (continued)

Field Name Contents

538 007-0911-210

16: SCSI Device Drivers

When none of the three flag values beginning SRF_MAP is supplied, the sr_buffer address
must be a physical memory address. The SRF_MAPUSER and SRF_MAPBP flags are
normally used when the command is issued from a pfxstrategy() entry point in order to
read or write a buffer controlled from a buf_t object.

Command Execution

The host adapter driver validates the contents of the scsi_request structure. If the contents
are valid, it queues the command for transmission on the adapter and returns. If the
contents are invalid, it sets a status flag (see Table 16-6), calls the sr_notify function, and
returns.

SRF_MAPUSER Set this flag when doing I/O based on a buf_t and B_MAPUSER is
set in b_flags.

SRF_MAP Set this flag when doing I/O based on a buf_t and the
BP_ISMAPPED macro returns nonzero.

SRF_MAPBP The sr_bp field points to a buf_t in which BP_ISMAPPED returns
false. The host adapter driver maps in the buffer.

SRF_CONTINGENT_
ALLEGIANCE_CLEAR

Indicates that the driver wishes to clear a contingent allegiance
condition with the host adapter driver. After a host adapter driver
has returned sense data to the device driver, all future requests are
immediately returned with SC_ATTN until this flag is set.

SRF_AEN_ACK is a synonym that may appear in older code.

SRF_NEG_SYNC Attempt to negotiate synchronous transfer mode for this
command. Ignored by some host adapter drivers. Overrides
SCSIALLOC_NOSYNC (see “Using scsi_alloc()” on page 534).

SRF_NEG_ASYNC Attempt to negotiate asynchronous mode for this command.
Ignored unless the device is currently using synchronous mode.

SRF_ALENLIST Set this flag and then set b_private to use the alenlist created—use
uvaddr_to_alenlist to create the alenlist (see
alenlist_ops(D3)).

SRF_PRIORITY_REQUEST Set this flag for a “priority” SCSI request (see scsi.h).

Table 16-4 Values for the sr_flags Field of a scsi_request (continued)

Flag Constant Purpose

Host Adapter Facilities

007-0911-210 539

In any event, the sr_notify function is called when the command is complete. This
function can be called from the host adapter interrupt handler, so it can be entered
asynchronously and concurrent with any part of the device driver.

The device driver should wait for the notify function to be called. The usual way is to
share a semaphore (see “Semaphores” on page 260), as follows:

• Before calling scsi_command(), initialize the semaphore to 0 (the semaphore is
being used to wait for an event).

• Immediately after the call to scsi_command(), call psema() for the semaphore.

• In the notify function, call vsema() for the semaphore.

If the request is valid, the device driver will sleep in the psema() call until the command
completes. If the request is invalid, the semaphore may already have been posted when
the call to psema() is reached.

In the event that the device driver holds an exclusive lock before issuing the command
and wants to release the lock while it waits and then regain the lock, a synchronization
variable provides the appropriate mechanism (see “Using Synchronization Variables” on
page 258).

Values Returned in a scsi_request Structure

The host adapter driver sets the results of the request in the scsi_request structure. The
sr_notify function is the first to inspect the values summarized in Table 16-5.

Table 16-5 Values Returned From a SCSI Command

Field Name Purpose

sr_status Software status flags, see Table 16-6.

sr_scsi_status SCSI status byte, see Table 16-7.

sr_ha_flags Host adapter status flags, see Table 16-8.

sr_sensegotten When no sense command was issued, 0. When a sense command was issued
following an error, the number of bytes of sense data received. When an error
occurred during a sense command, -1.

sr_resid The difference between sr_buflen and the number of bytes actually transferred.

540 007-0911-210

16: SCSI Device Drivers

The sr_status field should be tested first. It contains an integer value; the possible values
are summarized in Table 16-6.

SC_ATTN status is returned when a command is aborted by some event not directly
related to the command, such as:

• SCSI bus reset, which aborts all outstanding commands.

• A contingent allegiance condition when QERR is 1, in which all outstanding
commands to a LUN are aborted.

• The command follows the return of sense data but
SRF_CONTINGENT_ALLEGIANCE_CLEAR is not set in the request (see
Table 16-4).

One or more bits are set in the sc_scsi_status field. This field represents the status
following the requested command, when the requested command executes correctly.

Table 16-6 Software Status Values From a SCSI Request

Constant Name Meaning

SC_GOOD The request was valid and the command was executed. The command might
still have failed; see sr_scsi_status.

SC_REQUEST An error was detected in the input values; the command was not attempted.
The error could be that scsi_alloc() has not been called, or it could be due to
missing or incorrect values.

SC_TIMEOUT The device did not respond to selection within 250 milliseconds.

SC_HARDERR A hardware error occurred. (You can try inspecting sr_senselen to see if sense
data was received, but typically it will not have sense data associated with
it.)

SC_PARITY SCSI bus parity error detected.

SC_MEMERR System memory parity or ECC error detected.

SC_CMDTIME The device responded to selection but the command did not complete before
sr_timeout expired.

SC_ALIGN The buffer address was not aligned as required by the adapter hardware.
Most SGI adapters require word (4-byte) alignment.

SC_ATTN The command could not be completed due to circumstances not related to
the command, and not due to an error in the command.

Host Adapter Facilities

007-0911-210 541

When the requested command ends with Check Condition status, a sense command is
issued and the SCSI status following the sense is placed in sc_scsi_status. In other words,
the true indication of successful execution of the requested command is a zero in
sr_sensegotten, because this indicates that no sense command was attempted.

Possible values of sc_scsi_status are summarized in Table 16-7.

One or more bits may be set in sr_ha_flags to document a host adapter state or problem
(but not all host adapter drivers do this). These flags are summarized in Table 16-8.

Table 16-7 SCSI Status Bytes

Constant Name Meaning

ST_GOOD The target has successfully completed the SCSI command. If a check
condition was returned, a sense command was issued. The
sr_sensegotten field is nonzero when this was the case.

ST_CHECK This bit is set only for the special case when a check condition occurred
on a sense command following a check condition on the requested
command. The sr_sensegotten field contains -1.

ST_COND_MET Search condition was met.

ST_BUSY The target is busy. The driver will normally delay and then request the
command again.

ST_INT_GOOD This status is reported for every command in a series of linked
commands. Linked commands are not supported by SGI host adapters.

ST_INT_COND_MET The sum of ST_COND_MET and ST_INT_COND_MET.

ST_RES_CONF A conflict with a reserved logical unit or reserved extent.

Table 16-8 Host Adapter Status After a SCSI Request

Constant Name Meaning

SRH_SYNCXFR Synchronous mode was used. If not set, asynchronous mode was used.

SRH_TRIEDSYNC Synchronous mode negotiation was attempted; see the
SHR_CANTSYNC bit for the result.

SRH_CANTSYNC Unable to negotiate synchronous mode. See also SRH_BADSYNC.

542 007-0911-210

16: SCSI Device Drivers

Using scsi_abort()

The purpose of the scsi_abort() function is to abort all pending or executing commands
on a device. The prototype of the function is:

SCI_ABORT(SLI_CTLR_INFO(scsi_lun_info_get(lun_vhdl))
(struct scsi_request *req);

The only fields of the scsi_request that are input to this function are those that identify
the device: sr_dev_vhdl (always!), sr_ctlr, sr_target, and sr_lun. The ABORT command is
issued on the bus as soon as possible but there could be a delay if the bus is busy. Status
is returned in sr_status. The function returns a nonzero value when the ABORT command
is issued successfully, and a zero when the ABORT command fails (which probably
indicates a serious bus problem).

Note: Not all devices and not all host adapters support this operation. Error recovery of
queued commands is up to the driver.

SRH_BADSYNC When SRH_CANTSYNC is set, indicates that the negotiation failed
because the device cannot negotiate.

SRH_NOADAPSYNC When SRH_CANTSYNC is set, this bit indicates that the host adapter
does not support synchronous negotiation, or that the system has been
configured not to use synchronous mode for this device.

SRH_WIDE This adapter supports Wide mode.

SRH_DISC This adapter supports Disconnect mode and is configured to use it.

SRH_TAGQ This adapter supports tagged queueing and is configured to use it.

SRH_MAPUSER This host adapter driver can map user addresses.

SRH_QERR0,
SRH_QERR1

This host adapter supports one or the other of the queuing error
recovery policies. The device reports its QERR bit on the Control mode
page. If the device policy differs from the host adapter policy, the device
driver should avoid the use of queued commands.

Table 16-8 Host Adapter Status After a SCSI Request (continued)

Constant Name Meaning

Designing a SCSI Driver

007-0911-210 543

Designing a SCSI Driver

As of IRIX 6.5, support is provided for you to write your own kernel-level SCSI device
driver using the software interfaces and hardware devices supported by SGI. A SCSI
driver can be loadable or it can be linked with the kernel. In general it is configured into
IRIX as described in Chapter 9, “Building and Installing a Driver.” However, a SCSI
driver uses additional services, including those of the host adapter driver, and its
configuration is slightly different from other drivers.

IRIX support for the SCSI bus is designed to allow support for dynamic reconfiguration.
A SCSI driver can be designed to allow devices to be attached and detached at any time.
The general sequence of operations related to a functioning SCSI driver is as follows:

1. The driver is placed for kernel inclusion (or to be loaded later) and all appropriate
system support files are properly configured (see Chapter 9, “Building and
Installing a Driver”).

2. The (optional) pfxinit() entry point is called early in the boot sequence so the driver
can perform initialization procedures.

3. In the (required) pfxreg() entry point, the driver registers itself as a SCSI driver,
specifying the SCSI device type it supports and the driver prefix. See “About
Registration” on page 544.

4. The host adapter driver discovers attached SCSI devices that return a device type
and vendor and product identification strings. The kernel searches a table list for
each discovered device for matching vendor ID and product ID strings for that
device type. If it discovers a matching entry, it calls the (required) pfxattach() entry
point of the registered driver, supplying the hwgraph vertex handle. See “About
Attaching a Device” on page 546.

5. The driver uses the supplied vertex handle to construct the proper hwgraph space
for its device(s). See “Building hwgraph Entries” on page 547. The driver may also
create convenient aliases for hwgraph entries (see “Creating Device Aliases” on
page 549).

6. The driver interacts with the device(s) using the SCSI host adapter interface as
described under “Host Adapter Facilities” on page 529.

7. If the kernel learns that the device is being detached, the kernel calls the driver’s
pfxdetach() entry point. The driver then undoes the work done in pfxattach().

544 007-0911-210

16: SCSI Device Drivers

These steps are described in more detail in the following sections:

• “Configuring a SCSI Driver” on page 544

• “About Registration” on page 544

• “About Attaching a Device” on page 546

• “Opening a SCSI Device” on page 547

• “About Detaching a Device” on page 548

• “About Unloading a SCSI Driver” on page 548

• “Creating Device Aliases” on page 549

Configuring a SCSI Driver

A SCSI driver can be either a block or a character driver, or it can support both interfaces.
When preparing the descriptive file for /var/sysgen/master.d, you must use the s
flag, specifying a software-only driver, and list scsi as a dependency in the description
line. See “Describing the Driver in /var/sysgen/master.d” on page 274.

About Registration

Registration is a step that tells the kernel how to associate a device with a driver. The
driver must register with the kernel or it will not be able to access a device.

At boot time, the host adapter driver discovers the complement of devices by probing the
bus. A SCSI device is identified by its device type, a number defined as shown in
Table 16-9.

Table 16-9 SCSI Device Type Numbers

Number Type

0 Direct-access device (for example, magnetic disk)

1 Sequential-access device (for example, magnetic tape)

2 Printer device

3 Processor device

4 Write-once device (for example, some optical disks)

5 CD-ROM device

Designing a SCSI Driver

007-0911-210 545

In addition to the device type, SCSI devices supply vendor ID and product ID strings.
When the kernel finds a device, it needs to associate it with a driver. For SCSI devices, the
kernel looks through a list of drivers that have registered as supporting SCSI devices of
the particular type. If a driver of that type has registered, and the kernel finds an entry
for a driver of that type with vendor ID and product ID strings that match the ones found
at device discovery, it calls pfxattach() (see “About Attaching a Device” on page 546).

Registration tables for driver types are defined in master.d/scsi.h. The entries in
scsi_drivers[] list the device types supported (by default, only the type 1 table is defined,
but you may define other types):

scsi_type_reg_s scsi_drivers[] = {
{ 0, NULL }, /* Type 0 driver reg table */
{ 0, scsi_drivers_type1 }, /* Type 1 driver reg table */
{ 0, NULL }, /* Type 2 driver reg table */
{ 0, NULL }, /* Type 3 driver reg table */
{ 0, NULL }, /* Type 4 driver reg table */
{ 0, NULL }, /* Type 5 driver reg table */
{ 0, NULL }, /* Type 6 driver reg table */
{ 0, NULL }, /* Type 7 driver reg table */
{ 0, NULL }, /* Type 8 driver reg table */
{ 1, NULL }, /* Terminator - don’t remove */
};

A driver is associated with a device type in the master.d/scsi file with a four part
entry for the specific table type. The four fields are strings that contain the SCSI vendor
ID, the SCSI product ID, the driver prefix, and a hwgraph pathname component.

For example, consider the following entry for a type 1 (tape) driver:

scsi_driver_reg_s scsi_drivers_type1[] = {
 // Type 1 - sequential access devices, tapes //
 { “Fujitsu”, “Diana-1”, “fuj”, “fujitsu-tape” },
 { NULL, NULL, NULL, NULL }
};

6 Scanner device

7 Optical memory device (for example, some optical disks)

8 Medium changer device (for example, jukeboxes)

Table 16-9 SCSI Device Type Numbers (continued)

Number Type

546 007-0911-210

16: SCSI Device Drivers

The vendor ID is Fujitsu, the product ID is Diana-1, the prefix is fuj, and the hwgraph
pathname component is fujitsu-tape. So, if a SCSI Inquiry on the device at device
discovery time returns a type 1, and the vendor and product ID returned are Fujitsu
and Diana-1, the kernel will address the driver entry points with the prefix fuj, passing
the hwgraph pathname suffix fujitsu-tape.

Your driver registers by calling the scsi_driver_register() function (see
master.d/scsi):

int scsi_driver_register(int unit_type, char *driver_prefix)

This call specifies the SCSI device type int (see Table 16-9) and the driver’s prefix
character string that you define. The prefix string is configured in the driver’s descriptive
file (see “Describing the Driver in /var/sysgen/master.d” on page 274). The kernel uses
this string to find the addresses of driver entry points. Note that you may call this
function multiple times if your driver supports more than one SCSI device type.

You should call scsi_driver_register() from the pfxreg() entry point. Be aware that, if
there is an available device of the specified type, pfxattach() can be called immediately,
before the scsi_driver_register() function returns.

The order in which drivers are called to attach a device is not defined.

About Attaching a Device

At device discovery during the boot sequence, the kernel identifies SCSI devices by
device type and by the vendor ID and product ID strings. It then searches the device type
table for matching strings (see “About Registration” on page 544). When it finds a match,
it uses the associated prefix string in the table entry to call pfxattach() and passes the
hwgraph vertex handle, which represents the “connection point” of the device—
typically the LUN vertex handle (for example .../scsi_ctlr/0/target/0/lun/0).
The driver adds more vertexes connected to this one to represent the logical devices. The
handle of the connection point is needed in several kernel functions, so you should save
it as part of the device information.

Device and Inventory Information

You should allocate and initialize a device information structure for each device. You
should also put inventory information on one created vertex, for example,
/hw/.../xyz/disk/volume/char. Refer to “Attaching Information to Vertexes” on

Designing a SCSI Driver

007-0911-210 547

page 239. Note that you should create the devices representing your actual hardware
configuration, and not all possible devices as used to be the case with the old /dev file
scheme populated by MKNOD. In this way, the /hw structure represents the actual
system configuration. (Consequently, when detaching, you should remove any created
nodes as described in “About Detaching a Device” on page 548.)

Building hwgraph Entries

Use hwgraph_char_device_add or hwgraph_block_device_add (possibly both,
depending on your device), to add vertexes to the hardware graph. You pass the vertex
handle received at pfxattach along with the additional edges or path to describe each
logical device. For example, if the vertex handle received was /hw/.../xyz, an entry
you create with hwgraph_block_device_add might be
/hw/.../xyz/partition/0/block. Refer to “SCSI Devices in the hwgraph” on
page 523 for information on how the SCSI host adapter performs these same functions.

Returning from pfxattach

The return code from pfxattach() is tested by the kernel. The driver can reject an
attachment. When your driver fails due to some problem, it should:

• Use cmn_err() to document the problem (see “Using cmn_err” on page 291)

• Release any space allocated to the device such as a device information structure

• Return an informative return code

The pfxdetach() entry point can be called only if the pfxattach() entry point returns
success (0).

Whenever the new vertex is opened, pfxopen is called.

Opening a SCSI Device

When the pfxopen() entry point is called, the SCSI driver uses the appropriate scsi_info()
function to verify the device and get hardware dependent Inquiry data from it. If the
device is not operational, the driver can return ENODEV. If the device is operational, the
driver calls scsi_alloc() to open a communications path to it.

548 007-0911-210

16: SCSI Device Drivers

The pfxopen entry point is passed the edge vertex, which you can use with
device_info_get to access the device info pointer (see “Hardware Graph Management”
on page 231).

Refer to “Host Adapter Facilities” on page 529 for information on how your driver can
interact with the device.

Accessing a SCSI Device

In general, it is simplest to put all access to a device within a pfxstrategy() entry point,
even in a character device driver. When the pfxread(), pfxwrite(), or pfxioctl() entry point
needs to read or write data, it can prepare a uio_t to describe the data, and call
uiophysio() to direct the operation through the single pfxstrategy() entry point (see
“Calling Entry Point strategy() From Entry Point read() or write()” on page 174).

The notify routine passed in the sr_notify field plays the same role as the pfxintr() entry
point in other device drivers. It is called asynchronously, when the SCSI command
completes. It may not call a kernel function that can sleep. However, it does not have to
be named pfxintr(), and a SCSI driver does not have to provide a pfxintr() entry point.

About Detaching a Device

Your pfxdetach entry point is where you remove hwgraph vertexes added with pfxattach.
Note that if you create aliases with an ioctl (see “Creating Device Aliases” on page 549),
you should remove them in your pfxdetach routine as well. As a result of this practice,
the hwgraph will represent the actual available devices.

About Unloading a SCSI Driver

When a loadable SCSI driver is called at its pfxunload() entry point, indicating that the
kernel would like to unload it, the driver must take pains not to leave any dangling
pointers (as discussed under “Entry Point unload()” on page 190). A driver should not
unload when it has any registered interrupt or error handlers.

A driver does not have to unregister itself as a SCSI driver before unloading. Nor does it
have to detach any devices it has attached. However, if any devices are open or memory
mapped, the driver should not unload.

SCSI Reference Data

007-0911-210 549

If the driver has been autoregistered (see “Registration” on page 282), stub functions are
placed in the switch tables for the attach and open functions. When the kernel discovers
a new device and wants this driver to attach it, or when a process attempts to open a
device for which this driver created the vertex, the kernel reloads the driver.

Creating Device Aliases

A device alias is a convenient shorthand path which refers to the same device as the full
hwgraph entry. If you want your driver to create aliases for hwgraph entries, create a file
in /var/sysgen/ioconfig, for example, /var/sysgen/ioconfig/xyz. This file
allows you to choose a stable controller number for your device alias, and to specify an
ioctl number used by ioconfig and your driver to create the alias. (See
/var/sysgen/ioconfig/README and ioconfig(1M) for details of the file syntax.)

Create a pfxioctl entry point that is responsible for creating device aliases, for example, a
path under /hw/disk and /hw/rdisk corresponding to the actual hwgraph entry. The
pfxioctl entry point might be called with XYZ_ALIAS, for example, which is a numerical
value specified in the last entry in /var/sysgen/ioconfig/xyz.

Use device_controller_num_get(dev) (see sys/invent.h), where dev is the hwgraph
vertex on which your driver added inventory information, to get the controller number
that has been assigned byioconfig. The controller number supplied will be the starting
one claimed in /var/sysgen/ioconfig, so your aliases will remain associated with
the actual hwgraph entries.

For example, if you have specified that controller numbers should start at 10, you can be
assured that you will always use 10 as your first controller number and, by picking a
relatively high number, your driver should have no effect on ioconfig’s default controller
number assignments for other controllers of the class.

Refer to “Convenience Vertexes” on page 525 for information on how the SCSI host
adapter driver creates the hwgraph aliases.

SCSI Reference Data

This section contains reference material in the following categories:

• “SCSI Error Messages” on page 550 describes the general form of messages written
by host adapter drivers into the system log.

550 007-0911-210

16: SCSI Device Drivers

• “Adapter Error Codes (Table scsi_adaperrs_tab)” on page 551 lists the possible
adapter error codes and their message strings.

• “SCSI Sense Codes (Table scsi_key_msgtab)” on page 552 lists the primary sense
codes and the corresponding message strings.

• “Additional Sense Codes (Table scsi_addit_msgtab)” on page 552 lists the possible
additional sense codes (ASCs) and their message strings.

SCSI Error Messages

The host adapter drivers send error messages to the system log using the cmn_err()
function (see “Producing Diagnostic Displays” on page 291).

These messages almost always contain the adapter number (sometimes called the bus
number or controller number). They sometimes contain the number of the target device,
and sometimes add the number of the logical unit that was addressed.

Messages from the wd93 driver specify the adapter number as Bus=n. The target device
is shown as ID=n and the logical unit as LUN=n.

Messages from the wd95 and jag drivers contain one, two, or three or more decimal
numbers. In all cases, the first number is the adapter number, the second is the target ID,
and the third (when present) is the logical unit number.

When error messages list a sense code, refer to “SCSI Sense Codes (Table
scsi_key_msgtab)” on page 552 and to “Additional Sense Codes (Table
scsi_addit_msgtab)” on page 552.

When the error message reports an error from the adapter itself, refer to “Adapter Error
Codes (Table scsi_adaperrs_tab)” on page 551.

SCSI Error Message Tables

The scsi module contains a set of error message tables that you can use to generate error
messages based on SCSI sense codes and other data. The contents of these tables is
documented here for reference, and to assist in decoding messages from SCSI drivers.

Each table is an array of pointers to strings; for example, the definition of the
scsi_key_msgtab table begins as follows:

SCSI Reference Data

007-0911-210 551

char *scsi_key_msgtab[SC_NUMSENSE] = {
"No sense", /* 0x0 */
"Recovered Error", /* 0x1 */

...};

Each of the tables is declared as extern in sys/scsi.h.

Adapter Error Codes (Table scsi_adaperrs_tab)

The table with the external name scsi_adaperrs_tab contains message strings to document
the adapter error codes that can be returned in the scsirequest.sr_status field (see
Table 16-6). The scsi_adaperrs_tab table contains NUM_ADAP_ERRS entries (9, defined in
sys/scsi.h). The first entry (index 0x0) contains a pointer to a null string. The other
entries are documented in Table 16-10.

Table 16-10 Adapter Error Codes

Adapter
Error Code Constant Name Message Text

0x1 SC_TIMEOUT Device does not respond to selection.

0x2 SC_HARDERR Controller protocol error or SCSI bus reset.

0x3 SC_PARITY SCSI bus parity error.

0x4 SC_MEMERR Parity/ECC error in system memory during DMA.

0x5 SC_CMDTIME Command timed out.

0x6 SC_ALIGN Buffer not correctly aligned in memory.

0x7 SC_ATTN Unit attention received on another command causes retry.

0x8 SC_REQUEST Driver protocol error.

552 007-0911-210

16: SCSI Device Drivers

SCSI Sense Codes (Table scsi_key_msgtab)

The table with the external name scsi_key_msgtab is indexed by the primary sense code.
Its contents are listed in Table 16-11. The table contains SC_NUMADDSENSE entries (16,
defined in sys/scsi.h), of which the last two should not occur.

Additional Sense Codes (Table scsi_addit_msgtab)

The table with the external name scsi_addit_msgtab is indexed by the Additional Sense
Code (ASC) value, when one is present. The table contains SC_NUMADDSENSE entries
(0x71, defined in sys/scsi.h). Some values have no standard definition; for these, the

Table 16-11 Primary Sense Key Error Table

Sense Key Message Most Common Cause

0x0 No sense No error information available.

0x1 Recovered error The device recovered by itself.

0x2 Device not ready No media, or drive not spun up.

0x3 Media error An actual media problem.

0x4 Device hardware error Usually a device hardware error.

0x5 Illegal request Invalid command or data issued.

0x6 Unit attention Device was reset or power-cycled.

0x7 Data protect error Usually device is write protected.

0x8 Unexpected blank media Tried to read at end of a tape.

0x9 Vendor unique error Varies.

0xA Copy aborted Copy command aborted by host (not
used).

0xB Aborted command Target device aborted command.

0xC Search data successful Search data command OK (not used).

0xD Volume overflow Tried to write past EOT on tape.

0xE Reserved (0xE) 0xE should not be seen.

0xF Reserved (0xF) 0xF should not be seen.

SCSI Reference Data

007-0911-210 553

table contains a NULL value. Therefore you should always test the table value for a valid
pointer before using it to format a message. Table 16-12 lists the contents of this message
table. Undefined (NULL) table entries are omitted.

Table 16-12 Additional Sense Code Table

ASC Value Corresponding Message String

0x01 No index/sector signal

0x02 No seek complete

0x03 Write fault

0x04 Not ready to perform command

0x05 Unit does not respond to selection

0x06 No reference position

0x07 Multiple drives selected

0x08 LUN communication error

0x09 Track error

0x0a Error log overflow

0x0c Write error

0x10 ID CRC or ECC error

0x11 Unrecovered data block read error

0x12 No address mark found in ID field

0x13 No address mark found in Data field

0x14 No record found

0x15 Seek position error

0x16 Data sync mark error

0x17 Read data recovered with retries

0x18 Read data recovered with ECC

0x19 Defect list error

554 007-0911-210

16: SCSI Device Drivers

0x1a Parameter overrun

0x1b Synchronous transfer error

0x1c Defect list not found

0x1d Compare error

0x1e Recovered ID with ECC

0x20 Invalid command code

0x21 Illegal logical block address

0x22 Illegal function

0x24 Illegal field in CDB

0x25 Invalid LUN

0x26 Invalid field in parameter list

0x27 Media write protected

0x28 Media change

0x29 Device reset

0x2a Log parameters changed

0x2b Copy requires disconnect

0x2c Command sequence error

0x2d Update in place error

0x2f Tagged commands cleared

0x30 Incompatible media

0x31 Media format corrupted

0x32 No defect spare location available

0x33a Media length error

0x36 Toner/ink error

Table 16-12 Additional Sense Code Table (continued)

ASC Value Corresponding Message String

SCSI Reference Data

007-0911-210 555

0x37 Parameter rounded

0x39 Saved parameters not supported

0x3a Medium not present

0x3b Forms error

0x3d Invalid ID msg

0x3e Self config in progress

0x3f Device config has changed

0x40 RAM failure

0x41 Data path diagnostic failure

0x42 Power on diagnostic failure

0x43 Message reject error

0x44 Internal controller error

0x45 Select/reselect failed

0x46 Soft reset failure

0x47 SCSI interface parity error

0x48 Initiator detected error

0x49 Inappropriate/illegal message

0x4a Command phase error

0x4b Data phase error

0x4c Failed self configuration

0x4e Overlapped commands attempted

0x53 Media load/unload failure

0x57 Unable to read table of contents

0x58 Generation (optical device) bad

Table 16-12 Additional Sense Code Table (continued)

ASC Value Corresponding Message String

556 007-0911-210

16: SCSI Device Drivers

A Note on FibreChannel Drivers

The FibreChannel adapter is accessed just like a SCSI adapter. It is a peer to drivers such
as ql, adp78, and wd95.

Note that there is one difference in that all commands are tagged, whether or not the
sr_tag member of the scsi_request structure is set.

0x59 Updated block read (optical device)

0x5a Operator request or state change

0x5b Logging exception

0x5c RPL status change

0x5d Self diagnostics predict unit will fail soon

0x60 Lamp failure

0x61 Video acquisition error/focus problem

0x62 Scan head positioning error

0x63 End of user area on track

0x64 Illegal mode for this track

0x70b Decompression error

a. Specified as tape only.

b. DAT only; may be in SCSI3.

Table 16-12 Additional Sense Code Table (continued)

ASC Value Corresponding Message String

PART SIX

Network Drivers VI

Chapter 17, “Network Device Drivers”
Network device drivers are special in that they interface a device to the ifnet
interface of the TCP/IP protocol stack.

007-0911-210 559

Chapter 17

17. Network Device Drivers

A network device driver is a kernel-level driver that connects a communications device
to the IRIX TCP/IP protocol stack using the ifnet interface established by BSD UNIX. This
chapter contains these major topics:

• “Overview of Network Drivers” on page 560 gives an overview of the IRIX
networking subsystem and the role of an ifnet driver in it.

• “Network Driver Interfaces” on page 562 summarizes the unique interfaces used by
an ifnet driver.

• “Multiprocessor Considerations” on page 568 discusses writing device drivers in a
symmetric multiprocessing environment.

• “Example ifnet Driver” on page 570 displays the code of a network driver, omitting
all device-specific features.

Note: If your interest is in creating a network application based on sockets, TLI, or
streams, this chapter offers little but background information. Refer to the IRIX Network
Programming Guide, document Number 007-0810-080, for a complete review of all
application-level services.

Even if your interest is in creating a kernel-level network driver, you should be familiar
with the facilities documented in the IRIX Network Programming Guide. This chapter
assumes that your are familiar with them.

560 007-0911-210

17: Network Device Drivers

Overview of Network Drivers

A network driver is a kernel-level driver module that connects a communications device
such as an Ethernet board to the IRIX implementation of TCP/IP. An overview of the
IRIX networking subsystem is shown in Figure 17-1.

Figure 17-1 Overview of Network Architecture

IP

Native
(bundled with system)

Optional
dlpi package

Optional
svr4net package

UCP

TCP

tpisocket

...

tpidp

tpicp K
er

ne
lL

ev
el

U
se

r
Le

ve
l

Socket-based
Applications

STREAMS Modules

xpi0ec0

dlpi

Device Drivers

TLI

STREAMS/TPI

STREAMS/DLPI

socket

ifnet

TLI-based
Applications

TLI Library

Overview of Network Drivers

007-0911-210 561

Application Interfaces

User-level processes access the network in one of three ways:

• using the BSD socket interface (top left of Figure 17-1)

• using the SVR4 TLI interface through compatibility libraries that convert TLI
operations into socket operations (top center of Figure 17-1)

• using a STREAMS interface to a STREAMS-based protocol stack (top right of
Figure 17-1)

These three interfaces are documented in the IRIX Network Programming Guide.

The native socket-based TCP/IP protocol code, the socket layer, and a number of
ifnet-based device drivers are bundled in the basic IRIX system. Socket-based
applications such as rlogin, rcp, NFS client and server, and the socket-based RPC
library operate directly over this native networking framework.

Compatibility support is included for applications written to the STREAMS Transport
Layer Interface (TLI). tpisocket is a kernel library module used by protocol-specific
STREAMS pseudo-drivers, such as tpitcp, tpiudp, and so on, providing a TPI
interface above the native kernel sockets-based network protocol stack.

A STREAMS pseudo-driver that supports the Data Link Provider Interface (DLPI) for
STREAMS-based kernel protocol stacks is delivered in the optional dlpi package.

Protocol Stack Interfaces

A protocol stack is the software subsystem that manages data traffic according to the rules
of a particular communications protocol. There are two ways in which a protocol stack
can be integrated into the IRIX kernel. The TCP/IP stack creates and uses the ifnet
interface to drivers (bottom left of Figure 17-1) and the socket interface to applications
(top left of Figure 17-1).

Alternatively, a stack written to the DLPI architecture can communicate with STREAMS
drivers (bottom right of Figure 17-1).

562 007-0911-210

17: Network Device Drivers

Device Driver Interfaces

A network driver uses the methods and facilities of other kernel-level device drivers, as
described in Part III, “Kernel-Level Drivers” of this book. A network driver is compiled
and linked like other drivers, configured using the same configuration files, and loaded
into the kernel by lboot like other drivers.

However, other device drivers support the UNIX filesystem, transferring data in
response to calls to their pfxread(), pfxwrite(), or pfxstrategy() entry points. This is not the
case with a network driver; it supports protocol stacks, and it transfers data in response
to calls from the ifnet interface.

Network Driver Interfaces

The IRIX kernel networking design is based on the kernel networking framework in
4.3BSD. If you are familiar with the 4.3BSD kernel networking design, then you are
already familiar with the IRIX kernel networking design because they are basically the
same.

The IRIX networking design is based on the socket interface: mbuf objects are used to
exchange messages within the kernel, and device drivers support the TCP/IP internet
protocol suite by supporting the ifnet interface.

Since the BSD-based networking framework and the implementation of the TCP/IP
protocol suite have changed little from previous releases of IRIX, porting your ifnet
device driver to this release of IRIX should be straightforward.

Network Driver Interfaces

007-0911-210 563

Kernel Facilities

A network driver is structured like any kernel-level device driver, much as described in
Chapter 7, “Structure of a Kernel-Level Driver,” but with the following similarities and
differences:

• A network driver is loaded by lboot in response to either a USE or VECTOR line in
a file in /var/sysgen/system (see “Configuring a Nonloadable Driver” on
page 273).

• A network driver is initialized by a call to either its pfxinit() or pfxedtinit() entry
point when it is loaded.

• A network driver does not need to provide any other entry points (see “Entry Point
Summary” on page 153).

• A network driver does not need to provide a driver flag constant pfxdevflag
because a network driver is always assumed to be multiprocessor-aware (see
“Driver Flag Constant” on page 156).

• Although a network driver can use the kernel functions for synchronization and
locking (see “Waiting and Mutual Exclusion” on page 244), it normally does not
because the ifnet interface includes special-purpose locking facilities that are more
convenient (see “Multiprocessor Considerations” on page 568).

Principal ifnet Header Files

The software interface to network facilities is declared in the following important header
files:

net/if.h Basic ifnet facilities and data structures, including the ifnet
structure, the basic driver interface object.

net/if_types.h Constants for interface types, used in decoding address headers.

sys/mbuf.h The mbuf structure with related constants and macros, and
declarations of functions to allocate, manipulate, and free mbuf
objects.

net/netisr.h Declarations related to software interrupts, including
schednetisr() to schedule an interrupt, and the IP input queue
ipintrq.

net/multi.h Routines defining a generic filter for use by drivers whose devices
cannot perfectly filter multicast packets.

564 007-0911-210

17: Network Device Drivers

Debugging Facilities

When your driver is operating under a debugging kernel, you can use the facilities of
symmon andidbg to display a variety of network-related data structures. See “Preparing
the System for Debugging” on page 285, and see “Commands to Display
Network-Related Structures” on page 309.

Information Sources

Aside from comments in header files, the complete ifnet interface and related interfaces
have never been documented. In prior years, most people working on ifnet drivers have
had access to the Berkeley UNIX source distribution and have been able to answer
questions by referring to the code.

Referring to the code is an even more common option today, thanks to the release of
4.4BSD-Lite, a software distribution of BSD UNIX that does not require a source license,
now widely available at a reasonable price. To obtain a copy, order the following:

• 4.4BSD-Lite Berkeley Software Distribution CD-ROM Companion, published by
USENIX and O’Reilly & Associates; ISBN 1-56592-081-3 (US domestic) or ISBN
1-56592-092-9 (non-US).

The ifnet source code in this software is functionally compatible with IRIX ifnet, although
some protocols (for example, snoop and drain) are not implemented in BSD-Lite.

net/soioctl.h Socket ioctl() function numbers, some of which reach a driver for
action.

net/raw.h The interface to the raw protocol family members snoop and drain.

net/if_arp.h Generic ARP declarations.

netinet/if_eth
er.h

Essential declarations for Ethernet drivers, including ARP protocol
for Ethernet.

sys/dlsap_regi
ster.h

DLPI interface declarations.

Network Driver Interfaces

007-0911-210 565

Finally, the IRIX reference pages contain a wealth of detail regarding network interfaces.
Some reference pages that are related to the interests of driver designers are listed in
Table 17-1.

Network Inventory Entries

The driver must call device_inventory_add() from its attach() entry point to label the
device hardware vertex with the appropriate inventory information. The device
configuration program ioconfig requires this information in order to assign a unique
controller number and communicate this to the device driver by opening the device (see
“Using ioconfig for Global Controller Numbers” on page 53).

Table 17-1 Important Reference Pages Related to Network Drivers

Reference Page Contents

arp(7) Operation of the ARP protocol, with details of ioctl() functions.

drain(7) Operation of the drain driver, which receives unwanted packets, with details
of its ioctl() functions.

ethernet(7) Overview of the IRIX Ethernet drivers, including error messages and the use of
VECTOR lines to configure them.

fddi(7) Cursory overview of IRIX FDDI drivers, with naming conventions.

ifconfig(1) Management program used to enable and disable network interfaces (drivers)
and change their runtime parameters.

netintro(7) Overview of network facilities; mentions the role of the network interface
(driver); has extensive detail on routing ioctl() calls.

network(1) Documents the network initialization script that runs when the system is
booted up.

raw(7) Overview of the Raw protocol family whose members are snoop and drain.

routed(1) Documents operation of the routing daemon, including ioctl() use.

snoop(7) Operation of the snoop driver, which allows inspection of packets, with details
of its ioctl() features.

ticlts(7) Operation and use of the ticlts, ticots, and ticotsord loopback drivers.

tokenring(7) Overview of the IRIX token-ring drivers, including packet formats.

566 007-0911-210

17: Network Device Drivers

The driver can use the following parameters when calling device_inventory_add():

For details see sys/invent.h and “Attaching Device Information” on page 239.

Interface Changes for IRIX 6.5

The if_output() routine now takes a fourth parameter, rte to specify routing table entry.
See /usr/include/net/if.h for details. The IFNET_LOCK() and
IFNET_UNLOCK() macros now take only one argument instead of two.

The implementation of ip_arpresolve() has changed, but its functionality has not. Calling
ip_arpresolve() used to cause another call to if_output() with a destination address
family of AF_UNSPEC, as an ARP broadcast request. Now, ip_arpresolve() never calls
if_output() itself, other functions do. In particular, arp_rtrequest() may call arprequest()
which calls send_arp(), and arpresolve() calls arprequest() which calls send_arp().

The networking packet input interface was changed to support higher parallelism for
TCP/IP implementations. Especially on Origin systems, this improves the performance
of Web benchmarks and TCP-centric applications. The interface is defined as follows:

/*
 * This is the data structure for each network input process.
 */
struct per_netproc {
 struct ifqueue netproc_q; /* input queue */
 struct route netproc_rt; /* forwarding cache */
 thd_int_t netproc_thread; /* “interrupt” thread data */
} **netproc_data;

vhdl The vertex handle of the attached device.

class INV_NETWORK

type The packet type, for example INV_NET_ETHER. See sys/invent.h
for the possible “types for class network” list.

controller The kind of network controller from the “controllers for network
types” list in sys/invent.h.

unit Any distinguishing number for this device. The hinv command does
not decode this field.

state Any characteristic number for this device. The hinv command does
not decode this field.

Network Driver Interfaces

007-0911-210 567

/*
 * Called once per address family to set up input function.
 * Just store it in the above table.
 */
void network_input_setup(int af, network_input_t func)
{
 if (af > AF_MAX)
 cmn_err(CE_PANIC, “address family %d out of range”, af);
 input_table[af] = func;
}
extern int max_netprocs;
/*
 * Called from network interface device drivers when packets come in.
 * Use the direction policy wake up the right network input process.
 * Returns error code (zero is OK).
 * This is a critical performance path!
 */
int
network_input(struct mbuf *m, int af, int flags)
{
 int n = cpuid();
 struct ifqueue *ifq;
 int s;

 METER(nproc_stats.intr++);
 mtod(m, struct ifheader *)->ifh_af = af;
 ifq = &(netproc_data[n]->netproc_q);
 if (IF_QFULL(ifq)) {
 IF_DROP(ifq);
 NETIN_UTRACE(UTN(‘neti’,’drop’), m, __return_address);
 m_freem(m);
 return ENOBUFS;
 }
 NETIN_UTRACE(UTN(‘neti’,’que ‘), m, __return_address);
 IFQ_LOCK(ifq, s);
 IF_ENQUEUE_NOLOCK(ifq, m);
 IFQ_UNLOCK(ifq, s);
 if ((flags & NETPROC_MORETOCOME) == 0) {
 cvsema(&(netproc_data[n]->netproc_thread.thd_isync));
 }
 return 0;
}

568 007-0911-210

17: Network Device Drivers

Multiprocessor Considerations

Prior to IRIX 5.3, the kernel BSD framework code and TCP/IP protocol stack executed
under a single kernel lock, creating a single-threaded implementation. Beginning with
IRIX 5.3, the BSD framework and TCP/IP protocol suite have been multi-threaded to
support symmetric multiprocessing. The code uses different kernel locks to protect
different critical sections.

IRIX now supports multiple, concurrent threads of execution within the TCP/UDP/IP
protocol suite and the kernel socket layer. In addition, network device drivers run on any
available CPU, concurrently with the network software, applications, and other drivers.
This means that any ifnet-based network driver must be prepared to run asynchronously
and concurrently with other drivers and with the protocol stack.

Ineffective spl*() Functions

The spl*() functions were the traditional UNIX method of gaining exclusive use of data.
In single-threaded ifnet drivers, the splimp() or splnet() functions were used to get
exclusive use of the ifnet structure.

In a multiprocessor, spl*() functions like splimp() or splnet() do block interrupts on the
local CPU, but they do not prevent interrupts from occurring on other processors in the
system, nor do they prevent other processes on other CPUs from executing code that
refers to the same data.

If you are porting a driver from a uniprocessor environment, search for any use of an
spl*() function and plan to replace it with effective mutual exclusion locking macros.

Multiprocessor Locking Macros

Under BSD networking, drivers interface with the protocol stacks by queueing incoming
packets on a per-protocol input queue. In a multiprocessor, each protocol input queue
must be protected by the locking macros defined in the file net/if.h.

All the locking macros that protect the input queue are assumed to be called at the proper
processor interrupt masking level, splimp. All input queue locking macros also take an
input parameter ifq, which is a pointer to the protocol input queue that must be defined
as a struct ifqueue.

Multiprocessor Considerations

007-0911-210 569

Compiler Flags for MP TCP/IP

The _MP_NETLOCKS and MP compiler variables must be defined in order to enable the
macros necessary to run under multi-threaded TCP/IP (see “Compiler Variables” on
page 271).

Mutual Exclusion Macros

The macros for mutual exclusion defined in net/if.h are listed in Table 17-2.

The variables used in Table 17-2 are as follows:

Table 17-2 Mutual Exclusion Macros for ifnet Drivers

Macro Prototype Purpose

IFNET_INITLOCKS(ifp) Initialize locks with mutex_init() and structure *ifp.

IFNET_LOCK(ifp) Get exclusive use of the structure *ifp. splimp() is called to
raise the interrupt level if necessary.

IFNET_UNLOCK(ifp) Release use of *ifp and return to previous interrupt level.

IFNET_ISLOCKED(ifp) Test whether *ifp is locked.

IFQ_LOCK(ifq) Get exclusive use of an input queue *ifq.

IFQ_UNLOCK(ifq) Release use of *ifq.

IF_ENQUEUE(ifq, mp) Lock the queue *ifq; post the mbuf *mp; release the queue.

IF_ENQUEUE_NOLOCK(ifq,mp) Post the mbuf *mp without locking.

ifp Address of a struct ifnet to be used exclusively.

s Integer variable to store the current interrupt mask level.

ifq Address of a struct ifqueue to be posted.

mp Address of a struct mbuf to be posted.

570 007-0911-210

17: Network Device Drivers

Macro Use

The TCP/IP protocol stack automatically acquires the ifnet structure before calling a
network driver routine through that structure. Thus the driver’s init(), stop(), start(),
output(), and ioctl() functions do not need to use IFNET_LOCK or IFNET_UNLOCK.
Look for expressions

ASSERT(IFNET_ISLOCKED(ifp));

in the example driver (“Example ifnet Driver” on page 570) to see places where this is the
case. Explicit use of IFNET_LOCK is needed in the interrupt handler.

Example ifnet Driver

The code in Example 17-1 represents the skeleton of an ifnet driver, showing its entry
points, data structures, required ioctl() functions, address format conventions, and its
use of kernel utility routines and locking primitives.

A comment beginning “MISSING:” represents a point at which a complete driver would
contain code related to the device or bus it manages.

Example 17-1 Skeleton ifnet Driver

/*
 * if_sk - skeleton IRIX 6.5 ifnet device driver
 *
 * This is a skeleton ifnet driver for IRIX 6.5 meant to demonstrate ifnet
 * driver entry points, data structures, required ioctls, address format
 * conventions, kernel utility routines, and locking primitives.
 * These kernel data structures and routines are SUBJECT TO CHANGE
 * without notice.
 *
 * Refer to the IRIX 6.5 Device Driver Programming Guide and Device Driver
 * Reference Pages for complete information on writing PCI, GIO, VME
 * and EISA bus device drivers for SGI systems.
 *
 * "MISSING" is used to designate places where device/bus/driver-specific
 * code sections are required.
 *
 * Locking strategy:
 *
 * There are TWO different approaches supported in Irix 6.5 regarding

Example ifnet Driver

007-0911-210 571

 * device driver locking. The two approaches are designated via the presence
 * or absense of the IFF_DRVRLOCK flag in bsd/net/if.h for this driver.
 * This flag indicates whether the network device driver is responsible for
 * performing it's own MP locking or whether it depends on the upper level
 * to serialize access to the network device driver.
 *
 * If you have a high performance networking device which is to be supported
 * under Irix, then your drive should set and implement the locking
 * required when using the IFF_DRVRLOCK flag. The flag is set in the sk_attach
 * procedure.
 *
 * This device driver example will demonstrate this type of locking support.
 *
 * In the event you choose to NOT implement the IFF_DRVRLOCK flag then the
 * IFNET_LOCK() and IFNET_UNLOCK() macro's are used acquire/release the lock
 * on a given ifnet structure. The ifnet lock must be held while modifying
 * any fields within the associated ifnet data structure. The ifnet lock can
 * also be used to single thread portions of the device driver if so required.
 *
 * The driver xxinit, xxreset, xxoutput, xxwatchdog, and xxioctl entry points
 * are called with the driver lock already acquired thus only a single thread
 * of execution is allowed in these portions of the driver for each interface.
 *
 * It is the driver's responsibility to obtain a lock within its xxintr()
 * procedure and other private routines to single thread any critical sections.
 *
 * Notes:
 * - don't forget appropriate machine-specific cache flushing operations
 * (refer to IRIX Device Driver Programming guide)
 * - declare pointers to device registers as "volatile"
 *
 * Caveat Emptor:
 * No guarantees are made with respect to correctness nor completeness
 * of this source code.
 *
 * Copyright 1998 Silicon Graphics, Inc. All rights reserved.
 */
#ident "$Revision: 3.0$"

#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>

572 007-0911-210

17: Network Device Drivers

#include <sys/hwgraph.h>
#include <sys/iograph.h>
#include <sys/errno.h>
#include <sys/PCI/pciio.h>
#include <sys/idbgentry.h>
#include <sys/tcp-param.h>
#include <sys/mbuf.h>
#include <sys/immu.h>
#include <sys/sbd.h>
#include <sys/ddi.h>
#include <sys/kmem.h>
#include <sys/cpu.h>
#include <sys/invent.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/netisr.h>
#include <netinet/if_ether.h>
#include <net/raw.h>
#include <net/multi.h>
#include <netinet/in_var.h>
#include <net/soioctl.h>
#include <sys/dlsap_register.h>
/* MISSING: driver-specific header includes go here */

/*
 * driver-specific and device-specific data structure
 * declarations and definitions might go here.
 */
#define SK_MAX_UNITS 8
#define SK_MTU 4096
#define SK_DOG (2*IFNET_SLOWHZ) /* watchdog duration in seconds */
#define SK_IFT (IFT_FDDI) /* refer to <net/if_types.h> */
#define SK_INV (INV_NET_FDDI) /* refer to <sys/invent.h> */

#define INV_FDDI_SK (23) /* refer to <sys/invent.h> */

#define IFF_ALIVE (IFF_UP|IFF_RUNNING)
#define iff_alive(flags) (((flags) & IFF_ALIVE) == IFF_ALIVE)
#define iff_dead(flags) (((flags) & IFF_ALIVE) != IFF_ALIVE)

#define SK_ISBROAD(addr) (!bcmp((addr), &skbroadcastaddr, SKADDRLEN))
#define SK_ISGROUP(addr) ((addr)[0] & 01)
/*
 * MISSING media-specific definitions of address size and header format.
 */

Example ifnet Driver

007-0911-210 573

#define SKADDRLEN (6)
#define SKHEADERLEN (sizeof (struct skheader))

/*
 * Our fictional media has an IEEE 802-looking header..
 */
struct skaddr {
 u_int8_t sk_vec[SKADDRLEN];
};

struct skheader {
 struct skaddr sh_dhost;
 struct skaddr sh_shost;
 u_int16_t sh_type;
};

struct skaddr skbroadcastaddr = {
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};

/*
 * Each interface is represented by a private
 * network interface data structure that maintains
 * the device hardware resource addresses, pointers
 * to device registers, allocated dma_alloc maps,
 * lists of mbufs pending transmit or reception, etc, etc.
 * We use ARP and have an 802 address.
 */
struct sk_info {
 struct arpcom si_ac; /* common ifnet and arp */
 struct skaddr si_ouraddr; /* our individual media address */
 struct mfilter si_filter; /* AF_RAW sw snoop filter */
 struct rawif si_rawif; /* raw snoop interface */
 int si_flags;
 caddr_t si_regs; /* pointer to device registers */
 vertex_hdl_t si_our_vhdl; /* our vertex */
 vertex_hdl_t si_conn_vhdl; /* our parent vertex */
 pciio_intr_t si_intr; /* interrupt handle */
 /* MISSING additional driver-specific data structures */
};

#define SK_IF_LOCK 0x1000 /* private driver bitlock */

#define si_if si_ac.ac_if

574 007-0911-210

17: Network Device Drivers

#define sktoifp(si) (&(si)->si_ac.ac_if)
#define ifptosk(ifp)((struct sk_info *)ifp)

#define ALIGNED(addr, alignment) (((u_long)(addr) & (alignment-1)) == 0)

#define sk_info_set(v,i) hwgraph_fastinfo_set((v),(arbitrary_info_t)(i))
#define sk_info_get(v) ((struct sk_info *)hwgraph_fastinfo_get((v)))

/*
 * The start of an mbuf containing an input frame
 */
struct sk_ibuf {
 struct ifheader sib_ifh;
 struct snoopheader sib_snoop;
 struct skheader sib_skh;
};

#define SK_IBUFSZ (sizeof (struct sk_ibuf))

/*
 * Multicast filter request for SIOCADDMULTI/SIOCDELMULTI .
 */
struct mfreq {
 union mkey *mfr_key; /* pointer to socket ioctl arg */
 mval_t mfr_value; /* associated value */
};

void sk_init(void);
static int sk_ifinit(struct ifnet *ifp);
int sk_attach(vertex_hdl_t conn_vhdl);
static void sk_reset(struct sk_info *si);
static void sk_intr(struct sk_info *si);
static int sk_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst);
static void sk_input(struct sk_info *si, struct mbuf *m, int totlen);
static int sk_ioctl(struct ifnet *ifp, int cmd, void *data);
static void sk_watchdog(struct ifnet *ifp);
static void sk_stop(struct sk_info *si);
static int sk_start(struct sk_info *si, int flags);
static int sk_add_da(struct sk_info *si, union mkey *key, int ismulti);
static int sk_del_da(struct sk_info *si, union mkey *key, int ismulti);
static int sk_dstaddr_hash(char *addr);
static int sk_dlp(struct sk_info *si,int port,int encap,struct mbuf *m,int len);
static void sk_dump(int unit);
/* MISSING additional driver-specific routine prototypes */

Example ifnet Driver

007-0911-210 575

extern void bitswapcopy(void *, void *, int);

extern int mutex_bitlock(unsigned int bitlock, unsigned int lock_flag);
extern void mutex_bitunlock(unsigned int bitlock, unsigned int lock_flag,
 int rtn_bitlock);
extern struct ifnet loif; /* loopback driver if */

int sk_devflag = D_MP;

/*
 * xxinit() routine called early during boot.
 */
void
sk_init(void)
{
 /* register ourselves with the pci i/o infrastructure */
 pciio_driver_register(0x10A9, 0x0003, "sk_", 0);
 /*
 * register a handy debugging routine so we can call it
 * from idbg(1) and the kernel debugger.
 */
 idbg_addfunc("sk_dump", (void (*)())sk_dump);
 return;
}

/*
 * xxattach() routine is called by the i/o infrastructure
 * when a hardware device matches our pci vendor and device ids.
 */
int
sk_attach(vertex_hdl_t conn_vhdl)
{
 graph_error_t rc;
 vertex_hdl_t our_vhdl;
 struct sk_info *si;
 struct ifnet *ifp;
 device_desc_t sk_dev_desc;

 /* add a char device vertex to the hardware graph tree ("/hw") */
 if ((rc = hwgraph_char_device_add(conn_vhdl, "sk", "sk_",
 &our_vhdl)) != GRAPH_SUCCESS) {
 cmn_err(CE_ALERT,
 "skattach: hwgraph_char_device_add error %d", rc);
 return EIO;
 }

576 007-0911-210

17: Network Device Drivers

 /* fix up device descriptor */
 sk_dev_desc = device_desc_dup(our_vhdl);
 device_desc_intr_name_set(sk_dev_desc, "sk device");
 device_desc_default_set(our_vhdl, sk_dev_desc);

 si = (struct sk_info*)kmem_zalloc(sizeof (struct sk_info), KM_SLEEP);
 if (si == NULL) {
 cmn_err(CE_ALERT, "skattach: kmem_alloc failed\n");
 return ENOMEM;
 }

 /* save our vertex and our parent's vertex for later */
 si->si_our_vhdl = our_vhdl;
 si->si_conn_vhdl = conn_vhdl;

 /* save a pointer to our sk_info structure in our vertex */
 sk_info_set(our_vhdl, si);

 /*
 * MISSING
 * Driver-specific actions that might go here:
 *
 * - call sk_reset to disable the device
 * - pciio_pio map in the device registers
 * - allocate a new sk_info structure
 * - allocate device host memory buffers and descriptors
 * and create any static dma mappings (pciio_dmamap_xx)
 * ...
 */

 /* register our interrupt handler */
 si->si_intr = pciio_intr_alloc(conn_vhdl, sk_dev_desc,
 PCIIO_INTR_LINE_A, our_vhdl);
 pciio_intr_connect(si->si_intr,
 (intr_func_t)sk_intr,
 (intr_arg_t) si,
 (void *)0);

 /*
 * MISSING your address translation protocol goes here.
 * Save a copy of our MAC address in the arpcom structure.
 */
 bcopy((caddr_t)&si->si_ouraddr, (caddr_t)si->si_ac.ac_enaddr,
 SKADDRLEN);

Example ifnet Driver

007-0911-210 577

 /*
 * Initialize ifnet structure with our name, type, mtu size,
 * supported flags, pointers to our entry points,
 * and attach to the available ifnet drivers list.
 */
 ifp = sktoifp(si);
 ifp->if_name = "sk";
 ifp->if_unit = -1;
 ifp->if_type = SK_IFT;
 ifp->if_mtu = SK_MTU;
 ifp->if_flags =
 IFF_BROADCAST | IFF_MULTICAST | IFF_DRVRLOCK |IFF_NOTRAILERS;

 ifp->if_output = sk_output;
 ifp->if_ioctl = (int (*)(struct ifnet*, int, void*))sk_ioctl;
 ifp->if_watchdog = sk_watchdog;

 /*
 * A note about unit numbering and when to call if_attach:
 *
 * Starting with IRIX 6.4 a boot-time command ioconfig(1M) is
 * provided which walks the hardware device tree ("/hw"), allocates
 * and assigns a controller number (unit number) to each
 * device vertex it finds which has an inventory record.
 *
 * So we do everything but the if_attach() call now,
 * since we don't yet have our unit number, and call
 * if_attach() from our xxopen() routine when it is
 * called by the ioconfig(1M) command during booting.
 */

 /*
 * Allocate a multicast filter table with an initial
 * size of 10. See <net/multi.h> for a description
 * of the support for generic sw multicast filtering.
 * Use of these mf routines is purely optional -
 * if you're not supporting multicast addresses or
 * your device does perfect filtering or you think
 * you can roll your own better, feel free.
 */
 if (!mfnew(&si->si_filter, 10))
 cmn_err(CE_PANIC, "sk_edtinit: no memory for frame filter\n");

 /*
 * You must create an inventory record for this vertex now

578 007-0911-210

17: Network Device Drivers

 * or ioconfig(1M) will not call our xxopen() routine to
 * pass in an allocated unit number later.
 */
 device_inventory_add(our_vhdl, INV_NETWORK, INV_NET_FDDI, 100, -1, 0);
 return 0;
}

/*
 * Driver xxopen() routine exists only to take unit# which has now been
 * assigned to the vertex by ioconfig(1M) and if_attach() the device.
 */
/* ARGSUSED */
int
sk_open(dev_t *devp, int flag, int otyp, struct cred *crp)
{
 vertex_hdl_t our_vhdl;
 struct sk_info *si;
 int unit;

 our_vhdl = dev_to_vhdl(*devp);

 if ((si = sk_info_get(our_vhdl)) == NULL)
 return EIO;

 /* if already if_attached, just return */
 if (si->si_if.if_unit != -1)
 return 0;

 /* get our unit number from the vertex label */
 if ((unit = device_controller_num_get(our_vhdl)) < 0) {
 cmn_err(CE_ALERT, "sk_open: vertex missing ctlr number");
 return EIO;
 }

 si->si_if.if_unit = unit;
 /*
 * Install this device in the list of IRIX ifnet structures.
 */
 if_attach(&si->si_if);

 /*
 * Initialize the raw socket interface. See <net/raw.h>
 * and the man pages for descriptions of the SNOOP
 * and DRAIN raw protocols.
 */

Example ifnet Driver

007-0911-210 579

 rawif_attach(&si->si_rawif, &si->si_if,
 (caddr_t) &si->si_ouraddr,
 (caddr_t) &skbroadcastaddr,
 SKADDRLEN,
 SKHEADERLEN,
 structoff(skheader, sh_shost),
 structoff(skheader, sh_dhost));
 return 0;
}

static int
sk_ifinit(struct ifnet *ifp)
{
 struct sk_info *si = ifptosk(ifp);
 int s;

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);

 /*
 * Reset the device first, ask questions later..
 */
 sk_reset(si);
 /*
 * - free or reuse any pending xmit/recv mbufs
 * - initialize device configuration registers, etc.
 * - allocate and post receive buffers
 *
 * Refer to Device Driver Programming guide for
 * descriptions on use of kvtophys() (GIO) or
 * dma_map/dma_mapaddr() (VME) routines for
 * obtaining DMA addresses and system-specific
 * issues like flushing caches or write buffers.
 */
 /*
 * MISSING
 * enable if_flags device behavior (IFF_DEBUG on/off, etc.)
 */

 ifp->if_timer = SK_DOG; /* turn on watchdog */

 /* MISSING: turn device "on" now */

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return 0;
}

580 007-0911-210

17: Network Device Drivers

/*
 * Reset the interface.
 */
static void
sk_reset(struct sk_info *si)
{
 struct ifnet *ifp = sktoifp(si);
 int s;

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);
 ifp->if_timer = 0; /* turn off watchdog */
 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 /*
 * MISSING
 * - reset device
 * - reset device receive descriptor ring
 * - free any enqueued transmit mbufs
 * - create device xmit descriptor ring
 */
 return;
}

static void
sk_intr(struct sk_info *si)
{
 struct ifnet *ifp;
 struct mbuf *m;
 int totlen, s;

 ifp = &si->si_if;

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);
 /*
 * Ignore early interrupts.
 */
 if (iff_dead(ifp->if_flags)) {
 sk_stop(si);

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return;
 }
 /*
 * MISSING: read and clear the device interrupt status register.
 */

Example ifnet Driver

007-0911-210 581

 /*
 * process any received packets.
 */
 while (0 /* MISSING: received packets available */) {

 /*
 * MISSING
 * Do device-specific receive processing here.
 * Allocate and post a replacement receive buffer.
 */

 sk_input(si, m, totlen);
 }

 while (0 /* MISSING mbufs completed transmission */) {

 /*
 * MISSING
 * Reclaim any completed device transmit resources
 * freeing completed mbufs, checking for errors,
 * and maintaining if_opackets, if_oerrors,
 * if_collisions, etc.
 */
 }

 /* MISSING: process any other interrupt conditions */

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return;
}

/*
 * Transmit packet. If the destination is this system or
 * broadcast, send the packet to the loop-back device if
 * we cannot hear ourself transmit. Return 0 or errno.
 */
static int
sk_output(
 struct ifnet *ifp,
 struct mbuf *m0,
 struct sockaddr *dst)
{
 struct sk_info *si = ifptosk(ifp);
 struct skheader *sh;

582 007-0911-210

17: Network Device Drivers

 struct mbuf *m, *m1;
 struct mbuf *mloop;
 struct sockaddr_sdl *sdl;
 int error, s;

 mloop = NULL;

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);

 if (iff_dead(ifp->if_flags)) {
 error = EHOSTDOWN;
 goto bad;
 }

 /*
 * If snd queue full, try reclaiming some completed
 * mbufs. If it's still full, then just drop the
 * packet and return ENOBUFS.
 */
 if (IF_QFULL(&si->si_if.if_snd)) {

 while (0 /* MISSING xmits done */) {
 /*
 * MISSING: Reclaim completed xmit descriptors.
 */

