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Introduction

About This Guide

This manual, the IRIX Device Driver Programming Guide, provides
information and procedures for developing, installing, and testing UNIX®
device drivers for IRIX™ 5.2, 5.3, and 6.0.

Based on Writing Device Drivers for Silicon Graphics Workstations (007-0910-
010), first published in 1989, the current version contains numerous
corrections and updates as well as information for new platforms and
operating systems.

The IRIX Device Driver Reference Pages, contain all the reference pages (man
pages) relevant to writing user-level and kernel-level device drivers. (See
“Related Documentation” and “Reference Material”for ordering
information.)

Audience

This manual is a guide to writing device drivers for Silicon Graphics®
workstations and servers. It is intended for experienced C programmers and
C++ programmers who have a good working knowledge of the architecture
of Silicon Graphics computer systems.

Further information and support are available through the Silicon Graphics
Developer Program. For information on program membership, please
contact the Developer Response Center at (800) 770-3033 or (415) 390-3033,
or send email to devprogram@sgi.com .
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Introduction

Document Overview

This guide contains the following chapters and appendices:

Chapter 1, “Introduction to Device Drivers,” introduces basic concepts of
devices and provides information on the system hardware/software.

Chapter 2, “Writing a Device Driver,” describes the general interface for
both user-level and kernel-level device drivers and introduces the various
device driver models.

Chapter 3, “Writing a VME Device Driver,” describes the VME-bus and
explains how to write user-level and kernel-level VME device drivers.

Chapter 4, “Writing an EISA Device Driver,” describes the EISA-bus
interface and explains how to write user-level and kernel-level EISA device
drivers.

Chapter 5, “Writing a SCSI Device Driver,” describes the SCSI-bus interface
and explains how to write user-level and kernel-level SCSI device drivers.

Chapter 6, “Writing Kernel-level GIO Device Drivers,” describes the GIO-
bus interface and explains how to write kernel-level GIO device drivers.

Chapter 7, “Writing Kernel-level General Memory-mapping Device
Drivers,” explains how to write kernel-level general memory-mapping
device drivers.

Chapter 8, “Writing Multiprocessor Device Drivers,” addresses questions
about device drivers that run on multiprocessor workstations.

Chapter 9, “Writing Network Device Drivers,” addresses questions
particular to device drivers that run on networked workstations.

Chapter 10, “Driver Installation and Testing,” describes symmon, the kernel
debugger, and explains how to use it.

Chapter 11, “Kernel-level Dynamically Loadable Modules (DLMs),”
describes how kernel modules can be loaded dynamically.



Related Documentation

xvii

Appendix A, “System-specific Issues,” provides information on various
CPUs and platforms. It addresses, among other topics, the differences in
data cache invalidation, write buffer flushing, and VME addressing.

Appendix B, “SCSI Controller Error Messages,” lists common error
messages.

Appendix C, “Device Driver Migration Notes,” gives the information
required to make earlier IRIX device drivers compliant with releases 5.2, 5.3,
and 6.0.

The Glossary contains definitions of some useful terms for device driver
writers; the Index provides another set of entry points to the material in this
manual.

Related Documentation

• GIO Bus Specification, Version 2.1, Silicon Graphics, Inc.

• IRIX Device Driver Reference Pages, Silicon Graphics, Inc., document
number 007-2183-003

• MIPSpro Porting and Transition Guide, Silicon Graphics, Inc., document
number 007-2391-001

• STREAMS Programmer’s Guide, Version 1.0, Silicon Graphics, Inc.,
document number 007-0833-020

Reference Material

• ANSI standards X3.131-1986, 1014-1987, and X3T9.2/85-52 Rev 4B.

• Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX® Device Driver.
John Wiley & Sons, 1992.

• Heinrich, Joseph. MIPS R4000 User’s Manual. PTR Prentice Hall, 1993.

• Hines, Robert M., and Spence Wilcox. Device Driver Programming, UNIX
SVR4.2. Englewood Cliffs, New Jersey: UNIX Press, 1992.

• Kane, Gerry, and Joseph Heinrich. MIPS RISC Architecture. Prentice
Hall, 1992.
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• Leffler, Samuel J., et alia. The Design and Implementation of the 4.3BSD
UNIX® Operating System. Palo Alto, California: Addison-Wesley
Publishing Company, 1989.

• M. Maekawa, A. Oldehoeft, and R. Oldehoeft. Operating Systems
Advanced Concepts. The Benjamin/Cummings Publishing Company,
Inc., 1987.

• A. Silberschatz, J. Peterson, and P. Galvin. Operating System Concepts,
Third Edition. Addison Wesley Publishing Company, 1991.

• STREAMS Modules and Drivers, UNIX SVR4.2. UNIX Press, 1992.

• UNIX System V Release 4 Programmer’s Guide, UNIX SVR4.2. UNIX
Press, 1992.

Notation and Syntax Conventions

This guide uses the following notation and syntax conventions:

italics Indicates arguments in a command line that you must
replace with a valid value. In commands and functions, it
indicates a portion of the name that is a variable, for which
you must make the appropriate substitution, as well as
function arguments. In text, italics indicate document titles,
filenames, glossary items, new terms, and variables.

bold Indicates commands, routines, and entry point names, as
well as the names of UNIX and IRIX functions. A function
with a man page in the IRIX Device Driver Reference Pages,
manual is indicated as follows:

ioctl(D2)

where D2 is the number of the section that contains the
man page.

Note: If a reference to a function is hyperlinked to the
online version of the IRIX Device Driver Reference Pages, it
looks like this instead:

ioctl(D2)
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The online version displays in red, and you can go directly
to the online man page by clicking on the entry.

courier Indicates computer output and program listings.

courier bold Indicates user input to the computer and nonprinting keys.

[ ] Enclose optional command arguments. (Do not enter the
brackets.)

. . . Indicates that the preceding optional items can appear more
than once in succession.

| Separates a list of items, of which you can choose one.
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Chapter 1

1. Introduction to Device Drivers

This chapter introduces the basic concepts of hardware and software devices
and provides information on the system hardware, including the MIPS
processor and I/O bus architecture and the operating system software.

It contains the following sections:

• “Driver Overview” on page 2

• “System Hardware” on page 4

• “System Software” on page 18
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Driver Overview

A device driver is a software module that enables communication between a
user process and a peripheral device. It may perform some or all of the
following functions:

• Take the device online and offline

• Set parameters in the device

• Transmit data from the kernel to the device

• Receive data from the device and pass it to the kernel

• Handle and report I/O errors

• Handle exclusion and other multiuser, multitasking arbitration

Device Types

There are two basic types of devices available on any UNIX system: software
devices, such as RAM disks, and hardware devices, such as hard disks and
printers. Most of the discussions in this book are about hardware devices.

Software Devices

In a UNIX system, the “device” driven by a software driver is usually a
section of memory and is referred to as a pseudo-device. The function of a
pseudo-device driver may be to provide access to system structures that are
unavailable at the user level.

Hardware Devices

Some examples of hardware devices are CD ROMs, disk drives, tape drives,
printers, scanners, and terminals.

Hardware devices are categorized as block devices, character devices, mmapped
devices, or networked devices. A block device is a mass storage device (such as
a disk) that can accept data, store it, and return data to the processor in fixed-
length transfers. A block device driver uses the integrated page cache for all
data transfers. Device drivers that support the block interface are complex
and are not covered in this manual.
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A character device (such as a terminal, network interface, or plotter) is a
device that deals with arbitrary streams of data that typically have no
particular structure. In addition, many character devices impose alignment
restrictions (such as quad-aligned) and often require that you transfer data in
multiples of the device’s fundamental size. In particular, most IRIX devices
doing DMA require the starting address at least to be aligned on a 32-bit
boundary (the lowest two bits of the address are zeros). Unlike block
devices, character devices do not use the integrated page cache.

Mmapped device drivers are those in which the hardware is memory
mapped into a user’s address space. No interrupt or DMA service routine is
available to the user process.

Networked device drivers are covered in Chapter 9, “Writing Network
Device Drivers”.

It is possible, however, for some devices to fit both systems. Disk drivers
often allow blocked, cached access as well as character, uncached access.
Generally speaking, though, custom device drivers are most often written
for character devices.

In some cases, a controller board may have more than one device connected
to it. A SCSI-bus controller board, for example, normally has up to seven
devices attached to it, and there may be multiple boards.

Levels of Device Drivers

There are two level of device drivers: user-level and kernel-level. For some
devices, such as GIO bus cards, the device driver should be a kernel-level
driver.1 However, for devices that interface to a SCSI bus, EISA bus, or VME
bus, it is possible to write a user-level device driver that controls the device
by communicating directly to the bus.

1 Although it is possible to write a user-level GIO bus driver, it is discouraged because
the user-level interfaces are not publicly available; in any case, most GIO bus boards
are designed to take advantage of DMA, which requires a kernel-level driver.
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User-level Device Drivers

Users cannot always treat the user-level device as just another file to be
opened, read, written, and closed with the standard IRIX system commands.
If you write a user-level driver, you may have to provide your users with
device-specific routines or encapsulate the functionality in an application.
This is normally the case with printers and scanners, for example.

Kernel-level Device Drivers

Deciding whether you can write a user-level driver is not difficult. It is also
fairly easy to decide whether to write a VME bus, EISA-bus, or SCSI-bus
user-level driver. However, if you decide to write your own kernel-level
device driver, it is a little more difficult to decide what sort of kernel-level
device driver to write. This guide provides you with the criteria you need to
determine the appropriate driver model for a given device.

Note: Because IRIX kernels cannot, as a rule, be preempted, any driver that
sits in a loop waiting for some condition to be satisfied may tie a processor
up for as long as it wants. Real-time processes, such as audio, are very
sensitive to such delays.

System Hardware

The Silicon Graphics Indigo™, Indigo 2™, Indy™, Crimson™,
CHALLENGE™/Onyx™, and POWER CHALLENGE™/POWER Onyx™
families of workstations and servers may contain the following hardware
components:

• One or more MIPS® RISC CPUs

• Local memory bus

• Zero or more VME-bus adapters

• Zero or more EISA-bus adapters

• One or more SCSI-bus adapters

• Zero or more GIO-bus adapters
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Although each Silicon Graphics system provides a similar architectural
interface, there are some hardware-specific differences that affect how you
write a device driver. Most of this guide discusses only those features that
are common to all systems. For a description of hardware-specific
differences, see Appendix A, “System-specific Issues” (which also describes
how to write drivers that work correctly across all Silicon Graphics systems).

Hardware Platforms

Each basic hardware design results in differences in the operating system
kernel such that a driver must be compiled for each architecture. Because
there is some duplication of CPUs across hardware architectures, Table 1-1
may be useful.

Table 1-1 Hardware Series and the CPUs They Use

Product Family CPU R2000 R3000 R4000 R8000

POWER CHALLENGE/POWER Onyx
POWER Indigo2 Series

IP21
IP26

X

CHALLENGE/Onyx Series IP19 X

Crimson Series IP17 X

Indigo Series IP12
IP20
IP22

X
X
X

Indigo2 Series IP22 X

Indy Series IP22 X

IRIS-4D™/20/30/100/200/300/400 Series IP4
IP5
IP6
IP7
IP9
IP11
IP12
IP15

X
X
X
X
X

X
X
X
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For purposes of writing device drivers, however, all R4000-series processors
may be considered identical, although their clock speeds and performance
characteristics may vary. That is, source code can be the same if interfaces are
followed carefully. For further details, see “CPU Types” in Appendix AMIPS
RISC Processors

All MIPS 32-bit and 64-bit RISC processors have an on-chip memory
management unit (MMU) that supports demand-paged virtual memory. For
detailed information on the MIPS architecture, see MIPS RISC Architecture.

MIPS RISC Processors Interrupt Masking

Each device interrupts the CPU at a specific interrupt priority level. While the
CPU is serving an interrupt, it ignores any other interrupts at the same or
lower interrupt level. To prevent device interrupts from occurring before
your driver is ready for them, your driver can raise the processor interrupt
level in the device driver at any time. After your driver executes the critical
segment of code, it must restore the previous interrupt priority.

Note: Only kernel-level drivers can handle interrupts.

Raising the interrupt level is usually not sufficient to prevent your driver
from being interrupted on multiprocessing systems. (See “Reliable
Multiprocessor Spinlocks” in Appendix A, “System-specific Issues.”)
Drivers on multiprocessing systems must use additional mechanisms, such
as semaphores and spinlocks. (See psema(D3X) in the IRIX Device Driver
Reference Pages.)

Understanding Driver Address Space

Drivers have different functional needs for addresses, including:

• Mapping to (usually cached) physical memory for the driver’s own
code

• Static and stack data

• Dynamically allocated data

• Mapping to I/O control registers (called Programmed I/O or PIO)

• DMA address to map to physical memory for a controller to use
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To describe kernel-resident driver address spaces, first recall the following
points about the form of addresses in a user process:

• The virtual address is either 32 or 64 bits.

• The most significant bits are those in the virtual page number, which is
translated to a physical page.

• An invalid address causes the user process to get a SIGSEGV, which
typically results in a core dump.

With respect to addresses in a kernel-resident driver:

• The virtual address is either 32 or 64 bits.

• A range of values, varying by processor type, called kseg0, translates 1:1
to physical addresses.

• kseg0 is often used for kernel code and data, as well as for some PIOs.

• A range of values, translated by the translation look-aside buffer (TLB),
are often used for dynamically allocated kernel data.

• A driver should not assume that it knows that one type or the other is
in use.

A driver also has to manipulate DMA addresses. These address values
cannot be used for driver (processor) load/store instructions; rather, they are
for controller usage in DMA operations.

Caution: If a driver executes a load/store to an address that is not valid,
data corruption may result, or the kernel may panic.

Virtual to Physical Memory Mapping

The R2000/3000 uses 4096-byte pages for virtual address mapping in the
format shown in Figure 1-1. The most significant 20 bits of a 32-bit virtual
address (the virtual page number, or VPN) allow mapping of 4 KB pages.
The least significant 12 bits (offset within a page) are passed along
unchanged. The three most significant bits of VPN (bits 31-29) further define
how the addresses are mapped, according to whether the R2000/3000
processor is in user mode or kernel mode.

Note: For all device drivers, the R2000 and the R3000 processors are
considered identical.
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Figure 1-1 MIPS 32-bit Virtual Address Format (MIPS II Mode)

The Crimson, R4000 Indigo, Indigo2, and Indy series workstations use a
MIPS R4000 series microprocessor in MIPS II mode (see Figure 1-1). R4000
MIPS II mode implements the same address map as R2000/3000. (See the
MIPS R4000 User’s Manual for further details.)

Virtual−to−physical 
translation in TLB

Offset passed unchanged 
to physical memory

Virtual Page Number (VPN) offset

PSIZE = 32

ASID

37

12 bits = 4 KB page size

11 0122832

20 bits = 1 M pages

bits 
31−29

0XX

11X
101
100

kuseg
kuse0

kuse2
kuse1
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Figure 1-2 MIPS 64-bit Virtual Address Format (MIPS III Mode)

The CHALLENGE/Onyx series uses the R4400, which is functionally the
same as the R4000 for driver purposes, and the POWER CHALLENGE/
POWER Onyx series uses the R8000 processor. All MIPS processors use the
same address mapping scheme in 32-bit mode; in 64-bit mode, they use
R8000 (MIPS III) address mapping (see Figure 1-2).

Privilege States/Modes

The R2000/3000 provide two privilege modes:

Kernel Analogous to the “supervisor” mode provided by other
systems.

User The mode in which the system executes non-supervisory
programs.

The R4000/4200/4400/4600 provide three privilege modes:

Kernel Full privilege state (same as the R2000/3000 kernel mode).

Virtual−to−physical 
translation in TLB

Offset passed unchanged 
to physical memory

Virtual Page Number (VPN) offset

PSIZE = 32

ASID

71

12 bits = 4 KB page size

11 0126264

28 bits = 256 M pages

Bits 62 and 
63 of the virtual 

address select
user, supervisor, 
or kernel address

0 or −1

4061 39

* 64−bit systems use 16 KB pages, which
   increase the off set from 12 to 14 bits
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Supervisor A state of lesser privilege than kernel mode. When
executing in supervisor state, the system has access to the
supervisor and user address space, but not the kernel
address space. This mode is currently unused in IRIX.

User The same as the R2000/3000 user mode.

The R8000 also provides three privilege modes:

Kernel Full privilege state.

User 32-bit The same as the R2000/3000/4000 user mode.

User 64-bit R8000 64-bit user mode.

User Mode Virtual Addressing

In user mode, a 32-bit process has 2 GB of virtual address space, appearing
to start at location zero. Therefore, all valid user-mode virtual addresses
have the most significant bit cleared. If, when in user mode, your code tries
to reference an address with the most significant bit set, it will generate an
Address Error Exception. To help programmers detect a common error, page 0
is never mapped.

Kernel Mode Virtual Addressing

Because kernel virtual memory divides physical memory several different
ways, you can control the use of data caches and Translation Look-aside Buffers
(TLBs) by specifying ranges of virtual addresses with different attributes.

When the processor is operating in kernel mode, three distinct address
spaces (in addition to kuseg) are simultaneously available:

kseg0 This virtual address range is cached but not mapped by the
TLBs. This is the type of memory you get when you declare
a global in your driver code. This memory goes through the
data cache during read/write operations but is not mapped
by the TLBs. It is easy to convert the kseg0 address to a
physical address by using the masking address bits.

Note: Driver globals may not always reside in kseg0; with
loadable drivers, they may live in kseg2.
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kseg0 consists of 512 MB of cached, unmapped address
space, starting at virtual address 0xa800000000000000.

When the most significant three bits of an address are “100,”
the virtual address space selected is the 512 MB of kernel
physical space, kseg0. The R2000/3000 directly maps
references within kseg0 onto the first 512 MB of physical
address space. These references use cache memory, but they
do not use TLB entries. Typically, the operating system uses
this segment of memory for kernel-executable code and
static kernel data.

kseg1 This virtual address range is neither cached nor mapped.
Memory does not go through the data cache during read/
write operations, nor are the addresses translated by the
TLBs. This space is used for volatile memory.

kseg1 consists of 512 MB of uncacheable, unmapped virtual
address space, starting at 0x9000000000000000.

When the most significant three bits of a virtual address are
“101,” the virtual address space selected is the 512 MB of
kernel physical space, kseg1. The processor directly maps
kseg1 onto the first 512 MB of physical space. The operating
system typically uses kseg1 for I/O registers and ROM code.

kseg2 Although this virtual address range can be both cached and
mapped by the TLBs, it is not physically contiguous. This is
where automatic variables declared in your driver come
from, and it is where calls such as kmem_alloc() get their
memory.

Note: Use the PHYSCONTIG flag to request physically
contiguous pages.

kseg2 consists of and address range of 1024 MB of cacheable,
mapped virtual address space starting at
0xc000000000000000.

When the most significant two bits of the virtual address are
“11,” the virtual address space selected is the 1 GB of kernel
virtual address, kseg2, which uses TLB entries to map virtual
addresses to arbitrary physical ones, with or without
caching. The operating system uses kseg2 for stacks and per-
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process data that it must trap on context switches, for user
page tables (memory map), and for some dynamically
allocated data areas.

kuseg This user physical space has only physical pages, from the
point of view of a device driver. In kernel mode, access
generates a bus error.

Kernel virtual memory spaces k0, and k1 remain mapped unless you
specifically unmap them; consequently, you can read from and write to these
spaces from the bottom half of your driver. This is not true for kuseg.

MIPS processors enter kernel mode whenever an interrupt, a system
instruction, or an exception occurs, and return to user mode only with a
“Return from Exception” instruction. In general, address mapping is
different for user and kernel modes. However, the translation lookaside
buffer (TLB) maps all references to user address space, kuseg, identically,
whether those references are made from kernel or user mode. In addition,
the TLB controls cache access. Figure 1-3 is a diagram of the address/data
path flow corresponding to the preceding descriptions.

Figure 1-3 Architectural Block Diagram of Address/Data Flow

To simplify the management of user mode from within the kernel, the user-
mode address space is a subset of the kernel-mode address space.

Host
CPU

Bus
Adapter

Address
translation

Issue
interrupt
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load/store
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translation

m
em

ory
reference
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Figure 1-4 illustrates the virtual-to-physical memory mapping for both user
and kernel modes, and Figure 1-5 contrasts 32-bit (MIPS II) with 64-bit
(MIPS III) modes for R4000 and R8000 platforms. There is a description of
address mapping in various modes after the figures.

Note: Not all systems have physical memory at location 0. Also, while the
class of device determines the VME address range, each GIO device
responds to the same address range.

Figure 1-4 MIPS II Virtual Memory Map
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Figure 1-5 MIPS II 32-bit versus MIPS III 64-bit Kernel Mode Address Space
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Bus Interfaces

There are several types of bus interfaces available for Silicon Graphics
workstations and servers:

• VME-bus interface

• SCSI-bus interface

• EISA-bus interface

• GIO-bus interface

Not all bus interfaces are available on all systems. Table 1-2 lists the bus
interfaces available for each Silicon Graphics platform. The individual bus
interfaces are discussed briefly below.

a. Requires an IBus to GIO adapter. Not available for custom devices.

b. Crimson systems with 4GI adapters support GIO-bus graphics.
Not available for custom devices.

Table 1-2 Bus Interfaces for Silicon Graphics Platforms

Product Family VME SCSI EISA GIO

POWER CHALLENGE/POWER Onyx Series Systems X X Xa

CHALLENGE/Onyx L and XL Series Systems X X Xa

Crimson Series Systems X X Xb

Indigo Series Systems X X

CHALLENGE M and Indigo2 Series Systems X X X

CHALLENGE S and Indy Series Systems X X

IRIS-4D/20/30/100/200/300/400 Series Systems X X
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VME-bus Interface

The VME (VERSA Module Eurocard) bus is an industry-standard bus for
interfacing devices. It supports the following features:

• Seven levels of prioritized processor interrupts

• 16-, 24-, 32-, and 64-bit address spaces

• 8-, 16,- 32-, and 64-bit data accesses

• DMA to and from main memory

The VME-bus does not distinguish between I/O and memory space, and it
supports multiple address spaces. This feature allows you to put 16-bit
devices in the 16-bit space, 24-bit devices in the 24-bit space, and 32-bit
devices in the 32-bit space. So you must know which of the three address
spaces that the board uses when designing a VME device driver. Most VME
systems also support VME-SCSI adapters with two interfaces per board.

IRIX assumes that VME devices are I/O channel resources and that they will
relinquish bus access promptly to the MIPS processor. IRIX has no model for
multiprocessing on the VME bus. PIO access is much slower than DMA, so
you may want to “Just say ‘No’ to PIO” for better performance.

Note: On some devices, you can use jumpers or switch settings to configure
the device to use a particular address space. Some Silicon Graphics systems
have DMA-mapping registers to make memory appear contiguous to the
VME card.

For additional information on VME-bus operation, see the ANSI/IEEE
1014-1987 Standard.

EISA-bus Interface

The EISA (Extended Industry Standard Architecture) bus standard is an
enhancement of the ISA (Industry Standard Architecture) bus standard
developed by IBM for the PC/AT. EISA is backward compatible with ISA
and expands the ISA data bus from 16 bits to 32 bits and provides 23 more
address lines and 16 more indicator and control lines.
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The EISA bus supports the following features:

• all ISA transfers

• bus master devices

• burst-mode DMA transfers

• 32-bit memory data and address path

• peer-to-peer card communication

• dynamic bus sizing (i.e., 32-bit bus master to 16-bit memory)

For additional information on EISA-bus operation, see the ANSI/IEEE 1014-
1987 Standard.

SCSI-bus Interface

The SCSI-bus is an industry standard I/O bus designed to provide host
computers with device independence within a class of devices, such as disk
drives, tape drives, and image scanners. SCSI is an acronym for Small
Computer System Interface.

All Silicon Graphics systems that run IRIX 5.x or 6.0 provide an interface to
at least a single SCSI-bus for peripherals that support the SCSI standard.
Your device driver can place commands on the bus by using the SCSI host
adapter driver. Systems with POWERchannel™ I/O processor boards (IO3)
support two SCSI interfaces per POWERchannel board; CHALLENGE
systems support up to 32 SCSI interfaces. POWERchannel-2™ (IO4) boards
support many more SCSI interfaces per board.

Caution: All SCSI devices on a bus should support the connect/disconnect
strategy while performing operations that take relatively long periods to
perform. However, while the device driver can be configured not to time out,
serious system throughput and reliability issues could occur.

Most VME systems also support VME-SCSI adapters with two interfaces per
board.

For additional information on SCSI-bus operation, see the ANSI standards
X3.131-1986 and X3T9.2/85-52 Rev 4B.
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GIO-bus Interface

The GIO-bus is a family of synchronous, multiplexed address-data buses for
connecting high-speed devices to main memory and CPU for Silicon
Graphics systems. The GIO-bus has three varieties: GIO32, GIO32-bis, and
GIO64.

• The GIO32 is a 32-bit, synchronous, multiplexed address-data bus that
runs at speeds from 25 to 33 MHz. This bus is found on R3000-based
Indigos.

• The GIO32-bis is a 32-bit version of the non-pipelined GIO64 bus or a
GIO32 bus with pipelined control signals. This bus is found on R4000-
based Indigo and Indy workstations.

• The GIO64 bus is a 64-bit, synchronous, multiplexed address-data bus
that can run at speeds up to 33 MHz. It supports both 32- and 64-bit
GIO64 devices. GIO64 has two slightly different varieties: non-
pipelined for internal system memory, and pipelined for graphics and
pipelined GIO64 slot devices. This bus is implemented in the Indigo2

platform.

For additional information on the operation of the GIO bus, see the
GIO Bus Specification.

System Software

For kernel-level device drivers, all 4.x and later versions of the IRIX
operating system provide a consistent, device-independent interface that
allows the user to treat a device as a file to be opened, read, written, and
closed. These calls serve as the interface between the user and the device (see
Figure 1-6). This means that, for most I/O operations, you need not provide
the user with device-specific system calls. Instead, the user can use the
standard system call, open(), to get a file descriptor for the device, then read,
write, and close the “file” pointed to by the file descriptor. Internally, the
system calls use the driver module that you have written to handle the
device.
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Figure 1-6 Device Driver Position in the Kernel
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2. Writing a Device Driver

This chapter describes the general interface for both user-level and kernel-
level device drivers and introduces the various user-level and kernel-level
device driver models.

It contains the following sections:

• “Creating Device Drivers” on page 21

• “Device-special File” on page 22

• “Including a Device Driver in the Kernel” on page 26

• “Driver Entry Points” on page 28

• “Writing Other Driver Routines” on page 42

Creating Device Drivers

There are two levels of device drivers: user-level and kernel-level. For some
devices, such as GIO-bus cards, the device driver must be a kernel-level
driver. You can write a user-level device driver, however, for devices that
interface to a SCSI, EISA, or VME bus.

Creating User-level Device Drivers

User-level device drivers let you use system functions to map the device to
user space and perform simple I/O operations. You do not have to
understand how the software environment affects devices in the IRIX
operating system. However, where specific versions of IRIX, such as 5.2 and
5.3 (both 32-bit) and 6.0 (64-bit), affect your decisions, or the performance of
your driver, the differences are noted.
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Creating Kernel-level Device Drivers

If you decide to write a kernel-level device driver, you need to become
familiar with the software environment, conventions, and data structures
that apply to device drivers running under the IRIX operating system. To
create a kernel-level driver from scratch, you must:

1. Create a device-special file.

2. Create a master file.

3. Write and compile the driver code (-coff)1.

4. Create a kernel that includes the driver object code.

5. Reboot using the new kernel.

6. Debug the driver.

Steps 4 and 5 may be omitted if the driver is loadable. See Chapter 11,
“Kernel-level Dynamically Loadable Modules (DLMs),” on how to make a
device driver loadable.

Except for step 3, all the steps in this procedure are simple and mechanical.

Device-special File

Once you write a kernel-level IRIX device driver, communication with a
device is a matter of accessing a file called a device-special file. Each device has
its own device-special file, conventionally kept in the /dev directory. Because
IRIX makes kernel-driven devices look like files, a user-level process can use
the standard operating system calls to open the file/device, read from the
file/device, write to the file/device, and so on. For most I/O operations, the
user program needs no device-specific system call when it deals with a
device driven by a kernel-level device driver. See the ioctl(D2) man page.

1 Compile the object file with the -coff compiler flag for all IRIX 5.x drivers but not for
IRIX 6.0 drivers. While Indigo and Indigo2 platforms require this flag, IRIX 64-bit
compilers do not support it. For the most appropriate flags for various system
configurations, see the file /var/sysgen/Makefile.kernio.
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Creating Device-special Files

The device-special file is not an ordinary file. You need to use a special
system administration command, mknod, to create a device-special file.

Synopsis

mknod filename class major# minor#

Arguments

filename The pathname of the device-special filename. The directory
the file commonly resides in /dev.

class Specifies the class type of the device—block or character—
to which the device-special file refers.

b specifies a block device. A block device, such as a
magnetic tape or disk drive, transfers data in blocks
through the buf structure.

c specifies a character device. A character device, such as a
terminal or printer, transfers data character-by-character,
perhaps assembling the stream into blocks as needed by
the underlying hardware.

major# The major number of the device.

minor# The minor number of the device.

Major and Minor Device Numbers

Internally, the kernel does not deal with filenames to differentiate among
devices. Instead, the kernel uses major and minor device numbers. The
major device number identifies the driver module to use for a given special
device. This varies among operating systems:

• IRIX 5.2 defines 255 distinct major numbers (0 to 254).

• IRIX 6.0 uses the same numbering scheme as IRIX 5.2.

• IRIX 5.3, on the other hand, defines only 511 major device numbers (0 to
510).
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While the change from IRIX 5.2 to IRIX 5.3 does not permit the use of all 14
bits of the SVR4 major_t value, it is a compromise between a demand for
more major numbers and conserving kernel data space, since the number of
major values defines the size of the MAJOR table and the [cb]devsw tables.
This increases the size of the variable necessary to contain a major device
number from an unsigned char to at least a short. The master.d/README files
contain further information on this topic.

Most device drivers do not need to know what their major number(s) are;
those that do should use the DDI getmajor() routine and major_t data type
to manipulate them.

If you have been accessing the MAJOR array as an array of unsigned chars,
it is now an array of unsigned shorts. The DONTCARE value has also
changed, and the lboot program has been modified to accommodate these
alterations.

In any case, the number you choose as the major number for your device
driver must not be assigned to any other device. See /usr/include/sys/major.h
on your system for a list of assigned major numbers.

The minor number is 18 bits long and can contain values from 0 to 0x3FFFF.
The minor device number has no predetermined use, so your device driver
can use the minor device number as you see fit. For example, the driver can
use the minor device number to differentiate multiple devices on the same
controller.

See the man pages for the MAKEDEV(1M), master(4), mknod(1M)
commands for additional information.

Device-special File Example

To create a device-special file, use the mknod command. For example:

mknod /dev/tty13 c 2 13

name of the device-special file

specifies a character device

major number of the device

minor number of the device
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Configuration Files

Device controls are an extensible way to change or query things about
devices. They fall into two categories: those intercepted by the X server and
those used by the device drivers. The server uses the x_init controls, which
change the way the X server views devices. The device drivers use
device_init controls, which change device characteristics.

You can issue X server device controls on the fly by using the devctrl
program (in 4Dgifts1) or by calling XSGIDeviceControl from within a
program, or by storing them in configuration files, which reside in the
/usr/lib/X11/input/config directory.

There are (potentially) two configuration files per device in the directory
/usr/lib/X11/input/config. The device_init options live in a file with the same
name as the STREAMS module that implements the device (this is also the
name of the link created in /dev/input). The x_init options live in a file with
the X name of the device (as supplied by the STREAMS modules). Some
devices use the same name for the STREAMS module and for the X device
(tablet, mouse), but some use different names for the two:

When the X server finds a new device (or when it starts up), it:

• opens the device and finds a STREAMS module

• issues device_init controls

• asks the device to describe itself

• issues x_init controls

• closes the device (unless autostart is on for it).

1 While some of the files in /usr/poeple/4Dgifts are in the IRIX 6.0 release, 4Dgifts itself is
not included.

STREAMS Name X Device Name

sball spaceball

calcomp tablet
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When a program opens a device that is not autostarted or opened by another
program, the X server:

• opens the device and finds the STREAMS module

• issues device_init controls

• issues x_init controls

• starts reporting events from the device.

The X server intercepts about a dozen x_init controls. For a list of the x_init
controls and some of the more common device_init controls, see the
README file in /usr/lib/X11/input/config.

Including a Device Driver in the Kernel

The lboot utility allows you to link device drivers to the kernel. It requires
the following files, all of which must reside under the /var/sysgen directory:

boot This file is a symbolic link to the directory /usr/cpu/sysgen/
IPxxboot, where xx represents the CPU type. This directory
contains all the device driver object files and archives. When
your driver is successfully compiled, you must copy it to the
/usr/cpu/sysgen/IPxxboot directory. The name of your driver
must end with an “.o” suffix (or with “.a” if it is a library).
See “CPU Types” on page 320 for a listing of MIPS CPUs
and their IP numbers.

Note: For successful compilation, IRIX 5.x drivers require
the -coff option; IRIX 6.0 drivers cannot use the -coff option.

master This file contains information that lboot uses to create the
device switch table, as well as to indicate dependencies
among other kernel modules. Each driver must have a
master file stored in the /var/sysgen/master.d directory. The
name of the master file must be the same as the software
module. Among other things, the master file contains the
major device number for the device-special file. It also
contains a prefix used to build the driver entry points. For
more information, see the master(4) man page.
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mtune This directory contains information on the external system
tunable parameters of the driver module, including default
values and valid value ranges. For more information, see
the mtune(4) man page.

system This directory contains files with directives that tell lboot
whether to:

1. Include a driver module.

2. Conditionally include a driver module.

3. Exclude a driver module.

For each driver, you must create a system file in the directory /var/sysgen/
system. The restriction on filenames is that they must end in .sm in order for
lboot to recognize and process them. See the system(4) man page for more
information.

Chapter 3, “Writing a VME Device Driver,” Chapter 4, “Writing an EISA
Device Driver,” Chapter 5, “Writing a SCSI Device Driver,” and Chapter 6,
“Writing Kernel-level GIO Device Drivers,” provide details on the syntax of
these files.

When these files are present under /var/sysgen, you can create a kernel that
includes the new driver. To create a new kernel:

1. Become root.

2. Copy the current kernel to a safe place before rebooting.1

# cp /unix /unix.orig

3. Create the new kernel, /unix.install, by running:

# /etc/autoconfig -f

(Use the -v option during debugging.)

1 You can save disk space by using the ln command instead of cp; However, when you
reboot, unix.install gets copied to unix, thus wiping out the old kernel if it is linked. Use
ln to save space, use cp for reliability.
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4. Reboot the system. When you issue the reboot command, the system
removes the current kernel and renames unix.install, the kernel you
have just created, to /unix:

# reboot

Note: If you include a just-written and undebugged device driver, create a
debuggable kernel. See “Making a Debuggable Kernel” in Chapter 10 for
more information. It is also useful in this case to examine the generated file
/var/sysgen/master.c to confirm that the entries for your new driver are
correct.

Driver Entry Points

A set of driver entry point routines define what the system must do when a
user-level program executes a system call, such as open(), that accesses the
device. Because the user expects to treat the device as a file, you must write
a driver entry point routine for each operation normally performed on a file,
such as open, read, write, and close. You will probably also have to write
additional driver routines to handle initialization at system power-up.

When you successfully configure a driver into the kernel, lboot
automatically adds members (one for each entry point in the driver) to the
cdevsw structure, the character device switch table.

Note: The cdevsw structure is used for character device drivers; a block
device driver structure would be named bdevsw. STREAMS drivers, which
have user-accessible device nodes, such as /dev/llc2, also belong in the cdevsw
structure; STREAMS modules, which have no device nodes, belong in
fmodsw.

The section of the cdevsw structure that maintains the pointers to the device
entry points for a device called drv would look like this:

struct cdevsw cdevsw[] = {
    { nodevflag, 0, drvopen, drvclose, drvread, drvwrite,
    drvioctl, drvmmap, drvmap, drvunmap, drvpoll, 0, 0 },
};

When the kernel handles a system call, it can find a specific entry point for a
device if it constructs the name of the appropriate cdevsw member. For
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example, if the kernel must handle an open() for a device, drv, the kernel
knows that drvopen is the member of csdevsw that contains a pointer to the
open routine for the drv device.

Missing Driver Entry Points

If your driver is missing a definition for an entry point, lboot generates a
stub that points to nulldev(). If the user makes the corresponding system call
on that device, the system call returns an error. Your driver must always
include definitions for some driver entry points, such as the device open()
and close() entry points. However, many devices do not perform memory
mapping and, therefore, do not need the map() and unmap() entry points.
You may omit such entry points from the driver object module.

Character and Block Entry Point Driver Routines

Currently, the standard names for entry points are as shown in Table 2-1:

Your driver normally contains an entry point named for at least drvopen(),
drvclose(), drvread(), and drvwrite(). See Table 2-2 for a somewhat fuller
description of these entry points.

Table 2-1 Standard Entry Points

drvopen() drvclose() drvread() drvwrite()

drvinit() drvedinit() drvmmap() drvmap()

drvunload() drvunmap() drvpoll() drvioctl()

drvhalt()
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The arguments and expected return values of each driver entry point are
described below. The examples use a generic driver prefix drv where
appropriate.

Note: The names of the procedures in your driver must start with the letter
prefix of up to 14 letters for the device as given in the master.d file. For
instance, if you write a driver for a device called cdr, the names of the entry
points (and all the other routines defined in the driver) must start with cdr—
cdropen, cdrclose, cdrread, and so on. Procedures in this manual use the
prefix drv.

Table 2-2 Entry Point Driver Routines

Routine Description

open The kernel calls drvopen() when the user process issues an open()
system call.

close The user process invokes the close() system call when it is finished
with a device, but the system does not necessarily execute your
drvclose() entry point for that device.

read or
write

The kernel executes the drvread() or drvwrite() entry point whenever
a user process calls the read() or write() system calls

ioctl Character devices may include a “special function” entry point,
drvioctl().

poll A character device driver may include a drvpoll() entry point so that
users can use select() or poll() to poll the file descriptors opened on
such devices.

mmap,
map, and
unmap

The System VR4.x mmap() function establishes a mapping between a
process’s virtual address space and a memory object. The IRIX device
drvmmap(), drvmap(), and drvunmap() entry points are used in
device drivers for memory-mapped devices. See the respective man
pages for details.

devflag This sets the bitmask of flags that specify the driver's characteristics to
the system.
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open – Gain Access to a Device

The kernel calls the drvopen() routine when the user process issues an open()
system call. You must write your drvopen() entry point so that it prepares the
device for I/O operations.

Your code for the drvopen() routine must be able to handle requests from
multiple processes and to make appropriate responses, depending on the
current state of the device. For example, an exclusive user device may be in
a busy or not busy state; or a multiuser device may be not in use and in need
of initialization; or the same device may be in use, initialized, and able to
handle more users or not.

Also, drivers need a way to determine the ABI (Application Binary Interface)
of the current user process so they can properly interpret structures passed
in for ioctls. By using the following defines, which give the driver the size of
various entities in bytes, a function in usrabi returns an error if no user
process is running or else copies the type size information into a structure
provided by the caller. (See ddi.h for a definition of usrabi.) A good driver will
handle all possibilities or, at least, assert() that 64-bit longs and pointers go
togther.

typedef struct __userabi {
        short uabi_szint;
        short uabi_szlong;
        short uabi_szptr;
        short uabi_szlonglong;
} __userabi_t;

Synopsis

#include <sys/types.h>
#include <sys/file.h>
#include <sys/errno.h>
#include <sys/open.h>
#include <sys/cred.h>
#include <sys/ddi.h>
#include <sys/vmereg.h>    /* For VME drivers */

int drvopen   (dev_t *devp, int flag, int otyp, cred_t *crp)
{
    /* <your code> */
   return value;  /* 0 or value from errno.h */
}
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Arguments

devp Device major and minor numbers. Use getemajor() and
geteminor() to extract the major and minor device numbers
from this parameter. The minor number helps you identify
which device of a multidevice controller is being opened.

Note: This is a pointer to a device.

flag Mode argument from the open() system call. Your code
must check flag for FREAD and FWRITE bits. Typically, flag
tells your code why the user wants to open the device.

otyp A flag that tells your code the class of the device that it must
open. This is useful if your driver must handle both
character and block devices. For character devices, this flag
is usually OTYP_CHR, but OTYP_LYR is also possible.

Note: For each OTYP_LYR open, you will always get an
OTYP_LYR close. If your close routine actually frees
memory or clears driver data structures, you must track
OTYP_LYR opens and closes separately. Ensure that all
outstanding DMA operations have cleared prior to a free.

crp A pointer to the user credential structure.

Returns

If the device cannot be opened in the way requested, your code for this entry
point must return an appropriate error code from sys/errno.h.

Notes

If you want the driver to enforce mutual exclusion on a device, enforce it by
having the drvopen() routine test to see whether the device is busy. This
requires adding reference counting between your open() and close()
routines, which must be protected. If the device is busy, it can sleep until
completion of the current activity, then awaken.

close – Relinquish Access to a Device

The user program invokes the close() system call when it is finished with a
device, but the system does not necessarily execute your drvclose() entry
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point for that device. The system executes the drvclose() entry point only
after all processes that have opened the device have also called close().

If the device is opened frequently, you may not actually want drvclose() to
free all the memory and other resources allocated to the open device.

Synopsis

#include  <sys/types.h>
#include  <sys/file.h>
#include  <sys/errno.h>
#include  <sys/open.h>
#include  <sys/cred.h>
#include  <sys/ddi.h>
#include  <sys/vmereg.h>

drvclose (dev_t dev, int flag, int otyp, cred_t *crp)
{
    <your code>
   return value;  /* 0 or value from errno.h */
}

dev Device major and minor numbers. Use getemajor() and
geteminor() to get the major and minor device numbers
from this parameter. The minor number helps you identify
which device of a multidevice driver is being closed.

flag A mode argument from the close() system call. Your code
must check flag for FREAD and FWRITE bits. Typically, flag
tells your code why the user wants to close the device.

otyp A flag that tells your code the class of the device that it must
close. This is useful if your driver must handle both
character and block devices. For character devices, this flag
is usually OTYP_CHR, but OTYP_LYR is also possible.

crp A pointer to the user credential structure.

Returns

If your code for drvclose encounters an error, it must return an appropriate
error code from sys/errno.h. Even if it returns an error, your drvclose routine
must really close the device—it won’t be called again.
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read or write – Read/Write Data from/to a Device

The kernel executes the drvread() or drvwrite() entry point whenever a user
process calls the read() or write() system call. The following is an outline of
what your driver entry points do:

1. Validate the addresses.

2. Protect the data from being paged out.

3. Start up the data transfer.

4. Set protection timeout.

5. Sleep while the data transfers.

6. Wake up when data transfer is complete.

7. Check the status of the data transfer.

8. Clear timers.

9. Report the status of the data transfer.

10. Return to user.

Because IRIX provides you with a rich set of powerful kernel functions, you
can implement the above procedure in a number of ways, each sensitive to
the particular strengths and limitations of the device you are controlling.
However, not all methods of implementing the above procedure work for all
devices. (For example, what works for non-DMA type devices does not
always work for DMA-type devices if the user's virtual addresses are not
currently mapped.)

Using the kernel functions physiock() and biodone() and your own
drvstrategy() and drvintr() routines, you can write drvwrite() and drvread()
points that are appropriate for all types of character devices (more on
drvstrategy() later in this chapter).

Synopsis

#include  <sys/types.h>
#include  <sys/errno.h>
#include  <sys/uio.h>
#include  <sys/cred.h>
#include  <sys/vmereg.h>
#include  <sys/ddi.h>
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drvread (dev_t dev, uio_t *uiop, cred_t *crp)
{
    <your code>
   return physiock(drvstrategy, 0, dev, B_READ,
    nblocks_uiocp);
}
drvwrite (dev_t dev, uio_t *uiop, cred_t *crp)
{
    <your code> (see above)
   return physiock(drvstrategy, 0, dev, B_WRITE,
    nblocks_uiocp);
}

Arguments

dev Major and minor device numbers of the device involved in
the read or write operation. Use getemajor() and
geteminor() to extract this information from dev.

uiop On entry, the uiop parameter contains a pointer to a uiop
structure that contains, among other things, the location
(uiop->uio_iov->iov_base) and size (uiop->uio_iov->iov_len) of
the buffer in user space from which to read or to which to
write information.

crp A pointer to the user credential structure.

Returns

As with the drvopen() and drvclose() entry points, your code for the
drvread() and the drvwrite() entry points must (when necessary) return
appropriate error codes.

ioctl – Control a Character Device

Character devices may include a “special routine” entry point, drvioctl().
You can use this entry point to perform a number of device-dependent
functions other than the standard operations (such as read and write). The
kernel executes the drvioctl() entry point when a user program issues the
ioctl() system call.
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Synopsis

#include  <sys/types.h>
#include  <sys/file.h>
#include  <sys/cred.h>
#include  <sys/errno.h>
#include  <sys/ddi.h
#include  <sys/vme.h

drvioctl (dev_t dev, int cmd, void *arg, int mode,
           cred_t *crp, int *rvalp)
{
    <your code>
   return value;  /* 0 or value from errno.h */
}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

cmd This parameter is useful when you have more than one
“special routine.” The user cannot call these special routines
directly. However, the user can call ioctl() with the
appropriate value as its second parameter, and thus specify
which special routine it wants. Within your code for the
drvioctl() entry point, you must test the cmd parameter and
take the appropriate action.

arg This parameter can be used or ignored by your code as
needed. Its type depends on the cmd argument. It can be
either an integer value or a pointer to a device-specific data
structure. (If it is a pointer, do not reference that address
directly; instead, use copyin() or copyout() to retrieve the
contents.)

Note: The size of int and pointer passed in can vary
depending on the ABI outside a 64-bit kernel. See userabi
and userabi_t. in “Device-special File” on page 22.

mode The file modes set when the device was opened. Your driver
can use this information to determine whether the device
was opened for reading or writing.

crp A pointer to the user credential structure.
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rvalp Is a pointer to the return value for the calling process. The
driver may elect to set the value if ioctl() succeeds. This is
distinct from the errno return value of the drvioctl() function
itself.

Returns

As with the other driver entry points, your code for the drvioctl() entry point
must return an appropriate error code from sys/errno.h in case of an error.

poll – Poll Entry Point for a Non-STREAMS Character Driver

A character device driver may include a drvpoll() entry point so that users
can use select() or poll() to poll the file descriptors opened on such devices.
These system calls tell the user whether input from the device is available or
whether output to the device is possible.

Synopsis

#include <sys/poll.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/types.h>

struct drvinfo {
    . . .
    struct pollhead *phead;         /* output poll queue */
} drv info[MAXUNITS];

drv poll(dev, events, anyyet, reventsp, phpp)
        dev_t  dev;
        short  events;
        int    anyyet;
        short  *reventsp;
        struct pollhead **phpp
{
    *reventsp = events;

    if ((events & (POLLIN|POLLRDNORM)) && no input available  ) {
            *reventsp &= ~(POLLIN|POLLRDNORM);
    }

    if ((events & (POLLOUT) &&  output not possible ) {



38

Chapter 2: Writing a Device Driver

            *reventsp &= ~POLLOUT;
    }

    if ((events & (POLLPRI|POLLRDBAND) && no out of band data ) {
            *reventsp &= ~(POLLPRI|POLLRDBAND);
    }

    if ( device error ) {
        *reventsp = POLLERR;
        return 0;
    }
    if (!*reventsp)
        return 0;

    if (!anyyet) {
        *phpp = drv info[getminor(dev)].phead;
        return 0;
    }
}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

events A mask that indicates the events being polled. The
significance of the bits of this value is defined in sys/poll.h.
When the driver’s poll() entry point is called, the driver
must verify whether any of the events requested in events
have occurred.

anyyet A flag that indicates whether the driver must return a
pointer to its pollhead structure to the caller.1 If none of the
events is pending, the driver must check the anyyet flag and,
if it is zero, store the address of the device’s pollhead
structure in the pointer pointed to by phpp.

1 Routines that return a pointer to the caller must verify the caller’s ABI and return data
of the correct type without inadvertent conversions.
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reventsp A pointer to a bitmask of the returned events satisfied. The
driver must store the mask consisting of the subset of events
that are pending in the short pointed to by reventsp. Note
that this mask may be zero if none of the events is pending.

phpp A pointer to a pointer to a pollhead structure (defined in
sys/poll.h).

A driver that supports polling must provide a pollhead structure for each
minor device supported by the driver. Use phalloc() to allocate the pollhead
structure. Use phfree() to free the structure.

When an event occurs, the driver must issue a call to pollwakeup(), passing
it the event that occurred and the address of the pollhead structure associated
with the device. For example, in the device interrupt routine, drvintr():

drvintr()
{
...
  if ( input available )
    pollwakeup ( drv info[getminor(dev)].phead, POLLIN, POLLRDNORM);
  if ( output possible )
    pollwakeup ( drv info[getminor(dev)].phead, POLLOUT);
...

Returns

drvpoll can return an error and “hang up” by returning POLLERR and
POLLHUP. You cannot specify these events in *events on entry to drvpoll. If
your code for drvpoll() encounters an error, it must return an appropriate
error code from sys/errno.h.

map or unmap – Check Virtual Mapping for a Memory-mapped Device

Use the drvmap() and drvunmap() entry points in device drivers for
memory-mapped devices. They are described in Chapter 3, “Writing a VME
Device Driver,” in greater detail.
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Synopsis

Note: These routines are nonstandard to System VR4.x.

#include "sys/types.h"
#include "sys/region.h"
#include "sys/mman.h"

drvmap (dev_t dev,vhandl_t *vt,off_t off,
        int length,int prot)
{
    <your code>
   return value;  /* 0 or value from errno.h */
}

drvunmap (dev,vt)
          dev_t    dev;
          vhandl_t *vt;
{
    <your code>
   return value;  /* 0 or value from errno.h */
}

Arguments

dev Major and minor device numbers of the device it must
handle. Use getemajor() and geteminor() to extract this
information from dev.

vt A handle to the virtual space in the calling process to which
the device is mapped. (The structure for the handle is
subject to change, so do not attempt to reference the
members of the structure pointed to by the handle directly.)

off An offset to an address within the device memory. This
address is the start of the device memory that the user
wants your code to map into user space. (The user may not
want to map in all of the device memory.)

length The number of bytes to map.

prot A description of the protection to apply to the region it
maps in. The values for this parameter can be found in sys/
man.h.
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devflag – driver flags

Synopsis

#include <sys/conf.h>
#include <sys/ddi.h>
int drvdevflag = 0;

Every driver must define a global integer variable called drvdevflag. This
variable contains a bitmask of flags used to specify the driver's
characteristics to the system. (When drvdevflag is defined, UNIX SVR4
conventions apply; if it is not defined, UNIX SVR3 conventions apply.)

The valid flags that may be set in drvdevflag are:

D_MP The driver is multithreaded (it handles its own locking and
serialization).

D_WBACK The driver writes back cache before calling its drvstrategy
routine.

D_OLD The driver uses the old-style interface (pre-5.0 release). This
flag is not recommended for new work.

If no flags are set for the driver, then drvdevflag must be set to 0. If this is not
done, then lboot will assume that this is an old-style driver, and it will set
D_OLD flag as a default.
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Writing Other Driver Routines

In addition to entry points, your device driver may include other routines to
handle interrupts from the device and to handle device initialization at boot
time (see Table 2-3). You may also want your driver to include routines (such
as drvstrategy) that are not strictly necessary but that simplify writing the
standard entry point routines.

Table 2-3 Interrupt and Initialization Handling Routines

Routine Description

intr Processes a device interrupt after a transfer terminates, whether
normally (upon completion) or abnormally (due to some error).

strategy Performs block I/O.

edtinit Initializes the device at boot time. Same as init().

init Initializes the device at boot time. Same as edtinit().

halt Shuts down the driver when the system shuts down.

start Initializes a device at system startup.

unload Cleans up a loadable kernel module.
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intr – Process a Device Interrupt

When your device driver does a read or write, the driver usually puts itself
to sleep while it waits for the transfer to complete. When the transfer
terminates, whether normally (upon completion) or abnormally (due to
some error), the device sends an interrupt to the CPU. When the system
receives the interrupt from the device, it looks in your device driver for the
drvintr() routine and executes that routine. Some devices can interrupt when
the open count is zero. The interrupt still must be handled.

When the device I/O completes., the drvintr() routine awakens the sleeping
process. Within the drvintr() routine, you can use the kernel function
biodone() to awaken the sleeping process and report the status of the
transfer (whether normal or error).

For a SCSI device, there must not be a drvintr() routine because the driver is
a “soft” driver that does not interact directly with the hardware. Instead, a
callback routine is often provided. This routine may be given any name, but
it is often of the form drv_intr():

drv_intr(scsi_request_t *sp);

Arguments

sp A pointer to a scsi_request_t type structure. (See the sample
code in Chapter 5, “Writing a SCSI Device Driver,” for an
example of a drv_intr() routine written for a SCSI type
device.) You must explicitly pass drv_intr() in the sr_notify
member of the scsi_request_t structure allocated for the
device.
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strategy – Perform Block I/O

The drvstrategy() routine is not a character device driver entry point in the
strictest sense (the user does not call it). However, when writing a device
driver, you will probably want to write a drvstrategy() routine. Typically,
you call the drvstrategy() routine from the drvread() and drvwrite() routines,
through the physiock() kernel routine:

drvread (dev_t dev, uio_t *uiop, cred_t *crp)
{
    return physiock(drvstrategy, 0, dev, B_READ,
           nblocks, uiop);
}
drvwrite (dev_t dev, uio_t *uiop, cred_t *crp)
{
    return physiock(drvstrategy, 0, dev, B_WRITE,
           nblocks, uiop);
}

physiock() is a kernel routine that:

• Verifies whether the requested transfer is valid by checking whether the
offset is at or past the end of the device and verifying that the offset is a
multiple of the block size (512).

• Sets up a buffer header that describes the transfer.

• Faults pages in and locks the pages involved in the I/O transfer so they
cannot be swapped out.

• Calls the strategy routine passed by the first parameter.

• Sleeps until the transfer is complete and awakens when the driver’s
I/O completion handler calls biodone().

• Performs the necessary cleanup and updates, then returns to the
routine that called it.

physiock() reports a data transfer as valid if the following conditions are
met:

• the specified data location exists on the device

• the user has specified a storage area that exists in user memory space

• the user-space storage area is large enough.
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For more information, see the physiock(D3) man page.

Note: In IRIX 5.x and earlier, pages are 4 KB, and the default maximum
DMA size is 4 MB; in IRIX 6.0, pages are 16 KB, and the default maximum
DMA size is 16 MB. You can change the DMA size by modifying maxdmasz,
in /var/sysgen/mtune/kernel, using page as the basic unit. For other ways to
modify this parameter, see the systune(1M) man page. I/O larger than what
is allowed by maxdmasz produces the UNIX error ENOMEM. See
Appendix B, “SCSI Controller Error Messages”.

If the second argument is 0, physiock() then allocates an IRIX buffer header
(a kernel-level structure of type buf) and primes it with appropriate transfer
information; otherwise, physiock() uses the argument as a pointer to a buf_t.
This structure encapsulates all the information of a single I/O transfer.

physiock() assigns the values of the following buf type structure members:

b_un.b_addr Contains the kernel virtual address from which information
is read or to which information is written.

b_flags Contains a bit mask of flags that describe the transfer.
B_BUSY is set to indicate that the buffer is in use for an I/O
transfer. B_READ is set if the transfer is a read.

b_bcount Contains the number of bytes to be transferred.

b_edev Contains the major and minor device numbers.

b_blkno Contains the device block number to be transferred.

b_resid On completion, before calling biodone(), the driver must set
this member to the number of bytes that were not
transferred.

b_biodone If nonzero, this is taken as a function pointer, and the
routine in question is called from biodone(); all normal
biodone() processing is skipped. b_biodone may also be set
by the user.

Finally, physiock() calls drvstrategy() and hands it a pointer to this buf
structure. (See a description of physiock (D3) in the IRIX Device Driver
Reference Pages for more details on this kernel procedure.)
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Synopsis

drvstrategy(struct buf_t *bp)
{
    <your code>
}

Your drvstrategy() routine programs the device for the transfer. The
information it needs to do this is contained in the structure pointed to by bp.
Typically, your drvstrategy() routine starts the I/O by programming
appropriate registers. When drvstrategy() is done, control returns to
physiock(). physiock() then calls biowait(), and the process sleeps until the
transfer is complete.

Normally, your interrupt handler will call biodone(bp) on completion. But
before calling biodone(), your driver must have saved the bp value passed
to the strategy routine. (You must awaken the sleeping process even if there
is some initial error condition.) In addition, your drvintr() routine must
indicate the success of the transaction by updating the b_resid member of the
buf_t type structure to contain the number of bytes that were not transferred,
then move to the next page.

To handle any I/O errors that occur, use bioerror (bp, errno), where bp is a
pointer to the buf_t type structure passed in as the first parameter of your
drvstrategy(), and errno is the appropriate error number. bioerror() sets the
members of the buffer header so that higher level code can detect the error
and call geterror() to retrieve the error number from the structure.

Caution: Your drvintr() routine and the routines it calls must not try to
access the uiop structure directly. The structure it gets might not belong to the
process that made the I/O request.
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edtinit and init – Initialize a Device

Most devices need some initialization at boot time. The system looks in the
object module for the driver for either of two routines, drvinit() or
drvedtinit(), then executes the appropriate routine to initialize the device. If
you use the INCLUDE directive (in the /var/sysgen/system/irix.sm file) to add
a device to the kernel, your driver must use the drvinit() routine to initialize
the device at boot time. If you use the VECTOR directive, your routine must
use the drvedtinit() routine to initialize the device at boot time.

Because you use the INCLUDE directive to include SCSI device drivers in the
kernel, your drivers for SCSI devices must include a drvinit() routine if you
want to initialize the device at boot time (in which case, no edtinit() call will
be generated). See Chapter 5, “Writing a SCSI Device Driver,” for a synopsis
of the drvinit() routine.

Because you use the VECTOR directive to include VME device drivers in the
kernel, your device drivers for VME devices must include a drvedtinit()
routine to initialize the device at boot time. See Chapter 3, “Writing a VME
Device Driver,” for a synopsis of the drvedtinit() routine and a discussion of
VME-bus address space and PIO mapping.

Most device drivers of the general memory-mapping model are for VME
type devices. (See Chapter 7, “Writing Kernel-level General Memory-
mapping Device Drivers.”) Therefore, most device drivers of the general
memory-mapping model are included in the kernel using the VECTOR
directive. Your object module for this type of device driver usually contains
a drvedtinit() routine.

Synopsis

void drvedtinit(struct edt *e);
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halt – Shut Down the Driver When the System Shuts Down

The drvhalt() routine, if present, is called to shut the driver down when the
system is shut down. After the drvhalt() routine is called, no more calls are
made to the driver entry points.

This entry point is optional. The device driver can not assume that the
interrupts are enabled. The driver must make sure that no interrupts are
pending from its device and must inform the device that no more interrupts
are to be generated.

Synopsis

void drvhalt(void);

Return Values

None
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start – Initialize a Device at System Startup

The drvstart() routine is called at system boot time (after system services are
available and interrupts have been enabled) to initialize drivers and the
devices they control.

This entry point is optional. The start routine can perform the following
types of activity:

• initialize data structures

• allocate buffers for private buffering schemes

• map the device into virtual address space

• initialize hardware

• initialize time-outs

A driver that needs to perform setup and initialization tasks that must take
place before system services are available and interrupts are enabled must
use the drvinit() routine to perform such tasks. The drvstart() routine must
be used for all other initialization tasks.

Synopsis

void drvstart(void);

Return Values

None
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unload – Clean Up a Loadable Kernel Module

The drvunload() routine handles any cleanup a loadable kernel module
must perform before it can be unloaded dynamically from a running system.

This entry point is only required if a module is to be unloaded from the
system. A loadable module’s unload routine is defined in module-specific
initialization code called wrapper code. The drvunload() routine can
perform activities such as:

• Deallocate memory acquired for private data

• Cancel any outstanding itimeout() or bufcall() requests made by the
module

Synopsis

int drvunload(void);

Return Values

The drvunload() routine returns 0 for success or the appropriate error
number.

