
TensorFlow 2.0
Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this license
grants permission to use the contents contained herein, including the disc, but does
not give you the right of ownership to any of the textual content in the book / disc
or ownership to any of the information or products contained in it. This license does
not permit uploading of the Work onto the Internet or on a network (of any kind)
without the written consent of the Publisher. Duplication or dissemination of any
text, code, simulations, images, etc. contained herein is limited to and subject to
licensing terms for the respective products, and permission must be obtained from
the Publisher or the owner of the content, etc., in order to reproduce or network any
portion of the textual material (in any media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and
anyone involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and any
accompanying Web site or software of the Work, cannot and do not warrant the
performance or results that might be obtained by using the contents of the Work.
The author, developers, and the Publisher have used their best efforts to insure the
accuracy and functionality of the textual material and/or programs contained in this
package; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. The Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

The author, developers, and the publisher of any accompanying content, and anyone
involved in the composition, production, and manufacturing of this work will not be
liable for damages of any kind arising out of the use of (or the inability to use) the
algorithms, source code, computer programs, or textual material contained in this
publication. This includes, but is not limited to, loss of revenue or profit, or other
incidental, physical, or consequential damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to replacement
of the book and/or disc, and only at the discretion of the Publisher. The use of
“implied warranty” and certain “exclusions” vary from state to state, and might not
apply to the purchaser of this product.

Companion files for this title are available by writing to the publisher at info@
merclearning.com.

TensorFlow 2.0
Pocket Primer

Oswald Campesato

Mercury learning and inForMaTion
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2020 by Mercury Learning and inforMation LLC. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic
display or mechanical display, including, but not limited to, photocopy, recording, Internet
postings, or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and inforMation
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
800-232-0223

O. Campesato. TensorFlow 2.0. Pocket Primer.
ISBN: 978-1-68392-460-9

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2019941748

192021321 This book is printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations,
etc. For additional information, please contact the Customer Service Dept. at
800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital
vendors. Companion files (figures and code listings) for this title are available by contacting
info@merclearning.com. The sole obligation of Mercury Learning and inforMation to the
purchaser is to replace the disc, based on defective materials or faulty workmanship, but not
based on the operation or functionality of the product.

I’d like to dedicate this book to my parents –

may this bring joy and happiness into their lives.

Preface ��xv
What Is the Goal?..xv
What Will I Learn from This Book? ...xv
The TF 1.x and TF 2.0 Books: How Are They Different?xvi
Why Isn’t Keras in Its Own Chapter in This Book?xvi
How Much Keras Knowledge Is Needed for This Book? xvii
Do I Need to Learn the Theory Portions of This Book? xvii
How Were the Code Samples Created? .. xviii
What Are the Technical Prerequisites for This Book? xviii
What Are the Nontechnical Prerequisites for This Book?xix
Which Topics Are Excluded?...xix
How Do I Set Up a Command Shell? ...xix
Companion Files ...xx
What Are the “Next Steps” after Finishing This Book?xx

Chapter 1: Introduction to TensorFlow 2 ��������������������������������1
What Is TF 2? ...2

TF 2 Use Cases ...3
TF 2 Architecture: The Short Version ...4
TF 2 Installation ..4
TF 2 and the Python REPL ..5

Other TF 2-Based Toolkits ..5
TF 2 Eager Execution ..6
TF 2 Tensors, Data Types, and Primitive Types ...7

TF 2 Data Types ..7
TF 2 Primitive Types ...7

Constants in TF 2 ...8

Contents

viii • TensorFlow 2 Pocket Primer

Variables in TF 2 ..9
The tf.rank() API ..10
The tf.shape() API ...11
Variables in TF 2 (Revisited) ...13

TF 2 Variables versus Tensors ..14
What Is @tf.function in TF 2? ...14

How Does @tf.function Work? ..14
A Caveat about @tf.function in TF 2 ...15
The tf.print() Function and Standard Error16

Working with @tf.function in TF 2 ...17
An Example without @tf.function ..17
An Example with @tf.function ...17
Overloading Functions with @tf.function18
What Is AutoGraph in TF 2? ..19

Arithmetic Operations in TF 2 ..20
Caveats for Arithmetic Operations in TF 2 ...20
TF 2 and Built-In Functions..21
Calculating Trigonometric Values in TF ...23
Calculating Exponential Values in TF 2 ..23
Working with Strings in TF 2 ..24
Working with Tensors and Operations in TF 2 ...25
Second-Order Tensors in TF 2 (1) ..27
Second-Order Tensors in TF 2 (2) ..27
Multiplying Two Second-Order Tensors in TF ...28
Convert Python Arrays to TF Tensors ...29

Conflicting Types in TF 2 ...29
Differentiation and tf.GradientTape in TF 2 ..30
Examples of tf.GradientTape ...31

Using the watch() Method of tf.GradientTape31
Using Nested Loops with tf.GradientTape...................................32
Other Tensors with tf.GradientTape ...33
A Persistent Gradient Tape ...34

Migrating TF 1.x Code to TF 2 Code (optional) ..35
Two Conversion Techniques from TF 1.x to TF 235

Converting to Pure TF 2 Functionality ...36
Converting Sessions to Functions ..36
Combine tf.data.Dataset and @tf.function36
Use Keras Layers and Models to Manage Variables36

The TensorFlow Upgrade Script (optional) ..37
Summary ...37

Chapter 2: Useful TF 2 APIs ���39
TF 2 Tensor Operations ...40
Using for Loops in TF 2 ...40
Using while Loops in TF 2 ...41

Contents • ix

TF 2 Operations with Random Numbers ...41
TF 2 Tensors and Maximum Values ..44
The TF 2 range() API ...44
Operations with Nodes ..45
The tf.size(), tf.shape(), and tf.rank() APIs46
The tf.reduce_prod() and tf.reduce_sum() APIs46
The tf.reduce_mean() API ...47
The tf.random_normal() API (1) ..48
The TF 2 random_normal() API (2) ...49
The tf.truncated_normal() API ...50
The tf.reshape() API ...50
The tf.range() API ..51
The tf.equal() API (1) ..52
The tf.equal() API (2) ..52
The tf.argmax() API (1) ..53
The tf.argmax() API (2) ..54
The tf.argmax() API (3) ..54
Combining tf.argmax() and tf.equal() APIs55
Combining tf.argmax() and tf.equal() APIs (2)56
The tf.map_fn() API ...57
What Is a One-Hot Encoding? ...59
The TF one_hot() API ..59
Other Useful TF 2 APIs ...60
Save and Restore TF 2 Variables ...62
TensorFlow Ragged Constants and Tensors ...63
What Is a TFRecord? ...66

A Simple TFRecord ..66
What Are tf.layers? ..67
What Is TensorBoard? ...68

TF 2 with TensorBoard ...69
TensorBoard Dashboards ...70
The tf.summary API ..70

Google Colaboratory ..71
Other Cloud Platforms ...72

Gcp Sdk ...73
Summary ...73

Chapter 3: TF2 Datasets ���74
The TF 2 tf.data.Datasets ..75

Creating a Pipeline ..75
Basic Steps for TF 2 Datasets ...78
A Simple TF 2 tf.data.Dataset ..78

What Are Lambda Expressions? ..78
Working with Generators in TF 2 ..79
What Are Iterators? (optional) ..81

x • TensorFlow 2 Pocket Primer

TF 1.x Iterators (optional) ..81
Concatenating TF 2 tf.Data.Datasets ...82
The TF 2 reduce() Operator ..83
Working with Generators in TF 2 ...84
The TF 2 filter() Operator (1) ...86
The TF 2 filter() Operator (2) ...87
The TF 2 batch() Operator (1) ..88
The TF 2 batch() Operator (2) ..88
The TF 2 map() Operator (1) ..89
The TF 2 map() Operator (2) ..90
The TF 2 flatmap() Operator (1) ...92
The TF 2 flatmap() Operator (2) ...92
The TF 2 flat_map() and filter() Operators ...93
The TF 2 repeat() Operator ..95
The TF 2 take() Operator ...95
Combining the TF 2 map() and take() Operators96
Combining the TF 2 zip() and batch() Operators97
Combining the TF 2 zip() and take() Operators99
TF 2 tf.data.Datasets and Random Numbers ...100
TF 2, MNIST, and tf.data.Dataset ..101
Working with the TFDS Package in TF 2 ...103

The CIFAR10 Dataset and TFDS in TF 2 ..104
Working with tf.estimator ..104

What Are TF 2 Estimators? ..105
Other TF 2 Namespaces ..105
Summary ...106

Chapter 4: Linear Regression ���107
What Is Linear Regression? ..108

Linear Regression versus Curve-Fitting ..109
What Is Multivariate Analysis? ...109

When Are Solutions Exact in Machine Learning?110
Challenges with Linear Regression ...110

Nonlinear Data ..111
Nonconstant Variance of Error Terms ...111
Correlation of Error Terms ...111
Collinearity ..111
Outliers and Anomalies ...111

Other Types of Regression ...112
Working with Lines in the Plane ...113
Scatter Plots with NumPy and Matplotlib (1) ...115

Why the “Perturbation Technique” Is Useful 116
Scatter Plots with NumPy and Matplotlib (2) ...117
A Quadratic Scatter Plot with NumPy and Matplotlib118
The Mean Squared Error (MSE) Formula ...120

Contents • xi

A List of Error Types ..120
Nonlinear Least Squares ...120

What Is Regularization? ...121
Machine Learning and Feature Scaling ...121
Data Normalization vs. Standardization ...121

The Bias-Variance Trade-off ..121
Metrics for Measuring Models ..122

Limitations of R-Squared ...122
Confusion Matrix ..122
Accuracy vs. Precision vs. Recall ..123

Other Useful Statistical Terms...123
What Is an F1 Score? ..124
What Is a p-value? ...124

Working with Datasets ...124
Training Data Versus Test Data ..124
What Is Cross-Validation?...125

Calculating the MSE Manually ...125
Simple 2D Data Points in TF 2 ...126
TF2, tf.GradientTape(), and Linear Regression127
Working with Keras ..130

Working with Keras Namespaces in TF 2 ..130
Working with the tf.keras.layers Namespace131
Working with the tf.keras.activations Namespace132
Working with the tf.keras.datasets Namespace132
Working with the tf.keras.experimental Namespace132
Working with Other tf.keras Namespaces..133
TF 2 Keras versus “Standalone” Keras ...133

Creating a Keras-Based Model ..134
Keras and Linear Regression ...136
Working with tf.estimator ...138
Summary ...139

Chapter 5: Working with Classifiers �������������������������������������140
What Is Classification? ...141

What Are Classifiers? ..141
Common Classifiers ..141

What Are Linear Classifiers? ...142
What Is KNN? ..142

How to Handle a Tie in kNN ...143
What Are Decision Trees? ...143
What Are Random Forests? ..145
What Are SVMS? ...146

Trade-offs of SVMs ...146
What Is Bayesian Inference? ...147

Bayes’s Theorem..147

xii • TensorFlow 2 Pocket Primer

Some Bayesian Terminology ...147
What Is MAP? ...148
Why Use Bayes’s Theorem? ..148

What Is a Bayesian Classifier? ...148
Types of Naive Bayes Classifiers...149

Training Classifiers ...149
Evaluating Classifiers ...150
What Are Activation Functions? ...150

Why Do We Need Activation Functions? ..151
How Do Activation Functions Work? ..152

Common Activation Functions ..152
Activation Functions in Python ..153

The ReLU and ELU Activation Functions ...154
The Advantages and Disadvantages of ReLU155
ELU ...155

Sigmoid, Softmax, and Hardmax Similarities ..155
Softmax ..156
Softplus ..156
Tanh ...156

Sigmoid, Softmax, and Hardmax Differences ...156
TF 2 and the Sigmoid Activation Function ...157
What Is Logistic Regression? ..159

Setting a Threshold Value ...160
Logistic Regression: Assumptions ..160
Linearly Separable Data ...160

TensorFlow and Logistic Regression...161
Keras and Early Stopping (1) ...162
Keras and Early Stopping (2) ...164
Keras and Metrics ..166
Distributed Training in TF 2 (Optional) ...167

Using tf.distribute.Strategy with Keras168
Summary ...168

APPENDIX: TF 2, Keras, and Advanced Topics ������������������169
What Is Deep Learning? ...170

What Are Hyperparameters? ..171
Deep Learning Architectures ...171
Problems That Deep Learning Can Solve ...172
Challenges in Deep Learning ...172

What Are Perceptrons? ..173
Definition of the Perceptron Function ..174
A Detailed View of a Perceptron ..174

The Anatomy of an Artificial Neural Network (ANN)175
The Model Initialization Hyperparameters ...176
The Activation Hyperparameter...176

Contents • xiii

The Cost Function Hyperparameter..177
The Optimizer Hyperparameter ..177
The Learning Rate Hyperparameter ...177
The Dropout Rate Hyperparameter ..178
What Is Backward Error Propagation? ..178

What Is a Multilayer Perceptron (MLP)? ...178
Activation Functions ...179

How Are Data Points Correctly Classified? ..180
Keras and the XOR Function ...181
A High-Level View of CNNs ...183

A Minimalistic CNN ...184
The Convolutional Layer (Conv2D) ..184
The ReLU Activation Function ..185
The Max Pooling Layer ...185

CNNs with Audio Signals ..186
CNNs and NLPs ..187
Displaying an Image in the MNIST Dataset ...187
Keras and the MNIST Dataset ...188
Keras, CNNs, and the MNIST Dataset ...190
What Is an RNN? ...193

Anatomy of an RNN ...194
What Is BPTT? ..195

Working with RNNs and TF 2 ...195
What Is an LSTM? ...196

Anatomy of an LSTM ...196
Bidirectional LSTMs ...197
LSTM Formulas ..198
LSTM Hyperparameter Tuning ...198

What Are GRUs? ...199
What Are Autoencoders? ...199

Autoencoders and PCA ...201
What Are Variational Autoencoders? ...201

What Are GANs?..202
The VAE-GAN Model ..203

Working with NLP (Natural Language Processing)203
NLP Techniques ...204
The Transformer Architecture and NLP ...205
Transformer-XL Architecture ...205
NLP and Deep Learning ..206
NLP and Reinforcement Learning ..206
Data Preprocessing Tasks ...206

Popular NLP Algorithms ...207
What Is an n-Gram? ..207
What Is a Skip-Gram? ...208
What Is BoW? ...208

xiv • TensorFlow 2 Pocket Primer

What Is Term Frequency? ..209
What Is Inverse Document Frequency (idf)?......................................209
What Is tf-idf? ...210

What Are Word Embeddings?...210
ELMo, ULMFit, OpenAI, and BERT ...211

What Is Translatotron? ...212
What Is Reinforcement Learning (RL)? ...213

What Are NFAs? ..214
What Are Markov Chains? ..215
Markov Decision Processes (MDPs) ..216

The Epsilon-Greedy Algorithm ...216
The Bellman Equation ...218

Other Important Concepts in RL ...218
RL Toolkits and Frameworks ..219

TF-Agents ..219
What Is Deep Reinforcement Learning (DRL)? ...220
Miscellaneous Topics ...221

TFX (TensorFlow Extended) ...221
TensorFlow Probability ..222
TensorFlow Graphics ..222
TF Privacy ...222

Summary ...222

Index �� 225

xv

What Is the GOal?