 IF_DEQUEUE_NOLOCK(&si->si_if.if_snd, m);
 m_freem(m);
 }
 if (IF_QFULL(&si->si_if.if_snd)) {
 m_freem(m0);
 si->si_if.if_odrops++;
 IF_DROP(&si->si_if.if_snd);

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return ENOBUFS;
 }
 }

 switch (dst->sa_family) {
 case AF_INET: {
 /*
 * Get room for media header,
 * use this mbuf if possible.
 */

Example ifnet Driver

007-0911-210 583

 if (!M_HASCL(m0)
 && m0->m_off >= MMINOFF+sizeof(*sh)
 && (sh = mtod(m0, struct skheader*))
 && ALIGNED(sh, sizeof (int))) {
 ASSERT(m0->m_off <= MSIZE);
 m1 = 0;
 --sh;
 } else {
 m1 = m_get(M_DONTWAIT, MT_DATA);
 if (m1 == NULL) {
 m_freem(m0);
 si->si_if.if_odrops++;
 IF_DROP(&si->si_if.if_snd);

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return ENOBUFS;
 }
 sh = mtod(m1, struct skheader*);
 m1->m_len = sizeof (*sh);
 }

 bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);

 /*
 * translate dst IP address to media address.
 */
 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 if (!ip_arpresolve(&si->si_ac, m0,
 &((struct sockaddr_in *)dst)->sin_addr,
 (u_char*)&sh->sh_dhost)) {

 m_freem(m1);
 return 0; /* just wait if not yet resolved */

 }
 if (m1 == 0) {
 m0->m_off -= sizeof (*sh);
 m0->m_len += sizeof (*sh);
 } else {
 m1->m_next = m0;
 m0 = m1;
 }

 /*

584 007-0911-210

17: Network Device Drivers

 * Listen to ourself, if we are supposed to.
 */
 if (SK_ISBROAD(&sh->sh_shost)) {
 mloop = m_copy(m0, sizeof (*sh), M_COPYALL);
 if (mloop == NULL) {
 m_freem(m0);
 si->si_if.if_odrops++;
 IF_DROP(&si->si_if.if_snd);

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return ENOBUFS;
 }
 }
 break;
 }

 case AF_UNSPEC:
#define EP ((struct ether_header *)&dst->sa_data[0])
 /*
 * Translate an ARP packet using RFC-1042.
 * Require the entire ARP packet be in the first mbuf.
 */
 sh = mtod(m0, struct skheader*);
 if (M_HASCL(m0)
 || !ALIGNED(sh, sizeof (int))
 || m0->m_len < sizeof(struct ether_arp)
 || m0->m_off < MMINOFF+sizeof(*sh)
 || EP->ether_type != ETHERTYPE_ARP) {
 printf("sk_output: bad ARP output\n");
 m_freem(m0);
 si->si_if.if_oerrors++;
 IF_DROP(&si->si_if.if_snd);

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 return EAFNOSUPPORT;
 }
 ASSERT(m0->m_off <= MSIZE);
 m0->m_len += sizeof(*sh);
 m0->m_off -= sizeof(*sh);
 --sh;

 bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);
 bcopy(&EP->ether_dhost[0], &sh->sh_dhost, SKADDRLEN);

 sh->sh_type = EP->ether_type;

Example ifnet Driver

007-0911-210 585

#undef EP
 break;

 case AF_RAW:
 /* The mbuf chain contains the raw frame incl header.
 */
 sh = mtod(m0, struct skheader*);
 if (M_HASCL(m0)
 || m0->m_len < sizeof(*sh)
 || !ALIGNED(sh, sizeof (int))) {
 m0 = m_pullup(m0, SKHEADERLEN);
 if (m0 == NULL) {
 si->si_if.if_odrops++;
 IF_DROP(&si->si_if.if_snd);
 return ENOBUFS;
 };
 sh = mtod(m0, struct skheader*);
 }
 break;

 case AF_SDL:
 /*
 * Send an 802 packet for DLPI.
 * mbuf chain should already have everything
 * but MAC header.
 */
 sdl = (struct sockaddr_sdl*) dst;

 /* sanity check the MAC address */
 if (sdl->ssdl_addr_len != SKADDRLEN) {
 m_freem(m0);
 return EAFNOSUPPORT;
 }
 sh = mtod(m0, struct skheader*);
 if (!M_HASCL(m0)
 && m1->m_off >= MMINOFF+SKHEADERLEN
 && ALIGNED(sh, sizeof(int))) {
 ASSERT(m0->m_off <= MSIZE);
 m0->m_len += SKHEADERLEN;
 m0->m_off -= SKHEADERLEN;
 } else {
 m1 = m_get(M_DONTWAIT,MT_DATA);
 if (!m1) {
 m_freem(m0);
 si->si_if.if_odrops++;

586 007-0911-210

17: Network Device Drivers

 IF_DROP(&si->si_if.if_snd);
 return ENOBUFS;
 }
 m1->m_len = SKHEADERLEN;
 m1->m_next = m0;
 m0 = m1;
 sh = mtod(m0, struct skheader*);
 }
 sh->sh_type = htons(ETHERTYPE_IP);
 bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);
 bcopy(sdl->ssdl_addr, &sh->sh_dhost, SKADDRLEN);
 break;

 default:
 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 printf("sk_output: bad af %u\n", dst->sa_family);
 m_freem(m0);
 return EAFNOSUPPORT;
 }

 /*
 * Check whether snoopers want to copy this packet.
 */
 if (RAWIF_SNOOPING(&si->si_rawif)
 && snoop_match(&si->si_rawif, (caddr_t)sh, m0->m_len)) {
 struct mbuf *ms, *mt;
 int len; /* m0 bytes to copy */
 int lenoff;
 int curlen;

 len = m_length(m0);
 lenoff = 0;
 curlen = len + SK_IBUFSZ;
 if (curlen > MCLBYTES)
 curlen = MCLBYTES;
 ms = m_vget(M_DONTWAIT, MAX(curlen, SK_IBUFSZ), MT_DATA);
 if (ms) {
 IF_INITHEADER(mtod(ms,caddr_t), &si->si_if, SK_IBUFSZ);
 curlen = m_datacopy(m0, lenoff, curlen - SK_IBUFSZ,
 mtod(ms,caddr_t) + SK_IBUFSZ);
 mt = ms;
 for (;;) {
 lenoff += curlen;
 len -= curlen;

Example ifnet Driver

007-0911-210 587

 if (len <= 0)
 break;
 curlen = MIN(len, MCLBYTES);
 m1 = m_vget(M_DONTWAIT, curlen, MT_DATA);
 if (0 == m1) {
 m_freem(ms);
 ms = 0;
 break;
 }
 mt->m_next = m1;
 mt = m1;
 curlen = m_datacopy(m0, lenoff, curlen,
 mtod(m1, caddr_t));
 }
 }
 if (ms == NULL) {
 snoop_drop(&si->si_rawif, SN_PROMISC,
 mtod(m0,caddr_t), m0->m_len);
 } else {
 (void)snoop_input(&si->si_rawif, SN_PROMISC,
 mtod(m0, caddr_t),
 ms,
 (lenoff > SKHEADERLEN)?
 (lenoff - SKHEADERLEN) : 0);
 }
 }

 /*
 * Save a copy of the mbuf chain to free later.
 */
 IF_ENQUEUE_NOLOCK(&si->si_if.if_snd, m0);

 /*
 * MISSING
 * Allocate and initialize transmit descriptor resources
 * and kick the chip to start DMA reads for transmitting.
 */

 if (error)
 goto bad;

 ifp->if_opackets++;

 if (mloop) {
 si->si_if.if_omcasts++;

588 007-0911-210

17: Network Device Drivers

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 (void) looutput(&loif, mloop, dst);
 } else {
 if (SK_ISGROUP(sh->sh_dhost.sk_vec))
 si->si_if.if_omcasts++;

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);
 }
 return 0;

bad:
 ifp->if_oerrors++;
 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 m_freem(m);
 m_freem(mloop);
 return error;
}

/*
 * deal with a complete input frame in a string of mbufs.
 * mbuf points at a (struct sk_ibuf), totlen is #bytes
 * in user data portion of the mbuf.
 */
static void
sk_input(struct sk_info *si,
 struct mbuf *m,
 int totlen)
{
 struct sk_ibuf *sib;
 int snoopflags = 0;
 uint port;

 /*
 * MISSING: set local variables 'snoopflags' and
 * 'if_ierrors' as appropriate
 */

 sib = mtod(m, struct sk_ibuf*);
 IF_INITHEADER(sib, &si->si_if, SK_IBUFSZ);

 si->si_if.if_ibytes += totlen;
 si->si_if.if_ipackets++;

Example ifnet Driver

007-0911-210 589

 /*
 * If it is a broadcast or multicast frame,
 * get rid of imperfectly filtered multicasts.
 */
 if (SK_ISGROUP(sib->sib_skh.sh_dhost.sk_vec)) {
 if (SK_ISBROAD(sib->sib_skh.sh_dhost.sk_vec))
 m->m_flags |= M_BCAST;
 else {
 if (((si->si_ac.ac_if.if_flags & IFF_ALLMULTI) == 0)
 && !mfethermatch(&si->si_filter,
 sib->sib_skh.sh_dhost.sk_vec, 0)) {
 if (RAWIF_SNOOPING(&si->si_rawif)
 && snoop_match(&si->si_rawif,
 (caddr_t) &sib->sib_skh, totlen))
 snoopflags = SN_PROMISC;
 else {
 m_freem(m);
 return;
 }
 m->m_flags |= M_MCAST;
 }
 }
 si->si_if.if_imcasts++;
 } else {
 if (RAWIF_SNOOPING(&si->si_rawif)
 && snoop_match(&si->si_rawif,
 (caddr_t) &sib->sib_skh,
 totlen))
 snoopflags = SN_PROMISC;
 else {
 m_freem(m);
 return;
 }
 }

 /*
 * Set 'port' . For us, just sh_type.
 */
 port = ntohs(sib->sib_skh.sh_type);

 /*
 * do raw snooping.
 */
 if (RAWIF_SNOOPING(&si->si_rawif)) {
 if (!snoop_input(&si->si_rawif, snoopflags,

590 007-0911-210

17: Network Device Drivers

 (caddr_t)&sib->sib_skh,
 m,
 (totlen>sizeof(struct skheader)
 ? totlen-sizeof(struct skheader) : 0))) {
 }
 if (snoopflags)
 return;

 } else if (snoopflags) {
 goto drop; /* if bad, count and skip it */
 }

 /*
 * If it is a frame we understand, then give it to the
 * correct protocol code.
 */
 switch (port) {
 case ETHERTYPE_IP:
 network_input(m, AF_INET, 0);
 break;

 case ETHERTYPE_ARP:
 arpinput(&si->si_ac, m);
 return;

 default:
 (void)(sk_dlp(si, port, DL_ETHER_ENCAP, m, totlen))
 break;
 }
 return;

drop:
 m_freem(m);
 if (RAWIF_SNOOPING(&si->si_rawif))
 snoop_drop(&si->si_rawif, snoopflags,
 (caddr_t)&sib->sib_skh, totlen);
 if (RAWIF_DRAINING(&si->si_rawif))
 drain_drop(&si->si_rawif, port);
 return;
}

/*
 * See if a DLPI function wants a frame.
 */
static int

Example ifnet Driver

007-0911-210 591

sk_dlp(struct sk_info *si,
 int port,
 int encap,
 struct mbuf *m,
 int len)
{
 dlsap_family_t *dlp;
 struct mbuf *m2;
 struct sk_ibuf *sib;

 if ((dlp = dlsap_find(port, encap)) == NULL)
 return 0;
 /*
 * The DLPI code wants the entire MAC and LLC headers.
 * It needs the total length of the mbuf chain to reflect
 * the actual data length, not to be extended to contain a fake,
 * zeroed LLC header which keeps the snoop code from crashing.
 */
 if ((m2 = m_copy(m, 0, len+sizeof(struct skheader))) == NULL)
 return 0;

 if (M_HASCL(m2)) {
 m2 = m_pullup(m2, SK_IBUFSZ);
 if (m2 == NULL)
 return 0;
 }
 sib = mtod(m2, struct sk_ibuf*);

 /*
 * MISSING: The DLPI code wants the MAC address in canonical bit order.
 * Convert here if necessary.
 */

 /*
 * MISSING:
 * The DLPI code wants the LLC header, if present,
 * not to be hidden with the MAC header. Decrement
 * LLC header size from ifh_hdrlen if necessary.
 */

 if ((*dlp->dl_infunc)(dlp, &si->si_if, m2, &sib->sib_skh)) {
 m_freem(m);
 return 1;
 }
 m_freem(m2);

592 007-0911-210

17: Network Device Drivers

 return 0;
}

/*
 * Process an ioctl request.
 * Return 0 or errno.
 */
static int
sk_ioctl(
 struct ifnet *ifp,
 int cmd,
 void *data)
{
 struct sk_info *si;
 int error = 0;
 int flags, s;

 si = ifptosk(ifp);

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);

 switch (cmd) {
 case SIOCSIFADDR:
 {
 struct ifaddr *ifa = (struct ifaddr *)data;

 switch (ifa->ifa_addr->sa_family) {
 case AF_INET:
 sk_stop(si);
 si->si_ac.ac_ipaddr = IA_SIN(ifa)->sin_addr;
 sk_start(si, ifp->if_flags);
 break;

 case AF_RAW:
 /*
 * Not safe to change addr while the
 * board is alive.
 */
 if (!iff_dead(ifp->if_flags))
 error = EINVAL;
 else {
 bcopy(ifa->ifa_addr->sa_data,
 si->si_ac.ac_enaddr, SKADDRLEN);
 error = sk_start(si, ifp->if_flags);
 }

Example ifnet Driver

007-0911-210 593

 break;

 default:
 error = EINVAL;
 break;
 }
 break;
 }
 case SIOCSIFFLAGS:
 {
 flags = ((struct ifreq *)data)->ifr_flags;

 if (((struct ifreq*)data)->ifr_flags & IFF_UP)
 error = sk_start(si, flags);
 else
 sk_stop(si);
 break;
 }

 case SIOCADDMULTI:
 case SIOCDELMULTI:
 {
#define MKEY ((union mkey*)data)
 int allmulti;

 /*
 * Convert an internet multicast socket address
 * into an 802-type address.
 */
 error = ether_cvtmulti((struct sockaddr *)data, &allmulti);
 if (0 == error) {
 if (allmulti) {
 if (SIOCADDMULTI == cmd)
 si->si_if.if_flags |= IFF_ALLMULTI;
 else
 si->si_if.if_flags &= ~IFF_ALLMULTI;
 /* MISSING enable hw all multicast addrs */
 } else {
 bitswapcopy(MKEY->mk_dhost, MKEY->mk_dhost,
 sizeof (MKEY->mk_dhost));
 if (SIOCADDMULTI == cmd)
 error = sk_add_da(si, MKEY, 1);
 else
 error = sk_del_da(si, MKEY, 1);
 }

594 007-0911-210

17: Network Device Drivers

 }
 break;
#undef MKEY
 }

 case SIOCADDSNOOP:
 case SIOCDELSNOOP:
 {
#define SF(nm) ((struct skheader*)&(((struct snoopfilter *)data)->nm))
 /*
 * raw protocol snoop filter. See <net/raw.h>
 * and <net/multi.h> and the snoop(7P) man page.
 */
 u_char *a;
 union mkey key;

 a = &SF(sf_mask[0])->sh_dhost.sk_vec[0];
 if (!SK_ISBROAD(a)) {
 /*
 * cannot filter on device unless mask is trivial.
 */
 error = EINVAL;
 } else {
 /*
 * Filter individual destination addresses.
 * Use a different address family to avoid
 * damaging an ordinary multi-cast filter.
 * MISSING You'll have to invent your own
 * mulicast filter routines if this doesn't
 * fit your address size or needs.
 */
 a = &SF(sf_match[0])->sh_dhost.sk_vec[0];
 key.mk_family = AF_RAW;
 bcopy(a, key.mk_dhost, sizeof (key.mk_dhost));

 if (cmd == SIOCADDSNOOP) {
 error = sk_add_da(si, &key, SK_ISGROUP(a));
 } else {
 error = sk_del_da(si, &key, SK_ISGROUP(a));
 }
 }
 break;
 }

 /*

Example ifnet Driver

007-0911-210 595

 * MISSING: add any driver-specific ioctls here.
 */

 default:
 error = EINVAL;
 }

 return error;
}

/*
 * Add a destination address.
 * Add address to the sw multicast filter table and to
 * our hw device address (if applicable).
 */
/* ARGSUSED */
static int
sk_add_da(
 struct sk_info *si,
 union mkey *key,
 int ismulti)
{
 struct mfreq mfr;

 /*
 * mfmatchcnt() looks up key in our multicast filter
 * and, if found, just increments its refcnt and
 * returns true.
 */
 if (mfmatchcnt(&si->si_filter, 1, key, 0))
 return 0;

 mfr.mfr_key = key;
 mfr.mfr_value = (mval_t) sk_dstaddr_hash((char*)key->mk_dhost);
 if (!mfadd(&si->si_filter, key, mfr.mfr_value))
 return ENOMEM;

 /* MISSING: poke this hash into device's hw address filter */
 return 0;
}

/*
 * Delete an address filter. If key is unassociated, do nothing.
 * Otherwise delete software filter first, then hardware filter.
 */

596 007-0911-210

17: Network Device Drivers

/* ARGSUSED */
static int
sk_del_da(
 struct sk_info *si,
 union mkey *key,
 int ismulti)
{
 struct mfreq mfr;

 /*
 * Decrement refcnt of this address in our multicast filter
 * and reclaim the entry if refcnt == 0.
 */
 if (mfmatchcnt(&si->si_filter, -1, key, &mfr.mfr_value))
 return 0;
 mfdel(&si->si_filter, key);

 /* MISSING: disable this hash value from the device if necessary */

 return 0;
}

/*
 * compute a hash value for destination address
 */
static int
sk_dstaddr_hash(char *addr)
{
 int hv;

 hv = addr[0] ^ addr[1] ^ addr[2] ^ addr[3] ^ addr[4] ^ addr[5];
 return (hv & 0xff);
}

/*
 * Periodically poll the device for input packets
 * in case an interrupt gets lost or the device
 * somehow gets wedged. Reset if necessary.
 */
static void
sk_watchdog(struct ifnet *ifp)
{
 struct sk_info *si;
 int s;

Example ifnet Driver

007-0911-210 597

 si = ifptosk(ifp);
 /* check for a missed interrupt */
 sk_intr(si);

 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);
 si->si_if.if_timer = SK_DOG;
 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 return;
}

/*
 * Disable the interface.
 */
static void
sk_stop(struct sk_info *si)
{
 struct ifnet *ifp = sktoifp(si);

 ifp->if_flags &= ~IFF_ALIVE;

 /*
 * Mark an interface down and notify protocols
 * of the transition.
 */
 if_down(ifp);

 sk_reset(si);
 return;
}

/*
 * Enable the interface.
 */
static int
sk_start(struct sk_info *si, int flags)
{
 struct ifnet *ifp = sktoifp(si);
 int error, s;

 if ((error = sk_ifinit(ifp))) {
 return error;
 }
 s = mutex_bitlock(&si->si_flags, SK_IF_LOCK);
 ifp->if_flags = flags | IFF_ALIVE;

598 007-0911-210

17: Network Device Drivers

 mutex_bitunlock(&si->si_flags, EIF_LOCK, s);

 /*
 * Broadcast an ARP packet, asking who has addr
 * on interface ac.
 */
 arpwhohas(&si->si_ac, &si->si_ac.ac_ipaddr);
 return 0;
}

/*
 * private debugging routine.
 */
static void
sk_dump(int unit)
{
 struct sk_info *si;
 struct ifnet *ifp;
 char name[128];

 if (unit == -1)
 unit = 0;
 sprintf(name, "sk%d", unit);

 if ((ifp = ifunit(name)) == NULL) {
 qprintf("sk_dump: %s not found in ifnet list\n", name);
 return;
 }

 si = ifptosk(ifp);
 qprintf("si 0x%x\n", si);
 /* MISSING: qprintf() whatever you want here */
 return;
}

PART SEVEN

EISA Drivers VII

Chapter 18, “EISA Device Drivers”
Overview of the architecture of the EISA bus attachment and the services offered
by the kernel to EISA device drivers.

007-0911-210 601

Chapter 18

18. EISA Device Drivers

The EISA (Extended Industry Standard Architecture) bus is supported by the Silicon
Graphics Indigo2, POWER Indigo2, and Indigo2 Maximum Impact systems. This chapter
contains the following topics related to support for the EISA bus:

• “The EISA Bus in SGI Systems” on page 601 gives an overview of the EISA bus
features and implementation.

• “Kernel Functions for EISA Support” on page 611 discusses the kernel functions
that are specifically used by EISA device drivers.

• “Sample EISA Driver Code” on page 618 displays a complete character driver for an
EISA device.

Note: Often it is most practical to control an EISA device through programmed I/O from
a user-level process. For information on PIO, turn to “EISA Programmed I/O” on
page 89 after reading “The EISA Bus in SGI Systems” on page 601. For information on the
general architecture of a kernel-level device driver, see Part III, “Kernel-Level Drivers.”

The EISA Bus in SGI Systems

The EISA (Extended Industry Standard Architecture) bus is an enhancement of the ISA
(Industry Standard Architecture) bus standard originally developed by IBM.

EISA Bus Overview

EISA is backward compatible with ISA, but expands the ISA data bus from 16 bits to
32 bits, and provides 23 more address lines and 16 more indicator and control lines. The
EISA bus supports the following features:

• all ISA transfers

602 007-0911-210

18: EISA Device Drivers

• bus master devices

• burst-mode DMA transfers

• 32-bit data and address paths

• peer-to-peer card communication

For detailed information on EISA-bus protocols, electrical specifications, and operation,
see the standards documents (“Standards Documents” on page xlii). Figure 18-1 shows
the high-level design of the EISA attachment in the Indigo2 architecture.

Figure 18-1 High-Level Overview of EISA Bus in Indigo2

IP22 or IP26 CPU

Memory

EISA interface unit

(custom ASIC)

Intel 82350

chip set

Data

GIO
bus

IRQ

DMA req /ack

Other control

EISA card slots

The EISA Bus in SGI Systems

007-0911-210 603

EISA Request Arbitration

EISA provides server DMA channels arranged into two channel groups (channels 0-3
and channels 5-7) for priority resolution. SGI uses the rotating scheme described in the
EISA specification. Although the channels rotate in this scheme, channels 5-7 receive
more cycles, in general, than channels 0-3.

EISA Interrupts

The EISA bus supports 11 edge-triggerable or level-triggerable interrupts. IRQ0–IRQ2,
IRQ8, and IRQ13 are reserved for internal functions and are not available to EISA cards.
The remaining 11 interrupt lines (IRQ3–IRQ7, IRQ9–IRQ12, IRQ14, IRQ15) can be
generated by EISA cards. Multiple cards can use one IRQ level, so long as they use the
same triggering method.

All EISA-generated interrupts are transmitted to a single interrupt level on the Silicon
Graphics CPU (see “Interrupt Priority Scheduling” on page 607).

EISA Data Transfers

The EISA bus supports 8-bit, 16-bit, and 32-bit data transfers through direct CPU access
(PIO) as well as DMA initiated by a bus-master card or the on-board DMA hardware.

EISA Address Spaces

The EISA-bus address space is divided into I/O address space and memory address
space. On the EISA bus, accesses to memory and to I/O are distinguished by having
different bus cycle protocols. The MIPS architecture has only one type of memory access,
so in the Silicon Graphics systems, EISA I/O space and memory space are assigned
separate ranges of physical addresses. The EISA Interface Unit (see Figure 18-1) decodes
the address ranges and causes the Intel 82350 bus control to issue the appropriate bus
cycle type, I/O or memory.

The I/O address space comprises a sequence of 4 KB page, one for each bus slot. The first
page, slot 0, corresponds to the registers of the Intel 82350 chip set. The pages for slots 1-4
correspond to the four accessible slots in the Indigo2 and Challenge M chassis (see
“Available Card Slots” on page 606).

604 007-0911-210

18: EISA Device Drivers

EISA Locked Cycles

The EISA bus architecture provides a signal, LOCK*, which allows a card (or the
processor, in an Intel architecture system) to lock bus access so as to perform one or more
atomic updates.

The Silicon Graphics hardware implementation of the EISA bus is bridged onto the GIO
bus, which does not support a locked cycle. The general form of locked bus cycles is not
supported in the Silicon Graphics implementation of EISA. An EISA card cannot lock the
bus nor can software in the IRIX kernel lock the EISA bus.

A device driver in the IRIX kernel can perform a software-controlled read-modify-write
cycle, as on a VME bus, using the pio_*_rmw() kernel functions. See (“Using the PIO
Map in Functions” on page 613). This function ensures that no other software accesses
the EISA bus during the read-modify-write operation.

EISA Byte Ordering

An important implementation detail of the EISA bus is that it uses the Intel convention
of “little-endian” byte ordering, in which the least significant byte of a halfword or word
is in the lowest address. The Silicon Graphics CPU uses “big-endian” ordering, with the
most significant byte first. Hence data exchanged with the EISA bus often needs to be
reordered before use.

EISA Product Identifier

EISA expansion boards, embedded devices, and system boards have a four-byte product
identifier (ID) that can be read from I/O port addresses 0xsC80 through 0xsC83 in the
card’s I/O address space, where s is the offset of the card slot. For example, the slot 1
product ID can be read as a 4-byte value from I/O port addresses 0x1C80. This value can
be tested in an exprobe parameter of the VECTOR line during system boot (see
“Configuring IRIX” on page 608).

The first two bytes (0xsC80 and 0xsC81) contain a compressed representation of the
manufacturer code. The manufacturer code is a three-character code (uppercase ASCII
characters in the range of A to Z) chosen by the manufacturer and registered with the
standard (see “Standards Documents” on page xlii). The manufacturer code “ISA” is
used to indicate a generic ISA adapter.

The EISA Bus in SGI Systems

007-0911-210 605

Figure 18-2 summarizes the contents of the EISA manufacturer ID value.

Figure 18-2 Encoding of the EISA Manufacturer ID

Product ID, 1st byte: 0xzC80
Bit 7 6 5 4 3 2 1 0

Second character of compressed manufacturer code
(bit 1 of 0xzC80 is the most significant bit)

0 = reserves (0)

Second character of compressed manufacturer code
(bit 6 of 0xzC80 is the most significant bit)

Product ID, 2nd byte: 0xzC81
Bit 7 6 5 4 3 2 1 0

Third character of compressed manufacturer code
(bit 4 of 0xzC81 is the most significant bit)

Second character of manufacturer code
(continued from 0xzC80)

Product ID, 3rd byte: 0xzC82
Bit 7 6 5 4 3 2 1 0

Product number

Product ID, 4th byte: 0xzC83
Bit 7 6 5 4 3 2 1 0

Revision number

606 007-0911-210

18: EISA Device Drivers

The three-character manufacturer code is compressed into three 5-bit values so that it can
be incorporated into the two I/O bytes at 0xsC80 and 0xsC81. The compression
procedure is as follows:

1. Find the hexadecimal ASCII value for each letter:

ASCII for “A”-“Z”: “A” = 0x41, “Z” = 0x5a

2. Subtract 0x40 from each ASCII value:

Compressed “A” = 0x41-0x40 = 0x01 = 0000 0001
Compressed “Z” = 0x5a-0x40 = 0x1A = 0001 1010

3. Discard leading 0-bits, retaining the five least significant bits of each letter:

Compressed “A” = 00001. Compressed “Z” = 11010

4. Compressed code = concatenate “0” and the three 5-bit values:

“AZA” = 0 00001 11010 00001

EISA Support in Indigo2 and Challenge M Series

One or more EISA cards can be plugged into an Indigo2 series workstation, or into a
Challenge M system (which uses the identical chassis). Any EISA-conforming card can
be plugged into an available slot. EISA devices can be used as block devices or character
devices, but they cannot be used as boot devices.

Available Card Slots

The Indigo2 series has four peripheral card slots that accept graphics adapters, EISA
cards, or GIO cards in any combination. Graphics cards are available that use one, two,
or three slots, resulting in the following combinations:

• With Extreme graphics installed, one slot is available for use by an EISA card.

• With XZ graphics installed, two slots are used by the graphics, and two are available
for EISA cards.

• The XL graphics uses only one slot, so up to three EISA cards can be
accommodated.

The Challenge M system, having no graphics adapter, has four available slots.

EISA Configuration

007-0911-210 607

EISA Address Mapping

The pages of EISA I/O address space are mapped to physical addresses 0x0001 0000 (slot
1) through 0x0004 0000 (slot 4). The 112 MB of EISA memory address space is mapped to
physical addresses between 0x000A 0000 and 0x06FF FFFF. Addresses in these ranges
can be mapped into the kernel address space for PIO or for DMA (see “Kernel Functions
for EISA Support” on page 611).

Interrupt Priority Scheduling

The EISA architecture associates interrupt priority with the IRQ level, from IRQ0 to
IRQ15. In Silicon Graphics systems, all EISA interrupts are channeled into one CPU
interrupt level. The priority of this CPU interrupt is below that of the clock and at the
same level as on-board devices. When multiple EISA interrupts arrive, they are serviced
in their EISA-bus priority order. When the CPU receives an EISA-bus interrupt, it
responds to each interrupt level in IRQ priority order (lower number first). For each
interrupt level, the IRIX kernel calls one or more interrupt service functions that have
been established by device drivers (see “Allocating IRQs and Channels” on page 613).

EISA Configuration

In order to integrate an EISA device into a Silicon Graphics system you must configure
the EISA card itself, and then configure the system to recognize the card.

Configuring the Hardware

The I/O address space on an EISA card plugged into a card slot responds to the range of
bus addresses for that slot. All EISA cards are identified by a manufacturer-specific
device ID that the operating system uses to register the existence of each card. ISA cards,
in contrast, are jumpered to respond to a specific address range that corresponds to the
device’s I/O registers.

Normally a kernel-level driver accesses registers in the I/O space using a PIO map (see
“Mapping PIO Addresses” on page 611). For a card’s memory space to be accessible, the
card must be configured or jumpered to respond to the appropriate address range. The
specified address range must be selected to avoid conflicts with other EISA/ISA devices.

608 007-0911-210

18: EISA Device Drivers

Configuring IRIX

In the PC/DOS hardware and software environment, where the EISA bus is commonly
found, device configuration is handled in part by use of a standalone ROM BIOS
initialization program that stores device information in the nonvolatile RAM of the PC;
and in part by saving device initialization information in configuration files that are read
at boot time.

Neither of these facilities is available in the same way under IRIX. Each EISA device is
configured to IRIX using a VECTOR line in a file stored in the directory
/var/sysgen/system (see “Kernel Configuration Files” on page 58).

The syntax of a VECTOR line is documented in two places:

• The /var/sysgen/system/irix.sm file itself contains descriptive comments on
the syntax and meaning of the statement, as well as numerous examples.

• The system(4) reference page gives a more formal definition of the syntax.

In a Silicon Graphics system equipped with an EISA bus, the file
/var/sysgen/system/irix.sm contains a number of VECTOR lines describing the
EISA devices supported by distributed code.

The important elements in a VECTOR line for EISA are as follows:

bustype Specified as EISA for EISA devices. The VECTOR statement can be
used for other types of buses as well.

module The base name of a kernel-level device driver for this device, as used
in the /var/sysgen/master.d database (see “Master
Configuration Database” on page 57 and “How Names Are Used in
Configuration” on page 274).

adapter The number of the EISA bus where the device is attached—always 0,
or omitted, in current systems.

ctlr The “controller” number is simply an integer parameter that is
passed to the device driver at boot time. It can be used for example
to specify a slot number.

iospace,
iospace2,
iospace3

Each iospace group specifies the address space, the starting
address, and the size of a segment of address space used by this
device.

probe or
exprobe

Specifies a hardware test that can be applied at boot time to find out
if the device exists.

EISA Configuration

007-0911-210 609

The following is a typical VECTOR line for an EISA device (it must be a single physical
line in the file):

VECTOR: bustype=EISA module=if_ec3 ctlr=1
iospace=(EISAIO,0x1000,0x1000)
exprobe_space=(r,EISAIO, 0x1c80,4,0x6010d425,0xffffffff)

Using the iospace Parameters

The iospace, iospace2, and iospace3 parameters are used to pass ranges of device
addresses to the device driver. Each parameter contains the following three items:

• A keyword for the address space, either EISAIO or EISAMEM.

• The starting address, which depends on the address space and the card itself, as
follows:

– For the I/O space of an EISA card, the starting address of I/O registers is
0x1000 multiplied by the slot number of the card (from 1 to 4), and extends for a
length of 0x1000 (4096). For example, the manufacturer ID of the card in slot 2 is
at address 0x1C80.

– The I/O space of an ISA card is hard-wired or jumpered on the card, and falls in
the range 0x0100 to 0x0400.

– The EISAMEM space is card-dependent and falls in the range 0x000A 0000
through 0x06FF FFFF.

• The length of this bus address range.

The values in these parameters are passed to the device driver at its pfxedtinit() entry
point, provided that the probe shows the device is active.

Using the probe and exprobe Parameters

You use the probe or exprobe parameter to program a test for the existence of the
device at boot time. When no test is specified, lboot assumes the device exists. Then it
is up to the device driver to determine if the device is active and usable. When the device
does not respond to a probe (because it is off-line or because it has been removed from
the system), the lboot command will not invoke the device driver for this device.

An example exprobe parameter is as follows:

exprobe_space=(r,EISAIO, 0x1c80,4,0x6010d425,0xffffffff)

610 007-0911-210

18: EISA Device Drivers

The exprobe parameter lists groups of six subparameters, as follows:

You can use the w operation to prime a device. You can use the r operation to test for a
specific value, and the rn operation to test that a specific value (or a specific bit, after
masking) is not returned.

Typically, a simple r operation is used on an EISA card to test for the manufacturer’s
product identifier.

To test the existence of an ISA card, use a wr sequence to write a value to a register and
read it back unchanged. Or read a value and verify that it does not come back
all-binary-1, the value returned by a nonexistent device.

Using the module Parameter

The device driver specified by the module parameter is invoked at its pfxedtinit() entry
point, where it receives ctlr and iospace information specified in the VECTOR line
(see “Entry Point edtinit()” on page 160). The device driver initializes the device at this
time.

You use the iospace parameters to pass in the exact bus addresses that correspond to
this device. Up to three address space ranges can be passed to the driver. This does not
restrict the device—it can use other ranges of addresses, but the device driver has to
deduce their addresses from other information. The device driver typically uses this data
to set up PIO maps (see “Mapping PIO Addresses” on page 611).

Sequence One or more of w for write, r for read, or rn for read-negate.

Space EISAIO or EISAMEM.

Address The address of the byte, halfword, or word to test.

Length The number of bytes to test: 1, 2, or 4.

Value The value to write, or the test value for a read.

Mask A number to be ANDed with the Value operand before a write or after a
read. Specify 0xffffffff to nullify the AND operation.

Kernel Functions for EISA Support

007-0911-210 611

Kernel Functions for EISA Support

The kernel provides services for mapping the EISA bus into the kernel virtual address
space for PIO or DMA, and for transferring data using these maps. Two types of DMA
are supported, Bus-master DMA and Slave DMA.

Mapping PIO Addresses

A PIO map is a system object that represents the mapping of a location in kernel virtual
memory to some range of addresses on a VME or EISA bus. After creating a PIO map, a
device driver can use it in the following ways:

• Extract a specific kernel virtual address that represents the device. This address can
be used to load or store data, or it can be mapped that into user process space.

• Copy data between the device and memory without learning the specific kernel
addresses involved.

• Perform bus read-modify-write cycles to apply Boolean operators to device data.

The functions used with PIO maps are summarized in Table 18-1.

Table 18-1 Functions to Create and Use PIO Maps

Function Header Files
Can
Sleep Purpose

pio_mapalloc(D3) pio.h & types.h Y Allocate a PIO map.

pio_mapfree(D3) pio.h & types.h N Free a PIO map.

pio_badaddr(D3) pio.h & types.h N Check for bus error when reading an
address.

pio_wbadaddr(D3) pio.h & types.h N Check for bus error when writing to an
address.

pio_mapaddr(D3) pio.h & types.h N Convert a bus address to a virtual address.

pio_bcopyin(D3) pio.h & types.h Y Copy data from a bus address to kernel’s
virtual space.

pio_bcopyout(D3) pio.h & types.h Y Copy data from kernel’s virtual space to a
bus address.

612 007-0911-210

18: EISA Device Drivers

A kernel-level device driver creates a PIO map by calling pio_mapalloc(). This function
performs memory allocation and so can sleep. PIO maps are typically created in the
pfxedtinit() entry point, where the driver first learns about the device addresses from the
contents of the edt_t structure (see “Entry Point edtinit()” on page 160).

The parameters to pio_mapalloc() describe the range of addresses that can be mapped in
terms of

• the bus type, in this case ADAP_EISA from sys/edt.h

• the bus number, when more than one bus is supported

• the address space, using constants such as PIOMAP_EISA_IO from sys/pio.h

• the starting bus address and a length

This call also specifies a “fixed” or “unfixed” map. This distinction applies only to VME
maps. An EISA map is always a fixed map.

A call to pio_mapfree() releases a PIO map. PIO maps created by a loadable driver must
be released in the pfxunload() entry point (see “Entry Point unload()” on page 190 and
“Unloading” on page 283).

Testing the PIO Map

The PIO map is created from the parameters that are passed. These are not validated by
pio_mapalloc(). If there is any possibility that the mapped device is not installed, not
active, or improperly configured, you should test the mapped address.

pio_andb_rmw(D3) pio.h & types.h N Byte read-AND-write cycle.

pio_andh_rmw(D3) pio.h & types.h N 16-bit read-AND-write cycle.

pio_andw_rmw(D3) pio.h & types.h N 32-bit read-AND-write cycle.

pio_orb_rmw(D3) pio.h & types.h N Byte read-OR-write cycle.

pio_orh_rmw(D3) pio.h & types.h N 16-bit read-OR-write cycle.

pio_orw_rmw(D3) pio.h & types.h N 32-bit read-OR-write cycle.

Table 18-1 Functions to Create and Use PIO Maps (continued)

Function Header Files
Can
Sleep Purpose

Kernel Functions for EISA Support

007-0911-210 613

The pio_baddr() and pio_wbaddr() functions test the mapped address to see if it is
usable.

Using the Mapped Address

From a fixed PIO map you can recover a kernel virtual address that corresponds to the
first bus address in the map. The pio_mapaddr() function is used for this.

You can use this address to load or store data into device registers. In the pfxmap() entry
point (see “Concepts and Use of mmap()” on page 180), you can use this address with the
v_mapphys() function to map the range of device addresses into the address space of a
user process.

Using the PIO Map in Functions

You can apply a variety of kernel functions to any PIO map, fixed or unfixed. The
pio_bcopyin() and pio_bcopyout() functions copy a range of data between memory and
a PIO map. There is no performance advantage to using these functions, as compared to
loading or storing to the mapped addresses, but their use makes the device driver code
simpler and more readable.

The series of functions pio_andb_rmw() and pio_orb_rmw() perform a
read-modify-write cycle. You can use them to set or clear bits in device registers.
Read-modify-write cycles on the EISA bus are atomic operations to software only (see
“EISA Locked Cycles” on page 604).

Allocating IRQs and Channels

Before a kernel-level driver can field EISA interrupts, it must associate a handler with one
of the IRQ levels. In order to perform DMA, the driver must allocate one of the DMA
channels. The functions used for these purposes are summarized in Table 18-2.

614 007-0911-210

18: EISA Device Drivers

Note: There are no reference pages for the functions in Table 18-2.

Allocating and Programming an IRQ

The function eisa_ivec_alloc() allocates an available IRQ number from a set of acceptable
numbers. Its prototype is

int eisa_ivec_alloc(uint_t adap,ushort_t mask,uchar_t trig);

The arguments are as follows:

ISA cards are usually hard-wired or jumpered to a particular IRQ, so that the mask
argument contains a single bit. Some EISA cards can be programmed dynamically to use
a selected IRQ; in that case mask contains a 1-bit for each IRQ the card can be
programmed to use.

The function attempts to allocate an IRQ from the mask set that is not in use by any card.
If all acceptable levels are in use, it allocates an IRQ that is already in use with the
requested kind of triggering. In either case, it returns the number of the IRQ to be used.

Table 18-2 Functions for IRQ and Channel Allocation

Function Header Files Can Sleep Purpose

eisa_dmachan_alloc() eisa.h & types.h N Allocate DMA channel.

eisa_ivec_alloc() eisa.h & types.h N Allocate IRQ and set triggering.

eisa_ivec_set() eisa.h & types.h N Associate handler to IRQ.

adap The adapter number, always 0 in current systems.

mask A 16-bit mask containing a 1-bit for each IRQ level that is acceptable for
this device. (For available IRQ levels, see “EISA Interrupts” on
page 603.)

trig The triggering method used by the card, either EISA_EDGE_IRQ or
EISA_LEVEL_IRQ from sys/eisa.h.

Kernel Functions for EISA Support

007-0911-210 615

In the event that all the IRQs requested are already in use with a conflicting type of
triggering, the function returns -1.

After allocating an IRQ, the device driver programs the card (using PIO) to interrupt on
that line.

The function eisa_ivec_set() associates a function in the device driver with an IRQ
number. Its prototype is

int eisa_ivec_set(uint_t adap, int irq,
void (*e_intr)(long), long e_arg)

The parameters are as follows:

When more than one device is allocated the same IRQ, the kernel calls all the interrupt
functions associated with that IRQ. This means that an interrupt function must always
verify, by testing device registers, that the interrupt was caused by its device.

The first call to eisa_ivec_set() for a given IRQ enables interrupts from that IRQ. Prior to
the call, interrupts from that IRQ are ignored.

Note: If you are working with both the VME and EISA interfaces, it is worth noting that
the number and type of arguments of eisa_ivec_set() differ from those of vme_ivec_set().

Note: There is no way to retract the association of an interrupt function with an IRQ. This
means that if an EISA driver handles interrupts and is loadable, it must not support the
pfxunload() entry point. An interrupt arriving after the driver had been unloaded would
panic the system.

adap The adapter number, always 0 in current systems.

irq The IRQ level to be monitored.

e_intr The address of the interrupt handling function to call.

e_arg An argument to pass to the function when called.

616 007-0911-210

18: EISA Device Drivers

Allocating a DMA Channel

The function eisa_dmachan_alloc() allocates one of the seven available DMA channels
(channel 4 is reserved by the hardware) from a set of acceptable channels. The function’s
prototype is

int eisa_dmachan_alloc(uint_t adap, uchar_t dma_mask)

The arguments are as follows:

The function allocates the channel in the requested set that is in use by the fewest devices.
It is possible for a single channel to be requested by multiple devices. However, if the
device can use any of several channels, it is likely that the device will be the only one
using the channel whose number is returned. After allocating a channel number, the
device driver programs the device to use that channel, if necessary.

Programming Bus-Master DMA

Bus-master DMA is performed by an EISA card that has bus-master logic. The card
generates the DMA bus cycles, and provides the target memory address to store or
retrieve data.

The device driver sets up Bus-master DMA by programming the card with a target
physical address and length of data. Some cards support scatter/gather operations, in
which the card is programmed with a list of memory pages and their lengths, and the
card transfers a stream of data across all of the pages. However, programming an EISA
bus master card is a highly hardware-dependent operation. The cards vary widely in
their capabilities and programming methods.

The key programming issue for a device driver is locating the target memory buffers in
system memory, so as to be able to program the EISA card with correct physical memory
addresses.

The kernel provides functions for mapping memory for DMA. The functions that operate
on EISA DMA maps are summarized in Table 18-3.

adap The adapter number, always 0 in current systems.

dma_mask An 8-bit mask containing 1-bits for the DMA channels that
can be used by this device.

Kernel Functions for EISA Support

007-0911-210 617

A device driver allocates a DMA map using dma_mapalloc(). This is typically done in
the pfxedtinit() entry point, provided that the maximum I/O size is known at that time
(see “Entry Point edtinit()” on page 160).

A DMA map is used prior to a DMA transfer into or out of a buffer in kernel virtual
space. The function dma_map() takes a DMA map, a buffer address, and a length. It
relates the buffer address to physical addresses for use in DMA, and returns the length
mapped. The returned length is typically less than the length of the buffer. This is
because, for EISA, the function does not support scatter/gather, so the mapping must
stop at the first page boundary.

After calling dma_map(), the device driver calls dma_mapaddr() to get the physical
address corresponding to the current map. This is the address that is programmed into
the EISA bus master card as a target address for a segment of the transfer up to one page
in size.

Repeated calls to dma_map() and dma_mapaddr() can be used to map successive pages,
until the EISA card is loaded with as many transfer segment addresses as it supports.

Programming Slave DMA

In Slave DMA, an EISA card that does not have DMA logic is commanded by the EISA
Interface Unit and 82350 chip set (see Figure 18-1) to perform a series of transfers into
memory.

Table 18-3 Functions That Operate on DMA Maps

Function Header Files Can Sleep Purpose

dma_map(D3) dmamap.h & types.h &
sema.h

N Prepare DMA mapping.

dma_mapaddr(D3) dmamap.h & types.h &
sema.h

N Return the target physical address for
a given map and address.

dma_mapalloc(D3) dmamap.h & types.h &
sema.h

Y Allocate a DMA map.

dma_mapfree(D3) dmamap.h & types.h &
sema.h

N Free a DMA map.

618 007-0911-210

18: EISA Device Drivers

The kernel supplies a unique set of functions for managing Slave DMA, unrelated to the
DMA functions for Bus-master DMA. The functions that operate on EISA DMA maps are
summarized in Table 18-4.

The EISA attachment hardware has many options for performing Slave DMA, and most
of these options are reflected in the contents of the eisa_dma_cb and eisa_dma_buf data
structures (see the eisa_dma_buf(D4) and eisa_dma_cb(D4) reference pages, in addition
to the reference pages listed in Table 18-4). By setting appropriate values declared in
sys/eisa.h into these structures, you can program most varieties of Slave DMA.

Sample EISA Driver Code

This section shows initialization code, and a complete EISA driver.

Table 18-4 Functions for EISA DMA

Function Header Files Can Sleep Purpose

eisa_dma_disable(D3) eisa.h & types.h N Disable recognition of hardware
requests on a DMA channel.

eisa_dma_enable(D3) eisa.h & types.h N Enable recognition of hardware
requests on a DMA channel.

eisa_dma_free_buf(D3) eisa.h & types.h N Free a previously allocated DMA
buffer descriptor.

eisa_dma_free_cb(D3) eisa.h & types.h N Free a previously allocated DMA
command block.

eisa_dma_get_buf(D3) eisa.h & types.h Y Allocate a DMA buffer descriptor.

eisa_dma_get_cb(D3) eisa.h & types.h Y Allocate a DMA command block.

eisa_dma_prog(D3) eisa.h & types.h Y Program a DMA operation for a
subsequent software request.

eisa_dma_stop(D3) eisa.h & types.h N Stop software-initiated DMA
operation and release channel.

eisa_dma_swstart(D3) eisa.h & types.h Y Initiate a DMA operation via software
request.

Sample EISA Driver Code

007-0911-210 619

Initialization Sketch

The code in Table 18-1 represents an outline of the pfxedtinit() entry point for a
hypothetical EISA device, showing the allocation of a PIO map, an IRQ, and a DMA
channel. The driver supports as many as four identical devices. It keeps information
about them in an array of structures, einfo. Each entry to pfxedtinit() initializes one
element of this array, as indexed by the ctlr value from the VECTOR statement.

An important point to note in the example below is that most of the arguments to
pio_map_alloc() can simply be passed as the values from the edt_t received by the entry
point.

Example 18-1 Sketch of EISA Initialization

#include <sys/types.h>
#include <sys/edt.h>
#include <sys/pio.h>
#include <sys/eisa.h>
#include <sys/cmn_err.h>
#define MAX_DEVICE 4
/* Array of info structures about each device. A device
** that does not initialize OK ought to be marked, but
** no such logic is shown.
*/
struct edrv_info {

caddr_t e_addr[NBASE]; /* pio mapped addr per space */
int e_dmachan; /* dma chan in use */

} einfo[MAX_DEVICE];

#define CARD_ID 0x0163b30a /* mfr. ID */
#define IRQ_MASK 0x0018 /* acceptable IRQs */
#define DMACHAN_MASK 0x7a /* acceptable chans */

edrv_edtinit(edt_t *e)
{

int iospace; /* index over iospace array */
int eirq; /* allocated IRQ # */
int edma_chan; /* allocated chan # */
struct edrv_info *einf; /* -> einfo[n] */
piomap_t *pmap;

if (e->e_ctlr < MAX_DEVICE)
einf = &einfo[e->e_ctlr];

else
{ /* unknown device, nowhere to put info */

620 007-0911-210

18: EISA Device Drivers

cmn_err(CE_WARN,"devno too large:%d",e->e_ctlr);
return;

}
/* for each nonempty iospace parameter,
** set up a PIO map and save the kv address.
*/

for (iospace = 0; iospace < NBASE; iospace++) {
if (!e->e_space[iospace].ios_iopaddr)

einf->e_addr[iospace] = 0; /* note no addr */
pmap = pio_mapalloc(/* make a PIO map */

e->e_bus_type, /* pass bus type given */
e->e_adap, /* pass adapter # given */
&e->e_space[iospace], /* given iospace too */
PIOMAP_FIXED, /* always fixed for EISA */
"edrv");

einf->e_addr[iospace] = pio_mapaddr(pmap,
e->e_space[iospace].ios_iopaddr);

}
/* Set up an edge-triggered IRQ for this device.
** Associate it with our interrupt entry point.
** There is no need to remember the assigned IRQ.
*/

eirq = eisa_ivec_alloc(e->e_adap,IRQ_MASK,EISA_EDGE_IRQ);
if (eirq < 0) {

cmn_err(CE_WARN,
"edrv: ctlr %d could not allocate IRQ\n”,
e->e_ctlr);

/* should mark einfo unusable */
return;

}
eisa_ivec_set(e->e_adap, eirq, edrv_intr, e->e_ctlr);

/* Allocate a DMA Channel for this device and note
** the number in the device info array.
*/

edma_chan = eisa_dmachan_alloc(e->e_adap,DMACHAN_MASK);
if (edma_chan < 0) {

cmn_err(CE_WARN,
"edrv: ctlr %d could not allocate DMA Chan\n",
e->e_ctlr);

/* should mark einfo unusable */
return;

}
einf->e_dmachan = edma_chan;

}

Sample EISA Driver Code

007-0911-210 621

Complete EISA Character Driver

The code in this section displays a complete character device driver for an EISA card, the
Roland RAP-10 synthesizer. This inexpensive synthesizer card can be installed in an
Indigo2 and driven by a program through this device driver.

• Example 18-6 displays the code of the driver itself.

• Example 18-2 displays the descriptive file to be placed in
/var/sysgen/master.d to describe the driver.

• Example 18-3 displays the configuration file to be placed in
/var/sysgen/system to enable loading the driver.

• Example 18-4 displays a shell script to install the driver.

• Example 18-5 contains a test program to operate the synthesizer.

Example 18-2 Master File /var/sysgen/rap for RAP-10 Driver

*
* rap - Roland RAP-10 Musical Board
*
* $Revision: 1.0 $
*
*FLAG PREFIX SOFT #DEV DEPENDENCIES
c rap 61 -

$$$

Example 18-3 Configuration File /var/sysgen/rap.sm for RAP-10 Driver

VECTOR: bustype=EISA module=rap ctlr=0 adapter=0
iospace=(EISAIO,0x330,16) probe_space=(EISAIO,0x330,1)

622 007-0911-210

18: EISA Device Drivers

Example 18-4 Installation Script for RAP-10 Driver

#!/bin/csh

if [`whoami` != “root”]
then
 echo “You must be root to run this script.\n”
 exit 1
fi

echo “cp rap.o /var/sysgen/boot/rap.o\n”
cp rap.o /var/sysgen/boot/rap.o

echo “cp rap.master /var/sysgen/master.d/rap\n”
cp rap.master /var/sysgen/master.d/rap

echo “cp rap.sm /var/sysgen/system/rap.sm”
cp rap.sm /var/sysgen/system/rap.sm

echo “mknod /dev/rap c 62 0\n”
mknod /dev/rap c 62 0

echo “Make a new kernel anytime by typing: autoconfig -f -v\n”

Example 18-5 Program to Test RAP-10 Driver

#include <stdio.h>
#include <fcntl.h>
#include <string.h>
#include <errno.h>
#include <sys/types.h>
#include <signal.h>
#include “rap.h”

/*
* record.c
*
* This program plays song from a previuosly recorded file
* using RAP-10 board.
*
*/

#define BUF_SIZE 4096
#define FILE_HDR “RAP-10 WAVE FILE”
#define RAP_FILE “/dev/rap”

Sample EISA Driver Code

007-0911-210 623

#define MAX_BUF 10
#define FOREVER for(;;)

uchar_t buf[BUF_SIZE];
uchar_t *fname;
void endProg(int);

main (int argc, char **argv)
{

register int fd, rapfd, bytes;

if (argc <= 1) {
printf (“play: Usage: play <file_name>\n”);
exit(0);

}
fname = argv[1];
printf (“play: opening file %s\n”, fname);
fd = open (fname, O_RDONLY);
if (fd == -1) {

printf (“play: Cannot create file, errno = %d\n”, errno);
close(rapfd);
exit(0);

}
printf (“play: Checking RAP-10 File ID\n”);
if (read(fd, buf, strlen(FILE_HDR)) <= 0) {

printf (“play: Could not read the file ID, errno = %d\n”,
errno);
close(fd);
exit(0);

}
if (strcmp(buf, FILE_HDR)) {

printf (“play: File is not a RAP file\n”);
close(fd);
exit(0);

}
printf (“play: opening RAP card\n”);
rapfd = open (RAP_FILE, O_WRONLY);
if (rapfd <= 0) {

printf (“play: Cannot open RAP card, errno = %d\n”,
errno);
exit(0);

}
printf (“play: Playing ..please wait\n”);
/* ignore Interrupt */
sigset (SIGINT, SIG_IGN);

624 007-0911-210

18: EISA Device Drivers

FOREVER {
bytes = read(fd, buf, BUF_SIZE);
if (bytes < 0) {

printf (“play: error reading data, errno = %d”,
errno);

close(fd);
close(rapfd);
exit(0);

}
if (bytes == 0)

break;
bytes = write(rapfd, buf, BUF_SIZE);
if (bytes <= 0) {

printf (“play: Cannot read from RAP, errno = %d\n”,
errno);
close (rapfd);
close (fd);
exit(0);

}
}
printf (“play: waiting for Play to End\n”);
if (ioctl (rapfd, RAPIOCTL_END_PLAY)) {

printf (“play: Ioctl error %d”, errno);
}
else printf (“play: Song succesfully played\n”);
close(rapfd);
close (fd);

}

Example 18-6 Complete EISA Character Driver for RAP-10

/***
*
* Roland RAP-10 Music Card Device Driver for Eisa Bus
* ---
*
* INTRODUCTION:
* -------------
* This file contains the device driver for Roland RAP-10
* Music Card. Currently it contains necessary routines to Record and
* Playback a Wave file. The MIDI Implementation is to be defined and
* implemented at later time.
*
* DESIGN OVERVIEW:
* ----------------

Sample EISA Driver Code

007-0911-210 625

* We will use DMA for wave data movements. At any given time, the card
* can be either playing or recording and both operations are not allowed.
* Also no more than one process at a time can access the card.
*
* Circular Buffers:
* -----------------
* Since DMA operation is performed independently of the processor,
* we will buffer the user’s data and release the user’s process to
* do other things (i.e. preparing more data). Internally we use a
* circular queue (rwQue) to store the data to be played or recorded.
* Each entry in this queue is of the type rwBuf_t where the data will
* be stored. Each entry can store up to RW_BUF_SIZE bytes of data.
* At the init time, we try to allocate two DMA channels for the card:
* Channel 5 and 6. If we can only allocate Channel 5, we will use the
* card in Mono mode, otherwise, we will use it as Stereo. DMA has two
* buffers of its own: dmaRigh[] and dmaLeft[] for each Channel. For
* Stereo play, the data user provides us is of the format:
*
* <Left Byte><Right Byte><Left Byte><Right Byte>.....
*
* So for playing, we have to move all Left_Bytes to dmaLeft buffer
* and all Right_Bytes to the dmaRight buffer (in Stereo mode only).
* In mono mode, we will use dmaLeft[] buffer and all the user’s data
* are moved to dmaLeft[].
*
* The basic operation of the Card are as follow:
*
* Playing:
* --------
* For playing wave data, the user must first open the card through
* open() system call.The call comes to us as rapopen(). This
* routine resets all global values, states and counters, prepares
* necessary DMA structures for each channel, disables RAP-10
* interrupts and establishes this process as the owner of the card.
*
* The user provides us with the wave data by issuing write()
* system calls. This call comes to us as rapwrite(). We will
* move the data from user’s address space into an empty rwQue[]
* entry and will retrun so that the user can issue another call.
* If there is no DMA going, we will start one and the data will
* start to be moved to the Card to be played.
* The user can issue as many write() as necessary. The playing
* operation will be done by either closing the card or issuing
* an Ioctl call. Issuing Ioctl, will leave this process as owner
* still while closing the card will release the card.