Synchronization Constraints

The drvunload() routine must not sleep or call any functions that sleep, such
as biowait(), delay(), psema(), or sleep().
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STREAMS Driver Entry Points

The STREAMS driver entry points are listed in Table 2-4.

put – Coordinate Message Passing Between Queues in a Stream

The primary task of the put routine is to coordinate the passing of messages
from one queue to the next in a stream. The put routine is called by the
preceding component (module, driver, or stream head) in the stream. put
routines are designated write or read depending on the direction of message
flow.

This entry point is required in all STREAMS drivers and modules.

Synopsis

drvput(register queue_t *q, register inblk_t *mp);

Usage

Both modules and drivers must have put routines for writing. Modules must
have put routines for reading, but drivers do not really need them because
their interrupt handlers can do the work intended for the read put routine.
If immediate processing is desired when a message is passed to the put
routine, it can either process the message or queue it so that the service
routine can process it later. See srv(D2).

Note: The majority of STREAMS drivers are software drivers, however, and
do not have interrupt handlers.

The put routine must do at least one of the following when it receives a
message:

• pass the message to the next component in the stream by calling the
putnext(D3) function

Table 2-4 STREAMS Driver Entry Points

Driver Entry Points

put srv open close
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• process the message, if immediate processing is required (for example,
high-priority messages)

• queue the message with the putq(D3) function for deferred processing
by the service routine

Typically, the put routine switches on the message type, which is contained
in mp->b_datap->db_type, taking different actions depending on the message
type. For example, a put routine might process high-priority messages and
queue normal messages.

The putq function can be used as a module’s put routine when no special
processing is required and all messages are to be queued for the service
routine.

Notes

Although queue flushing can be done in the service routine, drivers and
modules usually handle it in their put routines.

• Drivers and modules should not call put routines directly.

• Drivers should free any messages they do not recognize.

• Modules should pass on any messages they do not recognize.

• Drivers should fail any unrecognized M_IOCTL messages by
converting them into M_IOCNAK messages and sending them
upstream.

• Modules should pass on any unrecognized M_IOCTL messages.

Return Values

Ignored

Synchronization Constraints

put routines do not have a user context and so may not call any function that
sleeps.
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srv – Service Routine

The srv (service) routine may be included in a STREAMS module or driver
for a number of reasons. It provides greater control over the flow of
messages in a stream by allowing the module or driver to reorder messages,
defer the processing of some messages, or fragment and reassemble
messages. The service routine also provides a way to recover from resource
allocation failures.

Synopsis

drvsrv(register queue queue_t *q);

Usage

This entry point is optional and is valid for STREAMS drivers and modules
only.

A message is first passed to a module’s or driver’s put(D2) routine, which
may or may not process it. The put routine can place the message on the
queue for processing by the service routine.

Once a message has been queued, the STREAMS scheduler calls the service
routine at some later time. Drivers and modules should not depend on the
order in which service procedures are run. This is an implementation-
dependent characteristic. In particular, applications should not rely on
service procedures running before returning to user-level processing.

Every STREAMS queue has limit values it uses to implement flow control
(see queue(D4). High and low water marks are checked to stop and restart
the flow of message processing. Flow control limits apply only between two
adjacent queues with service routines. Flow control occurs by service
routines following certain rules before passing messages along. By
convention, high-priority messages are not affected by flow control.

STREAMS messages can be defined to have up to 256 different priorities to
support some networking protocol requirements for multiple bands of data
flow. At a minimum, a stream must distinguish between normal (priority
band zero) messages and high-priority messages (such as M_IOCACK).
High-priority messages are always placed at the head of the queue, after any
other high-priority messages already queued. Next are messages from all
included priority bands, which are queued in decreasing order of priority.
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Each priority band has its own flow control limits. By convention, if a band
is stopped, all lower priority bands are also stopped.

Once a service routine is called by the STREAMS scheduler, it must provide
for processing all messages on its queue, restarting itself if necessary.
Message processing must continue until either the queue is empty, the
stream is flow-controlled, or an allocation error occurs. Typically, the service
routine switches on the message type contained in mp->b_datap->db_type,
taking different actions depending on the message type.

Each STREAMS module and driver can have a read and write service
routine. If a service routine is not needed (because the put routine processes
all messages), a NULL pointer should be placed in the module’s qinit(D4)
structure.

If the service routine finishes running for any reason other than flow control
or an empty queue, then it must explicitly arrange for its rescheduling. For
example, if an allocation error occurs during the processing of a message, the
service routine can put the message back on the queue with putbq and,
before returning, arrange to have itself rescheduled at a later time. See
qenable(D3), bufcall(D3), and itimeout(D3).

Notes

Service routines can be interrupted by put routines unless the processor
interrupt level is raised.

• Only one copy of a queue’s service routine runs at a time.

• Drivers and modules should not call service routines directly. Use
qenable(D3) to schedule service routines to run.

• Drivers (except multiplexors) should free any messages they do not
recognize.

• Modules should pass on any messages they do not recognize.

• Drivers should fail any unrecognized M_IOCTL messages by
converting them into M_IOCNAK messages and sending them
upstream.

• Modules should pass on any unrecognized M_IOCTL messages.

• Service routines should never put high-priority messages back on their
queues.
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Return Values

Ignored

Synchronization Constraints

Service routines do not have a user context and so may not call any function
that sleeps.
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3. Writing a VME Device Driver

This chapter provides in-depth information about drivers that interface to
the VME bus. It gives a brief overview of the VME-bus interface, describes
system configuration for VME device drivers, and introduces several VME-
specific routines you must include in your device driver. Which of the
several models for performing DMA (direct memory access) operations you
choose for your device driver depends on the capability of the device
(whether the device has scatter/gather registers, for example), the address
space of the device (VME A24, A32, or A64), and whether the device
provides address mapping capability.

It contains the following sections:

• “VME-bus Interface Overview” on page 58

• “Choosing a Driver Model” on page 63

• “Writing User-level VME Device Drivers” on page 64

• “Writing Kernel-level VME Device Drivers” on page 78
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VME-bus Interface Overview

All high-end Silicon Graphics systems—Crimson, CHALLENGE/Onyx,
POWER CHALLENGE/POWER Onyx, and the POWER series— support
the VME bus with a VME-bus adapter. Old mid-range systems—IRIS 4D/20,
4D/25, 4D/30, and 4D/35—also supported VME. Silicon Graphics desktop
systems—Indigo, Indigo2, and Indy—do not currently support the VME
bus.

The VME bus is an industry-standard bus for interfacing devices. It supports
the following features:

• Seven levels of prioritized processor interrupts

• 16-bit, 24-bit, and 32-bit data addresses and 64-bit memory addresses

• 16-bit and 32-bit accesses (and 64-bit accesses in MIPS III mode)

• 8-bit, 16-bit, 32-bit, and 64-bit data transfer

• DMA to/from main memory

The VME bus does not distinguish between I/O and memory space, and it
supports multiple address spaces. This feature allows you to put 16-bit
devices in the 16-bit space, 24-bit devices in the 24-bit space, 32-bit devices
in the 32-bit space, and 64-bit devices in 64-bit space.1 So you must know
which of the four address spaces the board uses when you design a VME
device driver.

Note: On some devices, you can use jumpers or switch settings to configure
the device to use a particular address space. Some systems have DMA-
mapping registers to make memory appear contiguous to the VME card.

For additional information on VME-bus operation, see the ANSI standards
specification for the VME bus.

1 64-bit data transfers, accesses, and memory addresses do not depend on a 64-bit kernel,
so they can be mapped to all MIPS R4000 series platforms.
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VME-bus Adapter

The term VME-bus adapter (see Figure 3-1) refers to a hardware conduit that
translates host CPU operations to VME-bus operations and decodes some
VME-bus operations (as though the conduit were a memory board) to
translate them to the host side.

Figure 3-1 VME-bus Adapter

VME-bus Address Space

The VME bus provides 32 address bits and six address-modifier bits. It
supports four address sizes: 16-bit, 24-bit, 32-bit, and 64-bits (A16, A24, A32,
and, on CHALLENGE/Onyx and POWER CHALLENGE/POWER Onyx
series systems, A64). The VME bus allows the master to broadcast addresses
at any of these sizes. The VME bus supports data transfer sizes of 8, 16, 32,
or 64 bits. To best understand the VME-bus addressing and address space,
think of the device as consisting of two halves: the master and the slave. When
the CPU accesses the address space of the device, the device acts as a VME
slave. When the VME device accesses main memory through direct memory
access (DMA) operations, the VME device acts as a VME master.
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Addressing behavior for a driver depends on whether the CPU or the device
is the master. For example, a VME device can be a 16-bit slave and a 32-bit
master. Silicon Graphics systems support 16-, 24-, and 32-bit slaves, but only
24- and 32-bit masters.

Some Silicon Graphics systems provide additional hardware mapping
registers that map a VME-bus address to an arbitrary location in physical
memory. Device drivers can take advantage of this mapping hardware to
provide scatter/gather capabilities (and to support DMA operations to all of
memory for A24 devices). The IRIX operating system provides a procedural
interface by which your device driver can allocate and use these maps. This
interface also has a provision to handle multiple VME-bus systems.

For other systems, 24-bit VME masters can access only the lowest 8 MB of
physical memory,1 so device drivers may need to allocate buffers in low
memory and then copy data to its final destination. See /usr/include/sys/
vmereg.h for macro #devices to facilitate VME access.

VME-bus Read-Modify-Write Cycle

The VME bus provides a read-modify-write (or RMW) cycle that allows
users to read and change the contents of a device register or memory location
in a single atomic operation. Although this feature is typically used to
implement synchronization primitives on VME memory, you may
occasionally find this feature useful for certain devices. The VME-bus
adapter provides access to VME read-modify-write cycles through a set of
kernel functions, such as pio_andh_rmw() and pio_orw_rmw().

Caution: The VME RMW cycle is needed only when a controller allows both
itself and a user to write a register. If a disk controller uses a single register
for the status and command information for several disk drives, for
example, you could be writing a command into the register from the driver
while the disk controller is updating the status. The VME RMW cycle
enforces exclusive use of an address. Since this operation is expensive, in
terms of resources, it should rarely be used.

1 The highest bit is used to distinguish between user and supervisor access.
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Note: Silicon Graphics products do not support VME read-modify-write
operations initiated by a VME master to host memory.

VME-bus Adapter Requests

The VME-bus adapter provides four levels of bus request, 0-3, (3 has the
highest priority) for DMA arbitration. Do not confuse these bus request levels
with the interrupt priorities described below. Bus requests prioritize the use
of the physical lines representing the bus and are normally set by means of
jumpers on the interface board. The IRIS-4D/20, 4D/25, 4D/30, and 4D/35
support only Bus Request level 3 and Bus Grant level 3.

VME-bus Interrupts

The VME bus supports seven levels of prioritized interrupts, 1 through 7
(where 7 has the highest priority). The VME-bus adapter has a register
associated with each level. On Silicon Graphics systems, all VME interrupts
come in at the same CPU interrupt level. When the system responds to the
VME-bus interrupt, it services all devices identified in the interrupt vector
register in order of their VME-bus priority (highest number first). The
operating system then determines which interrupt routine to use, based on
the interrupt level and the interrupt vector value.

Note: On systems equipped with multiple VME buses, adapter 0 has the
highest priority; other adapters are prioritized in ascending order (after 0).

No device can interrupt the VME bus at the same level as an interrupt
currently being serviced by the CPU because the register associated with
that level is busy. A device that tries to post a VME-bus interrupt at the same
VME-bus priority level as the interrupt being serviced must wait until the
current interrupt is processed.

Therefore, when choosing VME-bus priority levels for devices, be sure that
the priority levels are well distributed. If you must double up on VME-bus
priority levels, double up on those devices not likely to need the CPU at the
same time.

Note: All VME interrupt levels map into one CPU interrupt level.
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Distribution of VME Interrupts on Multiprocessors

On CHALLENGE/Onyx, POWER CHALLENGE/POWER Onyx, and
multiprocessor POWER Series systems, VME interrupt levels can be
individually locked onto any processor in the system through the IPL
directive. This prevents a processor running a real-time process or a process
that needs a guaranteed response from being interrupted inconveniently,
and it makes system load balancing easier. To lock a particular VME
interrupt level to a processor, edit the /var/sysgen/system/irix.sm file, then run
lboot to implement the changes. The format is:

IPL: level cpu#

where level is the priority level (1-7, with 7 being the highest), and cpu# is the
number of the CPU on which you want the VME interrupts of that level to
occur. For example:

IPL: 4 1

designates VME interrupt priority level 4 on CPU number 1.

CHALLENGE/Onyx and POWER CHALLENGE/POWER Onyx and
multiprocessor POWER Series™ systems take advantage of multiple CPUs
by distributing interrupts across all processors. These distributed interrupts
are called sprayed interrupts. To declare a CPU that is not suitable for sprayed
interrupts (usually because they will be used for real-time activities), use the
NOINTR directive.

Example: to declare that CPU 3 will not accept sprayed interrupts, use:

NOINTR: 3

You can tie a VME interrupt to a processor that accepts no sprayed interrupts
using the IPL directives described above. You may not restrict CPU 0 from
receiving interrupts. You can specify multiple CPUs on the NOINTR line.

After editing the irix.sm file, you must run lboot to reconfigure the system
before the changes can take effect. autoconfig is a script in /etc/init.d that runs
lboot. See the autoconfig(1M), lboot(1M), and system(4) man pages for
details.
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Choosing a Driver Model

Choosing between a user-level device driver and a kernel-level device driver
model usually depends on the method used to transfer data to and from the
device. However, the two driver models are not necessarily mutually
exclusive. It is possible, for example, for a single VME driver to use both
direct memory access (DMA) and memory mapping to transfer data.

User-level VME-bus Device Driver

The easiest way to handle a VME device is to write a user-level program that
controls the device by dealing directly with the special /dev/vme driver. You
can write a user-level device driver when your users need to access a VME-
bus device that is not interrupt driven and does not require DMA
operations. In fact, many boards that use DMA or generate interrupts can
have these features turned off for simple, user-level device drivers.

User-level VME-bus device drivers are convenient for determining whether
a device responds to the correct address or simple register tests. They can
also be useful for prototyping: you can quickly integrate boards whose
interrupts can be turned off into a system, then later write a kernel-level
driver that turns the interrupts back on for higher performance. In addition,
you can use a user-level VME-bus device driver in real applications that
require low-overhead access to on-board device registers or memory.

A user-level VME-bus device driver might typically handle data acquisition
hardware—hardware that reads large amounts of data into device memory.
Because the device memory is memory-mapped into the address space of
the user program, it is available to the user program directly; the user
program can avoid copying the data into host memory, processing the data
in the device memory instead. However, these PIO accesses may have
substantially lower performance than DMA-based kernel drivers. Refer to
“Programmed I/O (PIO)” on page 88.
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Kernel-level VME Device Driver

You must write a kernel-level device driver for a VME device that is
interrupt-driven or that requires DMA. See Chapter 2, “Writing a Device
Driver,” for a description of the IRIX device driver interface.

Kernel-level General Memory-mapping Device Driver

If you want to write a driver that lets users access the VME device as
memory in user space and also supports DMA and interrupts, you cannot
use the general-purpose VME device driver. Instead, you must write a
kernel-level device driver of the general memory-mapping model. Likewise,
if you need an efficient way to share main memory between a kernel driver
and a user program, you must write a device driver of the general memory-
mapping model.

The general memory-mapping model is a kernel-level device driver similar
to the user-level memory-mapped device driver described above. See
Chapter 2, “Writing a Device Driver,” for a general description of kernel-
level device drivers. See Chapter 7, “Writing Kernel-level General Memory-
mapping Device Drivers,” for a description of the memory mapping
facilities.

Writing User-level VME Device Drivers

The IRIX operating system contains special files in /dev/vme/vme* that
provide access to the various address spaces on the system’s VME-bus
adapters. These special files allow a user-level program to map arbitrary
VME devices into its address space. You can take advantage of them to write
a user-level memory-mapped device driver.

Byte addresses in /dev/vme/vme* are interpreted as VME-bus addresses. Not
all addresses can be read from or written to because of read-only or write-
only registers and unequipped addresses. Reads or writes to invalid VME-
bus addresses normally result in a SIGBUS signal being sent to the offending
process.
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If multiple processes have the mapping for the VME address that got an
error, a SIGBUS signal is sent to each of them. On multiprocessor systems, a
write to an invalid VME-bus address behaves differently from one on a
single-processor system. In these cases, since writes are asynchronous,
processors do not wait for the completion of the write operation. If a write
operation fails, it may take up to 10 milliseconds for the user VME process
to be signaled about a failed write. (VME-bus time-out is about 80
microseconds.) So, if the user VME process has to confirm the successful
completion of a write, it should wait for about 10 milliseconds. If the user
VME process has already terminated by the time the kernel gets the VME
write error interrupt, it sends a message to SYSLOG indicating the VME
adapter number and failed VME-bus address.

When your driver maps a device into the address space of a user-level
program (through the mmap() system call), the user-level program can use
simple loads and stores to and from program variables to read or modify
device registers or to read or set on-board device memory. If you use
memory mapping, you do not need to modify any irix.sm files.

Recall that mmapped device drivers are slave devices in which the hardware
is memory mapped into a user’s address space. No interrupt or DMA service
routine is available to the user process.

The special files found in /dev/vme/* are named in the format:

/dev/vme/ vme<adapter-#><address-space><address-mode>

Arguments

adapter-# specifies which VME-bus adapter

address-space specifies which address space, such as 16, 24, or 32
(see “VME-bus Space Reserved for Customer Drivers” on
page 329.)

address-mode identifies the addressing mode, which is n for non-
privileged or s for supervisor

Use the hinv(1M) (hardware inventory) command to produce a list of valid
VME-bus adapters present on the system. Adapter numbers range upwards
from 0. These adapters can be used only for memory mapping VME-bus
address space into the address space of a user’s program. The address space
can be 16, 24 or 32. The address mode is either n for non-privileged or s for
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supervisory. Thus, adapter 0, address space 16 in non-privileged mode is
referred to as /dev/vme/vme0a16n.

Use the technical specification for the device to determine the slave
addressing mode.

The kernel driver for user-level VME is referred to as usrvme. If VME buses
are added to an existing system, it may be necessary to run MAKEDEV(1M),
specifying a target of usrvme, to have the additional /dev/vme devices
created.

Example VME Device Driver

The following code sample uses the user-level VME-bus interface to perform
bus probes:

#include <sys/types.h>
#include <sys/mman.h>
#include <stdio.h>
#include <fcntl.h>
#include <getopt.h>
#include <errno.h>
#include <limits.h>
#include <signal.h>

int state = 0;

#define S_DIR 0x01
#define S_ADAP 0x02
#define S_SPACE 0x04
#define S_ADDR 0x08
#define S_SIZE 0x10
#define S_VAL 0x20

#define D_READ 0x1
#define D_WRITE 0x2

#define READSTATE (S_DIR|S_ADAP|S_SPACE|S_ADDR|S_SIZE)
#define WRITESTATE (READSTATE|S_VAL)

char *progname;

char *spaces[] = {
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    “a16n”,
    “a16s”,
    “a24n”,
    “a24s”,
    “a32n”,
    “a32s”
};

#define MAXSPACE (sizeof(spaces)/sizeof(spaces[0]))

void usage(void);
long ntol(char *);
long chkspc(char *);

char devnm[PATH_MAX];

static void probe_fail(int);

int
main(int ac, char *av[])
{
    int    c, errflg = 0;
    int    dir_f;
    long    adap_f;
    long    addr_f;
    long    size_f;
    long    val_f;
    char *space_f;
    int    fd;
    char *mapaddr;
    int    pgaddr, pgoff;
    int    pgsz;
    int    rtval;

    progname = av[0];

    while( (c = getopt(ac,av,”rws:a:b:p:v:”)) != -1 )
        switch( c ) {
        case ’r’:
            if( state & S_DIR ) {
                usage();
                return 1;
            }
            dir_f = D_READ;
            state |= S_DIR;
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            break;
        case ’w’:
            if( state & S_DIR ) {
                usage();
                return 1;
            }
            dir_f = D_WRITE;
            state |= S_DIR;
            break;
        case ’s’:
            if( state & S_SPACE ) {
                usage();
                return 1;
            }
            if( chkspc(optarg) ) {
                usage();
                return 1;
            }
            state |= S_SPACE;
            space_f = optarg;
            break;
        case ’a’:
            if( ((adap_f = ntol(optarg)) < 0) ||
                (state & S_ADAP) ) {
                usage();
                return 1;
            }
            state |= S_ADAP;
            break;
        case ’b’:
            if( ((addr_f = ntol(optarg)) < 0) ||
                (state & S_ADDR) ) {
                usage();
                return 1;
            }
            state |= S_ADDR;
            break;
        case ’p’:
            if( ((size_f = ntol(optarg)) < 0) ||
                (state & S_SIZE) ) {
                usage();
                return 1;
            }
            state |= S_SIZE;
            break;



Writing User-level VME Device Drivers

69

        case ’v’:
            if( ((val_f = ntol(optarg)) < 0) ||
                (state & S_VAL) ) {
                usage();
                return 1;
            }
            state |= S_VAL;
            break;
        case ’?’:
            errflg++;
            break;
        }

        if( errflg || !(state & S_DIR) ) {
            usage();
            return 1;
        }

        if( (dir_f == D_READ) && (state != READSTATE) ) {
            usage();
            return 1;
        }
        if( (dir_f == D_WRITE) && (state != WRITESTATE) ) {
            usage();
            return 1;
        }

        /* check the size */
        switch( size_f ) {
        case 1:
        case 2:
        case 4:
            break;
        default:
            (void)fprintf(stderr,”invalid size %d\n”,size_f);
            usage();
            return 1;
        }

        /* create name of device */
        sprintf(devnm,”/dev/vme/vme%d%s”,adap_f,space_f);

        /* open the usrvme device */
        if( (fd = open(devnm,O_RDWR)) < 0 ) {
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            perror(“open”);
            return 1;
        }

        /* we map in memory on page boundaries so figure out
         * the page and page offset
         */

        pgsz = getpagesize();
        pgaddr = (addr_f / pgsz) * pgsz;
        pgoff = addr_f % pgsz;

        /* map in the vme space surrounding the address */
        if( (mapaddr = mmap(
                NULL,pgsz,PROT_READ|PROT_WRITE,MAP_PRIVATE,
                fd,pgaddr)) == (void*)-1 ) {
            perror(“mmap”);
            return 1;
        }

        /* catch bus errors */
        signal(SIGBUS,probe_fail);

        /* do the probe */
        if( dir_f & D_READ ) {
            switch( size_f ) {
            case 1:
                rtval = *(char *)&mapaddr[pgoff];
                break;
            case 2:
                rtval = *(short *)&mapaddr[pgoff];
                break;
            case 4:
                rtval = *(int *)&mapaddr[pgoff];
                break;
            }
            printf(“read probe of 0x%x\n”,rtval);
        }
        else {
            switch( size_f ) {
            case 1:
                *(char *)&mapaddr[pgoff] = val_f;
                break;
            case 2:
                *(short *)&mapaddr[pgoff] = val_f;
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                break;
            case 4:
                *(int *)&mapaddr[pgoff] = val_f;
                break;
            }
            printf(“write probe of 0x%x\n”,val_f);
            /* wait here to catch any bus errors... */
            sginap(CLK_TCK/50+1);
        }

        return 0;
}

long
ntol(str)
    char *str;
{
    char *strp;
    ulong ret;

    if( *str == ’”’ ) {
        str++;
        return (*str)?*str:-1;
    }

    ret = strtoul(str,&strp,0);

    if( ((ret == 0) && (strp == str)) ||
        ((errno == ERANGE) && (ret = -1)) )
        return (long)-1;

    return (long)ret;
}

long
chkspc(char *nm)
{
    int i;

    for( i = 0 ; i < MAXSPACE ; i++ )
        if( strcmp(nm,spaces[i]) == 0 )
            return 0;

    return 1;
}
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void
usage()
{
 (void)fprintf(stderr,
    “usage: %s -r -a adap -s space -b busaddr -p
probesize\n”,
    progname);
 (void)fprintf(stderr,
    “usage: %s -w -a adap -s space -b busaddr -p probesize -
v val\n”,
    progname);
 (void)fprintf(stderr,
    “    space is one of a16n, a16s, a24n, a24s, a32n,
a32s\n”);
 (void)fprintf(stderr,
    “    probesize is one of 1 2 or 4\n”);
}

static void
probe_fail(int signo)
{
    fprintf(stderr,”*** probe failed\n”);
    exit(1);
}

Using mmap

After you have reconfigured the system correctly, the user-level driver can
open the special file for a generic VME device /dev/vme/vme*. To map in the
device, the user program must use the mmap() system call. For example:

#include "fcntl.h"
#include "sys/mman.h"
fd = open("/dev/vme/vme0a16s", O_RDWR);
addr = mmap(
         0, len, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, off);

The mmap() routine maps len bytes starting at (VME-bus) address off to the
user virtual address addr. The prot argument is a bit mask that indicates the
protection that the operating system enforces on access to the device
memory. Thus, PROT_WRITE allows writing; PROT_READ allows reading.
The flags argument can be either MAP_PRIVATE or MAP_SHARED when
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used with hardware devices (currently, /dev/vme/vme* makes no distinction
between the two). These symbolic constants are defined in sys/mman.h. See
the mmap(D2) man page for further information on the use of this system
call.

Once the mmap call succeeds, reads and writes from the user virtual address
addr for a length of len bytes result in the appropriate reads and writes for the
VME device pointed to by the file descriptor fd.

Note: There is protection on a page boundary only. Even if the user-level
program maps in less than a page, the entire page of device registers remains
accessible to the user program. Use getpagesize(2) to determine the page
size of the system.

The amount of VME address space that can be mapped into user address
space depends on two factors:

• VME address space type (A16, A24, A32)

• hardware platform

For VME A16 address space, the entire 64 KB of A16-VME address space is
mappable to user virtual address space.

For A24 address space, only 8 MB of the 16 MB of address space, starting at
VME address 0x80000000, is mappable to the user virtual address space. The
kernel reserves the remaining 8 MB of address space to support DMA
transfers from A24 masters.

For A32 address space, there is some variation according to hardware
platform.

CHALLENGE/Onyx systems support up to five VME buses. Users can map
in a maximum of 96 MB of A32 address space on each VME bus.

Note: Mapping should be performed in 8 MB increments: Each mmap()
system call can map a maximum of 8 MB of VME address space into user
virtual address space, so eight such mmap() calls are needed to map the
entire 96 MB of VME address space available.

This 96 MB of VME address space is shared between the kernel and user-
level device drivers. Any installed kernel-level VME device drivers that use
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VME address space reduce the amount of VME address space available for
mapping by the user-level drivers.

On other IRIS platforms (IP5/7/9/17), a maximum of 256 MB can be
mapped into user virtual address space. On these platforms, mmap() can
support mapping in the entire 256 MB of VME address space in a single
system call. On systems with dual VME buses, however, the amount of VME
address space available for mapping is reduced by half.

See Appendix A for further details of what A32 address space is available for
customer boards.

Accessing Mapped Space

VME accesses are sensitive to the access size, so extra caution is called for
once VME address space is mapped into a user’s virtual space. For example,
A16D8 boards may support only 8-bit accesses, while A16D16 boards may
support both 8-bit and 16-bit accesses. Similarly, A32D32 may support only
32-bit accesses or may support 8-bit, 16-bit, 32-bit accesses. User-level device
drivers should ensure that the data structures onto which the VME address
space is mapped generate the proper size of transaction on the VME bus.

VME-bus Error Handling for User-level Device Drivers

Bus errors can occur when a read or write on the VME times out. This can be
triggered by user-level drivers accessing a mapped VME space for which no
controller exists, or if the controller fails to respond.

Caution: If the kernel cannot determine whether the bus error is harmless
to the system, the system panics.

Read Errors

If a VME-bus read error is triggered by a user-level VME driver, the driver
process receives a SIGBUS signal. If the driver needs to be aware of the error,
then it can catch the signal and take appropriate action. Read errors are
synchronous, so the user process can get a definite idea of what PC or routine
caused the error.



Writing User-level VME Device Drivers

75

Write Errors

VME-bus write errors are asynchronous: when a user-level driver writes to
the mapped VME address space, the CPU does not stall at that address, but
continues executing further instructions. Since the write error time-out bus
takes up to 80 microseconds on a VME bus and another finite amount of time
for handling the error interrupt from the VME bus, handling write errors can
be complicated.

A bad VME write error results in a SIGBUS signal being sent to the offending
process, if that process is still running on the system. Since it takes a finite
amount of time to send the signal to the user-level driver process that
triggers a bad VME write, it is essential for the user-level driver to wait for
up to 10 milliseconds before exiting. However, this is only necessary before
exiting the system (to allow for the handling of the last few bad writes) or
when the user process wants to assure that the write completed. It is not
necessary to wait for 10 milliseconds after every VME write.

User-level DMA Library ( udmalib )

A user-level interface for VME drivers provides access to DMA engines on
CHALLENGE/Onyx (IP19) and POWER CHALLENGE/POWER Onyx
(IP21) hardware platforms. This interface is meant to be used when
performance is critical and the VME-bus board itself does not support DMA.

Users can move data between a buffer and a VME-bus board faster with a
DMA engine than with normal PIO operations. However, because there is
only one DMA engine per VME bus on the CHALLENGE series, the DMA
engine is a scarce resource. The user-level DMA support library udmalib
allocates the DMA engine exclusively to the first user to request it, and no
other user can access it until the current user frees it up. See the usrdma(7M)
and udmalib(3K) man pages for further detail and usage of user-level DMA
library calls.

The following functions are supported by the user-level DMA library:

dma_open Get exclusive use of a DMA engine

dma_close Free up the DMA engine

dma_allocbuf Allocate a buffer suitable for DMA
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dma_freebuf Free up a DMA buffer

dma_mkparms Define a DMA operation

dma_freeparmsFree up DMA parms resources

dma_start Perform DMA operation between a buffer and the VME bus

Here is a sample code fragment using the user DMA library:

#include <udmalib.h>
#include <stdio.h>

do_dma(int adap, void *vmeaddr, int size)
{
   udmaparm_t    *parms;
   udmaid_t     *dp;
   vmeparms_t    vparm;
   void        *iobuf;
   int          err = 0;

   if( (dp = dma_open(DMA_VMEBUS,adap)) == NULL ){
      (void)fprintf(stderr,
                  "unable to start adapter %d\n",adap);
      return 1;
   }

   /* get a buffer and phys address */
   if( (iobuf = dma_allocbuf(dp,size)) == NULL ) {
      (void)fprintf(stderr,"iobuf alloc failed\n");
      (void)dma_close(dp);
      return 1;
   }

   vparm.vp_block = 0;
   vparm.vp_datumsz = VME_DS_HALFWORD;
   vparm.vp_dir = VME_READ;
   vparm.vp_throt = VME_THROT_256;
   vparm.vp_release = VME_REL_RWD;
   vparm.vp_addrmod = 0xd;

   /* create DMA parms */
   if( (parms = dma_mkparms(dp,&vparm,iobuf,size)) == NULL
)  {
      (void)fprintf(stderr,"dma failed\n");
      (void)dma_freebuf(dp,iobuf);
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      (void)dma_close(dp);
      return 1;
   }

   if( err = dma_start(dp,vmeaddr,parms) )
      (void)fprintf(stderr,"dma failed\n");

   if( dma_freebuf(dp,iobuf) ||
       dma_freeparms(dp,parms) ||
       dma_close(dp) )
      (void)fprintf(stderr,"dma release failed\n");

   return err;
}
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Writing Kernel-level VME Device Drivers

Determining VME Device Addresses

Each VME device has a set of VME-bus addresses to which it responds.
These addresses correspond to device registers or on-board memory,
depending on the VME device. Your driver can map these VME addresses
into the host processor address space: your users can access the device with
simple reads and writes. VME devices can be classified as A16, A24, A32, or
A64 VME slaves. Each class specifies a range of addresses to which the
device responds. You determine the slave addressing mode from the
technical specification for the device.

Once you determine the addressing mode, choose VME addresses that do
not conflict with existing VME device drivers. For each slave addressing
class, Silicon Graphics has reserved a range of addresses for use by user-
written drivers. These ranges are listed in /var/sysgen/system/irix.sm and
tabulated in Appendix A, “System-specific Issues”.

You must choose a VME-bus interrupt priority level for the device. The
VME-bus interrupt priority level must be a value from one to seven. Later,
all VME interrupts are channeled into one CPU interrupt level. The priority
of this CPU interrupt is below that of the clock and any on-CPU devices.

In the past, it was necessary to reserve a VME interrupt vector. Since most
VME devices can program the interrupt vector through software, a dynamic
allocation scheme for vectors now hands VME vectors out to drivers at
initialization time. However, if your VME device has a hard-wired or
jumpered VME vector, it is still possible to reserve the VME vector that the
device requires.

When CPU interrupts are assigned to the VME bus, the CPU services the
VME-bus interrupts in order of their VME-bus priority. For each CPU
interrupt, the system services only one device per VME-bus priority level. If
more than one VME-bus interrupt occurs at the same VME-bus interrupt
priority level, all but one device must wait until the next time the CPU
services the VME-bus CPU interrupt.

After picking an appropriate set of addresses and an interrupt priority level,
you must program the VME device to respond accordingly. Usually, you do



Writing Kernel-level VME Device Drivers

79

this with jumpers or switches. Some VME devices allow you to program the
VME vector and interrupt priority level at boot time (from your driver’s
drvedtinit() routine).

If the device performs DMA, you need to know the addressing mode by
which the device accesses main memory. This addressing mode is called its
master addressing mode, as opposed to the slave addressing mode described
above. Silicon Graphics supports A24, A32, and A641 VME master
addressing. (POWERchannel-2 has master DMA capability.) The master
addressing mode determines the driver structure to some degree.

Including VME Device Drivers in the Kernel

Chapter 2, “Writing a Device Driver,” provides general information on
adding a driver to the kernel. This section describes specifics concerning
VME drivers.

To add a new kernel-level device driver, you must create your own irix.sm
file that contains the appropriate directive telling lboot how to include your
driver. The filename, which must end with “.sm”, belongs in the directory
/var/sysgen/system. Because lboot can probe for VME devices, lboot can
conditionally include a VME device driver into the kernel.

If the current system contains the VME device, lboot includes the driver;
otherwise, it saves memory by leaving it out. Use the VECTOR directive to
include a VME device conditionally. In addition to the module name, the
VECTOR directive requires that you fill out these fields:

adapter The adapter number identifying which VME bus out of
possibly several.

bustype This must be set to VME.

ctlr The device number that differentiates between more than
one device of the same type.

1 R4000 – R4400 use 64-bit MIPS III mode in the CHALLENGE/Onyx chassis.
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exprobe_space This is an extended probe that can do reads and writes with
compares against expected values to search for a VME
device at an address. The first arg defines a sequence of
reads and writes. The second arg specifies the address space.
The third arg specifies the probe address. The fourth arg is
the size of the probe, 1-4 bytes. The fifth arg is the expected
read or write value. The last argument is a mask that the
fifth arg is ANDed against.

iospace, iospace2, iospace3
This is a triple identifying a VME-bus space, address, and
size. The bus space is one of A16NP, A16S, A24NP, A24S,
A32NP, A32S.

ipl The VME interrupt priority level. This must be a value from
1 to 7, as described above.

probe_space This is a triple identifying a VME-bus space, address, and
read byte count. The address specified is read by lboot to
determine the existence of device. If you do not specify a
probe address, the module is automatically included in the
kernel.

vector The VME interrupt vector value. This must not be used
unless the VME device has hard-wired or jumpered vector
values.

You must also create a master file under /var/sysgen/master.d. A master file
has four sections:

• a tabulated ordering of flags

• phrases and values interpreted by the configuration program and used
to build device tables

• a list of stub routines

• a section of C code.

The first, non-blank, non-comment line is interpreted for flags, phrases, and
values. Other non-comment lines that follow, up to a line that begins with a
dollar sign, specify stubs. Anything that follows the line beginning with a
dollar sign is processed to interpret special characters, then compiled into
the kernel.
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The name of the master file is the same as the name of the object file for the
driver, but the master file must not have the .o suffix. The FLAG field of the
master file must include at least the character device flag c. (You do not need
the s flag for VME device drivers because lboot can probe for VME devices.)
See /var/sysgen/master.d/README and the master(4) man page.

Note: For network drivers, the FLAG field would blank with a “-” (hyphen).

As an example, suppose you want to add a mythical VME device driver to
the kernel. You must copy the driver object file vdk.o to /var/sysgen/boot, and
you must add a line similar to the following to a file called vdk.sm in
/var/sysgen/system:

VECTOR: bustype=VME module=vdk ipl=1 ctlr=0 adapter=0
iospace=(A16S,0x400,0x200) iospace2=(A16S,0x800,0x100)
probe_space=(A16S,0x404,2)

Note: The above lines must all be on one line in the irix.sm file.

Note that the bus addresses and sizes are specified in hexadecimal format.
The ctlr= value helps identify a device when more than one uses the same
driver. If there is more than one device, give each a unique number, starting
from zero. In the above example, lboot reads two bytes at probe address
0x404 to determine whether the device is present.

After examining /usr/include/sys/major.h, you determine that major device
number 51 is available and can be used for this device. You then create a
master file vdk in /var/sysgen/master.d, and enter:

*FLAG     PREFIX    SOFT      #DEV       DEPENDENCIES
 c        vdk       51        -
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Writing edtinit()

If you use the VECTOR directive to configure a driver into the kernel, your
driver can use a routine of the form drvedtinit(), where drv is the driver
prefix. If your device driver object module includes a drvedtinit() routine,
the system executes the drvedtinit() routine when the system boots. In
general, you can use your drvedtinit() routine to perform any device driver
initialization you want.

Synopsis

drvedtinit(e)
struct edt *e
{
   your code here
}

edt Type Structure

When the system calls your drvedtinit() routine, it hands the routine a
pointer to a structure of type edt. (This structure type is defined in the sys/
edt.h header file.)

Structure Definition

typedef struct iospace {
    unchar    ios_type;      /* io space type in adapter */
    iopaddr_t ios_iopaddr;   /* io base address */
    ulong     ios_size;
    caddr_t   ios_vaddr;     /* kernel virtual address */
} iospace_t;

#define NBASE 3

typedef struct edt {
   uint_t    e_bus_type;     /* vme, scsi, eisa, ... */
   unchar    v_cpuintr;      /* cpu to send intr to */
   unchar    v_setcpuintr;   /* cpu field is valid */
   uint_t    e_adap;         /* adapter */
   uint_t    e_ctlr;         /* controller identifier */
   void*     e_bus_info;     /* bus-dependent info */
   int       (*e_init)( );   /* device init/run-time probe */
   iospace_t e_iospace[NBASE];
};
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Based on e_bus_type, lboot will set up e_bus_info to point to the
corresponding bus-dependent data structure (that is, vme_intrs). With this
two-layer structure, it is easier to extend edt to support EISA, GIO, or other
types of buses.

CHALLENGE/Onyx and POWER CHALLENGE/POWER Onyx systems
can support more I/O address space than the kernel can, so it is necessary to
provide a way of allocating only the part of the I/O space that is needed into
the kernel address space. Programming the I/O board/adapter registers
dynamically assigns the mapping. The edt structure must describe the device
by adapter ID and adapter bus address. The kernel uses this information to
initialize the kernel virtual address.

On POWER Series workstations, ranges of VME-bus address space are
mapped one-to-one with K2 segment addresses. This makes accessing the
VME bus easy, but is also limiting. Only a small amount of K2 space is
available for use by VME, so very little of the VME address space is made
available. Even worse, for dual VME-bus systems, the space previously
available is now halved because the two buses must share it.

The CHALLENGE series supports up to five VME buses. Since K2 space is a
limited resource, and dividing up what is available by five makes the extra
VME buses next to useless, a new approach was tried. The CHALLENGE
series does not have a direct K2 address map into VME-bus space. Each
VME-bus adapter has the ability to map fifteen 8 MB windows of VME-bus
space into K2 space. These windows can be moved around at will to give the
illusion of a much larger address space.

To access a VME space, a user must allocate a PIO map, which provides a
translation between a kernel address and VME space. These mappings can
be “FIXED” or “UNFIXED.” As on POWER Series platforms, a FIXED
mapping is a one-to-one mapping of a range of VME-bus space into the
driver’s address space. An UNFIXED window takes advantage of the
sliding window ability on the CHALLENGE series, which supports both
FIXED and UNFIXED mappings.

In an UNFIXED map, VME-bus space cannot be accessed directly; instead,
access is provided through special bcopy() routines used to move data
between VME space and kernel buffers. While it is not always possible to get
a FIXED mapping, an UNFIXED mapping is always available. The special
bcopy() routines work for both FIXED and UNFIXED mappings. On
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POWER Series and earlier workstations, UNFIXED mappings are treated as
FIXED mappings.

The PIO mapping routines also have a general interface that allows them to
be used for mapping in bus spaces other than VME.

The support routines for PIO mapping are:

These PIO maps are normally set up in the driver’s drvedtinit() routine.

e_iospace is enhanced to be a structure of I/O base address, size and type of
the I/O mapping, and kernel virtual address space. ios_type, ios_iopaddr, and
ios_size are initialized by lboot from the system, and ios is assigned when a
driver is initialized.

e_adap is added to specify the adapter number, while e_ctlr is for physical
controller ID.

To pass the desired interrupt CPU to the driver via the irix.sm file, use the
VECTOR directive. The line

VECTOR: module=XXX intrcpu=3

directs lboot (via autoconfig) to set the v_intrcpu field for the module’s edt
struct to 3 and the v_setintrcpu field to 1, indicating that v_intrcpu is valid. If
no intrcpu= statement appears in the VECTOR line, v_setintrcpu is set to 0.
The module’s edtinit function may then use these fields to route interrupts
as desired.

pio_mapalloc Allocate a PIO map.

pio_mapaddr Map bus space to a driver accessible address (FIXED
maps only).

pio_mapfree Free a previously allocated PIO map.

pio_badaddr Check to see whether a bus address is equipped.

pio_wbadaddr Check to see whether a bus address is equipped.

pio_bcopyin Copy data from bus space to kernel buffer.

pio_bcopyout Copy data from kernel buffer to bus space.
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void
XXXedtinit (struct edt *ep)
{
     if (ep->setcpuintr)
               dest_cpu = ep->cpuintr;
     else
          dest_cpu = <some default>;

     ...machine-specific intr routing ...
}

vme_intrs Structure

In the case of a VME driver, the field e_bus_info will point to the vme_intrs
structure.

Structure Definition

typedef struct vme_intrs {
    int     (*v_vintr)();    /* interrupt routine */
    unsigned char  v_vec;    /* vme vector */
    unsigned char  v_brl;    /* interrupt priority level */
    unsigned char  v_unit;   /* software identifier */
} vme_intrs_t;

The only field that must be accessed is v_brl, which contains the ipl=value
from the VECTOR line. The v_vec field must be used only if the VECTOR line
uses the vector= directive and your device requires a jumpered or hard-wired
VME interrupt vector.

Note: Although lboot knows not to include a VME device driver in the
kernel for a device not present, it is a good idea for your drvedtinit() routine
to probe for its device with badaddr(). This lets you write a driver that is
prepared if the device is removed from the system after the kernel has been
built or when the kernel runs on another system.
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Continuing with this mythical VME device driver example, its drvedtinit()
routine could look like:

struct drv ctlrinfo ctlrinfo[MAXCTLR];
drv edtinit(edt_t *e)
{
   int i, vec;
   struct vme_intrs   *info;
   volatile struct drv device *dp;
   struct drv iopb      iopb;
   piomap_t *pmap;

   pmap = pio_mapalloc(e->e_bus_type,e->e_adap,&e->e_space[0],
      PIOMAP_FIXED," DRV");

   /* make sure adapter exists and addresses are valid */
   if( pmap == 0 )
      return;
   dp = pio_mapaddr(pmap,e->e_iobase);
   /* probe for the device */
   if( badaddr(&dp->csr,sizeof(dp->csr)) ) {
      cmn_err(CE_WARN," drv : ctlr %d not installed\n",e->e_ctlr);
      pio_mapfree(pmap);
      return;
   }

   /* save the controller's device registers pointer */
   ctlrinfo[e->e_ctlr]->devregs = dp;

   /* dynamically allocate an interrupt vector */
   vec = vme_ivec_alloc(e->e_adap);
   if( vec == -1 ) {
      cmn_err(CE_WARN," drv : ctlr %d, no irq vector\n", e->e_ctlr);
      pio_mapfree(pmap);
      return;
   }

   /* register our interrupt routine with the kernel */
   vme_ivec_set(e->e_adap,vec, drv intr,e->e_ctlr);
   iopb.ipl = info->v_brl;
   iopb.vec = vec;
   .
   .
   .
}
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Two new routines vme_ivec_alloc(uint_t, adapter) and
vme_ivec_set(adapter, vec, intr_func, arg) are implemented to dynamically
allocate an interrupt vector and register this vector into vme_ivec(). This
scheme supports multiple vectors and loadable drivers. vme_ivec_alloc()
and vme_ivec_set() are used in an edtinit routine; vme_ivec_free() can be
called to free up a vector that has been allocated.

You can specify the vector in the irix.sm file for old VME boards with a hard-
wired interrupt vector. 0x30-0x3f and 0x70-0x7f are reserved for customer
boards.

VME Interrupt Handler

Your driver module must contain a routine of the form drvintr(), where drv
is the driver prefix. When the device generates an interrupt, the general VME
interrupt handler calls your driver’s drvintr() routine.

When the VME interrupt handler calls your drvintr(), it passes it the value
registered with the vme_ivec_set() routine for the device. Within your
drvintr() routine, you must set flags to indicate the state of the transfer and
to wake any sleeping processes waiting for the transfer to complete. Usually,
the interrupt routine calls biodone() to indicate that an I/O transfer for the
buffer is complete.

Caution: Interrupt routines (drvintr()) must not try to sleep themselves by
using biowait(), sleep(), psema(), or delay() kernel calls.

With the new dynamic interrupt vector allocation scheme, the argument
passed to the individual drvintr() is arg, which is set by vme_ivec_set() in
edtinit(). arg can be an index, a controller number, the address, or any
argument that the driver wants to pass to interrupt the service routine.

The IRIX 5.x and 6.0 vme_ivec structure is shown below:

struct vme_ivec {
    int   (*vm_intr)(int);
    int    vm_arg;
}vme_ivec[ADAPTER][MAX_VME_VECTS];
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Note: Although the prototype for the VME interrupt handler routine in the
vme_intrs (field v_vintr) and vme_ivec (field vintr) structures indicates that it
returns an integer value, the return value is not used. The prototype should
indicate that the function is of type void*. It was left unchanged to avoid
breaking existing VME device drivers.

To support the loadable device drivers, multiple adapters, and multiple
interrupt vectors, the vem_ivec table is changed to be dynamically allocated
at system boot time. The size depends on the number of VME adapters
currently supported by the running system. After the table is allocated, the
kernel fills the entries for the devices specified in the irix.sm file.

Programmed I/O (PIO)

When transferring large amounts of data, your device driver should use
direct memory access (DMA). Using DMA, your driver can program a few
registers, return, and put itself to sleep while it awaits an interrupt that
indicates the transfer is complete. This frees up the processor for use by other
processes. See the ioctl(D2) man page.

Sometimes you must write a driver for a device that does not support DMA.
Even if the device does support DMA, you may not want to use DMA to
transfer amounts of data so small as not to warrant the DMA overhead.

In these cases, the host processor usually copies the data from the user space
to on-board memory. Your driver can then program the device registers to
notify the device that the memory is ready. The device controller can then
copy the data from its on-board memory to the peripheral device.

Listed below is part of a mythical VME device driver for a printer controller
that does not support DMA.

To print data from the user, the driver copies data from the user’s buffer to
an on-board memory buffer of size VDK_MEMSIZE. Following the copy of
each chunk, the driver programs the device register to indicate the size of
valid data in memory and to tell the controller to start printing.

The driver then sleeps, waiting for an interrupt to indicate that the printing
is complete and that the on-board memory buffer is available again. To
prevent a race condition, in which the interrupt responds before the calling
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process can sleep, the driver uses the splvme() and splx() routines. See the
spl(D3) man page.

int vdk_state;      /* flag for transfer state */

int
vdkwrite(dev_t dev, uio_t *uiop, cred_t *crp)
{
   register int size;
   register int i;
   int s;
   int err;

   /* while there is data to transfer */
   while( uiop->uio_resid > 0 ) {

      /* can only move VDK_MEMSIZE bytes at a time */
      size = MIN(uiop->uio_resid,VDK_MEMSIZE);

      if( (err = uiomove(vdk_memory,size,UIO_WRITE,uiop)) != 0 )
         return err;

      /* block interrupts until we sleep */
      s = splvme(); /* may not be sufficient on MP */

      /* start printing */
      vdk_device->count = size;
      vdk_device->command = VDK_GO;
      vdk_state = VDK_SLEEPING;

      while ( vdk_state != VDK_DONE )
         sleep(&vdk_state,PRIBIO);

      /* restore the process level after waking up */
      splx(s); /* clears any MP locks as well */
   }

   return 0;
}

void
vdkintr(int unit)
{
   ...
   /* printing is complete */
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   if( vdk_state == VDK_SLEEPING ) {
      vdk_state = VDK_DONE;
      wakeup(&vdk_state);
   }
   ...
}

The driver’s use of the volatile declaration informs the optimizer that this
variable points to a hardware value that may change. Otherwise, the
optimizer may determine that one write to vdk_device->command or storage
of the value in a register is sufficient.

Note: If your driver uses the sleep() and wakeup() kernel routines to sleep
and awaken, it is a good idea for the top half to verify that the event has
occurred before awakening the sleeping process. (See sleep(D3) for details
on the sleep/wakeup process synchronization mechanism.) If your driver
uses the biowait()/biodone() routines or the psema()/vsema() routines to
sleep and awaken, you need not worry about its awakening by accident.
However, the routines psema() and vsema() are specific to IRIX and are
probably not supported on other operating systems.

The uiomove() kernel routine is a useful procedure to call in these situations
because it automatically updates uio and iovec structures while checking for
valid user addresses. Remember that uiop->uio_resid must be left with the
number of bytes remaining untransferred.

Note: uiomove() uses bcopy() to transfer data. bcopy() transfers data as fast
as possible between locations in system memory. bcopy() takes advantage of
CPU-specific commands to optimize performance. On the R4000 processor,
bcopy() tries to move eight bytes at a time. Most VME-bus boards cannot
move data eight bytes at a time, so using this routine directly may not work.
A work-around would be to use uiomove() to copy the data from a user
buffer into a kernel buffer, then to use pio_bcopy() to copy the data from the
kernel buffer to the VME-bus board. pio_bcopy() allows the user to specify
the element size being transferred.
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DMA Operations

As indicated in “Programmed I/O (PIO),” use DMA (direct memory access)
when the device supports it. In its simplest form, DMA is easy to use: your
driver gives the device the physical memory address, and the transaction
begins. Your driver can then put itself to sleep while it waits for the transfer
to complete, thus freeing the processor for other tasks. When the transfer is
complete, the device interrupts the processor. On most systems, when large
amounts of data are involved, DMA devices obtain higher overall
throughput than devices that do only PIO.

DMA operations are categorized as DMA reads or DMA writes. DMA
operations that transfer from memory to a device, and hence read memory,
are DMA reads. DMA operations that transfer from a device to memory are
DMA writes. Thus, you may want to think of DMA operations as being
named the from the point of view of what happens to memory.

There are important cache considerations for drivers using DMA. The cache
architecture of the system dictates the appropriate cache operations. Write
back caches require that data be written back from cache to memory before
a DMA write, whereas both write back and write through caches require the
cache to be invalidated before data from a DMA read is used. See “Data
Cache Write Back and Invalidation” in Appendix A and the
dki_dcache_wbinval(D3X) man page for a discussion of these issues.

Another concern for driver writers is that DMA buffers may require cache-
line alignment. If a driver allocates a buffer for DMA, it must use the
kmem_alloc() function, using the KM_CACHEALIGN flag.

The interrupt service routine then calls your drvintr() routine. Your drvintr()
routine can check that the transfer is complete (if necessary), set flags
indicating the status of the transfer, and then awaken the sleeping process.

Unfortunately, the details of how you implement the simple scheme
described above is complicated by the use of virtual memory, different VME
addressing modes, and a variety of device and system implementations. To
sort through these potentially confusing choices, ask the following questions
in order. If the answer to any question is “yes,” go on to the section indicated.
Otherwise, proceed to the next question.
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A32 Addressing Scatter/Gather Support

Modern computer architectures support virtual memory—memory in which
the user's view of memory is logically contiguous, but the underlying
physical pages are not. Because VME devices understand only physical page
addresses, your driver would ordinarily be forced to do transfers one page
at a time. At the start of each one-page transfer, your driver would have to
awaken the sleeping process and compute the physical address for the next
virtual page.

Because this is not efficient, many devices now provide a method to store the
address mapping for the entire transfer up front. Your driver can usually do
this merely by programming the device with a table of physical addresses
for all of the upcoming transfer. This method of regrouping of
noncontiguous physical memory is called scatter/gather.

If your VME device supports scatter/gather, uses A32 addressing, has less
than 4 GB of physical memory, and you are not on a CHALLENGE/Onyx
series system, proceed to “VME Devices with Scatter/Gather Capability.”

DMA Mapping for High-end Systems and Older Systems

Older Silicon Graphics systems and current high-end systems provide for
address mapping of physical addresses so that even devices that do not
support scatter/gather in the controller can transfer to and from
noncontiguous physical pages with ease. This facility, called DMA mapping,
is available on 4D/100 through 4D/400, Crimson, CHALLENGE/Onyx and
POWER CHALLENGE/POWER Onyx series systems. Indigo, Indigo2, and
Indy workstations have no VME-bus support. DMA mapping works equally
well for both VME A24 and A32 master addressing. See “Using DMA Maps”
for a description of how to use DMA mapping.

Does the VME Device Perform A24 Master Addressing?

If the VME device uses A24 addressing, and your system does not support
DMA mapping, the controller can access only the first 8 MB of physical
memory. Because user programs may use physical pages beyond
8 MB, your device driver must do DMA into a kernel buffer and copy from
that buffer to the user’s pages. See “DMA on A24 Devices with No DMA
Mapping.”
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A32 Addressing with No Scatter/Gather

If you are writing a driver for an A32 VME device that does not support
scatter/gather on a workstation that does not support DMA mapping, see
“DMA on A32 Devices with No Scatter/Gather Capability” for advice on
how to implement this driver type.

VME Devices with Scatter/Gather Capability

Chapter 2, “Writing a Device Driver,” tells you to use the physiock() kernel
routine to fault in and lock the physical pages corresponding to the user's
buffer. physiock() also remaps these physical pages to a kernel virtual
address that remains constant even when the user's virtual addresses are no
longer mapped.

Internally, physiock() allocates a structure of type buf if you pass a NULL
pointer (physiock() uses this structure to embody the transfer information).
physiock() then calls your drvstrategy() routine and passes it a pointer to the
buf type structure that it has allocated and primed. Your drvstrategy()
routine must then loop through each page, starting at the kernel virtual
address, and load each device scatter/gather register in turn with the
corresponding physical address. Use the kvtophys() routine to convert a
kernel virtual address to a physical address.

For example, suppose the mythical device is now an A32 VME device that
supports scatter/gather. The scatter/gather registers for the device are
simply a table of integers that store the physical pages corresponding to the
current transfer. To start the transfer, the driver gives the device the
beginning byte offset, byte count, and transfer direction. The code is:

#include <sys/sysmacros.h>
/* pointer to device registers */
volatile struct vdk_device *vdk_device;
vdkstrategy(bp)
struct buf *bp;
{
   int npages;
   register volatile int *sgregisters;
   register int i, v_addr;

   /* Get address of the scatter/gather registers */
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    *sgregisters = vdk_device->sgregisters;

   /* Get the kernel virtual address of the data */
    v_addr = bp->b_un.b_addr;

   /* Compute number of pages received.
    * The dma_len field provides the number of pages to
    * map. Note that this may be larger than the actual
    * number of bytes involved in the transfer. This is
    * because the transfer may cross page boundaries,
    * requiring an extra page to be mapped.*/
    npages = numpages (v_addr, bp->b_bcount);

   /* Translate the virtual address of each page to a
    * physical page number and load it into the next
    * scatter/gather register.  The btoct macro
    * converts the byte value to a page value after
    * rounding down the byte value to a full page.
    */
    for (i = 0; i < npages; i++) {
      *sgregisters++ = btoct(kvtophys(v_addr));

   /*
   /* Get the next virtual address to translate.
    * (NBPC is a symbolic constant for the page
    * size in bytes.)
    */

   v_addr += NBPC;
   }

   /*
    * Provide the beginning byte offset and count to the
    * device.
    */

   vdk_device->offset = (unsigned int)bp->b_dmaaddr & (NBPC-1);
   vdk_device->count = bp->b_bcount;
   if ((bp->b_flags & B_READ) == 0)
      vdk_device->direction = VDK_WRITE;
   else
      vdk_device->direction = VDK_READ;
}
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Using DMA Maps

On IRIS 4D/100, 4D/200, 4D/300, 4D/400, Crimson, CHALLENGE/Onyx,
and POWER CHALLENGE/POWER Onyx series systems, a number of
registers perform mapping from physical pages to other physical pages.
Because the addresses that are mapped are really no longer “physical”
addresses, they are now referred to as “bus virtual” addresses. Your driver
should allocate these system mapping registers when it opens the device,
remap these registers for every transfer, and then free them when it closes
the device.

Internally, all the mapping routines deal with a DMA map structure. The
values stored in members of the structure are subject to change from release
to release. Therefore, when your driver manipulates the DMA maps, it must
use the following routines only. Your driver must not try to access the
structure members directly.

dma_mapalloc Allocate a DMA Map

dma_map Map a Virtual Address Space

dma_mapaddr Return the Bus Virtual Address

Note: When using DMA maps, be sure that the source or destination
address begins on a 32-bit word boundary.

Caution: Once you free a DMA map, it is gone and you can no longer use
it. Free it only after the DMA operation has been successfully aborted.

Example Using DMA Maps

Suppose the mythical VME device is an A24 device for use with an
IRIS-4D/100 series workstation. The driver begins the transfer by giving the
device the starting address, byte count, and transfer direction. Some driver
excerpts could look like the following:

#define MAXTRANSFER  4      /* maximum transfer size in pages */
                            /* pointer to device registers */
volatile struct vdk_device*vdk_device;
dmamap_t    vdk_map;         /* pntr to DMA map */
struct buf *vdk_curbp;      /* current buffer */
caddr_t     vdk_curaddr;     /* current address to transfer */
int         vdk_curcount;
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static      int vdk_vmeadap   /* computed during edtinit */

vdkopen(dev, flag, otyp, crp)
dev_t   *dev;
int     flag, otyp;
credit  *crp;
{
...
    vdk_map =
        dma_mapalloc(DMA_A24VME, vdk_vmeadap,
            MAXTRANSFER, 0);
...
}

vdkclose(dev, flag, otyp, crp)
dev_t   dev;
int     flag, otyp;
{
...
        dma_mapfree(vdk_map);
...
}

vdkstrategy(bp)
struct buf *bp
{
...

/* Save structure pointer for the interrupt  routine, vdkintr */
    vdk_curbp = bp;

    /* Set up the mapping registers */
    bp->b_resid = bp->b_bcount;
    vdk_curaddr = bp->b_dmaaddr;
    vdk_curcount = dma_map
        (vdk_map, vdk_curaddr, bp->b_resid);

/* Tell the device starting bus virtual address and count */
    vdk_device->startaddr =
            dma_mapaddr(vdk_map, vdk_curaddr);
    vdk_device->count = count;
    if (bp->b_flags & B_READ) == 0)
        vdk_device->direction = VDK_WRITE;
    else
        vdk_device->direction = VDK_READ;
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        vdk_device->command = VDK_GO;
        /* Set up for next transfer */
        vdk_curaddr += count;
        ...
}

vdkintr(unit)
int unit;
{
    int count;
    register struct buf *bp = vdk_curbp;
    ...

    if(error) {
        bp->b_flags |= B_ERROR;
        iodone(bp);
        return( );
    }

    /*On successful transfer of last chunk, continue if necessary.*/
    bp->resid -= vdk_curcount;
    if (bp->b_resid > 0) {
        count = dma_map(vdk_map, vdk_curaddr, bp->b_resid);
        vdk_device->startaddr = dma_mapaddr(vdk_map,vdk_curaddr);
        vdk_device->count = count;
        if (bp->b_flags & B_READ) == 0)
            vdk_device->direction = VDK_WRITE;
        else
            vdk_device->direction = VDK_READ;
        vdk_device->command = VDK_GO;
        vdk_curaddr += count;
    } else {
        biodone(bp);
    }
    ...
}

Note: As with other examples, error checking is omitted, but should not be
omitted in real code.
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DMA on A24 Devices with No DMA Mapping

VME A24 addressing specifies an address space that may be smaller than all
of physical memory. Silicon Graphics workstations that support the VME
bus provide a DMA mapping capability so that your driver can access all of
physical memory.

