IRIX® Device Driver
Programmer’s Guide

Document Number 007-0911-210

CONTRIBUTORS
Written by David Cortesi, John Raithel, Bill Tuthill, and Anita Manders

Updated by Julie Boney and Steven Levine
[lustrated by Dany Galgani, Cheri Brown, and Chrystie Danzer
Production by Karen Jacobson

COPYRIGHT

© 1998-2003 Silicon Graphics, Inc. All rights reserved; provided portions may be copyright in
third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or
create derivative works from the contents of this electronic documentation in any manner, in
whole or in part, without the prior written permission of Silicon Graphics, Inc.

LIMITED RIGHTS LEGEND

The electronic (software) version of this document was developed at private expense; if
acquired under an agreement with the USA government or any contractor thereto, it is acquired
as "commercial computer software" subject to the provisions of its applicable license agreement,
as specified in (a) 48 CFR 12.212 of the FAR; or, if acquired for Department of Defense units, (b)
48 CFR 227-7202 of the DoD FAR Supplement; or sections succeeding thereto.
Contractor/manufacturer is Silicon Graphics, Inc., 1600 Amphitheatre Pkwy 2E, Mountain
View, CA 94043-1351.

TRADEMARKS AND ATTRIBUTIONS

Silicon Graphics, SGI, the SGI logo, Challenge, Indigo, IRIS, IRIX, O2, Octane, Onyx, Onyx2,
and Origin are registered trademarks and Indigo?, Indigo? Maximum Impact, IRIS InSight,
Power Challenge, Power Channel, Power Indigo? Power Onyx, and REACT/pro are
trademarks of Silicon Graphics, Inc., in the United States and /or other countries worldwide.
Indy is a registered trademark, used under license in the United States and owned by Silicon
Graphics, Inc. in other countries worldwide.

IBM is a trademark of International Business Machines Corporation. Intel is a registered
trademark of Intel Corporation. MC6800, MC68000, and VERSAbus are trademarks of Motorola
Corporation. MIPS, R4000, and R8000 are registered trademarks and R5000 and R10000 are
trademarks of MIPS Technologies, Inc., used under license by Silicon Graphics, Inc. Sun and
SunOS are trademarks of Sun Microsystems, Inc. UNIX, the X device, and X Window System
are registered trademarks of the Open Group in the United States and other countries.

Cover design by Sarah Bolles, Sarah Bolles Design, and Dany Galgani, SGI Technical
Publications.

New Features in This Guide

This rewrite of the IRIX Device Driver Programmer’s Guide supports the IRIX 6.5.22 release.

New Features Documented

This manual includes information on using a PCI driver to interrogate a PCI Bus in
“Interrogating a PCI Bus” on page 757.

007-0911-210 iii

007-0911-210

Record of Revision

Version

120

130

140

150

160

170

180

190

200

210

Description

July 1998
Incorporates information for the IRIX 6.5 release.

October 1998
Incorporates information for the IRIX 6.5.2 release.

February 1999

Incorporates information for the IRIX 6.5.3 release.

April 2000
Incorporates information for the IRIX 6.5.8 release.

June 2000

Incorporates information for the IRIX 6.5.9 release.

December 2000
Incorporates information for the IRIX 6.5.11 release.

May 2001

Incorporates information for the IRIX 6.5.12 release.

July 2002
Incorporates information for the IRIX 6.5.17 release.

August 2003

Incorporates information for the IRIX 6.5.21 release.

November 2003
Incorporates information for the IRIX 6.5.22 release.

007-0911-210

Contents

Examples
Figures .

Tables
What You Need to Know to Write Device Drivers
Updating Device Drivers from Previous Releases to IRIX 6.5
Updating a Device Driver from IRIX 6.2
Updating a Device Driver from IRIX 6.3
Updating a Device Driver from IRIX 6.4
What This Guide Contains
Other Sources of Information
Developer Program
Internet Resources
Standards Documents
Important man pages.
Additional Reading
Reader Comments .

XXVil
XXix

XXX1

. XXXVil
LXXXViil
LXXXViil
. XXXIX

. XXXIX

. xl
. xli
. xli
. xli
. xlid
. xlii
xliii

xliv

Vii

Contents

PARTI IRIX Device Integration

1. Physical and Virtual Memory .3
CPU Access to Memory and Devices. .3
CPU Modules . .4
CPU Access to Memory .5
Processor Operating Modes . . 6
Virtual Address Mapping . 6
Address Space Creation . .7
Address Exceptions . . 8
CPU Access to Device Registers . . 8
Direct Memory Access .10
PIO Addresses and DMA Addresses 11
Cache Use and Cache Coherency .13
The 32-Bit Address Space . .14
Segments of the 32-bit Address Space .15
Virtual Address Mapping .17
User Process Space—kuseg .17
Kernel Virtual Space—kseg?2 . .18
Cached Physical Memory—kseg0 .18
Uncached Physical Memory—ksegl .18
The 64-Bit Address Space . .19
Segments of the 64-Bit Address Space .19
Compatibility of 32-Bit and 64-Bit Spaces .21
64-Bit Address Format .21
Virtual Address Mapping .22
User Process Space—xkuseg . .23
Supervisor Mode Space—xksseg .23
Kernel Virtual Space—xkseg . .23
Physical Address24
Cache-Controlled Physical Memory—xkphys . .24

viii 007-0911-210

Contents

007-0911-210

Address Space Usage in SGI Origin 2000 Systems.
User Process Space and Kernel Virtual Space .
Uncached and Special Address Spaces.
Cached Access to Physical Memory
Uncached Access to Memory
Synchronization Access to Memory

Device Driver Use of Memory
Allowing for 64-Bit Mode
Memory Use in User-Level Drivers.

Memory Use in Kernel-Level Drivers .

Device Configuration
Device Special Files
Devices as Files
Block and Character Device Access.
Multiple Device Names .
Major Device Number
Minor Device Number
Creating Conventional Device Names .
Hardware Graph
UNIX Hardware Assumptions, Old and New.
Hardware Graph Features
/hw Filesystem
Driver Interface to Hwgraph
Hardware Inventory .
Using the Hardware Inventory .
Creating an Inventory Entry. .
Using ioconfig for Global Controller Numbers
Configuration Files
Master Configuration Database .
Kernel Configuration Files
System Tuning Parameters .

X Display Manager Configuration .

. 26
. 26
. 26
.27
.29
.29
.31
.31
.32
.34

.37
.37
. 38
. 38
. 39
. 40
.41
. 42
. 44
. 44
. 45
. 48
. 49
. 50
. 50
. 53
. 53
. 57
. 57
. 58
.61
.61

Contents

3.

PART II

4.

Device Control Software .63
User-Level Device Control .63
PCI Mapping Support. .64
EISA Mapping Support .64
VME Mapping Support . . . e %6
User-Level DMA From the VMEBus65
User-Level Control of SCSI Devices.65
Managing External Interrupts66
Kernel-Level Device Control .66
Kinds of Kernel-Level Drivers66
Typical Driver Operations67
Upper and Lower Halves.75
Layered Drivers .77
Combined Block and Character Drivers77
Drivers for Multiprocessors77
Loadable Drivers .78

Device Control From Process Space

User-Level Access to Devices83
PCI Programmed I/O B - €)
Mapping a PCI Device Into Process Address Space ey .
PCI Device Special Files .44
Using mmap() With PCI Devices86
PCI Bus Hardware Errors.8
PCIPIO Example .. .87
EISA Programmed I/O . . . o <
Mapping an EISA Device Into Memory <
EISA PIO Bandwidth .9
VME Programmed I/O . . . e 92
Mapping a VME Device Into Process Address Space e e 92
VMEPIO Access .%
VME User-Level DMA. .9%
Using the DMA Library Functions97

007-0911-210

Contents

007-0911-210

User-Level Access to SCSI Devices.
Overview of the dsreq Driver
Generic SCSI Device Special Files

Major and Minor Device Numbers in /dev/scsi .

Form of Filenames in /dev/scsi.

Creating Additional Names in /dev/scsi .

Relationship to Other Device Special Files.
The dsreq Structure

Values for ds_flags

Data Transfer Options

Return Codes and Status Values

Testing the Driver Configuration

Using the Special DS_RESET and DS_ABORT Calls .

Using DS_ABORT
Using DS_RESET .
Using dslib Functions .
dslib Functions
Using dsopen() and dsclose()
Issuing a Request With doscsireq() .
SCSI Utility Functions .
Using Command-Building Functions .

Example dslib Program

Control of External Interrupts

External Interrupts in Challenge and Onyx Systems .

Generating Outgoing Signals

Responding to Incoming External Interrupts .
External Interrupts In Origin 2000 and Origin 200.

Generating Outgoing Signals

Responding to Incoming External Interrupts .

.99
.100
.100
.101
.101
.102
.103
.103
.105
.107
.107
.110
111
111
112
112
112
113
115
115
117
124

135
135
136
137
.141
.142
.144

Xi

Contents

PART III

7.

Xii

Kernel-Level Drivers

Structure of a Kernel-Level Driver .
Summary of Driver Structure .
Entry Point Naming and Iboot
Entry Point Summary .
Driver Flag Constant
Flag D_MP .
Flag D_MT .

Flag D_PCI_HOT_PLUG_ATTACH.

Flag D_PCI_HOT_PLUG_DETACH.

Flag D_WBACK .
Flag D_OLD Not Supported .
Initialization Entry Points .
When Initialization Is Performed
Entry Point init()
Entry Point edtinit()
Entry Point start() .
Entry Point reg()
Attach and Detach Entry Points .
Entry Point attach()
Entry Point detach()
Open and Close Entry Points .
Entry Point openy() .
Entry Point close() .
Control Entry Point

Choosing the Command Numbers .

Supporting 32-Bit and 64-Bit Callers
User Return Value .

Data Transfer Entry Points
Entry Points read() and write()
Entry Point strategy() .

149
150
150
153
156
156
157
157
157
158
158
158
159
159
160
161
161
162
162
166
167
167
170
171
172
172
172
173
173
175

007-0911-210

Contents

007-0911-210

Poll Entry Point .

Use and Operation of poll(2)

Entry Point poll() .

Memory Map Entry Points

Concepts and Use of mmap()

Entry Point map().

Entry Point mmap() .

Entry Point unmap() .

Interrupt Entry Point and Handler .

Associating Interrupt to Driver .

Interrupt Handler Operation

Interrupts as Threads.

Mutual Exclusion .

Interrupt Performance and Latency
Support Entry Points .

Entry Point unreg()

Entry Point unload() .

Entry Point halt() .

Entry Point size() .

Entry Point print() .
Handling 32-Bit and 64-Bit Execution Models .
Designing for Multiprocessor Use

The Multiprocessor Environment .

Synchronizing Within Upper-Half Functions .

Coordinating Upper-Half and Interrupt Entry Points

Converting a Uniprocessor Driver .

176
177
.178
.180
.180
.181
.183
.184
.185
186
.186
.188
.189
.190
.190
.190
.190
191
.192
.192
.193
.194
.194
196
197
.199

xiii

Contents

8. Device Driver/Kernel Interface 201
Important Data Types . 202
Hardware Graph Types 202
Address Types. 203
Address/Length Lists. 203
Structureuio_t. 204
Structurebuf_t. 206
Lock and Semaphore Types 208
Device Number Types 209
Important Header Files . 211
Kernel Memory Allocation 213
General-Purpose Allocation . . A
Allocating Memory in Specific Nodes of a Or1g1n2000 System 214
Allocating Objects of SpecificKinds. 215
Transferring Data . 217
General Data Transfer. . . . A V4
Transferring Data Through a uio_t Ob]ect A £
Managing Virtual and Physical Addresses 220
Managing Mapped Memory 22
Working With Page and Sector Units 221
Using Address/Length Lists. 223
Setting Up a DMA Transfer 22
Testing Device Physical Addresses 231
Hardware Graph Management 23
Interrogating the hwgraph 232
Extending the hwgraph 233
Attaching Information to Vertexes 239
User Process Administration 242
Sending a Process Signal 243

Xiv 007-0911-210

Contents

007-0911-210

Waiting and Mutual Exclusion
Mutual Exclusion Compared to Waiting
Basic Locks
Long-Term Locks .
Reader/Writer Locks .
Priority Level Functions .
Waiting for Time to Pass .
Waiting for Memory to Become Available.
Waiting for Block I/O to Complete .
Waiting for a General Event .
Semaphores

Using Kernel Threads

Building and Installing a Driver
Defining Device Numbers
Selecting a Major Number
Selecting Minor Numbers
Defining Device Special Files.
Static Definition of Device Special Files
Dynamic Definition of Device Special Files
Compiling and Linking
Platform Support . .
Using /var/sysgen/Makefile.kernio
Compiler Variables
Compiler Options.
Configuring a Nonloadable Driver .
How Names Are Used in Configuration
Placing the Object File in /var/sysgen/boot .

Describing the Driver in /var/sysgen/master.d .

Configuring a Kernel .

Generating a Kernel .

.244
.244
.245
.247
.250
.252
.253
.255
.255
.257
.260
.262

.267
.267
.268
.268
.269
.269
.269
.270
.270
.270
271
272
.273
274
274
274
.278
.278

XV

Contents

XVi

10.

Configuring a Loadable Driver
Public Global Variables .
Compile Options for Loadable Drivers .
Master File for Loadable Drivers.
Loading .
Registration.
Unloading .

Testing and Debugging a Driver
Preparing the System for Debugging
Placing symmon in the Volume Header
Enabling Debugging in irix.sm
Generating a Debugging Kernel .
Specifying a Separate System Console .
Verifying the Debugging Tools .
Producing Diagnostic Displays
Using cmn_err .
Using printf()
Using ASSERT .
Using symmon .
How symmon Is Entered .
Commands of symmon

Syntax of Command Elements

Commands for Symbol Conversion and Lookup .

Commands to Control Execution Flow .
Commands to Manage Virtual Memory
Commands to Display Memory .
Commands to Display the hwgraph.
Utility Commands.

279
280
280
280
281
282
283

285
285
285
287
289
290
290
291
291
293
293
293
294
296
296
297
298
299
300
301
302

007-0911-210

Contents

Usingidbg G (04
Loading and Invokmg 1dbg G ()¢
Commands ofidbg G 10
Commands to Display Memory and Symbols T (1
Commands to Display Process Information306
Commands to Display Locks and Semaphores307
Commands to Display I/O Status308
Commands to Display buf_t Objects308
Commands to Display STREAMS Structures309
Commands to Display Network-Related Structures309

Usingicrash .31

11. Driver Example .31

Installing the Example Driver31
Obtaining the Source Files 312
Compiling the Example Driver 312
Configuring the Example Driver 312
Creating Device Special Files 313
Veritying Driver Operation313

Example Driver SourceFiles. 315
DescriptiveFile . 315
System File. .3l6
HeaderFile .36
Driver Sourceo.o.o.o0.320
User Program Source. .336

PART IV VME Device Drivers

12. VME Device Attachment on Origin 2000/Onyx2.343
Overview of the VMEBus .344

VME History 344

VME Features. 344

007-0911-210 XVii

Contents

13.

XViii

About VME Bus Attachment .

The VME Bus Controller .

VME PIO Operations .

VME DMA Operations

Operation of the DMA Engine .
About VME Bus Addresses and System Addresses

User-Level and Kernel-Level Addressing .

PIO Addressing and DMA Addressing .
About VME in the Origin2000

About the VME Controller

Universe II Controller Chip
Configuring VME Devices. .

VME Bus and Interrupt Naming.

Directing VME Interrupts.

VME Device Naming .

Defining VME Devices with the VECTOR Statement .

Services for VME Drivers on Origin 2000/Onyx2 .
About VME Drivers .o
About VME Support Functions .
Initializing the Driver .
Initializing a VME Device .
Information in the edt_t Structure
Setting Up the Hardware Graph .
Dealing with Initialization Errors
Creating and Using PIO Maps
Allocating and Freeing PIO Maps
Using a PIO Map for PIO .
Using a PIO Map for Block Copy
Creating and Using DMA Maps .
Allocating a DMA Map
Using a DMA Map for One Buffer
Using a DMA Map with Address/Length Lists

346
347
348
349
349
350
351
351
353
354
356
358
358
359
360
360

365
366
366
368
368
369
371
374
374
375
378
379
379
380
381
382

007-0911-210

Contents

14.

007-0911-210

Handling VME Interrupts .
Connecting the Interrupt Handler .

Porting From IRIX 6.2 .

Sample VME Device Driver .

VME Device Attachment on Challenge/Onyx

Overview of the VME Bus
VME History .

VME Features . . .

VME Bus in Challenge and Onyx Systems .

The VME Bus Controller .

VME PIO Operations .

VME PIO Bandwidth.

VME DMA Operations .
Operation of the DMA Engine .
DMA Engine Bandwidth.

VME Bus Addresses and System Addresses
User-Level and Kernel-Level Addressing .
PIO Addressing and DMA Addressing
PIO Addressing in Challenge and Onyx Systems.
DMA Addressing . .

Mapping DMA Addresses

Configuring VME Devices
Configuring Device Addresses .
Configuring the System Files
Allocating an Interrupt Vector Dynam1cally

VME Hardware in Challenge and Onyx Systems .
VME Hardware Architecture
Maximum Latency
VME Bus Numbering.

VMEDbus Channel Adapter Module (VCAM) Board .

VME Interface Features and Restrictions

VME Hardware Features and Restrictions.

.382
.383
.386
.387

463
.464
.464
.464
466
.466
467
468
468
.469
.470
471
.471
472
473
.477
477
.479
.480
.480
.482
.484
.485
.487
.487
.487
.490
493

XiX

Contents

XX

15.

PART V

16.

Services for VME Drivers on Challenge/Onyx
Kernel Services for VME
Mapping PIO Addresses .
Mapping DMA Addresses .
Allocating an Interrupt Vector Dynamlcally
Supporting Early 104 Cache Problems .
Sample VME Device Driver

SCSI Device Drivers

SCSI Device Drivers . .

SCSI Support in SGI Systems .
SCSI Hardware Support .
IRIX Kernel SCSI Support
SCSI Devices in the hwgraph.
Hardware Administration

Host Adapter Facilities .
Purpose of the Host Adapter Driver.
Host Adapter Concepts

Overview of Host Adapter Functions

How the Host Adapter Functions Are Found .

Using scsi_info()
Using scsi_alloc() .
Using scsi_free()
Using scsi_command ()

Using scsi_abort() .

497
497
497
501
503
505
506

521
522
522
523
523
527
529
529
529
531
531
534
534
535
536
542

007-0911-210

Contents

PART VI

17.

007-0911-210

Designing a SCSI Driver .
Configuring a SCSI Driver
About Registration
About Attaching a Device
Opening a SCSI Device
Accessing a SCSI Device .
About Detaching a Device

About Unloading a SCSI Driver.

Creating Device Aliases .
SCSI Reference Data

SCSI Error Messages .

SCSI Error Message Tables .
A Note on FibreChannel Drivers

Network Drivers

Network Device Drivers .
Overview of Network Drivers
Application Interfaces
Protocol Stack Interfaces .
Device Driver Interfaces .
Network Driver Interfaces
Kernel Facilities .
Principal ifnet Header Files .
Debugging Facilities .
Information Sources .
Network Inventory Entries .
Interface Changes for IRIX 6.5
Multiprocessor Considerations .

Ineffective spl*() Functions .

Multiprocessor Locking Macros.
Compiler Flags for MP TCP/IP .

Mutual Exclusion Macros

Example ifnet Driver .

.543
.544
.544
.546
.547
.548
.548
.548
.549
.549
.550
.550
.556

.559
.560
.561
.561
.562
.562
.563
.563
.564
.564
.565
.566
.568
.568
.568
.569
.569
.570

XXi

Contents

PART VII

18.

PART VIII

19.

XXii

EISA Drivers

EISA Device Drivers . .
The EISA Bus in SGI Systems .
EISA Bus Overview
EISA Request Arbitration.
EISA Interrupts
EISA Data Transfers
EISA Address Spaces .
EISA Locked Cycles
EISA Byte Ordering
EISA Product Identifier

EISA Support in Indigo? and Challenge M Series .

Available Card Slots

EISA Address Mapping

Interrupt Priority Scheduling
EISA Configuration .

Configuring the Hardware

Configuring IRIX .

Kernel Functions for EISA Support .

Mapping PIO Addresses .
Allocating IRQs and Channels

Programming Bus-Master DMA .

Programming Slave DMA
Sample EISA Driver Code.
Initialization Sketch

Complete EISA Character Driver

GIO Drivers

GIO Device Drivers
GIO Bus Overview . ..
GIO Bus Address Spaces .

601
601
601
603
603
603
603
604
604
604
606
606
607
607
607
607
608
611
611
613
616
617
618
619
621

683
683
684

007-0911-210

Contents

Configuring a GIO Device .68
GIOVECTORLine .68
Writing a GIO Driver .686
GIO-Specific Kernel Functions68
splgio0, splgiol, splgio2 .688
GIO Driver edtinit() Entry Point688
GIO Driver Interrupt Handler69
UsingPIO .69
UsingDMA eT7
Memory Parity Workarounds69
Example GIO Driver .69

PART IX PCI Drivers

20. PCI Device Attachment .713
PCI Bus in SGI Workstations. 714
PCI Bus and SystemBus 714
Buses, Slots, Cards, and Devices715
Architectural Implications716
Byte Order Considerations 717
PCI Implementation in O2 Workstations719
Unsupported PCI Signals72
Configuration Register Initialization720
Address Spaces Supported72
Slot Priority and Bus Arbitration 722
Interrupt Signal Distribution722
PCI Implementation in Origin Servers723
Latency and OperationOrder723
Configuration Register Initialization724
Unsupported PCI Signals 724
Address Spaces Supported725
Bus Arbitration .7206
Interrupt Signal Distribution727

007-0911-210 XXiil

Contents

21. Services for PCI Drivers . 729
IRIX 6.5 PCI Drivers . 73
About PCI Drivers . 73

About Registration . 73
About Attaching a Device 732
About Unloading . 733
UsingPIOMaps . 74
PIO Mapping Functions 734
Allocating PIOMaps . 73
Performing PIO WithaPIOMap 738
Using One-Step P1O Translation. 740
Accessing the Device Configuration. 740
Interrogating PIOMaps 743
PCI Drivers for the O2 (IP32) Platform 743
UsingDMA Maps . 746
Allocating DMAMaps 748
UsingaDMAMap .74
Interrogating DMA Maps. 751
Registering an Interrupt Handler. 752
Creating an Interrupt Object 752
Connecting the Handler 753
Disconnecting the Handler 75
Interrogating an Interrupt Handler 755
Registering an Error Handler. 75
Interrogating a PCI Device 757
Interrogatinga PCIBus . 75
Example PCI Driver . 760
Other Code Examples. 775

XXiv 007-0911-210

Contents

PART X STREAMS Drivers

22. STREAMS Drivers
Driver Exported Names
Streamtab Structure .
Driver Flag Constant .
Initialization Entry Points
Entry Point open()
Entry Point close()
Put Functions wput() and rput()
Service Functions rsrv() and wsrv().
Building and Debugging .
Special Considerations for Multiprocessing
Expanded Termio Interface
Special Considerations for IRIX .
Extension of Poll and Select .
Support for Pipes .
Service Scheduling
Supplied STREAMS Modules
No #idefs
Different I/O Hardware Model .
Different Network Model
Support for CLONE Drivers.
Summary of Standard STREAMS Functions
STREAMS Modules for X Input Devices
The X Input Subsystem .
Xsgi Shared Memory Input Queue
Xsgi and the IDEV Interface .
Xsgi Input Device Naming .
Opening Xsgi Input Devices.

Device Controls

A. SGI Driver/Kernel API

Driver Exported Names

007-0911-210

779
.780
.780
.780
.780
.781
.781
.782
.783
.784
.785
.786
.787
.787
.787
.788
.788
.788
.789
.789
.789
.792
.794
.794
.795
.796
.796
797
.798

.801
.802

XXV

Contents

XXVi

Kernel Data Structures and Declarations

Kernel Functions

Challenge DMA with Multiple I04 Boards
The 104 Problem

Software Fix

Software Not Affected
Fixing the 104 Problem

Glossary .

Index.

803
805

825
825
826
826
827

829
841

007-0911-210

007-0911-210

Examples

Example 2-1
Example 2-2
Example 4-1
Example 5-1
Example 5-2
Example 5-3
Example 6-1
Example 7-1
Example 7-2
Example 7-3
Example 7-4
Example 7-5
Example 7-6
Example 7-7
Example 7-8
Example 7-9
Example 8-1
Example 8-2
Example 8-3
Example 8-4
Example 8-5
Example 8-6
Example 8-7
Example 8-8
Example 9-1
Example 10-1
Example 10-2
Example 10-3

Testing the Hardware Inventory in a Shell Script .
Function Returning Type Code for CPU Module
PCI Configuration Space Dump .

Testing the Generic SCSI Configuration .

Code of the testunitread00() Function

Program That Uses dslib Functions .

Challenge Function to Test and Set External Interrupt Pulse Wldth

Compiling Driver Prefix as a Macro .
Entry Point Name Macros .

Hypothetical pfxread() entry in a Character / Block Driver

pixpoll() Code for Hypothetical Driver .

Edited Fragment of flash_map() .

Hypothetical Call to pollwakeup()

Entry Point pfxprint() .

Conditional Choice of Mutual Exclus1on Lock Type
Uniprocessor Upper-Half Wait Logic

Typical Code to Get Device Info .

Hypothetical Code for a Single Vertex
Hypothetical Code for Multiple Vertexes

LIFO Queue Using Basic Locks

Skeleton Code for Use of SV_WAIT . .
Creation and Operation of a Typical System Thread
XTHREAD FLOAT Entry .

XTHREAD CPU Entry .

Defining Variables in Master Descriptive File .
Verifying Presence of symmon

Debugging Macros Using cmn_err() .

Invoking idbg Interactively

.51
. 52
. 87
111
.123
.124

139

151
.152
.174
179
.183
.187
.192
.198
.199
.232
.234
.237
.246
.259
.263
.265
.265
277
.286
.292
.303

XXVii

Examples

XXViii

Example 10-4
Example 11-1
Example 11-2
Example 11-3
Example 12-1
Example 13-1
Example 13-2
Example 14-1
Example 15-1
Example 15-2
Example 17-1
Example 18-1
Example 18-2
Example 18-3
Example 18-4
Example 18-5
Example 18-6
Example 19-1
Example 19-2
Example 19-3
Example 19-4
Example 19-5
Example 19-6
Example 20-1
Example 21-1
Example 21-2
Example 21-3
Example 21-4
Example 21-5
Example 21-6
Example 21-7
Example 21-8
Example 21-9
Example 22-1

Invoking idbg with a Log File .

Startup Messages from snoop Driver .

Driver Administration Statement in snoop.sm .

Typical Output of snoop Driver Unit Test

Hypothetical VME Configuration File

Adding a Vertex to the Hardware Graph

Sample VME Driver.

Comparing pio_badaddr() to pio_ badaddr Val()

Comparing pio_badaddr() to pio_badaddr_val()

Example VME Character Driver

Skeleton ifnet Driver

Sketch of EISA Initialization

Master File /var/sysgen/rap for RAP-10 Driver
Configuration File /var/sysgen/rap.sm for RAP-10 Driver

Installation Script for RAP-10 Driver .

Program to Test RAP-10 Driver

Complete EISA Character Driver for RAP-10

GIO Driver edtinit() Entry Point .

Hypothetical PIO Routine for GIO

Strategy Code for Hypothetical Scatter/Gather GIO Device

Strategy() Code for GIO Device Without Scatter/Gather

Disabling SysAD Parity Checking During PIO .

Complete Driver for Hypothetical GIO Device .

Declaration of Memory Copy of Configuration Space .

Driver Registration . .

Allocation of PCI PIO Map.

Function to Read Using a Map

Configuration Access Macros .

Reading PCI Configuration Space.

Non-O2 PCI PIO Code Example

02 PCI PIO Code Example.

Setting Up a PCI Interrupt Handler

Obtaining Bus Information.

Testing Pipe Configuration

303
313
313
314
362
373
387
475
499
506
570
619
621
621
622
622
624
689
690
692
694
698
698
718
732
736
739
741
742
744
745
754
760
787

007-0911-210

Figures

Figure 1-1 CPU Access to Memory 5
Figure 1-2 CPU Access to Device Registers (Programmed I/ O)9
Figure 1-3 Device Access to Memory.10
Figure 1-4 Device Access Through a Bus Adapter11
Figure 1-5 The 32-Bit Address Space . . . e [
Figure 1-6 MIPS 32-Bit Virtual Address Format. . . . R V4
Figure 1-7 Main Parts of the MIPS R10000 Mlcroprocessor 64-Bit Address

Space.20
Figure 1-8 Selecting the MIPS 64-Bit Address Space Segments o 22
Figure 1-9 MIPS 64-Bit Virtual Address Format.22
Figure 1-10 Address Decoding for Physical Memory Access24
Figure 1-11 SGI Origin 2000 Physical Address Decoding28
Figure 1-12 SGI Origin 2000 Fetch-and-Op Address Decoding. 30
Figure 2-1 Part of a Typical Hwgraph46
Figure 3-1 Overview of DeviceOpen.68
Figure 3-2 Overview of Device Control69
Figure 3-3 Overview of Programmed KernelI/O70
Figure 3-4 Overview of Memory Mapping72
Figure 3-5 Overview of DMAI/O73
Figure 5-1 Bit Assignments in SCSI Device Minor Numbers101
Figure 8-1 Address/Length List Concepts204
Figure 12-1 Relationship of VME Bus to System Bus. 347
Figure 12-2 VME Bus Enclosure and Cable to an Origin 2000 Deskside . . .354
Figure 12-3 VME Bus Connection to System Bus.355
Figure 14-1 Relationship of VME Bus to System Bus. 467
Figure 14-2 VMECC, the VMEbus Adapter488
Figure 14-3 I/0O Address to System Address Mapping492

007-0911-210 XXiX

Figures

XXX

Figure 14-4
Figure 16-1
Figure 17-1
Figure 18-1
Figure 18-2
Figure 19-1
Figure 20-1

VMECC Contribution to VME Handshake Cycle Time.

SCSI Vertexes and Data Structures
Overview of Network Architecture .
High-Level Overview of EISA Bus in Indigo?
Encoding of the EISA Manufacturer ID .
The SysAD Bus in Relation to GIO

PCI Bus In Relation to System Bus

494
532
560
602
605
697
715

007-0911-210

Tables

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 5-1
Table 5-2
Table 5-3
Table 5-4
Table 5-5
Table 5-6
Table 5-7
Table 5-8
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 7-1
Table 8-1
Table 8-2
Table 8-3

007-0911-210

CPU Modules and System Names .
Number of TLB Entries by Processor Type .
Cache Algorithm Selection .
Special Address Spaces in SGI Orlgm 2000 .

SGI Origin 2000 Fetch-and-Op Operations .

PCI Device Special File Names for User Access.

EISA Bus PIO Bandwidth (32-Bit Slave, 33-MHz GIO Clock) .
EISA Bus PIO Bandwidth (16-Bit Slave, 33-MHz GIO Clock) .

Data Width Names in VME Special Device Names
Fields of the dsreq Structure .

Flag Values for ds_flags

Return Codes From SCSI Operatlons

SCSI Status Codes .

SCSI Message Byte Values.

Fields of the dsconf Structure .

dslib Function Summary .

Lookup Tables in dslib. .

Functions for Outgoing External Signals in Challenge.
Functions for Incoming External Interrupts.

Functions for Fixed External Levels in Origin 2000.
Functions for Pulses and Pulse Trains in Origin 2000 .
Functions for Outgoing External Signals in Origin 2000
Functions for Incoming External Interrupts in Challenge .
Entry Points in Alphabetic Order.

Accessible Fields of buf_t Objects

Functions to Manipulate Device Numbers .

Header Files Often Used in Device Drivers .

.25

.27

. 30
. 85
.92
.92

. 94

.104

105

.107

.109
.109
.110
112

117

136
137
.142
.143
.143

.144

153
.207

.210

211

XXXi

Tables

Table 8-4

Table 8-5

Table 8-6

Table 8-7

Table 8-8

Table 8-9

Table 8-10
Table 8-11
Table 8-12
Table 8-13
Table 8-14
Table 8-15
Table 8-16
Table 8-17
Table 8-18
Table 8-19
Table 8-20
Table 8-21
Table 8-22
Table 8-23
Table 8-24
Table 8-25
Table 8-26
Table 8-27
Table 8-28
Table 8-29
Table 8-30
Table 8-31
Table 8-32
Table 8-33
Table 9-1

Table 9-2

Table 9-3

XXXii

Functions for Kernel Virtual Memory
Functions for Kernel Memory In Specific Nodes
Functions for Allocating pollhead Structures

Functions for Allocating buf_t Objects and Buffers .

Functions for General Data Transfer .
Functions Moving Data Using uio_t .
Functions to Manipulate a vhandl_t Object .

Constants and Macros for Page and Sector values .

Functions to Convert Bytes to Sectors or Pages .
Functions to Explicitly Manage Alenlists.
Functions to Populate Alenlists

Functions to Manage Alenlist Cursors
Functions to Use an Alenlist Based on a Cursor .
Functions to Map Buffer Pages

Functions Related to Cache Coherency
Functions to Test Physical Addresses.
Functions to Query the Hardware Graph
Functions to Construct Edges and Vertexes .
Functions to Manage Attributes

Functions for User Process Management.
Functions for Basic Locks

Functions for Mutex Locks.

Functions for Sleep Locks .

Functions for Reader/Writer Locks

Functions to Set Interrupt Levels .

Functions for Timed Delays .
Functions for Synchronizing Block I/O .

Functions for Synchronization: sleep /wakeup .

Functions for Synchronization: Synchronization Variables

Functions for Semaphores .

Compiler Variables Tested by System Header Files.
Compiler Options Kernel Modules

Fields of Descriptive Line in Master File .

213
215
215
216
217
219
220
221
222
223
224
225
225
229
230
231
232
233
241
242
245
247
249
251
252
253
255
257
258
260
271
272
275

007-0911-210

Tables

Table 9-4
Table 9-5
Table 10-1
Table 10-2
Table 10-3
Table 10-4
Table 10-5
Table 10-6
Table 10-7
Table 10-8
Table 10-9
Table 10-10
Table 10-11
Table 10-12
Table 10-13
Table 12-1
Table 12-2
Table 13-1
Table 13-2
Table 13-3
Table 13-4
Table 13-5
Table 13-6
Table 13-7
Table 13-8
Table 13-9
Table 14-1
Table 14-2
Table 14-3
Table 14-4
Table 14-5
Table 14-6
Table 15-1

007-0911-210

Flag Values for Nonloadable Drivers

Flag Values for Loadable Drivers. .
Commands for Symbol Conversion and Lookup
Commands to Control Execution.

Commands to Manage Virtual Memory .
Commands to Display Memory .

Utility Commands .

Utility Commands . . .
Commands to Display Memory and Symbols .
Commands to Display Process Information.
Commands to Display Locks and Semaphores .
Commands to Display I/O Status

Commands to Display buf_t Objects.

Commands to Display STREAMS Structures
Commands to Display Network-Related Structures
Accessible VME PIO Addresses on Any Bus
Universe II Register Settings .

Functions of the VME I/0O Infrastructure

VME Driver Contents of edt_t Structure.

VME Driver Contents of iospace_t Structures .
Functions to Create and Use PIO Maps .

Address Space and Modifiers Available for PIO
Functions That Operate on DMA Maps . .
Address Space and Modifiers Available for DMA .
Functions for Interrupt Control .
VME Kernel Function Compatibility Summary.
VME Bus PIO Bandwidth . .
VME Bus Bandwidth, DMA Engine, D32 Transfer .
Functions to Create and Use PIO Maps .
Functions That Operate on DMA Maps .

Accessible VME Addresses in Challenge and Onyx Systems .

Functions to Manage Interrupt Vector Values .
Functions to Create and Use PIO Maps .

.275
.280
.297
.298
.300
.300
.301
.302
.305
.306
.307
.308
.308
.309
.309
.352
.357
.367
.369
.370
.375
.377
.379
.381
.383
.386
.468
.470
474
478
.480
.483
.498

XXXiii

Tables

Table 15-2
Table 15-3
Table 16-1
Table 16-2
Table 16-3
Table 16-4
Table 16-5
Table 16-6
Table 16-7
Table 16-8
Table 16-9
Table 16-10
Table 16-11
Table 16-12
Table 17-1
Table 17-2
Table 18-1
Table 18-2
Table 18-3
Table 18-4
Table 19-1
Table 20-1
Table 20-2
Table 20-3
Table 21-1
Table 21-2
Table 21-3
Table 21-4
Table 21-5
Table 21-6
Table 21-7
Table 21-8
Table 21-9

XXXIiV

Functions That Operate on DMA Maps .
Functions to Manage Interrupt Vector Values
Host Adapter Function Summary .

Macro Access to SCSI Information

Input Fields of the scsi_request Structure
Values for the sr_flags Field of a scsi_request
Values Returned From a SCSI Command
Software Status Values From a SCSI Request
SCSI Status Bytes

Host Adapter Status After a SCSI Request
SCSI Device Type Numbers

Adapter Error Codes .

Primary Sense Key Error Table

Additional Sense Code Table .

Important Reference Pages Related to Network Drivers
Mutual Exclusion Macros for ifnet Drivers
Functions to Create and Use PIO Maps
Functions for IRQ and Channel Allocation
Functions That Operate on DMA Maps .
Functions for EISA DMA

GIO Slot Names and Addresses

PIO Byte Order in 32-bit Transfer .

PCI Interrupt Distribution to System Interrupt Numbers .

PCI Card Interrupt Pin Distribution .

Functions for PIO Maps for the PCI Bus .

PIO Map Address Space Constants

Functions for Interrogating PIO Maps

Functions for Simple DMA Maps for PCI
Functions for Interrogating DMA Maps .
Functions for Managing PCI Interrupt Handlers
Functions for Interrogating an Interrupt Object .
Declaration Used In Setting Up PCI Error Handlers
Functions for Interrogating a PCI Device.

502
504
531
533
536
537
539
540
541
541
544
551
552
553
565
569
611
614
617
618
684
718
723
727
735
737
743
746
751
752
755
756
757

007-0911-210

Tables

007-0911-210

Table 21-10 Functions for Interrogatinga PCIbus758
Table 21-11 Macros for Extracting PCI Bus Information.759
Table 22-1 Multiprocessing STREAMS Functions785
Table 22-2 Kernel Entry Points792
Table A-1 Driver Exported Names802
Table A-2 Device Driver Interface Objects803
Table A-3 STREAMS Driver Interface Objects804
Table A-4 Kernel Functions805

XXXV

About This Guide

This guide describes the ways in which hardware devices are integrated into and
controlled from an SGI computer system running the IRIX operating system version 6.5
and later.

Note: This edition applies only to IRIX versions 6.5 and later, and discusses only
hardware supported by those versions. If your device driver will work with a different
release or other hardware, you should use the version of this manual appropriate to that
release (see “Internet Resources” on page xli for a way to read all versions online).

Three general classes of device-control software exist in an IRIX system: process-level
drivers, kernel-level drivers, and STREAMS drivers.

* A process-level driver executes as part of a user-initiated process. An example is the
use of the dsl i b library to control a SCSI device from a user program.

* A kernel-level driver is loaded as part of the IRIX kernel and executes in the kernel
address space, controlling devices in response to calls to its read, write, and i oct |
(control) entry points.

e A STREAMS driver is dynamically loaded into the kernel address space to monitor
or modify a stream of data passing between a device and a user process.

All three classes are discussed in this guide, although the greatest amount of attention is
given to kernel-level drivers.

What You Need to Know to Write Device Drivers

In order to write a process-level driver, you must be an experienced C programmer with
a thorough understanding of the use of UNIX system services and, of course, detailed
knowledge of the device to be managed.

007-0911-210 XXXVii

About This Guide

In order to write a kernel-level driver or a STREAMS driver, you must be an experienced
C programmer who knows UNIX system administration, and especially IRIX system
administration, and who understands the concepts of UNIX device management.

Updating Device Drivers from Previous Releases to IRIX 6.5

With the release of IRIX 6.5, the same operating system runs on all SGI supported
platforms. The following sections summarize device driver differences between IRIX
releases 6.2, 6.3, 6.4, and 6.5 to help you port existing drivers to IRIX 6.5:

¢ “Updating a Device Driver from IRIX 6.2” on page xxxviii
¢ “Updating a Device Driver from IRIX 6.3” on page xxxix
¢ “Updating a Device Driver from IRIX 6.4” on page xxxix

Updating a Device Driver from IRIX 6.2

If you are updating a device driver from IRIX 6.2:

e Familiarize yourself with the hardware graph—a new way to map devices that was
introduced with IRIX 6.4. Refer to hwgr aph. i nt r o(4) and Chapter 2 of this guide.

* Note that the SCSI host adapter interface has changed and SCSI drivers should now
be written as described in Chapter 16 of this guide.

* Note that the VME driver interface has changed with the SGI Origin and Onyx2
platforms. See “Porting From IRIX 6.2” on page 386. VME drivers written for
Challenge and Onyx platforms under IRIX 6.2 should work without modification
under IRIX 6.5 on the same platforms.

¢ Note that PCI bus support is now a part of IRIX (see Chapter 20, “PCI Device
Attachment,” and Chapter 21, “Services for PCI Drivers”).

e Ifyou are using pol | (), refer to “Entry Point poll()” on page 178 and the pol | (D2)
man page for the discussion of the genp argument.

* Beginning with IRIX 6.4, there is no restriction on which kernel services you can call
from driver lower-half code. Refer to “Upper and Lower Halves” on page 75.

¢ Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation, but not on a multiprocessor system.

XXXViii 007-0911-210

About This Guide

Mapped driver routines (for example, v_mapphys) are now located in
ksys/ ddmap. h (not/ sys/ regi on. h), which also contains some new routines
(see ksys/ ddmap. h).

Updating a Device Driver from IRIX 6.3

If you are updating a device driver from IRIX 6.3:

Familiarize yourself with the hardware graph—a new way to map devices that was
introduced with IRIX 6.4. Refer to hwgr aph. i nt r o(4) and Chapter 2 of this guide.

Note that the SCSI host adapter interface has changed and SCSI drivers should now
be written as described in Chapter 16 of this guide.

Note that PCI drivers will have to be modified to work with the PCI interface as
documented in Chapter 20, “PCI Device Attachment,” and Chapter 21, “Services for
PCI Drivers” of this guide.

If you are using pol | (), refer to “Entry Point poll()” on page 178 and the pol | (D2)
man page for the discussion of the genp argument.

Beginning with IRIX 6.4, there is no restriction on which kernel services you can call
from driver lower-half code. Refer to “Upper and Lower Halves” on page 75.

Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation, but not on a multiprocessor system.

Mapped driver routines (for example, v_mapphys) are now located in
ksys/ ddmap. h (not/ sys/regi on. h) which also contains some new routines (see
ksys/ ddmap. h).

Updating a Device Driver from IRIX 6.4

007-0911-210

If you are updating a device driver from IRIX 6.4:

Note that IRIX 6.5 covers all supported platforms. If you want your driver to
support multiple platforms, refer to “Platform Support” on page 270.

Note that the third-party SCSI drivers are supported as documented in Chapter 16.

Note that PCI drivers for the O2 platform should be written as described in “PCI
Drivers for the O2 (IP32) Platform” on page 743, and user-level PCI drivers should

XXXiX

About This Guide

What This Guide Contains

x|

be updated to support the pci ba interface instead of usr pci (see “PCI
Programmed I/O” on page 83 of this guide).

* Mapped driver routines (for example, v_rmapphys) are now located in
ksys/ ddmap. h (not/ sys/ regi on. h), which also contains some new routines

(see ksys/ ddmap. h).

e If youare using pol | (), refer to “Entry Point poll()” on page 178 and the pol | (D2)
man page for the discussion of the genp argument.

* VME drivers support either Origin and Onyx2 (refer to Chapter 12 and Chapter 13),
or Challenge and Onyx (refer to Chapter 14 and Chapter 15).

This guide is divided into the following major parts.

Part1
Part II
Part III

Part IV
PartV

Part VI

Part VII
Part VIII
Part IX

Part X
Appendix A

Appendix B

How devices are attached to SGI computers,
configured to IRIX, and initialized at boot time.

Details of user-level handling of PCI devices and
SCSI control using dsl i b.

How kernel-level drivers are designed, compiled,
loaded, and tested. Survey of driver kernel services.

Kernel-level drivers for the VME bus.
Kernel-level drivers for the SCSI bus.
Kernel-level drivers for network interfaces.
Kernel-level drivers for the EISA bus.
Kernel-level drivers for the GIO bus.
Kernel-level drivers for the PCI bus.
Design of STREAMS drivers.

Summary of kernel functions with compatibility
notes.

VME I/0O considerations for Challenge and Onyx
systems.

007-0911-210

About This Guide

In the printed book, you can locate these parts using the table of contents. Using the
online InfoSearch tool, each part is a top-level division in the clickable table of contents,
or you can jump to any part by clicking the blue cross-references in the list above.

Other Sources of Information

Developer Program

Internet Resources

007-0911-210

Information and support are available through the SGI Developer Program. The
Developer Toolbox CD contains numerous code examples. To join the program, contact
the Developer Response Center at 800-770-3033 or e-mail devpr ogr am@gi . com

A great deal of useful material can be found on the Internet. Some starting points are in

the following list.

Earlier versions of this book as well as all
other SGI technical manuals to read or
download.

SGI patches, examples, and other material.

Network of pages of information about SGI
products

Computer graphics pointers at the UCSC
Perceptual Science Laboratory.

Pointers to binaries and sources at The
National Research Council of Canada’s
Institute For Biodiagnostics.

IEEE Catalog and worldwide ordering
information.

MIPS processor manuals in HTML form.

Home page of the PCI bus standardization
organization

http://docs.sgi.com
http:/ /www.sgi.com
http:/ /www.sgi.com
http://mambo.ucsc.edu

http:/ /zeno.ibd.nrc.ca:80/ ~sgi/

http:/ /standards.ieee.org

http:/ /www.mips.com/

http:/ /www.pcisig.com

xli

About This Guide

Standards Documents

The following documents are the official standard descriptions of buses:

® PCI Local Bus Specification, Version 2.1, available from the PCI Special Interest Group,
P.O. Box 14070, Portland, OR 97214 (fax: 503-234-6762).

e ANSI/IEEE standard 1014-1987 (VME Bus), available from IEEE Customer Service,
445 Hoes Lane, PO Box 1331, Piscataway, NJ 08855-1331 (but see also “Internet
Resources” on page xli).

Important man pages

The following man pages contain important details about software tools and practices

that you need.

al enl i st (d4x) Overview of address/length list functions
geti nvent (3) The interface to the inventory database

hi nv(1) The use of the inventory display command

hwgr aph. i ntro(d4x) Overview of the hardware graph and kernel functions for it

intro(7) The conventions used for special device filenames

i oconfi g(1M) The startup program that creates device special files

mast er (4) Syntax of filesin/ var / sysgen/ mast er . d

syst em4) Syntax of filesin/ var / sysgen/ system *. sm

prom1) Commands of the “miniroot” and other features of the boot

PROM, which you use to bring up the system when testing a
new device driver

udmal i b(3) Functions for performing user-level DMA from VME

uli (3) Functions for registering and using a user-level interrupt
handler (installs with the REACT /Pro product)

usrvme(7) Naming conventions for mappable VME device special files

xlii 007-0911-210

About This Guide

Additional Reading

007-0911-210

The following books, obtainable from SGI, can be helpful when designing or testing a
device driver:

MIPSpro N32/64 Compiling and Performance Tuning Guide, document number
007-2360-nnn, tells how to use the C compiler and related tools.

MIPSpro Assembly Language Programmer’s Guide, document number 007-2418-nnn,
tells how to compile assembly-language modules.

MIPSpro 64-Bit Porting and Transition Guide, document number 007-2391-nnn,
documents the implications of the 64-bit execution mode for user programs.

MIPSpro N32 ABI Handbook, document number 007-2816-nnn, gives details of the
code generated when the - n32 compiler option is used.

MIPS R4000 Microprocessor User’s Guide (2nd ed.) by Joe Heinrich, document
007-2489-001, gives detailed information on the MIPS instruction set and hardware
registers for the processor used in many IRIX systems (also available on
http://ww. m ps. conm).

MIPS R10000 User’s Guide by Joe Heinrich gives detailed information on the MIPS
instruction set and hardware registers for the processor used in certain high-end
systems. Available only in HTML form from ht t p: / / ww. mi ps. com .

The following books, obtainable from bookstores or libraries, can also be helpful.

Lenoski, Daniel E. and Wolf-Dietrich Weber. Scalable Shared-Memory Multiprocessing.
Morgan Kaufmann Publishers, San Francisco, 1995. ISBN 1-55860-315-8.

Egan, Janet I., and Thomas]. Teixeira. Writing a UNIX Device Driver. John Wiley &
Sons, 1992.

Leffler, Samuel J., et alia. The Design and Implementation of the 4.3BSD UNIX
Operating System. Palo Alto, California: Addison-Wesley Publishing Company, 1989.

A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts, Third Edition.
Addison Wesley Publishing Company, 1991.

Heath, Steve. VMEbus User’s Handbook. CRC Press, Inc, 1989. ISBN 0-8493-7130-9.
Device Driver Reference, UNIX SVR4.2, UNIX Press 1992.

UNIX System V Release 4 Programmer’s Guide, UNIX SVR4.2. UNIX Press, 1992.
STREAMS Modules and Drivers, UNIX SVR4.2, UNIX Press 1992. ISBN 0-13-066879.

xliii

About This Guide

Reader Comments

If you have comments about the technical accuracy, content, or organization of this
document, please tell us. Be sure to include the title and document number of the manual
with your comments. (Online, the document number is located in the front matter of the
manual. In printed manuals, the document number can be found on the back cover.)

You can contact us in the following ways:

Send e-mail to the following address:

t echpubs@gi . com

Use the Feedback option on the Technical Publications Library World Wide Web
page:

http://docs.sgi.com

Contact your customer service representative and ask that an incident be filed in the
SGI incident tracking system.

Send mail to the following address:

Technical Publications

SGI

1600 Amphitheatre Pkwy., M/S 535
Mountain View, California 94043-1351

Send a fax to the attention of “Technical Publications” at +1 650 932 0801.

We value your comments and will respond to them promptly.

xliv

007-0911-210

PART ONE

IRIX Device Integration

Chapter 1, “Physical and Virtual Memory”
An overview of physical memory, virtual address space management, and
device addressing in SGI/MIPS systems.

Chapter 2, “Device Configuration”
How IRIX locates devices, and how devices are represented in software.

Chapter 3, “Device Control Software”
A survey of the ways in which you can control devices under IRIX, from
user-level processes and from kernel-level drivers of different kinds.

Chapter 1

Physical and Virtual Memory

This chapter gives an overview of the management of physical and virtual memory in
SGI systems based on the MIPS R5000 and R10000 processors. The purpose is to give you
the background to understand terms used in device driver header files and reference
pages, and to understand the limitations and special conventions used by some kernel
functions.

This information is only of academic interest if you intend to control a device from a
user-level process. (See Chapter 3, “Device Control Software,” for the difference between
user-level and kernel-level drivers.) For a deeper level of detail on SGI Origin 2000
memory hardware, see the hardware manuals listed under “Additional Reading” on
page xliii.

The following main topics are covered in this chapter.

e “CPU Access to Memory and Devices” on page 3 summarizes the hardware
architecture by which the CPU accesses memory.

e “The 32-Bit Address Space” on page 14 describes the parts of the physical address
space when 32-bit addressing is used.

e “The 64-Bit Address Space” on page 19 describes the 64-bit physical address space.

* “Address Space Usage in SGI Origin 2000 Systems” on page 26 gives an overview of
how physical memory is addressed in the complex architecture of the SGI Origin
2000.

CPU Access to Memory and Devices

007-0911-210

Each SGI computer system has one or more CPU modules. A CPU reads data from
memory or a device by placing an address on a system bus, and receiving data back from
the addressed memory or device. An address can be translated more than once as it
passes through multiple layers of bus adapters. Access to memory can pass through
multiple levels of cache.

1: Physical and Virtual Memory

CPU Modules

A CPU is a hardware module containing a MIPS processor chip such as the R8000,
together with system interface chips and possibly a secondary cache. SGI CPU modules
have model designation of the form IPnn; for example, the IP22 module is used in the
Indy workstation. The CPU modules supported by IRIX 6.5 are listed in Table 1-1.

Table 1-1

CPU Modules and System Names

Module

MIPS Processor

System Families

IP19

IP20

P21

P22

P25

P26

P27

P28

1P30

P32

P35

R4x00
R4x00
R8000
R4x00
R10000
R8000
R10000
R10000
R10000
R10000

R12000

Challenge (other than S model), Onyx
Indigo

Power Challenge, Power Onyx
Indigo, Indy, Challenge S
Power Challenge R10000
Power Indigo

SGI Origin 2000

Power Indigo? R10000

Octane

02

SGI Origin 3000

Modules with the same IP designation can be built in a variety of clock speeds, and they
can differ in other ways. (For example, an IP27 can have 0, 1 or 2 R10000 modules
plugged into it.) Also, the choice of graphics hardware is independent of the CPU model.
However, all these CPUs are basically identical as seen from software.

Interrogating the CPU Type

At the interactive command line, you can determine which CPU module a system uses
with the following command:

hinv -c processor

007-0911-210

CPU Access to Memory and Devices

Within a shell script, it is more convenient to process the terse output of

uname -m
(See the uname(1) and hinv(1) reference pages.)

Within a program, you can get the CPU model using the getinvent() function. For an
example, see “Testing the Inventory In Software” on page 51.

CPU Access to Memory

007-0911-210

The CPU generates the address of data that it needs—the address of an instruction to
fetch, or the address of an operand of an instruction. It requests the data through a
mechanism that is depicted in simplified form in Figure 1-1.

CPU module Execution unit
(IPnn) and registers

Translation
lookaside

buffer Primary

cache
Secondary

MIPS R4X00;
R5000, R8000 or R10000

Figure 1-1 CPU Access to Memory

1: Physical and Virtual Memory

1. The address of the needed data is formed in the processor execution or
instruction-fetch unit. Most addresses are then mapped from virtual to real through
the Translation Lookaside Buffer (TLB). Certain ranges of addresses are not
mapped, and bypass the TLB.

2. Most addresses are presented to the primary cache, a cache in the processor chip. If a
copy of the data with that address is found, it is returned immediately. Certain
address ranges are never cached; these addresses pass directly to the bus.

3. When the primary cache does not contain the data, the address is presented to the
secondary cache. If it contains a copy of the data, the data is returned immediately.
The size and the architecture of the secondary cache differ from one CPU model to
another.

4. The address is placed on the system bus. The memory module that recognizes the
address places the data on the bus.

The process in Figure 1-1 is correct for an SGI Origin 2000 system when the addressed
data is in the local node. When the address applies to memory in another node, the
address passes out through the connection fabric to a memory module in another node,
from which the data is returned.

Processor Operating Modes

The MIPS processor under IRIX operates in one of two modes: kernel and user. The
processor enters the more privileged kernel mode when an interrupt, a system
instruction, or an exception occurs. It returns to user mode only with a “Return from
Exception” instruction.

Certain instructions cannot be executed in user mode. Certain segments of memory can
be accessed only in kernel mode, and other segments only in user mode.

Virtual Address Mapping

The MIPS processor contains an array of Translation Lookaside Buffer (TLB) entries that
map, or translate, virtual addresses to physical ones. Most memory accesses are first
mapped by reference to the TLB. This permits the IRIX kernel to relocate parts of the
kernel’s memory and to implement virtual memory for user processes. The translation
scheme is summarized in the following sections and covered in detail in the hardware
manuals listed under “Additional Reading” on page xliii.

6 007-0911-210

CPU Access to Memory and Devices

TLB Misses and TLB Sizes

Each TLB entry describes a segment of memory containing two adjacent pages. When the
input address falls in a page described by a TLB entry, the TLB supplies the physical
memory address for that page. The translated address, now physical instead of virtual,
is passed on to the cache, as shown in Figure 1-1.

When the input address is not covered by any active TLB entry, the MIPS processor
generates a “TLB miss” interrupt, which is handled by an IRIX kernel routine. The kernel
routine inspects the address. When the address has a valid translation to some page in
the address space, the kernel loads a TLB entry to describe that page, and restarts the
instruction.

The size of the TLB is important for performance. The size of the TLB in different
processors is shown in Table 1-2.

Table 1-2 Number of TLB Entries by Processor Type
Processor Type Number of TLB Entries
R4x00 96

R5000 96

R8000 384

R10000 128

R12000 128

Address Space Creation

007-0911-210

There are not sufficient TLB entries to describe the entire address space of even a single
process. The IRIX kernel creates a page table in kernel memory for each process. The page
table contains one entry for each virtual memory page in the address space of that
process. Whenever an executing program refers to an address for which there is no
current TLB entry, the CPU traps to the TLB miss handler. The handler loads one TLB
entry from the appropriate page table entry of the current process, in order to describe
the needed virtual address. Then it resumes execution with the failed instruction.

1: Physical and Virtual Memory

Address Exceptions

In order to extend a virtual address space, the kernel takes the following two steps.

e Itallocates unused page table entries to describe the needed pages. This defines the
virtual addresses the pages will have.

e Itallocates page frames in memory to contain the pages themselves, and puts their
physical addresses in the page table entries.

When the CPU requests an invalid address—because the processor is in the wrong mode,
or an address does not translate to a valid location in the address space, or an address
refers to hardware that does not exist in the system—an addressing exception occurs. The
processor traps to a particular address in the kernel.

An addressing exception can also be detected in the course of handling a TLB miss. If
there is no page table entry assigned for the desired address, that address is not part of
the address space of the process.

When a user-mode process caused the addressing exception, the kernel sends the process
a SIGSEGYV (see the signal(5) reference page), usually causing a segmentation fault.
When kernel-level code such as a device driver causes the exception, the kernel executes
a “panic,” taking a crash dump and shutting down the system.

CPU Access to Device Registers

The CPU accesses a device register using programmed 1/O (PI1O), a process illustrated in
Figure 1-2. Access to device registers is always uncached. It is not affected by
considerations of cache coherency in any system (see “Cache Use and Cache Coherency”
on page 13).

007-0911-210

CPU Access to Memory and Devices

Processor unit Execution unit
and registers

Translation
lookaside
buffer

Primary

cache

Secondary
cache

System bus

MIPS R4X00;
R5000, R8000 or R10000

Memory

Figure 1-2 CPU Access to Device Registers (Programmed 1/0)

1. The address of the device is formed in the Execution unit. It may or may not be an
address that is mapped by the TLB.

2. A device address, after mapping if necessary, always falls in one of the ranges that is
not cached, so it passes directly to the system bus.

3. The device or bus attachment recognizes its physical address and responds with
data.

The PIO process shown in Figure 1-2 is correct for an SGI Origin 2000 system when the
addressed device is attached to the same node. When the device is attached to a different
node, the address passes through the connection fabric to that node, and the data returns
the same way.

007-0911-210 9

1: Physical and Virtual Memory

Direct Memory Access

10

Some devices can perform direct memory access (DMA), in which the device itself, not the
CPU, reads or writes data into memory. A device that can perform DMA is called a bus
master because it independently generates a sequence of bus accesses without help from
the CPU.

In order to read or write a sequence of memory addresses, the bus master has to be told
the proper physical address range to use. This is done by storing a bus address and
length into the device’s registers from the CPU. When the device has the DMA
information, it can access memory through the system bus as shown in Figure 1-3.

System bus

Memory

Figure 1-3 Device Access to Memory

1. The device places the next physical address, and data, on the system bus.

2. The memory module stores the data.

In a SGI Origin 2000 system, the device and the memory module can be in different
nodes, with address and data passing through the connection fabric between nodes.

When a device is programmed with an invalid physical address, the result is a bus error
interrupt. The interrupt is taken by some CPU that is enabled for bus error interrupts.
These interrupts are not simple to process for two reasons. First, the CPU that receives
the interrupt is not necessarily the CPU from which the DMA operation was
programmed. Second, the bus error can occur a long time after the operation was
initiated.

007-0911-210

CPU Access to Memory and Devices

PIO Addresses and DMA Addresses

007-0911-210

Figure 1-3 is too simple for some devices that are attached through a bus adapter. A bus
adapter connects a bus of a different type to the system bus, as shown in Figure 1-4.

System bus

Memory Bus adapter

Figure 1-4 Device Access Through a Bus Adapter

For example, the PCI bus adapter connects a PCI bus to the system bus. Multiple PCI
devices can be plugged into the PCI bus and use the bus to read and write. The bus
adapter translates the PCI bus protocol into the system bus protocol. (For details on the
PCI bus adapter, see Part IX, “PCI Drivers.”)