The goal of this book is to introduce TensorFlow 2 fundamentals for basic
machine learning algorithms in TensorFlow. It is intended to be a fast-
paced introduction to various “core” features of TensorFlow, with code

samples that cover deep learning and TensorFlow. The material in the chapters
illustrates how to solve a variety of tasks using TensorFlow, after which you can
do further reading to deepen your knowledge.

This book provides more detailed code samples than those that are found
in intermediate and advanced TensorFlow books. Although it contains some
basic code samples in TensorFlow, some familiarity with the software will be
helpful.

The book will also save you the time required to search for code samples,
which is a potentially time-consuming process. In any case, if you’re not sure
whether or not you can absorb the material in this book, glance through the
code samples to get a feel for the level of complexity. At the risk of stating the
obvious, please keep in mind the following point: you will not become an expert
in TensorFlow by reading this book.

What WIll I learn frOm thIs BOOk?

The first chapter contains TensorFlow code samples that illustrate very
simple TensorFlow functionality, followed by a chapter whose code samples
illustrate an assortment of built-in APIs. The third chapter delves into the
TensorFlow Dataset, with a plethora of code samples that illustrate how to
use “lazy” operators in conjunction with datasets. The fourth chapter dis-
cusses linear regression and the fifth chapter covers logistic regression. If you

PrefaCe

xvi • TensorFlow 2 Pocket Primer

think that you’ll struggle significantly with the code in the first two chapters,
then an “absolute beginners” type of book is recommended to prepare you
for this one.

Another point: although Jupyter is popular, all the code samples in this
book are Python scripts. However, you can quickly learn about the useful fea-
tures of Jupyter through various online tutorials. In addition, it’s worth looking
at Google Colaboratory, which is entirely online and is based on Jupyter note-
books, along with free GPU usage.

Why DOes thIs BOOk InCluDe tf 1.x materIal?

If you are new to TensorFlow, then feel free to skip the TF 1.x content,
particularly if you are starting with a new project involving TensorFlow and you
don’t have any TF 1.x. However, as this book goes to print, the vast majority of
existing TensorFlow code is TF 1.x code, which is massive when you consider
all the companies that are using TensorFlow. Hence, many people who are
working with TF 1.x also need to learn how to convert TF 1.x to TF 2.

Almost all the TF 1.x material (including the section regarding the upgrade
script from TF 1.x to TF 2) is limited to the second half of Chapter 1. Keep in
mind another detail: even if you plan to learn only TF 2, you might be faced
with a task that involves upgrading from TF 1.x to TF 2, and now you’ll have
some potentially useful information regarding TF 1.x in this book.

the tf 1.x anD tf 2.0 BOOks: hOW are they DIfferent?

TensorFlow 2 uses eager execution whereas TensorFlow 1.x uses deferred
execution, which means that the coding styles are significantly different. TF 2.0
also introduces new features, such as generators (which are decorated Python
functions), that are discussed in that book.

In some cases, TF 1.x and TF 2 contain the same functionality that is im-
plemented using different APIs. For example, tf.data.Dataset in TF 1.x
uses iterators (there are four main types) to iterate through datasets, whereas
tf.data.Dataset in TF 2 uses generators. The TF 2.0 book contains both
types of code samples for tf.data.Dataset code samples (with the pri-
mary focus on TF 2.0 coding style).

Why Isn’t keras In Its OWn Chapter In thIs BOOk?

The answer is straightforward: this book introduces TensorFlow 2 from the
perspective of people who are interested in machine learning. Consequently,
Keras is introduced on an “as-needed” topic. For example, Chapter 4 contains
a section about Keras in the context of linear regression. Chapter 5 contains a
Keras-based code sample in the context of classifiers (specifically for logistic
regression). The appendix also contains some Keras-based code samples for
advanced topics.

Preface • xvii

For the same reason, Chapter 5 is devoted to classifiers in machine learning,
and the Keras and TF 2 material is discussed in the second half of the chapter.
The extent to which this mixture appeals to you depends on your objectives
regarding TensorFlow 2 and machine learning.

hOW muCh keras knOWleDGe Is neeDeD fOr thIs BOOk?

The answer depends on the extent to which you become involved in ma-
chine learning: there are essentially four options available, which are discussed
as follows.

Option #1: if you are not interested in Keras, you can skip the last example in
Chapter 4 and Chapter 5, as well as the appendix: even so, there is
still plenty of TF 2 content in this book.

Option #2: if you only want to learn enough details about Keras to work with
linear regression, there is a very simple example in Chapter 4 that
follows a “bare bones” section regarding Keras.

Option #3: if you also want to learn about Keras and logistic regression, there
is an example in Chapter 5. This example requires some theoreti-
cal knowledge involving activation functions, optimizers, and cost
functions, all of which are discussed in the first half of Chapter 5.

Option #4: if you want to go even further and also learn about Keras and deep
learning, the appendix discusses some of the underpinnings of
MLPs, CNNs, RNNs, and LSTMs.

Please keep in mind that Keras is well-integrated into TensorFlow 2 (in
the tf.keras namespace), and it provides a layer of abstraction over “pure”
TensorFlow that will enable you to develop prototypes more quickly.

If you have never worked with Keras, you’ll probably enjoy the experience,
and if need be, you can read some introductory online tutorials in preparation
for the Keras-based content in this book. Regardless of your knowledge level,
if you decide to skip the Keras-related content for now, eventually you do need
to learn Keras in order to fully master TensorFlow 2.

DO I neeD tO learn the theOry pOrtIOns Of thIs BOOk?

Once again, the answer depends on the extent to which you plan to be-
come involved in machine learning. In addition to creating a model, you will
use various algorithms to see which ones provide the level of accuracy (or
some other metric) that you need for your project. If you fall short, the theo-
retical aspects of machine learning can help you perform a “forensic” analysis
of your model and your data, and ideally assist in determining how to improve
your model.

You can acquire a cursory understanding of TensorFlow 2 from the material
in this book; delving further into TF 2 depends on your tasks and career goals.

xviii • TensorFlow 2 Pocket Primer

hOW Were the CODe samples CreateD?

The code samples in this book were created and tested using the Tensor-
Flow tf-nightly-2.0-preview (from 4/7/2019) on a MacBook Pro with
OS X 10.12.6 (macOS Sierra). Regarding their content: the code samples are
derived primarily from the author for his deep learning and TensorFlow gradu-
ate course. In some cases there are code samples that incorporate short sec-
tions of code from discussions in online forums. The key point to remember
is that the code samples follow the “Four Cs”: they must be Clear, Concise,
Complete, and Correct to the extent that it’s possible to do so, given the size
of this book.

What are the teChnICal prerequIsItes fOr thIs BOOk?

You need some familiarity with Python, and also need to know how to
launch Python code from the command line (in a Unix-like environment for
Mac users). In addition, a mixture of basic linear algebra (vectors and matri-
ces), probability/statistics (mean, median, standard deviation), and basic con-
cepts in calculus (such as derivatives) will help you learn the material in this
book.

Some knowledge of NumPy and Matplotlib is also helpful, and the assump-
tion is that you are familiar with basic functionality (such as NumPy arrays).
For example, Chapter 2 contains a code sample that invokes the tf.range()
API, which is similar to the NumPy linspace() API; however, the NumPy
linspace() API is not explained in the code (so you need to look up the
details of this API if it’s unfamiliar). As another example, in Chapter 3 a TF 2
Dataset is described as being analogous to a Pandas DataFrame; how-
ever, Pandas APIs are not explained in this book.

One other prerequisite is important for understanding the code samples
in the appendix: some familiarity with neural networks, which includes the
concept of hidden layers and activation functions (even if you don’t fully un-
derstand them). Knowledge of cross entropy is also helpful for some of the
code samples.

Also keep in mind that TensorFlow provides a vast assortment of APIs,
some of which are discussed in the code samples in the book chapters. While
it’s possible for you to “pick up” the purpose of the more intuitive APIs by read-
ing the online documentation, that’s only true for the basic TensorFlow APIs.
Consequently, you probably won’t really understand how to “tweak” the values
of their parameters and why they are needed until you work with them in Ten-
sorFlow code samples. In other words, if you read TensorFlow code samples
containing APIs that you do not understand, in many cases it’s not enough to
repeatedly read the code samples.

A more efficient approach is to learn about the purpose of the TensorFlow
APIs by reading small code samples that clearly illustrate the purpose of those
APIs, after which you can read more complex TensorFlow code samples.

Preface • xix

What are the nOnteChnICal prerequIsItes fOr thIs
BOOk?

Although the answer to this question is more difficult to quantify, it’s very
important to have a strong desire to learn TensorFlow and machine learn-
ing, along with the motivation and discipline to read and understand the code
 samples.

Even the non-trivial TensorFlow APIs can be a challenge to understand the
first time you encounter them, so be prepared to read the code samples several
times. The latter requires persistence when learning TensorFlow, and whether
or not you have enough persistence is something that you need to decide for
yourself.

WhICh tOpICs are exCluDeD?

The chapters in this book do not cover CNNs (Convolutional Neural Net-
works), RNNs (Recurrent Neural Networks), or LSTMs (Long Short Term
Memory). However, these topics are introduced in the appendix, in a some-
what cursory fashion, which is to say that the appendix is not a substitute for
taking a deep learning course.

You will not find in-depth details about TensorFlow layers and estimators
(but they are lightly discussed). Keep in mind that online searches on Stacko-
verflow will often involve solutions employing TF 1.x, whereas solutions for
TF 2 will be less common.

hOW DO I set up a COmmanD shell?

If you are a Mac user, there are three ways to do so. The first method is
to use Finder to navigate to Applications > Utilities and then
double-click on the Utilities application. Next, if you already have a com-
mand shell available, you can launch a new command shell by typing the fol-
lowing command:

open /Applications/Utilities/Terminal.app

A second method for Mac users is to open a new command shell on
a MacBook from a command shell that is already visible simply by clicking
command+n in that command shell, and your Mac will launch another com-
mand shell.

If you are a PC user, you can install Cygwin (open source https://cygwin.
com/), which simulates bash commands, or use another toolkit such as MKS (a
commercial product). Please read the online documentation that describes the
download and installation process. Note that custom aliases are not automati-
cally set if they are defined in a file other than the main start-up file (such as
.bash_login).

xx • TensorFlow 2 Pocket Primer

COmpanIOn fIles

All the code samples and figures in this book may be obtained by writing to
the publisher at info@merclearning.com.

What are the “next steps” after fInIshInG thIs BOOk?

The answer to this question varies widely, mainly because the answer de-
pends heavily on your objectives. The best answer is to try out a new tool or
technique from the book on a problem or task you care about, professionally or
personally. Precisely what that might be depends on who you are, as the needs
of a data scientist, manager, student, or developer are all different. In addition,
keep what you learned in mind as you tackle new challenges.

If you have reached the limits of what you have learned here and want
to get further technical depth regarding TensorFlow, there are various online
 resources and literature describing more complex features of TensorFlow.

Chapter 1
IntroductIon to
tensorFlow 2

Welcome to TensorFlow 2! This chapter introduces you to various
features of TensorFlow 2 (abbreviated as TF 2), as well as some of
the TF 2 tools and projects that are covered under the TF 2 “um-

brella.” You will see TF 2 code samples that illustrate new TF 2 features (such
as tf.GradientTape and the @tf.function decorator), plus an assort-
ment of code samples that illustrate how to write code “the TF 2 way.”

Despite the simplicity of many topics in this chapter, they provide you with
a foundation for TF 2. This chapter also prepares you for Chapter 2, which
delves into frequently used TF 2 APIs that you will encounter in other chap-
ters of this book.

Keep in mind that the TensorFlow 1.x releases are considered legacy code
after the production release of TF 2. Google will provide only security-related
updates for TF 1.x (i.e., no new code development) and support TensorFlow
1.x for at least another year beyond the initial production release of TF 2. For
your convenience, TensorFlow provides a conversion script to facilitate the au-
tomatic conversion of TensorFlow 1.x code to TF 2 code in many cases (details
provided later in this chapter).

As you saw in the Preface, this chapter contains several sections regard-
ing TF 1.x, all of which are placed near the end of this chapter. If you do not
have TF 1.x code, obviously these sections are optional (and they are labeled
as such).

The first part of this chapter briefly discusses some TF 2 features and some
of the tools that are included under the TF 2 “umbrella.” The second section
of this chapter shows you how to write TF 2 code involving TF constants and
TF variables.

The third section digresses a bit: you will learn about the new TF 2 Python
function decorator @tf.function that is used in many code samples in
this chapter. Although this decorator is not always required, it’s important to

2 • tensorFlow 2 pocket primer

 become comfortable with this feature, and there are some nonintuitive caveats
regarding its use that are discussed in this section.

The fourth section of this chapter shows you how to perform typical arith-
metic operations in TF 2, how to use some of the built-in TF 2 functions, and
how to calculate trigonometric values. If you need to perform scientific calcu-
lations, see the code samples that pertain to the type of precision that you can
achieve with floating point numbers in TF 2. This section also shows you how
to use for loops and how to calculate exponential values.

The fifth section contains TF 2 code samples involving arrays, such as creat-
ing an identity matrix, a constant matrix, a random uniform matrix, and a trun-
cated normal matrix, along with an explanation about the difference between a
truncated matrix and a random matrix. This section also shows you how to mul-
tiply second-order tensors in TF 2 and how to convert Python arrays to second-
order tensors in TF 2. The sixth section contains code samples that illustrate
how to use some of the new features of TF 2, such as tf.GradientTape.