Some Silicon Graphics systems allow A24 masters to access only the first
8 MB of physical memory. Your driver must declare a static buffer assigned
to contiguous physical pages in low memory, and it must do DMA transfers
to and from this buffer only. After a transfer is complete, the driver can copy
the data from this buffer to the user's memory. Because kernel static data
uses contiguous physical memory pages, scatter/gather hardware is not
needed. Keep this buffer no more than a few pages long; otherwise, the
kernel BSS segment may be too large for the system to boot it. The limits on
kernel size vary from system to system and sometimes across releases and
other included kernel drivers.

Using a DMA read operation, your driver can transfer data from a device
directly to physical memory. Any words in the processor data cache
corresponding to this memory are now stale. To invalidate the data cache
lines associated with the physical memory addresses, your driver must call
the dki_dcache_inval() routine. If your driver calls the kernel routine,
physiock(), it need not call dki_dcache_inval() because physiock() calls the
userdma() routine and thus invalidates the data cache.

Using a DMA write operation, your driver can transfer data from memory
to the device. Prior to the transfer, any words in the processor data cache
corresponding to this memory may be more up-to-date than the
corresponding memory. In this case, memory is said to be stale with respect
to cache, and any words in the cache corresponding to this memory must be
written back to memory before the DMA starts. Use the
dki_dcache_wbinval() routine to write the contents of the cache back to
memory. If your driver calls the kernel routine physiock(), it need not call
dki_dcache_wbinval() because physiock() calls the userdma() routine and
thus writes back and invalidates the data cache.

The driver below does a DMA transfer into memory that has not been
prepared by physiock(). The driver can do this because the data is in a kernel
buffer, so there is no need to lock it in memory and remap it. See
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Appendix A, “System-specific Issues,” for more information on data cache
management.

For example, suppose the mythical VME device is now an A24 master. The
driver begins the transfer by programming the starting address, byte count,
and transfer direction.

Note: On systems with multiple word cache lines, this buffer must be
aligned on a cache line boundary for correct operation. Normally, some extra
bytes (currently 128) must be allocated, and a pointer into the buffer, whose
address is adjusted to be cache-line aligned, must be used (see
SCACHE_ALIGNED in sys/immu.h).

Alternatively, allocate a buffer during the drvedtinit routine with
kmem_alloc and the SCACHE_ALIGN flag, and verify that the address is in
the low 8 MB of physical memory with kvtophys().

A driver excerpt follows:

#define V DKBUFSIZE 4096 /* kernel buffer size */
/* pointer to device rgstrs */
volatile struct vdk_device *vdk_device;
char vdk_buffer[VDKBUFSIZE] ; /* kernel bufr */
struct buf *vdk_curbp; /* current bufr */
caddr_t vdk_curaddr;   /* current address to transfer */
caddr_t vdk_curcount   /* current count being trnsfrd */

vdkstrategy(buf *bp)
{
    ...
    bp->b_resid = bp->b_bcount;
    vdk_curaddr = bp->b_un.b_addr;
    vdk_curbp = bp;
    vdk_curcount = MIN(bp->b_resid,VDKBUFSIZE);

    /* for a write operation, copy from the user's memory
     * to the kernel buffer
     */
    if( (bp->b_flags & B_READ) == 0 )
        bcopy(vdk_curaddr,vdk_buffer,vdk_curcount);

    /* tell the device the phys address of kernel
     * buffer and count
     */
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    vdk_device->startaddr = kvtophys(vdk_buffer);
    vdk_device->count = vdk_curcount;
    if( (bp->b_flags & B_READ) == 0 )
        vdk_device->direction = VDK_WRITE;
    else
        vdk_device->direction = VDK_READ;
    vdk_device->com = VDK _GO;

    ...
}

vdkintr(int unit)
{
    int count; error
    register struct bug *bp = vdk_curbp;

    ...
    /* check for an error */
    if( error ) {
        bioerror(bp,EIO);
        biodone(bp);
        return;
    }
    /* For a read operation, copy the data from the kernel
     * buffer to the user's pages. The bcopy routine
     * must be used with the kernel virtual address of
     * the user's buffer since the user's virtual
     * addresses aren't mapped anymore.
     *
     * Note that the data cache is flushed before
     * copying from a cached address. Ordinarily physiock()
     * does this for you. See Appendix A for when and how
     * to flush the data cache.
     */
    if( (bp->b_flags & B_READ) != 0 ) {
        dki_dcache_flush(vdk_buffer, vdk_curcount);
        bcopy(vdk_buffer, vdk_curaddr, vdk_curcount);
    }

    /* Decrement the residual count and bump up the current
     * transfer address. If there are any bytes left to
     * transfer, do it again.
     */
    bp->b_resid -= vdk_curcount;
    vdk_curaddr += vdk_curcount;
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    if( bp->b_resid == 0 ) {
        biodone(bp);
        return;
    }

    vdk_curcount = MIN(bp->b_resid,VDKBUFSIZE);

    if( (bp->b_flags & B_READ) == 0 )
        bcopy(vdk_curaddr,vdk_buffer,vdk_curcount);

    vdk_device->startaddr = kvtophys(vdk_buffer);
    vdk_device->count = vdk_curcount;
    if( (bp->b_flags & B_READ) == 0 )
        vdk_device->direction = VDK_WRITE;
    else
        vdk_device->direction = VDK_READ;
    vdk_device->com = VKD_GO;
}
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DMA on A32 Devices with No Scatter/Gather Capability

If neither your device nor your workstation provides scatter/gather
capability, your driver must break up a data transfer so that no transfer
crosses a page boundary. The IRIX operating system provides a utility called
sgset(D3X), which simulates scatter/gather registers in software. It should
not be used on systems that support DMA address mapping. (See the IRIX
Device Driver Reference Pages for details on this routine.) Your driver can use
this utility to perform the virtual-to-physical mapping up front. Or, as the
example below shows, your driver can do this mapping following the
transfer of each page:

/* pointer to device registers */
volatile struct vdk_device    *vdk_device;
struct buf   *vdk_curbp      /* current buffer */
caddr_t      vdk_curaddr;    /* current address to transfer
*/
int          vdk_curcount;
vdkstrategy(bp)
struct buf    *bp;
{
    ...
    vdk_curbp = bp;
    bp->b_resid = bp->b_bcount;
    /*
     * Initialize the current transfer address and count.
     * The first transfer must finish the rest of the
     * page, but do no more than the total byte count.
     */
    vdk_curaddr = bp->b_un.b_addr;
    vdk_curcount = NBPC -
        ((unsigned int)vdk_curaddr & (NBPC-1));
    if (bp->b_resid < vdk_curcount)
        vdk_curcount = bp->b_resid;
    /* Tell the device starting physical address, count,
     * and direction */
    vdk_device->startaddr = kvtophys(vdk_curaddr);
    vdk_device->count = vdk_curcount;
    if (bp->b_flags & B_READ) == 0)
    vdk_device->direction = VDK_WRITE;
    else
        vdk_device->direction = VDK_READ;
    vdk_device->command = VDK_GO;
    vdk_curaddr += vdk_curcount;
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    biowait(bp);
    ...

}
vdkintr(unit)
int unit;
{
    int count, error;
    register struct buf *bp = vdk_curbp;
    ...
    if(error) {
        bioerror (bp,EIO);
        biodone(bp);
        return;
    }
    /* On successful transfer of last chunk, continue
     * if necessary. */
    vdk_curaddr -= vdk_curcount;
    if (bp->b_resid > 0) {
            count =
                (bp->b_resid < NBPC ? bp->b_resid : NBPC);
            vdk_device->startaddr = kvtophys(vdk_curaddr);
            vdk_device->count = count;
            if (bp->b_flags & B_READ) == 0)
                vdk_device->direction = VDK_WRITE;
            else
                vdk_device->direction = VDK_READ;
            vdk_device->command = VDK_GO;
            vdk_curaddr += count;
    } else {
            biodone(bp);
    }
    ...
}
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4. Writing an EISA Device Driver

This chapter provides in-depth information on writing device drivers for
Silicon Graphics computer systems equipped with the Extended Industry
Standard Architecture (EISA) expansion bus. It gives a brief overview of the
EISA-bus interface, describes configuration for EISA device drivers, and
introduces several EISA-specific routines.

It also explains the model drivers use to control device DMA operations.
This model makes it easier to port existing drivers from other operating
systems.

This chapter contains the following sections:

• “EISA-bus Interface Overview” on page 106

• “Choosing a Device Driver Model” on page 110

• “Writing a User-level EISA Device Driver” on page 111

• “Writing a Kernel-level EISA Device Driver” on page 113

Note: Currently, only the Indigo2 workstation and the CHALLENGE M
server support the EISA bus.
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EISA-bus Interface Overview

The Extended Industry Standard Architecture (EISA) bus standard is an
enhancement of the ISA (Industry Standard Architecture) bus standard
developed by IBM for the PC/AT. EISA is backward compatible with ISA. It
expands the ISA data bus from 16 bits to 32 bits and adds 23 address lines
and 16 indicator and control lines.

The EISA bus supports:

• All ISA transfers (except ISA-bus masters)

• EISA-bus master devices

• Burst-mode DMA transfers

• 32-bit memory data and address path

• Peer-to-peer card communication

• Dynamic bus sizing (that is, 32-bit bus master to 16-bit memory)

Initialization

A central component of the DOS-EISA world is a configuration program that
allocates and sets up the resources that the EISA card uses. Once this
program runs, the configuration results are downloaded into non-volatile
memory for future driver use. Storing the configuration results serves two
purposes:

1. The stored results make it easy for drivers to operate as boot devices
because the drivers can initialize in a standalone environment, in which
the operating system is not up and able to allocate resources to the
driver. But, because the Silicon Graphics EISA environment does not
now support booting from EISA devices, saving the resource allocation
information in nonvolatile RAM is superfluous.
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2. DOS saves the configuration file to store a set of card register
programmatic instructions that initialize various I/O ports. This is
useful when writing a generic device driver that must control boards
that have different initialization registers but are basically the same,
even though they come from different manufacturers.

Note: Although Silicon Graphics does not support this functionality, it
should not cause any problems because you can write the driver
initialization routine to check the product ID and execute the
appropriate initialization code. Be sure to consider the byte order when
checking the product ID.

In the DOS environment, the EISA configuration program allocates memory
spaces, DMA channels, and interrupt request lines. In IRIX release 5.x,
lboot handles the allocation of memory and I/O spaces. lboot passes the
allocation results to the driver via the edt_t structure. Memory and I/O
spaces are passed via edt, but dynamic resources are not. The driver requests
DMA channels and interrupt request lines or queues (IRQs) as dynamic
resources as required.

EISA-Bus Locked Cycles

The EISA bus provides a locked cycle that allows users to read/write the
contents of a device register or memory location as an atomic operation. This
facility is normally implemented for semaphores’ bit test-and-set operations.

On the Indigo2, the hardware implementation of a locked cycle is limited.
Indigo2 allows an EISA card to issue a locked cycle, but only for the duration
of two contiguous read/write operations. Access to this class of cycles is
provided on the CPU side, much like the read/modify/write cycle on a VME
bus, through the pio_rmw* kernel functions. See “Writing a Kernel-level
EISA Device Driver.”

In general, LOCK* is not considered to be a supported feature of the Silicon
Graphics EISA implementation.
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EISA-Bus Request Arbitration

EISA provides server DMA channels arranged into two channel groups
(channels 0-3 and channels 5-7) for priority resolution. Silicon Graphics uses
the rotating scheme described in the EISA-bus specification. Although the
channels rotate in this scheme, channels 5-7 receive more cycles, in general,
than channels 0-3.

EISA-Bus Interrupts

The EISA bus supports 11 edge-triggerable or level-triggerable interrupts.
IRQ0–IRQ2, IRQ8, and IRQ13 are used for internal functions only and are
not available externally. The remaining 11 interrupt lines (IRQ3–IRQ7,
IRQ9–IRQ12, IRQ14, IRQ15) are available for external system interrupts.

On Indigo2, all EISA interrupts are received at the same CPU level. When the
CPU receives an EISA-bus interrupt, it responds to each device in IRQ
priority order (lower number first). The operating system then determines
which interrupt routine to use, based on the value specified by the device
driver. Devices may share the same IRQ level.

EISA-Bus Data Transfers

The EISA bus supports 8-bit, 16-bit, and 32-bit data transfers through direct
CPU access as well as DMA initiated by a bus-master card or the on-board
DMA hardware.

EISA-Bus Address Space

The EISA-bus address space is divided into I/O address space and memory
address space.

I/O address space provides access to the 4 KB page that references the
registers on an EISA card on a slot-specific basis and the registers on an ISA
card on an address-range basis.
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The EISA memory space supports memory that is configured to respond to
the address range starting at 0xa0000. On Indigo2 systems, the EISA memory
address range extends 112 MB up to address 0x06ffffff (see Figure 4-1). Once
properly mapped by the operating system, this memory space can be
directly accessed by the CPU through loads and stores.

Figure 4-1 Indigo2 Memory Space

IRIX release 5.2 and later releases provide a set of procedural interfaces that
a device driver must use to allocate and map the EISA I/O address space
and memory address space.

The Indigo2 has four peripheral card slots that accept EISA, GIO, or graphics
cards. A server can support up to four EISA cards, but then a graphics card
cannot be used. CHALLENGE M platforms have four EISA slots available.
Graphics cards are available that use one, two, or three slots:

• With Extreme graphics installed, one slot is available for use by an EISA
card.

• With XZ graphics installed, two slots are used by the graphics, and two
are available for EISA cards.

• The XL graphics uses only one slot, so up to three EISA cards can be
accommodated.

06ffffff

000a0000

112 MB Indigo
Memory Space

2

00000000

FFFFFFFF

07000000
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Byte Swapping

An important implementation detail of the EISA bus you need to be aware
of is that the EISA bus uses little-endian byte ordering; the CPU running IRIX
uses big-endian byte ordering. Hence, a byte reference by the CPU to the low-
order byte within a word results in a reference to the high-order byte on the
EISA bus. This can sometimes become complex when referencing data
structures across the bus.

Choosing a Device Driver Model

You can control a device connected to the EISA bus through a user-level
device driver, a kernel-level device driver, or a kernel-level memory-mapping
device driver.

The simplest way to access an EISA device is through a user-level driver that
controls the device by directly interfacing with the EISA-bus adapter.

When to Write a User-level Device Driver

There are several reasons why you might want to write a user-level device
driver instead of a kernel-level device driver:

• If your user does not need to use EISA device interrupts or DMA
operations.

Tip: On many EISA boards that generate interrupts or use DMA
operations, these features can be disabled so that simple, user-level
drivers can be used.

• It is more convenient to write a user-level EISA-bus device driver to
determine whether a device is responding to the correct address or
simple register tests.

Tip: This can be very useful for prototyping: you can quickly integrate
boards into a system with the interrupts turned off, then later write a
kernel-level driver that uses interrupts or DMA operations for better
performance.

• You can use a user-level device driver in real applications that require
low-overhead access to on-board device registers or memory.
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When to Write a Kernel-level Device Driver

The main reasons for writing a kernel-level device driver are:

• You must use interrupts to access the EISA device.

• You must use DMA operations to transfer data from/to the EISA
device.

When to Write a Kernel-level Memory-mapping Device
Driver

The main reasons for writing a kernel-level memory-mapping device driver
are:

• You need a driver that allows the user to access the EISA device as
memory in user space yet also supports DMA and interrupts.

• You need an efficient way to share main memory between a kernel
driver and a user program.

See Chapter 7, “Writing Kernel-level General Memory-mapping Device
Drivers,” for a description of the memory-mapping facilities.

Writing a User-level EISA Device Driver

A typical application for a user-level EISA-bus device driver is to handle
data acquisition hardware (that is, hardware that reads large amounts of
data into device memory). Because the device memory is available to the
user program directly (it is “mmapped” into the address space of the user
program), the user program can avoid copying the data into host memory
and can process the data in the device memory instead. However, on some
systems, this PIO access may have substantially lower performance than
DMA-based kernel drivers.
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User-level EISA Special Files

IRIX Release 5.x contains special files in the /dev/eisa directory that allow a
user-level program to map arbitrary EISA or ISA devices into its address
space. These files can be used to write a user-level memory-mapped device
driver. The driver uses the mmap() system call to map the card’s address
space into user-level program address space. Then the driver can access the
card through simple loads and stores of program variables.

The special device files found in the /dev/eisa directory are:

eisaAio EISA-bus adapter’s 64 KB I/O address space

eisaAmem EISA-bus adapter’s 112 MB memory address space

Where A is the specific EISA-bus adapter.

An Indigo2 system has a single EISA-bus slot, so its special device files are
limited to eisa0io and eisa0mem.

Using the mmap Operating System Function

A user-level driver may access a generic EISA device by opening the
appropriate /dev/eisa special file, followed by an mmap() call to map in the
device. For example:

int fd, len, off;
char *addr;
fd=open("/dev/eisa/eisa0io", O_RDWR);
len=4096;
off=0x1000;
addr=mmap(0, len, PROT_READ|PROT_WRITE, MAP_PRIVATE, fd, off);
 .
 .
 .
/* addr can be used to access any card register by adding the
 * appropriate offset and then dereferencing the pointer
 */
 .
 .
 .
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Note that in the example above, the offset starts at 0X1000, which is the base
address of the first EISA slot. On Indigo2 systems, the slots are numbered in
ascending order from top to bottom (that is, slot one is the top and slot four
is on the bottom.). See the mmap(D2) man page for a complete description
of this system call.

The mmap() routine maps len bytes starting at EISA address off to the user
virtual address addr. Any loads or stores to the address range addr to addr+len
will result in read or writes to the EISA I/O space.

Note: You are responsible for identifying the offset to reference each device
on a slot-specific basis. The offset must be incremented by 4096 to reference
the next EISA card’s I/O space; the offset to an ISA card is its ISA address.

Writing a Kernel-level EISA Device Driver

This section provides in-depth information about data structures and
drivers that interface through the kernel to the EISA bus. It describes system
configuration for EISA device drivers and introduces several driver
initialization routines.

Configuring a Kernel-level EISA Device Driver

To configure a kernel-level EISA device driver, you must add certain system
files to the kernel, create various data structures, and write the driver.

File Requirements

The following files must be created or modified from existing models and
added to the kernel:
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1. A system file with a directive telling lboot, the configuration utility,
how to include your driver and specify which memory space your
device will allocate. This is installed into /var/sysgen/system directory
using the driver name appended by “.sm”. See “Including EISA Drivers
in the Kernel,” for information on what to include in this file.

2. A master file under /var/sysgen/master.d. The name of the master file is
the same as the name of the object file for the driver, but the master file
must not have the .o suffix.

3. Copy the driver object file (the .o file) to /var/sysgen/boot.

Determining ISA/EISA Device Addresses

The I/O address space on an EISA card plugged into a card slot responds to
the range of bus addresses for that slot. All EISA cards are identified by a
manufacturer-specific device ID that the operating system uses to register
the existence of each card. ISA cards, in contrast, are jumpered to respond to
a specific address range that corresponds to the device’s I/O registers.

Your driver can map these I/O addresses into the host processor address
space; it can then access these registers with simple reads and writes. For a
card’s memory space to be accessible, the card must be configured or
jumpered to respond to the appropriate address range. The memory space
can then be mapped to the host address space with the kernel mapping
routines. The specified address range must be selected to avoid conflicts
with other EISA/ISA devices.

Including EISA Drivers in the Kernel

This section describes the configuration information needed to add an EISA
driver to the kernel.

To add a new kernel-level device driver, you must create your own system
file. This file should contain the appropriate directive that tells lboot how to
include your driver, and it should specify which memory space will be
allocated by your device. The filename must include the .sm suffix and reside
in the directory /var/sysgen/system. Because lboot can probe for EISA devices,
it can conditionally include an EISA device driver into the kernel.
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VECTOR Directive

The system file must have a VECTOR: line in it that causes lboot to check
whether a hardware device corresponding to the particular module is
connected to the system. If the device is found, and a driver exists, it is
included in the kernel.

Synopsis

VECTOR:   bustype=EISA   module= driver_name   [options]

Arguments

bustype This must be set to “EISA”.

module The drivername declares the name of the object file for the
driver and its master.d configuration file, respectively, in the
/var/sysgen/boot and /var/sysgen/master.d directories.

The optional fields that can be appended to the VECTOR: directive are:

adapter The adapter number identifying which EISA bus out of
possibly several. Indigo2 systems currently support only a
single EISA bus, which is referenced as “adapter=0”. You can
also use “adapter=*“ to reference all possible EISA adapters
(as potentially available in future hardware). The default is
zero.

ctlr The device number that differentiates between more than
one device of the same type. This number is passed to the
driver by the edt structure when multiple devices of the
same type are connected. Generally, this number has some
correspondence to the minor device number.

A final set of VECTOR: line options probes for and configures address spaces
used by the EISA or ISA card. EISA address space is divided into I/O and
memory address space.

The VECTOR: line space declarations are a triple of the form:

( space_name, address_offset, size)

Arguments

space_name Must be either EISAIO or EISAMEM (even for ISA cards).
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address_offset and size
Specified in bytes. If the card is an EISA card (as opposed to
an ISA card), each card’s I/O register space starts at
0x1000 (4K) bytes * slot number

and extends the full 0x1000 (4 KB) to the next slot’s space.
For ISA cards, the I/O space addresses are not slot
dependent, but rather card jumper dependent. They can be
in the range starting at byte offset 0x100 (256) and extending
up to 0x400 (1024). Similarly, the ISA address space size is
card dependent and limited only by the ISA address space
size. The EISAMEM space can begin at offset 0xa0000
(640 KB) and extend up to 112 MB.

The VECTOR: fields that use these space declarations are:

exprobe_space There are two different techniques used to probe for the
existence of an EISA or ISA card. For an EISA card, a read is
compared to an expected value to determine the existence
of a particular EISA card in a slot. Thus, probing for an EISA
card is done by specifying a VECTOR: line with an
exprobe_space read if the card’s unique manufacturer
product identifier at each EISA slot’s product IS I/O
address. The manufacturer’s product ID is a 4-bit quantity
that is encoded in a format specified by the EISA bus
specification.

The general form of exprobe_space allows for a more
generalized extensive read/write sequence, which can be
used to search for an ISA card at a particular address. The
probing is accomplished by writing a value to a register
located on the card and then reading it back to verify that a
board responds to that location. Do not use a comparison
value of 0xff because the bus floats to that value, which
would cause the probe command always to believe that it
had found a new board.

iospace1

iospace2

iospace3

These space declarations are defined so that the driver can
map to the registers and memory on the card. Typically,
iospace1 is used to define the I/O register space to be
referenced, and iospace2 and iospace3 are used to gain
access to one or two different on-card memory spaces.



Writing a Kernel-level EISA Device Driver

117

exprobe_space is specified as a six-tuple consisting of:
(rwseg, bus_space, address, size, value, mask)

rwseg – A sequence of one or more r’s or w’s indicating a
read or write. To test for an EISA card, use a simple r. To
test for an ISA card, use wr, which causes the value to be
written then reread.

bus_space – Either EISAIO or EISAMEM. The manufacturer
ID is located in EISAIO space.

address – The address offset to read. The manufacturer ID is
located at 0xzC80, where z is the slot number for EISA
cards. ISA cards must specify the address of a register that
can be read from and written to.

size – The manufacturer ID is four bytes long, as described
below. ISA cards must use the appropriate register width.

value – Compressed 4-byte value to look for (EISA). Non-
0xff value for ISA.

mask – A bit mask to specify which bytes of the value to
compare against.

EISA Product Identifier (ID)

EISA expansion boards, embedded devices, and system boards have a four-
byte product identifier (ID) that can be read from I/O port addresses 0xzC80
through 0xzC83. For example, the slot 1 product ID can be read from I/O
port addresses 0x1C80-0x1C83.

The first two bytes (0xzC80 and 0xzC81) contain a compressed
representation of the manufacturer code. The manufacturer code is a three-
character code (uppercase, ASCII characters in the range of A to Z) chosen
by the manufacturer and registered with the firm that distributes the EISA
specification.

The manufacturer code “ISA” is used to indicate a generic ISA adapter. The
three-character manufacturer code is compressed into three 5-bit values so
that it can be incorporated into the two I/O bytes at 0xzC80 and 0xzC81,
where z represents the slot number probed.
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The compression procedure is:

1. Find the hexadecimal ASCII value for each letter:

ASCII for “A”-“Z” : “A” = 0x41, “Z” = 0x5a

2. Subtract 0x40 from each ASCII value:

Compressed “A” = 0x41-0x40 = 0x01 = 0000 0001
Compressed “Z” = 0x5a-0x40 = 0x1A = 0001 1010

3. Retain five least significant bits for each letter:

Discard three most significant bits (they are always zero)
Compressed “A” = 0001. Compressed “Z” = 1010

4. Compressed code = concatenate “0” and the three 5-bit values:

 “AZA” = 0 00001 11010 00001 (16-bit value)
0xzC80 = 00000111, 0xzC81h = 01000001
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Figure 4-2 shows the format of the product ID (addresses 0xzC80-0xzC83).

Figure 4-2 Product ID Format

The manufacturer ID is located at bytes offset 0xzC80-0xzC83, where z
represents the slot number probed. exprobe_space usage when searching for
an EISA card is:

Product ID, 1st byte: 0xzC80
Bit 7 6 5 4 3 2 1 0

Second character of compressed manufacturer code 
(bit 1 of 0xzC80 is the most significant bit)

0 = reserves (0)

Second character of compressed manufacturer code 
(bit 6 of 0xzC80 is the most significant bit)

Product ID, 2nd byte: 0xzC81
Bit 7 6 5 4 3 2 1 0

Third character of compressed manufacturer code 
(bit 4 of 0xzC81 is the most significant bit)

Second character of manufacturer code 
(continued from 0xzC80)

Product ID, 3rd byte: 0xzC82
Bit 7 6 5 4 3 2 1 0

Product number

Product ID, 4th byte: 0xzC83
Bit 7 6 5 4 3 2 1 0

Revision number



120

Chapter 4: Writing an EISA Device Driver

exprobe_space = (r, EISAIO, 0x zC80, 4, mfg_id, 0xffffffff)

The first argument (r) specifies that this probe consists of doing a single read.
The second argument (EISAIO) declares that the address space is in the EISA
register range. 0xzC80 is the offset of the manufacturer’s unique ID. The size
of this read is four bytes. mfg_id is the compressed 4-byte value that is
returned by the particular card being searched for. The last argument is a
mask which the mfg_id is ANDed against.

In addition to the system file described above, you must create a master file
under /var/sysgen/master.d. (The name of the master file is the same as the
name of the object file for the driver, but the master file must not have the
“.o” suffix.) The FLAG field of the master file must at least include the
character device flag c. (You do not need the s flag for EISA device drivers
because lboot can probe for EISA devices.)

A more detailed description of the master file can be found in Chapter 2,
“Writing a Device Driver,” and in the master(1M) man page.

The following example explores adding an ISA card device driver to the
kernel. Assuming that the driver is called isacard.o, the following steps are
necessary:

1. Copy the driver object file isacard.o to /var/sysgen/boot.

2. Create an isacard.sm system file in /var/sysgen/system.

The file might contain the following lines:

VECTOR: bustype=EISA module=isacard ctlr=0 adapter=0
iospace=(EISAIO,0x300,48) probe_space=(wr,EISAIO,0x300,1,
0x11,0xff)

VECTOR: bustype=EISA module=isacard ctlr=1 adapter=0
iospace=(EISAIO,0x330,48) probe_space=(wr,EISAIO,0x330,1,
0x11,0xff)

This would allow a kernel to support two of the same ISA cards located
at different addresses. A one-byte test for card existence will be made at
ISA I/O addresses 0x300 and 0x330. If either card returns the value
written at one of those locations, the driver will be included in the
kernel. Also a 48-byte ISA register address space will be allocated to the
card without a memory address space being allocated in the example
above.
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3. Create a master file for the driver in the /var/sysgen/master.d directory.
Check /usr/include/sys/major.h for available major device numbers or
lboot can assign one. See Chapter 11, “Kernel-level Dynamically
Loadable Modules (DLMs),” for more information on loadable drivers
and master.d configuration:

Note that even though the module name is referred to as isacard, the
prefix for each of the driver routines can be independently declared, in
this case as simply “isa.”

System File Example

To add an EISA driver to the kernel, the system file might look like this:

VECTOR: bustype=EISA module=eisacard ctlr=0 adapter=0
        iospace=(EISAIO,0x1000,0x1000)
        iospace2=(EISAMEM,0xC8000,0x10000)
        exprobe_space=(r,EISAIO,0x1C80,4,
        0x00008107, 0xffffffff)

VECTOR: bustype=EISA module=eisacard ctlr=1 adapter=0
        iospace=(EISAIO,0x2000,0x1000)
        iospace2=(EISAMEM,0xD8000,0x10000)
        exprobe_space=(r,EISAIO,0x2C80,4,
        0x00008107, 0xffffffff)

VECTOR: bustype=EISA module=eisacard ctlr=2 adapter=0
        iospace=(EISAIO,0x3000,0x1000)
        iospace2=(EISMEM,0xE8000,0x10000)
        exprobe_space=(r,EISAIO,0x3C80,4,
        0x00008107,0xffffffff)

VECTOR: bustype=EISA module=eisacard ctlr=3 adapter=0
        iospace=(EISAIO,0x3000,0x1000)
        iospace2=(EISMEM,0xF8000,0x10000)
        exprobe_space=(r,EISAIO,0x3C80,4,
        0x00008107,0xffffffff)

This will support up to four cards. In this example, the manufacturer ID is
AZA with a product number and revision number of zero. In addition to
specifying the I/O register space on a per-slot basis, the VECTOR: lines in
the above example also reserve 0x10000 bytes of memory space for each

*Flag Prefix Soft #Dev Dependencies

c isa 60 –
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card. Each card placed in the system will be uniquely identified to the system
by its ctlr number, which also happens to correspond directly to the slot
number (although this is not a requirement).

Writing edtinit()

If you use the VECTOR: directive to configure a driver into the kernel, your
driver can use a routine of the form drvedtinit(), where drv is the driver
prefix. If your device driver object module includes a drvedtinit() routine,
the system executes the drvedtinit() routine when the system boots. In
general, you can use your drvedtinit() routine to perform any device driver
initialization you want. Typically, the edtinit() routine is used to allocate and
map in the resources that are needed for the driver to initialize the hardware
and execute. The resources that might need to be initialized are:

• semaphores or other locks used by the driver

• I/O and memory space

• interrupt (IRQ) inputs

• DMA channels.

When the system calls your driver’s edtinit() routine, it hands the routine a
pointer to a structure of type edt.

Synopsis

void drv edtinit(struct edt *e)
{
   your code here
}

The edt_t structure is filled in with the information taken from the system file
when the operating system probes for the existence of the card. The edt_t
structure is defined below.

edt_t Structure

The edt_t structure, defined in system/edt.h, contains resources specification
information derived from the system file through the lboot operation.
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Synopsis

#define NBASE 3

typedef unsigned long iopaddr_t;
typedef struct iospace {
    unchar       ios_type;       /* io space type on the adapter */
    iopaddr_t    ios_iopaddr;    /* io space base address */
    ulong        ios_size;
    caddr_t      ios_vaddr;      /* kernel virtual address */
} iospace_t;

typedef struct edt {
    uint_t       e_bus_type;    /* vme, scsi, eisa... */
    unchar       v_cpuintr;     /* cpu to send intr to */
    unchar       v_setcpuintr;  /* cpu field is valid */
    uint_t       e_adap;        /* adapter */
    uint_t       e_ctlr;        /* controller identifier */
    void*        e_bus_info;    /* bus dependent info */
    int          (*e_init)(struct edt *); /* device init/run-time probe */
    iospace_t    e_space[NBASE];
} edt_t;

Arguments

e_bus_type Defined as EISA_ADAP as specified by bustype=EISA. This
parameter is used in several other places, such as
pio_mapalloc().

v_cpuintr Currently unused. Reserved for future hardware use.

v_setcpuintr Currently unused. Reserved for future hardware use.

e_adap The Indigo2 is the only EISA-capable Silicon Graphics
system, and it has only one EISA-bus slot, so e_adap is 0.

e_ctlr This software specified device number is taken from the ctlr
field of the system file VECTOR: line to differentiate more
than one instance of the same device.

e_bus_info This bus-dependent field is presently unused by EISA
drivers. For bus type EISA_ADAP, it points to NULL.

e_init Device initialization routine.

e_space This array of iospace_t declarations tells the driver which
I/O and memory spaces the hardware is programmed to
respond to.
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I/O and Memory Space Initialization

In the example below, e_space array contains the iospace structures that are
used to map in the card’s address space. There are two steps in this process:
allocating a PIO map and then mapping the requested bus space address
into a kernel address.

On the Indigo2 the mapping is a fixed mapping, which permanently maps
the entire EISA I/O and memory address space into kernel space, but using
the piomap() call will allow your driver to remain fully compatible with
potential future hardware that uses programmable I/O space map registers
like those used for VME on the CHALLENGE and Onyx architectures.
(Simplifies porting of the driver to future hardware.)

Note: The device will only respond to the requested memory address range
if it has been programmed through software (in the case of an EISA card) or
jumpered on the card (in the case of an ISA card).

Before actually beginning to program the card after mapping in the I/O
space, it is wise to probe for the card’s existence by writing and rereading a
register located on the card. This allows the driver to recover if the device has
been removed from the system since the kernel was built or if the kernel is
copied to another system with a different hardware configuration.

Caution: The probe during edtinit() has a bus error handler in place. After
this, a bus error ordinarily causes an operating system panic.

In the edtinit() for your driver, you must allocate the necessary mapping
resources before you actually map the memory address. The mapping
resource allocation and mapping calls apply across all of Silicon Graphics
bus adapters (i.e., VME). Their structures are defined in <sys/pio.h.>.

piomap_t *pio_mapalloc(uint_t bus, uint_t adap, iospace_t
                       iospace, int flag, char *name)

This routine allocates a handle that specifies a mapping from kernel virtual
space to I/O and memory address space. The returned piomap_t handle is
used to provide the mapping to the address space through additional PIO
access functions.
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Currently, the bus and adap arguments must be ADAP_EISA and 0
respectively, because there is only one EISA bus on Indigo2 platforms. The
name argument is a string used to identify which device has a particular
space mapped.

The actual mapping is returned by:

caddr_t pio_mapaddr(piomap_t *piomap, iopaddr_t io)

This function returns the kernel virtual address that maps to the PIO-
mapped I/O space address.

Silicon Graphics also supports a set of routines that allow a driver to operate
on an I/O address space that has an allocated piomap, but does not have a
kernel virtual address mapped to the I/O space. For example:

void pio_bcopyin(piomap_t *pmap, iopaddr_t io, caddr_t a,
    int len)
void pio_bcopyout(piomap_t *pmap, iopaddr_t io, caddr_t a,
    int len)

For a complete specification of the piomap* functions, see <sys/pio.h>.

Note: There is not currently any advantage to using the routines listed
above, although they may be useful on future Silicon Graphics platforms.

Dynamic Resource Allocation

Rather than bind the interrupt IRQ input and a specific channel for DMA to
a specific VECTOR: entry at lboot time, the driver allocates these resources
dynamically. In the case of interrupts, there are three parts to the process:

1. A specific IRQ number is obtained from the system on a “first come first
served” basis through a call to eisa_ivec_alloc(). The mask parameter
passed in its 16-bit bitmap vector specifies which IRQ choices are
acceptable for this device hardware. This is necessary because most
EISA cards can only be programmed to respond to a limited number of
IRQ possibilities. In the case of an ISA card, which is jumpered to only
respond to a single IRQ input, the vector only has a single bit “on” to
specify this particular setting. Multiple cards can be assigned the same
IRQ, although, by default, the allocation routine tries to assign an
unused interrupt input. The allocation routine only returns failure if the
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driver requests a vector for a mask, and all mask choices are already
programmed to respond to an incompatible choice for edge- or level-
sensitive interrupts. Each IRQ can respond to either edge- or level-
sensitive interrupts, but not to both.

The EISA interrupt priority level is used to specify the interrupt IRQ
number for the device. Its range is IRQ0-IRQ15, excluding IRQ2, which
is used to cascade the interrupt controllers. EISA directly associates the
interrupt priority to the IRQ input line. See the Intel 82357 Specification
or the EISA Technical Reference Guide for a description of the priority
ordering scheme.

There are two system resources that need to be reserved by some EISA/
ISA drivers: interrupt request inputs (IRQ’s) and DMA channels.
Instead of pre-allocating these in the system file, a dynamic allocation
scheme hands them out to the driver at initialization time. The driver is
responsible for specifying which choices for IRQs and DMA channels
are acceptable for the particular hardware. The operating system uses
the appropriate allocation routine to assign them to the driver, which
then uses the returned value to configure the hardware to respond
appropriately.

2. The card is programmed to generate its interrupt on the assigned IRQ.
This is a device-specific procedure. ISA cards typically cannot change
their IRQ through software; they usually have to be jumpered.

The value must be selected from IRQ 3-7, 9-12, 14, and 15. All EISA
interrupts are channeled into one CPU interrupt level. The priority of
this CPU interrupt is below that of the clock and at the same level as on-
board devices. Although the EISA interrupt is generated at the same
level, it is serviced when the CPU services EISA interrupts. It services
the EISA-bus interrupts in order of their EISA-bus priority, at least in
that order when multiple devices interrupt at the same time.

3. A specific routine and argument input is associated with the assigned
IRQ. This is done through the call to eisa_ivec_set().
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Once eisa_ivec_set() has been used to bind the selected IRQ to an interrupt
handling routine, all interrupts generated to that IRQ cause the related
handling routine to be called. Since multiple cards may be responsible for
the interrupt, the driver is required to check its own hardware registers to
test for the cause of the pending interrupt. The call is specified as:

eisa_ivec_set (vint_t adapter, int irq, void (func*)(),
     int arg);

func passes arg as an argument when called. Typically, arg corresponds to the
ctlr number of the device.

The process for allocating a DMA channel is similar to that for obtaining an
interrupt number. The call to the eisa_dmachan_alloc() routine uses an 8-bit
mask to represent DMA channels zero through seven. Note that bit four
must always be masked because that channel is unavailable for a card’s case.
The value returned by the channel allocation routine is then saved to
program the device to transfer data on that particular channel, as specified
in the section describing the EISA DMA utility functions.

The following example is a possible outline initialization routine for the
EISA device module declared in the previous section about the system files:

#include <sys/types.h>
#include <sys/edt.h>
#include <sys/pio.h>
#include <sys/eisa.h>
#include <sys/cmn_err.h>

struct edrv_info {
   caddr_t e_addr[NBASE];
   int     e_dmachan;
} einfo[4];

#define CARD_ID        0x0163b30a
#define IRQ_MASK       0x0018
#define DMACHAN_MASK   0x7a

edrv_edtinit(edt_t *e)
{
   int iospace, eirq, edma_chan;
   struct edrv_info *einf;
   piomap_t *pmap;
   einf = &einfo[e->e_ctlr];
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   /* map address spaces */
   for (iospace = 0; iospace < NBASE; iospace++) {
      if (!e->e_space[iospace].ios_iopaddr)
         break;

      pmap = pio_mapalloc(e->e_bus_type, e->e_adap,
         &e->e_space[iospace], PIOMAP_FIXED, “edrv”);

      einf->e_addr[iospace] = pio_mapaddr(pmap,
         e->e_space[iospace].ios_iopaddr);
   }

      /* should mark not-present somewhere */
      return;
   }

   /* Initialize Interrupt Vector */
   eirq = eisa_ivec_alloc(e->e_adap, IRQ_MASK,
          EISA_EDGE_IRQ);
   if (eirq < 0) {
      cmn_err(CE_WARN,
      ”edrv: ctlr %d could not allocate IRQ\n”,
         e->e_ctlr);

      /* should mark unavailable */
      return;
   }

   eisa_ivec_set(e->e_adap, eirq, edrv_intr, e->e_ctlr);

   /* Allocate DMA Channel */
   edma_chan = eisa_dmachan_alloc(e->e_adap, DMACHAN_MASK);
   if (edma_chan < 0) {
      cmn_err(CE_WARN,
      ”edrv: ctlr %d could not allocate DMA Chan\n”,
         e->e_ctlr);

      /* should mark unavailable */
      return;
   }
   einf->e_dmachan = edma_chan;

}
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EISA Locked Cycles

The EISA specification provides that you can lock the bus and hold it for
exclusive access if you assert LOCK*. This allows atomic operations such as
a test-and-set, and thus sets the basis for implementing semaphores between
the CPU and bus masters. Because the actual system bus (a GIO bus) does
not support a LOCK* operation, Silicon Graphics provides an interface that
the CPU can use for read-modify-write style instructions.

On Silicon Graphics systems that support EISA, if a bus master asserts
LOCK*, some additional constraints apply to how long the bus master can
hold the lock. Your locks should work correctly as long as your usage
conforms to the read-modify-write paradigm used by the CPU
programmatic interface. The following routines, which are also supported
for VME device drivers, provide atomic and/or operations: they find the
appropriate-sized mask by reading the PIO address, then they rewrite,
modified by the mask value m.

void pio_orb_rmw(piomap_t* pio, iopaddr_t io, uchar m)
void pio_orh_rmw(piomap_t* pio, iopaddr_t io, ushort m)
void pio_orw_rmw(piomap_t* pio, iopaddr_t io, uint m)
void pio_andb_rmw(piomap_t* pio, iopaddr_t io, uchar m)
void pio_andh_rmw(piomap_t* pio, iopaddr_t io, ushort m)
void pio_andw_rmw(piomap_t* pio, iopaddr_t io, uint m)

DMA Address Mapping

DMA devices use a logical address. If your driver passes addresses to bus
masters, it must use a special set of DMA mapping routines to map the DMA
target into physical addresses. The system uses these special mapping
routines to support physical address spaces larger than 32 bits. On Silicon
Graphics systems that support EISA, the physical address is used. The map
structure returned, dmamap_t, is defined in sys/dmamap.h.

dmamap_t  *dma_mapalloc(int bus, int adap, int npages, int flag)
void       dma_mapfree(dmmap_t *dmamap)
int        dma_map(dmamap_t *dmamap, caddr_t addr, int len)
uint       dma_mapaddr(dmamap_t *dmamap, caddr_t addr)
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Indigo2 systems do not support bus address mapping, so calls to dma_map
on an Indigo2, as opposed to a CHALLENGE, system are limited to a single
page. Multiple virtual pages cannot be mapped into physically contiguous
pages with dma_map unless the virtual pages have been allocated to be
contiguous.

For a complete description of these routines, refer to “Using DMA Maps” in
Chapter 3, “Writing a VME Device Driver.”

The mapped address returned by dma_mapaddr() must be used when
specifying the bus address used by bus master cards or the following DMA
routines. The map type used must be DMA_EISA.

EISA DMA Utility Functions and Structures

Table 4-1 lists the DMA utility routines.

Table 4-1 DMA Utility Routines

Routine Description

eisa_dma_free_buf Free a previously allocated DMA buffer descriptor.

eisa_dma_free_cb Free a previously allocated DMA command block.

eisa_dma_get_buf Allocated DMA a buffer descriptor.

eisa_dma_get_cb Allocated DMA a command block.

eisa_dma_disable Disable recognition of hardware requests on a DMA
channel.

eisa_dma_enbable Enable recognition of hardware requests on a DMA
channel.

eisa_dma_stop Stop a software-initiated DMA operation on a channel
and release it.

eisa_dma_fswstart Initiate a DMA operation via software request.

eisa_dma_prog Program a DMA operation for a subsequent software
request.
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5. Writing a SCSI Device Driver

This chapter gives an overview of the SCSI device driver interface and
explains how to write a user-level SCSI device driver and a kernel-level SCSI
device driver. It contains the following sections:

• “SCSI-bus Interface Overview” on page 132

• “Choosing a Driver Model” on page 132

• “User-level SCSI Device Drivers” on page 134

• “Kernel-level SCSI Device Drivers” on page 157

• “SCSI Device Driver Example” on page 171
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SCSI-bus Interface Overview

SCSI (Small Computer System Interface) is an industry standard I/O bus
designed to provide host computers with device independence within a
class of devices. All Silicon Graphics systems provide an interface to at least
a single SCSI bus for peripherals that support the SCSI standard. Your device
driver can place commands on the bus by using the SCSI host adapter driver.
Systems with POWERchannel I/O processor boards support two SCSI
interfaces per POWERchannel board; those with POWERchannel-2 boards
support two native SCSI interfaces plus as many as six additional SCSI
interfaces, if mezzanine boards are used, for a maximum of eight SCSI
interfaces per POWERchannel-2 board. Systems equipped with VME-SCSI
(Jaguar) boards provide two buses per board.

The drivers support all three SCSI standards, SCSI-1, CCS1, and SCSI-2. Not
all optional features are supported, and different systems support different
features (such as synchronous, fast, and wide).

In addition, DMA address mapping registers allow noncontiguous physical
memory to appear contiguous to the SCSI host adapter. This allows your
driver to handle I/O across noncontiguous pages in a single transfer
(scatter-gather). The IRIX operating system provides an interface that hides
much of the complexity of the SCSI bus management.

Choosing a Driver Model

Choosing between a user-level and a kernel-level device driver model
usually depends on the method used to transfer data to and from the device.

Note: Silicon Graphics has a generic SCSI device driver to support its SCSI
hardware. This driver has entry points that enable programs to control
devices unknown to the generic Silicon Graphics SCSI device driver. In other
words, there are hooks to extend the SGI SCSI device driver to manage
customer SCSI devices. In the strictest sense, this is not a device driver but
an extension to a device driver.

1 The Common Command Set (CCS) standard is superseded by SCSI-2.
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User-level SCSI-bus Device Driver

If you must write a driver for a device that conforms to the SCSI standard,
you can often use the /dev/scsi/sc* special files and the dslib library of routines
and macros to write a user-level program that sends SCSI commands to a
device on the SCSI bus.

Although this dslib interface to the SCSI device differs from the IRIX
standard device interface and requires that you be familiar with the SCSI
protocol, you can typically write this sort of user-level SCSI device driver in
a fraction of the time that it takes to write a kernel-level SCSI device driver.
As a result, even if your ultimate goal is to write a kernel-level driver for a
device, you can write a user-level device driver to test the device and
familiarize yourself with its features.

However, there are some limits. For example, quasi-SCSI devices that do not
strictly adhere to SCSI standards for reporting errors can cause problems. In
earlier IRIX releases, the user-level driver did not support SCSI commands
of an unusual length (commands not of grp0, grp1, or grp2 length). IRIX 4.0
and later supports commands of 6-12 bytes, regardless of group. Finally, the
dslib routines and macros may be somewhat less efficient (in terms of
throughput) than a kernel-level SCSI driver. This lower efficiency may not
be a problem when dealing with devices such as scanners and printers.
DMA is used for all I/O, just as with kernel SCSI drivers.

IRIX uses the devscsi driver for CDROM ISO-9660 filesystems as well as for
HFS (Apple® Macintosh®) and DOS™ floppy filesystems.

Kernel-level SCSI Device Driver

You may have to write a kernel-level SCSI driver for a SCSI device when you
need the best throughput possible or when you must control an unusual
SCSI device. See Chapter 2, “Writing a Device Driver,” for a general
description of the IRIX device driver interface.
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User-level SCSI Device Drivers

This section explains how to write a user-level driver for a SCSI device. It
describes the SCSI interface routines for the integral SCSI controller and
gives a short example.

In IRIX 5.0 and later releases, a SCSI target may, in most cases, be used by
more than one driver at a time unless it is opened in exclusive mode
(currently, only the tpsc tape driver uses exclusive mode). See “Kernel-level
SCSI Device Drivers” for more information.

Note: There have been extensive changes in the kernel SCSI driver interface
in the IRIX 5.x releases. In IRIX 5.x, the devscsi interface is available on the
wd93, wd95, and VMESCSI (Jaguar) drivers. In prior releases, it was
available only on the wd93. IRIX 5.2 and 5.3 remain source compatible,
however.

To control a SCSI device from a user-level program, you need the routines of
the dslib library and a device-special file created for the device. The system
comes with device-special files for SCSI adapters in the directory /dev/scsi.
These files can be especially useful because they insulate the device driver
writer from changes in operating system releases, and they remain valid
across all Silicon Graphics platforms, independent of the low-level SCSI
driver. Their limitation is that they are created for logical unit 0 only.
(If the logical unit number for your device is not zero, you need to create a
device-special file for the device. See “Creating Device-special Files for User-
level SCSI Drivers.”)

Which special files you use depends on the SCSI ID for the device, a number
from 1-7 (wide SCSI is 1-15). The SCSI ID for a device is usually controlled
by switch settings or jumpers. (See the device technical specification for
details.) For a SCSI device with a SCSI ID of 3 on controller 0, use
/dev/scsi/sc0d3l0; use /dev/scsi/sc0d7l0 for a SCSI device with a SCSI ID of 7,
and so on. See the man page for the ds(7M) command for more details on
device naming.

The remainder of this chapter assumes that you are familiar with the SCSI
interface. For additional information on SCSI-bus operation, see the ANSI
Standards X3.131-1986 and X3T9.2/85-52 Rev 4B.
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Creating Device-special Files for User-level SCSI Drivers

If the logical unit for the SCSI device you want to control from a user-level
program is some value other than 0, you need to create a device-special file.
See the mknod(1) and ds(7) man pages for more information. To create a
device-special file, use the mknod command:

% mknod filename type major# minor#

where:

filename The name of the device special file to create for the device.

type The type of special file:
c = character special file
b = block special file

major# The major device number. For a device that will be
controlled from a user-level program, this number is 195,
which is the major device number of devscsi.

minor# The 14-bit (decimal) minor device. The bits are defined as
shown in Figure 5-1.

Figure 5-1 Minor Number Bit Definitions

0       = SCSI−bus controller ID 
1−15 = SCSI−target controller ID

4−bit SCSI ID number:

Devices are usually configured to a fixed ID by 
switch settings or jumpers. See your device 
technical specification for details.

3−bit logical unit number (LUN) for the device.
The value is usually 0 because most SCSI devices
support only one logical unit.

7−bit SCSI device adapter number. IRIS systems
with POWERchannel−2 support up to four integral
adapters. CHALLENGE/Onyx systems with 
POWERchannel−2 support up to 32 integral adapters.

adapter # unit (lun) target id #
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Example

% mknod /dev/scsi/sc0d1l1 c 195 17

The minor device number is set to 1710, which is 00100012, thus indicating a
device that has logical unit number 1 and a target ID of 1.

dsreq – User-level Driver Communication Structure

Your user-level SCSI driver communicates with a SCSI device by reading
and setting the values of the members of the dsreq type structure.
Understanding this structure is essential to writing a user-level SCSI driver.
Your driver can access these fields directly; however, for many common
tasks that involve controlling a SCSI device, dslib has simple routines or
macros that can access these values for you. The advantage of using these
macros and routines is that, if the structure should change in a future release,
you can accommodate the change by changing the internals of the macros or
simply recompiling with new macro defs in dsreq.h. Thus, code that uses
these macros and routines is likely to be portable across releases even if the
structure itself changes.

The dsreq type structure can be found in the sys/dsreq.h directory. The macros
associated with a dsreq type structure are described below. The dslib routines
are described in “dslib Routines Description” on page 143.

dsreq Structure

typedef struct dsreq {
/* devscsi prefix */

ulong          ds_flags;     /* see flags defined below */
ulong          ds_time;      /* time-out in milliseconds */
ulong          ds_private;   /* for private use by caller */
/* scsi request */

caddr_t        ds_cmdbuf;    /* command buffer */
uchar_t        ds_cmdlen;    /* command buffer length */
caddr_t        ds_databuf;   /* data buffer start */
ulong          ds_datalen;   /* total data length */
caddr_t        ds_sensebuf;  /* sense buffer */
uchar_t        ds_senselen;  /* sense buffer length */
/* miscellaneous */
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dsiovec_t      *ds_iovbuf;   /* scatter-gather dma control */
ushort         ds_iovlen;    /* length of scatter-gather */
struct dsreq   *ds_link;     /* for linked requests */
ushort         ds_synch;     /* synchronous xfer control*/
uchar_t        ds_revcode;   /* devscsi version code*/

/* return portion */

uchar_t         ds_ret;       /* devscsi return code*/
uchar_t         ds_status;    /* device status byte value*/
uchar_t         ds_msg;       /* device message byte value */
uchar_t         ds_cmdsent;   /* actual length command*/
ulong           ds_datasent;  /* actual length user data*/
uchar_t         ds_sensesent; /* actual length sense data*/
} dsreq_t;

where:

ds_flags The bits of the value for this member are used as flags that
determine what the SCSI-bus driver does after you call
doscsireq(). Use the FLAGS macro to access the value of
this member. The interface is designed to be implemented
on a number of architectures, some of which provide more
low-level control of the SCSI bus than IRIX. The file, dsreq.h
included by dslib.h, currently defines this macro as:

#define FLAGS (dp) ((dp)->ds_flags)

There are symbolic constants that you can use to set the bits
of the ds_flags value. (Not all of these flags are currently
honored. Your driver can test for which flags are honored
by checking the returned value of an ioctl() call on devscsi.
See the ds(7M) man page.) These constants are defined in
sys/dsreq.h:

DSRQ_ASYNC – No/Yes sleep until request done. A SCSI
device option. Not implemented.

DSRQ_SENSE – Yes/No automatically get sense on status
when a check condition occurs. A SCSI device option. All
requests return only on completion. Not implemented.

DSRQ_TARGET – Target/Initiator role. A SCSI device
option. Not implemented.
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DSRQ_SELATN – Select with/without ATN. A select
option. Not implemented.

DSRQ_DISC – Identify disconnect not-allowed/allowed. A
select option. Not implemented.

DSRQ_SYNXFR – Negotiate synchronous SCSI transfer. A
select option.

DSRQ_SELMSG – Send supplied/generated message. A
select option. Not implemented.

DSRQ_IOV – Scatter-gather not-specified/specified. A data
transfer option.

DSRQ_READ – Input data from SCSI bus to the CPU. A
data transfer direction.

DSRQ_WRITE – Output data to SCSI bus from the CPU. A
data transfer direction.

DSRQ_BUF – Buffered/Direct data transfer. A data transfer
option.

DSRQ_CALL – Notify progress upon completion. A
progress/continuation callback option. Used with
DSRQ_ASYNC. Not implemented.

DSRQ_ACKH – Hold/Don't-hold ACK asserted. A
progress/continuation callback option. Not implemented.

DSRQ_ATNH – Hold/don't-hold ATN asserted. A
progress/continuation callback option. Not implemented.

DSRQ_ABORT – Send an abort message. Useful only with
SCSI commands that have the immediate bit set.

DSRQ_TRACE – Trace/don’t-trace this request. A host
option (and so not likely to be portable).

DSRQ_PRINT – Print/don’t-print this request. A host
option (and so not likely to be portable).

DSRQ_CTRL1 – Request with host control bit 1. A host
option (and so not likely to be portable).

DSRQ_CTRL2 – Request with host control bit 2. A host
option (and so not likely to be portable).
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DSRQ_MIXRDWR – Request can both read and write.

ds_time This member sets the time-out value in milliseconds for the
completion of a command sent to the SCSI device. You can
use the TIME macro to access the value of this member.

The file dsreq.h defines this macro as:

#define TIME (dp) ((dp)->ds_time)

If you use dslib, you must not change this pointer or the
data it references.

ds_private To access the value of the ds_private member, you can use
the PRIVATE macro currently defined in dslib.h as:

#define PRIVATE(dp) ((dp)->ds_private)

This is intended to be used only in the library support
routines.

ds_cmdbuf This member is a pointer to an array, the SCSI command
descriptor you want to send to the device. You can use the
CMDBUF macro to access this value. The file dsreq.h
currently defines this macro as:

#define CMDBUF(dp) ((caddr_t) (dp)->ds_cmdbuf)

ds_cmdlen This member is the length (in bytes) of the SCSI command
pointed to by ds_cmdbuf. You can use the CMDLEN macro
to access the value of this member. The file dsreq.h currently
defines this macro as:

#define CMDLEN(dp) ((dp)->ds_cmdlen)

Typically, this value is 6, 10, or 12 for SCSI commands of
class 0, 1, or 2, respectively.

ds_databuf This member is a pointer to the start of a data buffer. You can
use the DATABUF macro to access the value of this
member. The file dsreq.h currently defines this macro as:

#define DATABUF(dp) ((caddr_t) (dp)->ds_databuf)

ds_datalen This member is the length of the data in the buffer pointed
to by the ds_databuf member. You can use the DATALEN
macro to access the value of this member. The file dsreq.h
currently defines this macro as:
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#define DATALEN(dp) ((dp)->ds_datalen)

ds_sensebuf This member is the pointer to the start of the sense buffer.
The contents written to this buffer when you request sense
information from a device depend on the device. See the
device-specific documentation supplied by the
manufacturer. You can use the SENSEBUF macro to access
the value of this member. The file dsreq.h currently defines
this macro as:

#define SENSEBUF(dp) ((caddr_t) (dp)-
>ds_sensebuf)

It is used only if DSRQ_SENSE is set in the flags.

ds_senselen This member is the length of the data in the buffer pointed
to by the ds_sensebuf member. You can use the SENSELEN
macro to access the value of this member. The file dsreq.h
currently defines this macro as:

#define SENSELEN(dp) ((dp)->ds_senselen)

*ds_iovbuf This member is a pointer to a dsiovec type structure, a SCSI
device I/O vector. This structure is used for DMA scatter-
gather control. The dsiovec type structure (defined in dsreq.h)
has two members: iov_base, a pointer to a buffer containing
a table of physical addresses for the entire transfer, and
iov_len, the length of the buffer pointed to by iov_base.

To access the value of the *ds_iovbuf member, you can use
the macro, IOVBUF. The file dsreq.h currently defines this
macro as:

#define IOVBUF(dp) ((caddr_t) (dp)->ds_iovbuf)

ds_iovlen This member is the length, in bytes, of the data for scatter-
gather transfer. You can use the IOVLEN macro to access
the value of this member. The file dsreq.h currently defines
this macro as:

#define IOVLEN(dp) ((dp)->ds_iovlen)

*ds_link Not supported.

ds_synch Not supported.

ds_revcode This member is the version code for the devscsi driver.
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ds_ret This member is the return code for the command executed
on the SCSI device. You can use the RET macro to access this
member. The file dsreq.h currently defines RET:

#define RET(dp) ((dp)->ds_ret)

The file dsreq.h defines the following symbolic constants for
the value pointed to by this member:

DSRT_DEVSCSI – General failure from SCSI bus.

DSRT_HOST – General host failure, typically a SCSI-bus
request.

DSRT_STAI – Protocol error during status phase.

DSRT_EBSY – Busy dropped unexpectedly; protocol error.

DSRT_UNIMPL – Protocol error. Not implemented.

DSRT_CMDO – Protocol error during command phase.

DSRT_REJECT – Message rejected; protocol error.

DSRT_PARITY – Parity error on SCSI bus; protocol error.

DSRT_PROTO – Miscellaneous protocol failure.

DSRT_MEMORY – Host memory error.

DSRT_MULT – Request rejected by SCSI bus.

DSRT_CANCEL – Lower request canceled by SCSI bus.

DSRT_REVCODE – Software obsolete, must recompile.

DSRT_AGAIN – Try again, recoverable SCSI-bus error.

DSRT_NOSEL – No unit responded to select.

DSRT_SHORT – Incomplete transfer (not an error).

DSRT_OK – Completed transfer without error status.

DSRT_SENSE – Command with status, sense data
successfully retrieved from SCSI host.

DSRT_NOSENSE – Command with status, error occurred
while trying to get sense data from SCSI host.
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DSRT_TIMEOUT – Request idled longer than requested.
Command could not complete within the limit of the time-
out value.

DSRT_LONG – Target over ran data bounds.

ds_status This member is the SCSI target’s status byte value for the
SCSI command just executed. You can use the STATUS
macro to access this member.

The file dsreq.h currently defines STATUS:

#define STATUS(dsp) ((dp)->ds_status)

The file dsreq.h defines the following symbolic constants for
this byte:

STA_GOOD – the target has successfully completed the
SCSI command.