Each bus has address lines that carry the address values used by devices on the bus.
These bus addresses are not related to the physical addresses used on the system bus. The
issue of bus addressing is made complicated by three facts:

* Bus-master devices independently generate memory-read and memory-write
commands that are intended to access system memory.

e The bus adapter can translate addresses between addresses on the bus it manages,
and different addresses on the system bus it uses.

* The translation done by the bus adapter can be programmed dynamically, and can

change from one I/O operation to another.

This subject can be simplified by dividing it into two distinct subjects: PIO addressing,
used by the CPU to access a device, and DMA addressing, used by a bus master to access
memory. These addressing modes need to be treated differently.

11

1: Physical and Virtual Memory

PIO Addressing

DMA Addressing

12

Programmed I/0O (PIO) is the term for a load or store instruction executed by the CPU
that names an I/O device as its operand. The CPU places a physical address on the
system bus. The bus adapter repeats the read or write command on its bus, but not
necessarily using the same address bits as the CPU put on the system bus.

One task of a bus adapter is to translate between the physical addresses used on the
system bus and the addressing scheme used within the proprietary bus. The address
placed on the target bus is not necessarily the same as the address generated by the CPU.
The translation is done differently with different bus adapters and in different system
models.

In some older SGI systems, the translation was hard-wired. For a simple example, the
address translation from the Indigo2 system bus to the EISA bus was hardwired, so that,
for example, CPU access to a physical address of 0x0000 4010 was always translated to
location 0x0010 in the I/O address space of EISA slot 4.

With the more sophisticated PCI and VME buses, the translation is dynamic. Both of
these buses support bus address spaces that are as large or larger than the physical
address space of the system bus. It is impossible to hard-wire a translation of the entire
bus address space.

In order to use a dynamic PIO address, a device driver creates a software object called a
PIO map that represents that portion of bus address space that contains the device
registers the driver uses. When the driver wants to use the PIO map, the kernel
dynamically sets up a translation from an unused part of physical address space to the
needed part of the bus address space. The driver extracts an address from the P1IO map
and uses it as the base for accessing the device registers. PIO maps are discussed in
Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2,” and in Chapter 20, “PCI
Device Attachment.”

A bus-master device on the PCI or VME bus can be programmed to perform transfers to
or from memory independently and asynchronously. A bus master is programmed using
PIO with a starting bus address and a length. The bus master generates a series of
memory-read or memory-write operations to successive addresses. But what bus
addresses should it use in order to store into the proper memory addresses?

007-0911-210

CPU Access to Memory and Devices

The bus adapter translates the addresses used on the proprietary bus to corresponding
addresses on the system bus. Considering Figure 1-4, the operation of a DMA device is
as follows:

1. The device places a bus address and data on the PCI or VME bus.

2. The bus adapter translates the address to a meaningful physical address, and places
that address and the data on the system bus.

3. The memory modules stores the data.

The translation of bus virtual to physical addresses is done by the bus adapter and
programmed by the kernel. A device driver requests the kernel to set up a dynamic
mapping from a designated memory buffer to bus addresses. The map is represented by
a software object called a DMA map.

The driver calls kernel functions to establish the range of memory addresses that the bus
master device will need to access—typically the address of an I/O buffer. When the
driver activates the DMA map, the kernel sets up the bus adapter hardware to translate
between some range of bus addresses and the desired range of memory space. The driver
extracts from the DMA map the starting bus address, and (using PIO) programs that bus
address into the bus master device.

Cache Use and Cache Coherency

007-0911-210

The primary and secondary caches shown in Figure 1-1 are essential to CPU

performance. There is an order of magnitude difference in the speed of access between
cache memory and main memory. Execution speed remains high only as long as a very
high proportion of memory accesses are satisfied from the primary or secondary cache.

The use of caches means that there are often multiple copies of data: a copy in main
memory, a copy in the secondary cache (when one is used) and a copy in the primary
cache. Moreover, a multiprocessor system has multiple CPU modules like the one shown,
and there can be copies of the same data in the cache of each CPU.

The problem of cache coherency is to ensure that all cache copies of data are true reflections

of the data in main memory. Different SGI systems use different hardware designs to
achieve cache coherency.

13

1: Physical and Virtual Memory

In most cases, cache coherence is achieved by the hardware, without any effect on
software. In a few cases, specialized software, such as a kernel-level device driver, must
take specific steps to maintain cache coherency.

Cache Coherency in Multiprocessors

Multiprocessor systems have more complex cache coherency protection because it is
possible to have data in multiple caches. In a multiprocessor system, the hardware
ensures that cache coherency is maintained under all conditions, including DMA input
and output, without action by the software. However, in some systems the cache
coherency hardware works correctly only when a DMA buffer is aligned on a
cache-line-sized boundary. You ensure this by using the KM_CACHEALIGN flag when
allocating buffer space with kmem_alloc() (see “Kernel Memory Allocation” on page 213
and the kmem_alloc(D3) reference page).

Cache Coherency in Uniprocessors

In some uniprocessor systems, it is possible for the CPU cache to have newer information
than appears in memory. This is a problem only when a bus master device is going to
perform DMA. If the bus master reads memory, it can get old data. If it writes memory,
the input data can be destroyed when the CPU writes the modified cache line back to
memory.

In systems where this is possible, a device driver calls a kernel function to ensure that all
cached data has been written to memory prior to DMA output (the dki_dcache_wb(D3)
reference page). The device driver calls a kernel function to ensure that the CPU receives
the latest data following a DMA input (see the dki_dcache_inval(D3) reference page). In
a multiprocessor these functions do nothing, but it is always safe to call them.

The 32-Bit Address Space

14

The MIPS processors can operate in one of two address modes: 32-bit and 64-bit. The
choice of address mode is independent of other features of the instruction set architecture
such as the number of available registers and the precision of integer arithmetic. For
example, programs compiled to the n32 binary interface use 32-bit addresses but 64-bit
integers. The implications for user programs are documented in manuals listed under
“Additional Reading” on page xliii.

007-0911-210

The 32-Bit Address Space

The addressing mode can be switched dynamically; for example, the IRIX kernel can
operate with 64-bit addresses, but the kernel can switch to 32-bit address when it
dispatches a user program that was compiled for that mode. The 32-bit address space is
the range of all addresses that can be used when in 32-bit mode. This space is discussed
first because it is simpler and more familiar than the 64-bit space.

Segments of the 32-bit Address Space

007-0911-210

When operating in 32-bit mode, the MIPS architecture uses addresses that are 32-bit
unsigned integers from 0x0000 0000 to OxFFFF FFFE. However, this address space is not
uniform. The MIPS hardware divides it into segments, and treats each segment
differently. The ranges are shown graphically in Figure 1-5.

15

1: Physical and Virtual Memory

16

X FFFF FFFF

kseg2 - 1 GB kernel virtual space,
mapped and cached

ksegl - 512 MB unmapped,
uncached window on
physical memory

kseg0 - 512 MB unmapped, but
cached, window on
physical memory

J \ I e

OXTFFF FFFF

> kuseg - 2 GB user process
virtual space, mapped
and cached

Figure 1-5 The 32-Bit Address Space

The address segments differ in three characteristics:

whether access to an address is mapped; that is, passed through the translation
lookaside buffer (TLB)

whether an address can be accessed when the CPU is operating in user mode or in
kernel mode

007-0911-210

The 32-Bit Address Space

* whether access to an address is cached; that is, looked up in the primary and
secondary caches before it is sent to main memory

Virtual Address Mapping

In the mapped segments, each 32-bit address value is treated as shown in Figure 1-6.

Virtual page number (VPN) Offset

r N

313029 1211
LT T T
0 xx kuseg

£1:0:0: ksegO

:1:0:1: ksegl

P1:1ix: kseg2

Figure 1-6 MIPS 32-Bit Virtual Address Format

The three most significant bits of the address choose the segment among those drawn in
Figure 1-5. When bit 31 is 0, bits 30:12 select a virtual page number (VPN) from 2" possible
pages in the address space of the current user process. When bits 31:30 are 11, bits 29:12
select a VPN from 2'8 possible pages in the kernel virtual address space.

User Process Space—kuseg

007-0911-210

The total 32-bit address space is divided in half. Addresses with a most significant bit of
0 constitute the 2 GB user process space. When executing in user mode, only addresses
in kuseg are valid; an attempt to use an address with bit 31=1 causes an addressing
exception.

Access to kuseg is always mapped through the TLB. The kernel creates a unique address
space for each user process. Of the 2! possible pages in an address space, most are
typically unassigned—few processes ever occupy more than a fraction of kuseg—and
many are shared pages of program text from dynamic shared objects (DSOs) that are
mapped into the address space of every process that needs them.

17

1: Physical and Virtual Memory

Kernel Virtual Space—kseg?2

When bits 31:30 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space. References to this space are translated through the TLB. The
kernel uses the TLB to map kernel pages in memory as required, possibly in
noncontiguous locations. Although pages in kernel space are mapped, they are always
associated with real memory. Kernel memory is never paged to secondary storage.

This is the space in which the IRIX kernel allocates such objects as stacks, user page
tables, and per-process data that must be accessible on context switches. This area
contains automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
kseg? that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

Cached Physical Memory—ksegO

When address bits 31:29 contain 100, access is directed to physical memory through the
cache. If the addressed location is not in the cache, bits 28:0 are placed on the system bus
as a physical memory address, and the data presented by memory or a device is returned.
Kseg0 contains the exception address to which the MIPS processor branches it when it
detects an exception such as an addressing exception or TLB miss.

Since only 29 bits are available for mapping physical memory, only 512 MB of physical
memory space can be accessed through this segment in 32-bit mode. Some of this space
must be reserved for device addressing. It is possible to gain cached access to wider
physical addresses by mapping through the TLB into kseg2, but systems that need access
to more physical memory typically run in 64-bit mode (see “Cache-Controlled Physical
Memory—xkphys” on page 24).

Uncached Physical Memory—kseg1l

18

When address bits 31:29 contain 101, access is directly to physical memory, bypassing the
cache. Bits 28:0 are placed on the system bus for memory or device transfer.

The kernel refers to kseg1 when performing PIO to devices because loads or stores from

device registers should not pass through cache memory. The kernel also uses kseg1 when
operating on certain data structures that might be volatile. Kernel-level device drivers

007-0911-210

The 64-Bit Address Space

sometimes need to write to uncached memory, and must take special precautions when
doing so (see “Uncached Memory Access in the IP26 and IP28” on page 34).

Portions of kseg0 or kseg1 can be mapped into kuseg by the mmap() function. This is
covered at more length under “Memory Use in User-Level Drivers” on page 32.

The 64-Bit Address Space

The 64-bit mode is an upward extension of 32-bit mode. All MIPS processors from the
R4000 on support 64-bit mode. However, this mode was not used in SGI software until
IRIX 6.0 was released.

Segments of the 64-Bit Address Space

This section refers to the 64-bit address spaces provided by the MIPS R10000
microprocessor. When operating in 64-bit mode, the MIPS architecture uses addresses
that are 64-bit unsigned integers from 0x0000 0000 0000 0000 to OxFFFF FFFF FFFF FFFF.
This is an immense span of numbers—if it were drawn to a scale of 1 millimeter per
terabyte, the drawing would be 16.8 kilometers long (just over 10 miles).

The MIPS hardware divides the address space into segments based on the most
significant bits, and treats each segment differently. The ranges provided by the MIPS
R10000 microprocessor are shown graphically in Figure 1-7. These major segments
define only a fraction of the 64-bit space. Most of the possible addresses are undefined
and cause an addressing exception (segmentation fault) if used.

007-0911-210 19

1: Physical and Virtual Memory

[I—— 32-bit kseg, ksegO, ksegl, kseg2, not to scale

@ Unused addresses

xkseg - 16 TB kernel virtual space,
mapped and cached

xkphys - Unmapped, cache-controled
physical memory access
(see text)

@ Unused addresses

xksseg - 16 TB supervisor-mode
virtual space, mapped
and cached (not used)

Xxkuseg - 16 TB user process
virtual space, mapped
and cached

32-bit kuseg, not to scale

Figure 1-7 Main Parts of the MIPS R10000 Microprocessor 64-Bit Address Space

20 007-0911-210

The 64-Bit Address Space

As in the 32-bit space, these major segments differ in three characteristics:

e whether access to an address is mapped; that is, the address is virtual and is passed
through the translation lookaside buffer (TLB) to translate the virtual address into a
physical address

¢ whether an address can be accessed when the CPU is operating in user mode or in
kernel mode

* whether access to an address is cached; that is, looked up in the primary and
secondary caches before it is sent to main memory

Compatibility of 32-Bit and 64-Bit Spaces

The MIPS-3 instruction set (which is in use when the processor is in 64-bit mode) is
designed so that when a 32-bit instruction is used to generate or to load an address, the
32-bit operand is automatically sign-extended to fill the high-order 32 bits.

As aresult, any 32-bit address that falls in the user segment kuseg, and which must have
a sign bit of 0, is extended to a 64-bit integer with 32 high-order 0 bits. This automatically
places the 32-bit kuseg in the bottom of the 64-bit xkuseg, as shown in Figure 1-7.

A 32-bit kernel address, which must have a sign bit of 1, is automatically extended to a
64-bit integer with 32 high-order 1 bits. This places all kernel segments shown in
Figure 1-5 at the extreme top of the 64-bit address space. However, these 32-bit kernel
spaces are not used by a kernel operating in 64-bit mode.

64-Bit Address Format

007-0911-210

The two most significant bits of a 64-bit address select the major segments, as shown in
Figure 1-7. The xkuseg, xksseg, and xkseg segments access memory using mapped (virtual)
addresses and the xkphys segment accesses memory using physical addresses. Virtual
and physical addresses use different formats as shown in Figure 1-9 and Figure 1-10.

21

1: Physical and Virtual Memory

Format depends on address space segment

Figure 1-8 Selecting the MIPS 64-Bit Address Space Segments

Virtual Address Mapping

In the mapped segments, each 64-bit virtual address value is formatted as shown in
Figure 1-9.

Note: Some systems that run the MIPS R10000 microprocessors only support virtual

address bits 39:0.
All-0 for xkuseg and xksseg Virtual page number (VPN) Offset
e e
44 43 31 14 13
N /
All-0 for xkseg or ...
NN J
£ 0: 0 xkuseg i
10/ 1 xksseg All-1 for xkseg
i1 1:xkseg

Figure 1-9 MIPS 64-Bit Virtual Address Format
The two most significant bits select the mapped major segment (compare these to the

address boundaries in Figure 1-7). For the xkuseg and xksseg segments, bits 61:44 must all
be 0. For the xkseg segment, bits 61:44 must all be 0 or bits 61:31 must all be 1, which

22 007-0911-210

The 64-Bit Address Space

references the kernel compatibility spaces where the kernel stack is located. (In principle,
references to 32-bit kernel segments would have bits 61:40 all 1, but these segments are
not used in 64-bit mode.)

The size of a page of virtual memory can vary from system to system and release to
release, so always determine it dynamically. In a user-level program, call the
getpagesize() function (see the getpagesize(2) reference page). In a kernel-level driver,
use the ptob() kernel function (see the ptob(D3) reference page) or the constant NBPP
declared in sys/ i mmu. h.

When the page size is 16 KB, bits 13:0 of the address represent the offset within the page,
and bits 43:14 select a VPN from the 2%, or 64 M, pages in the virtual segment.

User Process Space—xkuseg

The first 16 TB of the address space are devoted to user process space. Access to xkuseg is
always mapped through the TLB. The kernel creates a unique address space for each user
process. Of the 2% possible pages in a process’s address space, most are typically
unassigned, and many are shared pages of program text from dynamic shared objects
(DSOs) that are mapped into the address space of every process that needs them.

Supervisor Mode Space—xksseg

The MIPS architecture permits three modes of operation: user, kernel, and supervisor.
When operating in kernel or supervisor mode, the 16 TB space beginning at

0x4000 0000 0000 0000 is accessible. IRIX does not employ the supervisor mode, and does
not use xksseg. If xksseg were used, it would be mapped and cached.

Kernel Virtual Space—xkseg

007-0911-210

When bits 63:62 are 11, access is to kernel virtual memory. Only code that is part of the
kernel can access this space, a 16 TB segment starting at 0xC000 0000 0000 0000.
References to this space are translated through the TLB, and cached. The kernel uses the
TLB to map kernel pages in memory as required, possibly in noncontiguous locations.
Although pages in kernel space are mapped, they are always associated with real
memory. Kernel pages are never paged to secondary storage.

23

1: Physical and Virtual Memory

Physical Address

This is the space in which the IRIX kernel allocates such objects as stacks, per-process
data that must be accessible on context switches, and user page tables. This area contains
automatic variables declared by loadable device drivers. It is the space in which
kernel-level device drivers allocate memory. Since kernel space is mapped, addresses in
xkseg that are apparently contiguous need not be contiguous in physical memory.
However, a device driver can allocate space that is both logically and physically
contiguous, when that is required (see for example the kmem_alloc(D3) reference page).

A 64-bit physical address is formatted as shown in Figure 1-10.

Cache-Controlled Physical Memory—xkphys

24

One-quarter of the 64-bit address space—all addresses with bits 63:62 containing 10—are
devoted to special access to one or more 1 TB physical address spaces. Any reference to
the other spaces (xkuseg and xkseg) is transformed by the TLB into a reference to xkphys.
Addresses in this space are interpreted as shown in Figure 1-10.

Must be 0 Physical address
r Y A\
63 62 57 40 39
10 b
alalal|x|x ; ‘
Cache-
algorithm
Uncached -
address
spaces

Figure 1-10 Address Decoding for Physical Memory Access

007-0911-210

The 64-Bit Address Space

007-0911-210

Bits 39:0 select a physical address in a 1 TB range. Bits 57:40 must always contain 0. Bits
61:59 select the hardware cache algorithm to be used. The only values defined for these
bits are summarized in Table 1-3.

Table 1-3 Cache Algorithm Selection

Address 61:59 Algorithm Meaning

010 Uncached This is the 64-bit equivalent of ksegl in 32-bit
mode—uncached access to physical memory.

110 Cacheable coherent exclusive This is the 64-bit equivalent of kseg0 in 32-bit

on write mode—cached access to physical memory,
coherent access in a multiprocessor.

011 Cacheable non-coherent Data is cached; on a cache miss the processor
issues a non-coherent read (one without regard
to other CPUs).

100 Cacheable coherent exclusive Data is cached; on a read miss the processor
issues a coherent read exclusive.

101 Cacheable coherent update on Same as 110, but updates memory on a store hit

write in cache.

111 Uncached Accelerated Same as 010, but the cache hardware is permitted

to defer writes to memory until it has collected a
larger block, improving write utilization.

Only the 010 (uncached) and 110 (cached) algorithms are implemented on all systems.
The others may or may not be implemented on particular systems.

Bits 58:57 must be 00 unless the cache algorithm is 010 (uncached) or 111(uncached
accelerated). Then bits 58:57 can in principle be used to select four other properties to
qualify the uncached operation. These bits are first put to use in the SGI Origin 2000
system, described under “Uncached and Special Address Spaces” on page 26.

It is not possible for a user process to access either xkphys or xkseg; and not possible for a
kernel-level driver to access xkphys directly. Portions of xkphys and xkseg can be mapped
to user process space by the mmap() function. This is covered in more detail under
“Memory Use in User-Level Drivers” on page 32. Portions of xkphys can be accessed by
a driver using DMA-mapping and PIO-mapping functions (see “PIO Addresses and
DMA Addresses” on page 11).

25

1: Physical and Virtual Memory

Address Space Usage in SGI Origin 2000 Systems

An SGI Origin 2000 system contains one or more nodes. Each node can contain one or
two CPUs as well as up to 2 GB of memory. There is a single, flat, address space that
contains all memory in all nodes. All memory can be accessed from any CPU. However,
a CPU can access memory in its own node in less time than it can access memory in a
different node.

The node hardware provides a variety of special-purpose access modes to make kernel

programming simpler. These special modes are described here at a high level. For details
refer to the hardware manuals listed in “Additional Reading” on page xliii. These special
addressing modes are a feature of the SGI Origin 2000 node hardware, not of the R10000
CPU chip. As such they are available only in the SGI Origin 2000 and Origin200 systems.

User Process Space and Kernel Virtual Space

Virtual addresses with bits 63:62 containing 00 are references to the user process address
space. The kernel creates a virtual address space for each user process as described before
(see “Virtual Address Mapping” on page 6). The SGI Origin 2000 architecture adds the
complication that the location of a page, relative to the location where the process
executes, has an effect on the performance of the process. The kernel uses a variety of
strategies to locate pages of memory in the same node as the CPU that is running the
process.

Kernel virtual addresses (in which bits 63:62 contain 11) are mapped as already described
(see “Kernel Virtual Space—xkseg” on page 23). Certain important data structures may
be replicated into each node for faster access.

The stack and data areas used by device drivers are in xkseg. A driver has the ability to
request memory allocation in a particular node, in order to make sure that data about a
device is stored in the same node where the device is attached and where device
interrupts are taken (see “Kernel Memory Allocation” on page 213).

Uncached and Special Address Spaces
A physical address in xkphys (bits 63:62 contain 10) has different meanings depending on

the settings of bits 61:57 (see Figure 1-10 and Table 1-3). In the SGI Origin 2000
architecture, these bits are interpreted by the memory control circuits of the node,

26 007-0911-210

Address Space Usage in SGI Origin 2000 Systems

external to the CPU. The possibilities are listed in Table 1-4. Some are covered in more
detail in following topics.

Table 1-4 Special Address Spaces in SGI Origin 2000

Address 61:59

(Algorithm) Address 58:57 Meaning

110 (cached) n.a. Cached access to physical memory

010 (uncached) 00 Node special memory areas including directory cache, ECC,
PROM, and other node hardware locations.

010 (uncached) 01 I/0O space: addresses that can be mapped into the address
space of any bus adapter.

010 (uncached) 10 Synchronization access to memory.

010 (uncached) 11 Uncached access to physical memory.

Cached Access to Physical Memory

007-0911-210

When the CPU emits a translated virtual address with bits 63:62 containing 10 and bits
61:59 specifying cached access, the address is a cached reference to physical memory.
When the referenced location is not contained in the secondary cache, it is fetched from
memory in the node that contains it. This is the normal outcome of the translation of a
user or kernel virtual address through the TLB.

The actual address is the physical address in bits 39:0, interpreted as shown in
Figure 1-11.

27

1: Physical and Virtual Memory

Figure 1-11 SGI Origin 2000 Physical Address Decoding

The node hardware can operate in either of two modes, called ‘M’ and ‘N".

Mode ‘M’ Bits 39:32 select one of 256 nodes. Remaining bits select an address in as
much as 4 GB of memory in that node.

Mode ‘N’ Bits 39:31 select one of 512 nodes. Remaining bits select an address in as
much as 2 GB of memory in that node.

Either mode places the memory that is part of each node in a flat address space with a
potential size of 1 TB. All locations are accessed in the same way—there is a single
address space for the entire system. For example, the memory that is part of node 1
begins at 0x0000 0001 0000 0000 (in mode “M”) or 0x0000 0000 8000 0000 (in mode ‘N’).

28 007-0911-210

Address Space Usage in SGI Origin 2000 Systems

The node hardware implements one special case: addresses in the range 0-63 MB (0
through 0x0000 0000 03ff ffff) are always treated as a reference to the current node. In
effect, the current node number is logically ORed with the address. This allows trap
handlers and other special code to refer to node-specific data without having to know
the number of the node in which they execute.

Uncached Access to Memory

A physical address in xkphys (bits 63:62 contain 10) that has the uncached algorithm (bits
61:59 contain 010) always bypasses the secondary cache. An address of this form can
access physical memory in either of two ways.

When bits 58:57 contain 11, the address bits 39:0 are decoded as shown in Figure 1-11. In
this mode there is no aliasing of addresses in the range 0-63 MB to the current node; the
node number must be given explicitly.

However, when bits 58:57 contain 00, an address in the range 0-768 MB is interpreted as
uncached access to the memory in the current node. In effect, the node number is ORed
into the address. Also in this mode, access to the lowest 64 KB is swapped between the
two CPUs in a node. CPU 0 access to addresses 0x0 0000 through 0x1 ffff is directed to
those addresses. But CPU 1 access to 0x0 0000 goes to 0x1 0000, and access to 0x1 0000
goes to 0x0 0000—reversing the use of the first two 64 KB blocks. This helps trap handlers
that need quick access to a 64 KB space that is unique to the CPU.

Synchronization Access to Memory

An uncached physical address with bits 58:57 containing 10 is an atomic
fetch-and-modify access. Bits 39:6 select a memory unit of 64 bytes (half a cache line) and
bits 5:3 select an operation, as shown in Figure 1-12.

007-0911-210 29

1: Physical and Virtual Memory

30

Mode "

\&

3
N
N

6
3
q

\
hu%%zr

Figure 1-12 SGI Origin 2000 Fetch-and-Op Address Decoding

The first word or doubleword (depending on the instruction being executed) of the
addressed unit is treated as shown in Table 1-5.

Table 1-5 SGI Origin 2000 Fetch-and-Op Operations

Instruction Address 5:3 Operation

Load 000
Load 001
Load 010
Load 011
Store 000

An uncached read of the location.

Fetch-and-increment: the old value is fetched and the memory value
is incremented.

Fetch-and-decrement: the old value is fetched and the memory value
is decremented.

Fetch-and-zero: the old value is returned and zero is stored.

An uncached store of the location.

007-0911-210

Device Driver Use of Memory

Table 1-5 SGI Origin 2000 Fetch-and-Op Operations (continued)

Instruction Address 5:3 Operation

Store 001 Increment: the memory location is incremented.
Store 010 Decrement: the memory location is decremented.
Store 011 AND: memory data is ANDed with the store data.
Store 100 OR: memory data is ORed with the store data.

These are atomic operations; that is, no other CPU can perform an interleaved operation
to the same 64-byte unit. The kernel can use this addressing mode to implement locks
and other synchronization operations. A user-level library is also available so that
normal programs can use these facilities when they are available; see the fetchop(3)
reference page.

Device Driver Use of Memory

Memory use by device drivers is simpler than the details in this chapter suggest. The
primary complication for the designer is the use of 64-bit addresses, which may be
unfamiliar.

Allowing for 64-Bit Mode

007-0911-210

You must take account of a number of considerations when porting an existing C
program to an environment where 64-bit mode is used, or might be used. This can be an
issue for all types of drivers, kernel-level and user-level alike. For detailed discussion, see
the MIPSpro 64-Bit Porting and Transition Guide listed in “Additional Reading” on

page xliii.

The most common problems arise because the size of a pointer and of a long integer
changes between a program compiled with the -64 option and one compiled -32. When
you use pointers, longs, or types derived from longs, in structures, the field offsets differ
between the two modes.

31

1: Physical and Virtual Memory

When all programs in the system are compiled to the same mode, there is no problem.
This is the case for a system in which the kernel is compiled to 32-bit mode: only 32-bit
user programs are supported. However, a kernel compiled to 64-bit mode executes user
programs in 32-bit or 64-bit mode. A structure prepared by a 32-bit program—a structure
passed as an argument to ioctl(), for example—does not have fields at the offsets
expected by a 64-bit kernel device driver. For more on this specific problem, see
“Handling 32-Bit and 64-Bit Execution Models” on page 193.

The basic strategy to make your code portable between 32-bit and 64-bit kernels is to be
extremely specific when declaring the types of data. You should almost never declare a
simple “int” or “char.” Instead, use a data type that is explicit as to the precision and the
sign of the variable. The header files sgi def s. h and sys/ t ypes. h define type names
that you can use to declare structures that always have the same size. The type __psint_t,
for example, is an integer the same size as a pointer; you can use it safely as alias for a
pointer. Similarly, the type __uint32_t is guaranteed to be an unsigned, 32-bit, integer in
all cases.

Memory Use in User-Level Drivers

32

When you control a device from a user process, your code executes entirely in user
process space, and has no direct access to any of the other spaces described in this
chapter.

Depending on the device and other considerations, you may use the mmap() function to
map device registers into the address space of your process (see the mmap(2) reference
page). When the kernel maps a device address into process space, it does it using the TLB
mechanism. From mmap() you receive a valid address in process space. This address is
mapped through a TLB entry to an address in segment that accesses uncached physical
memory. When your program refers to this address, the reference is directed to the
system bus and the device.

Portions of kernel virtual memory (kseg0 or xkseg) can be accessed from a user process.

Access is based on the use of device special files (see the mem(7) reference page). Access
is done using two models, a device model and a memory map model.

007-0911-210

Device Driver Use of Memory

Access Using a Device Model

Access Using mmap()

The device special file / dev/ nemrepresents physical memory. A process that can open
this device can use Iseek() and read() to copy physical memory into process virtual
memory. If the process can open the device for output, it can use write() to patch physical
memory.

The device special file / dev/ kmemrepresents kernel virtual memory (kseg0 or xkseg). It
can be opened, read and written similarly to / dev/ mem Clearly both of these devices
should have file permissions that restrict their use even for input.

The mmap() function allows a user process to map an open file into the process address
space (see the mmap(2) reference page). When the file that is mapped is / dev/ nem the
process can map a specified segment of physical memory. The effect of mmap() is to set
up a page table entry and TLB entry so that access to a range of virtual addresses in user
space is redirected to the mapped physical addresses in cached physical memory (kseg0
or the equivalent segment of xkphys).

The / dev/ kmemdevice, representing kernel virtual memory, cannot be used with
mmap(). However, a third device special, / dev/ mrem(note the double “m”), represents
access to only those addresses that are configured in the file

/var/ sysgen/ mast er . d/ mem As distributed, this file is configured to allow access to
the free-running timer device and, in some systems, to graphics hardware.

For an example of mapped access to physical memory, see the example code in the
syssgi(2) reference page related to the SGI_QUERY_CYCLECNTR option. In this
operation, the address of the timer (a device register) is mapped into the process’s
address space using a TLB entry. When the user process accesses the mapped address,
the TLB entry converts it to an address in kseg1/xkphys, which then bypasses the cache.

Mapped Access Provided by a Device Driver

007-0911-210

A kernel-level device driver can provide mapped access to device registers or to memory
allocated in kernel virtual space. An example of such a driver is shown in Part III,
“Kernel-Level Drivers.”

33

1: Physical and Virtual Memory

Memory Use in Kernel-Level Drivers

When you control a device from a kernel-level driver, your code executes in kernel
virtual space. The allocation of memory for program text, local (stack) variables, and
static global variables is handled automatically by the kernel. Besides designing data
structures so they have a consistent size, you have to consider these special cases:

* dynamic memory allocation for data and for buffers
¢ transferring data between kernel space and user process space
e getting addresses of device registers to use for PIO

The kernel supplies utility functions to help you deal with each of these issues, all of
which are discussed in Chapter 8, “Device Driver/Kernel Interface.”

Uncached Memory Access in SGI Origin 2000 and in Challenge and Onyx Series

Access to uncached memory is not supported in these systems, in which cache coherency
is maintained by the hardware, even under access from CPUs and concurrent DMA.

There is never a need (and no approved way) to access uncached memory in these
systems.

Uncached Memory Access in the IP26 and IP28

The IP26 CPU module is used in the SGI Power Indigo2 workstation and the Power
Challenge M workstation. Both are deskside workstations using the R8000 processor
chip. These remarks also apply to the IP28 CPU used in the Power Indigo2 R10000
workstation. In these machines, extra care must be taken in cache management.

Cache Invalidation and Writeback

34

When an I/O device is going to perform DMA input to memory, the device driver must
invalidate any cached copies of the buffer that will receive the data. If this is not done,
the CPU could go on using the “stale” data in the cache, ignoring the input data placed
in memory by the device. This is done by calling the dki_dcache_inval() function to
invalidate the range of addresses where DMA input is planned.

In the IP28 CPU, the delayed and speculative execution features of the R10000 processor

make it necessary for the driver to invalidate the cache twice: once before initiating the
DMA input, and once again immediately after DMA ends.

007-0911-210

Device Driver Use of Memory

Before initiating DMA output, the driver must force all cached data to memory by calling
dki_dcache_wb(). This ensures that recent data in the cache is also present in memory
before the device begins to access memory. The use of both these functions is discussed
further under “Managing Memory for Cache Coherency” on page 230.

Cache invalidation is handled automatically when you use the userdma() and undma()
functions to lock memory for DMA (see “Setting Up a DMA Transfer” on page 226).

Program Access to Uncached Memory

007-0911-210

The Indigo2 systems use ECC memory (error-correcting code memory, which can correct
for single-bit errors on the fly). ECC memory is also used in large multiprocessor systems
from SGI, where it has no effect on performance.

In the IP26 and 1P28, although ECC memory has no impact on the performance of
normal, cached memory access, uncached access can be permitted only when the CPU is
placed in a special, “slow” access mode.

A device driver may occasionally need to write directly to uncached memory (although
it is better to write to cached memory and then use dki_dcache_wb()). Before doing so,
the driver must put the CPU in “slow” mode by calling the function
ip26_enable_ucmemd(). As soon as the uncached store is complete, return the system to
“fast” mode by calling ip26_return_ucmem(). (See the ip26_ucmem(D3) reference page.)
While the CPU is in “slow” mode, several clock cycles are added to every memory access,
so do not keep it in “slow” mode any longer than necessary.

These functions can be called in any system. They do nothing unless the CPU is an IP26
or IP28.

35

Chapter 2

Device Configuration

This chapter discusses how IRIX represents devices to software, and how it establishes
the inventory of available hardware.

This information is essential when your work involves attaching a new device or a new
class of devices to IRIX. The information is helpful background material when you intend
to control a device from a user-level process.

The following primary topics are covered in this chapter.

* “Device Special Files” on page 37 describes the traditional UNIX method of
representing a device as a special kind of file, and defines such important terms as
major and minor device number.

¢ “Hardware Graph” on page 44 describes the internal database of devices and its
external representation as the / hwfilesystem.

¢ “Hardware Inventory” on page 50 describes the interface to the hardware inventory
database through the hi nv command and getinvent() function.

¢ “Configuration Files” on page 57 summarizes the files used for system generation
and kernel configuration.

In addition to the discussion here, you can find the system administrator’s perspective
on these issues in the books IRIX Admin: Disks and Filesystems and IRIX Admin: System
Configuration and Operation.

Device Special Files

007-0911-210

A device is represented in a UNIX system is as a device special file in a certain directory
(historically, the / dev directory). Beginning with IRIX 6.4 the implementation of device
special files has been changed and expanded, but the basic purpose—to treat a device as
a special case of a file—is not changed.

37

2: Device Configuration

Devices as Files

A device special file consists of a filename and access permissions, but no associated disk
data. The access permissions, owner ID, and group ID of the file control whether the file
can be opened. A device special file can be used like a regular file in most IRIX
commands; for example, a device file can be the target of a symbolic link, the destination
of redirected input or output, authorized by chnod, and so on. A process opens a device
by passing the pathname of the device special file to the open() function (see the open(2)
reference page).

Historically, a device special file contained three items of information about a device:

Block or Character A flag showing which of two types of access, block or
character, applies to this device.

Major device number A numeric code for the device driver that controls this device.

Minor device number A number passed to the device driver to distinguish this
device from others of the same type.

The device numbers are no longer relevant, but the distinction between block and
character access still exists. To display the details of all block and character devices in a
system using the / hwfilesystem (described under “Hardware Graph” on page 44) use a
command such as the following:

find /hw\(-type c -0 -type b \) -exec Is -1 {} \; | nore

Block and Character Device Access

38

IRIX supports two classes of device. A block device such as a disk drive transfers data in
fixed size blocks between the device and memory, and usually has some ability to
reposition the medium so as to read or write the same data again. The driver for a block
device typically has to manage buffering, and it is free to schedule I/O operations in a
different sequence than they are requested.

A character device such as a printer accepts or returns data as a stream of bytes, and
usually acts as a sink or source of data—the medium cannot be repositioned and read
again. The driver for a character device typically transfers data as soon as it is requested
and completes one operation before accepting another request. Character devices are
also called raw devices, because their input is not buffered.

007-0911-210

Device Special Files

The two kinds of devices are supported by two different kinds of kernel-level device
drivers, block and character drivers. The two kinds of drivers are expected to offer
different kinds of service. For example, a block device driver is expected to provide a
“strategy” entry point where it schedules asynchronous, buffered, transfers of data in
units of 512 bytes. A character device driver is expected to provide read and write entry
points that synchronously transfer any quantity of data from 1 byte upward.

Some device drivers offer both kinds of access. In particular, the disk device drivers
support block-type access to data partitions of the disk, and character-type read /write
access to the disk volume header.

Multiple Device Names

When a single device is accessed in different modes, the device is described by multiple
device special files. Each device special file represents one way of accessing the device.
Some reasons for using multiple names are as follows:

* By convention, UNIX system supply certain default device names, and this is done
by creating extra symbolic links. For example, the default device / dev/ t apens is a
link to the first device file in/ dev/rmt / *.

* When a device supports both block and character modes of access, there is a
separate device special file for each mode. For example, the following (edited)
pathnames provide block and character access to one partition of a SCSI device:

/hw/ ... /scsi_ctlr/0/target/1/1un/0/disk/partition/0/block
Ihw/ ... /scsi_ctlr/0/target/1/1un/0/disk/partition/0/char

* When a device can be treated as independent, logical partitions, each partition is
given an independent device special file name, although the device is the same in
each case. The following (edited) pathnames provide block access to, respectively,
an entire disk volume, partition 0 (root), partition 1 (swap), and the volume header
(label) of the same disk:

Ihw/ ... /scsi_ctlr/0/target/1/1un/0/di sk/vol ume/ bl ock

Ihw/ ... /scsi_ctlr/0/target/1/1un/0/disk/partition/0/block
/hw/.../scsi_ctlr/0O/target/1/1un/0/disk/partition/1/block
/hw/.../scsi_ctlr/0O/target/1/1un/0/di sk/vol ume_header/ bl ock

e When a device needs different treatment at different times, it can have one device
special file for each kind of treatment. The following pathnames all provide access
to the identical tape drive. The user can open a different name for each combination
of byte-swapped and non-byte-swapped 1/0O with fixed or variable record lengths:

007-0911-210 39

2: Device Configuration

Major Device Number

40

/ hw/ t ape/ t ps0d3st at

/ hw/ t ape/ t ps0d3s

/ hw/ t ape/ t ps0d3sc

/ hw/ t ape/ t ps0d3nrs

/ hw/ t ape/ t ps0d3nrsc
/ hw/ t ape/ t ps0d3ns

/ hw/ t ape/ t ps0d3nsc

/ hw/ t ape/ t ps0d3

/ hw/ t ape/ t ps0d3c

/ hw/ t ape/ t ps0d3nr ns
/ hw/ t ape/ t ps0d3nrnsc
/ hw/ t ape/t ps0d3nr

/ hw/ t ape/ t ps0d3nrc

/ hw/ t ape/ t ps0d3sv

/ hw/ t ape/ t ps0d3svc

/ hw/ t ape/ t ps0d3nrsv
/ hw/ t ape/t ps0d3nrsvc
/ hw/ t ape/ t ps0d3nsv

/ hw/ t ape/ t ps0d3nsvc
/ hw/ t ape/ t ps0d3v

/ hw/ t ape/ t ps0d3vc

/ hw/ t ape/t ps0d3nrnsv
/ hw/ t ape/ t ps0d3nr nsvc
/ hw/ t ape/ t ps0d3nrv

/ hw/ t ape/ t ps0d3nrvc

The major device number was, in traditional UNIX architecture, a numeric key that related
a device special file to the device driver that managed it. When special file was opened,
IRIX selected the driver to handle the device based on the major device number. In the

newer / hwfilesystem, a different means is used. The major number is no longer relevant.

The major number in all device special files in/ hwis always 0. The device special files in
/ hware created dynamically, by the device drivers, as the devices are attached. The
identity of the device driver is stored in the device special files at this time, but not as a
number. When a process opens a device special file in / hw (or aname in / dev thatis a
symbolic link to / hw), the kernel can tell directly which driver to call.

007-0911-210

Device Special Files

Minor Device Number

In conventional UNIX, and in versions of IRIX previous to IRIX 6.4, a minor device number
was encoded in the device special file and was passed to the device driver. The major and
minor numbers were passed together in an integer called a dev_t. The driver could extract
the minor device number by passing the dev_t value to the geteminor() function.

Historical Use of Minor Number

Prior to IRIX 6.4, the minor device number served as an argument to help the device
driver distinguish one device from another. Many devices can have the same major
number and be serviced by the same driver. Using the minor number, the driver could
distinguish the particular device being serviced.

Some device drivers treated the minor device number as a logical unit number, while
other drivers used it to contain multiple, encoded bit fields. For example:

¢ The IRIX tape device driver used the minor device number to encode the options for
rewind or no-rewind, byte-swap or nonswap, and fixed or variable blocking, along
with the logical unit number.

e The IRIX disk device drivers encoded the disk partition number into the minor
device number along with a disk unit number.

* Both disk and tape devices encoded the SCSI adapter number in the minor number.

With STREAMS drivers, the minor device number can be chosen arbitrarily during a
CLONE open—see “Support for CLONE Drivers” on page 789.

Present Use of Minor Numbers

007-0911-210

Beginning with IRIX 6.4, the minor device number has little importance because the
driver has a direct way to distinguish each device and its special needs, through the
hardware graph (see “Hardware Graph” on page 44.)

The minor number in device special files in / hwis an arbitrary integer with no relation
to the device itself. The device special files in / hware created dynamically, by the device
drivers, as the devices are attached. The device driver stores any information it needs to
distinguish one device from another, directly in the device special file itself. When a
process opens a device special file in / hw(or a name in / dev that is a symbolic link to

/' hw), the driver can retrieve the information directly, without needing to decode the
minor number.

41

2: Device Configuration

Creating Conventional Device Names

IRIX Conventional Device

42

Starting with IRIX 6.4, there is a complete filesystem, / hw that is devoted to device
special files. However, the use of / hwis both new and unique to IRIX. For the sake of
compatibility, the conventional device special files in the / dev filesystem that are used
in UNIX systems generally and in previous release of IRIX are retained. This topic
describes these conventional names. See also “/hw Filesystem” on page 48.

Many device special files are created automatically at boot time by execution of the script
/ dev/ MAKEDEV. Additional device special files can be created with administrator
commands.

Names

Conventions for the format of device special filenames are spelled out in the following
reference pages: intro(7), dks(7), dsreq(7), and tps(7). For example, the components of a
disk device name in /dev/dsk include

dksc Constant prefix “dks” followed by bus adapter number c.
du Constant letter “d” followed by disk SCSI ID number u.
In Optionally, letter “1” (ell) and logical unit number n (used

only when disk u controls multiple drives).

“u_
S

sporvhorvol Constantletter “s” and partition number p, or else “vh” for
volume header, or “vol” for (entire) volume.

Programs throughout the system rely on the conventions for these device names. In
addition, by convention the associated major and minor numbers agree with the names.
For example, the logical unit and partition numbers that appear in a disk name are also
encoded into the minor number.

Beginning with IRIX 6.4, these highly-compressed conventional names are unpacked

into longer pathnames in the / hwfilesystem. However, the older, encoded names in
/ dev are retained for compatibility and portability.

007-0911-210

Device Special Files

The Script MAKEDEV

The conventions for all the IRIX device special names are written into the script

/ dev/ MAKEDEV. This is a make file, but unlike most make files, it is not used to compile
executable programs. It contains the logic to prepare device special names and their
associated major and minor numbers and file permissions.

The MAKEDEV script is executed during IRIX startup from a scriptin/etc/rc2.d. It
is executed after all device drivers have been initialized, so it can use the output of the
hi nv command to construct device names to suit the actual configuration.

The system administrator can invoke MAKEDEYV to construct device special files.
Administrator use of MAKEDEYV is described in IRIX Admin: System Configuration and
Operation.

Making Conventional Device Files

007-0911-210

You or a system administrator can create device special files explicitly using the
commands mknod ori nst al | . Either command can be used in a make file such as you
might create as part of the installation script for a product.

For details of these commands, see the install(1) and mknod(1M) reference pages, and
IRIX Admin: System Configuration and Operation. The following is a hypothetical example
ofinstall:

install -m644 -u root -g sys -root /dev -chr 62,0

The - chr option specifies a character device, and 62, 0 are the major and minor device
numbers, respectively.

Tip: The nknod command is portable, being used in most UNIX systems. The i nst al |
command is unique to IRIX, and has a number of features and uses beyond those of
nmknod. Examples of both can be found by reading / dev/ MAKEDEV.

43

2: Device Configuration

Hardware Graph

Conventional UNIX software is designed based on the assumption that the computer has
only a small, fixed set of peripheral devices under undemanding reliability constraints.
IRIX 6.5 is designed to handle a system with a large complement of devices that can
change dynamically, under high demands for reliability. To meet the new requirements,
IRIX introduced the hwgraph (hardware graph) to represent system devices, and the / hw
filesystem as the externally visible form of the hwgraph.

UNIX Hardware Assumptions, Old and New

44

Historically, UNIX was designed to support small computer systems that were
administered by the same group of people that used them. When there are only a few, or
a few dozen, peripheral devices, it is acceptable to:

* Represent all devices as brief names in the / dev filesystem
* Use a limited range of major device numbers to specify all possible device drivers

¢ Use an 18-bit integer (the minor device number) as the sole parameter to represent a
device’s identify and access mode

* Leave the details of device addressing to be specified in configuration files or by
hard-coding in the source of device drivers.

When devices are only rarely added to or removed from the system, it is acceptable to
require that the administrator shut the system down, modify a configuration file, and
reboot, in order to remove or add a device. When the system has a small number of
tolerant users, it is acceptable to shut the system down and restart it to make small
changes in the I/O configuration.

All of these assumptions are challenged by the kinds of large-scale systems that can be
built using the Silicon Graphics Origin2000 architecture.

e Itis possible to build very large Origin2000 systems with many independent nodes,
each with a number of attached devices.

* Because of the rich possibilities for interconnecting Origin2000 nodes, the topology
of a Origin2000 system can be complex, with devices addressed by lengthy paths,
and sometimes with multiple possible paths from a CPU to a device.

007-0911-210

Hardware Graph

¢ The hardware configuration of a Origin2000 system can change dynamically while
the system runs, by adding and removing entire nodes, or single buses, or single
cards on a PCI bus.

* Origin2000 is designed to be the basis of systems that are available a very high
percentage of the time, on which frequent or casual reboots are not allowed.

In this environment it is no longer acceptable to require downtime on any change, nor to
require the administrator to issue detailed commands or to edit configuration files to
make simple changes. Previous release of IRIX addressed some of these points through
the MAKEDEYV script (see “The Script MAKEDEV” on page 43), which creates device
special files automatically for many types of hardware.

IRIX 6.4 moves away from the conventional UNIX model by creating the hwgraph, and
by requiring all kernel-level device drivers to maintain the hwgraph as devices are
attached and detached.

Hardware Graph Features

Hwgraph Nomenclature

007-0911-210

The hwgraph is an in-memory, graph-structured database that describes all hardware
units that are addressable by the system. For a very concise overview of the hwgraph, see
the hwgraph(4) reference page.

“In-memory” means that the hwgraph is contained in kernel memory. It is reconstructed
dynamically in memory each time the system boots up, and is kept current in memory as
the hardware configuration changes.

“Graph-structured” means that the hwgraph is topologically a directed graph, consisting
of a set of “vertexes” (points) that represent devices, and “edges” (lines) that connect the
vertexes. Each edge is a one-way linkage from a source vertex to a target vertex (this is
the definition of a directed graph). Each edge has a label, a character string that names
the edge. A small part of a typical hwgraph is depicted in Figure 2-1.

45

2: Device Configuration

46

dksOdOvol

Figure 2-1 Part of a Typical Hwgraph

Figure 2-1 shows the part of the graph that represents block-mode and character-mode
access to the whole-volume partition of a disk. The more familiar path notation for the
same graph would be as follows:

/ hw/ nodul e/ 1/i o/ pci /sl ot/0/scsi _ctlr/0/target/1/1un/0/disk/vol une/ char

/ hw/ nodul e/ 1/i o/ pci/slot/0/scsi_ctlr/0/target/1/1un/0/disk/vol une/bl ock

/ hw/ modul e/ 1/i o/ dks0dOvol / bl ock
/ hw/ modul e/ 1/i o/ dksOdOvol / char

007-0911-210

Hardware Graph

Figure 2-1 is color-coded to show when the parts of graph are built:

The parts of the hwgraph built by the kernel during bootup are shown in blue.
The parts shown in cyan are built by the PCI bus adapter as it probes the bus.

The parts in magenta are built by the host adapter driver for the SCSI controller, to
reflect the addressable units on the SCSI bus.

The parts shown in green are built by the disk device driver as it attaches the disk—
including a shorthand link from / hw/ nodul e/ 1/ i o to the volume vertex.

Properties of Edges and Vertexes

Additional Edges

007-0911-210

An edge in the hwgraph originates in one vertex (the source vertex) and points to another
vertex (the target vertex). The only property of an edge is its label.

A vertex in the hwgraph stores information about an addressable unit of hardware in the
system. A vertex can contain the following kinds of information:

A pointer to an information structure supplied by the device driver.

One or more inventory_t objects, representing information to be reported out by the
hi nv command (see the hinv(1) reference page).

One or more labelled attributes, containing information that can be reported out by
the at t r command (see the attr(1) reference page).

One or more labelled attributes that are not exported for availability by at t r.

The edges leading out of this vertex.

Not all vertexes have all this information.

The basic hwgraph—as constructed by the kernel and by built-in drivers such as the PCI
bus adapter—is highly detailed and explicit, and is generally tree-structured. However,
kernel-level drivers are free to add edges between any two vertexes. A driver can add
extra edges in order to provide short-circuit paths for convenient access to vertexes deep
in the hwgraph.

47

2: Device Configuration

Implicit Edges

/hw Filesystem

48

Many device drivers distributed with IRIX create convenience vertexes and edges; and
device drivers provided by OEMs are welcome to do so as well. One problem is that often
a driver needs to label a convenience edge with a unique number—a controller number,
a port number, or a line number of some kind. At the time a driver is initializing and
creating vertexes, the total hardware complement is not known and it is impossible to
decide which number of this kind to use. This problem is alleviated by a program like

i oconfi g; see “Using ioconfig for Global Controller Numbers” on page 53.

Every vertex has one implicit edge with the label “..” which leads back to a parent vertex.
Every vertex has one implicit edge with the label “.” which leads to the vertex itself. This
is deliberately the same convention used in a filesystem, where every directory contains
“..” and “.” entries. No other edges are required.

A vertex that has only the implicit edges is a leaf vertex. A leaf vertex can stand for a
device, so that a user process can name a leaf vertex in an open() call in order to open the
device. A user process cannot open a non-leaf vertex, just as a process cannot open a
directory as a file.

The / hwfilesystem is a visible reflection of the hwgraph. The / hw filesystem is a
filesystem, on a par with an EFS or XFS filesystem, but of a different type. It is built
dynamically (it has no disk contents) and changes to reflect changes in the hwgraph. (You
can compare the / hwfilesystem to another artificial, dynamic filesystem, / pr oc, which
is an externally visible representation of the currently executing user processes.)

Any user can navigate the / hwfilesystem using commands such as cd, | s, fi nd, and
fil e. Users can browse the / hwfilesystem to discover the hardware configuration.
Names in the / hw filesystem have access permissions that are applied in the same way
as in other filesystems. Pathnames beginning / hwcan be used wherever other filesystem
pathnames are used, and in particular,

* A process can use a / hwpathname with the open() function to open a device.

¢ An/ hwpathname can be used to construct a symbolic link.

007-0911-210

Hardware Graph

The use of symbolic links to / hwpaths is important. All the device special filenames that
are conventionally expected to existin/ dev are implemented by creating symbolic links
from / dev to / hw Here is a typical link:

| rwxr - Xr- X 1 root sys 13 Aug 16 11:23 /dev/root -> /hw disk/root

However, a symbolic link is not a perfect alias. Links are given special treatment by
commands such as | s, t ar, and chnod; and by the system function stat() on which the
commands are based (see the stat(2) reference page). What is needed is a way to make a
functional alias for a device special file under a different name. That is supplied by
nmknod.

Driver Interface to Hwgraph

007-0911-210

A kernel-level device driver can make use of a variety of kernel functions for examining
and modifying the hwgraph. These functions are covered in detail in “Hardware Graph
Management” on page 231. The kernel offers functions by which a driver can:

e Traverse the hwgraph, following edges by name from vertex to vertex.

¢ Create new vertexes.

* Create new edges from existing vertexes to new vertexes.

* Set, change, or retrieve the address of driver-defined data from a vertex.
* Add hardware inventory data to a vertex.

* Set, change, retrieve or remove labelled attributes, and specify whether the
attributes should be accessible to the attr command or not.

* Remove edges and destroy vertexes.

Some device drivers do not have to perform these functions, but most kernel-level
drivers do need to create at least a few edges and vertexes to provide access to devices.
Vertexes are typically created when the driver is called at its pfxattach() entry point
(driver entry points are covered in detail in Chapter 7, “Structure of a Kernel-Level
Driver.”) Vertexes are typically destroyed when the driver is called at its pfxdetach()
entry point.

49

2: Device Configuration

Hardware Inventory

In IRIX previous to IRIX 6.4, during bootstrap, each device driver probed the hardware
attachments for which it was responsible, and added information to a hardware
inventory table. The kernel maintained a hardware inventory table in kernel virtual
memory. The table could be queried by users and by programs.

Beginning with IRIX 6.4, what was once a simple table of devices has expanded into the
hwgraph (“Hardware Graph” on page 44). Device drivers create the hardware inventory
by adding vertexes to the hwgraph. However, existing programs continue to query the
hardware inventory using the old programming interface, as well as new ones.

Using the Hardware Inventory

Contents of the Inventory

50

The hardware inventory is used by users, administrators, and programmers.

Using database terminology, the hardware inventory consists of a single table with the
following columns:

Class A code for the class of device; for example, audio, disk, processor, or
network.
Type A code for the type of device within its class; for example, FPU and CPU

types within the processor class.
Controller =~ When applicable, the number of the controller, board, or attachment.
Unit When applicable, the logical unit or device within a Controller number.

State A descriptive number, such as the CPU model number.

Of these values,

* The Class and Type are arbitrary codes that are defined in
/usr/include/invent. h.Only the defined codes can be interpreted by the
hi nv command.

¢ The Controller and Unit are small integers. The hi nv command formats them based
the Class code. For example, when Class is INV_DISK, hi nv might report “Disk
drive: unit 4 on SCSI controller 56.” When Class is INV_NETWORK and Type is

007-0911-210

Hardware Inventory

INV_NET_ETHER, hi nv might report “Integral Ethernet controller: et2, Ebus
slot 11.”

e The Controller number is used to distinguish between identical controllers. The
device driver can assign a controller number when it attaches inventory data to a
device vertex; or the controller numbers can be assigned dynamically at boot time,
as discussed under “Using ioconfig for Global Controller Numbers” on page 53.

Displaying the Inventory with hinv

The hi nv command formats all or selected rows of the inventory table for display (see
the hinv(1) reference page), translating the numbers to readable form. The user or system
administrator can use command options to select a class of entries or certain specific
device types by name. The class or type can be qualified with a unit number and a
controller number. For example, the following command displays information about
disk 4 on controller 1:

hinv -c disk -b 1 -u 4

You can use hi nv to check the result of installing new hardware. The new hardware
should show up in the report after the system is booted following installation, provided
that the associated device driver was called and was written correctly.

A full inventory report (hi nv - nv) is almost mandatory documentation for a software
problem report, either submitted by your user to you, or by you to Silicon Graphics.

Testing the Inventory In Software

007-0911-210

Within a shell script, you can test the output of hi nv most conveniently in the command
exit status. The command sets exit status of 0 when it finds or reports any items. It sets
status of 1 when it finds no items. The code in Example 2-1 could be used in a shell script
to test the existence of a disk controller.

Example 2-1 Testing the Hardware Inventory in a Shell Script

if hinv -s -c disk -b 1;

then ;
el se echo No second disk controller;
fi ;

51

2: Device Configuration

52

You can access the inventory table in a C program using the functions documented in the
getinvent(3) reference page. The only access method supported is a sequential scan over
the table, viewing all entries. Three functions permit access:

setinvent() initializes or reinitializes the scan to the first row
getinvent() returns the next table row in sequence

endinvent() releases storage allocated by setinvent()

These functions use static variables and should only be used by a single process within
an address space. Reentrant forms of the same functions, which can safely be used in a
multithreaded process, are also available (see getinvent(3)). Example 2-2 demonstrates
the use of these functions.

The format of one inventory table row is declared as type inventory_t in the
sys/invent . h header file. This header file also supplies symbolic names for all the
class and type numbers that can appear in the table, as well as containing commentary
explaining the meanings of some of the numbers.

Example 2-2 Function Returning Type Code for CPU Module

#i ncl ude <stddef.h> /* for NULL */
#i ncl ude <invent.h> /* includes sys/invent.h */
i nt getlPtypeCode()

{
inv_state_t * pstate = NULL;
inventory_t * work;
int ret = 0;
setinvent_r(&pstate);
do {
wor k = getinvent_r(pstate);
if ((I NV_PROCESSOR == wor k->i nv_cl ass)
&& (1 NV_CPUBQARD == wor k->i nv_type))
ret = work->inv_state;
} while (lret);
endi nvent _r(pstate); /* rel eases pstate-> */
return ret;
}

007-0911-210

Hardware Inventory

Creating an Inventory Entry

Device drivers supplied by Silicon Graphics add information to the hardware inventory
by adding vertexes to the hwgraph (see “Driver Interface to Hwgraph” on page 49) and
then by attaching inventory_t structures to vertexes using the device_inventory_add()
function. This and other hwgraph functions are discussed on the hwgraph.inv(d3x)
reference page, and under “Hardware Graph Management” on page 231.

The inventory_t structure is declared in the header file sys/ i nvent . h, along with the
inventory type and class numbers that are valid.

Drivers written for releases prior to IRIX 6.4 called the add_to_inventory() kernel
function in order to add a row to the inventory table. This function is supported in IRIX
6.5 in a limited way. When called, it attaches the inventory information to the root of the
hwgraph (to the / hwdirectory itself). As a result, the hi nv command does see and report
the added inventory information, but the information is not physically associated with
the hwgraph vertex to which it applies.

Note: The only valid inventory types and classes are those declared insys/ i nvent . h.
Only those numbers can be decoded and displayed by the hi nv command, which prints
an error message if it finds an unknown device class, and which prints nothing at all for
an unknown device type within a known class. There is no provision for adding new
device-class or device-type values for third-party devices.

However, it is possible now for a driver to add any arbitrary descriptive string desired to
any vertex. These labelled attributes can be retrieved by the at t r command and in
software by the attr_get() function (see attr(1) and attr_get(2)).

Using ioconfig for Global Controller Numbers

007-0911-210

An Origin2000 system can be reconfigured dynamically, so the complement of devices
can change from day to day or even minute to minute—a primary motive for creating the
hwgraph. However, the dynamic nature of the hardware complement makes it difficult
to define a stable, predictable numbering scheme for hardware devices. This need is met
by thei oconf i g command (see reference page ioconfig(1M)).

53

2: Device Configuration

Need for Stable Numbering

Design of ioconfig

54

As discussed under “IRIX Conventional Device Names” on page 42, a conventional
name for a disk device in the / dev/ dsk directory is dksCdulnsp. The number C is the
“controller” number, which in previous systems represented a fixed, well-known
numbering of SCSI bus adapters. No such fixed numbering is inherent in the Origin2000
architecture. Controller cards can be added to and removed from modules, and entire
modules can be added to and removed from the system.

Users of network interface cards, serial ports, bus adapters, and other devices need a
predictable, static naming scheme for devices. The name/ dev/ t t yf 2 should represent
the same serial port tomorrow that it does today. A related problem is that some device
drivers want to place extra, short-circuit vertexes under / hwto allow simpler access to
their devices (see “Additional Edges” on page 47). Typically such short-circuit names
ought to be distinguished by a predictable number.

However, it is impossible to assign stable, repeatable controller numbers dynamically at
boot time, while the system is discovering the I/O complement. All the CPUs in the
system boot at the same time. Bus controllers and device drivers are initialized in parallel
on the nodes to which the hardware is connected. The sequence in which this happens is
unpredictable; and in any case the hardware connections can change from boot to boot.
A driver cannot know, when it is called to attach a device, what controller number it
ought to specify in the hardware inventory.

In order to solve these problems, thei oconf i g command is invoked automatically, after
device drivers have been initialized and the hwgraph hasbeen initialized, but before user
processes are started.

Operating in parallel for speed, i oconf i g traverses the entire hwgraph, inspecting the
hardware inventory data at each vertex. At a vertex where the hardware inventory Class
value indicates a controller that should be numbered, i oconf i g assigns a number, and
updates the hardware inventory Controller value to reflect the assigned number. Then
the program opens the device and optionally causes an ioctl() function. This results in an
entry to the open() entry point, and optionally the ioctl() entry point., of the device driver
(for an overview of this interaction, see “Overview of Device Open” on page 67 and
“Overview of Device Control” on page 69).