Although the TF 2 code samples in this book use Python 3.x, it’s possible to
modify the code samples in order to run under Python 2.7. Also make note of
the following convention in this book (and only this book): TF 1.x files have a
“tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2, its
architecture, and some of its features.

What Is tF 2?

TF 2 is an open source framework from Google that is the newest version
of TensorFlow. The TF 2 framework is a modern framework that’s well-suited
for machine learning and deep learning, and it’s available through an Apache
license. Interestingly, TensorFlow surprised many people, perhaps even mem-
bers of the TF team, in terms of the creativity and plethora of use cases for TF
in areas such as art, music, and medicine. For a variety of reasons, the Tensor-
Flow team created TF 2 with the goal of consolidating the TF APIs, eliminat-
ing duplication of APIs, enabling rapid prototyping, and making debugging an
easier experience.

There is good news if you are a fan of Keras: improvements in TF 2 are
partially due to the adoption of Keras as part of the core functionality of TF 2.
In fact, TF 2 extends and optimizes Keras so that it can take advantage of all
the advanced features in TF 2.

If you work primarily with deep learning models (CNNs, RNNs, LSTMs,
and so forth), you’ll probably use some of the classes in the tf.keras names-
pace, which is the implementation of Keras in TF 2. Moreover, tf.keras.
layers provides many standard layers for neural networks. As you’ll see later,
there are several ways to define Keras-based models, via the tf.keras.Se-
quential class, a functional style definition, and via a subclassing technique.
Alternatively, you can still use lower-level operations and automatic differen-
tiation if you wish to do so.

Introduction to tensorFlow 2 • 3

Furthermore, TF 2 removes duplicate functionality, provides a more intui-
tive syntax across APIs, and also compatibility throughout the TF 2 ecosystem.
TF 2 even provides a backward compatibility module called tf.compat.
v1 (which does not include tf.contrib), and a conversion script tf_up-
grade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode
(not deferred execution), with new features such as the @tf.function dec-
orator and TF 2 privacy-related features. Here is a condensed list of some TF
2 features and related technologies:

•	 support	for	tf.keras: a specification for high-level code for ML and DL
•	 tensorflow.js	v1.0:	TF	in	modern	browsers
•	 TensorFlow	Federated:	an	open	source	framework	for	ML	and	decen-

tralized data
•	 ragged	tensors:	nested	variable-length	(“uneven”)	lists
•	 TensorFlow	Probability:	probabilistic	models	combined	with	deep	learning
•	 Tensor2Tensor:	a	library	of	DL	models	and	datasets

TF 2 also supports a variety of programming languages and hardware plat-
forms, including:

•	 Support	for	Python,	Java,	C++
•	 Desktop,	server,	mobile	device	(TF	Lite)
•	 CPU/GPU/TPU	support
•	 Linux	and	Mac	OS	X	support
•	 VM	for	Windows

Navigate to the TF 2 home page, where you will find links to many re-
sources for TF 2: https://www.tensorflow.org

tF 2 Use Cases

TF 2 is designed to solve tasks that arise in a plethora of use cases, some of
which are listed here:

•	 Image	recognition
•	 Computer	vision
•	 Voice/sound	recognition
•	 Time	series	analysis
•	 Language	detection
•	 Language	translation
•	 Text-based	processing	
•	 Handwriting	recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, and
in the latter case, the code tends to be simpler and cleaner compared to its TF
1.x counterpart.

4 • tensorFlow 2 pocket primer

tF 2 architecture: the short Version

TF	2	is	written	in	C++	and	supports	operations	involving	primitive	values	
and tensors (discussed later). The default execution mode for TF 1.x is de-
ferred execution whereas TF 2 uses eager execution (think “immediate mode”).
Although TF 1.4 introduced eager execution, the vast majority of TF 1.x code
samples that you will find online use deferred execution.

TF 2 supports arithmetic operations on tensors (i.e., multidimensional ar-
rays with enhancements) as well as conditional logic, “for” loops, and “while”
loops. Although it’s possible to switch between eager execution mode and
deferred mode in TF 2, all the code samples in this book use eager execu-
tion mode.

Data visualization is handled via TensorBoard (discussed in Chapter 2) that
is included as part of TF 2. As you will see in the code samples in this book,
TF 2 APIs are available in Python and can therefore be embedded in Python
scripts.

So, enough already with the high-level introduction: let’s learn how to in-
stall TF 2, which is the topic of the next section.

tF 2 Installation

Install TensorFlow by issuing the following command from the command
line:

pip install tensorflow==2.0.0-beta0

When a production release of TF 2 is available, you can issue the following
command from the command line (which will be the most current version of
TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of Tensor-
Flow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For ex-
ample, if you have installed version 1.13.1 and you want to install version
1.10,	specify	the	value	1.10	in	the	preceding	code	snippet.	TensorFlow	will	
uninstall your current version and install the version that you specified
(i.e.,	1.10).

As a sanity check, create a Python script with the following three lines
of code to determine the version number of TF that is installed on your
machine:

import tensorflow as tf
print("TF Version:",tf.__version__)
print("eager execution:",tf.executing_eagerly())

Introduction to tensorFlow 2 • 5

Launch the preceding code and you ought to see something similar to the
following output:

TF version: 2.0.0-beta0
eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf
print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))

Launch the preceding code from the command line and you should see the
following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

tF 2 and the Python REPL

In case you aren’t already familiar with the Python REPL (read-eval-print-
loop), it’s accessible by opening a command shell and then typing the following
command:

python

As a simple illustration, access TF 2-related functionality in the REPL by
importing the TF 2 library as follows:

>>> import tensorflow as tf

Now check the version of TF 2 that is installed on your machine with this
command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number that
you see depends on which version of TF 2 that you installed):

TF version: 2.0.0-beta0

Although the REPL is useful for short code blocks, the TF 2 code sam-
ples in this book are Python scripts that you can launch with the Python
 executable.

OthER tF 2-BasEd tOOLkIts

In addition to providing support for TF 2-based code on multiple devices,
TF 2 provides the following toolkits:

•	 TensorBoard	for	visualization	(included	as	part	of	TensorFlow)
•	 TensorFlow	Serving	(hosting	on	a	server)
•	 TensorFlow	Hub

6 • tensorFlow 2 pocket primer

•	 TensorFlow	Lite	(for	mobile	applications)
•	 Tensorflow.js	(for	Web	pages	and	NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch
TensorBoard from the command line as follows: open a command shell and
type the following command to access a saved TF graph in the subdirectory /
tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the logdir
parameter in the preceding command. Now launch a browser session and navi-
gate	to	this	URL:	localhost:6006

After a few moments you will see a visualization of the TF 2 graph that was
created in your code and then saved in the directory /tmp/abc.

TensorFlow Serving is a cloud-based, flexible, high-performance serving
system for ML models that is designed for production environments. Tensor-
Flow Serving makes it easy to deploy new algorithms and experiments, while
keeping the same server architecture and APIs. More information is here:

https://www.TF 2.org/serving/
TensorFlow Lite was specifically created for mobile development (both

Android	and	iOS).	Please	keep	in	mind	that	TensorFlow	Lite	supersedes	TF	
2 Mobile, which was an earlier SDK for developing mobile applications. Ten-
sorFlow Lite (which also exists for TF 1.x) supports on-device ML inference
with low latency and a small binary size. Moreover, TensorFlow Lite supports
hardware acceleration with the Android Neural Networks API. More informa-
tion about TensorFlow Lite is here:

https://www.tensorflow.org/lite/
A more recent addition is tensorflow.js,	which	provides	 JavaScript	

APIs to access TensorFlow in a Web page. The tensorflow.js toolkit was
previously called deeplearning.js. You can also use tensorflow.js
with	NodeJS.	More	information	about	tensorflow.js is here:

https://js.tensorflow.org/

tF 2 EagER ExECUtIOn

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might be
surprised to discover that TF introduced “eager execution” as an alternative
to deferred execution in version 1.4.1, but this feature was vastly underuti-
lized. With TF 1.x code, TensorFlow creates a dataflow graph that consists of
(a) a set of tf.Operation objects that represent units of computation, and
(b) tf.Tensor objects that represent the units of data that flow between
operations.

On	the	other	hand,	TF	2	evaluates	operations	immediately	without	instan-
tiating a Session	object	or	a	creating	a	graph.	Operations	return	concrete	

Introduction to tensorFlow 2 • 7

values instead of creating a computational graph. TF 2 eager execution is based
on Python control flow instead of graph control flow. Arithmetic operations
are simpler and intuitive, as you will see in code samples later in this chapter.
Moreover, TF 2 eager execution mode simplifies the debugging process. How-
ever, keep in mind that there isn’t a 1:1 relationship between a graph and eager
execution.

tF 2 tEnsORs, data tyPEs, and PRImItIVE tyPEs

In simplified terms, a TF 2 tensor is an n-dimensional array that is simi-
lar to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as
 illustrated here:

scalar number: a zeroth-order tensor
vector: a first-order tensor
matrix: a second-order tensor
3-dimensional array: a 3rd order tensor

The next section discusses some of the data types that are available in TF 2,
followed by a section that discusses TF 2 primitive types.

tF 2 data types

TF 2 supports the following data types (similar to the supported data types
in TensorFlow 1.x):

•	 tf.float32
•	 tf.float64
•	 tf.int8
•	 tf.int16
•	 tf.int32
•	 tf.int64
•	 tf.uint8
•	 tf.string
•	 tf.bool

The data types in the preceding list are self-explanatory: two floating point
types, four integer types, one unsigned integer type, one string type, and one
Boolean type. As you can see, there is a 32-bit and a 64-bit floating point type,
and integer types that range from 8-bit through 64-bit.

tF 2 Primitive types

TF 2 supports tf.constant() and tf.Variable() as primi-
tive	 types.	 Notice	 the	 capital	 “V”	 in	 tf.Variable(): this indicates
a TF 2 class (which is not the case for a lowercase initial letter such as
tf.constant()).

8 • tensorFlow 2 pocket primer

A TF 2 constant is an immutable value, and a simple example is
shown here:

aconst = tf.constant(3.0)

A TF 2 variable is a “trainable value” in a TF 2 graph. For example, the
slope m and y-intercept b of a best-fitting line for a dataset consisting of points
in the Euclidean plane are two examples of trainable values. Some examples of
TF variables are shown here:

b = tf.Variable(3, name="b")
x = tf.Variable(2, name="x")
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x
are initialized with numeric values, whereas the value of the variable z is an
expression that depends on the value of x (which equals 2).

COnstants In tF 2

Here is a short list of some properties of TF 2 constants:

•	 initialized	during	their	definition
•	 cannot	change	their	value	(“immutable”)
•	 can	specify	their	name	(optional)
•	 the	type	is	required	(ex:	tf.float32)
•	 are	not	modified	during	training

Listing 1.1 displays the contents of tf2_constants1.py, which illus-
trates how to assign and print the values of some TF 2 constants.

Listing 1.1: tf2_constants1.py

import tensorflow as tf

scalar = tf.constant(10)
vector = tf.constant([1,2,3,4,5])
matrix = tf.constant([[1,2,3],[4,5,6]])
cube = tf.constant([[[1],
[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())
print(vector.get_shape())
print(matrix.get_shape())
print(cube.get_shape())

Introduction to tensorFlow 2 • 9

Listing 1.1 contains four tf.constant() statements that define TF 2
tensors	of	dimension	0,	1,	2,	and	3,	respectively.	The	second	part	of	Listing	
1.1 contains four print() statements that display the shape of the four TF 2
constants that are defined in the first section of Listing 1.1. The output from
Listing 1.1 is here:

()
(5,)
(2, 3)
(3, 3, 1)

Listing 1.2 displays the contents of tf2_constants2.py, which illus-
trates how to assign values to TF 2 constants and then print those values.

Listing 1.2: tf2_constants2.py

import tensorflow as tf

x = tf.constant(5,name="x")
y = tf.constant(8,name="y")

@tf.function
def calc_prod(x, y):
 z = 2*x + 3*y
 return z

result = calc_prod(x, y)
print('result =',result)

Listing 1.2 defines a “decorated” (shown in bold) Python function
calc_prod()with TF 2 code that would otherwise be included in a TF 1.x
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and
y. Fortunately, a decorated Python function in TF 2 makes the code look like
“normal” Python code.

VaRIaBLEs In tF 2

TF	 2.0	 eliminates	 global	 collections	 and	 their	 associated	 APIs,	 such	 as	
tf.get_variable, tf.variable_scope, and tf.initializers.
global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])

Listing 1.3 displays the contents of tf2_variables.py, which illus-
trates how to compute values involving TF constants and variables in a with
code block.

10 • tensorFlow 2 pocket primer

Listing 1.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print("v.value():", v.value())
print("")
print("v.numpy():", v.numpy())
print("")

v.assign(2 * v)
v[0, 1].assign(42)
v[1].assign([7., 8., 9.])
print("v:",v)
print("")

try:
 v[1] = [7., 8., 9.]
except TypeError as ex:
 print(ex)

Listing 1.3 defines a TF 2 variable v and prints its value. The next portion
of Listing 1.3 updates the value of v and prints its new value. The last portion
of Listing 1.3 contains a try/except block that attempts to update the value
of v[1]. The output from Listing 1.3 is here:

v.value(): tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]
 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32,
numpy=
array([[2., 42., 6.],
 [7., 8., 9.]], dtype=float32)>

'ResourceVariable' object does not support item assignment

This concludes the quick tour involving TF 2 code that contains various
combinations of TF constants and TF variables. The next few sections delve
into more details regarding the TF primitive types that you saw in the preced-
ing sections.

thE tf.rank() aPI

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas the
shape of a tensor is the number of elements in each dimension. Listing 1.4
displays the contents of tf2_rank.py, which illustrates how to find the rank
of TF 2 tensors.

Introduction to tensorFlow 2 • 11

Listing 1.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)
B = tf.fill([2,3], 5.0)
C = tf.constant([3.0, 4.0])

@tf.function
def show_rank(x):
 return tf.rank(x)

print('A:',show_rank(A))
print('B:',show_rank(B))
print('C:',show_rank(C))

Listing 1.4 contains familiar code for defining the TF constant A, followed
by the TF tensor B, which is a 2x3 tensor in which every element has the
value 5. The TF tensor C	is	a	1x2	tensor	with	the	values	3.0	and	4.0.