626 007-0911-210

18: EISA Device Drivers

*
* Recording:
* ----------
* Assuming that the user has opened the card and is the current
* owner, user will issue read() system call. The call comes to
* us as rapread(). If no DMA Record is going on, we will start
* one. We will move data from rwQue[] entries (as they are filled)
* to user’s address space. The recording is done either by a
* close() or ioctl() call.
*
* DMA Starting:
* -------------
* For Playing, we will start DMA when we have a full circular buffer.
* This is done so that we have enough data available for a fast DMA
* operation to be busy with. For recording, we will start DMA
* immediatly.
*
* Interrupts:
* -----------
* For each DMA transfer, we will receive two interrupts: One when 1st
* half the buffer is transfered, one when 2nd half of the buffer is
* transfered. We must fill the half that has just been transfered with
* fresh data. Note that in Stereo mode, there are two DMA operation
* going. So when we receive Interrupt for one DMA, we must wait for the
* exact interrupt from the other DMA and service both DMA’s half buffers.
*
* Card Address and IRQ
* --------------------
* We will use the default bus address of 0x330 and IRQ 5. Change in
* bus address should also be reflected in /var/sysgen/system/rap.sm
* file. Changes in IRQ should be reflected in the source code and
* the program must be recomplied.
*
* ISSUES:
* -------
* 1. The DMA processing and transfer of data from/to user’s buffer
* are independent of each other. When we are servicing the
* one half of the dma buffer that just been transfered, there is
* no guarantee that we can fill that half of the buffer BEFORE
* dma is done with the other half. In this case, dma plays the
* fist half of buffer WHILE we are writing into it.
*
* 2. Currently eisa_dma_disable() routine does not actually
* releases the Dma channels. This is the reason why we access
* the Dma channel table (e_ch[]) ourselves and release the

Sample EISA Driver Code

007-0911-210 627

* channel.
*
* 3. Somehow because of number 2, the Play program cannot be
* stopped with a Ctrl-C. In Play program this signal is
* explicitly ignored. Trapping a Ctrl-C causes a kernel panic.
* Once we have a workable eisa_dma_disable(), this problem will
* be resolved.
*
* TECHNICAL REFERENCES:
* ---------------------
* Roland RAP-10 Technical Reference and Programmer’s Guide, Ver. 1.1
* IRIX Device Driver Programming Guide
* IRIX Device Driver Reference Pages.
* Intel 82357 Preliminary Reference, Section: 3.7.8 Mode Register (pp: 223)
*
**
*** ***
*** Copyright 1994, Silicon Graphics Inc., Mountain View, CA. ***
*** ***
**
*/
#include “sys/types.h”
#include “sys/file.h”
#include “sys/errno.h”
#include “sys/open.h”
#include “sys/conf.h”
#include “sys/cmn_err.h”
#include “sys/debug.h”
#include “sys/param.h”
#include “sys/edt.h”
#include “sys/pio.h”
#include “sys/uio.h”
#include “sys/proc.h”
#include “sys/user.h”
#include “sys/eisa.h”
#include “sys/sema.h”
#include “sys/buf.h”
#include “sys/cred.h”
#include “sys/kmem.h”
#include “sys/ddi.h”
#include “./rap.h”
/*
* Macros to Read/Write 8 and 16-bit values from an address
*/
#define OUTB(addr, b) (*(volatile uchar_t *)(addr) = (b))

628 007-0911-210

18: EISA Device Drivers

#define INPB(addr) (*(volatile uchar_t *)(addr))
#define OUTW(addr, w) (*(volatile ushort_t *)(addr) = (w))
#define INPW(addr) (*(volatile ushort_t *)(addr))
/*
* Raising and lowering CPU interrupt
*/
#define LOCK() spl5()
#define UNLOCK(s) splx(s)
#define FROM_INTR 1
#define FROM_USR 0
#define User_pid u.u_procp->p_pid
/*
* IRQ and DMA channels we need.
*
*/
#define IRQ_MASK 0x0020
#define DMAC_CH5 0x20 /* DMA Channel 5 */
#define DMAC_CH6 0x40 /* DMA Channel 6 */
/*=======================================*
* MIDI and RAP Registers *
=======================================
*
* The following is a description of RAP-10 registers. The same
* names used throughout this program. Some of these registers are
* 8-bit and some are 16-bit long.
*
* mdrd: MIDI Receive Data
* mdtd: MIDI Transmit Data
* mdst: MIDI Status
* mdcm: MIDI Command
* pwmd: Pulse Width Modulation Data
* timm: Timer MSB data
* gpcm: GPCC Command
* dtci: DMA Transfer Count Buffer Interrupt Status
* adcm: GPCC Analog to Digital Command
* dacm: D/A Command and DMA Transfer Configuration
* gpis: GPCC Interrupt Status
* gpdi: GPCC DMA/Interrupt Enable
* gpst: GPCC Status
* dad0: Digital to Analog Data Channel 0
* addt: A/D Data Transfer
* dad1: Digital to Analog Data Channel 1
* timd: Timer Data
* cmp0: Compare Register Channel 0
* dtcd: DMA Transfer Count Data

Sample EISA Driver Code

007-0911-210 629

* cmp1: Compare Register Channel 1
*
* These defines indicate the offsets of the above registers
* from the Drive’s base address:
*/
#define MDRD 0x0
#define MDTD 0x0
#define MDST 0x1
#define MDCM 0x1
#define PWMD 0x2
#define TIMM 0x3
#define GPCM 0x3
#define DTCI 0x4
#define ADCM 0x4
#define DACM 0x5
#define GPIS 0x6
#define GPDI 0x6
#define GPST 0x8
#define DAD0 0x8
#define ADDT 0xa
#define DAD1 0xa
#define TIMD 0xc
#define CMP0 0xc
#define DTCD 0xe
#define CMP1 0xe

typedef struct rapReg {
uchar_t mdrd;
uchar_t mdtd;
uchar_t mdst;
uchar_t mdcm;
uchar_t pwmd;
uchar_t timm;
uchar_t gpcm;
uchar_t dtci;
uchar_t adcm;
uchar_t dacm;
ushort_t gpis;
ushort_t gpdi;
ushort_t gpst;
ushort_t dad0;
ushort_t addt;
ushort_t dad1;
ushort_t timd;
ushort_t cmp0;

630 007-0911-210

18: EISA Device Drivers

ushort_t dtcd;
ushort_t cmp1;

} rapReg_t;
/*==*
* dtct (DMA Transfer Count) *
==/
#define DTCD_DRQ0 0x00FF /* DRQ 0 bits (0-7) */
#define DTCD_DRQ1 0xFF00 /* DRQ 1 bits (8-15) */
/*==*
* gpst (GPCC Status) *
==/
#define GPST_PWM2 0x0800 /* PWM2 Busy (0=Write Enable, 1=Busy) */
#define GPST_PWM1 0x0400 /* PWM1 Busy (0=Write Enable, 1=Busy) */
#define GPST_PWM0 0x0200 /* PWM0 Busy (0=Write Enable, 1=Busy) */
#define GPST_EPB 0x0100 /* EP Convertor Busy (0=Write Enable, 1=Busy) */
#define GPST_GP1 0x0080 /* GP-chip, Ch 1 Acess (1 = Access) */
#define GPST_GP0 0x0040 /* GP-chip, Ch 0 Acess (1 = Access) */
#define GPST_MTE 0x0020 /* MIDI Tx Enable (0=Tx_Fifo buff full) */
#define GPST_ORE 0x0010 /* MIDI Overrun Error (1 = error) */
#define GPST_FE 0x0008 /* MIDI Framing Error (1 = error) */
#define GPST_ADE 0x0004 /* A/D Error (1 = error) */
#define GPST_DE1 0x0002 /* D/A Ch 1 Write Error (1 = error) */
#define GPST_DE0 0x0001 /* D/A Ch 0 Write Error (1 = error) */
/*==*
* gpdi (GPCC DMA/Interrupt Enable (pp: 4-18) *
==/
#define GPDI_ITC 0x8000 /* DMA Transfer Cnt Match (0=Disable) */
#define GPDI_DC2 0x4000 /* DMA Chann. Assignment, bit2 (pp:4-18) */
#define GPDI_DC1 0x2000 /* DMA Chann. Assignment, bit1 (pp:4-18) */
#define GPDI_DC0 0x1000 /* DMA Chann. Assignment, bit0 (pp:4-18) */
#define GPDI_DT1 0x0800 /* DMA Trans. Mode, bit:1 (pp: 4-18) */
#define GPDI_DT0 0x0400 /* DMA Trans. Mode, bit:0 (pp: 4-18) */
#define GPDI_OVF 0x0200 /* Free Run.Cntr (FCR) Ov.Flow (0=Disable)*/
#define GPDI_TC1 0x0100 /* Timer 1 Compare Match (0=Disable) */
#define GPDI_TC0 0x0080 /* Timer 0 Compare Match (0=Disable) */
#define GPDI_RXD 0x0040 /* MIDI Data Read Request (0=Disable) */
#define GPDI_TXD 0x0020 /* MIDI Tx_fifo Buf Empty (0=Disable) */
#define GPDI_ADD 0x0010 /* A/D Data Ready (0=Disable) */
#define GPDI_DN1 0x0008 /* D/A Ch1 Note ON Ready (0=Disable) */
#define GPDI_DN0 0x0004 /* D/A Ch0 Note ON Ready (0=Disable) */
#define GPDI_DQ1 0x0002 /* D/A Ch1 Data Request (0=Disable) */
#define GPDI_DQ0 0x0001 /* D/A Ch0 Data Request (0=Disable) */
/*==*
* gpis (GPCC Interrupt Status .. pp: 4-16) *
==/

Sample EISA Driver Code

007-0911-210 631

#define GPIS_ITC 0x8000 /* DMA Transfer Count Match */
#define GPIS_JSD 0x0400 /* Joystick Data Ready */
#define GPIS_OVF 0x0200 /* Free Running Countr Overflow */
#define GPIS_TC1 0x0100 /* Timer1 Compare Match */
#define GPIS_TC0 0x0080 /* Timer0 Compare Match */
#define GPIS_RXD 0x0040 /* MIDI Data Read Request */
#define GPIS_TXD 0x0020 /* MIDI Tx_fifo Buf. Empty */
#define GPIS_ADD 0x0010 /* A/D Data Ready */
#define GPIS_DN1 0x0008 /* D/A Ch1 Note ON Ready */
#define GPIS_DN0 0x0004 /* D/A Ch0 Note ON Ready */
#define GPIS_DQ1 0x0002 /* D/A Ch1 Data Request */
#define GPIS_DQ0 0x0001 /* D/A Ch0 Data Request */
/*===*
* dacm (Digital To Analogue Cmd and DMA Transfer Config) *
===/
#define DACM_SCC 0x80 /* DMA Size Cmp. Cnt (0=in Sample, 1=in Bytes)*/
#define DACM_TS2 0x40 /* DMA Trnsfr Size, bit 2 (pp: 4-14) */
#define DACM_TS1 0x20 /* DMA Trnsfr Size, bit 1 (pp: 4-14) */
#define DACM_TS0 0x10 /* DMA Trnsfr Size, bit 0 (pp: 4-14) */
#define DACM_DL1 0x08 /* Ch1 DA Data Len (0=8 bit, 1=17 bit) */
#define DACM_DL0 0x04 /* Ch0 DA Data Len (0=8 bit, 1=17 bit) */
#define DACM_DS1 0x02 /* Ch1 DA Convrsion (0=Stop, 1=Start) */
#define DACM_DS0 0x01 /* Ch0 DA Convrsion (0=Stop, 1=Start) */
/*===*
* adcm (GPCC AD Command) *
===/
#define ADCM_MON 0x40 /* Monitor MIC (0=Monitor Off) */
#define ADCM_GIN 0x20 /* Gain Input (0=Line, 1=Mic) */
#define ADCM_AF1 0x10 /* Analog Freq Selection bit 1 (pp: 4-13) */
#define ADCM_AF0 0x08 /* Analog Freq Selection bit 0 (pp: 4-13) */
#define ADCM_ADL 0x04 /* Analog Data Length (0=8, 1=16) */
#define ADCM_ADM 0x02 /* Analog Data Conv. Mode (0=Mono,1=Stereo) */
#define ADCM_ADS 0x01 /* Analog Data Conv. Start(0=Stop,1=Start) */
/*===*
* dtci (DMA Trans.Count Buf Intr. Stat *
===/
#define DTCI_BF1 0x08 /* DMA DRQ1 buff full (1 = full) */
#define DTCI_BH1 0x04 /* DMA DRQ1 buff half (1 = full) */
#define DTCI_BF0 0x02 /* DMA DRQ0 buff full (1 = full) */
#define DTCI_BH0 0x01 /* DMA DRQ0 buff half (1 = full) */
/*==*
* gpcm (GPCC Command) *
==/
#define GPCM_RST 0x80 /* Reset bit */
#define GPCM_PWM2 0x10 /* Select PWM channel 2 */

632 007-0911-210

18: EISA Device Drivers

#define GPCM_PWM1 0x08 /* Select PWM channel 1 */
#define GPCM_PWM0 0x04 /* Select PWM channel 0 */
#define GPCM_FRCM 0x02 /* Free Run. Counter (1=Start) */
#define GPCM_MTT 0x01 /* MIDI Timed Trans */

/* (1 = Timer INT enabled) */
/*======================================*
* timm (Timer MSB data) *
======================================/
#define TIMM_FRC 0x04 /* Free Running Counter Bit 16 */
#define TIMM_CR1 0x02 /* Compare Reg 1 Bit 16 */
#define TIMM_CR0 0x01 /* Compare Reg 0 Bit 16 */
/*===================================*
* mdcm (MIDI Command) *
===================================/
#define MDCM_UART 0x3f /* UART mode */
#define MDCM_MPU 0xff /* MPU Reset */
#define MDCM_VERSION 0xac /* Version */
#define MDCM_REVISION 0xad /* Revision */
/*===================================*
* mdst (MIDI Status) *
===================================/
#define MDST_DSR 0x80 /* DSR = 0 if ready */
#define MDST_DDR 0x40 /* DDR = 0 if ready */
/*====================================*
* RAP Card Info *
====================================
*
* These are the information regarding the RAP Card.
* The info being tracked are:
*
* ci_state: Our state (Installed, Opened, Playing, Recording)
* ci_pid: PID of process opened us.
* ci_addr[]: EISA Addresses
* ci_irq: EISA Interrupt number we use
* ci_ctl: Controller number we save from edt struct
* ci_adap: Adaptor number we save from edt struct.
* ci_dmaCh6: DMA Channel 6
* ci_dmaCh5: DMA Channel 5
* ci_dmaBuf6: EISA DMA Buffer struct for Channel 6
* ci_dmaBuf5: EISA DMA Buffer struct for Channel 5
* ci_dmaCb6: EISA DMA Control Block for Channel 6
* ci_dmaCb5: EISA DMA Control Block for Channel 5
* di_state: DMA buffers state (Idle, Progress)
* di_idx: Current rwQue[] entry being used.
* di_ptr: Address in rwQue buffer

Sample EISA Driver Code

007-0911-210 633

* di_which: Which half of DMA buffer (0=1st half, 1=2nd Half)
* di_bh: Total DMA Buffer Half (BH) Interrupt received.
* di_bf: Total DMA Buffer Full (BF) Interrupt received.
* ri_state: State of Circular buffer (Wanted_Empty, etc.)
* ri_free: Total Free entries in rwQue[]
* ri_full: Total Full entries in rwQue[]
* ri_idx: Current rwBuf for Read/Write
* ri_tout; =1 if Timed out on read/write
* ri_note; number of Note_On received
* ri_ptr: Pointer in current rwBuf
*/
typedef struct eisa_dma_buf dmaBuf_t;
typedef struct eisa_dma_cb dmaCb_t;
typedef struct cardInfo_s {

/* Card Installation Info */
ushort_t ci_state;
pid_t ci_pid;
caddr_t ci_addr[NBASE];
int ci_irq;
int ci_ctl;
int ci_adap;
int ci_dmaCh6;
int ci_dmaCh5;
dmaBuf_t *ci_dmaBuf6;
dmaBuf_t *ci_dmaBuf5;
dmaCb_t *ci_dmaCb6;
dmaCb_t *ci_dmaCb5;
/* DMA Buffer Information data */
uchar_t di_state;
short di_idx;
uchar_t di_which;
caddr_t di_ptr;
uchar_t di_bh;
uchar_t di_bf;
/* Circular buffer Information data */
uchar_t ri_state;
short ri_free;
short ri_full;
short ri_idx;
uchar_t ri_tout;
uchar_t ri_note;
caddr_t ri_ptr;

} cardInfo_t;
/* ci_state values */
#define CARD_INSTALLED 0x0001

634 007-0911-210

18: EISA Device Drivers

#define CARD_STEREO 0x0002
#define CARD_OPENED 0x0004
#define CARD_PLAYING 0x0010
#define CARD_RECORDING 0x0020
/* di_state values */
#define DI_DMA_IDLE 0x00
#define DI_DMA_PLAYING 0x01
#define DI_DMA_RECORDING 0x02
#define DI_DMA_END_PLAY 0x04
#define DI_DMA_END_RECORD 0x08
/* ri_state values */
#define RI_WANTED_EMPTY 0x01
/*====================================*
* Read/Write Circular Buffers *
====================================
* This is the description of our circular buffers used
* to store D/A and A/D values. D/A values are stored from
* user’s buffer and then moved to DMA buffers. A/D data is
* moved from DMA buffers to these buffers and then moved
* to user’s buffer. The fields are as follow:
* rw_state: buffer state (Empty, Busy, Full)
* rw_idx: Index of this buffer in rwQue[];
* rw_count: Total bytes in the buffer
* rw_buf[]: The buffer itself.
* RW_MIN_FULL: We will start a D/A DMA when we have this many
* full buffer on hand. This is done so that we can
* provide enough full buffers for DMA to process.
*/
#define RW_BUF_SIZE 8192
#define RW_BUF_COUNT 20
#define RW_MIN_FULL 1
#define RW_TIMEOUT 1600
typedef struct rwBuf_s {

uchar_t rw_state;
short rw_idx;
int rw_count;
uchar_t rw_buf[RW_BUF_SIZE];

} rwBuf_t;
/* rw_state values */
#define RW_EMPTY 0x00 /* used as parameter only */
#define RW_FULL 0x01
#define RW_WANTED_FULL 0x02
#define RW_WANTED_EMPTY 0x04
/*==================================*
* Global values *

Sample EISA Driver Code

007-0911-210 635

==================================/
#define DMA_BUF_SIZE 8192
#define DMA_HALF_SIZE 4096
int rapdevflag = 0;
static cardInfo_t cardInfo;
static caddr_t dmaRight;
static caddr_t dmaLeft;
static paddr_t dmaRightPhys;
static paddr_t dmaLeftPhys;
static rwBuf_t rwQue[RW_BUF_COUNT];
static caddr_t eisa_addr;
/*
* Eisam Dma Channel semaphores..shoule be removed when
* proper way of releasing channels found
*/
extern struct eisa_ch_state {

sema_t chan_sem; /* inuse semaphore for each channel */
sema_t dma_sem; /* dma completion semaphore */
struct eisa_dma_buf *cur_buf; /* current eisa_dma_buf being dma’ed */
struct eisa_dma_cb *cur_cb; /* ptr to current command block */
int count;

} e_ch[];
/*===*
* Driver Entry routines Data *
===/
int rapopen (dev_t *, int, int, cred_t *);
int rapread (dev_t, uio_t *, cred_t *);
int rapwrite (dev_t, uio_t *, cred_t *);
int rapclose (dev_t, int, int, cred_t *);
void rapedtinit (struct edt *);
void rapintr (int);
int rapioctl (dev_t, int, void *, int, cred_t *, int *);
/*=======================================*
* Misc and Internal routines *
=======================================/
static void rapDisInt (cardInfo_t *);
static int rapGetDma(dmaBuf_t **, dmaCb_t **, int);
static int rapClose(uchar_t);
static short rapGetNextEmpty (short, uchar_t);
static short rapGetNextFull (short, uchar_t);
static void rapPrepEisa(dmaBuf_t *, dmaCb_t *, uchar_t, paddr_t);
static int rapStart(uchar_t);
static void rapStop(uchar_t);
static void rapStartDA();
static void rapStartAD();

636 007-0911-210

18: EISA Device Drivers

static void rapBufToDma(int);
static void rapDmaToBuf(int);
static void rapMarkBuf(rwBuf_t *, cardInfo_t *, uchar_t);
static int rapKernMem(uchar_t);
static void rapSetAutoInit(cardInfo_t *, uchar_t);
static void rapTimeOut(void *);
static void rapNoteOn(cardInfo_t *, ushort_t);
static void rapNoteOff(cardInfo_t *);
static void rapZeroDma(cardInfo_t *, int);
static void rapReleaseDma (cardInfo_t *);
/***
* r a p e d t i n i t

* Name: rapedtint
* Purpose: Initializes the driver. Called once for each controller.
* Called only once.
* Returns: None.
***/
void
rapedtinit (struct edt *e)
{

int ctl, iospace, dmac, eirq;
cardInfo_t *ci;
piomap_t *pmap;
iospace_t eisa_io;

ci = &cardInfo;
cmn_err (CE_NOTE, “rapedtinit: Installing RAP board.”);
bzero ((void *)ci, sizeof(cardInfo_t));
dmaRight = dmaLeft = (caddr_t)NULL;
ci->ci_ctl = e->e_ctlr;
ci->ci_adap = e->e_adap;
/*
* Get the base address of Eisa bus (for rapSetAutoInit)
*/
bzero (&eisa_io, sizeof(iospace_t));
eisa_io.ios_iopaddr = 0;
eisa_io.ios_size = 1000;
pmap = pio_mapalloc (e->e_bus_type, 0, &eisa_io, PIOMAP_FIXED, “eisa”);
if (pmap == (piomap_t *)NULL) {

cmn_err (CE_WARN, “rapedtinit: Cannot get Eisa bus address”);
return;

}
eisa_addr = pio_mapaddr (pmap, eisa_io.ios_iopaddr);
#ifdef DEBUG

Sample EISA Driver Code

007-0911-210 637

cmn_err (CE_NOTE, “rapedtinit: Eisa base address = %x”, eisa_addr);
#endif
/*===*
* map EISA IO/Memory addresses for RAP-10 card *
===/
for (iospace = 0; iospace < NBASE; iospace++) {

/* any address to map ? */
if (!e->e_space[iospace].ios_iopaddr)

continue;
pmap = pio_mapalloc (e->e_bus_type, e->e_adap,

&e->e_space[iospace],
PIOMAP_FIXED, “rap10”);

ci->ci_addr[iospace] = pio_mapaddr (pmap,
e->e_space[iospace].ios_iopaddr);

}
/* is Card still there ? */
if (badaddr(ci->ci_addr[0], 1)) {

cmn_err (CE_WARN, “rapedtinit: RAP board not installed.”);
return;

}
#ifdef DEBUG
cmn_err (CE_NOTE, “rapedtinit: First Load..allocating IRQ”);
#endif
eirq = eisa_ivec_alloc(e->e_adap, IRQ_MASK, EISA_EDGE_IRQ);
if (eirq < 0) {

cmn_err (CE_WARN,
“rapedtinit: Could not allocate IRQ for RAP card.”);
return;

}
/* set Interrupt handler */
#ifdef DEBUG
cmn_err (CE_NOTE, “rapedtinit: Setting Interrupt Handler for IRQ %d”,

eirq);
#endif
if (eisa_ivec_set(e->e_adap, eirq, rapintr, e->e_ctlr) == -1) {

cmn_err (CE_NOTE,
“rapedtinit: Could not set Interrupt handler for Irq %d”, eirq);
ci->ci_state = 0;
return;

}
ci->ci_irq = eirq;
/*======================================*
* DMA Channels Allocation *
======================================/
/* DMA channel 5 */

638 007-0911-210

18: EISA Device Drivers

dmac = eisa_dmachan_alloc (e->e_adap, DMAC_CH5);
if (dmac < 0) {

cmn_err (CE_WARN,
“rapedtinit: Could not allocate DMA Channel 5.”);

return;
}
ci->ci_dmaCh5 = dmac;
/* DMA channel 6 */
dmac = eisa_dmachan_alloc (e->e_adap, DMAC_CH6);
if (dmac < 0) {

cmn_err (CE_WARN,
“rapedtinit: Could not allocate DMA Chann 6.”);

cmn_err (CE_WARN,
“rapedtinit: RAP is initialized as Mono.”);

}
else {

ci->ci_dmaCh6 = dmac;
ci->ci_state |= CARD_STEREO;

}
/*==============================*
* DMA Buffer allocation *
==============================/
if (rapKernMem (1)) {

cmn_err (CE_WARN, “rapedtinit: Did not install RAP-10.”);
return;

}
ci->ci_state |= CARD_INSTALLED;

#ifdef DEBUG
cmn_err (CE_NOTE, “rapedtinit: RAP installed, Addr: %x, Irq: %d.”,

ci->ci_addr[0], ci->ci_irq);
cmn_err (CE_NOTE, “rapedtinit: Init as %s, Dma 1 = %d, Dma 0 = %d”,

(ci->ci_state & CARD_STEREO ? “Stereo”:”Mono”),
ci->ci_dmaCh5, ci->ci_dmaCh6);

#endif
return;

} /*** End rapedtinit ***/
/***
* r a p o p e n

* Name: rapopen
* Purpose: Opens the RAP board and initializes necessary data
* Returns: 0 = Success, or appropriate error number.
***/
int
rapopen (dev_t *dev, int oflag, int otyp, cred_t *cred)

Sample EISA Driver Code

007-0911-210 639

{
register int i;
cardInfo_t *ci;
rwBuf_t *rw;
dmaBuf_t *dmaB;
dmaCb_t *dmaC;
ci = &cardInfo;

#ifdef DEBUG
cmn_err (CE_NOTE, “rapopen: Opening, Addr = %x, ci_state = %x”,

ci->ci_addr[0], ci->ci_state);
#endif

/*
* No card is installed or card is already opened
*/
if (!(ci->ci_state & CARD_INSTALLED))

return (ENODEV);
if (ci->ci_state & CARD_OPENED)

return (EBUSY);
/* Allocate DMA Buf and Cb for Channel 5 */
if (ci->ci_dmaBuf5 == (dmaBuf_t *)NULL) {

if (rapGetDma(&dmaB, &dmaC, ci->ci_dmaCh5)) {
cmn_err (CE_WARN,”rapopen: Could not allocate DMA Buf 5.”);
return (ENOMEM);

}
ci->ci_dmaBuf5 = dmaB;
ci->ci_dmaCb5 = dmaC;

}
/* if in stereo, do the same for Channel 6 */
if (ci->ci_state & CARD_STEREO) {

if (rapGetDma(&dmaB, &dmaC, ci->ci_dmaCh6)) {
cmn_err (CE_WARN,

“rapopen: Could not allocate DMA Buf 6.”);
return (ENOMEM);

}
ci->ci_dmaBuf6 = dmaB;
ci->ci_dmaCb6 = dmaC;

}
/* Initialize Card Info structure */
ci->ri_idx = 0;
ci->di_idx = 0;
ci->ri_state = 0;
ci->di_state = 0;
ci->di_ptr = 0;
ci->ri_ptr = 0;
ci->ri_free = RW_BUF_COUNT;

640 007-0911-210

18: EISA Device Drivers

ci->ri_full = 0;
ci->ci_state &= ~(CARD_PLAYING | CARD_RECORDING);
ci->ci_state |= CARD_OPENED;
ci->ci_pid = User_pid;
/* Initialize Circular Buffers */
for (i = 0; i < RW_BUF_COUNT; i++) {

rw = &rwQue[i];
rw->rw_count = 0;
rw->rw_state = 0;
rw->rw_idx = i;
bzero (rw->rw_buf, RW_BUF_SIZE);

}
rapDisInt(ci);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapopen: Opened succesfully”);
#endif
return(0);

} /*** End rapopen ***/
/***
* r a p w r i t e

* Name: rapwrite
* Purpose: Write entry routine. This routine will transfer user’s
* data to current or an empty entry in rwQue[] and starts
* DMA if none is going.
* Returns: 0 = Success, or errno
***/
int
rapwrite (dev_t dev, uio_t *uio, cred_t *cred)
{

cardInfo_t *ci;
rwBuf_t *rw;
toid_t to_id;
int avail, size, totBytes, err, s;
ci = &cardInfo;
/*=========================*
* Error Checking *
=========================/
/* no card is installed */
if (!(ci->ci_state & CARD_INSTALLED))

return (ENODEV);
/* card is not opened */
if (!(ci->ci_state & CARD_OPENED))

return (EACCES);
/* we are not the owner */

Sample EISA Driver Code

007-0911-210 641

if (ci->ci_pid != User_pid)
return (EACCES);

/* is busy recording */
if (ci->ci_state & CARD_RECORDING)

return (EACCES);
ci->ci_state |= CARD_PLAYING;
rw = &rwQue[ci->ri_idx];
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapwrite: %d bytes, buf = %d, rw_count = %d, free = %d, full = %d”,
uio->uio_resid, ci->ri_idx, rw->rw_count, ci->ri_free, ci->ri_full);

#endif
/* if it is full, wait till it is Empty */
s = LOCK();
if (rw->rw_state & RW_FULL) {

ci->ri_ptr = NULL;
ci->ri_tout = 0;
to_id = itimeout (rapTimeOut, rw, RW_TIMEOUT, plbase, 0, 0, 0);
while ((rw->rw_state & RW_FULL) && !ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapwrite: waiting for buf %d to be Empty”,

rw->rw_idx);
#endif
rw->rw_state |= RW_WANTED_EMPTY;
if (sleep (rw, PUSER | PCATCH)) {

untimeout(to_id);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapwrite: Interrupted”);
#endif
rw->rw_state &= ~RW_WANTED_EMPTY;
UNLOCK(s);
return (EINTR);

}
} /* while */
untimeout(to_id);
/* we timed out ..couldn’t get the buffer */
if (ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapwrite: Timed out”);
#endif
rw->rw_state &= ~RW_WANTED_EMPTY;
UNLOCK(s);
return (EIO);

}
} /* if (rw->rw_state & RW_FULL */

642 007-0911-210

18: EISA Device Drivers

UNLOCK(s);
/* adjuest the read/write address if necessary */
if (ci->ri_ptr == NULL)

ci->ri_ptr = rw->rw_buf;
totBytes = uio->uio_resid;
while (totBytes > 0) {

avail = RW_BUF_SIZE - rw->rw_count;
/* if this buffer is full, get next buffer */
if (avail <= 0) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapwrite: Buffer %d is Full now, rw_count = %d”,
rw->rw_idx, rw->rw_count);
#endif
s = LOCK();
rapMarkBuf(rw, ci, RW_FULL);
/* wake anyone wanted this buffer full */
if (rw->rw_state & RW_WANTED_FULL) {

#ifdef DEBUG
cmn_err (CE_NOTE,”rapwrite: Buffer %d is Wanted_Full”,

rw->rw_idx);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
wakeup(rw);

}
/*
* start DMA if none is going and we filled the
* entire buffers.
*/
if ((ci->di_state == DI_DMA_IDLE) &&

(rw->rw_idx >= RW_MIN_FULL)) {
#ifdef DEBUG
cmn_err (CE_NOTE,”rapwrite: Starting Play Dma”);
#endif
err = rapStart(DI_DMA_PLAYING);
if (err) {

cmn_err (CE_WARN,
“rapwrite: Could not start playing error %d”,err);

UNLOCK(s);
return(err);

}
}
/* get next empty buffer */
ci->ri_idx = rapGetNextEmpty(ci->ri_idx, FROM_USR);
rw = &rwQue[ci->ri_idx];

Sample EISA Driver Code

007-0911-210 643

ci->ri_ptr = rw->rw_buf;
UNLOCK(s);
continue;

}
/* start filling this buffer */
size = (totBytes > avail ? avail: totBytes);
err = uiomove (ci->ri_ptr, size, UIO_WRITE, uio);
if (err) {

cmn_err (CE_NOTE, “rapwrite: uiomov error %d”, err);
return(err);

}
rw->rw_count += size;
ci->ri_ptr += size;
totBytes = uio->uio_resid;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapwrite: Wrote %d to Buffer %d, Left = %d, rw_count = %d”,
size, rw->rw_idx, totBytes, rw->rw_count);

#endif
}
return (0);

} /*** end rapwrite ***/
/***
* r a p r e a d

*
* Name: rapread
*
* Purpose: Reads data from rwQue[] into user’s buffer.
* This routine waits for current DMA operation to end
* and then starts a A/D Dma (recording). If A/D is already
* going then it simply moves data from current Full buffer
* into user’s buffer. If buffer is not full, it waits for
* it to get full.
*
* Returns: 0 = Success, or errno.
*
***/
int
rapread (dev_t dev, uio_t *uio, cred_t *cred)
{

cardInfo_t *ci;
rwBuf_t *rw;
toid_t to_id;
int avail, size, totBytes, err, s;

644 007-0911-210

18: EISA Device Drivers

ci = &cardInfo;
/*===============================*
* Error Checking *
===============================/
/* card is not installed */
if (!(ci->ci_state & CARD_INSTALLED))

return (ENODEV);
/* card is not opened */
if (!(ci->ci_state & CARD_OPENED))

return (EACCES);
/* we do not own the card */
if (ci->ci_pid != User_pid)

return (EACCES);
/* card is in middle of a Play operation */
if (ci->ci_state & CARD_PLAYING)

return (EIO);
ci->ci_state |= CARD_RECORDING;
/* start a A/D Dma if none is going on */
if (ci->di_state == DI_DMA_IDLE) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapread: Idle DMA. Starting one”);
#endif
if (rapStart(DI_DMA_RECORDING)) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapread: Could not start A/D”);
#endif
ci->ci_state &= ~CARD_RECORDING;
UNLOCK(s);
return (EIO);

}
}
/*
* get the buffer we should be using and
* wait for it to become Full
*/
rw = &rwQue[ci->ri_idx];
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapread: %d bytes, buf = %d, rw_count = %d, free = %d, full = %d”,
uio->uio_resid, ci->ri_idx, rw->rw_count, ci->ri_free, ci->ri_full);

#endif
s = LOCK();
if (!(rw->rw_state & RW_FULL)) {

ci->ri_ptr = NULL;
ci->ri_tout = 0;

Sample EISA Driver Code

007-0911-210 645

to_id = itimeout (rapTimeOut, rw, RW_TIMEOUT, plbase, 0, 0, 0);
while (!(rw->rw_state & RW_FULL) && !ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapread: wating for buf %d to become Full”,
rw->rw_idx);
#endif
rw->rw_state |= RW_WANTED_FULL;
if (sleep (rw, PUSER | PCATCH)) {

untimeout (to_id);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapread: Interrupted”);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
UNLOCK(s);
return(EINTR);

}
} /* while */
untimeout (to_id);
if (ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapread: Timed out”);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
UNLOCK(s);
return (EIO);

}
} /* if !rw->rw_state & RW_FULL */
UNLOCK(s);
/* adjust read/write pointer if necessary */
if (ci->ri_ptr == NULL)

ci->ri_ptr = rw->rw_buf;
/*===================================*
* Actual Read (Data movement) *
===================================/
totBytes = uio->uio_resid;
while (totBytes > 0) {

avail = rw->rw_count;
/* if this buffer is Empty, get next Full buffer */
if (avail <= 0) {

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapread: Buffer %d is Empty now, rw_count = %d”,
rw->rw_idx, rw->rw_count);

#endif
s = LOCK();

646 007-0911-210

18: EISA Device Drivers

rapMarkBuf(rw, ci, RW_EMPTY);
/* wake anyone wanted this buffer Empty */
if (rw->rw_state & RW_WANTED_EMPTY) {

#ifdef DEBUG
cmn_err (CE_NOTE,”rapread: Buffer %d is Wanted_Empty”,

rw->rw_idx);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
wakeup(rw);

}
/* get next Full buffer */
ci->ri_idx = rapGetNextFull(ci->ri_idx, FROM_USR);
rw = &rwQue[ci->ri_idx];
ci->ri_ptr = rw->rw_buf;
UNLOCK(s);
continue;

}
/* start filling this buffer */
size = (totBytes > avail ? avail: totBytes);
err = uiomove (ci->ri_ptr, size, UIO_READ, uio);
if (err) {

cmn_err (CE_PANIC, “rapread: uiomov error %d”, err);
return(err);

}
rw->rw_count -= size;
ci->ri_ptr += size;
totBytes = uio->uio_resid;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapread: Read %d, Buffer %d, Left = %d, rw_count = %d”,
size, rw->rw_idx, totBytes, rw->rw_count);

#endif
}
return (0);

} /*** End rapread ***/
/***
* r a p c l o s e

* Name: rapclose
* Purpose: closes connection to the card and makes it available
* for next process to open it.
* Returns: 0 = Success, or errno
***/
int
rapclose (dev_t dev, int flag, int otyp, cred_t *cred)

Sample EISA Driver Code

007-0911-210 647

{
cardInfo_t *ci;
ci = &cardInfo;
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapclose: ci_state = %x, di_state = %x, full = %d, empty = %d”,

ci->ci_state, ci->di_state, ci->ri_full, ci->ri_free);
#endif
/*=========================*
* Error Checking *
=========================/
/* card is not installed */
if (!(ci->ci_state & CARD_INSTALLED))

return (ENODEV);
/* card is not opened */
if (!(ci->ci_state & CARD_OPENED))

return (EACCES);
/* we do not own the card */
if (ci->ci_pid != User_pid)

return (EACCES);
return (rapClose(1));

}
/***
* r a p i n t r

* Name: rapintr
* Purpose: Interrupt handling routine
* Returns: None.
***/
void
rapintr (int ctl)
{

ushort_t gpis;
uchar_t dtci;
uchar_t stereo;
uchar_t totreq;
uchar_t playing;
uchar_t moveData;
cardInfo_t *ci;
caddr_t addr;
ci = &cardInfo;
addr = ci->ci_addr[0];
/*
* moveData: 0 = we should move data between Buf/DMA to DMA/Buf.
* totreq: In stereo, we have to wait for 2 BF or BH interrupt

648 007-0911-210

18: EISA Device Drivers

* but in Mono we have to wait for only one.
* playing: 1 = Playing, 0= Recording.
*/
moveData = 0;
totreq = (ci->ci_state & CARD_STEREO? 2:1); /* No. of Ints. we need */
playing = ci->ci_state & CARD_PLAYING;
gpis = INPW(addr+GPIS);
/*
* First, check for stray interrupts and ignore them
*/
if (!(ci->ci_state & (CARD_PLAYING | CARD_RECORDING))) {

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: Stray interupt, gpis = %x, ci_state = %x”,
ci->ci_state);

#endif
return;

}
#ifdef DEBUG
cmn_err (CE_NOTE, “rapintr: New ..Gpis = %x”, gpis);
#endif
/**********************************
* DMA Buffers Half/Full *
**********************************/
while (gpis & GPIS_ITC) {

/* see which buffer is half/full */
dtci = INPB(addr+DTCI);
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: Dma buffer status..Gpis = %x, Dtci = %x”, gpis, dtci);
#endif
if (dtci & DTCI_BF0)

ci->di_bf++;
if (dtci & DTCI_BF1)

ci->di_bf++;
if (dtci & DTCI_BH0)

ci->di_bh++;
if (dtci & DTCI_BH1)

ci->di_bh++;
#ifdef DEBUG
cmn_err (CE_NOTE, “rapintr: di_bf = %d, di_bh = %d”,

ci->di_bf, ci->di_bh);
#endif
/* 1st half of dma needs service */
if (ci->di_bh == totreq) {

Sample EISA Driver Code

007-0911-210 649

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: DMA First_Half needs service”);
#endif
ci->di_bh = 0;
ci->di_which = 0; /* 1st half of DMA buffer */
moveData = 1;

}
/* 2nd half of dma needs service */
else if (ci->di_bf == totreq) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapintr: DMA Second_Half needs service”);
#endif
ci->di_bf = 0;
ci->di_which = 1; /* 2nd half of DMA buffer */
moveData = 1;

}
/*
* Move data if needed
*/
if (moveData) {

/* move data for Play if only data available */
if (playing) {

/* No more data..end of play */
if (ci->ri_full <= 0) {

if (ci->di_state & DI_DMA_END_PLAY) {
#ifdef DEBUG
cmn_err (CE_NOTE,”rapintr: End of Play Reached”);
#endif
if (ci->ri_state & RI_WANTED_EMPTY) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapintr: Cir.Buff is Wanted Empty”);
#endif
ci->ri_state &= ~RI_WANTED_EMPTY;
wakeup (ci);

}
else rapStop(DI_DMA_PLAYING);

return;
} else {

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: Playing but no Full buffers”);
#endif

650 007-0911-210

18: EISA Device Drivers

return;
}

}
/* Data is available to play */
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapintr: Playing..which = %d, idx = %d, full = %d, Empty = %d”,
ci->di_which, ci->di_idx, ci->ri_full, ci->ri_free);
#endif
rapBufToDma(DMA_HALF_SIZE);

} /* if playing */
else { /* recording */

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: Recording..which = %d, full = %d, Empty = %d”,
ci->di_which, ci->ri_full, ci->ri_free);

#endif
rapDmaToBuf(DMA_HALF_SIZE);

}
} /* if move data */
else { /* no need to move data */

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapintr: Waiting for next interrupt, bf = %d, bh = %d”,
ci->di_bf, ci->di_bh);

#endif
}
gpis = INPW(addr+GPIS);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapintr: next Gpis = %x”, gpis);
#endif

} /* while (gpis & .. */
#ifdef DEBUG
cmn_err (CE_NOTE, “rapintr: finished ...”);
#endif

} /*** End rapintr ***/
/***
* r a p i o c t l

* Name: rapioctl
* Purpose: handles IOCTL calls for RAP-10.
* Returns: 0 = Success, or errno
***/
int
rapioctl (dev_t dev, int cmd, void *arg, int mode, cred_t *cred, int *ret)

Sample EISA Driver Code

007-0911-210 651

{
cardInfo_t *ci;
ci = &cardInfo;
#ifdef DEBUG
cmn_err (CE_NOTE, “rapioctl: Cmd = %d, full = %d, Empty = %d”,

cmd, ci->ri_full, ci->ri_free);
#endif
/*
* No card is installed or card is already opened
*/
if (!(ci->ci_state & CARD_INSTALLED))

return (ENODEV);
if (!(ci->ci_state & CARD_OPENED))

return (EACCES);
if (ci->ci_pid != User_pid)

return (EACCES);
*ret = 0;
switch (cmd) {

case RAPIOCTL_END_PLAY:
/*=======================*
* End PLAY *
=======================/

if (!(ci->ci_state & CARD_PLAYING)) {
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapioctl: End_PLay command in wrong state”);
#endif
return (EACCES);

}
return (rapClose (0));

case RAPIOCTL_END_RECORD:
/*=======================*
* End RECORD *
=======================/

if (!(ci->ci_state & CARD_RECORDING)) {
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapioctl: End_Recrd command in wrong state”);
#endif
return (EACCES);

}
return (rapClose (0));

} /* switch */
return (0);

} /** End rapioctl **/

652 007-0911-210

18: EISA Device Drivers

/**
****** I n t e r n a l R o u t i n e s *******
**/
/***
* r a p C l o s e

* Name: rapClose
* Purpose: Routine to actually ends current operation and releases
* the card. It is written as a separate routine here so
* it can be shared by rapclose() and rapioctl() routines.
* One frees up the card, one does not. Also if we are called
* from ioctl, we will wait till all buffers are played (if
* in Playback mode).
* Returns: 0 = Success, or errno
***/
int
rapClose(uchar_t relCard)
{

cardInfo_t *ci;
rwBuf_t *rw;
int s, totLeft;
ci = &cardInfo;
s = LOCK();
rw = &rwQue[ci->ri_idx];
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapClose: relCard = %d, ci_state = %x, di_state = %x”,
relCard, ci->ci_state, ci->di_state);

#endif
/*
* if we are not recording and are not playing
* then simply mark the card as not opened and return
*/
if (!(ci->ci_state & (CARD_RECORDING | CARD_PLAYING))) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapClose: Idle card ..closing”);
#endif
if (relCard) {

ci->ci_state &= ~CARD_OPENED;
ci->ci_pid = 0;

}
UNLOCK(s);
return(0);

}
/*

Sample EISA Driver Code

007-0911-210 653

* Recording ? end it.
*/
if (ci->ci_state & CARD_RECORDING) {

#ifdef DEBUG
cmn_err (CE_NOTE,”rapClose: Ending Record (A/D)”);
#endif
rapStop(DI_DMA_RECORDING);
if (relCard) {

ci->ci_state &= ~CARD_OPENED;
ci->ci_pid = 0;

}
UNLOCK(s);
return(0);

}
/*
* playback and called from close() routine ?
* End the playback
*/
if (relCard) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapClose: Ending Playback (D/A”);
#endif
rapStop(DI_DMA_PLAYING);
ci->ci_state &= ~CARD_OPENED;
ci->ci_pid = 0;
UNLOCK(s);
return(0);

}
/*
* Called from Ioctl.
* Closing in middle of play is different based on we
* have been called from close() routine or not.
* If called from Ioctl (relCard = 0), we will wait till
* all buffers are played back.
*/
if (!(rw->rw_state & RW_FULL) && (rw->rw_count > 0)) {

totLeft = RW_BUF_SIZE - rw->rw_count;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapClose: Current Buf %d has %d data. Filled with %d zeros”,
rw->rw_idx, rw->rw_count, totLeft);

#endif
if (totLeft > 0) {

bzero (ci->ri_ptr, totLeft);

654 007-0911-210

18: EISA Device Drivers

ci->ri_ptr += totLeft;
}
rapMarkBuf(rw, ci, RW_FULL);

}
/* some buffers to play */
if (ci->ri_full > 0) {

/* Playback has not started yet */
if (ci->di_state == DI_DMA_IDLE) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapClose: Starting playback, full = %d, empty = %d”,
ci->ri_full, ci->ri_free);
#endif
rapStart(DI_DMA_PLAYING);

}
ci->di_state = DI_DMA_IDLE;
ci->di_state |= DI_DMA_END_PLAY;
/* wait till buffers are all played back */
while (ci->ri_full > 0) {

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapClose: waiting for Play to end..full = %d, empty = %d, ri_idx
= %d, di_idx = %d”,

ci->ri_full, ci->ri_free, ci->ri_idx, ci->di_idx);
#endif
ci->ri_state |= RI_WANTED_EMPTY;
if (sleep (ci, PUSER | PCATCH)) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapClose: Interrupted”);
#endif
rapStop(DI_DMA_PLAYING);
ci->ci_state &= ~CARD_OPENED;
ci->ci_pid = 0;
UNLOCK(s);
return (EINTR);

}
}
rapStop(DI_DMA_PLAYING);

}
else {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapClose: Circular buffer empty..closing”);
#endif
rapStop(DI_DMA_PLAYING);

}

Sample EISA Driver Code

007-0911-210 655

UNLOCK(s);
return(0);

} /*** End rapClose ***/
/***
* r a p S t o p

* Name: rapStop
* Purpose: Stops D/A and A/D conversion.
* Returns: None.
***/
static void
rapStop(uchar_t what)
{

cardInfo_t *ci;
rwBuf_t *rw;
caddr_t addr;
uchar_t dacm, adcm;
ushort_t gpdi;
int s, i;
s = LOCK();
ci = &cardInfo;
addr = ci->ci_addr[0];
gpdi = adcm = dacm = 0;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStop: Stoping %s, full = %d, Empty = %d”,
(what == DI_DMA_PLAYING ? “Playback(D/A)”:”Record(A/D)”),
ci->ri_full, ci->ri_free);

#endif
switch (what) {

/* stop D/A Conversion (Playing) */
case DI_DMA_PLAYING:

ci->di_which = 0;
rapZeroDma(ci, DMA_BUF_SIZE);
OUTB(addr+DACM, dacm);
rapNoteOff (ci);
break;

/* stop A/D Conversion (recording) */
case DI_DMA_RECORDING:

OUTB(addr+ADCM, adcm);
OUTB(addr+DACM, dacm);
break;

}
OUTW(addr+GPDI, gpdi);
rapReleaseDma(ci);

656 007-0911-210

18: EISA Device Drivers

/* Initialize Card Info structure */
ci->ci_state &= ~(CARD_PLAYING | CARD_RECORDING);
ci->ri_idx = 0;
ci->di_idx = 0;
ci->ri_state = 0;
ci->di_state = 0;
ci->di_ptr = rwQue[0].rw_buf;
ci->ri_ptr = rwQue[0].rw_buf;
ci->ri_free = RW_BUF_COUNT;
ci->ri_full = 0;
/* Initialize Circular Buffers */
for (i = 0; i < RW_BUF_COUNT; i++) {

rw = &rwQue[i];
rw->rw_count = 0;
rw->rw_state = 0;
rw->rw_idx = i;
bzero (rw->rw_buf, RW_BUF_SIZE);

}

/* clear out any hanging GPIS and DACM */
gpdi = INPW(addr+GPIS);
UNLOCK(s);

} /** End rapStop **/
/***
* r a p S t a r t

* Name: rapStart
* Purpose: Prepares Eisa DMA buffers/Control block for Playing/Recording
* This function is called when DMA is Idle.
* Returns: 0 = Success or Error number.
***/
static int
rapStart (uchar_t what)
{

cardInfo_t *ci;
dmaBuf_t *dmaB;
dmaCb_t *dmaC;
uchar_t stereo;
int err;
ci = &cardInfo;
stereo = (ci->ci_state & CARD_STEREO);
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStart: Starting %s, full = %d, empty = %d”,
(what == DI_DMA_PLAYING ? “Playback(D/A)”:”Record(A/D)”),

Sample EISA Driver Code

007-0911-210 657

ci->ri_full, ci->ri_free);
#endif
/* clear Dma buffers */
ci->di_which = 0;
rapZeroDma(ci, DMA_BUF_SIZE);
/* check for Dma buffer addresses */
if ((ci->ci_dmaBuf5 == (dmaBuf_t *)0) ||

(ci->ci_dmaCb5 == (dmaCb_t *)0)) {
cmn_err (CE_WARN,

“rapStart: Chan 5 dmaBuf/dmaCb is NULL, what = %d”, what);
return(EIO);

}
if ((ci->ci_dmaBuf6 == (dmaBuf_t *)0) ||

(ci->ci_dmaCb6 == (dmaCb_t *)0)) {
cmn_err (CE_WARN,

“rapStart: Chan 6 dmaBuf/dmaCb is NULL, what = %d”, what);
return(EIO);

}
/*
* Prepare Eisa Buf and Cb for Channel 5. If in
* stereo mode, do the same for Channel 6.
*/
dmaB = ci->ci_dmaBuf5;
dmaC = ci->ci_dmaCb5;
rapPrepEisa (dmaB, dmaC, what, dmaLeftPhys);
if (stereo) {

dmaB = ci->ci_dmaBuf6;
dmaC = ci->ci_dmaCb6;
rapPrepEisa (dmaB, dmaC, what, dmaRightPhys);

}
/*
* Program Eisa DMA Channels
*/
err = eisa_dma_prog (ci->ci_adap, ci->ci_dmaCb5, ci->ci_dmaCh5,

EISA_DMA_NOSLEEP);
if (err == 0) {

cmn_err (CE_WARN, “rapStart: DMA Channel %d is busy”,
ci->ci_dmaCh5);

return (EBUSY);
}
if (stereo) {

err = eisa_dma_prog (ci->ci_adap, ci->ci_dmaCb6, ci->ci_dmaCh6,
EISA_DMA_NOSLEEP);

if (err == 0) {
cmn_err (CE_WARN,

658 007-0911-210

18: EISA Device Drivers

“rapStart: DMA Channel %d is busy”,
ci->ci_dmaCh6);

return (EBUSY);
}

}
/* enable hardware recognition on Eisa Dma Channels */
eisa_dma_enable (ci->ci_adap, ci->ci_dmaCb5, ci->ci_dmaCh5,

EISA_DMA_NOSLEEP);
if (stereo) {

eisa_dma_enable (ci->ci_adap, ci->ci_dmaCb6, ci->ci_dmaCh6,
EISA_DMA_NOSLEEP);

}
/* set Eisa DMA register for Autoinit mode */
rapSetAutoInit(ci, what);
ci->di_state |= what;
/* let’s do it ! */
if (what == DI_DMA_PLAYING) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapStart: Starting DMA for D/A Play”);
#endif
rapStartDA();

}
else {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapStart: Starting DMA for A/D Record”);
#endif
rapStartAD();

}
return(0);

} /** End rapStart **/
/**
* r a p P r e p E i s a

* Name: rapPrepEisa
* Purpose: prepares EISA Buf and Cb structures.
* Returns: None.
***/
static void
rapPrepEisa(dmaBuf_t *dmaB, dmaCb_t *dmaC, uchar_t what, paddr_t addr)
{

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapPrepEisa: Preparing Eisa DMA buffers for %s”,
(what == DI_DMA_PLAYING ? “Playback(D/A)” : “Record(A/D)”));

#endif

Sample EISA Driver Code

007-0911-210 659

/* prepare Eisa DMA Buf struct */
bzero (dmaB, sizeof(dmaBuf_t));
dmaB->count = DMA_BUF_SIZE;
dmaB->address = addr;
/* prepare Eisa DMA Control Block */
bzero (dmaC, sizeof(dmaCb_t));
dmaC->reqrbufs = dmaB;
dmaC->reqr_path = EISA_DMA_PATH_16;
dmaC->trans_type = EISA_DMA_TRANS_DMND;
dmaC->targ_step = EISA_DMA_STEP_INC;
dmaC->bufprocess = EISA_DMA_BUF_SNGL;
if (what == DI_DMA_PLAYING)

dmaC->cb_cmd = EISA_DMA_CMD_READ; /* mem -> rap10 */
else

dmaC->cb_cmd = EISA_DMA_CMD_WRITE; /* rap10 -> mem */
} /*** End rapPrepEisa ***/
/***
* r a p S t a r t D A

* Name: rapStartDA
* Purpose: Enables appropriate RAP interrupts and starts D/A Dma.
* Returns: None
***/
static void
rapStartDA()
{

cardInfo_t *ci;
caddr_t addr;
ushort_t gpdi, gpis, gpst, dtcd, mask;
uchar_t gpcm, pwmd, adcm, dacm;
uchar_t stereo;
int s;
ci = &cardInfo;
addr = ci->ci_addr[0];
stereo = ci->ci_state & CARD_STEREO;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStartDA: Starting D/A Dma, full = %d, empty = %d”,
ci->ri_full, ci->ri_free);

#endif
/*
* Prepare the board for Record (A/D)
* Here is what we will do (in exact order):
*
* GPDI: Stereo = 0xA800, Mono = 0x9800

660 007-0911-210

18: EISA Device Drivers

* itc = 1, dma transfer match count
* Stereo: Drq1->Dma5, Drq0->Dma6
* Mono: Drq1->Dma5
* Dt1, Dt0 = 10, Chan 1 ->Drq1, Chan 0 ->Drq0
* Left Chan->Drq1, Right Chan->Drq0
*
* DACM: Stereo: BF, Mono: BE
* scc = 1, Dma size in byte
* ts1 = ts2 = 1, transfer size of 4096 bytes
* dl1 = dl0 = 1; Data length of 16 bits for both Channels.
* Stereo ? ds1 = ds0 = 1 Start D/A on both Channels.
* Mono ? ds1 = 1 Start D/A on Channel 1
*
* GPCM: Select Mike level = 0x04
* Aux level = 0x08
* PWMD: 0xFF (Max level)
*/
gpdi = (stereo ? 0xA800: 0x9800);
dacm = (stereo ? 0xBF:0xBE);
gpcm = 0x04;
pwmd = 0xFF;
mask = (stereo ? (GPIS_DN1|GPIS_DN0): GPIS_DN1);
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStartDA: gpdi = %x, dacm = %x”, gpdi, dacm);
#endif
/* Set Rap-10 card */
OUTB(addr+GPCM, gpcm);
OUTB(addr+PWMD, pwmd);
OUTW(addr+GPDI, gpdi);
OUTB(addr+DACM, dacm);
/*
* Busy-wait for both Note_On interrupts
* The interrupt version is commenetd out for now.
*/
gpis = INPW(addr+GPIS);
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStartDA: Waiting for Note_On, gpis = %x, mask = %x”,
gpis, mask);

#endif
while (!(gpis & mask)) {

gpis = INPW(addr+GPIS);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapStartDA: Waiting ..new gpis = %x”, gpis);

Sample EISA Driver Code

007-0911-210 661

#endif
}
#ifdef DEBUG
cmn_err (CE_NOTE, “rapStartDA: Note_On Interrupt Received, gpis = %x”,
gpis);
#endif
rapNoteOn(ci, gpis);

} /*** End rapStartDA ***/
/***
* r a p S t a r t A D

* Name: rapStartAD
* Purpose: Enables appropriate RAP interrupts and starts A/D Dma.
* Returns: None
***/
static void
rapStartAD()
{

cardInfo_t *ci;
caddr_t addr;
ushort_t gpdi;
uchar_t gpcm, pwmd, adcm, dacm;
uchar_t stereo, mic;
ci = &cardInfo;
addr = ci->ci_addr[0];
stereo = ci->ci_state & CARD_STEREO;

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapStartAD: Starting A/D Dma in %s, full = %d, empty = %d”,
(stereo ? “Stereo”:”Mono”), ci->ri_full, ci->ri_free);

#endif
/*
* Prepare the board for Record (A/D)
* Here is what we will do (in exact order):
*
* GPDI: Stereo = 0xA400, Mono = 0x9400
* itc = 1, dma transfer match count
* Stereo: Drq1->Dma5, Drq0->Dma6
* Mono: Drq1->Dma5
* Dt1, Dt0 = 01, Left Chan->Drq1, Right Chan->Drq0
*
* DACM: 0xB0
* scc = 1, Dma size in byte
* ts1 = ts2 = 1, transfer size of 4096 bytes
*

662 007-0911-210

18: EISA Device Drivers

* GPCM: Select Mic level = 0x04
* Aux level = 0x08
* PWMD: 0xFF (Max level)
*
* ADCM: Stereo: Mic 0x6F, line 0x4F,
* Mono: Mic 0x6D, line 0x4D
* Mon = 1, Monitor ON
* Gin = 1, Head Amp Gain to Mic.
* Af1, Af0 = 01, 22.05 KHz
* Adl = 1, 16 bit data length
* Stereo, Adm = 1, else = 0
* Ads = 1, Start A/D
*/
gpdi = (stereo ? 0xA400: 0x9400);
gpcm = 0x08;
adcm = (stereo ? 0x6F:0x6D);
dacm = 0xB0;
gpcm = 0x04;
pwmd = 0xFF;
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapStartAD: Rap init as: gpdi = %x, dacm = %x, gpcm = %x, adcm = %x”,
gpdi, dacm, gpcm, adcm);
#endif
OUTW(addr+GPDI, gpdi);
OUTB(addr+DACM, dacm);
OUTB(addr+GPCM, gpcm);
OUTB(addr+PWMD, pwmd);
OUTB(addr+ADCM, adcm);

} /*** End rapStartAD ***/
/***
* r a p B u f T o D m a

* Name: rapBufToDma
* Purpose: moves data from current rwQue[] entry to DMA buffers.
* This routine is called by INterrupt handler only except
* once before we startd D/A (when no DMA is programmed yet)
* Returns: None
***/
static void
rapBufToDma(int bytes)
{

cardInfo_t *ci;
rwBuf_t *rw;
uchar_t *dmaR;

Sample EISA Driver Code

007-0911-210 663

uchar_t *dmaL;
uchar_t stereo;
int i, j, s;
ci = &cardInfo;
rw = &rwQue[ci->di_idx];
stereo = ci->ci_state & CARD_STEREO;
/*
* filling 1st half or 2nd half of the buffers ?
*/
if (ci->di_which) {

dmaR = &dmaRight[DMA_HALF_SIZE];
dmaL = &dmaLeft[DMA_HALF_SIZE];
if (bytes == DMA_BUF_SIZE) {

bytes = DMA_HALF_SIZE;
}

}
/* filling 1st half of dma buffers */
else {

dmaR = &dmaRight[0];
dmaL = &dmaLeft[0];

}
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapBufToDma: Bytes = %d, which = %d, Idx = %d, rw_count = %d, Full = %d, Emp

ty = %d”,
bytes, ci->di_which, ci->di_idx, rw->rw_count, ci->ri_full,
ci->ri_free);
#endif
/*
* if buffer is not Full, we zero out dma buffers and
* return. We cannot wait till it gets Full.
*/
if (!(rw->rw_state & RW_FULL)) {

rapZeroDma(ci, bytes);
ci->di_ptr = NULL;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapBufToDma: Buf %d is not Full, rw_state = %x”,
rw->rw_idx, rw->rw_state);
#endif
return;

}
/* buffer is full of data ..readjust the buffer pointer */
if (ci->di_ptr == NULL)

ci->di_ptr = rw->rw_buf;

664 007-0911-210

18: EISA Device Drivers

/*
* Fill buffers ...
*/
for (i = 0; i < bytes; i++) {

/*
* First check if buffer is empty. If it is, mark it
* as empty, wake anyone up who wants it and get the
* next full buffer.
*/
if (rw->rw_count <= 0) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapBufToDma: Buf %d is Empty now, rw_count = %d”,
rw->rw_idx, rw->rw_count);
#endif
rapMarkBuf(rw, ci, RW_EMPTY);
ci->di_ptr = NULL;
if (rw->rw_state & RW_WANTED_EMPTY) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapBufToDma: Buf %d is Wanted_Empty”,
rw->rw_idx);
#endif
rw->rw_state &= ~RW_WANTED_EMPTY;
wakeup(rw);

}
j = rapGetNextFull (ci->di_idx, FROM_INTR);
if (j == -1) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapBufToDma: Could not get next Full buffer”);
#endif
break;

}
ci->di_idx = j;
rw = &rwQue[ci->di_idx];
ci->di_ptr = rw->rw_buf;
continue;

}
/* buffer still has some data ..move them */
if (stereo) {

dmaL[i] = *(ci->di_ptr++);
dmaR[i] = *(ci->di_ptr++);
rw->rw_count -= 2;

}

Sample EISA Driver Code

007-0911-210 665

else {
dmaL[i] = *(ci->di_ptr++);
rw->rw_count--;

}
} /* for .. */
/* Flush the cache line so that Dma buffers contain all data */
dki_dcache_wbinval (dmaL, (unsigned)bytes);
if (stereo)

dki_dcache_wbinval (dmaR, (unsigned)bytes);
} /*** end rapBufToDma ***/
/***
* r a p D m a T o B u f

* Name: rapDmaToBuf
* Purpose: Moves data from DMA buffers (Right and Left in stereo)
* into a rwQue entry. This routine is called only by
* Interrupt Handler.
* Returns: None
***/
static void
rapDmaToBuf(int bytes)
{

cardInfo_t *ci;
rwBuf_t *rw;
uchar_t *dmaR;
uchar_t *dmaL;
uchar_t stereo;
int i, j, s, inc;
ci = &cardInfo;
rw = &rwQue[ci->di_idx];
stereo = ci->ci_state & CARD_STEREO;
/*
* filling 1st half or 2nd half of the buffers ?
*/
if (ci->di_which) {

dmaR = &dmaRight[DMA_HALF_SIZE];
dmaL = &dmaLeft[DMA_HALF_SIZE];
if (bytes == DMA_BUF_SIZE) {

bytes = DMA_HALF_SIZE;
}

}
/* filling 1st half of dma buffers */
else {

dmaR = &dmaRight[0];
dmaL = &dmaLeft[0];

666 007-0911-210

18: EISA Device Drivers

}
/* Invalidate the Cache */
dki_dcache_inval (dmaL, (unsigned)bytes);
if (stereo)

dki_dcache_inval (dmaR, (unsigned)bytes);
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapDmaToBuf: Bytes= %d, Idx = %d, rw_count = %d, Full = %d, Empty= %d”,
bytes, ci->di_idx, rw->rw_count, ci->ri_full, ci->ri_free);
#endif
/*
* if buffer is Full ..we cannot wait ! Ignore new data
* by simply returning.
*/
if (rw->rw_state & RW_FULL) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapDmaToBuf: Buf %d is not Empty ..Ignoring data”,
rw->rw_idx);
#endif
return;

}
/* buffer is Empty ..calculate the end address */
if (ci->di_ptr == NULL)

ci->di_ptr = rw->rw_buf;
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapDmaToBuf: Moving %s of DMA buffers in %s, rw_count = %x”,
(ci->di_which ? “Second Half” : “First Half”),
(stereo ? “Stereo”:”Monoe”), rw->rw_count);
#endif
/*
* Fill buffers ...in stereo bytes are Left:Right:Left:Right...
*/
for (i = 0; i < bytes; i++) {

/*
* First check if this buffer is Full or not.
* If it is, mark it as Full and wake anyone up who is
* waiting for it. Then get the next Empty buffer.
*/
if (rw->rw_count >= RW_BUF_SIZE) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapDmaToBuf: Buf %d is Full now, rw_count = %d”,
rw->rw_idx, rw->rw_count);

Sample EISA Driver Code

007-0911-210 667

#endif
rapMarkBuf(rw, ci, RW_FULL);
if (rw->rw_state & RW_WANTED_FULL) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapDmaToBuf: Buf %d is Wanted_Full”,
rw->rw_idx);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
wakeup(rw);

}
j = rapGetNextEmpty(ci->di_idx, FROM_INTR);
if (j == -1) {

cmn_err (CE_NOTE,
“rapDmaToBuf: Could not get next empty”);

return;
}
ci->di_idx = j;
rw = &rwQue[ci->di_idx];
ci->di_ptr = rw->rw_buf;
continue;

}
/* buffer still has room ...move data */
if (stereo) {

*(ci->di_ptr++) = dmaL[i];
*(ci->di_ptr++) = dmaR[i];
rw->rw_count += 2;