007-0911-210

Hardware Inventory

In these entry points, the device driver can recognize that its device now has an assigned
Controller number. The driver can use this information to create extra hwgraph vertexes
and edges if it wishes. (For an overview of how the distributed SCSI drivers use this
facility, see “SCSI Devices in the hwgraph” on page 523.)

Configuration Control File

Permissions Control File

007-0911-210

Thei oconf i g program uses three disk files. The first,/ et ¢/ i oconfi g. conf,in
which it records the controller numbers it has assigned and the related / hwpathnames.
When it needs to assign a number, i oconf i g first looks up the current hwgraph path in
/etc/ioconfig. conf.If the path appears, i oconf i g assigns the same controller
number that it used last time. If the path does not appear, i oconf i g assigns the lowest
number that has never been assigned in this device Class, and adds the path and its
number to/ et ¢/ i oconfi g. conf.

This procedure ensures that a given device always receives the same controller number,
even if the device is removed and later replaced. Users can inspect
/etc/ioconfig.conf atany time to discover the numbering, and so can infer the
relationship of a controller number in / dev/ dsk (for example) to a vertex in the
hwgraph. Alternatively, the system administrator can cause all numbers to be reassigned
simply by removing the file/ et ¢/ i oconfi g. conf.

Thei oconfi g command also can be used to set ownership and permissions on the
device special files. This enables the administrator to specify ownership and permissions
for device names that are created dynamically, each time the system boots.

Assignment of permissions is driven by the file/ et ¢/ i oper 5. Its format (as described
in ioconfig(1M)) has four fields:

device_name A pathin/ hwor/ dev. The path can include wildcards so it applies
to many devices.
permissions The device file permissions, as an octal number, as described in
chmod(1) or chmod(2).
owner_name A valid userid to own the device, usually root.
group_name A valid group name to own the device, usually sys.
55

2: Device Configuration

Device Management File

56

There is no requirement that / et ¢/ i oper ms describe only existing devices; it can
describe devices that are not currently in the system. Also it can describe devices defined
by third parties other than Silicon Graphics.

The ioconfig command has built-in knowledge of Silicon Graphics network and disk
controllers and other devices. However, you can cause i oconf i g to assign a controller
number to an OEM device, and to call your driver when it does so. You do this by placing
a file in the directory / var/ sysgen/i oconfi g.

All files in that directory are processed by ioconfig. A noncomment line in any of these
files has the following seven fields (not 8 fields, as some editions of the ioconfig(1M)
reference page show):

class The inventory Class value that is found in a vertex of this kind, as an
integer number.

type The inventory Type value that is found in a vertex of this kind, as an
integer number. Use -1 for “any.”

state The inventory State value that is found in a vertex of this kind, as an
integer number. Use -1 for “any.”

suffix A suffix to be added to the hwgraph path name when opening the device.
Use the two characters -1 to mean “none.”

pattern A hwgraph path prefix that defines the set of controller numbers for this
Class, Type, and State of device. Use the characters -1 to mean “use the
hwgraph base path string.”

start_num The lowest (first) controller number to be assigned to devices of this
Class, Type, and State; the first number assigned under pattern.

ioctl_num The ioctl command number to pass in an ioctl call after opening the
device, as decimal or hexadecimal integer. Use -1 to say “no ioctl.”

By placing a filein / var / sysgen/ i oconf i g, you can cause ioconfig to assign a
controller number to devices that you support, and to open each device and optionally
execute an ioctl call against each device, so the device driver can take note of the assigned
number.

007-0911-210

Configuration Files

Configuration Files

IRIX uses a number of configuration files to supplement its knowledge of devices and
device drivers. This is a summary of the files. The use of each file for device driver
purposes is described in more detail in other chapters. (The uses of these files for other
system administration tasks is covered in IRIX Admin: System Configuration and
Operation.)

Most configuration files used by the IRIX kernel are located in the directory
/ var / sysgen. Files used by the X11 display system are generally in/ usr/ | i b/ X11.
With regard to device drivers, the important files are:

[var/sysgen/ master.d/* Descriptions of the attributes of kernel modules
[var/ sysgen/ boot/* Kernel object modules
[var/sysgen/systenm *.sm Kernel configuration directions
[var/sysgen/ nmtune/* Values and limits of tunable parameters

[var/ sysgen/ stune New values for tunable parameters

[var/sysgen/ioconfig/* Directives to i conf i g program

lusr/1ib/X11/input/config/* Initialization commands for Xdm input modules

Master Configuration Database

007-0911-210

Every configurable module of the kernel (this includes kernel-level device drivers and
other optional kernel modules) is represented by a single file in the directory
/var/sysgen/ mast er. d.

A file in mast er . d describes the attributes of a module of the kernel which is to be
loaded at boot time (or loaded later). The general syntax of the file is documented in
detail in the master(4) reference page. Only a subset of the syntax is used to describe a
device driver module. In general, the mast er . d file specifies device driver attributes
such as:

¢ the driver’s prefix, a name that qualifies all its entry points
e whether it is a block, character, or STREAMS driver
e the major number serviced by the driver

e whether the driver can be loaded dynamically as needed

57

2: Device Configuration

Kernel Configuration

* whether the driver is multiprocessor-aware

e which of the possible driver entry points the driver supplies

For each module described in a mast er . d file there should be a corresponding object
module in/ var/ sysgen/ boot . The creation of device driver modules and the syntax
of mast er . d files is covered in detail in Chapter 9, “Building and Installing a Driver.”

Files

The files / var / sysgen/ syst eml *. smdirect the | boot command in loading the
modules of the kernel at boot time. Although there are normally several files with the
names of subsystems, all the files in this directory are treated as one single file. The exact
syntax of these files is documented in the system(4) reference page.

Use of Configuration Files by Iboot

The contents of the files direct | boot in loading components that are described by files
in/var/ sysgen/ mast er. d, and in probing for devices to see if they exist. (For details
of the operation of | boot , see the Iboot(1M) and autoconfig(1M) reference pages.)

The VECTOR statement in a kernel configuration file directs | boot to probe for the
existence of hardware at a stated address, and to include a device driver only when the
hardware existed. Starting with IRIX 6.3, the kernel automatically probes the PCI bus and
other attachments in which the hardware devices can identify themselves dynamically.
The VECTOR statement is used only for VME and EISA devices (in systems that support
them) because these cannot identify themselves automatically.

Storing Device and Driver Attributes

58

The system administrator can place statements in any file in/ var/ sysgen/ syst em
These statements cause labelled attributes to be placed in the hardware graph, where
device drivers can retrieve them (see “Driver Interface to Hwgraph” on page 49 and the
system(4) reference page).

The DEVICE_ADMIN statement is used to attach an attribute giving information about
a particular device. The attribute is attached to a specific device special file in the
hwgraph. Its syntax is as follows:

DEVI CE_ADM N : [/ hw path label = wvalue [, Ilabel = value] ...

007-0911-210

Configuration Files

007-0911-210

The colon (:) is required; do not overlook it. The values you supply are:

path Completion of a path to a device special file in the / hwfilesystem.
label The label for which the device driver will ask.
value The value, a character string, the driver will retrieve.

“"__r

The path is terminated by white space. The label is terminated by the “=" or by white
space. The value is terminated by a comma or by the end of the line, so the value can
contain white space and special characters other than the comma. As one example of the
use of DEVICE_ADMIN, you can find the following in
[var/sysgen/systenmirix.sm

DEVI CE ADM N/ hw/ nodul e/ 1/ sl ot/ i 01/ basei o/ pci / 0/ scsi _ctlr/0
gl _request _queue_dept h=1024

The path specifies a particular SCSI controller. The label is “ql_request_queue_depth,”
and the value is 1024.

The DRIVER_ADMIN statement is used to pass a value directly to a device driver. Its
syntax is as follows:

DRI VER ADM N : prefix label = wvalue [, label = value] ...

The values you supply are:
prefix The prefix string thatidentifies a driver (see “Driver Name Prefix” on page 151).
label ~ The label for which the device driver will ask.

value The value, a character string, the driver will retrieve.

The prefix is terminated by white space. The label is terminated by the “=" or by white
space. The value is terminated by a comma or by the end of the line, so the value can
contain white space and special characters other than the comma.

These two statements can be placed in any file in / var / sysgen/ syst em but typically
appearinthei ri x. smfile. The device driver must expect to receive labeled values, and
must request them using the interface described under “Retrieving Administrator
Attributes” on page 241.

59

2: Device Configuration

Setting Interrupt Targets and Levels

The DEVICE_ADMIN statement is used to perform general administration of device
interrupts. These uses are documented with examples in
[var/sysgen/systenlirix.sm

e DEVICE_ADMIN: CPU-path NOINTR=1 blocks all interrupts from that CPU.

e DEVICE_ADMIN: device-path INTR_TARGET=CPU-path directs all interrupts from
a device to a CPU.

e DEVICE_ADMIN: device-path INTR_SWLEVEL=n sets the dispatching priority for
the thread that executes the interrupt handler for a device. The default is 230 and
normally should not be changed.

Setting 32-bit Direct Mapping Node

60

The DEVICE_ADMIN statement is also used to administer 32-bit direct mapping.

Note: The following information does not apply to O2 or Octane systems.

When a PCI driver uses 32-bit direct mapping (with the pciio_dmatrans_addr() and
pciio_dmatrans_list() functions), the memory space that is being mapped must be on
one specific node. The default is node zero. You can use the DEVICE_ADMIN statement
to change the mapping node for a specific PCI bus.

Caution: This change occurs at the PCI bus level, not the device level. This means that
each device on that PCI bus will be affected by the change.

These uses are documented with examples in / var/ sysgen/ system'iri x. sm

e DEVICE_ADMIN: pcibus-hwgraph-path
PCIBUS_DMATRANS_NODE=node-hwgraph-path sets the node to be used by the
specified PCI bus, for all 32-bit direct mapping.

007-0911-210

Configuration Files

¢ The following example applies to SGI Origin 2000 systems only:

DEVI CE_ADM N: / hw/ modul e/ 1/ sl ot/i o011/ xtal k_pci/ pci PCl BUS_DVATRANS_NODE=/ hw/ nodenum 2

¢ The following example applies to SGI Origin 3000 systems only:

DEVI CE_ADM N: / hw/ modul e/ 006p05/ Pbri ck/ xt al k/ 8/ pci PCl BUS_DMATRANS_NODE=/ hw/ nodenum 1

System Tuning Parameters

The IRIX kernel supports a variety of tunable parameters, some of which can be
interrogated by device drivers. The current values of the parameters are recorded in files
in/ var/ sysgen/ nt une/ * (one file per major subsystem).

You or the system administrator can view the current settings using the syst une
command (see the systune(1M) reference page). The system administrator can use
syst une to request changes in parameters. Some changes take effect at once; others are
recorded in a modified kernel that is loaded the next time the system boots.

To retrieve certain tuning parameters from within a kernel-level device driver, include
the header file sys/ var . h.

The use of syst une and its related files is covered in IRIX Admin: System Configuration
and Operation.

X Display Manager Configuration
Most files related to the configuration of the X Display Manager Xdmare held in
/ var/ X11. These files are documented in reference pages such as xdm(1) and in the
programming manuals related to the X Windows System.
One set of files, in/ usr/ 1 i b/ X11/i nput / confi g, controls the initialization of

nonstandard input devices. These devices use STREAMS modules, and their
configuration is covered in Chapter 22, “STREAMS Drivers.”

007-0911-210 61

Chapter 3

Device Control Software

IRIX provides for two general methods of controlling devices, at the user level and at the
kernel level. This chapter describes the architecture of these two software levels and
points out the different abilities of each. This is important background material for
understanding all types of device control. The chapter covers the following main topics:

e “User-Level Device Control” summarizes five methods of device control for
user-initiated processes.

e “Kernel-Level Device Control” on page 66 sets the concepts needed to understand
kernel-level drivers.

User-Level Device Control

007-0911-210

In IRIX terminology, a user-level process is one that is initiated by a user (possibly the
superuser). A user-level process runs in an address space of its own. Except for explicit
memory-sharing agreements, a user-level process has no access to the address space of
any other process or to the kernel’s address space.

In particular, a user-level process has no access to physical memory (which includes
access to device registers) unless the kernel allows the process to share part of the kernel’s
address space. (For more on physical memory, see Chapter 1, “Physical and Virtual
Memory.”)

There are several ways in which a user-level process can control devices, which are
summarized in the following topics:

¢ “PCIMapping Support” on page 64 summarizes PIO access to the PCI bus.

¢ “EISA Mapping Support” on page 64 summarizes PIO access to the EISA bus.
* “VME Mapping Support” on page 65 summarizes PIO access to the VME bus.

63

3: Device Control Software

PCIl Mapping Support

e “User-Level DMA From the VME Bus” on page 65 summarizes DMA I/O managed
from a user-level process.

e “User-Level Control of SCSI Devices” on page 65 summarizes DMA and command
access to the SCSI bus.

e “Managing External Interrupts” on page 66 summarizes access to the external
interrupt ports on Challenge and Onyx systems.

In systems that support the PCI bus, IRIX contains a kernel-level device driver which
supports general-purpose mapping of PCI bus addresses into the address space of a user
process (see “Overview of Memory Mapping” on page 71). The kernel-level drivers for
specific devices can also provide support for mapping the registers of the devices they
control into user process space.

You can write a program that maps a portion of the VME bus address space into the
program address space. Then you can load and store from device registers directly.

For more details of PIO to the PCI bus, see Chapter 4, “User-Level Access to Devices.”

EISA Mapping Support

64

In the Silicon Graphics Indigo® workstation line (including the Indigo* Maximum Impact,
Power Indigo?, and Indigo? R10000), IRIX contains a kernel-level device driver that
allows a user-level process to map EISA bus addresses into the address space of the user
process (see “Overview of Memory Mapping” on page 71).

This means that you can write a program that maps a portion of the EISA bus address
space into the program address space. Then you can load and store from device registers

directly.

For more details of PIO to the EISA bus, see Chapter 4, “User-Level Access to Devices.”

007-0911-210

User-Level Device Control

VME Mapping Support

In systems that support the VME bus, IRIX contains a kernel-level device driver that
supports general-purpose mapping of VME bus addresses into the address space of a
user process (see “Overview of Memory Mapping” on page 71). The kernel-level drivers
for specific devices can also provide support for mapping the registers of the devices they
control into user process space.

You can write a program that maps a portion of the VME bus address space into the
program address space. Then you can load and store from device registers directly.

For more details of PIO to the VME bus, see Chapter 4, “User-Level Access to Devices.”

User-Level DMA From the VME Bus

The Challenge L, Challenge XL, and Onyx systems and their Power versions contain a
DMA engine that manages DMA transfers from VME devices, including VME slave
devices that normally cannot do DMA.

The DMA engine in these systems can be programmed directly from code in a user-level
process. Software support for this facility is contained in the udmalib package.

For more details of user DMA, see Chapter 4, “User-Level Access to Devices” and the
udmalib(3) reference page.

User-Level Control of SCSI Devices

007-0911-210

IRIX contains a special kernel-level device driver whose purpose is to give user-level
processes the ability to issue commands and read and write data on the SCSI bus. By
using ioctl() calls to this driver, a user-level process can interrogate and program devices,
and can initiate DMA transfers between buffers in user process memory and devices.

The low-level programming used with the dsr eq device driver is eased by the use of a
library of utility functions documented in the dslib(3) reference page. The source code of

the dsl i b library is distributed with IRIX.

For more details on user-level SCSI access, see Chapter 5, “User-Level Access to SCSI
Devices.”

65

3: Device Control Software

Managing External Interrupts

The Challenge L, Challenge XL, and Onyx systems and their Power versions have four
external-interrupt output jacks and four external-interrupt input jacks on their back
panels. Origin2000 systems also support one or more external interrupt inputs and
outputs.

In all these systems, the device special file / dev/ ei represents a device driver that
manages access to external interrupt ports.

Using ioctl() calls to this device (see “Overview of Device Control” on page 69), your
program can

* enable and disable the detection of incoming external interrupts

* set the strobe length of outgoing signals

¢ strobe, or set a fixed level, on any of the four output ports

In addition, library calls are provided that allow very low-latency detection of an
incoming signal.

For more information on external interrupt management, see Chapter 6, “Control of
External Interrupts” and the ei(7) reference page.

Kernel-Level Device Control

IRIX supports the conventional UNIX architecture in which a user process uses a kernel
service to request a data transfer, and the kernel calls on a device driver to perform the
transfer.

Kinds of Kernel-Level Drivers

66

There are three distinct kinds of kernel-level drivers:

* A character device driver transfers data as a stream of bytes of arbitrary length. A
character device driver is invoked when a user process issuing a system function
call such as read() or ioctl().

007-0911-210

Kernel-Level Device Control

A block device driver transfers data in blocks of fixed size. Often a block driver is not
called directly to support a user process. User reads and writes are directed to files,
and the filesystem code calls the block driver to read or write whole disk blocks.
Block drivers are also called for paging operations.

A STREAMS driver is not a device driver, but rather can be dynamically installed to
operate on the flow of data to and from any character device driver.

Overviews of the operation of STREAMS drivers are found in Chapter 22, “STREAMS
Drivers.” The rest of this discussion is on character and block device drivers.

Typical Driver Operations

Overview of Device Open

007-0911-210

There are five different kinds of operations that a device driver can support:

The open interaction is supported by all drivers; it initializes the connection
between a process and a device.

The control operation is supported by character drivers; it allows the user process to
modify the connection to the device or to control the device.

A character driver transfers data directly between the device and a buffer in the user
process address space.

Memory mapping enables the user process to perform PIO data transfers for itself.

A block driver transfers one or more fixed-size blocks of data between the device
and a buffer owned by a filesystem or the memory paging system.

The following topics present a conceptual overview of the relationship between the user
process, the kernel, and the kernel-level device driver. The software architecture that
supports these interactions is documented in detail in Part III, “Kernel-Level Drivers,”
especially Chapter 7, “Structure of a Kernel-Level Driver.”

Before a user process can use a kernel-controlled device, the process must open the
device as a file. A high-level overview of this process, as it applies to a character device
driver, is shown in Figure 3-1.

67

3: Device Control Software

User
proces:

fd = open ("dev/...")

Figure 3-1 Overview of Device Open

The steps illustrated in Figure 3-1 are:

1.

The user process calls the open() kernel function, passing the name of a device
special file (see “Device Special Files” on page 37 and the open(2) reference page).

The kernel notes the device major and minor numbers from the inode of the device
special file (see “Devices as Files” on page 38). The kernel uses the major device
number to select the device driver, and calls the driver’s open entry point, passing
the minor number and other data.

The device driver verifies that the device is operable, and prepares whatever is
needed to operate it.

The device driver returns a return code to the kernel, which returns either an error
code or a file descriptor to the process.

Itis up to the device driver whether the device can be used by only one process at a time,
or by more than one process. If the device can support only one user, and is already in
use, the driver returns the EBUSY error code.

68

007-0911-210

Kernel-Level Device Control

The open() interaction on a block device is similar, except that the operation is initiated
from the filesystem code responding to a mount() request, rather than coming from a
user process open() request (see the mount(1) reference page).

There is also a close() interaction so a process can terminate its connection to a device.

Overview of Device Control

007-0911-210

After the user process has successfully opened a character device, it can request control
operations. Figure 3-2 shows an overview of this operation.

User

process (1oct! (fd, req#...)

Figure 3-2 Overview of Device Control

The steps illustrated in Figure 3-2 are:

1. The user process calls the ioctl() kernel function, passing the file descriptor from
open and one or more other parameters (see the ioctl(2) reference page).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number, the request number, and an
optional third parameter from ioctl().

69

3: Device Control Software

3. The device driver interprets the request number and other parameter, notes changes
in its own data structures, and possibly issues commands to the device.

4. The device driver returns an exit code to the kernel, and the kernel (then or later)
redispatches the user process.

Block device drivers are not asked to provide a control interaction. The user process is
not allowed to issue ioctl() for a block device.

The interpretation of ioctl request codes and parameters is entirely up to the device

driver. For examples of the range of ioctl functions, you might review some reference
pages in volume 7, for example, termio(7), ei(7), and arp(7P).

Overview of Character Device I/O

Figure 3-3 shows a high-level overview of data transfer for a character device driver that
uses programmed I/O.

Figure 3-3 Overview of Programmed Kernel I/O

70 007-0911-210

Kernel-Level Device Control

The steps illustrated in Figure 3-3 are:

1. The user process invokes the read() kernel function for the file descriptor returned
by open() (see the read(2) and write(2) reference pages).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and other information.

3. The device driver directs the device to operate by storing into its registers in
physical memory.

4. The device driver retrieves data from the device registers and uses a kernel function
to store the data into the buffer in the address space of the user process.

5. The device driver returns to the kernel, which (then or later) dispatches the user

process.

The operation of write() is similar. A kernel-level driver that uses programmed I/0 is
conceptually simple since it is basically a subroutine of the kernel.

Overview of Memory Mapping

007-0911-210

It is possible to allow the user process to perform I/O directly, by mapping the physical
addresses of device registers into the address space of the user process. Figure 3-4 shows
a high-level overview of this interaction.

71

3: Device Control Software

mmap (fd,options,...)|

User
proces

Figure 3-4 Overview of Memory Mapping

The steps illustrated in Figure 3-4 are:

1. The user process calls the mmap() kernel function, passing the file descriptor from
open and various other parameters (see the mmap(2) reference page).

2. The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and certain other parameters from
mmap().

3. The device driver validates the request and uses a kernel function to map the
necessary range of physical addresses into the address space of the user process.

4. The device driver returns an exit code to the kernel, and the kernel (then or later)
redispatches the user process.

5. The user process accesses data in device registers by accessing the virtual address
returned to it from the mmap() call.

Memory mapping can be supported only by a character device driver. (When a user
process applies mmap() to an ordinary disk file, the filesystem maps the file into memory.
The filesystem may call a block driver to transfer pages of the file in and out of memory,
but to the driver this is no different from any other read or write call.)

72 007-0911-210

Kernel-Level Device Control

Overview of Block I/O

007-0911-210

Memory mapping by a character device driver has the purpose of making device
registers directly accessible to the process as memory addresses. A memory-mapping
character device driver is very simple; it needs to support only open(), mmap(), and
close() interactions. Data throughput can be higher when PIO is performed in the user
process, since the overhead of the read() and write() system calls is avoided.

Silicon Graphics device drivers for the VME and EISA buses support memory mapping.
This enables user-level processes to perform PIO to devices on these buses. Character
drivers for the PCI bus are allowed to support memory mapping.

Itis possible to write a kernel-level driver that only maps memory, and controls no device
at all. Such drivers are called pseudo-device drivers. For examples of psuedo-device
drivers, see the prf(7) and imon(7) reference pages.

Block devices and block device drivers normally use DMA (see “Direct Memory Access”
onpage 10). With DMA, the driver can avoid the time-consuming process of transferring
data between memory and device registers. Figure 3-5 shows a high-level overview of a
DMA transfer.

read (fd,

Device
driver

Figure 3-5 Overview of DMA 1/0

73

3: Device Control Software

The steps illustrated in Figure 3-5 are:

1.

The user process invokes the read() kernel function for a normal file descriptor (not
necessarily a device special file). The filesystem (not shown) asks for a block of data.

The kernel uses the major device number to select the device driver, and calls the
device driver, passing the minor device number and other information.

The device driver uses kernel functions to create a DMA map that describes the
buffer in physical memory; then programs the device with target addresses by
storing into its registers.

The device driver returns to the kernel after telling it to put to sleep the user process
that called the driver.

The device itself stores the data to the physical memory locations that represent the
buffer in the user process address space. While this is going on, the kernel may
dispatch other processes.

When the device presents a hardware interrupt, the kernel invokes the device
driver. The driver notifies the kernel that the user process can now resume
execution. It resumes in the filesystem code, which moves the requested data into
the user process buffer.

DMA is fundamentally asynchronous. There is no necessary timing relation between the
operation of the device performing its operation and the operation of the various user
processes. A DMA device driver has a more complex structure because it must deal with
such issues as

making a DMA map and programming a device to store into a buffer in physical
memory

blocking a user process, and waking it up when the operation is complete
handling interrupts from the device

the possibility that requests from other processes can occur while the device is
operating

the possibility that a device interrupt can occur while the driver is handling a
request

The reward for the extra complexity of DMA is the possibility of much higher
performance. The device can store or read data from memory at its maximum rated
speed, while other processes can execute in parallel.

74

007-0911-210

Kernel-Level Device Control

A DMA driver must be able to cope with the possibility that it can receive several
requests from different processes while the device is busy handling one operation. This
implies that the driver must implement some method of queuing requests until they can
be serviced in turn.

The mapping between physical memory and process address space can be complicated.
For example, the buffer can span multiple pages, and the pages need not be in contiguous
locations in physical memory. If the device does not support scatter/gather operations, the
device driver has to program a separate DM A operation for each page or part of a page—
or else has to obtain a contiguous buffer in the kernel address space, do the I/O from that
buffer, and copy the data from that buffer to the process buffer. When the device supports
scatter/gather, it can be programmed with the starting addresses and lengths of each
page in the buffer, and read and write into them in turn before presenting a single
interrupt.

Upper and Lower Halves

Driver Upper Half

007-0911-210

When a device can produce hardware interrupts, its kernel-level device driver has two
distinct logical parts, called the “upper half” and the “lower half” (although the upper
“half” is usually much more than half the code).

The upper half of a driver comprises all the parts that are invoked as a result of user
process calls: the driver entry points that execute in response to open(), close(), ioctl(),
mmap(), read() and write().

These parts of the driver are always called on behalf of a specific process. This is referred
to as “having user context,” which means that the entry point is executed under the
identity of a specific process. In effect, the driver code is a subroutine of the user process.

Upper half code can request kernel services that can be delayed, or “sleep.” For example,
code in the upper half of a driver can call kmem_alloc() to request memory in kernel
space, and can specify that if memory is not available, the driver can sleep until memory
is available. Also, code in the upper half can wait on a semaphore until some event
occurs, or can seize a lock knowing that it may have to sleep until the lock is released.

In each case, the entire kernel does not “sleep.” The kernel marks the user process as
blocked, and dispatches other processes to run. When the blocking condition is

75

3: Device Control Software

Driver Lower Half

removed—when memory is available, the semaphore is posted, or the lock is released—
the driver is scheduled for execution and resumes.

The lower half of a driver comprises the code that is called to respond to a hardware
interrupt. An interrupt can occur at almost any time, including large parts of the time
when the kernel is executing other services, including driver upper and lower halves.

The kernel is not in a known state when executing a driver lower half, and there is no
process context. In conventional UNIX systems and in previous versions of IRIX, the lack
of user context meant that the lower-half code could not use any kernel service that could
sleep. Because of this restriction, you will find that the reference pages for driver kernel
services always state whether the service can sleep or not—a service that might sleep
could never be called from an interrupt handler.

Starting with IRIX 6.4, the IRIX kernel is threaded; that is, all kernel code executes under
a thread identity. When it is time to handle an interrupt, a kernel thread calls the driver’s
interrupt handler code. In general this makes very little difference to the design of a
device driver, but it does mean that the driver lower half has an identity that can sleep.
In other words, starting with IRIX 6.4, there is no restriction on what kernel services you
can call from driver lower-half code.

In all systems, an interrupt handler should do as little as possible and do it as quickly as
possible. An interrupt handler will typically get the device status; store it where the
top-half code expects it; possibly post a semaphore to release a blocked user process; and
possibly start the next I/O operation if one is waiting.

Relationship Between Halves

76

Each half has its proper kind of work. In general terms, the upper half performs all
validation and preparation, including allocating and deallocating memory and copying
data between address spaces. It initiates the first device operation of a series and queues
other operations. Then it waits on a semaphore.

The lower half verifies the correct completion of an operation. If another operation is

queued, it initiates that operation. Then it posts the semaphore to awaken the upper half,
and exits.

007-0911-210

Kernel-Level Device Control

Layered Drivers

IRIX allows for “layered” device drivers, in which one driver operates the actual
hardware and the driver at the higher layer presents the programming interface. This
approach is implemented for SCSI devices: actual management of the SCSI bus is
delegated to a set of Host Adapter drivers. Drivers for particular kinds of SCSI devices
call the Host Adapter driver through an indirect table to execute SCSI commands. SCSI
drivers and Host Adapter drivers are discussed in detail in Chapter 16, “SCSI Device
Drivers.”

Combined Block and Character Drivers

A block device driver is called indirectly, from the filesystem, and it is not allowed to
support the ioctl() entry point. In some cases, block devices can also be thought of as
character devices. For example, a block device might return a string of diagnostic
information, or it might be sensitive to dynamic control settings.

It is possible to support both block and character access to a device: block access to
support filesystem operations, and character access in order to allow a user process
(typically one started by a system administrator) to read, write, or control the device
directly.

For example, the Silicon Graphics disk device drivers support both block and character
access to disk devices. This is why you can find every disk device represented as a block
device in the / dev/ dsk directory and again as a character devicein/ dev/ r dsk (“r” for
“raw,” meaning character devices).

Drivers for Multiprocessors

007-0911-210

All but a few Silicon Graphics computers have multiple CPUs that execute concurrently.
The CPUs share access to the single main memory, including a single copy of the kernel
address space. In principle, all CPUs can execute in the kernel code simultaneously. In
principle, the upper half of a device driver could be entered simultaneously by as many
different processes are there are CPUs in the system (up to 36 in a Challenge or Onyx
system).

A device driver written for a uniprocessor system cannot tolerate concurrent execution

by multiple CPUs. For example, a uniprocessor driver has scalar variables whose values
would be destroyed if two or more processes updated them concurrently.

77

3: Device Control Software

Loadable Drivers

78

In versions previous to IRIX 6.4, IRIX made special provision to support uniprocessor
character drivers in multiprocessors. It forced a uniprocessor driver to use only CPU 0 to
execute calls to upper-half code. This ensured that at most one process executed in any
upper half at one time. And it forced interrupts for these drivers to execute on CPU 0.
These policies had a detrimental effect on driver and system performance, but they
allowed the drivers to work.

Beginning with IRIX 6.4, there is no special provision for uniprocessor drivers in
multiprocessor systems. You can write a uniprocessor-only driver and use it on a
uniprocessor workstation but you cannot use the same driver design on a
multiprocessor.

It is not difficult to design a kernel-level driver to execute safely in any CPU of a
multiprocessor. Each critical data object must be protected by a lock or semaphore, and
particular techniques must be used to coordinate between the upper and lower halves.
These techniques are discussed in “Designing for Multiprocessor Use” on page 194.

When you have made a driver multiprocessor-safe, you compile it with a particular flag
value that IRIX recognizes. For example, drivers are sometimes compiled for Origin2000
systems with the -DSN and -DSNO flags. Multiprocessor-safe drivers work properly on
uniprocessor systems with very little, if any, extra overhead.

Some drivers are needed whenever the system is running, but others are needed only
occasionally. IRIX allows you to create a kernel-level device driver or STREAMS driver
that is not loaded at boot time, but only later when it is needed.

A loadable driver has the same purposes as a nonloadable one, and uses the same
interfaces to do its work. A loadable driver can be configured for automatic loading
when its device is opened. Alternatively it can be loaded on command using the
program (see the ml(1) and mload(4) reference pages).

A loadable driver remains in memory until its device is no longer in use, or until the
administrator uses M to unload it. A loadable driver remains in memory indefinitely,
and cannot be unloaded, unless it provides a pfxunload() entry point (see “Entry Point
unload()” on page 190).

There are some small differences in the way a loadable driver is compiled and configured
(see “Configuring a Loadable Driver” on page 279).

007-0911-210

Kernel-Level Device Control

007-0911-210

One operational difference is that a loadable driver is not available in the miniroot, the
standalone system administration environment used for emergency maintenance. If a
driver might be required in the miniroot, it can be made nonloadable, or it can be
configured for “autoregistration” (see “Registration” on page 282).

79

PART TWO

Device Control From Process Space II

Chapter 4, “User-Level Access to Devices”
How a user-level process can access and control devices on the VME and EISA
buses.

Chapter 5, “User-Level Access to SCSI Devices”
How a user-level process can execute commands and transfer data to a SCSI
device.

Chapter 6, “Control of External Interrupts”
How a user-level process creates or responds to external interrupt signals in the
Challenge and Power Challenge systems.

Chapter 4

User-Level Access to Devices

Programmed I/0O (PIO) refers to loading and storing data between program variables
and device registers. This is done by setting up a memory mapping of a device into the
process address space, so that the program can treat device registers as if they were
volatile memory locations.

This chapter discusses the methods of setting up this mapping, and the performance that
can be obtained. The main topics are as follows:

¢ “PCIProgrammed I/O” on page 83 discusses PIO mapping of PCI devices.

* “EISA Programmed I/O” on page 89 discusses PIO mapping of EISA bus devices in
the Indigo? workstation line.

¢ “VME Programmed I/O” on page 92 discusses PIO mapping of VME devices.
e “VME User-Level DMA” on page 96 discusses the use of the VME DMA engine.

Normally, PIO programs are designed in synchronous fashion; that is, the process issues
commands to the device and then polls the device to find out when the action is
complete. (However, it is possible for a user process to receive interrupts from some
mapped devices if you have purchased the optional REACT software.)

A user-level process can perform DMA transfers from a VME bus master or (in the
Challenge or Onyx series) a VME bus slave, directly into the process address space. The
use of these features is covered under “VME User-Level DMA” on page 96.

PCI Programmed 1/O

007-0911-210

Note: For an overview of the PCI bus and its hardware implementation in SGI systems,
see Chapter 20, “PCI Device Attachment.” For syntax details of the user interface to PCI,
see the pciba(7M) reference page. As of IRIX 6.5, the pciba user-level PCI bus adapter
interface has replaced the usrpci facility.

83

4: User-Level Access to Devices

Mapping a PCI Device Into Process Address Space

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address, or range of addresses, in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between an address on an
I/0 bus and an arbitrary location in the address space of a user-level process. When this
has been done, the bus location appears to be a variable in memory. The program can
assign values to it, or refer to it in expressions.

The PCI bus addresses managed by a device are not wired or jumpered into the board;
they are established dynamically at the time the system attaches the device. The assigned
bus addresses can vary from one day to the next, as devices are added to or removed
from that PCI bus adapter. For this reason, you cannot program the bus addresses of a
PCI device into software or into a configuration file.

In order to map bus addresses for a particular device, you must open the device special
file that represents that device. You pass the file descriptor for the opened device to the
mmap() function. If the device driver for the device supports memory mapping—
mapping is an optional feature of a PCI device driver—the mapping is set up.

The PCI bus defines three address spaces: configuration space, I/O space, and memory
space. Itis up to the device driver which of the spaces it allows you to map. Some device
drivers may set up a convention allowing you to map in different spaces.

PCI Device Special Files

84

Device special files for PCI devices are established in the / hwfilesystem by the PCI
device driver when the device is attached; see “Hardware Graph” on page 44. These
pathnames are dynamic. Typically, the system administrator also creates stable,
predictable device special files in the / dev filesystem. The path to a specific device is
determined by the device driver for that device.

The PCI bus adapter also creates a set of generic PCI device names for each PCI slot in
the system. The names of these special files can be displayed by the following command:

find /hw -nane pci -print -exec Is - {} \;

/ hw/ nodul e/ 1/ sl ot/i ol/ xwi dget/pci /O

total O

CIrW------- 0 root Sys 0, 78 Aug 12 15:27 config
Crw------- 0 root sys 0, 79 Aug 12 15:27 default
Crw------- 0 root Sys 0, 77 Aug 12 15:27 io

007-0911-210

PCI Programmed 1/0

CrW------- 0 root Sys 0, 75 Aug 12 15:27 nmem

/ hw/ modul e/ 1/ sl ot /i 0l/ xwi dget/pci/1

total O

CIrW------- 0 root Sys 0, 85 Aug 12 15:27 config
Crw------- 0 root sys 0, 86 Aug 12 15:27 default
CIrW------- 0 root Sys 0, 84 Aug 12 15:27 io
CIrW------- 0 root Sys 0, 82 Aug 12 15:27 nmem

The names are not leaf vertexes and cannot be opened. However, the namesconfi g,i o,
mem and def aul t are character special devices that can be opened from a process with
the correct privilege. The names represent the following bus addresses:

Table 4-1 PCI Device Special File Names for User Access
Name PCI Bus Address Space Offset in mmap() Call
config Configuration space or spaces on the card in this slot. Offset in config space.

default PCIbus memory space defined by the first base address Added to BAR.
register (BAR) on the card.

io PCI bus I/O space defined by this card. Offset in I/O space.
mem PCI bus 32-bit or 64-bit memory address space allocated Offset in total allocated
to this card when it was attached. memory space.

Note: With pciba under IRIX 6.5 it is no longer possible to access conf i g space directly
by means of mmap() I/O—ioctl() calls must be used instead.

Opening a Device Special File

007-0911-210

Either kind of pathname is passed to the open() system function, along with flags
representing the type of access (see the open(2) reference page). You can use the returned
file descriptor for any operation supported by the device driver. The pci ba device driver
supports only the mmap() and unmap() functions.

A driver for a specific PCI device may or may not support mmap(), read() and write(), or
ioctl() operations.

85

4: User-Level Access to Devices

Using mmap() With PCI Devices

Map Size Limits

86

When you have successfully opened a pci ba device special file, you use the file
descriptor as the primary input parameter in a call to the mmap() system function.

This function is documented for all its many uses in the mmap(2) reference page. For
purposes of mapping a PCI device into memory, the parameters should be as follows
(using the names from the reference page):

addr Should be NULL to permit the kernel to choose an address in user process
space.

len The length of the span of PCI addresses to map.

prot PROT_READ for input, PROT_WRITE for output, or the logical sum of those

names when the device will be used for both input and output.

flags MAP_SHARED. Add MAP_PRIVATE if this mapping is not to be visible to
child processes created with the sproc() function (see the sproc(2) reference

page).
fd The file descriptor returned from opening the device special file.
off The offset into the device address space.

The meaning of the off value depends on the PCI bus address space represented by the
device special file, as indicated in Table 4-1.

The value returned by mmap() is the virtual address that corresponds to the starting PCI
bus address. When the process accesses that address, the access is implemented by PIO
data transfer to or from the PCI bus.

There are limits to the amount and location of PCIbus address space that can be mapped
for PIO. The system architecture can restrict the span of mappable addresses, and kernel
resource constraints can impose limits. In order to create the map, the PCI device driver
has to create a software object called a PIO map. In some systems, only a limited number
of PIO maps can be active at one time.

007-0911-210

PCI Programmed 1/0

PCI Bus Hardware Errors

PCI PIO Example

007-0911-210

When the PCI bus adapter reports an addressing or access error, the error is reflected
back to the device driver. This can take place long after the instruction that initiated the
error transaction. For example, a PIO store to a memory-mapped PCI device can (in
certain hardware architectures) pass through several layers of translation. An error could
be detected several microseconds after the CPU store that initiated the write. By that
time, the CPU could have executed hundreds more instructions.

When the pci ba device driver is notified of a PCI Bus error, it looks up the identities of
all user processes that had mapped the part of PCI address space where the error
occurred. The driver then sends a SIGBUS signal to each such process. As a result of this
policy, your process could receive a SIGBUS for an error it did not cause; and when your
process did cause the error, the signal could arrive a long time after the erroneous
transaction was initiated.

The code in X demonstrates how to dump the standard configuration space registers of
a device in PCI slot 1 on an Origin200 (PCI slot 1 is XIO bus slot 5 on this system).

Example 4-1 PCI Configuration Space Dump

/*
* Use pciba to dunp the registers found
* using base address register 0.
* See pciba(7n).
*/
#i ncl ude <sys/types. h>
#i ncl ude <sys/ mman. h>
#i ncl ude <sys/fcntl. h>
#i ncl ude <sys/prctl.h>
#i ncl ude <unistd. h>
#i ncl ude <stdi o. h>
/*
* Path assunmes 2000/ Onyx2 PCl shoebox installed
* in first CPU nodul e.
*/
#defi ne MEMPATH "/ hw/ nodul e/ 1/ sl ot/i 02/ pci _xi o/ pci / 2/ base/ 0"
#defi ne MEMBI ZE (128)

87

4: User-Level Access to Devices

88

extern int errno;

mai n(int argc,

{

char *argv[])

volatile u_int *word_addr;

i nt fd;

char *pat h;

int size, newine = 0;
path = MEMPATH,;

size = MEMSI ZE;

fd = open(path, O RDWR);
if (fd <0) {

} else {

}
exit(0);

perror("open ../base/0 ");
return errno;

printf("Successfully opened % fd: %\ n", path, fd);
printf("Trying mmap\n");

word_addr = (unsigned int *)
mrap(0, si ze, PROT_READ| PROT_WRI TE, MAP_SHARED, f d, 0) ;
if (word_addr == (unsigned int *)-1) {
perror (" nmap");
} else {
int i;
vol atile int X;
printf("Dunping registers \n");
for (i =0; i <32; i++){
X = *(volatile int *)(word_addr + i) ;
if (newine == 0) {
printf("0x%.2x:", i*4);
}
printf(" 0x%8.8x", x);
if ((+tnewine%t) == 0)({
new i ne = 0;
printf("\n");

}
}

close (fd);

007-0911-210

EISA Programmed 1/0

EISA Programmed 1/O

The EISA bus is supported in SGI Indigo? workstations only. For an overview of the EISA
bus and its implementation in SGI systems, see Chapter 18, “EISA Device Drivers.”

Mapping an EISA Device Into Memory

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address or range of addresses in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between the bus address of
a device register and an arbitrary location in the address space of a user-level process.
When this has been done, the device register appears to be a variable in memory—the
program can assign values to it, or refer to it in expressions.

Learning EISA Device Addresses

007-0911-210

In order to map an EISA device for PIO, you must know the following points:
e which EISA bus adapter the device is on

In all SGI systems that support it, there is only one EISA bus adapter, and its
number is 0.

e whether you need access to the EISA bus memory or I/O address space

* the address and length of the desired registers within the address space

You can find all these values by examining files in the/ var / sysgen/ syst emdirectory,
especially the/ var/ sysgen/ syst ent i ri x. smfile, in which each configured EISA
device is specified by a VECTOR line. When you examine a VECTOR line, note the
following parameter values:

bust ype Specified as El SA for EISA devices. The VECTOR statement can be
used for other types of buses as well.

adapt er The number of the bus where the device is attached (0).

i ospace, Eachi ospace group specifies the address space, starting bus address,
i ospacez, and the size of a segment of bus address space used by this device.

i ospace3

89

4: User-Level Access to Devices

Within eachi ospace parameter group you find keywords and numbers for the address
space and addresses for a device. The following is an example of a VECTOR line (which
must be a single physical line in the system file):

VECTOR: bust ype=El SA nodul e=i f_ec3 ctlr=1
i ospace=(El SAI O, 0x1000, 0x1000)
exprobe_space=(r, El SAI O, 0x1c80, 4, 0x6010d425, Oxffffffff)

This example specifies a device that resides in the I/O space at offset 0x1000 (the slot-1
I/0 space) for the usual length of 0x1000 bytes. The expr obe_space parameter
suggests that a key device register is at 0x1c80.

Opening a Device Special File

When you know the device addresses, you can open a device special file that represents
the correct range of addresses. The device special files for EISA mapping are found in
/dev/eisa.

The naming convention for these files is as follows: Each file is named eisaBaM, where
B is a digit for the bus number (0)

M is the modifier, either i 0 or mem

The device special file for the device described by the example VECTOR line in the
preceding section would be / dev/ vie/ ei sa0Oai o.

In order to map a device on a particular bus and address space, you must open the
corresponding file in / dev/ ei sa.

Using the mmap() Function

90

When you have successfully opened the device special file, you use the file descriptor as
the primary input parameter in a call to the mmap() system function.

This function is documented for all its many uses in the mmap(2) reference page. For
purposes of mapping EISA devices, the parameters should be as follows (using the
names from the reference page):

addr Should be NULL to permit the kernel to choose an address in user process
space.

007-0911-210

EISA Programmed 1/0

EISA PIO Bandwidth

007-0911-210

len The length of the span of bus addresses, as documented in the i ospace
group in the VECTOR line.

prot PROT_READ, or PROT_WRITE, or the logical sum of those names when
the device is used for both input and output.

flags MAP_SHARED, with the addition of MAP_PRIVATE if this mapping is not

to be visible to child processes created with the sproc() function (see the
sproc(2) reference page).

fd The file descriptor from opening the device special file in / dev/ ei sa.
off The starting bus address, as documented in the i ospace group in the
VECTOR line.

The value returned by mmap() is the virtual memory address that corresponds to the
starting bus address. When the process accesses that address, the access is implemented
by data transfer to the EISA bus.

Note: When programming EISA PIO, you must always be aware that EISA devices
generally store 16-bit and 32-bit values in “small-endian” order, with the least-significant
byte at the lowest address. This is opposite to the order used by the MIPS CPU under
IRIX. If you simply assign to a C unsigned integer from a 32-bit EISA register, the value
will appear to be byte-inverted.

The EISA bus adapter is a device on the GIO bus. The GIO bus runs at either 25 MHz or
33 MHz, depending on the system model. Each EISA device access takes multiple GIO
cycles, as follows:

¢ The base time to do a native GIO read (of up to 64 bits) is 1 microsecond.

* A 32-bit EISA slave read adds 15 GIO cycles to the base GIO read time; hence one
EISA access takes 19 GIO cycles, best case.

* A 4-byte access to a 16-bit EISA device requires 10 more GIO cycles to transfer the
second 2-byte group; hence a 4-byte read to a 16-bit EISA slave requires 25 GIO
cycles.

¢ Each wait state inserted by the EISA device adds four GIO cycles.

91

4: User-Level Access to Devices

Table 4-2 summarizes best-case (no EISA wait states) data rates for reading and writing
a 32-bit EISA device, based on these considerations.

Table 4-2 EISA Bus PIO Bandwidth (32-Bit Slave, 33-MHz GIO Clock)
Data Unit Size Read Write

1 byte 0.68 MB/sec 1.75 MB/sec
2 byte 1.38 MB/sec 3.51 MB/sec
4 bytes 2.76 MB/sec 7.02 MB/sec

Table 4-3 summarizes the best-case (no wait state) data rates for reading and writing a
16-bit EISA device.

Table 4-3 EISA Bus PIO Bandwidth (16-Bit Slave, 33-MHz GIO Clock)
Data Unit Size Read Write

1 byte 0.68 MB/sec 1.75 MB/sec
2 byte 1.38 MB/sec 3.51 MB/sec
4 bytes 2.29 MB/sec 4.59 MB/sec

VME Programmed /O

The VME bus is supported by Origin2000 systems. For an overview of the VME bus and
its hardware implementation in SGI systems, see Chapter 12, “VME Device Attachment
on Origin 2000/Onyx2.”

Mapping a VME Device Into Process Address Space

92

As discussed in “CPU Access to Device Registers” on page 8, an I/O device is
represented as an address, or range of addresses, in the address space of its bus. A
kernel-level device driver has the ability to set up a mapping between the bus address of
a device register and a location in the address space of a user-level process. When this has
been done, the device register appears to be a variable in memory. The program can
assign values to it, or refer to it in expressions.

007-0911-210

VME Programmed I/0

Learning VME Device Addresses

In order to map a VME device for PIO, you must know the following points:

e The VME bus number on which the device resides. IRIX supports as many as five
VME buses. On Challenge and Onyx systems the first VME bus is number 0; on
Origin and Onyx2 systems the first VME bus is number 1. Use the hi nv command
to see the numbers of others (and see “About VME Bus Addresses and System
Addresses” on page 350).

* The VME address space in which the device resides
This will be either A16, A24, or A32.

* VME address space modifier that the device uses—either supervisory (s) or
nonprivileged (n)
¢ The VME bus addresses associated with the device

This must be a sequential range of VME bus addresses that spans all the device
registers you need to map.

This information is normally documented in VECTOR lines found in a file in the
/var/ sysgen/ syst eni directory (see “Defining VME Devices with the VECTOR
Statement” on page 360).

Opening a Device Special File

007-0911-210

When you know the device addresses, you can open a device special file that represents
the correct range of addresses. The device special files for VME mapping are found in the
hardware graph at paths having the form:

/ hw/ nodul e/ mod/ sl ot /i on/ basei o/ vme_xt own/ pci / 7/ vimebus/ usr vne/ assm/ width

The naming convention for these hwgr aph paths is documented in the usrvme(7)
reference page. Briefly, each path contains these variable elements:

mod The Origin or Onyx2 module number.

n The XIO slot number of the VME adapter.

ss The address space, either 16, 24, or 32.

m VME address modifier, s for supervisory or n for nonprivileged.

width Data width to be used, for example d32; covered in later table.

93

4: User-Level Access to Devices

Shorter names are also created in the form

[hw/ vime/ busnumber/ usr vime/ assni width

Tip: In previous versions of IRIX, comparable device special files were defined in the

/ dev directory using names such as / dev/ vie/ vime0al6n and the like. If you have
code that depends on these names—or if you prefer the shorter names in/ dev—feel free
to create compatible names in/ dev in the form of symbolic links to the/ hw. . . / usr vire
names.

The data width that is designated in the pathname as width can be selected from the
values shown in Table 4-4.

Table 4-4 Data Width Names in VME Special Device Names
Address Space in Pathname Supported Widths in Pathname
alén, alé6s di1e6, d32

a24n, a24s di1e6, d32

a32n, a32s opened for PIO access ds, d16, d32_single

a32n, a32s opened for DMA access d8, d16, d32_single, d32_block, d64_single, d64_block

Opening a device for DMA use is described under “VME User-Level DMA” on page 96.

Tip: You can display all the usr vime devices in the system using the find command in
the / hw directory, as in

find /hw -name /hw/ vne/*/usrvme/*/* -type ¢ -print

Using the mmap() Function

When you have successfully opened the device special file, you use the file descriptor as
the primary input parameter in a call to the mmap() system function.

94 007-0911-210

VME Programmed I/0

Limits on Maps

VME PIO Access

007-0911-210

This function has many different uses, all of which are documented in the mmap(2)
reference page. For purposes of mapping a VME device into memory, the parameters
should be as follows (using the names from the reference page):

addr Should be NULL to permit the kernel to choose the address in user process
space.

len The length of the span of VME addresses, as documented in the i ospace
group in the VECTOR line.

prot PROT_READ for input, PROT_WRITE for output, or the logical sum of
those names when the device will be used for both.

flags MAP_SHARED. Add MAP_PRIVATE if this mapping is not to be visible to
child processes created with the sproc() function.

fd The file descriptor returned from opening the device special file.

off The starting VME bus address, as documented in the i ospace group in
the VECTOR line.

The value returned by mmap() is the virtual address that corresponds to the starting
VME bus address. When the process accesses that address, the access is implemented by
data transfer to the VME bus.

There are limits to the amount and location of VME bus address space that can be
mapped for PIO. The system architecture can restrict the span of mappable addresses.
Kernel resource constraints can impose limits on the number of VME maps that are
simultaneously active. You must always inspect the return code from the mmap() call.

Once a VME device has been mapped into memory, your program reads from the device
by referencing the mapped address, and writes to the device by storing into the mapped
address.

Typically you organize the mapped space using a data structure that describes the layout
of registers. Two key points to note about the mapped space are:

95

4: User-Level Access to Devices

* You should always declare register variables with the C keyword volatile. This
forces the C compiler to generate a reference to memory whenever the register value
is needed.

e The VME PIO hardware does not support 64-bit integer load or store operations.
For this reason you must not:

— Declare a VME item as long long, because the C compiler generates 64-bit loads
and stores for such variables

- Apply library functions such as bcopy(), bzero(), or memmove() to the VME
mapped registers, because these optimized routines use 64-bit loads and stores
whenever possible.

On an Origin or Onyx2 system, a PIO read can take one or more microseconds to
complete—a time in which the R10000 CPU can process many instructions from memory.
The R10000 continues to execute instructions following the PIO load until it reaches an
instruction that requires the value from that load. Then it stalls until the PIO data arrives
from the device.

A PIO write is asynchronous at the hardware level. The CPU executes a register-store
instruction that is complete as soon as the physical address and data have been placed on
the system bus. The actual VME write operation on the VME bus can take 1 or more
microseconds to complete. During that time the CPU can execute dozens or even
hundreds more instructions from cache memory.

VME User-Level DMA

96

A DMA engineis included as part of each VME bus adapter in an SGI Origin2000 system.
The DMA engine can perform efficient, block-mode, DMA transfers between system
memory and VME bus slave cards—cards that would normally be capable of only PIO
transfers.

You can use the udma functions to access a VME Bus Master device, if the device can
respond in slave mode. However, this would normally be less efficient than using the
Master device’s own DMA circuitry.

The DMA engine greatly increases the rate of data transfer compared to PIO, provided
that you transfer at least 32 contiguous bytes at a time. The DMA engine can perform D8,
D16, D32, D32 Block, and D64 Block data transfers in the A16, A24, and A32 bus address

spaces.

007-0911-210

VME User-Level DMA

Using the DMA Library Functions

All DMA engine transfers are initiated by a special device driver. However, you do not
access this driver through open/read/write system calls. Instead, you program it
through a library of functions. The functions are documented in the vme_dma_engine(3)
reference page. They are used in the following sequence:

1.

Call vime_dma_engine_alloc() to initialize DMA access to a particular VME bus
adapter, specified by device special file name (see “Opening a Device Special File”
on page 93). You can create an engine for each available bus.

Call vime_dma_engine_buffer_alloc() to allocate storage to use for DMA buffers.
This function pins the memory pages of the buffers to prevent swapping.

You can call vme_dma_engine_buffer_addr_get() to return the address of a buffer
allocated by the preceding function.

Call vime_dma_engine_transfer_alloc() to create a descriptor for an operation,
including the buffer, the length, and the direction of transfer as well as several other
attributes. The handle can be used repeatedly.

Call vime_dma_engine_schedule() to schedule one transfer (as described to
vme_dma_engine_transfer_alloc()) for future execution. The transfer does not
actually start at this time. This function can be called from multiple, parallel
threads.

Call vime_dma_engine_commit() to commence execution of all scheduled transfers.
If you specify a synchronous transfer, the function does not return until the transfer
is complete.

If you specify an asynchronous transfer, call vme_dma_engine_rendezvous() after
starting all transfers. This function does not return until all transfers are complete.

In prior releases, user-level DMA was provided through a comparable library of
functions with different names and calling sequences. That library of functions is
supported in the current release (see a prior edition of this manual, and the udmalib(3)
reference page if installed). The new library described here is recommended.

007-0911-210

97

Chapter 5

007-0911-210

User-Level Access to SCSI Devices

IRIX contains a programming library, called dsl i b, that allows you to control SCSI
devices from a user-level process. This chapter documents the functions in dslib,
including the following topics:

“Overview of the dsreq Driver” on page 100 gives a summary of the features and
use of the generic SCSI device driver.

“Generic SCSI Device Special Files” on page 100 documents the format of the names
and major and minor numbers of generic SCSI files.

“The dsreq Structure” on page 103 gives details of the request structure that is the
primary input to the generic SCSI driver.

“Testing the Driver Configuration” on page 110 documents the use of the DS_CONF
ioctl() operation.

“Using the Special DS_RESET and DS_ABORT Calls” on page 111 describes two
special functions of the generic SCSI driver.

“Using dslib Functions” on page 112 describes the functions that make it simpler to
use the generic SCSI driver.

“Example dslib Program” on page 124 shows a simple example of use.

You must understand the SCSI interface in order to command a SCSI device. For several
SCSI information resources, see “Other Sources of Information” on page xli.

If you are specifically interested in using audio data from a CDROM or DAT drive, you
should use the special-purpose libraries for COROM and DAT that are included in the
IRIS Digital Media Development Environment. These libraries are built upon the generic
SCSI driver, but provide convenient, audio-oriented functions. For more information on
these libraries, see the IRIS Digital Media Programming Guide, document number
008-1799-040.

If your interest is in controlling SCSI devices at the kernel level, see Part V, “SCSI Device
Drivers.”

99

5: User-Level Access to SCSI Devices

Overview of the dsreq Driver

IRIX includes a generic SCSI device driver, the dsreg driver, through which a user-level
program can issue SCSI commands to SCSI devices. This is a character device driver that
supports only open(), close() and ioctl() operations (see “Kinds of Kernel-Level Drivers”
on page 66, and also the open(2), close(2) and ioctl(2) reference pages).

The formal documentation of the dsreq driver is found in the ds(7) reference page. In
order to invoke its services, you prepare a dsreq data structure describing the operation
and pass it to the device driver using an ioctl() call. The device driver issues the SCSI
command you specify, and sleeps until it has completed. Then it returns the status in the
dsreq structure.

You can request operations for input and output as well as issuing control and diagnostic
commands. The dsreq structure for input and output operations specifies a buffer in
memory for data transfer. The dsreq driver handles the task of locking the buffer into
memory (if necessary) and managing a DMA transfer of data.

The programming interface supported by the generic SCSI driver is quite primitive. A
library of higher-level functions makes it easier to use. This library is formally
documented in the dslib(3) reference page, and is described under “Using dslib
Functions” on page 112.

Generic SCSI Device Special Files

The creation and use of device special files is discussed under “Device Special Files” on
page 37. A device special file represents a device, and is the mechanism for associating a
device with a kernel-level device driver.

The device special files in the / dev/ scsi directory are all associated with the dsreq
driver. A basic set of these names is created automatically by the / dev/ MAKEDEV script
(see “The Script MAKEDEV” on page 43). You have to create additional device special
files if you need to control logical units other than logical unit 0.

100 007-0911-210

Generic SCSI Device Special Files

Major and Minor Device Numbers in /dev/scsi

Device special files in / dev/ scsi have one of the following major device numbers:
e 195 for devices on a SCSI bus (files / dev/ scsi / sc*).
* 196 for devices on a jag (VME) SCSI bridge (files / dev/ scsi / j ag*).

The minor number of these files encodes the adapter number, the SCSI ID, and the LUN,
using the bit assignments shown in Figure 5-1.

EDCBA9876543210
L[| [elelefelefeleft]e]e|i]r]i]i]

[N

g

7-bit 3-bit 4-bit

adapter (bus) logical unit SCSI
number number ID

Figure 5-1 Bit Assignments in SCSI Device Minor Numbers

Form of Filenames in /dev/scsi

Each device special filename in the / dev/ scsi directory reflects the values of the
device’s adapter (bus) number, SCSI ID, and logical unit number (LUN).

Tip: The character between the SCSI ID and the LUN in these names is the letter “1.”
When reading or copying these device names, take care not to write a digit 1 instead. This
is a frequent error.

Names of SCSI Devices on a SCSI Bus

007-0911-210

Devices attached directly to a SCSI bus have names in this form:

sc Prefix “sc” for SCSI attachment.
0 to 137 Number of the SCSI adapter, typically 0 or 1.
d Constant letter “d” for device.

101

5: User-Level Access to SCSI Devices

Oto7(to15for SCSIID of the target device or control unit, as set by switches on
wide SCSI) the device itself.

1 (letter ell) Constant letter “1” for logical unit.
Oto7 Logical unit number (LUN) of this device, typically 0.
A typical device name would be / dev/ scsi / sc1d3l 0 meaning a SCSI device

configured as ID 3 on SCSI bus 1. Either this device has no logical units, or this is the first
logical unit on device 3.

Names of SCSI Devices on the Jag (VME Bus) Controller

Machines in the Challenge and Onyx systems can optionally have SCSI devices attached
to the VME bus through a bridge using the jag device driver. These devices are also
represented in/ dev/ scsi with names of the following form:

jag Prefix “jag” for VME/SCSI attachment.
Oto4 Number of the VME adapter, typically 0 or 1.
d Constant letter “d” for device.

O0to7(to15for SCSIID of the target device or control unit, as set by switches on
wide SCSI) the device itself.

1 (letter ell) Constant letter “1” for logical unit.
Oto7 Logical unit number (LUN) of this device, typically 0.
A typical device name would be / dev/ scsi / j ag1d3| 0 meaning a SCSI device

configured as ID 3 on VME bus 1. Either the device has no logical units, or this is the first
logical unit on device 3.

Creating Additional Names in /dev/scsi

102

The script / dev/ MAKEDEV, which runs each time the system boots, creates 16 files for
each existing SCSI or jag bus. These files represent the possible SCSI ID numbers 0-15 on
each bus, with a logical number of 0. If you want to control a device with LUN 0, the
device special file exists.

In order to control a device with a LUN of 1-7, you must create an additional device
special file, using the mknode ori nstal | command (see the install(1) reference page).