The next code block defines the decorated Python function show_
rank(), which returns the rank of its input variable. The final section invokes
show_rank() with A and then with B. The output from Listing 1.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)
B: tf.Tensor(2, shape=(), dtype=int32)
C: tf.Tensor(1, shape=(), dtype=int32)

thE tf.shape() aPI

The shape of a TF 2 tensor is the number of elements in each dimension
of a given tensor.

Listing 1.5 displays the contents of tf2_getshape.py, which illustrates
how to find the shape of TF 2 tensors.

Listing 1.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)
print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)
print("b shape:",b.get_shape())

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])
print("c shape:",c.get_shape())

Listing 1.5 contains the definition of the TF constant a	whose	value	is	3.0.	
Next, the TF variable b is initialized as a 2x3 tensor whose
six values are all 5, followed by the constant c whose value is

12 • tensorFlow 2 pocket primer

[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The three print() statements
display the values of a, b, and c. The output from Listing 1.5 is here:

a shape: ()
b shape: (2, 3)
c shape: (2, 3)

Shapes	 that	 specify	 a	 0-D	 Tensor	 (scalar)	 are	 numbers	 (9,	 -5,	 2.34,	 and	
so forth), [], and (). As another example, Listing 1.6 displays the contents of
tf2_shapes.py, which contains an assortment of tensors and their shapes.

Listing 1.6: tf2_shapes.py

import tensorflow as tf

list_0 = []
tuple_0 = ()
print("list_0:",list_0)
print("tuple_0:",tuple_0)

list_1 = [3]
tuple_1 = (3)
print("list_1:",list_1)
print("tuple_1:",tuple_1)

list_2 = [3, 7]
tuple_2 = (3, 7)
print("list_2:",list_2)
print("tuple_2:",tuple_2)

any_list1 = [None]
any_tuple1 = (None)
print("any_list1:",any_list1)
print("any_tuple1:",any_tuple1)

any_list2 = [7,None]
any_list3 = [7,None,None]
print("any_list2:",any_list2)
print("any_list3:",any_list3)

Listing 1.6 contains simple lists and tuples of various dimensions in order to
illustrate the difference between these two types. The output from Listing 1.6
is probably what you would expect and it’s shown here:

list_0: []
tuple_0: ()
list_1: [3]
tuple_1: 3
list_2: [3, 7]
tuple_2: (3, 7)
any_list1: [None]

Introduction to tensorFlow 2 • 13

any_tuple1: None
any_list2: [7, None]
any_list3: [7, None, None]

VaRIaBLEs In tF 2 (REVIsItEd)

TF 2 variables can be updated during backward error propagation (also
called “backprop,” which is discussed later in this book). TF 2 variables can
also be saved and then restored at a later point in time. The following list con-
tains some properties of TF 2 variables:

•	 initial	value	is	optional
•	 must	be	initialized	before	graph	execution
•	 updated	during	training
•	 constantly	recomputed
•	 they	hold	values	for	weights	and	biases
•	 in-memory	buffer	(saved/restored	from	disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')
x = tf.Variable(2, name='x')
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that the variables b, x, and W specify constant values, whereas the
variables z and lm specify expressions that are defined in terms of other vari-
ables. If you are familiar with linear regression, you undoubtedly noticed that
the variable lm	(“linear	model”)	defines	a	line	in	the	Euclidean	plane.	Other	
properties of TF 2 variables are listed as follows:

•	 a	tensor	that’s	updateable	via	operations
•	 exist	outside	the	context	of	session.run
•	 like	a	“regular”	variable
•	 holds	the	learned	model	parameters
•	 variables	can	be	shared	(or	non-trainable)
•	 used	for	storing/maintaining	state
•	 internally	stores	a	persistent	tensor
•	 you	can	read/modify	the	values	of	the	tensor
•	 multiple	workers	see	the	same	values	for	tf.Variables
•	 the	best	way	to	represent	shared,	persistent	state	manipulated	by	your	

program

TF 2 also provides the method tf.assign() in order to modify values
of TF 2 variables; be sure to read the relevant code sample later in this chapter
so that you learn how to use this API correctly.

14 • tensorFlow 2 pocket primer

tF 2 Variables versus tensors

Keep in mind the following distinction between TF variables and TF
 tensors: TF variables represent your model’s trainable parameters (e.g.,
weights and biases of a neural network), whereas TF tensors represent the
data fed into your model and the intermediate representations of that data as
it passes through your model.

In the next section, you will learn about the @tf.function “decorator”
for Python functions and how it can improve performance.

What Is @tf.function In tF 2?

TF 2 introduced the @tf.function “decorator” for Python func-
tions that defines a graph and performs session execution: it’s sort of a
“successor” to tf.Session() in TF 1.x. Since graphs can still be useful,
@tf.function transparently converts Python functions into functions
that are “backed” by graphs. This decorator also converts tensor-dependent
Python control flow into TF control flow, and also adds control depend-
encies to order read and write operations to a TF 2 state. Remember that
@tf.function works best with TF 2 operations instead of NumPy opera-
tions or Python primitives.

In general, you won’t need to decorate functions with @tf.function; use it to
decorate high-level computations, such as one step of training, or the forward
pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user in-
terface, this ease-of-use can be at the expense of decreased performance. For-
tunately, the @tf.function decorator is a technique for generating graphs
in TF 2 code that execute more quickly than eager execution mode.

The performance benefit depends on the types of operations that
are performed: matrix multiplication does not benefit from the use of
@tf.function, whereas optimizing a deep neural network can benefit from
@tf.function.

how does @tf.function Work?

Whenever you decorate a Python function with @tf.function, TF 2
automatically builds the function in graph mode. If a Python function that
is decorated with @tf.function invokes other Python functions that are
not decorated with @tf.function, then the code in those “non-decorated”
 Python functions will also be included in the generated graph.

Another point to keep in mind is that a tf.Variable in eager mode is
actually a “plain” Python object: this object is destroyed when it’s out of scope.
On	the	other	hand,	a	tf.Variable object defines a persistent object if the
function is decorated via @tf.function. In this scenario, eager mode is
disabled and the tf.Variable object defines a node in a persistent TF 2
graph. Consequently, a function that works in eager mode without annotation
can fail when it is decorated with @tf.function.

Introduction to tensorFlow 2 • 15

a Caveat about @tf.function in tF 2

If constants are defined before the definition of a decorated Python func-
tion, you can print their values inside the function using the Python print()
function.	On	the	other	hand,	if	constants	are	defined	inside the definition of a
decorated Python function, you can print their values inside the function using
the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function
def compute_values():
 print(a) # 6

compute_values()

output:
tf.Tensor(6, shape=(), dtype=int32)

As you can see, the correct result is displayed (shown in bold). However, if
you define constants inside a decorated Python function, the output contains
types and attributes but not the execution of the addition operation. Consider
the following code block:

import tensorflow as tf

@tf.function
def compute_values():
 a = tf.add(4, 2)
 print(a)

compute_values()

output:
Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an
outputted value. Specifically, Add:0 is output zero of the tf.add() opera-
tion. Any additional invocation of compute_values() prints nothing. If
you want actual results, one solution is to return a value from the function, as
shown here:

import tensorflow as tf

@tf.function
def compute_values():
 a = tf.add(4, 2)
 return a

16 • tensorFlow 2 pocket primer

result = compute_values()
print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)

A second solution involves the TF tf.print() function instead of the
Python print() function, as shown in bold in this code block:

@tf.function
def compute_values():
 a = tf.add(4, 2)
 tf.print(a)

A third solution is to cast the numeric values to Tensors if they do not affect
the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function
def compute_values():
 a = tf.add(tf.constant(4), tf.constant(2))
 return a

result = compute_values()
print("result:", result)

the tf.print() Function and standard Error

There is one more detail to remember: the Python print() function
“sends” output to something called “standard output” that is associated with a
file descriptor whose value is 1; on the other hand, tf.print() sends output
to “standard error” that is associated with a file descriptor whose value is 2. In
programming languages such as C, only errors are sent to standard error, so
keep in mind that the behavior of tf.print() differs from the convention
regarding standard out and standard error. The following code snippets illus-
trate this difference:

python3 file_with_print.py 1>print_output
python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print(), you can
capture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output

However, keep in mind that the preceding code snippet might also redirect
real error messages to the file tf.print_output.

Introduction to tensorFlow 2 • 17

WORkIng WIth @tf.function In tF 2

The preceding section explained how the output will differ depending on
whether you use the Python print() function versus the tf.print()
function in TF 2 code, where the latter function also sends output to standard
error instead of standard output.

This section contains several examples of the @tf.function decorator
in TF 2 to show you some nuances in behavior that depend on where you de-
fine constants and whether you use the tf.print() function or the Python
print() function. Also keep in mind the comments in the previous section
regarding @tf.function, as well as the fact that you don’t need to use @
tf.function in all your Python functions.

an Example without @tf.function

Listing 1.7 displays the contents of tf2_simple_function.py, which
illustrates how to define a Python function with TF 2 code.

Listing 1.7: tf2_simple_function.py

import tensorflow as tf

def func():
 a = tf.constant([[10,10],[11.,1.]])
 b = tf.constant([[1.,0.],[0.,1.]])
 c = tf.matmul(a, b)
 return c

print(func().numpy())

The code in Listing 1.7 is straightforward: a Python function func() de-
fines two TF 2 constants, computes their product, and returns that value.

Since TF 2 works in eager mode by default, the Python function func()
is treated as a “normal” function. Launch the code and you will see the follow-
ing output:

[[20. 30.]
 [22. 3.]]

an Example with @tf.function

Listing 1.8 displays the contents of tf2_at_function.py, which illus-
trates how to define a decorated Python function with TF code.

Listing 1.8: tf2_at_function.py

import tensorflow as tf

@tf.function
def func():

18 • tensorFlow 2 pocket primer

 a = tf.constant([[10,10],[11.,1.]])
 b = tf.constant([[1.,0.],[0.,1.]])
 c = tf.matmul(a, b)
 return c

print(func().numpy())

Listing 1.8 defines a decorated Python function: the rest of the code is
identical to Listing 1.7. However, because of the @tf.function annotation,
the Python func() function is “wrapped” in a tensorflow.python.
eager.def_function.Function object. The Python function is as-
signed to the .python_function property of the object.

When func()	is	invoked,	the	graph	construction	begins.	Only	the	Python	
code is executed, and the behavior of the function is traced so that TF 2 can
collect the required data to construct the graph. The output is shown here:

[[20. 30.]
 [22. 3.]]

Overloading Functions with @tf.function

If	you	have	worked	with	programming	languages	such	as	Java	and	C++,	you	
are already familiar with the concept of “overloading” a function. If this term is
new to you, the idea is simple: an overloaded function is a function that can be
invoked with different data types. For example, you can define an overloaded
“add” function that can add two numbers as well as “add” (i.e., concatenate)
two strings.

If you’re curious, overloaded functions in various programming languages
are implemented via “name mangling,” which means that the signature (the
parameters and their data types for the function) is appended to the function
name in order to generate a unique function name. This happens “under the
hood,” which means that you don’t need to worry about the implementation
details.

Listing	1.9	displays	the	contents	of	tf2_overload.py, which illustrates
how to define a decorated Python function that can be invoked with different
data types.

Listing 1.9: tf2_overload.py

import tensorflow as tf

@tf.function

def add(a):
 return a + a

print("Add 1: ", add(1))
print("Add 2.3: ", add(2.3))
print("Add string tensor:", add(tf.constant("abc")))

Introduction to tensorFlow 2 • 19

c = add.get_concrete_function(tf.TensorSpec(shape=None,
dtype=tf.string))
c(a=tf.constant("a"))

Listing	1.9	defines	a	decorated	Python	function	add(), which is preceded
by a @tf.function decorator. This function can be invoked by passing an
integer, a decimal value, or a TF 2 tensor, and the correct result is calculated.
Launch the code and you will see the following output:

Add 1: tf.Tensor(2, shape=(), dtype=int32)
Add 2.3: tf.Tensor(4.6, shape=(), dtype=float32)
Add string tensor: tf.Tensor(b'abcabc', shape=(),
dtype=string)

c: <tensorflow.python.eager.function.ConcreteFunction
object at 0x1209576a0>

What Is autograph in tF 2?

AutoGraph refers to the conversion from Python code to its graph
representation, which is a significant new feature in TF 2. In fact,
 AutoGraph is automatically applied to functions that are decorated with
@tf.function; this decorator creates callable graphs from Python
functions.

AutoGraph transforms a subset of Python syntax into its portable, high-
performance and language agnostic graph representation, thereby bridging
the	gap	between	TF	1.x	and	TF	2.0.	In	fact,	AutoGraph allows you to inspect
its auto-generated code with this code snippet. For example, if you define a
Python function called my_product(), you can inspect its auto-generated
code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct is implemented in TF 2
via tf.while_loop (break and continue are also supported). The Py-
thon if construct is implemented in TF 2 via tf.cond. The “for _ in
dataset” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is con-
verted if the iterable in the loop is a tensor, and a while loop is converted
if the while condition depends on a tensor. If a loop is converted, it will
be dynamically “unrolled” with tf.while_loop, as well as the special
case of a for x in tf.data.Dataset (the latter is transformed into
tf.data.Dataset.reduce). If a loop is not converted, it will be stati-
cally unrolled.

AutoGraph supports control flow that is nested arbitrarily deep, so you
can implement many types of ML programs. Check the online documentation
for more information regarding AutoGraph.

20 • tensorFlow 2 pocket primer

aRIthmEtIC OPERatIOns In tF 2

Listing	 1.10	 displays	 the	 contents	 of	 tf2_arithmetic.py, which
 illustrates how to perform arithmetic operations in TF 2.