}
else {

*(ci->di_ptr++) = dmaL[i];
rw->rw_count++;

}
} /* while bytes ... */

} /*** end rapDmaToBuf ***/
/***
* r a p G e t N e x t F u l l

* Name: rapGetNextFull
* Purpose: returns the index of next Full entry in rwQue[],
* starting from a given index. Sleeps if the entry
* is not Full.
* Returns: the index of the empty entry.
***/
static short
rapGetNextFull (short idx, uchar_t fromIntr)

668 007-0911-210

18: EISA Device Drivers

{
cardInfo_t *ci;
int s;
toid_t to_id;
rwBuf_t *rw;
ci = &cardInfo;
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetNextFull: Getting Next Full Buffer..idx = %d, fromIntr: %d”,
idx, fromIntr);
#endif
/* go to beginning if at the end of the queu */
idx++;
if (idx >= RW_BUF_COUNT)

idx = 0;
rw = &rwQue[idx];
/*
* if buffer is not available and we were called from Intrupt
* handler, simply ignore the request and return error
*/
s = LOCK();
if (!(rw->rw_state & RW_FULL) && (fromIntr)) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetNextFull: Buffer %d is not Full. ..Cannot Wait”,
rw->rw_idx);
#endif
UNLOCK(s);
return(-1);

}
/* wait for the buffer to become Full */
if (!(rw->rw_state & RW_FULL)) {

ci->ri_tout = 0;
to_id = itimeout (rapTimeOut, rw, RW_TIMEOUT, plbase, 0, 0, 0);
while (!(rw->rw_state & RW_FULL) && !ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetNextFull: Waiting for Buf %d to become Full”,
rw->rw_idx);
#endif
rw->rw_state |= RW_WANTED_FULL;
if (sleep(rw, PUSER | PCATCH)) {

untimeout(to_id);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapGetNextFull: Interrupted”);

Sample EISA Driver Code

007-0911-210 669

#endif
rw->rw_state &= ~RW_WANTED_FULL;
UNLOCK(s);
return(-1);

}
}
untimeout (to_id);
if (ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “raGetNextFull: Timed out”);
#endif
rw->rw_state &= ~RW_WANTED_FULL;
UNLOCK(s);
return (-1);

}
} /* if !(rw->rw_state & RW_FULL) */
UNLOCK(s);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapGetNextFull: next Full Buffer is %d”, idx);
#endif
return(idx);

} /*** End rapGetNextFull ***/
/***
* r a p G e t N e x t E m p t y

* Name: rapGetNextEmpty
*
* Purpose: returns the index of next empty entry in rwQue[],
* starting from a given index. Sleeps if the entry
* is not empty.
* Returns: the index of the empty entry.
***/
static short
rapGetNextEmpty (short idx, uchar_t fromIntr)
{

cardInfo_t *ci;
int s;
toid_t to_id;
rwBuf_t *rw;
ci = &cardInfo;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapGetNextEmpty: Getting Next Empty Buffer..idx = %d, fromIntr: %d”,
idx, fromIntr);

#endif

670 007-0911-210

18: EISA Device Drivers

/* go to beginning if at the end of the queu */
idx++;
if (idx >= RW_BUF_COUNT)

idx = 0;
rw = &rwQue[idx];
s = LOCK();
/*
* if buffer is nit available and we were called from Intrupt
* handler, simply ignore the request and return error
*/
if ((rw->rw_state & RW_FULL) && (fromIntr)) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetNextEmpty: Buffer %d is not Empty ..Cannot Wait”,
rw->rw_idx);
#endif
UNLOCK(s);
return(-1);

}
/* wait for the buffer to become Empty */
if (rw->rw_state & RW_FULL) {

ci->ri_tout = 0;
to_id = itimeout (rapTimeOut, rw, RW_TIMEOUT, plbase, 0, 0, 0);
while ((rw->rw_state & RW_FULL) && !ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetNextEmpty: Waiting for Buf %d to become Empty”,
rw->rw_idx);
#endif
rw->rw_state |= RW_WANTED_EMPTY;
if (sleep(rw, PUSER | PCATCH)) {

untimeout(to_id);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapGetNextEmpty: Interrupted”);
#endif
rw->rw_state &= ~RW_WANTED_EMPTY;
UNLOCK(s);
return(-1);

}
} /* while .. */
untimeout (to_id);
if (ci->ri_tout) {

#ifdef DEBUG
cmn_err (CE_NOTE, “raGetNextEmpty: Timed out”);
#endif

Sample EISA Driver Code

007-0911-210 671

rw->rw_state &= ~RW_WANTED_EMPTY;
UNLOCK(s);
return (-1);

}
} /* if (rw->rw_state & RW_FULL) */
UNLOCK(s);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapGetNextEmpty: next Empty Buffer is %d”, idx);
#endif
return(idx);

} /*** End rapGetNextEmpty ***/
/***
* r a p D i s I n t

* Name: rapDisInt
* Purpose: Disables RAP-10 interrupts.
* Returns: None.
***/
static void
rapDisInt(cardInfo_t *ci)
{

caddr_t addr;
ushort_t s;
uchar_t c;
#ifdef DEBUG
cmn_err (CE_NOTE, “rapDisInt: full = %d, empty = %d, di_state = %d”,
ci->ri_full, ci->ri_free, ci->di_state);
#endif
addr = ci->ci_addr[0];
/* disable all Interrupts */
s = 0;
OUTW(addr+GPDI, s);
OUTB(addr+DACM, 0x00);
OUTB(addr+ADCM, 0x00);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapDisInt: Rap is set”);
#endif

} /*** End rapDisInt ***/
/**
* r a p G e t D m a *
**
* Name: rapGetDma
* Purpose: allocates dma Buf and Cb structures
* Returns: 0 = Success, 1 = Error
**/

672 007-0911-210

18: EISA Device Drivers

static int
rapGetDma (dmaBuf_t **dmaB, dmaCb_t **dmaC, int ch)
{

#ifdef DEBUG
cmn_err (CE_NOTE,
“rapGetDma: Getting Eisa Dma Buf and Cb for Channel %d”, ch);
#endif
*dmaB = eisa_dma_get_buf (EISA_DMA_SLEEP);
if (*dmaB == NULL)

return (1);
*dmaC = eisa_dma_get_cb (EISA_DMA_SLEEP);
if (*dmaC == NULL)

return (1);
return (0);

} /*** End rapGetDma ***/
/***
* r a p M a r k B u f

* Name: rapMarkBuf
* Purpose: Marks a buffer (Empty, Busy, Full) and increments/decrements
* appropriate counters. Buffers status changed as:
* Empty -> Busy -> Full -> Empty -> Busy ..
* Returns: None.
***/
static void
rapMarkBuf (rwBuf_t *rw, cardInfo_t *ci, uchar_t m)
{

int s;
s = LOCK();
switch (m) {

case RW_EMPTY:
rw->rw_state &= ~RW_FULL;
if (ci->ri_full)

ci->ri_full--;
ci->ri_free++;
rw->rw_count = 0;
#ifdef DEBUG
cmn_err (CE_NOTE,
“rapMarkBuf: Buf %d set EMPTY. Full = %d, Emp = %d”,
rw->rw_idx, ci->ri_full, ci->ri_free);
#endif
break;

case RW_FULL:
rw->rw_state |= RW_FULL;
ci->ri_full++;

Sample EISA Driver Code

007-0911-210 673

if (ci->ri_free)
ci->ri_free--;

rw->rw_count = RW_BUF_SIZE;
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapMarkBuf: Buf %d set FULL. Full = %d, Emp = %d”,
rw->rw_idx, ci->ri_full, ci->ri_free);

#endif
break;

}
UNLOCK(s);

} /*** End rapMarkBuf ***/
/***
* r a p K e r n M e m

* Name: rapKernMem
* Purpose: Allocates/Disallocates Kernel memory for Right and
* Left DMA channels.
* Returns: 0 = Success, 1 = Failure.
***/
static int
rapKernMem (uchar_t what)
{

#ifdef DEBUG
cmn_err (CE_NOTE, “rapKernMem: %s Kernel Contigious Memory”,

(what == 1 ? “Allocating” : “Deallocating”));
#endif
switch (what) {

/*=======================================*
* Allocate Right/Left DMA Channels *
=======================================/
case 1:

dmaRight = kmem_alloc (DMA_BUF_SIZE,
KM_NOSLEEP | KM_PHYSCONTIG | KM_CACHEALIGN);

if (dmaRight == (caddr_t)NULL) {
cmn_err (CE_WARN,
“rapKernMem: Cannot allocate DMA memory for R_chann”);
return(1);

}
dmaLeft = kmem_alloc (DMA_BUF_SIZE,

KM_NOSLEEP | KM_PHYSCONTIG | KM_CACHEALIGN);
if (dmaLeft == (caddr_t)NULL) {

cmn_err (CE_WARN,
“rapKernMem: Cannot allocate DMA memory for L_chann”);

kmem_free (dmaRight, DMA_BUF_SIZE);

674 007-0911-210

18: EISA Device Drivers

return(1);
}
/* get the physicall address */
dmaRightPhys = kvtophys(dmaRight);
dmaLeftPhys = kvtophys(dmaLeft);
return(0);

/*=======================================*
* Deallocate Right/Left DMA Channels *
=======================================/
case 2:

if (dmaRight != NULL) {
kmem_free (dmaRight, DMA_BUF_SIZE);
dmaRight = (caddr_t)NULL;

}
if (dmaLeft != NULL) {

kmem_free (dmaLeft, DMA_BUF_SIZE);
dmaLeft = (caddr_t)NULL;

}
return(0);

} /* switch */
} /*** End rapKernMem ***/
/***
* r a p T i m e O u t

* Name: rapTimeOut
* Purpose: is called when Read/Write waiting for buffers time out.
* Returns:
***/
static void
rapTimeOut(void *addr)
{

cardInfo_t *ci;
ci = &cardInfo;
/* indicate a timeout */
ci->ri_tout = 1;
wakeup (addr);

}
/***
* r a p N o t e O n

* Name: rapNoteOn
* Purpose: Sends a MIDI Note_On message.
* This code is taken from RAP-10 manual.
* Returns: None.
***/

Sample EISA Driver Code

007-0911-210 675

static void
rapNoteOn (cardInfo_t *ci, ushort_t orig_gpis)
{

int s, stereo;
uchar_t c, pan, rank, chksum, sum;
caddr_t addr;
ushort_t gpis;
addr = ci->ci_addr[0];
stereo = ci->ci_state & CARD_STEREO;
pan = 0x40;
rank = 0x01; /* for 22050 Hz */
gpis = orig_gpis;
/*
* Busy wait till Txd Fifo is empty
* The interrupt version is commenetd out below
*/
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOn: Waiting for Txd Fifo Empty, gpis = %x”,

gpis);
#endif
while (!(gpis & GPIS_TXD)) {

gpis = INPW(addr+GPIS);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOn: Waiting ..new gpis = %x”, gpis);
#endif

}
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOn: Issuing a Note_On SysEx Cmd”);
#endif
/* send Note_On */
c = 0xf0; OUTB(addr+MDTD, c);
c = 0x41; OUTB(addr+MDTD, c);
c = 0x10; OUTB(addr+MDTD, c);
c = 0x56; OUTB(addr+MDTD, c);
c = 0x12; OUTB(addr+MDTD, c);
if (stereo) {

c = 0x03; OUTB(addr+MDTD, c);
c = 0x00; OUTB(addr+MDTD, c);
c = 0x01; OUTB(addr+MDTD, c);
sum = 0x03 + 0x01;

}
else {

c = 0x02; OUTB(addr+MDTD, c);
c = 0x00; OUTB(addr+MDTD, c);
c = 0x0A+0x01; OUTB(addr+MDTD, c);

676 007-0911-210

18: EISA Device Drivers

sum = 0x02+0x0A+0x01;
}
c = 0x01; OUTB(addr+MDTD, c);
c = 0x7F; OUTB(addr+MDTD, c);
c = 0x7F; OUTB(addr+MDTD, c);

OUTB(addr+MDTD, rank);
sum += (0x01+0x7F+0x7F+rank);
c = 0x40; OUTB(addr+MDTD, c);
c = 0x00; OUTB(addr+MDTD, c);
c = 0x40; OUTB(addr+MDTD, c);

OUTB(addr+MDTD, pan);
sum += (0x40+0x40+pan);
/* calculate the checksum */
chksum = (0x80 - (sum % 0x80)) & 0x7F;
OUTB(addr+MDTD, chksum);
c = 0xF7; OUTB(addr+MDTD, c);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOn: Note_On Issued, chksum = %x”, chksum);
#endif

} /* end rapNoteOn */

/***
* r a p N o t e O f f

* Name: rapNoteOff
* Purpose: Sends a MIDI Note_Off message.
* This code is taken from RAP-10 manual.
* Returns: None.
***/
static void
rapNoteOff (cardInfo_t *ci)
{

int s, stereo;
uchar_t pan, b, rank, sum, chksum;
caddr_t addr;
ushort_t gpis;
addr = ci->ci_addr[0];
stereo = ci->ci_state & CARD_STEREO;
pan = 0x40;
rank = 0x01; /* for 22050 Hz */
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOff: Waiting for Txd Empty”);
#endif
/* wait till Txd is Empty */
gpis = INPW(addr+GPIS);

Sample EISA Driver Code

007-0911-210 677

while (!(gpis & GPIS_TXD)) {
us_delay(10);
gpis = INPW(addr+GPIS);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOff: Waiting ..new gpis = %x”, gpis);
#endif

}
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOff: Issuing Note_Off”);
#endif
/* send Note_On */
OUTB(addr+MDTD, 0xF0);
OUTB(addr+MDTD, 0x41);
OUTB(addr+MDTD, 0x10);
OUTB(addr+MDTD, 0x56);
OUTB(addr+MDTD, 0x12);
if (stereo) {

OUTB(addr+MDTD, 0x03);
OUTB(addr+MDTD, 0x00);
OUTB(addr+MDTD, 0x01);
sum = 0x03 + 0x01;

}
else {

OUTB(addr+MDTD, 0x02);
OUTB(addr+MDTD, 0x00);
OUTB(addr+MDTD, 0x0A+0x01);
sum = 0x02 + 0x0A + 0x01;

}
OUTB(addr+MDTD, 0x00);
OUTB(addr+MDTD, 0x7F);
OUTB(addr+MDTD, 0x7F);
OUTB(addr+MDTD, 0x00);
sum += 0x7F + 0x7F;
OUTB(addr+MDTD, 0x40);
OUTB(addr+MDTD, 0x00);
OUTB(addr+MDTD, 0x40);
OUTB(addr+MDTD, pan);
sum += 0x40 + 0x40 + pan;
/* calculate checksum */
chksum = (0x80 - (sum % 0x80)) & 0x7F;
OUTB(addr+MDTD, chksum);
OUTB(addr+MDTD, 0x7F);
#ifdef DEBUG
cmn_err (CE_NOTE, “rapNoteOff: Note_On Issued, chksum = %x”, chksum);
#endif

678 007-0911-210

18: EISA Device Drivers

} /* end rapNoteOff */
/***
* r a p Z e r o D m a

* Name: rapZeroDma
* Purpose: Zero outs DMA buffers.
* Returns: None.
***/
static void
rapZeroDma (cardInfo_t *ci, int bytes)
{

caddr_t dmaL, dmaR;
int stereo, s;
s = LOCK();
stereo = ci->ci_state & CARD_STEREO;
/*
* Zero out which half ?
*/
if (ci->di_which) {

dmaR = &dmaRight[DMA_HALF_SIZE];
dmaL = &dmaLeft[DMA_HALF_SIZE];
if (bytes == DMA_BUF_SIZE) {

bytes = DMA_HALF_SIZE;
}

}
/* Zer out 1st half of dma buffers */
else {

dmaR = &dmaRight[0];
dmaL = &dmaLeft[0];

}
#ifdef DEBUG
cmn_err (CE_NOTE,

“rapZeroDma: Zeroing out %s of Dma buffers in %s for %d bytes”,
(ci->di_which ? “2nd half”:”1st half”),
(stereo ? “Stereo”:”Mono”),
bytes);

#endif
bzero (dmaL, bytes);
dki_dcache_wbinval (dmaL, (unsigned)bytes);
if (stereo) {

bzero (dmaR, bytes);
dki_dcache_wbinval (dmaR, (unsigned)bytes);

}
UNLOCK(s);

} /*** end rapZeroDma ***/

Sample EISA Driver Code

007-0911-210 679

/***
* r a p R e l e a s e D m a

* Name: rapReleaseDma
* Purpose: Releases Dma channel(s).
* Note that we access kernel’s Dma structure and later on
* a routine will be provided for us to avoid this.
* Returns: None.
***/
static void
rapReleaseDma (cardInfo_t *ci)
{

/* disable Eisa Dma */
#ifdef DEBUG
cmn_err (CE_NOTE, “rapReleaseDma: Releasing Eisa Dma Chann %d”,

ci->ci_dmaCh5);
#endif
eisa_dma_disable(0, ci->ci_dmaCh5);
if (ci->ci_state & CARD_STEREO) {

#ifdef DEBUG
cmn_err (CE_NOTE, “rapReleaseDma: Releasing Eisa Dma Chann %d”,

ci->ci_dmaCh6);
#endif
eisa_dma_disable(0, ci->ci_dmaCh6);

}
} /*** end rapReleaseDma ***/
/***
* r a p S e t A u t o I n i t

* Name: rapSetAutoInit
* Purpose: sets Eisa DMA register for Autoinit. In Autoinit, DMA
* starts over from the beginning of the buffer again once it
* has transfered all bytes in the buffer.
* Returns: None.
***/
#define EISA_MODE_REG 0xd6
#define EISA_CH5 0x01
#define EISA_CH6 0x02
#define EISA_WRITE 0x04
#define EISA_READ 0x08
#define EISA_AUTO 0x10
static void
rapSetAutoInit(cardInfo_t *ci, uchar_t what)
{

uchar_t b;

680 007-0911-210

18: EISA Device Drivers

#ifdef DEBUG
cmn_err (CE_NOTE,

“rapSetAutoInit: setting Autoinit DMA for %s, Eisa Addr = %x”,
(what == DI_DMA_PLAYING ? “Playback(D/A)” : “Record(A/D)”),
eisa_addr);

#endif
b = 0;
if (what == DI_DMA_PLAYING)

b |= EISA_READ; /* Memory -> Device */
else

b |= EISA_WRITE; /* Device -> Memory */
/* Autoinit for Channel 5 - Demand Mode select is default */
b |= (EISA_AUTO | EISA_CH5);
OUTB(eisa_addr+EISA_MODE_REG, b);
/* Autoinit for Channel 6 (if in stereo mode) */
if (ci->ci_state & CARD_STEREO) {

b &= ~EISA_CH5;
b |= EISA_CH6;
OUTB(eisa_addr+EISA_MODE_REG, b);

}
} /*** End rapSetAutoInit ***/

PART EIGHT

GIO Drivers VIII

Chapter 19, “GIO Device Drivers”
Overview of the architecture of the GIO bus and the special services offered by
the kernel to GIO drivers.

007-0911-210 683

Chapter 19

19. GIO Device Drivers

The GIO bus is a synchronous, multiplexed address-data bus connecting high-speed
devices to main memory and CPU for SGI workstations. This chapter gives an overview
of the GIO architecture, and describes the special kernel functions used to manage a
device on the GIO bus. The main topics are as follows:

• “GIO Bus Overview” on page 683 describes the hardware implementation of the
GIO bus.

• “Configuring a GIO Device” on page 685 discusses the use of the VECTOR line to
describe a GIO device to IRIX.

• “Writing a GIO Driver” on page 686 discusses the work done in each entry point of
a GIO device driver.

• “Memory Parity Workarounds” on page 696 covers an important hardware issue.

• “Example GIO Driver” on page 698 displays major parts of a driver for a
hypothetical GIO device.

GIO Bus Overview

The GIO bus is a family of buses with different electrical requirements and form factors.
However, the only systems that use GIO and are supported by IRIX 6.5 are the Indigo2,
Power Indigo2, and Indigo2 Maximum Impact workstations. These systems support the
GIO64 bus, a 64-bit, synchronous, multiplexed address-data bus that can run at speeds
up to 33 MHz. It supports both 32- and 64-bit devices. GIO64 has two slightly different
varieties: non-pipelined for internal system memory, and pipelined for graphics and
pipelined GIO64 slot devices.

Older systems (Indigo, Indy) used a 32-bit version of the GIO bus.

The Indigo2 has three physical sockets, but the lower two are paired as a single logical
slot—the double socket provides extra electrical and mechanical support for heavy cards.

684 007-0911-210

19: GIO Device Drivers

The Indigo2 Maximum Impact has four physical sockets, with each pair ganged as one
logical slot. Thus all systems have two GIO slots, electrically speaking.

The form factor depends on the specific platform in which the device is installed. GIO64
boards are the size of an EISA board. Slots in Indigo2 systems can accept either an EISA
board or a GIO64 board. These two types of boards share common board dimensions but
have different connectors for attaching to their respective buses. GIO devices can be
either single or double-wide (that is, taking one or two sockets).

GIO Bus Address Spaces

Each GIO device has a range of bus addresses to which it responds. These addresses
correspond to device registers or on-board memory, depending on the GIO device.

The address range for a GIO bus device is determined in part by the slot number of the
device. The hardware must be designed to determine which slot the device is in and
make the appropriate adjustments to respond to that slot’s address range.

Indigo2 systems support three GIO address spaces, referred to as gfx, exp0, and exp1. The
gfx address space is used by the graphics card.

Table 19-1 shows the slot names and address spaces available on the Indigo2 systems.

In 64-bit systems (Indigo2 Maximum Impact), two additional high-order bits are needed
to select the physical address of the GIO space, so each of the above addresses is prefixed
by 0x9000 0000.

GIO-bus devices use only one interrupt level — interrupt 1. Interrupts 0 and 2 are used
by the graphics system and may not be used by GIO-bus devices.

Table 19-1 GIO Slot Names and Addresses

Slot Name 32-bit Address 64-bit Address

gfx 0x1f00 0000–0x1f3f ffff 0x9000 0000 1f00 0000–0x9000 0000 1f3f ffff

exp0 0x1f40 0000–0x1f5f ffff 0x9000 0000 1f40 0000–0x9000 0000 1f5f ffff

exp1 0x1f60 0000–0x1f9f ffff 0x9000 0000 1f60 0000–0x9000 0000 1f9f ffff

Configuring a GIO Device

007-0911-210 685

Configuring a GIO Device

A GIO device is described to the system, and related to its device driver, using a VECTOR
line in a file in the /var/sysgen/system directory (see “Configuring a Kernel” on
page 278).

GIO VECTOR Line

The VECTOR line for a GIO device uses the “old style” syntax documented in
/var/sysgen/system/irix.sm. The important elements in a VECTOR line for GIO
are as follows:

You use the probe or exprobe parameter to program a test for the existence of the
device at boot time. If the device does not respond (because it is offline or because it has
been removed from the system), the lboot command will not invoke the device driver
for this device. This facility is used in distributed /var/sysgen/system/irix.sm
files in order to choose between the graphics board in slot gfx or in slot exp0.

bustype Specified as GIO for GIO devices. The VECTOR statement can be
used for other types of buses as well.

module The base name of the device driver for this device, as used in the
/var/sysgen/master.d database (see “Master Configuration
Database” on page 57 and “How Names Are Used in Configuration”
on page 274).

adapter Always 0, or omitted, for GIO, since there is never more than one
GIO bus adapter in current systems.

ctlr The “controller” number is simply an integer parameter that is
passed to the device driver at boot time. It can be used, for example,
to specify a logical unit number.

base Device base address, as shown in Table 19-1.

probe or
exprobe

Specify a hardware test that can be applied at boot time to find out if
the device exists.

686 007-0911-210

19: GIO Device Drivers

Writing a GIO Driver

GIO bus devices are controlled only from kernel-level drivers; there is no provision for
memory-mapping GIO devices into user-level address spaces.

A GIO device driver is a kernel-level driver compiled, linked, and loaded into the kernel
as described in Chapter 9, “Building and Installing a Driver.” A GIO driver can call on
the kernel functions described in Chapter 7, “Structure of a Kernel-Level Driver.”
However, a GIO driver has to use some special features in its pfxedtinit() and pfxintr()
entry points.

GIO-Specific Kernel Functions

Three GIO-specific functions are used in setting up a GIO device. They are only
documented here; there are no reference pages for them. The functions are declared as
external in the CPU-specific include files sys/IP20.h and sys/IP22.h. (When
compiling for a Power Indigo2, which uses an IP26 CPU, you include sys/IP22.h as
well as sys/IP26.h.)

Registering an Interrupt Handler

The setgiovector() function registers an interrupt service function for a GIO device
interrupt with the kernel’s interrupt dispatcher, or unregisters one. The function
prototype is

void
setgiovector(int level, int slot,

void (*func)(__psint_t, struct eframe_s *),
__psint_t arg);

The arguments are as follows:

level The interrupt level; must be GIO_INTERRUPT_1 for all devices
except the graphics board.

slot The slot number, 0 or 1.

func The address of the interrupt handling function (typically the
pfxintr() entry point of the device driver), or else NULL to
unregister.

Writing a GIO Driver

007-0911-210 687

Note: If either the level or slot number is out of range, setgiovector() issues an error
message with the CE_PANIC level, causing a kernel panic.

When func is not NULL, the specified function is registered to receive interrupts at the
given level from the given slot. When an interrupt occurs, the function is called with two
arguments. The first is the value specified as arg, a “pointer-sized integer,” typically the
address of device-specific information. The second is the interrupt registers. The
structure eframe_s is declared in sys/reg.h. However, this structure is of no interest.

This function can be used with a NULL for the func argument to unregister an interrupt
routine that was previously registered. You must unregister an interrupt handler in a
loadable device driver prior to unloading, when called at the pfxunload() entry point (see
“Entry Point unload()” on page 190).

Configuring a Slot

The function setgioconfig() configures the GIO slot for a particular use. The function
prototype is

void
setgioconfig(int slot, int flags);

The arguments are as follows:

Note: If the slot number is out of range, setgioconfig() either issues an error message
with the CE_PANIC level or suffers an assertion failure, causing a kernel panic.

The flags that can be combined to make the flags argument are

arg A “pointer-sized integer” value to be passed as the first
argument of the interrupt handler when it is invoked.

slot The slot number, 0 or 1.

flags A set of bit-flags from the constants GIO_ARB_* declared in sys/mc.h.

GIO64_ARB_EXP0_SIZE_64 Configure for 64-bit transfers; otherwise transfers will
be 32-bit.

688 007-0911-210

19: GIO Device Drivers

splgio0, splgio1, splgio2

Three functions can be used to set the processor interrupt mask to block GIO-bus
interrupts. As of IRIX 6.2, the only systems that support the GIO bus are uniprocessor
systems, in which spl()-type functions are effective. When writing a device driver that
might be ported to a multiprocessor, you should avoid functions of this type, and use
other means of getting mutual exclusion (see “Priority Level Functions” on page 252).

The prototypes of the GIO spl() functions are

long splgio0();
long splgio1();
long splgio2();

Devices other than graphics drivers would typically only have a reason to use splgio1(),
because 1 is the interrupt level of non-graphics GIO devices.

GIO Driver edtinit() Entry Point

The device driver specified by the module parameter is invoked at its pfxedtinit() entry
point, where it receives most of the other information specified in the VECTOR statement
(see “Entry Point edtinit()” on page 160).

The pfxedtinit() entry point is called only in response to a VECTOR line. However, a
VECTOR line need not contain a probe or exprobe test of the hardware.

The driver should not assume that its hardware exists; instead it should use the
badaddr() kernel function to test the addresses passed in the edt_t object to make sure
they are usable (see “Testing Device Physical Addresses” on page 231).

GIO64_ARB_EXP0_RT Configure as a real-time device; otherwise it will be a
long burst device.

GIO64_ARB_EXP0_MST Configure as a bus master; otherwise it will be a slave.

GIO64_ARB_EXP0_PIPED Configure slot as a pipelined device, otherwise it will be
a non-pipelined device. For Indigo2 systems, this must
be set.

Writing a GIO Driver

007-0911-210 689

Example 19-1 displays a skeleton version of the pfxedtinit() entry point of a hypothetical
GIO device driver. This example uses GIO-specific functions that are described in a
following section, “GIO-Specific Kernel Functions” on page 686.

Example 19-1 GIO Driver edtinit() Entry Point

#include <sys/edt.h>
void
hypoth_edtinit(register struct edt *e)
{

int slot, val;
/* Check to see if the device is present */
if(badaddr_val(e->e_base, sizeof(int), &val) ||

(val && GBD_MASK) != GBD_BOARD_ID) {
if (showconfig)

cmn_err (CE_CONT,
"gbdedtinit: board not installed.");

return;
}
/* figure out slot from base on VECTOR line in
/* system file*/
if(e->e_base == (caddr_t)0xBf400000)

slot = GIO_SLOT_0;
else if(e->e_base == (caddr_t)0xBF600000)

slot = GIO_SLOT_1;
else {

cmn_err (CE_NOTE,
"ERROR from edtinit: Bad base address %x\n",e->e_base);
return;

}
#ifdef IP20 /* For Indigo R4000, set up board as a

 realtime bus master */
setgioconfig(slot,GIO64_ARB_EXP0_RT|GIO64_ARB_EXP0_MST);

#endif
#ifdef (IP22|IP26) /* For Indy, Indigo2, set up board as a

 pipelined realtime bus master */
setgioconfig(slot,GIO64_ARB_EXP0_RT|GIO64_ARB_EXP0_PIPED);

#endif
/* Save the device addresses, because
 * they won’t be available later.
 */
gbd_device[slot == GIO_SLOT_0 ? 0 : 1] =

(struct gbd_device *)e->e_base;
gbd_memory[slot == GIO_SLOT_0 ? 0 : 1] =

(char *)e->e_base2;

690 007-0911-210

19: GIO Device Drivers

 /* Where "unit_#" is any parameter passed to
 /* the interrupt handler (gbdintr) */

setgiovector(GIO_INTERRUPT_1,slot,gbdintr,unit_#);
}

GIO Driver Interrupt Handler

A GIO driver must contain an interrupt entry point. It does not have to be named
pfxintr() because it is registered using the giosetvector() function.

When the device generates an interrupt, the general GIO interrupt handler calls your
driver’s registered interrupt routine and passes it the argument that was specified to
setgiovector() as the argument. This is typically a unit number, or the address of a
device-specific information structure.

Within the interrupt routine, the driver must wake up the sleeping upper-half process, if
one is waiting on the transfer to complete. In a block device driver, the interrupt routine
calls iodone() to indicate that a block type I/O transfer for the buffer is complete (see
“Waiting for Block I/O to Complete” on page 255).

Using PIO

Programmed I/O (PIO) is used to transfer small amounts of data between memory and
device registers. PIO is typically used for control functions and to set up device registers
prior to DMA (see “Using DMA” on page 691).

PIO can be as simple as storing a variable into a bus address (as passed to the pfxedtinit()
entry point). Example 19-2 displays fragmentary code of a hypothetical character device
driver for a GIO device that controls a printer. This pfxwrite() entry point copies data
from the user address space to device memory using the uiomove() function (see
“Transferring Data Through a uio_t Object” on page 219). Then it stores an explicit
command in the device to start it, and sleeps until the device interrupts.

Example 19-2 Hypothetical PIO Routine for GIO

/* device write routine entry point (for character devices)*/
int
hypoth_write(dev_t dev, uio_t *uio)
{

int unit = geteminor(dev)&1;

Writing a GIO Driver

007-0911-210 691

int size, err=0, s;
/* while there is data to transfer */
while((size=uio->uio_resid) > 0) {

/* Transfer no more than GBD_MEMSIZE bytes */
size = size < GBD_MEMSIZE ? size : GBD_MEMSIZE;
/* decrements size, updates uio fields, copies data */
if(err=uiomove(gbd_memory[unit], size, UIO_WRITE, uio))

break;
/* prevent interrupts until we sleep */
s = splgio1();
/* Transfer is complete; start output */
gbd_device[unit]->count = size;
gbd_device[unit]->command = GBD_GO;
gbd_state[unit] = GBD_SLEEPING;
while (gbd_state[unit] != GBD_DONE) {

sleep(&gbd_state[unit], PRIBIO);
}
/* restore the interrupt level after waking up */
splx(s);

}
return err;

}

An expression like gdb_device[unit]->command=GBD_GO represents storing a command
value in a device register. Presumably the gdb_device array is set up with a device address
for each slot in the pfxedtinit() entry point.

The code in Example 19-2 uses splgio1() to block an interrupt from occurring after it has
started the device in operation and before it has entered the blocked state using sleep().
If this was not done, there is a small window of time during which an interrupt could
occur and be handled before the upper-half routine had begun sleeping. Then it would
sleep forever.

An alternate way to handle this same situation in a multiprocessor system is to use a
mutual-exclusion lock to get exclusive use of the device registers, and a synchronization
variable to wait for the interrupt (see “Using Synchronization Variables” on page 258).

Using DMA

DMA access achieves higher throughput than PIO when the device transfers more than
a few words of data at a time. DMA is typically set up by programming device registers

692 007-0911-210

19: GIO Device Drivers

with the target address and length, and leaving the device to generate a series of stores
or loads from memory. The details of device control are hardware-dependent.

The direction of a DMA transfer is measured with respect to the device, which operates
independently. A DMA operation is either a DMA read (of memory data out to the
device) or a DMA write (by the device, of data into memory).

DMA buffers should be cache-aligned in memory (see “Setting Up a DMA Transfer” on
page 226). Prior to a DMA read, the driver should make sure that cached data has been
written to memory using dki_cache_wb(). Prior to a DMA write, the driver should make
sure the CPU knows that cached data is invalid (or is about to become invalid) using
dki_cache_inval() (see “Managing Memory for Cache Coherency” on page 230).

DMA To Multiple Pages

Some devices can perform DMA only in a single transfer of data to a range of contiguous
addresses. Such a device must be programmed separately for each individual page of
data. Other devices are capable of transferring a series of page units to different
addresses; that is, they support “scatter/gather” capability. These devices can be
programmed once to transfer an entire buffer of data, regardless of whether the buffer
spans multiple pages.

In either case, the pfxstrategy() entry point of a block device driver must calculate the
physical addresses of a series of one or more pages, and program them into the device.
When the device does not support scatter/gather, it is set up and started on each page of
data individually, with an interrupt after each page. When the device supports
scatter/gather, it is programmed with a list of page addresses all at once.

DMA With Scatter/Gather Capability

Example 19-3 shows the skeleton of a pfxstrategy() entry point for a block device driver
for a hypothetical GIO device that supports scatter/gather capability.

Example 19-3 Strategy Code for Hypothetical Scatter/Gather GIO Device

/* Actual device setup for DMA, etc., if your board has
 * hardware scatter/gather DMA support.
 * Called from the hypo_write() routine via physio().
 */
void
hypo_strategy(struct buf *bp)
{

Writing a GIO Driver

007-0911-210 693

int unit = geteminor(bp->b_dev)&1;
int npages;
volatile unsigned *sgregisters; /* ->device regs */
int i, v_addr;
/* MISSING: any checking for initial state. */
/* Get address of the scatter/gather registers */
sgregisters = gbd_device[unit]->sgregisters;
/* Get the kernel virtual address of the data; note
 * b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
 * indicates false; in that case, the field bp->b_pages
 * is a pointer to a linked list of pfdat structure pointers;
 * that saves creating a virtual mapping and then decoding
* that mapping back to physical addresses. BP_ISMAPPED will
* never be false for character devices, only block devices.

 */
if(!BP_ISMAPPED(bp)) {

cmn_err(CE_WARN,
"gbd driver can’t handle unmapped buffers");

bioerror(bp, EIO);
biodone(bp);
return;

}
v_addr = bp->b_dmaaddr;
/* Compute number of pages affected by this request.
* The numpages() macro (sysmacros.h) returns the number of pages
* that span a given length starting at a given address, allowing
* for partial pages. Unrealistically, we limit this to the
* number of scatter/gather registers on board.
* Note that this sample driver doesn’t handle the
* case of requests > than # of registers!
*/

npages = numpages (v_addr, bp->b_bcount);
if(npages > GBD_NUM_DMA_PGS) {

bp->b_resid = IO_NBPP * (npages - GBD_NUM_DMA_PGS);
npages = GBD_NUM_DMA_PGS;
cmn_err(CE_WARN,

“request too large, only %d pages max”, npages);
}
/* Translate the virtual address of each page to a
 * physical page number and load it into the next
 * scatter/gather register.
 * btop() converts the byte value to a page value after
 * rounding down the byte value to a full page.
 */
for (i = 0; i < npages; i++) {

694 007-0911-210

19: GIO Device Drivers

*sgregisters++ = btop(kvtophys(v_addr));
v_addr += IO_NBPP;

}
/* Program the device for input or output */
if ((bp->b_flags & B_READ) == 0)

gbd_device[unit]->direction = GBD_WRITE;
else

gbd_device[unit]->direction = GBD_READ;
/* Start the device going and return. The caller, either a
* file system or uiophysio(), waits for the iodone() call
* from the interrupt routine.
*/

gbd_device[unit]->command = GBD_GO;
}

DMA Without Scatter/Gather Support

When the GIO device does not provide scatter/gather capability, the driver must
program the transfer of each memory page individually, ensuring that the device does
not attempt to store or load across a page boundary. The usual method is as follows:

• In the pfxstrategy() routine, save the address of the buf_t for use by the pfxintr()
entry point.

• In the pfxstrategy() routine, program the device to transfer the data for the first
page, and start the device going.

• In the pfxintr() entry point, calculate the number of bytes remaining to transfer. If
the count is zero, signal biodone(). If the count is nonzero, program the device to
transfer the next page of data.

Under this design, there is no explicit loop over the successive pages of the transfer
visible in the code. The loop is implicit in the fact that the pfxintr() entry point starts a
new transfer, and so will be called again, until the transfer is complete.

Example 19-4 shows the code of the pfxstrategy() routine for a hypothetical GIO device
without scatter/gather.

Example 19-4 Strategy() Code for GIO Device Without Scatter/Gather

/* Actual device setup for DMA, etc., when the board
* does NOT have hardware scatter/gather DMA support.
* Called from the hypo_write() routine via physio().
*/
void

Writing a GIO Driver

007-0911-210 695

hypo_strategy(struct buf *bp)
{

int unit = geteminor(bp->b_dev)&1;
/* MISSING: any checking for initial state. */
/* Get the kernel virtual address of the data; note
* b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
* indicates false; in that case, the field bp->b_pages
* is a pointer to a linked list of pfdat structure
* pointers; that saves creating a virtual mapping and
* then decoding that mapping back to physical addresses.
* BP_ISMAPPED will never be false for character devices,
* only block devices.
*/
if(!BP_ISMAPPED(bp)) {

cmn_err(CE_WARN,
"gbd driver can’t handle unmapped buffers");

bioerror(bp, EIO);
biodone(bp);
return;

}
/* Save ->buf_t where interrupt handler can find it */
gbd_curbp[unit] = bp;
/*
* Initialize the current transfer address and count.
* The first transfer should finish the rest of the
* page, but do no more than the total byte count.
*/
gbd_curaddr[unit] = bp->b_dmaaddr;
gbd_totcount[unit] = bp->b_count;
gbd_curcount[unit] = IO_NBPP-

((unsigned int)gbd_curaddr[unit] & (IO_NBPP-1));
if (bp->b_count < gbd_curcount[unit])

gbd_curcount[unit] = bp->b_count;
/* Tell the device starting physical address, count,
* and direction */
gbd_device[unit]->startaddr = kvtophys(gbd_curaddr[unit]);
gbd_device[unit]->count = gbd_curcount[unit];
if (bp->b_flags & B_READ) == 0)

gbd_device[unit]->direction = GBD_WRITE;
else

gbd_device[unit]->direction = GBD_READ;
gbd_device[unit]->command = GBD_GO; /* start DMA */
/* and return; upper layers of kernel wait for iodone(bp) */

}

696 007-0911-210

19: GIO Device Drivers

An alternate design might seem conceptually simpler: to put an explicit loop in the
pfxstrategy() routine, starting each page transfer and waiting on a semaphore until the
pfxintr() routine is called. Such a design keeps the complexity in the pfxstrategy() routine,
making the pfxintr() routine as simple as possible. However, it has a high cost in
performance because the pfxstrategy routine must wake up and be dispatched for every
page.

Scatter/gather programming can be simplified by the use of the sgset() function, which
calculates the physical addresses and lengths for each page in the transfer (see the
sgset(D3) reference page). The sgset() function is limited to use with hardware that uses
a fixed mapping of bus addresses to memory addresses, which is the case in the
workstations supporting GIO. For example, sgset() cannot be used in the Challenge or
Onyx line; it always returns -1 in those systems.

Memory Parity Workarounds

Beginning with IRIX 5.3, parity checking is enabled on the SysAD bus, which connects
the CPU to memory in workstations that use the GIO bus (see Figure 19-1).
Unfortunately, with certain GIO cards, errors can occur if memory reads complete before
the Memory Controller (MC) finishes calculating parity.

Memory Parity Workarounds

007-0911-210 697

Figure 19-1 The SysAD Bus in Relation to GIO

Some GIO cards do not drive all 32 GIO data lines during CPU PIO reads. These reads
from the GIO card are either 8-bit or 16-bit transfers, so the lines are left floating. The
problem is that to generate parity bits for the SysAD bus, the Memory Controller (MC)
must calculate parity for all 32 bits. Since the calculation must occur before the CPU read
completes, it is possible that one (or more) of the floating bits may change while parity is
being calculated. Thus, when the CPU read completes, it may be received as a parity
error on the SysAD bus.

Note: Diagnosis is complicated by the fact that this problem may not show up on every
transaction. It occurs only when one of the data lines that is left floating happens to
change state between the start of the MC parity calculation and the completion of the
CPU read. A device and its driver can appear to function correctly for some time before
the problem occurs.

When writing a driver for a GIO card that does not drive all 32 data lines, you must either
disable SysAD parity checking completely, or disable it during the time your driver is
performing PIO transfers. Three kernel functions are supplied for these purposes; none
of them take arguments.

• is_sysad_parity_enabled() returns a nonzero value if SysAD parity checking is
enabled.

Memory

Controller

(MC)

SysAD bus

GIO
bus

Memory
CPU

698 007-0911-210

19: GIO Device Drivers

• disable_sysad_parity() turns off parity checking on the SysAD bus.

• enable_sysad_parity() returns SysAD parity checking to normal.

To completely disable SysAD parity checking removes the system’s ability to recover
from a parity error in main memory. As a short-term fix, a driver could simply call
disable_sysad_parity() in the pfxinit() or pfxedtinit() entry point.

It is much better to disable parity checking only during the time the device is being used.
The advantage here is that the software recovery procedures for memory parity errors
are almost always in effect.

To selectively disable parity checking, put wrappers around your driver’s PIO
transactions to disable SysAD parity checking before a transfer, and to re-enable it after
the PIO completes. Example 19-5 shows a skeleton of such a wrapper.

Example 19-5 Disabling SysAD Parity Checking During PIO

void
do_PIO_without_parity()
{

int was_enabled = is_sysad_parity_enabled();
if (was_enabled) disable_sysad_parity();

/* do driver PIO transfers */
if (was_enabled) enable_sysad_parity();
}

The reason that the function in Example 19-5 saves the current state of parity, and only
re-enables parity when it was enabled on entry, is that parity checking could have been
turned off in some higher-level routine. For example, an interrupt handler could be
entered during execution of a device driver function that disables parity checking. If the
interrupt handler turned parity checking back on regardless of its former state, errors
would occur.

Example GIO Driver

The code in Example 19-6 displays a complete device driver for a hypothetical device.
The driver prefix is gbd (for “GIO board”).

Example 19-6 Complete Driver for Hypothetical GIO Device

/* Source for a hypothetical GIO board device; it can be compiled for

Example GIO Driver

007-0911-210 699

* devices that support DMA (with or without scatter gather support),
* or for PIO mode only. This version is designed for IRIX 6.2 or later.
* Dave Olson, 5/93. 6.2 port by Dave Cortesi 9/95.
*/

/* Compilation: Define the environment variable CPUBOARD as IP20, IP22,
* or IP26 (the only GIO platforms). Then include the build rules from
* /var/sysgen/Makefile.kernio to set $CFLAGS including:
_K32U32 kernel in 32 bit mode running only 32 bit binaries
_K64U64 kernel in 64 bit mode running 32/64 bit binaries (IP26)
-DR4000 R4000 machine (IP20, IP22)
-DTFP R8000 machine (IP26)
-G 8 global pointer set to 8 (GIO drivers cannot be loadable)
-elf produce an elf executable
*/

/* the following definitions choose between PIO vs DMA supporting
* boards, and if DMA is supported, whether hardware scatter/gather
* is supported. */
#define GBD_NODMA 0 /* non-zero for PIO version of driver */
#define GBD_NUM_DMA_PGS 8 /* 0 for no hardware scatter/gather

* support, else number of pages of
* scatter/gather per request */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/cpu.h>
#include <sys/buf.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/cmn_err.h>
#include <sys/edt.h>
#include <sys/conf.h> /* for flags D_MP */

/* gbd (for Gio BoarD) is the driver prefix, specified in the
* file /var/sysgen/master.d/gbd and in VECTOR module=gbd lines.
* This driver is multiprocessor-safe (even though no GIO platform
* is a multiprocessor).
*/
int gbddevflags = D_MP;

/* these defines and structures defining the (hypothetical) hardware
* interface would normally be in a separate header file
*/

700 007-0911-210

19: GIO Device Drivers

#define GBD_BOARD_ID 0x75
#define GBD_MASK 0xff /* use 0xff if using only first byte

* of ID word, use 0xffff if using
* whole ID word
*/

#define GBD_MEMSIZE 0x8000
/* command definitions */
#define GBD_GO 1
/* state definitions */
#define GBD_SLEEPING 1
#define GBD_DONE 2
/* direction of DMA definitions */
#define GBD_READ 0
#define GBD_WRITE 1
/* status defines */
#define GBD_INTR_PEND 0x80

/* device register interface to the board */
typedef struct gbd_device {

__uint32_t command;
__uint32_t count;
__uint32_t direction;
__uint32_t offset;
__uint32_t status; /* errors, interrupt pending, etc. */

#if (!GBD_NODMA) /* if hardware DMA */
#if (GBD_NUM_DMA_PGS) /* if hardware scatter/gather */

/* board register points to array of GBD_NUM_DMA_PGS target
* addresses in board memory. Board can relocate the array
* by changing the content of sgregisters.
*/
volatile paddr_t *sgregisters;

#else /* dma to contiguous segment only */
paddr_t startaddr;

#endif
#endif
} gbd_regs;

static struct gbd_info {
gbd_regs *gbd_device; /* ->board regs */
char *gbd_memory; /* ->on-board memory */
sema_t use_lock; /* upper-half exclusion from board */
lock_t reg_lock; /* spinlock for interrupt exclusion */

#if GBD_NODMA
int gbd_state; /* transfer state of PIO driver */
sv_t intr_wait; /* sync var for waiting on intr */

Example GIO Driver

007-0911-210 701

#else /* DMA supported somehow */
buf_t *curbp; /* current buf struct */

#if (0 == GBD_NUM_DMA_PGS) /* software scatter/gather */
caddr_t curaddr; /* current address to transfer */
int curcount; /* count being transferred */
int totcount; /* total size this transfer */

#endif
#endif
} gbd_globals[2];

void gbdintr(int, struct eframe_s *);

/* early device table initialization routine. Validate the values
* from a VECTOR line and save in the per-device info structure.
*/
void
gbdedtinit(register edt_t *e)
{

int slot; /* which slot this device is in */
__uint32_t val = 0; /* board ID value */
register struct gbd_info *inf;

/* Check to see if the device is present */
if(!badaddr(e->e_base, sizeof(__uint32_t)))

val = *(__uint32_t *)(e->e_base);
if ((val && GBD_MASK) != GBD_BOARD_ID) {

if (showconfig) {
cmn_err (CE_CONT, “gbdedtinit: board not installed.”);

}
return;

}
/* figure out slot from VECTOR base= value */
if(e->e_base == (caddr_t)0xBF400000)

slot = GIO_SLOT_0;
else if(e->e_base == (caddr_t)0xBF600000)

slot = GIO_SLOT_1;
else {

cmn_err (CE_NOTE,
“ERROR from edtinit: Bad base address %x\n”, e->e_base);
return;

}
#if IP20 /* for Indigo R4000, set up board as a realtime bus master */

setgioconfig(slot,GIO64_ARB_EXP0_RT | GIO64_ARB_EXP0_MST);
#endif
#if (IP22|IP26) /* for Indigo2, set up as a pipelined, realtime bus master */

702 007-0911-210

19: GIO Device Drivers

setgioconfig(slot,GIO64_ARB_EXP0_RT | GIO64_ARB_EXP0_MST);
#endif

/* Initialize the per-device (per-slot) info, including the
* device addresses from the edt_t.
*/
inf = &gbd_globals[GIO_SLOT_0 ? 0 : 1];
inf->gbd_device = (struct gbd_device *)e->e_base;
inf->gbd_memory = (char *)e->e_base2;
initsema(&inf->use_lock,1);
spinlock_init(&inf->reg_lock,NULL);
setgiovector(GIO_INTERRUPT_1,slot,gbdintr,0);
if (showconfig) {

cmn_err (CE_CONT, “gbdedtinit: board %x installed\n”, e->e_base);
}

}
/* OPEN: minor number used to select slot. Merely test that
* the device was initialized.
*/
/* ARGSUSED */
gbdopen(dev_t *devp, int flag, int otyp, cred_t *crp)
{

if(! (gbd_globals[geteminor(*devp)&1].gbd_device))
return ENXIO; /* board not present */

return 0; /* OK */
}
/* CLOSE: Nothing to do. */
/* ARGSUSED */
gbdclose(dev_t dev, int flag, int otyp, cred_t *crp)
{

return 0;
}
#if (GBD_NODMA) /***** Non-DMA, therefore character, device ******/
/* WRITE: for character device using PIO */
/* READ entry point same except for direction of transfer */
int
gbdwrite(dev_t dev, uio_t *uio)
{

int unit = geteminor(dev)&1;
struct gbd_info *inf = &gbd_globals[unit];
int size, err=0, lk;
/* Exclude any other top-half (read/write) user */
psema(&inf->use_lock,PZERO)
/* while there is data to transfer */
while((size=uio->uio_resid) > 0) {

Example GIO Driver

007-0911-210 703

/* Transfer no more than GBD_MEMSIZE bytes per operation */
size = (size < GBD_MEMSIZE) ? size : GBD_MEMSIZE;

/* Copy data from user-process memory to board memory.
* uiomove() updates uio fields and copies data
*/
if(! (err=uiomove(inf->gbd_memory, size, UIO_WRITE, uio)))

break;

/* Block out the interrupt handler with a spinlock, then
* program the device to start the transfer.
*/
lk = mutex_spinlock(&inf->reg_lock);
inf->gbd_device->count = size;
inf->gbd_device->command = GBD_GO;
inf->gbd_state = GBD_INTR_PEND; /* validate an interrupt */
/* Give up the spinlock and sleep until gdbintr() signals */
sv_wait(&inf->intr_wait,PZERO,&inf->reg_lock,lk);

} /* while(size) */
vsema(&inf->use_lock); /* let another process use board */
return err;

}
/* INTERRUPT: for PIO only board */
/* ARGSUSED1 */
void
gbdintr(int unit, struct eframe_s *ef)
{

register struct gbd_info *inf = &gbd_globals[unit];
int lk;
/* get exclusive use of device regs from upper-half */
lk = mutex_spinlock(&inf->reg_lock);

/* if the interrupt is not from our device, ignore it */
if(inf->gbd_device->status & GBD_INTR_PEND) {

/* MISSING: test device status, clean up after interrupt,
* post errors into inf->state for upper-half to see.
*/
/* Provided the upper-half expected this, wake it up */
if (inf->gbd_state & GBD_INTR_PEND)

sv_signal(&inf->intr_wait);
}
mutex_spinunlock(&inf->reg_lock,lk);

}

#else /******** DMA version of driver ************/

704 007-0911-210

19: GIO Device Drivers

void gbd_strategy(struct buf *);

/* WRITE entry point (for character driver of DMA board).
* Call uiophysio() to set up and call gbd_strategy routine,
* where the transfer is actually done.
*/
int
gbdwrite(dev_t dev, uio_t *uiop)
{

return uiophysio((int (*)())gbd_strategy, 0, dev, B_WRITE, uiop);
}
/* READ entry point same except for direction of transfer */
#if GBD_NUM_DMA_PGS > 0

/* STRATEGY for hardware scatter/gather DMA support.
* Called from gbdwrite()/gbdread() via physio().
* Called from file-system/paging code directly.
*/
void
gbd_strategy(register struct buf *bp)
{

int unit = geteminor(bp->b_edev)&1;
register struct gbd_info *inf = &gbd_globals[unit];
register gbd_regs *regs = inf->gbd_device;
volatile paddr_t *sgregisters;
int npages;
int i, lk;
caddr_t v_addr;

/* Get the kernel virtual address of the data. Note that
* b_dmaaddr is NULL when the BP_ISMAPPED(bp) macro
* indicates false; in that case, the field bp->b_pages
* is a pointer to a linked list of pfdat structure
* pointers; that saves creating a virtual mapping and
* then decoding that mapping back to physical addresses.
* BP_ISMAPPED will never be false for character devices,
* only block devices.
*/
if(!BP_ISMAPPED(bp)) {

cmn_err(CE_WARN, “gbd driver can’t handle unmapped buffers”);
bp->b_flags |= B_ERROR;
iodone(bp);
return;

}

Example GIO Driver

007-0911-210 705

v_addr = bp->b_dmaaddr;

/* Compute number of pages affected by this request.
* The numpages() macro (sysmacros.h) returns the number of pages
* that span a given length starting at a given address, allowing
* for partial pages. Unrealistically, we limit this to the
* number of scatter/gather registers on board.
* Note that this sample driver doesn’t handle the
* case of requests > than # of registers!
*/
npages = numpages (v_addr, bp->b_bcount);
if(npages > GBD_NUM_DMA_PGS) {

bp->b_resid = IO_NBPP * (npages - GBD_NUM_DMA_PGS);
npages = GBD_NUM_DMA_PGS;
cmn_err(CE_WARN,

“request too large, only %d pages max”, npages);
}

/* Get exclusive upper-half use of device. The sema is released
* wherever iodone() is called, here or in the int handler.
*/
psema(&inf->use_lock,PZERO)
inf->curbp = bp;

/* Get exclusive use of the device regs, blocking the int handler */
lk = mutex_spinlock(&inf->reg_lock);

/* MISSING: set up board to transfer npages discreet segments. */
/* Get address of the scatter-gather registers */
sgregisters = regs->sgregisters;

/* Provide the beginning byte offset and count to the device. */
regs->offset = io_poff(bp->b_dmaaddr); /* in immu.h */
regs->count = (IO_NBPP - inf->gbd_device->offset)

+ (npages-1)*IO_NBPP;

/* Translate the virtual address of each page to a
* physical page number and load it into the next
* scatter-gather register. The btoct(K) macro
* converts the byte value to a page value after
* rounding down the byte value to a full page.
*/
for (i = 0; i < npages; i++) {

*sgregisters++ = btoct(kvtophys(v_addr));
v_addr += IO_NBPP;

706 007-0911-210

19: GIO Device Drivers

}

if ((bp->b_flags & B_READ) == 0)
regs->direction = GBD_WRITE;

else
regs->direction = GBD_READ;

regs->command = GBD_GO; /* start DMA */

/* release use of the device regs to the interrupt handler */
mutex_spinunlock(inf->reg_lock,lk);

/* and return; upper layers of kernel wait for iodone(bp) */
}

/* INTERRUPT: for hardware DMA support. This is over-simplified
* because the above strategy routine never accepts a transfer
* larger than the device can handle in a single operation.
*/
/* ARGSUSED1 */
void
gbdintr(int unit, struct eframe_s *ef)
{

register struct gbd_info *inf = &gbd_globals[unit];
register gbd_regs *regs = inf->gbd_device;
int error = 0;
int lk;

/* get exclusive use if device regs from upper-half */
lk = mutex_spinlock(&inf->reg_lock);

/* If interrupt was not from this device, exit quick */
if (! (regs->status & GBD_INTR_PEND)) {

mutex_spinunlock(&inf->reg_lock,lk);
return;

}

/* MISSING: read board registers, clear interrupt,
* and note any errors in the “error” variable. */
if(error)

inf->curbp->b_flags |= B_ERROR;

/* release lock on exclusive use of device regs */
mutex_spinunlock(&inf->reg_lock,lk);

/* wake up any kernel/file-system waiting for this I/O */

Example GIO Driver

007-0911-210 707

iodone(inf->curbp);

/* unlock use of device to other upper-half driver code */
vsema(&inf->use_lock);

}

#else /****** GBD_NUM_DMA_PGS == 0; no hardware scatter/gather ******/

/* STRATEGY: for software-controlled scatter/gather.
* Called from the gbdwrite() routine via uiophysio().
*/
void
gbd_strategy(struct buf *bp)
{

int unit = geteminor(bp->b_edev)&1;
register struct gbd_info *inf = &gbd_globals[unit];
register gbd_regs *regs = inf->gbd_device;
int lk;

/* Get the kernel virtual address of the data; note
* b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
* indicates false; in that case, the field bp->b_pages
* is a pointer to a linked list of pfdat structure
* pointers; that saves creating a virtual mapping and
* then decoding that mapping back to physical addresses.
* BP_ISMAPPED will never be false for character devices,
* only block devices.
*/
if(!BP_ISMAPPED(bp)) {

cmn_err(CE_WARN, “gbd driver can’t handle unmapped buffers”);
bp->b_flags |= B_ERROR;
iodone(bp);
return;

}

/* Get exclusive upper-half use of device. The sema is released
* wherever iodone() is called, here or in the int handler.
*/
psema(&inf->use_lock,PZERO)
inf->curbp = bp;

/* Initialize the current transfer address and count.
* The first transfer should finish the rest of the
* page, but do no more than the total byte count.
*/

708 007-0911-210

19: GIO Device Drivers

inf->curaddr = bp->b_dmaaddr;
inf->totcount = bp->b_bcount;
inf->curcount = IO_NBPP - io_poff(inf->curaddr);
if (bp->b_bcount < inf->curcount)

inf->curcount = bp->b_bcount;

/* Get exclusive use of the device regs and start the transfer
* of the first/only segment of data. */
lk = mutex_spinlock(&inf->reg_lock);
regs->startaddr = kvtophys(inf->curaddr);
regs->count = inf->curcount;
regs->direction = (bp->b_flags & B_READ) ? GBD_READ : GBD_WRITE;
regs->command = GBD_GO; /* start DMA */

/* release use of the device regs to the interrupt handler */
mutex_spinunlock(inf->reg_lock,lk);
/* and return; upper layers of kernel wait for iodone(bp) */

}

/* INTERRUPT: for software scatter/gather. This version is more typical
* of boards that do have DMA, and more typical of devices that support
* block i/o, as opposed to character i/o.
*/
/* ARGSUSED1 */
void
gbdintr(int unit, struct eframe_s *ef)
{

register struct gbd_info *inf = &gbd_globals[unit];
register gbd_regs *regs = inf->gbd_device;
register buf_t *bp = inf->curbp;
int error = 0;
int lk;

/* get exclusive use if device regs from upper-half */
lk = mutex_spinlock(&inf->reg_lock);

/* If interrupt was not from this device, exit quick */
if (! (regs->status & GBD_INTR_PEND)) {

mutex_spinunlock(&inf->reg_lock,lk);
return;

}

/* MISSING: read board registers, clear interrupt,
* and note any errors in the “error” variable. */

Example GIO Driver

007-0911-210 709

if(error) {
bp->b_resid = inf->totcount; /* show bytes undone */
bp->b_flags |= B_ERROR; /* flag error in transfer */
iodone(bp); /* we are done, tell upper layers */
vsema(&inf->use_lock); /* make device available */

}
else {

/* Note the successful transfer of one segment. */
inf->curaddr += inf->curcount;
inf->totcount -= inf->curcount;
if(inf->totcount <= 0) {

iodone(bp); /* we are done, tell upper layers */
vsema(&inf->use_lock); /* make device available */

}
else {

/* More data to transfer. Reprogram the board for
* the next segment and start the next DMA.
*/
inf->curcount = (inf->totcount < IO_NBPP) ? inf->totcount : IO_NBPP;
regs->startaddr = kvtophys(inf->curaddr);
regs->count = inf->curcount;
regs->direction = (bp->b_flags & B_READ) ? GBD_READ : GBD_WRITE;
regs->command = GBD_GO; /* start next DMA */

}
}
/* release lock on exclusive use of device regs */
mutex_spinunlock(&inf->reg_lock,lk);

}
#endif /* GBD_NUM_DMA_PGS */
#endif /* GBD_NODMA */

PART NINE

PCI Drivers IX

Chapter 20, “PCI Device Attachment”
Overview of the architecture of the PCI bus attachment in different SGI systems.

Chapter 21, “Services for PCI Drivers”
Discusses the services offered by the kernel to PCI device drivers.

007-0911-210 713

Chapter 20

20. PCI Device Attachment

The Peripheral Component Interconnect (PCI) bus, initially designed at Intel Corp, is
standardized by the PCI Bus Interest Group, a nonprofit consortium of vendors (see
“Standards Documents” on page xlii and “Internet Resources” on page xli).

The PCI bus is designed as a high-performance local bus to connect peripherals to
memory and a microprocessor. In many personal computers based on Intel and Motorola
processors, the PCI bus is the primary system bus. A wide range of vendors make devices
that plug into the PCI bus.