007-0911-210

The dsreq Structure

For example, before you can operate logical unit 2 of device 5 on SCSI bus 1, you must
create / dev/ scsi / sc1d5l 2 using a command such as

install -F /dev/scsi -m600 -u root -g sys \
-chr 195, 165 sc1d5l 2

Relationship to Other Device Special Files

The files in / dev/ scsi describe many of the same devices that are described by files in
/ dev/ dsk, / dev/ t ape, and other directories. There is a security exposure in that a
user-level program could use a/ dev/ scsi file to do almost anything to a disk or tape,
including total erasure.

The dsreq device driver forces exclusivity with itself; that is, a given / dev/ scsi file can
be opened only by one process at a time. However, a device could be open through the
dsreq driver at the same time it is open by another process, or by a filesystem, through a
different device special file and device driver. For example, a disk volume could be
simultaneously open through the name / dev/ scsi / sc0d0Ol 0 and through

/ dev/ rdsk/ dks0d1s0.

The process that opens a generic SCSI device can request exclusivity using the O_EXCL
option to open(). In that case, the open is rejected when the device is already open
through another driver; and no other driver can open the device until the generic device
file is closed.

The dsreq Structure

007-0911-210

The primary input to most dsreq ioctl() calls, as well as the primary input to most dslib
functions, is the dsreq structure. This structure is declared in
lusr/include/sys/dsreq. h, aheader file that rewards careful study.

The important fields of the dsreq structure are shown in Table 5-1. Some of the field values
are expanded in the following topics. The sys/ dsr eq. h file declares macros for access

103

5: User-Level Access to SCSI Devices

104

to many of the fields. Use these macros (listed in Table 5-1) in both expressions and
assignments in order to insulate your code against future changes.

Table 5-1 Fields of the dsreq Structure

Field Name Macro Purpose

ds_flags FLAGS(dp) Bits used to determine device driver actions. See “Values for
ds_flags” on page 105.

ds_time TIME(dp) Timeout value in milliseconds. If the command does not
complete, it is ended with an error code. The driver sets a
default of 5000 (5 seconds) when this is set to zero. dsopen()
initializes it to 10000.

ds_private PRIVATE(dp) Field for use by the calling program. dsopen() uses this field to
point to its “context” data (see “Using dsopen() and dsclose()”
on page 113).

ds_cmdbuf CMDBUF(dp) Address of SCSI command string to be sent.

ds_cmdlen CMDLEN(dp) Length of the SCSI command string.

ds_databuf ~ DATABUF(dp) Address of a single data buffer. See “Data Transfer Options” on
page 107.

ds_datalen ~ DATALEN(dp) Length of data buffer.

ds_sense SENSEBUF(dp) Address to receive sense data after an error.

buf

ds_sense SENSELEN(dp) Length of sense buffer in bytes.

I en

ds_iovbuf IOVBUEF(dp) Address of an iov_t structure. See “Data Transfer Options” on
page 107.

ds_iovlen IOVLEN(dp) Length of data described by ds_iovbuf.

ds_link This field is not supported, and should be zero-filled.

ds_synch This field is not supported, and should be zero-filled.

ds_revcode Intended for the version code of the dsreq driver, not currently
set to a useful value.

ds_ret RET(dp) Return code for the requested operation. See Table 5-3.

ds_status STATUS(dp) SCSI status byte from the operation. See Table 5-4.

007-0911-210

The dsreq Structure

Table 5-1 Fields of the dsreq Structure (continued)

Field Name Macro

Purpose

ds_msg MSG(dp)

ds_cmdsent CMDSENT(dp)

ds_datasent DATASENT(dp)

ds_sensesent SENSESENT(dp)

The first byte of a message returned by the target. See Table 5-5.

Length of command string actually sent (same as ds_cmadlen,
unless an error occurs).

Length of data transferred.

Length of sense data received.

The dslib library contains functions to simplify the preparation and execution of a dsreq
request; see “Using dslib Functions” on page 112.

Values for ds_flags

The possible flag values in the ds_flags field are listed in Table 5-2. The flag values are
designed for the most flexible, capable type of bus, device, and device driver. Not all
values are supported, and different host adapters can support different combinations.

Table 5-2 Flag Values for ds_flags

Supported by

Constant Name Any Driver? Meaning When Set to 1

DSRQ_ASYNC Yes Return at once, do not sleep until the operation is
complete.

DSRQ_SENSE Yes Get sense data following an error on the requested
command.

DSRQ_TARGET No Act as the SCSI target, not the SCSI initiator.

DSRQ_SELATN Yes Select with ATN.

DSRQ_DISC Yes Allow identify disconnect.

DSRQ_SYNXFR Yes Negotiate a synchronous transfer if possible. Needed only

to switch into synchronous mode. Repeated negotiation is
wasteful.

007-0911-210

105

5: User-Level Access to SCSI Devices

Table 5-2

Flag Values for ds_flags (continued)

Supported by

Constant Name Any Driver? Meaning When Set to 1

DSRQ_ASYNXFR Yes Negotiate an asynchronous transfer. Needed only to
return to asynch after a synchronous transfer. Repeated
negotiation is wasteful.

DSRQ_SELMSG No A specific select is coded in the message. This feature is
not supported.

DSRQ_IOV Yes Use the iov_t from ds_iovbuf, not the single buffer from
ds_databuf (see “Data Transfer Options” on page 107).

DSRQ_READ Yes This is a data input command (as opposed to an
immediate command or an output).

DSRQ_WRITE Yes This is a data output command (as opposed to an
immediate command or an input).

DSRQ_MIXRDWR No This command can both read and write.

DSRQ_BUF No Buffer the input and copy to the supplied buffer, instead
of direct input to the buffer.

DSRQ_CALL No Notify completion (with DSRQ_ASYNC).

DSRQ_ACKH No Hold ACK asserted.

DSRQ_ATNH No Hold ATN asserted.

DSRQ_ABORT No Send ABORT messages until the bus is clear.Useful only
with SCSI commands that have the immediate bit set.

DSRQ_TRACE Yes Trace this request (accepted but has no effect).

DSRQ_PRINT Yes Print this request (accepted but has no effect).

DSRQ_CTRL1 Yes Request with host control bit 1.

DSRQ_CTRL2 Yes Request with host control bit 2.

In order to find out which flags are supported by a particular driver, use the DS_CONF
operation (see “Testing the Driver Configuration” on page 110).

007-0911-210

The dsreq Structure

Data Transfer Options

When reading or writing data, you have two design options:

* You can transfer a single segment of data directly between the device and a buffer
you supply (set neither DSRQ_BUF nor DSRQ_IOV).

* You can transfer segments of data between the device and a series of one or more
memory locations based on an iov_t object (set DSRQ_IOV).

All read /write requests are done using DMA. The “scatter/gather” support of
DSRQ_IOV is presently restricted to only one memory segment, so it is not greatly
different from single-buffer I/O. If you elect to use it, the iov_t structure is declared in
sys/ i ov. h (see also the part of the read(2) reference page that deals with the readv()
function).

During a direct transfer using either a single buffer or scatter/gather, the data buffer
spaces are locked in memory.

The maximum amount of data you can transfer in one operation is set by the host adapter
driver for the bus, and can be retrieved with an ioctl() (see “Testing the Driver
Configuration” on page 110). The maximum length for a buffered transfer is returned by
the same ioctl(). It can be less than the direct-transfer size because there may be a limit
on the size of kernel memory that can be allocated.

Return Codes and Status Values

007-0911-210

A zero return code in the ds_ret field signifies success. The possible nonzero return codes
are summarized in Table 5-3 and are declared in sys/ dsr eq. h. Not all return codes are
possible with every driver.

Table 5-3 Return Codes From SCSI Operations

Constant Name Meaning

DSRT_DEVSCSI General failure from SCSI driver.
DSRT_MULT General software failure, typically a SCSI-bus request.
DSRT_CANCEL Operation cancelled in host adapter driver.

DSRT_REVCODE Software level mismatch, recompile application.

107

5: User-Level Access to SCSI Devices

Table 5-3

Return Codes From SCSI Operations (continued)

Constant Name

Meaning

DSRT_AGAIN
DSRT_HOST
DSRT_NOSEL
DSRT_SHORT
DSRT_OK
DSRT_SENSE

DSRT_NOSENSE

DSRT_TIMEOUT
DSRT_LONG
DSRT_PROTO
DSRT_EBSY
DSRT_REJECT
DSRT_PARITY
DSRT_MEMORY
DSRT_CMDO
DSRT_STAI
DSRT_UNIMPL

Try again, recoverable SCSI-bus error.

Failure reported by host adapter driver for the bus in use.
No unit responded to select.

Incomplete transfer (not an error). See ds_datasent.

Not returned at this time.

Command returned with status; sense data successfully retrieved
from SCSI host (see ds_sensesent).

Command with status, error occurred while trying to get sense data
from SCSI host.

Command did not complete in the time allowed by ds_timeout.
Data transfer overran bounds (ds_datalen).

Miscellaneous protocol failure.

Busy dropped unexpectedly; protocol error.

Message rejected; protocol error.

Parity error on SCSI bus; protocol error.

Memory error in system memory.

Protocol error during command phase.

Protocol error during status phase.

Command not implemented; protocol error.

007-0911-210

The dsreq Structure

007-0911-210

The possible SCSI status value in the ds_status field are summarized in Table 5-4.

Table 5-4 SCSI Status Codes

Constant Name

Meaning

STA_GOOD
STA_CHECK

STA_BUSY
STA_IGOOD
STA_RESERV

The target has successfully completed the SCSI command.

An error or exception was detected. Sense was attempted if DSRQ_SENSE
was specified.

Command not attempted; addressed unit is busy.
Linked SCSI command completed.

Command aborted because it tried to access a logical unit or an extent within
a logical unit that reserves that type of access to another SCSI device.

The possible SCSI message byte values in the ds_msg field are summarized in Table 5-5.

Table 5-5 SCSI Message Byte Values

Constant Name

Meaning

MSG_COMPL
MSG_XMSG
MSG_SAVEP
MSG_RESTP
MSG_DISC
MSG_IERR
MSG_ABORT
MSG_REJECT
MSG_NOOP
MSG_MPARITY
MSG_LINK
MSG_LINKF

Command complete.

Extended message (only byte returned).
Initiator should save data pointers.
Initiator restore data pointers.
Disconnect.

Initiator detected error.

Abort.

Optional message rejected, not supported.
Empty message.

Parity error during Message In phase.
Linked command complete.

Linked command complete with flag.

109

5: User-Level Access to SCSI Devices

Table 5-5 SCSI Message Byte Values (continued)

Constant Name Meaning

MSG_BRESET Bus device reset.

MSG_IDENT Value 0x80, first of the 0x80-0OxFF identifier messages.

Testing the Driver Configuration

110

Different buses have different host adapter drivers that can have different features. The
dsreq device driver supports an ioctl() call that retrieves the configuration of the driver
for the bus where the device resides. This call fills in the fields of a structure of type dsconf
(declared in sys/ dsr eq. h) listed in Table 5-6.

Table 5-6 Fields of the dsconf Structure

Field Name Contents

dsc_flags DSRQ flags honored by this driver (see Table 5-2).

dsc_preset DSRQ preset values (defaults) that are merged with the input ds_flags using
logical OR in any request.

dsc_bus Number of this SCSI bus, as encoded in the device minor number.

dsc_imax Maximum target ID for this bus (7 for SCSI, 15 for wide SCSI).

dsc_Ilmax Maximum number LUN values per ID on this bus.

dsc_iomax Maximum length of a single I/O transfer.

dsc_biomax Maximum length of a buffered I/O transfer.

The code in Example 5-1 shows a function that tests if a particular flag is supported by a
particular bus. The input arguments are a file descriptor for an open device special file,
and a flag value (or values) from sys/ dsr eq. h.

007-0911-210

Using the Special DS_RESET and DS_ABORT Calls

Example 5-1 Testing the Generic SCSI Configuration

ui nt
test_dsreq_flags(int dev_fd, uint flag)
{
dsconf _t config;
int ret;
ret = ioctl(dev_fd, DS_CONF, &config);
if (lret) { /* no problemin ioctl */
return (flag & config.dsc_flags);
} else { /* ioctl failure */
return 0; /* not supported, it seenms */
}
}

A program could use the function in Example 5-1 to find out if a particular feature is
supported. For example, a test of support for the DSRQ_SYNXFER feature could be
coded as follows:

if (test_dsreq_flags(the_dev, DSRQ SYNXFER)) ({
/* synchronous negotiation is supported */...

Using the Special DS _RESET and DS_ABORT Calls

Using DS_ABORT

007-0911-210

Two special functions of the generic SCSI driver are available only as ioctl() calls, not
through dslib functions.

The DS_ABORT ioctl() sends a SCSI ABORT message to the bus, target, and LUN defined
by the file descriptor. The resulting status is returned in the dsreq that is also specified.
The host adapter driver waits until no commands are pending on that bus, so there is no
point in using this function to cancel anything but an immediate command such as a
rewind. And example of this call is as follows:

ioctl(dev_fd, DS _ABORT, &sone_dsreq);

111

5: User-Level Access to SCSI Devices

Using DS_RESET

The DS_RESET ioctl() function causes a reset of the SCSI bus specified by the file
descriptor. The resulting status is returned in the dsreq that is also specified. This
powerful operation should be used with great care, because it terminates all pending
activity on the bus.

Using dslib Functions

dslib Functions

112

The functions in the dslib library are built upon calls to the dsreq device driver, and
simplify the process of allocating a dsreq structure, setting values in it, and executing
commands. The formal documentation of the library is found in dslib(3). The source code
is distributed with the system in the / usr/ shar e/ src/iri x/ exanpl es/ scsi
directory so that you can read and extend it. (This directory installs as part of the irix_dev
software component, and the examples directory does not install by default.)

In order to use the functions in the library, you include / usr/ i ncl ude/ dsl i b. h in
your code, and link with the - | ds optionso as tolink/ usr/ | i b/ | i bds. so. Then the
functions summarized in Table 5-7 are available.

Table 5-7 dslib Function Summary

Function Name Purpose

ds_ctostr Look up a string in a table using an integer key.

ds_vtostr Look up a string in a table using an integer key.

dsopen Open a device special file and allocate a dsreq for use with it.
dsclose Free the dsreq structure and close the device.

doscsireq Perform an operation on a device as specified in a dsreq.
filldsreq Set values in fields of a dsreq structure.

fillg0cmd Set up the dsreq structure for a group 0 SCSI command.

007-0911-210

Using dslib Functions

Table 5-7 dslib Function Summary (continued)

Function Name

Purpose

fillglemd

inquiry12

modeselect15

modesensela

read08
readextended28
readcapacity25

requestsense03

reserveunitl6
releaseunit17

senddiagnosticld

testunitready00
write0a

writeextended?2a

Set up the dsreq structure for a group 1 SCSI command.

Issue an Inquiry command and retrieve information from
the device concerning such things as its type.

Issue a group 0 Mode Select command to a SCSI device.

Send a group 0 Mode Sense command to a device to retrieve
a parameter page from the device.

Issue a group 0 Read command in disk-drive form.
Issue a group 1 Read command in disk-drive form.
Issue a Read Capacity command.

Issue a Request Sense command and test or probe for the
device.

Issue a Reserve Unit command.
Issue a Release Unit command.

Issue a Send Diagnostic command to test if the device or the
SCSI bus is online, or run a self-test on the device.

Issue a Test Unit Ready command to the SCSI device.
Issue a group 0 Write command to the SCSI device.

Issue an extended Write command to the SCSI device.

Using dsopen() and dsclose()

The dsopen() function opens a device special file for a generic SCSI device, and allocates
a dsreq structure initialized for use with that device. The function prototype is

struct dsreq* dsopen(char *opath, int oflags);

007-0911-210

113

5: User-Level Access to SCSI Devices

114

The arguments are

opath

oflags

The name of the device special file as a character string, for example
“/dev/scsi/jag0d710” (see “Form of Filenames in /dev/scsi” on
page 101).

The oflag value expected by open() when opening this device special
file. O_EXCL has special meaning; see “Relationship to Other Device
Special Files” on page 103.

If the open() call fails or memory cannot be allocated, the function returns NULL.
Otherwise it allocates a dsreq structure as well as generous buffers for command and
sense strings. The following fields of the dsreq are initialized:

ds_time

ds_private

ds_cmdbuf
ds_cmdlen
ds_sensebuf

ds_senselen

Set to 10000 (10 second timeout).

Set to the address of the context that contains the dsreq as well as the
command and sense buffers.

Set to the address of the command buffer.
Set to the length of the allocated command buffer.
Set to the address of the allocated sense buffer.

Set to the length of the sense buffer.

Other fields of the dsreq are cleared to zero.

Note: Other functions in dslib assume that a dsreq has been initialized by dsopen(). In
particular they assume the ds_private value points to a context block. You should not
attempt to use any dsreq structure with a dslib function except one returned by dsopen();
and you should not use a dsreq opened for one file with another file.

The dsclose() function releases the dsreq structure and close the device. Its prototype is

voi d dscl ose(struct dsreq *dsp);

The only argument is the dsreq created by dsopend().

007-0911-210

Using dslib Functions

Issuing a Request With doscsireq()

The doscsireq() function issues a SCSI request by passing a dsreq to the SCSI device
driver using an ioctl() call. The dsreq must have been prepared completely beforehand.
The function prototype is

int doscsireq(int fd, struct dsreq *dsp);

The arguments are as follows:

fd The file descriptor for the open device file.

dsp The address of the dsreq prepared by dsopen().

Normally the returned value is the SCSI status byte. When the requested operation ends
with Busy or Reserve Conflict status, the function sleeps 2 seconds and tries the operation

up to four times. The returned value is -1 when the device driver rejects the ioctl() or the
third retry ends in failure.

SCSI Utility Functions

Using filldsreq()

007-0911-210

The functions filldsreq(), fillg0cmd(), fillglemd(), ds_vtostr(), and ds_ctostr() are not
oriented toward particular SCSI operations, but are used to construct your own
task-oriented SCSI functions.

The filldsreq() function is used to set the ds_flags, ds_databuf, and ds_datalen members of
a dsreq structure. Its prototype is

void filldsreq(struct dsreq *dsp, uchar_t *data, | ong datalen, |ong flags)

The arguments are as follows:

dsp The address of a dsreq prepared by dsopen().

data The address of a buffer area.

datalen The length of the buffer area.

flags Flag values for ds_flags (see “Values for ds_flags” on page 105).

The bits in flags are added to ds_flags with an OR; they do not replace the contents of the
field.

115

5: User-Level Access to SCSI Devices

Note: Besides the specified values, the function also sets 10000 in ds_timeout and clears
ds_link, ds_synch, and ds_ret to zero.

Using fillg0cmd() and fillglecmd()

The fillg0cmd () function stores a group 0 (6-byte) SCSI command in a command buffer.
The fillglemd() stores a group 1 (10-byte) SCSI command in the buffer. Both functions
set the ds_cmdbuf and ds_cmdlen fields of a dsreq. The function prototypes are:

void fillgOcmd(struct dsreq *dsp, uchar_t *cmdbuf, b0, ..., b5)
void fillglcrmd(struct dsreq *dsp, uchar_t *cmdbuf, b0, ..., b9)

The arguments are as follows:

dsp The address of any dsreg.
cmdbuf The address of a buffer to receive the command string.
bo, b1,... Expressions for the successive bytes of a SCSI command.

In typical use, the arguments are as follows:
dsp The address of a dsreq initialized by dsopend().

cmdbuf The command buffer allocated by dsopen(), whose address is stored in
the ds_cmdbuf field of the dsreq.

b0 A SCSI command verb expressed as one of the constants declared in
dslib.h, for example GO_INQU.

A typical call resembles the following;:
fillgOcmd(dsp, (uchar_t *)COMDBU-(dsp), _INQ, 1, ing_page, O, Bl(datal en),0);

The macros B1(), B2(), and B4() defined in sys/ dsr eq. h are useful for expressing
halfword and word values as byte sequences.

Using ds_vtostr() and ds_ctostr()

116

The dslib library module contains six static tables that can be used to convert between
numeric values and character strings for message display. The tables are summarized in
Table 5-8. The table definitions are in the source file dst ab. c.

007-0911-210

Using dslib Functions

Table 5-8 Lookup Tables in dslib

External Name Type Table Contents

cmdnametab vtab Names for SCSI command bytes, for example “Test Unit.”
cmdstatustab vtab Names for SCSI status byte codes, for example “BUSY.”

dsrqnametab vtab Descriptions of flag values from ds_flags, for example “select with
(without) atn” for DSRQ_SELATN.

dsrtnametab vtab Descriptions of return values in ds_ret, for example “parity error on
SCSI bus” for DSRT_PARITY.

msgnametab vtab Descriptions of SCSI message bytes, for example “Save Pointers.”

sensekeytab ctab Descriptions of SCSI sense byte values, for example “Illegal Request.”

The ds_vtostr() function searches any of the five vtab tables for the string matching an
integer key. The ds_ctostr() function searches a ctab (currently, only sensekeytab is a ctab)
for the string matching a key. The function prototypes are

char * ds_vtostr(unsigned long v, struct vtab *table);
char * ds_ctostr(unsigned long v, struct ctab *table);

Each function searches the specified table for a row containing the numeric value v, and
returns address of the corresponding string. If there is no such row, the functions return
the address of a zero-length string.

Using Command-Building Functions

007-0911-210

The remaining functions in dslib each construct and execute a specific type of common
SCSI command. Each function follows this general pattern:

1. Use fillg0ecmd() or fillglemd() to set up the command string, based on the
function’s arguments.

2. Use filldsreq() to set up the remaining fields of the dsreq structure.
3. Execute the command using doscsireq().

4. Return the value returned by doscsireq().

117

5: User-Level Access to SCSI Devices

You can construct similar, additional functions using the utility functions in this same
way. In particular you are likely to need to construct your own function to issue Read
commands.

inquiry12()—Issue an Inquiry Command

The inquiry12() function prepares and issues an Inquiry command to retrieve
device-specific information. The function prototype is

int inquiryl2(struct dsreq *dsp, caddr_t data, |ong datalen, int ovu);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a buffer to receive the inquiry response.

datalen The length of the buffer, at least 36 and typically 64.

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

modeselect15()—Issue a Group 0 Mode Select Command

118

The modeselect15() function prepares and issues a group 0 Mode Select command. This
command is used to control a variety of standard and vendor-specific device parameters.
Typically, modesenselA() is first used to retrieve the current parameters. The function
prototype is

i nt nodesel ect 15(struct dsreq *dsp, caddr_t data, |ong datalen,
int save, int ou);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a mode data page to send.

datalen The length of the data.

save The least significant bit sets the SP bit in the command.

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

007-0911-210

Using dslib Functions

modesensela()—Send a Group 0 Mode Sense Command

007-0911-210

The modesensela() function prepares and issues a group 0 Mode Sense command to a
SCSI device to retrieve a page of device-dependent information. The function prototype:

i nt nodesensela(struct dsreq *dsp, caddr_t data, | ong datalen,

i Nt pagectrl, int pagecode, int ou);

The arguments are as follows:

dsp

data
datalen
pagectrl
pagecode

ou

The address of a dsreq structure prepared by dsopend().

The address of a buffer to receive the page of data.

The length of the buffer.

The least significant 2 bits are set as the PCF bits in the command.
The least significant 6 bits are set as the page number.

The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

For reference, the PCF codes are as follows:

0

1
2
3

Current values.
Changeable values.
Default values.

Saved values.

For reference, some page numbers are as follows:

N O G ok WN =Rk O

Vendor unique.

Read /write error recovery.

Disconnect/reconnect.

Direct access device format; parallel interface; measurement units.
Rigid disk geometry; serial interface.

Flexible disk; printer options.

Optical memory.

Verification error.

119

5: User-Level Access to SCSI Devices

8 Caching.
9 Peripheral device.

63 (0x3f) Return all pages supported.

read08() and readextended28()—Issue a Read Command

120

The read08() and readextended28() functions prepare and issue particular forms of SCSI
Read commands. The Read and extended Read commands have so many variations that
it is unlikely that either of these functions will work with your device. However, you can
use them as models to build additional variations on Read. Do not preempt the function
names.

The function prototypes are

i nt

read08(struct dsreq *dsp, caddr_t data, |ong datalen,
long Iba, int ou);

i nt

r eadext ended28(struct dsreq *dsp, caddr_t data, |ong datalen,
long Iba, int ou);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a buffer to receive the data.

datalen The length of the buffer (not exceeding 255 for read08).

Iba The logical block address for the start of the read (not exceeding 16 bits
for read08).

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

The functions set the transfer length in the command to the number of bytes given by
datalen. This is often incorrect; many devices want a number of blocks of some size.
Function read08() sets only 16 bits from Iba as the logical block number, although the
SCSI command format permits another 5 bits to be encoded in the command. For these
and other reasons you are likely to need to create customized Read functions of your
own.

007-0911-210

Using dslib Functions

readcapacity25()—Issue a Read Capacity Command

The readcapacity25() function prepares and issues a Read Capacity command to a SCSI
device. The function prototype is
int
readcapaci ty25(struct dsreq *dsp, caddr_t data, |ong datalen,
long Iba, int pmi, int ou);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a buffer to receive the capacity data.

datalen The length of the buffer, typically 8.

Iba Last block address, 0 unless pmi is nonzero.

pmi The least-significant bit is used to set the partial medium indicator
(PMI) bit of the command.

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

When pmi is 0, Iba should be given as 0 and the command returns the device capacity.
When pmi is 1, the command returns the last block following block Iba before which a
delay (seek) will occur.

requestsense03()—Issue a Request Sense Command

007-0911-210

The requestsense03() function prepares and issues a Request Sense command. If you
include DSRQ_SENSE in the flag argument to doscsireq(), a Request Sense is sent
automatically after an error in a command. The function prototype is
int
request sense03(struct dsreq *dsp, caddr_t data,

| ong datalen, int vu);

The arguments are:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a buffer to receive the sense data.

datalen The length of the buffer.

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

121

5: User-Level Access to SCSI Devices

reserveunitl6() and releaseunitl7()—Control Logical Units

The reserveunitl6() function prepares and issues a Reserve Unit command to reserve a
logical unit, causing it to return Reservation Conflict status to requests from other
initiators. The releaseunit17() function prepares and issues a Release Unit command to
release a reserved unit. The function prototypes are
int
reservuni t16(struct dsreq *dsp, caddr_t data, |ong datalen,

int tpr, int tpdid, int extent, int res_id, int ovu);
int
rel easeunit17(struct dsreq *dsp,

int tpr, int tpdid, int extent, int res_id, int ovu);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of data to send with the Reserve Unit. (This may be NULL
for reservunit16() which does not normally transfer data.)

datalen The length of the data (typically 0).

tpr The least-significant bit is used to set the Third-Party Reservation bit in
the command: 1 means the reservation is on behalf of another initiator.

tpdid The device ID for the device to hold the reservation: 0 unless tpr is 1.

extent The least-significant bit sets the least-significant bit of byte 1 of the
command string.

res_id Passed as byte 2 of the command string.

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

senddiagnosticld()—Issue a Send Diagnostic Command

122

The senddiagnosticld() function prepares and issues a Send Diagnostic command. The
function prototype is
i nt
senddi agnosticld(struct dsreq *dsp, caddr_t data, |ong datalen,
int self, int dofl, int uofl, int ou);

007-0911-210

Using dslib Functions

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of a page or pages of diagnostic parameter data to be sent.
datalen The length of the data (0 if none).

self The least-significant bit sets the Self Test (ST) bit in the command: 1

means return status from the self-test; 0 means hold the results.

dofl The least-significant bit sets the Device Offline bit of the command: 1
authorizes tests that can change the status of other logical units.

uofl The least-significant bit sets the Unit Offline bit of the command: 1
authorizes tests that can change the status of the logical unit.

vu The least-significant two bits are used to set the vendor-specific bits in
the Control byte in the command.

When self is 1, the status reflects the success of the self-test. You should either set the
DSRQ_SENSE flag in the dsreq so that if the self-test fails, a Sense command will be
issued, or be prepared to call requestsense03(). When self is 0, you can use a Read
Diagnostic command to return detailed results of the test (however, dslib does not
contain a predefined function for Read Diagnostic).

testunitreadyOO—Issue a Test Unit Ready Command

The testunitready00() function prepares and issues a Test Unit Ready command to a SCSI
device. The function prototype is

i nt
testuni tready0O(struct dsreq *dsp);

This function is reproduced here in Example 5-2 as an example of how other
command-oriented functions can be created.

Example 5-2 Code of the testunitread00() Function

i nt

testuni tready0O(struct dsreq *dsp)

{
fillgOcnd(dsp, CMDBUF(dsp), GO_TEST, 0, 0, 0, 0, 0);
filldsreq(dsp, O, 0, DSRQ _READ| DSRQ SENSE) ;
return(doscsireq(getfd(dsp), dsp));

}

007-0911-210 123

5: User-Level Access to SCSI Devices

writeOa() and writeextended2a()—Issue a Write Command

The write0a() function prepares and issues a group 0 Write command. The
writeextended2a() function prepares and issues an extended (10-byte) Write command.
As with Read commands (see “read08() and readextended28()—Issue a Read
Command” on page 120), Write commands have many device-specific features, and you
will very likely have to create your own customized version of these functions.

The function prototypes are

i nt

writeOa(struct dsreq *dsp, caddr_t data, |ong datalen,
I ong Iba, int ou);

i nt

wri t eext ended2a(struct dsreq *dsp, caddr_t data, |ong datalen,
I ong Iba, int ou);

The arguments are as follows:

dsp The address of a dsreq structure prepared by dsopend().

data The address of the data to be sent.

datalen The length of the data (at most 255 for write0a).

Iba The logical block address (at most 16 bits for write0Oa).

vu The least-significant two bits are used to set the vendor-specific bits in

the Control byte in the command.

Example dslib Program

124

The program in Example 5-3 illustrates the use of the dslib functions. This is an edited
version of a program that can be obtained in full from Dave Olson’s home page,
http://reality.sgi.com/employees/olson/Olson/index.html.

Example 5-3 Program That Uses dslib Functions

#i dent "scsicontrol.c: $Revision $"

#i ncl ude <sys/types. h>
#i ncl ude <stddef. h>
#i nclude <stdlib. h>
#i ncl ude <uni std. h>

007-0911-210

Example dslib Program

#i ncl ude <ctype. h>
#i ncl ude <errno. h>
#i nclude <fcntl . h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#incl ude <dslib. h>

typedef struct

{
unchar pqt:3; /* peripheral qual type */
unchar pdt:5; /* peripheral device type */
unchar rnb:1, /* renmovable nedia bit */
dtqg:7; /* device type qualifier */
unchar iso0:2, /* |SOversion */
ecna: 3, /* EQMA version */
ansi:3; /* ANSI version */
unchar aenc:1, /* async event notification supported */
trmop: 1, /* device supports 'terminate io process' nsg */
res0:2, /* reserved */
respfm:3; /* SCS 1, GCS, SCSI 2 inqg data format */
unchar ailen; /* additional inquiry length */
unchar resl; /* reserved */
unchar res2; /* reserved */
unchar reladr:1, /* supports relative addressing (linked cmds) */
wi de32: 1, /* supports 32 bit wide SCS bus */
wi del6: 1, /* supports 16 bit w de SCS bus */
synch: 1, /* supports synch node */
link:1, /* supports |inked commands */
res3: 1, /* reserved */
cndg: 1, /* supports cnd queui ng */
softre: 1; /* supports soft reset */
unchar vid[8]; /* vendor ID */
unchar pi d[16] ; /* product ID*/
unchar prl[4]; /* product revision |evel*/
unchar vendsp[20]; /* vendor specific; typically firnware info */
unchar res4[40]; /* reserved for scsi 3, etc. */
/* more vendor specific information may fol |l ow */
} inqgdata;

struct nsel {
unsi gned char rsv, mype, vendspec, bl kdesclen; /* header */
unsi gned char dens, nbl ks[3], rsvl, bsize[3]; /* block desc */
unsi gned char pgnum pglen; /* nodesel page numand | ength */
unsi gned char data[240]; /* some drives get upset if no data requested
on sense*/

007-0911-210 125

5: User-Level Access to SCSI Devices

#define hex(x) "0123456789ABCDEF" [(x) & OXF]

/* only looks K if nperline a nultiple of 4, but that's &K
* val ue of space nust be 0 <= space <= 3;

*/

voi d

hprint (unsigned char *s, int n, int nperline, int space)

int i, x, startl;
for(startl=i=0;i<n;i++) {
x =s[i];
printf("%%", hex(x>>4), hex(x));
i f (space)
printf("%*s", ((i%)==3)+space, " ")

if (i%perline = (nperline - 1)) {
putchar ('\t");
while(startl <i) {
if(isprint(s[startl]))
put char (s[startl]);
el se
putchar('.");
start!| ++;
}
putchar('\n");
}
}
i f(space & (i%perline))
putchar('\n");
}

/* aenc, trmop, reladr, wbus*, synch, linkg, softre areonly valid if
* if respfm has the value 2 (or possibly larger values for future
* versions of the SCSI standard). */

static char pdt_types[][16] = {
"D sk", "Tape", "Printer", "Processor", "WRM, "CDROM,
"Scanner", "Qptical", "Jukebox", "GCommi, "Unknown"

b

#define NPDT (sizeof pdt_types / sizeof pdt_types[Q])
voi d

printing(struct dsreq *dsp, ingdata *ing, int alling)
{

i f (DATASENT(dsp) < 1) {
printf("No inquiry data returned\n");

126 007-0911-210

Example dslib Program

return;
}
printf("%10s", pdt_types[(i ng->pdt<NPDT) ? ing->pdt : NPDI-1]);
i f (DATASENT(dsp) > 8)
printf("%2.8s", ing->vid);
i f (DATASENT(dsp) > 16)
printf("%16s", ing->pid);
i f (DATASENT(dsp) > 32)
printf("%4s", ing->prl);
printf("\n");
i f (DATASENT(dsp) > 1)
printf("ANSI vers %l, 1SOver: %, ECVA ver: %l; ",
i ng->ansi, ing->iso, ing->ecna);
i f (DATASENT(dsp) > 2) {
unchar special = *(ing->vid-1);
if(ing->respfm >= 2 || special) {
if(ing->respfm < 2)
printf("\nResponse fornmat type %, but has "
"SCSI-2 capability bits set\n", ing->respfnt);

printf("supports: ");
i f (i ng->aenc)
printf(" AENC');
i f(ing->trm op)
printf(" termop");
i f(ing->rel adr)
printf(" reladdr");
i f (i ng->wi de32)
printf(" 32bit");
i f (i ng->wi del6)
printf(" 16bit");
i f (i ng->synch)
printf(" synch");
i f (i ng->synch)
printf(" |inkedcmis");
i f (i ng->cndq)
printf(" cndquei ng");
i f(ing->softre)
printf(" softreset");

if(ing->respfm < 2) {
i f(special)
printf(". ");
printf("inquiry fornmat is %",
ing->respfnmt ? "SCSl 1" : "QCS');

007-0911-210 127

5: User-Level Access to SCSI Devices

128

}
}
putchar('\n");
printf("Deviceis ");
/* do test unit ready only if inquiry successful, since many
devices, such as tapes, return inquiry info, even if
not ready (i.e., no tape in a tape drive). */
i f(testunitready00(dsp) !'= 0)
printf("%\n",
(RET(dsp) ==DSRT_NCBEL) ? "not respondi ng" : "not ready");
el se
printf("ready");
printf("\n");
}

/* inquiry cmd that does vital product data as spec'ed in SCSI2 */
int
vpi nqui ry12(struct dsreq *dsp, caddr_t data, long datalen, char vu, int page)

fillgOcmd(dsp, (uchar_t *)COMDBUR(dsp), Q_INQ, 1, page, 0, Bl(datalen),
Bl(vu<<6));
filldsreq(dsp, (uchar_t *)data, datal en, DSRQ READ DSRQ SENSE);
return(doscsireq(getfd(dsp), dsp));
}
int
startuni t1b(struct dsreq *dsp, int startstop, int vu)

{
fill gOcmd(dsp, (uchar_t *)OVDBUF(dsp), Ox1b, 0, 0, O, (uchar _t) st art st op, BL(vu<<6)) ;

filldsreg(dsp, NJL, 0, DSRQ READ DSRQ SENSE);
dsp->ds_tinme = 1000 * 90; /* 90 seconds */
return(doscsireq(getfd(dsp), dsp));
}
int
nyi nqui ry12(struct dsreq *dsp, uchar_t *data, long datalen, int vu, int neg)

fillgOcmd(dsp, (uchar_t *)QOMBU-(dsp), @_INQ, 0,0,0, Bl(datal en), Bl(vu<<6));
filldsreq(dsp, data, datal en, DSRQ READ DSRQ SENSH neg);
dsp->ds_tinme = 1000 * 30; /* 90 seconds */
return(doscsireq(getfd(dsp), dsp));
}
int
dsreset (struct dsreq *dsp)

{
return ioctl (getfd(dsp), DS RESET, dsp);

007-0911-210

Example dslib Program

007-0911-210

}

voi d

usage(char *prog)

{
fprintf(stderr,
"Wsage: % [-i (inquiry)] [-e (exclusive)] [-s (sync) | -a (async)]\n"
"\t[-l (long ing)] [-v (vital proddata)] [-r (reset)] [-D (diagselftest)]\n"
"\t[-H (halt/stop)] [-b bl ksize]\n"
"\t[-g (get host flags)] [-d (debug)] [-q (quiet)] scsidevice [...]\n",

prog);

exit(1);

}

mai n(int argc, char **argv)

{

struct dsreq *dsp;

char *fn;

/* int because they nust be word aligned. */
int errs =0, c;

int vital =0, doreset=0, exclusive=0, dosync=0;
int dostart = 0, dostop = 0, dosenddi ag = O;
int doing =0, printnane = 1;

unsi gned bsi ze = 0;

extern char *optarg;

extern int optind, opterr;

opterr = 0; /* handl e errors ourselves. */
while ((c = getopt(argc, argv, "b:HDSaserdvligdq"')) != -1)
swtch(c) {
case 'i'
doing =1, /* doinquiry */
br eak;
case 'D:
dosenddi ag = 1;
br eak;
case 'r':
doreset = 1; /* do a scsi bus reset */
br eak;
case 'e':
excl usi ve = O EXQ;
br eak;
case 'd':
dsdebug++; /* enabl e debug info */
br eak;
case '(':

129

5: User-Level Access to SCSI Devices

printnane = 0; /* print devicename only if error */
br eak;
case 'V':
vital = 1; /* set evpd bit for scsi 2 vital product data */
br eak;
case 'H:
dostop = 1; /* send a stop (Halt) command */
br eak;
case 'S:
dostart = 1, /* send a startunit/spi nup coomand */
br eak;
case 's':
dosync = DSRQ SYNXFR /* attenpt to negotiate sync scsi */
br eak;
case 'a':
dosync = DSRQ ASYNXFR /* attenpt to negotiate async scsi */
br eak;
defaul t:
usage(argv[0]);

if(optind >= argc || optind == 1) /* need at 1 arg and one option */
usage(argv[0]);

while (optind < argc) { /* loop over each fil enane */
fn = argv[optind+t];

if(printnane) printf("9%: ", fn);

i f((dsp = dsopen(fn, ORDO\LY|exclusive)) = NULL) {
/* if open fails, try pre-pending /dev/scsi */
char buf[256] ;
strcpy(buf, "/dev/scsi/");
if((strlen(buf) + strlen(fn)) < sizeof (buf)) {

strcat (buf, fn);
dsp = dsopen(buf, O RDONLY]| excl usi ve);
}
if(!dsp) {
if(!printname) printf("%: ", fn);
fflush(stdout);
perror("cannot open");
errs++;
conti nue;
}
}

/* try to order for reasonabl eness; reset first in case
* hung, then inquiry, etc. */

130 007-0911-210

Example dslib Program

i f(doreset) {
i f(dsreset(dsp) !'=0) {

if(!printname) printf("%: ", fn);
printf("reset failed: %\n", strerror(errno));
errs++;

}

}
i f(doing) {

i nt ingbuf[sizeof (ingdata)/sizeof(int)];

i f (nyinqui ry12(dsp, (uchar_t *)ingbuf, sizeof ingbuf, 0, dosync)) {
if(!printname) printf("%: ", fn);
printf("inquiry failure\n");
errs++;

}

el se
printing(dsp, (inqdata *)ingbuf, 0);

}
if(vital) {

unsi gned char *vpi ng;
i nt vpi ngbuf [si zeof (i nqdata)/si zeof (int)];
i nt vpi ngbuf O[si zeof (i nqdat a)/ si zeof (int)];
int i, serial =0, asciidef = 0;
i f (vpi nqui ry12(dsp, (char *)vpi ngbuf O,

si zeof (vpi ngbuf)-1, 0, 0)) {

if(!printname) printf("%: ", fn);
printf("inquiry (vital data) failure\n");
errs++;

conti nue;

}
i f (DATASENT(dsp) <4) {
printf("vital data inquiry Q& but says no"
"pages supported (page 0)\n");
conti nue;
}
vpi ng = (unsigned char *)vpi ngbuf O;
printf("Supported vital product pages: ");
for(i = vpinq[3]+3; i>3; i--) {
if(vping[i] == 0x80)
serial = 1;
if(vping[i] == 0x82)
asciidef =1,
printf("9%x ", vping[i]);

}
printf("\n");
vpi ng = (unsigned char *)vpi ngbuf ;

007-0911-210 131

5: User-Level Access to SCSI Devices

132

if(serial) {

}

i f(vpi nqui ry12(dsp, (char *)vpi ngbuf,
si zeof (vpi ngbuf)-1, 0, 0x80) !'= 0) {

if('printname) printf("%: ", fn);
printf("inquiry (serial #) failure\n");
errs+t;

}

el se i f (DATASENT(dsp)>3) {
printf("Serial # ");
fflush(stdout);
/* use wite, because there may wel | be
*nulls; don't bother to strip themout */
wite(l, vping+4, vpinq[3]);
printf("\n");

i f(asciidef) {

i f (dosenddi ag && senddi agnost i c1d(dsp,

i f(vpi nqui ry12(dsp, (char *)vpi ngbuf,

si zeof (vpi ngbuf)-1, 0, 0x82) !=0) {
if(!printname) printf("%: ", fn);
printf("inquiry (ascii definition) failure\n");
errs++;

}

el se i f (DATASENT(dsp) >3) {

printf("Ascii definition: ");
fflush(stdout);

/* use wite, because there nay well be
*nulls; don't bother to strip themout */
wite(l, vping+4, vping[3]);

printf("\n");
}
}

}

i f(dostop & startunitlb(dsp, 0, 0)) {
if(!printnane) printf("%: ", fn);
printf("stopunit fails\n");
errs++

}

i f(dostart & startunitlb(dsp, 1, 0)) {
if(!'printnane) printf("%: ", fn);
printf("startunit fails\n");
errs++

NULL, 0, 1, 0, 0, 0))

007-0911-210

Example dslib Program

if(!printnane) printf("%: ", fn);
printf("self test fails\n");
errs+t,

}
dscl ose(dsp);
}

return(errs);

007-0911-210 133

Chapter 6

Control of External Interrupts

Some SGI computer systems can generate and receive external interrupt signals. These are
simple, two-state signal lines that cause an interrupt in the receiving system.

The external interrupt hardware is managed by a kernel-level device driver that is
distributed with IRIX and automatically configured when the system supports external
interrupts. The driver provides two abilities to user-level processes:

e The ability to change the state of an outgoing interrupt line, so as to interrupt the
system to which the line is connected.

* The ability to capture an incoming interrupt signal with low latency.

External interrupt support is closely tied to the hardware of the system. The features
described in this chapter are hardware-dependent and in many cases cannot be ported
from one system type to another without making software changes. System architectures
are covered in separate sections:

e “External Interrupts in Challenge and Onyx Systems” on page 135 describes
external interrupt support in that architectural family.

e “External Interrupts In Origin 2000 and Origin 200” on page 141 describes external
interrupt support in systems that use the IOC3 board.

External Interrupts in Challenge and Onyx Systems

007-0911-210

The hardware architecture of the Challenge/Onyx series supports external interrupt
signals as follows:

e Four jacks for outgoing signals are available on the master I04 board. A user-level
program can change the level of these lines individually.

e Two jacks for incoming interrupt signals are also provided. The input lines are
combined with logical OR and presented as a single interrupt; a program cannot
distinguish one input line from another.

135

6: Control of External Interrupts

The electrical interface to the external interrupt lines is documented at the end of the ei(7)
reference page.

A program controls the outgoing signals by interacting with the external interrupt device
driver. This driver is associated with the device special file/ dev/ ei , and is documented
in the ei(7) reference page.

Generating Outgoing Signals

136

A program can generate an outgoing signal on any one of the four external interrupt
lines. To do so, first open/ dev/ ei . Then apply ioctl() on the file descriptor to switch the
outgoing lines. The principal ioctl command codes are summarized in Table 6-1.

Table 6-1 Functions for Outgoing External Signals in Challenge

Operation Typical ioctl() Call

Set pulse width to N microseconds. ioctl(eifd, EHOCSETOPW, N)
Return current output pulse width. ioctl(eifd EHIOCGETOPW, &var)
Send a pulse on some lines M.? ioctl(eifd, EHOCSTROBE, M)
Set a high (active, asserted) level on lines M. ioctl(eifd, EHOCSETHI, M)

Set a low (inactive, deasserted) level on lines M. ioctl(eifd, EIOCSETLO, M)

a. M is an unsigned integer whose bits 0, 1, 2, and 3 correspond to the external interrupt lines
0, 1,2, and 3. At least one bit must be set.

In the Challenge and Onyx series, the level on an outgoing external interrupt line is set
directly from a CPU. The device driver generates a pulse (function EIOCSTROBE) by
asserting the line, then spinning in a disabled loop until the specified pulse time has
elapsed, and finally deasserting the line. Clearly, if the pulse width is set to much more
than the default of 5 microseconds, pulse generation could interfere with the handling of
other interrupts in that CPU.

The calls to assert and deassert the outgoing lines (functions EIIOCSETHI and
EIIOCSETLO) do not tie up the kernel. Direct assertion of the outgoing signal should be
used only when the desired signal frequency and pulse duration are measured in
milliseconds or seconds. No user-level program, running in a CPU that is not isolated
and reserved, can hope to generate repeatable pulse durations measured in

007-0911-210

External Interrupts in Challenge and Onyx Systems

microseconds using these functions. (A single interrupt occurring between the call to
assert the signal and the call to deassert it can stretch the intended pulse width by as
much as 200 microseconds.) A real-time program, running in a CPU that is reserved and
isolated from interrupts—perhaps a program that uses the Frame Scheduler—could
generate repeatable millisecond-duration pulses using these functions.

Responding to Incoming External Interrupts

007-0911-210

An important feature of the Challenge and Onyx external input line is that interrupts are
triggered by the level of the signal, not by the transition from deasserted to asserted. This
means that, whenever external interrupts are enabled and any of the input lines are in the
asserted state, an external interrupt occurs. The interface between your program and the
external interrupt device driver is affected by this hardware design. The functions for
incoming signals are summarized in Table 6-2.

Table 6-2 Functions for Incoming External Interrupts

Operation Typical ioctl() Call

Enable receipt of external interrupts. ioctl(eifd, EIOCENABLE)
eicinit();

Disable receipt of external interrupts. ioctl(eifd, EIIOCDISABLE)

Specify which CPU will handle external ioctl(eifd, EIOCINTRCPU, cpu)

interrupts.

Specify which CPU will execute driver ioctl ioctl(eifd, EIIOCSETSYSCPU, cpu)
calls, or -1 for the CPU where the call is made.

Block in the driver until an interrupt occurs. ioctl(eifd, EIIOCRECYV, &eiargs)
Request a signal when an interrupt occurs. ioctl(eifd, EIIOCSTSIG, signumber)
Wait in an enabled loop for an interrupt. eicbusywait(1)

Set expected pulse width of incoming signal. ioctl(eifd, EIIOCSETIPW, microsec)
Set expected time between incoming signals. ioctl(eifd, EIIOCSETSPW, microsec)

Return current expected time values. ioctl(eifd, EIOCGETIPW, &uar)
ioctl(eifd, EIIOCGETSPW, &var)

137

6: Control of External Interrupts

Directing Interrupts to a CPU

In real-time applications, certain CPUs can be reserved for critical processing. In this case
you may want to use EIIOCINTRCPU, either to direct interrupt handling away from a
critical CPU, or to direct onto a CPU that you know has available capacity. Use of this
ioctl requires installation of patch 1257 or a successor patch.

Detecting Invalid External Interrupts

138

The external interrupt handler maintains two important numbers:
* the expected input pulse duration in microseconds

¢ the minimum pulse-to-pulse interval, called the “stuck” pulse width because it is
used to detect when an input line is “stuck” in the asserted state

When the external interrupt device driver is entered to handle an interrupt, it waits with
interrupts disabled until time equal to the expected input pulse duration has passed
since the interrupt occurred. The default pulse duration is 5 microseconds, and it
typically takes longer than this to recognize and process the interrupt, so no time is
wasted in the usual case. However, if a long expected pulse duration is set, the interrupt
handler might have to waste some cycles waiting for the end of the pulse.

At the end of the expected pulse duration, the interrupt handler counts one external
interrupt and returns to the kernel, which enables interrupts and returns to the
interrupted process.

Normally the input line is deasserted within the expected duration. However, if the input
line is still asserted when the time expires, another external interrupt occurs immediately.
The external interrupt handler notes that it has been reentered within the “stuck” pulse
time since the last interrupt. It assumes that this is still the same input pulse as before. In
order to prevent the stuck pulse from saturating the CPU with interrupts, the interrupt
handler disables interrupts from the external interrupt signal.

External interrupts remain disabled for one timer tick (10 milliseconds). Then the device
driver re-enables external interrupts. If an interrupt occurs immediately, the input line is
still asserted. The handler disables external interrupts for another, longer delay. It
continues to delay and to test the input signal in this manner until it finds the signal
deasserted.

007-0911-210

External Interrupts in Challenge and Onyx Systems

Setting the Expected Pulse Width

You can set the expected input pulse width and the minimum pulse-to-pulse time using
ioctl(). For example, you could set the expected pulse width using a function like the one
shown in Example 6-1.

Example 6-1 Challenge Function to Test and Set External Interrupt Pulse Width
int setElPulseWdth(int eifd, int neww dth)

{
int ol dWdth;
if ((O==ioctl(eifd, EIIOCGETIPW &oldWdth))
&% (O==ioctl(eifd, EIlOCSETI PW new\dth)))
return ol dW dt h;
perror("set El Pul seWdth");
return O;
}

The function retrieves the original pulse width and returns it. If either ioctl() call fails, it
returns 0.

The default pulse width is 5 microseconds. Pulse widths shorter than 4 microseconds are
not recommended.

Since the interrupt handler keeps interrupts disabled for the duration of the expected
width, you want to specify as short an expected width as possible. However, it is also
important that all legitimate input pulses terminate within the expected time. When a
pulse persists past the expected time, the interrupt handler is likely to detect a “stuck”
pulse, and disable external interrupts for several milliseconds.

Set the expected pulse width to the duration of the longest valid pulse. It is not necessary
to set the expected width longer than the longest valid pulse. A few microseconds are

spent just reaching the external interrupt handler, which provides a small margin for
€error.

Setting the Stuck Pulse Width

You can set the minimum pulse-to-pulse width using code like that in Example 6-1, using
constants EIIOCGETSPW and EIIOCSETSPW.

007-0911-210 139

6: Control of External Interrupts

Receiving Interrupts

140

The default stuck-pulse time is 500 microseconds. Set this time to the nominal
pulse-to-pulse interval, minus the largest amount of “jitter” that you anticipate in the
signal. In the event that external signals are not produced by a regular oscillator, set this
value to the expected pulse width plus the duration of the shortest expected “off” time,
with a minimum of twice the expected pulse width.

For example, suppose you expect the input signal to be a 10 microsecond pulse at

1000 Hz, both numbers plus or minus 10%. Set the expected pulse width to

10 microseconds to ensure that all pulses are seen to complete. Set the stuck pulse width
to 900 microseconds, so as to permit a legitimate pulse to arrive 10% early.

The external interrupt device driver offers you four different methods of receiving
notification of an interrupt. You can

* have a signal of your choice delivered to your process
* test for interrupt-received using either an ioctl() call or a library function
* sleep until an interrupt arrives or a specified time expires

* spin-loop until an interrupt arrives

You would use a signal (EIIOCSETSIG) when interrupts are infrequent and irregular, and
when it is not important to know the precise arrival time. Use a signal when, for example,
the external interrupt represents a human-operated switch or some kind of out-of-range
alarm condition.

The EIIOCRECYV call can be used to poll for an interrupt. This is a relatively expensive
method of polling because it entails entry to and exit from the kernel. The overhead is not
significant if the polling is infrequent—for example, if one poll call is made every 60th of
a second.

The EIIOCRECYV call can be used to suspend the caller until an interrupt arrives or a
timeout expires (see the ei(7) reference page for details). Use this method when interrupts
arrive frequently enough that it is worthwhile devoting a process to handling them. An
unknown amount of time can pass between the moment when the interrupt handler
unblocks the process and the moment when the kernel dispatches the process. This
makes it impossible to timestamp the interrupt at the microsecond level.

007-0911-210

External Interrupts In Origin 2000 and Origin 200

In order to poll for, or detect, an incoming interrupt with minimum overhead, use the
library function eicbusywait() (see the ei(7) reference page). You use the eicinit()
function to open/ dev/ ei and prepare to use eicbusywait().

The eicbusywait() function does not switch into kernel mode, so it can perform a
low-overhead poll for a received interrupt. If you ask it to wait until an interrupt occurs,
it waits by spinning on a repeated test for an interrupt. This monopolizes the CPU, so this
form of waiting is normally used by a process running in an isolated CPU. The benefit is
that control returns to the calling process in negligible time after the interrupt handler
detects the interrupt, so the interrupt can be handled quickly and timed precisely.

External Interrupts In Origin 2000 and Origin 200

The miscellaneous I/ O attachment logic in the Origin 2000 and Origin 200 architecture is
provided by the IOC3 ASIC. Among many other I/O functions, this chip dedicates one
input line and one output line for external interrupts.

There is one IOC3 chip on the motherboard in a Origin 200 deskside unit. There is one

IOC3 chip on the I06 board which provides the base 1/O functions in each Origin 2000
module; hence in a Origin 2000 system there can be as many unique external interrupt

signal pairs as there are physical modules.

The electrical interface to the external interrupt line is documented at the end of the ei(7)
reference page.

A program controls the outgoing signals by interacting with the external interrupt device
driver. This driver is associated with device special files

/ 'hwl ext er nal _i nt errupt/ n, where n is an integer. The name

/' hwl ext ernal _i nt errupt/ 1 designates the only external interrupt device in a
Origin 200, or the external interrupt device on the system console module of a Origin
2000 system.

There is also a symbolic link / dev/ ei that refers to / hw/ ext ernal _i nt errupt/ 1.

007-0911-210 141

6: Control of External Interrupts

Generating Outgoing Signals

A program can generate an outgoing signal—as a level, a pulse, a pulse train, or a square
wave—on any external interrupt line. To do so, first open the device special file. Then
apply ioctl() on the file descriptor to command the output.

A command to initiate one kind of output (level, pulse, pulse train or square wave)
automatically terminates any other kind of output that might be going on. When all
processes have closed the external interrupt device, the output line is forced to a low
level.

In the Origin 2000 and Origin 200 systems, the level on an outgoing external interrupt
line is set by the IOC3 chip. The device driver issues a command by PIO to the chip, and
the pulse or level is generated asynchronously while control returns to the calling
process. Owing to the speed of the R10000 CPU and its ability to do out-of-order
execution, it is entirely possible for your program to enter the device driver, command a
level, and receive control back to program code before the output line has had time to
change state.

Generating Fixed Output Levels

142

The ioctl command codes for fixed output levels are summarized in Table 6-3.

Table 6-3 Functions for Fixed External Levels in Origin 2000
Operation Typical ioctl() Call

Set a high (active, asserted) level. ioctl(eifd, EIOCSETHI)
Set a low (inactive, deasserted) level. ioctl(eifd, EIOCSETLO)

Direct assertion of the outgoing signal (using EIIOCSETHI and EIIOCSETLO) should be
used only when the desired signal frequency and pulse duration are measured in
milliseconds or seconds. A typical user-level program, running in a CPU that is not
isolated and reserved, cannot hope to generate repeatable pulse durations measured in
microseconds using these functions. A real-time program, running in a CPU that is
reserved and isolated from interrupts may be able to generate repeatable
millisecond-duration pulses using these functions.

007-0911-210

External Interrupts In Origin 2000 and Origin 200

Generating Pulses and Pulse Trains

You can command single pulse of this width, or a train of pulses with a specified
repetition period. The ioctl functions are summarized in Table 6-4.

Table 6-4

Functions for Pulses and Pulse Trains in Origin 2000

Operation

Typical ioctl() Call

Set pulse width to N microseconds (ignored).
Return current output pulse width (23).

Send a 23.4 microsecond pulse.

Set the repetition interval to N microseconds.
Return the current repetition interval.

Initiate regular pulses at the current period.

ioctl(eifd, EHOCSETOPW, N)
ioctl(eifd EIIOCGETOPW, &uvar)
ioctl(eifd, EHOCSTROBE)
ioctl(eifd, EHOCSETPERIOD, N)
ioctl(eifd EIIOCGETPERIOD, &uvar)
ioctl(eifd, EHOCPULSE)

The IOC3 supports only one pulse width: 23.4 microseconds. The EIIOCSETOPW
command is accepted for compatibility with the Challenge driver, but is ignored. The
EIIOCGETOPW function always returns 23 microseconds.

The repetition period can be as short as 23.4 microseconds (pass N=24) or as long as
slightly more than 500000 microseconds (0.5 second). Any period is truncated to a

multiple of 7,800 nanoseconds.

Generating a Square Wave

007-0911-210

You can command a square wave at a specified frequency. The ioctl functions are

summarized in Table 6-5.

Table 6-5

Functions for Outgoing External Signals in Origin 2000

Operation

Typical ioctl() Call

Set the toggle interval to N microseconds.
Return the current toggle interval.

Initiate a square wave.

ioctl(eifd, EHOCSETPERIOD, N)
ioctl(eifd EIIOCGETPERIOD, &uvar)
ioctl(eifd, EHOCSQUARE)

143

6: Control of External Interrupts

The period set by EIIOCSETPERIOD determines the interval between changes of state on
the output—in other words, the period of the square wave is twice the interval. The
repetition period can be as short as 23.4 microseconds (pass N=24) or as long as slightly
more than 500000 microseconds (0.5 second). Any period is truncated to a multiple of
23.4 microseconds.

Responding to Incoming External Interrupts

144

The IOC3 external input line (unlike the input to the Challenge and Onyx external input
line) is edge-triggered by a transition to the asserted state, and has no dependence on the
level of the signal. There is no concept of an “expected” pulse width or a “stuck” pulse

width as in the Challenge (see “Detecting Invalid External Interrupts” on page 138).

The external interrupt device driver offers you four different methods of receiving
notification of an interrupt. You can

* have a signal of your choice delivered to your process

* test for interrupt-received using either an ioctl() call or a library function

* sleep until an interrupt arrives or a specified time expires

* spin-loop until an interrupt arrives

The functions for incoming signals are summarized in Table 6-6. The details of the
function calls are found in the ei(7) reference page.

Table 6-6 Functions for Incoming External Interrupts in Challenge

Operation Typical Function Call

Enable receipt of external interrupts. ioctl(eifd, EIIOCENABLE)
eicinit();

eihandle = eicinit_{(eifd);
Disable receipt of external interrupts. ioctl(eifd, EHOCDISABLE)

Request a signal when an interrupt occurs, or clear ioctl(eifd, EIOCSETSIG, signumber)
that request by passing signumber=0.
Poll for an interrupt received. eicbusywait(0);
eicbusywait_f(eifd,0);
ioctl(eifd EHIOCRECYV,&eiargs)

007-0911-210

External Interrupts In Origin 2000 and Origin 200

007-0911-210

Table 6-6 Functions for Incoming External Interrupts in Challenge (continued)

Operation Typical Function Call

Block in the driver until an interrupt occurs, or ioctl(eifd EIOCRECYV,&eiargs)
until a specified time has elapsed.

Wait in an enabled loop for an interrupt. eicbusywait(1);

eicbusywait_f(eihandle,1);

You would use a signal (EIIOCSETSIG) when interrupts are infrequent and irregular, and
when it is not important to know the precise arrival time. Use a signal when, for example,
the external interrupt represents a human-operated switch or some kind of out-of-range
alarm condition.

The EIIOCRECYV call can be used to poll for an interrupt. This is a relatively expensive
method of polling because it entails entry to and exit from the kernel. This is not
significant if the polling is infrequent—for example, if one poll call is made every 60th of
a second.