Listing 1.10: tf2_arithmetic.py

import tensorflow as tf

@tf.function # repłace print() with tf.print()
def compute_values():
 a = tf.add(4, 2)
 b = tf.subtract(8, 6)
 c = tf.multiply(a, 3)
 d = tf.math.divide(a, 6)

 print(a) # 6
 print(b) # 2
 print(c) # 18
 print(d) # 1

compute_values()

Listing	1.10	defines	the	decorated	Python	function	compute_values()
with simple code for computing the sum, difference, product, and quotient of
two numbers via the tf.add(), tf.subtract(), tf.multiply(),
and the tf.math.divide() APIs, respectively. The four print()
statements display the values of a, b, c, and d.	The	output	from	Listing	1.10	
is here:

tf.Tensor(6, shape=(), dtype=int32)
tf.Tensor(2, shape=(), dtype=int32)
tf.Tensor(18, shape=(), dtype=int32)
tf.Tensor(1.0, shape=(), dtype=float64)

CaVEats FOR aRIthmEtIC OPERatIOns In tF 2

As you can probably surmise, you can also perform arithmetic operations
involving TF 2 constants and variables. Listing 1.11 displays the contents of
tf2_const_var.py, which illustrates how to perform arithmetic opera-
tions involving a TF 2 constant and a variable.

Listing 1.11: tf2_const_var.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

Introduction to tensorFlow 2 • 21

diff = tf.subtract(v1,c1)
print("diff:",diff)

Listing 1.11 computes the difference of the TF variable v1 and the TF
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff,
it will not change. You must reset the value of diff, just as you would in other
imperative programming languages.

Listing 1.12 displays the contents of tf2_const_var2.py, which illus-
trates how to perform arithmetic operations involving a TF 2 constant and a
variable.

Listing 1.12: tf2_const_var2.py

import tensorflow as tf

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff1:",diff.numpy())

diff is NOT updated:
v1.assign([10.0, 20.0])
print("diff2:",diff.numpy())

diff is updated correctly:
diff = tf.subtract(v1,c1)
print("diff3:",diff.numpy())

Listing 1.12 recomputes the value of diff in the final portion of Listing
1.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]
diff2: [3. 2.]
diff3: [9. 18.]

tF 2 and BUILt-In FUnCtIOns

Listing 1.13 displays the contents of tf2_math_ops.py, which illus-
trates how to perform additional arithmetic operations in a TF graph.

Listing 1.13: tf2_math_ops.py

import tensorflow as tf

PI = 3.141592

@tf.function # repłace print() with tf.print()

22 • tensorFlow 2 pocket primer

def math_values():
 print(tf.math.divide(12,8))
 print(tf.math.floordiv(20.0,8.0))
 print(tf.sin(PI))
 print(tf.cos(PI))
 print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing 1.13 contains a hard-coded approximation for PI, followed by the
decorated Python function math_values() with five print() statements
that display various arithmetic results. Note in particular the third output value
is a very small number (the correct value is zero). The output from Listing 1.13
is here:

1.5
tf.Tensor(2.0, shape=(), dtype=float32)
tf.Tensor(6.2783295e-07, shape=(), dtype=float32)
tf.Tensor(-1.0, shape=(), dtype=float32)
tf.Tensor(0.99999964, shape=(), dtype=float32)

Listing 1.14 displays the contents of tf2_math-ops_pi.py, which
 illustrates how to perform arithmetic operations in TF 2.

Listing 1.14: tf2_math_ops_pi.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()
def math_values():
 print(tf.math.divide(12,8))
 print(tf.math.floordiv(20.0,8.0))
 print(tf.sin(PI))
 print(tf.cos(PI))
 print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing 1.14 is almost identical to the code in Listing 1.13: the only differ-
ence is that Listing 1.14 specifies a hard-coded value for PI, whereas Listing
1.14 assigns m.pi to the value of PI. As a result, the approximated value is
one decimal place closer to the correct value of zero. The output from Listing
1.14 is here; notice how the output format differs from Listing 1.13 due to the
Python print() function:

1.5
tf.Tensor(2.0, shape=(), dtype=float32)

Introduction to tensorFlow 2 • 23

tf.Tensor(-8.742278e-08, shape=(), dtype=float32)
tf.Tensor(-1.0, shape=(), dtype=float32)
tf.Tensor(1.0, shape=(), dtype=float32)

CaLCULatIng tRIgOnOmEtRIC VaLUEs In tF

Listing 1.15 displays the contents of tf2_trig_values.py, which
 illustrates how to compute values involving trigonometric functions in TF 2.

Listing 1.15: tf2_trig_values.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)
b = tf.sin(PI/3.)
c = 1.0/a # sec(60)
d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay
def math_values():
 print("a:",a)
 print("b:",b)
 print("c:",c)
 print("d:",d)

math_values()

Listing 1.14 is straightforward: there are several of the same TF 2 APIs that
you saw in Listing 1.13. In addition, Listing 1.14 contains the tf.tan() API,
which computes the tangent of a number (in radians). The output from Listing
1.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)
b: tf.Tensor(0.86602545, shape=(), dtype=float32)
c: tf.Tensor(2.0000002, shape=(), dtype=float32)
d: tf.Tensor(0.57735026, shape=(), dtype=float32)

CaLCULatIng ExPOnEntIaL VaLUEs In tF 2

Listing 1.15 displays the contents of tf2_exp_values.py, which illus-
trates how to compute values involving additional trigonometric functions in
TF 2.

Listing 1.15: tf2_exp_values.py

import tensorflow as tf

a = tf.exp(1.0)

24 • tensorFlow 2 pocket primer

b = tf.exp(-2.0)
s1 = tf.sigmoid(2.0)
s2 = 1.0/(1.0 + b)
t2 = tf.tanh(2.0)

@tf.function # this decorator is okay
def math_values():
 print('a: ', a)
 print('b: ', b)
 print('s1:', s1)
 print('s2:', s2)
 print('t2:', t2)

math_values()

Listing 1.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and
tf.tanh() that compute the exponential value of a number, the sigmoid
value of a number, and the hyperbolic tangent of a number, respectively. The
output from Listing 1.15 is here:

a: tf.Tensor(2.7182817, shape=(), dtype=float32)
b: tf.Tensor(0.13533528, shape=(), dtype=float32)
s1: tf.Tensor(0.880797, shape=(), dtype=float32)
s2: tf.Tensor(0.880797, shape=(), dtype=float32)
t2: tf.Tensor(0.9640276, shape=(), dtype=float32)

WORkIng WIth stRIngs In tF 2

Listing 1.16 displays the contents of tf2_strings.py, which illustrates
how to work with strings in TF 2.

Listing 1.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")
print("x1:",x1)
tf.strings.length(x1)
print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")
len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())
print("len2:",len2.numpy())
print("")

String arrays
x2 = tf.constant(["Café", "Coffee", "caffè", "咖啡"])
print("x2:",x2)
print("")

Introduction to tensorFlow 2 • 25

len3 = tf.strings.length(x2, unit="UTF8_CHAR")
print("len2:",len3.numpy())
print("")

r = tf.strings.unicode_decode(x2, "UTF8")
print("r:",r)

Listing 1.16 defines the TF 2 constant x1 as a string that contains an accent
mark. The first print() statement displays the first three characters of
x1, followed by a pair of hexadecimal values that represent the accented “e”
 character. The second and third print() statements display the number of
characters in x1, followed by the UTF8 sequence for the string x1.

The next portion of Listing 1.16 defines the TF 2 constant x2 as a first-
order TF 2 tensor that contains four strings. The next print() statement dis-
plays the contents of x2, using UTF8 values for characters that contain accent
marks.

The final portion of Listing 1.16 defines r as the Unicode values for the
characters in the string x2. The output from Listing 1.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(), dtype=string)

len1: 4
len2: [99 97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\xa8' b'\
xe5\x92\x96\xe5\x95\xa1'], shape=(4,), dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 102,
102, 101, 101], [99, 97, 102, 102, 232], [21654, 21857]]>

Chapter 2 contains a complete code sample with more examples of a
 RaggedTensor in TF 2.

WORkIng WIth tEnsORs and OPERatIOns In tF 2

Listing 1.17 displays the contents of tf2_tensors_operations.py,
which illustrates how to use various operators with tensors in TF 2.

Listing 1.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)
print("")
print("x.shape:", x.shape)
print("")

26 • tensorFlow 2 pocket primer

print("x.dtype:", x.dtype)
print("")
print("x[:, 1:]:", x[:, 1:])
print("")
print("x[..., 1, tf.newaxis]:", x[..., 1, tf.newaxis])
print("")
print("x + 10:", x + 10)
print("")
print("tf.square(x):", tf.square(x))
print("")
print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])
print("m1: ", m1)
print("m1 + 50: ", m1 + 50)
print("m1 * 2: ", m1 * 2)
print("tf.square(m1): ", tf.square(m1))

Listing 1.17 defines the TF tensor x that contains a 2x3 array of real num-
bers. The bulk of the code in Listing 1.17 illustrates how to display proper-
ties of x by invoking x.shape and x.dtype, as well as the TF function
tf.square(x). The output from Listing 1.17 is here:

x: tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(
[[2. 3.]
 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(
[[2.]
 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(
[[11. 12. 13.]
 [14. 15. 16.]], shape=(2, 3), dtype=float32)

tf.square(x): tf.Tensor(
[[1. 4. 9.]
 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(
[[14. 32.]
 [32. 77.]], shape=(2, 2), dtype=float32)

Introduction to tensorFlow 2 • 27

m1: tf.Tensor(
[[1. 2. 4.]
 [3. 6. 12.]], shape=(2, 3), dtype=float32)

m1 + 50: tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2: tf.Tensor(
[[2. 4. 8.]
 [6. 12. 24.]], shape=(2, 3), dtype=float32)

tf.square(m1): tf.Tensor(
[[1. 4. 16.]
 [9. 36. 144.]], shape=(2, 3), dtype=float32)

sECOnd-ORdER tEnsORs In tF 2 (1)

Listing 1.18 displays the contents of tf2_elem2.py, which illustrates
how to define a second-order TF tensor and access elements in that tensor.

Listing 1.18: tf2_elem2.py

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function
def compute_values():
 print('arr2: ',arr2)
 print('[0]: ',arr2[0])
 print('[1]: ',arr2[1])

compute_values()

Listing 1.18 contains the TF constant arr1 that is initialized with the
value [[1,2],[2,3]]. The three print() statements display the value of
arr1, the value of the element whose index is 1, and the value of the element
whose index is [1,1]. The output from Listing 1.18 is here:

arr2: tf.Tensor(
[[1 2]
 [2 3]], shape=(2, 2), dtype=int32)
[0]: tf.Tensor([1 2], shape=(2,), dtype=int32)
[1]: tf.Tensor([2 3], shape=(2,), dtype=int32)

sECOnd-ORdER tEnsORs In tF 2 (2)

Listing	 1.19	 displays	 the	 contents	 of	tf2_elem3.py, which illustrates
how to define a second-order TF 2 tensor and access elements in that tensor.

28 • tensorFlow 2 pocket primer

Listing 1.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

@tf.function # repłace print() with tf.print()
def compute_values():
 print('arr3: ',arr3)
 print('[1]: ',arr3[1])
 print('[1,1]: ',arr3[1,1])
 print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing	 1.19	 contains	 the	 TF	 constant	arr3 that is initialized with the
value [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() state-
ments display the value of arr3, the value of the element whose index is 1,
the value of the element whose index is [1,1], and the value of the element
whose index is [1,1,0].	The	output	from	Listing	1.19	(adjusted	slightly	for	
display purposes) is here:

arr3: tf.Tensor(
[[[1 2]
 [2 3]]

 [[3 4]
 [5 6]]], shape=(2, 2, 2), dtype=int32)
[1]: tf.Tensor(
[[3 4]
 [5 6]], shape=(2, 2), dtype=int32)
[1,1]: tf.Tensor([5 6], shape=(2,), dtype=int32)
[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

mULtIPLyIng tWO sECOnd-ORdER tEnsORs In tF

Listing	1.20	displays	the	contents	of	tf2_mult.py, which illustrates how
to multiply second-order tensors in TF 2.

Listing 1.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]]) # 1x2
m2 = tf.constant([[2.],[2.]]) # 2x1
p1 = tf.matmul(m1, m2) # 1x1

@tf.function
def compute_values():
 print('m1:',m1)

Introduction to tensorFlow 2 • 29

 print('m2:',m2)
 print('p1:',p1)

compute_values()

Listing	 1.20	 contains	 two	 TF	 constants	m1 and m2 that are initialized
with the values [[3., 3.]] and [[2.],[2.]]. Due to the nested square
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the product
of m1 and m2 has shape (1,1).

The three print() statements display the values of m1, m2, and p1. The
output	from	Listing	1.20	is	here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
m2: tf.Tensor(
[[2.]
 [2.]], shape=(2, 1), dtype=float32)
p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)

COnVERt PythOn aRRays tO tF tEnsORs

Listing 1.21 displays the contents of tf2_convert_tensors.py,
which illustrates how to convert a Python array to a TF 2 tensor.

Listing 1.21: tf2_convert_tensors.py

import tensorflow as tf
import numpy as np

x1 = np.array([[1.,2.],[3.,4.]])
x2 = tf.convert_to_tensor(value=x1, dtype=tf.float32)

print ('x1:',x1)
print ('x2:',x2)

Listing 1.21 is straightforward, starting with an import statement for
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy array,
and x is a TF tensor that is the result of converting x_data to a TF tensor.
The output from Listing 1.21 is here:

x1: [[1. 2.]
 [3. 4.]]
x2: tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)

Conflicting types in tF 2

Listing 1.22 displays the contents of tf2_conflict_types.py, which
illustrates what happens when you try to combine incompatible tensors in
TF 2.

30 • tensorFlow 2 pocket primer

Listing 1.22: tf2_conflict_types.py

import tensorflow as tf

try:
 tf.constant(1) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
 print(ex)

try:
 tf.constant(1.0, dtype=tf.float64) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
 print(ex)

Listing 1.22 contains two try/except blocks. The first block adds two
constants	1	and	1.0,	which	are	compatible.	The	second	block	attempts	to	add	
the	value	1.0	that’s	declared	as	a	tf.float64	with	1.0,	which	are	not	com-
patible tensors. The output from Listing 1.22 is here:

cannot compute Add as input #1(zero-based) was expected to
be a int32 tensor but is a float tensor [Op:Add] name: add/
cannot compute Add as input #1(zero-based) was expected
to be a double tensor but is a float tensor [Op:Add] name:
add/

dIFFEREntIatIOn and tf.GradientTape In tF 2

Automatic differentiation (i.e., calculating derivatives) is useful for imple-
menting ML algorithms such as back propagation for training various types of
NNs (Neural Networks). During eager execution, the TF 2 context manager
tf.GradientTape traces operations for computing gradients. This context
manager provides a watch() method for specifying a tensor that will be dif-
ferentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-pass opera-
tions on a “tape.” Next, it computes the gradient by “playing” the tape back-
ward, and then discards the tape after a single gradient computation. Thus, a
tf.GradientTape can only compute one gradient: subsequent invocations
throw a runtime error. Keep in mind that the tf.GradientTape context
manager only exists in eager mode.