The PCI bus is supported by the O2 and Octane workstations, by the Origin 2000
architecture, and by the Origin 200 deskside systems. This chapter contains the following
topics related to support for the PCI bus:

• “PCI Bus in SGI Workstations” on page 714 gives an overview of PCI bus features
and implementation.

• “PCI Implementation in O2 Workstations” on page 719 describes the hardware
features and restrictions of the PCI bus in low-end workstations.

• “PCI Implementation in Origin Servers” on page 723 describes the features of the
PCI implementation in larger architectures.

More information about PCI device control appears in these chapters:

• Chapter 4, “User-Level Access to Devices,” covers PIO and DMA access from the
user process.

• Chapter 21, “Services for PCI Drivers,” discusses the kernel services used by a
kernel-level VME device driver, and contains an example.

714 007-0911-210

20: PCI Device Attachment

PCI Bus in SGI Workstations

This section contains an overview of the main features of PCI hardware attachment, for
use as background material for software designers. Hardware designers can obtain a
detailed technical paper on PCI hardware through the SGI Developer Program (it
appears in the Developer Toolbox CDROM, and is also available separately). That paper
covers important design issues such as card dimensions, device latencies, power supply
capacities, interrupt line wiring, and bus arbitration.

PCI Bus and System Bus

In no IRIX system is the PCI bus the primary system bus. The primary system bus is
always a proprietary bus that connects one or more CPUs with high-performance
graphics adapters and main memory: The PCI bus adapter is connected (or “bridged,” in
PCI terminology) to the system bus, as shown in Figure 20-1.

• In the O2 workstation, the primary system bus is a high-bandwidth connection
between the CPU, memory, and the display hardware (whose bandwidth
requirements are almost as high as the CPU’s).

• In the Octane workstation, the PCI bus adapter is bridged to the XIO bus adapter,
which is in turn a client of the system crossbar for access to the CPU or memory.

• In the Origin series, the PCI bus adapter is bridged to the XIO bus adapter, which in
turn connects to a Hub chip for access to memory in the local module and to the
Cray interconnection fabric for access to memory in other modules.

Different SGI systems have different PCI adapter ASICs. Although all adapters conform
to the PCI standard level 2.1, there are significant differences between them in capacities,
in optional features such as support for the 64-bit extension, and in performance details
such as memory-access latencies.

The PCI adapter is a custom circuit with these main functions:

• To act as a PCI bus target when a PCI bus master requests a read or write to memory

• To act as a PCI bus master when a CPU requests a PIO operation

• To manage PCI bus arbitration, allocating bus use to devices as they request it

• To interface PCI interrupt signals to the system bus and the CPU

PCI Bus in SGI Workstations

007-0911-210 715

Figure 20-1 PCI Bus In Relation to System Bus

Buses, Slots, Cards, and Devices

A system may contain one or more PCI bus adapters. Each bus connects one or more
physical packages. The PCI standard allows up to 32 physical packages on a bus. A
“package” may consist of a card plugged into a slot on the bus. However, a “package”
can also consist of an internal chipset mounted directly on the system board, using the
PCI bus and occupying one or more virtual slots on the bus. For example, the SCSI
adapter in the O2 workstation occupies the first two virtual slots of the PCI bus in that
system.

CPU module

Memory

PCI adapter

(custom ASIC)

AD[31:0]
System bus

C/BE#[3:0]

INTA/B/C/D#

Other control

PCI card slots

716 007-0911-210

20: PCI Device Attachment

Each physical package can implement from one to eight functions. A PCI function is an
independent device with its own configuration registers in PCI configuration space, and
its own address decoders.

In SGI systems, each PCI function is integrated into IRIX as a device. A PCI device driver
manages one or more devices in this sense. A driver does not manage a particular
package, or card, or bus slot; it manages one or more logical devices.

Note: IRIX 6.3 for the O2 workstation supports multifunction cards. However, IRIX 6.4
for Origin, Onyx2, and Octane does not support multifunction cards. Support for
multifunction cards returns for all hardware platforms with IRIX 6.5.

Architectural Implications

All SGI PCI implementations permit peer-to-peer transactions, in which two PCI devices
exchange data without the involvement of the bus adapter except as arbitrator. However,
most PCI transactions take place between a PCI device and system memory, by way of
the bus adapter.

Two important facts about PCI-to-memory transaction are, first, that memory is not
located on the PCI bus and in fact, the PCI bus competes for the use of memory with the
CPU and other devices on the system bus; and second, that memory in SGI systems is
organized around cache lines of 128 bytes. When a PCI device initiates a read to memory,
the bus adapter requests a cache line from memory, and returns the addressed word from
that line. When a PCI device initiates a write to memory, the bus adapter fetches the
addressed line; stores successive words into it until the operation ends or another line is
addressed; and writes the line back to memory.

Some important implications follow:

• The latency of access to the first byte or word in a cache line can be long—in the
range of multiple microseconds, if the system bus is heavily used.

• Access to subsequent words in the same cache line can go at maximum bus speed.

A PCI bus master that attempts to read small fields scattered in memory will be
constrained to run at the rate at which the PCI adapter can fetch entire cache lines from
memory. A PCI bus master that attempts to write small fields scattered in memory will

PCI Bus in SGI Workstations

007-0911-210 717

be constrained even further, to the rate at which the PCI adapter can perform
read-modify-write cycles of entire cache lines.

A device that performs streaming access to consecutive locations can operate at good
speed, once the initial latency period is past. However, a streaming device must have
enough on-card buffer capacity to hold data during the maximum latency.

These issues of latency are discussed in much greater detail in a document available from
the SGI developer support organization.

Byte Order Considerations

The order of bytes in a word, also called “endianness,” is in conflict between PCI devices
and MIPS-based software. MIPS-based software is “big-endian,” placing the most
significant byte (MSB) of a 32-bit word at the lowest (“leftmost”) address. Devices made
for the PCI bus typically use “little-endian,” or Intel, byte ordering, in which the MSB is
at the highest address. Whether the bus hardware should perform byte-swapping to
compensate is a difficult question with no universal answer. The question is complicated
by the facts that in some systems, PCI data passes through more than one bus adapter
between the device and memory, and the default settings of the byte-swapping hardware
is different between different SGI platforms.

When considering byte order, consider the intended use of the data (user data or driver
command/status), and the method (PIO or DMA, which use different hardware).

Byte Order in Data Transfers

When considering only a stream of bytes being transferred between memory and some
kind of storage medium—for example, a block of data being read or written from a
tape—the byte order of the device is not significant. The system writes the stream; later
the system reads the stream back. As long as the bus treats the data the same way on
input as on output, the data returns to memory in the same order it had when it left.

What you want to ensure is that, if the storage medium is transferred to a PCI device on
another machine, the same sequence of bytes will arrive in the other machine’s memory.
This is the best you can do toward compatibility between big-endian and little-endian
programs—preserving memory byte order. Interpretation of binary items embedded
within the byte stream is a problem for the software.

718 007-0911-210

20: PCI Device Attachment

Byte Order in Command and Status Transfers

When considering data that is interpreted by the device driver and by the PCI device—
for example, the contents of a device status register, or words giving the address and
length of a DMA transfer—byte order does matter. You must know if your device uses
little-endian binary integers, and you must ensure that an integer (count or address) is
byte-swapped, if necessary, on the way to the device so it can be interpreted correctly.

Byte Order for PIO

PCI adapters are set up so that when a driver does 32-bit PIO to 32-bit boundaries, a
32-bit count or address is translated correctly between big-endian and little-endian
forms, as shown in Table 20-1.

PCI configuration space is accessed using PIO. You can declare a memory copy of
configuration space as shown in Example 20-1.

Example 20-1 Declaration of Memory Copy of Configuration Space

typedef struct configData_s { /* based on PCI standard */
unsigned short vendorID, deviceID; /* order reversed */
unsigned short command, status; /* order reversed */
unsigned char revID, prog_if, subclase,class; /* reversed */
unsigned char cacheSize, latency, hdrType, BIST;/* reversed */
__uint32_t BAR[6];
__uint32_t cardbus;
unsigned short subvendorID, subsystemID; /* reversed */
__uint32_t eromBAR;
__uint32_t reserved[2];
unsigned char intLine, intPin, maxGrant, maxLat; /* reversed */

} configData_t;

typedef union configCopy_u { /* union with word array */
__uint32_t word[16];

Table 20-1 PIO Byte Order in 32-bit Transfer

Byte On System Bus IRIX Use Byte on PCI Bus

0 MSB 3

1 2

2 1

3 LSB 0

PCI Implementation in O2 Workstations

007-0911-210 719

configData_t cfg;
} configCopy_t;

The device driver loads the memory copy by getting 32-bit words using PIO and storing
them into the union fields word. In the course of each word-copy, byte order is reversed,
which preserves the significance value of 32-bit and 16-bit words, but reverses the order
of 16-bit and 8-bit subfields within words. The copied data can be accessed from the
configData_t structure in the union.

The same approach applies to PIO to the PCI bus memory and I/O address spaces—use
32-bit transfers on 32-bit boundaries for correct logical results on data of 32 bits and less.
Alternatively, to perform PIO to a 16-bit or 8-bit unit, take the address from the PIO map
and exclusive-OR it with 0x03 to produce the byte-swapped address of the unit.

PIO can be done in 64-bit units as well as 32-bit units. In this case, each 32-bit unit is
treated separately. The most-significant 32-bit half of the value is sent first, and is stored
in the lower PCI address. Unfortunately this is not what a PCI device expects in, for
example, a 64-bit Base Address Register (BAR). In order to store 64-bit addresses in a PCI
register, do one of the following:

• Reverse the order of 32-bit halves in the CPU before storing the 64-bit value.

• Store the 32-bit halves separately, the less-significant half first.

The same problem occurs on input of a 64-bit quantity to a long long value: the
less-significant word appears in the more-significant half of the received variable.

Byte Order for DMA

A driver prepares for DMA access by creating a DMA map (see “Using DMA Maps” on
page 746). When a map is allocated, you specify one of two flags: PCI_BYTE_STREAM
or PCI_WORD_VALUES. All transfers through the map are appropriate for either a data
stream or a command stream, as requested.

PCI Implementation in O2 Workstations

In the O2 workstation, a proprietary system bus connects the CPU, multimedia devices
(audio, video, and graphics) and main memory. Multimedia use is a central focus of this
workstation’s design, and audio and video devices have highest priority, after the CPU,
for bandwidth on the system bus.

720 007-0911-210

20: PCI Device Attachment

The PCI bus adapter interfaces one PCI bus to this system bus. The PCI bus adapter is a
unit on the system bus, on a par with other devices. The PCI bus adapter competes with
the CPU and with multimedia I/O for the use of main memory.

The built-in SCSI adapter, which is located on the main system board, is logically
connected to the PCI bus and takes the place of the first two “slots” on the PCI bus, so
that the first actual slot is number 2.

Unsupported PCI Signals

In the O2, the PCI adapter implements a standard, 32-bit PCI bus operating at 33 MHZ.
The following optional signal lines are not supported.

• The LOCK# signal is ignored; atomic access to memory is not supported.

• The cache-snoop signals SBO# and SDONE are ignored. Cache coherency must be
ensured by the driver.

• The JTAG signals are not supported.

Configuration Register Initialization

When the IRIX kernel probes the PCI bus and finds an active device, it initializes the
device configuration registers as follows:

The device driver may set any other configuration parameters when attaching a device.

Command
Register

The enabling bits for I/O Access, Memory Access, and Master are
set to 1. Other bits, such as Memory Write and Invalidate and Fast
Back-to-Back are left at 0.

Cache Line Size 0x20 (32, 32-bit words, or 128 bytes).

Latency Timer 0x30 (48 clocks, 1.45 microseconds).

Base Address
registers

Each register that requests memory or I/O address space is
programmed with a starting address. In the O2 system, memory
addresses are always greater than 0x8000 0000.

PCI Implementation in O2 Workstations

007-0911-210 721

Caution: If the driver changes the contents of a Base Address Register, the results are
unpredictable. Don’t do this.

Address Spaces Supported

The relationship between the PCI bus address space and the system memory physical
address space differs from one system type to another.

64-bit Address and Data Support

The O2 PCI adapter supports 64-bit data transfers, but not 64-bit addressing. All bus
addresses are 32 bits, that is, all PCI bus virtual addresses are in the 4 GB range. The Dual
Address Cycle (DAC) command is not supported (or needed).

The 64-bit extension signals AD[63:32], C/BE#[7:4], REQ64# and ACK64# are pulled up
as required by the PCI standard.

When the PCI bus adapter operates as a bus master (as it does when implementing a PIO
load or store for the CPU), the PCI adapter generates 32-bit data cycles.

When the PCI bus adapter operates as a bus target (as it does when a PCI bus master
transfers data using DMA), the PCI adapter does not respond to REQ64#, and hence
64-bit data transfers are accomplished in two, 32-bit, data phases as described in the PCI
specification.

PIO Address Mapping

For PIO purposes (CPU load and store access to a device), memory space defined by each
PCI device in its configuration registers is allocated in the upper two gigabytes of the PCI
address space, above 0x8000 0000. These addresses are allocated dynamically, based on
the contents of the configuration registers of active devices. The I/O address space
requested by each PCI device in its configuration registers is also allocated dynamically
as the system comes up. Device drivers get a virtual address to use for PIO to any address
space by creating a PIO map (see “Using PIO Maps” on page 734).

It is possible for a PCI device to request (in the initial state of its Base Address Registers)
that its address space be allocated in the first 1 MB of the PCI bus. This request cannot be

722 007-0911-210

20: PCI Device Attachment

honored in the O2 workstation. Devices that cannot decode bus addresses above
0x8000 0000 are not supported.

PIO access to configuration space is supported. However, drivers must not only create a
PIO map, but must use kernel functions instead of simply loading and storing to a
translated address.

DMA Address Mapping

The O2 workstation supports a 1 GB physical memory address space (30 bits of physical
address used). Any part of physical address space can be mapped into PCI bus address
space for purposes of DMA access from a PCI bus master device. The device driver
ensures correct mapping through the use of a DMA map object (see “Using DMA Maps”
on page 746).

Slot Priority and Bus Arbitration

Two devices that are built into the workstation take the positions of PCI bus slots 0 and
1. Actual bus slots begin with slot 2 and go up to a maximum of slot 4 (the built-in devices
and a design maximum of three physical slots).

The PCI adapter maintains two priority groups. The lower-priority group is arbitrated in
round-robin style. The higher-priority group uses fixed priorities based on slot number,
with the higher-numbered slot having the higher fixed priority.

The IRIX kernel assigns slots to priority groups dynamically by storing values in an
adapter register. There is no kernel interface for changing this priority assignment. The
audio and the available PCI slots are in the higher priority group.

Interrupt Signal Distribution

The PCI adapter can present eight unique interrupt signals to the system CPU. The IRIX
kernel uses these interrupt signals to distinguish between the sources of PCI bus

PCI Implementation in Origin Servers

007-0911-210 723

interrupts. The system interrupt numbers 0 through 7 are distributed across the PCI bus
slots as shown in Table 20-2.

Each physical PCI slot has a unique system interrupt number for its INTA# signal. The
INTB#, INTC#, and INTD# signals are connected in a spiral pattern to three system
interrupt numbers.

PCI Implementation in Origin Servers

In the Origin 2000, Onyx2, and Origin 200 systems, the PCI adapter bridges to the XIO
bus, a high-speed I/O bus. This joins the PCI bus into the connection fabric, so any PCI
bus can be addressed from any module, and any PCI bus can access memory that is
physically located in any module. In the Octane workstation, the same PCI adapter ASIC
is used to bridge the PCI bus to a proprietary system bus.

Latency and Operation Order

In these systems the multimedia features have substantial local resources, so that
contention with multimedia for the use of main memory is lower than in the O2
workstation. However, these systems also have multiple CPUs and multiple layers of
address translation, and these factors can introduce latencies in PCI transactions.

It is important to understand that there is no guaranteed order of execution between
separate PCI transactions in these systems. There can be multiple hardware layers
between the CPU, memory, and the device. One or more data transactions can be “in
flight” for durations that are significant. For example, suppose that a PCI bus master

Table 20-2 PCI Interrupt Distribution to System Interrupt Numbers

PCI
Interrupt

Slot 0 (built-in
device)

Slot 1(built-in
device) Slot 2

Slot 3
(When Present)

Slot 4
(When Present)

INTA# system 0 n.c. system 2 system 3 system 4

INTB# n.c. system 1 system 5 system 7 system 6

INTC# n.c. n.c. system 6 system 5 system 7

INTD# n.c. n.c. system 7 system 6 system 5

724 007-0911-210

20: PCI Device Attachment

device completes the last transfer of a DMA write of data to memory, and then executes
a DMA write to update a status flag elsewhere in memory.

Under circumstances that are unusual but not impossible, the status in memory can be
updated, and acted upon by software, while the data transaction is still “in flight” and
has not completely arrived in memory. The same can be true of a PIO read that polls the
device—it can return “complete” status from the device while data sent by DMA has yet
to reach memory.

Ordering is guaranteed when interrupts are used. An interrupt handler is not executed
until all writes initiated by the interrupting device have completed.

Configuration Register Initialization

When the IRIX 6.5 kernel probes the PCI bus and finds an active device, it initializes the
device configuration registers as follows:

The device driver may set any other configuration parameters when attaching a device.

Caution: If the driver changes the contents of a Base Address Register, the results are
unpredictable. Don’t do this.

Unsupported PCI Signals

In these larger systems, the PCI adapter implements a standard, 64-bit PCI bus operating
at 33 MHZ. The following optional signal lines are not supported.

Command
Register

The enabling bits for I/O Access, Memory Access, and Master are
set to 1. Other bits, such as Memory Write and Invalidate and Fast
Back-to-Back are left at 0.

Cache Line Size 0x20 (32, 32-bit words, or 128 bytes).

Latency Timer 0x30 (48 clocks, or 1.45 us).

Base Address
registers

Each register that requests memory or I/O address space is
programmed with a starting address. Under IRIX 6.5, memory
space addresses are below 0x4000 0000.

PCI Implementation in Origin Servers

007-0911-210 725

• The LOCK# signal is ignored; atomic access to memory is not supported.

• The cache-snoop signals SBO# and SDONE are ignored. Cache coherency is ensured
by the PCI adapter and the memory architecture, with assistance by the driver.

Address Spaces Supported

In these systems, addresses are translated not once but at least twice and sometimes more
often between the CPU and the device, or between the device and memory. Also, some
of the logic for features such as prefetching and byte-swapping is controlled by the use
of high-order address bits. There is no simple function on a physical memory address
that yields a PCI bus address (nor vice-versa). It is essential that device driver use PIO
and DMA maps (see Chapter 21, “Services for PCI Drivers”).

64-bit Address and Data Support

These systems support 64-bit data transactions. Use of 64-bit data transactions results in
best performance.

The PCI adapter accepts 64-bit addresses produced by a bus master device. The PCI
adapter does not generate 64-bit addresses itself (because the PCI adapter generates
addresses only to implement PIO transactions, and PIO targets are always located in
32-bit addresses).

PIO Address Mapping

For PIO purposes, memory space defined by each PCI device in its configuration
registers is allocated in the lowest gigabyte of PCI address space, below 0x400 0000.
These addresses are allocated dynamically, based on the contents of the configuration
registers of active devices. The I/O address space requested by each PCI device in its
configuration registers is also allocated dynamically as the system comes up. A driver
can request additional PCI I/O or Memory space when the device uses space beyond that
described by its configuration registers.

Device drivers get a virtual address to use for PIO in any address space by creating a PIO
map (see “Using PIO Maps” on page 734).

It is possible for a PCI device to request (in the initial state of its Base Address Registers)
that its address space be allocated in the first 1 MB of the PCI bus. This request is honored

726 007-0911-210

20: PCI Device Attachment

in larger systems (it cannot be honored in the O2 workstation, as noted under “PCI
Implementation in O2 Workstations” on page 719).

PIO access to configuration space is supported. However, drivers use kernel functions
instead of simply loading and storing to a translated address.

DMA Address Mapping

Any part of physical address space can be mapped into PCI bus address space for
purposes of DMA access from a PCI bus master device. As described under “Address
Space Usage in SGI Origin 2000 Systems” on page 26, the Origin 2000 architecture uses a
40-bit physical address, of which some bits designate a node board. The PCI adapter sets
up a translation between an address in PCI memory space and a physical address, which
can refer to a different node from the one to which the PCI bus is attached.

The device driver ensures correct mapping through the use of a DMA map object (see
“Using DMA Maps” on page 746).

If the PCI device supports only 32-bit addresses, DMA addresses can be established in
32-bit PCI space. When this requested, extra mapping hardware is used to map a window
of 32-bit space into the 40-bit memory space. These mapping registers are limited in
number, so it is possible that a request for DMA translation could fail. For this reason it
is preferable to use 64-bit DMA mapping when the device supports it.

When the device supports 64-bit PCI bus addresses for DMA, the PCI adapter can use a
simpler mapping method from a 64-bit address into the target 40-bit address, and there
is less chance of contention for mapping hardware. The device driver must request a
64-bit DMA map, and must program the device with 64-bit values.

Bus Arbitration

The PCI adapter maintains two priority groups, the real-time group and the low-priority
group. Both groups are arbitrated in round-robin style. Devices in the real-time group
always have priority for use of the bus. There is no kernel interface for changing the
priority of a device.

PCI Implementation in Origin Servers

007-0911-210 727

Interrupt Signal Distribution

There are two unique interrupt signals on each PCI bus. The INTA# and INTC# signals
are wired together, and the INTB# and INTD# signals are wired together. A PCI device
that uses two distinct signals must use INTA and INTB, or INTC and INTD. A device that
needs more than two signals can use the additional signal lines, but such a device must
also provide a register from which the device driver can learn the cause of the interrupt.

The bridge chip that is used on all Octane and Origin systems (which includes the SGI
3000 server series) has eight input interrupts. PCI cards, however, can implement up to
four different interrupts (A, B, C, and D), which may create a shared condition. Table 20-3
shows how interrupts can be shared on an Origin system.

For example, if a card in slot 0 uses INTA# and a card in slot 4 uses INTB#, there will be
a conflict. In this case, the interrupt service routines (ISRs) of both cards will be called
when the bridge interrupt pin 0 transitions to active. If you try to connect to all four
interrupt lines from the card, you will create a shared condition. The interrupts that are
shared cannot be redirected with the DEVICE_ADMIN statements in the
/var/sysgen/system/irix.sm file.

Table 20-3 PCI Card Interrupt Pin Distribution

PCI slots

PCI
Interrupt
line A

PCI
interrupt
line B

PCI
interrupt
line C

PCI
interrupt
line D

Slot 0 0 4 0 4

Slot 1 1 5 1 5

Slot 2 2 6 2 6

Slot 3 3 7 3 7

Slot 4 4 0 4 0

Slot 5 5 1 5 1

Slot 6 6 2 6 2

Slot 7 7 3 7 3

007-0911-210 729

Chapter 21

21. Services for PCI Drivers

The IRIX 6.5 kernel provides a uniform interface for managing a PCI device. The
functions in this interface are covered in this chapter under the following headings:

• “IRIX 6.5 PCI Drivers” on page 730 summarizes important information comparing
previous versions IRIX device drivers with those for IRIX 6.5.

• “About PCI Drivers” on page 730 summarizes the entry points and main activities
of a PCI driver.

• “Using PIO Maps” on page 734 discusses the kernel functions to allocate and use
PIO maps.

• “Using DMA Maps” on page 746 discusses the kernel functions to allocate and use
PIO maps.

• “Registering an Interrupt Handler” on page 752 discusses the kernel functions used
to register and unregister an interrupt handler for a PCI device.

• “Registering an Error Handler” on page 756 summarizes the method of associating
an error handler function with a device.

• “Interrogating a PCI Device” on page 757 lists the functions you can use to query
device status.

• “Interrogating a PCI Bus” on page 757 lists the functions and macros you can use to
query a PCI bus.

• “Example PCI Driver” on page 760 displays a simple, skeletal PCI driver.

730 007-0911-210

21: Services for PCI Drivers

IRIX 6.5 PCI Drivers

This section discusses changes made to PCI driver support for IRIX 6.5 and refers to the
appropriate sections of the manual for more information.

• If your driver is to be compiled for the IP32 (O2) platform, refer to “PCI Drivers for
the O2 (IP32) Platform” on page 743

• Values of flags PCIIO_DMA_CMD and PCIIO_DMA_DATA have changed. See
“Setting Flag Values” on page 748 for details.

• PCIIO_PIOMAP_* defines are being replaced by PCIIO_SPACE_* defines. Refer to
“Selecting the Address Space” on page 736 for details.

• pciio_config_{get.set} interfaces are defined as described in “Changes In
Configuration Interface” on page 741.

• pciio_pio_mapsz now returns a ulong. See “Interrogating PIO Maps” on page 743

About PCI Drivers

A PCI device driver is a kernel-level device driver that has the general structure
described in Chapter 7, “Structure of a Kernel-Level Driver.” It uses the driver/kernel
interface described in Chapter 8, “Device Driver/Kernel Interface.” A PCI driver can be
loadable or it can be linked with the kernel. In general it is configured into IRIX as
described in Chapter 9, “Building and Installing a Driver.”

PCI hardware configuration is more dynamic than the configuration of the VME or EISA
buses. With other types of bus, the administrator describes the device configuration
using VECTOR statements and the configuration is static. IRIX support for the PCI bus
is designed to allow support for dynamic reconfiguration. A PCI driver can be designed
to allow devices to be attached and detached at any time.

The general sequence of operations of a PCI driver is as follows:

1. In the pfxinit() entry point, the driver prepares any global variables.

2. In the pfxreg() entry point, the driver calls a kernel function to register itself as a PCI
driver, specifying the kind of device it supports.

3. When the kernel discovers a device of this type, it calls the pfxattach() entry point of
the driver.

About PCI Drivers

007-0911-210 731

4. In the normal upper-half entry points such as pfxopen(), pfxread(), and pfxstrategy(),
the driver operates the device and transfers data.

5. If the kernel learns that the device is being detached, the kernel calls the driver’s
pfxdetach() entry point. The driver undoes the work done in by pfxattach().

A PCI driver uses a number of PCI-related kernel functions that are all declared in the
header file sys/PCI/pciio.h.

About Registration

Registration is a step that lets the kernel know how to associate a device to a driver.

A PCI device identifies itself on the bus by its vendor ID and device ID numbers. The
kernel discovers the complement of devices by probing the bus. When it finds a device,
the kernel needs to associate it with a driver. With other types of bus, the association
between a device and a driver is entered by the system administrator in a static
configuration file. For PCI devices, the kernel looks through a list of drivers that have
registered as supporting PCI devices of particular types.

Your driver registers by calling the pciio_driver_register() function (see reference page
pciio(d3)).This call specifies the PCI vendor ID and device ID numbers as they appear in
the PCI configuration space of any device that this driver can support. The third
argument is the driver’s prefix string as configured in its descriptive file (see “Describing
the Driver in /var/sysgen/master.d” on page 274). The kernel uses this string to find the
addresses of the driver’s pfxattach() and pfxdetach() entry points.

Example 21-1 shows a hypothetical example of driver registration. This fragmentary
example also shows how a driver can register multiple times to handle multiple
combinations of vendor ID and device ID.

732 007-0911-210

21: Services for PCI Drivers

Example 21-1 Driver Registration

int hypo_reg()
{

ret = pciio_driver_register(HYPO_VENID,HYPO_DEVID1,"hypo_",0);
if (!ret)
{

cmn_err(CE_WARN,"error %d registering devid %d",ret,HYPO_DEVID1);
return ret;

}
ret = pciio_driver_register(HYPO_VENID,HYPO_DEVID2,"hypo_",0);
if (!ret)...

}

In a loadable driver, you must call pciio_driver_register() from the pfxreg() entry point.
In a nonloadable driver, you can make the call from pfxinit() if you prefer, but the driver
might not then work if someone later tries to make it loadable.

Wherever you call the function, be aware that, if there is an available device of the
specified type, pfxattach() can be called immediately, before the pci_driver_register()
function returns. In a multiprocessor, pfxattach() can be called concurrently with the
return of pci_driver_register() and following code.

About Attaching a Device

The duties and actions of the pfxattach() entry point are discussed in detail in “Entry
Point attach()” on page 162 and under “Hardware Graph Management” on page 231. In
summary, at this time the driver

• Creates hwgraph vertexes to represent the device

• Allocates and initializes a data structure to hold per-device information

• Allocates PIO maps and (optionally) DMA maps to use in addressing the device

• If necessary, registers an interrupt handler

• If necessary, registers an error handler

• Initializes the device itself

The allocation and use of PIO and DMA maps, and the registration of an interrupt
handler, are covered in detail in following topics.

About PCI Drivers

007-0911-210 733

The argument to pfxattach() is a hwgraph vertex handle that represents the “connection
point” of the device—usually the bus slot. The driver builds more vertexes connected to
this one to represent the logical device. However, the handle of the connection point is
needed in several kernel functions, and it should be saved as part of the device
information.

The return code from pfxattach() is tested by the kernel. The driver can reject an
attachment. When your driver cannot allocate memory, or fails due to another problem,
it should:

• Use cmn_err() to document the problem (see “Using cmn_err” on page 291)

• Release any objects such as PIO and DMA maps that were created

• Release any space allocated to the device such as a device information structure

• Return an informative return code

The pfxdetach() entry point can only be called if the pfxattach() entry point returns
success (0).

More than one driver can register to support the same vendor ID and device ID. The
order in which drivers are called to attach a device is not defined. When the first-called
driver fails to complete the attachment, the kernel continues on to test the next, until all
have refused or one accepts.

About Unloading

When a loadable PCI driver is called at its pfxunload() entry point, indicating that the
kernel would like to unload it, the driver must take pains not to leave any dangling
pointers (as discussed under “Entry Point unload()” on page 190). A driver should not
unload when it has any registered interrupt or error handlers.

A driver does not have to unregister itself as a PCI driver before unloading. Nor does it
have to detach any devices it has attached. However, if any devices are open or memory
mapped, the driver should not unload.

If the driver has been autoregistered (see “Registration” on page 282), stub functions are
placed in the switch tables for the attach and open functions. When the kernel discovers
a new device and wants this driver to attach it, or when a process attempts to open a
device for which this driver created the vertex, the kernel reloads the driver.

734 007-0911-210

21: Services for PCI Drivers

Using PIO Maps

You use a PIO map to establish a mapping between a kernel virtual address and some
portion of PCI bus memory space, configuration space, or I/O space so that the CPU can
load and store into the PCI bus. Depending on the machine architecture, the mapping
may be a simple, linear translation, or it may require the kernel to program hardware
registers in one or more bus adapters. The software interface is the same in all cases.

You cannot program a PCI device without at least one PIO map and you might allocate
several. Typically you store the handles of the allocated maps in the device information
structure; and you store the address of the device information structure in turn in the
hwgraph vertex for the device.

In summary, a PIO map is used as follows:

1. Allocate it with pciio_piomap_alloc().

2. Activate the map and extract a translated address using pciio_piomap_addr(). Use
the translated address to fetch or store.

3. Deactivate the map using pciio_piomap_done(), when the map will be kept but will
not be used for some time.

4. Release the map with pciio_piomap_free().

PIO Mapping Functions

The functions that are used to create and apply PIO maps are summarized in Table 21-1.
For syntax details see the reference page pciio_pio(d3).

Using PIO Maps

007-0911-210 735

Allocating PIO Maps

You create a PIO map using pciio_piomap_alloc(). Its arguments are as follows (see also
reference page pciio_pio(d3)):

Table 21-1 Functions for PIO Maps for the PCI Bus

Function Header Files Purpose and Operation

pciio_piomap_alloc() ddi.h, pciio.h Create a PIO map object, specifying the bus address
space, base offset, and length it needs to cover.

pciio_piomap_addr() ddi.h, pciio.h Get a kernel virtual address from a PIO map for a
specific offset and length.

pciio_piomap_done() ddi.h, pciio.h Make a PIO map inactive until it is next needed (may
release hardware resources associated to the map).

pciio_piomap_free() ddi.h, pciio.h Release a PIO map object.

pciio_piotrans_addr() ddi.h, pciio.h Request immediate translation of a bus address to a
kernel virtual address without use of a PIO map.
Returns NULL unless this system supports fixed
PIO addressing.

pciio_pio_addr() ddi.h, pciio.h Attempt immediate translation, but allocate a PIO
map if necessary.

pciio_piospace_alloc() ddi.h, pciio.h Reserve a segment of PCI bus memory or I/O space.

pciio_piospace_free() ddi.h, pciio.h Release a segment of PCI bus memory or I/O space.

vhdl The connection-point vertex_hdl_t received by the pfxattach() routine. This
handle identifies the device to the kernel by its bus and slot positions.

dev_desc Device descriptor structure (see text following).

space Constant specifying the space to map (see Table 21-2 and text).

addr Offset within the selected space (typically 0).

size Span of the total area in space over which this map might be applied.

max Maximum size of the area that will be mapped at any one time.

flags Optional usage flags (no-sleep flag, PCIIO_BYTE_STREAM, and so on)

736 007-0911-210

21: Services for PCI Drivers

Example 21-2 shows a function that allocates a PIO map. The address space is passed as
an argument, as is the size of the space to map. The function assumes the map should
start at offset 0 in the selected space.

Example 21-2 Allocation of PCI PIO Map

#include <sys/PCI/pciio.h>
pciio_piomap_t makeMap(vertex_hdl_t connpt, int space, size_t size)
{

return pciio_piomap_alloc(
connpt, /* connection point vertex handle */
device_desc_default_get(convpt), /* device_desc_t */
space, /* space, typically _WIN(n) */
0, /* starting offset */
size,size, /* size to map */
0); /* sleeping is OK */

}

Preparing a device_desc_t

The device descriptor structure type device_desc_t is declared in iobus.h, which is
included by pciio.h (see also reference page device_desc(d4x)). In this release there is
little that the device driver needs to know about this structure and its contents. The
simplest way to get a device descriptor that can be handed to pciio_piomap_alloc() is to
call device_desc_default_get() passing the same connection-point vertex handle, as
follows:

ret = pciio_piomap_alloc(convh,device_desc_default_get(convh),...)

Selecting the Address Space

The space argument of pciio_piomap_alloc() specifies the address space to which this
PIO map can apply. The possible choices are summarized in Table 21-2.

Using PIO Maps

007-0911-210 737

Note: PCIIO_MAP_* flags are being replaced by PCIIO_SPACE_* flags. Both are still
supported but we recommend you change to using PCIIO_SPACE_* flags if you have not
already done so.

The space selection PCIIO_PIOMAP_WIN(n) means that this map is to be based on Base
Address Register (BAR) n, from 0 through 5, in the PCI configuration space. If this selects
a BAR that decodes I/O space, the map is for I/O space. Typically this selects a BAR that
decodes memory space. When the space is defined by a 64-bit base address register, use
the lower number that indexes the word that contains the configuration bits.

Note: The PCI infrastructure verifies that a segment of size max, starting at addr, can be
mapped in the specified space, based on the device configuration. If this is not possible,
the map is not allocated and NULL is returned.

Table 21-2 PIO Map Address Space Constants

Constant Name Meaning

PCIIO_PIOMAP_WIN(n) The memory space defined by the BAR word n in configuration
space. This is the most common type of PIO map base. (See note
below.)

PCIIO_SPACE_WIN(n) The memory space defined by the BAR word n in configuration
space. This is the most common type of PIO map base.

PCIIO_SPACE_CFG The Configuration address space. Direct PIO access to
configuration space is supported only in IRIX 6.4—see “Changes
In Configuration Interface” on page 741.

PCIIO_SPACE_IO Map to an absolute addr in the PCI bus I/O address space.

PCIIO_SPACE_MEM Map to an absolute addr in the PCI bus memory address space. PCI
memory space is usually preallocated by the IRIX kernel; use this
only when space has been allocated with pciio_piospace_alloc();
see “Allocating PIO Bus Space” on page 738.

738 007-0911-210

21: Services for PCI Drivers

Sizing the Space

The max argument sets a limit on the total span of addresses, from lowest to highest, for
which this map can ever be used. When the map is always used for the same area, size
and max are the same. When the map can be used for smaller segments within a larger
area, size is the limit of any single segment and max the size of the total extent. The size
to be mapped at any one time is specified when you apply pciio_piomap_addr() to the
allocated map.

Specifying the No-Sleep Flag

The pciio_piomap_alloc() function may need to allocate memory. Normally it does so
with a function that can sleep if memory is temporarily unavailable. If it is important that
the function never sleep, pass PCIIO_NOSLEEP in the flags argument. When you do this,
you must check for a NULL return, indicating that memory was not available.

Allocating PIO Bus Space

When the kernel locates a PCI device on the bus, it allocates the amount of PCI bus
Memory and I/O address space that the device requests in its standard configuration
registers. You get a PIO map into this preallocated space by allocating a map for space
PCIIO_SPACE_WIN(n), specifying the configuration register for that space.

In some cases, a PCI device needs additional memory or I/O space based on
device-specific configuration data that is not known to the kernel. You use
pciio_piospace_alloc() to allocate additional ranges of memory or I/O space to be used
by a device. It is up to your driver to program the device to use the allocated space.

When you need to perform PIO to allocated space that is not decoded by the standard
BARs, you create a PIO map for space PCIIO_SPACE_MEM or PCIIO_SPACE_IO, and
specify the exact base address that was allocated.

Performing PIO With a PIO Map

After a map has been allocated, it is inactive. The function pciio_piomap_addr()
activates a map if it is not active, and uses the map to translate an offset within the
mapped space to a kernel virtual address.

Using PIO Maps

007-0911-210 739

In some systems, “activating a map” can be a null operation. In other systems, an active
PIO map may represent a commitment of limited hardware resources—for example, a
mapping register in a bus adapter. The function arguments are as follows (see also
reference page pciio_pio(d3):

If any argument is invalid, or if the map cannot be activated, the returned address is 0.
The returned address, when it is not 0, can be used to fetch and store from the PCI bus as
if it were memory. An attempt to access beyond the specified size might cause a kernel
panic or might simply return bad data.

Accessing Memory and I/O Space

PIO access to memory or I/O space follows the same pattern: extract a translated address
using pciio_piomap_addr(), then use the address as a memory pointer. The function in
Example 21-3 encapsulates the process of reading a word based on a map.

Example 21-3 Function to Read Using a Map

__uint_32_t mapRefer(pciio_piomap_t map, iopaddr_t offset)
{

volatile __uint32_t *xaddr; /* word in PCI space */
xaddr = pciio_piomap_addr(map,offset,sizeof(*xaddr));
if (xaddr)

return *xaddr;
cmn_err(CE_WARN,"Unable to map PCI PIO address");
return 0xffffffff; /* imitate hardware fault */

}

Access to quantities smaller than 32 bits needs special handling. When you access a 16-bit
or 8-bit value, the least-significant address bits must reflect the PCI byte-lane enable bits.
What this means in practice is that the target address of a 16-bit value must be
exclusive-ORed with 0x02, and the target address of an 8-bit value must be
exclusive-ORed with 0x03. You can do this explicitly, by modifying the word address
returned from pciio_piomap_addr(). Alternatively you can use the PIO address to base
a structure, and in the structure you can invert the positions of bytes and halfwords
within words, so that the sum of base and offset has the correct PIO address.

map The allocated map to use. The map specifies the address space.

addr The offset in the mapped space.

size The number of bytes to be mapped.

740 007-0911-210

21: Services for PCI Drivers

Deactivating an Address and Map

After you extract an address using pciio_piomap_addr(), the map is active, supporting
the translated address over the span of bytes you specified. The address remains valid
only as long as the map supports it.

The address becomes inactive when you call pciio_piomap_addr() for a different address
or size based on the same map. If you attempt to use an address after the map has
changed, a kernel panic can occur.

The map itself remains active until you call either pciio_piomap_done() or
pciio_piomap_free(). In some systems, it costs nothing to keep a PIO map active. In other
systems, an active PIO map may tie up global hardware resources. It is a good idea to call
pciio_piomap_done() when the current address will not be used for some time.

Using One-Step PIO Translation

Some systems also support a one-step translation function, pciio_piotrans_addr(). This
function takes a combination of the arguments of pciio_piomap_alloc() and
pciio_piomap_addr(), and returns a translated address. In effect, it combines creating a
map, using the map, and freeing the map, into a single step (see reference page
pciio_pio(d3)).

This function can fail in systems that do not use hard-wired bus maps. If you use it, you
must test the returned address. If it is 0, the one-step translation failed. The address is
invalid, and you must create a PIO map instead.

The two-step process of allocating a map and then interrogating it is more general and
works in all systems.

Accessing the Device Configuration

Typically a PCI driver needs to read the device configuration registers and possibly write
to them. These are PIO operations, but the interface for performing them has varied
between releases.

Using PIO Maps

007-0911-210 741

Changes In Configuration Interface

The hardware to generate PCI configuration cycles differs from one system to another. In
all systems, access to configuration space is limited to 32-bit words on 32-bit boundaries.
For these and other reasons, configuration access methods have varied from release to
release.

• In IRIX 6.3, configuration access was done by obtaining a PIO map address for
configuration space and passing it to kernel functions pciio_config_get() and
pciio_config_set(). This is because, in the O2 workstation, configuration cycles are
not generated by normal PIO operations. The functions operate the special
hardware.

• In IRIX 6.4, you performed configuration access using PIO through a PIO map. This
is because, in the hardware supported by IRIX 6.4 (Origin, Onyx2, and Octane),
normal PIO access through a map can generate PCI configuration cycles, although
only for 32-bit transfers.

• As of this release, IRIX 6.5, you are required to use functions pciio_config_get() and
pciio_config_set() for configuration access. This is because that release supports the
O2 as well as other platforms. However, the interface to these functions is extended
to support 8-byte registers, transfers of 1, 2, and 3 bytes, and access to nonstandard
(device-defined) configuration registers.

In order to bring a degree of uniformity to this picture, the macros in Example 21-4 are
presented.

Example 21-4 Configuration Access Macros

/* PCI Config Space Access Macros for source compatibility in drivers
** that use the same source for IRIX 6.3, IRIX 6.4, and IRIX 6.5
** Usage:
** PCI_CFG_BASE(conn)
** PCI_CFG_GET(conn,base,offset,type)
** PCI_CFG_SET(conn,base,offset,type,value)
**
** Use caddr_t cfg_base = PCI_CFG_BASE(c) once during attach to get the
** PIO base address for the specific device needed by 6.3 and 6.4.
** Later, use PCI_CFG_GET() to read and PCI_CFG_SET() to write config registers.
**
** NOTE: IRIX 6.4 supports only 32-bit access. IRIX 6.3 determines the size of
** register (1-4 bytes) based on the offset and the standard layout of a Type 00
** PCI Configuration Space Header. If you specify a nonstandard size or offset,
** you get different results in different releases.

742 007-0911-210

21: Services for PCI Drivers

*/
#if IRIX6_3
#define PCI_CFG_BASE(c) pciio_piotrans_addr(c,0,PCIIO_SPACE_CFG,0,256,0)
#define PCI_CFG_GET(c,b,o,t) pciio_config_get(b,o)
#define PCI_CFG_SET(c,b,o,t,v) pciio_config_set(b,o,v)
#elif IRIX6_4
#define PCI_CFG_BASE(c) pciio_piotrans_addr(c,0,PCIIO_SPACE_CFG,0,256,0)
#define PCI_CFG_GET(c,b,o,t) ((*(t *)((char *)(b)+(o))))
#define PCI_CFG_SET(c,b,o,t,v) ((*(t *)((char *)(b)+(o))) = v)
#else /* IRIX 6.5 and onward */
#define PCI_CFG_BASE(c) NULL
#define PCI_CFG_GET(c,b,o,t) pciio_config_get(c,o,sizeof(t))
#define PCI_CFG_SET(c,b,o,t,v) pciio_config_set(c,o,sizeof(t),v)
#endif

The skeletal code in Example 21-5 illustrates access to 32-bit words in configuration
space using the macros.

Example 21-5 Reading PCI Configuration Space

int hypo_attach(vertex_hdl_t connpt)
{
...

pDevInfo->conn_vh = connpt;
...

pDevInfo->cfg_base = PCI_CFG_BASE(connpt);
...
}
__uint32_t get_config_word(DevInfo *pDefInfo, int offset)
{

return PCI_CFG_GET(pDevInfo->conn_vh,
pDevInfo->cfg_base,
offset, sizeof(__uint32_t));

}
void set_config_word(DevInfo *pDefInfo, int offset, __uint32_t val)
{

PCI_CFG_SET(pDevInfo->conn_vh,
pDevInfo->cfg_base,
offset,sizeof(val),val);

}

Using PIO Maps

007-0911-210 743

Interrogating PIO Maps

The following functions can be used to interrogate a PIO map object (see pciio_get(d3)):

Most of these functions return values that were supplied to pciio_piomap_alloc().
However, pciio_pio_slot_get() provides a way to learn the bus slot number of a device.
You can also obtain the slot number from a general query function; see “Interrogating a
PCI Device” on page 757.

PCI Drivers for the O2 (IP32) Platform

For IRIX 6.5 drivers on the O2 (IP32) platform, new function prototypes are provided for
PIO access. These are defined in sys/PCI/pciio.h as follows:

extern uint8_t pciio_pio_read8(volatile uint8_t *addr);
extern uint16_t pciio_pio_read16(volatile uint16_t *addr);
extern uint32_t pciio_pio_read32(volatile uint32_t *addr);
extern uint64_t pciio_pio_read64(volatile uint64_t *addr);
extern void pciio_pio_write8(uint8_t val, volatile uint8_t *addr);
extern void pciio_pio_write16(uint16_t val, volatile uint16_t *addr);
extern void pciio_pio_write32(uint32_t val, volatile uint32_t *addr);
extern void pciio_pio_write64(uint64_t val, volatile uint64_t *addr);

You must use the pciio_pio_* routines for all PIO access to the device, including
accesses to the PCI configuration space. PIO access includes accesses to the device
registers (explicit PIO) as well as any memory space that is mapped (implicit PIO). For
example, if a device allows access to local memory on the card and the driver maps this

Table 21-3 Functions for Interrogating PIO Maps

Function Header Files Purpose and Operation

pciio_pio_dev_get() ddi.h, pciio.h Return the connection point handle from a map.

pciio_pio_mapsz_get() ddi.h, pciio.h Return the maximum size of a map. (Note that this
returns a ulong as of IRIX 6.5.)

pciio_pio_pciaddr_get() ddi.h, pciio.h Return the bus base address for a map.

pciio_pio_space_get() ddi.h, pciio.h Return the specified bus address space of a map.

pciio_pio_slot_get() ddi.h, pciio.h Return the bus slot number of the mapped device.

744 007-0911-210

21: Services for PCI Drivers

memory to the system address space, every access to this address space must be done
through the pciio_pio_* routines.

Use the compiler switch -DUSE_PCI_PIO to enable the IP32 PIO read and write routines
in the compilation of the IP32 device driver module. Turning this flag on or off lets you
use the same source to compile the driver for different target platforms. While the
USE_PCI_PIO flag is required for the IP32 architecture, it should not be used when
compiling for other architectures. Refer to “Compiling and Linking” on page 270 for
details on compiling for different targets.

PCI PIO Code Examples

In the following examples, a function receives kernel virtual addresses (mapped with the
pciio_piotrans_addr() call) for a control register and on board memory in the PIO address
space of a hypothetical PCI device. The 32-bit control register is set to enable reads of data
from on-board memory (accessible as 8-bits).

The function could look like that shown in Example 21-6 for a device driver not written
for the O2 platform.

Example 21-6 Non-O2 PCI PIO Code Example

#define ENABLE_SOMETHING 0x1
 void
 example(volatile unsigned int *control_reg,
 volatile unsigned char *device_data,
 int len,
 unsigned char *buffer)
 {
 int i;

 /*
 * set the enable bit
 */
 *control_reg |= ENABLE_SOMETHING;

 /*
 * copy the data to the caller’s buffer
 */
 for (i = 0; i < len; i++)
 *buffer++ = *device_data++;

 /*

Using PIO Maps

007-0911-210 745

 * reset enable bit
 */
 *control_reg &= ~ENABLE_SOMETHING;
 }

To work correctly on the O2 platform, the driver code in Example 21-6 would have to
change as shown in Example 21-7.

Example 21-7 O2 PCI PIO Code Example

#define ENABLE_SOMETHING 0x1
 void
 example(volatile unsigned int *control_reg,
 volatile unsigned char *device_data,
 unsigned char *buffer,
 int len)
 {
 int i;
 unsigned int reg_val;

 /*
 * NOTE: use of &= and |= for PIO is strongly
 * discouraged due to the unpredictability
 * of the actual instructions generated by
 * the compiler. We recommend breaking
 * these up into simpler expressions.
 *
 * set the enable bit
 */
 reg_val = pciio_pio_read32(control_reg);
 reg_val = reg_val | ENABLE_SOMETHING;
 pciio_pio_write32(reg_val, control_reg);

 /*
 * copy the data to the caller’s buffer
 */
 for (i = 0; i < len; i++)
 *buffer++ = pciio_pio_read8(device_data++);

746 007-0911-210

21: Services for PCI Drivers

 /*
 * reset enable bit
 */
 reg_val = pciio_pio_read32(control_reg);
 reg_val = reg_val & ~ENABLE_SOMETHING;
 pciio_pio_write32(reg_val, control_reg);
 }

If you are writing new code from scratch for multiple platforms, you can use the
“O2-style” described here for all supported platforms and just compile for each target
platform as described in “Compiling and Linking” on page 270.

Using DMA Maps

You use a DMA map to establish a mapping between a buffer in kernel virtual space and
some portion of the PCI bus memory space so that a PCI device can read and write to
memory. Depending on the machine architecture, the mapping may be a simple
translation function, or it may require the kernel to program hardware registers in one or
more bus adapters. The software interface is the same in all cases.

You cannot program a PCI bus master for DMA without at least one DMA map. Often
you will allocate two or more. Typically you save the addresses of the allocated maps in
the device information structure; and you store the address of the device information
structure in turn in the hwgraph vertex for the device.

The functions that are used to manage simple DMA maps are summarized in Table 21-4.
Details are found in reference page pciio_dma(d3).

Table 21-4 Functions for Simple DMA Maps for PCI

Function Header Files Purpose and Operation

pciio_dmamap_alloc() ddi.h, pciio.h Create a DMA map object, specifying the maximum
extent of memory the map will have to cover.

pciio_dmamap_addr() ddi.h, pciio.h Set up mapping from a kernel memory address for a
specified length, to the PCI bus, returning the bus
address.

pciio_dmamap_drain() ddi.h, pciio.h Complete any active DMA on a specified map. May
flush prefetch and gather buffers in the PCI adapter.

Using DMA Maps

007-0911-210 747

In summary, a DMA map is used as follows:

1. Allocate it with pciio_dmamap_alloc().

2. Activate the map and extract a PCI bus memory base address using
pciio_dmamap_addr() or pciio_dmamap_list().

3. Program the base addresses into the PCI bus master device and start the transfer. To
start additional transfers that fall in the same mapped segment, repeat this step.

4. When DMA to the mapped segment is complete, deactivate the map using
pciio_dmamap_done().

5. When further DMA is planned, return to step 2.

6. When the map is no longer needed, release it with pciio_dmamap_free().

pciio_dmamap_list() ddi.h, pciio.h Set up a mapping that relates all addresses in an
alenlist to the PCI bus, returning a new alenlist
containing PCI bus addresses.

pciio_dmalist_drain() ddi.h, pciio.h Complete any active DMA on a map set up using
pciio_dmamap_list().

pciio_dmamap_done() ddi.h, pciio.h Make a DMA map inactive. Release any hardware
resources associated to the active mapping.

pciio_dmamap_free() ddi.h, pciio.h Release a DMA map object.

pciio_dmatrans_list() ddi.h, pciio.h Request immediate translation of the addresses in an
alenlist. Returns NULL unless this system supports
fixed DMA addressing.

pciio_dmatrans_addr() ddi.h, pciio.h Request immediate translation of the address of a
contiguous memory buffer to a bus address. Returns
NULL unless this system supports fixed DMA
addressing.

pcibr_get_dmatrans_node() ddi.h, pciio.h Obtain the 32-bit direct mapping node.

pciio_dmaadr_drain() ddi.h, pciio.h Complete any active DMA on a mapping
established using pciio_dmatrans_addr().

Table 21-4 Functions for Simple DMA Maps for PCI (continued)

Function Header Files Purpose and Operation

748 007-0911-210

21: Services for PCI Drivers

Allocating DMA Maps

A DMA map is created by pciio_dmamap_alloc(), which takes arguments are as follows:

Preparing a device_desc_t

The device descriptor structure type device_desc_t is declared in iobus.h, which is
included by pciio.h (see also reference page device_desc(d4x)). In this release there is
little that the device driver needs to know about this structure and its contents. The
simplest way to get a device descriptor that can be handed to pciio_dmamap_alloc() is
to call device_desc_default_get() passing the same connection-point vertex handle, as
follows:

ret = pciio_dmamap_alloc(convh,device_desc_default_get(convh),...)

Setting Flag Values

The following flag values control data transfer:

vhdl Connection-point vertex_hdl_t received by pfxattach(). This handle
identifies the device to the kernel by its bus and slot positions.

dev_desc Device descriptor structure (see text following).

byte_count_max Maximum size of the area that will be mapped at any one time.

flags Usage flags and optional no-sleep flag.

PCIIO_DMA_CMD Configure as a generic “command” stream. Generally
this means turn off prefetchers and write gatherers, and
whatever else might be necessary to make command
ring DMAs work as expected.

PCIIO_DMA_DATA Configure as a generic “data” stream. Generally, this
means turning on prefetchers and write gatherers, and
anything else that might increase DMA throughput
(short of using “high priority” or “real time” resources
that may lower overall system performance).

PCIIO_PREFETCH
PCIIO_NOPREFETCH

Control the use of prefetch hardware, overriding the
CMD or DATA selection.

PCIIO_WRITE_GATHER
PCIIO_NOWRITE_GATHER

Control the use of write-gather hardware, overriding the
CMD or DATA selection.

Using DMA Maps

007-0911-210 749

(Note that the values for the PCIIO_DMA* flags have changed as of IRIX 6.5.) All systems
have the ability to gather as much as one cache line of device data before starting a write
to memory, but some systems have better write-gather support. All systems have a
certain amount of “prefetch” ability in that they load a full cache line from memory when
the device issues a read. However, some systems can prefetch the next cache line while
the device is still accepting the first one. The PCI infrastructure notes in the DMA map
whether you want these features maximized for the given hardware, or minimized,
depending on the flag settings.

The following flag values control the use of the PCI bus adapter:

You should specify either PCIIO_BYTE_STREAM or PCIIO_WORD_VALUES; there is
no default. (More correctly, the default is “whatever the hardware of this system does,”
and different systems do different things.) When you specify PCIIO_BYTE_STREAM, a
block of bytes transferred from the device to memory has the same sequence of bytes in
both locations. When you specify PCIIO_WORD_VALUES, the numerical significance of
the bytes in each 32-bit word are preserved between the big-endian memory and
little-endian device.

The following flag values control kernel operations:

Using a DMA Map

After a map has been allocated, it is inactive. When you apply a function to a map to get
a translated address, the function activates the map if it is not active, and uses the map
to set up a correspondence between PCI bus memory addresses and one or more
segments of kernel virtual address space.

PCIIO_DMA_A64 Device and driver are prepared to use 64-bit addressing.

PCIIO_BYTE_STREAM Retain the order of a stream of bytes between device and
memory.

PCIIO_WORD_VALUES Byte-swap 32-bit words during transfer as required to
produce big-endian data order in memory.

PCIIO_NOSLEEP Do not sleep on memory allocation.

PCIIO_INPLACE Translate alenlists in place instead of copying them.

750 007-0911-210

21: Services for PCI Drivers

In some systems, “activating a map” can be a null operation. In other systems, an active
DMA map may represent a commitment of limited hardware resources—for example,
mapping registers in a bus adapter.

You can use a DMA map to map a specified memory segment, or you can use it to
translate all entries in an address/length list (see “Address/Length Lists” on page 203)
in a single operation.

Mapping an Address/Length List

You map an alenlist using pciio_dmamap_list(). This function takes an alenlist that
represents a memory buffer, and in one operation produces a new list containing PCI bus
addresses and lengths. You read out the translated addresses from the list and program
them into the bus master device (see “Using Address/Length Lists” on page 223).

Mapping a Specific Buffer

You obtain a DMA map for a single, contiguous span of kernel virtual memory by calling
pciio_dmamap_addr(). If the mapping cannot be set up, 0 is returned. (You must check
for this possibility, because if you start a DMA transfer to location 0, a bus error results.)
Otherwise the value returned is a PCI bus address that you can program into a bus
master device. When the device accesses that address, it accesses the specified memory
location.

Completing DMA Transfers

If it is necessary to establish that a DMA transfer is fully complete—all input data stored
in physical memory, all output data copied from memory—use the “drain” function that
corresponds to the way the map was activated. For example, if the map was activated
using pciio_dmamap_list(), you call pciio_dmalist_drain() to ensure that current DMA
is complete. When the bus adapter uses prefetch buffers or write-gather buffers, they are
flushed.

Deactivating Addresses and Maps

Once you have created a mapping, the map is active. It remains active until you use the
same DMA map object to map a different buffer, or until you call either
pciio_dmamap_done() or pciio_dmamap_free().

Using DMA Maps

007-0911-210 751

In some systems, it costs nothing to keep a DMA map active. In other systems, an active
map may tie up global hardware resources. It is a good idea to call
pciio_dmamap_done() when the I/O operation is complete.

Caution: Never call pciio_dmamap_done() before the device has stopped sending data.
Memory corruption could result.

Using One-Step DMA Translation

Some systems also support one-step mapping functions pciio_dmatrans_addr() and
pciio_dmatrans_list(). In effect, these functions combine creating a map, using the map,
and freeing the map into a single step. They can fail (returning 0) in systems that do not
use simple bus maps. If you use them, you must test the returned address. If it is 0, the
one-step translation failed and the address is invalid.

If the PCI device supports only 32-bit addresses, the one-step mapping functions map the
PCI address space to system memory on one specific node. This means that any memory
(DMA buffers) that you want to map must be allocated on that node. The default is node
zero; however, the node can be changed for any PCI bus (except on O2 and Octane
systems, where the node is zero and cannot be changed) by using the DEVICE_ADMIN
statement (see “Setting 32-bit Direct Mapping Node” on page 60). You can use the
pcibr_get_dmatrans_node() function to obtain the node that is being used by a specific
PCI bus.

The two-step process of allocating a map and then interrogating it is more general and
works in all systems.

Interrogating DMA Maps

The following functions can be used to interrogate a DMA map object (see pciio_get(d3)):

Table 21-5 Functions for Interrogating DMA Maps

Function Header Files Purpose and Operation

pciio_dma_dev_get() ddi.h, pciio.h Return the connection point handle from a map.

pciio_dma_slot_get() ddi.h, pciio.h Return the bus slot number of the mapped device.

752 007-0911-210

21: Services for PCI Drivers

Registering an Interrupt Handler

When a device can interrupt, you must register an interrupt handler for it. This is done
in a two-step process. First you create an interrupt connection object; then you use that
object to specify the interrupt handling function. Prior to unloading the driver or
detaching the device, you must unregister the handler (but you can retain the interrupt
connection object).

The functions for managing interrupt handlers are summarized in Table 21-6. For syntax
details see reference page pciio_intr(d3).

Creating an Interrupt Object

A software object that represents an interrupt connection is created with
pciio_intr_alloc(), which takes the following arguments:

Table 21-6 Functions for Managing PCI Interrupt Handlers

Function Purpose and Operation

pciio_intr_alloc() Create an interrupt object that enables interrupts to flow from a
specified device.

pciio_intr_connect() Associate an interrupt object with an interrupt handler function.

pciio_intr_disconnect() Remove the association between an interrupt object and a handler
function.

pciio_intr_free() Release an interrupt object.

vhdl The hwgraph vertex for the device attachment point—the same vertex
originally passed to the pfxattach() entry point.

desc Device descriptor structure (see text following).

lines The selection of one or more PCI interrupt lines used by this device, a
sum of PCIIO_INTR_LINE_A, PCIIO_INTR_LINE_B, ..._C, and ..._D.

owner The hwgraph vertex to use when reporting errors—same as vhdl, or else
a vertex created by the driver.

Registering an Interrupt Handler

007-0911-210 753

The interrupt object is used in establishing a handler, and it is needed later to stop taking
interrupts. You should save its address in the device information structure you store in
the hwgraph vertex.

Preparing a device_desc_t

The device descriptor structure type device_desc_t is declared in iobus.h, which is
included by pciio.h (see also reference page device_desc(d4x)). In this release there is
little that the device driver needs to know about this structure and its contents. The
simplest way to get a device descriptor that can be handed to pciio_intr_alloc() is to call
device_desc_default_get() passing the same connection-point vertex handle, as follows:

ret = pciio_intr_alloc(convh,device_desc_default_get(convh),...)

Connecting the Handler

After creating the interrupt object, you establish a handler using pciio_intr_connect(). Its
principal arguments are the interrupt object, a handler address, and a value to be passed
to the handler when it is called:

Before calling pciio_intr_connect(), an interrupt handler should call device_desc_dup(),
device_desc_intr_name_set(), and device_desc_default_set() in that order. See the
device_desc_ops(D3X) reference page for more information.

Connecting the Handler

The function prototype for the interrupt handler is named intr_func_t and is declared in
sys/iobus.h (which is included by sys/PCI/pciio.h). The function prototype is

typedef void *intr_arg_t;
typedef void intr_func_f(intr_arg_t);
typedef intr_func_f *intr_func_t;

intr The value returned by pciio_intr_alloc().

func Address of the function to be called when an interrupt occurs; see
following text for the prototype.

arg A pointer-sized value to be passed as the argument to func each time it is
called. Typically the address of the device information structure, or the
handle of the device vertex.

thread Passed as NULL.