The EIIOCRECYV call can be used to suspend the caller until an interrupt arrives or a
timeout expires (see the ei(7) reference page for details). Use this method when interrupts
arrive frequently enough that it is worthwhile devoting a process to handling them. An
unknown amount of time can pass between the moment when the interrupt handler
unblocks the process and the moment when the kernel dispatches the process. This
makes it impossible to timestamp the interrupt at the microsecond level.

In order to poll for, or detect, an incoming interrupt with minimum overhead, use the
library function eicbusywait() (see the ei(7) reference page). You use the eicinit()
function to open / dev/ ei and prepare to use eicbusywait(); or you can open one of the
other special device files and pass the file descriptor to eicinit_f().

The eicbusywait() function does not switch into kernel mode, so it can perform a
low-overhead poll for a received interrupt. If you ask it to wait until an interrupt occurs,
it waits by spinning on a repeated test for an interrupt. This monopolizes the CPU, so this
form of waiting is normally used by a process running in an isolated CPU. The benefit is
that control returns to the calling process in negligible time after the interrupt handler
detects the interrupt, so the interrupt can be handled quickly and timed precisely.

145

PART THREE

Kernel-Level Drivers IT1

Chapter 7, “Structure of a Kernel-Level Driver”
The software structure of a block or character device driver: the entry points it
provides for kernel use, and how it communicates with user-level processes.

Chapter 8, “Device Driver/Kernel Interface”
A topical survey of the facilities the IRIX kernel provides to device drivers.

Chapter 9, “Building and Installing a Driver”
How a kernel-level driver is compiled, loaded, and linked with the IRIX kernel.

Chapter 10, “Testing and Debugging a Driver”
How a kernel-level driver is tested and debugged using symmon and other
facilities.

Chapter 11, “Driver Example”
Annotated code of a simple device driver with no hardware dependencies.

Chapter 7

007-0911-210

Structure of a Kernel-Level Driver

A kernel-level device driver consists of a module of subroutines that supply services to
the kernel. The subroutines are public entry points in the driver. When an event occurs,
the kernel calls one of these entry points. The driver takes action and returns a result
code.

This chapter discusses when the driver entry points are called, what parameters they
receive, and what actions they are expected to take. For a conceptual overview of the
kernel and drivers, see “Kernel-Level Device Control” on page 66. For details on how a
driver is compiled, linked, and added to IRIX, see Chapter 9, “Building and Installing a
Driver.”

Note: This chapter concentrates on device drivers. Entry points unique to STREAMS
drivers are covered in Chapter 22, “STREAMS Drivers.”

The primary topics covered in this chapter are:

* “Summary of Driver Structure” on page 150 summarizes the entry points and how
they are made known to the kernel.

¢ “Driver Flag Constant” on page 156 describes the public constant that documents
the driver type for | boot and m oad.

e “Initialization Entry Points” on page 158 discusses the entry points at which a
driver initializes its own data and its devices.

e “Attach and Detach Entry Points” on page 162 discusses the entry points that
handle dynamic attachment of Peripheral Component Interconnect (PCI) devices.

* “Open and Close Entry Points” on page 167 discusses the entry points called by the
open() and close() kernel functions.

¢ “Control Entry Point” on page 171 documents the entry point called by the ioctl()
kernel function.

149

7: Structure of a Kernel-Level Driver

¢ “Data Transfer Entry Points” on page 173 documents the entry points called by the
read() and write() kernel functions.

¢ “Poll Entry Point” on page 176 documents the entry point called by the poll() kernel
function.

e “Memory Map Entry Points” on page 180 tells how a driver supports memory
mapping of devices and buffers.

e “Interrupt Entry Point and Handler” on page 185 discusses the design and
operation of interrupt handlers.

* “Support Entry Points” on page 190 describes several entry points that support
kernel operations.

e “Handling 32-Bit and 64-Bit Execution Models” on page 193 covers the techniques
of supporting user processes that have different execution models.

e “Designing for Multiprocessor Use” on page 194 covers the techniques of making a
driver work in a multiprocessor, multithreading environment.

Summary of Driver Structure

A driver consists of a binary object module in ELF format stored in the

I var/ sysgen/ boot directory. As a program, the driver consists of a set of functional
entry points that supply services to the IRIX kernel. There is a large set of entry points to
cover different situations. Some entry points are historical relics, while others were first
defined in IRIX 6.4. No single driver supports all possible entry points.

The entry points that a driver supports must be named according to a specified
convention. The | boot command uses entry point names to build tables used by the
kernel.

Entry Point Naming and Iboot

150

The device driver makes known which entry points it supports by giving them public
names in its object module. The | boot command links together the object modules of
drivers and other kernel modules to make a bootable kernel. | boot recognizes the entry
points by the form of their names. (See the Iboot(1M) and autoconfig(1M) reference

pages.)

007-0911-210

Summary of Driver Structure

Driver Name Prefix

A device driver must be described by a file in the / var / sysgen/ mast er . d directory
(see “Master Configuration Database” on page 57). In that configuration file you specify
the driver prefix, a string of 1 to 14 characters that is unique to that driver. For example,
the prefix of the SCSI driver is scsi_.

The prefix string is defined in the / var / sysgen/ mast er . d file only. The string does
not have to appear as a constant in the driver, and the name of the driver object file does
not have to correspond to the prefix (although the object module typically has a related
name).

The | boot command recognizes driver entry points by searching the driver object
module for public names that begin with the prefix string. For example, the entry point
for the open() operation must have a name that consists of the prefix string followed by
the letters “open.”

In this book, entry point names are written as follows: pfxopen(), where pfx stands for the
driver’s prefix string.

Driver Name Prefix as a Compiler Constant

007-0911-210

The driver prefix string appears as part of the name of each public entry point. In
addition, you sometimes need the driver prefix string as a character string literal, for
example in a PCI driver as an argument to pciio_driver_register(). You would like to
define the prefix string in one place and then generate it automatically where needed in
the code. The C macro code in Example 7-1 accomplishes this goal.

Example 7-1 Compiling Driver Prefix as a Macro

#defi ne PREFI X_NAME(nane) sanpl e_ ## nane

[* -ee-- driver prefix: AnMAAnn defined there only */
#defi ne PREFI X_ONLY PREFI X_NAME()

#defi ne STRI NG ZER(x) # x

#defi ne PREFI X_STRI NG STRI NG ZER(PREFI X_ONLY)

A macro call to PREFIX_STRING generates a character literal (“sample_” in this case).
You can use this macro wherever a character literal is allowed, for example, as a function

argument. The “##” operator is ANSI C syntax for string concatenation.

Further down, in the STRINGIZER macro, the “#” operator is ANSI C syntax for string
(double quoted) substitution.

151

7: Structure of a Kernel-Level Driver

Kernel Switch Tables

152

A call to PREFIX_NAME(name) generates an identifier composed of the prefix
concatenated to name. You can define the init entry point as follows:

PREFI X_NAME(init) ()
{ ...}

However, this can be confusing to read. You can also define one macro for each entry
point, as shown in Example 7-2.

Example 7-2 Entry Point Name Macros

#define PFX_INIT PREFI X_NANME(i ni t)
#defi ne PFX_START PREFI X_NAME(start)

Using macros such as these you can define an entry point as follows:

PFX_I NI T()
{ ...}

The IRIX kernel maintains tables that allow it to dispatch calls to device drivers quickly.
These tables are built by | boot based on the names of the driver entry points. The tables
are named as follows:

bdevsw Table of block device drivers

cdevsw Table of character device drivers

fmodsw Table of STREAMS drivers

vfssw Table of filesystem modules (not related to device drivers)

Conceptually, the tables for block and character drivers have one row for each driver, and
one column for each possible driver entry point. (Historically, the major device number

was the driver’s row number in the switch table. This simple data structure is no longer
used.)

As| boot loads a driver, it fills in that driver’s row of a switch table with the addresses
of the driver’s entry points. Where an entry point is not defined in the driver object file,
| boot leaves the address of a null routine that returns the ENODEYV error code. Thus no
driver needs to define all entry points—only the ones it can support in a useful way.

007-0911-210

Summary of Driver Structure

Entry Point Summary

The sizes of the switch tables are fixed at boot time in order to minimize kernel data
space. The table sizes are tunable parameters that can be set with syst une (see the
systune(1) reference page).

When a driver is loaded dynamically (see “Configuring a Loadable Driver” on page 279),
the associated row of the switch table is not filled at link time but rather is filled when the
driver is loaded. When you add new, loadable drivers, you might need to specify a larger
switch table. The book IRIX Admin: System Configuration and Operation documents these
tunable parameters.

The names of all possible driver entry points and their purposes are summarized in
Table 7-1. The entry point names are in alphabetic order, not logical order. Device driver
entry points are discussed in this chapter. Entry points to STREAMS drivers are
discussed in Chapter 22, “STREAMS Drivers.”

Table 7-1 Entry Points in Alphabetic Order
Entry Point Purpose Discussion Reference Page
pfxattach Attach a new device to the system. “Entry Point attach()” on page 162
pfxclose Note the device is not in use. “Entry Point close()” on page 170 close(D3)
pfxdevflag Constant flag bits for driver features. “Driver Flag Constant” on page 156 devflag(D1)
pfxdetach Detach a device from the system. “Entry Point detach()” on page 166
pfredtinit Initialize EISA or VME driver from VECTOR “Entry Point edtinit()” on page 160 edtinit(D2)
statement.
pfxhalt Prepare for system shutdown. “Entry Point halt()” on page 191 halt(D2)
pfxinit Initialize driver globals at load or boot time. “Entry Point init()” on page 159 init(D2)
pfxintr Handle device interrupt (not used). “Interrupt Entry Point and Handler” on intr(D2)
page 185
pfxioctl Implement control operations. “Control Entry Point” on page 171 ioctl(D2)
pfxmap Implement memory-mapping (IRIX). “Entry Point map()” on page 181 map(D2)

007-0911-210

153

7: Structure of a Kernel-Level Driver

Table 7-1 Entry Points in Alphabetic Order (continued)

Entry Point Purpose Discussion Reference Page

pfxmmap Implement memory-mapping (SVR4). “Entry Point mmap()” on page 183 mmap(D2)

pfxopen Connect a process to a device. “Entry Point open()” on page 167 open(D2)

Connect a stream module. “Entry Point open()” on page 781

pfxpoll Implement device event test. “Entry Point poll()” on page 178 poll(D2)

pfxprint Display diagnostic about block device. “Entry Point print()” on page 192 print(D2)

pfxread Character-mode input. “Entry Points read() and write()” on read(D2)
page 173

pfxreg Register a driver at load or boot time. “Entry Point reg()” on page 161

pfxrput STREAMS message on read queue. “Put Functions wput() and rput()” on put(D2)
page 782

pfxsize Return logical size of block device. “Entry Point size()” on page 192 size(D2)

pfxstv STREAMS service queued messages. “Service Functions rsrv() and wsrv()” on srv(D2)
page 783

pfxstart Initialize driver at load or boot time. “Entry Point start()” on page 161 start(D2)

pfxstrategy Block-mode input and output. “Entry Point strategy()” on page 175 strategy(D2)

pfxunload Prepare loadable module for unloading. “Entry Point unload()” on page 190 unload(D2)

pfxunmap Note the end of a memory mapping. “Entry Point unmap()” on page 184 unmap(D2)

pfxunreg Undo driver registration prior to unloading. “Entry Point unreg()” on page 190

pfxwput STREAMS message on write queue. “Put Functions wput() and rput()” on put(D2)
page 782

pfxwrite Character-mode output. “Entry Points read() and write()” on write(D2)

page 173

Entry Point Usage

154

No driver supports all entry points. Typical entry point usage is as follows:

* A minimal driver for a character device supports pfxinit(), pfxopen(), pfxread(),
pfxwrite(), and pfxclose(). The pfxioctl() and pfxpoll() entry points are optional.

007-0911-210

Summary of Driver Structure

Entry Point Calling Sequence

007-0911-210

A minimal block device driver supports pfxopen(), pfxsize(), pfxstrategy(), and
pfxclose().

A minimal pseudo-device driver supports pfxstart(), pfxopen(), pfrmap(),
pfxunmap(), and pfxclose() (the latter two possibly as mere stubs).

In addition:

All drivers need a pfxdevflag constant.
Loadable drivers may support pfxunreg() and pfxunload().

A block or character driver for a PCI device should support pfxattach(), pfxdetach(),
and pfxreg(). The pfxenable(), pfxdisable(), and pfxerror() entry points are optional.

A block or character driver for aVME, EISA or GIO device should support
pfredtinit().

Entry points of a nonloadable driver are called as follows.

The first call is to pfxinit() if it exists.

A driver for a VME, EISA, or GIO bus device is then called at its pfxedtinit() entry
points once for each VECTOR line that specifies that driver.

The pfxstart() entry point is called, if it exists.
The pfxreg() entry point is called, if it exists.

A driver for a PCI device is called at its pfxattach() entry point once for each device
that it supports, as the kernel discovers the devices.

The pfxopen() entry point is called whenever any process opens a device controlled
by this driver.

The pfxread(), pfxwrite(), pfxstrategy(), pfxmap(), pfxpoll() and pfxioctl() calls are
exercised as long as any device is open.

The pfxrunmap() entry point is called when all processes have unmapped a given
segment of memory.

The pfxclose() entry point is called when the last process closes a device, so the
device is known to be no longer in use.

The pfxdetach() entry point can be called only when a device has been closed.

155

7: Structure of a Kernel-Level Driver

The sequence of entry points called for a loadable driver is similar, with additional calls
that are discussed under “Entry Point unreg()” on page 190 and “Entry Point unload()”
on page 190.

Driver Flag Constant

Flag D_MP

156

Any device driver or STREAMS module must define a public name pfxdevflag as a static
integer. This integer contains a bitmask with one or more of the following flags, which
are declared in sys/ conf . h:

D_MP The driver is prepared for multiprocessor systems.

D_MT The driver is prepared for a multithreaded kernel.

D_PCI_HOT_PLUG_ATTACH The driver supports the PCI Hot Plug insertion of its
devices.

D_PCI_HOT_PLUG_DETACH The driver supports the PCI Hot Plug removal of its
devices.

D_WBACK The driver handles its own cache-writeback
operations.

A typical definition would resemble the following:

int testdrive_devflag = D MP+D_M;

A STREAMS module should also provide this flag, but the only relevant bit value for a
STREAMS driver is D_MP (see “Driver Flag Constant” on page 780).

The flag value is saved in the kernel switch table with the driver’s entry points (see
“Kernel Switch Tables” on page 152).

When a driver (or STREAMS module) does not define a pfxdevflag, or defines one
containing 0, | boot refuses to load it as part of the kernel.

You specify D_MP in pfxdevflag to tell | boot that your driver is designed to operate in
a multiprocessor system. The top half of the driver is designed to cope with multiple
concurrent entries in multiple CPUs. The top and bottom halves synchronize through the

007-0911-210

Driver Flag Constant

use of semaphores or locks and do not rely on interrupt masking for critical sections.
These issues are discussed further under “Designing for Multiprocessor Use” on
page 194.

All drivers must be designed in this fashion and confirm it with D_MP, even drivers
written for uniprocessor workstations.

Flag D_MT

Driver interrupt routines execute as independent, preemptable threads of control within
the kernel address space (see “Interrupts as Threads” on page 188). D_MT indicates that
this driver understands that it can be run as one or more cooperating threads, and uses
kernel synchronization primitives to serialize access to driver common data structures.

In IRIX 6.4, D_MT does not commit a driver to anything beyond the meaning of D_MP.

Flag D_PCl_HOT_PLUG_ATTACH

This driver supports the PCI Hot Plug insertion of its devices by providing an attach()
function that initializes the device hardware and software from a powered-down state
while the system is running. A driver can support Hot Plug insertion, Hot Plug removal,
or both. This flag has meaning only on an SGI Origin 3000 server series and is ignored on
non-PCl drivers.

Flag D_PCl_HOT_PLUG_DETACH

This driver supports the PCI Hot Plug removal of its devices by providing a detach()
function that terminates operation of the device hardware and releases all software
resources so the device can be powered down while the system is running. A driver can
support Hot Plug insertion, Hot Plug removal, or both. This flag has meaning only on an
SGI Origin 3000 server series and is ignored on non-PCI drivers.

007-0911-210 157

7: Structure of a Kernel-Level Driver

Flag D_WBACK

You specify D_WBACK in pfxdevflag to tell | boot that a block driver performs any
necessary cache write-back operations through explicit calls to dki_dcache_wb() and
related functions (see the dki_dcache_wb(D3) reference page).

When D_WBACK is not present in pfxdevflag, the physiock() function ensures that all
cached data related to buf_t structures is written back to main memory before it enters the
driver’s strategy routine. (See the physiock(D3) reference page and “Entry Point
strategy()” on page 175.)

Flag D_OLD Not Supported

In IRIX versions before IRIX 6.4, a driver was allowed to have no pfxdevflag, or to have
one containing only a flag named D_OLD. This flag, or the absence of a flag, requested
compatibility handling for an obsolete driver interface. Support for this interface has
been withdrawn effective with IRIX 6.4.

Initialization Entry Points

The kernel calls a driver to initialize itself at four different entry points, as follows:

pfxinit Initialize self-defining hardware or a pseudo-device.

pfxedtinit Initialize a hardware device based on VECTOR data.

pfxstart General initialization.

pfxreg For a driver that supports the pfxattach() entry point, register the

driver as ready to attach devices.

Historically, these calls were made at different times in the boot process and the driver
had different abilities at each time. Now they are all called at nearly the same time. A
driver may define any combination of these entry points. Typically a PCI driver will
define pfxinit() and pfxreg(), while a VME or EISA device will define pfxinit() and
pfxedtinit().

158 007-0911-210

Initialization Entry Points

When Initialization Is Performed

The initialization entry points of ordinary (nonloadable) drivers are called during system
startup, after interrupts have been enabled and before the message “The system is
coming up” is displayed on the console. In all cases, interrupts are enabled and basic
kernel services are available at this time. However, other loadable or optional kernel
modules might not have been initialized, depending on the sequence of statements in the
filesin/ var/ sysgen/ syst em

Whenever a driver is initialized, the entry points are called in the following sequence:

1. pfxinit() is called.

2. pfxedtinit() is called once for each VECTOR statement in reverse order of the
VECTOR statements found in / var / sysgen/ syst emfiles.

3. pfxstart() is called.
4. pfxreg() is called.

Initialization of Loadable Drivers

Entry Point init()

007-0911-210

A loadable driver (see “Loadable Drivers” on page 78) is initialized any time it is loaded.
This can occur more than once, if the driver is loaded, unloaded, and reloaded. When a
loadable driver is configured for autoregister, it is loaded with other drivers during
system startup. (For more information on autoregister, see “Configuring a Loadable
Driver” on page 279.) Such a driver is initialized at system startup time along with the
nonloadable drivers.

The pfxinit() entry point is called once during system startup or when a loadable driver
is loaded. It receives no input arguments; its prototype is simply:

voi d pfxi ni t (void);

You can use this entry point for any of the following purposes:

* To initialize global data used by more than one entry point or with more than one
device.

159

7: Structure of a Kernel-Level Driver

Entry Point edtinit()

160

¢ To initialize a hardware device that is self-defining; that is, all the information the
driver needs is either coded into the driver, or can be gotten by probing the device
itself.

¢ To initialize a pseudo-device driver; that is, a driver that does not have real
hardware attached.

A driver that is brought into the system by a USE or INCLUDE line in a system
configuration file (see “Configuring a Kernel” on page 278) typically initializes in the
pfxinit() entry point.

The pfxedtinit() entry is designed to initialize devices that are configured using the
VECTOR statement in the system configuration file (see “Kernel Configuration Files” on
page 58). This includes GIO, EISA, and VME devices. The entry point name is a
contraction of “early device table initialization.”

The VECTOR statement specifies hardware details about a device on the VME, GIO, or
EISA bus, including such items as iospace addresses, interrupt level, bus number, and a
driver-defined integer value referred to as the controller number. The VECTOR
statement also specifies the driver that is to manage the device; and it can specify probe
operations that let the kernel test for the existence of the device.

When the kernel processes a VECTOR statement during bootstrap, it executes the probe,
if one is specified. When the probe is successful (or no probe is given), the kernel makes
sure that the specified driver is loaded. Then it stores the hardware parameters from the
VECTOR statement in a structure of type edt_t. (This structure is declared in

sys/edt. h.)

The kernel calls the specified driver’s pfxedtinit() entry one time for each VECTOR
statement that named that driver and had a successful probe (or had no probe). VECTOR
statements are processed in reverse sequence to the order in which they are coded in

[var/ sysgen/ syst emfiles.

The prototype of the pfredtinit() entry is
voi d pfxedtinit(edt_t *e);

007-0911-210

Initialization Entry Points

The edt_t contains at least the following fields (see the system(4) reference page for the
corresponding VECTOR parameters):

e_bus_type Integer specifying the bus type; constant values are declared in
sys/ edt . h, for example ADAP_VME, ADAP_GIO, or
ADAP_EISA.

e_adap For EISA or VME, an integer specifying the adapter (bus) number.

e_ctlr Value from the VECTOR ct | r = parameter; typically a device

number used to distinguish one device from another.

e_space Array of up to three I/O space structures of type iospace_t.

The VME form of the VECTOR statement for IRIX 6.4 is discussed at length under
“Defining VME Devices with the VECTOR Statement” on page 360. The operation of the
pfxedtinit() entry for VME is discussed under “Initializing a VME Device” on page 368.

Entry Point start()

The pfxstart() entry point is called at system startup, and whenever a loadable driver is
loaded. It is called after pfxedtinit() and pfxinit(), but before any other entry point such
as pfxopen(). The pfxstart() entry point receives no arguments; its prototype is simply

voi d pfxstart (void);

The pfxstart() entry point is a suitable place to allocate a poll-head structure using
phalloc(), as discussed in “Use and Operation of poll(2)” on page 177.

Entry Point reg()

The pfxreg() entry point is specifically intended to allow a driver that supports the
pfxattach() entry point (see “Entry Point attach()” on page 162) to register with the kernel.
At present, the only buses that support device attachment and registration (accessible to
OEMs) are the PCI and SCSI buses. The functions used to register as a PCI driver are
discussed in “Configuration Register Initialization” on page 720.

007-0911-210 161

7: Structure of a Kernel-Level Driver

Attach and Detach Entry Points

Entry Point attach()

First defined in IRIX 6.3, the pfxattach() entry point informs the driver that the kernel has
found a device that matches the driver. This is the time at which the driver initializes data
that is unique to one instance of a device. The pfxdetach() entry point informs the driver
that the device has been removed from the system. The driver undoes whatever
pfxattach() did for that device instance.

The pfxattach() entry point is called to notify the driver that the PCI bus adapter has
located a device that has a vendor and device ID for which the driver has registered (see
“Entry Point reg()” on page 161).

This entry point is typically called during bootstrap, while the kernel is probing the PCI
bus. However, for a PCI Hot Plug insert operation it can occur at a later time, if the device
is physically plugged in or activated after the system has initialized. In an Origin2000
system, the entry point is executed in the hardware node closest to the device being
attached. (See “Allocating Memory in Specific Nodes of a Origin2000 System” on

page 214.)

The purpose of the entry point is to make the device usable, including making it visible
in the hwgraph by creating vertexes and edges to represent it.

Matching A Device to A Driver

162

When the system boots up, the kernel probes the PCI bus configuration space and takes
a census of active devices. For each device it notes

* Vendor and device ID numbers

* Requested size of memory space

* Requested size of I/O space

The kernel assigns starting bus addresses for memory and I/O space and sets these
addresses in the Base Address Registers (BARs) in the device. Then the kernel looks for
a driver that has registered a matching set of vendor and device IDs using

pciio_driver_register() (for discussion, see “Configuration Register Initialization” on
page 720).

007-0911-210

Attach and Detach Entry Points

If no matching driver has registered, the device remains inactive. For example, the driver
mightbe aloadable driver that has not been loaded as yet. When the driver is loaded and
registers, the kernel will match it to any unattached devices.

When the kernel matches a device to its registered driver, the kernel calls the driver’s
pfxattach() entry point. It passes one argument, a handle to the hwgr aph vertex
representing the hardware connection point for the device. This handle is used to:

¢ Request PIO and DMA maps on the device

* Register an interrupt handler for the device

Completing the hwgraph

The handle passed to pfrattach() addresses the hwgraph vertex that represents a slot on
a bus. This is not informative to users, because a card can be plugged into any slot. Nor
is this a reliable target for a symbolic link from / dev. In any case, the driver cannot store
information in this vertex. At attach time the driver needs to create at least one additional
hwgraph vertex in order to:

* Create a device vertex for use by user programs.
¢ Provide a vertex to hold the device information.
¢ Establish a well-known, convenient names high up in the / hw filesystem.

* Provide extra device names that represent different aspects of the same device (for
example, different partitions), or different access modes to the device (a character
device and a block device), or different treatments of the device (for example,
byte-swapped and nonswapped).

e Establish predictable names that satisfy symbolic links that exist in / dev.
Each leaf vertex you create in the hwgraph is a device special file the user can open. You
create a leaf vertex by calling hwgraph_block_device_add() or

hwgraph_char_device_add(). You can make each leaf vertex distinct by attaching
distinct information to it using device_info_set().

You create additional vertexes and edges using the functions discussed under
“Hardware Graph Management” on page 231.

007-0911-210 163

7: Structure of a Kernel-Level Driver

Allocating Storage for Device Information
A driver needs to save information about each device, usually in a structure. Fields in a
typical structure might include:

¢ Locks or semaphores used for mutual exclusion among upper-half entry points and
between them and the interrupt handler.

* Addresses of allocated PIO and DMA maps for this device (see “PIO Address
Mapping” on page 725 and “DMA Address Mapping” on page 722).

¢ Address of an interrupt connection object for the device (see “Interrupt Signal
Distribution” on page 722).

* In ablock driver, anchors for a queue of buf_t objects being filled or emptied.
* Device status flags.
A problem is that at initialization time a driver does not know how many devices it will

be asked to manage. In the past this problem has been handled by allocating an array of
a fixed number of information structures, indexed by the device minor number.

In a PCI driver, you dynamically allocate memory for an information structure to hold
information about the one device being attached. (See “General-Purpose Allocation” on
page 213.) You save the address of the structure in the leaf vertex you create, using the
device_info_set() function, which associates an arbitrary pointer with a vertex_hdl_t (see
hwgraph(d3x) and “Extending the hwgraph” on page 233).

The information structure can easily be recovered in any top-half routine; see
“Interrogating the hwgraph” on page 232.

Inserting Hardware Inventory Data

You attach the hardware inventory data for the attached device to the hwgraph vertex
passed to the pfxattach() entry point—see “Creating an Inventory Entry” on page 53.

Return Value from Attach

The return code from pfxattach() is tested by the kernel. The driver can reject an
attachment. When your driver cannot allocate memory, or fails due to another problem,
it should:

¢ Use cmn_err() to document the problem (see “Using cmn_err” on page 291)

164 007-0911-210

Attach and Detach Entry Points

* Release any objects such as PIO and DMA maps that were created.
* Release any space allocated to the device such as a device information structure.
* Return an informative return code which might be meaningful in future releases.

* Aloadable driver’s reg() entry point will be called after a driver has been loaded
into memory, but before the load process is considered successful. In its reg()
function, a typical driver will register itself as supporting a specific device type; for
PCI devices this registration is made by a call to pciio_driver_register(). The driver
registration results in the driver’s attach() entry point being immediately called for
any installed matching device type. If a driver’s attach() function returns an error
code for any device, the driver remains registered and the load process continues
without error.

More than one driver can register to support the same vendor ID and device ID. When
the first driver fails to complete the attachment, the kernel continues on to test the next,
until all have refused or one accepts. The pfxdetach() entry point can only be called if the
pfxattach() entry point returns success (0).

PCI Hot Plug Insert Operation

007-0911-210

A PCIHot Plug insert operation calls the device driver attach() function registered for the
device being inserted. That driver must provide a complete attach() function that can
initialize the device from a powered-down state while the system is running. A driver
must indicate that it supports the PCI Hot Plug insertion by setting the
D_PCI_HOT_PLUG_ATTACH flag in its pfxdevflag constant. Only drivers that indicate
that they support the Hot Plug insert will have their attach() function called for a Hot
Plug insert operation that targets one of their devices.

The device initialization process includes the device hardware configuration and the
allocation of software resources. The resources that are normally available at system
startup, such as memory on a specific node, may not be available once the system is
running. An attach() function that uses Hot Plug must plan for and handle this possible
failure scenario. If a Hot Plug insert fails, the driver must clean up and return all
resources that were allocated as part of the failed insert operation; the kernel will not try
to recover from a failed Hot Plug insert operation.

The attach() function returns a status code that indicates if the attach was successful or

not. A nonzero code from sys/ er r no. h indicates the specific error and the device is
marked as having an incomplete startup. An incomplete startup (Hot Plug insert)

165

7: Structure of a Kernel-Level Driver

Entry Point detach()

operation can be retried, so the driver should leave the device and its software resources
in a state where a subsequent attempt to insert (startup) the device can succeed.

The pfxdetach() entry point is called when the kernel decides to detach a device. As of
IRIX 6.4 this is only done for PCI devices. The need to detach can be created by a
hardware failure or a PCI Hot Plug removal operation. If the entry point is not defined,
the device cannot be detached.

In general, the detach entry point must undo as much as possible of the work done by
the pfxattach() entry point (see “Entry Point attach()” on page 162). This includes such
actions as:

¢ Disconnect a registered interrupt handler.

e If any I/O operations are pending on the device, cancel them. If any top-half entry
points are waiting on the completion of these operations, wake them up.

* Release all software objects allocated, such as PIO maps, DMA maps, and interrupt
objects.

* Release any allocated kernel memory used for buffers or for a device information
structure.

* Detach and release any edges and vertexes in the hwgraph created at attach time.

The state of the device itself is not known. If the detach code attempts to reset the device
or put it in a quiescent state, the code should be prepared for errors to occur.

PCI Hot Plug Detach Operation

166

A PCIHot Plug removal operation calls the device driver detach() function registered for
the device being removed. That driver must provide a complete detach() function that
can terminate the device while the system is running. A device driver must indicate that
it supports the PCI Hot Plug removal by setting the D_PCI_HOT_PLUG_DETACH flag
in its pfxdevflag constant. Only drivers that indicate that they support Hot Plug removal
will have their detach() function called when a Hot Plug removal operation targets one
of their devices.

The device termination process includes releasing any software resources that are
allocated to the device and setting the device hardware to a state where the device can be

007-0911-210

Open and Close Entry Points

powered down. If a Hot Plug removal fails, the driver must leave the device and its
software resources in a stable state; the kernel will not try to recover from a failed Hot
Plug removal operation.

The detach() function returns a status code that indicates if it was successful or not. A
nonzero code from sys/ er r no. h indicates the specific error and the device is marked
as having an incomplete shutdown. An incomplete shutdown (Hot Plug removal)
operation can be retried, so the driver should leave the device and its software resources
in a state where a subsequent attempt to remove (shutdown) the device can succeed.

Open and Close Entry Points

Entry Point open()

007-0911-210

The pfxopen() and pfxclose() entries for block and character devices are called when a
device comes into use and when use of it is finished. For a conceptual overview of the
open() process, see “Overview of Device Open” on page 67.

The kernel calls a device driver’s pfxopen() entry when a process executes the open()
system call on any device special file (see the open(2) reference page). It is also called
when a process executes the mount() system call on a block device (see the mount(2)
reference page). (For the pfxopen() entry point of a STREAMS driver, see “Entry Point
open()” on page 781.)

The prototype of pfxopen() is as follows:
i nt pfxopen(dev_t *devp, int oflag, int otyp, cred_t *crp);

The argument values are

*devp Pointer to a dev_t value, actually a handle to a leaf vertex in the hwgraph.

otyp An integer flag specifying the source of the call: a user process opening a
character device or block device, or another driver.

oflag Flag bits specifying user mode options on the open() call.

crp A cred_t object—an opaque structure for use in authentication. Standard

access privileges to the special device file have already been verified.

167

7: Structure of a Kernel-Level Driver

Use of the Device Handle

Use of the Open Type

168

Note: In releases before IRIX 6.4, a driver’s pfxdevflag constant could contain D_OLD.
In that case, the first argument to pfxropen() was a dev_t value, not a pointer to a dev_t
value. However, this compatibility mode is no longer supported. The first argument to
pfxopen() is always a pointer to a dev_t.

The open(D2) reference page discusses the kind of work the pfxopen() entry point can do.
In general, the driver is expected to verify that this user process is permitted access in the
way specified in otyp (reading, writing, or both) for the device specified in *devp. If access
is not allowable, the driver returns a nonzero error code from sys/ err no. h, for
example ENOMEM or EBUSY.

The dev_t value input to pfropen() and all other top-half entry points is the key parameter
that specifies the device. You use the dev_t to locate the hwgraph vertex that is being
opened. From that vertex you extract the address of the device information structure that
was stored when the device was attached (see “Allocating Storage for Device
Information” on page 164). In pfxopen() or any other top-half entry point, the driver
retrieves the device information by applying device_info_get() to the dev_t value (see
“Interrogating the hwgraph” on page 232).

The otyp flag distinguishes between the following possible sources of this call to
pfxopen() (the constants are defined in sys/ open. h).

e acall to open a character device (OTYP_CHR)

e acall to open a block device (OTYP_BLK)

e acall to a mount a block device as a filesystem (OTYP_MNT)

e acall to open a block device as swapping device (OTYP_SWP)

e acall direct from a device driver at a higher level (OTYP_LYR)

Typically a driver is written only to be a character driver or a block driver, and can be

called only through the switch table for that type of device. When this is the case, the otyp
value has little use.

007-0911-210

Open and Close Entry Points

Use of the Open Flag

007-0911-210

It is possible to have the same driver treated as both block and character, in which case
the driver needs to know whether the open() call addressed a block or character special
device. Itis possible for a block device to support different partitions with different uses,
in which case the driver might need to record the fact that a device has been mounted, or
opened as a swap device.

With all open types except OTYP_LYR, pfxopen() is called for every open or mount
operation, but pfxclose() is called only when the last close or unmount occurs. The
OTYP_LYR feature is used almost exclusively by drivers distributed with IRIX, like the
host adapter SCSI driver (see “Host Adapter Concepts” on page 529). For each open of
this type, there is one call to pfxclose().

The interpretation of the open mode flags is up to the designer of the driver. Four modes
can be requested (declared in sys/fil e. h):

FREAD Input access wanted.

FWRITE Output access wanted (both FREAD and FWRITE may be set,
corresponding to O_RDWR mode).

FNDELAY or Return at once, do not sleep if the open cannot be done
FNONBLOCK immediately.

FEXCL Request exclusive use of the device.

You decide which of the flags have meaning with respect to the abilities of this device.
You can return an EINVAL error when an unsupported mode is requested.

A key decision is whether the device can be opened only by one process at a time, or by
multiple processes. If multiple opens are supported, a process can still request exclusive
access with the FEXCL mode.

When the device can be used by only one process, or when FEXCL access is supported,
the driver must keep track of the fact that the device is open. When the device is busy, the
driver can test the FNDELAY and FNONBLOCK flags; if either is set, it can return
EBUSY. Otherwise, the driver should sleep until the device is free; this requires
coordination with the pfxclose() entry point.

169

7: Structure of a Kernel-Level Driver

Use of the cred_t Object

The cred_t object passed to pfxopen(), pfxclose(), and pfxioctl() can be used with the
drv_priv() function to find out if the effective calling user ID is privileged or not (see the
drv_priv(D3) reference page). Do not examine the object in detail, since its contents are
subject to change from release to release.

Saving the Size of a Block Device

Completing the hwgraph

Entry Point close()

170

In a block device driver, the pfxsize() entry point will be called soon after pfxopen() (see
“Entry Point size()” on page 192). It is typically best to calculate or read the device
capacity at open time, and save it to be reported from pfxsize().

Some device drivers distributed with IRIX test, at open time, to see if this is the first open
since the attachment of the specified device. For these devices, the first open() call is
guaranteed to come from thei oconf i g program after it has assigned a stable controller
number (see “Using ioconfig for Global Controller Numbers” on page 53). When these
drivers detect the first open for a device, they retrieve the assigned controller number
from the device vertex using device_controller_num_get() (see hwgraph.inv(d3x), and
possibly add convenience vertexes to the hwgraph.

The kernel calls the pfxclose() entry when the last process calls close() or umount() for
the device special file. It is important to know that when the device can be opened by
multiple processes, pfxclose() is not called for every close() function, but only when the
last remaining process closes the device and no other processes have it open. The
function prototype and arguments of pfxclose() are

i nt pfxcl ose(dev_t dev, int flag, int otyp, cred_t *crp);

The arguments are the same as were passed to pfxopen(). However, the flag argument is
not necessarily the same as at any particular call to opend().

It is up to you to design the meaning of “close” for this type of device. The close(D2)
reference page discusses some of the actions the driver can do. Some considerations are:

007-0911-210

Control Entry Point

e If the device is opened and closed frequently, you may decide to retain dynamic
data structures.

e If the device can perform an action such as “rewind” or “eject,” you decide whether
that action should be done upon close. Possibly the choice of acting or not acting
can be set by an ioctl() call; or possibly the choice can be encoded into the device
minor number—for example, the no-rewind-on-close option is encoded in certain
tape minor device numbers.

e If the pfropen() entry point supports exclusive access, and it can be waiting for the
device to be free, pfxclose() must release the wait.

When a device can do DMA, the pfxclose() entry point is the appropriate place to make
sure that all I/O has terminated. Since all processes have closed the device, there is no
reason for it to continue transmitting data into memory; and if it does continue, it might
corrupt memory.

The pfxclose() entry can detect an error and report it with a return code. However, the file
is closed or unmounted regardless.

Control Entry Point

007-0911-210

The pfrioctl() entry point is called by the kernel when a user process executes the ioctl()
system call (see the ioctl(2) reference page). This entry point is allowed in character
drivers only. Block device drivers do not support it. STREAMS drivers pass control
information as messages.

For an overview of the relationship between the user process, kernel, and the control
entry point, see “Overview of Device Control” on page 69.

The prototype of the entry point is
int pfxioctl(dev_t dev, int cnd, void *arg,

int node, cred_t *crp, int *rvalp);
The argument values are

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

cmd The request value specified in the ioctl() call.

171

7: Structure of a Kernel-Level Driver

arg The optional argument value specified in the ioctl() call, or NULL if none was
specified.
mode Flag bits specifying the open() mode, as associated with the file descriptor

passed to the ioctl() system function.

crp A cred_t object—an opaque structure for use in authentication, describing the
process that is in-context. Standard access privileges to the special device file
have already been verified.

*rvalp The integer result to be returned to the user process.

It is up to the device driver to interpret the cmd and arg values in the light of the mode and
other arguments. When the arg value is a pointer to data in the process address space, the
driver uses the copyin() kernel function to copy the data into kernel space, and the
copyout() function to return updated values. (See the copyin(D3) and copyout(D3)
reference pages, and also “Transferring Data” on page 217.)

Choosing the Command Numbers

The command numbers supported by pfxioctl() are arbitrary; but the recommended
practice is to make sure that they are different from those of any other driver. One method
to achieve this is suggested in the ioctl(D2) reference page.

Supporting 32-Bit and 64-Bit Callers

User Return Value

172

The ioctl() entry point may need to interpret a structure prepared in the user process. In
a 64-bit system, the user process can be either a 32-bit or a 64-bit program. For discussion
of this issue, see “Handling 32-Bit and 64-Bit Execution Models” on page 193.

The kernel returns 0 to the ioctl() system function unless the pfxioctl() function returns
an error code. In the event of an error, the kernel may also return the code the driver
places in *rvalp, if any, or -1. To ensure that the user process sees a specific error code, it
is a good idea to set the code in *rvalp, and return that value. If your device driver does
not define a pfxdevflag or sets it to D_OLD, see “Driver Flag Constant” on page 156.

007-0911-210

Data Transfer Entry Points

Data Transfer Entry Points

The pfxread() and pfxwrite() entry points are supported by character device drivers and
pseudo-device drivers that allow reading and writing. They are called by the kernel
when the user process calls the read(), readv(), write(), or writev() system function.

The pfxstrategy() entry point is required of block device drivers. It is called by the kernel
when either a filesystem or the paging subsystem needs to transfer a block of data.

Entry Points read() and write()

The pfxread() and pfxwrite() entry points are similar to each other—only the direction of
data transfer differs. The prototypes of the functions are

int pfxread (dev_t dev, uio_t *uiop, cred_t *crp);
int pfxwite(dev_t dev, uio_t *uiop, cred_t *crp);

The arguments are

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

*wiop A uio_t object—a structure that defines the user’s buffer memory areas.

crp A cred_t object—an opaque structure for use in authentication. Standard

access privileges to the special device file have already been verified.

Data Transfer for a PIO Device

007-0911-210

A character device driver using PIO transfers data in the following steps:

1. If there is a possibility of a timeout, start a timeout delay (see “Waiting for Time to
Pass” on page 253).

2. Initiate the device operation as required.

3. Transfer data between the device and the buffer represented by the uio_t (see
“Transferring Data Through a uio_t Object” on page 219).

4. If it is necessary to wait for an interrupt, put the process to sleep (see “Waiting and
Mutual Exclusion” on page 244).

173

7: Structure of a Kernel-Level Driver

5. When data transfer is complete, or when an error occurs, clear any pending timeout
and return the final status of the operation. If the return code is 0, the final state of
the uio_t determines the byte count returned by the read() or write() call.

Calling Entry Point strategy() From Entry Point read() or write()

174

A device driver that supports both character and block interfaces must have a
pfxstrategy() routine in which it performs the actual I/O.

For example, the IRIX disk drivers support both character and block driver interfaces,
and perform all I/O operations in the pfxstrategy() function. However, the pfxread(),
pfxwrite() and pfxioctl() entries supported for character-type access also need to perform
I/0 operations. They do this by calling the pfxstrategy() routine indirectly, using the
kernel function physiock() or uiophysio() (see the physiock(D3) and uiophysio(D3)
reference pages, and see “Waiting for Block I/O to Complete” on page 255).

Both the physiock() and uiophysio() functions takes care of the housekeeping needed to
interface to the pfxstrategy() entry, including the work of allocating a buffer and a buf ¢
structure, locking buffer pages in memory and waiting for I/O completion. Both routines
require the uio_t to describe only a single segment of data (uio_iovcnt of 1). Although they
are very similar, the two functions differ in the following ways:

e physiock() returns EINVAL if the initial offset is not a multiple of 512 bytes. If this is
a requirement of your pfxstrategy() routine, use physiock(); if not, use uiophysio().

* physiock() is compatible with SVR4, while uiophysio() is unique to IRIX.

Example 7-3 shows the skeleton of a hypothetical driver in which the pfxread() entry
does its work through the pfxstrategy() entry.

Example 7-3 Hypothetical pfxread() entry in a Character/Block Driver

hypo_read (dev_t dev, uio_t *uiop, cred_t *crp)

{
/1 ...validate the operation... //
return physiock(hypo_strategy, /* our strategy entry */
0, /* allocate tenp buffer & buf_t */
dev, /* dev_t arg for strategy */
B_READ, /* direction flag for buf_t */
ui op);
}

The pfxwrite() entry would be identical except for passing B_WRITE instead of B_READ.

007-0911-210

Data Transfer Entry Points

Entry Point strategy/()

007-0911-210

This dual-entry strategy is required only in a driver that supports both character and
block access.

A block device driver does not directly support system calls by user processes. Instead,
it provides services to a filesystem such as XFS, or to the memory paging subsystem of
IRIX. These subsystems call the pfxstrategy() entry point to read data in whole blocks.

Calls to pfxstrategy() are not directly related in time to system functions called by a user
process. For example, a filesystem may buffer many blocks of data in memory, so that the
user process may execute dozens or hundreds of write() calls without causing an entry
to the device driver. When the user function closes the file or calls fsync()—or when for
unrelated reasons the filesystem needs to free some buffers—the filesystem calls
pfxstrategy() to write numerous blocks of data.

In a driver that supports the character interface as well, the pfxstrategy() entry can be
called indirectly from the pfxread(), pfxwrite() and pfxioctl() entries, as described under
“Calling Entry Point strategy() From Entry Point read() or write()” on page 174.

The prototype of the pfxstrategy() entry point is

int pfxstrategy(struct buf *bp);

The argument is the address of a buf_t structure, which gives the strategy routine the
information it needs to perform the I/O:

e The dev_t, from which the driver can get major and minor device numbers or the
device information from the hwgr aph vertex

¢ The direction of the transfer (read or write)
* The location of the buffer in kernel memory
e The amount of data to transfer

¢ The starting block number on the device

For more on the contents of the buf _t structure, see “Structure buf_t” on page 206 and the
buf(D4) reference page.

The driver uses the information in the buf_t to validate the data transfer and programs
the device to start the transfer. Then it stores the address of the buf_t where the interrupt

175

7: Structure of a Kernel-Level Driver

Poll Entry Point

176

handler can find it (see “Interrupt Entry Point and Handler” on page 185) and calls
biowait() to wait for the operation to complete. For the next step, see “Completing Block
I/0O” on page 187 (see also the biowait(D3) reference page).

The pfxpoll() entry point is called by the kernel when a user process calls the poll() or
select() system function asking for status on a character special device. To implement it,
you need to understand the IRIX implementation of poll().

007-0911-210

Poll Entry Point

Use and Operation of poll(2)

Use of pollwakeup()

007-0911-210

The IRIX version of poll() allows a process to wait for events of different types to occur
on any combination of devices, files, and STREAMS (see the poll(2) and select(2)
reference pages). It is possible for multiple processes to be waiting for events on the same
device.

It is up to you as the designer of a driver to decide which of the events that are
documented in poll(2) are meaningful for your device. Other requested events simply
never happen to the device.

Much of the complexity of poll() is handled by the IRIX kernel, but the kernel requires
the assistance of any device driver that supports poll(). The driver is expected to allocate
and hold a pollhead structure (declared in sys/ pol | . h) for each minor device that it
supports. Allocation is simple; the driver merely calls the phalloc() kernel function. (The
pfxstart() entry pointis a suitable place for this call; see “Entry Point start()” on page 161.)

There are two phases to the operation of poll(). When the system function is called, the
kernel calls the pfxpoll() entry point to find out if any requested events are pending at
this time. If the kernel finds any event s pending (on this or any other polled object), the
poll() function returns to the user process. Nothing further is required.

However, when no requested event has happened, the user process expects the poll()
function to block until an event has occurred. The kernel must implement this delay. It
would be too inefficient for the kernel to repeatedly test for events. The kernel must rely
on device drivers to notify it when an event has occurred.

A device driver that supports pfxpoll() is required to notify the kernel whenever an event
that the driver supports has occurred. The driver does this by calling a kernel function,
pollwakeup(), passing the pollhead structure for the affected device, and bit flags for the
events that have taken place. In the event that one or more user processes are blocked in
a poll(), waiting for an event from this device, the call to pollwakeup() will release the
sleeping processes. For an example, see “Calling pollwakeup()” on page 187.

177

7: Structure of a Kernel-Level Driver

Use of pollwakeup() Without Interrupts

Entry Point poll()

178

If the device in question does not support interrupts, the driver cannot support poll()
unless it can somehow get control to discover an event and report it to pollwakeup().
One possibility is that the driver could simulate interrupts by setting a succession of
itimeout() delays. On each timeout the driver would test its device for a change of status,
call pollwakeup() when an event has occurred; and schedule a new delay. (See “Waiting
for Time to Pass” on page 253.)

The prototype for pfxpoll() is as follows:

int pfxpoll (dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp,
unsi gned int *genp);

The argument values are

dev A dev_t value from which you can extract the major and minor device
numbers, or the device information from the hwgraph vertex.

events Bit-flags for the events the user process is testing, as passed to poll()
and declared in sys/ pol | . h.

*reventsp A field to receive the bit-flags of events that have occurred, or to
receive 0x0000 if no requested events have occurred.

anyyet and *phpp When anyyet is zero and no events have occurred, the kernel requires
the address of the pollhead structure for this minor device to be
returned in *phpp.

*genp A pointer to an unsigned integer that is used by the driver to store
the current value of the pollhead’s generation number at the time of
the poll. (New in IRIX 6.5.)

Example 7-4 shows the pfxpoll() code of a hypothetical device driver. Only three event
tests are supported: POLLIN and POLLRDNORM (treated as equivalent) and
POLLOUT. The device driver maintains an array of pollhead structures, one for each
supported minor device. These are presumably allocated during initialization.

007-0911-210

Poll Entry Point

007-0911-210

Example 7-4 pfxpoll() Code for Hypothetical Driver

struct pollhead phds[MAXM NORS] ;
#defi ne OUR_EVENTS (POLLI N| POLLOUT| POLLRDNCRM
hypo_pol | (dev_t dev, short events, int anyyet,
short *reventsp, struct pollhead **phpp, unsigned int *genp)

{

m nor _t dm nor = getem nor(dev);

short happened 0;

short wanted = events & OUR_EVENTS;

*genp = POLLGEN(&phds[dmi nor])

if (wanted & (POLLI N POLLRDNCRM))

i f (device_has_data_ready(dm nor))
happened | = (POLLI N| POLLRDNORM ;

if (wanted & POLLQOUT)

i f (device_ready_for_output(dm nor))
happened | = POLLOUT;

i f (device_pending_error(dminor))
happened | = POLLERR;
if (0 == (*reventsp = happened))

i f (anyyet) *phpp = &phds[dm nor]

return O;

}

The code in Example 7-4 begins by discarding any unsupported event flags that might
have been requested, and passes back the driver’s pollhead generation number before
probing the device. Then it tests the remaining flags against the device status. If the
device has an uncleared error, the code inserts the POLLERR event. If no events were
detected, and if the kernel requested it, the address of the pollhead structure for this minor
device is returned.

If no requested event has occurred, the process will queue awaiting the requested events,
provided that no event has occurred in the interim—before it is able to queue. This is
determined by comparing the pollhead generation number at the time of queueing with
the pollhead generation number passed back at the initial request. Since a call to
pollwakeup() increments the pollhead generation number, any difference in the current
pollhead generation number to the one at the time of the initial request indicates a device
event has occurred, and the device must be queried again to determine if it was a

179

7: Structure of a Kernel-Level Driver

requested event. If the values of the previous and current pollhead generation numbers
are equal, the process queues.

Memory Map Entry Points

A user process requests memory mapping by calling the system function mmap(). When
the mapped object is a character device special file, the kernel calls the pfxmmap() or
pfxmap() entry to validate and complete the mapping. To understand these entry points,
you must understand the mmap() system function.

Concepts and Use of mmap()

The purpose of the mmap() system function (see the mmap(2) reference page) is to make
the contents of a file directly accessible as part of the virtual address space of the user
process. The results depend on the kind of file that is mapped:

¢ When the mapped object is a normal file, the process can load and store data from
the file as if it were an array in memory.

* When the mapped object is a character device special file, the process can load and
store data from device registers as if they were memory variables.

* When the mapped object is a block of memory owned and prepared by a
pseudo-device driver, the process gains access to some special piece of memory data
that it would not normally be able to access.

In all cases, access is gained through normal load and store instructions, without the
overhead of calling system functions such as read(). Furthermore, the same mapping can
be executed by other processes, in which case the same memory, or file, or device is
shared by multiple, concurrent processes. This is how shared memory segments are
achieved.

180 007-0911-210

Memory Map Entry Points

Use of mmap()

Persistent Mappings

Entry Point map()

007-0911-210

The mmap() system function takes four key parameters:

¢ the file descriptor for an open file, which can be either a normal disk file or a device
special file

e an offset within that file at which the mapped data is to start. For a normal file, this
is a file offset; for a device file, it represents an address in the address space of the
device or the bus

e the length of data to be mapped

e protection flags, showing whether the mapped data is read-only or read-write

When the mapped object is a normal file, the filesystem implements the mapping. The
filesystem does not call the block device driver for assistance in mapping a file. It does
call the block device driver pfxstrategy() entry to read and write blocks of file data as
necessary, but the mapping of pages of data into pages of memory is controlled in the
filesystem code.

When the mapped object is a device special file, the mmap() parameters are passed to the
device driver at either its pfxmmap() or pfxrmap() entry point. The device driver interprets
the parameters in the context of the device, and uses a kernel function to create the

mapping.

Once a device or kernel memory has been mapped into some user address space, the
mapping persists until the user process terminates or calls unmap() (see the unmap(2)
reference page). In particular, the mapping does not end simply because the device
special file is closed. You cannot assume, in the pfxclose() or pfxrunload() entry points,
that all mappings to devices have ended.

The pfxmap() entry point can be defined in either a character or a block driver (it is the
only mapping entry point that a block driver can supply). The function prototype is

int pfxmap(dev_t dev, vhandl _t *vt,
off _t off, int len, int prot);

181

7: Structure of a Kernel-Level Driver

182

The argument values are

dev A dev_t value from which you can extract both the major and minor
device numbers.

vt The address of an opaque structure that describes the assigned address
in the user process address space. The structure contents are subject to
change.

off, len The offset and length arguments passed to mmap() by the user process.

prot Flags showing the access intentions of the user process.

The first task of the driver is to verify that the access specified in prot is allowed. The next
task is to validate the off and len values: do they fall in the valid address space of the
device?

When the device driver approves of a mapping, it uses a kernel function, v_mapphys(),
to establish the mapping. This function (documented in the v_mapphys(D3) reference
page) takes the vhandle_t, an address in kernel cached or uncached memory, and a length.
It makes the specified region of kernel space a part of the address space of the user
process.

For example, a pseudo-device driver that intends to share kernel virtual memory with
user processes would first allocate the memory:

caddr _t *kaddr = knem alloc (len, KM CACHEALIGN);

It would then use the address of the allocated memory with the vhandle_t value it had
received to map the allocated memory into the user space:

v_mapphys (vt, kaddr, |en)

Note: There are no special precautions to take when mapping cached memory into user
space, or when mapping device registers or bus addresses. However, you should almost
never map uncached memory into user space. The effects of uncached memory access are
hardware dependent and differ between multiprocessors and uniprocessors. Among
uniprocessors, the IP26 and IP28 CPU modules have highly restrictive rules for the use
of uncached memory (see “Uncached Memory Access in the IP26 and IP28” on page 34).
In general, mapping uncached memory makes a driver nonportable and is likely to lead
to subtle failures that are hard to resolve.

007-0911-210

Memory Map Entry Points

Entry Point mmap()

007-0911-210

Example 7-5 contains an edited fragment of code from a Silicon Graphics device driver.
This pseudo-device driver, whose prefix is flash_, provides access to “flash” PROM in
certain computer models. It allows a user process to map the PROM into user space.

Example 7-5 Edited Fragment of flash_map()

int flash_map(dev_t dev, vhandl _t *vt, off_t off, long |en)
{
long offset = (long) off; /*Actual offset in flash pronf/
/* Don’t allow requests which exceed the flash prom size */
if ((offset + len) > FLASHPROM S| ZE)
return ENOSPC,
/* Don’t allow non page-aligned offsets */
if ((offset % NBPC) != 0)
return EIG
/* Only allow mapping of entire pages */
if ((len % NBPC) != 0)
return EIG
return v_mapphys(vt, FLASHVAP_ADDR + of fset, |en);

Note: Because there is no way for a driver to retract a successful call to v_mapphys(),
your driver must return success to a pfxrmap() call if v_mapphys() succeeds. In other
words, you should make the call to v_mapphys() the last part of your pfxmap() routine,
and only call it if you have determined that there have been no errors in any previous
part of this routine. If there have been errors, the routine should return an error and not
call v_mapphys(). If there have been no errors, then pfxmap() can return error or success
based on the call to v_mapphys().

When the driver allocates some memory resource associated with the mapping, and
when more than one mapping can be active at a time, the driver needs to tag each
memory resource so it can be located when the pfrunmap() entry point is called. One
answer is to use the v_gethandle() macro defined in ksys/ ddmap. h. This macro takes
a pointer to a vhandle_t and returns a unique pointer-sized integer that can be used to tag
allocations. No other information in ksys/ ddmap. h is supported for driver use.

The pfxmmap() (note: two letters “m”) entry can be used only in a character device driver.
The prototype is

183

7: Structure of a Kernel-Level Driver

Entry Point unmap()

184

int pfxmmap(dev_t dev, off_t off, int prot);

The argument values are

dev A dev_t value from which you can extract both the major and minor device
numbers.

off The offset argument passed to mmap() by the user process.

prot Flags showing the access intentions of the user process.

The function is expected to return the page frame number (PFN) that corresponds to the
offset off in the device address space. A PFN is an address divided by the page size. (See
“Working With Page and Sector Units” on page 221 for page unit conversion functions.)

This entry point is supported only for compatibility with SVR4. When the kernel needs
to map a character device, it looks first for pfxmap(). It calls pfxmmap() only when
pfxmap() is not available. The differences between the two entry points are as follows:

e This entry point receives no vhandl_t argument, so it cannot use v_mapphys(). It
must calculate a page frame number, which means that it has to be aware of the
current page size, obtainable from the ptob() kernel function, see ptob(D3).

¢ This entry point does not receive a length argument, so it has to assume a default
length for every map (typically the page size).

* When a mapping is created with this entry point, the pfxunmap() entry is not called.

The kernel calls the pfrunmap() entry point after a mapping is created using the pfxmap()
entry point. This entry should be supplied, even if it is an empty function, when the
pfxmap() entry point is supplied. If it is not supplied, the munmap() system function
returns the ENODEV error to the user process.

The pfxrunmap() entry point is only called when the mapped region has been completely
unmapped by all processes. For example, suppose a parent process calls mmap() to map
a device. Then the parent creates one or more child processes using sproc(). Each child
shares the address space, including the mapped segment. A process in the share group
can terminate, or can explicitly unmap() the segment or part of the segment, but these
actions do not result in a call to pfxrunmap(). Only when the last process with access to
the segment has fully unmapped the segment is pfxunmap() called.

007-0911-210

Interrupt Entry Point and Handler

On entry, the kernel has completed unmapping the object from the user process address
space. This entry point does not need to do anything to affect the user address space; it
only needs to release any resources that were allocated to support the mapping. The
prototype is

int pfxunmap(dev_t dev, vhandl _t *vt);

The argument values are

dev A dev_t value from which you can extract both the major and minor device
numbers.
vt The address of an opaque structure that describes the assigned address in

the user process address space.

If the driver allocated no resources to support a mapping, no action is needed here; the
entry point can consist of a “return 0” statement.

When the driver does allocate memory or a PIO map to support a mapping, and supports
multiple mappings, the driver needs to identify the resource associated with this
particular mapping in order to release it. The vt_gethandle() function returns a unique
number based on the vt argument; this can be used to identify resources.

Interrupt Entry Point and Handler

007-0911-210

In traditional UNIX, when a hardware device presents an interrupt, the kernel locates the
device driver for the device and calls the pfxintr() entry point (see the intr(D2) reference
page). In current practice, an entry point named pfxintr() is not given any special
treatment—although driver writers often give this name to the interrupt-handling
function even so.

A device driver must register a specific interrupt handler for each device. The kernel
functions for doing this are bus-specific, and are discussed in the bus-specific chapters.
For example, the means of registering a VME interrupt handler is discussed in

Chapter 13, “Services for VME Drivers on Origin 2000/ Onyx2”. However, the discussion
of interrupts that follows is still relevant to any interrupt handler.

In principle an interrupt can happen at any time. Normally an interrupt occurs because

atsome previous time, the driver initiated a device operation. Some devices can interrupt
without a preceding command.

185

7: Structure of a Kernel-Level Driver

Associating Interrupt to Driver

The association between an interrupt and the driver is established in different ways
depending on the hardware.

The VECTOR statement establishes the interrupt level and the associated driver for
devices on the EISA and VME busses.

For some VME devices, the interrupt level is set dynamically using vme_ivec_set()
(see Chapter 13, “Services for VME Drivers on Origin 2000/Onyx2”).

For devices on the SCSI bus, all interrupts are handled by a single, low-level driver
which notifies a callback function (see Chapter 16, “SCSI Device Drivers”).

For devices on the PCI bus, the driver registers an interrupt handler using
pci_intr_connect() at the time the device is attached (“Interrupt Signal Distribution”
on page 722).

In all cases, the driver specifies the interrupt handler as the address of a function to be
called, with an argument to be passed to the function when it is called. This argument
value is typically the address of a data structure in which the driver has stored
information about the device. Alternatively, it could be the dev_t that names the device—
from which the interrupt handler can get device information, see “Allocating Storage for
Device Information” on page 164.

Interrupt Handler Operation

186

In general, the interrupt handler implements the following tasks.

When the driver supports multiple logical units, use its argument value to locate the
data structure for the interrupting unit.

Determine the reason for the interrupt by interrogating the device. This is typically
done with PIO loads and stores of device registers.

When the interrupt is a response to an I/O operation, note the success or failure of
the operation.

When the driver top half is waiting for the interrupt, waken it.

If the driver supports polling, and the interrupt represents a pollable event, call
pollwakeup().