Why do we need the tf.GradientTape context manager? Consider de-
ferred execution mode, where we have a graph in which we know how nodes
are connected. The gradient computation of a function is performed in two
steps: (a) backtracking from the output to the input of the graph, and (b) com-
puting the gradient to obtain the result.

By contrast, in eager execution the only way to compute the gradient of
a function using automatic differentiation is to construct a graph. After con-
structing the graph of the operations executed within the tf.GradientTape
context manager on some “watchable” element (such as a variable), we can

Introduction to tensorFlow 2 • 31

 instruct the tape to compute the required gradient. If you want a more detailed
explanation, the tf.GradientTape documentation page contains an exam-
ple that explains how and why tapes are needed.

The default behavior for tf.GradientTape is to “play once and then
discard.” However, it’s possible to specify a persistent tape, which means that
the values are persisted and therefore the tape can be “played” multiple times.
The next section contains several examples of tf.GradientTape, including
an example of a persistent tape.

ExamPLEs OF tf.GradientTape

Listing 1.23 displays the contents of tf2_gradient_tape1.py, which
illustrates how to invoke tf.GradientTape in TF 2. This example is one of
the simplest examples of using tf.GradientTape in TF 2.

Listing 1.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:
 loss = w * w

grad = tape.gradient(loss, w)
print("grad:",grad)

Listing 1.23 defines the variable w, followed by a with statement that ini-
tializes the variable loss with the expression w*w. Next, the variable grad is
initialized with the derivative that is returned by the tape, and then evaluated
with the current value of w.

As a reminder, if we define the function z = w*w, then the first derivative
of z is the term 2*w	,	and	when	this	term	is	evaluated	with	the	value	of	1.0	
for w,	the	result	is	2.0.	Launch	the	code	in	Listing	1.23	and	you	will	see	the	
following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

Using the watch() method of tf.GradientTape

Listing 1.24 displays the contents of tf2_gradient_tape2.py, which
also illustrates the use of tf.GradientTape with the watch() method in
TF 2.

Listing 1.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)

32 • tensorFlow 2 pocket primer

with tf.GradientTape() as g:
 g.watch(x)
 y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing 1.24 contains a similar with statement as Listing 1.23, but this
time a watch() method is also invoked to “watch” the tensor x. As you saw in
the previous section, if we define the function y = 4*x*x, then the first de-
rivative of y is the term 8*x; when the latter term is evaluated with the value
3.0 for x,	the	result	is	24.0.

Launch the code in Listing 1.24 and you will see the following output:

dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

Using nested Loops with tf.GradientTape

Listing 1.25 displays the contents of tf2_gradient_tape3.py, which
also illustrates how to define nested loops with tf.GradientTape in order
to calculate the first and the second derivative of a tensor in TF 2.

Listing 1.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)
with tf.GradientTape() as t1:
 with tf.GradientTape() as t2:
 t1.watch(x)
 t2.watch(x)
 z = x * x * x
 dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First dz_dx: ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)
with tf.GradientTape() as t1:
 with tf.GradientTape() as t2:
 z = x * x * x
 dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First dz_dx: ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

The first portion of Listing 1.25 contains a nested loop, where the outer
loop calculates the first derivative and the inner loop calculates the second
derivative of the term x*x*x when x equals 4. The second portion of Listing

Introduction to tensorFlow 2 • 33

1.25 contains another nested loop that produces the same output with slightly
different syntax.

In case you’re a bit rusty regarding derivatives, the next code block shows
you a function z, its first derivative z', and its second derivative z'':

z = x*x*x
z' = 3*x*x
z'' = 6*x

When we evaluate z, z', and z''	with	the	value	4.0	for	x, the result is
64.0,	48.0,	and	24.0,	respectively.	Launch	the	code	in	Listing	1.25	and	you	will	
see the following output:

First dz_dx: tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)
First dz_dx: tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)

Other tensors with tf.GradientTape

Listing 1.26 displays the contents of tf2_gradient_tape4.py, which
illustrates how to use tf.GradientTape in order to calculate the first
 derivative of an expression that depends on a 2x2 tensor in TF 2.

Listing 1.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:
 t.watch(x)
 y = tf.reduce_sum(x)
 print("y:",y)
 z = tf.multiply(y, y)
 print("z:",z)
 z = tf.multiply(z, y)
 print("z:",z)

the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)

In Listing 1.26, y equals the sum of the elements in the 3x3 tensor x, which
is	9.

Next, z is assigned the term y*y and then multiplied again by y, so the
final expression for z (and its derivative) is here:

z = y*y*y
z' = 3*y*y

34 • tensorFlow 2 pocket primer

When	 z’	 is	 evaluated	 with	 the	 value	 9	 for	y, the result is 3*9*9,	 which	
equals 243. Launch the code in Listing 1.26 and you will see the following
output (slightly reformatted for readability):

y: tf.Tensor(9.0, shape=(), dtype=float32)
z: tf.Tensor(81.0, shape=(), dtype=float32)
z: tf.Tensor(729.0, shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)

a Persistent gradient tape

Listing 1.27 displays the contents of tf2_gradient_tape5.py, which
illustrates how to define a persistent gradient tape with tf.GradientTape
in order to calculate the first derivative of a tensor in TF 2.

Listing 1.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape(persistent=True) as t:
 t.watch(x)
 y = tf.reduce_sum(x)
 print("y:",y)
 w = tf.multiply(y, y)
 print("w:",w)
 z = tf.multiply(y, y)
 print("z:",z)
 z = tf.multiply(z, y)
 print("z:",z)

the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)
dw_dy = t.gradient(w, y)
print("dw_dy:",dw_dy)

Listing 1.27 is almost the same as Listing 1.26: the new sections are dis-
played in bold. Note that w is the term y*y and therefore the first derivative w
“is 2*y. Hence, the values for w and w” are 81 and 18, respectively, when they
are	evaluated	with	the	value	9.0.	Launch	the	code	in	Listing	1.27	and	you	will	
see the following output (slightly reformatted for readability), where the new
output is shown in bold:

y: tf.Tensor(9.0, shape=(), dtype=float32)
w: tf.Tensor(81.0, shape=(), dtype=float32)
z: tf.Tensor(81.0, shape=(), dtype=float32)
z: tf.Tensor(729.0, shape=(), dtype=float32)

Introduction to tensorFlow 2 • 35

dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)
dw_dy: tf.Tensor(18.0, shape=(), dtype=float32)

This concludes the portion of the chapter that discusses new features of
TF 2. The remaining sections discuss migration of TF 1.x code to TF 2.

mIgRatIng tF 1.x COdE tO tF 2 COdE (OPtIOnaL)

If you do not have any TF 1.x code, this section is optional, yet it might be
worth skimming through the material, just in case you need to migrate some
code from TF 1.x to TF 2 at some point in the future. In brief, the major
changes involve streamlined namespaces, eager execution, no global variables,
and functions instead of sessions.

The TF 1.x libraries tf.app, tf.logging, and tf.flags are not
available in TF 2. The most significant change is the removal of tf.contrib
from TF 2: check the contents of tf.experiment, which might be the new
“home” for code that was previously in tf.contrib.

Furthermore, since the tf.Session class has been removed, its “run”
method has also been removed. There are other simplifications that will be-
come apparent as you read the samples in this book.

The APIs in TF 2 look quite different from TF 1.x, and they have a more
“Python-like” style. Some TensorFlow 1.x APIs are not available in TF 2, in-
cluding equal(), eval(), name_scope(), reduce_sum(), and
summary.scalar().

In order to migrate from TF 1.x to TF 2, remove the graph definition,
the session execution, variables initialization, variable sharing via scopes,
as well as any tf.control_dependencies. There are several tech-
niques for converting older TF 1.x code, as described in the following
subsections.

two Conversion techniques from tF 1.x to tF 2

The	simplest	option	(let’s	call	it	option	#1)	is	to	launch	the	upgrade/conver-
sion script that performs an initial pass to convert your TF 1.x code to TF 2.
This script inserts tf.compat.v1 endpoints to access placeholders, sessions,
collections, and other TF 1.x functionality.

By contrast, option #2 involves “pure” TF 2 functionality, which is not the
case for the conversion script; hence, option #2 is recommended, and the de-
tails are discussed in the next section.

Do not make manual upgrade-related changes to TF 1.x code before
launching the conversion script, which expects TF 1.x syntax (it fails if
you make manual updates).

nOtE

36 • tensorFlow 2 pocket primer

COnVERtIng tO PURE tF 2 FUnCtIOnaLIty

The most commonly required steps for converting TF 1.x code to pure
TF 2 code are listed here:

1. replace tf.Session.run calls with a Python function
2. feed_dict and tf.placeholders become function arguments
3. fetches become the function’s return value
4. add a @tf.function decorator to the Python function
5. use tf.Variable instead of tf.get_variable

Additional conversion steps include: combining tf.data.Dataset and
@tf.function, and using Keras layers and models (discussed in Chapter 4)
to manage variables.

Converting sessions to Functions

Let’s look at an example of TF 1.x and its TF 2 counterpart, such as the fol-
lowing code snippet from TensorFlow 1.x:

outputs = session.run(f(placeholder),feed_
dict={placeholder:input})

The equivalent code in TF 2 is here, where f is a decorated Python function:

outputs = f(input)

Combine tf.data.Dataset and @tf.function

Chapter 3 is devoted to TF 2 tf.data.Dataset code samples, so this sec-
tion will make more sense after you have read that chapter. When iterating over
training	data	that	fits	in	memory,	use	regular	Python	iteration.	Otherwise,	use	
tf.data.Dataset to stream training data from the disk. Datasets are itera-
bles (not iterators), and work the same as other Python iterables in eager mode.

You	can	fully	utilize	dataset	asynchronous	prefetching/streaming	features	
by wrapping your code in @tf.function(), which replaces Python itera-
tion with the equivalent graph operations using AutoGraph.

Use keras Layers and models to manage Variables

When possible, use Keras layers and models to manage variables, because
they recursively collect dependent variables. This functionality facilitates the
handling of local variables.

In TF 2, Keras layers and models inherit from tf.train.Checkpoint-
able and are also integrated with @tf.function; this integration allows you
to directly checkpoint or export SavedModels from Keras objects. If you are fa-
miliar with Keras, you’ll be interested to know that the Keras .fit() API is not
required in order to leverage these integrations. Chapters 4 and 5 contain Keras-
based code samples for linear regression and logistic regression, respectively.

Introduction to tensorFlow 2 • 37

thE tEnsORFLOW UPgRadE sCRIPt (OPtIOnaL)

TensorFlow provides an upgrade script tf_upgrade_v2 that is included
in the most recent TF 1.x installations (such as TF 1.12).

Note that the tf_upgrade_v2 upgrade script is currently only available
through the pip command for installing TF 1.13 or higher (and nightly TF 2
builds): it’s not available via the pip3 command.

In order to create a TF 1.x environment that does not overlap with a TF 2
environment, you can use the conda command (which is part of the Ana-
conda distribution that is freely available).

Another option is to use the virtual_env command. Check the online
documentation for instructions regarding either of these two commands.

Do not make manual upgrade modifications to TF 1.x scripts, because
those changes can cause the upgrade script to fail (because it assumes that
your code contains TF 1.x syntax).

When you have everything ready, the following command converts the TF
1.x code in oldtf.py to the Python script newtf.py that contains TF 2
code:

tf_upgrade_v2 --infile oldtf.py --outfile newtf.py

The preceding command creates the Python script newtf.py contain-
ing the upgraded TF 2 code. In addition, this utility generates the text file
 report.txt that contains a list of errors (if any) that the upgrade script
cannot fix.

The upgrade can also upgrade an entire directory tree, as shown here:

upgrade the .py files and copy all the other files to the
outtree
tf_upgrade_v2 --intree oldcode --outtree newcode-upgraded

As a variation, you can invoke this upgrade script on a directory tree and
also keep the upgraded Python scripts in the same directory, as shown here:

just upgrade the .py files
tf_upgrade_v2 --intree coolcode --outtree coolcode-upgraded
--copyotherfiles False

sUmmaRy

This chapter introduced you to TF 2, a very brief view of its architecture,
and some of the tools that are part of the TF 2 “family.” Then you learned how
to write basic Python scripts containing TF 2 code with TF constants and vari-
ables. You also learned how to perform arithmetic operations and also some
built-in TF functions.

nOtE

38 • tensorFlow 2 pocket primer

Next, you learned how to calculate trigonometric values, how to use for
loops, and how to calculate exponential values. You also saw how to perform
various operations on second-order TF 2 tensors.

In addition, you saw code samples that illustrate how to use some of
the new features of TF 2, such as the @tf.function decorator and
tf.GradientTape. Finally, you learned how to make some common
changes when migrating TF 1.x code to TF 2 code.

Chapter 2
UsefUl Tf 2 APIs

This chapter focuses on TF 2 APIs that will be useful for various tasks
in your TF 2 code. Although an entire chapter devoted to APIs seems
rather dry, there is a simple reason for doing so: you need all the APIs

in this chapter if you continue learning about TensorFlow beyond this book.
In addition, this “one-stop” chapter makes it easier for you to find these TF 2
APIs. At a minimum, please skim through the material in this chapter to make
note of the TF 2 APIs that are discussed.

The first part of this chapter briefly discusses some tensor operations (such
as multiplying tensors) and also how to create for loops and while loops in
TensorFlow. Recall from Chapter 1 that TF 2 uses eager execution as the de-
fault execution, whereas TF 1.x uses deferred execution.

The second part of this chapter contains a collection of TF 2 code samples
that show you how to use various APIs that are commonly used in machine
learning. Specifically, you will see how to use the tf.random_normal()
API for generating random numbers (which is useful for initializing the weights
of edges in neural networks).