754 007-0911-210

21: Services for PCI Drivers

Caution: This function prototype differs from the same prototype as it was declared in
IRIX 6.3. The interrupt handler in 6.3 is declared to receive one additional argument that
is not supported in the later releases.

If a device will interrupt on line C, interrupt setup could resemble Example 21-8.

Example 21-8 Setting Up a PCI Interrupt Handler

pciio_intr_t intobj;
extern void int_handler(devinfo*);
int retcode;
device_desc_t dev_desc;
intobj = pciio_intr_alloc(

vhdl, /* as received in attach() */
0, /* device descriptor is n.a. for pci */
PCIIO_INTR_LINE_C, /* the line it uses */
vhdl);

dev_desc = device_desc_dup(vhdl);
device_desc_intr_name_set(0, "PCI");
device_desc_default_set(vhdl, 0);
retcode = pciio_intr_connect(

intobj, /* the interrupt object */
(intr_func_t) int_handler, /* the handler */
(intr_arg_t) pDevInfo, /* dev info as input */
(void*)0); /* let kernel pick the thread */

if (!retcode) cmn_err(CE_WARN,"oh fiddlesticks");

Handler Operation

Interrupts from a device are disabled (if possible) and discarded until a handler is
connected. However, interrupts in general are enabled when the pfxattach() entry point
is called. If the PCI device is in a state that can produce an interrupt, the interrupt
handling function can be called before pciio_intr_connect() returns. Make sure that all
global data used by the interrupt handler has been initialized before you connect it.

When called, the interrupt handler runs as an independent thread in the kernel. It can run
concurrently with any other part of the driver, and concurrently with other interrupt
handlers. Although interrupt threads run at a high priority, there are kernel threads with
still higher priority that can preempt the interrupt handler. See “Interrupt Entry Point
and Handler” on page 185.

Registering an Interrupt Handler

007-0911-210 755

PCI devices can share the four PCI interrupt lines. As a result, in some cases the kernel
cannot tell which device caused an interrupt. When there is any doubt, the kernel calls
all the interrupt handlers that are registered to that interrupt line. For this reason, your
interrupt handler must not assume that its device did cause the interrupt. It should
always test to see if an interrupt is really pending, and exit immediately when one is not.

The handler gets information about the device only from the argument that was passed
to it. This is presumably the device information structure, containing driver-specific
information about the device and its status, PIO maps, and the vertex handle of the
connection point as passed to pfxattach(). This handle can be used to get more
information about the device; see “Interrogating a PCI Device” on page 757.

Note: Lost interrupts can occur. An application must not set the interrupt line if it is
already set, because this causes a race condition. Furthermore, an application must wait
a small amount of time after the interrupt line transitions from set to unset, to make sure
the minimum deassert time is not violated. One a solution has been to modify firmware
never to set the interrupt line unless the host has cleared it, and also wait a few clocks.

Disconnecting the Handler

The only way to stop receiving interrupts is to disconnect the handler. This is done with
a call to pciio_intr_disconnect(). Its only argument is the interrupt object returned by
pciio_intr_alloc().

Interrogating an Interrupt Handler

The following functions can be used to interrogate an interrupt object (see pciio_get(d3)):

Table 21-7 Functions for Interrogating an Interrupt Object

Function Header Files Purpose and Operation

pciio_intr_dev_get() ddi.h, pciio.h Return the connection point handle from the object.

pciio_intr_cpu_get() ddi.h, pciio.h Return the CPU that receives the hardware
interrupt.

756 007-0911-210

21: Services for PCI Drivers

Registering an Error Handler

You can register a function to be called in case of a bus error related to a specific PCI
device. When the kernel detects a bus error, and can isolate the error to the bus address
space related to one of your PIO or DMA maps, it calls the error handling function. If the
function can correct the error, it returns 0. If it cannot, or if it does not understand the
error, it returns 1, and the kernel continues with default error actions.

The declarations used to set up an error handler are summarized in Table 21-8 (see also
reference page pciio_error(d3)).

You code your error handler using the prototype established by error_handler_f:

typedef int
error_handler_f(

error_handler_arg_t arg, /* device info, registered */
int error_code, /* IOEC_* values in sys/ioerror.h */
ioerror_mode_t mode, /* mode value in sys/ioerror.h */
ioerror_t *info);

You register the handler by calling pciio_error_register(), passing three values:

• The vertex handle of the connection point, as passed to the pfxattach() entry point).

• The address of the error handler function.

Table 21-8 Declaration Used In Setting Up PCI Error Handlers

Identifier Header File Purpose or Use

ioerror_mode_t sys/ioerror.h Enumeration for the kernel mode during which the
error was found: probing the bus, normal operations,
user-mode access, or error retry.

ioerror_t sys/ioerror.h Structure giving details of an error.

error_handler_arg_t sys/ioerror.h Name for void*, the opaque value provided by the
driver to be passed to the error handler to describe
the device.

error_handler_f sys/ioerror.h Name for the prototype of an error handler function,
convenient for forward or extern declaration of the
handler.

pciio_error_register() sys/PCI/pciio.h Function to register or unregister an error handler.

Interrogating a PCI Device

007-0911-210 757

• An address to be passed as the first argument of the error handler function, when it
is called.

To unregister the error handler (when the driver is unloading, or when detaching the
device), call pciio_error_register() with the same vertex handle, but with NULL for the
address of the handler.

Interrogating a PCI Device

The following functions can be used to get an information structure that describes a PCI
device, and to extract data from it (see pciio_get(d3)):

Interrogating a PCI Bus

A driver can obtain information about the PCI bus in which its device is installed. The
only information available about PCI buses on the other side of a PCI-to-PCI bridge is
whether multi-master capability is supported.

PCI bus information is returned by the pciio_businfo_get() function as a pointer to a bus
information structure pciio_businfo_s. The function argument is:

Table 21-9 Functions for Interrogating a PCI Device

Function Header Files Purpose and Operation

pciio_info_get() ddi.h, pciio.h Given the connection point as passed to pfxattach(),
return a read-only object with information about
the device.

pciio_info_dev_get() ddi.h, pciio.h Return the connection point handle.

pciio_info_bus_get() ddi.h, pciio.h Return the PCI bus number.

pciio_info_slot_get() ddi.h, pciio.h Return the slot number on the bus.

pciio_info_func_get() ddi.h, pciio.h Return the function number of the device (a PCI
card can have up to 8 separate functions).

pciio_info_vendor_id_get() ddi.h, pciio.h Return the vendor ID value.

pciio_info_device_id_get() ddi.h, pciio.h Return the device ID value.

758 007-0911-210

21: Services for PCI Drivers

vhd1 The connection-point vertex_hdl_t received by the pfxattach() routine.

Table 21-10 shows the functions for obtaining a pointer to, and extracting information
from, a bus information structure for the device. Table 21-11 shows the convenience
macros available to extract bus information from a bus information structure obtained
from the pciio_businfo_get() function. Bus provider ASIC type, PCI bus type, and PCI
bus speed are defined by the pciio_asic_type_t, pciio_bus_type_t, and pciio_bus_speed_t
enumerations in pciio.h.

Information extraction functions in Table 21-10 and macros in Table 21-11 require a
pointer to a bus information structure returned by the pciio_businfo_get() function.
Note that the actual pciio_businfo_s structure is allocated by the PCI infrastructure and
not the driver. Only a pointer to the structure is allocated by the driver.

Table 21-10 Functions for Interrogating a PCI bus

Function Header File Purpose and Operation

pciio_businfo_get() pciio.h Returns a pointer to a bus information
structure.

pciio_businfo_multi_master_get() pciio.h Returns TRUE for a host PCI bus that
supports multiple DMA masters
downstream using a PCI-to-PCI bridge;
FALSE otherwise.

pciio_businfo_asic_type_get() pciio.h Returns the PCI bus provider ASIC type.

pciio_businfo_bus_type_get() pciio.h Returns the PCI bus type.

pciio_businfo_bus_speed_get() pciio.h Returns the PCI bus speed.

Interrogating a PCI Bus

007-0911-210 759

The pciio_businfo_multi_master_get() function and the
PCIIO_GET_MULTI_MASTER macro return the PCI bus multi-master capability as
either TRUE when the capability is supported or FALSE otherwise. For performance
reasons, some PCI host buses do not support multiple DMA masters in a single PCI slot.
Multiple DMA masters in a single host bus slot can be configured using a PCI-to-PCI
bridge with several PCI cards in one or more subordinate PCI buses.

The pciio_businfo_asic_type_get() function and the PCIIO_GET_ASIC_TYPE macro
return the ASIC type that provides the PCI bus. The ASIC type is defined in the
pciio_asic_type_t enumeration in pciio.h

Table 21-11 Macros for Extracting PCI Bus Information

Macro Header File Purpose and Operation

PCIIO_GET_MULTI_MASTER(bi) pciio.h Returns TRUE for a host PCI bus that
supports multiple DMA masters
downstream using a PCI-to-PCI bridge;
FALSE otherwise.

PCIIO_GET_ASIC_TYPE(bi) pciio.h Returns the PCI bus provider ASIC type.

PCIIO_GET_BUS_TYPE(bi) pciio.h Returns the PCI bus type.

PCIIO_GET_BUS_SPEED(bi) pciio.h Returns the PCI bus speed.

PCIIO_IS_BUS_TYPE_PCI(bi) pciio.h Returns TRUE if the bus is running PCI
mode, FALSE otherwise.

PCIIO_IS_BUS_TYPE_PCIX(bi) pciio.h Returns TRUE if the bus is running PCI-X
mode, FALSE otherwise.

PCIIO_IS_BUS_SPEED_33(bi) pciio.h Returns TRUE if the bus is running 33
MHz, FALSE otherwise.

PCIIO_IS_BUS_SPEED_66(bi) pciio.h Returns TRUE if the bus is running 66
MHz, FALSE otherwise.

PCIIO_IS_BUS_SPEED_100(bi) pciio.h Returns TRUE if the bus is running 100
MHz, FALSE otherwise..

PCIIO_IS_BUS_SPEED_133(bi) pciio.h Returns TRUE if the bus is running 133
MHz, FALSE otherwise.

760 007-0911-210

21: Services for PCI Drivers

The pciio_businfo_bus_type_get() function and the PCIIO_GET_BUS_TYPE macro
return the PCI bus type. The bus type is defined in the pciio_bus_type_t enumeration in
pciio.h.

The pciio_businfo_bus_speed_get() and PCIIO_GET_BUS_SPEED macro return the
PCI bus speed. The bus speed is defined in the pciio_bus_speed_t enumeration in
pciio.h.

The PCIIO_GET_BUS_TYPE_PCI macro returns TRUE if the bus is running PCI mode
and the PCIIO_GET_BUS_TYPE_PCIX macro returns TRUE if the bus is running PCI-X
mode; otherwise these macros return FALSE.

The PCIIO_IS_BUS_SPEED_33, PCIIO_IS_BUS_SPEED_66,
PCIIO_IS_BUS_SPEED_100, and PCIIO_IS_BUS_SPEED_133 macros return TRUE if
the PCI bus is running 33, 66, 100, or 133 MHz and FALSE otherwise.

Example 21-9 shows how a driver can obtain PCI bus information for its device by calling
the pciio_businfo_get() function with the device’s connection point vertex handle. The
PCIIO_IS_BUS_SPEED_33 convenience macro is then used to determine if the device is
running in a 33 MHz PCI bus.

Example 21-9 Obtaining Bus Information

#include <sys/PCI/pciio.h>

 pciio_businfo_t bi;

 bi = pciio_businfo_get(conn_vhdl);
 if (PCIIO_IS_BUS_SPEED_33(bi))
 cmn_err(CE_WARN, “PCI bus running at 33 MHZ, possible degraded
performance”);

Example PCI Driver
/**
* Copyright (C) 1990-1993, Silicon Graphics, Inc. *
* These coded instructions, statements, and computer programs contain *
* unpublished proprietary information of Silicon Graphics, Inc., and *
* are protected by Federal copyright law. They may not be disclosed *
* to third parties or copied or duplicated in any form, in whole or *
* in part, without prior written consent of Silicon Graphics, Inc. *
**/

Example PCI Driver

007-0911-210 761

#ident "io/sample_pciio.c: $Revision: 1.16 $"
#include <sys/types.h>
#include <sys/cpu.h>
#include <sys/systm.h>
#include <sys/cmn_err.h>
#include <sys/errno.h>
#include <sys/buf.h>
#include <sys/ioctl.h>
#include <sys/cred.h>
#include <ksys/ddmap.h>
#include <sys/poll.h>
#include <sys/invent.h>
#include <sys/debug.h>
#include <sys/sbd.h>
#include <sys/kmem.h>
#include <sys/edt.h>
#include <sys/dmamap.h>
#include <sys/hwgraph.h>
#include <sys/iobus.h>
#include <sys/iograph.h>
#include <sys/param.h>
#include <sys/pio.h>
#include <sys/sema.h>
#include <sys/ddi.h>
#include <sys/atomic_ops.h>
#include <sys/PCI/PCI_defs.h>
#include <sys/PCI/pciio.h>

#define NEW(ptr) (ptr = kmem_alloc(sizeof (*(ptr)), KM_SLEEP))
#define DEL(ptr) (kmem_free(ptr, sizeof (*(ptr))))

/*
 * psamp: a generic device driver for a generic PCI device.
 */
int psamp_devflag = D_MP;
int psamp_inuse = 0; /* number of "psamp" devices open */

/* ==
 * Device-Related Constants and Structures
 */
#define PSAMP_VENDOR_ID_NUM 0x5555
#define PSAMP_DEVICE_ID_NUM 0x555

/*
 * All registers on the Sample PCIIO Client
 * device are 32 bits wide.
 */

762 007-0911-210

21: Services for PCI Drivers

typedef __uint32_t psamp_reg_t;
typedef volatile struct psamp_regs_s *psamp_regs_t; /* dev registers */
typedef struct psamp_soft_s *psamp_soft_t; /* software state */

/*
 * psamp_regs: layout of device registers
 * Our device config registers are, of course, at
 * the base of our assigned CFG space.
 * Our sample device registers are in the PCI area
 * decoded by the device's first BASE_ADDR window.
 */
struct psamp_regs_s {
 psamp_reg_t pr_control;
 psamp_reg_t pr_status;
};
struct psamp_soft_s {
 vertex_hdl_t ps_conn; /* connection for pci services */
 vertex_hdl_t ps_vhdl; /* backpointer to device vertex */
 vertex_hdl_t ps_blockv; /* backpointer to block vertex */
 vertex_hdl_t ps_charv; /* backpointer to char vertex */
 volatile uchar_t ps_cfg; /* cached ptr to my config regs */
 psamp_regs_t ps_regs; /* cached ptr to my regs */
 pciio_piomap_t ps_cmap; /* piomap (if any) for ps_cfg */
 pciio_piomap_t ps_rmap; /* piomap (if any) for ps_regs */
 unsigned ps_sst; /* driver "software state" */
#define PSAMP_SST_RX_READY (0x0001)
#define PSAMP_SST_TX_READY (0x0002)
#define PSAMP_SST_ERROR (0x0004)
#define PSAMP_SST_INUSE (0x8000)
 pciio_intr_t ps_intr; /* pciio intr for INTA and INTB */
 pciio_dmamap_t ps_ctl_dmamap; /* control channel dma mapping */
 pciio_dmamap_t ps_str_dmamap; /* stream channel dma mapping */
 struct pollhead *ps_pollhead; /* for poll() */
 int ps_blocks; /* block dev size in NBPSCTR blocks
*/
};

#define psamp_soft_set(v,i) device_info_set((v),(void *)(i))
#define psamp_soft_get(v) ((psamp_soft_t)device_info_get((v)))

/*===
 * FUNCTION TABLE OF CONTENTS
 */
void psamp_init(void);
int psamp_unload(void);
int psamp_reg(void);

Example PCI Driver

007-0911-210 763

int psamp_unreg(void);
int psamp_attach(vertex_hdl_t conn);
int psamp_detach(vertex_hdl_t conn);
static pciio_iter_f psamp_reloadme;
static pciio_iter_f psamp_unloadme;
int psamp_open(dev_t *devp, int oflag, int otyp,
 cred_t *crp);
int psamp_close(dev_t dev, int oflag, int otyp,
 cred_t *crp);
int psamp_ioctl(dev_t dev, int cmd, void *arg,
 int mode, cred_t *crp, int *rvalp);
int psamp_read(dev_t dev, uio_t * uiop, cred_t *crp);
int psamp_write(dev_t dev, uio_t * uiop,cred_t *crp);
int psamp_strategy(struct buf *bp);
int psamp_poll(dev_t dev, short events, int anyyet,
 short *reventsp, struct pollhead **phpp,
 unsigned int *genp);
int psamp_map(dev_t dev, vhandl_t *vt,
 off_t off, size_t len, uint_t prot);
int psamp_unmap(dev_t dev, vhandl_t *vt);
void psamp_dma_intr(intr_arg_t arg);
static error_handler_f psamp_error_handler;
void psamp_halt(void);
int psamp_size(dev_t dev);
int psamp_print(dev_t dev, char *str);

/*===
 * Driver Initialization
 */

/*
 * psamp_init: called once during system startup or
 * when a loadable driver is loaded.
 */
void
psamp_init(void)
{
 printf("psamp_init()\n");
 /*
 * if we are already registered, note that this is a
 * "reload" and reconnect all the places we attached.
 */
 pciio_iterate("psamp_", psamp_reloadme);
}

764 007-0911-210

21: Services for PCI Drivers

/*
 * psamp_unload: if no "psamp" is open, put us to bed
 * and let the driver text get unloaded.
 */
int
psamp_unload(void)
{
 if (psamp_inuse)
 return EBUSY;
 pciio_iterate("psamp_", psamp_unloadme);
 return 0;
}

/*
 * psamp_reg: called once during system startup or
 * when a loadable driver is loaded.
 * NOTE: a bus provider register routine should always be
 * called from _reg, rather than from _init. In the case
 * of a loadable module, the devsw is not hooked up
 * when the _init routines are called.
 */
int
psamp_reg(void)
{
 printf("psamp_reg()\n");
 pciio_driver_register(PSAMP_VENDOR_ID_NUM,
 PSAMP_DEVICE_ID_NUM,
 "psamp_",
 0);
 return 0;
}

/*
 * psamp_unreg: called when a loadable driver is unloaded.
 */
int
psamp_unreg(void)
{
 pciio_driver_unregister("psamp_");
 return 0;
}

/*
 * psamp_attach: called by the pciio infrastructure
 * once for each vertex representing a crosstalk widget.
 * In large configurations, it is possible for a

Example PCI Driver

007-0911-210 765

 * huge number of CPUs to enter this routine all at
 * nearly the same time, for different specific
 * instances of the device. Attempting to give your
 * devices sequence numbers based on the order they
 * are found in the system is not only futile but may be
 * dangerous as the order may differ from run to run.
 */
int
psamp_attach(vertex_hdl_t conn)
{
 vertex_hdl_t vhdl, blockv, charv;
 volatile uchar_t *cfg;
 psamp_regs_t regs;
 psamp_soft_t soft;
 pciio_piomap_t cmap = 0;
 pciio_piomap_t rmap = 0;

 printf("psamp_attach()\n");
 hwgraph_device_add(conn,"psamp","psamp_",&vhdl,&blockv,&charv);
 /*
 * Allocate a place to put per-device information for this vertex.
 * Then associate it with the vertex in the most efficient manner.
 */
 NEW(soft);
 ASSERT(soft != NULL);
 psamp_soft_set(vhdl, soft);
 psamp_soft_set(blockv, soft);
 psamp_soft_set(charv, soft);
 soft->ps_conn = conn;
 soft->ps_vhdl = vhdl;
 soft->ps_blockv = blockv;
 soft->ps_charv = charv;
 /*
 * Find our PCI CONFIG registers.
 */
 cfg = (volatile uchar_t *) pciio_pio_addr
 (conn, 0, /* device and (override) dev_info */
 PCIIO_SPACE_CFG, /* select configuration addr space */
 0, /* from the start of space, */
 PCI_CFG_VEND_SPECIFIC, /* ... up to vendor specific stuff */
 &cmap, /* in case we needed a piomap */
 0); /* flag word */
 soft->ps_cfg = cfg; /* save for later */
 soft->ps_cmap = cmap;
 printf("psamp_attach: I can see my CFG regs at 0x%x\n", cfg);

766 007-0911-210

21: Services for PCI Drivers

 /*
 * Get a pointer to our DEVICE registers
 */
 regs = (psamp_regs_t) pciio_pio_addr
 (conn, 0, /* device and (override) dev_info */
 PCIIO_SPACE_WIN(0), /* in my primary decode window, */
 0, sizeof(*regs), /* base and size */
 &rmap, /* in case we needed a piomap */
 0); /* flag word */
 soft->ps_regs = regs; /* save for later */
 soft->ps_rmap = rmap;
 printf("psamp_attach: I can see my device regs at 0x%x\n", regs);
 /*
 * Set up our interrupt.
 * We might interrupt on INTA or INTB,
 * but route 'em both to the same function.
 */
 soft->ps_intr = pciio_intr_alloc
 (conn, 0,
 PCIIO_INTR_LINE_A |
 PCIIO_INTR_LINE_B,
 vhdl);
 pciio_intr_connect(soft->ps_intr,
 psamp_dma_intr, soft,(void *) 0);
 /*
 * set up our error handler.
 */
 pciio_error_register(conn, psamp_error_handler, soft);
 /*
 * For pciio clients, *now* is the time to
 * allocate pollhead structures.
 */
 soft->ps_pollhead = phalloc(0);
 return 0; /* attach successsful */
}

/*
 * psamp_detach: called by the pciio infrastructure
 * once for each vertex representing a crosstalk
 * widget when unregistering the driver.
 *
 * In large configurations, it is possible for a
 * huge number of CPUs to enter this routine all at
 * nearly the same time, for different specific
 * instances of the device. Attempting to give your

Example PCI Driver

007-0911-210 767

 * devices sequence numbers based on the order they
 * are found in the system is not only futile but may be
 * dangerous as the order may differ from run to run.
 */
int
psamp_detach(vertex_hdl_t conn)
{
 vertex_hdl_t vhdl, blockv, charv;
 psamp_soft_t soft;

 printf("psamp_detach()\n");
 if (GRAPH_SUCCESS !=
 hwgraph_traverse(conn, "psamp", &vhdl))
 return -1;
 soft = psamp_soft_get(vhdl);
 pciio_error_register(conn, 0, 0);
 pciio_intr_disconnect(soft->ps_intr);
 pciio_intr_free(soft->ps_intr);
 phfree(soft->ps_pollhead);
 if (soft->ps_ctl_dmamap)
 pciio_dmamap_free(soft->ps_ctl_dmamap);
 if (soft->ps_str_dmamap)
 pciio_dmamap_free(soft->ps_str_dmamap);
 if (soft->ps_cmap)
 pciio_piomap_free(soft->ps_cmap);
 if (soft->ps_rmap)
 pciio_piomap_free(soft->ps_rmap);
 hwgraph_edge_remove(conn, "psamp", &vhdl);
 /*
 * we really need "hwgraph_dev_remove" ...
 */
 if (GRAPH_SUCCESS ==
 hwgraph_edge_remove(vhdl, EDGE_LBL_BLOCK, &blockv)) {
 psamp_soft_set(blockv, 0);
 hwgraph_vertex_destroy(blockv);
 }
 if (GRAPH_SUCCESS ==
 hwgraph_edge_remove(vhdl, EDGE_LBL_CHAR, &charv)) {
 psamp_soft_set(charv, 0);
 hwgraph_vertex_destroy(charv);
 }
 psamp_soft_set(vhdl, 0);
 hwgraph_vertex_destroy(vhdl);
 DEL(soft);
 return 0;

768 007-0911-210

21: Services for PCI Drivers

}

/*
 * psamp_reloadme: utility function used indirectly
 * by psamp_init, via pciio_iterate, to "reconnect"
 * each connection point when the driver has been
 * reloaded.
 */
static void
psamp_reloadme(vertex_hdl_t conn)
{
 vertex_hdl_t vhdl;
 psamp_soft_t soft;

 if (GRAPH_SUCCESS !=
 hwgraph_traverse(conn, "psamp", &vhdl))
 return;
 soft = psamp_soft_get(vhdl);
 /*
 * Reconnect our error and interrupt handlers
 */
 pciio_error_register(conn, psamp_error_handler, soft);
 pciio_intr_connect(soft->ps_intr, psamp_dma_intr, soft, 0);
}

/*
 * psamp_unloadme: utility function used indirectly by
 * psamp_unload, via pciio_iterate, to "disconnect" each
 * connection point before the driver becomes unloaded.
 */
static void
psamp_unloadme(vertex_hdl_t pconn)
{
 vertex_hdl_t vhdl;
 psamp_soft_t soft;

 if (GRAPH_SUCCESS !=
 hwgraph_traverse(pconn, "psamp", &vhdl))
 return;
 soft = psamp_soft_get(vhdl);
 /*
 * Disconnect our error and interrupt handlers
 */
 pciio_error_register(pconn, 0, 0);
 pciio_intr_disconnect(soft->ps_intr);
}

Example PCI Driver

007-0911-210 769

/* ==
 * DRIVER OPEN/CLOSE
 */

/*
 * psamp_open: called when a device special file is
 * opened or when a block device is mounted.
 */
/* ARGSUSED */
int
psamp_open(dev_t *devp, int oflag, int otyp, cred_t *crp)
{
 vertex_hdl_t vhdl = dev_to_vhdl(*devp);
 psamp_soft_t soft = psamp_soft_get(vhdl);
 psamp_regs_t regs = soft->ps_regs;

 printf("psamp_open() regs=%x\n", regs);
 /*
 * BLOCK DEVICES: now would be a good time to
 * calculate the size of the device and stash it
 * away for use by psamp_size.
 */
 /*
 * USER ABI (64-bit): chances are, you are being
 * compiled for use in a 64-bit IRIX kernel; if
 * you use the _ioctl or _poll entry points, now
 * would be a good time to test and save the
 * user process' model so you know how to
 * interpret the user ioctl and poll requests.
 */
 if (!(PSAMP_SST_INUSE & atomicSetUint(&soft->ps_sst,
PSAMP_SST_INUSE)))
 atomicAddInt(&psamp_inuse, 1);
 return 0;
}

/*
 * psamp_close: called when a device special file
 * is closed by a process and no other processes
 * still have it open ("last close").
 */

/* ARGSUSED */
int
psamp_close(dev_t dev, int oflag, int otyp, cred_t *crp)
{
 vertex_hdl_t vhdl = dev_to_vhdl(dev);

770 007-0911-210

21: Services for PCI Drivers

 psamp_soft_t soft = psamp_soft_get(vhdl);
 psamp_regs_t regs = soft->ps_regs;

 printf("psamp_close() regs=%x\n", regs);
 atomicClearUint(&soft->ps_sst, PSAMP_SST_INUSE);
 atomicAddInt(&psamp_inuse, -1);
 return 0;
}

/* ==
 * CONTROL ENTRY POINT
 */

/*
 * psamp_ioctl: a user has made an ioctl request
 * for an open character device.
 * Arguments cmd and arg are as specified by the user;
 * arg is probably a pointer to something in the user's
 * address space, so you need to use copyin() to
 * read through it and copyout() to write through it.
 */

/* ARGSUSED */
int
psamp_ioctl(dev_t dev, int cmd, void *arg,
 int mode, cred_t *crp, int *rvalp)
{
 vertex_hdl_t vhdl = dev_to_vhdl(dev);
 psamp_soft_t soft = psamp_soft_get(vhdl);
 psamp_regs_t regs = soft->ps_regs;

 printf("psamp_ioctl() regs=%x\n", regs);
 *rvalp = -1;
 return ENOTTY; /* TeleType® is a registered trademark */
}

/* ==
 * DATA TRANSFER ENTRY POINTS
 * Since I'm trying to provide an example for both
 * character and block devices, I'm routing read
 * and write back through strategy as described in
 * the IRIX Device Driver Programming Guide.
 * This limits our character driver to reading and
 * writing in multiples of the standard sector length.
 */

/* ARGSUSED */
int
psamp_read(dev_t dev, uio_t * uiop, cred_t *crp)

Example PCI Driver

007-0911-210 771

{
 return physiock(psamp_strategy,
 0, /* alocate temp buffer & buf_t */
 dev, /* dev_t arg for strategy */
 B_READ, /* direction flag for buf_t */
 psamp_size(dev),
 uiop);
}
/* ARGSUSED */
int
psamp_write(dev_t dev, uio_t * uiop, cred_t *crp)
{
 return physiock(psamp_strategy,
 0, /* alocate temp buffer & buf_t */
 dev, /* dev_t arg for strategy */
 B_WRITE, /* direction flag for buf_t */
 psamp_size(dev),
 uiop);
}
/* ARGSUSED */
int
psamp_strategy(struct buf *bp)
{
 /*
 * XXX - create strategy code here.
 */
 return 0;
}

/* ==
 * POLL ENTRY POINT
 */
int
psamp_poll(dev_t dev, short events, int anyyet,
 short *reventsp, struct pollhead **phpp, unsigned int *genp)
{
 vertex_hdl_t vhdl = dev_to_vhdl(dev);
 psamp_soft_t soft = psamp_soft_get(vhdl);
 psamp_regs_t regs = soft->ps_regs;
 short happened = 0;
 unsigned int gen;

 printf("psamp_poll() regs=%x\n", regs);
 /*
 * Need to snapshot the pollhead generation number before we check
 * device state. In many drivers a lock is used to interlock the

772 007-0911-210

21: Services for PCI Drivers

 * "high" and "low" portions of the driver. In those cases we can
 * wait to do this snapshot till we're in the critical region.
 * Snapshotting it early isn't a problem since that makes the
 * snapshotted generation number a more conservative estimate of
 * what generation of pollhead our event state report indicates.
 */
 gen = POLLGEN(soft->ps_pollhead);
 if (events & (POLLIN | POLLRDNORM))
 if (soft->ps_sst & PSAMP_SST_RX_READY)
 happened |= POLLIN | POLLRDNORM;
 if (events & POLLOUT)
 if (soft->ps_sst & PSAMP_SST_TX_READY)
 happened |= POLLOUT;
 if (soft->ps_sst & PSAMP_SST_ERROR)
 happened |= POLLERR;
 *reventsp = happened;
 if (!happened && anyyet) {
 *phpp = soft->ps_pollhead;
 *genp = gen;
 }
 return 0;
}

/* ==
 * MEMORY MAP ENTRY POINTS
 */

/* ARGSUSED */
int
psamp_map(dev_t dev, vhandl_t *vt,
 off_t off, size_t len, uint_t prot)
{
 vertex_hdl_t vhdl = dev_to_vhdl(dev);
 psamp_soft_t soft = psamp_soft_get(vhdl);
 vertex_hdl_t conn = soft->ps_conn;
 psamp_regs_t regs = soft->ps_regs;
 pciio_piomap_t amap = 0;
 caddr_t kaddr;

 printf("psamp_map() regs=%x\n", regs);
 /*
 * Stuff we want users to mmap is in our second BASE_ADDR window.
 */
 kaddr = (caddr_t) pciio_pio_addr
 (conn, 0,
 PCIIO_SPACE_WIN(1),

Example PCI Driver

007-0911-210 773

 off, len, &amap, 0);
 if (kaddr == NULL)
 return EINVAL;
 /*
 * XXX - must stash amap somewhere so we can pciio_piomap_free it
 * when the mapping goes away.
 */
 v_mapphys(vt, kaddr, len);
 return 0;
}

/* ARGSUSED2 */
int
psamp_unmap(dev_t dev, vhandl_t *vt)
{
 /*
 * XXX - need to find "amap" that we used in psamp_map() above,
 * and if (amap) pciio_piomap_free(amap);
 */
 return (0);
}

/* ==
 * INTERRUPT ENTRY POINTS
 * We avoid using the standard name, since our prototype has changed.
 */
void
psamp_dma_intr(intr_arg_t arg)
{
 psamp_soft_t soft = (psamp_soft_t) arg;
 vertex_hdl_t vhdl = soft->ps_vhdl;
 psamp_regs_t regs = soft->ps_regs;

 cmn_err(CE_CONT, "psamp %v: dma done, regs at 0x%X\n", vhdl, regs);
 /*
 * for each buf our hardware has processed,
 * set buf->b_resid,
 * call pciio_dmamap_done,
 * call bioerror() or biodone().
 *
 * XXX - would it be better for buf->b_iodone
 * to be used to get to pciio_dmamap_done?
 */

 /*
 * may want to call pollwakeup.
 */

774 007-0911-210

21: Services for PCI Drivers

}

/* ==
 * ERROR HANDLING ENTRY POINTS
 */
static int
psamp_error_handler(void *einfo,
 int error_code,
 ioerror_mode_t mode,
 ioerror_t *ioerror)
{
 psamp_soft_t soft = (psamp_soft_t) einfo;
 vertex_hdl_t vhdl = soft->ps_vhdl;

#if DEBUG && ERROR_DEBUG
 cmn_err(CE_CONT, "%v: psamp_error_handler\n", vhdl);
#else
 vhdl = vhdl;
#endif
 /*
 * XXX- there is probably a lot more to do
 * to recover from an error on a real device;
 * experts on this are encouraged to add common
 * things that need to be done into this function.
 */
 ioerror_dump("sample_pciio", error_code, mode, ioerror);
 return IOERROR_HANDLED;
}

/* ==
 * SUPPORT ENTRY POINTS
 */

/*
 * psamp_halt: called during orderly system
 * shutdown; no other device driver call will be
 * made after this one.
 */

void
psamp_halt(void)
{
 printf("psamp_halt()\n");
}
/*

 * psamp_size: return the size of the device in
 * "sector" units (multiples of NBPSCTR).

Example PCI Driver

007-0911-210 775

 */
int
psamp_size(dev_t dev)
{
 vertex_hdl_t vhdl = dev_to_vhdl(dev);
 psamp_soft_t soft = psamp_soft_get(vhdl);

 return soft->ps_blocks;
}

/*
 * psamp_print: used by the kernel to report an
 * error detected on a block device.
 */
int
psamp_print(dev_t dev, char *str)
{
 cmn_err(CE_NOTE, "%V: %s\n", dev, str);
 return 0;
}

Other Code Examples

The Developer’s Toolkit CD-ROM contains a sample PCI device driver for the Barco
Chameleon Color Converter. Look in the toolbox/hardware/PCI/barco directory.

PART TEN

STREAMS Drivers X

Chapter 22, “STREAMS Drivers”
How STREAMS drivers are integrated into the IRIX system.

007-0911-210 779

Chapter 22

22. STREAMS Drivers

The IRIX implementation of STREAMS drivers is intended to be compatible with the
multiprocessor implementation of STREAMS in UNIX version SVR4.2.

STREAMS programming in SVR4.2 is documented in STREAMS Modules and Drivers,
UNIX SVR4.2. That book contains detailed discussion and many examples of STREAMS
programming.

References in this chapter to STREAMS Modules and Drivers are to the edition copyright
1992 by UNIX System Laboratories, published by UNIX Press/Prentice-Hall, and
bearing ISBN 0-13-066879. If you are using an earlier edition, you should upgrade it. If
you have a later edition, you may have to interpret references carefully.

This chapter contains the following major sections:

• “Driver Exported Names” on page 780 summarizes the public names and functions
that a STREAMS driver must export.

• “Building and Debugging” on page 784 describes the ways that building a
STREAMS driver are like and unlike other kernel-level drivers.

• “Special Considerations for Multiprocessing” on page 785 describes the methods
you must use to work with the multi-threaded STREAMS monitor.

• “Special Considerations for IRIX” on page 787 details the points at which IRIX
differs from the SVR4 STREAMS environment.

• “Summary of Standard STREAMS Functions” on page 792 lists the available kernel
functions used by STREAMS drivers.

• “STREAMS Modules for X Input Devices” on page 794 describes the use of
configuration files for special input devices used by the X display manager.

780 007-0911-210

22: STREAMS Drivers

Driver Exported Names

A STREAMS driver or module must define certain public names for use by lboot, as
described in “Summary of Driver Structure” on page 150. Only one of these names, the
info structure, is unique to a STREAMS driver or module; all the others are also defined
by kernel-level device drivers.

The public names all begin with a prefix (see “Driver Name Prefix” on page 151); the
same prefix is specified in the configuration file (see “Describing the Driver in
/var/sysgen/master.d” on page 274).

Streamtab Structure

A STREAMS driver or module must provide a global streamtab structure containing
pointers to the qinit structures for its read and write queues. These structures in turn
point to required module_info structures. The name of the streamtab is pfxinfo.

Driver Flag Constant

A STREAMS driver or module should provide a driver flag constant containing either 0
or the flag D_MP. (See “Driver Flag Constant” on page 156 and “Flag D_MP” on
page 156). The name of the constant is pfxdevflag.

Note: A driver or module that does not export pfxdevflag is assumed to use SVR3
calling conventions at its pfxopen() and pfxclose() entry points. However, this
support will be withdrawn in a release of IRIX in the very near term. If you are porting a
STREAMS driver or module to IRIX you are urged to make sure it uses SVR4 conventions
and exports a pfxdevflag containing at least 0.

Initialization Entry Points

A STREAMS driver or module can define an entry point pfxinit(), or an entry point
pfxstart(), or both. These entry points will be called during boot if the driver or
module is included in the kernel, or when the driver or module is loaded if it is loadable.

Driver Exported Names

007-0911-210 781

The operation of these entry points is the same as for device drivers (see “Initialization
Entry Points” on page 158).

Many STREAMS drivers perform all initialization at open time, and have no pfxinit()
or pfxstart() entry points. Many STREAMS modules perform initialization when they
receive the I_PUSH ioctl message.

Entry Point open()

A STREAMS driver (but not module) must export a pfxopen() entry point. The
argument list for a STREAMS driver’s open differs from that of a device driver. The
prototype for a STREAMS pfxopen() entry point is:

int
pfxopen(queue_t *q, dev_t *devp, int oflag, int sflag, cred_t *crp);

The argument values are

The pfxopen() entry point is a public name. In addition a pointer to it must be defined
in the qinit structure for the read queue.

Entry Point close()

A STREAMS driver (but not module) must export a pfxclose() entry point. The
argument list for a STREAMS driver’s close differs from that of a device driver. The
prototype for a STREAMS pfxclose() entry point is:

int
pfxclose(queue_t *q, int oflag, cred_t *crp);

*q Pointer to the queue structure being opened.

*devp Pointer to a dev_t value from which you can extract both the major and
minor device numbers.

oflag Flag bits specifying user mode options on the open() call.

sflag Flag bits specifying the type of STREAM open: driver, module or clone.

*crp Pointer to a cred_t object—an opaque structure for use in authentication.

782 007-0911-210

22: STREAMS Drivers

The argument values are the same as passed to pfxopen(). The pfxclose() entry point
is a public name. In addition a pointer to it must be defined in the qinit structure for
the read queue.

Put Functions wput() and rput()

Every STREAMS driver and module must define a put() function to handle messages
as they are delivered to a queue.

The prototype of a put() function is as follows:

int
name(queue_t *q, mblk_t *mp);

Because the put() function for a given queue is addressed from the associated qinit
structure, there is no requirement that the put() function be a public name, and no
requirement that it begin with the prefix string. The put() function for the write queue,
which handles messages moving “downstream” from the user process toward the driver,
is conventionally called the wput() function. All write queues need a wput() function.

The put() function for the read queue, which handles messages moving “upstream”
from the driver toward the user process, is conventionally called the rput() function.
In some cases the rput() function is not required, for example in a driver where all
upstream messages are generated by an interrupt handler.

Typically, a put() function decides what to do by switching on the message type value
from mp->b_datap->db_type. A put routine must do at least one of the following:

• Process the message, if immediate processing is required, consuming the message
or transforming it.

• Pass the original or processed message to the next component in the stream by
calling the putnext() function (see the putnext(D3) man page).

• Queue the message for deferred processing by the service routine with the putq()
function (see the putq(D3) man page).

When all processing is deferred to the service function, the address of the kernel function
putq() can be given as a queue’s put() function.

Driver Exported Names

007-0911-210 783

In a multiprocessor, a put() function can be called concurrently with user-level code,
and concurrently with another put() function for the same or a different queue. A
service function for the same or different queue can also be executing concurrently.

Service Functions rsrv() and wsrv()

When a STREAMS driver defers message processing by setting the kernel function
putq() address as the driver’s put() function, the queue must also define a service
function srv().

Because the srv() function for a given queue is addressed from the associated qinit
structure, there is no requirement that the srv() function be a public name, and no
requirement that it begin with the prefix string.

The prototype of a svr() function is as follows:

int
name(queue_t *q);

The srv() function for the write queue, which handles messages moving
“downstream” from the user process toward the driver, is conventionally called the
wsrv() function. The srv() function for the read queue, which handles messages
moving “upstream” from the driver toward the user process, is conventionally called the
rsrv() function.

An srv() function is called by the STREAMS monitor to deal with queued messages. It
is called at a time chosen by the monitor, not necessarily related to any call to the put()
function for the same queue. In a multiprocessor, only one instance ofsrv() is called per
queue at any time. However, one or more instances of the put() function could execute
concurrently with the srv() function—so any data that is used in common by put()
and srv() must be protected with a lock (see “Waiting and Mutual Exclusion” on
page 244). User-level code can also execute concurrently with a service function.

The service function is expected to dispose of all queued messages through one of the
following actions:

• Consuming and freeing the message.

• Passing the message on to the following queue using putnext() (see the
putnext(D3) man page).

784 007-0911-210

22: STREAMS Drivers

• Replacing the message on the same queue using putbq() for processing later (see
the putbq(D3) man page).

The service function implements flow control (which the put() function cannot do).
Before applying putnext(), the service function calls a flow control function such as
canputnext() to find out if the following queue can accept a message. If the following
queue cannot accept a message, the service function replaces the message with putbq()
and exits.

A STREAMS module or driver that is not multiprocessor-aware (lacks D_MP in its
pfxdevflags) uses one set of functions for flow control (see the canput(D3) and
bcanputnext(D3) man pages), while one that is multiprocessor-aware uses a different
set (see canputnext(D3) and bcanputnext(D3)).

Building and Debugging

A STREAMS driver or module is a kernel module and is compiled using the same
compiler options as any driver (see “Compiling and Linking” on page 270).

You configure each STREAMS driver or module as part of the IRIX kernel by:

• Placing the executable module in /var/sysgen/boot

• Writing a descriptive file and placing it in /var/sysgen/master.d (see
“Describing the Driver in /var/sysgen/master.d” on page 274)

• Placing a USE or INCLUDE line in /var/sysgen/system (see “Configuring a
Kernel” on page 278)

When a STREAMS driver or module is loadable, you specify the appropriate options in
the descriptive file (see “Master File for Loadable Drivers” on page 280). You can
configure a STREAMS driver or module to be autoregistered and loaded automatically
(see “Registration” on page 282). Alternatively, you can require a STREAMS driver or
module to be loaded manually by using the ml command (see “Loading” on page 281).

When you have configured a debugging kernel (see “Preparing the System for
Debugging” on page 285), the symbols of a STREAMS driver or module are available for
display. You can set breakpoints by using symmon (see “Using symmon” on page 293).
You can display symbols using symmon or idbg (see “Using idbg” on page 302). In
particular, idbg has built-in support for displaying the contents of structures used by a

Special Considerations for Multiprocessing

007-0911-210 785

STREAMS module or driver (see “Commands to Display STREAMS Structures” on
page 309).

Special Considerations for Multiprocessing

In IRIX releases prior to 6.2, the STREAMS monitor was single-threaded, so that only one
put() or srv() function in the entire system could execute at any time. That one put()
or srv() function might execute concurrently with user-level code, but no two
STREAMS functions could execute concurrently.

Beginning with IRIX 6.2, the STREAMS monitor is multi-threaded. Depending on the
version of IRIX and on the number of CPUs in the system, the following functions can
run concurrently in any combination: one srv() function for each queue; any number
of put() functions for each queue; and one or more user processes. For general
discussion of the consequences, see “Designing for Multiprocessor Use” on page 194.

In the multithreaded monitor, when a module or driver calls putq() or qenable(), the
service function for the enabled queue can begin to execute at any time. It can begin
execution before the putq() or qenable() call has returned, and can run concurrently
with the module or driver that enabled the queue.

The STREAMS monitor runs concurrently with interrupt handling. For this reason, the
interrupt handler of a STREAMS driver must take an extra step before it performs any
STREAMS-related processing such as allocb(), putq(), or qenable(). The
IRIX-unique functions provided for this purpose are summarized in Table 22-1.

Suppose that the interrupt handler of a STREAMS driver needs to add a message to the
read queue with putq(). It cannot simply call that function, since the STREAMS monitor
might be using the queue at the same time in another CPU. The driver must define a
function in which the putq() call is written. The name of this function and the pointer

Table 22-1 Multiprocessing STREAMS Functions

Name Can Sleep? Summary

streams_interrupt(D3) N Synchronize interrupt-level function with STREAMS
mechanism.

STREAMS_TIMEOUT(D3) N Synchronize timeout with STREAMS mechanism.

786 007-0911-210

22: STREAMS Drivers

to the queue are passed to streams_interrupt(). As soon as possible,
streams_interrupt() gets control of the queue and executes the passed function.

A callback function scheduled using itimeout() and similar functions (see “Waiting
for Time to Pass” on page 253) must also be synchronized with the STREAMS monitor.

Suppose that a STREAMS driver or module needs to schedule a function to execute at a
later time. (In a nonSTREAMS driver the function would be scheduled with
itimeout().) In the time-delayed function is a call to qenable(). That call cannot be
executed freely whenever the interval expires, because the state of the STREAMS
monitor is not known at that time.

The STREAMS_TIMEOUT macros provide a solution. Like itimeout(), it schedules a
function to be executed at a later time. However, it defers calling the function until the
function is synchronized with the STREAMS monitor, so that it can execute calls such as
qenable().

Expanded Termio Interface

Beginning in IRIX 6.3, the termio and termios structures (defined in the header files
termio.h and termios.h) are expanded with two additional fields. These data
structures are documented in the termio(7) man page.

In order to ensure forward compatibility for user programs, the original structures are
still supported at the level of the user process. The termio(7) man page contains a
discussion of how to ensure continued compilation of the old structure, under the
heading “Mixing old and new interfaces.”

Some STREAMS drivers may use the termios structure as an argument of an ioctl
message. The STREAMS head, when processing an ioctl message that is known to take a
termio structure, always converts the old (pre-6.3) structure to the new format. As a
result, STREAMS drivers that process standard ioctl messages must be prepared to use
the new structure. This is largely a matter of recompiling, because the names and types
of the fields in the old structure are unchanged in the new structure.

STREAMS drivers that define and implement their own unique ioctl messages, and
which take a termios structure as an argument of the ioctl, must be prepared to receive
either the old termios format or the new one, depending on whether or not the user
program has been recompiled on the current system.

Special Considerations for IRIX

007-0911-210 787

The prinicipal difference between the old and new structures, and the reason for the
change, is that input and output baud rates are no longer encoded in a few bits, but are
represented as integer fields. This permits specification of a much wider range of rates.

Special Considerations for IRIX

While IRIX is largely compatible with UNIX SVR4.2, there are points of difference in the
implementation of IRIX that have to be reflected in the design of a STREAMS driver or
module. This topic lists points at which the contents of STREAMS Modules and Drivers,
UNIX SVR4.2 is not a correct description of IRIX and STREAMS use within IRIX.

Extension of Poll and Select

Under IRIX, the poll() system function is not limited to testing STREAMS, but can be
applied to file descriptors of all types (see the poll(2) and select(2) man pages). In
addition the select() function can be applied to STREAMS file descriptors. You may
want to note this under the heading “STREAMS System Calls” in Chapter 2 of STREAMS
Modules and Drivers, UNIX SVR4.2.

Support for Pipes

IRIX supports two kinds of pipes with different semantics, as described in the pipe(2)
man page. The default type of pipe is compatible with UNIX SVR3, and does not conform
to the description in Chapter 2 of STREAMS Modules and Drivers, UNIX SVR4.2 under the
heading “Creating a STREAMS-based Pipe.”

The SVR4 pipe semantics are enabled on a system-wide basis by using the systune
command to set the tuning parameter svr3pipe to 0. First test the configuration as
shown in Example 22-1.

Example 22-1 Testing Pipe Configuration

systune | grep svr3pipe
svr3pipe = 1 (0x1)

788 007-0911-210

22: STREAMS Drivers

Service Scheduling

At two points in STREAMS Modules and Drivers, UNIX SVR4.2 (Under “Service
Procedure” in Chapter 4 and under “Message Processing” in Chapter 5), the book
explicitly says that in a uniprocessor, enabled service functions are always executed
before returning to user-level processing. This promise is not supported by IRIX. In both
uniprocessors and multiprocessors, user-level processes can potentially execute after a
service function is enabled and before it executes.

Supplied STREAMS Modules

STREAMS Modules and Drivers, UNIX SVR4.2, Chapter 4, refers to some example
STREAMS drivers named CHARPROC, CANONPROC, and ASCEBC. These examples are not
supplied with IRIX.

The following STREAMS-based modules are supplied with IRIX. You can read their man
pages in volume 7:

No #idefs

Chapter 4 of STREAMS Modules and Drivers, UNIX SVR4.2 refers in a note to the use of
the #idef and a transition period for SVR3-compatible drivers. None of this material is
relevant to IRIX. IRIX is SVR4-compatible, with no special provision for SVR3 drivers.

alp(7) Algorithm pool management module.

clone(7) Clone-open driver; see “Support for CLONE Drivers” on page 789.

connld(7) Line discipline for unique stream connections.

kbd(7) Generalized string translation module.

log(7) Interface to STREAMS error logging and event tracing.

sad(7) STREAMS Administrative Driver.

streamio(7) STREAMS ioctl commands.

timod(7) Transport Interface cooperating STREAMS module.

tirdwr(7) Transport Interface read/write interface STREAMS module.

tsd(7) TELNET server protocol STREAMS device.

Special Considerations for IRIX

007-0911-210 789

Different I/O Hardware Model

Chapter 5 of STREAMS Modules and Drivers, UNIX SVR4.2 discusses the use of
memory-mapped hardware and of Dual-Access RAM (DARAM). None of these
considerations are relevant in a MIPS processor. The MIPS I/O model is discussed in
Chapter 1, “Physical and Virtual Memory.”

Different Network Model

Chapter 10 of STREAMS Modules and Drivers, UNIX SVR4.2 describes the TPI interface
model. This model is supported in IRIX. When an application uses the TLI library
functions such as t_open(), the library uses IRIX-provided TPI STREAMS modules
which implement the protocol described in chapter 10.

Chapter 11 of STREAMS Modules and Drivers, UNIX SVR4.2 describes the Data Link
Provider Interface (DLPI) as implemented using STREAMS facilities.

The IRIX networking support is not STREAMS-based, but rather is based on BSD ifnet
architecture. This is discussed in Chapter 17, “Network Device Drivers.” The IRIX
network support includes DLPI support as an add-on feature to the ifnet driver
interface. If you are porting a network device driver to IRIX, it is better to convert it to the
ifnet interface. You can install a DLPI-based network device driver, but only other
STREAMS modules could use it—there would be no connection to the rest of the IRIX
networking system.

Support for CLONE Drivers

STREAMS Modules and Drivers, UNIX SVR4.2 discusses CLONE drivers; that is,
STREAMS drivers that generate a new minor device number for each open. Refer to
Chapter 3, “The CLONE Driver,” and to Chapter 8, “Cloning.” Clone opens and the clone
driver are implemented under IRIX. This section clarifies the discussion in the SVR4
manual.

790 007-0911-210

22: STREAMS Drivers

The essence of cloned access to a STREAMS driver is that the user process is indifferent
to the minor device number, and simply wants to open a stream from this driver. A
cloned stream is created using the following steps:

1. Recognize that the process calling open() is indifferent to the minor device number
and simply wants cloned access.

2. Choose an unused minor device number from the set of minor numbers the driver
supports.

3. Construct a new device number dev_t value based on the chosen minor number, and
assign it to the argument passed to pfxopen().

Using the CLONE Driver

The IRIX-supplied clone driver automates some of these steps for your driver. In order
to use it, prepare a device special file with these characteristics:

• A device name that is related to the actual device name

• The major device number (10 decimal) that specifies the clone driver

• A minor device number equal to the major number of the actual driver

You can view the descriptive file for the clone driver in
/var/sysgen/master.d/clone. This file sets its major number (10) and states that it
is not loadable. Although the clone driver is not specifically configured in the
/var/sysgen/system/irix.sm file, it is included in any kernel because it is listed as
a dependency in the descriptive file of several other drivers (use fgrep clone
/var/sysgen/master.d/* to see which drivers depend on it; and see “Listing
Dependencies” on page 276). You can specify it as a dependency in the same way, if your
driver depends on it.

When a user process opens a device special file with the major number of the clone
driver, the kernel naturally calls the clone driver’s open entry point. The clone driver
verifies that the minor number passed is the major number of an existing, STREAMS
driver. (If it is not, the clone driver returns ENXIO).

The clone driver sets up the qinit structure appropriately for the target driver’s queue
and calls that driver’s pfxopen() entry point, passing the CLONEOPEN flag in the sflag
argument (see “Entry Point open()” on page 781).

Special Considerations for IRIX

007-0911-210 791

Recognizing a Clone Request Independently

It is not essential to use the clone driver. You can instead designate a particular minor
device number to stand for “clone open.” You prepare a device special file with these
characteristics:

• A device name related to the actual device name

• The major number of your driver

• Some minor number you define to mean “clone open”

When a user process opens this device special file, the kernel calls the pfxopen() entry
point of your driver. It does not pass the CLONEOPEN flag in sflag, but your driver can
recognize a request for a clone open based on the minor device number.

Responding to a Clone Request

In response to a clone request coming from either of the two methods described, your
pfxopen() entry point must select an unused minor device number. (If no minor number
is available, return EBUSY.)

Text in Chapter 3 of STREAMS Modules and Drivers, UNIX SVR4.2 seems to suggest that
your driver should scan through the kernel’s cdevsw table to find an unused minor
number (see “Kernel Switch Tables” on page 152). Under IRIX, the cdevsw table is not
accessible to drivers. The reason is that the table layout differs between 32-bit and 64-bit
kernels, and can change between releases. Instead, your driver must know the minor
numbers that it supports, and must know which ones are currently in use.

Tip: You can design your driver so that the number of supported devices is specified in
the descriptive file in /var/sysgen/master.d, and passed in to the driver through
that descriptive file (see “Variables Section” on page 276). Your driver can allocate and
initialize an array of device information structures in its pfxinit() entry point.

Your driver constructs a new dev_t value, specifying its major number and the selected
minor number. The makedevice() function is used for this (see the makedevice(D3)
man page, which has some sample code for use in a clone open). The new dev_t value
is stored into the *devp argument passed to pfxopen().

792 007-0911-210

22: STREAMS Drivers

Summary of Standard STREAMS Functions

The supported kernel functions for STREAMS operations are summarized for reference
in Table 22-2. To declare the necessary prototypes and data types, include sys/types.h
and sys/stream.h.

Table 22-2 Kernel Entry Points

Name Can Sleep? Summary

adjmsg(D3) N Trim bytes from a message.

allocb(D3) N Allocate a message block.

bcanput(D3) N Test for flow control in a specified priority band.

bcanputnext(D3) N Test for flow control in a specified priority band.

bufcall(D3) N Call a function when a buffer becomes available.

canput(D3) N Test for room in a message queue.

canputnext(D3) N Test for room in a message queue.

copyb(D3) N Copy a message block.

copymsg(D3) N Copy a message.

datamsg(D3) N Test whether a message is a data message.

dupb(D3) N Duplicate a message block.

dupmsg(D3) N Duplicate a message.

enableok(D3) N Allow a queue to be serviced.

esballoc(D3) N Allocate a message block using an externally-supplied
buffer.

esbbcall(D3) N Call a function when an externally-supplied buffer can
be allocated.

flushband(D3) N Flush messages in a specified priority band.

flushq(D3) N Flush messages on a queue.

freeb(D3) N Free a message block.

freemsg(D3) N Free a message.

Summary of Standard STREAMS Functions

007-0911-210 793

freezestr(D3) N Freeze the state of a stream.

getq(D3) N Get the next message from a queue.

insq(D3) N Insert a message into a queue.

linkb(D3) N Concatenate two message blocks.

msgdsize(D3) N Return number of bytes of data in a message.

msgpullup(D3) N Concatenate bytes in a message.

noenable(D3) N Prevent a queue from being scheduled.

OTHERQ(D3) N Get a pointer to queue’s partner queue.

pcmsg(D3) N Test whether a message is a priority control message.

pullupmsg(D3) N Concatenate bytes in a message.

putbq(D3) N Place a message at the head of a queue.

putctl(D3) N Send a control message to a queue.

putctl1(D3) N Send a control message with a one-byte parameter to a
queue.

putnext(D3) N Send a message to the next queue.

putnextctl(D3) N Send a control message to a queue.

putnextctl1(D3) N Send a control message with a one-byte parameter to a
queue.

putq(D3) N Put a message on a queue.

qenable(D3) N Schedule a queue’s service routine to be run.

qprocsoff(D3) Y Enable put and service routines.

qprocson(D3) Y Disable put and service routines

qreply(D3) N Send a message in the opposite direction in a stream.

qsize(D3) N Find the number of messages on a queue.

RD(D3) N Get a pointer to the read queue.

Table 22-2 Kernel Entry Points (continued)

Name Can Sleep? Summary

794 007-0911-210

22: STREAMS Drivers

STREAMS Modules for X Input Devices

The SGI implementation of the X display manager, Xsgi, is a customized version of the
MIT X11 Sample Server. Besides other enhancements, such as integration with SGI
proprietary graphics subsystems, Xsgi implements a generalized input subsystem so that
unusual input devices can easily be integrated into the X Window System. The input
system is based on STREAMS modules.

Note: The XFree86 server does not utilize STREAMS modules.

The X Input Subsystem

While X mandates that every X server support a keyboard and mouse, there is no
standard system interface for accessing such devices on UNIX systems. This means each
vendor has its own input subsystem for its X server. SGI’s input subsystem not only
meets the basic requirement to support a keyboard and mouse but also has the following
features:

• A shared memory input queue is supported for high performance (Xsgi only).

rmvb(D3) N Remove a message block from a message.

rmvq(D3) N Remove a message from a queue.

SAMESTR(D3) N Test if next queue is of the same type.

strqget(D3) N Get information about a queue or band of the queue.

strqset(D3) N Change information about a queue or band of the queue.

unbufcall(D3) N Cancel a pending bufcall request.

unfreezestr(D3) N Unfreeze the state of a stream.

unlinkb(D3) N Remove a message block from the head of a message.

WR(D3) N Get a pointer to the write queue.

Table 22-2 Kernel Entry Points (continued)

Name Can Sleep? Summary

STREAMS Modules for X Input Devices

007-0911-210 795

• A wide variety of input devices is supported, including 3D devices such as the
Spaceball.

• Input devices are supported abstractly; knowledge of specific input devices is
isolated to modular, kernel-level device drivers; this applies to Xsgi. On XFree86
servers, input device drivers interact with the X server directly without kernel
interaction.

• Hardware cursor tracking is supported in the kernel.

The programming interface to the input subsystem from the X client API is covered in
the X11 Input Extension Library Specification, an online book that is distributed with the
IRIX Developer’s Option.

Note: Numerous code examples demonstrating the Xsgi input system are available in
the X developer component (x_dev component) of the IRIX Developer Option. Source
for STREAMS modules to integrate a Spaceball, a dial-and-button box, and other devices
can be found in subdirectories of /usr/share/src/X.

Xsgi Shared Memory Input Queue

A shared memory input queue (called a shmiq in SGI code comments, and pronounced
“shmick”) is a fast way of receiving input device events by eliminating the filesystem
overhead to receive data from input devices. Instead of the X server reading the input
devices through file descriptors, a kernel-level driver deposits input events directly into
a region of the X server’s address space, organized as a ring buffer. The shmiq is not
implemented on XFree86 servers.

The IRIX shmiq device driver is implemented as a STREAMS multiplexer. This allows an
arbitrary number of input sources (in the form of STREAMS modules) to be linked to it
so all input sources are funneled through the shmiq.

In addition to processing input events from input device modules, the schmiq driver also
processes events from the graphics subsystem and updates the screen cursor position.
This allows smooth cursor movement since cursor positioning is done in kernel code,
without Xsgi involvement.

796 007-0911-210

22: STREAMS Drivers

Xsgi and the IDEV Interface

X input devices are integrated into the shmiq driver by implementing STREAMS
modules that translate raw device input into abstract events which are sent to the shmiq
driver (and on to the server). For example, an input device that connects to a serial port
can be integrated in the form of a STREAMS module that is pushed onto the stream from
that serial device and translates incoming bytes into event messages.

The shmiq driver expects messages from all input devices to be in the form of IDEV
events, as documented in the Input Extension Library Specification header file named
/usr/include/sys/idev.X11; hence this is called the IDEV interface. IDEV device
events appear as valuator, button, and pointer state changes.

The IDEV interface defines two-way communications between the input device and
Xsgi. In addition to the uniform set of IDEV input events, the interface defines a standard
set of abstract commands that Xsgi can send down (using IOCTL messages) to initialize
and control input devices. This allows the server to see input devices as abstract input
sources and does not require special server code to be written every time a new input
device is supported. Instead, device-specific knowledge of each devices is encapsulated
in an IDEV-based STREAMS module linked into the kernel.