If the device is not in an error state and another operation is waiting to be started,
start it.

007-0911-210

Interrupt Entry Point and Handler

Completing Block I/O

Completing Character 1/0

Calling pollwakeup()

007-0911-210

The details of each of these tasks depends on the hardware and on the design of the data
structures used by the driver top half. In general, you should design an interrupt handler
so that it does the least possible and exits as quickly as possible.

In a block device driver, an I/O operation is represented by the buf_t structure. The
pfxstrategy() routine starts operations and waits for them to complete (see “Entry Point
strategy()” on page 175).

The interrupt entry point sets the residual count in b_resid. It can post an error using
bioerror(). It posts the operation complete and wakens the pfxstrategy() routine by
calling biodone(). If the pfxstrategy() entry has set the address of a completion callback
function in the b_iodone field of the buf_t, biodone() invokes it. (For more discussion, see
“Waiting for Block I/O to Complete” on page 255.)

In a character device driver, the driver top half typically awaits an interrupt by sleeping
on a semaphore or synchronizing variable, and the interrupt routine posts the semaphore
(see “Waiting for a General Event” on page 257). Error information must be passed in
driver variables according to some local convention.

When the interrupt represents an event that can be reported by the driver’s pfxpoll()
entry point (see “Entry Point poll()” on page 178), the interrupt handler must report the
event to the kernel, in case some user process is waiting in a poll() call. Hypothetical code
to do this is shown in Example 7-6.

Example 7-6 Hypothetical Call to pollwakeup()
hypo_intr(int ivec)
struct hypo_dev_i nfo *pinfo;

if (! pinfo = find_dev_info(ivec))
return; /* not our device */

i f (pinfo->have_data_fIag)

pol | wakeup (pi nfo->phead, PCLLI N, PCOLLRDNORM ;
i f (pinfo->output_ok_flag)

pol | wakeup (pi nfo->phead, POLLOUT);

187

7: Structure of a Kernel-Level Driver

Note: It’s important that the call to pollwakeup() occurs after any state has been updated
by the event interrupt routine.

Interrupts as Threads

188

In traditional UNIX design, and in versions of IRIX preceding IRIX 6.4, an interrupt is
handled as an asynchronous trap. The hardware trap handler calls the driver’s interrupt
function as a subroutine. In these systems, when the interrupt handler code is entered the
system is in an unknown state. As a result, the interrupt handler can use only a restricted
set of kernel services, and no services that can sleep.

Starting with IRIX 6.4, the IRIX kernel does all its work under control of lightweight
executable entities called “kernel threads.” When a device driver registers an interrupt
handler, the kernel allocates a thread to execute that handler. The thread begins execution
by waiting on an internal semaphore.

When a hardware interrupt occurs, the trap code merely posts the sesmaphore on which
the handler’s thread is waiting. Soon thereafter, the interrupt thread is scheduled to
execute, and it calls the function registered by the driver.

The differences from previous releases are small. It is still true that the interrupt handler
code is entered unpredictably, at a high priority; does little; and exits quickly. However,
there are the following differences compared to earlier systems:

¢ The interrupt handler can be preempted by kernel threads running at higher
priorities.

Previously, an interrupt handler in a uniprocessor system could only be preempted
by an interrupt from a device with higher hardware priority. In IRIX 6.4, the handler
can be preempted by kernel threads running daemons and high-priority real-time
tasks, in addition to other interrupt threads.

* There are no restrictions on the kernel services an interrupt handler may call.

In particular, the interrupt handler is permitted to call services that could sleep.
However, this is still typically not a good idea. For example, an interrupt handler
should almost never allocate memory.

* Mutual exclusion between the interrupt handler the driver top half can be done
with mutex locks, instead of requiring the use of spinlocks.

007-0911-210

Interrupt Entry Point and Handler

Mutual Exclusion

e The handler can do more work, and more elaborate work, if that leads to a better
design for the driver.

In IRIX 6.4, the driver writer has no control over the selection of interrupt thread priority.
The kernel assigns a high relative priority to threads that execute interrupt handlers.
However, higher priorities exist, and an interrupt thread can be preempted.

In historical UNIX systems, which were uniprocessor systems, when the only CPU is
executing the interrupt handler, nothing else is executing. The hardware architecture
ensured that top-half code could not preempt the interrupt handler; and the top half
could use functions such as splhi() to block interrupts during critical sections (see
“Priority Level Functions” on page 252). An interrupt handler could only be preempted
by an interrupt of higher priority—which would be an interrupt for a different driver,
and so would have no conflicts with this driver over the use of data.

None of these comfortable assumptions are tenable any longer.

Hardware Exclusion Is Ineffective

007-0911-210

In a multiprocessor, an interrupt can be taken on any CPU, while other CPUs continue to
execute kernel or user code. This means that the top half code cannot block out interrupts
using a function such as splhi(), because the interrupt could be taken on another CPU.
Nor can the interrupt handler assume that it is safe; another CPU could be executing a
top-half entry point to the same driver, for the same device, as an interrupt handler.

With the threaded kernel of IRIX 6.4, it is even possible for a process with an extremely
high priority, in the same CPU (or in the only CPU of a uniprocessor), to enter the driver
top half, preempting the thread that is executing the interrupt handler.

It is theoretically possible in a threaded kernel for a device to interrupt; for the kernel
thread to be scheduled and enter the interrupt handler; and for the device to interrupt
again, resulting in multiple concurrent entries to the same interrupt handler. However,
IRIX prevents this. The interrupt handler for a device is entered serially. If you register
the same handler function for multiple devices, it can be entered concurrently when
different devices present interrupts at the same time.

189

7: Structure of a Kernel-Level Driver

Using Locking Between Top and Bottom Half

The only solution possible is that you must use a software lock of some kind to protect
the data objects that can be accessed concurrently by top-half code and the interrupt
handler. Before using that shared data, a function must acquire the lock. Options for the
type of lock are discussed under “Designing for Multiprocessor Use” on page 194.

Interrupt Performance and Latency

Another interrupt cannot be handled from the same device until the interrupt handler
function returns. The interrupt thread runs at very nearly the highest priority, so all but
the most essential work is suspended in the interrupted CPU until the handler returns.

Support Entry Points

Entry Point unreg()

Entry Point unload()

190

Certain driver entry points are used to support the operations of the kernel or the
administration of the system.

The pfxunreg() entry point is called in a loadable driver, prior to the call to the
pfxunload() entry point. This entry point is used by drivers that support the pfxattach()
entry point (see “Attach and Detach Entry Points” on page 162). Such drivers have to
register with the kernel as supporting devices of certain types. Before unloading, a driver
needs to retract this registration, so the kernel will not call the driver to attach another
device.

If pfxunreg() returns a nonzero error code, the driver is not unloaded.

The pfxunload() entry point is called when the kernel is about to dynamically remove a
loadable driver from the running system. A driver can be unloaded either because all its
devices are closed and a timeout has elapsed, or because the operator has used the m
command (see the ml(1) reference page). The kernel calls pfrunload() only when no

007-0911-210

Support Entry Points

Entry Point halt()

007-0911-210

device special files managed by the driver are open. If any device had been opened, the
pfxclose() entry has been called.

It is not easy to retain state information about the device over the time when the driver
is not in memory. The entire text and data of a loadable driver, including static variables,
are removed and reloaded. Global variables defined in the descriptive file (see
“Describing the Driver in /var/sysgen/master.d” on page 274) remain in memory after
the driver is unloaded, as do any allocated memory addressed from a hwgraph vertex
(see “Attaching Information to Vertexes” on page 239). Be sure not to store any addresses
of driver code or driver static variables in global variables or vertex structures, since the
driver addresses will be different when the driver is reloaded.

Other than data addressed from the hwgraph, allocated dynamic memory should be
released. The driver should also release any process handles (see “Sending a Process
Signal” on page 243).

The driver is not required to unload. If the driver should not be unloaded at this time, it
returns a nonzero return code to the call, and the kernel does not unload it. There are
several reasons why a driver should not be unloaded.

A driver should never permit unloading when there is any kind of pointer to the driver
held in any kernel data structure. It is a frequent design error to unload when there is a
live pointer to the driver. Unpredictable kernel panics often result.

One example of a live pointer to a driver is a pending callback function. Any pending
itimeout() or bufcall() timers should be cancelled before returning 0 from pfxunload().
Another example is a registered interrupt handler. The driver must disconnect any
interrupt handler before unloading; or else refuse to unload.

The kernel calls the pfxhalt() entry point, if one exists, while performing an orderly
system shutdown (see the halt(1) reference page). No other driver entry points are called
after this one. The prototype is simply

voi d pfxhalt(void);

Since the system is shutting down, there is no point in returning allocated memory. The
only purpose this entry point can serve is to leave the device in a safe and stable

191

7: Structure of a Kernel-Level Driver

Entry Point size()

Entry Point print()

192

condition. For example, this is the place at which a disk driver could command the heads
of the drive to move to a safe zone for power off.

The driver cannot assume that interrupts are disabled or enabled. The driver cannot
block waiting for device actions, so whatever commands it issues to the device must take
effect immediately.

The pfxsize() entry point is required of block device drivers. It reports the size of the
device in “sector” units, where a “sector” size is declared as NBPSCTR in sys/ par am h
(currently 512). The prototype is

int pfxsize(dev_t dev);

The device major and minor numbers can be extracted from the dev argument. The entry
point is not called until pfxopen() has been called. Typically the driver will calculate the
size of the medium during pfxopen().

Since the int return value is 32 bits in all systems, the largest possible block device is 1,024
gigabytes ((2%1%512)/1,0243).

The pfxprint() entry point is called from the kernel to display a diagnostic message when
an error is detected on a block device. The prototype and the complete logic of the entry
point is shown in Example 7-7.

Example 7-7 Entry Point pfxprint()

#i ncl ude <sys/cm_err. h>
#i ncl ude <sys/ddi. h>
int hypo_print(dev_t dev, char *str)

crm_err (CE_NOTE, "Error on dev %: %\n", getem nor(dev), str);
return O;

007-0911-210

Handling 32-Bit and 64-Bit Execution Models

Handling 32-Bit and 64-Bit Execution Models

007-0911-210

The pfxioctl() entry point can be passed a data structure from the user process address
space; that is, the arg value can be a pointer to a structure or an array of data. In order to
interpret such a structure, the driver has to know the execution model for which the user
process was compiled.

The execution model is specified when code is compiled. The 32-bit model (compiler
option -32 or -n32) uses 32-bit address values and a long int contains 32 bits. The 64-bit
model (compiler option -64) uses 64-bit address values and a long int contains 64 bits.
(The size of an unqualified int is 32 bits in both models.) The execution model is
sometimes casually called the “ABI” (Authorized Binary Interface), but this is an
improper use of that term—an ABI comprises calling conventions, public names, and
structure definitions, as well as the execution model.

An IRIX kernel compiled to the 32-bit model contains 32-bit drivers and supports only
32-bit user processes. A kernel compiled to the 64-bit model contains 64-bit drivers, but
it supports user processes compiled to either 32-bit or 64-bit models. Therefore, in a 64-bit
kernel, a driver can be asked to interpret data produced by a 32-bit program.

This is true only of the pfxioctl() entry point. Other driver entry points move data to and
from user space as streams or blocks of bytes—not as a structure with fields to be
interpreted.

Since in other respects it is easy to make your driver portable between 64-bit and 32-bit
systems, you should design your driver so that it can handle the case of operating in a
64-bit kernel, receiving ioctl() requests alternately from 32-bit and 64-bit programs.

The simplest way to do this is to define the arguments passed to the entry points in such
a way that they have the same precision in either system. However, this is not always
possible. To handle the general case, the driver must know to which model the user
process was compiled.

In any top-half entry point (where there is a user process context), you find this out by
calling the userabi() function (for which there is no reference page available). The
prototype of userabi() (declared in sys/ ddi . h) is

i nt userabi (__userabi_t *);

193

7: Structure of a Kernel-Level Driver

If there is no user process context, userabi() returns ESRCH. Otherwise it fills out a
__userabi_t structure and returns 0. The structure of type __userabi_t (declared in
sys/ types. h) contains the fields listed below:

uabi_szint Size of a user int (4).
uabi_szlong Size of a user long (4 or 8).
uabi_szptr Size of a user address (4 or 8).
uabi_szlonglong Size of a user long long (8).

Store the value of uabi_szptr when opening a device. Then you can use it to choose
between 32-bit and 64-bit declarations of a structure passed to pfxioctl() or an address
passed to pfxpoll().

In any part of the driver, including interrupt threads, you can get the current ABI by
calling the kernel function get_current_abi(). It takes no argument. It returns an
unsigned character value that can be decoded using macros and constants that are
declared in the header file sys/ kabi . h.

Designing for Multiprocessor Use

Multiprocessor computers are central to the Silicon Graphics product line and are

becoming increasingly common. A device driver that is not multiprocessor-ready can be
used in a multiprocessor, but it is likely to cause a performance bottleneck. By contrast, a
multiprocessor-ready driver works well in a uniprocessor with no cost in performance.

The Multiprocessor Environment
A multiprocessor has two or more CPU modules, all of the same type. The CPUs execute
independently, but all share the same main memory. Any CPU can execute the code of

the IRIX kernel, and it is common for two or more CPUs to be executing kernel code,
including driver code, simultaneously.

Uniprocessor Assumptions
Traditional UNIX architecture assumes a uniprocessor hardware environment with a

hierarchy of interrupt levels. Ordinary code could be preempted by an interrupt, but an
interrupt handler could only be preempted by an interrupt at a higher level.

194 007-0911-210

Designing for Multiprocessor Use

Protecting Common Data

007-0911-210

This assumed hardware environment was reflected in the design of device drivers and
kernel support functions.

¢ In a uniprocessor, an upper-half driver entry point such as pfxopen() cannot be
preempted except by an interrupt. It has exclusive access to driver variables except
for those changed by the interrupt handler.

* Once in an interrupt handler, no other code can possibly execute except an interrupt
of a higher hardware level. The interrupt handler has exclusive access to driver
variables.

* The interrupt handler can use kernel functions such as splhi() to set the hardware
interrupt mask, blocking interrupts of all kinds, and thus getting exclusive access to
all memory including kernel data structures.

All of these assumptions fail in a multiprocessor.

e Upper-half entry points can be entered concurrently on multiple CPUs. For
example, one CPU can be executing pfropen() while another CPU is in pfxstrategy().
Exclusive use of driver variables cannot be assumed.

* Aninterrupt can be taken on one CPU while upper-half routines or a timeout
function execute concurrently on other CPUs. The interrupt routine cannot assume
exclusive use of driver variables.

¢ Interrupt-level functions such as splhi() are meaningless, since at best they set the
interrupt mask on the current CPU only. Other CPUs can accept interrupts at all
levels. The interrupt handler can never gain exclusive access to kernel data.

The process of making a driver multiprocessor-ready consists of changing all code whose
correctness depends on uniprocessor assumptions.

Whenever a common resource can be updated by two processes concurrently, the
resource must be protected by a lock that represents the exclusive right to update the
resource. Before changing the resource, the software acquires the lock, claiming exclusive
access. After changing the resource, the software releases the lock.

The IRIX kernel provides a set of functions for creating and using locks. It provides
another set of functions for creating and using semaphore objects, which are like locks but
sometimes more flexible. Both sets of functions are discussed under “Waiting and
Mutual Exclusion” on page 244.

195

7: Structure of a Kernel-Level Driver

Sleeping and Waking

Sometimes the lock is not available—some other process executing in another CPU has
acquired the lock. When this happens, the requesting process is delayed in the lock
function until the lock is free. To delay, or sleep, is allowed for upper-half entry points,
because they execute (in effect) as subroutines of user processes.

Interrupt handlers and timeout functions are not permitted to sleep. They have no
process identity and so there is no mechanism for saving and restoring their state. An
interrupt handler can test a lock, and can claim the lock conditionally, but if a lock is
already held, the handler must have some alternate way of storing data.

Synchronizing Within Upper-Half Functions

When designing an upper-half entry point, keep in mind that it could be executed
concurrently with any other upper-half entry point, and that the one entry point could
even be executed concurrently by multiple CPUs. Only a few entry points are immune:

e The pfxinit(), pfredtinit(), and pfxstart() entry points cannot be entered concurrently
with each other or any other entry point (pfxstart() could be entered concurrently
with the interrupt handler).

¢ The pfrunload() and pfxhalt() entry points cannot be entered concurrently with any
other entry point except for stray interrupts.

e Certain entry points have no cause to use shared data; for example, pfxsize() and
pfxprint() normally do not need to take any precautions.

Other upper-half entry points, and all STREAMS entry points, can be entered
concurrently by multiple CPUs, when the driver is multiprocessor-aware. In earlier
versions of IRIX, you could place a flag in the pfxdevflag of a character driver that made
the kernel run the driver only on CPU 0. This effectively serialized all use of that driver.
That feature is no longer supported. You must deal with concurrency.

Serializing on a Single Lock

196

You can create a single lock for upper-half serialization. Each upper-half function begins
with read-only operations such as extracting the device minor number, getting device
information from the hwgraph vertex, and testing and validating arguments. You allow
these to execute concurrently on any CPU.

007-0911-210

Designing for Multiprocessor Use

In each entry point, when the preliminaries are complete, you acquire the single lock, and
release it just before returning. The result is that processes are serialized for I/O through
the driver. If the driver supports only a single device, processes would be serialized in
any case, waiting for the device to operate. Since the upper half can execute on any CPU,
latency is more predictable.

Serializing on a Lock Per Device

When the driver supports multiple minor devices, you will normally have a data
structure per device. An upper-half routine is concerned only with one device. You can
define a lock in the data structure for each device instance, and acquire that lock as soon
as the device information structure is known.

This method permits concurrent execution of upper-half requests for different minor
devices, but it serializes access to any one device.

Coordinating Upper-Half and Interrupt Entry Points

Upper-half entry points prepare work for the device to do, and the interrupt handler
reports the completion of the device action (see “Interrupt Handler Operation” on
page 186). In ablock device driver, this communication is relatively simple. In a character
driver, you have more design options. The kernel functions mentioned in the following
topics are covered under “Waiting and Mutual Exclusion” on page 244.

Coordinating Through the buf_t
In a block device driver, the pfxstrategy() routine initiates a read or a write based on a
buf_t structure (see “Entry Point strategy()” on page 175), and leaves the address of the
buf t where the interrupt routine can find it. Then pfxstrategy() calls the biowait() kernel
function to wait for completion.

The pfxintr() entry point updates the buf _t (using pfxbioerror() if necessary) and then
uses biodone() to mark the buf_t as complete. This ends the wait for pfxstrategy().

Coordination in a Character Driver

In a character driver that supports interrupts, you design your own coordination
mechanism. The simplest (and not recommended) would be based on using the kernel

007-0911-210 197

7: Structure of a Kernel-Level Driver

Choice of Lock Type

198

function sleep() in the upper half, and wakeup() in the interrupt routine. It is better to
use a semaphore and use psema() in the upper half and vsema() in the interrupt handler.

If you need to allow for timeouts in addition to interrupts, you have to deal with the
complication that the timeout function can be called concurrently with an interrupt. In
this case it is better to use synchronization variables (see “Using Synchronization
Variables” on page 258).

In versions before IRIX 6.4, interrupt handlers must not use kernel services that can sleep.
This prevented you from using normal locks to provide mutual exclusion between the
upper half and the interrupt handler. The lock had to be a basic lock (see “Basic Locks”
on page 245), a type that is implemented as a spinning lock in a multiprocessor.

Now that interrupt handlers execute as kernel threads, they have the ability to sleep if
necessary. This means that you can now use mutex locks (see “Using Mutex Locks” on
page 247) between the upper half and interrupt handler. Although you do not want an
interrupt handler to be delayed, it is much better for a kernel thread to sleep briefly while
waiting for a lock, than for it to spin in a tight loop. In general, mutex locks are more
efficient than spinning locks.

In the event you must maintain a multiprocessor driver that operates in both IRIX 6.4 and
an earlier, nonthreaded version, you can make the choice of lock type dynamically using
conditional compilation. Example 7-8 shows one technique.

Example 7-8 Conditional Choice of Mutual Exclusion Lock Type

#i f def | NTR_KTHREADS

#define | NT_LOCK_TYPE nutex_t

#define | NT_LOCK_I NI T(p) MJUTEX_I NI T(p, MUTEX_DEFAULT, " DRI VER_NAME")
#define | NT_LOCK_LOCK(p) MJITEX_ LOCK(p, -1)

#define | NT_LOCK_FREE(p) MJUTEX_UNLOCK(p)

#el se /* not a threaded kernel */

#define I NT_LOCK_TYPE struct{lock_t |k, int cookie}
#define I NT_LOCK_I NI T(p)

LOCK_I NI T(&p->l k, (uchar_t)-1,plhi, (lkinfo_t)-1)
#define | NT_LOCK_LOCK(p) (p->cookie=LOCK(&p->Ik, plhi))
#defi ne | NT_LOCK_FREE(p) UNLOCK(&p- >l Kk, p->cooki e)
#endi f

007-0911-210

Designing for Multiprocessor Use

Converting a Uniprocessor Driver

007-0911-210

As a general approach, you can convert a uniprocessor driver to make it
multiprocessor-safe in the following steps:

1. If it currently uses the D_OLD flag, or has no pfxdevflag constant, convert it to use
the current interface, with a pfxdevflag of D_MP.

2. Make sure it works in the original uniprocessor at the current release of IRIX.

3. Begin adding semaphores, locks, and other exclusion and synchronization tools.
Continue to test the driver on the uniprocessor. It will never wait for a lock, but the
coordination between upper half and interrupt handler should work.

4. Test on a multiprocessor.

In performing the conversion, you can look for calls to spl*() functions as marking points
at which work is needed. These functions are used for mutual exclusion in a
uniprocessor, but they are all ineffective or unnecessary in a multiprocessor-safe driver.

The code in Example 7-9 shows typical logic in a uniprocessor character driver.

Example 7-9 Uniprocessor Upper-Half Wait Logic
s = splvne();
flag | = WAI TI NG

while (flag & WAITING {
sl eep(& 1 ag, PZERO) ;

spl x(s);

The upper half calls the splvme() function with the intention of blocking interrupts, and
thus preventing execution of this driver’s interrupt handler while the flag variable is
updated. In a multiprocessor this is ineffective because at best it sets the interrupt level
on the current CPU. The interrupt handler can execute on another CPU and change the
variable. The corresponding interrupt handler is shown in the following example.

if (flag & WA TING) {
wakeup(& | ag) ;
flag & ~WAITING

199

7: Structure of a Kernel-Level Driver

200

The interrupt handler could execute on another CPU, and test the flag after the upper
half has called splvme() and before it has set WAITING in flag. The interrupt is effectively
lost. This would happen rarely and would be hard to repeat, but it would happen and
would be hard to trace. A more reliable, and simpler, technique is to use a semaphore.
The driver defines a global semaphore:

static sena_t sl eeper;

A driver with multiple devices would have a semaphore per device, perhaps as an array
of sema_t items indexed by device minor number. The semaphore (or array) would be
initialized to a starting value of 1 in the pfxinit() or pfxstart() entry:

voi d hypo_start()
{
i ni t nsena(&sl eeper, 1, "sl eeper");

}

After the upper half started a device operation, it would await the interrupt using
psema():

psema(sl eeper, PZERO) ;

The PZERO argument makes the wait immune to signals. If the driver should wake up
when a signal is sent to the calling process (such as SIGINT or SIGTERM), the second
argument can be PCATCH. A return value of -1 indicates the semaphore was posted by
a signal, not by a vsema() call. The interrupt handler would use vsemal() to post the
semaphore.

007-0911-210

Chapter 8

007-0911-210

Device Driver/Kernel Interface

The programming interface between a device driver and the IRIX kernel is founded on
the AT&T System V Release 4 DDI/DKI, and it remains true that a working device driver
for an SVR4 system can be ported to IRIX with relatively little difficulty. However, as both
SGI hardware and the IRIX kernel have evolved into far greater complexity and
sophistication, the driver interface has been extended. A driver can now call upon nearly
as many IRIX extended kernel functions as it can SVR4-compatible ones.

The function prototypes and detailed operation of all kernel functions are documented
in the reference pages in volume “D.” The aim of this chapter is to provide background,
context, and an overview of the interface under the following headings:

e “Important Data Types” on page 202 describes the data types that are exchanged
between the kernel and a driver.

¢ “Important Header Files” on page 211 summarizes the C header files that are
frequently included in a driver source file.

e “Kernel Memory Allocation” on page 213 discusses allocating kernel memory in
general and for objects of specific types.

e “Transferring Data” on page 217 discusses the problems of copying data between
user and kernel address spaces, and block-copy operations within the kernel.

* “Managing Virtual and Physical Addresses” on page 220 discusses functions for
testing and translating addresses in different spaces, for using address/length lists,
and for setting up DMA transfers.

¢ “Hardware Graph Management” on page 231 discusses the kernel function used to
create and modify hwgr aph vertexes.

e “User Process Administration” on page 242 tells how to test the attributes of a
calling process and how to send a signal.

e “Waiting and Mutual Exclusion” on page 244 details the kinds of locks and
semaphores available, and the methods of waiting for events to occur.

201

8: Device Driver/Kernel Interface

Important Data Types

In order to understand the driver/kernel interface, you need first of all to understand the
data types with which it deals.

Hardware Graph Types

Vertex Handle Type

Vertex Handle and dev_t

Graph Error Numbers

202

As discussed under “Hardware Graph Features” on page 45, the hwgraph is composed
of vertexes connected by labelled edges. The functions for working with the hwgraph are
discussed under “Hardware Graph Management” on page 231.

There is no data type associated with the edge as such. The data type of a graph vertex is
the vertex_hdl_t, an opaque, 32-bit number. When you create a vertex, a vertex_hdl_t is
returned. When you store data in a vertex, or get data from one, you pass a vertex_hdl_t
as the argument.

The device number type, dev_t, is an important type in classical driver design (see
“Device Number Types” on page 209). In IRIX 6.4, the dev_t and the vertex_hdl_t are
identical. That is, when a driver is called to open or operate a device that is represented
as a vertex in the hardware graph, the value passed to identify the device is simply the
handle to the hwgraph vertex for that device.

When a driver is called to open a device that is only represented as a special file in / dev
(as in IRIX 6.3 and earlier—there are no such devices supported by IRIX 6.4, but such
support is provided for third-party drivers in IRIX 6.5), the identifying value is an
o0_dev_t, containing major and minor numbers and identical to the traditional dev_t.

Most hwgraph functions have graph error codes as their explicit result type. The
graph_error_t is an enumeration declared in sys/ gr aph. h (included by
sys/ hwgr aph. h) having these values:

GRAPH_SUCCESS Operation successful. This success value is 0, as is
conventional in C programming.

007-0911-210

Important Data Types

Address Types

Address/Length Lists

007-0911-210

GRAPH_DUP Data to be added already exists.

GRAPH_NOT_FOUND Data requested does not exist.

GRAPH_BAD_PARAM Typically a null value where an address is required, or
other unusable function parameter.

GRAPH_HIT LIMIT Arbitrary limit on, for example, number of edges.

GRAPH_CANNOT_ALLOC Unable to allocate memory to expand vertex or other
data structure, possibly because “no sleep” specified.

GRAPH_ILLEGAL_REQUEST Improper or impossible request.

GRAPH_IN_USE Cannot deallocate vertex because there are references
to it.

Device drivers deal with addresses in different address spaces. When you store
individual addresses, it is a good idea to use a data type specific to the address space. The
following types are declared in sys/ t ypes. h to use for pointer variables:

caddr_t Any memory (“core”) address in user or kernel space.
daddr_t A disk offset or address (64 bits).

paddr_t A physical memory address.

iopaddr_t An address in some I/0O bus address space.

Itis a very good idea to always store a pointer in a variable with the correct type. It makes
the intentions of the program more understandable, and helps you think about the
complexities of address translation.

Anaddress/length list, or alenlist, is a software object you use to store the address and size
of each segment of a buffer. An alenlist is a list in which each list item is a pair composed
of an address and a related length. All the addresses in the list refer to the same address
space, whether that is a user virtual space, the kernel virtual space, physical memory
space, or the address space of some I/O bus. An alenlist cursor is a pointer that ranges
over the list, selecting one pair after another.

203

8: Device Driver/Kernel Interface

Figure 8-1 Address/Length List Concepts

The conceptual relationship between an alenlist and a buffer is illustrated in Figure 8-1.
A buffer area that is a single contiguous segment in virtual memory may consist of
scattered page frames in physical memory. The alenlist_t data type is a pointer to an
alenlist.

The kernel provides a variety of functions for creating alenlists, for loading them with
addresses and lengths, and for translating the addresses (see “Using Address/Length
Lists” on page 223). These functions and the alenlist_t data type are declared in
sys/al enlist.h.

Structure uio_t

The uio_t structure describes data transfer for a character device:

e The pfxread() and pfxwrite() entry points receive a uio_t that describes the buffer of
data.

204 007-0911-210

Important Data Types

e Within an pfxioctl() entry point, you might construct a uio_t to represent data
transfer for control purposes.

* In ahybrid character/block driver, the physiock() function translates a uio_t into a
buf_t for use by the pfxstrategy() entry point.

The fields and values in a uio_t are declared in sys/ ui 0. h, which is included by

sys/ ddi . h. For a detailed discussion, see the uio(D4) reference page. Typically the
contents of the uio_t reflect the buffer areas that were passed to a read(), readv(), write(),
or writev() call (see the read(2) and write(2) reference pages).

Data Location and the iovec_t

Use of the uio_t

007-0911-210

One uio_t describes data transfer to or from a single address space, either the address
space of a user process or the kernel address space. The address space is indicated by a
flag value, either UIO_USERSPACE or UIO_SYSSPACE, in the uio_segflg field.

The total number of bytes remaining to be transferred is given in field uio_resid. Initially
this is the total requested transfer size.

Although the transfer is to a single address space, it can be directed to multiple segments
of data within the address space. Each segment of data is described by a structure of type
iovec_t. An iovec_t contains the virtual address and length of one segment of memory.

The number of segments is given in field uio_iovcnt. The field uio_iov points to the first
iovec_t in an array of iovec_t structures, each describing one segment. of data. The total
size in uio_resid is the sum of the segment sizes.

For a simple data transfer, uio_iovcnt contains 1, and uio_iov points to a single iovec_t
describing a buffer of 1 or more bytes. For a complicated transfer, the uio_t might describe
a number of scattered segments of data. Such transfers can arise in a network driver
where multiple layers of message header data are added to a message at different levels
of the software.

In the pfxread() and pfxwrite() entry points, you can test uio_segflag to see if the data is
destined for user space or kernel space, and you can save the initial value of uio_resid as
the requested length of the transfer.

205

8: Device Driver/Kernel Interface

Structure buf_t

Fields of buf_t

206

In a character driver, you fetch or store data using functions that both use and modify the
uio_t. These functions are listed under “Transferring Data Through a uio_t Object” on
page 219. When data is not immediately available, you should test for the FNDELAY or
FNONBLOCK flags in uio_fmode, and return when either is set rather than sleeping.

The buf_t structure describes a block data transfer. It is designed to represent the transfer
(in or out) of a sequence of adjacent, fixed-size blocks from a random-access device to a
block of contiguous memory. The size of one device block is NBPSCTR, declared in
sys/ par am h. For a detailed discussion of the buf_t, see the buf(D4) reference page.

The buf_t is used internally in IRIX by the paging I/O system to manage queues of
physical pages, and by filesystems to manage queues of pages of file data. The paging
system and filesystems are the primary clients of the pfxstrategy() entry point to a block
device driver, so it is only natural that a buf_t pointer is the input argument to
pfxstrategy().

Tip: The i dbg kernel debugging tool has several functions related to displaying the
contents of buf_t objects. See “Commands to Display buf_t Objects” on page 308.

The fields of the buf_t are declared in sys/ buf . h, which is included by sys/ ddi . h.
This header file also declares the names of many kernel functions that operate on buf ¢
objects. (Many of those functions are not supported as part of the DDI/DXKI. You should
only use kernel functions that have reference pages.)

Because buf_t is used by so many software components, it has many fields that are not

relevant to device driver needs, as well as some fields that have multiple uses. The
relevant fields are summarized in Table 8-1.

007-0911-210

Important Data Types

Table 8-1 Accessible Fields of buf_t Objects

Field Name Access Purpose and Contents

b_edev read-only dev_t giving device major and minor numbers.

b_flags read-only Operational flags; for a detailed list see buf(D4).

b_forw, b_back, read-write Queuing pointers, available for driver use within the

av_forw, av_back pfxstrategy() routine.

b_un.b_addr read-only Sometimes the kernel virtual address of the buffer, depending on

the b_flags setting BP_ISMAPPED.
b_bcount read-only ~ Number of bytes to transfer.

b_blkno read-only Startinglogical block number on device (for a disk, relative to the
partition that the device represents).

b_iodone read-write Address of a driver internal function to be called on 1/0
completion.
b_resid read-write Number of bytes not transferred, set at completion to 0 unless an

error occurs.

b_error read-write Error code, set at completion of I/O.

No other fields of the buf_t are designed for use by a driver. In Table 8-1, “read-only”
access means that the driver should never change this field in a buf_t that is owned by the
kernel. When the driver is working with a buf_t that the driver has allocated (see
“Allocating buf_t Objects and Buffers” on page 216) the driver can do what it likes.

Using the Logical Block Number

007-0911-210

The logical block number is the number of the 512-byte block in the device. The “device”
is encoded by the minor device number that you can extract from b_edev. It might be a
complete device surface, or it might be a partition within a larger device (for example,
the IRIX disk device drivers support different minor device numbers for different disk
partitions).

The pfxstrategy() routine may have to translate the logical block number based on the

driver’s information about device partitioning and device geometry (sector size, sectors
per track, tracks per cylinder).

207

8: Device Driver/Kernel Interface

Buffer Location and b_flags

The data buffer represented by a buf_t can be in one of two places, depending on bits in
b_flags.

When the macro BP_ISMAPPED (buf_t-address) returns true, the buffer is in kernel virtual
memory and its virtual address is in b_un.b_addr.

When BP_ISMAPPED(buf_t-address) returns false, the buffer is described by a chain of
pfdat structures (declared in sys/ pf dat . h, but containing no fields of any use to a
device driver). In this case, b_un.b_addr contains only an offset into the first page frame
of the chain. See “Managing Buffer Virtual Addresses” on page 228 for a method of
mapping an unmapped buffer.

Lock and Semaphore Types

208

The header files sys/ sema. h and sys/ t ypes. h declare the data types of locks of
different types, including the following;:

lock_t Basic lock, or spin-lock, used with LOCK() and related functions.
mutex_t Sleeping lock, used for mutual exclusion between upper-half instances.
sema_t Semaphore object, used for general locking.

mrlock_t Reader-writer locks, used with RW_RDLOCK() and related functions.
su_t Synchronization variable, used with SV_WAIT and related functions.

These lock types should be treated as opaque objects because their contents can change
from release to release (and in fact their contents are different in IRIX 6.2 from previous
releases).

The families of locking and synchronization functions contain functions for allocating,

initializing, and freeing each type of lock. See “Waiting and Mutual Exclusion” on
page 244.

007-0911-210

Important Data Types

Device Number Types

In the / dev filesystem (but not in the / hwfilesystem), two numbers are carried in the
inode of a device special file: a major device number of up to 9 bits, and a minor device
number of up to 18 bits. The numbers are assigned when the device special file is created,
either by the / dev/ MAKEDEV script or by the system administrator. The contents and
meaning of device numbers is discussed under “Devices as Files” on page 38.

In traditional UNIX practice, the dev_t has been an unsigned integer containing the
values of the major and minor numbers for the device that is to be used. When a device
is represented in IRIX only as a device special file in / dev, this is still the case.

When a device is represented by a vertex of the hwgraph, visible as a name in the / hw
filesystem, the major number is always 0 and the minor number is arbitrary. When a
device is opened as a special file in / hw the dev_t received by the driver is composed of
major 0 and an arbitrary minor number. In fact, the dev_t is a vertex_hdl_t, a handle to the
hwgraph vertex that represents the device.

Historical Use of the Device Numbers

Historically, a driver used the major device number to learn which device driver has been
called. This was important only when the driver supported multiple interfaces, for
example both character and block access to the same hardware.

Also historically, the driver used the minor device number to distinguish one hardware
unit from another. A typical scheme was to have an array of device-information
structures indexed by the minor number. In addition, mode of use options were encoded
in the minor number, as described under “Minor Device Number” on page 41.

You can still use major and minor numbers the same way, but only when the device is
represented by a device special file that is created with the nknod command, so that it
contains meaningful major and minor numbers. The kernel functions related to dev_t use
are summarized in Table 8-2.

007-0911-210 209

8: Device Driver/Kernel Interface

Table 8-2 Functions to Manipulate Device Numbers

Function Header Files Purpose

etoimajor(D3) ddih Convert external to internal major device number.
getemajor(D3) ddih Get external major device number.

geteminor(D3) ddih Get external minor device number.

getmajor(D3) ddi.h Get internal major device number.

getminor(D3) ddih Get internal minor device number.

itoemajor(D3) ddih Convert internal to external major device number.
makedevice(D3) ddi.h Make device number from major and minor numbers.

The most important of the functions in Table 8-2 are

e getemajor(), which extracts the major number from a dev_t and returns it as a
major_t

e geteminor(), which extracts the minor number from a dev_f and returns it as a
minor_t

The makedevice() function, which combines a major_t and a minor_t to form a traditional
dev_t, is useful only when creating a “clone” driver (see “Support for CLONE Drivers”
on page 789).

Contemporary Device Number Use

210

When the device is represented as a hwgraph vertex, the driver does not receive useful
major and minor numbers. Instead, the driver uses the device-unique information that
the driver itself has stored in the hwgraph vertex.

An historical driver makes only historical use of the dev_t, using the functions listed in

the preceding topic. Such a driver makes no use of the hwgraph, and can only manage
devices that are opened as device special files in / dev.

007-0911-210

Important Header Files

A contemporary driver creates hwgraph vertexes to represent its devices (see “Extending
the hwgraph” on page 233); makes no use of the major and minor device numbers; and
uses the dev_t as a handle to a hwgraph vertex. Such a driver can only manage devices
that are opened as device special files in / hw or devices that are opened through
symbolic links in / dev that refer to / hw

It might possibly be necessary to merge the two approaches. This can be done as follows.
In each upper-half entry point, apply getemajor() to the dev_t. When the result is
nonzero, the dev_t is conventional and geteminor() will return a useful minor number.
Use it to locate the device-specific information.

When getemajor() returns 0, the dev_t is a vertex handle. Use device_info_get() to
retrieve the address of device-specific information.

Important Header Files

007-0911-210

The header files that are frequently needed in device driver source modules are
summarized in Table 8-3.

Table 8-3 Header Files Often Used in Device Drivers

Header File Reason for Including

sys/alenlist.h The address/length list type and related functions.

sys/ buf. h The buf_t structure and related constants and functions (included by
sys/ ddi . h).

sys/cm_err. h The cmn_err() function.

sys/ conf.h The constants used in the pfxdevflags global.

sys/ddi . h Many kernel functions declared. Also includes sys/ types. h,
sys/ ui 0. h,and sys/ buf . h.

sys/ debug. h Defines the ASSERT macro and others.

sys/ dmamap. h Data types and kernel functions related to DMA mapping.

sys/edt. h Declares the edt_t type passed to pfredtinit().

sys/eisa.h EISA-bus hardware constants and EISA kernel functions.

sys/errno. h Names for all system error codes.

211

8: Device Driver/Kernel Interface

212

Table 8-3 Header Files Often Used in Device Drivers (continued)

Header File Reason for Including

sys/file.h Names for file mode flags passed to driver entry points.

sys/ hwgraph. h Hardware graph objects and related functions.

sys/immu. h Types and macros used to manage virtual memory and some kernel
functions.

sys/ knem h Constants like KM_SLEEP used with some kernel functions.

sys/ ksynch. h Functions used for sleep-locks.

sys/log.h Types and functions for using the system log.

sys/ maj or.h Names for assigned major device numbers.

sys/ mman. h Constants and flags used with mmap() and the pfxmmap() entry
point.

sys/param h Constants like PZERO used with some kernel functions.

sys/ PCl/pciio.h PCI bus interface functions and constants.

sys/pio.h VME PIO functions.

sys/poll.h Types and functions for pollhead allocation and poll callback.

sys/scsi.h Types and functions used to call the inner SCSI driver.

sys/sema. h Types and functions related to semaphores, mutex locks, and basic
locks.

sys/streamh STREAMS standard functions and data types.

sys/strnp.h STREAMS multiprocessor functions.

sys/ sysmacros. h Macros for conversion between bytes and pages, and similar values.

sys/systmh Kernel functions related to system operations.

sys/types.h Common data types and types of system objects (included by
sys/ddi . h).

sys/uio.h The uio_t structure and related functions (included by sys/ ddi . h).

sys/vnereg. h VME bus hardware constants and VME-related functions.

007-0911-210

Kernel Memory Allocation

Kernel Memory Allocation

A device or STREAMS driver can allocate memory statically, as global variables in the
driver module, and this is a good way to allocate any object that is always needed and
has a fixed size.

When the number or size of an object can vary, but can be determined at initialization
time, the driver can allocate memory in the pfxinit(), pfxedtinit(), pfxattach(), or pfxstart()
entry point.

You can allocate memory dynamically in any upper-half entry point. When this is
necessary, it should be done in an entry point that is called infrequently, such as
pfxopen(). The reason is that memory allocation is subject to unpredictable delays. As a
general rule, you should avoid the need to allocate memory in an interrupt handler.

General-Purpose Allocation

007-0911-210

General-purpose allocation uses the kmem_alloc() function and associated functions
summarized in Table 8-4.

Table 8-4 Functions for Kernel Virtual Memory

Function Name Header Files Purpose

kmem_alloc(D3) kmem.h & Allocate space from kernel free memory:.
types.h

kmem_free(D3) kmem.h & Free previously allocated kernel memory.
types.h

kmem_zalloc(D3) kmem.h & Allocate and clear space from kernel free memory.
types.h

The most important of these functions is kmem_alloc(). You use it to allocate blocks of
virtual memory at any time. It offers these important options, controlled by a flag
argument:

* Sleeping or not sleeping when space is not available. You specify not-sleeping when
holding a basic lock, but you must be prepared to deal with a return value of NULL.

¢ Physically-contiguous memory. The memory allocated is virtual, and when it spans
multiple pages, the pages are not necessarily adjacent in physical memory. You need

213

8: Device Driver/Kernel Interface

physically contiguous pages when doing DMA with a device that cannot do
scatter/gather. However, contiguous memory is harder to get as the system runs, so
it is best to obtain it in an initialization routine.

* Cache-aligned memory. By requesting memory that is a multiple of a cache line in
size, and aligned on a cache-line boundary, you ensure that DMA operations will
affect the fewest cache lines (see “Setting Up a DMA Transfer” on page 226).

The kmem_zalloc() function takes the same options, but offers the additional service of
zero-filling the allocated memory.

In porting an old driver you may find use of allocation calls beginning with “kern.” Calls
to the “kern” group of functions should be upgraded as follows:

kern_malloc(n) Change to kmem_alloc(n,KM_SLEEP).

kern_calloc(n,s) Change to kmem_zalloc(n*s, KM_SLEEP)

kern_free(p) Change to kmem_free(p)

Allocating Memory in Specific Nodes of a Origin2000 System

214

In the nonuniform memory of a Origin2000 system, there is a time penalty for access to
memory that is physically located in a node different from the node where the code is
executing. However, kmem_alloc() attempts to allocate memory in the same node where
the caller is executing. The pfredtinit() and pfxattach() entry points execute in the node
that is closest to the hardware device. If you allocate per-device structures in these entry
points using kmem_alloc(), the structures will normally be in memory on the same node
as the device. This provides the best performance for the interrupt handler, which also
executes in the closest node to the device.

Other upper-half entry points execute in the node used by the process that called the
entry point. If you allocate memory in the open() entry point, for example, that memory

will be close to the user process.

When it is essential to allocate memory in a specific node and to fail if memory in that
node is not available, you can use one of the functions summarized in Table 8-5.

007-0911-210

Kernel Memory Allocation

Table 8-5 Functions for Kernel Memory In Specific Nodes

Function Name Header Files Purpose

kmem_alloc_node() kmem.h & Allocate space from kernel free memory in specific
types.h node.

kmem_zalloc_node() kmem.h & Allocate and clear space from kernel free memory in
types.h specific node.

These functions are available in all systems. In systems with a uniform memory, they
behave the same as the normal kernel allocation functions.

Allocating Objects of Specific Kinds

The kernel provides a number of functions with the purpose of allocating and freeing
objects of specific kinds. Many of these are variants of kmem_alloc() and kmem_free(),
but others use special techniques suited to the type of object.

Allocating pollhead Objects

Table 8-6 summarizes the functions you use to allocate and free the pollhead structure that
is used within the pfxpoll() entry point (see “Entry Point poll()” on page 178). Typically
you would call phalloc() while initializing each minor device, and call phfree() in the
pfxunload() entry point.

Table 8-6 Functions for Allocating pollhead Structures

Function Name Header Files Purpose

phalloc(D3) ddi.h & kmem.h & pollL.h Allocate and initialize a pollhead structure.
phfree(D3) ddi.h & pollL.h Free a pollhead structure.

007-0911-210 215

8: Device Driver/Kernel Interface

Allocating Semaphores and Locks

There are symmetrical pairs of functions to allocate and free all types of lock and
synchronization objects. These functions are summarized together with the other locking
functions under “Waiting and Mutual Exclusion” on page 244.

Allocating buf_t Objects and Buffers

The argument to the pfxstrategy() entry point is a buf_t structure that describes a buffer
(see “Entry Point strategy()” on page 175 and “Structure buf_t” on page 206).

Ordinarily, both the buf_t and the buffer are allocated and initialized by the kernel or the
filesystem that calls pfxstrategy(). However, some drivers need to create a buf_t and
associated buffer for special uses. The functions summarized in Table 8-7 are used for

this.

Table 8-7 Functions for Allocating buf_t Objects and Buffers

Function Name Header Files Purpose

geteblk(D3) ddih Allocate a buf_t and a buffer of 1024 bytes.
ngeteblk(D3) ddi.h Allocate a buf_t and a buffer of specified size.
brelse(D3) ddih Return a buffer header and buffer to the system.
getrbuf(D3) ddi.h Allocate a buf_t with no buffer.

freerbuf(D3) ddih Free a buf_t with no buffer.

To allocate a buf_t and its associated buffer in kernel virtual memory, use either geteblk()
or ngeteblk(). Free this pair of objects using brelse(), or by calling biodone().

You can allocate a buf_t to describe an existing buffer—one in user space, statically

allocated in the driver, or allocated with kmem_alloc()—using getrbuf(). Free such a
buf t using freerbuf().

216 007-0911-210

Transferring Data

Transferring Data

The device driver executes in the kernel virtual address space, but it must transfer data
to and from the address space of a user process. The kernel supplies two kinds of
functions for this purpose:

e functions that transfer data between driver variables and the address space of the
current process

* functions that transfer data between driver variables and the buffer described by a
uio_t object

Warning: The use of an invalid address in kernel space with any of these functions
causes a kernel panic.

All functions that reference an address in user process space can sleep, because the page
of process space might not be resident in memory. As a result, such functions cannot be
used while holding a basic lock, and should be avoided in an interrupt handler.

General Data Transfer

007-0911-210

The kernel supplies functions for clearing and copying memory within the kernel virtual
address space, and between the kernel address space and the address space of the user

process that is the current context. These general-purpose functions are summarized in
Table 8-8.

Table 8-8 Functions for General Data Transfer

Function Name Header Files Purpose

bcopy(D3) ddih Copy data between address locations in the kernel.
bzero(D3) ddi.h Clear memory for a given number of bytes.
copyin(D3) ddi.h Copy data from a user buffer to a driver buffer.
copyout(D3) ddi.h Copy data from a driver buffer to a user buffer.
fubyte(D3) systm.h & types.h Load a byte from user space.

fuword(D3) systm.h & types.h Load a word from user space.

217

8: Device Driver/Kernel Interface

Block Copy Functions

218

Table 8-8 Functions for General Data Transfer (continued)

Function Name Header Files Purpose

hwepin(D3) systm.h & types.h Copy data from device registers to kernel memory.
hwepout(D3) systm.h & types.h Copy data from kernel memory to device registers.
subyte(D3) systm.h & types.h Store a byte to user space.

suword(D3) systm.h & types.h Store a word to user space.

The beopy() and bzero() functions are used to copy and clear data areas within the kernel
address space, for example driver buffers or work areas. These are optimized routines
that take advantage of available hardware features.

The beopy() function is not appropriate for copying data between a buffer and a device;
that is, for copying between virtual memory and the physical memory addresses that
represent a range of device registers (or indeed any uncached memory). The reason is
that bcopy() uses doubleword moves and any other special hardware features available,
and devices many not be able to accept data in these units. The hwepin() and hwepout()
functions copy data in 16-bit units; use them to transfer bulk data between device space
and memory. (Use simple assignment to move single words or bytes.)

The copyin() and copyout() functions take a kernel virtual address, a process virtual
address, and a length. They copy the specified number of bytes between the kernel space
and the user space. They select the best algorithm for copying, and take advantage of
memory alignment and other hardware features.

If there is no current context, or if the address in user space is invalid, or if the address
plus length is not contained in the user space, the functions return -1. This indicates an
error in the request passed to the driver entry point, and the driver normally returns an
EFAULT error.

007-0911-210

Transferring Data

Byte and Word Functions

The functions fubyte(), subyte(), fuword(), and suword() are used to move single items
to or from user space. When only a single byte or word is needed, these functions have
less overhead than the corresponding copyin() or copyout() call. For example you could
use fuword() to pick up a parameter using an address passed to the pfrioctl() entry point.
When transferring more than a few bytes, a block move is more efficient.

Transferring Data Through a uio_t Object

A uio_t object defines a list of one or more segments in the address space of the kernel or
a user process (see “Structure uio_t” on page 204). The kernel supplies three functions for
transferring data based on a uio_t, and these are summarized in Table 8-9.

Table 8-9 Functions Moving Data Using uio_t

Function Header Files Purpose

uiomove(D3) ddih Copy data using wio_t.

ureadc(D3) ddi.h Copy a character to space described by uio_t.
uwritec(D3) ddih Return a character from space described by wuio_t.

The uiomove() function moves multiple bytes between a buffer in kernel virtual space—
typically, a buffer owned by the driver—and the space or spaces described by a uio_t. The
function takes a byte count and a direction flag as arguments, and uses the most efficient
mechanism for copying.

The ureadc() and uwritec() functions transfer only a single byte. You would use them
when transferring data a byte at a time by PIO. When moving more than a few bytes,
uiomove() is faster.

All of these functions modify the uio_t to reflect the transfer of data:

* uio_resid is decremented by the amount moved

* In the iovec_t for the current segment, iov_base is incremented and iov_len is
decremented

* Assegments are used up, uio_iov is incremented and uio_iovcnt is decremented

007-0911-210 219

8: Device Driver/Kernel Interface

Managing Virtual

The result is that the state of the uio_t always reflects the number of bytes remaining to
transfer. When the pfxread() or pfxwrite() entry point returns, the kernel uses the final
value of ui_resid to compute the count returned to the read() or write() function call.

and Physical Addresses

The kernel supplies functions for querying the address of hardware registers and for
performing memory mapping. The most helpful of these functions involve the use of
address/length lists.

Managing Mapped Memory

220

The pfxmap() and pfxrunmap() entry points receive a vhandl_t object that describes the
region of user process space to be mapped. The functions summarized in Table 8-10 are
used to manipulate that object.

Table 8-10 Functions to Manipulate a vhandl_t Object

Function Name Header Files Purpose

v_getaddr(D3) ddmap.h & Get the user virtual address associated with a vhandi_t.

types.h

v_gethandle(D3) ddmap.h & Get a unique identifier associated with a vhandl_t.
types.h

v_getlen(D3) ddmaph & Get the length of user address space associated with a
types.h vhandl_t.

v_mapphys(D3) ddmap.h & Map kernel address space into user address space.
types.h

The v_mapphys() function actually performs a mapping between a kernel address and a
segment described by a vhandl_t (see “Entry Point map()” on page 181).

The v_getaddr() function has hardly any use except for logging and debugging. The
address in user space is normally undefined and unusable when the pfxmap() entry point
is called, and mapped to kernel space when pfxrunmap() is called. The driver has no
practical use for this value.

007-0911-210

Managing Virtual and Physical Addresses

The v_getlen() function is useful only in the pfrunmap() entry point—the pfxmap() entry
point receives a length argument specifying the desired region size.

The v_gethandle() function returns a number that is unique to this mapping (actually,
the address of a page table entry). You use this as a key to identify multiple mappings, so
that the pfrunmap() entry point can properly clean up.

Caution: Be careful when mapping device registers to a user process. Memory
protection is available only on page boundaries, so configure the addresses of I/O cards
so that each device is on a separate page or pages. When multiple devices are on the same
page, a user process that maps one device can access all on that page. This can cause
system security problems or other problems that are hard to diagnose.

Note: In previous releases of IRIX, the header file sys/ r egi on. h contained these
functions. As of IRIX 6.5, the header file sys/ r egi on. h is removed and these same
functions are declared in ksys/ ddmap. h.

Working With Page and Sector Units

007-0911-210

In a 32-bit kernel, the page size for memory and I/O is 4 KB. In a 64-bit kernel, the
memory page size is typically 16 KB, but can vary. Also, the size of “page” used for I/O
operations can be different from the size of page used for virtual memory. Because of
hardware constraints in Challenge and Onyx systems, a 4 KB page is used for I/O
operations in these machines.

The header filessys/ i mru. h and sys/ sysnacr 0s. h contain constants and macros for
working with page units. Some of the most useful are listed in Table 8-11.

Table 8-11 Constants and Macros for Page and Sector values

Function Name Header File Purpose

BBSIZE param h Size of a “basic block,” the assumed disk sector size (512).
BTOBB(bytes) param h Converts byte count to basic block count, rounding up.
BTOBBT (bytes) param h Converts byte count to basic block count, truncating.

221

8: Device Driver/Kernel Interface

222

Table 8-11 Constants and Macros for Page and Sector values (continued)

Function Name Header File Purpose
OFFTOBB(bytes) param h Converts off_t count to basic blocks, rounding.
OFFTOBBT (bytes) param h Converts off_t count to basic blocks, truncating.
BBTOOFEF(bbs) param h Converts count of basic blocks to an off_t byte count.
NBPP i mu. h Number of bytes in a virtual memory page (defined from
_PAGESZ; see “Compiler Variables” on page 271).
IO_NBPP i mmu. h Number of bytes in an I/O page, can differ from NBPP.
io_numpages(addr, len) sysmacro Number of I/O pages that span a given address for a
s. h length.
io_ctob(x) Syf]macr 0 Return number of bytes in x I/O pages (rounded up).
S.
io_ctobt(x) Syf]macr 0 Return number of bytes in x I/O pages (truncated).
S.

The names listed in Table 8-11 are defined at compile-time. If you use them, the binary
object file is dependent on the compile-time variables for the chosen platform, and may
not run on a different platform.

The operations summarized in Table 8-12 are provided as functions. Use of them does
not commit your driver to a particular platform.

Table 8-12 Functions to Convert Bytes to Sectors or Pages

Function Name Header Files Purpose

btop(D3) ddi.h Return number of virtual pages in a byte count (truncate).
btopr(D3) ddi.h Return number of virtual pages in a byte count (round up).
ptob(D3) ddih Convert size in virtual pages to size in bytes.

When examining an existing driver, be alert for any assumption that a virtual memory
page has a particular size, or that an I/O page is the same size as a memory page.

007-0911-210

Managing Virtual and Physical Addresses

Using Address/Length Lists

Creating Alenlists

007-0911-210

The concepts behind alenlists are described under “Address/Length Lists” on page 203
and in more detail in the reference page alenlist(d4x).

You can use alenlists to unify the handling of buffer addresses of all kinds. In general you
use an alenlist as follows:

Create the alenlist object, either with an explicit function call or implicitly as part of
filling the list.

Fill the list with addresses and lengths to describe a buffer in some address space.

Apply a translation function to translate all the addresses into the address space of
an I/O bus.

Use an alenlist cursor to read out the translated address/length pairs, and program
them into a device so it can do DMA.

The functions summarized in Table 8-13 are used to explicitly create and manage
alenlists. For details see reference page alenlist_ops(d3x).

Table 8-13 Functions to Explicitly Manage Alenlists

Function Name Header Files Purpose

alenlist_create() alenlist.h Create an empty alenlist.
alenlist_destroy() alenlist.h Release memory of an alenlist.
alenlist_clear() alenlist.h Empty an alenlist.

Typically you create an alenlist implicitly, as a side-effect of loading it (see next topic).
However you can use alenlist_create() to create an alenlist. Then you can be sure that
there will never be an unplanned delay for memory allocation while using the list.

Whenever the driver is finished with an alenlist, release it using alenlist_destroy().

223

8: Device Driver/Kernel Interface

Loading Alenlists

The functions summarized in Table 8-14 are used to populate an alenlist with one or
more address/length pairs to describe memory.

Table 8-14 Functions to Populate Alenlists

Function Name Header Files Purpose

buf_to_alenlist() alenlist.h Fill an alenlist with entries that describe the buffer
controlled by a buf_t object.

kvaddr_to_alenlist() alenlist.h Fill an alenlist with entries that describe a buffer in kernel
virtual address space.

uvaddr_to_alenlist() alenlist.h Fill an alenlists with entries that describe a buffer in a user
virtual address space.

alenlist_append() alenlist.h Add a specified address and length as an item to an
existing alenlist.

Each of the functions buf_to_alenlist(), kvaddr_to_alenlist(), and uvaddr_to_alenlist()
take an alenlist address as their first argument. If this address is NULL, they create a new
list and use it. If the input list is too small, any of the functions in Table 8-14 can allocate
a new list with more entries. Either of these allocations may sleep. In order to avoid an
unplanned delay, you can create an alenlist in advance, fill it to a planned size with null
items, and clear it.

The functions buf_to_alenlist(), kvaddr_to_alenlist(), and uvaddr_to_alenlist() add
entries to an alenlist to describe the physical address of a buffer. Before using
uvaddr_to_alenlist() you must be sure that the pages of the user buffer are locked into
memory (see “Converting Virtual Addresses to Physical” on page 228).

Translating Alenlists
The kernel support for the PCI bus includes functions that translate an entire alenlist

from physical memory addresses to corresponding addresses in the address space of the
target bus. For PCI functions see “Mapping an Address/Length List” on page 750.

224 007-0911-210

Managing Virtual and Physical Addresses

Using Alenlist Cursors

007-0911-210

You use a cursor to read out the address/length pairs from an alenlist. The cursor
management functions are summarized in Table 8-15 and detailed in reference page
alenlist_ops(d3x).

Table 8-15 Functions to Manage Alenlist Cursors

Function Name Header Files Purpose

alenlist_cursor_create() alenlist.h Create an alenlist cursor and associate it with a
specified list.

alenlist_cursor_init() alenlist.h Set a cursor to point at a specified list item.

alenlist_cursor_destroy() alenlist.h Release memory of a cursor.

Each alenlist includes a built-in cursor. If you know that only one process or thread is
using the alenlist, you can use this built-in cursor. When more than one process or thread
might use the alenlist, each must create an explicit cursor. A cursor is associated with one
alenlist and must always be used with that alenlist.

The functions that retrieve data based on a cursor are summarized in Table 8-16.

Table 8-16 Functions to Use an Alenlist Based on a Cursor

Function Name Header Files Purpose

alenlist_get() alenlist.h Retrieve the next sequential address and length from
a list.

alenlist_cursor_offset(D3) alenlisth Query the effective byte offset of a cursor in the buffer
described by its list.

The alenlist_get() function is the key function for extracting data from an alenlist. Each
call returns one address and its associated length. However, these address/length pairs
are not required to match exactly to the items in the list. You can extract address/length
pairs in smaller units. For example, suppose the list contains address/length pairs that
describe 4 KB pages. You can read out sequential address/length pairs with maximum
lengths of 512 bytes, or any other smaller length. The cursor remembers the position in
the list to the byte level.

225

8: Device Driver/Kernel Interface

You pass to alenlist_get() a maximum length to return. When that is 0 or large, the
function returns exactly the address/length pairs in the list. When the maximum length
is smaller than the current address/length pair, the function returns the address and
length of the next sequential segment not exceeding the maximum. In addition, when the
maximum length is an integral power of two, the function restricts the returned length
so that the returned segment does not cross an address boundary of the maximum
length.

These features allow you to read out units of 512 bytes (for example), never crossing a
512-byte boundary, from a list that contains address/length pairs in other lengths. The
alenlist_cursor_offset() function returns the byte-level offset between the first address in
the list and the next address the cursor will return.