STA_CHECK – indicates an error, exception, or abnormal
condition. If DSRQ_SENSE is set, request sense is
automatically done. See ds_sensebuf.

STA_BUSY – the target is busy, so the command was not
issued.

STA_IGOOD – SCSI command with link completed.

STA_RESERV – Command aborted because it tried to
access a logical unit or an extent within a logical unit that
reserves that type of access to another SCSI device.

ds_msg Not implemented.

ds_cmdsent The value of this member is the length of the SCSI command
actual sent. You can use the CMDSENT macro to access this
member. The file dsreq.h currently defines CMDSENT:

#define CMDSENT(dsp) ((dp)->ds_cmdsent)

ds_datasent The value of this member is the length of the user data
actually transferred. You can use the DATASENT macro to
access this member. The file dsreq.h currently defines
DATASENT:
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#define DATASENT(dsp) ((dp)->ds_datasent)

ds_sensesent The value of this member is the length of the sense data
actually received. You can use the SENSESENT macro to
access this member. The file dsreq.h currently defines
SENSESENT:

#define SENSESENT(dsp) ((dp)->ds_sensesent)

dslib Routines Description

Table 5-1 and the following section describe the dslib routines. You can use
these routines to set the values of a dsreq type structure and make a request
of the SCSI bus that uses the information contained in it.

Table 5-1 dslib Routines

Routine Description

dsopen Allocate a dsreq type structure and open a device.

dsclose Free the dsreq structure for the SCSI device and close the device.

doscsireq Send a command to the SCSI device or to make another request.

filldsreq Set members of a dsreq type structure.

fillg0cmd Set up the dsreq structure to send a group 0 SCSI command.

fillg1cmd Set up the dsreq structure to send a group 1 SCSI command.

inquiry12 Issue an inquiry command and retrieve information from the
device concerning such things as its type.

modeselect15 Issue a group 0 mode select command to a SCSI device.

modesense1a Send a group 0 “mode sense” command to a SCSI device to
retrieve the page information from the device.

readcapacity25 Issue a read capacity command to a SCSI device.

readextended28 Issue a read extended command to a SCSI device.

requestsense03 Issue a request sense command and test or probe for the
device.
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Note: Many of the following routines take the parameter vu. This parameter
is not yet implemented. Consequently, its value must always be zero.

SCSI Open and Close Driver Routines

dsopen – Allocate a dsreq Type Structure and Open a Device

The dsopen() routine is used to allocate a dsreq type structure for a device on
the SCSI bus and to “open” that device.

Synopsis

struct dsreq* dsopen(char * opath, int oflags);

Arguments

opath Expects the name of the special file for the device on the
SCSI bus you want to open. The system comes with up to 15
device special files per adapter in the directory /dev/scsi.
These special files all assume that the logical unit for your
device is 0. If the logical unit number for your device is not
0, you must create a device-special file for it. See “Creating
Device-special Files for User-level SCSI Drivers.”

oflags Expects the oflag value you would normally give to the
standard open() system call when opening a device.

senddiagnostic1d Issue a send diagnostic command and test whether the device
or the SCSI bus is online or offline, or run a self-test on the
device.

testunitready00 Issue a test unit ready command to the SCSI device.

vtostr Return a pointer to a string describing a table entry value.

write0a Issue a group 0 write command to the SCSI device.

writeextended2a Issue a write extended command to the SCSI device.

Table 5-1 (continued) dslib Routines

Routine Description
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Returns

The returned value of this function is a pointer to a dsreq type structure.

Notes

This structure is the medium of communication between your user-level
SCSI driver and the device on the SCSI bus, and almost every library routine
expects the pointer this function returns as its first argument.

dsclose – Free the dsreq Structure and Close the Device

The dsclose() routine is used to free the dsreq structure for the SCSI device
and close the device, when your driver is done with the device.

Synopsis

dsclose(struct dsreq * dsp);

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen(). Upon successful
completion, dsopen() returns a pointer to a dsreq type
structure as its function value.

SCSI Function-Building Routines – Group 1

The next five routines, doscsireq(), filldsreq(), fillg0cmd(), fillg1cmd(),
vtostr() are utility routines used to construct your own SCSI functions. If the
provided SCSI routines are sufficient, you will not need these routines.

doscsireq – Send a Command to the SCSI Device

The doscsireq() routine is used to send a command to the SCSI device or to
make some other request of the SCSI bus. All data structures must have been
set up before you can use this routine.

Synopsis

doscsireq(int fd, struct dsreq * dsp);
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Arguments

fd Expects the file descriptor for the special file opened by
dsopen(). This file descriptor is stored in the context type
structure pointed to by the ds_private member of the dsreq
type structure allocated by the call to dsopen(). Use the
getfd(dsp) macro to get fd.

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen(). You control the
behavior of doscsireq() by how you set the bits of the value
stored in the ds_flags member of the dsreq type structure
pointed to by this parameter. For more information, see the
description given in “dsreq – User-level Driver
Communication Structure.”

filldsreq – set Members of a dsreq Type Structure

The filldsreq() routine is used to set the ds_flags, ds_databuf, and ds_datalen
members of a dsreq type structure.

Synopsis

filldsreq(struct dsreq * dsp, uchar_t data,
          long datalen, long  flags)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen(). The following
parameters are then used to set the values of some of the
members of this structure.

data A pointer to the start of a data buffer. The value of this
parameter is written to the ds_databuf member of the dsreq
type structure pointed to by the dsp parameter.

datalen The length of the data pointed to by the data parameter. The
value of this parameter is written to the ds_datalen member
of the dsreq type structure pointed to by the dsp parameter.

flags The value to which you want to set the ds_flags member of
the dsreq type structure pointed to by the dsp parameter. See
the description of the ds_flags member given in “dsreq –
User-level Driver Communication Structure.”
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fillg0cmd – Set Up the dsreq Structure

The fillg0cmd() routine is used to set up the dsreq structure to send a group
0 (6-byte) SCSI command to the SCSI device. To actually send the command,
you must call the routine doscsireq().

Synopsis

fillg0cmd(struct dsreq * dsp, uchar_t * cmdbuf, b0, ..., b5)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen(). The following
parameters are then used to set the values of some of the
members of this structure.

cmdbuf A pointer to a SCSI command. The value of this parameter
(the pointer) is written to the ds_cmdbuf member of the dsreq
type structure pointed to by the dsp parameter.

b0, b1, b2, b3, b4, b5
The values of the individual bytes of the group 0 SCSI
command to be written to the string pointed to by cmdbuf.

fillg1cmd – Send a Group 1 SCSI Command

The fillg1cmd() routine is used to set up the dsreq structure to send a group
1 (10-byte) SCSI command to the SCSI device. To actually send the
command, you must call the routine doscsireq().

Synopsis

fillg1cmd(struct dsreq * dsp, uchar_t * cmdbuf, b0, ..., b9)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen(). The following
parameters are then used to set the values of some of the
members of this structure.

cmdbuf A pointer to a SCSI command. The value of this parameter
(the pointer) is written to the ds_cmdbuf member of the dsreq
type structure pointed to by the dsp parameter.
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b0, b1, b2, b3, b4, b5, b6, b7, b8, b9
The values of the individual bytes of the ten-byte group 1
SCSI command that you want to write to the string pointed
to by cmdbuf.

vtostr – Return a Pointer to a String Describing Table Entry

The vtostr() routine is used to look up a value in a table and return a pointer
to a string describing the table entry for that value. It is normally used to
print debugging information, such as when the global variable dsdebug is set
to a nonzero value.

Synopsis

vtostr(long value, struct vtab * table);

Arguments

value Expects the value you want to look up in the table named by
the table parameter.

table A pointer to the name of the table in which you want to look
up the value specified as the value parameter. You have a
choice of four tables are provided with the library:

dsrqnametab – describes the DSRQ_* flags.

dsrtnametab – describes the DSRT_* flags.

cmdstatustab – describes the values returned in the ds_status
member of the dsreq type structure.

cmdnametab – describes the values used for the SCSI
commands.

Note: The tables are provided in source form in the same directory as dslib.c
in the dstab.c file.

SCSI Function-Building Routines – Group 2

The next ten routines implement the most frequently used SCSI commands,
other than read. There are so many variations on read that a generic version
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of these commands would be too clumsy, so you will have to write your
own. Read and write extended are more standard, and so are provided.

inquiry12 – Issue an Inquiry Command

The inquiry12() routine is used to issue an inquiry command to a SCSI
device and retrieve information from the device concerning such things as
its type. Much of this is device-specific information. See vendor your
documentation for more details.

Synopsis

inquiry12(struct dsreq * dsp, caddr_t data,
         long datalen, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to a buffer. Upon successful completion, this
command writes the inquiry information to the buffer
pointed to by this parameter. Internally, the value of this
parameter is written to the ds_databuf member of the dsreq
type structure pointed to by the dsp parameter.

datalen The size of the buffer pointed to by the data parameter.
Internally, the value of this parameter is written to the
ds_datalen member of the dsreq type structure pointed to by
the dsp parameter. Typically, the length must be at least 36
bytes, although 64 bytes is a more normal value for datalen.

vu Not implemented.

modeselect15 – Issue a Group 0 “Mode Select” Command

The modeselect15() routine is used to issue a group 0 “mode select”
command to a SCSI device. This is similar in concept to the UNIX ioctl()
system call. It is used to control a large number of standard and vendor-
specific device parameters. Typically, modesense1A() is used first to retrieve
the current parameters; the page number(s) of interest and the length are
passed in the first few bytes of the data.



150

Chapter 5: Writing a SCSI Device Driver

Synopsis

modeselect15(struct dsreq * dsp, caddr_t data,
            long datalen, int save, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to the buffer containing the mode select data.

datalen The length of the buffer in data.

save A value that indicates whether you want the device to save
the “page” information. The possible values are:

0 = do not save saveable pages.
1 = save saveable pages.

vu Not implemented.

modesense1a – Send a Group 0 “Mode Sense” Command

The modesense1a() routine is used to send a group 0 “mode sense”
command to a SCSI device to retrieve the page information from the device.

Synopsis

modesense1a(struct dsreq *dsp, caddr_t data, long datalen,
            char pgctrl, char pgcode, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to a buffer. Upon successful completion, this
command writes the “page” information to the buffer
pointed to by this parameter.

datalen The size of the buffer pointed to by the data parameter.

pgctrl Expects one of four values that indicate what sort of
information you want to retrieve from the page:
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0 = current values
1 = changeable values
2 = default values
3 = saved values

pgcode Expects the value that indicates the “page” you want to see.
There can be up to 0x3F pages. To return all pages, use 0x3F
as the value of this parameter. The information on these
pages varies from vendor to vendor. For more information,
see the vendor-supplied documentation for the device.

vu Not implemented.

readcapacity25 – Issue a Read Capacity Command

The readcapacity25() routine is used to issue a read capacity command to a
SCSI device.

Synopsis

readcapacity25(struct dsreq *dsp, caddr_t data,
               long datalen, long lba, char pmi, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to a buffer. Upon successful completion, this
command writes the capacity information to the buffer
pointed to by this parameter.

datalen The size of the buffer pointed to by the data parameter.

lba Unused if pmi is 0. Otherwise, it expects the logical block
value of the track for which you want capacity information.

pmi The value that tells the routine whether you want the
capacity for the entire unit or for the current track (as
specified by the logical block named in the lba parameter).
When you ask for track information, the logical block
returned (in the buffer pointed to by data) is the most distant
logical block you can access without undue delay. The valid
values for this parameter are:
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0 = return last logical block in unit.
1 = return last logical block in track.

vu Not implemented.

readextended28 – Issue a Read Extended Command

The readextended28() routine is used to issue a read extended command to
a SCSI device. This command has enough variations that it is quite possible
you will need a custom version of it for your device. Do not preempt the
function name.

Synopsis

readextended28(struct dsreq * dsp, caddr_t data,
               long datalen, long lba, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to a buffer. Upon successful completion, this
command writes information from the device to the buffer
pointed to by this parameter.

datalen A value that specifies the size of the buffer pointed to by the
data parameter.

lba Expects the logical block from which you want to read.

vu Not implemented.

requestsense03 – Issue a Request Sense Command

The requestsense03() routine is used to issue a request sense command to a
SCSI device and test or “probe” for the device. If you set DSRQ_SENSE in
the doscsireq flag argument, as the included library routines do, you don’t
need to use this routine.

Synopsis

requestsense03(struct dsreq * dsp, caddr_t data,
              long datalen, char vu)
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Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to a buffer. Upon successful completion, this
command writes the “sense” information to the buffer
pointed to by this parameter.

datalen A value that specifies the size of the buffer pointed to by the
data parameter.

vu Not implemented.

senddiagnostic1d – Issue a Send Diagnostic Command

The senddiagnostic1d() routine is used to issue a send diagnostic command
to a SCSI device and test whether the device is functioning correctly. Upon
completion of a self-test run by the device, the ds_status member of this dsreq
type structure usually describes the results. (See the description given for
this member in “dsreq – User-level Driver Communication Structure.”) If
you request that a self-test hold the results, you must issue a read diagnostic
command to get the results. The dslib does not contain a routine to issue a
read diagnostic, but you can use fillg0cmd() to create one.

Synopsis

senddiagnostic1d(struct dsreq * dsp, caddr_t data, long dlen,
                  long self, long dofl, long uofl, chap vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data Not used.

datalen Not used.

self A value that indicates whether you want the device to run a
self test that holds the results or a self test that reports the
results in ds_status. This parameter has two valid values:

0 = run a self test, hold the results
1 = run a self test, report through ds_status
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dofl A value that indicates whether or not you want to test if the
SCSI bus is online or offline:

0 = test if bus is on-line
1 = test if bus is off-line

uofl A value that indicates whether or not you want to test if the
device is on-line or off-line:

0 = test if device is on-line
1 = test if device is off-line

vu Not implemented.

testunitready00 – Issue a Test Unit Ready Command to a SCSI Device

The testunitready00() routine is used to issue a test unit ready command to
a SCSI device.

Synopsis

testunitready00(struct dsreq * dsp);

Arguments

dsp A pointer to the dsreq type structure that you allocate for the
SCSI device through a call to dsopen().

Upon completion of the test, the ds_status member of this
dsreq type structure describes the results. See the
description given for this member in “dsreq – User-level
Driver Communication Structure” on page 136.

write0a – Issue a Group 0 Write Command

The write0a() routine is used to issue a group 0 write command to a SCSI
device. As with readextended(), this routine tends to be device-specific, so it
is quite possible you will need to make your own custom version.

Synopsis

write0a(struct dsreq * dsp, caddr_t data, long datalen,
         long lba, char vu)
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Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to the buffer you want to write to the device.

datalen A value that specifies the size of the buffer pointed to by the
data parameter.

lba Expects the logical block to which you want to write. (For
some devices, this may actually be a byte value.)

vu Not implemented.

writeextended2a – Issue a Write Extended Command

The writeextended2a() routine is used to issue a write extended command
to a SCSI device. As with readextended(), this routine tends to be device-
specific, so it is quite possible you will need to make your own custom
version.

Synopsis

writeextended2a(struct dsreq * dsp, caddr_t data,
                 long datalen, long lba, char vu)

Arguments

dsp A pointer to the dsreq type structure that you allocated for
the SCSI device through a call to dsopen().

data A pointer to the buffer you want to write to the device.

datalen A value that specifies the size of the buffer pointed to by the
data parameter.

lba The logical block to which you want to write.

vu Not implemented.
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Using the dslib Routines

To use the dslib library routines, include the header file dslib.h in your code
and compile the code using the compiler option -lds. To open and close the
device, your program must use the dslib routines dsopen() and dsclose(),
rather than the open() and close() system calls. These routines set up data
structures for the other library routines.

Note: This means that only specially compiled programs can use these
devices; most standard programs will not be able to use them.

The reason for this departure from IRIX is that dslib is actually a library of
routines and macros that provide an interface to the device driver for the
SCSI bus. By controlling the SCSI bus, you can control any device on that
bus, providing the SCSI-bus device driver contains support for it. Such a
SCSI-bus device driver is available on Silicon Graphics systems. However,
using the ioctl() of the SCSI bus device driver directly can be complex. The
routines of dslib provide access to ioctl() for the SCSI bus in a safe and
relatively straightforward way.

For more on the dslib routines, see the online man pages dslib(3X) and
ds(7M). The source for dslib is included in 4Dgifts.sw.giftsfull in 5.0 in the
directory /usr/people/4Dgifts/examples/devices/devscsi.

Opening a SCSI Device

To open a device on the SCSI bus, a user-level program calls dsopen(), which
calls the open() of the device driver for the SCSI bus and allocates data
structures. If the open succeeds, the kernel allocates a SCSI subchannel for
the device on the bus that you want to control. If this succeeds, a dsreq type
structure is allocated, which in turn sets the values of some of its members
and returns a pointer to this structure as its function value. This allocated
and primed dsreq type structure is the medium of communication between
your user program and the SCSI device.

Sending Commands to a SCSI Device

To send commands to the device on the SCSI bus, your program can modify
the members of the dsreq type structure and call the dslib routine doscsireq().
This command uses an ioctl() call to the SCSI bus interface driver to set the
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members of the scsisubchan type structure for the device according to the
information in the dsreq structure.

To simplify sending commands to a SCSI device, dslib provides routines and
macros that set members of the dsreq type structure and call doscsireq(). For
example, dslib provides the routine write0a() to give you an easy way to
issue a simple group 0 “write” command. However, since few truly general
SCSI commands exist, the dslib provides functions such as fillg0cmd() to
give you a relatively painless way to send vendor-specific commands to a
device on the SCSI bus. You can (and are expected) to extend these as
needed, since the library source is included in the 4Dgifts subsystem.

Closing a SCSI Device

When your user-level program is done with the SCSI device, it must call
dsclose() to close the device. This involves freeing the dsreq type structure
and kernel data structures, among other things.

Kernel-level SCSI Device Drivers

This section shows how to write a kernel-level driver for a SCSI device.
Starting with IRIX 5.x, all supported SCSI controllers use the same interface.

Configuring a Kernel-level SCSI Driver

Chapter 2, “Writing a Device Driver,” gives a detailed description of how to
configure a kernel to include a new driver. This section presents only the
material that is unique to SCSI drivers. Recall that you must:

1. Create the object code for the driver you want to include in the kernel.

2. Move that object code to the directory /usr/sysgen/boot.

3. Edit the system file. Use a directive telling lboot, the configuration
utility, how to include your driver and specify which memory space
your device will allocate. Install it in the /var/sysgen/system directory
using the driver name appended by .sm.

4. Create a master file in the directory /usr/sysgen/master.d.
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5. Create a new kernel. (To create a debuggable kernel, see “Making a
Debuggable Kernel” in Chapter 10, “Driver Installation and Testing.”)

To edit the system file (/usr/sysgen/system) to include a SCSI driver, use the
INCLUDE directive to tell lboot to unconditionally add the named SCSI
module into the new kernel.

To create a master file, create an ASCII file, enter the appropriate information
(described below), and move the file to the /usr/sysgen/master.d directory. The
name of the master file must correspond to the name of the file containing
the object code for the driver.

Ensure that the FLAG field of the master file includes at least the character
device flag c and the software driver flag s. You must flag all SCSI device
drivers as software drivers (drivers that do not control actual hardware)
because lboot cannot probe for SCSI devices.1 If lboot tries to probe for a
SCSI device, it fails, then assumes that the device is not present, and does not
include your SCSI device driver in the kernel.

For example, assume that you want your kernel to include a device driver
for a SCSI device that you call sdk. Create the object code for the device
driver, and move the sdk.o object file to the directory /usr/sysgen/boot. After
examining /usr/include/sys/major.h, you determine that major device number
61 is available and can be used for the device, sdk. Create a file sdk.sm with
the following line, and also add it to the system file:

INCLUDE: sdk

You then create a master ASCII file called /usr/sysgen/master.d/sdk and enter:

*
* sdk
*
*FLAG   PREFIX   SOFT   #DEV   DEPENDENCIES
 sc     sdk_     61       -     scsi

1 Although lboot does probe for the SCSI controller, the target devices that the SCSI
controller manages cannot be probed by a memory reference/access.
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Under “DEPENDENCIES,” you must list “scsi.” This indicates that the SCSI
interface driver must be present. The SCSI interface is described later in this
chapter.

Writing a SCSI init()

Because you use the INCLUDE directive to include a module into the kernel,
your driver object module must contain a routine of the form drvinit(),
where drv is the prefix for the device that you specified in the master file. If
the driver module includes drvinit(), the system calls drvinit() at system boot
time. Your driver can use drvinit() for boot-time device or driver
initialization. To initialize the device sdk every time the system boots, you
can include an sdkinit() routine in the driver object module sdk.o.

The drvinit() routine has no parameters:

sdk_init( )
{
your code
};

SCSI Device Interface Overview

The SCSI host adapter communicates with devices, known as targets, on the
SCSI bus. Each SCSI target can control a number of actual devices, known as
logical units. Most SCSI targets, however, control a single device.

There are two types of SCSI drivers: device level drivers and host adapter
drivers. The host adapter drivers handle the low-level communication over
the SCSI interface, such as programming the SCSI interface chip or board,
negotiating synchronous or wide mode, and handling disconnect/
reconnect. The device drivers handle high-level communication, primarily
by issuing SCSI commands and interpreting sense data.

Some examples of host adapter drivers are wd93, wd95, and jag. Examples of
device level drivers are dksc, tpsc, and smfd.

There are four basic interfaces used to communicate to a host adapter driver:
scsi_info, scsi_alloc, scsi_free, and scsi_command(). Each of these
interfaces is implemented as an array of pointers to functions, indexed by a
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host adapter driver number. The host adapter driver number is determined
from the adapter number. The adapter number ranges are defined in sys/
scsi.h, and are different on different architectures. In general, Integral SCSI
controllers start at adapter 0, and Interphase VME-SCSI (Jaguar) controllers
start after the last Integral adapter. Each SCSI bus is considered to be one
adapter.

On a POWER Series or Crimson system, for example, Interphase VME-SCSI
controller 3, bus 0, would be adapter number 10. On a CHALLENGE/Onyx
system, VME-SCSI controller 3, bus 0, would be adapter number 134. See the
definitions of SCSI_SGISTART, SCSI_SGICOUNT, SCSI_JAGSTART, and
SCSI_JAGCOUNT in sys/scsi.h.

Determining Driver Number

To determine the correct number for your driver, see scsi_driver_table in
sys/scsi.h. scsi_driver_table is an array, indexed by adapter number, that
returns the adapter type, which is a constant defined by the
SCSIDRIVER_XXX definitions. scsi_driver_table may be sparsely populated
to accommodate possible options. This avoids the reassignment of major
and minor device numbers in cases where hardware is added at a later time.

SCSI_XXXSTART definitions define the starting adapter number for the
various adapter types. SCSI_XXXCOUNT is the number of possible
adapters for a given controller type. Both SCSIDRIVER_WD93 and
SCSIDRIVER_WD95 are part of Silicon Graphics-built SCSI controllers, and
so use the SCSI_SGISTART and SCSI_SGICOUNT #define’s.

For example, on a CHALLENGE system, the second bus on Interphase
VME-SCSI controller 4 would be considered adapter number 137. Counting
SCSI_JAGSTART as 128, (controller 4 * 2 adapters per controller) + bus 1 (the
second bus on the controller) gives 9 to be added to the value of
SCSI_JAGSTART to give adapter (or bus) number 137 from the point of view
of a SCSI device driver.

Typically, the major and minor numbers of a device are used to determine
the adapter number, which can then be used to index into scsi_driver_table.

adap = sdk_adap_num(device);

driver_num = scsi_driver_table[adap];
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scsi_info – Getting Information About a Device

Before your driver tries to access a device, it must call the host adapter
scsi_info function. The host adapter driver then issues an Inquiry command
to the given device and returns a pointer to a struct scsi_target_info. If the
Inquiry is not successful — or if the adapter, target, or lun is invalid — the
return value is NULL. The SCSI device driver must examine the inquiry data
to determine whether it is the appropriate driver for the device.

Synopsis

struct scsi_target_info * (*scsi_info[])
                         (u_char adapter, u_char target, u_char lun);

Arguments

adapter The adapter number.

target The target number.

lun The logical unit number.

Example

The following would be the way to use scsi_info to get information about
target 5, LUN 0 on Interphase controller 4, bus 1 (the second bus):

info = (*scsi_info[SCSIDRIVER_JAG])(9, 5, 0);

scsi_alloc – Initializing a Connection

Before your driver can issue a command to a SCSI device through
scsi_command, it must have the low-level driver initialize the connection.
The interface to this low-level driver is through the scsi_alloc(), typically in
the drvopen() routine.

Synopsis

int (*scsi_alloc[driver_num])
    (unsigned char adap, unsigned char target,
     unsigned char lun, int option, void (*callback)());
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Arguments

adap The number of the SCSI adapter for the device you want to
control. All IRIX systems support at least one adapter (0).
Systems with POWERchannel have two or four built-in
adapters and up to 16 VME-SCSI adapters (two per
controller). CHALLENGE/Onyx systems can have up to
120 different built-in SCSI adapters (although one system
can have only a fraction of those installed at one time) and
16 VME-SCSI adapters; Indigo2 systems have two adapters.

target The target ID of the SCSI controller for the device your
driver wants to control. This must be a value from 0 to 15,
but cannot be the ID of the controller itself (typically 0 for
built-in and 7 for the Jaguar). Not all host adapter
implementations support SCSI device numbers 8 through
15. (Note that for this purpose, the Jaguar VME_SCSI
controller has two SCSI host adapters, so only devices 0-7
are valid. Choose the bus number with adap.) Usually, the
device is configured to a fixed ID by switch settings or
jumpers. Refer to the device technical specification for
details. If the system contains more than one of a particular
device, the device driver normally uses the minor device
number to distinguish between devices.

lun The logical unit number for the device your driver wants to
control. This is often 0 because most SCSI targets support
only a single logical unit.

option Two options are available to scsi_alloc:

SCSIALLOC_EXCLUSIVE specifies that the device driver
wants to have exclusive access to the target in question. If
any other device has allocated a connection, the scsi_alloc
call fails.

SCSIALLOC_QDEPTH, the queue depth that your driver
requests, is the bottom eight bits of option. It is considered
advice only, and may or may not be followed.

callback Gets a pointer to a function that the host adapter driver calls
every time it has sense data. Only one driver at a time may
have a callback allocated, so, in this respect, it functions like
SCSIALLOC_EXCLUSIVE in the option argument above. If
the callback argument is not NULL, the host adapter driver
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calls it with a pointer to the sense data (an array of char)
every time there is any. This allows multiple drivers to
access a device while still allowing one of them to keep
apprised of all sense data.

Returns

If the call to scsi_alloc is successful, the type of SCSI adapter being used
(SCSIDRIVER_WD93, SCSIDRIVER_WD95, or SCSIDRIVER_JAG) is
returned. Otherwise, this routine returns 0, which indicates that no
connection could be established between the host adapter driver and your
driver, probably because the arguments were included for the adapter.

scsi_command – Executing a SCSI Command

Once your driver has established a connection to a host adapter driver with
a successful call to scsi_alloc[](), your driver can send SCSI commands to the
device. To send SCSI commands to a device, fill out a scsi_request structure
and then call scsi_command[](), passing it the address of this structure. The
system uses this structure to report back on the status of the SCSI command.

Not all scsi_request type structure members are of interest to your device
driver (some members are of interest only to the SCSI host adapter driver
and may change across releases of the operating system). Following is the
definition of the structure scsi_request:

struct scsi_request
{
        /* values filled in by device driver */
        u_char   sr_ctlr;
        u_char   sr_target;
        u_char   sr_lun;
        u_char   sr_tag;     /* first byte of tag message */

        u_char  *sr_command; /* scsi command */
        ushort   sr_cmdlen;  /* length of scsi command */
        ushort   sr_flags;   /* direction of data transfer */
        ulong    sr_timeout; /* in seconds */

        u_char  *sr_buffer;  /* location of data */
        uint     sr_buflen;  /* amount of data to transfer */
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        u_char  *sr_sense;   /* where to put sense data in
                             /*case of CC */
        ulong    sr_senselen;/* size of buffer allocated for
                             /*sense data */
        void    (*sr_notify)(struct scsi_request *);
                             /* callback pointer */
        void    *sr_bp;      /* usually a buf_t pointer */

        /* spare pointer used by device driver */
        void    *sr_dev;

        /* spare fields used by host adapter driver */
        void    *sr_ha;      /* usually used for linked list
                             /*of req’s */
        void    *sr_spare;   /* used as spare pointer, int,
                             /*etc. */

        /* results filled in by host adapter driver */
        uint     sr_status;      /* Status of command */
        u_char   sr_scsi_status; /* SCSI status byte */
        u_char   sr_ha_flags;    /* flags used by host
                                 /*adapter driver */
        short    sr_sensegotten; /* number of sense bytes
                                 /* received; -1 == err */
        uint     sr_resid;       /* amount of sr_buflen not
                                 /*transferred */
};
typedef struct scsi_request      scsi_request_t;

Before calling scsi_command[](), your driver must fill in the values
indicated above. Some are optional.

sr_ctlr Number of the adapter where the command will be
transferred.

sr_target ID of the target where the command will be transferred.

sr_lun Number of the logical unit where the command will be
transferred.

sr_tag Type of queue tag to use (see SCSI-2 specification). Not all
tag types are supported by all drivers.

sr_command Give this member a pointer to the SCSI command
descriptor block that you want to send to the device.
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sr_cmdlen The length (in bytes) of the command to which the
sr_command member points. You can use three symbolic
constants for this member (the constants are defined in sys/
scsi.h), but other values are permitted for vendor unique
commands, too:

SC_CLASS0_SZ is a command size of 6 bytes.

SC_CLASS1_SZ is a command size of 10 bytes.

SC_CLASS2_SZ is a command size of 12 bytes.

sr_flags This member must set zero or more options as specified
below:

SRF_DIR_IN — Data associated with the command will be
written into memory.

SRF_FLUSH — A cache operation is required on the data.

SRF_MAP — The sr_buffer address needs to be mapped -- it
is a kernel virtual address.

SRF_MAPBP — sr_bp has a pointer to a struct buf that is not
mapped (BP_ISMAPPED returns false).

SRF_AEN_ACK — This request acknowledges an error in a
previous request. Once a scsi_request is returned with an
error, all further requests are returned with SC_ATTN,
without being acted upon, until SRF_AEN_ACK is set.

SRF_NEG_ASYNC — This request attempts to negotiate
async xfer mode on this command (if currently using sync
xfers).

SRF_NEG_SYNC — This request attempts to negotiate sync
xfer mode on this command if currently asynchronous. It
may be ignored by some adapter drivers, either always or
if the driver has previously failed to negotiate sync xfer
mode with this target. This overrides the
SCSIALLOC_NOSYNC flag to scsi_alloc (if it has been
specified).

sr_timeout The maximum amount of time, in Hz, that a command can
take.
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sr_buffer A pointer to the start of the data associated with a
command. If there is no data (as with a test_unit_ready for
instance), sr_buffer must be NULL.

sr_buflen The maximum amount of data that can be transferred. This
is not necessarily the amount that will be transferred, but is
an upper limit.

sr_sense A pointer to a buffer where request sense data can be copied
in case a command gets a check condition status.

sr_senselen The amount of space reserved for request sense data.

sr_notify A pointer to a notification routine. The notification routine
gets called when a command is complete or gets an error.
This value must be set (NULL is not a valid value).

sr_bp This field must point to the struct buf corresponding that
generated the scsi_request if the SRF_MAPBP flag is set in
sr_flags. If the SRF_MAPBP flag is not set, then sr_bp is not
used by the host adapter driver.

sr_dev This field is never used by a host adapter driver and is
reserved for the use of your device driver.

After control returns from the host adapter driver to your driver, your driver
must check the following members of the scsi_request type structure. These
members are:

sr_status This member reports the overall status of the SCSI
command (this is the host adapter driver status; SCSI bus
status is in sr_scsi_status). sr_status can report one of these
values:

SC_GOOD — indicates no error. The bus successfully
processed the SCSI command; however, the command
itself may still have failed (see sr_scsi_status).

SC_TIMEOUT — indicates selection timeout. The device
did not respond to selection within 250 milliseconds.

SC_HARDERR — indicates hardware or SCSI device error,
usually a SCSI bus reset, possibly caused by a bad phase or
time-out on some other device.
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SC_PARITY — indicates an unrecoverable parity error on
the SCSI bus.

SC_MEMERR — indicates an unrecoverable parity or ECC
error from host memory.

SC_CMDTIME — indicates the command did not complete
before the time-out specified in s_timeoutval elapsed.

SC_ALIGN — indicates the buffer address did not meet the
alignment requirements of the system. Most Silicon
Graphics systems require starting buffer addresses to be on
a four-byte boundary.

SC_ATTN — indicates the scsi_request() has been aborted
by a SCSI bus reset, the device, or the driver, due to an
error in another request.

SC_REQUEST — indicates the request is not a valid
request. This can be because no scsi_alloc has been done
successfully or because the scsi_request() has conflicting or
illegal values, such as sr_notify being set to NULL.

sr_scsi_status The SCSI status byte sent by the target. sr_scsi_status can
report any one of these values: The values of sr_sci_status
correspond to those described in the SCSI specification:

ST_GOOD — indicates the target has successfully
completed the SCSI command. On this value,
sr_sensegotten must be checked to see if a check condition
occurred on the command.

ST_CHECK — indicates that the request sense command
generated by the host adapter driver in response to a check
condition also got a check condition. This is a special case.
If a device reports a “check condition” status, the host
adapter driver automatically issues a request sense
command and reports the status of that command in this
byte. If sr_sense is set and sr_senselen is > 0, sr_sensegotten is
set to the number of bytes of sense data received, or to -1 if
an error occurs during the request sense command.

ST_COND_MET — indicates search condition satisfied.

ST_BUSY — indicates the target is busy. Normally, the
driver should delay, then reissue the command.
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ST_INT_GOOD — indicates this status is reported for
every command in a series of linked commands. Although
they are not supported, these linked commands may
sometimes work.

ST_RES_CONF — indicates an attempt to access a logical
unit or an extent within a logical unit that reserves that
type of access to another SCSI device.

This byte corresponds to the SCSI command status byte as
documented in the SCSI specifications.

sr_sensegotten The number of bytes of sense data gotten as a result of a
request sense command issued in response to a check
condition status from this command, if any, or -1 if a check
condition occurs, but the request sense command fails.

sr_resid The difference between sr_buflen and the number of bytes
actually transferred.

scsi_free – Freeing the Connection

When your driver is done with a SCSI device, it must call through the array
scsi_free to indicate to the host adapter driver that your driver no longer
needs to use the device. Typically, you do this in your drvclose() routine.

Synopsis

int (*scsi_free[driver_num])
    (unsigned char adap, unsigned char target,
     unsigned char lun, void (* callback)());

The arguments to scsi_free are similar to those to scsi_alloc except that no
option argument is used.

Using the SCSI Access Routines

“SCSI Device Interface Overview” on page 159 describes the four routines
that make up the device driver interface to host adapter SCSI-bus drivers.
This section describes how you can use these routines in your driver.
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Your drvopen() routine should first use scsi_info to determine whether a
device is present on the SCSI bus and to examine the inquiry information to
see what type of device it is. Remember, SCSI target 3 may be a disk on one
system but a tape drive on another. So be sure to check the inquiry
information to determine whether your driver is appropriate to the device in
question.

After your driver has determined that it is appropriate to talk to a device, it
must then use scsi_alloc to initialize a connection between your device
driver and the host adapter driver.

Your driver can free the connection by using scsi_free. Remember that if
your driver uses the exclusive option, no other SCSI device driver can
communicate with a target until your driver calls scsi_free. Similarly, if your
driver uses a sense callback, no other driver can use a sense callback until
your driver calls scsi_free, although other drivers that do not need a sense
callback may still communicate with the target.

Because the IRIX SCSI interface transfers data using direct memory access
(DMA) only, your driver must use the kernel routine physio() and a
drvstrategy() routine for SCSI I/O to transfer data to pages that a user
process is using. Internally generated requests that transfer data into kernel
memory (either statically allocated at compile time in the driver or allocated
through kmem_alloc() or similar functions) do not need to use physio().
However, in this case your driver must do its own cache flushing.

When filling out a scsi_request structure in preparation for a call to
scsi_command, be sure to fill out the sr_ctlr, sr_target, sr_lun, and sr_tag
fields with appropriate values. The sr_command field must point to an array
of characters filled out with the SCSI command byte values, and sr_cmdlen
must be the length of the command. sr_flags is used to specify the direction
of data transfer, if any, whether cache flushes need to be done, and what kind
of mapping needs to be done. If the data transfer involves direct mapped
K0SEG or K1SEG memory, then no mapping need be specified, although the
host adapter may still perform some mapping. The flags must also
acknowledge an error by setting the SRF_AEN_ACK bit on the next
command or the command will fail immediately.

sr_timeout must be the command timeout in clock ticks (defined by Hz),
typically 1/100 of a second.1 sr_buffer must be a pointer to the start of the
buffer to be transferred to, unless there is no data transfer or the
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SRF_MAPBP flag in sr_flags is set, in which case sr_buffer can be NULL.
sr_buflen must be an amount equal to the maximum amount of data to be
transferred in the command.

If your driver wants to examine sense data from a request sense caused by a
check condition that occurs as a result of the command you issued, it can set
the sr_sense field to point to such a buffer, with sr_senselen set to the size of
the buffer. The sr_notify must point to your driver “interrupt” routine. This
is not a real interrupt routine—it is called indirectly as a result of an interrupt
from the interrupt handler—so it can have any name you desire. This routine
is called when the host adapter driver has completed processing your
command.

If the SRF_MAPBP flag is set, sr_bp must point to the buf structure that
generated the SCSI request. Sometimes your driver strategy function will get
a buf that is not mapped into kernel virtual memory. In this case,
BP_ISMAPPED(bp), where bp is a pointer to the buf, will return false. If
SRF_MAPBP is not used, sr_bp is free to be used by your driver for other
purposes. sr_dev is always a spare field usable by your driver, often for
linking lists of active or queued requests or to keep special information.

After your notify function is called, your driver must check the sr_status,
sr_scsi_status, and sr_sensegotten fields to see whether there were any errors.
See /usr/include/sys/scsi.h for additional information on return values for the
sr_status field. The sr_scsi_status field corresponds to the SCSI status byte
that a target sends at the end of every command. However, if a target sends
a check condition (status 2), a request sense is issued instead; otherwise
sr_scsi_status is 0. sr_sensegotten is nonzero: -1 if there is an error getting sense
data or the amount of sense data actually received. Otherwise, sr_resid will
be the difference between sr_buflen and the amount of data actually
transferred.

1 Check the header file and include the file that defines Hz. Do not hard-code the value
of Hz into a driver.
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SCSI Device Driver Example

The following example shows how a driver can communicate with a direct
access SCSI device, such as a disk. Note the use of scsi_info[]() to determine
that the device is actually present and of the appropriate type.

This driver is simplified and does not do as much error checking as a real
driver would do. Also, this example uses a global SCSI request structure that
does not work in real drivers, since multiple reads or writes would overwrite
a command in progress.

#include "sys/param.h"
#include "sys/types.h"
#include "sys/user.h"
#include "sys/buf.h"
#include "sys/errno.h"
#include "sys/cmn_err.h"
#include "sys/cred.h"
#include "sys/ddi.h"
#include "sys/systm.h"
#include "sys/scsi.h"

int sdk_devflag = 0;

#define ADAPT    0     /* SCSI host adapter */
#define TARGET   7     /* the disk will have target ID #7 */
#define LU       0     /* and logical unit  #0 */
#define TIMEOUT (30*HZ)/* wait 30 secs for SCSI device to
                          respond */
#define DIRECTACCESS 0 /* First byte of inqry cmnd */

unchar scsi_read[]    = {0x28, 0, 0, 0, 0, 0, 0, 0, 0, 0};
unchar scsi_write[]   = {0x2a, 0, 0, 0, 0, 0, 0, 0, 0, 0};

int    sdk_inuse = 0;
int    sdk_driver;
struct scsi_target_info *sdk_info;
struct scsi_request sdk_req;
u_char sdk_sensebuf[SCSI_SENSE_LEN];  /* SCSI_SENSE_LEN
                                         from scsi.h */

/* forward definitions*/
int sdk_strategy(struct buf *bp);
void sdk_notify(struct scsi_request *req);
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/*
 * sdk_open - Open the SCSI device exclusively.
 *
 * Issue a SCSI inquiry command upon device and ensure
 * it is a direct access device.
 */
int
sdk_open(dev_t *devp, int flag, int otyp, cred_t *crp)
{
   if (sdk_inuse)
      return EBUSY;

   /* Get driver number */
   sdk_driver = scsi_driver_table[ADAPT];

   /*
    * Call through scsi_info to get inquiry data and to
    * find out if a device is at the address we want.
    */
   sdk_info = (*scsi_info[sdk_driver])(ADAPT, TARGET, LU);
   if (sdk_info == NULL)
      return ENODEV;

   /*
    * Is it a direct access device?  We could check the
    * entire inquiry buffer to ensure it is actually the
    * correct device.
    */
   if (sdk_info->si_inq[0] != DIRECTACCESS)
      return ENXIO;

   /*
    * It's a direct access device (disk drive).  Initialize
    * the connection to the host adapter driver.
    */
   if ((*scsi_alloc[sdk_driver])
      (ADAPT, TARGET, LU, 1, NULL) == 0)
      return EBUSY;

   /*
    * We have successfully allocated a connection between
    * sdk and the host adapter driver.  Initialize the
    * scsi_request structure, and mark the driver as being
    * in use.
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    */
   sdk_inuse = 1;
   bzero(&sdk_req, sizeof(sdk_req));
   sdk_req.sr_ctlr = ADAPT;
   sdk_req.sr_target = TARGET;
   sdk_req.sr_lun = LU;
   sdk_req.sr_timeout = TIMEOUT;
   sdk_req.sr_sense = sdk_sensebuf;
   sdk_req.sr_senselen = sizeof(sdk_sensebuf);
   sdk_req.sr_notify = sdk_notify;

   return 0;
}

/* sdk_close - close the device and free the subchannel. */
int
sdk_close(dev_t dev, int flag, int otyp, cred_t *crp)
{
   (*scsi_free[sdk_driver])(ADAPT, TARGET, LU, NULL);
   sdk_inuse = 0;
   return 0;
}

/*
 * sdk_read - read from the SCSI device, ensuring an even
 * block count and a word-aligned address.
 */
sdk_read(dev_t dev, uio_t *uiop, cred_t *crp)

/*
 * sdk_write - write to the SCSI device, ensuring an even
 * block count and a word-aligned address.
 */
sdk_write(dev_t dev, uio_t *uiop, cred_t *crp)

/*
 * sdk_strategy - do the dirty work of the I/O.
 * Use either the SCSI read or write command as
 * appropriate.  Modify the block number and block counts
 * within the command buffer. Simply return here;
 * physio( ) will wait for an iodone( ).
 */
int
sdk_strategy(struct buf *bp)
{
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   int blkno, blkcount;

   /* Prime the subchannel communication block. */

   blkno = bp->b_blkno;
   blkcount = BTOBB(bp->b_bcount);

   sdk_req.sr_command = bp->b_flags & B_READ ?
                        scsi_read : scsi_write;
   sdk_req.sr_command[2] = (char)(blkno>>24);
   sdk_req.sr_command[3] = (char)(blkno>>16);
   sdk_req.sr_command[4] = (char)(blkno>>8);
   sdk_req.sr_command[5] = (char) blkno;
   sdk_req.sr_command[7] = (char)(blkcount>>8);
   sdk_req.sr_command[8] = (char) blkcount;

   sdk_req.sr_cmdlen = SC_CLASS1_SZ;
   sdk_req.sr_flags = bp->b_flags & B_READ ? SRF_DIR_IN : 0;

   if (BP_ISMAPPED(bp)) {
      sdk_req.sr_buffer = bp->b_dmaaddr;
      sdk_req.sr_buflen = bp->b_bcount;
      sdk_req.sr_flags |= SRF_MAP;
   }
   else {
      sdk_req.sr_buffer = NULL;
      sdk_req.sr_buflen = bp->b_bcount;
      sdk_req.sr_flags = SRF_MAPBP;
   }
   sdk_req.sr_bp = bp;   /* required for SRF_MAPBP, but a
                          * convenience in all cases */

   /* Perform the SCSI operation. */
   (*scsi_command[sdk_driver])(&sdk_req);
}

/*
 * sdk_notify - SCSI command completion notification routine
 *
 * Simply check for errors and wake up physio( ) with
 * an iodone( ) on the buffer.
 * Note that a more robust driver would be more thorough
 * about error handling by retrying errors, giving more
 * information about error types, etc.
 */
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void
sdk_notify(struct scsi_request *req)
{
   register struct buf *bp = req->sr_bp;

   if ((req->sr_status != SC_GOOD) ||
       (req->sr_scsi_status != ST_GOOD) ||
       (req->sr_sensegotten < 0))
   {
      cmn_err(CE_NOTE,
         "sdk: Error: driver stat 0x%x, scsi stat 0x%x"
         " sensegotten %d\n", req->sr_status,
         req->sr_scsi_status, req->sr_sensegotten);
      bioerror(bp, EIO);
         }
   else if (req->sr_sensegotten > 0) {
      cmn_err(CE_NOTE, "sdk: Error: sensekey 0x%x\n",
         sdk_sensebuf[2] & 0x0F);
      bioerror(bp, EIO);
   }
   bp->b_resid = req->sr_resid;
   biodone(bp);
}
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6. Writing Kernel-level GIO Device Drivers

This chapter provides in-depth information about drivers that interface to
the GIO (Graphics Input/Output) bus. It describes the system configuration
for GIO device drivers and introduces several GIO-specific functions you
must include in your device driver. There are several models for performing
DMA operations. Which model you choose for your device driver depends
on the capability of the device, which may either require a software
implementation or have hardware support for scatter/gather. Memory-
mapped, user-level drivers for GIO devices are not supported; all GIO
drivers must be kernel-level drivers.

This chapter contains the following sections:

• “GIO-bus Architecture” on page 178

• “Determining GIO Device Addresses” on page 179

• “Including GIO Device Drivers in the Kernel” on page 180

• “Writing edtinit()” on page 183

• “GIO-specific Functions” on page 187

• “GIO Interrupt Handler” on page 189

• “Programmed I/O (PIO)” on page 190

• “DMA Operations” on page 192

• “Memory Parity Workarounds” on page 193

• “GIO Devices with Hardware-supported Scatter/Gather Capability”
on page 195

• “DMA on GIO Devices Without Scatter/Gather Capability” on
page 198

• “Device Driver Example” on page 200
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GIO-bus Architecture

The GIO bus is a family of synchronous, multiplexed address-data buses for
connecting high-speed devices to main memory and CPU for entry-level
Silicon Graphics systems. The GIO bus has three varieties: GIO32, GIO32-
bis, and GIO64.

The members of the GIO-bus family are all similar; however, the GIO32 and
GIO64 are not compatible. A GIO32 device does not work in a GIO64 slot,
but a GIO32-bis device does fit in either a GIO32 or GIO32-bis option slot. It
is possible to design a board that functions in systems with either a GIO32 or
GIO32-bis bus.

The form factor and bus protocol depend on the specific platform in which
the device is installed. GIO32 and GIO32-bis devices can be either single or
double-wide (that is, taking one or both board slots), while GIO64 boards are
the size of an EISA board. Slots in Indigo2 systems can accept either an EISA
board or a GIO64 board. These two types of boards share common board
dimensions but have different connectors for attaching to their respective
buses.

The GIO Bus Specification contains more detailed information about the
various types of GIO buses, from both an electrical and a mechanical point
of view.
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Determining GIO Device Addresses

Each GIO device has a range of GIO-bus addresses to which it responds.
These addresses correspond to device registers or on-board memory,
depending on the GIO device.1 GIO-bus addresses cannot be mapped into
user address space. GIO devices can be classified as 32-bit or 64-bit.

The address range for GIO-bus devices is determined by the slot number of
the device. The hardware must be designed to determine which slot the
device is in and make the appropriate adjustments to respond to that slot’s
address range.

Indigo, Indigo2, and Indy systems all have two slots available for GIO
devices. However, the address spaces for Indigo2 are slightly different than
for Indigo and Indy.

For Indigo and Indy, the two slots are known as exp0 and exp1. The Indigo2’s
slots are known as gfx, exp0, and exp1.

The gfx slot is normally used for the graphics card, but it can be used as a
regular GIO card slot if the graphics can be moved up into the exp0 slot. This
slot’s address space is also available on Challenge M (Indigo2 with no
graphics) systems.

Table 6-1 shows the slot names and addresses available on the Indigo,
Indigo2, and Indy platforms.

1 Unlike VME, where the class of device determines the address range, each GIO device
responds to the same address range.

Table 6-1 Indigo, Indigo2, and Indy Slot Names and Addresses

Slot Name Address Indigo/Indy Indigo 2

gfx 0x1f000000–0x1f3fffff N/A Available

exp0 0x1f400000–0x1f5fffff Available Available

exp1 0x1f600000–0x1f9fffff Available N/A
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GIO-bus devices use only one interrupt level — interrupt 1. Interrupts 0 and
2 are used by the graphics system and may not be used by GIO-bus devices.

Since one interrupt serves multiple GIO devices, the interrupt routine in
each driver must be able to deal with the various interrupt situations:

• The interrupt is for the board.

• The interrupt is for some other GIO device.

• There is no interrupt pending.

Including GIO Device Drivers in the Kernel

Chapter 2, “Writing a Device Driver,” provides general information on
adding a driver to the kernel. This section describes specifics concerning
GIO drivers. To add a new kernel-level GIO device driver, you must:

• Create a system file

• Create a master file

• Create the boot file

For GIO drivers, use the INCLUDE directive, which unconditionally adds
the module to the kernel. Because lboot can probe for GIO devices, lboot can
conditionally include a GIO device driver into the kernel.

Note: Because IRIX kernels cannot, as a rule, be preempted, any driver that
sits in a loop waiting for some condition to be satisfied may tie a processor
up for as long as it wants. Real-time processes, such as audio, are very
sensitive to such delays.

Creating a System File

This file resides in the /var/sysgen/system directory and contains the
instructions that lboot uses to add the software module to the kernel. This
normally consists of the VECTOR directive; in fact, the system file may
consist of one or more VECTOR directives. The filename must end in .sm for
lboot to recognize and include the software module. Typically, the filename
is the software module’s name with the .sm suffix, as in gbd.sm.
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If the current system contains the GIO device, lboot includes the driver;
otherwise, it saves memory by leaving it out. Use the VECTOR directive to
include a GIO device conditionally. In addition to the module name, the
VECTOR directive requires that you fill out these fields:

vector The interrupt vector value, as described previously. The
interrupt vector for GIO devices is set using the
setgiovector() function (see “setgiovector” on page 187).
Therefore, the vector in the VECTOR statement must
always be 0x0 for GIO devices.

unit The device number that differentiates between more than
one device of the same type. This value is related to VME-
style devices. For GIO devices, this value can be anything,
but for consistency, make it 0.

base The device address(es) on the GIO bus, determined by the
slot in which the board is installed. This is a K1 address (see
the kvtophys(D3X) man page).

base2, base3 Additional addresses passed to driver edtinit() routine
through the edt structure. These are K1 addresses (see the
kvtophys(D3X) man page).

exprobe The address read when lboot determines the existence of
the device. This address is often the same as the base
address. If you do not specify a probe address, the module
is automatically included in the kernel. For GIO bus
devices, the exprobe() call is used in place of the probe call.
The fields used for this call are:

operation read (r) or write (w)

address address to probe

# of bytes number of bytes to read or write

value expected response value (the GIO ID
number)

mask mask to apply to value
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Creating a Master File

The master file resides in the /var/sysgen/master.d directory. It contains the
information that lboot uses to create the device switch table as well as
indicating dependencies with other kernel modules. The name of the master
file must be the same as the software module. This file also contains the
prefix used in building the driver entry points.

The FLAG field of the master file must include at least the character device
flag c.

Creating a Boot File

The boot file must reside in the /var/sysgen/boot directory. This file is the
successfully compiled driver object file. The name of the boot file must end
with the suffix “.o”.1

The GBD Example

For example, to add a mythical GIO device driver to the kernel of an R4000
Indigo (IP20), you must copy the driver object file gbd.o to /usr/sysgen/boot,
create a master file (as shown below), and create a system file with the
following VECTOR directive:

VECTOR: bustype=GIO module=gbd vector=0x0 unit=0
        base=PHYS_TO_K1(0x1f400000) base2=0xBF410000
        exprobe=(r,PHYS_TO_K1(0x1f400000),4,0x75,0xff)

Note that the interrupt vector (vector=), the base addresses, and the probe
address must all be specified in hexadecimal format. The base address and
the address in the exprobe must agree. In the example above, lboot reads four
bytes at probe address PHYS_TO_K1(0x1f400000) to determine whether the
device is present in slot 0. In this example, base2 is used to point to the
location of on-board memory.

1 The “.a” suffix is used for archived files.
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In actual use, it is advisable to add a second VECTOR line to the system file,
to perform a probe of the other GIO slot. If only the line above had been used
and the GIO device were physically placed in slot 1 rather than slot 0 as
specified in the VECTOR line, the probe would fail, and the driver would not
have been included in the kernel. Using this situation as an example, the
following line must be added to the system file:

VECTOR: bustype=GIO module=gbd vector=0x0 unit=0
        base=0xBF600000 base2=0xBF610000
        exprobe=(r,0xBF600000,4,0x75,0xff)

This ensures that a GIO device placed in either slot will be recognized.

After examining /usr/include/sys/major.h and looking for potential major
device number conflicts in other device files in the /var/sysgen/master.d
directory, you determine that major device number 51 is available and can
be used for this device. You then create a master file, gbd, and enter:

*FLAG     PREFIX    SOFT      #DEV       DEPENDENCIES
 c        gbd       51        -

Writing edtinit()

If you use the VECTOR directive to configure a driver into the kernel, your
driver can use a function of the form drvedtinit(), where drv is the driver
prefix. If your device driver object module includes a drvedtinit() function,
the system executes the drvedtinit() function when the system boots. In
general, you can use your drvedtinit() function to perform any device driver
initialization you want.

Synopsis

drvedtinit(e)
struct edt *e

{
   */your code here/*
}

When the system calls your drvedtinit() function, it hands the function a
pointer to a structure of type edt. (This structure type is defined in the sys/
edt.h header file.)
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The definition of the edt type structure is:

#define NBASE 3

typedef unsigned long iopaddr_t;
typedef struct iospace {
    unchar    ios_type;     /* io space type on adapter */
    iopaddr_t ios_iopaddr;  /* io space base address */
    ulong     ios_size;
    caddr_t   ios_vaddr;    /* kernel virtual address */
} iospace_t;

typedef struct edt {
    uint_t    e_bus_type;   /* vme, scsi, eisa... */
    unchar    v_cpuintr;    /* cpu to send intr to */
    unchar    v_setcpuintr; /* cpu field is valid */
    uint_t    e_adap;       /* adapter */
    uint_t    e_ctlr;       /* controller identifier */
    void*     e_bus_info;   /* bus dependent info */
    int       (*e_init)(struct edt *); /* device init */
                                       /*run-time probe*/
    iospace_t e_space[NBASE];
} edt_t;

#define e_base          e_space[0].ios_vaddr
#define e_base2         e_space[1].ios_vaddr
#define e_base3         e_space[2].ios_vaddr
#define e_iobase        e_space[0].ios_iopaddr
#define e_iobase2       e_space[1].ios_iopaddr
#define e_iobase3       e_space[2].ios_iopaddr

The e_bus_type must be ADAP_GIO (defined in edt.h). The e_ctrl, v_cpuintr,
and ios_type values must be 0. The (*e_init)() member is not used by
drvedtinit(). (These fields are set by the kernel, and the driver does not
interfere with them.) Your driver uses the e_base, e_base2, and e_base3
members:

To pass the desired interrupt CPU to the driver via the irix.sm file, use the
VECTOR directive. The line

VECTOR: module=XXX intrcpu=3

e_base,
e_base2,
e_base3

These members give your driver the base addresses as
specified in the VECTOR line. Each is assigned as an
unsigned long data type.
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directs autoconfig (via lboot) to set the v_intrcpu field for the module’s edt
struct to 3 and the v_setintrcpu field to 1, indicating that v_intrcpu is valid. If
no intrcpu= statement appears in the VECTOR line, v_setintrcpu is set to 0.
The module’s edtinit function may then use these fields to route interrupts
as desired.

void
XXXedtinit (struct edt *ep)
{
     if (ep->setcpuintr)
             dest_cpu = ep->cpuintr;
         else
             dest_cpu = <some default>;

     ...machine-specific intr routing ...
}

Note: Although lboot knows not to include in the kernel any GIO device
driver for a device that is not present, it is a good idea for your drvedtinit()
function to probe for its device with badaddr_val(). This allows you to write
a driver that is prepared if the device has been removed from the system
after the kernel has been built or when the kernel runs on another system.

Continuing with this mythical GIO device driver example, its drvedtinit()
function could look like:

/* equipped device table initialization function. The edt
 * structure is defined in edt.h.
 */
void
gbdedtinit(struct edt *e)
{
   int slot, val;

   /* Check to see if the device is present */
   if(badaddr_val(e->e_base, sizeof(int), &val) ||
         (val && GBD_MASK) != GBD_BOARD_ID) {
      if (showconfig)
         cmn_err (CE_CONT,
            “gbdedtinit: board not installed.”);
         return;
   }

   /* figure out slot from base on VECTOR line in
   /* system file*/
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   if(e->e_base == (caddr_t)PHYS_TO_K1(0x1f400000))
      slot = GIO_SLOT_0;
   else if(e->e_base == (caddr_t)0xBF600000)
      slot = GIO_SLOT_1;
   else {
      cmn_err (CE_NOTE,
      “ERROR from edtinit: Bad base address %x\n”, e-
>e_base);
      return;
   }

#ifdef IP12      /* For Indigo R3000, set up board as a
                 /* realtime bus master  */

   setgioconfig(slot,0);

#endif

#ifdef IP20     /* For Indigo R4000, set up board as a
                /* realtime bus master */

   setgioconfig(slot,GIO64_ARB_EXP0_RT | GIO64_ARB_EXP0_MST);

#endif

#ifdef IP22      /* For Indigo2, set up board as a pipelined,
                 /* realtime bus master  */

   setgioconfig(slot,GIO64_ARB_EXP0_RT |
                 GIO64_ARB_EXP0_PIPED) ;

#endif

   /* Save the device addresses, because
    * they won’t be available later.
    */

   gbd_device[slot == GIO_SLOT_0 ? 0 : 1] =
            (struct gbd_device *)e->e_base;
   gbd_memory[slot == GIO_SLOT_0 ? 0 : 1] =
            (char *)e->e_base2;
              /* Where “unit_#” is any parameter passed to
              /* the interrupt handler (gbdintr) */
   setgiovector(GIO_INTERRUPT_1,slot,gbdintr,unit_#);
}
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GIO-specific Functions

The GIO-specific support functions setgiovector(), setgioconfig(), and
splgio(n) must be included in the init() or edtinit() section of any GIO driver.

setgiovector

The setgiovector() function registers an interrupt service function for a GIO-
bus device interrupt with the kernel’s interrupt dispatcher.

Synopsis

setgiovector(int level, int slot, long (* func)
            (long),int arg)

Arguments

level Specifies which interrupt is used by the device. For GIO
boards, this must always be GIO_INTERRUPT_1, since
GIO_INTERRUPT_0 and GIO_INTERRUPT_2 are used by
the graphics system.

slot Specifies which physical slot the GIO-bus board is plugged
into; must be either GIO_SLOT_0 or GIO_SLOT_1.

 func Pointer to the interrupt service routine called when the
associated interrupt occurs. Note that func may be called
even when there is no pending interrupt from the particular
slot specified, in which case it should simply return. The
interrupt handler therefore needs to be able to determine
when its device is actually interrupting and when it is not,
in a timely, nondestructive manner.

arg Passed to the interrupt service routine when it is called and
may contain any value. The interrupt service routine is
called with the processor interrupt mask set to disable
further interrupts from the device.
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splgio0, splgio1, splgio2

These functions set the processor interrupt mask to block GIO-bus
interrupts.

Synopsis

long splgio0();
long splgio1();
long splgio2();

setgioconfig

setgioconfig (2K) sets up the GIO-bus arbitration mode for the GIO slot
specified by the slot parameter. The arbitration mode is specified in the flags
parameter as a bit-wise OR of the flags documented below.