Xsgi Input Device Naming

Xsgi recognizes as input devices any device special files named in the /dev/input
directory. On a machine with graphics, this includes /dev/input/keyboard and
/dev/input/mouse. (A server-type machine without graphics typically has no names
in /dev/input.) Other input devices that are to be integrated into the IDEV interface
must also appear as symbolic links in /dev/input.

Typically, an X input device is defined as a link from /dev/input to some other device
special file, typically a serial port in the /hw/ttys/tty* group. The filename in
/dev/input determines the name of the STREAMS module that is used to interface that
device to the IDEV input system. For example, if the file is /dev/input/calcomp, the
calcomp STREAMS module is loaded and pushed onto the stream from the device.

When a single STREAMS module is used to support two or more devices, you can use a
hyphen-digit suffix on the filename. For example, the calcomp STREAMS module
would be used for both /dev/input/calcomp-1 and /dev/input/calcomp-2.

STREAMS Modules for X Input Devices

007-0911-210 797

When a device is initialized (as described in the next section), the STREAMS module is
asked to return the X name of the input device. This name can be the same as the name
of the device and the module, or it can be different. Typically, the device and module
names will reflect the hardware type (for example calcomp), while the X name reflects
the kind of device (for example, tablet).

Opening Xsgi Input Devices

An input device is opened at one of two times: when the X server starts up, and when an
X client requests an open operation.

Starting Up the Xsgi Server

When Xsgi starts up, it opens each device name in /dev/input and for each one it:

• Loads a STREAMS module that has the same name as the name of the device
special file, and pushes it onto the stream from the device, below the shmiq
multiplexer.

The STREAMS module may be loadable, and most IDEV modules are loadable.

• Looks for a file in /usr/lib/X11/input/config having the same name as the
module. The device controls in that file are sent down the stream as IOCTL
messages.

The format of device controls is discussed under “Device Controls” on page 798.

• Asks the device to describe itself. This is done by sending down an IOCTL message
of the type IDEVDESC. The module must return the IOCTL message with
descriptive data.

The IDEV IOCTL structures are declared in /usr/include/sys/idev.h. A key
element of the device description is the X name of the input device.

• Looks for a file in /usr/lib/X11/input/config having the X name of the
device as returned in the device description. The X init controls in this file are
processed by the X server.

The format of X init controls is discussed under “Device Controls” on page 798.

• Unless autostart was specified for this device, the device is closed.

798 007-0911-210

22: STREAMS Drivers

Opening from a Client

An X application can use the XListInputDevices() function to get a list of available
input devices. Then it can call XOpenDevice() to open a selected device, so that input
events from that device will be processed by the X server (see the XListInputDevices(3X)
and XOpenDevice(3X) man pages).

When XOpenDevice() is called for an input device that is not already open, it repeats
the process done at startup time:

• Loads the STREAMS module and pushes it on the device stream, feeding the shmiq
multiplexer.

• Sends device controls from a file in /usr/lib/X11/input/config having the
same name as the module.

• Requests a description of the device (module), including the X name of the device.

• Processes X init controls from a file in /usr/lib/X11/input/config having the
X name of the device.

Device Controls

Device controls are string values that are passed via an IOCTL message to the STREAMS
module for an input device at the time the device is opened. You can use device controls
as a way of configuring the device module at run time. Device controls are interpreted
only by the module.

x_init controls have the same syntax as device controls, but are processed by the X
server after the device has been initialized. The X server intercepts about a dozenx_init
controls.

Where Controls Are Stored

You can issue X server device controls on the fly by calling XSGIDeviceControl from
within a program, or by storing them in configuration files in the
/usr/lib/X11/input/config directory. Specific documentation on controls can be
found in /usr/lib/X11/input/config/README.

STREAMS Modules for X Input Devices

007-0911-210 799

There are (potentially) two configuration files per device. As noted under “Opening Xsgi
Input Devices” on page 797, the X server looks for device controls in a file with the same
name as the STREAMS module that implements the device. After the module returns the
X name of the device, the X server looks for X init controls in a file with the X name of the
device.

Some devices use the same name for the STREAMS module and for the X device (for
example, tablet and mouse), but some use different names for the two. For example,
the STREAMS module for the Spaceball device is sball, but the X name is spaceball.

Control Syntax

When the X server opens a file to look for device controls, it searches the file for a single
set of controls with the following format:

device_init {
name "value"
...

}

Each name may have at most 15 characters. Each value may have at most 23 characters.
Each pair of name and value are put in an IOCTL message of idevOtherControl type
and sent down to the device module for interpretation.

When the X server opens a file to look for X init controls, it searches the file for a single
set of controls with the following format:

x_init {
name "value"
...

}

The syntax is the same, except for the use of x_init instead of device_init.

The specific name and value strings that the X server supports are documented in the file
/usr/lib/X11/input/config/README. Any name strings that are not recognized by
the X server are sent down to the device module, just as if they were device controls.

007-0911-210 801

Appendix A

A. SGI Driver/Kernel API

This appendix summarizes the SGI Driver/Kernel Authorized Programming Interface in
tabular form. The data structures, entry points, and kernel functions are listed
alphabetically with cross-references to the pages where they are discussed. The tables
also show which functions and structures are compatible with SVR4 and which are
unique to IRIX.

The tables in this appendix are based on the reference pages in volume D. The reference
pages in volume D constitute the formal, engineering definition of the Driver/Kernel
API. When discussion in this book disagrees with the contents of a reference page, the
reference page takes precedence (however, any such disagreement should be reported by
e-mail to techpubs@sgi.com).

• “Driver Exported Names” on page 802 tabulates the names of data and functions
that a driver must export.

• “Kernel Data Structures and Declarations” on page 803 tabulates the objects used in
the interface.

• “Kernel Functions” on page 805 tabulates the IRIX kernel services used by drivers.

Each table in this appendix has a column headed “Versions.” The codes in this column
have the following meanings:

SV Syntactically and semantically portable from SVR4 UNIX, as documented
in the UNIX SVR4.2 Device Driver Reference.

SV* Syntactically portable from UNIX SVR4, but semantics may differ. Read
the discussion and reference page carefully when porting.

5.3 Portable from IRIX version 5.3.

5.3* Portable from IRIX 5.3, but interface has changed in some detail or new
ability has been added.

6.2 Portable from IRIX version 6.2.

6.4 Introduced in IRIX 6.4.

802 007-0911-210

A: SGI Driver/Kernel API

Driver Exported Names

The kernel loader, lboot, recognizes certain exported names of static data and
functional entry points. These exported names are summarized in Table A-1.

Table A-1 Driver Exported Names

Name Summary Discussed Versions

attach() Notify driver of device attachment. “Entry Point attach()” on page 162 6.4

close(D2) Notify driver of final close of minor device. “Entry Point close()” on page 170 SV, 5.3

detach() Notify driver of removed device. “Entry Point detach()” on page 166 6.4

devflag(D1) Show driver attributes to lboot. “Driver Flag Constant” on page 156 SV*, 5.3*

edtinit(D2) Initialize driver from VECTOR information
(obsolete in 6.2).

“Entry Point edtinit()” on page 160 5.3

halt(D2) Notify driver of system shutdown. “Entry Point halt()” on page 191 SV, 5.3

info(D1) Show driver entries to STREAMS interface. “Initialization Entry Points” on page 780 SV, 5.3

init(D2) Initialize driver early in system startup. “Entry Point init()” on page 159 SV*, 5.3

intr(D2) Notify driver of device interrupt (obsolete). “Interrupt Entry Point and Handler” on
page 185

SV, 5.3

ioctl(D2) Call driver to implement ioctl() call. “Control Entry Point” on page 171 SV*, 5.3

map(D2) Call driver to implement mmap(). “Entry Point map()” on page 181 5.3

mmap(D2) Call driver to implement mmap() (SVR4). “Entry Point mmap()” on page 183 SV*, 5.3

open(D2) Call driver to open a device. “Entry Point open()” on page 167 SV, 5.3

print(D2) Call block driver to display filesystem error. “Entry Point print()” on page 192 SV, 5.3

put(D2) Call STREAMS driver to receive message. “Put Functions wput() and rput()” on
page 782

SV, 5.3

read(D2) Call character driver to read data. “Entry Points read() and write()” on page 173 SV, 5.3

reg() Call driver to register for device handling. “Entry Point reg()” on page 161 6.4

size(D2) Call block driver to get device capacity. “Entry Point size()” on page 192 SV, 5.3

Kernel Data Structures and Declarations

007-0911-210 803

The following reference pages have overview information on exported names: intro(D1),
intro(D2), and prefix(D1).

Note: The following SVR4 exported names are not used in IRIX drivers: chpoll, _load,
and _unload. The latter is replaced by pfxload() without the leading underscore.

Kernel Data Structures and Declarations

The driver/kernel interface is based on shared use of certain data types and defined
constant values. For general information on these interface objects, see the intro(D4) and
intro(D5) reference pages.

The interface objects used by device drivers are summarized in Table A-2.

srv(D2) Call driver to service queued messages. “Service Functions rsrv() and wsrv()” on
page 783

SV, 5.3

start(D2) Initialize driver late in system startup. “Entry Point start()” on page 161 SV, 5.3

strategy(D2) Call block driver to read or write data. “Entry Point strategy()” on page 175 SV*, 5.3

unload(D2) Call loadable driver prior to unloading it. “Entry Point unload()” on page 190 5.3

unreg() Call driver to unregister as a device handler. “Entry Point reg()” on page 161 6.4

unmap(D2) Call driver to notify it of unmap() call. “Entry Point unmap()” on page 184 5.3

write(D2) Call character driver to write data. “Entry Points read() and write()” on page 173 SV, 5.3

Table A-2 Device Driver Interface Objects

Name Summary Discussed Versions

alenlist(d4x) Address/length list. “Address/Length Lists” on page 203 6.4

buf(D4) Block read/write request structure. “Structure buf_t” on page 206 SV*, 5.3*

eisa_dma_cb(D4) DMA command block for EISA slave DMA. “Programming Slave DMA” on page 617 5.3

Table A-1 Driver Exported Names (continued)

Name Summary Discussed Versions

804 007-0911-210

A: SGI Driver/Kernel API

Note: The following data structures used in SVR4 drivers are not used in IRIX: dma_buf
and dma_cb. The eisa_dma_buf and eisa_dma_cb structures are similar but are used only in
EISA drivers.

The interface objects used by STREAMS drivers are summarized in Table A-3.

eisa_dma_buf(D4) DMA command buffer for EISA slave DMA. “Programming Slave DMA” on page 617 5.3

errnos(D5) Error numbers valid for driver use. SV*, 5.3

iovec(D4) Describes an I/O buffer segment to the read or
write entry points.

“Structure uio_t” on page 204 SV, 5.3

signals(D5) Lists signal numbers valid for driver use. SV*, 5.3

uio(D4) Describes an I/O request to the read or write
entry points.

“Structure uio_t” on page 204 SV*, 5.3

hwgraph.intro(d4x) Hardware graph (hwgraph) vertexes and
edges.

“Hardware Graph Types” on page 202 6.4

Table A-3 STREAMS Driver Interface Objects

Name Summary Discussed Versions

copyreq(D4) Copy request structure. SV, 5.3

copyresp(D4) Copy response structure. SV, 5.3

datab(D4) Message data block. SV, 5.3

free_rtn(D4) Describes a message-free routine. SV, 5.3

iocblk(D4) Describes ioctl() data or response. SV, 5.3

linkblk(D4) Describes multiplexed link. SV, 5.3

module_info(D4) Describes module attributes. SV, 5.3

msgb(D4) Describes all or part of a message. SV, 5.3

qinit(D4) Points to handlers and parameters for a queue. SV, 5.3

Table A-2 Device Driver Interface Objects (continued)

Name Summary Discussed Versions

Kernel Functions

007-0911-210 805

Kernel Functions

The IRIX kernel makes available the functions summarized in Table A-4.

queue(D4) Describes a queue of messages. SV, 5.3

streamtab(D4) Points to the queues handled by a driver. SV, 5.3

stroptions(D4) Lists stream-head options. SV, 5.3

Table A-4 Kernel Functions

Name Summary Text Versions

adjmsg(D3) Trim bytes from a message. “Creating Alenlists” on page 223 SV, 5.3

alenlist_append() (alenlist_ops(d3x)) Add a specified address and length
as an item to an existing alenlist.

“Loading Alenlists” on page 224 6.4

alenlist_clear() (alenlist_ops(d3x)) Empty an alenlist. “Loading Alenlists” on page 224 6.4

alenlist_create() (alenlist_ops(d3x)) Create an empty alenlist. “Creating Alenlists” on page 223 6.4

alenlist_cursor_create()
(alenlist_ops(d3x))

Create an alenlist cursor and associate
it with a specified list.

“Using Alenlist Cursors” on page 225 6.4

alenlist_cursor_destroy()
(alenlist_ops(d3x))

Release memory of a cursor. “Using Alenlist Cursors” on page 225 6.4

alenlist_cursor_init()
(alenlist_ops(d3x))

Set a cursor to point at a specified list
item.

“Using Alenlist Cursors” on page 225 6.4

alenlist_cursor_offset()
(alenlist_ops(d3x))

Query the effective byte offset of a
cursor in the buffer described by a list.

“Using Alenlist Cursors” on page 225 6.4

alenlist_destroy() (alenlist_ops(d3x)) Release memory of an alenlist. “Creating Alenlists” on page 223 6.4

alenlist_get() (alenlist_ops(d3x)) Retrieve the next sequential address
and length from a list.

“Creating Alenlists” on page 223 6.4

allocb(D3) Allocate a message block. SV, 5.3

Table A-3 STREAMS Driver Interface Objects (continued)

Name Summary Discussed Versions

806 007-0911-210

A: SGI Driver/Kernel API

ASSERT(D3) Debugging macro designed for use
in the kernel (compare to assert(3X)).

“Using ASSERT” on page 293 5.3

badaddr(D3) Test physical address for input. “Testing Device Physical Addresses” on
page 231

5.3

badaddr_val(D3) Test physical address for input and
return the input value received.

“Testing Device Physical Addresses” on
page 231

6.2

bcanput(D3) Test for flow control in a specified
priority band.

SV, 5.3

bcanputnext(D3) Test for flow control in a specified
priority band.

SV, 5.3

bcmp(D3) Compare data between kernel
locations.

“Block Copy Functions” on page 218 SV, 5.3

bcopy(D3) Copy data between locations in the
kernel.

“Block Copy Functions” on page 218 SV, 5.3

biodone(D3) Mark a buf_t as complete and wake
any process waiting for it.

“Waiting for Block I/O to Complete” on
page 255

SV, 5.3

bioerror(D3) Manipulate error fields within a
buf_t.

“Waiting for Block I/O to Complete” on
page 255

SV, 5.3

biowait(D3) Suspend process pending completion of
block I/O.

“Waiting for Block I/O to Complete” on
page 255

SV, 5.3

bp_mapin(D3) Map buffer pages into kernel virtual
address space.

“Managing Buffer Virtual Addresses”
on page 228

SV, 5.3

bp_mapout(D3) Release mapping of buffer pages. “Managing Buffer Virtual Addresses”
on page 228

SV, 5.3

brelse(D3) Return a buffer to the system’s free
list.

“Allocating buf_t Objects and Buffers”
on page 216

SV, 5.3

btod(D3) Return number of 512-byte “sectors”
in a byte count (round up).

“Working With Page and Sector Units”
on page 221

5.3

btop(D3) Return number of I/O pages in a byte
count (truncate).

“Working With Page and Sector Units”
on page 221

SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 807

btopr(D3) Return number of I/O pages in a byte
count (round up).

“Working With Page and Sector Units”
on page 221

SV, 5.3

bufcall(D3) Call a function when a buffer becomes
available.

SV, 5.3

buf_to_alenlist() (alenlist_ops(d3x)) Fill an alenlist with entries that
describe the buffer controlled by a buf_t
object.

“Loading Alenlists” on page 224 6.4

bzero(D3) Clear kernel memory for a specified
size.

“General Data Transfer” on page 217 SV, 5.3

canput(D3) Test for room in a message queue. SV, 5.3

canputnext(D3) Test for room in a message queue. SV, 5.3

clrbuf(D3) Erase the contents of a buffer described
by a buf_t.

“Managing Buffer Virtual Addresses”
on page 228

SV, 5.3

cmn_err(D3) Display an error message or panic the
system.

“Using cmn_err” on page 291 SV*, 5.3

copyb(D3) Copy a message block. SV, 5.3

copyin(D3) Copy data from user address space. “General Data Transfer” on page 217 SV, 5.3

copymsg(D3) Copy a message. SV, 5.3

copyout(D3) Copy data to user address space. “General Data Transfer” on page 217 SV, 5.3

cpsema(D3) Conditionally decrement a
semaphore’s state.

“Semaphores” on page 260 5.3

cvsema(D3) Conditionally increment a
semaphore’s state.

“Semaphores” on page 260 5.3

datamsg(D3) Test whether a message is a data
message.

SV, 5.3

delay(D3) Delay for a specified number of clock
ticks.

“Waiting for Time to Pass” on page 253 SV, 5.3

device_admin_info_get()
(hwgraph.admin(d3x))

Retrieve value set with
DEVICE_ADMIN statement.

“Retrieving Administrator Attributes”
on page 241

6.4

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

808 007-0911-210

A: SGI Driver/Kernel API

device_controller_num_get()
(hwgraph.dev(d3x))

Get controller number from first
inventory record in a vertex.

“Attaching Inventory Information” on
page 240

6.4

device_controller_num_get()
(hwgraph.dev(d3x))

Set controller number field only in
first inventory record in a vertex.

“Attaching Inventory Information” on
page 240

6.4

device_driver_admin_info_get()
(hwgraph.admin(d3x))

Retrieve value set with
DRIVER_ADMIN statement.

“Retrieving Administrator Attributes”
on page 241

6.4

device_info_get() (hwgraph.dev(d3x)) Return device info pointer stored in
vertex.

“Interrogating the hwgraph” on
page 232

6.4

device_info_set() (hwgraph.dev(d3x)) Store the address of device
information in a vertex.

“Construction Functions” on page 233 6.4

device_inventory_add()
(hwgraph.inv(d3x))

Add hardware inventory data to a
vertex.

“Attaching Inventory Information” on
page 240

6.4

device_inventory_get_next()
(hwgraph.inv(d3x))

Read out inventory data from a
vertex.

“Attaching Inventory Information” on
page 240

disable_sysad_parity() Disable memory parity checking on
SysAD bus.

“Memory Parity Workarounds” on
page 696

5.3

dki_dcache_inval(D3) Invalidate the data cache for a given
range of virtual addresses.

“Managing Memory for Cache
Coherency” on page 230

5.3

dki_dcache_wb(D3) Write back the data cache for a given
range of virtual addresses.

“Managing Memory for Cache
Coherency” on page 230

5.3

dki_dcache_wbinval(D3) Write back and invalidate the data
cache for a given range of virtual
addresses.

“Managing Memory for Cache
Coherency” on page 230

5.3

drv_getparm(D3) Retrieve kernel state information. “User Process Administration” on
page 242

SV*, 5.3

drv_hztousec(D3) Convert clock ticks to microseconds. “Waiting for Time to Pass” on page 253 SV, 5.3

drv_priv(D3) Test for privileged user. “User Process Administration” on
page 242

SV, 5.3

drv_setparm(D3) Set kernel state information. “User Process Administration” on
page 242

SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 809

drv_usectohz(D3) Convert microseconds to clock ticks. “Waiting for Time to Pass” on page 253 SV, 5.3

drv_usecwait(D3) Busy-wait for a specified interval. “Waiting for Time to Pass” on page 253 SV, 5.3

dtimeout(D3) Schedule a function execute on a
specified processor after a specified
length of time.

“Waiting for Time to Pass” on page 253 5.3

dupb(D3) Duplicate a message block. SV, 5.3

dupmsg(D3) Duplicate a message. SV, 5.3

eisa_dma_disable(D3) Disable recognition of hardware
requests on EISA DMA channel.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_enable(D3) Enable recognition of hardware
requests on EISA DMA channel.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_free_buf(D3) Free a previously allocated EISA DMA
buffer descriptor.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_free_cb(D3) Free a previously allocated EISA DMA
command block.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_get_buf(D3) Allocate EISA DMA buffer descriptor. “Programming Slave DMA” on
page 617

5.3

eisa_dma_get_cb(D3) Allocate EISA DMA command block. “Programming Slave DMA” on
page 617

5.3

eisa_dma_prog(D3) Program EISA DMA operation for a
subsequent software request.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_stop(D3) Stop software-initiated EISA DMA
operation and release channel.

“Programming Slave DMA” on
page 617

5.3

eisa_dma_swstart(D3) Initiate EISA DMA operation via
software request.

“Programming Slave DMA” on
page 617

5.3

eisa_dmachan_alloc() Allocate a DMA channel for EISA
slave DMA.

“Allocating a DMA Channel” on
page 616

5.3

eisa_ivec_alloc() Allocate an IRQ level for EISA. “Allocating IRQs and Channels” on
page 613

5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

810 007-0911-210

A: SGI Driver/Kernel API

eisa_ivec_set() Associate a handler with an EISA
IRQ.

“Allocating IRQs and Channels” on
page 613

5.3

enableok(D3) Allow a queue to be serviced. SV, 5.3

enable_sysad_parity() Reenable parity checking on SysAD
bus.

“Memory Parity Workarounds” on
page 696

5.3

esballoc(D3) Allocate a message block using an
externally-supplied buffer.

SV, 5.3

esbbcall(D3) Call a function when an
externally-supplied buffer can be
allocated.

SV, 5.3

etoimajor(D3) Convert external to internal major
device number.

“Historical Use of the Device Numbers”
on page 209

SV, 5.3

fast_itimeout(D3) Same as itimeout() but takes an
interval in “fast ticks.”

“Waiting for Time to Pass” on page 253 6.2

fasthzto(D3) Returns the value of a struct timeval as
a count of “fast ticks.”

“Waiting for Time to Pass” on page 253 6.2

flushband(D3) Flush messages in a specified priority
band.

SV, 5.3

flushbus(D3) Make sure contents of the write buffer
are flushed to the system bus.

“Managing Memory for Cache
Coherency” on page 230

5.3

flushq(D3) Flush messages on a queue. SV, 5.3

freeb(D3) Free a message block. SV, 5.3

freemsg(D3) Free a message. SV, 5.3

freerbuf(D3) Free a buf_t with no buffer. “Allocating buf_t Objects and Buffers”
on page 216

SV, 5.3

freesema(D3) Free the resources associated with a
semaphore.

“Semaphores” on page 260 5.3*

freezestr(D3) Freeze the state of a stream. SV, 5.3

fubyte(D3) Load a byte from user space. “General Data Transfer” on page 217 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 811

fuword(D3) Load a word from user space. “General Data Transfer” on page 217 5.3

geteblk(D3) Get a buf_t with no buffer. “Allocating buf_t Objects and Buffers”
on page 216

SV, 5.3

getemajor(D3) Get external major device number. “Historical Use of the Device Numbers”
on page 209

SV, 5.3

geteminor(D3) Get external minor device number. “Historical Use of the Device Numbers”
on page 209

SV, 5.3

geterror(D3) retrieve error number from a buffer
header.

“Waiting for Block I/O to Complete” on
page 255

SV, 5.3

getmajor(D3) Get internal major device number
(obsolete).

“Historical Use of the Device Numbers”
on page 209

SV, 5.3

getminor(D3) Get internal minor device number
(obsolete).

“Historical Use of the Device Numbers”
on page 209

SV, 5.3

getq(D3) Get the next message from a queue. SV, 5.3

getrbuf(D3) Allocate a buf_t with no buffer. “Allocating buf_t Objects and Buffers”
on page 216

SV, 5.3

hwcpin(D3) Copy data from device registers to
kernel memory.

“General Data Transfer” on page 217 5.3

hwcpout(D3) Copy data from kernel memory to
device registers.

“General Data Transfer” on page 217 5.3

hwgraph_block_device_add()
(hwgraph.dev(d3x))

Create block device special file under a
specified vertex.

“Construction Functions” on page 233 6.4

hwgraph_char_device_add()
(hwgraph.dev(d3x))

Create a character device special file
under a specified vertex.

“Construction Functions” on page 233 6.4

hwgraph_edge_add()
(hwgraph.edge(d3x))

Add a labelled edge between two
vertexes.

“Construction Functions” on page 233 6.4

hwgraph_edge_get()
(hwgraph.edge(d3x))

Retrieve the vertex destination of a
labelled edge (follow edge).

“Construction Functions” on page 233 6.4

hwgraph_edge_remove()
(hwgraph.edge(d3x))

Delete a labelled edge between two
vertexes.

“Construction Functions” on page 233 6.4

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

812 007-0911-210

A: SGI Driver/Kernel API

hwgraph_info_add_LBL()
(hwgraph.lblinfo(d3x))

Attach a labelled attribute to a vertex. “Attaching Information to Vertexes” on
page 239

6.4

hwgraph_info_export_LBL()
(hwgraph.lblinfo(d3x))

Make an attribute visible to
attr_get(2).

“Attaching Information to Vertexes” on
page 239

6.4

hwgraph_info_get_LBL()
(hwgraph.lblinfo(d3x))

Retrieve an attribute by name. “Attaching Information to Vertexes” on
page 239

6.4

hwgraph_info_remove_LBL()
(hwgraph.lblinfo(d3x))

Remove an attribute from a vertex. “Attaching Information to Vertexes” on
page 239

6.4

hwgraph_info_replace_LBL()
(hwgraph.lblinfo(d3x))

Replace the value of an attribute by
name.

“Attaching Information to Vertexes” on
page 239

6.4

hwgraph_info_unexport_LBL()
(hwgraph.lblinfo(d3x))

Make an attribute invisible. “Attaching Information to Vertexes” on
page 239

6.4

hwgraph_traverse()
(hwgraph.edge(d3x))

Follow a path of edges starting from
a given vertex.

“Construction Functions” on page 233 6.4

hwgraph_vertex_create()
(hwgraph.vertex(d3x))

Create a new, empty vertex, and
return its handle.

“Construction Functions” on page 233 6.4

hwgraph_vertex_destroy()
(hwgraph.vertex(d3x))

Deallocate a vertex. 6.4

hwgraph_vertex_ref()
(hwgraph.vertex(d3x))

Increase the reference count of a vertex. 6.4

hwgraph_vertex_unref()
(hwgraph.vertex(d3x))

Decrease the reference count of a vertex. 6.4

initnsema(D3) Initialize a semaphore to a specified
count.

“Semaphores” on page 260 5.3

initnsema_mutex(D3) Initialize a semaphore to a count of 1. “Semaphores” on page 260 5.3

insq(D3) Insert a message into a queue. SV, 5.3

ip26_enable_ucmem(D3) Change memory mode on IP26
processor.

“Uncached Memory Access in the IP26
and IP28” on page 34

6.2

ip26_return_ucmem(D3) Change memory mode on IP26
processor.

“Uncached Memory Access in the IP26
and IP28” on page 34

SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 813

is_sysad_parity_enabled() Test for parity checking on SysAD bus. “Memory Parity Workarounds” on
page 696

5.3

itimeout(D3) Schedule a function to be executed
after a specified number of clock ticks.

“Waiting for Time to Pass” on page 253 SV, 5.3

itoemajor(D3) Convert internal to external major
device number.

“Historical Use of the Device Numbers”
on page 209

SV, 5.3

kern_calloc(D3) Allocate and clear space from kernel
memory.

“General-Purpose Allocation” on
page 213

5.3

kern_free(D3) Free kernel memory space. “General-Purpose Allocation” on
page 213

5.3

kern_malloc(D3) Allocate kernel virtual memory. “General-Purpose Allocation” on
page 213

5.3

kmem_alloc(D3) Allocate space from kernel free
memory.

“General-Purpose Allocation” on
page 213

SV, 5.3

kmem_free(D3) Free previously allocated kernel
memory.

“General-Purpose Allocation” on
page 213

SV, 5.3

kmem_zalloc(D3) Allocate and clear space from kernel free
memory.

“General-Purpose Allocation” on
page 213

SV, 5.3

kvaddr_to_alenlist()
(alenlist_ops(d3x))

Fill an alenlist with entries that
describe a buffer in kernel virtual
address space.

“Loading Alenlists” on page 224 6.2

kvtophys(D3) Get physical address of kernel data. “Converting Virtual Addresses to
Physical” on page 228

5.3

linkb(D3) Concatenate two message blocks. SV*, 5.3*

LOCK(D3) Acquire a basic lock, waiting if
necessary.

“Basic Locks” on page 245 SV*, 5.3*

LOCK_ALLOC(D3) Allocate and initialize a basic lock. “Basic Locks” on page 245 SV*, 5.3*

LOCK_DEALLOC(D3) Deallocate an instance of a basic lock. “Basic Locks” on page 245 SV*, 5.3*

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

814 007-0911-210

A: SGI Driver/Kernel API

LOCK_INIT(D3) Initialize a basic lock that was allocated
statically, or reinitialize an allocated
lock.

“Basic Locks” on page 245 6.2

LOCK_DESTROY(D3) Uninitialize a basic lock that was
allocated statically.

“Basic Locks” on page 245 6.2

makedevice(D3) Make device number from major and
minor numbers.

“Historical Use of the Device Numbers”
on page 209

SV, 5.3

max(D3) Return the larger of two integers. SV, 5.3

min(D3) Return the lesser of two integers. SV, 5.3

msgdsize(D3) Return number of bytes of data in a
message.

SV, 5.3

msgpullup(D3) Concatenate bytes in a message. SV, 5.3

MUTEX_ALLOC(D3) Allocate and initialize a mutex lock. “Using Mutex Locks” on page 247 6.2

MUTEX_DEALLOC(D3) Deinitialize and free a dynamically
allocated mutex lock.

“Using Mutex Locks” on page 247 6.2

MUTEX_DESTROY(D3) Deinitialize a mutex lock. “Using Mutex Locks” on page 247 6.2

MUTEX_INIT(D3) Initialize an existing mutex lock. “Using Mutex Locks” on page 247 6.2

MUTEX_LOCK(D3) Claim a mutex lock. “Using Mutex Locks” on page 247 6.2

MUTEX_MINE(D3) Test if a mutex lock is owned by this
process.

“Using Mutex Locks” on page 247 6.2

MUTEX_OWNED(D3) Query if a mutex lock is available. “Using Mutex Locks” on page 247 6.5

MUTEX_TRYLOCK(D3) Conditionally claim a mutex lock. “Using Mutex Locks” on page 247 6.2

MUTEX_UNLOCK(D3) Release a mutex lock. “Using Mutex Locks” on page 247 6.2

ngeteblk(D3) Allocate a buf_t and a buffer of
specified size.

“Allocating buf_t Objects and Buffers”
on page 216

SV, 5.3

noenable(D3) Prevent a queue from being scheduled. SV, 5.3

OTHERQ(D3) Get a pointer to queue’s partner queue. SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 815

pciio_dma_dev_get() (pciio_get(d3)) Get device vertex from DMA map. 6.4

pciio_dma_slot_get() (pciio_get(d3)) Get slot number from DMA map. 6.4

pciio_dmamap_addr()
(pciio_dma(d3))

Set up DMA mapping for an address. 6.3

pciio_dmamap_alloc()
(pciio_dma(d3))

Allocate DMA map object. 6.3

pciio_dmamap_done()
(pciio_dma(d3))

Release mapping hardware associated
with a map object.

6.3

pciio_dmamap_free() (pciio_dma(d3)) Release DMA map object. 6.3

pciio_dmamap_list() (pciio_dma(d3)) Set up DMA mapping for a list of
addresses.

6.3

pciio_dmatrans_addr()
(pciio_dma(d3))

Set up DMA mapping using fixed
resources if available.

6.3

pciio_dmatrans_list() (pciio_dma(d3)) Set up DMA mapping using fixed
resources if available.

6.3

pciio_driver_register() (pciio(d3)) Register driver to handle specific
devices.

6.3

pciio_driver_unregister() (pciio(d3)) Unregister driver as device handler. 6.4

pciio_error_register() (pciio_error(d3)) Register error handler for device. 6.4

pciio_info_bus_get() (pciio_get(d3)) Query PCI bus number for device. 6.4

pciio_info_dev_get() (pciio_get(d3)) Query connection vertex for device. 6.4

pciio_info_device_id_get()
(pciio_get(d3))

Query PCI device ID for device. 6.4

pciio_info_func_get() (pciio_get(d3)) Query interrupt function for device. 6.4

pciio_info_get() (pciio_get(d3)) Get PCI info object for use in queries. 6.4

pciio_info_slot_get() (pciio_get(d3)) Query bus slot number for device. 6.4

pciio_info_vendor_id_get()
(pciio_get(d3))

Query PCI vendor ID for device. 6.4

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

816 007-0911-210

A: SGI Driver/Kernel API

pciio_intr_alloc() (pciio_intr(d3)) Allocate interrupt object. 6.3

pciio_intr_connect() (pciio_intr(d3)) Enable interrupt and set handler. 6.3

pciio_intr_cpu_get() (pciio_get(d3)) Query CPU handling interrupt from
device.

6.4

pciio_intr_dev_get() (pciio_get(d3)) Get device vertex from interrupt object. 6.4

pciio_intr_disconnect()
(pciio_intr(d3))

Disable interrupt and unregister
handler.

6.3

pciio_intr_free() (pciio_intr(d3)) Release interrupt object. 6.4

pciio_iterate() (pciio(d3)) Call function for every attached device. 6.4

pciio_pio_addr() (pciio_pio(d3)) Set up PIO mapping using map object. 6.3

pciio_pio_dev_get() (pciio_get(d3)) Get device vertex from PIO map. 6.4

pciio_pio_mapsz_get() (pciio_get(d3)) Get map size from PIO map object. 6.4

pciio_pio_pciaddr_get()
(pciio_get(d3))

Get target bus address from PIO map
object.

6.4

pciio_pio_slot_get() (pciio_get(d3)) Query bus slot number from PIO map. 6.4

pciio_pio_space_get() (pciio_get(d3)) Query target bus address space from
PIO map.

6.4

pciio_piomap_addr() (pciio_pio(d3)) Set up PIO mapping using map object. 6.3

pciio_piomap_alloc() (pciio_pio(d3)) Allocate PIO map object. 6.3

pciio_piomap_done() (pciio_pio(d3)) Release mapping hardware associated
with a PIO map.

6.4

pciio_piomap_free() (pciio_pio(d3)) Release a PIO map object. 6.3

pciio_piospace_alloc() (pciio_pio(d3)) Reserve PCI bus address space for a
device.

6.4

pciio_piospace_free() (pciio_pio(d3)) Release PCI bus address space. 6.4

pciio_piotrans_addr() (pciio_pio(d3)) Set up PIO mapping using fixed
resources if available.

6.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 817

pciio_reset() (pciio(d3)) Activate reset line of PCI card. 6.4

pcmsg(D3) Test whether a message is a priority
control message.

SV, 5.3

phalloc(D3) Allocate and initialize a pollhead
structure.

“Allocating pollhead Objects” on
page 215

SV, 5.3

phfree(D3) Free a pollhead structure. “Allocating pollhead Objects” on
page 215

SV, 5.3

physiock(D3) Validate and issue a raw I/O request. “Waiting for Block I/O to Complete” on
page 255

SV, 5.3

pollwakeup(D3) Inform polling processes that an event
has occurred.

“Use of pollwakeup()” on page 177 SV, 5.3

proc_ref(D3) Obtain a reference to a process for
signaling.

“User Process Administration” on
page 242

SV, 5.3

proc_signal(D3) Send a signal to a process. “User Process Administration” on
page 242

SV, 5.3

proc_unref(D3) Release a reference to a process. “User Process Administration” on
page 242

SV, 5.3

psema(D3) Perform a “P” or wait semaphore
operation.

“Semaphores” on page 260 SV, 5.3

ptob(D3) Convert size in pages to size in bytes. “Working With Page and Sector Units”
on page 221

SV, 5.3

pullupmsg(D3) Concatenate bytes in a message. SV, 5.3

putbq(D3) Place a message at the head of a queue. SV, 5.3

putctl(D3) Send a control message to a queue. SV, 5.3

putctl1(D3) Send a control message with a one-byte
parameter to a queue.

SV, 5.3

putnext(D3) Send a message to the next queue. SV, 5.3

putnextctl(D3) Send a control message to a queue. SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

818 007-0911-210

A: SGI Driver/Kernel API

putnextctl1(D3) Send a control message with a one-byte
parameter to a queue.

SV, 5.3

putq(D3) Put a message on a queue. SV, 5.3

qenable(D3) Schedule a queue’s service routine to be
run.

SV, 5.3

qprocsoff(D3) Enable put and service routines. SV, 5.3

qprocson(D3) Disable put and service routines. SV, 5.3

qreply(D3) Send a message in the opposite direction
in a stream.

SV, 5.3

qsize(D3) Find the number of messages on a
queue.

SV, 5.3

RD(D3) Get a pointer to the read queue. SV, 5.3

rmvb(D3) Remove a message block from a
message.

SV, 5.3

rmvq(D3) Remove a message from a queue. SV, 5.3

RW_ALLOC(D3) Allocate and initialize a reader/writer
lock.

“Reader/Writer Locks” on page 250 SV*, 5.3*

RW_DEALLOC(D3) Deallocate a reader/writer lock. “Reader/Writer Locks” on page 250 SV*, 5.3*

RW_DESTROY(D3) Deinitialize an existing reader/writer
lock.

“Reader/Writer Locks” on page 250 6.2

RW_INIT(D3) Initialize an existing reader/writer
lock.

“Reader/Writer Locks” on page 250 6.2

RW_RDLOCK(D3) Acquire a reader/writer lock as reader,
waiting if necessary.

“Reader/Writer Locks” on page 250 SV*, 5.3*

RW_TRYRDLOCK(D3) Try to acquire a reader/writer lock as
reader, returning a code if it is not free.

“Reader/Writer Locks” on page 250 SV*, 5.3*

RW_TRYWRLOCK(D3) Try to acquire a reader/writer lock as
writer, returning a code if it is not free.

“Reader/Writer Locks” on page 250 SV*, 5.3*

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 819

RW_UNLOCK(D3) Release a reader/writer lock as reader
or writer.

“Reader/Writer Locks” on page 250 SV*, 5.3*

RW_WRLOCK(D3) Acquire a reader/writer lock as writer,
waiting if necessary.

“Reader/Writer Locks” on page 250 SV*, 5.3*

SAMESTR(D3) Test if next queue is of the same type. SV, 5.3

scsi_abort() Transmits a SCSI ABORT command. “Overview of Host Adapter Functions”
on page 531

5.3*

scsi_alloc(D3) Open a connection between a driver and
a target device.

“Overview of Host Adapter Functions”
on page 531

5.3*

scsi_command(D3) Transmit a SCSI command on the bus
and return results.

“Overview of Host Adapter Functions”
on page 531

5.3*

scsi_free(D3) Release connection to target device. “Overview of Host Adapter Functions”
on page 531

5.3*

scsi_info(D3) Issue the SCSI Inquiry command and
return the results.

“Overview of Host Adapter Functions”
on page 531

5.3*

scsi_reset() Resets the SCSI adapter or bus. “Overview of Host Adapter Functions”
on page 531

5.3*

setgiovector() Register a GIO interrupt handler. “Writing a GIO Driver” on page 686 5.3

setgioconfig() Prepare a GIO slot for use. “Configuring a Slot” on page 687 5.3

sleep(D3) Suspend process execution pending
occurrence of an event.

“Using sleep() and wakeup()” on
page 257

SV, 5.3

SLEEP_ALLOC(D3) Allocate and initialize a sleep lock. “Using Sleep Locks” on page 249 SV*, 5.3*

SLEEP_DEALLOC(D3) Deinitialize and deallocate a
dynamically allocated sleep lock.

“Using Sleep Locks” on page 249 SV*, 5.3*

SLEEP_DESTROY(D3) Deinitialize a sleep lock. “Using Sleep Locks” on page 249 6.2

SLEEP_INIT(D3) Initialize an existing sleep lock. “Using Sleep Locks” on page 249 6.2

SLEEP_LOCK(D3) Acquire a sleep lock, waiting if
necessary until the lock is free.

“Using Sleep Locks” on page 249 SV*, 5.3*

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

820 007-0911-210

A: SGI Driver/Kernel API

SLEEP_LOCKAVAIL(D3) Query whether a sleep lock is
available.

“Using Sleep Locks” on page 249 SV*, 5.3*

SLEEP_LOCK_SIG(D3) Acquire a sleep lock, waiting if
necessary until the lock is free or a signal
is received.

“Using Sleep Locks” on page 249 SV*, 5.3*

SLEEP_TRYLOCK(D3) Try to acquire a sleep lock, returning a
code if it is not free.

“Using Sleep Locks” on page 249 SV*, 5.3*

SLEEP_UNLOCK(D3) Release a sleep lock. “Using Sleep Locks” on page 249 SV*, 5.3*

splbase(D3) Block no interrupts. “Priority Level Functions” on page 252 SV, 5.3

spltimeout(D3) Block only timeout interrupts. “Priority Level Functions” on page 252 SV, 5.3

spldisk(D3) Block disk interrupts. “Priority Level Functions” on page 252 SV, 5.3

splstr(D3) Block STREAMS interrupts. “Priority Level Functions” on page 252 SV, 5.3

spltty(D3) Block disk, VME, serial interrupts. “Priority Level Functions” on page 252 SV, 5.3

splhi(D3) Block all I/O interrupts. “Priority Level Functions” on page 252 SV, 5.3

spl0(D3) Same as splbase(). “Priority Level Functions” on page 252 SV, 5.3

splx(D3) Restore previous interrupt level. “Priority Level Functions” on page 252 SV, 5.3

strcat(D3) Append one string to another. SV, 5.3

strcpy(D3) Copy a string. SV, 5.3

streams_interrupt(D3) Synchronize interrupt-level function
with STREAMS mechanism.

5.3

STREAMS_TIMEOUT(D3) Synchronize timeout with STREAMS
mechanism.

5.3

strlen(D3) Return length of a string. SV, 5.3

strlog(D3) Submit messages to the log driver. SV, 5.3

strncmp(D3) Compare two strings for a specified
length.

SV, 5.3

strncpy(D3) Copy a string for a specified length. SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 821

strqget(D3) Get information about a queue or band
of the queue.

SV, 5.3

strqset(D3) Change information about a queue or
band of the queue.

SV, 5.3

subyte(D3) Store a byte to user space. “General Data Transfer” on page 217 5.3

suword(D3) Store a word to user space. “General Data Transfer” on page 217 5.3

SV_ALLOC(D3) Allocate and initialize a
synchronization variable.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

SV_BROADCAST(D3) Wake all processes sleeping on a
synchronization variable.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

SV_DEALLOC(D3) Deinitialize and deallocate a
synchronization variable.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

SV_DESTROY(D3) Deinitialize a synchronization
variable.

“Using Synchronization Variables” on
page 258

6.2

SV_INIT(D3) Initialize an existing synchronization
variable.

“Using Synchronization Variables” on
page 258

6.2

SV_SIGNAL(D3) Wake one process sleeping on a
synchronization variable.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

SV_WAIT(D3) Sleep until a synchronization
variable is signalled.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

SV_WAIT_SIG(D3) Sleep until a synchronization
variable is signalled or a signal is
received.

“Using Synchronization Variables” on
page 258

SV*, 5.3*

timeout(D3) Schedule a function to be executed
after a specified number of clock ticks.

“Waiting for Time to Pass” on page 253 SV, 5.3

TRYLOCK(D3) Try to acquire a basic lock, returning a
code if the lock is not currently free.

“Basic Locks” on page 245 SV*, 5.3*

uiomove(D3) Copy data using uio_t. “Transferring Data Through a uio_t
Object” on page 219

SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

822 007-0911-210

A: SGI Driver/Kernel API

uiophysio(D3) Validate a raw I/O request and pass
to a strategy function.

“Waiting for Block I/O to Complete” on
page 255

5.3

unbufcall(D3) Cancel a pending bufcall request. SV, 5.3

undma(D3) Unlock physical memory in user
space.

“Waiting for Block I/O to Complete” on
page 255

5.3

unfreezestr(D3) Unfreeze the state of a stream. SV, 5.3

unlinkb(D3) Remove a message block from the
head of a message.

SV, 5.3

UNLOCK(D3) Release a basic lock. “Basic Locks” on page 245 SV*, 5.3*

untimeout(D3) Cancel a previous itimeout or
fast_itimeout request.

“Waiting for Time to Pass” on page 253 SV*, 5.3*

ureadc(D3) Copy a character to space described by
uio_t.

“Transferring Data Through a uio_t
Object” on page 219

SV, 5.3

userdma(D3) Lock physical memory in user space. “Waiting for Block I/O to Complete” on
page 255

5.3

userabi() Get data sizes for the ABI of the user
process (32- or 64-bit).

“Handling 32-Bit and 64-Bit Execution
Models” on page 193

6.2

uvaddr_to_alenlist()
(alenlist_ops(d3x))

Fill an alenlists with entries that
describe a buffer in a user virtual
address space.

“Loading Alenlists” on page 224 6.4

uwritec(D3) Return a character from space
described by uio_t.

“Transferring Data Through a uio_t
Object” on page 219

SV, 5.3

v_getaddr(D3) Get the user virtual address
associated with a vhandl_t.

“Managing Mapped Memory” on
page 220

5.3

v_gethandle(D3) Get a unique identifier associated
with a vhandl_t.

“Managing Mapped Memory” on
page 220

5.3

v_getlen(D3) Get the length of user address space
associated with a vhandl_t.

“Managing Mapped Memory” on
page 220

5.3

v_mapphys(D3) Map kernel address space into user
address space.

“Managing Mapped Memory” on
page 220

5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

Kernel Functions

007-0911-210 823

The following SVR4 kernel functions are not implemented in IRIX: bioreset,
dma_disable, dma_enable, dma_free_buf, dma_free_cb, dma_get_best_mode,
dma_get_buf, dma_get_cb, dma_pageio, dma_prog, dma_swstart, dma_swsetup,
drv_gethardware, hat_getkpfnum, hat_getppfnum, inb, inl, inw, kvtoppid,
mod_drvattach, mod_drvdetach, outb, outl, outw, physmap, physmap_free,
phystoppid, psignal, rdma_filter, repinsb, repinsd, repinsw, repoutsb, repoutsd,
repoutsw, rminit, rmsetwant, SLEEP_LOCKOWNED, strncat, vtop.

valusema(D3) Return the value associated with a
semaphore.

“Semaphores” on page 260 5.3

vsema(D3) Perform a “V” or signal semaphore
operation.

“Semaphores” on page 260 5.3

wakeup(D3) Waken a process waiting for an
event.

“Using sleep() and wakeup()” on
page 257

SV, 5.3

wbadaddr(D3) Test physical address for output. “Testing Device Physical Addresses” on
page 231

SV, 5.3

wbadaddr_val(D3) Test physical address for output of
specific value.

“Testing Device Physical Addresses” on
page 231

SV, 5.3

WR(D3) Get a pointer to the write queue. SV, 5.3

Table A-4 Kernel Functions (continued)

Name Summary Text Versions

007-0911-210 825

Appendix B

B. Challenge DMA with Multiple IO4 Boards

In late 1995, a subtle hardware problem was identified in the IO4 board that is the
primary I/O interface subsystem to systems using the Challenge/Onyx architecture. The
problem can be prevented with a software fix. The software fix is included in all device
drivers distributed with IRIX 6.2 and a software patch is available for IRIX 5.3. However,
some third-party device drivers also need to incorporate the software fix. This appendix
explains the IO4 problem as it affects device drivers produced outside SGI.

The issue in a nutshell: if you are responsible for a kernel-level device driver for a DMA
device for the Challenge/Onyx architecture, you probably need to insert a function call
in the driver interrupt handler.

The IO4 Problem

The IO4 hardware problem involves a subtle interaction between two IO4 boards when
they perform DMA to the identical cache line of memory. If one IO4 performs a partial
update of a 128-byte cache line, and another IO4 accesses the same cache line for DMA
between partial updates, the second IO4 can suffer a change to a different, unrelated
cache line in its on-board cache. That modified cache line may not be used again, but if it
is used, invalid data can be transferred.

It is important to note that the IO4 problem is specific to interactions between multiple
IO4 boards. It does not affect memory interactions between CPUs, or between CPUs and
IO4s. Cache coherency is properly maintained in these cases.

An unusual coincidence is required to trigger the modification of the IO4 cache memory;
then the modified cache line must be used for output before the error has any effect. The
right combinations are sufficiently rare that many systems with multiple IO4 boards
have never encountered it. For example, the problem has occurred on a system that acted
as a network gateway between ATM and FDDI network, with ATM and FDDI adapters
on different IO4 boards; and it has been seen when “raw” (not filesystem) disk input was
copied to a tape on a different IO4.

826 007-0911-210

B: Challenge DMA with Multiple IO4 Boards

Software Fix

The software solution involves a number of behind-the-scenes changes to kernel
functions that manage I/O mapping. However, for third-party device drivers, the fix to
the IO4 problem consists of ensuring that any IO4 doing DMA input (when a device uses
DMA to write to memory) flushes its cache on any interrupt. This change has been made
in IRIX 6.2 to all device drivers supplied by SGI.

A patch containing all necessary fixes is available for IRIX 5.3. Contact the SGI technical
support line for the current patch number for a particular system.

Software Not Affected

As a result of hardware design and software fixes, none of the following kinds of
software are affected by the problem:

• Code using PIO to manage a device.

The IO4 problem cannot be triggered by PIO, either at the user or kernel level.

• User-level code using the udmalib library or the dslib SCSI library.

These libraries for user-level DMA contain the fix, or use kernel functions that are
fixed.

• User-level code based on user-level interrupts (ULI) or external interrupts.

These facilities are not relevant to the IO4 problem.

Among kernel-level drivers, only drivers that directly program DMA can be affected.
STREAMS drivers are not affected; nor are pseudo-device drivers; nor are drivers that
use only PIO and memory mapping. Drivers that are not used on Challenge-architecture
machines are not affected; for example an EISA-bus driver cannot be affected.

SCSI drivers that use the host adapter interface (see “Host Adapter Facilities” on
page 511) are also not affected. SGI host adapter drivers contain the fix. Host adapter
drivers from third parties may need to be fixed, but this does not affect drivers that rely
on the host adapter interface.

Drivers that do only block-mode I/O for the filesystem, and do not implement a
character I/O interface (or do not support the character I/O interface using DMA) are
not affected. This is because the filesystem always requests I/O in cache-line-sized
multiples to buffers that are cache-aligned.

Fixing the IO4 Problem

007-0911-210 827

Fixing the IO4 Problem

A kernel-level device driver for a device that uses DMA in a Challenge-architecture
system probably needs to make one change to guard against the IO4 problem.

In order to preclude any chance of data corruption, drivers that are affected must ensure
that the IO4 flushes its cache following any DMA write to memory (input from a device).
This is done by calling a new kernel function, io4_flush_cache(), in the interrupt routine
immediately following completion of any DMA.

The prototype of io4_flush_cache() is

int io4_flush_cache(caddr_t any_PIO_mapaddr);

The argument to the function is any value returned by pio_mapaddr() that is related to
the device doing the DMA. The kernel uses this address to locate the IO4 involved. The
returned value is 0 when the operation is successful (or was not needed). It is 1 when the
argument is not a valid address returned by pio_mapaddr().

The function should be called immediately after the completion of a DMA input to
memory. Typically the device produces an interrupt at the end of a DMA, and the
function can be called from the interrupt handler. However, some devices can complete
more than one DMA transaction per interrupt, and io4_flush_cache() should be called
when each DMA completes. Put another way, if it is possible that a data transfer
completed after an interrupt, then the driver should call io4_flush_cache() before
marking the transaction as complete.

The io4_flush_cache() function does nothing and returns immediately in a machine that
has only one IO4 board, and in a machine in which all IO4 boards have the hardware fix.

The kernel’s VME interrupt handler calls io4_flush_cache() once on each VME interrupt.
Thus a VME device driver only needs to call io4_flush_cache() in the event that it
handles the completion of more than DMA transaction per interrupt. For example, a
VME-based network driver that handles multiple packets per interrupt should call
io4_flush_cache() once for each packet that completes.

Since this problem only affects Challenge/Onyx systems (including Power Challenge,
Power Onyx, and Power Challenge R10000), the software fix can and should be
conditionally compiled on the compiler variable EVEREST, which is set by
/var/sysgen/Makefile.kernio for the affected machines (see “Using
/var/sysgen/Makefile.kernio” on page 270).

828 007-0911-210

B: Challenge DMA with Multiple IO4 Boards

The following is a skeletal example of fix code for a hypothetical driver:

#ifdef EVEREST
extern void io4_flush_cache(void* anyPIOMapAddr);
#endif
caddr_t some_PIO_map_addr;
hypothetical_edtinit(...)
{
...

some_PIO_map_addr = pio_mapaddr(my_piomap, some_dev_addr)
...
}
hypothetical_intr(...)
{
...
#ifdef EVEREST

io4_flush_cache(some_PIO_map_addr);
#endif
...
}

For another example, see the code of the example VME device driver under “Sample
VME Device Driver” on page 387.

007-0911-210 829

Glossary

ABI

Application Binary Interface, a defined interface that includes an API, but adds the
further promise that a compiled object file will be portable; no recompilation will be
required to move to any supported platform.

address/length list

A software object used to store and translate buffer addresses. Also called an alenlist, an
address/length list is a list in which each item is a pair consisting of an address and a
length. The kernel provides numerous functions to create and fill alenlists and to
translate them from one address space to another.

API

Application Programming Interface, a defined interface through which services can be
obtained. A typical API is implemented as a set of callable functions and header files that
define the data structures and specific values that the functions accept or return. The
promise behind an API is that a program that compiles and works correctly will continue
to compile and work correctly in any supported environment (however, recompilation
may be required when porting or changing versions). See ABI.

big-endian

The hardware design in which the most significant bits of a multi-byte integer are stored
in the byte with the lowest address. Big-endian is the default storage order in MIPS
processors. Opposed to little-endian.

block

As a verb, to suspend execution of a process. See sleep.

block device

A device such as magnetic tape or a disk drive, that naturally transfers data in blocks of
fixed size. Opposed to character device.

830 007-0911-210

Glossary

block device driver

Driver for a block device. This driver is not allowed to support the ioctl(), read() or write()
entry points, but does have a strategy() entry point. See character device driver.

bus master

An I/O device that is capable of generating a sequence of bus operations—usually a
series of memory reads or writes—independently, once programmed by software. See
direct memory access.

bus-watching cache

A cache memory that is aware of bus activity and, when the I/O system performs a DMA
write into physical memory or another CPU in a multiprocessor system modifies virtual
memory, automatically invalidates any copy of the same data then in the cache. This
hardware function eliminates the need for explicit data cache write back or invalidation
by software.

cache coherency

The problem of ensuring that all cached copies of data are true reflections of the data in
memory. The usual solution is to ensure that, when one copy is changed, all other copies
are automatically marked as invalid so that they will not be used.

cache line

The unit of data when data is loaded into a cache memory. Typically 128 bytes in current
CPU models.

cache memory

High-speed memory closely attached to a CPU, containing a copy of the most recently
used memory data. When the CPU’s request for instructions or data can be satisfied from
the cache, the CPU can run at full rated speed. In a multiprocessor or when DMA is
allowed, a bus-watching cache is needed.

character device

A device such as a terminal or printer that transfers data as a stream of bytes, or a device
that can be treated in this way under some circumstances. For example, a disk (normally
a block device) can be treated as a character device when reading diagnostic information.

character device driver

The kernel-level device driver for a character device transfers data in bytes between the
device and a user program. A STREAMS driver works with a character driver. Note that

Glossary

007-0911-210 831

a block device such as tape or disk can also support character access through a character
driver. Each disk device, for example, is represented as two different device special files,
one managed by a block device driver and one by a character device driver.

close

Relinquish access to a resource. The user process invokes the close() system call when it
is finished with a device, but the system does not necessarily execute your drvclose()
entry point for that device.

data structure

Contiguous memory used to hold an ordered collection of fields of different types. Any
API usually defines several data structures. The most common data structure in the
DDI/DKI is the buf_t.

DDI/DKI

Device Driver Interface/Device Kernel Interface; the formal API that defines the services
provided to a device driver by the kernel, and the rules for using those services.
DDI/DKI is the term used in the UNIX System V documentation. The IRIX version of the
DDI/DKI is close to, but not perfectly compatible with, the System V interface.

deadlock

The condition in which two or more processes are blocked, each waiting for a lock held
by the other. Deadlock is prevented by the rule that a driver upper-half entry point is not
allowed to hold a lock while sleeping.

devflag

A public global flag word that characterizes the abilities of a device driver, including the
flags D_MP, D_WBACK and D_OLD.

device driver

A software module that manages access to a hardware device, taking the device in and
out of service, setting hardware parameters, transmitting data between memory and the
device, sometimes scheduling multiple uses of the device on behalf of multiple
processes, and handling I/O errors.

device number

Each device special file is identified by a pair of numbers: the major device number identifies
the device driver that manages the device, and the minor device number identifies the
device to the driver.

832 007-0911-210

Glossary

device special file

A filename in the /hw filesystem that represents a hardware device. A device special file
does not specify data on disk, but rather identifies a particular hardware unit and the
device driver that handles it. The inode of the file contains the device number as well as
permissions and ownership data.

direct memory access

When a device reads or writes in memory, asynchronously and without specific
intervention by a CPU. In order to perform DMA, the device or its attachment must have
some means of storing a memory address and incrementing it, usually through mapping
registers. The device writes to physical memory and in so doing can invalidate cache
memory; a bus-watching cache compensates.

downstream

The direction of STREAMS messages flowing through a write queue from the user
process to the driver.

EISA bus

Enhanced Industry Standard Architecture, a bus interface supported by certain SGI
systems.

EISA Product Identifier (ID)

The four-byte product identifier returned by an EISA expansion board.

external interrupt

A hardware signal on a specified input or output line that causes an interrupt in the
receiving computer. The SGI Challenge, Octane, and Origin 2000 architectures support
external interrupt signals.

file handle

An integer returned by the open() kernel function to represent the state of an open file.
When the file handle is passed in subsequent kernel services, the kernel can retrieve
information about the file, for example, when the file is a device special file, the file handle
can be associated with the major and minor device number.

gigabyte

See kilobyte.

Glossary

007-0911-210 833

GIO bus

Graphics I/O bus, a bus interface used on Indigo, Indigo2, and Indy workstations.

hwgraph

The hardware graph is a graph-structured database of device connections, maintained in
kernel memory by the kernel and by kernel-level device drivers. You can display the
structure of the hwgraph by listing the contents of the /hw filesystem.

I/O operations

Services that provide access to shared input/output devices and to the global data
structures that describe their status. I/O operations open and close files and devices, read
data from and write data to devices, set the state of devices, and read and write system
data structures.

inode

The UNIX disk object that represents the existence of a file. The inode records owner and
group IDs, and permissions. For regular disk files, the inode distinguishes files from
directories and has other data that can be set with chmod. For device special files, the inode
contains major and minor device numbers and distinguishes block from character files.

inter-process communication

System calls that allow a process to send information to another process. There are
several ways of sending information to another process: signals, pipes, shared memory,
message queues, semaphores, streams, or sockets.

interrupt

A hardware signal that causes a CPU to set aside normal processing and begin execution
of an interrupt handler. An interrupt is parameterized by the type of bus and the interrupt
level, and possibly with an interrupt vector number. The kernel uses this information to
select the interrupt handler for that device.

interrupt level

A number that characterizes the source of an interrupt. The VME bus provides for seven
interrupt levels. Other buses have different schemes.

interrupt priority level

The relative priority at which a bus or device requests that the CPU call an interrupt
process. Interrupts at a higher level are taken first. The interrupt handler for an interrupt
can be preempted on its CPU by an interrupt handler for an interrupt of higher level.

834 007-0911-210

Glossary

interrupt vector

A number that characterizes the specific device that caused an interrupt. Most VME bus
devices have a specific vector number set by hardware, but some can have their vector
set by software.

ioctl

Control a character device. Character device drivers may include a “special function”
entry point, pfxioct().

IRQ

Interrupt Request Input, a hardware signal that initiates an interrupt.

k0

Virtual address range within the kernel address space that is cached but not mapped by
translation look-aside buffers. Also referred to as kseg0.

k1

Virtual address range within the kernel address space that is neither cached nor mapped.
Also called kseg1.

k2

Virtual address range within the kernel address space that can be both cached and
mapped by translation look-aside buffers. Also called kseg2.

kernel level

The level of privilege at which code in the IRIX kernel runs. The kernel has a private
address space, not acceptable to processes at user-level, and has sole access to physical
memory.

kilobyte (KB)

1,024 bytes, a unit chosen because it is both an integer power of 2 (210) and close to 1,000,
the basic scale multiple of engineering quantities. Thus 1,024 KB, 220, is 1 megabyte (MB)
and close to 1e6; 1,024 MB, 230, is 1 gigabyte (GB) and close to 1e9; 1,024 GB, 240, is
1 terabyte (TB) and close to 1e12. In the MIPS architecture using 32-bit addressing, the
user segment spans 2 GB. Using 64-bit addressing, both the user segment and the range
of physical addresses span 1 TB.

ksegn

See k0, k1, k2.