Setting Up a DMA Transfer

226

A DMA transfer is performed by a programmable I/O device, usually called bus master
(see “Direct Memory Access” on page 10). The driver programs the device with the

length of data to transfer, and with a starting address. Some devices can be programmed
with a list of addresses and lengths; these devices are said to have scatter/gather capability.

There are two issues in preparing a DMA transfer:

e Calculating the addresses to be programmed into the device registers. These
addresses are the bus addresses that will properly target the memory buffers.

* In a uniprocessor, ensuring cache coherency. A multiprocessor handles cache
coherency automatically.

The most effective tool for creation of target addresses is the address/length list (see

“Using Address/Length Lists,” the preceding topic):

1. You collect the addresses and lengths of the parts of the target buffer in an alenlist.

2. You apply a single translation function to replace that alenlist with one whose
contents are based on bus virtual addresses.

3. You use an alenlist cursor to read out addresses and lengths in unit sizes
appropriate to the device, and program these into the device using PIO.

007-0911-210

Managing Virtual and Physical Addresses

DMA Buffer Alignment

The functions you use to translate the addresses in an alenlist are different for different
bus adapters, and are discussed in the following chapters:

* The functions to set up DMA from a VME device are covered in Chapter 13,
“Services for VME Drivers on Origin 2000/Onyx2.”

¢ The functions to set up DMA from a SCSI device are covered in Chapter 16, “SCSI
Device Drivers.”

* The functions to set up DMA from a PCI device are covered in Chapter 20, “PCI
Device Attachment.”

In some systems, the buffers used for DMA must be aligned on a boundary the size of a
cache line in the current CPU. Although not all system architectures require cache
alignment, it does no harm to use cache-aligned buffers in all cases. The size of a cache
line varies among CPU models, but if you obtain a DMA buffer using the
KMEM_CACHEALIGN flag of kmem_alloc(), the buffer is properly aligned. The buffer
returned by geteblk() (see “Allocating buf_t Objects and Buffers” on page 216) is
cache-aligned.

Why is cache alignment necessary? Suppose you have a variable, X, adjacent to a buffer
you are going to use for DMA write. If you invalidate the buffer prior to the DMA write,
but then reference the variable X, the resulting cache miss brings part of the buffer back
into the cache. When the DM A write completes, the cache is stale with respect to memory.
If, however, you invalidate the cache after the DMA write completes, you destroy the
value of the variable X.

Maximum DMA Transfer Size

007-0911-210

The maximum size for a single DMA transfer can be set by the system tuning variable
maxdmasz, using the syst une command (see the systune(1) reference page). A single
I/0 operation larger than this produces the error ENOMEM.

The unit of measure for maxdmasz is the page, which varies with the kernel. Under IRIX
6.2, a 32-bit kernel uses 4 KB pages while a 64-bit kernel uses 16 KB pages. In both
systems, maxdmasz is shipped with the value 1024 decimal, equivalent to 4 MB in a 32-bit
kernel and 16 MB in a 64-bit kernel.

227

8: Device Driver/Kernel Interface

Converting Virtual Addresses to Physical

There are no legitimate reasons for a device driver to convert a kernel virtual memory
address to a physical address in IRIX 6.5. This translation is fraught with complexity and
strongly dependent on the hardware of the system. For these and other reasons, the
kernel provides a wide variety of address-translation functions that perform the kinds of
translations that a driver requires.

In the simpler hardware architectures of past systems, there was a straightforward
mapping between the addresses used by software and the addresses used by a bus
master for DMA. This is no longer the case. Some of the complexities are sketched under
the topic “PIO Addresses and DMA Addresses” on page 11. In the Origin2000
architecture, the address used by a bus master can undergo two or three different
translations on its way from the device to memory. There is no way in which a device
driver can get the information to prepare the translated address for the device to use.

Instead, the driver uses translations based on opaque software objects such as PIO maps,
DMA maps, and alenlists. Translations are bus-specific, and the functions for them are
presented in the chapters on those buses.

You can load an alenlist with physical address/length pairs based on a kernel virtual
address using buftoalenlist() (see “Loading Alenlists” on page 224). Some older drivers
might still contain use of the kvtophys() function, which takes a kernel virtual address
and returns the corresponding system bus physical address. This function is still
supported (see the kvtophys(D3) reference page). However, you should be aware that the
physical address returned is useless for programming an I/O device.

Managing Buffer Virtual Addresses
Block device drivers operate upon data buffers described by buf_t objects (see “Structure

buf_t” on page 206). Kernel functions to manipulate buffer page mappings are
summarized in Table 8-17.

228 007-0911-210

Managing Virtual and Physical Addresses

Table 8-17 Functions to Map Buffer Pages

Function Name Header Files Purpose

bp_mapin(D3) bufh Map buffer pages into kernel virtual address space,
ensuring the pages are in memory and pinned.

bp_mapout(D3) bufh Release mapping of buffer pages.

clrbuf(D3) bufh Clear the memory described by a mapped-in buf_t.

buf_to_alenlist(D3) alenlist.h Fill an alenlist with entries that describe the buffer
controlled by a buf_t object.

undma(D3) ddih Unlock physical memory after I/O complete.

userdma(D3) ddih Lock physical memory in user space.

When a pfxstrategy() routine receives a buf_t that is not mapped into memory (see “Buffer
Location and b_flags” on page 208), it must make sure that the pages of the buffer space
are in memory, and it must obtain valid kernel virtual addresses to describe the pages.

The simplest way is to apply the bp_mapin() function to the buf_t. This function allocates
a contiguous range of page table entries in the kernel address space to describe the buffer,
creating a mapping of the buffer pages to a contiguous range of kernel virtual addresses.
It sets the virtual address of the first data byte in b_un.b_addr, and sets the flags so that

BP_ISMAPPED() returns true—thus converting an unmapped buffer to a mapped case.

Note: The reference page for the userdmal() function is out of date as shipped in IRIX 6.4.
The correct prototype for this function, as coded in sys/buf.h, is

int userdma(void *usr_v_addr, size_t numbytes, int rw, void *MBZ);

The fourth argument must be a zero. The return value is not the same as stated. The
function returns 0 for success and a standard error code for failure.

007-0911-210 229

8: Device Driver/Kernel Interface

Managing Memory for Cache Coherency

230

Some kernel functions used for ensuring cache coherency are summarized in Table 8-18.

Table 8-18 Functions Related to Cache Coherency

Function Name Header Files Purpose

dki_dcache_inval(D3) systm.h & Invalidate the data cache for a given range of
types.h virtual addresses.

dki_dcache_wb(D3) systm.h & Write back the data cache for a given range of
types.h virtual addresses.

dki_dcache_wbinval(D3) systm.h & Write back and invalidate the data cache for a given
types.h range of virtual addresses.

flushbus(D3) systm.h & Make sure contents of the write buffer are flushed
types.h to the system bus.

The functions for cache invalidation are essential when doing DMA on a uniprocessor.
They cost very little to use in a multiprocessor, so it does no harm to call them in every
system. You call them as follows:

e Call dki_dcache_inval() prior to doing DMA input. This ensures that when you
refer to the received data, it will be loaded from real memory.

e Call dki_dcache_wb() prior to doing DMA output. This ensures that the latest
contents of cache memory are in system memory for the device to load.

¢ Call dki_dcache_wbinval() prior to a device operation that samples memory and
then stores new data.

In the IP28 CPU you must invalidate the cache both before and after a DMA input; see
“Uncached Memory Access in the IP26 and IP28” on page 34.

The flushbus() function is needed because in some systems the hardware collects output
data and writes it to the bus in blocks. When you write a small amount of data to a device
through PIO, delay, then write again, the writes could be batched and sent to the device
in quick succession. Use flushbus() after PIO output when it is followed by PIO input
from the same device. Use it also between any two PIO outputs when the device is
supposed to see a delay between outputs.

007-0911-210

Hardware Graph Management

Testing Device Physical Addresses

A family of functions, summarized in Table 8-19, is used to test a physical address to find
out if it represents a usable device register.

Table 8-19 Functions to Test Physical Addresses

Function Name Header Files Purpose

badaddr(D3) systm.h Test physical address for input.

badaddr_val(D3) systm.h Test physical address for input and return the
input value received.

wbadaddr(D3) systm.h Test physical address for output.

wbadaddr_val(D3) systm.h Test physical address for output of specific value.

pio_badaddr(D3) pio.h & types.h Test physical address for input through a map.

pio_badaddr_val(D3) pio.h & types.h Test physical address for input through a map
and return the input value received.

pio_wbadaddr(D3) pio.h & types.h Test physical address through a map for output.

pio_wbadaddr_val(D3) pio.h & types.h Test physical address through a map for output of

specific value.

The functions return a nonzero value when the address is bad, that is, unusable. These
functions are normally used in the pfxedtinit() entry point to verify the bus address
values passed in from a VECTOR statement. They are only usable with VME devices.

Hardware Graph Management

A driver is concerned about the hardware graph in two different contexts:

¢ When called at an operational entry point such as pfxopen(), pfxwrite(), or pfxmap(),
the driver gets information about the device from the hwgraph.

* When called to initialize a device at pfxedtinit() or pfxattach(), the driver extends the
hwgraph with vertexes to represent the device, and stores device and inventory
information in the hwgraph.

007-0911-210

231

8: Device Driver/Kernel Interface

The hwgraph concepts and terms are covered under “Hardware Graph Features” on
page 45. You should also read the hwgraph(4) and hwgraph_intro(d4x) reference pages.

Interrogating the hwgraph

232

When a driver is called at an operational entry point, the first argument is always a dev_t.
This value stands for the specific device on which the driver should work. In older
versions of IRIX, the dev_t was an integer encoding the major and minor device numbers.
In current IRIX, the device is opened through a path in / hw (or a symbolic link to / hw),
and the dev_t is a handle to a vertex of the hwgraph—usually a vertex created by the
device driver. The dev_t is used as input to the functions summarized in Table 8-20.

Table 8-20 Functions to Query the Hardware Graph

Function Name Header Files Purpose

device_info_get() hwgraph.h Return device info pointer stored in vertex.
(hwgraph.dev(d3x))

device_inventory_get_next() hwgraph.h Retrieve inventory_t structures that have been
(hwgraph.inv(d3x)) attached to a vertex.
device_controller_num_get() hwgraph.h Retrieve the Controller field of the first or only
(hwgraph.inv(d3x)) inventory_t structure in a vertex.
hwgraph_edge_get() hwgraph.h Follow an edge by name to a destination
(hwgraph.edge(d3x)) vertex.

hwgraph_traverse() hwgraph.h Follow a path from a starting vertex to its

destination.

When initializing the device, the driver stores the address of a device information
structure in the vertex using device_info_set() (see “Allocating Storage for Device
Information” on page 164). This address can be retrieved using device_info_get().
Typical code at the beginning of any entry point resembles Example 8-1.

Example 8-1 Typical Code to Get Device Info

typedef struct devinfo_s {

fields of data unique to one device ...

} devinfo_t;
pfx_entry(dev_t dev,...)

devinfo_t *pdi = device_info_get(dev);

007-0911-210

Hardware Graph Management

if (!'pdi) return ENCDEVY;
MJUTEX_LOCK(pdi - >devLock); /* get exclusive use */

When the driver creates the vertexes for a device, the driver can attach inventory
information. This can be read out later using device_inventory_get_next().

Extending the hwgraph

Construction Functions

007-0911-210

When a driver is called at the pfxattach() entry point, it receives a vertex handle for the
point at which its device is connected to the system—for example, a vertex that
represents a bus slot. When a driver is called at the pfxedtinit() entry point, it receives an
edt_t from which it can extract a vertex handle that again represents the point at which
this device is attached to the system (refer to “VME Device Naming” on page 360, “Entry
Point attach()” on page 162 and “Entry Point edtinit()” on page 160).

At these times, the driver has the responsibility of extending the hwgraph with at least
one edge and vertex to provide access to this device. The label of the edge supplies a
visible name that a user process can open. The vertex contains the inventory data and the
driver’s own device information. Often the driver needs to add multiple vertexes and
edges. (For an example of how a SGI driver extends the hwgraph, see “SCSI Devices in
the hwgraph” on page 523.)

The basic functions for constructing edges and vertexes are summarized in Table 8-21.
The most commonly-used are hwgraph_char_device_add() and
hwgraph_block_device_add(), functions that create leaf vertexes that users can open.

Table 8-21 Functions to Construct Edges and Vertexes

Function Name Header Files Purpose

device_info_set() hwgraph.h Store the address of device information in a
(hwgraph.dev(d3x)) vertex.

device_inventory_add() invent.h Add hardware inventory data to a vertex.
(hwgraph.inv(d3x))

hwgraph_char_device_add() hwgraph.h Create a character device special file under a
(hwgraph.dev(d3x)) specified vertex.

233

8: Device Driver/Kernel Interface

Table 8-21 Functions to Construct Edges and Vertexes (continued)

Function Name Header Files Purpose

hwgraph_block_device_add() hwgraph.h Create block device special file under a

(hwgraph.dev(d3x)) specified vertex.

hwgraph_vertex_create() hwgraph.h Create a new, empty vertex, and return its
(hwgraph.vertex(d3x)) handle.

hwgraph_edge_add() hwgraph.h Add a labelled edge between two vertexes.
(hwgraph.edge(d3x))

hwgraph_edge_remove() hwgraph.h Remove an edge by name from a vertex.
(hwgraph.edge(d3x))

Extending the Graph With a Single Vertex

234

Suppose the kernel is probing a PCI bus and finds a veebl e device plugged into slot 2.
The kernel knows that a driver with the prefix veeble_ has registered to handle this type
of device. The kernel calls veeble_attach(), passing the handle of the vertex that

represents the point of attachment, which might be / hw/ nodul e/ 1/i o/ pci / sl ot/ 2.

Suppose that a veebl e device permits only character-mode access and there are no
optional modes of use. In this simple case, the driver needs to add only one vertex, a
device special file connected by one edge having a label such as “veeble.” The result will
be that the device can be opened under the pathname

/ hw/ modul e/ 1/i o/ pci / sl ot/ 2/ veebl e.Parts of the code in veeble_attach() would
resemble Example 8-2.

Example 8-2 Hypothetical Code for a Single Vertex

int veebl e_attach(vertex_hdl _t vh)
{
Veebl eDevinfoStruct _t * vdis;
vertex_hdl _t vv;
graph_error_t ret;
/* allocate nenory for per-device structure */
vdi s = kmem zal | oc(si zeof (*vdi s), KM_SLEEP) ;
if (!vdis) return ENOVEM
/* create device vertex bel ow connect-point */
ret = hwgraph_char_devi ce_add(vh, "veeble", "veeble_ ", &vv);
if (ret != GRAPH_SUCCESS)
{ kmem free(vdis); return ret; }
/* here initialize contents of vdis->i nformation struct */

007-0911-210

Hardware Graph Management

007-0911-210

/* here initialize the device itself */
/* set info struct in the device vertex */
devi ce_i nfo_set (vv, vdi s);

return O;
}
In Example 8-2, the important variables are:
vh Handle of the connection-point vertex passed to the function as a parameter.
vdis Pointer to a structure of type “VeebleDevInfoStruct”—defined by the writer

of this device driver to suit the application.

%4 Handle of the device vertex created by the function.

The steps performed are:

* Allocate memory for a device information structure, and terminate with the
standard ENOMEM return code if allocation is not possible.

* Create a character device vertex, connected to vertex vh by an edge labelled
“veeble,” storing the handle of the new vertex in vv. If this fails, free the info
structure memory and return the same error.

¢ Initialize the contents of the information structure: for example, initialize locks and
flag values, and create PIO and/or DMA maps.

¢ Initialize the device itself. Possibly set up an interrupt handler and an error handler
(these operations are specific to the bus and the device).

e Set the address of the initialized device information structure into the device vertex.

An additional step not shown is the storing of hardware inventory information that can
be reported by hi nv using device_inventory_add().

A point to note is that in a multiprocessor system, a user process could try to open the
new “veeble” vertex as soon as (or even before) hwgraph_char_device_add() returns.
This would result in an entry to the veeble_open() entry point of the driver, concurrent
with the continued execution of the veeble_attach() entry point. However, note the two
statements in Example 8-1:

devinfo_t *pdi = device_info_get(dev);
if (!pdi) return ENCDEV;

At any time before veeble_attach() executes its call to device_info_set(), a call to
veeble_open() for this vertex returns ENODEV. Needless to say, all the hwgraph

235

8: Device Driver/Kernel Interface

functions are multiprocessor-aware and use locking as necessary to avoid race
conditions.

Extending the Graph With Multiple Vertexes

In a more complicated case, a voobl e device permits access as a block device or as a
character device. The device should be accessible under names voobl e/ char and
voobl e/ bl ock. In this case the driver proceeds as follows:

1. Create a vertex to be the primary representation of the device using
hwgraph_vertex_create().

2. Connect this primary vertex to the point of attachment with an edge named
“vooble” using hwgraph_edge_add().

3. Add new vertexes, connected by edges “block” and “char” to the primary vertex
using hwgraph_block_device_add() and hwgraph_char_device_add().

The subordinate block and character vertexes are device special files that can be opened
by user code. Handles to these vertexes will be passed in to other driver entry points.
There are a variety of ways to store device information in the three vertexes:

* Store a pointer to a single information structure in both leaf vertexes.

e Create separate “block” and “char” information structures and store one in each leaf
vertex. Perhaps create a separate structure of information that is common to both
block and character access, and point to it from both block and char structures.

As you plan this arrangement of data structures, bear in mind that the pfropen() entry
point receives a flag telling it whether the open is for block or character access (see “Entry
Point open()” on page 167); and that other entry points are called only for block, or only
for character, devices.

Vertexes for Modes of Use

236

Possibly the device has multiple modes of use, as for example a tape device has
byte-swapped and non-swapped access, fixed-block and variable-block access, and so
on. Traditionally these modes of access were encoded in the device minor number as well
as in the device name (see “Creating Conventional Device Names” on page 42). Current
practice is to create a separate vertex for each mode of use (see “Multiple Device Names”
on page 39).

007-0911-210

Hardware Graph Management

007-0911-210

When using the hwgraph, you represent each mode of access as a separate name in the
I hwfilesystem. Suppose that a PCI device of type f | i pper supports two modes of use,
“flipped” and “flopped.” It is the job of the flipper_attach() entry point to set up
hwgraph vertexes so that one device can be opened under different pathnames such as
/[hw/ modul e/ 1/i o/ pci/slot/2/flipper/flippedand
/'hw/ nodul e/ 1/i o/ pci /sl ot/ 2/flipper/flopped.Theproblemisvery similarto
creating separate block and character vertexes for one device, with the additional
problem that the device information stored in each vertex should reflect the desired
mode of use, flipped or flopped. The code might resemble in part that shown in
Example 8-3.

Example 8-3 Hypothetical Code for Multiple Vertexes

typedef struct flipperDope_s {

vertex_hdl _t floppedMvode; /* vertex for flopped */
..many other fields for managenent of one flipper dev...

} flipperDope_t;
int flipper_attach(vertex_hdl _t connv)

{

flipperDope_t *pfd = NULL;

vertex_hdl _t nasterv = GRAPH VERTEX NONE

vertex_hdl _t flippedv = GRAPH VERTEX _NONE,

vertex_hdl _t floppedv = GRAPH VERTEX _NONE,

graph_error_t ret = 0;

if (!'pfd = kmem zal | oc(si zeof (*pfd), KM SLEEP))

{ ret = ENOMEM goto done; }

ret = hwgraph_vertex_creat e(&rasterv);

if (ret !'= GRAPH SUCCESS) got o done;

ret = hwgraph_edge_add(connv, nasterv, "flipper");

if (ret = GRAPH SUCCESS) goto done;

ret = hwgraph_char_devi ce_add(nasterv, "“flipped", "flipper
if (ret = GRAPH SUCCESS) goto done;

ret = hwgraph_char_devi ce_add(nasterv, "flopped", "flipper
if (ret !'= GRAPH SUCCESS) goto done;

", &lippedv);

_", &l oppedv);

pf d->f | oppedMbde = fl oppedv; /* note which vertex is "flopped" */

..here initialize other fields of pfd->flipperDope...

devi ce_i nfo_set (fli ppedv, pfd);
devi ce_i nfo_set (1 oppedv, pfd);

done: /* If any error, undo all partial work */

if (ret)
{

if (floppedv != GRAPH VERTEX NONE) hwgr aph_vert ex_dest roy(fl oppedv);
if (flippedv != GRAPH VERTEX NONE) hwgr aph_vertex_destroy(fli ppedv);

if (masterv ! = GRAPH VERTEX_NONE)

237

8: Device Driver/Kernel Interface

hwgr aph_edge_r enove(rootv, "flipper", NULL);
hwgr aph_vert ex_dest roy(mast erv);

}
if (pfd) kmemfree(pfd);
}

return ret;

}

After successful completion of flipper_attach() there are two character special devices
with paths/ hw/ . . . /flipper/flippedand/hw .../flipper/flopped. A
pointer to a single device information structure (a flipperDope_t object) is stored in both
vertexes. However, the vertex handle of the f | opped vertex is saved in the floppedMode
field of the structure. Whenever the device driver is entered, it can retrieve the device
information with a statement such as the following;:

flipperDope_t *pfd = device_info_get(dev);

Whenever the driver needs to distinguish between “flipped” and “flopped” modes of
access, it can do so with code such as the following;:

i f (dev == pfd->fl oppedhbde)
{ ...this is flopped-node...}
el se

{ ...this is flipped-node...}

Vertexes for User Convenience

238

The driver is allowed to create vertexes and attach them anywhere in the hwgraph. The
connection point of a device is often at the end of a long path that is hard for a human to
read or type. The driver can use hwgraph_vertex_create() and hwgraph_edge_add() to
create a shorter, more readable path to any of the leaf vertexes it creates. For example, the
hypothetical veeble_ driver of Example 8-2 might like to make the devices it attaches
available via paths like / hw/ veebl es/ 1 and / hw/ veebl es/ 2.

At the time a driver is called to attach a device, the driver has no way to tell how many
of these devices exist in the system. Also, recall that the pfxattach() entry point can be
called concurrently on multiple CPUs to attach devices in different slots on different
buses. The attach code has no basis on which to assign ordinal numbers to devices; that
is, no way to know that a particular device is device 1, and another is device 2. These
questions cannot be answered until the entire hardware complement has been found and
attached.

007-0911-210

Hardware Graph Management

The purpose of the i oconfi g command is to call drivers one more time, before user
processes start but after the hwgraph is complete, so they can create convenience
vertexes. This use of i oconf i g is described under “Device Management File” on

page 56. You directi oconf i g to assign controller numbers to your devices. After it does
so, it opens each device (resulting in the first entry to pfxopen() for that device vertex),
and optionally issues an ioctl against the open device passing a command number you
specify. Upon either the first open of a device or in pfxioctl(), you can create convenience
vertexes that include the assigned controller number of the device to make the names
unique.

The assigned controller numbers are stable from one boot time to the next, so you can
also create symbolic links in / dev naming them.

Attaching Information to Vertexes

The driver can attach several kinds of information to any vertex it creates:
¢ Device information defined by the driver itself.

¢ Hardware inventory information to be used by hi nv.

¢ Labelled attribute values.

The driver can also retrieve information that was set in the hwgraph by the
administrator.

Attaching Device Information

007-0911-210

The use of device_info_set() is discussed under two other topics: “Allocating Storage for
Device Information” on page 164 and “Extending the Graph With a Single Vertex” on
page 234. Every device needs such an information structure—if for no other reason than
to contain a lock used to ensure that each upper-half entry point has exclusive use of the
device.

When the driver creates multiple vertexes for a particular device, the driver can store the
same address in every vertex (as shown in Example 8-2 and Example 8-3). Yet another
design option is to have each vertex contain the address of a small structure containing
optional information unique to that view of the device, and a pointer to a single common
structure for the device.

239

8: Device Driver/Kernel Interface

Attaching Inventory Information

Attaching Attributes

240

The device_inventory_add() function stores the fields of one inventory_t record in a
vertex. The driver can store multiple inventory_t records in a single vertex, but it is
customary to store only one. There is no facility to delete an inventory record from a
vertex.

The device_inventory_get_next() function is used to read out each of the inventory_t
structures in turn. Normally the driver does not have any reason to inspect these.
However, the function does not return a copy of the structure; it returns the address of
the actual structure in the vertex. The fields of the structure can be modified by the driver.

One field of the inventory_t is particularly important: the controller number is
conventionally used to provide ordinal numbering of similar devices. The
device_controller_number_get() function returns the controller number from the first
(and usually the only) inventory_t structure in a vertex. It fails if there is no inventory data
in the vertex.

When the driver can assign an ordinal numbering to multiple devices, it should record
that numbering by setting unique controller numbers in each master vertex for the
similar devices. This can be done most easily by calling device_controller_number_set().
Typically this would be done in an ioctl call from the application that has determined a
stable, global numbering of devices (see “Device Management File” on page 56).

A file attribute is an arbitrary block of information associated with a file inode. Attributes
were introduced with the XFS filesystem (see the attr(1) and attr_get(2) reference pages),
but the / hwfilesystem also supports them. You can store file attributes in hwgraph
vertexes, and they can be retrieved by user processes.

The functions that a driver uses to manage attributes are summarized in Table 8-22 (all
are detailed in the reference page hwgraph.lblinfo(d3x)).

007-0911-210

Hardware Graph Management

Table 8-22 Functions to Manage Attributes

Function Name Header Files Purpose

hwgraph_info_add_LBL() hwgraph.h Attach a labelled attribute to a vertex.
hwgraph_info_get_LBL() hwgraph.h Retrieve an attribute by name.
hwgraph_info_replace_LBL() hwgraph.h Replace the value of an attribute by name.
hwgraph_info_remove_LBL() hwgraph.h Remove an attribute from a vertex.
hwgraph_info_export_LBL() hwgraph.h Make an attribute visible to user code.
hwgraph_info_unexport_LBL() hwgraph.h Make an attribute invisible.

An attribute consists of a name (a character string), a pointer-sized integer, and a length.
When the length is zero, the attribute is “unexported,” that is, not visible to the at t r
command nor to the attr_get() function. All attributes are initially unexported. An
unexported attribute can be retrieved by a driver, but not by a user process.

The value of an attribute is just a pointer; it can be an integer, a vertex handle, or an
address of any kind of information. You can use attributes to hold any kind of
information you want to associate with a vertex. (For one example, you could use an
attribute to contain mode-bits that determine how a device should be treated.)

Attribute storage is not sophisticated. Attribute names are stored sequentially in a string
table that is part of the vertex, and looked up in a sequential search. The attribute scheme
is meant for convenient storage of a few attributes per vertex, each having a short name.

When you export an attribute, you assert that the value of the attribute is a valid address
in kernel virtual memory, and the export length is its correct length. The attr_get()
function relies on these points. A user process can retrieve a copy of an attribute by
calling attr_get(). The attribute value is copied from the kernel address space to the user
address space. This is a convenient route by which you can export driver internal data to
user processes, without the complexity of memory mapping or ioctl calls.

Retrieving Administrator Attributes

The system administrator can use the DEVICE_ADMIN statement to attach a labelled
attribute to any device special file in the hwgraph, and can use DRIVER_ADMIN to store

007-0911-210 241

8: Device Driver/Kernel Interface

a labelled attribute for the driver (see “Storing Device and Driver Attributes” on
page 58).

These statements are processed at boot time. At this time, the driver might not be loaded,
and the device special file might not have been created in the hwgraph. However, the
attributes are saved. When a driver creates a hwgraph vertex that is the target of a
DEVICE_ADMIN statement, the labelled attributes are attached to the vertex
automatically.

Your driver can request an administrator attribute for a specific device using
hwgraph_info_get LBL() directly, as described above under “Attaching Attributes” on
page 240. Or you can call device_admin_info_get() (see the reference page
hwgraph.admin(d3x)). The returned value is the address of a read-only copy of the value
string.

Your driver can request an attribute that was addressed to the driver with
DRIVER_ADMIN using device_driver_admin_info_get(). The returned value is the
address of a read-only copy of the value string from the DRIVER_ADMIN statement.

User Process Administration

242

The kernel supplies a small group of functions, summarized in Table 8-23, that help a
driver upper-half routine learn about the current user process.

Table 8-23 Functions for User Process Management
Function Name Header Files Purpose
drv_getparm(D3) ddih Retrieve kernel state information.
drv_priv(D3) ddih Test for privileged user.
drv_setparm(D3) ddih Set kernel state information.
proc_ref(D3) ddih Obtain a reference to a process for signaling.
proc_signal(D3) ddih & Send a signal to a process.
signal.h
proc_unref(D3) ddih Release a reference to a process.

007-0911-210

User Process Administration

Note: When porting an older driver, you may find direct reference to a user structure.
That is no longer available. Any reference to a user structure should be eliminated or
replaced by one of the functions in Table 8-23.

Use drv_getparm() to retrieve certain miscellaneous bits of information including the
process ID of the current process. In a character device driver, the current process is the
user process that caused entry to the driver, for example by calling the opend(), ioctl(), or
read() system functions. In a block device driver, the current process has no direct
relationship to any particular user; it is usually a daemon process of some kind.

The drv_setparm() function is primarily of use to terminal drivers.
The drv_priv() function tests a cred_t object to see if it represents a privileged user. A

cred_t object is passed in to several driver entry points, and the address of the current one
can be retrieved drv_getparm().

Sending a Process Signal

007-0911-210

In traditional UNIX kernels, a device driver identified the current user process by the
address of the proc_t structure that the kernel uses to represent a process. Direct use of
the proc_t is no longer supported by IRIX. The reason is that the contents of the proc_t
change from release to release, and also differ between 64-bit and 32-bit kernels.

The most common use of the proc_t by a driver was to send a signal to the process. This
capability is still supported. To do it, take three steps:

1. Call proc_ref() to get a process handle, a number unique to the current process. The
returned value must be treated as an arbitrary number (in some releases of IRIX it
was the proc_t address, but this is not the defined behavior of the function).

2. Use the process handle as an argument to proc_signal(), sending the signal to the
process.

3. Release the process handle by calling proc_unref().

The third step is important. In order to keep the process handle valid, IRIX retains
information about the process to which it is related. However, that process could
terminate (possibly as a result of the signal the driver sends) but until the driver
announces that it is done with the handle, the kernel must try to retain process
information.

243

8: Device Driver/Kernel Interface

It is especially important to release a process handles before unloading a loadable driver
(see “Entry Point unload()” on page 190).

Waiting and Mutual Exclusion

The kernel supplies a rich variety of functions for waiting and for mutual exclusion. In
order to use these features well, you must understand the different purposes for which
they are designed. In particular, you must clearly understand the distinction between
waiting and mutual exclusion (or locking).

Mutual Exclusion Compared to Waiting

244

Mutual exclusion allows one entity to have exclusive use of a global resource, temporarily
denying use of the resource to other entities. Mutual exclusion normally does not require
waiting when software is carefully designed—the resource is normally free when it is
requested. A driver that calls a mutual exclusion function expects to proceed without
delay—although there is a chance that the resource is in use, and the driver will have to
wait.

The kernel offers an array of functions for mutual exclusion, and the choice among them
can be critical to performance. The functions are reviewed in the following topics:

¢ “Basic Locks” on page 245 covers basic locks, once required by device drivers, and
useful in multiprocessors.

e “Long-Term Locks” on page 247 covers sleep locks, which can be held for longer
periods.

e “Reader/Writer Locks” on page 250 covers a class of locks that allow multiple,
concurrent, read-only access to resources that are infrequently changed.

e “Priority Level Functions” on page 252 discusses the traditional UNIX method of
mutual exclusion, now obsolete and dangerous.

Waiting allows a driver to coordinate its actions with a specific event or action that occurs
asynchronously. A driver can wait for a specified amount of time to pass, wait foran1/0
action to complete, and so on. When a driver calls a waiting function, it expects to wait for
something to happen—although there is a chance that the expected event has already
happened, and the driver will be able to continue at once.

007-0911-210

Waiting and Mutual Exclusion

The kernel offers several functions that allow you to wait for specific events; and also
offers functions for general synchronization. These are covered in the following topics:

e “Waiting for Time to Pass” on page 253 covers timer-related functions.

e “Waiting for Memory to Become Available” on page 255 covers memory allocation

waits.

e “Waiting for Block I/O to Complete” on page 255 covers waits used in the

pfxstrategy() entry point.

* “Waiting for a General Event” on page 257 covers the general-purpose functions
that you can adapt to any synchronization problem.

The most general facility, the semaphore, can be used for synchronization and for
locking. This topic is covered under “Semaphores” on page 260.

Basic Locks

IRIX supports basic locks using functions compatible with SVR4. These functions are

summarized in Table 8-24.

Table 8-24 Functions for Basic Locks

Function Name Header Files Purpose
LOCK(D3) ksynch.h & Acquire a basic lock, waiting if necessary.
types.h
LOCK_ALLOC(D3) ksynch.h,kme Allocate and initialize a basic lock.
m.h & types.h
LOCK_DEALLOC(D3) ksynch.h & Deallocate an instance of a basic lock.
types.h
LOCK_INIT(D3) ksynch.h & Initialize a basic lock that was allocated statically, or
types.h reinitialize an allocated lock.

LOCK_DESTROY(D3) ksynch.h &
types.h

Uninitialize a basic lock that was allocated statically.

007-0911-210

245

8: Device Driver/Kernel Interface

Table 8-24 Functions for Basic Locks (continued)

Function Name Header Files Purpose

TRYLOCK(D3) types.h & Try to acquire a basic lock, returning a code if the lock is
ksynch.h not currently free.

UNLOCK(D3) types.h & Release a basic lock.
ksynch.h

Basic locks are objects of type lock_t. Although functions are provided for allocating and
freeing them, a basic lock is a very small object. Locks are typically allocated as fields of
structures or as global variables.

Call LOCK() to seize a lock and gain possession of the resource for which it stands.
Release the lock with UNLOCK(). These functions are optimized for mutual exclusion in
the available hardware, and may be implemented differently in uniprocessors and
multiprocessors. However, the programming and binary interface is the same in all
systems.

Basic locks are implemented as spinning locks in multiprocessors. In releases before
IRIX 6.4, the basic lock was the only kind of lock that you could use for mutual exclusion
between the upper half of a driver and its interrupt handler (because the interrupt
handler could not sleep). Now, interrupt handlers run as threads and can sleep, so you
have a choice between basic locks and mutex locks for this purpose.

The code in Example 8-4 illustrates the use of LOCK and UNLOCK in implementing a
simple last-in-first-out (LIFO) queueing package. In these functions, the time between
locking a queue head and releasing it is only a few microseconds.

Example 8-4 LIFO Queue Using Basic Locks

typedef struct qgitem {
gitem*next; ...other fields...

} gitemt;

typedef struct lifo {
gitem *| atest;

| ock_t grab;
} lifo_t;
void putlifo(lifo_t *qg, qgitemt *i)

{
int |ockpl = LOCK(&g->grab, plhi);
i ->next = g->latest;
g->l atest = i;

246 007-0911-210

Waiting and Mutual Exclusion

Long-Term Locks

Using Mutex Locks

007-0911-210

UNLOCK(&q- >gr ab, | ockpl) ;

}
gitemt *poplifo(lifo_t *q)
{
int |ockpl = LOCK(&g->grab, plhi);
gitemt *ret = g->latest;
g->l atest = ret->next;
UNLOCK(&gq- >gr ab, | ockpl);
return ret;
}

This is a typical use of basic locks: to ensure that for a brief period, only one thread in the
system can update a queue. Basic locks are optimized for such uses. If they are used in
situations where they can be held for significant lengths of time (100 microseconds or
longer), system performance can suffer, because one or more CPUs can be “spinning” on
the locks and this can delay useful processing.

IRIX provides three types of locks that can suspend the caller when the lock is claimed:
mutex locks, sleep locks, and reader-writer locks. Of these, mutex locks are preferred.

As their name suggests, mutex locks are designed for mutual exclusion. The IRIX
implementation of mutex locks is compatible with the kmutex_t lock type of SunOS, but
optimized for use in SGI hardware systems. The mutex functions are summarized in
Table 8-25.

Table 8-25 Functions for Mutex Locks

Function Name Header Files Purpose

MUTEX_ALLOC(D3) types.h & kmem.h & ksynch.h Allocate and initialize a mutex
lock.

MUTEX_INIT(D3) types.h & ksynch.h Initialize an existing mutex lock.

MUTEX_DESTROY(D3) types.h & ksynch.h Deinitialize a mutex lock.

247

8: Device Driver/Kernel Interface

Table 8-25 Functions for Mutex Locks (continued)

Function Name Header Files Purpose

MUTEX_DEALLOC(D3) types.h & ksynch.h Deinitialize and free a
dynamically allocated mutex
lock.

MUTEX_LOCK(D3) types.h & kmem.h & ksynch.h Claim a mutex lock.

MUTEX_TRYLOCK(D3) types.h & ksynch.h Conditionally claim a mutex lock.

MUTEX_UNLOCK(D3) types.h & ksynch.h Release a mutex lock.

MUTEX_OWNED(D3) types.h & ksynch.h Query if a mutual exclusion lock
is available.

MUTEX_MINE(D3) types.h & ksynch.h Test if a mutex lock is owned by

this process.

Although allocation and deallocation functions are supplied, a mutex_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
MUTEX_INIT() operation prepares a statically-allocated mutex_t for use.

Once initialized, a mutex lock is used to gain exclusive use of the resource with which
you have associated it. The mutex lock has the following important advantages over a

basic lock:

¢ The mutex lock can safely be held over a call to a function that sleeps.

¢ The mutex lock supports inquiry functions such as MUTEX_OWNED or

MUTEX_MINE.

* When a debugging kernel is used (see “Including Lock Metering in the Kernel
Image” on page 288) a mutex lock can be instrumented to keep statistics of its use.

The mutex lock implementation provides priority inheritance. When a low-priority
process (or kernel thread) owns a mutex lock and a high-priority process or thread
attempts to seize the lock and is blocked, the process holding the lock is temporarily
given the higher priority of the blocked process. This hastens the time when the lock can
be released, so that a low-priority process does not needlessly impede a higher-priority

process.

248

007-0911-210

Waiting and Mutual Exclusion

Using Sleep Locks

007-0911-210

In order to implement priority inheritance and retain high performance, the mutex lock
is subject to the restriction that it must be unlocked by the same process or thread that
locked it. It cannot be locked in one process or thread identity and unlocked in another.

You can use mutex locks to coordinate the use of global variables between upper-half
entry points of a driver, and between the upper-half code and the interrupt handler. You
should prefer a mutex lock to a basic lock in any case where the worst-case program path
could hold the lock for a time of 100 microseconds or more.

Mutex locks become inefficient when there is high contention for the lock (that is, when
the probability of having to wait is high), because when a process has to wait for a lock,
a thread switch takes place. When there is high contention for a lock, it is usually better
to use a basic lock, because waiting threads simply spin; they do not execute a context
switch.

IRIX supports sleep lock functions that are compatible with SVR4. These functions are
summarized in Table 8-26.

Table 8-26 Functions for Sleep Locks

Function Name Header Files Purpose

SLEEP_ALLOC(D3) types.h & kmem.h & ksynch.h ~ Allocate and initialize a sleep
lock.

SLEEP_DEALLOC(D3) types.h & ksynch.h Deinitialize and deallocate a
dynamically allocated sleep lock.

SLEEP_INIT(D3) types.h & ksynch.h Initialize an existing sleep lock.

SLEEP_DESTROY(D3) types.h & ksynch.h Deinitialize a sleep lock.

SLEEP_LOCK(D3) types.h & ksynch.h & param.h Acquire a sleep lock, waiting if
necessary until the lock is free.

SLEEP_LOCKAVAIL(D3) types.h & ksynch.h Query whether a sleep lock is
available.

SLEEP_LOCK_SIG(D3) types.h & ksynch.h & param.h Acquire a sleep lock, waiting if
necessary until the lock is free or a
signal is received.

249

8: Device Driver/Kernel Interface

Reader/Writer Locks

250

Table 8-26 Functions for Sleep Locks (continued)

Function Name Header Files Purpose

SLEEP_TRYLOCK(D3) types.h & ksynch.h Try to acquire a sleep lock,

returning a code if it is not free.

SLEEP_UNLOCK(D3) types.h & ksynch.h Release a sleep lock.

Although allocation and deallocation functions are supplied, a sleep_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
SLEEP_INIT() operation prepares a statically-allocated sleep_t for use. (In IRIX 6.2, a
sleep_t is identical to a sema_t, but this situation could change in a future release.)

A sleep lock is similar to a mutex lock in that it is used for mutual exclusion between
processes, and can be held across a function call that sleeps. A sleep lock does not have
either the advantages or the restrictions of a mutex lock:

A sleep lock can be seized by one process and released by another.

A sleep lock can be set in an upper-half entry point and released in an interrupt
routine.

A sleep lock does not provide priority inheritance. When a low-priority process
holds a sleep lock, a higher-priority process can be blocked, causing a priority
inversion.

A sleep lock does not support the instrumentation or the query functions supported
for mutex locks.

Reader /writer locks are similar to sleep locks in that they are designed for mutually
exclusive control of resources for relatively long periods of time. However,
Reader/Writer locks are optimized for the case in which the resource is often used by
processes that only interrogate it (readers), but only rarely used by processes that modify
it (writers).

007-0911-210

Waiting and Mutual Exclusion

007-0911-210

Reader /writer locks compatible with SVR4 are introduced in IRIX 6.2. The functions are
summarized in Table 8-27.

Table 8-27 Functions for Reader/Writer Locks
Function Name Header Files Purpose
RW_ALLOC(D3) types.h & kmem.h & ksynch.h Allocate and initialize a
reader /writer lock.
RW_DEALLOC(D3) types.h & ksynch.h Deallocate a reader /writer lock.
RW_INIT(D3) types.h & ksynch.h Initialize an existing
reader /writer lock.
RW_DESTROY(D3) types.h & ksynch.h Deinitialize an existing
reader /writer lock.
RW_RDLOCK(D3) types.h & ksynch.h & param.h Acquire a reader/writer lock as
reader, waiting if necessary.
RW_TRYRDLOCK(D3) types.h & ksynch.h Try to acquire a reader/writer
lock as reader, returning a code if
it is not free.
RW_TRYWRLOCK(D3) types.h & ksynch.h Try to acquire a reader/writer
lock as writer, returning a code if
it is not free.
RW_UNLOCK(D3) types.h & ksynch.h Release a reader/writer lock as
reader or writer.
RW_WRLOCK(D3) types.h & ksynch.h & param.h Acquire a reader/writer lock as

writer, waiting if necessary.

Although allocation and deallocation functions are supplied, a mrlock_t type is a small
object that is normally allocated as a static variable or as a field of a structure. The
RW_INIT() operation prepares a statically-allocated mrlock_t for use.

A process that intends to modify a resource uses RW_WRLOCK to claim it. This process
waits until the resource is not in use by any process, then it gains exclusive access. Only
one process is allowed to hold a reader/writer lock as a writer. All other processes,

readers or writers, wait until the writer releases the lock.

251

8: Device Driver/Kernel Interface

A process that intends only to interrogate a resource uses RW_RDLOCK to gain access.
If a writer holds the lock, the process waits. When the lock is free, or is held only by other
readers, the process continues. More than one reader can hold a reader/writer lock at one
time. Itis also valid for a reader to “double-trip” a reader/writer lock; that is, claim it two
or more times. The reader must release the lock as many times as it claimed the lock.

A reader/writer lock serves the same basic purpose as a sleep lock, but it is more efficient
in a multiprocessor when there are frequent, read-only uses of a resource.

Priority Level Functions

252

In traditional UNIX systems, one set of functions served all purposes of synchronization
and locking: the set-priority-level, or spl, functions. These functions are still available in
IRIX, and are summarized in Table 8-28.

Table 8-28 Functions to Set Interrupt Levels

Function Name Header Files Purpose

splbase(D3) ddi.h Block no interrupts.

splhi(D3) ddi.h Block all I/O interrupts.
splx(D3) ddi.h Restore previous interrupt level.

Calls to these functions are commonly found in device drivers being ported from
uniprocessors. Such drivers rely on the use of splhi() to guarantee exclusive use of global
resources.

The splfunctions listed in Table 8-28 are supported by IRIX, but you are strongly advised
not to use them. In a multiprocessor, the functions affect only the interrupt handling of
the current CPU. Other CPUs in the system continue to handle interrupts, including
interrupts initiated by the driver that called splhi().

A driver should use locks, synchronization variables, and other tools to control access to
resources. Such a driver never needs an spl function. This improves performance in a
multiprocessor, does not harm performance in a uniprocessor, and reduces the latency of
all interrupts.

007-0911-210

Waiting and Mutual Exclusion

Waiting for Time to Pass

Time Units

007-0911-210

The kernel offers functions for timed delays, as summarized in Table 8-29.

Table 8-29 Functions for Timed Delays

Function Name Header Files Purpose

delay(D3) ddih Delay for a specified number of clock ticks.

drv_hztousec(D3) ddi.h Convert clock ticks to microseconds.

drv_usectohz(D3) ddi.h Convert microseconds to clock ticks.

drv_usecwait(D3) ddi.h Busy-wait for a specified interval.

dtimeout(D3) ddi.h & ksynch.h Schedule a function execute on a specified processor
after a specified length of time.

itimeout(D3) ddi.h & ksynch.h Schedule a function to be executed after a specified
number of clock ticks.

fast_itimeout() ddi.h & ksynch.h Same as itimeout() but takes an interval in “fast
ticks.”

fasthzto() types.h & time.h Returns the value of a struct timeval as a count of
“fast ticks.”

timeout(D3) ddi.h & ksynch.h Schedule a function to be executed after a specified
number of clock ticks.

untimeout(D3) ddi.h Cancel a previous itimeout or fast_itimeout request.

untimeout_func(D3) ddi.h

Cancel a previous itimeout or fast_itimeout request
by function name.

The basic time unit is the “tick.” Its value can differ between hardware platforms and
between versions of IRIX. The drvhztousec() and drvusectohz() functions convert
between ticks and microseconds in the current system. Use them in order to schedule a
delay in a portable manner. (However, the timer function precision is the tick, not the

microsecond.)

The “fast tick” is a fraction of a tick. Like the tick, the fast tick’s value can differ between
systems. Use fasthzto() to convert from microseconds to fast ticks.

253

8: Device Driver/Kernel Interface

Timer Support

Timer support is based on the idea of a “callback” function. You specify the following to
dtimeout(), itimeout(), timeout() or fast_itimeout():

e aninterval in clock ticks or fast ticks
e a function to be called at the expiration of the interval
* one or more arguments to be passed to the function

* a priority (interrupt) level at which the function should run

After a delay of at least the length requested, the function is called. The function is
entered asynchronously. On a uniprocessor, it can interrupt execution of an upper-half
routine. On a multiprocessor, it can execute concurrently with an upper-half routine or
with an interrupt handler or a different timeout function. (Use locks or mutexes for
mutual exclusion.)

The difference between itimeout() and timeout() is that the latter takes no argument
values to be passed to the function when it is called. In order to get a repeated series of
timer events, start a new timeout from the callback function.

The untimeout() and untimeout_func() functions cancel a pending timeout. In a
loadable driver that has an pfxrunload() entry point, cancel any pending timeouts before
unloading.

The STREAMS_TIMOUT macro supplies similar timeout capability for a STREAMS
driver (see “Special Considerations for Multiprocessing” on page 785).

Short-Term Delay Support

254

In rare circumstances, a driver needs to pause briefly between two hardware operations.
For example, the SGI support for external interrupts in the Challenge and Onyx
computers sometimes needs to set a high output level, wait for a brief, precise interval,
then set a low output level.

The drv_usecwait() function supports this type of very short, precisely-timed delay. It
“spins” for a specified number of microseconds, then returns to the caller. The CPU does
nothing else during this period, so clearly a delay of more than a few microseconds can
interfere with other work. Furthermore, if interrupts are disabled during the wait, the
response to another interrupt is delayed also—the delay contributes directly to the
“latency” of interrupt handling.

007-0911-210

Waiting and Mutual Exclusion

Waiting for Memory to Become Available

Whenever you request memory of any kind, you must allow for the possibility that the
memory will not be available. When you allocate memory in bulk (see “General-Purpose
Allocation” on page 213) using kmem_alloc() you have the option of receiving a null
response, or of waiting for the memory to be available.

When you request memory for specific object types (see “Allocating Objects of Specific
Kinds” on page 215) there is usually no choice; the functions sleep until they can acquire
an object of the requested type.

Within a STREAMS driver you have the ability to schedule a callback function to be
entered when memory for a message buffer becomes available (see the bufcall(D3)
reference page).

Waiting for Block 1/0O to Complete

007-0911-210

The pfxstrategy() routine initiates the I/O operation to fill a buffer based on a buf_t
structure. Then it has to wait for the I/O to complete. The functions for managing this
synchronization are summarized in Table 8-30.

Table 8-30 Functions for Synchronizing Block I/O

Function Name Header Files Purpose

biodone(D3) ddi.h Release buffer after I/O and wake up waiting process.
bioerror(D3) ddi.h Manipulate error fields in a buf_t.

biowait(D3) ddih Suspend process pending completion of I/O.

geterror(D3) ddi.h Retrieve error number from a buf_t.

physiock(D3) ddi.h Validate a raw I/O request and pass to a strategy function.
uiophysio(D3) ddih Validate a raw I/O request and pass to a strategy function.
undma(D3) ddi.h Unlock physical memory after I/O complete.
userdma(D3) ddih Lock physical memory in user space.

255

8: Device Driver/Kernel Interface

How the strategy() Entry Point Is Called

The pfxstrategy() entry point is called directly from the filesystem or virtual memory
management, or it can be called indirectly from a pfxread() or pfxwrite() entry point (see
“Calling Entry Point strategy() From Entry Point read() or write()” on page 174).

Strategies of the strategy() Entry Point

256

Typically the pfxstrategy() routine must interact with its interrupt handler. The
pfxstrategy() routine can be designed in either of two ways, synchronous or
asynchronous.

The synchronous pfxstrategy() routine initiates every I/ O operation. Its interrupt handler
is responsible only for detecting and signalling the completion of one I/O. The
pfxstrategy() routine proceeds as follows:

1. Lock the data buffer in memory using userdmaf).
2. Place the address of the buf_t where the pfxintr() entry point can find it.

3. Program the device (see “Setting Up a DMA Transfer” on page 226) and initiate the
I/0 activity.

4. Call biowait().
When the interrupt handler is entered, the handler uses bioerror() if necessary, and
biodone() to signal the completion of the I/O. Then it exits. The strategy code, which is

waiting in the call to biowait(), regains control following the call to biodone(), and can
use geterror() to check the results.

The asynchronous pfxstrategy() routine only initiates the first I/O operation of a series,
and never waits. It proceeds as follows:

1. Lock the data buffer in memory using userdmaf).

2. Append the address of the buf_t to a queue shared with the interrupt handler.

3. If the queue was empty, no I/O is in progress. Call a subroutine that programs the
device and initiates the I/O.

4. Return to the caller. The caller (a filesystem or paging system or uiophysio()) waits
using biowait().

When the interrupt occurs, the handler proceeds as follows:

007-0911-210

Waiting and Mutual Exclusion

1. The first queued buf_t has completed. Remove it from the queue.

2. Apply bioerror() if necessary, and biodone() to the buf_t. This releases the caller of
the strategy routine from biowait().

3. If any operations remain in the queue, call a subroutine to program and initiate the
next one.

Waiting for a General Event

There are causes for synchronization other than time, block I/O, and memory allocation.
For example, there is no defined interface comparable to biowait() /biodone() to mediate
between an interrupt handler and the pfxread() or pfxwrite() entry points. You must
design a mechanism of your own, using either a synchronization variable or the
sleep()/wakeup() function pair.

Using sleep() and wakeup()

007-0911-210

The sleep() and wakeup() function pair are the simplest, oldest, and least efficient of the
general synchronization mechanisms. They are summarized in Table 8-31.

Table 8-31 Functions for Synchronization: sleep /wakeup

Function Name Header Files Purpose

sleep(D3) ddi.h & param.h Suspend execution pending an event.
wakeup(D3) ddih Waken a process waiting for an event.

Used carefully, these functions are suitable for simple character device drivers. However,
when you are writing new code or converting a driver to multiprocessing you should
avoid them and use synchronization variables instead (see “Using Synchronization
Variables” on page 258).

The basic concept is that the upper-layer routine calls sleep(n) in order to wait for an
event that is keyed to an arbitrary address n. Typically # is a pointer to a data structure
related to an I/O operation. The interrupt handler executes wakeup(n) to cause the
sleeping process to resume execution.

257

8: Device Driver/Kernel Interface

The main reason to avoid sleep() is that, in a multiprocessor system, it is hard to ensure
that sleeping always begins before wakeup() is called. The usual intended sequence of
events is as follows:

1. Upper-half routine initiates a device operation that will lead to an interrupt.

2. Upper-half routine executes sleep(n).

3. Interrupt occurs, and handler executes wakeup(n).

In a multiprocessor-aware driver (one with D_MP in its pfxdevflag constant; see “Driver
Flag Constant” on page 156), there is a small chance that the interrupt can occur, calling
wakeup(n), before the sleep(n) call has been completed. Because sleep() has not been

called, the wakeup() is lost. When the sleep() call completes, the process sleeps forever.
Synchronization variables are designed to handle this case.

Using Synchronization Variables

258

Synchronization variables, a feature of UNIX SVR4, are supported by IRIX beginning
with release 6.2. These functions are summarized in Table 8-32.

Table 8-32 Functions for Synchronization: Synchronization Variables

Function Name Header Files Purpose

SV_ALLOC(D3) types.h & sema.h Allocate and initialize a synchronization
variable.

SV_DEALLOC(D3) types.h & sema.h Deinitialize and deallocate a synchronization
variable.

SV_INIT(D3) types.h & sema.h Initialize an existing synchronization variable.

SV_DESTROY(D3) types.h & sema.h Deinitialize a synchronization variable.

SV_BROADCAST(D3) types.h & sema.h Wake all processes sleeping on a synchronization
variable.

SV_SIGNAL(D3) types.h & sema.h Wake one process sleeping on a synchronization
variable.

SV_WAIT(D3) types.h & sema.h Sleep until a synchronization variable is
signalled.

SV_WAIT_SIG(D3) types.h & sema.h Sleep until a synchronization variable is

signalled or a signal is received.

007-0911-210

Waiting and Mutual Exclusion

007-0911-210

A synchronization variable is a memory object of type sv_t, representing the occurrence
of an event. You can allocate objects of this type dynamically, or declare them as static
variables or as fields of structures.

One or more processes may wait for an event using SV_WAIT(). An interrupt handler or
timer callback function can signal the occurrence of an event using SV_SIGNAL (to wake
up only one waiting process) or SV_BROADCAST (to wake up all of them).

SV_WAIT is specifically designed to handle the difficult case that arises when the driver
needs to initiate an I/O operation and then sleep, and do these things in such a way that
it always begins to sleep before the SV_SIGNAL can possibly be issued. The procedure
is done as follows:

1. The driver seizes a basic lock (see “Basic Locks” on page 245) or a mutex lock (see
“Using Mutex Locks” on page 247) that is also used by the interrupt handler.

A LOCK() call returns an integer that is needed later.
2. The driver initiates an I/O operation that can lead to an interrupt.

3. The driver calls SV_WAIT, passing the lock it holds and an integer, either the value
returned by LOCK() or a zero if the lock is a mutex lock.

4. In one indivisible operation, SV_WAIT releases the lock and begins waiting on the
synchronization variable.

5. The interrupt handler or other process is entered, and seizes the lock.

This step ensures that, if the interrupt handler or other process is entered preceding
the SV_WAIT call, it will not proceed until SV_WAIT has completed.

6. The interrupt handler or other process does its work and calls SV_SIGNAL to
release the waiting driver.

This process is sketched in Example 8-5.

Example 8-5 Skeleton Code for Use of SV_WAIT

| ock_t seize_it;
sv_t wait_on_it;
initiator(...)
{
int |ock_cookie;
for(as often as necessary)

{
| ock_cooki e = LOCK(&sei ze_it, PL_ZERO);

259

8: Device Driver/Kernel Interface

Semaphores

260

[do sonething that causes a |later interrupt]
SV_WAI T(&wait _on_it, 0, &seize_it, |ock_cookie);
[interrupt has been handl ed]

}
}
voi d handler(...)
{
int |ock_cookie = LOCK(&seize_it, PL_ZERO);
[handl e the interrupt]
SV_SIGNAL(&wait _on_it);
UNLOCK(&sei ze_it);
}

If it is necessary to use a semaphore as the lock, the header file sys/sema.h declares
versions of SV_WAIT that accept a semaphore and a synchronization variable. The
combination of a mutual exclusion object and a synchronization variable ensures that
even in a multiprocessor, the interrupt handler cannot exit before the driver has entered
a predictable wait state.

Tip: When a debugging kernel is used, you can display statistics about the use of a given
synchronization variable. See “Including Lock Metering in the Kernel Image” on
page 288.

The semaphore is a generalized tool that can be used for both mutual exclusion and for
waiting. The IRIX kernel support for semaphores is summarized in Table 8-33.

Table 8-33 Functions for Semaphores

Function Name Header Files Purpose

cpsema(D3) sema.h & types.h Conditionally perform a “P” or wait semaphore
operation.

cvsema(D3) sema.h & types.h Conditionally perform a “V” or release semaphore
operation.

freesema(D3) sema.h & types.h Free the resources associated with a semaphore.

007-0911-210

Waiting and Mutual Exclusion

Table 8-33 Functions for Semaphores (continued)

Function Name Header Files Purpose

initnsema(D3) sema.h & types.h Initialize a semaphore to a given value.

initnsema_mutex(D3) sema.h & types.h Initialize a semaphore to a value of 1.

psema(D3) sema.h & typesh & Perform a “P” or wait semaphore operation.
param.h

valusema(D3) sema.h & types.h Return the value associated with a semaphore.

vsema(D3) sema.h & types.h Perform a “V” or signal semaphore operation.

Conceptually, a semaphore contains an integer. The “P” operation claims the semaphore,
decrementing its count by 1 (mnemonic: dePlete). If the count is 0 or less, the process
waits until the count is greater than 0 before it decrements the semaphore and returns.

The “V” operation increments the semaphore count (mnemonic: reViVe) and wakens any
process that is waiting.

Tip: When a debugging kernel is used, you can display statistics about the use of a given
semaphore. See “Including Lock Metering in the Kernel Image” on page 288.

Note: In releases before IRIX 6.2, initnsema_mutex() was used to initialize a semaphore
in a special way that got the performance of a basic lock in a multiprocessor. Since
IRIX 6.2, this function is simply a macro that initializes the semaphore to a count of 1.

Using a Semaphore for Mutual Exclusion

007-0911-210

To use a semaphore for locking, initialize it to 1. (This reflects the idea that a process
calling a locking function expects to continue.) When you require exclusive use of the
associated resource, call psema(). Typically this finds a semaphore count of 1, reduces it
to 0, and returns.

When you are finished with the resource, call vsemal() to increment the semaphore count,
and release any process that is blocked in a psema() call for the same semaphore.

261

8: Device Driver/Kernel Interface

For locking, a semaphore is comparable to a sleep lock. In some systems, the performance
of semaphore operations may not be as good as the performance of a mutex lock. In other
systems, mutex locks may be implemented using semaphores.

Using a Semaphore for Waiting

To use a semaphore for waiting, initialize it to 0. Then call psema(). Because the
semaphore count is 0, the process waits. When the desired event occurs, typically in the
interrupt handler, call vsema() to release the waiting process.

This synchronization method is as reliable as a synchronization variable, but it has
slightly different behavior. When a synchronization variable is used correctly (see “Using
Synchronization Variables” on page 258), if the interrupt handler is entered before the
SV_WAIT call completes, the interrupt handler waits on a LOCK call.

When a semaphore is used, if the interrupt handler is entered before the psema() call
completes, the vsema() operation is done immediately and the interrupt handler
continues without waiting. The fact that vsema() was called is stored as a count within
the semaphore, where psema() will find it. Because the semaphore can contain this state
information, the interrupt handler does not have to be synchronized in time using a lock.

Note: In releases before IRIX 6.2, the vpsema() function was used in a way similar to
synchronization variables are used: to release one semaphore and wait on another in an
atomic operation. This function is no longer supported; replace it with synchronization
variable.

Using Kernel Threads

Kernel System Threads

262

This section describes kernel system threads and their configuration.

IRIX uses interrupt threads to handle most of its physical interrupts. The section titled
“Interrupt Entry Point and Handler” in Chapter 7 describes how to create a kernel thread
and how to link it to a physical interrupt in one action. Some drivers perform
background processing of events and queues that are not tied to particular physical
interrupts. User-mode programs that do this are typically called daemons.