Synopsis

setgioconfig(int slot, int flags)

Arguments

slot Specifies which physical slot the GIO-bus board is plugged
into; must be either GIO_SLOT_0 or GIO_SLOT_1.

flags Flags that indicate the configuration for the GIO board. The
flags are defined as follows:

For R3000-based systems using the GIO32 bus, these
defines are found in /usr/include/sys/IP12.h:

GIO_CONFIG_LONG
Configure board as a long burst device; otherwise it will be
a real-time device.

GIO_CONFIG_SLAVE
Configure board as a bus slave; otherwise it will be a bus
master.

For R4000-based systems using the GIO32-bis or GIO64
bus, these defines are found in /usr/include/sys/mc.h:
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GIO64_ARB_EXP0_SIZE_64
Configure slot for 64-bit transfers; otherwise transfers will
be 32-bit. For Indigo, this must not be set.

GIO64_ARB_EXP0_RT
Configure slot as a real-time device; otherwise it will be a
long burst device.

GIO64_ARB_EXP0_MST
Configure slot as a bus master; otherwise it will be a slave.

GIO64_ARB_EXP0_PIPED
Configure slot as a pipelined device, otherwise it will be a
non-pipelined device. For Indigo2 systems, this must be
set. For Indigo, this must not be set.

On R4000-based Indigo and Indigo2 systems,
setgioconfig() uses the slot argument to determine the
location of boards.

GIO Interrupt Handler

Your driver module must contain an interrupt routine. The name of this
routine does not need to be drvintr(), since GIO uses setgiovector() to
register interrupt routines. When the device generates an interrupt, the
general GIO interrupt handler calls your driver’s interrupt routine and
passes it the unit number for the device. Within your interrupt routine, you
must set flags to indicate the state of the transfer and wake up sleeping
processes (if any) waiting on the transfer to complete. Usually, the interrupt
routine calls iodone() to indicate that a block type I/O transfer for the buffer
is complete.

Caution: Interrupt routines must not try to sleep themselves by calling
iowait(), sleep(), psema(), or delay() kernel calls, nor should they try to
access the per-process global variables in the u type structure directly. The u
type structure they access may not be that of the process that made the I/O
request.
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Programmed I/O (PIO)

When transferring large amounts of data, your device driver should use
direct memory access (DMA). Using DMA, your driver can program a few
registers, return, and put itself to sleep while it awaits an interrupt that
indicates the transfer is complete. This frees up the processor for use by other
processes.

However, sometimes you must write a driver for a device that does not
support DMA. Even if a device does support DMA, you may not want to use
DMA to transfer amounts of data so small that the DMA overhead is not
warranted.

In these non-DMA cases, the processor is used to copy data from user space
to the device. Some device make additional operations on the data. These
operations may then be triggered by writing to a register on the device, such
as a printer or disk controller. Most such devices have a status register that
is used to verify completion. Polling on an interrupt can be used, but it is
expensive and should be used sparingly.

Listed below is part of a mythical GIO device driver for a printer controller
that does not support DMA. To print data from the user, the driver copies a
number of bytes (as specified by uio_resid) from the uio_iov array to an on-
board memory buffer of size GBD_MEMSIZE. Following the copy of each
chunk, the driver programs the device registers to indicate the size of valid
data in the memory and to tell the controller to start the printing.

Note: Beginning with IRIX 5.0, direct access of the user structure u is not
allowed. Instead, user data may be accessed only through the uio structure.
For example, note that the field u.u_count is not found in this driver, and
references are made to the uio_resid field only.

The driver then sleeps, waiting for an interrupt to indicate that the printing
is complete and that the on-board memory buffer is available again. To
prevent a race condition, in which the interrupt responds before the calling
process can sleep, the driver uses the splgio1() routine.
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/* device write routine entry point (for character devices)*/
volatile int
gbdwrite(dev_t dev, uio_t *uio)
{
   int unit = geteminor(dev)&1;
   int size, err=0, s;

   /* while there is data to transfer */
   while((size=uio->uio_resid) > 0) {

      /* Transfer no more than GBD_MEMSIZE bytes
      * to the device */
      size = size < GBD_MEMSIZE ? size : GBD_MEMSIZE;

      /* decrements size, updates uio fields, copies data */
      if(err=uiomove(gbd_memory[unit], size, UIO_WRITE, uio))
         break;

      /* prevent interrupts until we sleep */
      s = splgio1();

      /* Transfer is complete; start output */
      gbd_device[unit]->count = size;
      gbd_device[unit]->command = GBD_GO;
      gbd_state[unit] = GBD_SLEEPING;
      while (gbd_state[unit] != GBD_DONE) {
         sleep(&gbd_state[unit], PRIBIO);
      }
      /* restore the interrupt level after waking up */
      splx(s);
   }
   return err;
}

The driver’s use of the volatile declaration informs the optimizer that this
register points to a hardware value that may change. Otherwise, the
optimizer may determine that one write to gbd_device->command is sufficient.

Note: If your driver uses the sleep() and wakeup() kernel routines to sleep
and awaken, it is a good idea for the drvintr() to verify that the actual event
has occurred before actually awakening the sleeping process. (See sleep() for
details on the sleep/wakeup process synchronization mechanism.) If your
driver uses the iowait()/iodone() routines or the psema()/vsema() routines
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to sleep and awaken, you need not worry about it awakening by accident.
However, the routines psema() and vsema() are specific to IRIX and are
probably not supported on other operating systems.

The uiomove() kernel routine is a useful procedure to call in these situations
because it automatically updates the fields in the uio structure and uses
copyout() (or copyin()) to check for invalid user addresses. Recall that
uio_resid must be left with the number of bytes left untransferred.

DMA Operations

Use DMA (direct memory access) when the device supports it. In its simplest
form, DMA is easy to use: your driver gives the device the physical memory
address, and the transaction begins. Your driver can then put itself to sleep
while it waits for the transfer to complete, thus freeing the processor for
other tasks. When the transfer is complete, the device interrupts the
processor. On most systems, when large amounts of data are involved, DMA
devices obtain higher overall throughput than devices that do only PIO.

DMA operations are categorized as DMA reads or DMA writes. DMA
operations that transfer from memory to a device, and hence read memory,
are DMA reads. DMA operations that transfer from a device to memory are
DMA writes. Thus, you may want to think of DMA operations as being
named the point of view is that of memory.

There are some cache considerations for drivers using DMA. The cache
architecture of the system dictates the appropriate cache operations. Write
back caches require that data be written back from cache to memory before
a DMA read, whereas both write back and write through caches require the
cache to be invalidated before data from a DMA write is used. See “Data
Cache Write Back and Invalidation” in Appendix A and the
dki_dcache_wbinval(D3X) man page for a discussion of these issues.

Another concern for driver writers is that DMA buffers may require cache-
line alignment. To this end, when a driver allocates a buffer for DMA, it must
use the kmem_alloc() function with the KM_CACHEALIGN flag to obtain a
buffer that is properly aligned.The interrupt service routine then calls your
drvintr routine. Your drvintr routine can confirm that the transfer is complete
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(if necessary), set flags indicating the status of the transfer, and then awaken
the sleeping process.

The GIO bus does not provide any address mapping registers. Any DMA
operation that requires scatter/gather must be supported by GIO board
hardware or a software implementation of scatter/gather.

Memory Parity Workarounds

If you are writing a GIO device driver for Indigo R4000, Indigo2, POWER
Indigo2, or Indy systems, please make note of the following changes
introduced in IRIX 5.3 (or IRIX 5.2 with Patch4, the Memory Parity Patch).

Beginning with IRIX 5.3, parity checking is enabled on the SysAD bus (see
Figure 6-1). Unfortunately, with certain GIO cards, errors can occur if
memory reads complete before the Memory Controller (MC) finishes
calculating parity.

Figure 6-1 The SysAD Bus in Context

CPU Memory
Controller

(MC)

Memory

SysAD bus GIO bus
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Some GIO cards do not drive all 32 GIO data lines during CPU PIO reads.
These reads from the GIO card are either 8-bit (byte) or 16-bit (short word),
so the lines are left floating. The problem is that to generate parity bits for the
SysAD bus, the Memory Controller (MC) must calculate parity for all 32 bits.
Since the calculation must occur before the CPU read completes, it is
possible that one (or more) of the floating bits may change while parity is
being calculated. Thus, when the CPU read completes, it may receive a
parity error on the SysAD bus.

Caution: Even on GIO boards that do not drive all data lines, this problem
may not show up on every transaction. It occurs only when one of the
floating data lines changes state between the start of the MC parity
calculation and the completion of the CPU read. Even if a driver appears to
function correctly, the system may panic due to a parity error.

If you are writing a driver for a GIO card that does not drive all 32 data lines,
even when fewer bits are being read, you must either:

1. Disable SysAD parity checking completely.
This reduces the system’s ability to recover from a parity error in main
memory, but it is both reliable and easy to program. The way to
implement this is simply to put a call to disable_sysad_parity() at the
beginning of your driver’s init (or edtinit) routine before the driver
attempts any PIO reads from the GIO device.

2. Disable SysAD parity checking only when your driver is actually
performing PIOs.
The advantage here is that the software recovery procedures for
memory parity errors are almost always in effect, but it requires a bit
more work during driver development. Put wrappers around your
driver’s PIO transactions to disable SysAD parity checking before the
transactions and re-enable it after the PIOs complete, as in the
following code fragment:

{
 int was_enabled = is_sysad_parity_enabled();

 if (was_enabled)
 disable_sysad_parity();

 /* do driver PIO transactions */

 if (was_enabled)
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 enable_sysad_parity();

 }

GIO Devices with Hardware-supported Scatter/Gather Capability

Chapter 2, “Writing a Device Driver,” tells you to use the physio() kernel
routine to fault in and lock the physical pages corresponding to the user's
buffer. physio() also remaps these physical pages to a kernel virtual address
that remains constant even when the user's virtual addresses are no longer
mapped.

Internally, physio() allocates a structure of type buf if you pass a NULL
pointer. (physio() uses this structure to embody the transfer information.)
physio() then calls your drvstrategy() routine and passes it a pointer to the
buf type structure that it has allocated and primed. Your drvstrategy()
routine must then loop through each page, starting at the kernel virtual
address, and load each device scatter/gather register in turn with the
corresponding physical address. Use the kvtophys() routine to convert a
kernel virtual address to a physical address.

For example, suppose the mythical device is now a GIO device that has
hardware-supporting scatter/gather. The scatter/gather registers for the
device are simply a table of integers that store the physical pages
corresponding to the current transfer. To start the transfer, the driver gives
the device the beginning byte offset, byte count, and transfer direction. The
code is:

/* Actual device setup for DMA, etc., if your board has
 * hardware scatter/gather DMA support.
 * Called from the gbdwrite() routine via physio().
 */
void
gbd_strategy(struct buf *bp)
{
   int unit = geteminor(bp->b_dev)&1;
   int npages;
   volatile unsigned *sgregisters;
   int i, v_addr;

   /* Get address of the scatter/gather registers */
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   sgregisters = gbd_device[unit]->sgregisters;

   /* Get the kernel virtual address of the data; note
   * b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
   * indicates false; in that case, the field bp->b_pages
   * is a pointer to a linked list of pfdat structure
   * pointers; that saves creating a virtual mapping and
   * then decoding that mapping back to physical addresses.
   * BP_ISMAPPED will never be false for character devices,
   * only block devices.
   */
   if(!BP_ISMAPPED(bp)) {
      cmn_err(CE_WARN,
         “gbd driver can’t handle unmapped buffers”);
      bioerror(bp, EIO);
      biodone(bp);
      return;
   }

   v_addr = bp->b_dmaaddr;

   /* Compute number of pages received.
   * The dma_len field provides the number of pages to
   * map. Note that this may be larger than the actual
   * number of bytes involved in the transfer. This is
   * because the transfer may cross page boundaries,
   * requiring an extra page to be mapped. Limit to
   * number of scatter/gather registers on board.
   * Note that this sample driver doesn’t handle the
   * case of requests > than # of registers!
   * numpages() is a macro declared in sys/sysmacros.h
   */
   npages = numpages (v_addr, bp->b_dmalen);
   /*
   * Provide the beginning byte offset and count to the
   * device.
   */
   gbd_device[unit]->offset =
         (unsigned long)bp->b_dmaaddr & (NBPC-1);
   if(npages > GBD_NUM_DMA_PGS) {
      npages = GBD_NUM_DMA_PGS;
      cmn_err(CE_WARN,
      “request too large, only %d pages max”, npages);
      if(gbd_device[unit]->offset)
         gbd_device[unit]->count = NBPC -
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         gbd_device[unit]->offset + (npages-1)*NBPC;
      else
         gbd_device[unit]->count = npages*NBPC;
      bp->b_resid = bp->b_count - gbd_device[unit]->count;
   }
   else
      gbd_device[unit]->count = bp->b_count;

   /* Translate the virtual address of each page to a
   * physical page number and load it into the next
   * scatter/gather register. btop()
   * converts the byte value to a page value after
   * rounding down the byte value to a full page.
   */
   for (i = 0; i < npages; i++) {
      *sgregisters++ = btop(kvtophys(v_addr));

      /*
      /* Get the next virtual address to translate.
      * (NBPC is a symbolic constant for the page
      * size in bytes)
      */

      v_addr += NBPC;
   }

   if ((bp->b_flags & B_READ) == 0)
      gbd_device[unit]->direction = GBD_WRITE;
   else
      gbd_device[unit]->direction = GBD_READ;
   gbd_device[unit]->command = GBD_GO;   /* start DMA */

   /* and return; upper layers of kernel wait for iodone(bp)
*/
}
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DMA on GIO Devices Without Scatter/Gather Capability

If your device does not provide scatter/gather capability, it must break up a
data transfer so that DMA transfer targets in physical memory are physically
contiguous to the DMA engine (this assures that no transfer crosses a page
boundary). The IRIX operating system provides a utility, sgset(D3X), that
simulates scatter/gather registers in software. (See the IRIX Device Driver
Reference Pages for details on this routine.) Your driver can use this facility to
perform the virtual-to-physical mapping up front; or, as the example below
shows, your driver can do this mapping following the transfer of each page:

/* Actual device setup for DMA, etc., if your board
 * does NOT have hardware scatter/gather DMA support.
 * Called from the gbdwrite() routine via physio().
 */
void
gbd_strategy(struct buf *bp)
{
   int unit = geteminor(bp->b_dev)&1;

   /* any checking for initial state here. */

   /* Get the kernel virtual address of the data; note
   * b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
   * indicates false; in that case, the field bp->b_pages
   * is a pointer to a linked list of pfdat structure
   * pointers; that saves creating a virtual mapping and
   * then decoding that mapping back to physical addresses.
   * BP_ISMAPPED will never be false for character devices,
   * only block devices.
   */
   if(!BP_ISMAPPED(bp)) {
      cmn_err(CE_WARN,
         “gbd driver can’t handle unmapped buffers”);
      bioerror(bp, EIO);
      biodone(bp);
      return;
   }

   gbd_curbp[unit] = bp;
   /*
   * Initialize the current transfer address and count.
   * The first transfer should finish the rest of the
   * page, but do no more than the total byte count.
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   */
   gbd_curaddr[unit] = bp->b_dmaaddr;
   gbd_totcount[unit] = bp->b_count;
   gbd_curcount[unit] = NBPC -
      ((unsigned int)gbd_curaddr[unit] & (NBPC-1));
   if (bp->b_count < gbd_curcount[unit])
      gbd_curcount[unit] = bp->b_count;
   /* Tell the device starting physical address, count,
   * and direction */
   gbd_device[unit]->startaddr = kvtophys(gbd_curaddr[unit]);
   gbd_device[unit]->count = gbd_curcount[unit];
   if (bp->b_flags & B_READ) == 0)
      gbd_device[unit]->direction = GBD_WRITE;
   else
      gbd_device[unit]->direction = GBD_READ;
   gbd_device[unit]->command = GBD_GO;   /* start DMA */

   /* and return; upper layers of kernel wait for iodone(bp)
*/
}
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Device Driver Example

The following pages contain the complete driver code for the mythical gbd
GIO device. Note that it includes strategy routines for devices that have
hardware support for scatter/gather as well as for those devices that have
no hardware scatter/gather support.

Commonly, a single set of source files is used for multiple target machines.
C preprocessor defines are used to define differences conditionally.
Command line compile options expose the correct values. The following
examples are interesting:

For an Indigo (R3000) system:

% cc -DIP12 -DR3000 -cckr -c gbd.c

For an Indigo (R4000) system:

% cc -DIP20 -DR4000 -cckr -c gbd.c

For an Indigo2 (R4000) or Indy system:

% cc -DIP22 -DR4000 -cckr -c gbd.c

Note: For R8000 systems, omit the -cckr  argument.

For more information on compile directives, see /var/sysgen/Makefile.kernio.

/* Source for a mythical GIO board device; it can be compiled
 * for devices that support DMA (with or without scatter/
 * gather support), or for PIO mode only. This version is
 * designed for IRIX 5.1 or later.
 * Dave Olson, 5/93
 */

/* defines for compilation; would normally be passed on
compilation
 * line via Makefile */
#define _K32U32   1
#define _KERNEL   1

#define IP20   1   /* define cpu type */



Device Driver Example

201

#if IP20 || IP22
#define R4000   1
#elif IP12
#define R3000   1
#endif
/* end of ‘normal’ compilation definitions */
/* The following definitions choose between PIO vs DMA
 * supporting boards, and if DMA is supported, whether
 * hardware scatter/gather is supported. */
#define GBD_NODMA 0  /* non-zero for PIO version of driver */
#define GBD_NUM_DMA_PGS 4 /* 0 for no hardware scatter/gather
                           * support, else number of pages of
                           * scatter/gather supported per
                           * request */

#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/systm.h>
#include <sys/cpu.h>
#include <sys/buf.h>
#include <sys/cred.h>
#include <sys/uio.h>
#include <sys/ddi.h>
#include <sys/errno.h>
#include <sys/cmn_err.h>
#include <sys/edt.h>

   /* NOTE: This sample driver ignores the possiblity that
    * the board might be busy handling some earlier request.
    * Any real device must deal with that possiblity, of
    * course, before changing the board registers.
    */

/* these defines and structures would normally be in
 * a separate header file */

#define GBD_BOARD_ID   0x75
#define GBD_MASK   0xff  /* Use 0xff if using only first byte
                          * of ID word; use 0xffff if using
                          * whole ID word.
                          */

#define GBD_MEMSIZE 0x8000

/* command definitions */
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#define GBD_GO 1

/* state definitions */
#define GBD_SLEEPING 1
#define GBD_DONE 2

/* direction of DMA definitions */
#define GBD_READ 0
#define GBD_WRITE 1

/* status defines */
#define   GBD_INTR_PEND   0x80

/* “gbd” is device prefix; also in master.d/xxx file */

/* devices interface to the board */
struct gbd_device {
   int command;
   int count;
   int direction;
   off_t offset;
   unsigned *sgregisters; /* if scatter/gather supported */
   caddr_t startaddr; /* if no scatter/gather on board */
   unsigned status;   /* errors, interrupt pending, etc. */
};

/* These are used for no scatter/gather case only, and assume
 * (since they aren’t protected!) that the driver is
 * completely single threaded. */
struct buf   *gbd_curbp[2];  /* current buffer */
caddr_t      gbd_curaddr[2]; /* current address to transfer
*/
int          gbd_curcount[2];
int          gbd_totcount[2];

/* pointer to on-board registers */
volatile struct gbd_device *gbd_device[2];

char *gbd_memory[2];   /* pointer to on-board memory */

static int gbd_state[2];    /* flag for transfer state
             * (PIO driver) */

void gbdintr(int);
extern int splgio1(void);
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/* equipped device table initialization routine.  The edt
 * structure is defined in edt.h.
 */
void
gbdedtinit(struct edt *e)
{
   int slot, val;

   /* Check to see if the device is present */
   if(badaddr_val(e->e_base, sizeof(int), &val) ||
         (val && GBD_MASK) != GBD_BOARD_ID) {
      if (showconfig)
         cmn_err (CE_CONT,
            “gbdedtinit: board not installed.”);
         return;
   }

/* figure out slot from base on VECTOR line in
    * system file */
   if(e->e_base == (caddr_t)PHYS_TO_K1(0x1f400000))
      slot = GIO_SLOT_0;
   else if(e->e_base == (caddr_t)0xBF600000)
      slot = GIO_SLOT_1;
   else {
      cmn_err (CE_NOTE,
      “ERROR from edtinit: Bad base address %x\n”, e-
>e_base);
      return;
   }

#if IP12      /* For Indigo R3000 system, set up board as a
               * realtime bus master.
               */

   setgioconfig(slot,0);

#endif

#if IP20 /* For Indigo R4000 system, set up board as a
          * realtime bus master.
          */

   setgioconfig(slot,GIO64_ARB_EXP0_RT | GIO64_ARB_EXP0_MST);
#endif
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#if IP22  /* for Indigo2 system, set up board as a pipelined,
          * realtime bus master */

   setgioconfig(slot,GIO64_ARB_EXP0_RT |
                 GIO64_ARB_EXP0_PIPED);

#endif

   /* Save the device addresses, because
    * they won’t be available later. */

   gbd_device[slot == GIO_SLOT_0 ? 0 : 1] =
            (struct gbd_device *)e->e_base;
   gbd_memory[slot == GIO_SLOT_0 ? 0 : 1] =
            (char *)e->e_base2;
   setgiovector(GIO_INTERRUPT_1,slot,gbdintr,unit_#);
}
/* minor number used to indicate which slot; open does
 * nothing but check that board is present. */
/* ARGSUSED */
gbdopen(dev_t *devp, int flag, int otyp, cred_t *crp)
{
   if(!gbd_device[geteminor(*devp)&1])
      return ENXIO;   /* board not present */
   return 0;   /* OK */
}

/* ARGSUSED */
gbdclose(dev_t dev, int flag, int otyp, cred_t *crp)
{
   return 0;   /* nothing to do */
}

#ifdef GBD_NODMA

/* device write routine entry point (for character devices)
*/
int
gbdwrite(dev_t dev, uio_t *uio)
{
   int unit = geteminor(dev)&1;
   int size, err=0, s;

   /* while there is data to transfer */
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   while((size=uio->uio_resid) > 0) {

      /* Transfer no more than GBD_MEMSIZE bytes
       * to the device */
      size = size < GBD_MEMSIZE ? size : GBD_MEMSIZE;

      /* decrements count and updates uio fields,
       * and copies data */
      if(err=uiomove(gbd_memory[unit], size, UIO_WRITE, uio))
         break;

      /* prevent interrupts until we sleep */
      s = splgio1();

      /* Transfer is complete; start output */
      gbd_device[unit]->count = size;
      gbd_device[unit]->command = GBD_GO;
      gbd_state[unit] = GBD_SLEEPING;
      while (gbd_state[unit] != GBD_DONE) {
         sleep(&gbd_state[unit], PRIBIO);
      }
      /* restore the process level after waking up */
      splx(s);
   }
   return err;
}

/* interrupt routine for PIO only board, just wake up
 * upper half of driver
 */
/* ARGSUSED1 */
void
gbdintr(int unit)
{
   /* Read your board’s registers to determine if there are
    * any errors or interrupts pending. If no interrupts
    * are pending, return without doing anything.
    */
   if(!gbd_device[unit]->status & GBD_INTR_PEND)
      return;

   if (gbd_state[unit] == GBD_SLEEPING) {
      /* Output is complete; wake up top half
       * of driver, if it is waiting. */
      gbd_state[unit] = GBD_DONE;
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      wakeup(&gbd_state[unit]);
   }

   /* Do anything else to board to tell it we are done
    * with transfer and interrupt here. */
return;    /* could just fall through */
}

#else   /* DMA version of driver */

void gbd_strategy(struct buf *);

/* device write routine entry point (for character devices).
 * Does nothing but call uiophysio to setup passing a pointer
 * to the gbd_strategy routine, which does most of the work.
 */
int
gbdwrite(dev_t dev, uio_t *uiop)
{
   return uiophysio((int (*)())gbd_strategy, 0, dev,
B_WRITE, uiop);
}

#if GBD_NUM_DMA_PGS > 0

/* Actual device setup for DMA, etc., if your board has
 * hardware scatter/gather DMA support.
 * Called from the gbdwrite() routine via physio().
 */
void
gbd_strategy(struct buf *bp)
{
   int unit = geteminor(bp->b_dev)&1;
   int npages;
   volatile unsigned *sgregisters;
   int i, v_addr;

   /* Get address of the scatter/gather registers */
    sgregisters = gbd_device[unit]->sgregisters;

   /* Get the kernel virtual address of the data; note
    * b_dmaaddr may be NULL if the BP_ISMAPPED(bp) macro
    * indicates false; in that case, the field bp->b_pages
    * is a pointer to a linked list of pfdat structure
    * pointers; that saves creating a virtual mapping and
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    * then decoding that mapping back to physical addresses.
    * BP_ISMAPPED will never be false for character devices,
    * only block devices.
    */
    if(!BP_ISMAPPED(bp)) {
      cmn_err(CE_WARN,
         “gbd driver can’t handle unmapped buffers”);
      bioerror(bp, EIO);
      biodone(bp);
      return;
   }

   v_addr = bp->b_dmaaddr;

   /* Compute number of pages received.
    * The dma_len field provides the number of pages to
    * map. Note that this may be larger than the actual
    * number of bytes involved in the transfer. This is
    * because the transfer may cross page boundaries,
    * requiring an extra page to be mapped. Limit to
    * number of scatter/gather registers on board.
    * Note that this sample driver doesn’t handle the
    * case of requests > than # of registers!
    */
   npages = numpages (v_addr, bp->b_dmalen);

/*
    * Provide the beginning byte offset and count to the
    * device.
    */
   gbd_device[unit]->offset =
         (unsigned int)bp->b_dmaaddr & (NBPC-1);
   if(npages > GBD_NUM_DMA_PGS) {
      npages = GBD_NUM_DMA_PGS;
      cmn_err(CE_WARN,
          “request too large, only %d pages max”, npages);
      if(gbd_device[unit]->offset)
         gbd_device[unit]->count = NBPC -
             gbd_device[unit]->offset + (npages-1)*NBPC;
      else
         gbd_device[unit]->count = npages*NBPC;
      bp->b_resid = bp->b_count - gbd_device[unit]->count;
   }
   else
      gbd_device[unit]->count = bp->b_count;
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   /* Translate the virtual address of each page to a
    * physical page number and load it into the next
    * scatter/gather register. btop()
    * converts the byte value to a page value after
    * rounding down the byte value to a full page.
    */
    for (i = 0; i < npages; i++) {
      *sgregisters++ = btop(kvtophys(v_addr));

      /*
      /* Get the next virtual address to translate.
       * (NBPC is a symbolic constant for the page
       * size in bytes)
       */

      v_addr += NBPC;
   }

   if ((bp->b_flags & B_READ) == 0)
      gbd_device[unit]->direction = GBD_WRITE;
   else
      gbd_device[unit]->direction = GBD_READ;
   gbd_device[unit]->command = GBD_GO;   /* start DMA */
  /* and return; upper layers of kernel wait for iodone(bp)*/
}
/* not much to do in this interrupt routine, since we are
 * assuming for this driver that we can never have to do
 * multiple DMA’s to handle the number of bytes requested...
 */
void
gbdintr(int unit)
{
   int error;

   /* Read your board’s registers to determine if
    * there are any errors or interrupts pending.
    * If no interrupts are pending, return without
    * doing anything.
    */
   if(!gbd_device[unit]->status & GBD_INTR_PEND)
      return;

   if(error)
      bioerror(bp, EIO);
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   biodone(bp);   /* we are done, tell upper layers */

   /* do anything else to board to tell it we are done
    * with transfer and interrupt here */
}

#else /*  GBD_NUM_DMA_PGS == 0; no hardware
       *  scatter/gather support */

/* Actual device setup for DMA, etc., if your board
 * does NOT have hardware scatter/gather DMA support.
 * Called from the gbdwrite() routine via physio().
 */
void
gbd_strategy(struct buf *bp)
{
   int unit = geteminor(bp->b_dev)&1;

   /* any checking for initial state here. */

   /* Get the kernel virtual address of the data; note
    * b_dmaaddr may be NULL if the  BP_ISMAPPED(bp) macro
    * indicates false; in that case, the field bp->b_pages
    * is a pointer to a linked list of pfdat structure
    * pointers; that saves creating a virtual mapping and
    * then decoding that mapping back to physical addresses.
    * BP_ISMAPPED will never be false for character devices,
    * only block devices.
    */
    if(!BP_ISMAPPED(bp)) {
      cmn_err(CE_WARN,
         “gbd driver can’t handle unmapped buffers”);
      bioerror(bp, EIO);
      biodone(bp);
      return;
   }

   gbd_curbp[unit] = bp;
   /*
    * Initialize the current transfer address and count.
    * The first transfer should finish the rest of the
    * page, but do no more than the total byte count.
    */
   gbd_curaddr[unit] = bp->b_dmaaddr;
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   gbd_totcount[unit] = bp->b_count;
   gbd_curcount[unit] = NBPC -
      ((unsigned int)gbd_curaddr[unit] & (NBPC-1));
   if (bp->b_count < gbd_curcount[unit])
      gbd_curcount[unit] = bp->b_count;
   /* Tell the device starting physical address, count,
    * and direction */
   gbd_device[unit]->startaddr = kvtophys(gbd_curaddr[unit]);
   gbd_device[unit]->count = gbd_curcount[unit];
   if (bp->b_flags & B_READ) == 0)
      gbd_device[unit]->direction = GBD_WRITE;
   else
      gbd_device[unit]->direction = GBD_READ;
   gbd_device[unit]->command = GBD_GO;   /* start DMA */

   /* and return; upper layers of kernel wait for iodone(bp)
*/
}

/* more complicated interrupt routine, not necessarily
because
 * board has DMA, but more typical of boards that do have
 * DMA, since they are typically more complicated.
 * Also more typical of devices that support block i/o, as
 * opposed to character i/o.
 */
void
gbdintr(int unit)
{
   int error;
   register struct buf *bp = gbd_curbp[unit];

   /* read your board’s registers to determine if
    * there are any errors or interrupts pending.
    * If no interrupts are pending, return without
    * doing anything.
    */
   if(!gbd_device[unit]->status & GBD_INTR_PEND)
      return;

   if(error) {
      bioerror(bp, EIO);
      biodone(bp);   /* we are done, tell upper layers */
   }
   else {
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      /* On successful transfer of last chunk, continue
       * if necessary */
      gbd_curaddr[unit] += gbd_curcount[unit];
      gbd_totcount[unit] -= gbd_curcount[unit];
      if(gbd_totcount[unit] <= 0)
         biodone(bp);
            /* we are done, tell upper layers */
      else {
      /* else more to do, reprogram board and
       * start next dma */
          gbd_curcount[unit] =
             (gbd_totcount[unit] < NBPC
                   ? gbd_totcount[unit] : NBPC);
          gbd_device[unit]->startaddr =
                   kvtophys(gbd_curaddr[unit]);
          gbd_device[unit]->count = gbd_curcount[unit];
          if (bp->b_flags & B_READ) == 0)
             gbd_device[unit]->direction = GBD_WRITE;
          else
             gbd_device[unit]->direction = GBD_READ;
          gbd_device[unit]->command = GBD_GO;
               /* start next DMA */
      }
   }

   /* Do anything else to board to tell it we are done
    * with transfer and interrupt here. */
}
#endif /*  GBD_NUM_DMA_PGS */

#endif /* GBD_NODMA */
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7. Writing Kernel-level General
Memory-mapping Device Drivers

This chapter explains how to write kernel-level general memory-mapping
device drivers.

It contains the following sections:

• “Including a Memory-mapping Device Driver in the Kernel” on
page 214

• “Mapping and Unmapping Functions” on page 214

• “Sharing Kernel Memory with a User Program” on page 218

• “Example Program” on page 219

• “Returning Opaque Handle Data” on page 221

This chapter describes how a kernel-level device driver can map VME
device hardware or main (kernel) memory to user space. It introduces two
system calls, mmap(2) and munmap(2),  as well as describing two IRIX
driver functions, drvmap() and drvunmap()1. Because your driver allows the
user to map the device user space, your driver may not need to include
drvread() and drvwrite() functions.

1 SVR4 also uses a drvmmap() function and an optional drvunmap() function.
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Including a Memory-mapping Device Driver in the Kernel

For a VME device driver, refer to Chapter 3, “Writing a VME Device Driver,”
for details on adding a VME device driver to the kernel.

For a EISA device driver, see Chapter 4, “Writing an EISA Device Driver,”
for details on including this type of driver.

For a SCSI device driver, refer to Chapter 5, “Writing a SCSI Device Driver,”
for details on including this type of driver to the kernel.

For a GIO device driver, see Chapter 6, “Writing Kernel-level GIO Device
Drivers,” for details.

Mapping and Unmapping Functions

The functions for mapping memory and registers are mmap(), drvmmap(),
munmap(), and v_mapphys().

mmap – Mapping the Device
drv mmap – Mapping the Device

When a user-level program wants to map device memory into its address
space, the user program opens the special file corresponding to the
particular device and uses the mmap() system call. Your driver needs to call
drvmmap() — which you need to write — when a mmap call maps into a
user’s address space. drvmmap is logically similar to a drvopen routine;
make sure it does whatever work your device requires. (See Chapter 2,
“Writing a Device Driver,” and the mmap(D2) man page for more details.)

The section of a user-level program that maps device memory into its own
addressing space could look like:

#include "fcntl.h"
#include "sys/mman.h"

fd = open(special_file, O_RDWR);
addr = mmap(0, len, PROT_READ|PROT_WRITE,
            MAP_PRIVATE, fd, off);



Mapping and Unmapping Functions

215

After the kernel performs basic sanity checking on the system call
arguments, if the file descriptor passed to the mmap(2) system call
represents a special file, the kernel looks in your driver object module and
calls that device mapping function.

Synopsis

drvmap(dev, vt, off, len, prot)
       dev_t     dev;      /* device number*/
       vhandl_t  *vt;      /* handle to caller's
                           /* virtual address space */
       off_t     off;      /* offset into device */
       int       len;      /* # of bytes to map */
       int       prot;     /* protections */

Arguments

dev Gives your drvmap() function the device major and minor
numbers. Use the major and minor macros to extract this
information from dev.

vt Gives your drvmap function a pointer to the kernel-level
data structure that describes the virtual space to which the
device memory will be mapped. Your driver needs this
pointer when calling certain kernel service functions.

Caution: Your driver must treat this pointer as an
“opaque” handle and try not to set any of the member
values directly. The specifics of this structure are likely to
change from release to release. Your drvmap() function may
change the member values of this structure indirectly, but
only by calling kernel service functions.

off This offset within device memory, at which mapping
begins, gives your drvmap() function the kernel’s virtual
address for the device.

len Gives your drvmap() function the length of the device
memory to be mapped into the user’s address space.

prot Gives your drvmap() function the protections that the user
program specified when it called mmap().
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munmap – Unmapping the Device

To unmap a device, the user program calls the munmap(2) system call:

munmap ( addr, len);

where addr is the device virtual address returned by the mmap(2) function
and len is the length of the mapped area. After performing device-
independent unmapping in the user’s space, the munmap(2) system call
calls your driver’s drvunmap() function if it is defined as an entry in the
device switch table.

Synopsis

drvunmap(dev, vt);
dev_t     dev;               /* device number */
vhandl_t  *vt;               /* handle to caller's virtual
                                address space */

The vt and dev parameters are the same as for drvmap(), above.

Note: If a driver provides a mapping function but does not provide an
unmapping function, the munmap() system call returns the ENODEV error
condition to the user. Therefore, it is a good idea for your driver to provide
a dummy unmapping function even if your driver does not need to perform
any action to unmap the device.

v_mapphys – Mapping Device Control Registers and On-board
Memory

Your driver can allow the user to map device registers and local memory
from the user's virtual space to physical memory if your driver’s drvmap()
function calls v_mapphys().

Synopsis

int v_mapphys(vt, addr, len);
              vhandl_t *vt;
              caddr_t addr;
              int len;
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Arguments

vt Your drvmap() function must give this parameter the
opaque handle to the user's virtual address space. (The
internals of the structure for the opaque handle are likely to
change from release to release.)

addr Your drvmap() function must give this parameter the kernel
virtual address by which the device is accessed. (See “VME
Slave Addressing” in Appendix A.) The system takes this
address from the user’s call to mmap(2) and hands it to the
off parameter of your drvmap() function.

len Your drvmap() function must give this parameter the
number of bytes to be mapped. The system takes this value
from the user’s call to mmap(2) and hands it to the len
parameter of your drvmap() function.

If successful, v_mapphys() returns 0. If v_mapphys() fails, it sets errno and
returns -1. After a successful call to v_mapphys(), the device's registers at
addr are mapped into the user's address space as designated by vt. You do
not need any special unmapping, so the drvunmap() function does not need
actions specified within it.

Caution: Your driver must be very careful when it maps device registers to
a user process. It must carefully check the range of addresses that the user
requests and make sure that the request references only the requested
device. Because protection is available only up to a page boundary, configure
the addresses of I/O cards so that they do not overlap a page. If they are
allowed to overlap, an application process may be able to access more than
one device, possibly a system device (for example, a disk controller or
Ethernet). This can cause system secuity problems or other problems that are
hard to diagnose.
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Sharing Kernel Memory with a User Program

To allocate memory that is shared between the driver and the application
process, your drvmap() function must do steps 1 and 2 of the procedure
below. To free that memory later, your drvunmap() function must do step 3.

1. Use the kmem_alloc() kernel function to allocate some memory pages
in the kernel:

caddr_t *kaddr = kmem_alloc (len , KM_CACHEALIGN);

2. Map the memory pages into the user’s address space by calling
v_mapphys():

v_mapphys (vt, kaddr, nbytes)

3. To free the memory, your driver’s unmapping function, drvunmap(),
must call kmem_free():

kmem_free(kaddr, len);

kmem_alloc() allocates physical memory and returns a kernel virtual
address associated with that memory. The physical memory is not subject to
paging. v_mapphys() returns 0 upon success and -1 upon failure. The
parameters for these calls are:

vt Your drvmap() function must give this parameter the
opaque handle to the user virtual address space. (The
internals of this structure are likely to change from release
to release.)

kaddr Your drvmap() function must give this parameter the virtual
address returned by kmem_alloc(). Your drvunmap()
function must give this parameter the kernel virtual address
returned by kmem_alloc().

len Your drvmap() function must give this parameter the
number of bytes to be mapped. (This value must not be
greater than the number of pages allocated in step 1.)
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Example Program

Suppose the mythical VT device wants to share memory with a user
program. Its drvmap() and drvunmap() functions would look something like
this:

#include <sys/sysmacros.h>
struct mpd {
   unsigned int d_id;    /* id of memory segment */
   caddr_t  d_addr;      /* address of allocated memory */
   int      d_npages;    /* number of pages allocated */
   struct mpd *d_last, *d_next;   /* links */
};

struct mpd vdk_list;    /* at init, this becomes a doubly
                        /*linked ring */

int vdkmap(dev_t dev, vhandl_t *vt, off_t off, int len,
           int prot)
{
   struct mpd *d;

   /* initial sanity checking (not shown) */
   ...

   /* allocate some temporary storage */
   if( (d = kmem_alloc(sizeof(struct mpd)), 0 )
      == NULL )
      return ENOMEM;

   d->d_npages = btoc(len);
   if( (d->d_addr = kmem_alloc(ctob(d-
>d_npages))KM_CACHEALIGN) == NULL ) {
      kmem_free(d,sizeof(struct mpd));
      return ENOMEM;
   }

   /* map it into the user's address space */
   if( v_mapphys(vt,d->d_addr,len) ) {
      kmem_free(d->d_addr,ctob(d->d_npages));
      kmem_free(d,sizeof(struct mpd));
      return ENOMEM;
   }

   d->d_id = v_gethandle(vt);
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   /* initialize the memory */
   bzero(d->d_addr,ctob(d->d_npages));

   /* add to the list */
   d->d_next = vdk_list.d_next;
   d->d_last = &vdk_list;
   d->d_next->d_last = d->d_last->d_next = d;

   return 0;
}

See “Returning Opaque Handle Data,” for a description of the
v_gethandle() system function. In the vdkunmap() function, you can find
the piece of memory to be deallocated by searching the above list. The driver
can then call the kmem_free() kernel function with the address and length
of this section of memory:

int vdkunmap(dev_t dev, vhandl_t *vt)
{
   struct mpd *d;
   int id;

   id = v_gethandle(vt);

   /* Find chunk of memory corresponding to it. */
   for(d = vdk_list.d_next; d != &vdk_list ; d = d->d_next )
      if( d->d_id == id )
         break;

   /* Make sure we found it. */
   if( d == &vdk_list )
      return 0;

   /* remove from list */
   d->d_next->d_last = d->d_last;
   d->d_last->d_next = d->d_next;

   /* free up resources */
   kmem_free(d->d_addr,ctob(d->d_npages));
   kmem_free(d,sizeof(struct mpd));

   return 0;
}
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Returning Opaque Handle Data

Use the v_gethandle macro to get the unique identifier associated with vt,
the opaque handle to the user's virtual address space. (The term “opaque”
indicates that your code does not directly deal with the members of this
structure, which is likely to change from release to release.)

#include "sys/region.h"
unsigned  v_gethandle(vt);
vhandl_t  *vt;

Because the virtual handle points into the kernel stack, it is likely to be
overridden. Use v_gethandle if your driver must “remember” several
virtual handles. Various other macros are also defined in sys/region.h,
including macros that get the user virtual address to which the device space
is mapped; macros that get the inode associated with the special file; and
macros that get the length (in pages) of the user's mapped space.
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8. Writing Multiprocessor Device Drivers

This chapter addresses questions particular to device drivers that run on
multiprocessor workstations. It contains the following sections:

• “Preliminary Considerations” on page 224

• “Shared Data between Upper-half and Interrupt Routines” on page 225

• “Protecting Shared Data Among Upper-half Routines” on page 226

• “Semaphore and Spinlock Calls” on page 227

• “Multiprocessing STREAMS Drivers” on page 231

By default, all upper-half device driver functions—open(), close(), ioctl(),
read(), write(), and strategy()— and the interrupt function are forced onto
processor 0 on a multiprocessor (MP) system. Therefore, a device driver
written for a single processor will work unmodified on a multiprocessor
system. To avoid context switches to processor 0 for every I/O call, you can
modify a device driver to run on any processor. The process of making a
device driver MP-safe is often called semaphoring, or multi-threading, a driver,
although the preferred method relies, strictly speaking, on locks rather than
on semaphores.

Note: The driver interface now uses the SVR4 MP DDI/DKI interface except
for the Silicon Graphics-specific routines, such as pio_map() and
dma_map(). For example, entry points such as open(), close(), read(), and
write() all have slightly different arguments and, in some cases, different
procedure types in 5.x than they had in earlier versions.
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Preliminary Considerations

The best way to develop a multiprocessor driver is to follow these steps:

1. Implement and test a single-threaded version of the driver.

2. Make the driver MP-safe with the use of the spinlock and semaphore
calls described in this chapter.

3. Test and debug this version of the driver. It must still work perfectly
when forced onto processor 0.

4. Add D_MP to the drvdevflag, recompile the driver, and rebuild the
kernel with lboot.

This builds a kernel that no longer forces the upper-half routines onto
processor 0; they are allowed to run on the current CPU instead.

5. Run the device driver routines on an arbitrary processor to test and fix
any bugs that have been exposed.

Unfortunately, making a device driver MP-safe is not a mechanized
procedure, but one that requires a good understanding of the driver and its
data structures. When a driver is flagged as semaphored, the driver writer
must modify the code to prepare for two new scenarios:

• An upper-half routine may be executing on one processor while the
interrupt procedure executes on another processor.

• Upper-half routines may run concurrently on different processors. For
example, a process on one processor can be executing an open
procedure while another processor executes the strategy function.
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Shared Data between Upper-half and Interrupt Routines

If the upper-half and interrupts use biowait and biodone for
synchronization, the driver will perform as desired on both single-processor
and multiprocessor systems. This is because these routines have already
been made multiprocessor-safe. Often, however, an interrupt routine will
synchronize with upper-half procedures by using the sleep/wakeup
functions and a shared flag word. The following is a common scenario:

Upper-half routine:

   s = splvme();
   flag |= WAITING;
   while (flag & WAITING) {
      sleep(&flag, PZERO);
   }
   splx(s);

Interrupt routine:

   if (flag & WAITING) {
      wakeup(&flag);
      flag &= ~WAITING;
   }

The splvme call is used to protect flag from being modified in an interrupt
routine. The splvme call raises the interrupt priority level only on the
current processor and is, thus, insufficient on a multiprocessor. In this case,
semaphores can be used for synchronization. When you initialize a
semaphore to 0, the first psema call puts the calling process to sleep. A
subsequent vsema(D3X) call will put the process back on the run queue. See
the spl(D3) man page.The following code can replace the upper-half and
interrupt scenario above:

Initialization function:

initnsema(&driversema, 0, "driver");

Upper-half routine:

psema(&driversema, PZERO);

Interrupt routine:

vsema(&driversema);
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Since the semaphore functions themselves are multiprocessor-safe, no
additional locking is necessary.

There may be other cases within the driver where data not specifically
pertaining to synchronization is shared between an upper-half routine and
an interrupt routine. You can identify these cases easily by searching for
splN/splx calls and identifying the data actually being protected against
concurrent access. In such cases, it is often useful to employ spinlocks. (They
are called spinlocks because the locking functions actually loop until a test-
and-set value is unset.) Replace the splN call with a LOCK(D3) call, and
replace the splx call with a corresponding UNLOCK(D3) call. These
replacements allow the driver to perform as desired on a single processor
while providing locking on a multiprocessor. See the spl(D3) man page.

Caution: Data and cache interactions must be considered.Variables that
might be in registers must be declared volatile and protected as well in
multiprocessor device drivers.

Protecting Shared Data Among Upper-half Routines

Since instances of the device open, close, ioctl, read, write, and strategy
functions may execute concurrently on a number of processors, all data that
is shared among these routines must be protected. Unfortunately, you need
to identify this data by careful examination of the driver code. It is not
possible to look for all instances of certain procedure calls, as it is with the
interrupt routine.

You may use spinlock calls to protect shared data where the locks are held
only for a short period of time. If a lock must be held for a longer period of
time, you may use a semaphore initialized to 1. If this is the case, the first call
to psema is not blocked, but all succeeding calls are. When the lock is to be
freed, a vsema(D3X) call allows at most one process waiting for the
semaphore to proceed. Semaphores involve slightly more overhead than
spinlocks if the lock is free, and a great deal more overhead if the lock is held
and the calling process must sleep. This may sound undesirable at first, but
keep in mind that waiting on a locked spinlock ties up the processor from
other work, while a process that puts itself to sleep allows the CPU to
execute other processes. Thus, spinlock calls should be used only in
situations where the lock will be held for a short duration.
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Semaphore and Spinlock Calls

The remainder of this chapter is a listing of semaphore and spinlock calls. In
each case, an example of the call precedes a brief explanation:

semap

#include <sys/types.h>
#include <sys/sema.h>
void initnsema(sema_t *semap, int value, char *name);

Allocate and initialize a semaphore addressed by semap, given value and
name (for debugging).

freesema

void freesema(sema_t *semap);

Free the semaphore addressed by semap.

psema

int psema(sema_t *semap, int priority);

Decrement the current semaphore value by 1; if the semaphore value
becomes less than 0, sleep at the given priority. The priority is the same as
that given to sleep. The flag bit PCATCH may be bit-wise ORed into the
priority if the sleep is breakable (greater than PZERO) and it is desired to
catch the signal (as is usually the case).

The call may be prefixed with ap if the call is to be a NOP on single
processors. This is often the case when the semaphore is used for locking.

This function returns 0 in normal operation or -1 if PCATCH is specified and
a signal interrupted the sleep.

vsema

int vsema(sema_t *semap);

Increment the current semaphore value by 1; if the result is less than or equal
to 0, place a process sleeping on the semaphore onto the run queue. As
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above, the call may be prefixed with ap if the call is to be a NOP on single
processors.

This function returns 0 if no process is waiting on the semaphore, or 1 if a
process is awakened.

cpsema

int cpsema(sema_t *semap);

This call conditionally provides the functionality of the psema operation. If
the semaphore count is already less than 0, the function does not affect the
semaphore value and simply returns 0. Otherwise, the semaphore count is
decremented.

Note: In no case does the calling process sleep; this function can be useful to
test whether a given lock has been acquired.

cvsema

int cvsema(sema_t *semap);

This function wakes up a process on the semaphore if there is one. More
precisely, if the semaphore count is less than 0, it increments the semaphore
count, places a process on the run queue, and returns 1; otherwise, the
semaphore is unaffected and the function returns 0.

LOCK_ALLOC

lock_t *LOCK_ALLOC(uchar_t hierarchy, pl_t min_pl
        lkinfo_t *lkinfop, int flag);

This call dynamically allocates and initializes a basic lock. The lock is
initialized to the unlocked state. Silicon Graphics does not support the
compilation option _LOCKTEST, but does provide splockmeter for
debugging purpose.

LOCK_DEALLOC

void LOCK_DEALLOC(lock_t *lockp);

This call frees an instance of a basic lock.
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LOCK

int LOCK(lock_t, lock, int (*splr)());

On multiprocessor systems, this call acquires the given spinlock, lock. The
interrupt priority level is set to at least splr while the lock is acquired.

On single processor systems, this calls the spl function splr.

This function returns the old priority level.

UNLOCK

void UNLOCK(lock_t lock, int s);

On multiprocessor systems, this call releases the given spinlock lock and
restores the interrupt priority level to s.

On single-processor systems, restore the interrupt priority level to s. This is
the value returned to LOCK above.

SLEEP_LOCK

void SLEEP_LOCK(sleep_t *lockp, int priority);

This call acquires the sleep lock specified by lockp. If the lock is not
immediately available, the caller is put to sleep (the caller’s execution is
suspended and other processes may be scheduled) until the lock becomes
available to the caller, at which point the caller wakes up and returns with
the lock held.

The caller is not interrupted by signals while sleeping inside SLEEP_LOCK.
See psema(D3X).

SLEEP_LOCK_SIG

boolean_t SLEEP_LOCK_SIG(sleep_t *lockp, int priority);

This function acquires the sleep lock specified by lockp. If the lock is not
immediately available, the caller is put to sleep (the caller’s execution is
suspended and other processes may be scheduled) until the lock becomes
available to the caller, at which point the caller wakes up and returns with
the lock held.
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SLEEP_LOCK_SIG may be interrupted by a signal, in which case it may
return early without acquiring the lock.

If the function is interrupted by a job control stop signal (such as SIGSTOP,
SIGTSTP, SIGTTIN, SIGTTOU), which results in the caller entering a
stopped state, the SLEEP_LOCK_SIG function transparently retries the lock
operation upon continuing (the call will not return without the lock).

If the function is interrupted by a signal other than a job control stop signal,
or by a job control stop signal that does not result in the caller stopping
(because the signal has a non-default disposition), the SLEEP_LOCK_SIG
call returns early without acquiring the lock.

SLEEP_UNLOCK

void SLEEP_UNLOCK(sleep_t *lockp);

This function releases the sleep lock specified by lockp. If there are processes
waiting for the lock, one of the waiting processes is awakened. See
vsema(D3X).

SLEEP_TRYLOCK

boolean_t SLEEP_TRYLOCK(sleep_t *lockp);

This function tries to acquire a sleep lock. See cpsema(D3X).

TRYLOCK

int TRYLOCK(lock_t *lockp, pl_t pl);

This function tries to acquire a basic lock.

Caution: Drivers that reacquire multiple locks may deadlock when an
asynchronous processor obtains a needed lock and does not free it because a
lock held by another processor is also looking for a lock.
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Multiprocessing STREAMS Drivers

In IRIX, all STREAMS activity is single-threaded through use of a STREAMS
monitor. The kernel takes care of acquiring the monitor before running any
of the regular STREAMS entry point routines. However, the device driver
writer needs to take care of the  interrupt entry points (hardware interrupt
and timeouts) with streams_interrupt(D3X) and
STREAMS_TIMEOUT(D3X). For more detailed information, see the man
pages for these two calls.

STREAMS Monitor

The STREAMS monitor ensures mutually exclusive access to STREAMS on
multiprocessor systems. The STREAMS put, service, open, and close
functions are guaranteed to have the monitor upon entry and, thus run with
assured mutual exclusion. The kernel handles all monitor interactions for
these procedures, although it does not acquire the monitor for STREAMS
driver interrupt routines, which must acquire the monitor explicitly.

All STREAMS drivers must acquire the monitor before performing any
interaction with STREAMS from interrupt level, such as quenable(), getq(),
or putq(). To obtain the monitor from an interrupt routine, the driver should
call:

int streams_interrupts (func,arg1,arg2,arg3)

This routine either:

1. Acquires the monitor and runs func with arguments of arg1, arg2, and
arg3, then releases the monitor and returns 1

or

2. Queues the function on the monitor for execution once the current
owner of the monitor releases it, and immediately returns 0. The
example below shows how a STREAMS driver could use
streams_interrupt().

There are additional changes for STREAMS drivers that use calls to
timeout() and delay(), which corrupt the mutual exclusion of the monitor. To
make these calls safe, the device driver writer must replace them with
macros defined in the include file sys/strmp.h.
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Replace all calls to timeout() with the macro STREAMS_TIMEOUT();
replace all calls to delay() with the macro STREAMS_DELAY(). For
example, if the single-processor version of a driver contains the following
calls:

timeout(watchdog,unit,HZ/10);

and

delay(100);

they should be replaced by:

STREAMS_TIMEOUT(watchdog,unit,HZ/10;

and

STREAMS_DELAY(100);

These macros revert to the original timeout() and delay() calls in the single
processor case. The include file sys/strmp.h also defines the constant
MP_STREAMS if the multiprocessor version of STREAMS is in use. This is
useful for performing conditional compilation of sections of the STREAMS
driver for multiprocessor systems. In any case, the use of these macros and
definitions makes the driver machine-dependent.
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STREAMS Example
#include “sys/strmp.h”

static void interrup_handler;

/* Actual interrupt routine that is called on an interrupt */
driverintr(unit)
int unit:
{
    /* Check to see if interrupt is valid */
    if (driver[unit]->intrmask !=0 {
        /* Call the interrupt handler that interacts
         * with STREAMS */
        streams_interrupt(interrupt_handler,unit);
    }
    else {
        /* Stray interrupt! */
        driver[unit]->stray++;
    }
    return;
}

/* Second-level interrupt handler that interacts with
 *  STREAMS.  This guarantees mutually exclusive access
 *  to STREAMS */
static void
interrupt_handler(unit)
int unit;
{
    register mblk_t *bp;

    if ((bp = allocb(128,BPRI_HI)) ==0) {
        /* Unable to allocate STREAMS block */
        driver[unit]->allocb_fail++;
        return
    }

    /* Copy data into message block */
    bcopy(driver[unit]->data,bp->wptr,128);

    /* Put onto our read queue for additional processing */
    putq(driver[unit]->rq,bp);
    return;
}
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9. Writing Network Device Drivers

This chapter addresses questions particular to device drivers that run on
networked workstations, and is based on the assumption that network
device driver writers are familiar with BSD conventions. In particular, it
describes how to write an IRIX kernel ifnet interface networking device
driver. Only issues specific to IRIX are covered here; this section does not
describe the complete ifnet programmatic interfaces to the system although
the sources for a sample skeleton ifnet device driver are included at the end
of this section.Refer to the following books for more complete information
on the BSD kernel protocol stack and device driver conventions:

• Egan, Janet I., and Thomas J. Teixeira. Writing a UNIX® Device Driver.
John Wiley & Sons, 1992.

• Hines, Robert M., and Spence Wilcox. Device Driver Programming, UNIX
SVR4.2. Englewood Cliffs, New Jersey: UNIX Press, 1992.

• Leffler, Samuel J., et alia. The Design and Implementation of the 4.3BSD
UNIX® Operating System. Palo Alto, California: Addison-Wesley
Publishing Company, 1989.

This chapter contains the following sections:

• “Preliminary Discussion” on page 236

• “IRIX Kernel Networking Design” on page 236

• “ifnet Driver Interfaces” on page 238

• “Input Queueing Example” on page 241

• “Interrupt Handler Example” on page 242

• “ifnet Device Driver Example” on page 243
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Preliminary Discussion

This chapter deals with requirements that go beyond STREAMS, namely,
how to allow a board to communicate directly with IRIX’s native protocol
stack.

It is recommended that device driver writers review Chapter 8, “Writing
Multiprocessor Device Drivers” before writing a network driver.

IRIX 5.3 and IRIX 6.0, although divergent, accept device drivers that have
run on IRIX 5.x.

Note: A forthcoming release, IRIX 6.x, will represent a convergence of the
two operating systems (32- and 64-bit). It is expected to be easier, as well as
more time-efficient, in many cases, to postpone the development of new
network device drivers until IRIX 6.x becomes available.

Caution: Information in this chapter is subject to change without notice.

IRIX Kernel Networking Design

The IRIX kernel networking design is based on the kernel networking
framework in 4.3BSD. If you are familiar with the 4.3BSD kernel networking
design, then you are already familiar with the IRIX kernel networking
design because they are basically the same.

The IRIX networking design is based on the socket interface: mbufs are used
to exchange messages within the kernel, and device drivers support the
TCP/IP internet protocol suite by supporting the ifnet interface.

Since the kernel BSD-based networking framework and TCP/IP internet
protocol suite implementation have changed little from previous releases of
IRIX, porting your ifnet device driver to IRIX 5.3 from earlier releases of IRIX
should be simple and straightforward.

Figure 9-1 displays the basic IRIX kernel networking architecture.
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Figure 9-1 IRIX 5.3 Kernel Network Architecture

The left side of the figure shows the native socket-based TCP/IP protocol
code, socket layer, and ifnet-based device drivers. This portion comes
bundled in the basic IRIX system. Socket-based applications such as rlogin,
rcp, NFS client and server, and the socket-based RPC library operate directly
over this native networking framework.

The middle of the figure shows the optionally installed svr4net package,
which provides compatibility support for user-level applications written to
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the STREAMS Transport Layer Interface (TLI). tpisocket is a kernel library
module used by protocol-specific STREAMS pseudo-drivers, such as tpitcp,
tpiudp, and so on, providing a TPI interface above the native kernel sockets-
based network protocol stack.

The right side of the figure shows the optionally installed dlpi package
which provides a STREAMS pseudo-driver that supports the Data Link
Provider Interface (DLPI) for STREAMS-based kernel protocol stacks.

Refer to the IRIX Network Programming Guide and the SVR4 man pages for
STREAMS, TLI, and DLPI programming information.

ifnet Driver Interfaces

The interface definitions and contents of the following #include files are
subject to change without notice. While the policy is to avoid or minimize
driver modifications required as new releases of IRIX become available, no
guarantees of source or binary compatibility between releases of the
operating system are made for networking drivers.

The primary ifnet data structure and routines to manipulate this are defined
in net/if.h. They are augmented with interface types defined in net/if_types.h.

Functions and macros to allocate, manipulate, and free mbufs are defined in
sys/mbuf.h.

The function schednetisr to schedule a kernel software interrupt routine,
related macros, and a declaration for the IP input queue ipintrq are defined
in net/netisr.h.

Constants and structures for support of the raw protocol family are defined
in net/raw.h.

Routines defining a generic filter for use by network interfaces whose
devices cannot perfectly filter multicast packets are declared in net/multi.h.

DLPI interface support routines and structure definitions are in
sys/dlsap_register.h.
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Socket interface ioctl definitions are in net/soioctl.h.

Ethernet and ARP-related data structures and function prototypes are
provided in netinet/if_ether.h.

Multiprocessor Issues

Prior to IRIX 5.3, the kernel BSD framework code and TCP/IP protocol
executed under a single kernel lock on multiprocessor systems making it a
single-threaded implementation. In IRIX 5.3, the BSD framework and TCP/IP
protocol suite have been multi-threaded to support symmetric
multiprocessing by the addition of kernel locks protecting critical sections. It
now supports multiple, concurrent threads of execution within the TCP/
UDP/IP protocol suite, kernel socket layer, and bundled networking device
drivers.

These changes are transparent to user-level programs, but, if you’ve written
your own ifnet-based networking driver, it requires minor source-level
changes in order to run in IRIX 5.3.

In a multi-threaded kernel, raising the processor interrupt level (IPL) by
calling one of the spl routines, such as splimp() or splnet(), blocks interrupts
from occurring on the local processor; it does not prevent interrupts from
occurring on other processors in the system, nor does it prevent other
processes on other processors from executing code in your critical section.