You will see examples of the tf.argmax() API for finding the index of
each row (or column) that contains the maximum value in each row (or col-
umn), which is used for calculating the accuracy of the training process involv-
ing various algorithms. In addition, you will learn about the tf.range()
API, which is similar to the NumPy linspace() API.

The third portion of this chapter discusses another set of TF 2 APIs, includ-
ing reduce_mean() and equal(), both of which are useful for calculating
the accuracy of a trained neural network (in conjunction with tf.argmax()).
You will also learn about the truncated_normal() API, which is a variant
of the tf.random_normal() API, and the one_hot() API for encoding
data in a particular fashion (i.e., the digit 1 in one position and zero in all other
positions of a vector).

40 • tensorFlow 2 pocket primer

One of the most frequently used APIs is reshape(), which you will see in
any TF 2 code that involves training a CNN (Convolutional Neural Network).
After you have completed this section of the chapter, navigate to the following
URL that contains a massive collection of TF 2 APIs: https://www.tensorflow.
org/api_docs/python/tf

The last section of this chapter is about launching TensorBoard from the
command line. You will also learn about Google Colaboratory, which is a fully
online Jupyter-based environment, and also how to launch TensorBoard in a
Jupyter notebook in Google Colaboratory.

TF 2 Tensor operaTions

TF 2 supports many arithmetic operations on TensorFlow tensors, such
as adding, multiplying, dividing, and subtracting tensors. The preceding op-
erations are performed on an element-by-element basis of two tensors. For
example, adding two 2x2 tensors involves four additions, whereas adding two
4x4 tensors involves sixteen additions.

The TF 2 tf.argmax() API enables you to find the maximum value
of each row (or each column) of a two-dimensional TF 2 tensor. This API
is used while training CNNs (Convolutional Neural Networks) as part of the
calculation of the number of images (in the case of mnist) that are correctly
identified during the training phase. The TF 2 tf.argmin() is similar to
the tf.argmax() API, except that minimum values are found instead of
maximum values.

TF 2 provides statistical methods such as tf.reduce_mean() and
tf.random_normal() for calculating the mean of a set of numbers and ran-
domly selecting numbers from a normal distribution. The tf.truncated_
normal() API is similar to the tf.random_normal() API, with the
added constraint that the selected numbers must be in a specified range
(which is specified by you).

Now let’s look at the code samples in the next two sections that show you
simple examples of a for loop and a while loop in TF 2.

Using for Loops in TF 2

Listing 2.1 displays the contents of tf2_forloop1.py, which illustrates
how to create a simple for loop in a TF 2 graph.

Listing 2.1: tf2_forloop1.py

import tensorflow as tf

x = tf.Variable(0, name='x')

for i in range(5):
 x = x + 1
 print("x:",x)

Useful tF 2 apIs • 41

As you can see, Listing 2.1 contains simple Python code (except for the
declaration of the tensor x). Listing 2.1 initializes the TF 2 variable x with the
value 0, followed by a for loop that iterates through the values 1 through 5.
During each iteration of the loop, the variable x is incremented by 1 and its
value is printed. The output from Listing 2.1 is here:

1
2
3
4
5

Using while Loops in TF 2

Listing 2.2 displays the contents of tf2_while_loop.py, which illus-
trates how to create a while loop in TF 2.

Listing 2.2: tf2_while_loop.py

import tensorflow as tf

a = tf.constant(12)

while not tf.equal(a, 1):
 if tf.equal(a % 2, 0):
 a = a / 2
 else:
 a = 3 * a + 1
 print(a)

Listing 2.2 defines the TF 2 constant a whose value is 12. The next portion
of Listing 2.2 is a while loop that contains an if/else statement. If the
value of a is even, then a is replaced by half its value. If a is odd, then its value
is tripled and incremented by 1. Launch the code in Listing 2.2 and you will
see the following output:

tf.Tensor(6.0, shape=(), dtype=float64)
tf.Tensor(3.0, shape=(), dtype=float64)
tf.Tensor(10.0,shape=(), dtype=float64)
tf.Tensor(5.0, shape=(), dtype=float64)
tf.Tensor(16.0,shape=(), dtype=float64)
tf.Tensor(8.0, shape=(), dtype=float64)
tf.Tensor(4.0, shape=(), dtype=float64)
tf.Tensor(2.0, shape=(), dtype=float64)
tf.Tensor(1.0, shape=(), dtype=float64)

TF 2 operaTions wiTh random nUmbers

TF 2 provides APIs for generating random numbers, such as the TF 2
tf.random_normal() API that generates random numbers from a normal

42 • tensorFlow 2 pocket primer

distribution. Listing 2.3 displays the contents of tf2_normal_dist.py,
which illustrates how to use the tf.random_normal() method in TF 2.

Listing 2.3: tf2_normal_dist.py

import tensorflow as tf

normal distribution:
w = tf.Variable(tf.random_normal([784, 10], stddev=0.01))

mean of an array:
b = tf.Variable([10,20,30,40,50,60],name='t')

print("w: ",w)
print("b: ",tf.reduce_mean(input_tensor=b))

Listing 2.3 defines the TF 2 variables w (initialized with random values)
and b (initialized with hard-coded values). The TF 2 variable w has dimensions
784x10 and b is a 1x6 tensor. Launch the code in Listing 2.3 and you will see
the output shown here:

w: <tf.Variable 'Variable:0' shape=(784, 10)
dtype=float32, numpy=
array([[0.00407915, -0.00796624, -0.01256408, ...,

0.01846658,
 -0.00702356, 0.02048219],
 [0.00358197, -0.00531838, -0.01946299, ...,

0.00724312,
 0.00584369, 0.00208779],
 [-0.00771784, 0.00230517, -0.00738808, ...,

-0.01874011,
 -0.00284803, -0.00042984],
 ...,
 [0.00850285, 0.00289324, 0.00047594, ...,

-0.0062794 ,
 -0.01276 , -0.01168498],
 [0.00468423, 0.00165335, 0.00315462, ...,

-0.01164965,
 -0.00566464, -0.00804143],
 [- 0.00787143, 0.00773228, -0.00716571, ...,

0.00040842,
 0.00976203, 0.00791298]], dtype=float32)>
b: tf.Tensor(35, shape=(), dtype=int32)

Listing 2.4 displays the contents of random_normal.py, which illus-
trates how to use the tf.random_normal() method in TF 2.

Listing 2.4: tf2_random_normal.py

import tensorflow as tf

Useful tF 2 apIs • 43

initialize a 6x3 array of random numbers:
values = {'weights':tf.Variable(tf.random_normal([6,3]))}

print("values:")
print(values['weights'])

Listing 2.4 initializes the values variable with the element weights,
which is initialized as a TF 2 variable that comprises a 6x3 tensor containing
randomly selected values from a normal distribution. The output from launch-
ing the code in Listing 2.4 is here:

<tf.Variable 'Variable:0' shape=(6, 3) dtype=float32, numpy=
array([[-0.9062903 , -0.20363109, 0.46733373],
 [1.3933249 , 1.0044192 , 0.4911133],
 [-1.1827736 , -1.7746108 , 0.17291453],
 [-0.17107153, -0.15072137, -0.7849119],
 [-0.5893343 , -1.8309714 , -0.42436346],
 [0.49252385, 0.04508299, 1.1422006]],
dtype=float32)>

Listing 2.5 displays the contents of tf2_array1.py, which illustrates
how to convert a NumPy array to a TF 2 tensor.

Listing 2.5: tf2_array1.py

import tensorflow as tf
import numpy as np

import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

create a Python array:
array_1d = np.array([1.3, 1, 4.0, 23.5])
tf_tensor = tf.convert_to_tensor(value=array_1d, dtype=tf.
float64)

print(tf_tensor)
print(tf_tensor[0])
print(tf_tensor[2])

Listing 2.5 defines the NumPy variable array_1d that is initialized as an
array of four real numbers. Next, the TF 2 variable tf_tensor is assigned
the result of converting the NumPy variable array_1d to a TF 2 tensor. The
output from launching the code in Listing 2.5 is here:

tf.Tensor([1.3 1. 4. 23.5], shape=(4,), dtype=float64)
tf.Tensor(1.3, shape=(), dtype=float64)
tf.Tensor(4.0, shape=(), dtype=float64)

44 • tensorFlow 2 pocket primer

TF 2 Tensors and maximUm VaLUes

The TF 2 tf.argmax() API determines the index values containing
maximum values on a row-wise basis or on a column-wise basis for a TF 2
tensor. Just to be sure you understand the previous statement: the TF 2
tf.argmax() API determines the index values that contain maximum val-
ues and not the actual maximum values in those index positions.

As a trivial example, the array [10,20,30] contains a minimum value of
10 in index position 0 and a maximum value of 30 in index position 2. Conse-
quently, the TF 2 tf.argmax() API returns the value 2, whereas the TF 2
tf.argmin() API returns the value 0.

Listing 2.6 displays the contents of tf2_row_max.py, which illustrates
how to find the maximum value on a row-wise basis in a TF 2 tensor.

Listing 2.6: tf2_row_max.py

import tensorflow as TF 2

initialize an array of arrays:
a = [[1,2,3], [30,20,10], [40,60,50]]
b = tf.Variable(a, name='b')

print("b: ",tf.argmax(b,1))

Listing 2.6 defines the Python variable a as a 3x3 array of integers. Next,
the variable b is initialized as a TF 2 variable that is based on the contents of
the Python variable a. The output is shown here:

b: tf.Tensor([2 0 1], shape=(3,), dtype=int64)

Notice that tf.argmax() in Listing 2.6 specifies the value 1 (shown in
bold): this indicates that you want the indexes containing row-wise maximum
values. On the other hand, specify the value 0 if you want the indexes contain-
ing column-wise maximum values.

The TF 2 range() api

Listing 2.7 displays the contents of tf2_range1.py, which illustrates
how to use the TF 2 range() API, which generates a range of numbers be-
tween an initial value and a final value, where consecutive values differ by the
same constant.

Listing 2.7: tf2_range1.py

import tensorflow as tf

Useful tF 2 apIs • 45

a1 = tf.range(3, 18, 3)
a2 = tf.range(0, 8, 2)
a3 = tf.range(-6, 6, 3)
a4 = tf.range(-10, 10, 4)

print('a1:',a1)
print('a2:',a2)
print('a3:',a3)
print('a4:',a4)

Listing 2.7 defines the TF 2 variable a1 that is the set of numbers between
3 (inclusive) and 18 (exclusive), where each number is 3 larger than its prede-
cessor. Similarly, the variables a2, a3, and a4 are defined with ranges that
have a different start value, and end value, and increment value. The output
from launching the code in tf2_range1.py is here:

a1: tf.Tensor([3 6 9 12 15], shape=(5,), dtype=int32)
a2: tf.Tensor([0 2 4 6], shape=(4,), dtype=int32)
a3: tf.Tensor([-6 -3 0 3], shape=(4,), dtype=int32)
a4: tf.Tensor([-10 -6 -2 2 6], shape=(5,), dtype=int32)

operaTions wiTh nodes

Listing 2.8 displays the contents of tf2_addnodes.py, which illustrates
how to add two nodes in TF 2.

Listing 2.8: tf2_addnodes.py

import tensorflow as TF 2

a1 = tf.Variable(7, tf.float32)
a2 = tf.Variable(13, tf.float32)
a3 = a1 + a2

@tf.function
def compute_values(a1, a2):
 return a1 + a2

result = compute_values(a1, a2)
print("a1 + a2 =",result)

Listing 2.8 defines a3 as the sum of a1 and a2. The next portion of List-
ing 2.8 defines the decorated Python function compute_values(), which
computes the sum of its two arguments and returns that sum. The output from
launching the code in Listing 2.8 is here:

a1 + a2 = tf.Tensor(20, shape=(), dtype=int32)

46 • tensorFlow 2 pocket primer

The tf.size(), tf.shape(), and tf.rank() apis

These three TF 2 APIs are somewhat related, so they are included in the
same section for easy reference. First of all, the tf.size() API returns the
number of elements in a TF 2 tensor. Here is a simple example:

t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
tf.size(t) # 12

In essence, ignore the square brackets and count the number of elements
in order to determine the answer.

Second, the tf.shape() API returns the shape of a TF 2 tensor, which is
the number of elements in each “dimension.” Here is a simple example:

t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
tf.shape(t) # [2, 2, 3]

Third, the tf.rank() API returns the number of indices required to
uniquely select each element of the tensor. The rank is also known as the
“order,” “degree,” or “ndims.” Here is a simple example:

the shape of tensor 't' is [2, 2, 3]
t = tf.constant([[[1,1,1],[2,2,2]],[[3,3,3],[4,4,4]]])
the rank of t is 3

Note that the rank of a tensor does not equal the rank of a matrix: the latter
equals the number of linearly independent rows in that matrix.

You might initially think that the rank in the preceding example is 4 instead
of 3 because it’s easy to overlook the number of nested square brackets. An
easier way to display the preceding TF 2 tensor is shown here:

[
 [
 [1,1,1],
 [2,2,2]
],
 [
 [3,3,3],
 [4,4,4]
]
]

As you can see in the preceding layout, the rank of the tensor is 3 because
you need to “traverse” 3 levels in order to uniquely identify each element of
the tensor.

The tf.reduce_prod() and tf.reduce_sum() apis

Listing 2.9 displays the contents of tf2_reduce_prod.py, which
 illustrates how to invoke the TF 2 reduce_prod() and reduce_sum()

Useful tF 2 apIs • 47

APIs for multiplying and adding, respectively, the numeric elements in a TF 2
tensor.

Listing 2.9: tf2_reduce_prod.py

import tensorflow as tf

x = tf.constant([100,200,300], name="x")
y = tf.constant([1,2,3], name="y")

sum_x = tf.reduce_sum(x, name="sum_x")
prod_y = tf.reduce_prod(y, name="prod_y")
div_xy = tf.math.divide(sum_x, prod_y, name="div_xy")
'div' is deprecated in favor of operator or tf.math.divide

print("sum_x: ",sum_x)
print("prod_y:",prod_y)
print("div_xy:",div_xy)

sum_x: tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6, shape=(), dtype=int32)
div_xy: tf.Tensor(100, shape=(), dtype=int32)

Listing 2.9 defines the TF 2 constants x and y, followed by three variables
whose values are based on three TF 2 APIs. Specifically, sum_x equals the
value of invoking the tf.reduce_sum() API with the TF 2 constant x,
which equals the sum of the numeric elements of x.