007-0911-210

Waiting and Mutual Exclusion

For systems running IRIX 6.5.17 and later, drivers can create kernel threads not
associated with particular interrupts. These "system" threads can take all types of locks,
block on events or resources, and do anything else that interrupt threads can do. For
details on their creation and destruction, see the dr v_t hr ead_cr eat e(D3) and

drv_t hread_exi t (D3) man pages .

Unlike interrupt handlers, most system threads should not return from their starting
function until they are ready to destroy their thread. Most threads should use some form
of loop, alternating between processing data and waiting for more data from user
programs or from interrupt threads. The following example illustrates the creation and
operation of a typical system thread:

Example 8-6 Creation and Operation of a Typical System Thread

#i ncl ude <sys/cm_err. h>
#i ncl ude <sys/ddi. h>

voi d

exanpl e_system t hread(void * argo0,
void * argl,
void * arg2,

void * arg3)
{
/*
* Loop processing events and sleeping waiting for nore
*/
while (1) {
/*
* Wait for nore events to occur
*/
/*
* Do background work
*/
}
/*

* | f we need to exit this thread for sonme reason
* we call the below. This is equivalent to just
* calling return() fromthe base function.

*/

007-0911-210 263

8: Device Driver/Kernel Interface

drv_thread_exit();

}
voi d
exanpl e_init(void)
{
int error;
void * myarg0, * nyargil;
/*
* Create a systemthread to do background work
*/
error = drv_thread_create("MyThread", 0, 0, O,
exanpl e_system t hread,
nyar g0, nyargl, NULL, NULL);
if (error) {
crm_err (CE_WARN, "Creation of MyThread failed\n");
}
}

Custom Configurations for Kernel Threads

When thei ri x. sm DEVI CE_ADM N | NTR_TARGET directive is used to direct a
physical interrupt, it also binds its interrupt handlers to the target CPU. In some
situations, such as when running with the SGI Frame Rate Scheduler (FRS), it is desirable
to put interrupt handler threads on CPUs in locations other than where their physical
interrupts are directed. Systems running IRIX 6.5.16 or later can use the XThread Control
Interface (XTCI) to control special behaviors such as this. Users can add XTHREADentries
in the / var/ sysgen/ systenl i ri x. smfile. Kernel threads not given entries operate
with default behavior. Afteri ri x. smis modified, youshould run| boot to reconfigure
the system.

To preserve compatibility, in the event that conflicting entries are found, XTCI entries will
defer to the legacy/ var / sysgen/ mast er . d/ sgi interface. Asinthe mast er. d/ sgi
interface, system threads can be specified but they can later change their behavior;
whereas interrupt threads must adhere throughout their lifetime.

Specific interface entries are of the following format:

XTHREAD: nane[*] [BOOT] [FLOAT] [STACK s] [PRI p] [CPU m..n]

264 007-0911-210

Waiting and Mutual Exclusion

007-0911-210

Entry descriptions are as follows:

XTHREAD: Indicates that any line beginning with XTHREAD: controls kernel
threads. All of the information must be on the same line.

name[*] Indicates that any thread with a name equal to name is affected by
the directives that follow it. If * follows, any thread whose name
begins with name is affected.

BOOT Indicates that the thread stays within the boot cpuset, if one exists.
FLOAT Indicates that the thread will never be bound to a CPU.

STACK s Specifies the thread stack size.

PRI p Specifies the starting thread CPU scheduling priority.

CPUm..n Specifies a list of CPUs on which to attempt to place the thread, if

possible. Threads that cannot be placed on their CPU list will be
considered FLOAT. This is comparable to the sysmp()
MP_MUSTRUN command for user threads. You can list up to four
processors.

Note: Atboot time the XTCI mechanism is enabled before IRIX enables its device drivers
but after some of the core IRIX services are initialized. Therefore some kernel threads,
such as the timeout threads, are not affected by XTCI entries for them.

The following examples illustrate the use of XTHREAD entries:

Example 8-7 XTHREAD FLOAT Entry
XTHREAD: ioc3* FLOAT

On SGI Origin series systems, this entry prevents all of the interrupt handler threads for
the IOC3 hardware (including the mouse and keyboard handlers) from being bound to a
CPU. This entry is useful for the previously described situation of routing the physical
interrupt for the external interrupt (and thus, also the keyboard and mouse) to a CPU
running the FRS. Because the FRS controls the CPU, it will not allow mouse and
keyboard handlers to run. The FLOAT directive allows them to run on a different CPU.

Example 8-8 XTHREAD CPU Entry
XTHREAD: vme_intrd0 CPU 2

This example forces the kernel interrupt thread for level 0 VME interrupts to run on
processor 2.

265

Chapter 9

Building and Installing a Driver

After a kernel-level driver has been designed and coded, it must be compiled, linked, and
installed. The topics in this chapter describe the major steps of this process, as follows:

e “Defining Device Numbers” on page 267 covers the choice of major and minor
device numbers.

¢ “Defining Device Special Files” on page 269 describes options for creating the file or
files controlled by the driver.

¢ “Compiling and Linking” on page 270 covers the compiler and linker options used
for driver modules.

e “Configuring a Nonloadable Driver” on page 273 describes the configuration files
used to set up a driver loaded at boot time.

¢ “Configuring a Loadable Driver” on page 279 describes the additional
configuration needed for a loadable driver.

Defining Device Numbers

The topics “Major Device Number” on page 40 and “Minor Device Number” on page 41
cover the purpose and use of the device numbers. Major and minor numbers were once
very important in the device driver design because they were the primary input that
distinguished a device to a device driver upper-half entry point. In current IRIX, this is
only the case for legacy drivers in older machines. Contemporary drivers take their input
from a vertex of the hwgr aph (see “Hardware Graph” on page 44).

007-0911-210 267

9: Building and Installing a Driver

The historical use of device numbers can be summarized as follows:

¢ Both numbers are encoded in the inode of a device special file in/ dev.

¢ The major number selects the device driver.

¢ The minor number specifies the logical unit, and can encode device features.

¢ Both numbers are passed as a parameter to driver entry points.

Part of creating and installing a device driver is the selection of device numbers and the
definition of device special files.

Selecting a Major Number

If your driver does not use the hwgraph, you must select a major number to stand for
your driver. The numbers that already exist are listed in sys/ maj or . h. However, the
major number should not be coded into the driver. Typically the driver code does not
need to know its major number, and if it does, the driver should discover its major
number dynamically. A method of doing this is discussed under “Variables Section” on
page 276.

A driver is associated with its major number in the mast er . d configuration file. When
the driver discovers this number dynamically, the system administrator is free to change
major numbers in/ var / sysgen/ mast er . d files to correct conflicts between one
product and another.

Selecting Minor Numbers

When a driver is called to service a device special file defined only in / dev, it receives a
device minor number comprising 18 bits of information. You design the content of these
numbers to give your driver the information it needs about each device special file.
Typically you encode a unique device unit number so the driver can index device
information from an array. (When the hwgraph is used, a pointer to the device
information is stored in the hwgraph vertex instead.)

Examine the / dev/ MAKEDEV script to see some techniques for assembling minor
numbers dynamically based on the hardware inventory and other commands.

268 007-0911-210

Defining Device Special Files

Defining Device Special Files

As described under “Device Special Files” on page 37, the association between a device
and a driver is established when a process opens a device special file in the / hwor/ dev
directory. Without at least one device special file, a device can never be opened.

Static Definition of Device Special Files

The system administrator can create device special files using mknod ori nst al | (see
“Making Conventional Device Files” on page 43). This can be done manually, or through
an installation script, or as an exit operation of the software manager program. The
device special files can be created at any time—whether or not the device driver is
installed, and whether or not the hardware exists. The special device files continue to
exist until the administrator removes them.

Dynamic Definition of Device Special Files

A more sophisticated approach is to have the device special files created, or recreated,
dynamically each time the system boots. This was the purpose for which

/ dev/ MAKEDEYV (see “The Script MAKEDEV” on page 43) was introduced—it removes
and redefines device special files based on information in the hardware inventory. In
current IRIX, all entries in the / hw filesystem are created dynamically by device drivers
as devices are attached.

Definition and Use of /hw Entries

007-0911-210

The kernel creates the upper levels of the hardware graph to represent addressable units
of hardware in the basic system—modules, buses, and slots. While probing buses, it finds
devices, and calls upon device drivers to attach them (see “Entry Point attach()” on
page 162 and “Entry Point edtinit()” on page 160). At these times, the driver has the
responsibility of extending the hwgraph with vertexes that provide access to the device
(see “Extending the hwgraph” on page 233).

Because hwgraph entries are always created dynamically, and can be created and
destroyed while the system is running, the initial set of pathnames in / hware not stable
and should not be written into user scripts and source code. Your driver can create
additional vertexes in the hwgraph (see “Extending the hwgraph” on page 233), both

269

9: Building and Installing a Driver

when attaching a device and later, wheni oconf i g runs (see “Using ioconfig for Global
Controller Numbers” on page 53).

Compiling and Linking

Platform Support

You compile a kernel device driver to an ELF binary using shared libraries. The compile
options differ between 32-bit and 64-bit modules.

If you are building a device driver that you wish to use on multiple platforms, you
should build a different driver for each CPU board type (for example, IP22) that you
want to run it on. You can use the hi nv command to determine the host architecture (see
hinv(1M)) and then specify the board type in the Makef i | e as described in the next
section.

Using /var/sysgen/Makefile.kernio

270

The file / var / sysgen/ Makef i | e. ker ni o0 is a sample Makefile for compiling kernel
modules. You can include it from a Makefile of your own to set the definitions of
compiler variables and compiler options appropriately for different CPUs and module

types.

The Makef i | e. ker ni o file tests the following environment variables, which you set:

CPUBOARD Set to the type of CPU used in the target system, for
example IP19, IP22, IP27 (see the sys/ cpu. h header
file).

COMPILATION_MODEL Set to 64 for a 64-bit kernel module, or to 32 for a 32-bit
kernel module.

The purpose of the rules in Makef i | e. ker ni 0 is to set numerous compiler variables
appropriately for the CPU type and execution model. It also sets compiler options into a
Make variable CFLAGS. Owing to the number of compiler variables and the importance
of getting them right for each CPU type, Silicon Graphics strongly recommends that you
invoke Makefi | e. ker ni o from your own makefile.

007-0911-210

Compiling and Linking

Compiler Variables

007-0911-210

Note: Makefil e. ker ni o is designed for nonloadable drivers. In particular it sets the
compiler option -G8, which is valid for nonloadable drivers. For loadable drivers, use the
file/ var/ sysgen/ Makefi | e. ker nl oadi 0 as a sample Makefile. This sets the -G0
flag and other options appropriate for loadable drivers.

The compiler variables listed in Table 9-1 are tested in system header files. They are
usually defined on the compiler command line. The rules in Makefi | e. kerni o set
definitions of these variables appropriately for different CPU types.

Table 9-1 Compiler Variables Tested by System Header Files
Variable Meaning
_KERNEL Compile for a kernel module, not a user program.
MP Compile for a multiprocessor.

_MP_NETLOCKS
STATIC=static
_PAGESZ=16384
_PAGESZ=4096
_MIPS3_ADDRSPACE
R10000

TFP

R4000

IPnn

EVEREST

BADVA_WAR, JUMP_WAR,

PROBE_WAR

Compile network driver (only) for multiprocessor TCP /IP.
Use of pseudo-declarator STATIC is converted to real static.
Compile for a kernel using 16K memory pages.

Compile for a kernel using 4K memory pages.

Kernel for a MIPS3 machine.

Target machine is the R10000.

Target machine is the R8000.

Target machine is the R4000.

Target machine uses the IPnn CPU module, one of IP19, IP20,
P21, IP22, IP25, 1P26, IP27, IP28, IP30, and IP35 are Currently
supported.

Compile for a Challenge or Onyx system.

Compile workaround code for bugs in certain R4x00 revisions.

271

9: Building and Installing a Driver

Table 9-1 Compiler Variables Tested by System Header Files (continued)

Variable

Meaning

_IP26_SYNC_WAR,
_NO_UNCCHED_MEM_WAR

R10000_SPECULATION_WAR
USE_PCI_PIO

Compile workaround code for IP26 bugs.

Compile workaround code for bug in certain R10000 revisions.

Compile workaround for IP32 PIO bug (see
sys/ PCl/ pciio. h).

Compiler Options

Some of the cc and | d options needed to compile and link a kernel-level driver are
shown in Table 9-2. The complete and most current set is defined in Makef i | e. ker ni o.

Table 9-2 Compiler Options Kernel Modules
Option Purpose
-non_shar ed Do not compile for shared libraries (no dynamic

-el f

- 64

-m ps4,-m ps2

-G8

-GO

-\W, - pi cO

linking).
Compile and link an ELF binary.

Set for any kernel using the 64-bit execution model.
32-bit kernel does not set any specific flag.

Select the MIPS4 instruction set only for the R10000
CPU. Use MIPS2 for others.

In a nonloadable driver, use the global table for
objects up to 8 bytes.

In a loadable driver, do not use the global table.
Refer to the gp_overflow(5) reference page for a
discussion of the global table.

Linker to retain symbols—for all drivers (required
by loadable drivers, and needed for | boot).

Force definition of common storage even though - r
used.

Do not allocate stack space used by shared objects.

272

007-0911-210

Configuring a Nonloadable Driver

Table 9-2 Compiler Options Kernel Modules (continued)
Option Purpose
-jalr In loadable drivers only, use jalr (jump-and-link

register) instead of jal, whose 26-bit operand may
not be enough for subroutine calls from a loaded
module to the kernel.

-TARG t5_no_spec_stores Crucial setting for Indigo2 R10000 only; without it,
kernel memory corruption can occur.

- TENV: ker nel Execution environment options for 64-bit compiler.
- TENV: m sal i gnment =1

- OPT: space Specific optimization constraints for 64-bit
- OPT: quad_al i gn_branch_t ar get s=F compiler.

ALSE

- OPT: quad_al i gn_wi t h_menops=FALS

E

-OPT:unrol | _ti mes=0

Configuring a Nonloadable Driver

When the driver is notloadable, it is linked as part of the IRIX kernel. The following steps
are needed to make the driver usable:

1. Place the driver executable file in / var / sysgen/ boot .
2. Place a descriptive file in/ var / sysgen/ mast er . d.

3. Place a directive file in / var / sysgen/ syst em(or simply add a line to
[var/sysgen/systenmirix.sm.

4. Run aut oconfi g to generate a new kernel.

5. Reboot the system.

Some of these steps are elaborated in the following topics.

007-0911-210 273

9: Building and Installing a Driver

How Names Are Used in Configuration

The process of naming a kernel-level driver begins in a file in / var/ sysgen/ syst em
such as/ var/sysgen/ systeniirix. smNames are used as follows:

e A USE, INCLUDE, or VECTOR statement in / var / sysgen/ syst emspecifies a
name, for example

USE hypot heti cal

e This statement directs | boot to read a file of the same name in
/var/ sysgen/ mast er . d. In this example, the file would be
[var/ sysgen/ mast er. d/ hypot heti cal .

e Thefilein/ var/sysgen/ mast er . d specifies the prefix for driver entry points, for
example hypo_.

¢ The same name with the suffix . 0, is searched for in/ var / sysgen/ boot —in this
example, / var / sysgen/ boot / hypot heti cal . 0. This object file is linked with
the kernel.

¢ The public symbols in the object file are searched for names that start with the
prefix, for example hypo_attach(). These are noted in the kernel switch table so the
driver can be called as needed.

Placing the Object File in /var/sysgen/boot

The/ var/ sysgen/ boot directory, where the kernel object modules reside, is actually
a symbolic link to one of the directories/ usr/ cpu/ sysgen/ | Pnnboot , where nn is the
number of one of the CPU modules supported by the current release of IRIX (see “CPU
Modules” on page 4). When you place the object file of a driverin/ var/ sysgen/ boot ,
you actually place it in the CPU directory for the system in use.

Describing the Driver in /var/sysgen/master.d

274

You describe your driver in a file with the name of the driver in

/var/ sysgen/ mast er . d. The format of these files is described in two places: the
master(4) reference page, and in/ var / sysgen/ mast er . d/ READVE. In addition, you
can examine the many examples in the distributed system.

007-0911-210

Configuring a Nonloadable Driver

Descriptive Line

007-0911-210

The first noncomment line of the master file contains a series of fields, delimited by white
space, to describe the driver. These fields are listed in Table 9-3.

Table 9-3 Fields of Descriptive Line in Master File

Field Number Usage Details

1 Flags See Table 9-4.

2 Prefix The string of 1-14 characters that identify the public symbols of

driver entry points.

3 Major number The major device number found in device special files managed
by this driver. When the driver uses the hwgraph, this field
contains only a hyphen (-).

4 Number of Size of the driver’s static arrays of device information, or given
sub-devices as a hyphen “-” when the driver stores device information in the

hwgraph.
5 Dependencies A list of other modules that must be in the kernel for this driver

to work—usually omitted except for SCSI drivers.

The important flag values for nonloadable drivers are listed in Table 9-4.

Table 9-4 Flag Values for Nonloadable Drivers

Letter Meaning

borc Block (b) or character (c) device. One or the other is essential for any device driver.
f orm STREAMS driver (f) or STREAMS module (m). Omit for device driver.

s Software driver, either a pseudo-device or a SCSI driver.

The s (software-only) flag tells | boot not to attempt to probe for hardware. This is the
case with software-only (pseudo-device) drivers, and with SCSI drivers. If | boot tries to
probe for a SCSI device, it fails, and assumes that the device is not present, and does not
include your SCSI device driver.

Additional flags (d, r, D, N, R) for loadable drivers are discussed later in the section
“Configuring a Loadable Driver” on page 279.

275

9: Building and Installing a Driver

Listing Dependencies

Stubs Section

Variables Section

276

The descriptive line ends with a comma-separated list of other loadable kernel modules
on which this driver depends. The | boot command makes sure that it will not load this
module if it fails to load a dependency.

In most cases, an OEM driver does not have any dependencies. However, a SCSI driver
(see Chapter 16, “SCSI Device Drivers”) should list the name scsi , since it depends on
the inner SCSI driver. A STREAMS driver might list the name of a STREAMS support
module such as ¢l one (see “Support for CLONE Drivers” on page 789).

It is possible for you to design a driver in the form of multiple, loadable modules. In that
case, you would name your support modules in this field.

Noncomment lines that follow the descriptive line and precede a line beginning “$” are
used by library modules—not by device drivers or STREAMS drivers. Each such line
specifies an entry point that this module provides, and which is used by the kernel or
some other loadable module. These lines instruct | boot in how to create a harmless
“stub” function in the event that this driver is not included in the kernel—for example,
because it is specified by an EXCLUDE line in the system file. The format is discussed in
the master(4) reference page.

Since a device or STREAMS driver provides only standard entry points that are accessed
via the switch tables rather than by linking, drivers do not need to define any stubs.

Following the descriptive line (and the stubs section, if any), you can place a line that
begins with “$” and, following this, you can write definitions of global variables using C
syntax. This text is compiled into a module linked with the kernel. You refer to these
variables as extern in the driver source code.

007-0911-210

Configuring a Nonloadable Driver

007-0911-210

The advantage of defining global variables in the master file is that the initializing
expressions for these variables can include values taken from the descriptive line. The
following special symbols can be used:

HHE The integer coded as the major number in the descriptive line. The first
integer, if a list of major numbers is given.

##C The number of controllers (bus adapters) of this type.

#HD The number of sub-devices as coded in the fourth field of the descriptive line.

You can use these symbols to compile run-time values for the major device number and
the number of supported sub-devices, as specified in the descriptive line of the file,
without coding them as constants in the driver. In the source code you can write

extern major _t myMaj Num
extern int myDevLimt;

In the master file you can implement the variables using the code in Example 9-1.

Example 9-1 Defining Variables in Master Descriptive File

$$3$
maj or _t myMaj Num = ##E;
int myDevLimt = ##C,

(In a loadable driver this technique requires one additional step; see “Master File for
Loadable Drivers” on page 280.)

277

9: Building and Installing a Driver

Configuring a Kernel

Generating a Kernel

278

Once you have placed the binary in / var/ sysgen/ boot and the master file in

/ var/ sysgen/ mast er . d, you can configure and generate a new kernel. This is done
using the aut oconf i g command, which in turn calls | boot to actually create a new
bootable file.

The | boot program only loads modules that are specified in a file in
/ var/ sysgen/ syst em One command is required to specify the new driver; the
command is one of the following:

VECTOR To specify hardware details, to request a hardware probe at boot time, to
load the driver and invoke pfredtinit().

INCLUDE To load the driver and invoke pfxinit().

USE To load the driver and invoke pfxinit() only if the master file exists in
mast er. d.

The form of these commands is detailed in the system(4) reference page. In addition, you
should examine the distributed files in/ var / sysgen/ syst em especially i ri x. sm
which contains many comments on the meaning and use of different entries. Specific
uses of the VECTOR statement are discussed in the following topics: The form of
VECTOR lines for VME devices is discussed under “Configuring VME Devices” on
page 358.

You could place the VECTOR, USE, or INCLUDE line for your driver ini ri x. sm
However, since | boot treats all filesin / var/ sysgen/ syst emas a single file, you can
create a small file unique to your driver. The name of this file is not significant, but a good
name is the driver name with the suffix . sm

The aut oconf i g script invokes | boot to read the system files, read the master files,
and link all the kernel executables. Provided there are no errors, the output is a new file
/uni x. i nstall.Atboot time this file is moved to the name / uni x and used as the
kernel.

During the testing period you may want to keep the original kernel file available as

/uni x. ori gi nal . A simple way to retain this file is to create a link to it using the | n
command.

007-0911-210

Configuring a Loadable Driver

Configuring a Loadable Driver

007-0911-210

You compile and configure a loadable driver very much as you would a nonloadable
driver (so you should read “Configuring a Nonloadable Driver” on page 273 before
reading this section). The differences are as follows:

* You provide an additional global variable with the public name pfxmversion.
* You use a few different compile options.
* You decide when the driver should be loaded, and use appropriate flags in the

descriptive line in the master file.

For more background on loadable modules, see the mload(4) and ml(1) reference pages.

Note: You may not call sthread_create() in a loadable driver, because the stack must be
in direct mapped (KO0) space. The sthreads facility has been superseded by pthreads(5).

279

9: Building and Installing a Driver

Public Global Variables

To be loadable, a driver must specify a pfxdevflag entry point containing the D_MP or
D_MT flag (see “Driver Flag Constant” on page 156).

Any loadable module must define a public name pfxmversion, declared as follows:

#i ncl ude <sys/ni oad. h>
char *pfxnversi on = M _VERSI ON,

Note the exact spelling of the variable; it is easy to overlook the letter “m” after the prefix.

If the variable does not exist or is incorrectly spelled, an attempt to load the driver will
fail.

Compile Options for Loadable Drivers

Use the - G 0 option when compiling and linking a loadable driver, since the global
option table is not available to a loadable driver. You must also use the - j al r option in
a loadable driver (see “Compiler Options” on page 272).

In a loadable driver, link using the - r and - d options to retain the symbol table yet
generate a bss segment.

Master File for Loadable Drivers

280

The filein/ var/ sysgen/ mast er . d for a loadable driver has different flags.

In the flags field of the descriptive line of the master file (see “Descriptive Line” on
page 275), you specify that the driver is loadable, and when it should be loaded. The
possible flags are listed in Table 9-5.

Table 9-5 Flag Values for Loadable Drivers

Letter Meaning

borc Block (b) or character (c) device. One or the other is essential for any device driver.
f orm STREAMS driver (f) or STREAMS module (m). Omit for device driver.

s Software driver, either a pseudo-device or a SCSI driver.

007-0911-210

Configuring a Loadable Driver

Loading

007-0911-210

Table 9-5 Flag Values for Loadable Drivers (continued)

Letter Meaning

d Specifies that this is a loadable driver.

R Auto-register the module (discussed in text).

D Load, then unload, at boot time, in order to let the driver initialize the hardware
inventory.

N Prevent this module from being automatically unloaded even when it has a pfxunload()

entry point.

When the d flag is given for an included module, | boot parses the master file for the
driver. Global variables defined in the variables section of the master file (see “Variables
Section” on page 276) are defined and included in the kernel. However, object code of the
driver is not included in the kernel, and the names of its entry points are not entered into
the kernel switch table.

Such a driver has to be manually loaded with them or | boot command before it can be
used; and it cannot be used from the miniroot.

A loadable driver can be loaded by the | boot command at boot time, and by the m
command while the system is running. The following steps occur when a driver is
loaded:

1. The object file header is read.

2. Memory is allocated for the driver’s text, data, and bss segments.
3. The driver’s text and data are read.
4

The text and data are relocated. References to kernel names and to global variables
named in the master file are resolved.

o

Entry points are noted in the appropriate kernel switch table.
6. The pfxinit() entry point is called if one is defined.

7. If the driver is named in a VECTOR statement and has a pfxedtinit() entry point,
that entry point is called for each VECTOR statement that names the driver.

8. The pfxstart() entry point, if any, is called.

281

9: Building and Installing a Driver

Effect of ‘D’ Flag

Registration

282

9. The pfxreg() entry point, if any, is called.

Space allocated for the module’s text, data, and bss is located in node 0 of an Origin2000
system. Static buffers in loadable modules are not necessarily physically contiguous in
memory.

A variety of errors can occur when a module is loaded. See the mload(4) reference page
for a list of possible causes.

Normally a loadable driver is not loaded at boot time. It must be loaded sometime after
boot using the M command. When the Dflag is included in the descriptive line in the
descriptive file, | boot loads the driver at boot time, and immediately after calling
pfxstart(), unloads the driver. This permits the driver to test the hardware and set up the
hwgraph and hardware inventory.

Aloadable module is “registered” by loading it, then placing a stub entry in the pfxopen()
and pfxattach() column of its row of the switch table, and unloading it again. The stub
entry points are invoked when the driver is needed, and the code of the entry points
initiates a load of the driver.

Registration of this kind can be done automatically during bootstrap, or later using the
m command. Once it has been registered, a driver is loaded automatically the first time
the kernel needs to attach a device supported by this driver, or the first time a process
attempts to open a device special file managed by this driver. You can also load a
registered driver in advance of any use with the M command—loading implies
registration.

Note: Try not to confuse this “registration” with a driver’s registration with the kernel
to handle a particular type of device.

Registration is done automatically for each master descriptive file that contains the d
(loadable) and R (register) flags. Autoregistration is done at bootstrap phase 2. It is
initiated by the script / et ¢/ r c2/ S23aut oconf i g. Registration can be initiated

007-0911-210

Configuring a Loadable Driver

Reloading

Unloading

007-0911-210

manually at any time after bootstrap by using the M or | boot command with the r eg
option (see the mI(1M) and Iboot(1M) reference pages).

When a registered driver is reloaded, the sequence of events listed under “Loading” on
page 281 occurs again. There is one exception: the pfxreg() entry point is not called when
a registered driver is reloaded from a stub. (The complete sequence occurs when an
unregistered driver is explicitly loaded by the M command.)

A module can be unloaded only when it provides an pfxunload() entry point (see “Entry
Point unload()” on page 190). The Nflag can be specified in the master file to prevent
automatic unloading in any case.

A loaded module is automatically unloaded following a delay after the last close of a
device it supports. The delay is configurable using Syst une, as the module_unld_delay
variable (see the systune(1) reference page). You can use M to specify an unloading delay
for a particular module.

Thel boot or M command can be used to unload a module before the delay expires, or
to manually override the Nflag.
The unload sequence is as follows:

1. The kernel verifies that all opens of the driver’s devices have been closed. The
driver cannot be unloaded if it has open devices or active mmaps.

2. The pfxunreg() entry point is called, if one exists. This gives the driver a chance to
unregister as a provider of service for a particular device type. If pfrunreg() returns
nonzero, the process stops.

3. The pfxunload() entry point is called. If it returns nonzero, the process stops.
4. The module is removed from memory. If it had been registered (R flag), stubs are

again placed in the pfxropen() and pfxattach() column of its row of the switch table.

Experience has shown that most of the problems with loadable drivers arise from
unloading and reloading. The precautions to take are described under “Entry Point
unload()” on page 190.

283

Chapter 10

Testing and Debugging a Driver

As a critical system component, a driver deserves careful testing, but because it is part of
the kernel, the normal testing tools are not available. This chapter describes some of the
available testing tools and methods, in the following major topics:

e “Preparing the System for Debugging” on page 285 describes how to set up the
kernel for use of the debugging tools.

¢ “Producing Diagnostic Displays” on page 291 covers the kernel functions your
driver can use to generate diagnostic output as it executes.

¢ “Using symmon” on page 293 describes the use of the standalone debugger.

e “Using idbg” on page 302 describes some uses of the kernel-display command.

Preparing the System for Debugging

The standalone debugger synmon is a key tool for driver programming. It must be
installed in the volume header of the boot disk. In order for it to be useful you must boot
a “debugging” kernel, that is, one that retains symbols, and contains the display
modules, that are used by debugging tools. Normally these modules and symbols are
eliminated to save space. You modify the i ri x. smfile to enable debugging, and then
generate a new kernel.

All these steps should be performed before you attempt to install your device driver.

Placing symmon in the Volume Header

007-0911-210

The symmon standalone debugger resides in the volume header of a disk—not in a
normal IRIX filesystem. The volume header is disk partition 8. It always contains a label
record (sgilabel). On a bootable disk, the volume header contains the standalone shell
sash that manages the bootstrap operation. Some bootable disks may also contain the

285

10: Testing and Debugging a Driver

286

i de program, a PROM-level diagnostic program. If synmon is to be available, it, too,
must be placed in the volume header.

Normally you acquire synmon by installing the debugging kernel feature
(eoe.sw.kdebug) in the IRIX Developer Option software distribution. You can verify that
this feature has been installed by executing the command

ver si ons eoe. sw. kdebug

The response should confirm the presence of this component (it does not show synmon
by name). When you install the kernel debug feature, the synmon program file is copied
to the volume header of the current boot disk automatically.

You can verify the presence of sy nmon in the volume header through the use of dvht ool

(described in the dvhtool(1) reference page). The results should be similar to the display
in Example 10-1. The response to the “1” (list) command shows that the volume header
of this disk contains sgi | abel ,i de, sash, and synmon.

Example 10-1 Verifying Presence of symmon

dvhtool -v list /dev/rvh
Current contents:

File name Lengt h Bl ock #
sgi | abel 512 2
i de 281600 278
sash 281600 828
synmon 248320 1378

In the event you need to install sy nmon in the volume header of a disk without using the
software manager, you can copy the standalone program to the volume header using
dvht ool . However, you first need to get a copy of the program in the form of a UNIX
file.

Starting from a volume that currently has a copy of symmon (verified as in Example 10-1),
use dvht ool to extract a copy of synmpn into a convenient spot.

dvhtool -v g symmon /var/tnp/symon. | Pxx
There is a unique version of synmon for each CPU module, so it is a good idea to qualify

the filename with the CPU module type. Once the program is available as a normal file,
you can use dvht ool to install it in the volume header of some other disk.

007-0911-210

Preparing the System for Debugging

In the event there is not enough room in partition 0 (the volume header) of the target disk,
it is safe to use dvht ool to delete the i de program from the volume header. The i de
application can be booted manually from a CDROM if it is ever required.

Enabling Debugging in irix.sm

In order to make debugging symbols available in the kernel, you must make two
changes, one required and one optional, in the file / var/ sysgen/ systen i ri x. sm
As superuser, make a hard link to the file / var/ sysgen/ systenl i ri x. smas

i ri x. sm nondebug. This enables you to return easily to a nondebugging kernel.

Including Symbols in the Kernel Image

Edit/ var/ sysgen/ systentirix. sm Near the end, note the lines that resemble the
following:

* Conpilation and | oad flags
* To load a kernel that can be co-resident with symon

* (for breakpoint debuggi ng) repl ace LDOPTS

* with the following. You nust also INCLUDE prf and idbg.

*LDOPTS: -non_shared -N -e start -G8 -elf -woff 84 -woff 47 -woff 17
-mps2 -032 -nostdlib -T 88069000

The active LDOPTS statement (the one without an initial asterisk) appears a few lines
later. Remove the asterisk from the front of the debugging LDOPTS to make it active.
Insert an asterisk to convert the original LDOPTS into a comment.

Tip: Despite the residual comment in the irix.sm file, you need not include module pr f
in a debugging kernel. It is only used for kernel profiling.

Including idbg in the Kernel Image

The symbol-display routines used by the command-line kernel display tool, i dbg, are
contained in optional kernel modules. (See “Using idbg” on page 302.) You can change
/var/sysgen/ systeniirix. smso that support fori dbg is always present in the
kernel. Alternatively, you can load these modules manually with m before you use them
(see the ml(1) reference page).

007-0911-210 287

10: Testing and Debugging a Driver

If you are entering an extended debugging period, make the modules permanent. Look
for the lines in/ var/ sysgen/ syst eml i ri X. smthat resemble the following;:

*

* Kernel debugging tools (see profiler(1M and idbg(1M)

*

EXCLUDE: i dbg
EXCLUDE: dmiidbg, grioidbg, xfsidbg, xlvidbg, cachefsidbg, nloadi dbg

Change these lines, if necessary, so that all modules ending in i dbg is marked
INCLUDE, not EXCLUDE. (INCLUDE is preferred to USE in order to get an error
message if they are not found.) Verify that the corresponding object files
/var/sysgen/ boot/ *i dbg. 0 exist. They are normally installed with the debugging
kernel feature, although some of them may be installed with specific products.

Parts of the i dbg support that are unique to particular filesystems are in the other
modules listed in this area of i ri X. sm Modules such as x| vi dbg are useful to SGI
developers but are not likely to be helpful to developers of third-party drivers. However,
it does no harm to change those modules from EXCLUDE to USE also.

Including Lock Metering in the Kernel Image

288

In addition to the display support included by the idbg modules, you can include
modules that support lock metering. This causes the kernel to keep statistics on the use
of each semaphore, basic lock, and reader/writer lock, so you can display the statistics
through i dbg commands. To enable lock metering, find lines in

/var/sysgen/ systeniirix. smthat resemble the following:

* Requi red kernel nodul es

* ksync - kernel synchronization routines (nutex_|ock, sv_wait,

psema. . .)
* or
* ksync_netered - metered kernel synchronization routines

KERNEL: ker nel

I NCLUDE: os, disp, nem zero
I NCLUDE: ksync

EXCLUDE: ksync_net er ed

Reverse the state of the two “ksync” lines so that ksync is excluded and ksync_metered
is included.

007-0911-210

Preparing the System for Debugging

Then find a line that resembles
I NCLUDE har dl ocks

Change this line to a comment, and add a line that says
I NCLUDE dhar dl ocks

(Inserting the initial letter “d” in the module name.) This is the module that implements
basic locks as spinlocks, and dhardlocks is the metered version.

Generating a Debugging Kernel

Run the aut oconf i g command to generate a new kernel that will reflect the changes
madeini ri x. smThe resultis anew kernel file,/ uni x. i nst al | , that will be renamed
to / uni x and used when the system is booted. This kernel can support i dbg but is not
yet ready for standalone debugging with synmon.

The set symcommand copies the symbol table from a kernel file and stores it as data
within the kernel, so that synmon can find it. After autoconfig has created
/uni x. i nstal |, apply the setsym command to it, as follows:

#setsym /uni x. i nstal |

If this command returns an error message about “symbol table overflow,” it means you
have neglected to activate the debugging LDOPTS statement in
/var/sysgen/irix.sm

Tip: You can use set symwith the - d option to generate a list of all symbols in the kernel
being modified. The list is very long; direct it to a file for later reference.

At this time, you may wish to create a link to the current, nondebugging kernel so you
can retrieve it easily. You can also return to a nondebugging kernel by restoring the
original i ri X. smfile and running aut oconf i g again.

007-0911-210 289

10: Testing and Debugging a Driver

Specifying a Separate System Console

In order to use the standalone debugger, you must have an ASCII terminal as a separate
system console device. Install a terminal next to the system or workstation and connect
it to the first serial port (of a workstation) or the system console serial port (of a server).

You may have to modify the file/ et ¢/ i ni t t ab so that the line for the alternate console
is active (see the inittab(4) reference page). Alternatively, you can use the System
Manager application from the 4D desktop. Select the icon for Port Setup. Select the port
and click Connect. You can then configure the port for baud rate and terminal type
interactively.

Verify the terminal’s operation by logging in to the system. When you know the terminal
works, use the nvr amcommand to change the nonvolatile RAM variable console from a

“u_ 1

letter “g” to a letter “d,” as follows:

nvram consol e

g

nvram consol e d
nvram consol e

d

The nvr amcommand is used to report and change the contents of the nonvolatile RAM
variables used by the boot PROM and standalone shell (see the nvram(1) reference page).

Verifying the Debugging Tools

290

After performing the preceding steps, restart the system. Messages from sash appear on
the attached terminal, rather than on the graphics screen. If synmon is present, it
announces itself on the console terminal also.

To verify operation of i dbg, issue the idbg command and display the process list:

i dbg

i dbg> pli st

active process list:

34:672: "xdni' pri(60) SLEEP flags: |oad ul oad siglck recalc sv
0: 0: "sched" ndpri(39) SLEEP flags: sys nwake | oad ul oad sv
31:193: "inetd" pri(60) SLEEP flags: |oad uload siglck recalc sv

007-0911-210

Producing Diagnostic Displays

To verify operation of symmon, press control-A at the console terminal. The prompt
string DBG: should appear. At this time the system is frozen and no longer responds to
mouse or keyboard input. Type the letter ¢ (for continue) and press return (in a
multiprocessor, use ¢ al |). The system returns to life.

Producing Diagnostic Displays

Using cmn_err

Normally a device or STREAMS driver produces display output in only two cases:
¢ To advise the operator or administrator of a serious problem.
¢ To display debugging information during software development.

Both of these purposes are served by the emn_err() function. It brings to a kernel-level
module the abilities that a user-level process gets from printf() and syslog().

The details of cmn_err() usage are in the cmn_err(D3) reference page. The function
prototype and the constant values it uses are declared in sys/ crmerr. h.
In summary, cmn_err() takes two or more arguments:

* A severity code that specifies how the message should be treated when it is written
to the system log.

* A message string, which can have substitution points in the style of printf().
* As many numeric values as are needed to substitute into the message string.

The first character of the message string specifies the destination of the message, either
an in-memory buffer or the system log, or both.

Displaying to the System Log

007-0911-210

The message is sent to the system log daemon whenever the first message character (after
substitution) is not an exclamation mark (“!”). The message is written only to the system
log when the first message character is a circumflex (“/”).

2901

10: Testing and Debugging a Driver

This is basically the same service that a user-level process receives from the syslog()
function. (Compare the syslog(3) and cmn_err(D3) reference pages, and examine the
sys/ cmmer r. h header file; the relationship is clear.) The first argument to cmn_err() is
a severity code which corresponds to one of the severity codes supported by syslog():
CE_WARN equals LOG_WARN, and so on.

Use cmn_err() to write log messages to record serious errors (with CE_ALERT severity)
or to advise the administrator of conditions that should be changed (using CE_NOTE).

Displaying to the Circular Message Buffer

The message is stored in the next available position in a circular buffer in kernel memory
whenever the first message character (after substitution) is not a circumflex (“*”). The
message is stored only in the memory buffer when the first message character is an
exclamation mark (“!”).

The name of the circular buffer (as a symbol to i dbg or symmon) is putbuf. The contents
of putbuf can be displayed with the pb command of either i dbg or synmon (see”Using
symmon” on page 293 and “Using idbg” on page 302), or in a post-mortem dump using
i crash (see “Using icrash” on page 310). Use cmn_err() to store debugging trace data in
the circular buffer, and extract it after a stop or breakpoint with synmon, or use i dbg to
look at it while the system is running.

Using cmn_err() Through Macros

292

The inventive C programmer can think of many ways to invoke cmn_err() using macros.
One method is illustrated in the example driver displayed in Chapter 11, “Driver
Example.” It contains the code shown in Example 10-2.

Example 10-2 Debugging Macros Using cmn_err()

#i f def DEBUG

#defi ne DBGUSEO(s) cmm_err (CE_DEBUG, s)

#defi ne DBGWSGL(s, x) cm_err (CE_DEBUG, s, X)
#defi ne DBGWSG2(s, X, y) cm_err (CE_DEBUG s, X, Y)
#defi ne DBGWSG3(s, X, Y, z) cm_err (CE_DEBUG s, X, Y, z)
#el se

#defi ne DBGUSGEO(s)

#defi ne DBGWSGL(s, X)

#defi ne DBGWBGE2(s, X, Y)

#defi ne DBGWSG3(s, X, Y, z)

#endi f

007-0911-210

Using symmon

Using printf()

Using ASSERT

Using symmon

007-0911-210

You can call the printf() function from a kernel module. The kernel version of printf() is
basically a call to ecmn_err() with severity CE_CONT. In general it is better to use
cmn_err() explicitly.

The assert() macro is familiar to many C programmers; it terminates a program with a
message if its argument evaluates to false (see the assert(3X) reference page). This normal
assert() macro does not work in a kernel module because the normal C library is not
available. However, a similar function is available as the ASSERT() macro in the header
file sys/ debug. h.

The ASSERT() macro compiles to null code unless the compiler variable DEBUG is not
only defined, but defined as YES. When it compiles to executable code, ASSERT() tests
its argument. If the argument evaluates to false, a kernel panic is forced.

Clearly ASSERT() must be used with care, testing conditions that are truly essential to the
integrity of the system. When reporting conditions that are merely operational errors, use
a call to cmn_err() with the CE_WARN option.

The synmon program is a standalone debug monitor that can display and modify
memory, and stop, start, and trace execution, without using any kernel facilities. Using
Synmmon you can set breakpoints in your driver, single-step its execution, and display the
contents of driver and kernel variables.

The facilities of SynmDn are unsophisticated compared to the high-level debuggers you
might use to debug a user-level application. For example, symon does not understand
C syntax, so it cannot display data structures as structures. Execution tracing is done at
the level of machine instructions, not at the level of C statements.

However, you can use sy mmon to examine the operations of a kernel module in a running

system, and resume execution of the system. This is an invaluable facility when
debugging a new driver.

293

10: Testing and Debugging a Driver

How symmon Is Entered

When the system boots a debugging kernel with synmon installed, control can pass into
the debug monitor under several different circumstances:

¢ Early in the bootstrap process, if certain environment variables are set in the
stand-alone shell (see “Entering symmon at Boot Time” on page 295).

* Whenever a control-A character is typed at the system console terminal.

* Whenever a breakpoint is reached or a watchpoint is tripped (see “Commands to
Control Execution Flow” on page 298).

* Whenever a kernel module calls the kernel function debug(uchar_t *msg).
* When a non-maskable interrupt (NMI) is detected.
* When a kernel panic is detected or forced with cmn_err().

When synmon gains control, it displays its “DBG:” prompt at the console terminal and
waits for a command.

To resume execution at the point of interruption, enter the ¢ (continue) command.

Using symmon in a Uniprocessor Workstation

In a single-processor workstation, no IRIX execution takes place while synmon is
running. The mouse and keyboard are unresponsive. (One keystroke may be stored in
the keyboard hardware to be processed when the system resumes execution.) As a result,
time-dependent processes can fail; for example, the system clock is not updated.
Network interrupts are not taken, so if the workstation is acting as an NFS server, it will
appear to be dead to other systems.

Using symmon in a Multiprocessor Workstation

294

In a multiprocessor, the CPU that was interrupted runs sy nmon and nothing else. For
example, the CPU that executes the breakpoint, or the CPU that handles the interrupt
that returns the control-A character, or the CPU in which debug() was called, comes
under the control of symmon. Other CPUs continue to execute normally. However, if the
symon CPU holds a lock, other CPUs may come to a halt waiting for the lock to be
released.

007-0911-210

Using symmon

The symmon breakpoint table is shared by all CPUs. A breakpoint set from one CPU can
be taken by another CPU, or by multiple other CPUs. It is possible to run multiple
instances of symon concurrently. The output from all instances of synmon is
multiplexed onto the system console terminal. However, only one CPU at a time issues
the DBG: prompt. Use the cpu command with no argument to find out which CPU is
prompting. Use the cpu command with a cpu number to switch to a different CPU. (See
“Commands to Control Execution Flow” on page 298.)

Entering symmon at Boot Time

007-0911-210

You can cause the kernel to stop during initialization and enter symmon during the
bootstrap process. In order to do this, you must use the miniroot to set environment
variables.

1. Restart the system, for example by giving the commands sync and hal t .
Eventually, the 5-item PROM menu is displayed at the console terminal.

2. Select item 5, “Enter the Command Monitor.”

3. Set one or both of the environment variables dbgstop and symstop to 1, using
commands such as the following:

>> setenv synstop 1
4. Return to the PROM menu by entering the command exi t .

5. Select menu item 1, “Start System.”

In either case, Synmon seizes the system and displays its DBG: prompt at the system
console during bootstrap. When the dbgstop variable is set, Synmmon takes control of the
system very early in the bootstrap process. Symbolic names are not initialized at this
point. However, breakpoints can be set and memory can be displayed using explicit
addresses.

When the symstop variable is set, symmon takes control after symbols are defined, but

before driver initialization is begun. At this stop, you can display memory and set
breakpoints based on entry point names of your driver.

295

10: Testing and Debugging a Driver

Commands of symmon

The exact set of commands supported by synmon changes from release to release and
from CPU model to CPU model. Many sy mmon commands are useful only to SGI
engineers who are debugging hardware and kernel problems. For a complete list of
commands, see the symmon(1M) reference page, or enter Synmon and give the hel p
command. You can use control-S and control-Q on the console terminal to pause the
scrolling display.

The commands described in this section are generally useful and are available on all CPU
models under IRIX 6.2. These commands can be grouped into the following categories:
e Conversion between symbols and memory addresses.

e Execution control, including commands for stopping, starting, and setting
breakpoints.

¢ Display and modification of memory, including the display of machine registers
and of system data structures such as the buf_t and proc_t objects.

¢ Management of the virtual memory system and the TLB.

Syntax of Command Elements

296

The symmon commands all have the same form: a keyword, usually followed by one or
more arguments separated by spaces.

Many commands take an address value. An address argument value can have one of the
following forms:

Decimal number A number starting with 1-9 is decimal, for example 4095.

Octal number A number starting with 0 and a digit is octal, for example 033.
Hex number A number starting Ox is hexadecimal, for example Oxf f f f 8000.
Binary number A number starting Ob is binary, for example 0b0100.

Symbol A word starting with a non-digit is looked up in the kernel

symbol table, and its address is the value; for example dk_open.

Register A word starting with “$” is taken as a register name, Its value is
the contents of the register at the last interrupt; for example $a2.

Value and offset A value plus or minus a number is a value, for example
$a2- 0x100 or dk_open+128.

007-0911-210

Using symmon

Some commands accept a range of addresses. A range can be written in one of two ways:

* Aswoaluel:value2, meaning an inclusive range of addresses from valuel through
value2, for example prt buf : prt buf +4095.

¢ Aswvaluel#count2, meaning a range of count2 bytes beginning at valuel, for example
prt buf #4095.

The register names that synmon accepts and shows in various displays are the
conventional names used in MIPS assembly language programming. Refer to the
MIPSpro Assembly Language Programmer’s Guide and the processor manuals listed under
“Additional Reading” on page xliii.

Commands for Symbol Conversion and Lookup

The commands summarized in Table 10-1 are used to convert between symbolic names
and their corresponding addresses.

Table 10-1 Commands for Symbol Conversion and Lookup

Command Example Operation

hx name hx dk_read The name is looked up on the symbol table
dk_read Oxfftfffff882b0510 and if it is found, its address is displayed.

lkaddraddr ~ lkaddr 0x882b0510 Symbols near to the specified addr are listed.
0x882af910 lockdisptab Use this command to find out the symbolic
0x882b0510 dk_read location of an unexpected stop.
0x882b051c dk_write

lkup letters hx dk_rea Every symbol that contains the specified

msyms ident

nm addr

0x880d5f10 dk_readcap
0x882b0510 dk_read
0x332b0528 dk_readcapacity

msyms 13

Symbols for module 13 (prefix tcl)
tclinit 0xc0403d9c¢

tclmversion 0xc0405fe0

nm 0xc0403da0
0xc0403da0 tclinit+0x4

letters at any point is listed. There is no way
to anchor the search to the beginning or end
of the name.

The symbols for the loadable module ident
are listed. Use the M command with no
arguments to list all modules and their ident
numbers.

The symbol nearest to the specified addr is
listed.

007-0911-210

297

10: Testing and Debugging a Driver

Note: When symmon displays an address it normally shows a full 64 bits. In a 32-bit
kernel, the most-significant 32 bits of a kernel virtual address are all-binary-1, from
extension of the sign bit of the 32-bit address—as shown in the example of hx in

Table 10-1. When you enter an address to a command in a 32-bit system, you only need
to type the significant 32-bit value.

Commands to Control Execution Flow

The commands summarized in Table 10-2 stop, start, and single-step kernel execution.

Table 10-2 Commands to Control Execution

Command Example Operation

brk brk List all breakpoints currently set.

brk addr brk dk_read Set a breakpoint at the specified addr.

c c Restart execution at the point of interruption in the
current CPU.

¢ cpuid [cpuid]... c0 Restart execution in the specified CPU, or in all

call

call addr [args]

cpu

cpu cpuid

goto addr

quit

call geteminor 0

cpu

cpul

goto geteminor

quit

stopped CPUs. Available in multiprocessors only.

Call a kernel function and report the contents of the
result register on return.

Displays the cpu ID of the currently-executing
CPU. Available in multiprocessors only.

Force sy mmon execution to the specified CPU. That
CPU must be executing symmon. Other CPUs
executing Sy mmon wait. Available in
multiprocessors only.

Set a temporary breakpoint at addr and then
continue execution as for the ¢ command (in effect
“go until addr is reached”).

Return to the boot PROM, forcing an instant reboot.

298

007-0911-210

Using symmon

Table 10-2 Commands to Control Execution (continued)

Command Example Operation

s [count] s8 Single-step through 1 or count instructions,
displaying each instruction and register contents it
uses. A branch and the instruction in “delay slot”
following it count as 1. Steps into subroutines.

S [count] S8 Single-step through 1 or count instructions as for
the s command, but do not step into subroutines.

unbrk n unbrk 2 Remove break point number #. Use br k with no
argument to list break points by number.

wpt {rlwlrw} physaddr wptr 0x0841f608 Set a hardware watchpoint on a physical address.

Tip: One way to force a memory dump from synmon is the command cal | dunpsys.

Following a break or a watchpoint, use the bt command to display the stack history and
use pri ntr eg to display the registers (see “Commands to Display Memory” on
page 300).

The hardware watchpoint used by the wpt command uses hardware registers in the
MIPS R4000 and R10000 processors (the R8000 does not support the watchpoint
registers). When a read or write access is addressed to any byte in the doubleword
specified by the physical address, Synmon gains control and displays the instruction that
is attempting the access on the console terminal.

The argument of wpt must be a physical memory address and a multiple of 8. Use

t 1 bvt op to get the physical equivalent of an address in a user address space (see
“Commands to Manage Virtual Memory” on page 299). In a 32-bit kernel, the physical
equivalent of an address in kernel space is obtained by changing the most significant hex
digit to 0.

Commands to Manage Virtual Memory

The commands summarized in Table 10-3 are used to display and manage the virtual
memory translation system.

007-0911-210 299

10: Testing and Debugging a Driver

Table 10-3 Commands to Manage Virtual Memory

Command Example Operation

cacheflush range cacheflush $6:$6+4096 Flush both the instruction and data caches when
they contain data that falls in range.

tlbdump [lo:hi] tlbdump 1:3 Display the contents of the TLB registers. When a
range of numbers is given, the registers from lo
through hi-1 are displayed.

tibflush [lo:hi] tlbflush Flush (nullify) the TLB registers specified. The
registers are reloaded as required during
subsequent execution.

tlbpid tlbpid Display the process slot number of the process
Current dbgmon pid =79 whose context is in the TLB.

tibvtop addr tibptov 0xffffc000 Display the TLB register that maps addr.

Commands to Display Memory
The commands summarized in Table 10-4 are used to display memory or variables.

Table 10-4 Commands to Display Memory

Command Example Operation

bt [frames] bt4 Display the calling function, the arguments, and the
name of the called function for up to frames stack
frames. Most useful after a break or interrupt.

dis range dis geteminor Disassemble and display the instructions over the
specified range.

dump [-bl-h|-w] dump 0xc0000000 Display memory over a specified range. The options -b,

[-ol-d-x|-c] range -h, and -w specify how memory is grouped, as units of
1,2, or 4 bytes. The options -o, -d, -x, and -c specify
translation into octal, decimal, hex and character.

kp [routine] kp plist Invoke a kernel print routine loaded with the idbg
kernel module. If no routine is given, all available
names are displayed.

300 007-0911-210

Using symmon

Table 10-4 Commands to Display Memory (continued)

Command Example Operation

printregs printregs Display all the registers as they were when the
debugger was entered.

string range [max] string $v1 0x80 Display memory as an ASCII string in quotes. Display
stops at the first null byte, or, when max is specified,
after at most max bytes.

The display routines available to the kp command are discussed under “Using idbg” on
page 302. The names thati dbg accepts as commands are all available under synmon
through the kp command.

Use the dunp command under synmon. Under i dbg, use the hd command for the same
purpose.
Commands to Display the hwgraph

The commands in Table 10-5 are used to display the contents of the hwgraph (see
“Hardware Graph” on page 44).

Table 10-5 Utility Commands

Command Example Operation

graph graph List summary of graph debugging commands.
gsumm gsumm Summarize a graph (default graph is / hw).
ghdls ghdls List all handles to a graph (/ hwby default).

gvertex gvertex 0x004 List edges and attributes of a vertex given its handle.

gnhame gname 0x004 Display name of a vertex given its handle.

007-0911-210 301

10: Testing and Debugging a Driver

Utility Commands

Using idbg

302

The commands summarized in Table 10-6 are general-purpose utilities.

Table 10-6 Utility Commands

Command Example Operation

calc calc Starts a simple stack-oriented calculator (see
text).

clear clear Clear the screen of the system console terminal.

help help List one-line summaries of all available

commands. Use control-S and control-Q to
control the scrolling of the display.

gl[-bl-hl-w | -d] g $al Display one byte, halfword, word or
[addr | $regname] 0x882fadf8: doubleword (default word) of memory, or the
4294967295 Oxffffffff ~ contents of one register at the time symmon was
entered, in decimal and hex.

pl-bl-hl-w | -d] p -w 0xc0000000 4095 Write a byte, halfword, word, or doubleword
[addr | $regname] value (default word) into a saved register or into
memory at the specified address.

The i dbg command is a utility that provides much of the display capability of synmon
but from the command line of a user process, without stopping the system. Many details
of i dbg use are covered in the idbg(1M) reference page. Keep in mind that all idbg
commands are available under the standalone debugger through the kp command (see
“Commands to Display Memory” on page 300).

007-0911-210

Using idbg

Loading and Invoking idbg

Superuser privilege is required to invoke i dbg, because it maps kernel memory. The
command is ineffective unless its support modules have been made part of the kernel.
This can be done permanently by changing the i ri x. smfile (see “Including idbg in the
Kernel Image” on page 287). Alternatively, you can load the needed modules
dynamically using the M command, as follows:

m 1d -i /var/sysgen/boot/idbg.o

Dynamic loading is discussed at more length in the idbg(1M) and ml(1M) reference
pages.

When the support modules are loaded, i dbg can be invoked in three styles.

Invoking idbg for Interactive Use

Invoking the command with no arguments causes it to enter interactive mode,
prompting for one command after another from standard input, as shown in
Example 10-3.

Example 10-3 Invoking idbg Interactively
i dbg

i dbg> plist 187

pid 187 is in proc slot 31

i dbg> qui t

#

The command terminates when qui t is entered or when control-D (end of file) is
pressed.

Invoking idbg with a Log File

007-0911-210

Invoking the command with the - r option and a filename causes it to write all its output
to the specified file, as shown in Example 10-4.

Example 10-4 Invoking idbg with a Log File
idbg -r /var/tnp/idbg. save

i dbg> plist 187

pid 187 is in proc slot 31

i dbg> proc 31

303

10: Testing and Debugging a Driver

proc: slot 31 addr 0x8832db30 pid 187 ppid 1 uid 0 abi IR X5
SLEEP fl ags: |oad uload siglck recalc sv

i dbg> ~D

cat /var/tnp/idbg. save

pid 187 is in proc slot 31

proc: slot 31 addr 0x8832db30 pid 187 ppid 1 uid 0 abi IR X5
SLEEP fl ags: |oad uload siglck recalc sv

#

You can use this method to collect a series of displays in a single file as you test a driver.

Invoking idbg for a Single Command

Commands of idbg

304

You can invoke i dbg with a command on the command line. The output of the single
command is written to standard output, where it can be captured or piped to another
program.

The following example shows one simple use of this feature.

idbg plist | fgrep -c tcsh
3
#

Since the displays of i dbg are very rich, there are endless opportunities to use this mode
to generate data within shell scripts, and to process it using tools such as awk and per | .
Using per | you could write an intelligent display routine that showed the status of your
driver’s private data structures using your own terminology and display format.

Almost all i dbg commands are concerned with displaying kernel memory data in
different ways. There are commands to display almost every type of kernel data.

The vocabulary of commands changes from release to release, and can change within
releases by software patches. Also, the commands available depend on which support
modules are loaded; for example lock and semaphore meters cannot be displayed unless
the ksynch_met er module is loaded (see “Including Lock Metering in the Kernel
Image” on page 288). Only a few commands are listed in the idbg(1M) reference page.

007-0911-210

Using idbg

The commands summarized in this book are generally useful and available on all
platforms in the current release of IRIX. For a complete (but cursory) list, use the
command itself.

idbg help | Ip

In general, commands take zero or one argument. Typically the argument is a number,
which can be any of the following:

* A kernel symbol, optionally +offset

* A number in hexadecimal (starting with 0x)

* A number in octal (starting with 0)

e A number in decimal.

The number is interpreted in the context of the command: sometimes it represents a
process ID (pid), sometimes a process “slot” number or a buffer number. Often

commands treat positive numbers as slot numbers or table indexes, while negative
numbers are treated as addresses in kernel space.

Commands to Display Memory and Symbols

007-0911-210

The commands summarized in Table 10-7 are used to display memory based on specific
addresses or symbols, and to display the addresses for kernel symbols.

Table 10-7 Commands to Display Memory and Symbols

Command Operation

dsym addr [length] Dump memory by words, starting at addr. When a word of memory data is
reasonably close to the value of a kernel symbol, the symbol plus offset is
displayed instead of the hex value.

hd addr [length] Dump memory in bytes, with ASCII translation, starting at addr. When length
is given, it is a count of words (not bytes) to be displayed.

pb Display the strings in the circular putbuf (see “Displaying to the Circular
Message Buffer” on page 292).

string addr [max] ~ Display memory as an ASCII string. Display stops at the first null byte, or,
when max is specified, after at most max bytes.

305

10: Testing and Debugging a Driver

When you display the circular buffer, there is no special indication to show which line is
the newest. You have to deduce the boundary between the newest and oldest lines from
the content.

Commands to Display Process Information

306

The commands summarized in Table 10-8 are concerned with displaying the status of
processes. Processes are recorded in an array of “slots.” The pl i st command gives the
slot number for a given process ID. Many other commands take process addresses.

Table 10-8 Commands to Display Process Information

Command Operation

eframe [addr | Displays the contents of an exception frame. With no argument,
displays the last exception taken for the current process. Otherwise
displays the exception associated with the process specified by address
addr (negative number).

pchain PID Display the slot numbers of sibling processes to process number PID.

plist [PID] With no argument, displays a one-line summary of every active process
slot, including slot number and process ID. Given a nonzero PID,
displays the slot containing that process number.

ptree [PID | addr] With a PID number (greater than zero), finds the process structure for
that process. Otherwise tries to use the process structure at addr, not
always reliably. Displays the command name and arguments for that
process and for all processes that descend from it.

proc [PID | addr] Displays all fields of a process structure specified by process number
PID or address addr (negative number).

signal [PID | addr] Displays information about pending signals for the process specified by
process number PID or address addr (negative number).

slpproc[-2 | -4 | -8] Displays a summary of all processes with p_stat of SSLEEP or SXBRK.
When an argument is given, its absolute value is used as a mask: 2
ignores processes in wait(); 4 ignores processes without upages; 8
ignores processes on a sleep semaphore.

007-0911-210

Using idbg

Table 10-8 Commands to Display Process Information (continued)

Command Operation

ubt slot Displays a backtrace of the call stack of the sleeping process in the
specified slot.

user [PID | addr] Displays the user area associated with the process specified either by

process number PID or address addr (negative number). Less useful
now that the user structure has been eliminated.

Commands to Display Locks and Semaphores

The commands summarized in Table 10-9 display the state of semaphores and locks of
different kinds, including metering information when the metered-lock