Under BSD networking, drivers interface with the protocol stacks by
queueing the incoming packets on a per-protocol input queue. On
multiprocessor systems, this protocol input queue must be protected by the
locking macros defined in the file net/if.h.

All the locking macros that protect the input queue are assumed to be called
at the proper processor masking level, splimp. All input queue locking
macros also take an input parameter ifq, which is a pointer to the protocol
input queue that must be defined as a struct ifqueue .
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Compilation Flags for MP TCP/IP

For IRIX 5.3, the following flag must be defined in order to enable the macros
necessary to run under multi-threaded TCP/IP:

-D_MP_NETLOCKS -DMP

IFNET_LOCK( ifp, s)

Network driver interrupt handlers should call this macro to protect critical
data structures against system calls that try to access the same data
structures on other processors. This macro acquires the lock that is part of the
driver ifnet structure pointed to by ifp. s is the return value of the processor
interrupt mask. The lock is held at splimp level. The multiprocessor TCP/IP
locking scheme in IRIX 5.3 automatically holds this lock when the system
enters the driver via a system call. The lock is be released automatically upon
returning from the driver to synchronize simultaneous accesses to the driver
from multiple processors.

IFNET_UNLOCK( ifp,s)

This macro is the reverse of IFNET_LOCK, IFNET_UNLOCK is used to
release the lock. s is the value previously returned by IFNET_LOCK().

IFNET_LOCKNOSPL( ifp)

This macro is similar to IFNET_LOCK but assumes that splimp has been
called previously.

IFNET_UNLOCKNOSPL( ifp)

This macro is similar to IFNET_UNLOCK but does not lower the spl.

IFQ_LOCK/UNLOCK( ifq)

This macro acquires/releases the lock, which is part of the input queue.
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IF_ENQUEUE(ifq, m)

This macro acquires the lock on ifq and appends the packet pointed to by the
mbuf m. The lock is released upon return.

Input Queueing Example

This is a code fragment of an interrupt handler that queues an input packet
pointed to by m onto the ip input queue. schednetisr() is called to schedule
processing of that packet.

The code assumed to be already at splimp().

{
    ...

      ifq = &ipintrq; /* the ip protocol queue */

 /*
 * If queue is full, we drop the packet.
 */
 IFQ_LOCK(ifq);
 if (IF_QFULL(ifq)) {
 m_freem(m);
 IF_DROP(ifq);
 IFQ_UNLOCK(ifq);
 return(-1);
 }

 IF_ENQUEUE_NOLOCK(ifq, m);
 schednetisr(NETISR_IP); /* schedule ip interrupt */
 IFQ_UNLOCK(ifq);
 return(0);
}
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Interrupt Handler Example

The following is an example of an Ethernet interrupt handler.

/*
 * Ethernet interface interrupt.
 */
if_etintr(int unit)
{
 ETIO io;
 struct et_info *ei;
 register int s = splimp(); /* get the spin lock */

 ASSERT(unit == 0);
 ei = &et_info;
 io = ei->ei_io;

 if (io == 0) { /* ignore early interrupts */
     printf(“et0: early interrupt\n”);
     splx(s);
     return 1;
 }
 IFNET_LOCKNOSPL(&ei->ei_if);
 et_poll(ei);
 IFNET_UNLOCKNOSPL(&ei->ei_if);
 splx(s);
}
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ifnet Device Driver Example

This is a skeleton ifnet driver for IRIX 5.3 meant to demonstrate ifnet driver
entry points, data structures, required ioctls, address format conventions,
kernel utility routines, and locking primitives.

Note: These kernel data structures and routines are subject to change
without notice. “XXX” is used to designate places where device-specific,
bus-specific, or driver-specific code sections are required.

/*
 * Locking strategy:
 * IFNET_LOCK() and IFNET_UNLOCK() acquire/release the
 * lock on a given ifnet structure. IFQ_LOCK() and
 * IFQ_UNLOCK() acquire/release the lock on a given ifqueue
 * structure. The ifnet or ifqueue lock must be held while
 * modifying any fields within the associated data
 * structure. The ifnet lock is also held to singlethread
 * portions of the device driver. The driver xxinit,
 * xxreset, xxoutput, xxwatchdog, and xxioctl entry points
 * are called with IFNET_LOCK() already acquired thus only
 * a single thread of execution is allowed in these
 * portions of the driver for each interface. It is the
 * driver’s responsibility to call IFNET_LOCK() within its
 * xxintr() and other private routines to singlethread any
 * other critical sections.  It is also the driver’s
 * responsibility to acquire the ifq lock by calling
 * IFQ_LOCK() before attempting to enqueue onto the IP
 * input queue “ipintrq”.
 *
 * Notes:
 * - don’t forget appropriate machine-specific cache flushing operations
 *    (refer to IRIX Device Driver Programming guide)
 * - declare pointers to device registers as “volatile”
 * - compile on multiprocessor systems with “-D_MP_NETLOCKS -DMP”
 *
 * Caveat Emptor:
 * No guarantees are made wrt correctness nor completeness
 * of this source.
 *
 * Copyright 1994 Silicon Graphics, Inc.  All rights reserved.
 */
#ident “$Revision: 1.0$”
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#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sysmacros.h>
#include <sys/cmn_err.h>
#include <sys/debug.h>
#include <sys/edt.h>
#include <sys/errno.h>
#include <sys/tcp-param.h>
#include <sys/mbuf.h>
#include <sys/immu.h>
#include <sys/sbd.h>
#include <sys/ddi.h>
#include <sys/cpu.h>
#include <sys/invent.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/netisr.h>
#include <netinet/if_ether.h>
#include <net/raw.h>
#include <net/multi.h>
#include <netinet/in_var.h>
#include <net/soioctl.h>
#include <sys/dlsap_register.h>
XXX

/*
 * driver-specific and device-specific data structure
 * declarations and definitions might go here.
 */

#define    SK_MAX_UNITS    8
#define    SK_MTU        4096
#define    SK_DOG        (2*IFNET_SLOWHZ) /* watchdog duration in seconds */
#define    SK_IFT        (IFT_FDDI)    /* refer to <net/if_types.h> */
#define    SK_INV        (INV_NET_FDDI)    /* refer to <sys/invent.h> */

#define    INV_FDDI_SK    (23)        /* refer to <sys/invent.h> */

#define    IFF_ALIVE        (IFF_UP|IFF_RUNNING)
#define    iff_alive(flags)    (((flags) & IFF_ALIVE) == IFF_ALIVE)
#define iff_dead(flags)        (((flags) & IFF_ALIVE) != IFF_ALIVE)

#define    SK_ISBROAD(addr)    (!bcmp((addr), &skbroadcastaddr, SKADDRLEN))
#define    SK_ISGROUP(addr)    ((addr)[0] & 01)
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/*
 * XXX media-specific definitions of address size and header format.
 */

#define    SKADDRLEN    (6)
#define    SKHEADERLEN    (sizeof (struct skheader))

/*
 * Our fictional media has an IEEE 802-looking header..
 */
struct skaddr {
    u_int8_t sk_vec[SKADDRLEN];
};
struct skheader {
    struct skaddr sh_dhost;
    struct skaddr sh_shost;
    u_int16_t sh_type;
};
struct skaddr skbroadcastaddr = {
    0xff, 0xff, 0xff, 0xff, 0xff, 0xff
};

/*
 * Each interface is represented by a private
 * network interface data structure that maintains
 * the device hardware resource addresses, pointers
 * to device registers, allocated dma_alloc maps,
 * lists of mbufs pending transmit or reception, etc, etc.
 * XXX We use ARP and have an 802 address.
 */
struct sk_info {
    struct arpcom si_ac;        /* common ifnet and arp */
    struct skaddr si_ouraddr;    /* our individual media address */
    struct mfilter si_filter;    /* AF_RAW sw snoop filter */
    struct rawif si_rawif;        /* raw snoop interface */
    int si_unit;
    int si_flags;
    int si_initdone;
    XXX
};
struct sk_info sk_info[SK_MAX_UNITS];

#define    si_if    si_ac.ac_if
XXX
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#define    sktoifp(si) (&(si)->si_ac.ac_if)
#define ifptosk(ifp)((struct sk_info *)ifp)

#define    WORDALIGNED(p)    (p & (sizeof(int)-1) == 0)

/*
 * The start of an mbuf containing an input frame
 */
struct sk_ibuf {
    struct ifheader sib_ifh;
    struct snoopheader sib_snoop;
    struct skheader sib_skh;
};
#define    SK_IBUFSZ    (sizeof (struct sk_ibuf))

/*
 * Multicast filter request for SIOCADDMULTI/SIOCDELMULTI .
 */
struct mfreq {
    union mkey *mfr_key;    /* pointer to socket ioctl arg */
    mval_t    mfr_value;    /* associated value */
};

static void skedtinit(struct edt *e);
static int sk_init(int unit);
static void sk_reset(struct sk_info *si);
static void sk_intr(int unit);
static int sk_output(struct ifnet *ifp, struct mbuf *m, struct sockaddr *dst);
static void sk_input(struct sk_info *si, struct mbuf *m, int totlen);
static int sk_ioctl(struct ifnet *ifp, int cmd, void *data);
static void sk_watchdog(int unit);
static void sk_stop(struct sk_info *si);
static int sk_start(struct sk_info *si, int flags);
static int sk_add_da(struct sk_info *si, union mkey *key, int ismulti);
static int sk_del_da(struct sk_info *si, union mkey *key, int ismulti);
static int sk_dahash(char *addr);
static int sk_dlp(struct sk_info *si, int port, int encap, struct mbuf *m, int
len);
XXX

extern struct ifqueue ipintrq;    /* ip input queue */
extern struct ifnet loif;    /* loopback driver if */

/*
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 * EDT initialization routine.
 */
static void
skedtinit(struct edt *e)
{
    struct sk_info *si;
    struct ifnet *ifp;
    int    unit;
    XXX

    /*
     * Refer to writing xxedtinit() routine descriptions
     * in VME/GIO sections of the Device Driver Programming
     * guide for:
     *
     * - probing the device
     * - configuring the slot config register
     * - registering our interrupt handler
     */
    XXX

    /*
     * Driver-specific actions that might go here:
     *
     * - allocate an unused unit number and initialize
     *   that sk_info structure.
     * - call sk_reset to disable the device
     * - allocate shared host/device memory
     * - allocating VME dma mapping registers
     * -
     */
    XXX

    if (showconfig)
        printf(“sk%d: hardware MAC address %s\n”,
            si->si_unit,
            sk_sprintf(si->si_ouraddr));

    /*
     * XXX your address translation protocol goes here.
     * Save a copy of our MAC address in the arpcom structure.
     */
    bcopy((caddr_t)&si->si_ouraddr, (caddr_t)si->si_ac.ac_enaddr,
        SKADDRLEN);
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    /*
     * Initialize ifnet structure with our name, type, mtu size,
     * supported flags, pointers to our entry points,
     * and attach to the available ifnet drivers list.
     */
    ifp = sktoifp(si);
    ifp->if_name = “sk”;
    ifp->if_unit = unit;
    ifp->if_type = SK_IFT;
    ifp->if_mtu = SK_MTU;
    ifp->if_flags = IFF_BROADCAST | IFF_MULTICAST | IFF_NOTRAILERS;
    ifp->if_init = (int (*)(int))sk_init;
    ifp->if_output = sk_output;
    ifp->if_ioctl = (int (*)(struct ifnet*, int, void*))sk_ioctl;
    ifp->if_watchdog = sk_watchdog;
    if_attach(ifp);

    /*
     * Allocate a multicast filter table with an initial
     * size of 10.  See <net/multi.h> for a description
     * of the support for generic sw multicast filtering.
     * Use of these mf routines is purely optional -
     * if you’re not supporting multicast addresses or
     * your device does perfect filtering or you think
     * you can roll your own better, feel free.
     */
    if (!mfnew(&si->si_filter, 10))
        cmn_err(CE_PANIC, “sk_edtinit: no memory for frame filter\n”);

    /*
     * Initialize the raw socket interface.  See <net/raw.h>
     * and the man pages for descriptions of the SNOOP
     * and DRAIN raw protocols.
     */
    rawif_attach(&si->si_rawif, &si->si_if,
        (caddr_t) &si->si_ouraddr,
        (caddr_t) &skbroadcastaddr,
        SKADDRLEN,
        SKHEADERLEN,
        structoff(skheader, sh_shost),
        structoff(skheader, sh_dhost));

    /*
     * for hinv
     */
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    add_to_inventory(INV_NETWORK, SK_INV, INV_FDDI_SK, unit, 0);
}

static int
sk_init(int unit)
{
    struct sk_info *si;
    struct    ifnet *ifp;
    XXX

    si = &sk_info[unit];
    ifp = sktoifp(si);

    ASSERT(IFNET_ISLOCKED(ifp));

    /*
     * Reset the device first, ask questions later..
     */
    sk_reset(si);

    /*
     * - free or reuse any pending xmit/recv mbufs
     * - initialize device configuration registers, etc.
     * - allocate and post receive buffers
     *
     * Refer to Device Driver Programming guide for
     * descriptions on use of kvtophys() (GIO) or
     * dma_map/dma_mapaddr() (VME) routines for
     * obtaining DMA addresses and system-specific
     * issues like flushing caches or write buffers.
     */

    /*
     * enable if_flags device behavior (IFF_DEBUG on/off, etc.)
     */
    XXX

    ifp->if_timer = SK_DOG;    /* turn on watchdog */

    /* turn device “on” now */
    XXX

    return 0;
}
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/*
 * Reset the interface.
 */
static void
sk_reset(struct sk_info *si)
{
    struct ifnet *ifp = sktoifp(si);

    ifp->if_timer = 0;    /* turn off watchdog */

    /*
     * - reset device
     * - reset device receive descriptor ring
     * - free any enqueued transmit mbufs
     * - create device xmit descriptor ring
     */
}

static void
sk_intr(int unit)
{
    register struct sk_info *si;
    struct ifnet *ifp;
    struct mbuf *m;
    struct    ifqueue *ifq;
    int totlen;
    int s;
    int error;
    int port;

    si = &sk_info[unit];
    ifp = sktoifp(si);

    /*
     * Ignore early interrupts.
     */
    if ((si->si_initdone == 0) || iff_dead(ifp->if_flags)) {
        sk_stop(si);
        return;
    }

    IFNET_LOCK(ifp, s);    /* acquire interface lock */

    /*
     * disable device and return if early interrupt
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     */
    XXX

    /*
     * test and clear device interrupt pending register.
     */
    XXX

    /*
     * process any received packets.
     */
    while (/* XXX received packets available */) {

        /*
         * Do device-specific receive processing here.
         * Allocate and post a replacement receive buffer.
         */
        XXX

        sk_input(si, m, totlen);
    }

    while (/* XXX mbufs completed transmission */) {

        /*
         * Reclaim any completed device transmit resources
         * freeing completed mbufs, checking for errors,
         * and maintaining if_opackets, if_oerrors,
         * if_collisions, etc.
         */
        XXX
    }

    IFNET_UNLOCK(ifp, s);
}

/*
 * Transmit packet.  If the destination is this system or
 * broadcast, send the packet to the loop-back device if
 * we cannot hear ourself transmit.  Return 0 or errno.
 */
static int
sk_output(
    struct ifnet    *ifp,
    struct mbuf *m0,
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    struct sockaddr *dst)
{
    struct    sk_info    *si = ifptosk(ifp);
    struct skaddr *sdst, *ssrc;
    struct skheader *sh;
    struct mbuf *m, *m1, *m2;
    struct mbuf *mloop;
    int error;
    u_int16_t type;
    XXX

    ASSERT(IFNET_ISLOCKED(ifp));

    mloop = NULL;

    if (iff_dead(ifp->if_flags)) {
        error = EHOSTDOWN;
        goto bad;
    }

    /*
     * If snd queue full, try reclaiming some completed
     * mbufs.  If it’s still full, then just drop the
     * packet and return ENOBUFS.
     */
    if (IF_QFULL(&si->si_if.if_snd)) {
        while (/* XXX xmits done */) {
            /*
             * Reclaim completed xmit descriptors.
             */
            XXX

            IF_DEQUEUE_NOLOCK(&si->si_if.if_snd, m);
            m_freem(m);
        }
        if (IF_QFULL(&si->si_if.if_snd)) {
            m_freem(m0);
            si->si_if.if_odrops++;
            IF_DROP(&si->si_if.if_snd);
            return (ENOBUFS);
        }
    }

    switch (dst->sa_family) {
    case AF_INET: {
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        /*
         * Get room for media header,
         * use this mbuf if possible.
         */
        if (!M_HASCL(m0)
            && m0->m_off >= MMINOFF+sizeof(*sh)
            && (sh = mtod(m0, struct skheader*))
            && WORDALIGNED((u_long)sh)) {
            ASSERT(m0->m_off <= MSIZE);
            m1 = 0;
            --sh;
        } else {
            m1 = m_get(M_DONTWAIT, MT_DATA);
            if (m1 == NULL) {
                m_freem(m0);
                si->si_if.if_odrops++;
                IF_DROP(&si->si_if.if_snd);
                return (ENOBUFS);
            }
            sh = mtod(m1, struct skheader*);
            m1->m_len = sizeof (*sh);
        }

        bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);

        /*
         * translate dst IP address to media address.
         */
        if (!ip_arpresolve(&si->si_ac, m0,
            &((struct sockaddr_in *)dst)->sin_addr,
            (u_char*)&sh->sh_dhost)) {
            m_freem(m1);
            return (0);    /* just wait if not yet resolved */
        }

        if (m1 == 0) {
            m0->m_off -= sizeof (*sh);
            m0->m_len += sizeof (*sh);
        } else {
            m1->m_next = m0;
            m0 = m1;
        }

        /*
         * Listen to ourself, if we are supposed to.
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         */
        if (SK_ISBROAD(&sh->sh_shost)) {
            mloop = m_copy(m0, sizeof (*sh), M_COPYALL);
            if (mloop == NULL) {
                m_freem(m0);
                si->si_if.if_odrops++;
                IF_DROP(&si->si_if.if_snd);
                return (ENOBUFS);
            }
        }
        break;
    }

    case AF_UNSPEC:
#define    EP    ((struct ether_header *)&dst->sa_data[0])
        /*
         * Translate an ARP packet using RFC-1042.
         * Require the entire ARP packet be in the first mbuf.
         */
        sh = mtod(m0, struct skheader*);
        if (M_HASCL(m0)
            || !WORDALIGNED((u_long)sh)
            || m0->m_len < sizeof(struct ether_arp)
            || m0->m_off < MMINOFF+sizeof(*sh)
            || EP->ether_type != ETHERTYPE_ARP) {
            printf(“sk_output: bad ARP output\n”);
            m_freem(m0);
            si->si_if.if_oerrors++;
            IF_DROP(&si->si_if.if_snd);
            return (EAFNOSUPPORT);
        }
        ASSERT(m0->m_off <= MSIZE);
        m0->m_len += sizeof(*sh);
        m0->m_off -= sizeof(*sh);
        --sh;

        bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);
        bcopy(&EP->ether_dhost[0], &sh->sh_dhost, SKADDRLEN);

        sh->sh_type = EP->ether_type;
# undef EP
        break;

    case AF_RAW:
        /* The mbuf chain contains the raw frame incl header.
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         */
        sh = mtod(m0, struct skheader*);
        if (M_HASCL(m0)
            || m0->m_len < sizeof(*sh)
            || !WORDALIGNED((u_long)sh)) {
            m0 = m_pullup(m0, SKHEADERLEN);
            if (m0 == NULL) {
                si->si_if.if_odrops++;
                IF_DROP(&si->si_if.if_snd);
                return (ENOBUFS);
            };
            sh = mtod(m0, struct skheader*);
        }
        break;

    case AF_SDL:
#define    SCKTP    ((struct sockaddr_sdl *)dst)
        /*
         * Send an 802 packet for DLPI.
         * mbuf chain should already have everything
         * but MAC header.
         */

        /* sanity check the MAC address */
        if (SCKTP->ssdl_addr_len != SKADDRLEN) {
            m_freem(m0);
            return (EAFNOSUPPORT);
        }

        sh = mtod(m0, struct skheader*);
        if (!M_HASCL(m0)
            && m1->m_off >= MMINOFF+SCKTP_HLEN
            && WORDALIGNED(sh)) {
            ASSERT(m0->m_off <= MSIZE);
            m0->m_len += SCKTP_HLEN;
            m0->m_off -= SCKTP_HLEN;
        } else {
            m1 = m_get(M_DONTWAIT,MT_DATA);
            if (!m1) {
                m_freem(m0);
                si->si_if.if_odrops++;
                IF_DROP(&si->si_if.if_snd);
                return (ENOBUFS);
            }
            m1->m_len = SCKTP_HLEN;
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            m1->m_next = m0;
            m0 = m1;
            sh = mtod(m0, struct skheader*);
        }
        sh->sh_type = htons(ETHERTYPE_IP);
        bcopy(&si->si_ouraddr, &sh->sh_shost, SKADDRLEN);
        bcopy(SCKTP->ssdl_addr, &sh->sh_dhost, SKADDRLEN);
        break;
# undef SCKTP

    default:
        printf(“sk_output:  bad af %u\n”, dst->sa_family);
        m_freem(m0);
        return (EAFNOSUPPORT);
    }

    /*
     * Check whether snoopers want to copy this packet.
     */
    if (RAWIF_SNOOPING(&si->si_rawif)
        && snoop_match(&si->si_rawif, (caddr_t)sh, m0->m_len)) {
        struct mbuf *ms, *mt;
        int len;        /* m0 bytes to copy */
        int lenoff;
        int curlen;

        len = m_length(m0);
        lenoff = 0;
        curlen = len + SK_IBUFSZ;
        if (curlen > MCLBYTES)
            curlen = MCLBYTES;
        ms = m_vget(M_DONTWAIT, MAX(curlen, SK_IBUFSZ), MT_DATA);
        if (ms) {
            IF_INITHEADER(mtod(ms,caddr_t), &si->si_if, SK_IBUFSZ);
            curlen = m_datacopy(m0, lenoff, curlen - SK_IBUFSZ,
                mtod(ms,caddr_t) + SK_IBUFSZ);
            mt = ms;
            for (;;) {
                lenoff += curlen;
                len -= curlen;
                if (len <= 0)
                    break;
                curlen = MIN(len, MCLBYTES);
                m1 = m_vget(M_DONTWAIT, curlen, MT_DATA);
                if (0 == m1) {
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                    m_freem(ms);
                    ms = 0;
                    break;
                }
                mt->m_next = m1;
                mt = m1;
                curlen = m_datacopy(m0, lenoff, curlen,
                            mtod(m1, caddr_t));
            }
        }
        if (ms == NULL) {
            snoop_drop(&si->si_rawif, SN_PROMISC,
                   mtod(m0,caddr_t), m0->m_len);
        } else {
            (void)snoop_input(&si->si_rawif, SN_PROMISC,
                      mtod(m0, caddr_t),
                      ms,
                      (lenoff > SKHEADERLEN)?
                      (lenoff - SKHEADERLEN) : 0);
        }
    }

    /*
     * Save a copy of the mbuf chain to free later.
     */
    IF_ENQUEUE_NOLOCK(&si->si_if.if_snd, m0);

    /*
     * Start DMA on the msg.
     * - allocate device-specific xmit resources  (need max
     *   of twice the number of mbufs in the mbuf chain
     *   if we’re using physical memory addresses for
     *   GIO assuming worst case that each mbuf crosses
     *   a page boundary.
     */
    XXX

    if (error)
        goto bad;

    ifp->if_opackets++;

    if (mloop) {
        si->si_if.if_omcasts++;
        (void) looutput(&loif, mloop, dst);
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    } else if (SK_ISGROUP(sh->sh_dhost.sk_vec))
        si->si_if.if_omcasts++;

    return (0);

bad:
    ifp->if_oerrors++;
    m_freem(m);
    m_freem(mloop);
    return (error);
}

/*
 * deal with a complete input frame in a string of mbufs.
 * mbuf points at a (struct sk_ibuf), totlen is #bytes
 * in user data portion of the mbuf.
 */
static void
sk_input(struct sk_info *si,
    struct mbuf *m,
    int totlen)
{
    struct sk_ibuf *sib;
    struct ifqueue *ifq;
    int snoopflags = 0;
    uint port;

    /*
     * set ‘snoopflags’ and ‘if_ierrors’ as appropriate
     */
    XXX

    ifq = NULL;
    sib = mtod(m, struct sk_ibuf*);
    IF_INITHEADER(sib, &si->si_if, SK_IBUFSZ);

    si->si_if.if_ibytes += totlen;
    si->si_if.if_ipackets++;

    /*
     * If it is a broadcast or multicast frame,
     * get rid of imperfectly filtered multicasts.
     */
    if (SK_ISGROUP(sib->sib_skh.sh_dhost.sk_vec)) {
        if (SK_ISBROAD(sib->sib_skh.sh_dhost.sk_vec))
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            m->m_flags |= M_BCAST;
        else {
            if (((si->si_ac.ac_if.if_flags & IFF_ALLMULTI) == 0)
            && !mfethermatch(&si->si_filter,
                sib->sib_skh.sh_dhost.sk_vec, 0)) {
                if (RAWIF_SNOOPING(&si->si_rawif)
                && snoop_match(&si->si_rawif,
                    (caddr_t) &sib->sib_skh, totlen))
                    snoopflags = SN_PROMISC;
                else {
                    m_freem(m);
                    return;
                }
                m->m_flags |= M_MCAST;
            }
        }
        si->si_if.if_imcasts++;
    } else {
        if (RAWIF_SNOOPING(&si->si_rawif)
            && snoop_match(&si->si_rawif,
                (caddr_t) &sib->sib_skh,
                totlen))
            snoopflags = SN_PROMISC;
        else {
            m_freem(m);
            return;
        }
    }

    /*
     *  Set ‘port’ .  For us, just sh_type.
     */
    port = ntohs(sib->sib_skh.sh_type);

    /*
     * do raw snooping.
     */
    if (RAWIF_SNOOPING(&si->si_rawif)) {
        if (!snoop_input(&si->si_rawif, snoopflags,
                 (caddr_t)&sib->sib_skh,
                 m,
                 (totlen>sizeof(struct skheader)
                  ? totlen-sizeof(struct skheader) : 0))) {
        }
        if (snoopflags)
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            return;

    } else if (snoopflags) {
        goto drop;    /* if bad, count and skip it */
    }

    /*
     * If it is a frame we understand, then give it to the
     * correct protocol code.
     */
    switch (port) {
    case ETHERTYPE_IP:
        ifq = &ipintrq;
        break;

    case ETHERTYPE_ARP:
        arpinput(&si->si_ac, m);
        return;

    default:
        if (sk_dlp(si, port, DL_ETHER_ENCAP, m, totlen))
            return;
        break;
    }

    /*
     * if we cannot find a protocol queue, then flush it down the
     * drain, if it is open.
     */
    if (ifq == NULL) {
        if (RAWIF_DRAINING(&si->si_rawif)) {
            drain_input(&si->si_rawif,
                    port,
                    (caddr_t)&sib->sib_skh.sh_dhost.sk_vec,
                    m);
        } else
            m_freem(m);
        return;
    }

    /*
     * Put it on the IP protocol queue.
     */
    if (IF_QFULL(ifq)) {
        si->si_if.if_iqdrops++;
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        si->si_if.if_ierrors++;
        IF_DROP(ifq);
        goto drop;
    }
    IF_ENQUEUE(ifq, m);
    schednetisr(NETISR_IP);
    return;

drop:
    m_freem(m);
    if (RAWIF_SNOOPING(&si->si_rawif))
        snoop_drop(&si->si_rawif, snoopflags,
               (caddr_t)&sib->sib_skh, totlen);
    if (RAWIF_DRAINING(&si->si_rawif))
        drain_drop(&si->si_rawif, port);

}

/*
 * See if a DLPI function wants a frame.
 */
static int
sk_dlp(struct sk_info *si,
    int port,
    int encap,
    struct mbuf *m,
    int len)
{
    dlsap_family_t *dlp;
    struct mbuf *m2;
    struct sk_ibuf *sib;

    if ((dlp = dlsap_find(port, encap)) == NULL)
        return (0);

    /*
     * The DLPI code wants the entire MAC and LLC headers.
     * It needs the total length of the mbuf chain to reflect
     * the actual data length, not to be extended to contain
     * a fake, zeroed LLC header which keeps the snoop code from
     * crashing.
     */
    if ((m2 = m_copy(m, 0, len+sizeof(struct skheader))) == NULL)
        return (0);
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    if (M_HASCL(m2)) {
        m2 = m_pullup(m2, SK_IBUFSZ);
        if (m2 == NULL)
            return (0);
    }
    sib = mtod(m2, struct sk_ibuf*);

    /*
     * The DLPI code wants the MAC address in canonical bit order.
     * Convert here if necessary.
     */
    XXX

    /*
     * The DLPI code wants the LLC header, if present,
     * not to be hidden with the MAC header.  Decrement
     * LLC header size from ifh_hdrlen if necessary.
     */
    XXX

    if ((*dlp->dl_infunc)(dlp, &si->si_if, m2, &sib->sib_skh)) {
        m_freem(m);
        return (1);
    }
    m_freem(m2);
    return (0);
}

/*
 * Process an ioctl request.
 * Return 0 or errno.
 */
static int
sk_ioctl(
    struct ifnet *ifp,
    int cmd,
    void *data)
{
    struct sk_info *si;
    int error = 0;
    int flags;
    XXX

    ASSERT(IFNET_ISLOCKED(ifp));
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    si = ifptosk(ifp);

    switch (cmd) {
    case SIOCSIFADDR:
    {
        struct ifaddr *ifa = (struct ifaddr *)data;

        switch (ifa->ifa_addr.sa_family) {
        case AF_INET:
            sk_stop(si);
            si->si_ac.ac_ipaddr = IA_SIN(ifa)->sin_addr;
            sk_start(si, ifp->if_flags);
            break;

        case AF_RAW:
            /*
             * Not safe to change addr while the
             * board is alive.
             */
            if (!iff_dead(ifp->if_flags))
                error = EINVAL;
            else {
                bcopy(ifa->ifa_addr.sa_data,
                    si->si_ac.ac_enaddr, SKADDRLEN);
                error = sk_start(si, ifp->if_flags);
            }
            break;

        default:
            error = EINVAL;
            break;
        }
        break;
    }

    case SIOCSIFFLAGS:
    {
        flags = ((struct ifreq *)data)->ifr_flags;

        if (((struct ifreq*)data)->ifr_flags & IFF_UP)
            error = sk_start(si, flags);
        else
            sk_stop(si);
        break;
    }
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    case SIOCADDMULTI:
    case SIOCDELMULTI:
    {
#define MKEY ((union mkey*)data)
        int allmulti;

        /*
         * Convert an internet multicast socket address
         * into an 802-type address.
         */
        error = ether_cvtmulti((struct sockaddr *)
            data, &allmulti);
        if (0 == error) {
            if (allmulti) {
                if (SIOCADDMULTI == cmd)
                    si->si_if.if_flags |= IFF_ALLMULTI;
                else
                    si->si_if.if_flags &= ~IFF_ALLMULTI;
                /* XXX enable hw all multicast addrs */
                XXX
            } else {
                bitswapcopy(MKEY->mk_dhost, MKEY->mk_dhost,
                    sizeof (MKEY->mk_dhost));
                if (SIOCADDMULTI == cmd)
                    error = sk_add_da(si, MKEY, 1);
                else
                    error = sk_del_da(si, MKEY, 1);
            }
        }
        break;
#undef MKEY
    }

    case SIOCADDSNOOP:
    case SIOCDELSNOOP:
    {
#define SF(nm) ((struct skheader*)&(((struct snoopfilter *)data)->nm))
        /*
         * raw protocol snoop filter.  See <net/raw.h>
         * and <net/multi.h> and the snoop(7P) man page.
         */
        u_char *a;
        union mkey key;
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        a = &SF(sf_mask[0])->sh_dhost.sk_vec[0];
        if (!SK_ISBROAD(a)) {
            /*
             * cannot filter on device unless mask is trivial.
             */
            error = EINVAL;
        } else {
            /*
             * Filter individual destination addresses.
             * Use a different address family to avoid
             * damaging an ordinary multi-cast filter.
             * XXX You’ll have to invent your own
             * mulicast filter routines if this doesn’t
             * fit your address size or needs.
             */
            a = &SF(sf_match[0])->sh_dhost.sk_vec[0];
            key.mk_family = AF_RAW;
            bcopy(a, key.mk_dhost, sizeof (key.mk_dhost));

            if (cmd == SIOCADDSNOOP)
                error = sk_add_da(si, &key, SK_ISGROUP(a));
            else
                error = sk_del_da(si, &key, SK_ISGROUP(a));
        }
        break;
    }

    /*
     * XXX add any driver-specific ioctls here.
     */

    default:
        error = EINVAL;
    }

    return (error);
}

/*
 * Add a destination address.
 * Add address to the sw multicast filter table and to
 * our hw device address (if applicable).
 */
static int
sk_add_da(
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    struct sk_info *si,
    union mkey *key,
    int ismulti)
{
    struct mfreq mfr;

    /*
     * mfmatchcnt() looks up key in our multicast filter
     * and, if found, just increments its refcnt and
     * returns true.
     */
    if (mfmatchcnt(&si->si_filter, 1, key, 0))
        return (0);

    mfr.mfr_key = key;
    mfr.mfr_value = (mval_t) sk_dahash(key->mk_dhost);
    if (!mfadd(&si->si_filter, key, mfr.mfr_value))
        return (ENOMEM);

    /* poke this hash into device’s hw address filter */
    XXX

    return (0);
}

/*
 * Delete an address filter. If key is unassociated, do nothing.
 * Otherwise delete software filter first, then hardware filter.
 */
sk_del_da(
    struct sk_info *si,
    union mkey *key,
    int ismulti)
{
    struct mfreq mfr;

    /*
     * Decrement refcnt of this address in our multicast filter
     * and reclaim the entry if refcnt == 0.
     */
    if (mfmatchcnt(&si->si_filter, -1, key, &mfr.mfr_value))
        return (0);
    mfdel(&si->si_filter, key);

    /* disable this hash value from the device if necessary */
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    XXX

    return (0);
}

/*
 * compute a hash value for destination addr
 */
static int
sk_dahash(char *addr)
{
    int    hv;

    hv = addr[0] ̂  addr[1] ̂  addr[2] ̂  addr[3] ̂  addr[4] ̂  addr[5];
    return (hv & 0xff);
}

/*
 * Periodically poll the device for input packets
 * in case an interrupt gets lost or the device
 * somehow gets wedged.  Reset if necessary.
 */
static void
sk_watchdog(int unit)
{
    struct sk_info *si;
    struct ifnet *ifp;
    int s;

    si = &sk_info[unit];
    ifp = sktoifp(si);

    ASSERT(IFNET_ISLOCKED(ifp));

    XXX
}

/*
 * Disable the interface.
 */
static void
sk_stop(struct sk_info *si)
{
    struct ifnet *ifp = sktoifp(si);
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    ASSERT(IFNET_ISLOCKED(ifp));

    ifp->if_flags &= ~IFF_ALIVE;

    /*
     * Mark an interface down and notify protocols
     * of the transition.
     */
    if_down(ifp);

    sk_reset(si);
}

/*
 * Enable the interface.
 */
static int
sk_start(
    struct sk_info *si,
    int flags)
{
    struct ifnet *ifp = sktoifp(si);
    int    error;

    ASSERT(IFNET_ISLOCKED(ifp));

    error = sk_init(si->si_unit);
    if (error || (ifp->if_addrlist == NULL))
        return error;
    ifp->if_flags = flags | IFF_ALIVE;

    /*
     * Broadcast an ARP packet, asking who has addr
     * on interface ac.
     */
    arpwhohas(&si->si_ac, &si->si_ac.ac_ipaddr);

    return (0);
}
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10. Driver Installation and Testing

This chapter explains how to use symmon, the kernel debugger. It contains
the following sections:

• “Making a Debuggable Kernel” on page 270

• “Making an ASCII Terminal the Console” on page 272

• “Invoking symmon” on page 273

• “Displaying and Changing Registers” on page 274

• “Using symmon Commands” on page 277

• “Multiprocessor Debugging” on page 301

Note: This program requires an ASCII terminal on the first serial port.
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Using the Kernel Debugger

Like all software, the IRIX kernel needs a reliable debugging tool. This
chapter describes the kernel debugger, symmon(1), an indispensable tool for
debugging device driver software. symmon(1) and the other kernel
debugging tools are not automatically loaded during installation. To put
these tools onto your system, install the subsystem eoe2.sw.kdebug manually
from your software release CD-ROMs.

You can load symmon(1) coresident with a standalone program or operating
system, then use symmon(1) to control the execution of that program or
operating system. symmon(1) gives you commands to examine and alter
memory and registers, set breakpoints, and execute programs.

Making a Debuggable Kernel

To make a kernel that you can debug from symmon(1), you need to create a
kernel slightly different from the standard one. Use the following steps
(many of which you used when you added a device driver to the kernel) to
create a debuggable kernel.

1. Become root:

% su

2. Edit /var/sysgen/system/irix.sm.

• Change the line:

EXCLUDE idbg

to

INCLUDE idbg

• Find the two lines containing LDOPTS toward the end of the file.
Comment out the uncommented lines and remove the comment
marker for the currently commented out lines. (To comment out a
line, put an asterisk character in the first column.)

• Make a note of the change. When you are finished debugging, undo
the change so that you can make a standard kernel.
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3. Copy the current kernel to a safe place before rebooting.

# cp /unix /unix.orig
or
# ln /unix /unix.orig

4. Run /etc/autoconfig and answer yes if prompted.

5. Use halt to bring the system down. When you issue the halt command,
the system overwrites the current kernel, /unix, with the kernel you
have just created, /unix.install.

# halt

6. On IRIS-4D/100, 4D/200, 4D/300, and 4D/400 Series workstations, set
the front panel dip switches as shown in Figure 10-1.

Caution: For these workstations, you must not use any odd-numbered
port connected to a CPU for data transfer because an inadvertent
<ctrl-A>  in the data stream can put the system into symmon. This is
true of any odd-numbered port not connected to a 6-port serial card.

Personal IRIS, Indigo, Indigo2, Indy, Crimson, CHALLENGE/Onyx,
and POWER CHALLENGE/POWER Onyx systems do not require
physical switches for kernel debugging.

Figure 10-1 IRIS Front Panel Dip Switches

7. After halting the system, push the <Reset>  button to force the
processor to read the switches.

ON

1

7
6

4
3
2

5

8

Switches 4 and 8 are ON;
the remainder are OFF
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Making an ASCII Terminal the Console

To use the kernel debugger, you must install an ASCII terminal as the system
console. If you do not install an ASCII terminal as the system console, you
can still use the newly built kernel under your normal configuration, but you
cannot use the kernel debugger. Some systems (IRIS-4D/20, -4D/25, -4D/30,
-4D/35, Indigo, Indigo2, Indy, and Crimson) allow you to use the graphics
text port when the window system is not running. symmon may fail
occasionally in this configuration, but it can be useful when no ASCII
terminal is available.

To install an ASCII terminal as the system console:

1. Connect the terminal to Serial Port 1 for a single processor (or to the
appropriate port number for multiprocessor systems).

2. Shut the system down in an orderly fashion.

3. Select the Command Monitor mode from the Bootstrap menu.

4. Type the following from the Command Monitor mode:

setenv console d
init

At this point, all console input and output occur on the ASCII terminal. Boot
the system as usual. The kernel loads and, because the kernel includes the
module idbg(), symmon() loads automatically from the root disk volume
header partition for those systems where it is not part of the PROM.

Note: Although kernel output normally appears in a graphics window once
graphics are started, the debugger still uses the ASCII terminal. The
interactive version of symmon, called idbg, uses the same commands as
symmon but does not stop the system from processing and does not require
an ASCII terminal. You can use idbg to look at variables but not to set them.
(See “Using symmon’s Kernel Print Command” on page 296.)
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Invoking symmon

Once symmon(1) is loaded, control is transferred to the kernel. Control
transfers to symmon(1) in any of the following ways:

• From the console, press <ctrl-A>

Note: symmon can also be invoked from any odd-numbered CPU port
on IP5 and IP7 systems, except for the IRIS-4D/210.

• Set the dbgstop environment variable from command mode before
booting the kernel. (You cannot use kernel symbols at this point, but all
other functions work.) To do so, set the dbgstop environment variable:

> setenv dbgstop 1

This transfers control to symmon(1) early in system startup. (Symbolic
debugging is not enabled at this point.)

• Set the symstop environment variable from command mode before
booting the kernel:

> setenv symstop 1

This transfers control to symmon(1) after the symbol table has been
loaded but early in the system startup procedure.

• Insert a call to the debug(uchar_t *msg) service from a known location
within your kernel.

• The IRIX kernel executes a breakpoint instruction.

• A system panic occurs.
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Displaying and Changing Registers

symmon(1) provides commands that allow you to display and alter the
processor and coprocessor general-purpose registers. To identify a general-
purpose register (there are 32 registers, numbered 0 through 31), you can use
names such as “r0” or “r31,” or you can use the compiler usage names (in
some cases, you may need to prepend a “$”). The compiler names and the
associated “r” names are listed in Table 10-1.

Table 10-1 Processor and Coprocessor General-purpose Registers

Compiler Processor Usage

zero r0 Wired zero

at r1 Assembler temporary

v0 r2 Function value registers

v1 r3

a0 r4 Argument registers

a1 r5

a2 r6

a3 r7

t0 r8 Caller saved registers

t1 r9

t2 r10

t3 r11

t4 r12

t5 r13

t6 r14

t7 r15

s0 r16 Callee saved

s1 r17
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s2 r18

s3 r19

s4 r20

s5 r21

s6 r22

s7 r23

t8 r24 Caller saved

t9 r25

k0 r26 Kernel temporary

k1 r27

gp r28 Global pointer

sp r29 Stack pointer

fp/s8 r30 Callee saved

ra r31 Return address

Table 10-1 (continued) Processor and Coprocessor General-purpose Registers

Compiler Processor Usage
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You can refer to special R2000/3000/4000/8000 registers and system
coprocessor registers by using the names listed in Table 10-2, Table 10-3, and
Table 10-4.

Table 10-2 R2000-R4000 Processor and Coprocessor Special Registers

Name R2000/3000/4000 Register

mdlo Mul/div register lower word

mdhi Mul/div register higher word

pc epc Exception PC

sr Status register

cause Cause register

tlbhi entryhi TLB entry hi register

tlblo entrylo TLB entry lo register

badvaddr Bad virtual address

index inx TLB index register

context ctxt Context register

random Random register

Table 10-3 R4000-only System Coprocessor Registers

Name R4000Series System Coprocessor Register

tlblo0 TLB entrylo0 register

tlblo1 TLB entrylo1 register

pagemask TLB pagemask register

wired TLB wired register

count Timer count register

compare Timer compare register

watchlo WatchLo register

watchhi WatchHi register
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Using symmon Commands

This section describes the symmon commands. “symmon’s dbgmon Mode
Commands” describes the general symmon commands, which are referred
to as dbgmon mode commands. “Using symmon’s Kernel Print Command”
describes the symmon command kp. The kp command briefly accesses
another mode of the kernel debugger, Kernel Print mode (also called KP
mode). After symmon executes the kp command, it returns to dbgmon
mode.

ecc Ecc register

cacherr Cache error and status register

errepc Cache ErrorEpc register

taglo Cache tag register

config Configuration register

Table 10-4 R8000-only Special Registers

Name R8000 Series Special Register

tlbset TLBset register
(index into a TLB entry’s set)

trapbase Trapbase register
(base address of trap vectors)

ubase UBase register

pbase PBase register

gbase GBase register

shiftamt ShiftAmt register

wired Wired register

badpaddr BadPAddr register

Table 10-3 R4000-only System Coprocessor Registers

Name R4000Series System Coprocessor Register
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Use symmon’s dgbmon mode when you need ordinary debugger commands
such as brk, dump, get. Use symmon’s KP mode when you want to view
kernel structures and other information.

Help for symmon Commands

To see a listing of messages concerning the symmon commands while
running symmon, type a question mark (?) and press <Enter> . In addition,
commands that require arguments give a usage summary if you enter the
command without arguments.

symmon’s dbgmon Mode Commands

This section describes the commands of symmon’s dbgmon mode. Each
heading lists the name of the command, its option flags, and its arguments.
The headings use square brackets to indicate optional arguments and option
flags. Following each heading is text that describes the purpose of the
command. Following the command description are descriptions of each
argument or option flag (if any). Different systems and operating system
releases may have slightly different commands or options. For example,
symmon is part of the PROM on some systems, while it is loaded at boot
time on others. (See Table 10-5.)

Table 10-5 symmon’s dbgmon Mode Commands

Command Description

brk  [addresslist] Mark breakpoints at specified addresses.

bt Show the backtrace leading up to entry to the debugger.
Also see the kp ubt command.

c Leave the debugger environment and continue execution.

cacheflush range Flush both the instruction and the data caches over the
range of addresses given.

clear Clear the screen.

call [pc] [arg1, arg2,
arg3, arg4]

Execute the code starting at the address specified.

dis  range Disassemble MIPS assembly instructions for the specified
range of memory locations.
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dump [-Bcdoux] [-bhw]
range

Get a formatted display of an area of memory.

g  [-bhw] location Display the contents of a memory location or a register.

goto list Continue execution of the client process from the location
indicated by the client pc register to the location specified.

help List a short summary of the built-in commands.

hx  namelist Convert a name or list of names into their equivalent
hexadecimal address values.

lkaddr address Print symbols “near” the given address.

lkup  name Print address of the specific partial name.

nm  addresslist Display the equivalent symbol name of a hexadecimal
address or list of hexadecimal addresses.

p [-bhw] location value Set the contents of the register or memory location to a
value.

s [count] and S [count] Execute one or more instructions of client code.

sleep Put a processor into the waiting loop on multiprocessing
systems.

string address [maxlen] Display memory as a null-terminated ASCII string.

tlbdump [range] Display the current contents of an R2000/3000/4000
address translation buffer.

tlbflush [range] Flush mappings from R2000/3000/4000 address
translation buffer.

tlbmap [-i index]
[-ndgv] vaddress paddress

Establish a virtual-to-physical address map in the R2000/
3000/4000 translation buffer.

tlbpid [pid] Get or set the process identifier (pid).

tlbptov physaddr Display the tlb entries that map a physical address.

tlbvtop  vaddress [pid] Display the R2000/3000/4000 translation buffer entries
that map the specified virtual address.

Table 10-5 symmon’s dbgmon Mode Commands

Command Description
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brk Command

Use brk to mark breakpoints at specified addresses. If you do not specify an
argument, brk shows all currently set breakpoints.

Synopsis

brk [ addresslist]

Arguments

addresslist Use this parameter to specify the addresses at which you
want breakpoints. You can enter addresses either
numerically or symbolically.

If you enter the addresses numerically, brk assumes that all
address values are in base 10 unless you specify otherwise.
To enter a hexadecimal value, precede the value with 0x . To
enter an octal value, precede the value with 0.

If you enter the addresses as symbolic names, enter the
addresses according to the format symbol or symbol+hexval,
where hexval is a word-aligned hexadecimal value.

unbrk bpnumlist Remove breakpoints.

wake Wake up slave processors.

wpt
[r|w|rw] [0|physaddr]

Set a read, write, or read/write watch point at physical
address physaddr, using the R4000 watch point registers.

Table 10-5 symmon’s dbgmon Mode Commands

Command Description
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bt Command

bt shows the backtrace leading up to the entry to the debugger. However,
you will probably find the information from kp ubt to be more useful. In
general, backtraces do not go past the last interrupt or exception.

Synopsis

bt

c Command

c allows you to leave the debugger environment and continue execution. c
directs symmon to continue execution from the location indicated by the
current value of the client program counter register. This command is the
counterpart of the <ctrl-a>  character combination that returns control to
the debugger. See also q(uit).

Synopsis

c

call Command

call executes the code starting at the address specified.

Synopsis

call [pc] [ arg1 arg2 arg3 arg4]

Arguments

[pc] Use this argument to specify the starting address of a client
routine. If no argument is specified, the saved pc is used.

[args] Use these optional arguments to specify the arguments (up
to four) that you want to pass to the routine pointed to by
pc.
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dis Command

dis disassembles MIPS assembly instructions for the specified range of
memory locations.

Synopsis

dis range

Arguments

range Use this argument to specify the range of memory you want
to display. You can specify the range argument in one of the
following three formats:

baserange is a base address. Use this format to disassemble
the contents of a single location. The base address can be a
hexadecimal address, a symbol name, or a symbol name
plus a hexadecimal offset.

base#count range is a base address, followed by a number
“#” character, followed by a count value. Use this format to
disassemble a range of count words, starting at the base
address. The base address can be a hexadecimal address, a
symbol name, or a symbol name plus a hexadecimal offset.
However, the count value is a hexadecimal value.

base:limit range is a base address, followed by a colon “:”
character, followed by an upper limit address. base is a
hexadecimal address or a symbol name. Use this format to
disassemble the contents of those words whose addresses
are greater than or equal to the base address, but less than
the limit address. The value given as the base address or as
the limit can be a hexadecimal address, a symbol name, or a
symbol name plus a hexadecimal offset.

Note: In all the formats described above, the base address
must be word-aligned.
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dump Command

Use dump to get a formatted display of an area of memory.

Synopsis

dump [- Bcdoux] [- bhw] range

Arguments

[-Bcdoux] Use these options to set the format in which dump displays
the contents of a memory location. The default format is
hexadecimal. The formats associated with these options are:

x = hexadecimal
o = octal
d = decimal
u = unsigned decimal
c = ASCII
B = binary

[-bhw] Use these options to specify the size of the memory location.
The default is word. The associated sizes are:

b = byte
h = half-word
w = word

range Use range to specify the amount of memory to be displayed.
You can specify range in one of the following formats:

base range is a base address. Use this format to disassemble
the contents of a single location. The base address can be a
hexadecimal address, a symbol name, or a symbol name
plus a hexadecimal offset.

base#count range is a base address, followed by a number
“#” character, followed by a count value. Use this format to
disassemble a range of count words, starting at the base
address. The base address can be a hexadecimal address, a
symbol name, or a symbol name plus a hexadecimal offset.
However, the count value is a hexadecimal value.
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base:limit range is a base address, followed by a colon “:”
character, followed by an upper limit address. base is a
hexadecimal address or a symbol name. Use this format to
disassemble the contents of those words whose addresses
are greater than or equal to the base address, but less than
the limit address. The value given as the base address or as
the limit can be a hexadecimal address, a symbol name, or a
symbol name plus a hexadecimal offset.

g Command

Use g (or get) to display the contents of a memory location, general-purpose
register, special-purpose register, or a system coprocessor register.

Synopsis

g [- bhw] location

Arguments

[-bhw] Use these options to specify the size of the location you
want to display. The default size is a word. The sizes
associated with these options are:

b = byte
h = half-word
w = word

location Use location to specify the location or register you want to
get. The format for a location or register can be a
hexadecimal value or the symbolic name (plus a
hexadecimal offset) of the address or the client register you
want to display.

To specify one of the 32 general-purpose registers, 0
through 31, use the names r0 through r31, or use the
compiler-usage names. See Table 10-1 for a list of such
registers.
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goto Command

goto continues the execution of the client process from the location indicated
by the client program counter (pc register) to the instruction at the
location(s) you specify. Use this command to set a list of temporary
breakpoints.

Synopsis

goto list

Arguments

list Use this parameter to specify a list of hexadecimal
addresses and/or names of locations at which you want to
set temporary breakpoints. These temporary breakpoints
are automatically removed once they have been
encountered.

hx Command

Use hx to convert a name or list of names into their equivalent hexadecimal
address values.

Synopsis

hx namelist

Arguments

namelist Use this argument to specify the list of names you want to
convert. This argument can be one or more symbol names
(plus hexadecimal offset).

The next two items (lkaddr and lkup) are not available in older versions:
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lkaddr Command

lkaddr prints symbols “near” the given address.

Synopsis

lkaddr address

Arguments

address Use this argument to specify the starting address of the
string you want to display.

lkup Command

name may be only a partial name, such as “init.”. Symbols containing name
are printed with their respective addresses.

Synopsis

lkup name

Arguments

name name is a filename.

nm Command

Use nm to display the equivalent symbol name (plus hexadecimal offset) of
a hexadecimal address or list of hexadecimal addresses.

Synopsis

nm addresslist

Arguments

addresslist Use this parameter to specify the addresses at which you
want breakpoints. You can enter addresses either
numerically or symbolically.
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p Command

Use p (or put) to set the contents of the register or memory location to a value.

Synopsis

p [ -bhw]  location value

Arguments

[-bhw] Use these options to specify the size of the memory location
or register value you want to set. The default size is word.
The sizes associated with each of these options are:

b = byte
h = half-word
w = word

location Use this argument to specify the memory location or
register you want to set.

To specify a memory location, use the hexadecimal name of
the memory location, or the symbolic name (plus a
hexadecimal offset) of a memory location you want to set.

To specify any of the 32 general-purpose registers, use the
names r0, r1, r2 through r31, or use the compiler
mnemonics for these registers (see Table 10-1). You can also
set special-purpose registers and the system coprocessor
registers (see Table 10-2).

To specify the pc register, use the entry point of a client
routine as the location argument.

value Use this argument to specify the hexadecimal value you
want to write to the specified memory location or register
(value is always assumed to be hexadecimal.)
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sleep Command

Use sleep to put a processor into the waiting loop on multiprocessing
systems. To awaken the sleeping processor, use the wake command. On
IRIS-4D 100/200/300/400 Series workstations, do not use this command on
CPU 0.

Synopsis

sleep

s [count] and S [count]

Both s and S allow you to execute one or more instructions of client code.
These two commands differ only in the way they handle jal and bal,
instructions that execute subroutines.

When S executes an instruction that calls a subroutine, it executes the entire
subroutine as a single instruction, up to and including the return instruction.
S fails to regain control if the subprocedure does not return.

When s executes an instruction that calls a subroutine, it counts the jump to
the subroutine as a single instruction, then executes instructions within that
subroutine up to the number you have specified (minus the one counted
when executing the jump instruction). If you specify only one instruction
(the default), and the next instruction calls a subroutine, s jumps to the
subroutine and stops.

Synopsis

s [ count]
S [ count]

Arguments

[count] Use this optional argument to specify the number of
instructions you want s or S to execute. The default is 1.
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string Command

Use this command to display memory as a null-terminated ASCII string.
This argument escapes non-printable characters with the backslash
character, just as is done in the C programming language.

Synopsis

string address [ maxlen]

Arguments

address Use this argument to specify the starting address of the
string you want to display.

[maxlen] Use this optional argument to specify the length of the
string. The default value for this argument is 70.
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tlbdump Command

Use tlbdump to display the current contents of an R2000/3000/4000 address
translation buffer.

Synopsis

tlbdump [ range]

Arguments

[range] Use this optional argument to select a range of tlb entries.
The default behavior is to display the entire contents of tlb.
The three formats for range are:

baserange is a hexadecimal value. An index into tlb. tlbdump
displays the contents of this single location.

base#countrange is a table index followed by a number “#”
character, followed by a count value. tlbdump displays the
contents of a range of count tlb entries starting at the tlb
entry whose index is base. Both base and count are
hexadecimal values.

base:limitrange is a table index followed by a colon “:”
character, followed by an upper limit index. Use this
format to display a range of tlb entries whose indices are
greater than or equal to base, but less than limit. These index
values are all hexadecimal values.
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tlbflush Command

Use tlbflush to flush mappings from the R2000/3000/4000 address
translation buffer, thus making them invalid, not matching any possible
address/pid pair. You can use this command to clear translations for both
symmon and the client process.

Synopsis

tlbflush [ range]

Arguments

[range] Use this optional argument to specify the range of tlb entries
that you want to flush. If you do not specify a range, tlbflush
defaults to clearing all tlb entries. To specify a [range], use
one of the following formats:

Note: Multiprocessor systems have an address translation buffer associated
with each processor. A command that dumps or changes translation buffers
affects only the processor associated with the debug terminal from which
such commands issued.
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tlbmap Command

Use tlbmap to establish a virtual to physical address map in the R2000/
3000/4000 translation buffer. You can use tlbmap to establish mappings for
both symmon and the client process.

Synopsis

tlbmap [-i index] [- ndgv] [- dgv] [-c algo] vaddress paddress

Arguments

[-i index] Use the -i option to specify the particular tlb entry, index,
that you want to use to contain the mapping. If you do not
specify a tlb index, tlbmap uses a random tlb entry, at an
index ranging 8 to 63.

[-ndgv] (R2000/3000 only)

[-dgv] (R4000 only)

Use these options to set bits in the tlb entry for the map.
Each option controls a single bit. By default, these bits are
unset (zero). The significance of setting a bit (and the
associated options) are:

n = non-cacheable (R2000/3000 only)
d = data
g = global
v = valid

[-c algo] (R4000 only)

Use this to set the cache algorithm in the tlb entry for the
map. The algorithms are specified by a number. The
designations are:

0: reserved
1: reserved
2: uncached
3: cacheable, non-coherent
4: cacheable, coherent exclusive
5: cacheable, coherent exclusive on write
6: cacheable, coherent update on write
7: reserved
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vaddress Use this argument to specify the virtual address side of the
map.

paddress Use this argument to specify the physical address side of the
map.

tlbpid Command

Use tlbpid to get or set the process identifier (pid), a value in the R2000/
3000/4000 system coprocessor register, tlbhi. The tlbpid command affects
only the process identifier used by symmon and client code executed
through the call command. tlbpid does not affect the process identifier used
when client code is executed by single stepping or when continuing
execution.

Synopsis

tlbpid [ pid]

Arguments

[pid] Use this optional argument to indicate the value to which
you want tlbpid to set the pid value in the R2000/3000/4000
coprocessor register, tlbhi.

If you specify no [pid] argument, tlbpid displays the pid value currently in
the R2000/3000/4000 coprocessor register, tlbhi.
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tlbptov Command

Use tlbptov to display the tlb entries that map a physical address. tlbptov
searches the R2000/3000/4000 translation buffer, looking for translations
that map the specified physical address. tlbptov displays all matches,
whether valid or invalid.

Synopsis

tlbptov physaddr

Arguments

physaddr Use this argument to specify the physical address for which
you want to find tlb entries.

tlbvtop Command

Use tlbvtop to display the R2000/3000/4000 translation buffer entries that
map the specified virtual address.

Synopsis

tlbvtop vaddress [ pid]

Arguments

vaddress Use this argument to specify the virtual address for which
you want to find tlb entries.

[pid] Use this optional argument to specify the pid associated
with the tlb entry. If you do not specify a pid, tlbvtop
defaults to using the pid value currently in the coprocessor
register tlbhi.
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unbrk Command

Use unbrk to remove breakpoints.

Synopsis

unbrk bpnumlist

Arguments

bpnumlist Use this argument to specify the ordinal of a particular
breakpoint you want to remove. Use the brk command to
get the ordinal of a particular breakpoint.

wake Command

Use wake to wake up slave processors. wake brings all slave processors into
a waiting loop, whether those processors are scanning for a keystroke on the
console to drop into symmon or looking for the address to which to jump to
execute the boot() routine.

Synopsis

wake
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wpt Command

Use wpt to set a read, write, or read/write watch point on a physical
address, using the R4000 watch point registers.

Synopsis

wpt [r|w|rw|] [0|physaddr]

Arguments

r Read

w Write

rw Read/write

physaddr Double word aligned address. The watch point will trip on
any access within the next eight bytes.

0 An argument of 0 clears the watch point.

Using symmon’s Kernel Print Command

The kernel print mode command, kp, allows the user to print kernel
structures or information summarized from kernel structures. If you do not
know the names of the kernel structures or summaries that you want to see,
just issue the kp command without specifying an argument. If you do not
specify an argument for kp, the command displays the names of all its
subcommands. The ?? command lists the names of all the kp subcommands
with short descriptions. For systems that do not have symmon in PROM,
you may omit the leading “kp”.