Glossary

007-0911-210 835

little-endian

The hardware design in which the least significant bits of a multi-byte integer are stored
in the byte with the lowest address. Little-endian order is the normal order in Intel
processors, and optional in MIPS processors. Opposed to big-endian. (These terms are
from Swift’s Gulliver’s Travels, in which the citizens of Lilliput and Blefescu are divided
by the burning question of whether one’s breakfast egg should be opened at the little or
the big end.)

lock

A data object that represents the exclusive right to use a resource. A lock can be
implemented as a semaphore (q.v.) with a count of 1, but because of the frequency of use
of locks, they have been given distinct software support (see LOCK(D3)).

major device number

A number that specifies which device driver manages the device represented by a device
special file. In IRIX 6.2, a major number has at most 9 bits of precision (0-511). Numbers
60-79 are used for OEM drivers. See also minor device number.

map

In general, to translate from one set of symbols to another. Particularly, translate one
range of memory addresses to the addresses for the corresponding space in another
system. The virtual memory hardware maps the process address space onto pages of
physical memory. The mapping registers in a DMA device map bus addresses to physical
memory corresponding to a buffer. The mmap(2) system call maps part of process
address space onto the contents of a file.

mapping registers

Registers in a DMA device or its bus attachment that store the address translation data
so that the device can access a buffer in physical memory.

megabyte

See kilobyte.

minor device number

A number that, encoded in a device special file, identifies a single hardware unit among the
units managed by one device driver. Sometimes used to encode device management
options as well. In IRIX 6.2, a minor number may have up to 18 bits of precision. See also
major device number.

836 007-0911-210

Glossary

mmapped device driver

A driver that supports mapping hardware registers into process address space,
permitting a user process to access device data as if it were in memory.

module

A STREAMS module consists of two related queue structures, one for upstream
messages and one for downstream messages. One or more modules may be pushed onto
a stream between the stream head and the driver, usually to implement and isolate a
communication protocol or a line discipline.

open

Gain access to a device. The kernel calls the pfxopen() entry when the user process issues
an open() system call.

page

A block of virtual or physical memory, of a size set by the operating system and residing
on a page-size address boundary. The page size is 4,096 (212) bytes when in 32-bit mode;
the page size in 64-bit mode can range from 212 to 220 at the operating system’s choice (see
the getpagesize(2) reference page).

programmed I/O

Programmed I/O (PIO), meaning access to a device by mapping device registers into
process address space, and transferring data by storing and loading single bytes or
words.

poll

Poll entry point for a non-stream character driver. A character device driver may include
a drvpoll() entry point so that users can use select(2) or poll(2) to poll the file descriptors
opened on such devices.

prefix

Driver prefix. The name of the driver must be the first characters of its standard entry
point names; the combined names are used to dynamically link the driver into the kernel.
Specified in the master.d file for the driver. Throughout this manual, the prefix pfx
represents the name of the device driver, as in pfxopen(), pfxioctl().

primary cache

The cache memory most closely attached to the CPU execution unit, usually in the
processor chip.

Glossary

007-0911-210 837

primitives

Fundamental operations from which more complex operations can be constructed.

priority inheritance

An implementation technique that prevents priority inversion when a process of lower
priority holds a mutual exclusion lock and a process of higher priority is blocked waiting
for the lock. The process holding the lock “inherits” or acquires the priority of the
highest-priority waiting process in order to expedite its release of the lock. IRIX supports
priority inheritance for mutual exclusion locks only.

priority inversion

The effect that occurs when a low-priority process holds a lock that a process of higher
priority needs. The lower priority process runs and the higher priority process waits,
inverting the intended priorities. See priority inheritance.

process control

System calls that allow a process to control its own execution. A process can allocate
memory, lock itself in memory, set its scheduling priorities, wait for events, execute a new
program, or create a new process.

protocol stack

A software subsystem that manages the flow of data on a communications channel
according to the rules of a particular protocol, for example the TCP/IP protocol. Called
a “stack” because it is typically designed as a hierarchy of layers, each supporting the one
above and using the one below.

pseudo-device

Software that uses the facilities of the DDI/DKI to provide specialized access to data,
without using any actual hardware device. Pseudo-devices can provide access to system
data structures that are unavailable at the user-level. For example, the fsctl driver
gives superuser access to filesystem data (see fsctl(7)) and the inode monitor
pseudo-device allows access to file activity (see imon(7)).

read

Read data from a device. The kernel executes the pfxread() entry point whenever a user
process calls the read() system call.

838 007-0911-210

Glossary

scatter/gather

An I/O operation in which what to the device is a contiguous range of data is distributed
across multiple pages that may not be contiguous in physical memory. On input to
memory, the device scatters the data into the different pages; on output, the device
gathers data from the pages.

SCSI

Small Computer System Interface, the bus architecture commonly used to attach disk
drives and other block devices.

SCSI driver interface

A collection of machine-independent input/output controls, functions, and data
structures, that provides a standard interface for writing a SCSI driver.

semaphore

A data object that represents the right to use a limited resource, used for synchronization
and communication between asynchronous processes. A semaphore contains a count
that represents the quantity of available resource (typically 1). The P operation
(mnemonic: dePlete) decrements the count and, if the count goes negative, causes the
caller to wait (see psema(D3X), cpsema(D3X)). The V operation (mnemonic: reVive)
increments the count and releases any waiting process (see vsema(D3X), cvsema(D3X)).
See also lock.

signals

Software interrupts used to communicate between processes. Specific signal numbers
can be handled or blocked. Device drivers sometimes use signals to report events to user
processes. Device drivers that can wait have to be sensitive to the possibility that a signal
could arrive.

sleep

Suspend process execution pending occurrence of an event; the term “block” is also used.

socket

A software structure that represents one endpoint in a two-way communications link.
Created by socket(2).

spl

Set priority level, a function that was formerly part of the DDI/DKI, and used to lock or
allow interrupts on a processor. It is not possible to use spl effectively in a multiprocessor
system, so it has been superceded by more sophisticated means of synchronization such
as the lock and semaphore.

Glossary

007-0911-210 839

strategy

In general, the plan or policy for arbitrating between multiple, concurrent requests for
the use of a device. Specifically in disk device drivers, the policy for scheduling multiple,
concurrent disk block-read and block-write requests.

STREAM

A linked list of kernel data structures that provide a full-duplex data path between a user
process and a device. Streams are supported by the STREAMS facilities in UNIX System
V Release 3 and later.

STREAM head

Inserted by the STREAMS subsystem, the STREAM head processes STREAMS-related
system calls and performs data transfers between user space and kernel space. Every
stream has a stream head. It is the component of a stream closest to the user process.

STREAMS

A kernel subsystem used to build a stream, which is a modular, full-duplex data path
between a device and a user process. In IRIX 5.x and later, the TCP/IP stack sits on top
of the STREAMS stack. The Transport Layer Interface (TLI) is fully supported.

STREAMS driver

A software module that implements one stage of a STREAM. A STREAMS driver can be
“pushed on” or “popped off” any STREAM.

TCP/IP

Transmission Control Protocol/Internet Protocol.

terabyte

See kilobyte (KB).

TFP

Internal name for the MIPS R8000 processor, used in some SGI publications.

TLI

Transport Interface Layer.

unmap

Disconnect a memory-mapped device from user process space, breaking the association
set by mapping it.

840 007-0911-210

Glossary

user-level

The privilege level of the system at which user-initiated programs run. A user-level
process can access the contents of one address space, and can access files and devices
only by calling kernel functions. Contrast to kernel level.

VME bus

VERSA Module Eurocard bus, a bus architecture supported by the SGI Challenge and
Onyx systems.

VME-bus adapter

A hardware conduit that translates host CPU operations to VME-bus operations and
decodes some VME-bus operations to translate them to the host side.

virtual memory

Memory contents that appear to be in contiguous addresses, but are actually mapped to
different physical memory locations by hardware action of the translation lookaside
buffer (TLB) and page tables managed by the IRIX kernel. The kernel can exploit virtual
memory to give each process its own address space, and to load many more processes
than physical memory can support.

virtual page number

The most significant bits of a virtual address, which select a page of memory. The
processor hardware looks for the VPN in the TLB; if the VPN is found, it is translated to
a physical page address. If it is not found, the processor traps to an exception routine.

volatile

Subject to change. The volatile keyword informs the compiler that a variable could
change value at any time (because it is mapped to a hardware register, or because it is
shared with other, concurrent processes) and so should always be loaded before use.

wakeup

Resume suspended process execution.

write

Write data to a device. The kernel executes the pfxread() or pfxwrite() entry points
whenever a user process calls the read() or write() system calls.

007-0911-210 841

Index

Numbers

32-bit address space
See address space, 32-bit

64-bit address format, 21
64-bit address space

See address space, 64-bit
64-bit mode, 31
64-bit physical address format, 24

A

address exception, 8
address space

32-bit, 14-19
embedding in 64-bit, 21
kseg0, 18
kseg1, 18
kseg2, 18
kuseg, 17
segments of, 15
virtual mapping, 17

64-bit, 19-25
address format, 21
cache-controlled, 24
physical address format, 24
segments of, 19-25
sign extension, 21
virtual mapping, 22
xkseg, 23
xksseg, 23
xkuseg, 23

bus virtual, 11
data transfer between, 217
kernel, 18, 23

map to user, 32
physical, 228
supervisor, 23
user process, 17, 23
See also execution model

addressing, 3-35
address/length list, 203, 223-226

cursor use, 225
alternate console, 290
ASSERT macro, 293
audio not covered, 99
authorized binary interface (ABI), 193

B

bdevswtable, 152
block device, 67

combined with character, 77, 169
versus character, 38

buffer (buf_t)
See data types, buf_t

bus adapter
translates addresses, 11

bus virtual address, 11

842 007-0911-210

Index

C

cache, 13-14, 825
64-bit access, 24
alignment of buffers, 227
coherency, 14
control functions, 230
device access always uncached, 8
primary, 6
secondary, 6

cache algorithm, 25
cdevsw table, 152
Challenge/Onyx

directing interrupts, 482
DMA engine in, 349, 469
IO4 board, 485, 825-828
limit on VME DMA space, 478, 502
no uncached memory, 34
VME address windows, 476, 501
VME bus address mapping in, 473
VME bus numbers, 487
VME design constraints, 493
VME hardware, 484-495

character device, 66
combined with block, 77, 169
versus block, 38

COFF file format not supported, 270
command

See IRIX commands
compiler options, 272

for loadable driver, 280
for network driver, 569

configuration files, 57-61
/dev/MAKEDEV, 269
/etc/inittab, 290
/etc/ioconfig.config, 55, 358
/etc/ioperms, 55
/etc/rc2.d, 43
/etc/rc2/S23autoconfig, 282
/usr/cpu/sysgen/IPnnboot, 274

/usr/lib/X11/input/config, 61
/var/sysgen/boot, 58, 273, 274
/var/sysgen/irix.sm, 359, 360
/var/sysgen/Makefile.kernio, 270
/var/sysgen/master.d

dependencies, 276
example, 315
format, 275, 280
stubs, 276
variables, 276

/var/sysgen/master.d, 57, 268, 273, 274,
274-277

/var/sysgen/master.d/mem, 33
/var/sysgen/mtune/*, 61
/var/sysgen/system

example, 315
/var/sysgen/system, 58, 273, 274
/var/sysgen/system/irix.sm

for debugging, 287
/var/sysgen/system/irix.sm, 89
/var/sysgen/system/irix.smVME devices,

480
configuration flags, 275
configuring a driver

loadable, 279-283
nonloadable, 273-278

Controller number, assigned in hwgraph, 53
CPU, 4-14

device access, 8
IP26, 34
memory access by, 5
model number from inventory, 52
processors in, 4
type numbers, 4
watchpoint registers, 299

D

D_MP flag, 156
D_MT flag, 157

007-0911-210 843

Index

D_OLD flag, 158, 168
D_PCI_HOT_PLUG_ATTACH flag, 157
D_PCI_HOT_PLUG_DETACH flag, 157
D_WBACK flag, 158
Data Link Provider Interface (DLPI), 561
data transfer, 217-220
data types

summary table, 803
alenlist_t, 203, 223
buf_t

BP_ISMAPPED, 208
displaying, 308
for syncronization, 197
functions, 228
interrupt handling, 187
management, 256

buf_t, 175, 206-208
caddr_t, 203
cred_t, 170, 243
dev_t

same as vertex_hdl_t, 202
dev_t, 41, 168, 209
device_desc_t, 736, 748, 753
struct dsconf, 110
struct dsreq

ds_flags, 105
ds_msg, 109
ds_ret, 107
ds_status, 109

edt_t, 161
graph_error_t, 202
iopaddr_t, 203
iovec_t, 205
lock_t, 208, 246
mrlock_t, 208, 251
mutex_t, 208, 248
paddr_t, 203
struct pollhead, 177
proc_t (not available), 243
scsi_request, 536-541

struct scsi_target_info, 534
sema_t, 208
sleep_t, 250
struct dsreq, 103-110
sv_t, 208, 259
uio_t, 173, 204, 219
__userabi_t, 194
vertex_hdl_t, 202
vhandl_t, 181, 220

debugging kernel, 285-291
device access, 8
device number

See major device number, minor device number
device special file, 37-43

as normal file, 38
defining, 269-270
/dev/dsk, 42
/dev/ei, 136, 141
/dev/kmem, 33
/dev/mem, 33
/dev/mmem, 33
/dev/scsi/*, 100-103
EISA mapping, 90
/hw/external_interrupt, 141
multiple names for, 39
name format, 42, 101
PCI mapping, 84
VME mapping, 93

device special file/dev/kmem, 33
digital media not covered, 99
DIrect Memory Access (DMA)

cache control, 825
Direct Memory Access (DMA), 10, 73-75

buffer alignment for, 227
cache control, 230
DMA engine for VME bus, 349, 469
EISA bus slave, 617
EISA bus-master, 616
GIO bus, 691
IO4 hardware problem, 825

844 007-0911-210

Index

mapping, 379-382, 746-752
maximum size, 227
setting up, 226-230
user-level, 96-??
user-level SCSI, 107
VME bus, 349, 351, 468, 472

disk volume header, 285
driver

compiling, ??-273, 569
configuring, 273-283
debugging, 285-310
examples

EISA, 619-680
GIO bus, 698-709
network, 570-598
SCSI bus, 549
VME, 387-461, 506-518

flag constant, 156-158, 280, 780
initialization, 158-161
lower half, 75, 76
prefix, 151, 274

in master.d, 57
process context, 242
types

GIO bus, 683-709
types of, xxxvii, 63-79

block, 67
character, 66
EISA bus, 601-680
kernel-level, xxxvii, 34, 66-79
layered, 77
loadable, 78
network, 559-598
process-level, xxxvii
pseudo-device, 73
SCSI bus, 548
STREAMS, xxxvii, 67

updating, xxxviii
upper half, 75

in multiprocessor, 195, 196
user-level, 32, 63

See also entry points
See also loadable driver

driver debugging
alternate console, 290
breakpoints, 298
circular buffer output, 292
lock metering, 288
memory display, 300
multiprocessor, 294
setsym use, 289
stopping during bootstrap, 295
symbol lookup, 297
symbols, 287
symmon use, 293
system log output, 291

driver operations, 67-75
DMA, 73
ioctl, 69
mmap, 71
open, 67
read, 70
write, 70

dslib library, 112-124
function summary, 112
data transfer options, 107
doscsireq(), 115
ds_ctostr(), 116
ds_vtostr(), 116
dsclose(), 113
dsopen(), 113
filldsreq(), 115
fillg0cmd(), 116
fillg1cmd(), 116
inquiry12(), 118
modeselect15(), 118
modesense1a(), 119
read08(), 120
readcapacity25(), 121
readextended28(), 120
releaseunit17(), 122

007-0911-210 845

Index

requestsense03(), 121
reserveunit16(), 122
senddiagnostic1d(), 122
testunitready00(), 123
write0a(), 124
writeextended2a(), 124

dsreq driver, 100
data transfer options, 107
DS_ABORT, 111
DS_CONF, 110
DS_RESET, 112
exclusive open, 103
flags, 105
return codes, 107
scatter/gather, 107
struct dsconf, 110
struct dsreq

ds_flags, 105
ds_msg, 109
ds_ret, 107
ds_status, 109

struct dsreq, 103-110

E

EISA bus, 601-680
address mapping, 607
address spaces, 603
allocate DMA channel, 616
allocate IRQ, 613-615
byte order, 604
card slots, 606
configuring, 607-610
DMA to bus master, 616-617
example driver, 619
interrupts, 603, 607
kernel services, 611-618
locked cycles, 604
mapping into user process, 64
overview, 601-606

PIO bandwidth, 91
PIO mapping, 611-613
product identifier, 604-606
request arbitration, 603
user-level PIO, 89-92

ELF object format, 270
Entry points

attach
PCI Hot Plug insert operation, 165

detach
PCI Hot Plug detach operation, 166

entry points
summary table, 153, 802
attach, 162, 546, 732
close, 170-171, 181, 781
detach, 166
devflag, 156-158, 280
edtinit, 160, 281, 368, 688
halt, 191-192
info, 780
init, 159, 281, 780
interrupt, 185-190, 690
ioctl, 171-172, 193
map, 181-183
mmap, 183-184
mversion, 279, 280
open, 167-170, 781

mode flag, 169
type flag, 168

poll, 176-180
and interrupts, 187

print, 192
read, 173-175
reg, 161, 282, 543, 730
size, 170, 192
start, 161, 281, 780
strategy, 175-176

and interrupts, 187
called from read or write, 174
design models, 255

846 007-0911-210

Index

unload, 181, 190-191, 283, 548, 733
unmap, 184
unreg, 190
when called, 155
write, 173-175

example driver, 311, 387, 506, 549, 570, 619, 698
execution model, 193-194
external interrupt, 66, 135-145

Challenge architecture, 135-141
generate, 136, 142
input is level-triggered, 137, 144
Origin2000 architecture, 141-145
pulse widths, 138
set pulse widths, 139

F

FibreChannel, 556
fixed PIO map, 476, 500
Flag D_PCI_HOT_PLUG_ATTACH, 157
Flag D_PCI_HOT_PLUG_DETACH, 157
fmodsw table, 152
function

See IRIX functions, kernel functions

G

GIO bus, 683-709
address space mapping, 684
configuring, 685
edtinit entry point, 688
example driver, 698-709
interrupt handler, 690
kernel services, 686-688
memory parity checking with, 696

H

hardware graph
See hwgraph

hardware inventory, 50-56
adding entries to, 53
contents, 50
hinv displays, 51
network driver use, 565
software interface to, 52

header files
summary table, 211
dslib.h, 112
for network drivers, 563
sgidefs.h, 32
sys/cmnerr.h, 291
sys/debug.h, 293
sys/file.h, 169
sys/immu.h, 221
sys/invent.h, 52, 53
sys/open.h, 168
sys/param.h, 206
sys/PCI/pciio.h, 545, 731
sys/poll.h, 177
sys/region.h, 183
sys/sema.h, 208
sys/sysmacros.h, 221
sys/types.h, 32
sys/uio.h, 205
sys/var.h, 61

/hw filesystem
See hwgraph

hwgraph, 44-49
and attach entry point, 163, 733
and top-half entry point, 168
and VME, 358-360
controller numbers assigned, 53
data types in, 202-??
definition, 45
display by symmon, 301

007-0911-210 847

Index

edge, 45
implicit, 48

hardware inventory in, 53
/hw filesystem reflects, 48
implicit edge, 48
justification for, 44
nomenclature, 45
relation to driver, 269
use by SCSI driver, 523-527
vertex, 45

properties, 47

I

idbg debugger, 287-289, 302-310
command line use, 304
command syntax, 304-310
configuring in kernel, 287
display I/O status, 308
display process data, 306
interactive mode, 303
invoking, 303
loading, 303
lock meter display, 307
log file output, 303
memory display, 305

ide PROM monitor, 286
include file

See header files
INCLUDE statement, 160, 278, 281
initialization, 158-161
inode, 68
interrupt, 76

and strategy entry point, 187
associating to a driver, 186
concurrent with processing, 195
enabled during initialization, 159
handler runs as thread, 188
latency, 190

mutual exclusion with, 189
on multiprocessor, 189
preemption of, 189

inventory
See hardware inventory

IO4 board, 485
multiple DMA problem, 825-828

IP26 CPU, 34
IPL statement, 482
IRIX 6.5 and PCI drivers, 730
IRIX 6.5 device drivers, xxxviii
IRIX commands
autoconfig, 273, 278, 289
dvhtool, 286-287
hinv

and MAKEDEV, 43
for CPU type, 4

hinv, 51
install, 43, 269
ioconfig

with VME, 358
ioconfig, 53-56
lboot

builds switch tables, 152
driver prefix with, 150

lboot, 58
mknod, 43, 269
ml, 78
mount, 69, 167
nvram, 290
setsym, 289
systune

max DMA size, 227
switch table size, 153

systune, 61, 283
umount, 170
uname, 5
versions, 286

IRIX functions
close(), 170

848 007-0911-210

Index

endinvent(), 52
getinvent(), 52
getpagesize(), 23
ioctl(), 65, 66, 69
kmem_alloc(), 75
mmap()

EISA PIO, 90
PCI PIO, 86
VME PIO, 94

mmap(), 33, 71, 180-181
munmap(), 185
open()

with dsreq driver, 103
open(), 67, 167
pio_badaddr(), 475, 499
poll(), 177-178
read(), 70, 73
setinvent(), 52
syslog(), 292
write(), 70, 73

J

jag (SCSI-toVME) adapter, 102

K

kernel address space
driver runs in, 34
mapping to user space, 32

kernel execution model, 193
kernel functions

summary table, 805
add_to_inventory(), 53
alenlist_create(), 223
alenlist_cursor_offset(), 226
alenlist_destroy(), 223
alenlist_get(), 225
badaddr(), 231

bcopy(), 218
biodone(), 187, 256
bioerror(), 187
biowait(), 256
bp_mapin(), 229
brelse(), 216
buf_to_alenlist(), 224
bzero(), 218
cmn_err()

buffer output, 292
system log output, 291

cmn_err(), 291-292
copyin(), 172, 218
copyout(), 172, 218
device_admin_info_get(), 242
device_controller_number_get(), 240
device_controller_number_set(), 240
device_driver_admin_info_get(), 242
device_info_get(), 232
device_info_set(), 235, 373
device_inventory_add(), 235, 240
device_inventory_get_next(), 233
dki_dcache_inval(), 230
dki_dcache_wb(), 230
dma_map(), 479, 503, 617
dma_mapaddr(), 479, 503, 617
dma_mapalloc(), 478, 502, 617
drv_getparm(), 243
drv_priv(), 170, 243
drvhztousec(), 253
drvusectohz(), 253
eisa_dmachan_alloc(), 616
eisa_ivec_alloc(), 614
fasthzto(), 253
flushbus(), 230
fubyte(), 219
get_current_abi(), 194
geteblk(), 216
getemajor(), 210
geteminor(), 210
getinvent(), 5

007-0911-210 849

Index

getrbuf(), 216
hwgraph_block_device_add(), 236
hwgraph_char_device_add(), 234, 373
hwgraph_char_device_add(), 236, 237
hwgraph_edge_add(), 236, 237
hwgraph_edge_remove(), 238
hwgraph_info_add_LBL(), 240
hwgraph_info_export_LBL(), 240
hwgraph_info_get_LBL(), 240, 242
hwgraph_info_remove_LBL(), 240
hwgraph_info_replace_LBL(), 240
hwgraph_info_unexport_LBL(), 240
hwgraph_inventory_get_next(), 240
hwgraph_vertex_create(), 236, 237
hwgraph_vertex_destroy(), 238
initnsema(), 200
initnsema_mutex() (not supported), 261
ip26_enable_ucmem(), 35
ip26_return_ucmem(), 35
itimeout(), 178, 254
kmem_alloc(), 18, 213
kmem_free(), 234, 238, 373
kmem_zalloc(), 214, 234, 237, 373
kvaddr_to_alenlist(), 224
kvtophys(), 228
makedevice(), 210
pciio_businfo_asic_type_get(), 758
pciio_businfo_bus_speed_get(), 758
pciio_businfo_bus_type_get(), 758
pciio_businfo_get(), 758
pciio_businfo_multi_master_get(), 758
pciio_dmamap_addr(), 750
pciio_dmamap_alloc(), 748
pciio_dmamap_done(), 750
pciio_dmamap_list(), 750
pciio_dmatrans_addr(), 751
pciio_dmatrans_list(), 751
pciio_driver_register(), 546, 731
pciio_error_register(), 756
pciio_info_bus_get(), 757
pciio_info_dev_get(), 757

pciio_info_device_id_get(), 757
pciio_info_func_get(), 757
pciio_info_get(), 757
pciio_info_slot_get(), 757
pciio_info_vender_id_get(), 757
pciio_intr_alloc(), 752
pciio_intr_connect(), 753
pciio_intr_disconnect(), 755
pciio_piomap_addr(), 738
pciio_piomap_alloc(), 735, 743
pciio_piomap_done(), 740
pciio_piotrans_addr(), 740
phalloc(), 177, 215
phfree(), 215
physiock(), 158, 174
pio_baddr(), 613
pio_bcopyin(), 476, 500, 613
pio_bcopyout(), 476, 500, 613
pio_map_alloc(), 619
pio_mapaddr(), 476, 500
pio_mapalloc(), 474, 498, 612
pio_wbadaddr(), 476, 500
pollwakeup(), 177, 187
printf(), 293
psema(), 200, 261
ptob(), 23
setgioconfig(), 687
setgiovector(), 686
sleep(), 257
splhi()

denigrated, 252
meaningless, 195

splnet()
ineffective, 568

splvme()
useless, 199

subyte(), 219
timeout(), 254
uiomove(), 219
uiophysio(), 174
untimeout(), 254

850 007-0911-210

Index

userabi(), 193
uvaddr_to_alenlist(), 224
v_getaddr(), 220
v_gethandle(), 221
v_mapphys(), 182, 220
vme_ivec_alloc(), 483, 504
vme_ivec_free(), 484, 505
vme_ivec_set(), 483, 504
vsema(), 200, 261
vt_gethandle(), 183, 185
wakeup(), 257

kernel mode of processor, 6
kernel panic

address exception, 8
moving data, 217

kernel switch tables, 152
kernel-level driver, xxxvii, 66-79, 149-200

structure of, 150

L

layered driver, 77
lboot

See IRIX commands
loadable driver, 78

and switch table, 153
autoregister, 159
compiler options, 280
configuring, 279
initialization, 159
loading, 281
master.d, 280
mversion entry, 280
not in miniroot, 79
registration, 282
unloading, 283

loadable driver attach() entry point, 165
loadable driver reg() entry point, 165

loading a driver, 281
lock metering support, 288, 307
locking

See mutual exclusion
lower half of driver, 76

M

major device number, 40, 209
for STREAMS clone, 790, 791
in /dev/scsi, 101
in inode, 38
in master.d, 57, 275
in variables in master.d, 277
input to open, 68
selecting, 268

/dev/MAKEDEV, 42-43, 100, 209, 269
adding to /dev/scsi, 102

master.d configuration files
See configuration files,/var/sysgen/master.d

memory, 3-35
memory address

cached, 18
physical, 299, 607
uncached, 18

memory allocation, 213-216
memory display, 300
memory mapping, 32-33, 180-185
migrating drivers from previous releases, xxxviii
miniroot

no loadable drivers, 79
minor device number, 41, 209

encoding, 41
for STREAMS clone driver, 790, 791
in /dev/scsi, 101
in inode, 38
input to open, 68, 168
selecting, 268

007-0911-210 851

Index

multiprocessor
converting to, 199
driver design for, 194-200, 785
driver flag D_MP, 156
drivers for, 77
interrupt handling on, 189
network drivers in, 568-570
splhi() useless in, 195
synchronizing upper-half code, 196
uniprocessor assumptions invalid, 194
uniprocessor drivers use CPU 0, 78
using symmon in, 294

mutex locks, 247
mutual exclusion, 244, 245-252

basic locks, 246-247
in multiprocessor drivers, 195
in network driver, 569-570
mutex locks, 247
priority inheritance, 248
reader/writer locks, 250
semaphore, 261
sleep locks, 249

N

names of devices, 42, 101
network, 559

based on 4.3BSD, 562
driver interfaces, 562-566
example driver, 570
header files, 563
multiprocessor considerations, 568
overview, 560
STREAMS protocol stack, 561

network driver
debugging, 309

Network File System (NFS), 561

O

O2 PCI driver, 743

P

page size
I/O, 221
macros, 221
memory, 23, 221

parity check with GIO, 696
PCI bus

arbitration, 722, 726
base address register, 720, 724
byte order, 717-719
cache line size, 720, 724
configuration

initialized, 720, 724
configuration space, 718, 740-743
device ID, 731, 733
driver structure, 543-549, 730-733
endianness, 717
error handler, 756-757
implementation, 713-727
interrogation, 757
interrupt handler, 752-756
interrupt lines, 722, 727
kernel services, 729-760
latency of, 716
latency timer, 720, 724
register driver, 731
slot versus device, 715
user-level PIO, 83-88
vendor ID, 546, 731, 733
versus system bus, 714

PCI card, 727
interrupts, 727

overloaded, 727
PCI drivers and IRIX 6.5, 730

852 007-0911-210

Index

PCI drivers for O2, 743
PCI Hot Plug insert operation, 165
PCI Hot Plug removal operation, 166
pciba, usrpci, 83
pcibr, 751
pcibr_get_dmatrans_node() function, 751
pciio_driver_register(), 165
pciio_pio_* routines, 743
physical address format

64-bit, 24
pipe semantics, 787
prefix, 57, 151, 274
primary cache, 6
priority inheritance, 248
priority level functions, 252
privilege checking, 243
process, 242-244

display data about, 306
handle of, 243
sending signal to, 243
table of in kernel, 306

process-level driver, xxxvii
processor

kernel mode, 6
types, 4
user mode, 6

Programmed I/O (PIO), 8, 83, 467
address maps for, 374-379, 473-477, 497-501,

734-740
EISA bus, 89-92, 611
GIO bus, 690
PCI bus, 83-88
VME bus, 92-96, 348, 351, 467, 467-468, 472

pseudo-device driver, 73
putbuf circular buffer, 292, 306

R

raw device
See character device

reader/writer locks, 250
register a driver

loadable driver for callback, 282
PCI driver, 544, 731
reg entry point, 161

S

sash standalone shell, 285
SCSI bus, 521-556

adapter error codes, 551
adapter number, 101
command

Inquiry, 118, 534
Mode Select, 118
Mode Sense, 119
Read, 120
Read Capacity, 121
Request Sense, 121
Reserve Unit, 122
Send Diagnostic, 122
Test Unit Ready, 123
Write, 124

display request structure, 308
driver, 548
error messages, 550-556
example driver, 549
hardware support overview, 522
host adapter, 523

functions of, 531
purpose, 529
scsi_abort(), 542
scsi_alloc(), 534
scsi_command(), 536
scsi_free(), 535

007-0911-210 853

Index

scsi_info(), 534
vectors to, 531

kernel overview, 523
LUN, 102, 530
message string tables, 550
sense codes, 552
target ID, 102
target number, 530
user-level access, 65, 99-124
See also dsreq driver

secondary cache, 6
sector unit macros, 221
semaphore, 260-262

for mutual exclusion, 261
for waiting, 262

sign extension of 32-bit addresses, 21
signal, 243
SIGSEGV, 8
Silicon Graphics

developer program, xli
FTP server, xli
VME bus hardware, 346, 466
WWW server, xli

64-bit address space
See address space, 64-bit

64-bit entries
See Numbers

sleep locks, 249
socket interface, 561
stray VME interrupt, 484, 505
STREAMS, 779-799

function summary, 792
clone driver, 789-791
close entry point, 781
debugging, 309
display data structures, 309
driver, xxxvii
extended poll support, 787
module_info structure, 780

multiprocessor design, 785
multithreaded monitor, 785
open entry point, 781
put functions, 782
service scheduling, 788
srv functions, 783
streamtab structure, 780
supplied drivers, 788

STREAMS protocol stack, 561
structure of driver, 150
switch table, 152
symmon debugger, 285-287, 293-302

breakpoints, 298
command syntax, 296-297
how invoked, 294
hwgraph display, 301
in multiprocessor, 294
in uniprocessor, 294
invoking at bootstrap, 295
memory display, 300
prompt, 294
symbol lookup, 297
virtual memory commands, 299
watchpoint register use, 299

synchronization variable, 258
SysAD bus parity checks, 696
sysgen files

See configuration files
system console

alternate, 290
system log display, 291
systune

See IRIX commands

T

terminal as console, 290
The, 310

854 007-0911-210

Index

32-bit entries see Numbers
thread

interrupt runs on, 188
tick, 253
time unit functions, 253
TLI interface, 561
Translate Lookaside Buffer (TLB), 6
Translation Lookaside Buffer (TLB), 6

maps kernel space, 23
maps kuseg, 17
number of entries in, 7

U

udmalib, 96-??
uncached memory access

32-bit, 18
64-bit, 24
do not map, 182
IP26, 34
none in Challenge, 34

uniprocessor
converting driver, 199
using symmon, 294

unloading a driver, 283
updating drivers, xxxviii
upper half of driver, 75
upper half of of driver, 195, 196
USE statement, 160, 278
user mode of processor, 6
user-level DMA, 96-??
user-level driver, 63
user-level process, 63
usrpci, pciba, 83

V

variables in master.d, 276
VECTOR statement, 186, 278, 281

edtinit entry point, 160
EISA kernel driver, 608
EISA PIO, 89
GIO bus, 685
use of probe=, 609
VME devices, 480

vfssw table, 152
virtual memory, 6, 6-8

32-bit mapping, 17
64-bit mapping, 22
debug display of, 299
page size, 23

virtual page number (VPN)
32-bit, 17

VME bus, 343-461, 463-518
adapter number, 102
address modifier, 345
bus address spaces, 344, 350-353, 464, 471-479

mapping, 351, 471
bus cycles, 346, 465
configuring, 479
DMA engine, 349, 469
DMA to

address maps, 379-382, 477-479, 501-503
addresses, 477

example driver, 387, 506
hardware

Challenge, 484-495
design constraints, 493
DMA cycle, 349, 468
interrupt priority, 493
overview, 346-350, 466
PIO cycle, 348, 467
relation to system bus, 347, 466

history, 344, 464
hwgraph use, 358-360

007-0911-210 855

Index

interrupt levels, 346, 466
interrupt vector, 382, 482, 503
jag adapter, 102
kernel services, 365-386, 497-518
mapping into user process, 65
master device, 345, 465
overview, 344-353
PIO to

address maps, 374-379, 473-477, 497-501
addresses, 351, 472
addressing in, 352
addressing in Challenge, 473
bandwidth, 468
fixed, unfixed maps, 476, 500

slave device, 345, 465
stray interrupt cause, 484, 505
user-level DMA, 65, 96-??
user-level DMA bandwidth, 470
user-level PIO, 92-96, 467-468

VME bus, configuration, 358-364
VME bus, hardware, 343-364
VME Cache Controller (VMECC), 488-489
VMEbus Channel Adapter Module (VCAM) board,

485, 487
volume header, 285

W

waiting, 244, 253-260
for a general event, 257
for an interrupt, 255
for memory, 255
semaphore, 262
synchronization variables, 258
time units, 253
timed events, 253

	New Features in This Guide
	Record of Revision
	Examples
	Figures
	Tables
	About This Guide
	What You Need to Know to Write Device Drivers
	Updating Device Drivers from Previous Releases to IRIX 6.5
	Updating a Device Driver from IRIX 6.2
	Updating a Device Driver from IRIX 6.3
	Updating a Device Driver from IRIX 6.4

	What This Guide Contains
	Other Sources of Information
	Developer Program
	Internet Resources
	Standards Documents
	Important man pages
	Additional Reading

	Reader Comments

	IRIX Device Integration I
	Physical and Virtual Memory
	CPU Access to Memory and Devices
	CPU Modules
	Interrogating the CPU Type

	CPU Access to Memory
	Processor Operating Modes
	Virtual Address Mapping
	TLB Misses and TLB Sizes

	Address Space Creation
	Address Exceptions
	CPU Access to Device Registers
	Direct Memory Access
	PIO Addresses and DMA Addresses
	PIO Addressing
	DMA Addressing

	Cache Use and Cache Coherency
	Cache Coherency in Multiprocessors
	Cache Coherency in Uniprocessors

	The 32-Bit Address Space
	Segments of the 32-bit Address Space
	Virtual Address Mapping
	User Process Space—kuseg
	Kernel Virtual Space—kseg2
	Cached Physical Memory—kseg0
	Uncached Physical Memory—kseg1

	The 64-Bit Address Space
	Segments of the 64-Bit Address Space
	Compatibility of 32-Bit and 64-Bit Spaces
	64-Bit Address Format
	Virtual Address Mapping
	User Process Space—xkuseg
	Supervisor Mode Space—xksseg
	Kernel Virtual Space—xkseg
	Physical Address
	Cache-Controlled Physical Memory—xkphys

	Address Space Usage in SGI Origin 2000 Systems
	User Process Space and Kernel Virtual Space
	Uncached and Special Address Spaces
	Cached Access to Physical Memory
	Uncached Access to Memory
	Synchronization Access to Memory

	Device Driver Use of Memory
	Allowing for 64-Bit Mode
	Memory Use in User-Level Drivers
	Access Using a Device Model
	Access Using mmap()
	Mapped Access Provided by a Device Driver

	Memory Use in Kernel-Level Drivers
	Uncached Memory Access in SGI Origin 2000 and in Challenge and Onyx Series
	Uncached Memory Access in the IP26 and IP28
	Cache Invalidation and Writeback
	Program Access to Uncached Memory

	Device Configuration
	Device Special Files
	Devices as Files
	Block and Character Device Access
	Multiple Device Names
	Major Device Number
	Minor Device Number
	Historical Use of Minor Number
	Present Use of Minor Numbers

	Creating Conventional Device Names
	IRIX Conventional Device Names
	The Script MAKEDEV
	Making Conventional Device Files

	Hardware Graph
	UNIX Hardware Assumptions, Old and New
	Hardware Graph Features
	Hwgraph Nomenclature
	Properties of Edges and Vertexes
	Additional Edges
	Implicit Edges

	/hw Filesystem
	Driver Interface to Hwgraph

	Hardware Inventory
	Using the Hardware Inventory
	Contents of the Inventory
	Displaying the Inventory with hinv
	Testing the Inventory In Software

	Creating an Inventory Entry
	Using ioconfig for Global Controller Numbers
	Need for Stable Numbering
	Design of ioconfig
	Configuration Control File
	Permissions Control File
	Device Management File

	Configuration Files
	Master Configuration Database
	Kernel Configuration Files
	Use of Configuration Files by lboot
	Storing Device and Driver Attributes
	Setting Interrupt Targets and Levels
	Setting 32-bit Direct Mapping Node

	System Tuning Parameters
	X Display Manager Configuration

	Device Control Software
	User-Level Device Control
	PCI Mapping Support
	EISA Mapping Support
	VME Mapping Support
	User-Level DMA From the VME Bus
	User-Level Control of SCSI Devices
	Managing External Interrupts

	Kernel-Level Device Control
	Kinds of Kernel-Level Drivers
	Typical Driver Operations
	Overview of Device Open
	Overview of Device Control
	Overview of Character Device I/O
	Overview of Memory Mapping
	Overview of Block I/O

	Upper and Lower Halves
	Driver Upper Half
	Driver Lower Half
	Relationship Between Halves

	Layered Drivers
	Combined Block and Character Drivers
	Drivers for Multiprocessors
	Loadable Drivers

	Device Control From Process Space II
	User-Level Access to Devices
	PCI Programmed I/O
	Mapping a PCI Device Into Process Address Space
	PCI Device Special Files
	Opening a Device Special File

	Using mmap() With PCI Devices
	Map Size Limits

	PCI Bus Hardware Errors
	PCI PIO Example

	EISA Programmed I/O
	Mapping an EISA Device Into Memory
	Learning EISA Device Addresses
	Opening a Device Special File
	Using the mmap() Function

	EISA PIO Bandwidth

	VME Programmed I/O
	Mapping a VME Device Into Process Address Space
	Learning VME Device Addresses
	Opening a Device Special File
	Using the mmap() Function
	Limits on Maps

	VME PIO Access

	VME User-Level DMA
	Using the DMA Library Functions

	User-Level Access to SCSI Devices
	Overview of the dsreq Driver
	Generic SCSI Device Special Files
	Major and Minor Device Numbers in /dev/scsi
	Form of Filenames in /dev/scsi
	Names of SCSI Devices on a SCSI Bus
	Names of SCSI Devices on the Jag (VME Bus) Controller

	Creating Additional Names in /dev/scsi
	Relationship to Other Device Special Files

	The dsreq Structure
	Values for ds_flags
	Data Transfer Options
	Return Codes and Status Values

	Testing the Driver Configuration
	Using the Special DS_RESET and DS_ABORT Calls
	Using DS_ABORT
	Using DS_RESET

	Using dslib Functions
	dslib Functions
	Using dsopen() and dsclose()
	Issuing a Request With doscsireq()
	SCSI Utility Functions
	Using filldsreq()
	Using fillg0cmd() and fillg1cmd()
	Using ds_vtostr() and ds_ctostr()

	Using Command-Building Functions
	inquiry12()—Issue an Inquiry Command
	modeselect15()—Issue a Group 0 Mode Select Command
	modesense1a()—Send a Group 0 Mode Sense Command
	read08() and readextended28()—Issue a Read Command
	readcapacity25()—Issue a Read Capacity Command
	requestsense03()—Issue a Request Sense Command
	reserveunit16() and releaseunit17()—Control Logical Units
	senddiagnostic1d()—Issue a Send Diagnostic Command
	testunitready00—Issue a Test Unit Ready Command
	write0a() and writeextended2a()—Issue a Write Command

	Example dslib Program

	Control of External Interrupts
	External Interrupts in Challenge and Onyx Systems
	Generating Outgoing Signals
	Responding to Incoming External Interrupts
	Directing Interrupts to a CPU
	Detecting Invalid External Interrupts
	Setting the Expected Pulse Width
	Setting the Stuck Pulse Width
	Receiving Interrupts

	External Interrupts In Origin 2000 and Origin 200
	Generating Outgoing Signals
	Generating Fixed Output Levels
	Generating Pulses and Pulse Trains
	Generating a Square Wave

	Responding to Incoming External Interrupts

	Kernel-Level Drivers III
	Structure of a Kernel-Level Driver
	Summary of Driver Structure
	Entry Point Naming and lboot
	Driver Name Prefix
	Driver Name Prefix as a Compiler Constant
	Kernel Switch Tables

	Entry Point Summary
	Entry Point Usage
	Entry Point Calling Sequence

	Driver Flag Constant
	Flag D_MP
	Flag D_MT
	Flag D_PCI_HOT_PLUG_ATTACH
	Flag D_PCI_HOT_PLUG_DETACH
	Flag D_WBACK
	Flag D_OLD Not Supported

	Initialization Entry Points
	When Initialization Is Performed
	Initialization of Loadable Drivers

	Entry Point init()
	Entry Point edtinit()
	Entry Point start()
	Entry Point reg()

	Attach and Detach Entry Points
	Entry Point attach()
	Matching A Device to A Driver
	Completing the hwgraph
	Allocating Storage for Device Information
	Inserting Hardware Inventory Data
	Return Value from Attach
	PCI Hot Plug Insert Operation

	Entry Point detach()
	PCI Hot Plug Detach Operation

	Open and Close Entry Points
	Entry Point open()
	Use of the Device Handle
	Use of the Open Type
	Use of the Open Flag
	Use of the cred_t Object
	Saving the Size of a Block Device
	Completing the hwgraph

	Entry Point close()

	Control Entry Point
	Choosing the Command Numbers
	Supporting 32-Bit and 64-Bit Callers
	User Return Value

	Data Transfer Entry Points
	Entry Points read() and write()
	Data Transfer for a PIO Device
	Calling Entry Point strategy() From Entry Point read() or write()

	Entry Point strategy()

	Poll Entry Point
	Use and Operation of poll(2)
	Use of pollwakeup()
	Use of pollwakeup() Without Interrupts

	Entry Point poll()

	Memory Map Entry Points
	Concepts and Use of mmap()
	Use of mmap()
	Persistent Mappings

	Entry Point map()
	Entry Point mmap()
	Entry Point unmap()

	Interrupt Entry Point and Handler
	Associating Interrupt to Driver
	Interrupt Handler Operation
	Completing Block I/O
	Completing Character I/O
	Calling pollwakeup()

	Interrupts as Threads
	Mutual Exclusion
	Hardware Exclusion Is Ineffective
	Using Locking Between Top and Bottom Half

	Interrupt Performance and Latency

	Support Entry Points
	Entry Point unreg()
	Entry Point unload()
	Entry Point halt()
	Entry Point size()
	Entry Point print()

	Handling 32-Bit and 64-Bit Execution Models
	Designing for Multiprocessor Use
	The Multiprocessor Environment
	Uniprocessor Assumptions
	Protecting Common Data
	Sleeping and Waking

	Synchronizing Within Upper-Half Functions
	Serializing on a Single Lock
	Serializing on a Lock Per Device

	Coordinating Upper-Half and Interrupt Entry Points
	Coordinating Through the buf_t
	Coordination in a Character Driver
	Choice of Lock Type

	Converting a Uniprocessor Driver

	Device Driver/Kernel Interface
	Important Data Types
	Hardware Graph Types
	Vertex Handle Type
	Vertex Handle and dev_t
	Graph Error Numbers

	Address Types
	Address/Length Lists
	Structure uio_t
	Data Location and the iovec_t
	Use of the uio_t

	Structure buf_t
	Fields of buf_t
	Using the Logical Block Number
	Buffer Location and b_flags

	Lock and Semaphore Types
	Device Number Types
	Historical Use of the Device Numbers
	Contemporary Device Number Use

	Important Header Files
	Kernel Memory Allocation
	General-Purpose Allocation
	Allocating Memory in Specific Nodes of a Origin2000 System
	Allocating Objects of Specific Kinds
	Allocating pollhead Objects
	Allocating Semaphores and Locks
	Allocating buf_t Objects and Buffers

	Transferring Data
	General Data Transfer
	Block Copy Functions
	Byte and Word Functions

	Transferring Data Through a uio_t Object

	Managing Virtual and Physical Addresses
	Managing Mapped Memory
	Working With Page and Sector Units
	Using Address/Length Lists
	Creating Alenlists
	Loading Alenlists
	Translating Alenlists
	Using Alenlist Cursors

	Setting Up a DMA Transfer
	DMA Buffer Alignment
	Maximum DMA Transfer Size
	Converting Virtual Addresses to Physical
	Managing Buffer Virtual Addresses
	Managing Memory for Cache Coherency

	Testing Device Physical Addresses

	Hardware Graph Management
	Interrogating the hwgraph
	Extending the hwgraph
	Construction Functions
	Extending the Graph With a Single Vertex
	Extending the Graph With Multiple Vertexes
	Vertexes for Modes of Use
	Vertexes for User Convenience

	Attaching Information to Vertexes
	Attaching Device Information
	Attaching Inventory Information
	Attaching Attributes
	Retrieving Administrator Attributes

	User Process Administration
	Sending a Process Signal

	Waiting and Mutual Exclusion
	Mutual Exclusion Compared to Waiting
	Basic Locks
	Long-Term Locks
	Using Mutex Locks
	Using Sleep Locks

	Reader/Writer Locks
	Priority Level Functions
	Waiting for Time to Pass
	Time Units
	Timer Support
	Short-Term Delay Support

	Waiting for Memory to Become Available
	Waiting for Block I/O to Complete
	How the strategy() Entry Point Is Called
	Strategies of the strategy() Entry Point

	Waiting for a General Event
	Using sleep() and wakeup()
	Using Synchronization Variables

	Semaphores
	Using a Semaphore for Mutual Exclusion
	Using a Semaphore for Waiting

	Using Kernel Threads
	Kernel System Threads
	Custom Configurations for Kernel Threads

	Building and Installing a Driver
	Defining Device Numbers
	Selecting a Major Number
	Selecting Minor Numbers

	Defining Device Special Files
	Static Definition of Device Special Files
	Dynamic Definition of Device Special Files
	Definition and Use of /hw Entries

	Compiling and Linking
	Platform Support
	Using /var/sysgen/Makefile.kernio
	Compiler Variables
	Compiler Options

	Configuring a Nonloadable Driver
	How Names Are Used in Configuration
	Placing the Object File in /var/sysgen/boot
	Describing the Driver in /var/sysgen/master.d
	Descriptive Line
	Listing Dependencies
	Stubs Section
	Variables Section

	Configuring a Kernel
	Generating a Kernel

	Configuring a Loadable Driver
	Public Global Variables
	Compile Options for Loadable Drivers
	Master File for Loadable Drivers
	Loading
	Effect of ‘D’ Flag

	Registration
	Reloading

	Unloading

	Testing and Debugging a Driver
	Preparing the System for Debugging
	Placing symmon in the Volume Header
	Enabling Debugging in irix.sm
	Including Symbols in the Kernel Image
	Including idbg in the Kernel Image
	Including Lock Metering in the Kernel Image

	Generating a Debugging Kernel
	Specifying a Separate System Console
	Verifying the Debugging Tools

	Producing Diagnostic Displays
	Using cmn_err
	Displaying to the System Log
	Displaying to the Circular Message Buffer
	Using cmn_err() Through Macros

	Using printf()
	Using ASSERT

	Using symmon
	How symmon Is Entered
	Using symmon in a Uniprocessor Workstation
	Using symmon in a Multiprocessor Workstation
	Entering symmon at Boot Time

	Commands of symmon
	Syntax of Command Elements
	Commands for Symbol Conversion and Lookup
	Commands to Control Execution Flow
	Commands to Manage Virtual Memory
	Commands to Display Memory
	Commands to Display the hwgraph
	Utility Commands

	Using idbg
	Loading and Invoking idbg
	Invoking idbg for Interactive Use
	Invoking idbg with a Log File
	Invoking idbg for a Single Command

	Commands of idbg
	Commands to Display Memory and Symbols
	Commands to Display Process Information
	Commands to Display Locks and Semaphores
	Commands to Display I/O Status
	Commands to Display buf_t Objects
	Commands to Display STREAMS Structures
	Commands to Display Network-Related Structures

	Using icrash

	Driver Example
	Installing the Example Driver
	Obtaining the Source Files
	Compiling the Example Driver
	Configuring the Example Driver
	Creating Device Special Files
	Verifying Driver Operation

	Example Driver Source Files
	Descriptive File
	System File
	Header File
	Driver Source
	User Program Source

	VME Device Drivers IV
	VME Device Attachment on Origin 2000/Onyx2
	Overview of the VME Bus
	VME History
	VME Features
	VME Address Spaces
	Master and Slave Devices
	VME Transactions

	About VME Bus Attachment
	The VME Bus Controller
	VME PIO Operations
	PIO Latency and R10000 Execution

	VME DMA Operations
	Operation of the DMA Engine

	About VME Bus Addresses and System Addresses
	User-Level and Kernel-Level Addressing
	PIO Addressing and DMA Addressing
	Available PIO Addresses
	Available DMA Addresses

	About VME in the Origin2000
	About the VME Controller
	Universe II Controller Chip
	Universe II Features
	Kernel Settings of Universe II Registers

	Configuring VME Devices
	VME Bus and Interrupt Naming
	VME Bus Paths in the Hardware Graph
	VME Bus Numbers Assigned by ioconfig
	VME Bus Interrupt Level Names

	Directing VME Interrupts
	VME Device Naming
	Defining VME Devices with the VECTOR Statement
	Example VME Configuration
	Using the exprobe Parameter
	Using the adapter=b Parameter
	Initialization Process

	Services for VME Drivers on Origin 2000/Onyx2
	About VME Drivers
	About VME Support Functions

	Initializing the Driver
	Initializing a VME Device
	Information in the edt_t Structure
	Identifying the Bus
	Using the Controller Number
	Using the iospace List
	Verifying Device Addresses

	Setting Up the Hardware Graph
	Dealing with Initialization Errors

	Creating and Using PIO Maps
	Allocating and Freeing PIO Maps
	Specifying the Address Space and Modifiers
	Testing the Target Addresses
	Freeing a PIO Map

	Using a PIO Map for PIO
	Mapping a PIO Map into a User Process

	Using a PIO Map for Block Copy

	Creating and Using DMA Maps
	Allocating a DMA Map
	Specifying the Type of Access
	Specifying the Address Space

	Using a DMA Map for One Buffer
	Using a DMA Map with Address/Length Lists

	Handling VME Interrupts
	Connecting the Interrupt Handler
	Allocating an Interrupt Object
	Using the Device Descriptor
	Connecting the Handler
	Disconnecting the Handler

	Porting From IRIX 6.2
	Sample VME Device Driver

	VME Device Attachment on Challenge/Onyx
	Overview of the VME Bus
	VME History
	VME Features
	VME Address Spaces
	Master and Slave Devices
	VME Transactions

	VME Bus in Challenge and Onyx Systems
	The VME Bus Controller
	VME PIO Operations
	VME PIO Bandwidth
	VME DMA Operations
	Operation of the DMA Engine
	DMA Engine Bandwidth

	VME Bus Addresses and System Addresses
	User-Level and Kernel-Level Addressing
	PIO Addressing and DMA Addressing
	PIO Addressing in Challenge and Onyx Systems
	Testing the PIO Map
	Using the Mapped Address
	Using the PIO Map in Functions
	Fixed PIO Maps
	Unfixed PIO Maps

	DMA Addressing
	Mapping DMA Addresses
	Using a DMA Map

	Configuring VME Devices
	Configuring Device Addresses
	Configuring the System Files
	Coding the VECTOR Statement
	Using the IPL Statement

	Allocating an Interrupt Vector Dynamically
	Allocating a Vector
	Releasing a Vector
	Vector Errors

	VME Hardware in Challenge and Onyx Systems
	VME Hardware Architecture
	Main System Bus
	Ibus
	Bus Interfacing

	Maximum Latency
	VME Bus Numbering
	VMEbus Channel Adapter Module (VCAM) Board
	VMECC
	F Controller ASIC
	VMEbus Interrupt Generation

	VME Interface Features and Restrictions
	DMA Multiple Address Mapping
	VME Interrupt Priority

	VME Hardware Features and Restrictions
	Designing a VME Bus Master for Challenge and Onyx Systems

	Services for VME Drivers on Challenge/Onyx
	Kernel Services for VME
	Mapping PIO Addresses
	Testing the PIO Map
	Using the Mapped Address
	Using the PIO Map in Functions
	Fixed PIO Maps
	Unfixed PIO Maps

	Mapping DMA Addresses
	Using a DMA Map

	Allocating an Interrupt Vector Dynamically
	Allocating a Vector
	Releasing a Vector
	Vector Errors

	Supporting Early IO4 Cache Problems

	Sample VME Device Driver

	SCSI Device Drivers V
	SCSI Device Drivers
	SCSI Support in SGI Systems
	SCSI Hardware Support
	IRIX Kernel SCSI Support
	Host Adapter Drivers

	SCSI Devices in the hwgraph
	Controller Vertexes
	Target Vertexes and LUN Vertexes
	Convenience Vertexes
	Disk Driver Vertexes

	Hardware Administration

	Host Adapter Facilities
	Purpose of the Host Adapter Driver
	Host Adapter Concepts
	Target Numbers
	Logical Unit Numbers (LUNs)

	Overview of Host Adapter Functions
	How the Host Adapter Functions Are Found
	Vertex Information Structures
	Using the Function Vector Macros

	Using scsi_info()
	Using scsi_alloc()
	Using scsi_free()
	Using scsi_command()
	Input to scsi_command()
	Command Execution
	Values Returned in a scsi_request Structure

	Using scsi_abort()

	Designing a SCSI Driver
	Configuring a SCSI Driver
	About Registration
	About Attaching a Device
	Device and Inventory Information
	Building hwgraph Entries
	Returning from pfxattach

	Opening a SCSI Device
	Accessing a SCSI Device
	About Detaching a Device
	About Unloading a SCSI Driver
	Creating Device Aliases

	SCSI Reference Data
	SCSI Error Messages
	SCSI Error Message Tables
	Adapter Error Codes (Table scsi_adaperrs_tab)
	SCSI Sense Codes (Table scsi_key_msgtab)
	Additional Sense Codes (Table scsi_addit_msgtab)

	A Note on FibreChannel Drivers

	Network Drivers VI
	Network Device Drivers
	Overview of Network Drivers
	Application Interfaces
	Protocol Stack Interfaces
	Device Driver Interfaces

	Network Driver Interfaces
	Kernel Facilities
	Principal ifnet Header Files
	Debugging Facilities
	Information Sources
	Network Inventory Entries
	Interface Changes for IRIX 6.5

	Multiprocessor Considerations
	Ineffective spl*() Functions
	Multiprocessor Locking Macros
	Compiler Flags for MP TCP/IP
	Mutual Exclusion Macros
	Macro Use

	Example ifnet Driver

	EISA Drivers VII
	EISA Device Drivers
	The EISA Bus in SGI Systems
	EISA Bus Overview
	EISA Request Arbitration
	EISA Interrupts
	EISA Data Transfers
	EISA Address Spaces
	EISA Locked Cycles
	EISA Byte Ordering
	EISA Product Identifier

	EISA Support in Indigo2 and Challenge M Series
	Available Card Slots
	EISA Address Mapping
	Interrupt Priority Scheduling

	EISA Configuration
	Configuring the Hardware
	Configuring IRIX
	Using the iospace Parameters
	Using the probe and exprobe Parameters
	Using the module Parameter

	Kernel Functions for EISA Support
	Mapping PIO Addresses
	Testing the PIO Map
	Using the Mapped Address
	Using the PIO Map in Functions

	Allocating IRQs and Channels
	Allocating and Programming an IRQ
	Allocating a DMA Channel

	Programming Bus-Master DMA
	Programming Slave DMA

	Sample EISA Driver Code
	Initialization Sketch
	Complete EISA Character Driver

	GIO Drivers VIII
	GIO Device Drivers
	GIO Bus Overview
	GIO Bus Address Spaces

	Configuring a GIO Device
	GIO VECTOR Line

	Writing a GIO Driver
	GIO-Specific Kernel Functions
	Registering an Interrupt Handler
	Configuring a Slot

	splgio0, splgio1, splgio2
	GIO Driver edtinit() Entry Point
	GIO Driver Interrupt Handler
	Using PIO
	Using DMA
	DMA To Multiple Pages
	DMA With Scatter/Gather Capability
	DMA Without Scatter/Gather Support

	Memory Parity Workarounds
	Example GIO Driver

	PCI Drivers IX
	PCI Device Attachment
	PCI Bus in SGI Workstations
	PCI Bus and System Bus
	Buses, Slots, Cards, and Devices
	Architectural Implications
	Byte Order Considerations
	Byte Order in Data Transfers
	Byte Order in Command and Status Transfers
	Byte Order for PIO
	Byte Order for DMA

	PCI Implementation in O2 Workstations
	Unsupported PCI Signals
	Configuration Register Initialization
	Address Spaces Supported
	64-bit Address and Data Support
	PIO Address Mapping
	DMA Address Mapping

	Slot Priority and Bus Arbitration
	Interrupt Signal Distribution

	PCI Implementation in Origin Servers
	Latency and Operation Order
	Configuration Register Initialization
	Unsupported PCI Signals
	Address Spaces Supported
	64-bit Address and Data Support
	PIO Address Mapping
	DMA Address Mapping

	Bus Arbitration
	Interrupt Signal Distribution

	Services for PCI Drivers
	IRIX 6.5 PCI Drivers
	About PCI Drivers
	About Registration
	About Attaching a Device
	About Unloading

	Using PIO Maps
	PIO Mapping Functions
	Allocating PIO Maps
	Preparing a device_desc_t
	Selecting the Address Space
	Sizing the Space
	Specifying the No-Sleep Flag
	Allocating PIO Bus Space

	Performing PIO With a PIO Map
	Accessing Memory and I/O Space
	Deactivating an Address and Map

	Using One-Step PIO Translation
	Accessing the Device Configuration
	Changes In Configuration Interface

	Interrogating PIO Maps
	PCI Drivers for the O2 (IP32) Platform
	PCI PIO Code Examples

	Using DMA Maps
	Allocating DMA Maps
	Preparing a device_desc_t
	Setting Flag Values

	Using a DMA Map
	Mapping an Address/Length List
	Mapping a Specific Buffer
	Completing DMA Transfers
	Deactivating Addresses and Maps
	Using One-Step DMA Translation

	Interrogating DMA Maps

	Registering an Interrupt Handler
	Creating an Interrupt Object
	Preparing a device_desc_t

	Connecting the Handler
	Connecting the Handler
	Handler Operation

	Disconnecting the Handler
	Interrogating an Interrupt Handler

	Registering an Error Handler
	Interrogating a PCI Device
	Interrogating a PCI Bus
	Example PCI Driver
	Other Code Examples

	STREAMS Drivers X
	STREAMS Drivers
	Driver Exported Names
	Streamtab Structure
	Driver Flag Constant
	Initialization Entry Points
	Entry Point open()
	Entry Point close()
	Put Functions wput() and rput()
	Service Functions rsrv() and wsrv()

	Building and Debugging
	Special Considerations for Multiprocessing
	Expanded Termio Interface
	Special Considerations for IRIX
	Extension of Poll and Select
	Support for Pipes
	Service Scheduling
	Supplied STREAMS Modules
	No #idefs
	Different I/O Hardware Model
	Different Network Model
	Support for CLONE Drivers
	Using the CLONE Driver
	Recognizing a Clone Request Independently
	Responding to a Clone Request

	Summary of Standard STREAMS Functions
	STREAMS Modules for X Input Devices
	The X Input Subsystem
	Xsgi Shared Memory Input Queue
	Xsgi and the IDEV Interface
	Xsgi Input Device Naming
	Opening Xsgi Input Devices
	Starting Up the Xsgi Server
	Opening from a Client

	Device Controls
	Where Controls Are Stored
	Control Syntax

	SGI Driver/Kernel API
	Driver Exported Names
	Kernel Data Structures and Declarations
	Kernel Functions

	Challenge DMA with Multiple IO4 Boards
	The IO4 Problem
	Software Fix
	Software Not Affected

	Fixing the IO4 Problem

	Glossary
	Index