Some of the information you can view using the kp command is not of
interest to you when debugging device drivers. In the following sections, we
describe only those structures and summaries useful when debugging a
device driver. kp commands that display data are also used with the idbg
command (without the kp keyword).
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Note: The following sections mention a number called the “process table
entry index.” This number is not the process ID. To find the process table
entry index that corresponds to a particular process ID, issue the command:
kp plist proc_id, where proc_id is the process ID for which you want to find
the process table entry index.

kp buf [index/address] – View a buf Structure

The kernel can contain any number of buf type structures. Use these
structures to manage data transfers to and from a device. To view all of these
structures, use kp buf without specifying [index/address]. To see a particular
buf type structure, specify either the buffer index number for the structure
or the address for the buf type structure as the [index/address] argument.

kp eframe address

This displays the exception frame at the given address. The exception frame
holds the contents of the general purpose registers at the time the process
last executed. If the address is a small integer, the exception frame of the
process with that process table index is used.

kp inode number/address – View an inode Structure

Use kp inode to view the contents of an inode structure. To specify which
inode structure you want to see, provide the number or the address of the
inode structure as the [number/address] argument. kp inode is obsolete in 5.x.
See vnode structures.

Synopsis

kp inode number/ address

kp kill addr

Send SIGKILL to a process, where addr is the process id.

kp mlist

List all dynamically loaded and registered kernel modules.
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kp msyms id

Use ID to print symbols for the dynamically loaded module ID, which can
be found using the ml list command or the lboot -V command.

kp pb — Dump Console Print Buffer

This prints the contents of the console print buffer, which can be useful when
an important message scrolls off the screen.

kp plist [#] – List Process Summaries

Without an argument, the kp command describes all the processes on the
system. To see the plist information that applies to a particular process,
specify the process ID as the [#] argument. Thus, to see the plist information
that applies to a process with a pid of 16672, enter the command:

% kp plist 16672

The information that kp plist [#] displays for a process consists of items such
as:

• process table entry number, or index (also known as the process slot
number). You use this number, instead of the pid, when selecting
process-specific information from other kernel structures via kp, so be
careful not to confuse it with the pid.

• process ID

• process status (such as sleep)

kp pda [index] – View a pda Structure

The pda structure contains information about a processor’s private data
area. If you do not specify [index], kp pda gives you the pda structure for all
the processors. To see the pda structure for a specific processor only, use the
[index] argument to specify the processor array index for that processor. The
value of this argument must be 0 on a single-processor system or a number
between 0 and n on a multiprocessor system.
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kp proc index/address – View a proc Structure

A proc structure contains process-specific information not listed in the plist
summaries. kp requires that you specify the proc structure you want to see.
You can specify a particular proc structure by giving either the process table
entry number (index) for the process or the address (address) for the proc
structure (in u.u_proc.p for the currently mapped process).

kp qbuf device

Dump the contents of buffers queued for the given device. The device
argument is given as the major/minor device number of the desired device.

kp runq – View the runq Structure

The runq structure contains information describing the processes in the run
queue. These are processes that are not running but that could run. kp runq
displays all the information for every process in the runq structure.

kp sema address – View a Semaphore Structure

The system uses sema type structures to manage the information associated
with a semaphore (for example, the semaphore's name, the number of times
it was used, whether it is free or locked). Use kp sema address to list the
contents of a particular sema structure.

kp slpproc – View Summary of Sleeping Processes

Use this command to view information on all sleeping processes. This
information includes such items as the process name, the process address,
and the name and address of the semaphore upon which the process is
sleeping. kp slpproc lists all the information in the slpproc structure.

kp ubt [index] – View Subroutine Backtrace Summary

Use this command to view subroutine backtrace information for a user
process. This information includes such items as the stack pointer, the caller,
and the called function. If you do not specify [index], this command reports
on the currently mapped user process. To specify a particular user process
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(one that may or may not currently be mapped) give kp ubt [index], the
index into the process table for the user process in which you are interested.

Caution: If a process is currently running on a CPU, you must issue the ubt
command on the CPU the process is running on. Using ubt # on currently
running process will produce erroneous results.

kp ubt [index] is analogous to the dbx command, where.

kp user [index] – View a User Structure

The user structure contains information that describes a user area. If you do
not specify [index], kp user displays the user structure for the currently
mapped user. To view the user structure for a particular process (one that
may or may not currently be mapped), give kp user [index], the index into
the process table for the user process in which you are interested.

kp wd – View SCSI Information

Use kp WD93 to view information concerning WD93 SCSI devices.

Synopsis

kp wd [ 0, 1, 2, address]

Arguments

0 Use this option to display the contents of the WD93
registers. No equivalent yet exists for WD95.

1 Use this option to display the host structure and active
scsi_request_t.

2 Use this option to show all allocated subchannels.

address Use this option to show the subchannel at the specified
address.
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Multiprocessor Debugging

Debugging multiprocessor device drivers with symmon is similar to
debugging multiprocess code in general. There are two phases: debugging
multiprocess code forced to run on a single processor, followed by
debugging the same code as it runs on multiple processors.

Configuring the System Software

To force a multiprocess device driver to run on one processor only, you must
deactivate all but one processor. Currently, network load is spread across
CPUs by default. To preempt network packet processing, see the rtnetd(1M)
and network(1M) man pages.

Preparing the System Hardware

On IRIS-4D and POWER Series systems, multiprocessor debugging requires
that you connect an ASCII terminal to each processor. On a two-processor
system, the second terminal connects to Serial Port 3. For four-processor
systems, the additional terminals connect to ports 5 and 7. Additionally, you
must set the MODE switches 4 and 8 (located at the front of the 4D system
panel) to “open.” When these MODE switches are open, power-on
diagnostics display on the terminal attached to each processor. symmon
loads automatically on all non-console processors, and each prints a
message to its terminal. The mode switches are depicted in Table 10-1.

Note: Indigo, Indigo2, Indy, Crimson, CHALLENGE/Onyx, POWER
CHALLENGE/POWER Onyx systems do not require physical
manipulation of MODE switches.
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symmon and Multiprocessor Debugging

On multiprocessor systems, a separate symmon runs on each processor.
Breakpoints, however, are shared. When a processor reaches a breakpoint
instruction, control is transferred to the symmon associated with that
processor. Other processors may continue to run independently until they
also happen to hit that breakpoint, which can happen if you set a breakpoint
in a kernel function or anywhere in a multiprocessor device driver.

At this point, before the kernel is loaded (through a boot command from
command mode), you can disable processors not associated with the console
(the console processor is referred to as the master processor) by pressing the
<Enter>  key on the keyboard. Disabling processors is useful during the
initial debugging phase of a multiprocess program because it is easier to
debug a multiprocess program first in single-processor mode. This way, you
eliminate the usual sorts of bugs before you have to deal with bugs
associated specifically with multiprocessing (such as synchronization bugs).

(See also M. Maekawa, A. Oldehoeft, and R. Oldehoeft. Operating Systems
Advanced Concepts. The Benjamin/Cummings Publishing Company, Inc.,
1987 and A. Silberschatz, J. Peterson, and P. Galvin. Operating System
Concepts, Third Edition. Addison Wesley Publishing Company, 1991.)

By default, all device driver software runs only on the master processor. A
driver that understands the multiprocessor environment can indicate that it
contains semaphored code through a flag in the master file. However, it is
still easier to debug drivers initially on a single-processor system.

If you do not disable the non-master processors, processes run on them as
usual. If a breakpoint is encountered on that (non-master) processor, or if a
<ctrl-A>  character sequence is entered on that (non-master) processor's
terminal, control transfers to symmon on that processor. Other processors
continue to execute kernel (and user) code until they detect a <ctrl-A>

character sequence, reach a break instruction, or hit a lock or semaphore
held by the stopped CPU.
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Debugging on CHALLENGE/Onyx and POWER CHALLENGE/POWER
Onyx systems requires only a single ASCII terminal. All symmon output for
all CPUs is multiplexed to the one port. To talk to an individual CPU, use the
cpu# command. CPUs must be stopped (with the stop command) before you
can connect to them. To restart all CPUs, use the C all command.

Note: It may be necessary to use <ctrl-A>  several times when entering
symmon.

Forcing System Memory Dumps

Because the code to force all CPUs, other than the one that does the dump,
to spin is at a very high level, the best way to force a memory dump is to use
symmon to call panic with the address of some string in the kernel, as in:

kp call panic addr

On CHALLENGE/Onyx and POWER CHALLENGE/POWER Onyx series
systems, an alternative is to use the NMI button.
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11. Kernel-level Dynamically Loadable Modules
(DLMs)

This chapter describes how kernel modules can be loaded dynamically. It
contains the following sections:

• “Module Configuration” on page 306

• “Using a Dynamically Loadable Kernel Module” on page 307

• “Library Modules” on page 312

• “Kernel Configuration” on page 311

• “Module Entry Points” on page 311

• “Module Initialization” on page 312

• “Edt Type Drivers” on page 312

• “Library Modules” on page 312

• “Loadable Modules and Hardware Inventory” on page 313

• “Run-time Symbol Table” on page 313

• “Debugging Loadable Kernel Modules” on page 314

• “Load/Register Failures” on page 315

• “Example 1” on page 316

• “Example 2” on page 317
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IRIX supports dynamic loading and unloading of modules into a running
kernel. Kernel modules can be registered and then loaded automatically by
the kernel when the corresponding device is opened, or they can be loaded
using either the lboot or the ml command. Similarly, dynamically loaded
modules can be unloaded from the kernel automatically or manually if the
module includes an “unload” entry point. Loadable kernel modules that are
supported include: character, block, and STREAMS device drivers;
STREAMS modules; library modules; and the idbg.o module. This chapter
describes how to configure and use dynamically loadable kernel modules.

Module Configuration

Each loadable module must contain the string shown below, where
M_VERSION is defined in the mload.h header file that must be included by
the loadable module:

char * drvmversion = M_VERSION;

A loadable module must be compiled and linked with the following cc
options before it can be loaded into the kernel:1

% cc -non_shared -coff -Wx,-G0 -Wc,-pic0 -r -d -c -Wc,-jalr

-non_shared Produce a static executable. The output object created does
not use any shared objects during execution.

-coff Produce a COFF object.

-Wx,-G0 Disable global pointer. Not supported for loadable
modules.

-Wc,-pic0 Do not allocate extra stack space that is not necessary for
non_shared coff objects.

-r Retain relocation entries in the output file.

-d Force definition of common storage and define loader-
defined symbols. Without this option, space is not allocated
in bss for common variables.

1 No driver written for IRIX 6.0 should use the -coff flag.
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-c Suppress the compilation loading phase and force an object
file to be produced even if only one program is compiled.

-Wc,-jalr Force the compiler to produce jalr instructions rather than
jal instructions. A jal instruction has a 26-bit target, so if a
module is loaded into k2seg, for example, it could not call a
kernel function in k0seg.

A loadable module must not be dependent on any loadable module, other
than a library module. In order to load a module comprised of multiple
object files, the object files must be linked into a single object file, using ld
with the following options:1

% ld -non_shared -coff -G0 -r -d

For more information, see the cc(1) and ld(1) man page entries.

Using a Dynamically Loadable Kernel Module

You can use either lboot or the ml command to load, register, unload,
unregister, and list loadable kernel modules. The lboot command parses
module type, prefix, and major number information from the module's
master file in the /var/sysgen/master.d directory. The loadable object file is
expected to be found in the /var/sysgen/boot directory. The ml command also
provides a means of loading, registering, and unloading loadable modules,
without the having to create a master file or reconfigure the kernel.

Load

When a module is loaded, the following operations take place:

1. The object file’s header is read.

2. Memory is allocated for the module's text, data, and bss.

3. The module’s text and data are read.

4. The module's text and data are relocated, and unresolved references
into the kernel are resolved.
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5. A symbol table is created for the module; the module is added into the
appropriate kernel switch table.

6. The module’s drvinit() function is called.

Space allocated for the module's text, data, and bss is located in either k0seg
or k2seg. Static buffers in loadable modules are not necessarily physically
contiguous in memory.

A module can be loaded using the following lboot command:

% lboot -L master

A module can also be loaded using the following ml command:

% ml ld -[v] -[cbBfm] module.o -p prefix \
 [-s major major...] [-a modname]

If a major number is specified by the ml command, that major number must
match the major number used to create the corresponding device in /dev. If a
major number is not specified, a device needs to be created in /dev with the
major number selected by the ml command. The major number selected by
the ml command can be found by using the ml list command described
below. For more information about creating devices, see the mknod(1M)
man page entry.

If a module is loaded successfully by the ml command, an id number, which
can be used to unload the module, is returned.

Register

A register command is used to register a module for loading when its
corresponding device is opened. When a module is registered, a stub
function is entered into the appropriate kernel switch table. When the
corresponding device is opened, the stub function loads the module into the
kernel.
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A module can be registered with the following lboot command:

% lboot -R <master>

A module can also be registered with the following ml command:

% ml ld [-v] -[cbBfm] module.o -p prefix [-s major...] \
 [-a modname] [-t autounload_delay]

If a module is registered successfully with the ml command, an id number,
which can be used to unregister the module, is returned.

Unload

A module can be unloaded only if it provides an “unload” entry point,
described in “Module Entry Points.” A module can be unloaded using the
following lboot command:

% lboot -U <id>

A module can also be unloaded using the following ml command:

% ml unld id [id id ...]

Unregister

A module can be unregistered with the following lboot command:

% lboot -W id [id id ...]

A module can also be unregistered with the following ml command:

% ml unreg id [id id ...]

List

Loaded and/or registered modules can be listed with the following lboot
command:

% lboot -V
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Loaded and/or registered modules can also be listed with the following
lboot command:

% ml list [-rlb]

For more information, see the lboot(1M) and ml(1M) man page entries.

Master File Configuration

If a dynamically loadable module has an associated master file, the master
file must include a d in the FLAG field. The d flag indicates to lboot that the
module is a dynamically loadable kernel module. If the d flag is present,
lboot parses the module's master file but does not fill in the entry in the
corresponding kernel switch table for the module. All global data defined in
the master file are included in the master.c file generated by lboot. The kernel
must be configured with master files that contain the d option for each
module that will be a dynamically loadable module, if lboot is used to load,
register, unload, unregister, or autoregister the module. If the ml command
is used, then it is not necessary to create a master file for the module.

Auto Registration

Loadable modules can be registered by lboot automatically at system
startup, when autoconfig is run. For a module to be auto-registered, its
master file must contain an R in the FLAG field in addition to d, which
indicates that the module is loadable. When lboot runs at system startup, it
registers each module that contains an R in its master file.

Auto Unload

All registered modules that include an unload routine are automatically
unloaded after last close unless they have been configured not to do so. By
default, modules are unloaded five minutes after last close. You can change
the default auto-unload delay by using systune to modify the
module_unld_delay variable. For more information about systune, see the
systune (1M) man page entry. To configure a particular module with a
specific auto-unload delay, use the ml command. To configure a module so
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that it is not auto-unloaded, place an N in the flags filed of its master.d file, if
it is registered using lboot; otherwise, use ml to register the module, then
use the -t option.

Kernel Configuration

A kernel that supports loadable modules must be configured so that the
kernel switch tables generated by lboot contain “extra” entries for the
loadable modules. Extra entries are generated by lboot based on the values
of the kernel-tunable parameters shown in Table 11-1.

These tunable parameters are found in the /var/sysgen/mtune/kernel kernel
file and are set to the defaults listed above. It is not necessary to change the
defaults unless you want the kernel to allow a greater or lesser number of
loadable modules. For more information about changing tunable
parameters, see the mtune(4) and systune(1M) manual entries or Chapter 11
of the IRIX Advanced Site and Server Administration Guide.

Module Entry Points

Loadable device drivers must conform to the UNIX System V Release 4 DDI/
DKI standard. In addition to the entry points specified by the standard, if a
loadable module is to be unloaded, the module needs to contain an unload
entry point:

int drvunload (void)

Table 11-1 Kernel-tunable Parameters

Name Default Minimum Maximum

bdevsw_extra 21 1 254

cdevsw_extra 23 3 254

fmodsw_extra 20 0 0

vfssw_extra 5 0 0
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An unload() routine should be treated as an interrupt routine. It should not
call any routines that would cause it to sleep, such as biowait(), sleep(),
psema(), or delay().

Module Initialization

After a module is loaded and linked into the kernel, and sanity checking is
done, the module’s initialization routines, drvinit(), drvedtinit(), and
drvstart(), are called, if they exist. For more information on these routines,
refer to the SVR4 DDI/DKI Reference Manual and the IRIX Device Driver
Reference Pages.

Edt Type Drivers

Drivers that have an edtinit entry point are passed a pointer to an edt
structure. You must use lboot to load these drivers. Add a vector line to the
system file for the driver. When the module is loaded using lboot, lboot
parses the vector line from the system file to create an edt structure, which is
passed through the kernel and to the driver’s edtinit routine. The driver’s
edtinit routine is called after the driver is successfully loaded, after the
driver’s init routine is called. For more information, see the system(4) man
page.

Library Modules

A library module is a module that contains a collection of functions and data
that other loaded modules can link against. A library module that contains
an init function calls it automatically after the module is loaded and linked
into the kernel. To load a library module, use the ml command:

% ml ld [-v] -[l] library.o

A library module must be loaded before other modules that link against it
are loaded. Library modules cannot be unloaded, registered, or
unregistered. Only regular COFF object files are supported as loadable
library modules.
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Loadable Modules and Hardware Inventory

Many device drivers add to the hardware inventory in their init or edtinit
routines. If a driver is a dynamically loadable driver and is auto-registered,
it will not show up in the hardware inventory until the driver has been
loaded on the first open of the corresponding device. If a clean install or a
diskless install is done, a /dev entry will not be created by MAKEDEV for
such a driver, since it does not appear in the hardware inventory. If this
situation arises, the D master.d flag can be used to indicate that the driver
should be loaded, then unloaded, by autoconfig. If the R master.d flag, which
indicates that the driver should be auto-registered, is also used, then the
driver will be auto-registered as usual. A startup script can then be added to
run MAKEDEV after autoconfig, if necessary. For an example, see the
startup script in /etc/init.d/chkdev.

Run-time Symbol Table

lboot creates a run-time symbol table from the tables in master.d/rtsymtab and
master.d/*.exports. The run-time symbol table contains kernel routines and
global data that modules can link against. Only routines and globals that are
always present in the kernel should be added to master.d/rtsymtab.

If a module contains a routine or global that could be configured out of the
kernel, add it to an xxx.exports file that will not be included in the kernel if
the module is configured out. See master.d/idev.exports for an example.

If a loadable module contains globals in its master.d file, you must create an
xxx.exports file to include those globals so that they can be added to the run-
time symbol table. For more information, see master.d/rtsymtab.
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Debugging Loadable Kernel Modules

symmon supports debugging of loadable kernel modules. symmon
commands that do a symbol table lookup, such as brk, lkup, lkaddr, hx, and
nm, also search the symbol tables created for loadable modules. The msyms
command can also be used to list the symbols for a particular loaded
module:

% msyms id

Use the mlist command to list correctly loaded and registered modules:

% mlist

For more information about using symmon, refer to Chapter 10, “Driver
Installation and Testing”.

The ml command contains a debug option that can be used to turn verbose
error reporting on or off; it may also be used to disable the loading and
registering of modules:

% ml debug [-vns]

-v the verbose option turns verbose error reporting on.

-n no load or register disallows the loading or registering of
modules.

-s silence silences verbose error reporting and enables loading
a registering of modules.
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Load/Register Failures

If a registered module fails to load, unregister and reload it with ml, ld, or
lboot -L to get a more detailed error message about the failure. The kernel
will fail to load or register a module for any of the following reasons:

• The major number specified either in the master file or by the ml
command is already in use.

• The object file is not compiled with the correct options.

• The module is an “old style” driver, with either xxxdevflag set to
D_OLD, or if no xxxdevflag exists in the driver.

• If the object file is corrupted, it may cause “invalid JMPADDR” errors
from the relocation code in the kernel.

• The kernel did not resolve all of the module’s symbols.

• All major numbers are in use.

• The switch table is full.

• Required entry points for the particular type of module are not found in
the loaded object file.
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Example 1

The following example lists the steps necessary to build a kernel and load a
character device driver, called dlkm, using lboot:

1. Add d to the dlkm master file:

2. Make sure that the cdevsw_extra kernel tuneable parameter allows for
extra entries in the cdevsw table. The default settings in /var/sysgen/
mtune/kernel are:

The systune command also lists the current values of all of the tunable
parameters. If the kernel is not configured to allow extra entries in the
cdevsw table, use the systune command to change the cdevsw_extra
parameter:

# systune -i
systune-> cdevsw_extra 3
systune-> quit  >

3. Build a new kernel and boot the target system with the new kernel.

4. Compile the dlkm.c driver:

# cc  - non_shared  - coff  - G0 - r  - d - Wc,- jalr  - c dlkm.c

5. Copy dlkm.o to /var/sysgen/boot.

6. Load the driver into the kernel:

# lboot -L dlkm

7. List the currently loaded modules to verify that the module is loaded:

# lboot -V

*Flag Prefix Soft #Dev Dependencies

cd dlkm 38 2

cdevsw_extra 23 3 254
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Example 2

The following example lists the steps necessary to load a character device
driver called dlkm, using the ml command:

1. Make sure that the cdevsw_extra kernel tunable parameter allows for
extra entries in the cdevsw table. The default settings in /var/sysgen/
mtune/kernel are:

The systune command also lists the current values of all of the tunable
parameters. If the kernel is not configured to allow extra entries in the
cdevsw table, use the systune command to change the cdevsw_extra
parameter:

# systune -i
systune-> cdevsw_extra 3
systune-> quit  >

2. Compile the dlkm.c driver:

# cc -non_shared -coff -G0 -r -d -Wc,-jalr -c dlkm.c

3. Load the driver into the kernel:

# ml ld -c dlkm.o -p dlkm -s38

4. List the currently loaded modules to verify that the module was loaded:

# ml list

cdevsw_extra 23 3 254
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A. System-specific Issues

This appendix lists the Silicon Graphics functions available for writing
device drivers and how those function differ from the functions listed in the
IRIX Device Driver Reference Pages .

It contains the following sections:

• “CPU Types” on page 320

• “Data Cache Write Back and Invalidation” on page 321

• “Flushing the Write Buffer” on page 324

• “Reliable Multiprocessor Spinlocks” on page 324

• “VME Slave Addressing” on page 325

• “VME Master Addressing” on page 326

• “VME-bus Space Reserved for Customer Drivers” on page 329

• “POWER Indigo2 and POWER CHALLENGE M Drivers” on page 330

Although all Silicon Graphics systems share similar architectural elements,
there are several significant differences you must recognize when writing
device drivers. Despite these differences, it is possible to write a device
driver that runs on all Silicon Graphics systems. This appendix outlines the
various CPU types used by Silicon Graphics systems and describes the CPU
features that can vary. Also listed are the VME-bus addresses and interrupt
vectors available for customer use.

Whenever possible, this appendix promotes the use of those IRIX kernel
functions that are supported on all Silicon Graphics architectures. The
hardware features that can differ across architectures are:

• Data cache write back and invalidation

• Write buffer flushing

• Hardware spinlocks (test and set variables)
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CPU Types

This appendix describes the CPU types used in Silicon Graphics
workstations and servers. These CPU types are summarized in Table A-1.

Table A-1 CPUs Used in Silicon Graphics Computer Systems

CPU Type Processor Clock Speed System/Series

IP4 R2000 8/12.5MHz
33 MHz

4D/50, 4D/70, and 4D/80 systems (Originally
known as Single-Board Computer or “SBC”)

IP5 R2000 16.7 MHz 4D/100 series multiprocessor systems

IP6 R2000 12.5/20 MHz Personal IRIS (4D/20, 4D/25) systems

IP7 R3000 25/33 MHz 4D/200 series multiprocessor systems

IP9 R3000 25MHz 4D/210 series systems

IP11 R3000 33 MHz 4D/300 series systems

IP12 R3000 30 MHz 4D/30, 4D/35 and older Indigo series systems.
Indigo series systems have no VME interface,
but they do support GIO.

IP15 R3000 40 MHz 4D/400 series systems

IP17 R4000
R4400

100 MHz
150MHz

Crimson series single-processor systems

IP19 R4400 150 MHz CHALLENGE L/XL and Onyx multiprocessor
systems

IP20 R4000 100 MHz Newer Indigo series systems

IP21 R8000 75 MHz POWER CHALLENGE and POWER/Onyx
multiprocessor systems

IP22 R4000
R4000
R4400
R4400
R4400
R4600

100 MHz
100 MHz
150 MHz
150MHz
150MHz
133 MHz

Indigo2 systems (with GIO and EISA)
Indy systems
Indigo2 systems (with GIO and EISA)
Indy systems (with GIO but not EISA)
Indigo systems
Indigo systems

IP26 R8000 75 MHz POWER CHALLENGE M and
POWER Indigo2 systems
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To determine which CPU a Silicon Graphics system uses, type:

% uname -m

at a shell prompt. This command reports the CPU type. For details on this
command, see the uname(1) man page.

For a more detailed listing of a Silicon Graphics system’s hardware
configuration, type:

% hinv

at a shell prompt. See the hinv(1M) man page.

Data Cache Write Back and Invalidation

All CPUs use the MIPS R2000, R3000, R4000, or R8000 (formerly known as
“TFP”) series processor chips (R4400 and R4600 are the same as the R4000 for
all practical purposes). These chips use a data cache to maximize the
efficiency of fetching of heavily used memory.

The IP5, IP7, IP11, IP15, IP19, and IP21 multiprocessor CPUs have bus-
watching caches that automatically invalidate the data cache when the system
performs DMA (direct memory access) into physical memory. For these
CPUs, no data cache write back or invalidation is required by software
because these functions are performed by hardware.

DMA operations are categorized as DMA reads or DMA writes. DMA
operations that transfer from memory to a device, and hence read memory,
are DMA reads. DMA operations that transfer from a device to memory are
DMA writes. Thus, you may want to think of DMA operations as being
named from the point of view of what happens to memory.

The single-processor CPUs based on the R2000 or R3000 employ a cache
architecture known as a write through cache. This means that all stores
generated by the processor to a cached memory location go into the cache
and into memory at the same time. Therefore, the data caches on these
systems never contain data that is more recent than memory. However, after
the system performs DMA to physical memory, the data lines in the
processor’s cache corresponding to this physical memory contain data that
is stale with respect to memory. Therefore, a driver running on a single-
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processor CPU must explicitly invalidate the data cache before reading from
the corresponding cached address, after the DMA completes.

R4000s and R8000s employ a cache architecture known as a write back cache.
This means that stores generated by the processor go only into cache; they
are written back from cache to memory only when a cache miss causes that
cache line to be replaced. For this type of cache, the cache contains data that
is newer than the corresponding memory locations. Memory is then stale
with respect to the cache. Drivers that perform DMA reads from memory to
device must specifically cause the cache to be written back to memory before
the DMA starts. On IP19 and IP21 platforms, DMA pulls data from the
processor caches, if necessary, thus providing coherent I/O.

Recall the code examples that read kernel data in Chapter 3, “Writing a VME
Device Driver,” and Chapter 5, “Writing a SCSI Device Driver.” Before
reading the data, the driver code used the dki_dcache_inval() function to
invalidate the appropriate data cache lines. When the data cache lines are
invalidated, accessing the kernel data causes a cache miss and, thus, forces a
read from physical memory. Therefore, to ensure driver portability, your
driver must always use dki_dcache_inval() to invalidate the data cache.
This is the case even though the dki_dcache_inval() functions defined for
the IP5 and IP7 use stub functions that do not do any actual work, although
they use dki_dcache_wb() before starting a DMA from memory to device.
See Table A-2 for a summary of cache line sizes for various MIPS processors.

If your driver uses the functions userdma() or physio() (physio calls
userdma() internally), the data cache is automatically written back and
invalidated for you no matter what system you are using. If your driver does
not use these functions for a DMA write into cached memory, your driver
must use dki_dcache_inval() to invalidate the data cache explicitly after the
DMA completes.1 Further, if your driver does a DMA read from memory to
device, it must use dki_dcache_wb() to write back the data cache explicitly
before the DMA is started.

1 On systems with write through caches, and on IP5, IP7, IP9, IP11, and so on, the dki_dcache_inval()
functions are stub functions that perform no actual work.
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Another consideration worth mentioning is that of buffer alignment for
DMA. The R4000 processor implements a secondary cache line size of
between 4 and 32 words (the secondary cache line size is dependent upon
the CPU board implementation). Buffers used for DMA must be aligned on
a byte boundary that is equal to the cache line size. To accomplish this, use
the kmem_alloc() function with the KM_CACHEALIGN flag. This returns a
buffer with the necessary alignment for the system.

Note: The R8000 has the same DMA alignment problems in general as the
R4000. This is true for all systems with write back caches.

Why is this alignment necessary? Suppose you have a variable, X, followed
by a buffer you are going to use for DMA write. If you invalidate the buffer
prior to the DMA write, but then reference the variable X, the resulting cache
miss brings part of the buffer back into the cache. When the DMA write
completes, the cache is stale with respect to memory. If, however, you
invalidate the cache after the DMA write completes, you destroy the value
of the variable X.

Table A-2 Cache Line Sizes by Processor Type

Processor Type Size (D/I) Type Line Size (D/I) Size (D/I) Type Line Size (D/I)

R3000 (IP12) 32K/32K D 4/64 None None None

R3000 (IP7) 64K/64K D 4/64 None None None

R4000PC (IP20) 8K/8K D 32/32 None None None

R4000SC (IP17) 8K/8K D 32/32 1-4 MB D 128/128

R4400MP (IP19) 16K/16K D 32/32 1-4 MB D 128/128

R4600PC (IP22) 16K/16K 2 32/32 None None None

R4600SC (IP22) 16K/16K 2 32/32 512K 2 128

R8000 (IP21) 16K/16K D 32/32 4 MB 4 512

R8000 (IP26) 16K/16K D 32/32 2 MB 4 128

Primary Cache Secondary Cache
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Flushing the Write Buffer

You may, in some cases, want to call flushbus() to ensure that any writes in
the write buffer have actually been flushed to the system bus. This is
sometimes necessary when a device requires delays between PIOs,
particularly between a write and a read, since they might otherwise arrive at
the device back-to-back.

For example, you write to the device, delay, write to the device, delay. These
writes may be buffered regardless of the delay and still be sent to the device
in quick succession.

Registers and Register Optimization

Variables not declared volatile may be optimized to registers in the
processor, since there are multiple processors. Multiple inconsistent copies
of a variable may exist in registers if volatile is not declared.

Note: Use the -O compiler flag to turn optimization on. The -g compiler flag
for debugging disables optimization.

Reliable Multiprocessor Spinlocks

The multiprocessor CPUs implement test-and-set variables in hardware.
These variables are known as spinlocks. Your code can use functions such as
LOCK_ALLOC(D3) and LOCK(D3) to take advantage of these variables to
protect a critical region of code or data on one processor from interference
from other processors.

All kernels for all Silicon Graphics CPUs support the spinlock functions
(although these functions perform no actual work on single-processor
systems). Therefore, a fully semaphored multiprocessor device driver can
run unmodified on a single-processor system.

Note: Because IRIX kernels cannot, as a rule, be preempted, any driver that
sits in a loop waiting for some condition to be satisfied may tie a processor
up for as long as it wants. Real-time processes, such as audio, are very
sensitive to such delays.
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VME Slave Addressing

Recall that these base addresses are passed to the driver through the device
edtinit() function. Therefore, while you may need a different system file for
each Silicon Graphics platform, the driver code itself can still be portable.

Table A-3, Table A-4, and Table A-5 show the mapping of kernel virtual
address, physical address, and VME-bus address for each addressing mode.
For IP6 and IP12 systems, block mode and burst mode transfers are
supported only during DMA, where the VME device is the master. No
predefined addresses are available on CHALLENGE/Onyx series systems.

Note: When consulting Table A-3 through Table A-7, note that VME space
is set up by software on various hardware platforms. Always use the macro
#defines in /usr/include/sys/vmereg.h to refer to the various VME resource
address ranges by their logical names.

Table A-3 A24 Kernel/VME-bus Address Mapping

System CPU VME
Modifier

Kernel Address
VME0

Kernel Address
VME1

Size
(MB)

VME Address
Range

IP4/6/12 0x3D 0xBC000000 –
0xBCFFFFFF

NA 16 0x0 –
0xFFFFFF

IP4/6/12 0x39 0xBE000000 –
0xBEFFFFFF

NA 16 0x0 –
0xFFFFFF

IP5/7/9/17 0x39 0xB2000000 –
0xB2FFFFFF

F0000000 –
F0FFFFFF

16 0x0 –
0xFFFFFF

IP5/7/9/17 0x3D 0xB3000000 –
0xB3FFFFFF

F1000000 –
F1FFFFFF

16 0x0 –
0xFFFFFF
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VME Master Addressing

When a VME device uses DMA to access main memory, it acts as a “VME
master.” Silicon Graphics systems support both A24 and A32 VME master
addressing. Although there are a few minor differences in the addressing
modes supported (non-privileged versus supervisor), the main difference is
that the 4D/100, 4D/200, 4D/300, 4D/400, and Crimson series systems
support dynamic address mapping. This allows IP5, IP7, IP9, and IP17 CPUs
to access all of physical memory for A24 addressing and allows scatter-
gather for both A24 and A32 addressing.

You can still write an IRIS-portable device driver if the dma_mapalloc()
function does not return –1 and if the device driver can take advantage of the
DMA mapping functions described in Chapter 5, “Writing a SCSI Device
Driver.” Otherwise, you must use one of the other DMA methods.

Table A-4 A32 Kernel/VME-bus Address Mapping

System CPU VME
Modifier

Kernel Address Size
(MB)

VME Address
Range

R2300 0x09 0xB8000000 –
0xBBFFFFFF

192 0x18000000 –
0x1BFFFFFF

IP4/6/12 0x09 0xB0000000 –
0xBBFFFFFF

192 0x10000000 –
0x1BFFFFFF

IP5/7/9/17 0x09 0xD0000000 –
0xDFFFFFFF

256 0x10000000 –
0x1FFFFFFF

IP5/7/9/17 0x0D 0xE0000000 –
0xEFFFFFFF

256 0x10000000 –
0x1FFFFFFF

Table A-5 Dual VME-bus Address Mapping

System CPU VME
Modifier

Kernel Address
VME0

Kernel Address
VME1

Size
(MB)

VME Address
 Range

IP5/7/9/17 0x9 0xD8000000–
DFFFFFFF

D0000000–
D7FFFFFF

128
128

18000000–
1FFFFFFF

IP5/7/9/17 0xD 0xE8000000–
EFFFFFFF

E0000000–
E8000000

128
128

18000000–
1FFFFFFF
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Table A-6 describes the mapping between the address generated by a VME
device and physical memory. You can perform A32 master addressing on the
IP5, IP7, IP9, and IP17 in either mapped or unmapped mode.

On POWER Series workstations, ranges of VME-bus address space were
mapped one-to-one with K2 segment addresses. This made accessing the
VME bus easy but was also limiting. Only a small amount of K2 space is
available for use by VME, so very little of the VME address space was made
available. Even worse, for dual VME-bus systems, the space previously
available was now cut in half as it was shared between the two buses.

The CHALLENGE series supports up to five VME buses. Since K2 space is a
limited resource, and dividing up what is available by five would make the
extra VME buses next to useless, a new approach was tried. The
CHALLENGE series does not have a direct K2 address map into VME-bus
space. Each VME bus adapter has the ability to map fifteen 8 MB windows
of VME-bus space into K2 space. These windows can be slid around at will
to give the illusion of a much larger address space.

To access a VME space, a user must allocate a PIO map, which provides a
translation between a kernel address and VME space. These mappings can
be “FIXED” or “UNFIXED.” As on POWER Series platforms, a FIXED
mapping is a one-to-one mapping of a range of VME-bus space into the
driver’s address space. An UNFIXED window takes advantage of the
sliding window ability on the CHALLENGE series, which supports both
FIXED and UNFIXED mappings.

Table A-6 A32 VME-bus/Physical Address Mapping

System CPU VME Address Physical Address Size
(MB)

VME
Modifier

Map

IP4/6/12 0x0 –
0x0FFFFFFF

0x0 –
0x0FFFFFFF

256 0x9 No

IP5/7/9/17 0x0 – 0x0FFFFFFF 0x0 –
0x0FFFFFFF

256 0x9 No

IP5/7/9/17 0x80000000 –
0x8FFFFFFF

0x –
0x0FFFFFFF

256 0x9 Yes

IP19/21 Must be mapped
by the driver

Must be mapped
by the driver
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In an UNFIXED map, VME-bus space cannot be accessed directly; instead,
access is provided through special bcopy() routines used to move data
between VME space and kernel buffers. While it is not always possible to get
a FIXED mapping, an UNFIXED mapping is always available. The special
bcopy() routines work for both FIXED and UNFIXED mappings. On
POWER Series and earlier workstations, UNFIXED mappings are treated as
FIXED mappings.

The PIO mapping routines also have a general interface that allows them to
be used for mapping in bus spaces other than VME.

The support routines for PIO mapping are:

These PIO maps are normally set up in the driver’s drvedtinit() routine.

pio_mapalloc Allocate a PIO map.

pio_mapaddr Map bus space to a driver accessible address (FIXED maps only).

pio_mapfree Free a previously allocated PIO map.

pio_badaddr Check to see whether a bus address is equipped.

pio_wbadaddr Check to see whether a bus address is equipped.

pio_bcopyin Copy data from bus space to kernel buffer.

pio_bcopyout Copy data from kernel buffer to bus space.
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VME-bus Space Reserved for Customer Drivers

Table A-7 shows the VME-bus space reserved for customers.

Note: For information that may not have been available when this guide
went to press, refer to the comments in the /var/sysgen/system/irix.sm file.

Table A-7 VME-bus Space Reserved for Customer Drivers

Space VME Modifier VME Address

A16 0x2D 0x6000 – 0x7FFF

A16 0x29 0x6000 – 0x7FFF

A24 0x3D 0x800000 – 0x9FFFFF

A24 0x39 0x000000 – 0xFFFFFF

A32 0x09 0x1A000000 – 0x1BFFFFFF

A32 0x09 0x1E000000 – 0x1FFFFFFF
(IP5/7/9/17 Only)

A32 0x0D 0x1E000000 – 0x1BFFFFFF
(IP5/7/9/17 Only)

A32 0x09 0x20000000 – 0x3FFFFFFF
(IP19 and IP21 only)

A32 0x0D 0x20000000 – 0x3FFFFFFF
(IP19 and IP21 only)
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POWER Indigo 2 and POWER CHALLENGE M Drivers

For POWER Indigo2 or POWER CHALLENGE M processors, uncached
(K1 segment) writes to main memory must be double-word (64-bit) writes,
and they must be aligned on a double-word boundary. The reason for this
has to do with the POWER Indigo2’s hardware support for ECC-protected
memory. Since the ECC calculation requires that data be written to main
memory in 64-bit (8-byte) chunks, smaller (1-, 2-, and 4-byte) uncached
writes to main memory tend to produce memory corruption. Cached
accesses (both read and write), as well as uncached read operations do not
cause problems; neither do accesses that are not to main memory, such as
device register reads and writes.

Any device driver that performs uncached writes to main memory must
always do writes in 8-byte quantities.1 If the driver needs to write a smaller
piece of memory, then it must do the write as a read-modify-write operation
of an 8-byte piece of memory. For example, a driver with code like the
following (assuming that the structure is being accessed uncached), would
corrupt memory:

struct foo_s {
    char    b0;
    char    b1;
    char    b2;
    char    b3;
    char    b4;
    char    b5;
    char    b6;
    char    b7;
} bar1;

driver_write_bar1_b3 ()
{
    bar1.b3 = 5;
}

Instead, it would have to be modified to perform a read-modify-write
operation on the whole double-word containing b3, as in the following
example (on a big-endian system):

1 Access to device registers does not fall under this restriction.
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struct foo_s {
    union {
        __uint64    dw;    /* A 64-bit quantity */
        struct {
            char    b0;    /* READ ONLY */
            char    b1;    /* READ ONLY */
            char    b2;    /* READ ONLY */
            char    b3;    /* READ ONLY */
            char    b4;    /* READ ONLY */
            char    b5;    /* READ ONLY */
            char    b6;    /* READ ONLY */
            char    b7;    /* READ ONLY */
        } byte;
    } dw0;
} bar1;

driver_write_bar1_b3 ()
{
    bar1.dw0.dw = (bar1.dw0.dw & ~(0xff<<32)) | (5<<32);
}

If at all possible, use cached accesses to memory, along with cache coherency
operations where necessary, instead of uncached operations. Cache
coherency operations are necessary only for data shared by the CPU and a
device that needs to perform DMA. See “Data Cache Write Back and
Invalidation” on page 321 for more information on use of cache coherency
operations.
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Sharing Data Between CPU and Peripheral Devices

To avoid memory contamination, the CPU and any other device capable of
DMA must not both be allowed to write data to separate parts of a double-
word in memory. Since CPU accesses to smaller portions of a double-word
are performed as read-modify-write operations, they are not atomic, and
could be interleaved with data written by a device between the CPU read
operation and the CPU write operation. Make sure that data written by a
device does not fall within the same double-word as data written by the
CPU.

Using mmap()

If you have a driver that allows a process to access main memory uncached
through the mmap() call, that process must not write the memory using
operations that write less than 8 bytes at a time. Again, this restriction does
not apply to accesses to device registers, or to accesses to cached memory.
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B. SCSI Controller Error Messages

This appendix lists many common error messages. It contains the following
sections:

• “Introduction” on page 334

• “Sense Key Information” on page 335

• “SCSI Driver Error Messages” on page 340

• “SCSI Driver Debugging Messages” on page 342

• “SCSI States and Phases” on page 344

This appendix lists the error strings printed by the device drivers tpsc, dksc,
and, in some cases, devscsi.
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Introduction

In early IRIX releases, the differential SCSI dual-channel controller board
and the dksc driver printed the information differently; in IRIX 4.0.1, they
began to use the same form. In IRIX 5.x and later releases, the differential
SCSI dual-channel controller board driver reports the error message in the
same format as the integral SCSI controller driver.

The error message format for IRIX 3.x and 4.x was:

sense codes. key%x asc%x asq%x

Arguments

key the number from Table B-1.

asc (additional sense code) from Table B-2.

asq (additional sense qualifier) sometimes provides additional
information.

Note: Sometimes, there is only one possible asq for a given asc, and many
SCSI devices return nonstandard asq values.

The asq tends to be more vendor-specific, although the IEEE SCSI 2
specification defines the “standard” sense qualifiers.

For IRIX 5.x and 6.x, the integral SCSI controller on your system normally
prints messages in the forms below, corrected for the two Western Digital
bus controllers:

WD93 Bus # tarsct # lun # message

or

wd95_(bus)d(target); sense key {num} ({string}) asc{num}

Arguments

• the first # (or d for the wd95) is the SCSI adapter involved (0 for all
systems except those with the IO3 (input/output board), which
supports up to four adapters, numbered 0-3).

• the second #, # pair is printed only if you know which device is causing
the problem.
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In a number of cases, a phase and, possibly, a state are printed. These error
codes come from the files /usr/include/sys/scsidev.h and /usr/include/sys/scsi.h.

The state and phase meanings are listed in Table B-5 and Table B-6. A few
comments have been added. Some of the messages are also included.

Sense Key Information

Table B-1 and Table B-2 map error codes to sense keys.

Table B-1 Primary Sense Key Information

Message Sense Key Most Common Cause(s)

No sense 0x0 No error information available

Recovered error 0x1 The device recovered by itself

Device not ready 0x2 No media or not spun up

Media error 0x3 An actual media problem

Device hardware error 0x4 Usually a device hardware error

Illegal request 0x5 Invalid command or data issued

Unit attention 0x6 Device was reset or power-cycled

Data protect error 0x7 Usually device is write protected

Unexpected blank media 0x8 Tried to read at end of a tape

Vendor unique error 0x9 Varies

Copy aborted 0xa Copy cmd aborted by host (not used)

Aborted command 0xb Target aborted command

Search data successful 0xc Search data command OK (not used)

Volume overflow 0xd Tried to write past EOT on tape

Reserved (0xE) 0xe should not be seen

Reserved (0xF) 0xf should not be seen
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While Table B-1 helps to identify an error, Table B-2 provides further
information on the cause of an error. The ASQ (additional sense qualifier) is
printed numerically when its value is not 0 (in 4.0; in 3.3.3, it is always
printed by the differential SCSI dual-channel controller). Missing numerical
values are not printed either because they are not defined or because the
drivers treat them specially.

Table B-2 is provided primarily so you can look up the additional sense
codes in the device manual. Some are self-explanatory, others quite obscure.

Table B-2 Additional Sense Code

Addition Sense Qualifier Message Additional Sense Code

No index/sector signal 0x01

No seek complete 0x02

Write fault 0x03

Not ready to perform command 0x04

Unit does not respond to selection 0x05

No reference position 0x06

Multiple drives selected 0x07

LUN communication error 0x08

Track error 0x09

Error log overflow 0x0a

Write error 0x0c

ID CRC or ECC error 0x10

Unrecovered data block read error 0x11

No address mark found in ID field 0x12

No address mark found in Data field 0x13

No record found 0x14

Seek position error 0x15

Data sync mark error 0x16
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Read data recovered with retries 0x17

Read data recovered with ECC 0x18

Defect list error 0x19

Parameter overrun 0x1a

Synchronous transfer error 0x1b

Defect list not found 0x1c

Compare error 0x1d

Recovered ID with ECC 0x1e

Invalid command code 0x20

Illegal logical block address 0x21

Illegal function 0x22

Illegal field in CDB 0x24

Invalid LUN 0x25

Invalid field in parameter list 0x26

Media write protected 0x27

Media change 0x28

Device reset 0x29

Log parameters changed 0x2a

Copy requires disconnect 0x2b

Command sequence error 0x2c

Update in place error 0x2d

Tagged commands cleared 0x2f

Incompatible media 0x30

Media format corrupted 0x31

Table B-2 (continued) Additional Sense Code

Addition Sense Qualifier Message Additional Sense Code
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No defect spare location available 0x32

Media length error 0x33a

Toner/ink error 0x36

Parameter rounded 0x37

Saved parameters not supported 0x39

Medium not present 0x3a

Forms error 0x3b

Invalid ID msg 0x3d

Self config in progress 0x3e

Device config has changed 0x3f

RAM failure 0x40

Data path diagnostic failure 0x41

Power on diagnostic failure 0x42

Message reject error 0x43

Internal controller error 0x44

Select/reselect failed 0x45

Soft reset failure 0x46

SCSI interface parity error 0x47

Initiator detected error 0x48

Inappropriate/illegal message 0x49

Command phase error 0x4a

Data phase error 0x4b

Failed self configuration 0x4c

Overlapped commands attempted 0x4e

Table B-2 (continued) Additional Sense Code

Addition Sense Qualifier Message Additional Sense Code
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a. Specified as tape only

b. DAT only; may be in SCSI3

Media load/unload failure 0x53

Unable to read table of contents 0x57

Generation (optical device) bad‘ 0x58

Updated block read (optical device) 0x59

Operator request or state change 0x5a

Logging exception 0x5b

RPL status change 0x5c

Self diagnostics predict unit will
fail soon

0x5d

Lamp failure 0x60

Video acquisition error/focus
problem

0x61

Scan head positioning error 0x62

End of user area on track 0x63

Illegal mode for this track 0x64

Decompression error 0x70b

Table B-2 (continued) Additional Sense Code

Addition Sense Qualifier Message Additional Sense Code
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SCSI Driver Error Messages

Table B-3 lists the messages that are printed by the wd93 SCSI driver.
(Messages for the wd95 SCSI driver are similar). After the message is
printed, the driver resets the SCSI bus. These messages are from IRIX 5.1, but
similar ones are printed by earlier releases.

Table B-3 SCSI Driver Error Messages

Error Message Comments

No memory for wd93 device array

Not enough memory for WD93 data
structures

Not enough memory for WD93 DMA
maps

These messages occur during boot if
something is seriously wrong, and
memory can't be allocated.

wd93 SCSI Bus=%d ID=%d LUN=%d:
error during abort message,
resetting bus

An upper level driver tried to issue an
ABORT message, but the expected bus
phases were not followed.

wd93 SCSI Bus=%d ID=%d LUN=%d:
SYNC negotiation error,
resetting bus

An error occurred while trying to
negotiated synchronous SCSI rates
(usually during an open or mount); the
device is left in async mode.

timeout after %d %ssec Any SCSI command that doesn't
terminate within the time limit set by the
upper level driver will result in this
message and a SCSI bus reset. The
“%ssec” part will either be “msec” or
“sec”, depending on whether it is an
integral number of seconds or not
(timeouts are passed as HZ values). This
can be caused by anything from driver
errors to hardware errors to SCSI bus
problems. The latter is the most common
cause. This message is always paired
with the standard “wd93 SCSI
Bus=%d...” message.

wd93 controller %d didn't
reset correctly

An attempt to reset the controller chip
failed; this is a catastrophic (usually)
hardware error.
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wd93 SCSI Bus=%d ID=%d LUN=%d:
SCSI cmd=0x%x <MSG>. Resetting
SCSI bus wd93 SCSI Bus=%d:
<MSG>. Resetting SCSI bus

Used with a number of other messages
when a SCSI bus timeout or other error
on the SCSI bus occurs. The SCSI bus is
reset. The long form (with target, and the
first byte of the SCSI command) is shown
when the driver is connected to a known
target. The short form is shown when no
target is connected (referred to as
“cmdabort” in other messages).

Spurious wd93 interrupt, no
connected channel

Occurs when the driver is responding to
a SCSI bus phase where some device
should be connected (active), but in fact,
none is.

wd93 SCSI Bus=%d ID=%d LUN=%d:
SCSI bus parity error

A SCSI bus parity error was detected
during a data transfer. Usually a cabling
problem.

wd93 SCSI Bus=%d ID=%d LUN=%d:
host memory parity error
during DMA

On command completion (normal or
error), the DMA hardware tells us that a
parity error occurred during data
transfer to memory. Usually a system
hardware problem.

Table B-3 SCSI Driver Error Messages

Error Message Comments
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SCSI Driver Debugging Messages

The information listed in Table B-4 is sometimes useful for debugging
drivers (kernel or devscsi). It dumps out information on the current
command and the sense info obtained, after a SCSI “check condition” status.
Printed only when the variable wd93_printsense is set non-zero in master.d/
wd93.

Table B-4 Error Messages Useful for Debugging

Error Message Comments

wd93 SCSI Bus=%d ID=%d LUN=%d:
check condition start request
sense

The check condition was detected, a
request sense is started.

wd93 SCSI Bus=%d ID=%d LUN=%d:
sense failed wd93 status %d,
scsi status 0x%x

The request sense command failed.
Usually bad device firmware, or SCSI
bus problems.

wd93 SCSI Bus=%d ID=%d LUN=%d:
sense key=0x%x (%s) ASC=0x%x
(%s)

The request sense succeeded, the driver
status and the SCSI status are printed.
The ASC is printed if valid, and the ascii
strings corresponding to the sense key
and the ASC (additional sense code) are
also printed, if they are known to the
driver.

Hex sense data: If wd93_printsense is > 1 , then the
raw data returned by request sense are
dumped in hex with this header.

reselect without ID The SCSI bus phase indicates a
reselection, but the reselecting device's
ID could not be determined. Usually a
cabling problem. Printed with the
“cmdabort” message.

illegal disconnection
interrupt: phase %x

A SCSI bus disconnect was detected at
an unexpected point. The wd93 phase
register (see sys/wd93.h) is printed.
Printed with the “cmdabort” message.



SCSI Driver Debugging Messages

343

unexpected message in %x,
phase %x

A SCSI bus message in phase was found,
but the message byte was not expected.
Printed with the “cmdabort” message.

Hardware error The wd93 reported no active phase, but
should have. Normally a hardware
problem. Printed with the “cmdabort”
message.

Too much data %s (probable SCSI
bus cabling problem)

Too many REQ's were received for the
amount of data programmed into the
SCSI controller. Usually a SCSI bus
cabling problem, but can also occur
when the byte count passed to the wd93
driver doesn't match the way that the
device interprets the bytes in the SCSI
command. Followed by either
“requested” or “sent”, depending on
direction of transfer. Printed with the
“cmdabort” message.

Unexpected info phase %x,
state %x

Another unexpected bus phase. The
wd93 phase and state registers are
printed (see sys/wd93.h). Printed with the
“cmdabort” message.

wd93 SCSI Bus=%d ID=%d LUN=%d:
Unexpected extended msgin type
%x, len %x

A special case of an unexpected message.
Extended messages occur when the first
byte is 001; subsequent bytes indicate the
length and type. The only extended
messages currently handled are
synchronous negotiation initiated by the
target.

unexpected reselection A reselection of the host was attempted,
but the host doesn't think that any target
is both disconnected and active. Usually
a SCSI bus problem, but might be a
firmware bug also. Printed with the
“cmdabort” message.

Table B-4 Error Messages Useful for Debugging

Error Message Comments
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SCSI States and Phases

Several of the SCSI states and phases are listed in Table B-5. There are other
possible states and phases, but they rarely occur. The SCSI states and phases
are listed in the files /usr/include/sys/wd93.h and /usr/include/sys/wd95.h and
perhaps in scsi.h. The comments below have been extracted from these files
and supplemented with additional information.

wd93 SCSI Bus=%d ID=%d LUN=%d:
I/O address %x not correctly
aligned, can't DMA
disconnected on non-word
boundary (addr=%x, 0x%x left),
can't DMA

Silicon Graphics DMA hardware
requires word (32-bit) alignment at start
of any DMA (low two bits must be 0 in
the address). If not, one of the following
two messages is issued, depending on
whether this is the start of a command or
a data phase continued on a reselection.
The latter case can occur if a device
disconnects and reselects, even if it
doesn't go to data phase, if the DMA
count remaining is non-zero. This is
because it is too difficult to handle the
case where the device disconnects and
then reselects just to go to status phase.
Such devices are inefficient at best, and,
fortunately, are rare. If you must use
such a device, your only option is to
disable SCSI disconnects altogether (in
master.d/wd93).

ID=%d LUN=%d not found in
active list

Typically occurs due to SCSI bus
problems or to driver bugs. A reselection
occurred with valid data and bus phases
at the same time as the driver attempted
to select a device to initiate a command,
but the reselecting device does not
appear to have a command active.

Table B-4 Error Messages Useful for Debugging

Error Message Comments
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Note: “Out” is from the CPU to the SCSI device in these descriptions, and
“receive” and “send” are also from the SCSI device point of view, since the
target controls all the bus phases except for initial selection.

Table B-5 SCSI State Error Messages

State Message Sense Key Comments

ST_RESET 0x00 SCSI chip reset by reset command or
power-up.

ST_SELECT 0x11 Selection of target complete (after
C93SELATN).

ST_SATOK 0x16 Select-And-Transfer completed
successfully, that is, all phases have
completed in a normal manner.

ST_TR_DATAOUT 0x18 Transfer cmd done, target requesting
data.

ST_TR_DATAIN 0x19 Transfer cmd done, target sending data.

ST_TR_STATIN 0x1b Target is sending status in.

ST_TR_MSGIN 0x1f Transfer cmd done, target sending msg.

ST_TRANPAUSE 0x20 Transfer cmd has paused with ACK.

ST_SAVEDP 0x21 Save Data Pointers message during
SAT normal state when device is
disconnecting from the bus.

ST_A_RESELECT 0x27 Reselected after disc (93A).

ST_UNEXPDISC 0x41 An unexpected disconnect device
disconnected without sending a
disconnect message; sometimes
happens when devices with removable
media have had the media removed
during a transfer.

ST_PARITY 0x43 Cmd terminated due to parity error on
the SCSI bus.
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ST_PARITY_ATN 0x44 Cmd terminated due to parity error
(ATN is asserted so that host can send a
message to device; the transfer is just
aborted).

ST_TIMEOUT 0x42 Time-out during Select or Reselect, that
is, the device never responded to an
attempt to select it; normally seen only
during hardware inventory probing,
but sometimes happens after a SCSI bus
reset if device takes a long time to
recover from the reset or is powered off.

ST_INCORR_DATA 0x47 Incorrect message or status byte.

ST_UNEX_RDATA 0x48 Unexpected receive data phase device
tried to send more data than the SCSI
chip is programmed to expect. This can
be OK, as when a high-level request is
made to transfer more data than the
DMA hardware can map on a single
request. In this case, simply reprogram
the DMA hardware for the next chunk
of data and restart the transfer (but
don’t send a new SCSI command to the
device). When printed as part of an
error message, it can sometimes be
caused by a SCSI cabling problem, or
(particularly with devscsi user drivers)
by a mismatch in the byte count given
to the driver and the byte count implied
by the SCSI command sent to the
device.

ST_UNEX_SDATA 0x49 Unexpected send data phase (same as
above, but device is asking for more
data).

ST_UNEX_CMDPH 0x4a Unexpected cmd phase

Table B-5 (continued) SCSI State Error Messages

State Message Sense Key Comments
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ST_UNEX_SSTATUS 0x4b Unexpected send status phases occur at
the end of SCSI command (that is, byte
count remaining is 0); if they happen at
other times, the chip interrupts. This
can happen when you ask a device for
more data than it can give you, and in
this case, you just return a short I/O
count to the caller. When printed as part
of an error message, it usually implies a
cabling or termination problem.

ST_UNEX_RMESGOUT 0x4e Unexpected request message out phase
usually indicates a SCSI cabling
problem.

ST_UNEX_SMESGIN 0x4f Unexpected send message in phase
usually indicates a SCSI cabling
problem; also happens when device
sends a disconnect message in normal
use when preparing to disconnect from
the bus.

ST_RESELECT 0x80 WD33C93 has been reselected.

ST_93A_RESEL 0x81 Reselected while idle (93A).

ST_DISCONNECT 0x85 Disconnect has occurred.

ST_NEEDCMD 0x8a Target is ready for a cmd.

ST_REQ_SMESGOUT 0x8e REQ signal for send message out.

ST_REQ_SMESGIN 0x8f REQ signal for send message in above 3
usually seen only during sync
negotiations.

Table B-5 (continued) SCSI State Error Messages

State Message Sense Key Comments
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Table B-6 lists phases during Select-and-Transfer commands.

Table B-6 Phases During a Select-and-Transfer Command

Phase Message Sense Key Comments

PH_NOSELECT 0x00 Selection not successful.

PH_SELECT 0x10 Selection successful.

PH_IDENTSEND 0x20 Identify message sent (during
selection when sending initial
command to a device). Phase 30
indicates none of the cmd bytes
have yet been sent; every cmd byte
sent increments that by one.

PH_CDB_START 0x30 Start of CDB transfers.

PH_CDB_6 0x36 6th cmd byte sent.

PH_CDB_10 0x3a 0xAth cmd byte sent.

PH_CDB_12 0x3c 0xCth cmd byte sent.

PH_SAVEDP 0x41 Save data pointers.

PH_DISCRECV 0x42 Disconnect message received.

PH_DISCONNECT 0x43 Target disconnected.

PH_RESELECT 0x44 Original target reselected.

PH_IDENTRECV 0x45 Correct identify (right LUN)
message received (during
reselection).

PH_DATA 0x46 Data transfer completed (expect
status next).

PH_STATUSRECV 0x50 Status byte received (expect cmd
complete next).

PH_COMPLETE 0x60 Command complete message
received; SCSI command is
finished, and SCSI bus is free.
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C. Device Driver Migration Notes

This appendix explains how to make an IRIX 4.x device driver compliant
with the IRIX 5.3 and 6.0 environments.

This appendix contains the following sections:

• “Introduction” on page 349

• “IRIX 4.x to 5.x Migration” on page 352

• “IRIX 5.2 to 5.3 Migration” on page 359

• “Migration to IRIX 6.0” on page 366

Introduction

Intended Audience and Prerequisites

This appendix is intended to aid in the planning of device driver migration
from previous versions of IRIX to the IRIX 5.3 and IRIX 6.0 environments. It
assumes you are familiar with the existing material on developing IRIX
device drivers.

Background

Before you upgrade a perfectly good device driver that runs on an older
version of IRIX, compute the time it will take to rewrite your driver to run
under the new operating systems against the actual performance
improvement you hope to achieve. In some cases, it may be to your
advantage to continue using an older driver by recompiling its source code
under the new operating system. For those cases where it is to your
advantage to modify an existing driver, the following notes are provided.
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IRIX 5.x

IRIX 5.x is a binary-compatible upgrade to IRIX 4.0.x at the user program
level. However, due to the extensive internal changes to the IRIX kernel,
device drivers and other kernel components, such as STREAMS modules
and file systems, must be revised and recompiled for the IRIX 5.x
environment. It is possible that changes to IRIX 5.3 will become effective
after the publication of this manual.

Most of the changes in the IRIX kernel result from supporting the SVR4
interfaces for both applications programs and for certain kernel internal
interfaces. The IRIX 5.x kernel interfaces are:

• SVR4 Device Driver Interface/Driver Kernel Interface (SVR4 DDI/
DKI) described in the IRIX Device Driver Reference Pages. The IRIX 5.x
operating system implementation uses a multiprocessor version of
DDI/DKI developed for Silicon Graphics platforms.

• SVR4 STREAMS Interface, which is documented in the UNIX® System
V Release 4 STREAMS Programming Guide.

• IRIX 5.x Data Link Provider Interface (DLPI) (relevant to STREAMS
protocol stacks and to network drivers). This standard interface,
defined by IEEE Standard 802.3, permits flexible integration protocol
stacks and their “peaceful coexistence” with the TCP/IP stack. Protocol
stacks register themselves with DLPI, as do the network drivers present
in the system. The new protocol stack is thus isolated from the specific
network hardware support present in the system.

IRIX 6.0

IRIX 6.0 is the 64-bit operating system for all Silicon Graphics systems that
use MIPS R8000 series microprocessors. Because the IRIX 6.0 kernel is itself
a 64-bit object, device drivers must be ported to the 64-bit operating system.

Migration Overview

The migration of drivers from an IRIX 4.0.5 environment to an IRIX 5.x
environment is straightforward. The migration of several typical IRIX
drivers required changes to less than 10% of the source lines. Most of these
changes were in declarations. Naturally, extremely complex drivers that
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reached into the IRIX kernel to access services not typically employed in
device drivers will have to change, as many of these interfaces have been
replaced or altered. In any case, you are responsible for getting your device
drivers to work across operating system and platform upgrades.

The changes to drivers fall in a number of broad categories:

• Changes in drivers that are a result of changes in the SVR4 API
(Application Programmatic Interface) as compared to the SVR3 API.

• Changes to the declaration of the DKI interface, such as additional
arguments to the driver calling interfaces and, in some cases, different
procedure typing (mostly to make them void).

• Changes to use the DDI interface instead of the now obsolete IRIX 4.0.x
interfaces for kernel service invocation. This may include changes that
result from the changes in the semantics of the DDI. There are also some
SGI interfaces defined for services omitted by DDI, such as cache
flushing and address map setup.

• Changes to accommodate the architecture of the CHALLENGE/Onyx
family, especially in the richness of its bus structure.

• Changes to accommodate the architecture of the Indigo2, notably the
EISA bus. Since this is the first Silicon Graphics system to use this bus,
there are no migration issues.

• Changes in network device drivers and protocol stacks to make use of
the Data Link Provider Interface (DLPI). See the dlpi(7) man page.

• Changes to take advantage of the IRIX 5.x dynamically loadable kernel
module support. This permits device drivers to be loaded into a
running system without rebooting. This is discussed in the mload(4)
man pages.

• Changes to the SCSI driver interface to unify all supported SCSI
controllers. See Chapter 5, “Writing a SCSI Device Driver,” for details.
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IRIX 4.x to 5.x Migration

This section serves as a preliminary guide to planning the migration of
device drivers from the IRIX 4.0.x environment to IRIX 5.x. The discussion
below assumes that you already have the device driver working in IRIX
4.0.x, and need only to migrate it to IRIX 5.x.

SVR4 API Changes

The SVR4 API changes the size of a number of system structures to
accommodate the changes in Expanded Fundamental Types. (Briefly, a
number of fields, such as the user and group ID and device numbers are
changed from 16 to 32 bits.) For driver work, the most important impact of
these API changes is in the access to the major and minor numbers. The
device number is now a 32-bit quantity, by changing the underlying type of
the typedef dev_t. Access to the major and minor numbers can no longer be
done with the 8-bit shift-and-mask technique common in prior versions of
UNIX. (This is especially true as the split of the 32 bits between major and
minor is a “hidden” parameter.) DDI defines a series of functions/macros to
provide access to the major and minor numbers.

STREAMS Changes

For STREAMS, there are the standard SVR3 (4.x) to SVR4 (5.x) STREAMS
changes, most notably in the arguments to the driver’s open routine. For
further details, please refer to STREAMS Modules and Drivers, UNIX SVR4.2.
UNIX Press, 1992.

DDI Changes

The IRIX Device Driver Reference Pages documents the routines that DDI
supports. Generally, these have analogs to routines supported in prior
versions of IRIX, but the syntax and semantics may differ, and the driver
may need to have minor logic updates to accommodate these changes. In
some drivers, the changes to support DDI simplify the driver by invoking
common service interfaces in DDI instead of performing the work in the
driver.
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As it stands, DDI is insufficient to write a driver using only the routines in
DDI. The lacks are in areas specific to a particular architecture or family, such
as cache flushing and device register addressability in complex bus
architectures. SGI has defined a number of additional service interfaces to
support these needs.

DKI Changes

The changes from the new DKI affect the driver routines called by the rest of
the IRIX kernel, both the *devsw entry points and the interrupt handlers. The
details of these interfaces are described in the IRIX Device Driver Reference
Pages . The primary changes are:

• Device numbers are passed as a dev_t rather than as an int in prior IRIX
versions. As mentioned elsewhere, the DDI contains new functions to
access the major and minor numbers. Note that open takes a dev_t *,
while read and write take a dev_t (no indirection).

• Many of the entry points (open, close, read, write) take a new
argument that is an opaque credentials structure. (It is opaque in the
sense that the device driver never examines the internal makeup of the
structure.) This is used to call the DDI drv_priv() routine, which takes
the place of checking u.u_uid == 0. This permits different models of
privileges to be used, for example, in a trusted system.

• The read and write routines take a uio_t *, a pointer to a structure that
defines the addresses and lengths of the data in the user space. (The
IRIX Device Driver Reference Pages describe this structure. It is defined in
/usr/include/sys/uio.h.) Previously, this information was computed in the
driver from the u vector. The driver typically passes this structure to a
DMA setup routine such as the DDI uiophysio() or the Silicon Graphics
enhancement, biophysio(), which is nearly identical to iophysio(),
except that it takes a block number instead of a file offset).

• Generally, drivers can no longer access the u vector directly. DDI
defines access routines for fields in the u vector. Direct access to the u
vector tends to make a driver more dependent on specific aspects of the
system than is desirable. This also extends to access u.u_error. DKI
expect to return the error value (0 indicates no error), and are not
supposed to set u.u_error.

• Interrupt routines are now of type void.
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Addressability

The driver needs to arrange for addressability of the device registers in the
CHALLENGE/Onyx family and, in the interest of having common code for
VME drivers between the POWER Series™ and these systems, drivers must
set up the appropriate mappings. This is done by the new pio_map()
routines, which have similar calling interfaces to the dma_map() routines
from prior versions.

CHALLENGE/Onyx Family Support

The CHALLENGE/Onyx family architecture has added new features and
restrictions on the drivers, configuration, and other tools that could not be
dealt with by the existing software framework. Supporting these systems
with the common source used for all Silicon Graphics products necessitated
changes in the way kernels are configured and support in for the new
hardware features.

Some of the CHALLENGE series architecture differences include:

• Multiple types of bus support (such as VME, GIO, SCSI).

• VME buses are not automatically mapped into known K2 segment
addresses.

• VME-bus controllers cannot access physical memory directly.

• Only a portion of the VME-bus A32 space can be mapped into the
kernel at any one time.

These differences cause the following software changes:

1. The need for a general mechanism for probing for devices on multiple
and different types of buses caused changes to the VECTOR line to
specify which type of bus, which bus of that type, which address space
on that particular bus, which address on that bus, and so on. Since there
are no automatic K2 addresses, the addresses are abstracted and more
meaningful than they were in the past. Different buses require different
types of information, as well. VME has interrupts specifying both a
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vector and IPL, whereas EISA does not. So, a bus-specific portion was
added to the edt structure. This caused the need for new VECTOR line
probing specifications, as well.

2. Since there are no known K2 addresses that correspond to VME-bus
locations, user-level VME drivers can no longer be performed through /
dev/mmem, but instead, they now have their own /dev/vme device
interface. This also affects kernel drivers. Kernel drivers must map in
the address space of their controllers before they can access them. This
is done with special pio_mapping routines, similar to existing DMA
mapping routines. This is further complicated by the fact that, for VME
A32 space, pio_mapping registers are a limited resource. Only 13*8 MB
can be mapped into the kernel at any one time; so 12 of these registers
can be locked down and the thirteenth used as a floater to be shared by
whoever needs it, from drivers to lboot .

Note: A32 pio_mappings start and end on 8 MB boundaries. The
address you map plus the length of the mapping must not cross an 8 MB
boundary.

3. Since VME-bus controllers cannot access physical memory directly, you
can no longer pass the controller a K0 address and expect it to work.
EVERYTHING has to be DMA mapped. For example, in the past, IOPB
addresses were normally converted to K0 addresses and passed to the
controller. Now the IOPBs must be DMA mapped.

4. Some new functionality has been added to the VME driver interface.
Since most VME boards can have their IRQ vector and ipl programmed
through software, it is now possible to allocate VME vectors
dynamically, so they need not be specified on the VECTOR line. This
frees you from worrying about finding one that is not already in use.
Simply call vme_ivec_alloc() to allocate a free vector, then call
vme_ivec_set() to register your interrupt routine.

5. The driver interface now uses the SVR4 MP DDI/DKI interface except
for the Silicon Graphics-specific routines, such as pio_map() and
dma_map(). For example, entry points such as open, close, read, and
write all have slightly different arguments and, in some cases, different
procedure types, in 5.x than they had in earlier versions.

6. The DDI/DKI drvrflags variable, not the flag in the master.d file, is used
for the driver to indicate that it is MP-safe.
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Kernel Configuration Issues

The highly flexible architecture of the CHALLENGE family requires
extensions to the descriptions of devices in the IRIX kernel configuration
process, specifically to the VECTOR lines in the system configuration files.
The new VECTOR line for VME would look like the following:

VECTOR: bustype=VME module=jag ipl=1 ctlr=0 adapter=0
iospace=(A16S, 0, 0x800) probe_space=(A16S, 0, 1)

Note: The VECTOR line is still all one line. It is broken here to fit on the page.

New fields are bustype, which in this case is VME. The ctlr field takes the
place of unit in 4.0.x. The adapter field specifies which VME bus.
(CHALLENGE systems can be configured to have multiple VME buses).

The iospace triple is used to pass in the address of the controller. The first
argument defines the address space. Valid values are A16S, A16NP, A24S,
A24NP, A32S, A32NP, A64S, A64NP.    The second argument is the address
with the specified address space. The third argument is the length of the
mapping. The probe_space line performs a badaddr like function (that is, it
tries to read the specified address and catch any errors) on the specified
address. In this case, the arguments are the address space, address within
that space, and the size of the read.

There is also an exprobe_space extended probe space defined as follows:

exprobe_space=(r,A16S,0,2,0xfdd1,0xffff)

The difference between it and the 4.0.x version of exprobe is in the
specification of the address to test.

Notice that no vector is specified. The old vector= primitive is still supported
for boards that are jumpered. Generally, drivers would use the
vme_ivec_alloc() and vme_ivec_set() routines to allocate and set the vector.

Equipped Device Table (EDT) Changes

The form of the structures for the Equipped Device Table (EDT) have
changed for the same reasons as the VECTOR line in the configuration (the
VECTOR information is used as initialization values for the EDT entries).
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The following information is from /usr/include/sys/edt.h:

#define NBASE 3
typedef unsigned long iopaddr_t;
typedef struct iospace {
   unchar    ios_type;     /* io space type on the adapter */
   iopaddr_t ios_iopaddr;  /* io space base address */
   ulong     ios_size;
   caddr_t   ios_vaddr;    /* kernel virtual address */
} iospace_t;

typedef struct edt {
   uint_t    e_bus_type;   /* vme, scsi, eisa... */
   unchar    v_cpuintr;    /* cpu to send intr to */
   unchar    v_setcpuintr; /* cpu field is valid */
   uint_t    e_adap;       /* adapter */
   uint_t    e_ctlr;       /* controller identifier */
   void*     e_bus_info;   /* bus-dependent info */
   int       (*e_init)();  /* device init/run-time probe */
   iospace_t e_space[NBASE];
} edt_t;

#define    e_base e_space[0].ios_vaddr
#define    e_base2 e_space[1].ios_vaddr
#define    e_base3 e_space[2].ios_vaddr
#define    e_iobase e_space[0].ios_iopaddr
#define    e_iobase2 e_space[1].ios_iopaddr
#define    e_iobase3 e_space[2].ios_iopaddr

The e_bus_info field points to the following structure:

typedef struct vme_intrs {
   int (*v_vintr)();        /* interrupt routine */
   unsigned    char v_vec;  /* vme vector */
   unsigned    char v_brl;  /* interrupt priority level */
   unsigned    char v_unit; /* software identifier */
} vme_intrs_t;

The following fragment illustrates an edtinit routine using the new
structures and the new pio_* routines.

mydrvredtinit(struct edt *e)
{
   piomap_t *piomap;
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   vme_intrs_t *intrs = e->e_bus_info;
[...]
 piomap = pio_mapalloc(e->e_bus_type, e->e_adap,
   &e->e_space[0], PIOMAP_FIXED, ”mydrvr”);

 if (piomap == 0) {
      /* This could fail because the adapter isn’t valid
       * or invalid addresses or there are no more
       * fixed mappings available in the case of A32.
       */
      printf(“mydrvr not installed\n”);
      return;
   }

 e->e_base = pio_mapaddr(piomap, e->e_iobase);

   /* You can now use e->e_base as a normal address
    * to access your controller.
    */
[...]
/* Now allocate a VME IRQ vector and register
    * the interrupt routine.
    */

ipl = intrs->v_brl;

 vec = vme_ivec_alloc(e->e_adap);

 if (vec == -1) {
 cmn_err(CE_WARN,”mydrvredtinit: no interrupt vector\n”);
 pio_mapfree(piomap);
 return;
 }
 vme_ivec_set(e->e_adap, vec, mydrvrintr, e->e_ctlr);
[...]
}
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IRIX 5.2 to 5.3 Migration

Note: This information is preliminary and subject to change. While likely to
be correct, it is based on extracted diff listings of actual drivers migrating
between 5.2 and 5.3, so there may be errors or omissions. Please use the
information with caution.

All IRIX 5.2 kernel components, including drivers and STREAMS modules,
require some amount of work to migrate to IRIX 5.3. In the simplest cases, no
source changes are required, but changes in the size of certain kernel
structures make it necessary to recompile the same source in a 5.3 build
environment.

In certain device drivers, three types of changes from the IRIX 5.2 kernel to
the IRIX 5.3 kernel require some work:

1. Support for a multi-threaded version of TCP/IP.

This requires change in network drivers to use the new blocking
scheme instead of the older splnet() blocking scheme.

2. Incorporation of hooks for Trusted IRIX/B to allow the use of a least
privilege model.

The changes in drivers are to replace any calls to suser() or explicit
checks of u.u_uid == 0 with a corresponding call to one of the
capability check routines.

3. mbuf management scheme.

The mbuf pool is now initialized early in the system life, so drivers do
not need to call mbinit().

Standard Device Drivers

The simplest migration is for standard (non-network and non-STREAMS)
device drivers. Generally, these drivers require only recompilation, and do
not require source changes. If these drivers check for root to protect
privileged operations, however, the Trusted IRIX capabilities mechanism
requires changes similar to the following fragment:

Note: If Trusted IRIX is not installed, these map to a stub that does a simple
u.u_uid == 0 check.
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*** 30,35 ****
--- 30,36 ----
  #include “sys/pio.h”
  #include “sys/strsubr.h”
  #include “sys/ddi.h”
+ #include “sys/capability.h”

  extern time_t lbolt;

*** 1447,1453 ****
     * reasons.*/
    if (((cdp->cd_cflag & CLOCAL) ^ (cflag & CLOCAL)) &&
!       !suser()) {
            u.u_error = 0;  /* XXXrs */
            cflag &= ~CLOCAL;
            cflag |= cdp->cd_cflag & CLOCAL;
--- 1448,1454 ----
     * reasons.*/
    if (((cdp->cd_cflag & CLOCAL) ^ (cflag & CLOCAL)) &&
!       !_CAP_ABLE(CAP_DEVICE_MGT)) {
            u.u_error = 0;  /* XXXrs */
            cflag &= ~CLOCAL;
            cflag |= cdp->cd_cflag & CLOCAL;

Refer to the file sys/capability.h for a list of all capabilities.

STREAMS Modules

STREAMS modules and drivers resemble standard drivers in their
modification requirements. In general, these need only to be recompiled. A
STREAMS module should not, however, contain privilege checks because it
does not have a valid user context in which to make them.

ifnet Drivers

ifnet-based networking device drivers that queue or dequeue packets on the
ipintrq or if_snd queue must be modified to use the appropriate
IFNET_LOCK macro. Definitions of the new locking macros are in net/if.h in
an IRIX 5.3 system. Refer to Chapter 9, “Writing Network Device Drivers,”
for more information.
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Context diff of Token Ring ifnet Driver

The following fragment illustrates the changes made in one such driver (this
is for the token ring, a driver that was otherwise unchanged during these
modifications).

>>> add include file for capabilities.
*** 105,110 ****
--- 105,111 ----
  #endif
  #include “sys/dlsap_register.h”
  #endif    /* _IRIX4 */
+ #include “sys/capability.h”

  #ifdef QDBG
  struct tr_qs fvqs;

Board Initialization

This is in the board initialization routine, where the interface lock has been
set by the caller.

*** 547,552 ****
--- 548,554 ----
  {
      struct fv_info *fv = &fv_info[unit];
      struct ifnet *ifp = &fv->fv_if;
+     ASSERT(IFNET_ISLOCKED(ifp));

      if ((ifp->if_flags & IFF_RUNNING) != 0) {
          DP((“if_fvinit%d: already running\n”, fv-
>fv_unit));

>>> also in the init routine.  Release the interface lock
>>> before sleeping, reacquire it after the sleep returns.
*** 553,560 ****
          return(0);
      }

!     if (fv->fv_state < FV_STATE_OK)
          sleep((caddr_t)&fv->fv_state, PZERO|PCATCH);
      if (fv->fv_state != FV_STATE_OK) {
          return(EIO);
      }
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--- 555,565 ----
          return(0);
      }

!     if (fv->fv_state < FV_STATE_OK) {
!         IFNET_UNLOCKNOSPL(ifp);
          sleep((caddr_t)&fv->fv_state, PZERO|PCATCH);
+         IFNET_LOCKNOSPL(ifp);
+     }
      if (fv->fv_state != FV_STATE_OK) {
          return(EIO);
      }

>>> this is in the driver’s ioctl routine. ASSERT that the
>>> ioctl routine was called with interface lock held.
*** 894,899 ****
--- 899,905 ----
      struct fv_info *fv = &fv_info[ifp->if_unit];

      ASSERT(&fv->fv_ac == (struct arpcom*)ifp);
+     ASSERT(IFNET_ISLOCKED(ifp));
      switch (cmd) {
      case SIOCSIFADDR: {
          struct ifaddr *ifa = (struct ifaddr *)data;

>>> TrIRIX change for privilege check.
*** 1167,1173 ****
      case SIOC_TR_ARM: {
          TR_SIOC *sioc = (TR_SIOC*)data;

!         if (!suser()) {
              error = EPERM;
              break;
          }
--- 1173,1179 ----
      case SIOC_TR_ARM: {
          TR_SIOC *sioc = (TR_SIOC*)data;

!         if (!_CAP_ABLE(CAP_NETWORK_MGT)) {
              error = EPERM;
              break;
          }
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Interrupt Handler

This is in the interrupt handler. Acquire the interface lock. fv is a unit info
structure pointer, one element of which is the pointer to struct ifnet, the
interface structure shared with IP.

*** 1231,1236 ****
--- 1237,1243 ----
          printf(“fv%d: early interrupt\n”, unit);
          goto fvintr_ret;
      }
+     IFNET_LOCKNOSPL(&fv->fv_if);
      QDBGUP(fvints.tot,1);
      mem = fv->fv_mem;
  iloop:

 More of the interrupt handler.  Free the lock as we exit.
*** 1237,1242 ****
--- 1244,1250 ----
      /* get the type of interrupt */
      cmdsts = io->sifcmd_stat;
      if ((cmdsts&TR_STAT_INTR) == 0) {
+         IFNET_UNLOCKNOSPL(&fv->fv_if);
          goto fvintr_ret;
      }
      found++;

>>> still more of the interrupt handler.
*** 1300,1305 ****
--- 1308,1314 ----
          fv->fv_state = FV_STATE_SICK;
          }
          QDBGUP(fvints.buf,1);
+         IFNET_UNLOCKNOSPL(&fv->fv_if);
          goto fvintr_ret;

      case TR_INT_SCB_CLEAR:

>>> frame receive handler.  Lock the IP input queue to add a
packet to it.
*** 2031,2044 ****

      switch (port) {
      case ETHERTYPE_IP:
-         schednetisr(NETISR_IP);
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          ifq = &ipintrq;
                 if (IF_QFULL(ifq)) {
              IF_DROP(ifq);
              fv->fv_if.if_iqdrops++;
              goto drop;
          }
!                IF_ENQUEUE(ifq, m0);
          goto read_ret;
      case ETHERTYPE_ARP:
          if (sri) {
--- 2041,2057 ----

      switch (port) {
      case ETHERTYPE_IP:
          ifq = &ipintrq;
+         IFQ_LOCK(ifq);
                 if (IF_QFULL(ifq)) {
              IF_DROP(ifq);
              fv->fv_if.if_iqdrops++;
+             IFQ_UNLOCK(ifq);
              goto drop;
          }
!         IF_ENQUEUE_NOLOCK(ifq, m0);
!         IFQ_UNLOCK(ifq);
!         schednetisr(NETISR_IP);
          goto read_ret;
      case ETHERTYPE_ARP:
          if (sri) {

>>> Output routine, assert caller has if structure
>>> locked for us.
*** 2269,2274 ****
--- 2282,2288 ----
      ASSERT((ifp->if_unit >= 0) && (ifp->if_unit <
FV_MAXBD));
      fv = &fv_info[ifp->if_unit];
      ASSERT(0 != fv->FVIO && ifp == &fv->fv_if);
+     ASSERT(IFNET_ISLOCKED(ifp));

      /* 2: make sure board has been initialized properly */
      if (fv->fv_state != FV_STATE_OK || iff_dead(ifp-
>if_flags)) {

>>> close routine.  ASSERT caller locked interface,
>>> release and reacquire lock around sleep.
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*** 3750,3761 ****
--- 3765,3780 ----
      FVMEM *mem = fv->fv_mem;

      DP((“fv%d: close%\n”, fv->fv_unit));
+     ASSERT(IFNET_ISLOCKED(&fv->fv_if));
+
      if (fv->fv_state != FV_STATE_OK)
          goto close_ret;

      while ((fv->cmd_Flags[TR_CMD_CLOSE]&CMD_BUSY) != 0) {
          fv->cmd_Flags[TR_CMD_CLOSE] |= CMD_PENDING;
+         IFNET_UNLOCKNOSPL(&fv->fv_if);
          sleep((caddr_t)&fv-
>cmd_Flags[TR_CMD_CLOSE],PZERO|PCATCH);
+         IFNET_LOCKNOSPL(&fv->fv_if);
      }
      fv->cmd_Flags[TR_CMD_CLOSE] |= CMD_BUSY;

>>> later in the close routine, another release/reacquire
    around sleep.
*** 3776,3782 ****
--- 3795,3803 ----
      io->sifcmd_stat = TR_CMD_INT_ADAPT | TR_CMD_EXECUTE |
                  TR_CMD_SCB_REQUEST | TR_STAT_INTR;

+ IFNET_UNLOCKNOSPL(&fv->fv_if);
  sleep((caddr_t)&fv->cmd_Status[TR_CMD_CLOSE],
PZERO|PCATCH);
+ IFNET_LOCKNOSPL(&fv->fv_if);
  if (fv->cmd_Status[TR_CMD_CLOSE] == 0) {
      fv->fv_state = FV_STATE_CLOSE;
      fv->fv_if.if_flags &= ~(IFF_UP|IFF_RUNNING);

mbuf Manager Changes

>>> delete the mbinit() call, no longer needed.
*** 3174,3183 ****
      IDP((“fv%u: IVEC set!\n”, unit));
  #endif /* !_IRIX4 */

-     /* 3: start the mbufs */
-     mbinit();
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!     /* 4: setup PRIVATE data.*/
      /* TBD: allocate mcast filter table.
       *    Probably, ALLMULTI(via ffffffff) should be
used        *    and locally calculate correct filter.
--- 3174,3181 ----
      IDP((“fv%u: IVEC set!\n”, unit));
  #endif /* !_IRIX4 */

!     /* setup PRIVATE data.*/
      /* TBD: allocate mcast filter table.
       *    Probably, ALLMULTI(via ffffffff) should be used
       *    and locally calculate correct filter.

Migration to IRIX 6.0

The following issues are important when attempting to convert a device
driver for a 32-bit kernel to a 64-bit kernel driver. For details on drivers for
POWER Indigo2 or POWER CHALLENGE M, see “POWER Indigo2 and
POWER CHALLENGE M Drivers” in Appendix A.

Virtual Page Size

The virtual page size for 64-bit kernels is currently 16 KB, while it is 4 KB for
32-bit systems. However, various I/O hardware items (such as DMA map
registers on CHALLENGE/Onyx platforms) still deal with 4 KB pages for
I/O, requiring that the driver use a different set of constants or procedures
when dealing with I/O pages.

Most of the following new I/O-related items already exist without the IO_
prefix and refer to virtual memory page size rather than I/O page size.
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Constants

IO_NBPP number of bytes in an I/O page

IO_PNUMSHFTnumber of bits to shift I/O address to page number

IO_POFFMASKmask for offset into I/O page

Macros

io_pnum(x) I/O page number from address

io_poff(x) I/O page offset from address

io_numpages(addr, len)
number of I/O pages to span address range starting at addr
for len bytes

io_ctob(x) convert I/O pages to bytes

io_btoc(x) convert byte count to number of pages (rounded up)

io_btoct(x) convert byte count to number of pages (rounded down)

To convert an existing driver, a good starting point would be to examine all
uses of NBPP, PNUMSHFT, POFFMASK, pnum, poff, ctob, btoc, and btoct
and consider:

• whether they refer to virtual memory pages and should be left alone

or

• whether they refer to I/O pages and need to be converted.

ioctl Support

In addition to the usual 64-bit conversion worries (longs and pointers
becoming 64-bits, ints remaining 32-bits), drivers may need to support ioctls
from user programs. Since user programs may be 32-bit or 64-bit, data items
from those programs may need to be converted into the appropriate internal
form for the driver. (The driver needs to know whether a pointer or a long
from a user program should be treated as a 32-bit quantity or a 64-bit
quantity.) To ease the driver conversion, a new system intrinsic that informs
the driver of the size of various types for the currently executing user has
been supplied. See the ioctl(D2) man page.
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The following definitions are available in sys/types.h and sys/ddi.h:

/* Since device drivers may need to know which ABI the
/* current user process is running under in order to use the
/* correct types, we provide the following structure. See
/* ddi.h for the definition of userabi().
 * All sizes are in bytes. */

typedef struct __userabi {
    short uabi_szint;
    short uabi_szlong;
    short uabi_szptr;
    short uabi_szlonglong;
} __userabi_t;

/* function: userabi(__userabi_t *)
 * purpose: determine the size int bytes of various C types
 * in the ABI under which the current user process is
 * running. 0 indicates success,nonzero indicates failure.
 * This function must only be called from a user’s
 * context, and the values copied into __userabi_t are only
 * valid for the process executing when userabi is called.
 */
int
userabi(__userabi_t *currentabi)

Pointers

Pointers in memory buffers need to be double-word aligned to avoid
address errors when the pointers are loaded. Both pointers and longs must
be aligned on 8-byte boundaries; neither should be cast to int because the int
structure is only 32-bits wide.

Hardware Data Copying

When copying data to or from a hardware device, drivers should use the
functions hwcpin and hwcpout rather than bcopy. The reason is that the
kernel bcopy routine is optimized for memory access and may use double-
word loads and stores, which may not be supported by the hardware device.
The routines hwcpin and hwcpout perform only word (or byte and half-
word) operations.
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ABI

Application Binary Interface.

adjmsg

Trim bytes from a message.

allocb

Allocate a message block.

ASSERT

Program verification macro.

badaddr

Check for bus error when reading an address.

bcanput

Test for flow control in a specified priority band.

bcopy

Copy data between address locations in the kernel.

big-endian

The default for a byte order.

biodone

Release buffer after block I/O and wakeup processes.

bioerror

Manipulate error field within a buffer header.
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biowait

Suspend processes pending completion of block I/O.

block driver

A device driver, such as for magnetic tape or disk drives, that transfers data
in blocks through the buf structure.

bp_mapin

Allocate virtual address space for buffer page list.

bp_mapout

Deallocate virtual address space for buffer page list.

brelse

Return a buffer to the system’s free list.

btod

Convert from bytes to disk sectors.

btop

Convert size in bytes to size in pages (rounded down).

bptophys

Get physical address of buffer data.

btopr

Return number of memory pages contained in the specified number of bytes,
rounded up.

buf

Block I/O data transfer structure, the basic data structure for block I/O
transfers.

bufcall

Call a function when a buffer becomes available.
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bus-watching cache

When an IP5, IP7, or IP19 system performs a DMA write into physical
memory, the bus-watching cache automatically invalidates the data cache.
This hardware function eliminates the need for data cache write back or
invalidation in software.

bzero

Clear memory for a given number of bytes.

canput

Test for flow control in a stream.

character device

A device driver, such as a terminal or printer, that transfers data character by
character. See also block device.

character driver

A device driver, such as for a terminal or printer, that transfers data
characters between the device and the user program. Note that block
devices, such as magnetic tape or disk drives, also support character access.

close

Relinquish access to a device. The user process invokes the close() system
call when it is finished with a device, but the system does not necessarily
execute your drvclose() entry point for that device.

clrbuf

Erase the contents of a buffer.

cmn_err

Display an error message or panic the system.

copyb

Copy a message block.

copyin

Copy data from user process virtual space to kernel virtual space.
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copymsg

Copy a message.

copyout

Copy data from kernel virtual space to user process virtual space.

copyreq

STREAMS transparent ioctl() copy request structure – data necessary to
process transparent ioctls.

copyresp

STREAMS transparent ioctl() copy response – data in response to a prior
copy request necessary to continue processing transparent ioctls.

cpsema

Conditionally perform a "P" or wait semaphore operation.

cvsema

Conditionally perform a "V" or wait semaphore operation.

data structure

The memory storage area used to hold data types such as integers, strings,
or an array of integers. The data structures associated with drivers are used
as buffers for holding data being moved between the user data area and the
device.

datab

STREAMS data block structure that describes the data of a STREAMS
message.

datamsg

Test whether a message is a data message.

DDI/DKI

Device Driver Interface/Device Kernel Interface.

delay

Delay process execution for a specified number of clock ticks.
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devflag

Driver flags – Silicon Graphics only supports flags D_MP, D_WBACK and
D_OLD device.

device driver

A software routine that manages a hardware device; it brings the device into
and out of service, sets hardware parameters in the device, transmits data
from the kernel to the device, receives data from the device and passes data
back to the kernel, and handles I/O errors.

Device Driver Interface (DDI)

The set of structures, routines, and optional functions used to implement a
device driver.

device types

There are two types of devices available on any UNIX system: software and
hardware. A software device is usually a section of memory and is referred
to as a pseudo-device. A pseudo-device may provide access to system
structures that are unavailable at the user level. For example, a pseudo-
device such as a RAM disk could provide fast access to files. Some examples
of hardware devices are disk drives, tape drives, printers, scanners, and
terminals.

dki_dcache_inval

Invalidate the data cache for a given range of virtual addresses.

dki_dcache_wb

Write back the data cache for a given range of virtual addresses.

dki_dcache_wbinval

Write back and invalidate the data cache for a given range of virtual
addresses.

dma_map

Load DMA mapping registers for an imminent transfer.

dma_mapaddr

Return the "bus virtual" address for a given map and address.



374

Glossary

dma_mapalloc

Allocate a DMA map. See the dma_map(D3X) man page.

dma_mapfree

Free a DMA map. See the dma_map(D3X) man page.

downstream

The direction of STREAMS messages flowing through a write queue from
the user process to the driver.

Driver-Kernel Interface (DKI)

A defined service interface for the entry point routines and utility functions
specified for communications between the driver and the kernel. It does not
include the driver/hardware or the driver/boot software interface.

drv_getparm

Retrieve kernel state information

drv_hztousec

Convert clock ticks to microseconds.

drv_priv

Determine whether credentials are privileged.

drv_setparm

Set kernel state information.

drv_usectohz

Convert microseconds to clock ticks.

drv_usecwait

Busy-wait for specified interval.

dupb

Duplicate a message block.

dupmsg

Duplicate a message.
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edtinit

Initialize a device at boot time.

EISA bus

Enhanced Industry Standard Architecture bus.

EISA Product Identifier (ID)

EISA expansion boards have a four-byte product identifier (z=0 for the
system board).

eisa_dma_disable

Disable recognition of hardware requests on a DMA channel.

eisa_dma_enable

Enable recognition of hardware requests on a DMA channel.

eisa_dma_free_buf

Free a previously allocated DMA buffer descriptor.

eisa_dma_free_cb

Free a previously allocated DMA command block.

eisa_dma_get_buf

Allocated DMA buffer descriptor.

eisa_dma_get_cb

Allocated a DMA command block.

eisa_dma_prog

Program a DMA operation for a subsequent software request.

eisa_dma_stop

Stop software-initiated DMA operation on a channel and release it.

eisa_dma_swstart

Initiate a DMA operation via software request.
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enableok

Allow a queue to be serviced.

Enhanced Industry Standard Architecture

The EISA bus specification.

errnos

Error numbers.

esballoc

Allocate a message block using an externally supplied buffer.

esbbcall

Call a function when an externally supplied buffer can be allocated.

etoimajor

Convert external to internal major device number.

flushband

Flush messages in a specified priority band.

flushbus

Make sure contents of the write buffer are flushed to the system bus.

flushq

Flush messages on a queue.

freeb

Free a message block.

freemsg

Free a message.

freerbuf

Free a raw buffer header.

freesema

Free the resources associated with a semaphore.
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free_rtn

STREAMS driver's message free routine structure.

fubyte

Fetch (read) a byte from user space.

fuword

Fetch (read) a word from user space.

geteblk

Get an empty buffer.

getemajor

Get external major device number.

geteminor

Get external minor device number.

geterror

Retrieve error number from a buffer header.

getmajor

Get internal major device number.

getminor

Get internal minor device number.

getq

Get the next message from a queue.

getrbuf

Get a raw buffer header.

GIO bus

Graphics I/O bus used on Indigo, Indigo2, and Indy workstations.

halt

Shut down the driver when the system shuts down.
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I/O operations

Services that provide access to shared input/output devices and to the
global data structures that describe their status. I/O operations open and
close files and devices, read data from and write data to devices, set the state
of devices, and read and write system data structures.

info

STREAMS driver and module information.

init

Initialize a device.

initnsema

Allocate a semaphore and initialize it to a given value.

insq

Insert a message into a queue.

inter-process communication

These are system calls that allow a process to send information to another
process. There are several ways of sending information to another process:
signals, pips, shared memory, message queues, semaphores, or streams and
sockets.

interrupt level

A driver interrupt routine that is started when an interrupt is received from
a hardware device. The system accesses the interrupt vector table,
determines the major number of the device, and passes control to the
appropriate interrupt routine.

interrupt priority level

The interrupt priority level at which the device requests that the CPU call an
interrupt process. This priority can be overridden in the drivers's interrupt
routine for critical sections of code with the spl function.

intr

Process a device interrupt after a transfer terminates (either normally upon
completion or abnormally due to some error).
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iocblk

STREAMS ioctl structure.

ioctl

Control a character device. Character devices may include a "special
function" entry point, drvioct().

iovec

Data storage structure for I/O using uio.

IRQ

See Interrupt Request Input.

itimeout

Execute a function after a specified length of time.

itoemajor

Convert internal to external major device number.

k0

Virtual address range that is cached but not mapped by translation look-
aside buffers. Also kseg0.

k1

Virtual address range that is neither cached nor mapped. Also kseg1.

k2

Virtual address range that can be both cached and mapped by translation
look-aside buffers. Also kseg2.

kern_calloc

Allocate storage for objects of a specified size.

kern_free

Free kernel memory space

kern_malloc

Allocate kernel virtual memory.
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kmem_alloc

Allocate space from kernel free memory.

kmem_free

Free previously allocated kernel memory.

kmem_zalloc

Allocate and clear space from kernel free memory.

kvtophys

Get physical address of buffer data.

linkb

Concatenate two message blocks.

linkblk

STREAMS multiplexor link structure – data needed by a multiplexing driver
to set up or take down a multiplexor link.

LOCK

Acquire a basic lock Silicon Graphics LOCK function returns int instead of
pl_t.

LOCK_ALLOC

Allocate and initialize a basic lock. Silicon Graphics doesn't support
compilation option _LOCKTEST. splockmeter is provided for debugging
purpose by Silicon Graphics.

LOCK_DEALLOC

Deallocate an instance of a basic lock

makedevice

Make device number from major and minor numbers.

map

Support virtual mapping for memory-mapped device.
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max

Return the larger of two integers.

messages

STREAMS messages.

min

Return the lesser of two integers.

mmap

Check virtual mapping for memory-mapped device. (Silicon Graphics also
supports map and unmap entry routines).

mmapped device driver

Memory-mapped device drivers are those in which the hardware is memory
mapped into a user’s address space; no interrupt or DMA service routine is
available to the user process.

module

A STREAMS module consists of two related queue structures, one for
upstream messages and one for downstream messages. One or more
modules may be pushed onto a stream between the stream head and the
driver, usually to implement and isolate a communication protocol or a line
discipline.

module_info

STREAMS driver and module information – identification and limit values
used to initialize the module's or driver's queues.

msgb

STREAMS message block structure.

msgdsize

Return number of bytes of data in a message.

ngeteblk

Get an empty buffer of the specified size.
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noenable

Prevent a queue from being scheduled.

open

Gain access to a device. The kernel calls drvopen() when the user process
issues an open() system call.

OTHERQ

Get pointer to queue's partner queue.

pcmsg

Test whether a message is a priority control message.

phalloc

Allocate and initialized a pollhead structure.

phfree

Free a pollhead structure.

physiock

Validate and issue raw I/O request.

PIO

Programmed I/O.

pio_badaddr

Check for bus error when reading an address.

pio_bcopyin

Copy data from VME bus address to kernel's virtual space.

pio_bcopyout

Copy data from kernel's virtual space to VME bus address.

pio_mapaddr

Used with FIXED maps to generate a kernel pointer to VME bus space.
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pio_mapalloc

Allocate a PIO map.

pio_mapfree

Free up a previously allocated PIO map.

pio_wbadaddr

Check for bus error when writing to an address.

poll

Poll entry point for a non-stream character driver. Silicon Graphics currently
does not support POLLRDNORM, POLLWRNORM, POLLRDBAND, and
POLLWRBAND. A character device driver may include a drvpoll() entry
point so that users can use select(2) or poll(2) to poll the file descriptors
opened on such devices.

pollwakeup

Inform polling processes that an event has occurred.

prefix

Driver prefix. Throughout this manual, the prefix drv preceding a function,
routine, or entry point represents the name of the device driver you are
writing.

primatives

C operations from which more complex operations can be constructed.

print

Display a driver message on the system console.

process control

These are system calls that allow a process to control its own execution. A
process can allocate memory, lock itself in memory, set its scheduling
priorities, wait for events, execute a new program, or create a new process.

proc_ref

Obtain a reference to a process for signaling.
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proc_signal

Send a signal to a process.

proc_unref

Release a reference to a process.

psema

Perform a "P" or wait semaphore operation.

pseudo-device

A section of memory that emulates the functionality of a hardware device in
software. Pseudo-devices may provide access to system structures that are
unavailable at the user level. For example, a pseudo-device such as a RAM
disk could provide fast access to files.

ptob

Convert size in pages to size in bytes.

put

Receive messages from the preceding queue.

putbq

Place a message at the head of a queue.

putctl

Send a control message with a one-byte parameter to a queue.

putctl1

Send a control message with a one-byte parameter to a queue.

putnext

Send a message to the next queue.

putq

Put a message on a queue.

qenable

Schedule a queue's service routine to be run.
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qinit

STREAMS queue initialization structure – pointers to processing procedures
and default values for a queue().

qreply

Send a message in the opposite direction in a stream.

qsize

Find the number of messages on a queue.

queue

STREAMS queue structure – pointers to processing procedures, the next
queue in the stream, flow control parameters, and messages.

RD

Get a pointer to the read queue.

read

Read data from a device. The kernel executes the drvread() or drvwrite()
entry points whenever a user process calls the read() system call.

rmalloc

Allocate space from a private space management map.

rmallocmap

Allocate and initialize a private space management map.

rmalloc_wait

Allocate space from a private space management map.

rmfree

Free space into a private space management map.

rmfreemap

Free private space management map.

rmvb

Remove a message block from a message.
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rmvq

Remove a message from a queue.

SAMESTR

Test whether the next queue is of the same type.

SCSI

Small Computer System Interface.

SCSI bus

See Small Computer System Interface.

SCSI driver interface

A collection of machine-independent input/output controls, functions, and
data structures, that provide a standard interface for writing a SCSI driver.

scsi_alloc

Allocate communication channel between host adapter driver and a kernel
level SCSI device driver

scsi_command

Issue a command to a SCSI device

scsi_free

Free communication channel between host adapter driver and a kernel level
SCSI device driver

scsi_info

Get information about a SCSI device

sgset

Assign physical addresses to a vector of software scatter/gather registers.

signals

Signal numbers.

size

Return size of logical block device.
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sleep

Suspend process execution pending occurrence of an event.

SLEEP_ALLOC

Allocate and initialize a sleep lock Silicon Graphics doesn't support
compilation option _MPSTATS.

SLEEP_DEALLOC

Deallocate an instance of a sleep lock.

SLEEP_LOCK

Acquire a sleep lock. Always pass -1 as priority.
void SLEEP_LOCK(sleep_t *lockp, -1)

SLEEP_LOCKAVAIL

Query whether a sleep lock is available.

SLEEP_LOCK_SIG

Acquire a sleep lock The valid values for priority are as follows: PUSER,
PCATCH, PSLEP, PPIPE, PVFS, and PWAIT SLEEP_TRYLOCK Try to
acquire a sleep lock.

SLEEP_TRYLOCK

Try to acquire a sleep lock.

SLEEP_UNLOCK

Release a sleep lock.

socket

A software structure that represents one endpoint in a two-way
communications link. Created by socket(2).

spl

Block/allow interrupts on a processor.

srv

Service queued messages.
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start

Start initialize a device at system start-up.

strategy

Perform block I/O strategy.

strcat

Concatenate strings.

strcpy

Copy a string.

Stream

A linked list of kernel data structures that provide a full-duplex data path
between a user process and a device. Streams are supported by the
STREAMS facilities in UNIX System V Release 3 and later.

stream head

The stream head, which is inserted by the STREAMS subsystem, processes
STREAMS-related system calls and performs data transfers between user
space and kernel space. It is the component of a stream closet to the user
process. Every stream has a stream head.

STREAMS

A kernel subsystem used to build a stream, which is a modular, full-duplex
data path between a device and a user process. In IRIX 5.x and later, the
TCP/IP stack sits on top of the STREAMS stack. The Transport Layer
Interface (TLI) is fully supported.

streamstab

STREAMS driver and module declaration structure.

streams_interrupt

Synchronize interrupt-level function with STREAMS mechanism.

STREAMS_TIMEOUT

Synchronize timeout with STREAMS mechanism.
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strlog

Submit messages to the log driver.

stroptions

STREAMS head option structure.

strqget

Get information about a queue or band of the queue.

strqset

Change information about a queue or band of the queue.

subyte

Set (write) a byte to user space.

suword

Set (write) a word to user space.

TCP/IP

Transmission Control Protocol/Internet Protocol.

TFP

SGI’s pre-release, internal code name for the MIPS R8000 processor.

TLI

Transport Interface Layer.

TRYLOCK

Try to acquire a basic lock.

uio

scatter/gather I/O request – describes an I/O request that can be broken
into different data storage areas.

uiomove

Copy data using uio structure.
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uiophysio

Set up user data space for I/O.

unbufcall

Cancel a pending bufcall request.

undma

Unlock physical memory in user space.

unlinkb

Remove a message block from the head of a message.

unload

Clean up a loadable kernel module.

UNLOCK

Release a basic lock

unmap

Support virtual unmapping for memory-mapped device

untimeout

Cancel previous timeout request.

untimeout_func

Cancel a previous invocation of timeout by function.

ureadc

Copy a character to space described by uio structure.

userdma

Lock, unlock physical memory in user space

uwritec

Return a character from space described by uio structure.

valusema

Return the value associated with a semaphore.
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VME bus

VERSA Module Eurocard bus.

VME-bus adapter

A hardware conduit that translates host CPU operations to VME-bus
operations and decodes some VME-bus operations to translate them to the
host side.

vme_adapter

Determine VME adapter.

vme_ivec_alloc

Allocate a VME bus interrupt VECTOR.

vme_ivec_free

Free up a VME bus interrupt VECTOR.

vme_ivec_set

Register a VME bus interrupt handler.

volatile

Inform the compiler of volatile variables.

vpsema

Perform an atomic "V" and "P" semaphore operation on two semaphores.

vsema

Perform a "V" or signal semaphore operation.

v_getaddr

Get the user address associated with virtual handle.

v_gethandle

Get unique identifier associated with virtual handle.

v_getlen

Get length of user address space associated with virtual handle.
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v_mapphys

Map physical addresses into user address space.

wakeup

Resume suspended process execution.

wbadaddr

Check for bus error when writing to an address.

WR

Get a pointer to the write queue.

write

Write data to a device. The kernel executes the drvread() or drvwrite() entry
points whenever a user process calls the read() or write() system calls.
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bioerror,  46
biowait,  46, 225
block versus character devices,  2
bold,  xviii
boot file,  26
brackets,  xix
bt,  278, 281
buf type structures

used by physiock,  45
bus request levels,  61
bus virtual addresses,  95
bus-watching caches,  321
byte ordering,  110

C

cache
bus-watching,  321
data cache invalidation,  322
integrated page (kernel buffer cache),  2
write back,  322
write through,  321

cache miss,  322
caches

write back vs. write through,  192
call command,  281
c command,  281
cdevsw,  28
character device switch table,  28

Symbols

#define FLAGS,  137

A

ABI,  31
About This Guide,  xv
addresses for VME devices,  78, 179
brk,  278, 280
address mapping,  8
andh_rmw,  60
asc,  334
asq,  334
Audience,  xv
autoconfig,  62, 84

B

b_bcount,  45
b_biodone,  45
b_blkno,  45
b_dev,  45
b_flags,  45
b_resid,  45, 46
b_un.b_addr,  45
big-endian byte ordering,  110
biodone,  46, 225

Index
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character versus block devices,  3
class type,  2
close,  33
close entry point,  32
close vs. dsclose,  156
CMDBUF

macro,  139
cmdbuf,  147
CMDLEN

macro,  139
cmdnametab,  148
CMDSENT

macro,  142
cmdstatustab,  148
coherent I/O,  322
commands

from kernel-level driver,  163
courier,  xix
courier bold,  xix
cpsema,  228
cvsema,  228

D

DATABUF
macro,  139

data cache invalidation,  322
DATALEN

macro,  139
DATASENT

macro,  142
DDI/DKI,  311
debugger

mode commands,  278
define flags,  137
device driver

kernel-level,  133
VME device,  64

user level,  133
user-level special files,  135

device numbers,  23
device special file

creating,  23
device-special file,  22

creating,  24
devscsi,  333
direct memory access (DMA),  57
disable_sysad_parity,  194
dis command,  282
dki_dcache_inval,  322
dki_dcache_inval(K),  98
dki_dcache_wb,  322
dki_dcache_wbinval(K),  91, 98
dksc,  333
DMA (direct memory access),  57
dma_allocbuf,  75
dma_close,  75
dma_freebuf,  76
dma_freeparms,  76
dma_mkparms,  76
dma_open,  75
dma_start,  76
DMA for A24 devices

code example,  99
DMA mapping,  92
DMA maps

code example,  95
DMA on A32 devices

no scatter-gather
code example,  102, 198

DMA operations,  91, 321
A32 devices,  92

DMA read,  91, 192, 321
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DMA writes,  91, 192, 321
document contents summary,  xvi
dofl,  154
doscsireq,  137, 145, 152, 156
driver entry points,  28
driver models,  63, 132
driver routines

poll,  37
drv

prefix,  159
drvdevflag,  41
drvedtinit,  47
drvinit,  47, 159
drvintr,  34, 192
drvmap,  30, 39, 213, 215
drvmmap,  214
drvopen,  31
drvread,  30, 34, 213
drvstrategy,  34, 44, 46, 195
drvunmap,  30, 39, 213
drvwrite,  30, 34, 213
ds,  140
ds_cmdbuf,  139
ds_cmdlen,  139
ds_cmdsent,  142
ds_databuf,  139
ds_datalen,  139
ds_datasent,  142
ds_flags,  137
ds_iovbuf,  140
ds_iovlen,  140
ds_link,  140
ds_msg,  142
ds_private,  139
ds_ret,  141

ds_revcode,  140
ds_sensebuf,  140
ds_senselen,  140
ds_sensesent,  143
ds_status,  142
ds_time,  139
dsclose,  145, 156
dsdebug,  148
dsiovec,  140
dslib,  134, 156
dsopen,  144, 145, 146, 147, 148, 149, 150, 151, 152,

153, 154, 155, 156
dsreq,  156
dsreq.h,  137
dsreq structure

listing,  136
members of,  139

dsreq type structures,  136
DSRQ_ABORT,  138
DSRQ_ACKH,  138
DSRQ_ASYNC,  137
DSRQ_ATNH,  138
DSRQ_BUF,  138
DSRQ_CALL,  138
DSRQ_CTRL1,  138
DSRQ_CTRL2,  138
DSRQ_DISC,  138
DSRQ_IOV,  138
DSRQ_MIXRDWR,  139
DSRQ_PRINT,  138
DSRQ_READ,  138
DSRQ_SELATN,  138
DSRQ_SELMSG,  138
DSRQ_SENSE,  137, 140, 142, 152
DSRQ_SYNXFR,  138
DSRQ_TARGET,  137
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DSRQ_TRACE,  138
DSRQ_WRITE,  138
dsrqnametab,  148
DSRT_AGAIN,  141
DSRT_CANCEL,  141
DSRT_CMDO,  141
DSRT_DEVSCSI,  141
DSRT_EBSY,  141
DSRT_HOST,  141
DSRT_LONG,  142
DSRT_MEMORY,  141
DSRT_MULT,  141
DSRT_NOSEL,  141
DSRT_NOSENSE,  141
DSRT_OK,  141
DSRT_PARITY,  141
DSRT_PROTO,  141
DSRT_REJECT,  141
DSRT_REVCODE,  141
DSRT_SENSE,  141
DSRT_SHORT,  141
DSRT_STAI,  141
DSRT_TIMEOUT,  142
DSRT_UNIMPL,  141
dsrtnametab,  148
dump command,  283
dynamically loadable modules,  305, 310

E

edtinit,  183
entry points

close,  30, 32
ioctl,  35
map,  30, 39

missing,  29
open,  30, 31
poll,  37
put,  51
read,  30, 34
write,  30, 34

exprobe_space,  116

F

filldsreq,  146
fillg0cmd,  147, 157
flushbus(K),  324
FREAD bits,  32, 33
freesema,  227
FWRITE bits,  32, 33

G

g command,  284
general memory mapping,  47
geterror,  46
GIO device

slot number,  179
goto command,  285

H

hinv,  65
hx command,  285

I

idbg,  272
IF_ENQUEUE macro,  241
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IFNET_LOCK macro,  240
IFNET_LOCKNOSPL macro,  240
IFNET_UNLOCK macro,  240
IFNET_UNLOCKNOSPL macro,  240
ifnet drivers,  360
IFQ_LOCK/UNLOCK macro,  240
illg1cmd,  147
INCLUDE directive,  47, 158
including driver in kernel,  27
init,  47, 159
inquiry12,  149
integrated page cache,  2
interrupt masking,  6
interrupt priority level,  6
interrupts

sprayed,  62
intr,  43
invalidating the data cache,  322
io_btoc macro,  367
io_btoct macro,  367
io_ctob macro,  367
IO_NBPP,  367
io_numpages macro,  367
io_pnum macro,  367
IO_PNUMSHFT,  367
io_poff macro,  367
IO_POFFMASK,  367
ioctl,  226, 243
ioctl entry point,  30, 35
iodone,  34

buf type structures,  46
iov_base,  140
iov_len,  140
IOVBUF

macro,  140
IOVLEN

macro,  140
irix.sm file,  62
IRQ,  107, 108
italics,  xviii

J

Jaguar (VME-SCSI) board,  132

K

kern_free,  218
kern_malloc,  218
kernel buffer cache,  2
kernel-level device driver,  133

VME device
general memory mapping type,  64

kernel mode,  9
virtual addressing,  10

kernel module
loadable,  307

kernel modules
dynamically loadable,  310

kmem_alloc,  169, 192
kmem_alloc(K),  91, 323
kp,  296

buf,  297
eframe,  297
inode,  297
kill,  297
mlist,  297
msyms,  298
pb,  298
pda,  298
plist,  298
proc,  299
qbuf,  299
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runq,  299
sema,  299
slpproc,  299
ubt,  299
user,  300
wd,  300

kp (kernel print) mode,  277
kp commands,  297
kseg0,  11
kseg1,  11
kseg2,  11
kuseg

user space,  12
kvtophys,  181

L

lba,  151
lboot,  26, 62, 158, 224
little-endian byte ordering,  110
lkaddr command,  286
lkup command,  286
loadable drivers,  311

vme_ivec routines,  87
loadable library modules,  312
loadable module,  310
loadable modules,  305, 311, 314, 351

compiling/linking,  306
registered by lboot,  310
unload routine,  50

LOCK,  229
LOCK(D3),  226, 324
LOCK_ALLOC,  228
LOCK_ALLOC(D3),  324
LOCK_DEALLOC,  228
logical units,  159

look-aside buffer,  7, 12

M

macros
BP_ISMAPPED,  196, 198
CMDBUF,  139
CMDLEN,  139
CMDSENT,  142
DATABUF,  139
DATALEN,  139
DATASENT,  142
dsreq type structure,  136
FLAGS,  137
getfd,  146
IF_ENQUEUE,  241
IFNET_LOCK,  240
IFNET_LOCKNOSPL,  240
IFNET_UNLOCK,  240
IFNET_UNLOCKNOSPL,  240
IFQ_LOCK/UNLOCK,  240
io_btoc,  367
io_btoct,  367
io_ctob,  367
io_numpages,  367
io_pnum,  367
io_poff,  367
IOVBUF,  140
IOVLEN,  140
location,  221
major and minor,  215
PRIVATE,  139
RET,  141
SENSEBUF,  140
SENSELEN,  140
SENSESENT,  143
STATUS,  142
TIME,  139
v_gethandle,  221
VME devices,  60
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major and minor macros,  215
major device number,  23
map entry point,  39
margin comments,  109
masking

interrupt,  6
master addressing mode,  79
master file,  26

example for VME driver,  81, 183
for a SCSI driver,  158

master processor,  302
MAXDMASZ,  45
memory access

direct,  88, 190
memory mapping

virtual-to-physical,  7
Memory Parity Patch,  193
minor device number,  24
missing entry points,  29
mknod,  23, 135
mlist command,  314
mmap,  30, 72, 214
mode

VME master addressing,  79
VME slave addressing,  66, 78

modeselect15,  149
modesense1a,  150
modules

dynamically loadable,  305, 310
mtune file,  27
multiprocessing

synchronization,  225
munmap,  216

N

nm command,  286
notation and syntax conventions,  xviii
nulldev,  29

O

offset,  40
oflags,  144
opath,  144
open,  30, 31
open entry point,  31
open vs. dsopen,  156
orw_rmw,  60
OTYP_CHR,  32, 33
OTYP_LYR,  32, 33
overview of chapters and appendices,  xvi

P

page boundary
protection,  73

parity checking,  193
pb (dump console print buffer),  298
p command,  287
pgcode,  151
pgctrl,  150
physio,  34, 169, 195, 322
physiock,  44
PIO,  88, 190
pio_andh_rmw,  60
pio_orw_rmw,  60
pmi,  151
poll driver routine,  30, 37
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processor
kernel mode,  9
privilege states/modes,  9
supervisor mode (R4000),  10
user mode,  9
virtual memory map,  13

programmed I/O,  88, 190
prot,  40
protection at page boundary,  73
psema,  225, 226, 227
put,  51

R

race condition,  190
read,  30, 34

DMA,  91, 321
readcapacity25,  151
read entry point,  34
readextended28,  152
real-time processes,  180
requestsense03,  152
RET

macro,  141

S

s and S commands,  288
SC_ALIGN,  167
SC_ATTN,  167
SC_CMDTIME,  167
SC_GOOD,  166
SC_HARDERR,  166
SC_MEMERR,  167
SC_PARITY,  167
SC_REQUEST,  167

SC_TIMEOUT,  166
scatter-gather

A32 devices,  92
addressing without,  93

scatter/gather,  92
and VME devices,  93, 195

schednetisr,  241
scsi_alloc,  169
scsi_driver_table,  160
scsi_free,  168
scsi_info,  169
SCSI device driver,  133
SCSI interface,  17, 132
scsisubchan,  157
sdk,  158
sdkinit,  159
select,  30, 37
semap,  227
semaphored device driver,  224
senddiagnostic1d,  153
SENSELEN

macro,  140
SENSESENT

macro,  143
setgioconfig,  187
setgiovector,  181, 187
slave addressing mode,  66, 78
slave devices,  65
SLEEP_LOCK,  229
SLEEP_LOCK_SIG,  229
SLEEP_TRYLOCK,  230
SLEEP_UNLOCK,  230
sleep command,  288
sleep kernel routine,  90, 191
sleep/wakeup routines,  225
special file
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device,  135
specifications, connector

EISA,  16-??, 106-??
spinlocks,  324
spl(D3),  89, 225, 226
splgio,  187
splgio1,  190
splN,  226
splockmeter,  228
splvme,  89, 225
splx,  89, 226
sprayed interrupts,  62
ST_BUSY,  167
ST_CHECK,  167
ST_COND_MET,  167
ST_GOOD,  167
ST_INT_GOOD,  168
ST_RES_CONF,  168
STA_*

defines for ds_status,  142
STA_BUSY,  142
STA_CHECK,  142
STA_GOOD,  142
STA_IGOOD,  142
STA_RESERV,  142
stale data,  321
stale memory,  322
STATUS

macro,  142
strategy,  44
streams_interrupt,  231
STREAMS entry points

put,  51
STREAMS monitor,  231
string command,  289
synchronization issues

multiprocessing,  225
syntax conventin

bold,  xviii
syntax convention

courier,  xix
courier bold,  xix
italics,  xviii

SysAD bus,  193
sys/mman.h,  73
system file,  27, 62, 79, 180

/var/sysgen,  26
systune command,  316

T

targets,  159
testunitready00,  154
TFP,  321
TIME

macro,  139
TLB (translation look-aside buffer),  7, 12
tlbdump command,  290
tlbflush command,  291
tlbmap command,  292
tlbpid command,  293
tlbptov command,  294
tlbvtop command,  294
tpisocket,  238
tpitcp,  238
tpiudp,  238
tpsc,  333
Translation Look-aside Buffer,  10
translation look-aside buffer,  12
TRYLOCK,  230
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U

udmalib,  75
unbrk command,  295
UNLOCK,  229
UNLOCK(D3),  226
unmap entry point,  39
uofl,  154
upper-half routine,  224
userdma,  322
userdma(K),  98
user mode,  9

virtual addressing,  10
u.u_count,  35

V

v_gethandle,  220
v_gethandle macro,  221
v_mapphys,  218
variables

devflag,  41
/var/sysgen/system file,  62, 79
vdk device

mythical,  219
vdkunmap,  220
VECTOR directive,  47, 79, 181
virtual addres mapping,  95
virtual address format,  7
virtual addressing

kernel mode,  10
user mode,  10

virtual memory,  92
VME bus addresses,  78
volatile declaration,  191
volatile memory,  11

vsema,  225, 226, 227
vtostr,  148

W

wake command,  295
wakeup kernel routine,  90, 191
wakeup routine,  225
wpt command,  296
write,  30, 34

DMA,  91, 321
write0a,  154, 157
write back cache,  192, 322
write entry point,  34
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