Next, prod_y equals the value of invoking the tf.reduce_prod()
API with the TF 2 constant y, which equals the product of the numeric ele-
ments of y. Finally, div_xy equals the ratio of sum_x and prod_y. The
output from launching the code in Listing 2.9 is here:

sum_x: tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6, shape=(), dtype=int32)
div_xy: tf.Tensor(100, shape=(), dtype=int32)

The tf.reduce_mean() api

Listing 2.10 displays the contents of tf2_reduce_mean.py, which
 illustrates how to invoke the reduce_mean() API in TF 2.

Listing 2.10: tf2_reduce_mean.py

import tensorflow as tf

x = tf.constant([100,200,300], name='x')
y = tf.constant([1,2,3], name='y')

sum_x = tf.reduce_sum(x, name="sum_x")
prod_y = tf.reduce_prod(y, name="prod_y")
mean = tf.reduce_mean([sum_x,prod_y], name="mean")

48 • tensorFlow 2 pocket primer

print("sum_x: ",sum_x)
print("prod_y:",prod_y)
print("mean: ",mean)

sum_x: tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6, shape=(), dtype=int32)
mean: tf.Tensor(303, shape=(), dtype=int32)

Listing 2.10 defines the TF 2 constants x and y, followed by three variables
whose values are based on three APIs in TF 2. Specifically, sum_x equals the
value of invoking the tf.reduce_sum() API with the TF 2 constant x,
which equals the sum of the numeric elements of x.

Next, prod_y equals the value of invoking the tf.reduce_prod()
API with the TF 2 constant y, which equals the product of the numeric ele-
ments of y. Finally, mean equals the sum of sum_x and prod_y. The output
from launching the code in Listing 2.10 is here:

sum_x: tf.Tensor(600, shape=(), dtype=int32)
prod_y: tf.Tensor(6, shape=(), dtype=int32)
mean: tf.Tensor(303, shape=(), dtype=int32)

The tf.random_normal() api (1)

The TF 2 tf.random_normal() API returns a set of values from a
normal distribution with mean 0 and standard deviation 1. Listing 2.11 displays
the contents of tf2_random_normal.py, which illustrates how to invoke
the TF 2 tf.random_normal() API in a Python script.

Listing 2.11: tf2_random_normal.py

import tensorflow as tf

initialize a 6x3 2nd order tensor of random numbers:
values = {'weights':tf.Variable(tf.random.normal([6,3]))}

print("values:")
print(values['weights'])

Listing 2.11 defines the TF 2 variable values, which is a 6x3 second-order
tensor of random numbers. The output from launching the code in Listing
2.11 is here:

values:
<tf.Variable 'Variable:0' shape=(6, 3) dtype=float32,
numpy=
array([[1.6026226 , 0.8578084 , -0.4129617],
 [-1.2773342 , 0.00630822, -0.26294807],
 [-0.6857447 , 0.8162317 , -1.3068705],

Useful tF 2 apIs • 49

 [0.8561586 , 0.4733295 , -0.01647461],
 [-0.87976044, -0.7573596 , 1.1681179],
 [0.6858091 , 0.9455758 , 0.67297345]],
dtype=float32)>

The TF 2 random_normal() api (2)

The previous section showed you how to use the TF 2 random_nor-
mal() API. Listing 2.12 displays the contents of tf2_random_normal2.
py, which illustrates how to use the random_normal() API in conjunction
with a NumPy array.

Listing 2.12: tf2_random_normal2.py

import tensorflow as tf

for i in range(3):
 x_train = tf.random.normal((1,), mean=5, stddev=2.0)
 y_train = x_train * 2 + 3
 print("x_train:",x_train)
print("-----------------\n")

for i in range(3):
 x_train = tf.random.normal((2,), mean=5, stddev=2.0)
 y_train = x_train * 2 + 4
 print("x_train:",x_train)
print("-----------------\n")

for i in range(3):
 x_train = tf.random.normal((3,), mean=5, stddev=2.0)
 y_train = x_train * 2 + 6
 print("x_train:",x_train)
print("-----------------\n")

Listing 2.12 contains three for loops, all of which initialize the variable
x_train by invoking the tf.random_normal() API with the mean
equal to 5 and the stddev equal to 2.0. Moreover, all three loops define the
y_train variable as a linear combination of the x_train values.

The first parameter of the tf.random_normal() API specifies the
shape of the set of random numbers. This parameter is set to (1,), (2,),
and (3,) in the three for loops, which means that there will be one, two, and
three columns of output, respectively. The output from Listing 2.12 is here:

x_train: tf.Tensor([7.1610246], shape=(1,), dtype=float32)
x_train: tf.Tensor([4.7292676], shape=(1,), dtype=float32)
x_train: tf.Tensor([3.34873], shape=(1,), dtype=float32)

50 • tensorFlow 2 pocket primer

x_train: tf.Tensor([6.7025995 4.178926], shape=(2,),
dtype=float32)
x_train: tf.Tensor([8.426264 6.4971704], shape=(2,),
dtype=float32)
x_train: tf.Tensor([2.7849288 7.8707666], shape=(2,),
dtype=float32)

x_train: tf.Tensor([8.499574 3.6422663 7.9269],
shape=(3,), dtype=float32)
x_train: tf.Tensor([4.3513556 1.2529728 6.7783537],
shape=(3,), dtype=float32)
x_train: tf.Tensor([6.3333287 1.5062737 3.0980983],
shape=(3,), dtype=float32)

The tf.truncated_normal() api

The tf.truncated_normal() API produces a set of random values
from a truncated normal distribution, which differs from the tf.random_
normal() API in terms of the interval from which random values are se-
lected. First, visualize a regular normal distribution whose mean is close to 0.
Second, mentally “chop off” the values that are more than 2 standard devia-
tions from the mean, which results in a “truncated” normal distribution.

This truncated interval is the interval from which random numbers are
selected. Specifically, a random number is generated, and that number is in-
cluded in the “result” set only if it’s inside the “truncated” normal distribution.

However, if the randomly chosen value lies outside the truncated normal
distribution, regenerate the value (and do so as often as necessary) until it’s
inside the truncated normal distribution, after which the number is included
in the “result” set.

Perhaps an analogy would be helpful here. Suppose you toss a fair die and
only record the numbers that are 2, 3, or 4, which is to say that you ignore a
1, 5, or 6 whenever that number is displayed. In addition, suppose that you
want 100 occurrences of 2, 3, or 4. In this situation, you are almost guaranteed
that you must toss the die more than 100 times (it’s possible to toss a die that
returns only a 2, 3, or 4 in the first 100 tosses, but the probability of doing so is
practically zero). A function that returns the desired values is somewhat analo-
gous to the tf.truncated_normal() function.

One other detail: the tf.truncated_normal() API is useful because
it helps to prevent (or at least reduce) saturation that can occur with the sig-
moid function: neurons stop “learning” if saturation occurs.

The tf.reshape() api

Listing 2.13 displays the contents of tf2_reshape.py, which illustrates
how to invoke the TF 2 reshape() APIs in order to create TF 2 tensors with
different shapes.

Useful tF 2 apIs • 51

Listing 2.13: tf2_reshape.py

import tensorflow as tf

x = tf.constant([[2,5,3,-5],[0,3,-2,5],[4,3,5,3]])

print("shape: ",tf.shape(input=x))
print("shape 1:",tf.reshape(x, [6,2]))
print("shape 2:",tf.reshape(x, [3,4]))

Listing 2.13 defines the TF 2 constant x as a TF 2 tensor with shape (3,4)
that consists of 12 integers (some are positive and some are negative). We can
reshape the variable x as long as the product of the new row size and column
size equals 12.

Hence, the allowable pairs of values for rows and columns are: 1 and 12, 2
and 6, 3 and 4, 4 and 3, 6 and 2, and also 12 and 1. The output from launching
the code in Listing 2.13 is here:

shape: tf.Tensor([3 4], shape=(2,), dtype=int32)
shape 1: tf.Tensor(
[[2 5]
 [3 -5]
 [0 3]
 [-2 5]
 [4 3]
 [5 3]], shape=(6, 2), dtype=int32)
shape 2: tf.Tensor(
[[2 5 3 -5]
 [0 3 -2 5]
 [4 3 5 3]], shape=(3, 4), dtype=int32)

The tf.range() api

Listing 2.14 displays the contents of tf2_range.py, which illustrates
how to invoke the TF 2 tf.range() APIs to generate a range of numeric
values. If you are familiar with NumPy, the TF 2 tf.range() API is similar
to the NumPy linspace() API.

Listing 2.14: tf2_range.py

import tensorflow as tf

a1 = tf.range(3, 18, 3)
a2 = tf.range(0, 8, 2)
a3 = tf.range(-6, 6, 3)
a4 = tf.range(-10, 10, 4)

print('a1:',a1)
print('a2:',a2)
print('a3:',a3)
print('a4:',a4)

52 • tensorFlow 2 pocket primer

Listing 2.14 defines a1, a2, a3, and a4 by invoking the tf.range()
API with different numeric triples so that you can see some of the possibilities
with the tf.range() API. The output from launching the code in Listing
2.14 is here:

a1: tf.Tensor([3 6 9 12 15], shape=(5,), dtype=int32)
a2: tf.Tensor([0 2 4 6], shape=(4,), dtype=int32)
a3: tf.Tensor([-6 -3 0 3], shape=(4,), dtype=int32)
a4: tf.Tensor([-10 -6 -2 2 6], shape=(5,), dtype=int32)

The tf.equal() api (1)

Listing 2.15 displays the contents of tf2_equal.py, which illustrates
how to invoke the TF 2 equal() API as well as the TF 2 not_equal()
API to determine whether or not two TF 2 tensors are equal.

Listing 2.15: tf2_equal.py

import tensorflow as tf

x1 = tf.constant([0.9, 2.5, 2.3, -4.5])
x2 = tf.constant([1.0, 2.0, 2.0, -4.0])
eq = tf.equal(x1,x2)
neq = tf.not_equal(x1,x2)

print('x1: ',x1)
print('x2: ',x2)
print('eq: ',eq)
print('neq:',neq)

Listing 2.15 defines the TF 2 constants x1 and x2 as one-dimensional
constants. Next, the variable eq is defined by performing an element-by-
element comparison of x1 and x2, and the result of the comparison is a one-
dimensional tensor of Boolean values. The output from launching the code in
Listing 2.15 is here:

x1: tf.Tensor([0.9 2.5 2.3 -4.5], shape=(4,), dtype=float32)
x2: tf.Tensor([1. 2. 2. -4.], shape=(4,), dtype=float32)
eq: tf.Tensor([False False False False], shape=(4,),
dtype=bool)
neq: tf.Tensor([True True True True], shape=(4,),
dtype=bool)

The tf.equal() api (2)

Listing 2.16 displays the contents of tf2_equal2.py, which also illus-
trates how to invoke the TF 2 equal() API.

Useful tF 2 apIs • 53

Listing 2.16: tf2_equal2.py

import tensorflow as tf
import numpy as np

x1 = tf.constant([0.9, 2.5, 2.3, -4.5])
x2 = tf.constant([1.0, 2.0, 2.0, -4.0])
x3 = tf.Variable(x1)

print('x1:',x1)
print('x2:',x2)
print('r3:',tf.round(x3))
print('eq:',tf.equal(x1,x3))

Listing 2.16 is straightforward: there are three TF 2 constants, x1, x2, and
x3, which contain an assortment of positive and negative decimal values. Their
values are displayed by the four print() statements. Notice that the fourth
print() statement displays a tensor of Boolean values that are based on an
element-by-element comparison of the elements of x1 and x3. The output
from launching the code in Listing 2.16 is here:

x1: tf.Tensor([0.9 2.5 2.3 -4.5], shape=(4,),
dtype=float32)
x2: tf.Tensor([1. 2. 2. -4.], shape=(4,),
dtype=float32)
r3: tf.Tensor([1. 2. 2. -4.], shape=(4,),
dtype=float32)
eq: tf.Tensor([True True True True], shape=(4,), dtype=bool)

The tf.argmax() api (1)

As you learned earlier in this chapter, the TF 2 argmax() API returns
the index position of a tensor of values that contains the maximum value in a
tensor (not the actual maximum value). Listing 2.17 displays the contents of
tf2_argmax.py, which illustrates how to invoke the TF 2 argmax() API.

Listing 2.17: tf2_argmax.py

import tensorflow as tf
import numpy as np

x1 = tf.constant([3.9, 2.1, 2.3, -4.0])
x2 = tf.constant([1.0, 2.0, 5.0, -4.2])

print('x1:',x1)
print('x2:',x2)
print('a1:',tf.argmax(input=x1, axis=0))
print('a2:',tf.argmax(input=x2, axis=0))

54 • tensorFlow 2 pocket primer

Listing 2.17 defines the TF 2 constants x1 and x2, which are
 one-dimensional tensors that contain positive and negative decimal values.
The first pair of print() statements displays the contents of x1 and x2, fol-
lowed by the index positions of the maximum values in x1 and x2. The output
from launching the code in Listing 2.17 is here:

x1: tf.Tensor([3.9 2.1 2.3 -4.], shape=(4,),
dtype=float32)
x2: tf.Tensor([1. 2. 5. -4.2], shape=(4,),
dtype=float32)
a1: tf.Tensor(0, shape=(), dtype=int64)
a2: tf.Tensor(2, shape=(), dtype=int64)

The tf.argmax() api (2)

Listing 2.18 displays the contents of tf2_argmax2.py, which illustrates
another example of invoking the TF 2 argmax() API.

Listing 2.18: tf2_argmax2.py

import tensorflow as tf

initialize array of arrays:
arr1 = [[1,2,3], [30,20,10], [40,60,50]]
b = tf.Variable(arr1, name='b')

print("index of max values in b: ",tf.argmax(input=b,axis=1))

Listing 2.18 defines the 3x3 array arr1 that contains integer values, fol-
lowed by the definition of the TF 2 variable b. The print() statement
displays the index position of each row of arr1 that contains the maximum
value for that row. The output from launching the code in Listing 2.18 is here:

index of max values in b: tf.Tensor([2 0 1], shape=(3,),
dtype=int64)

The tf.argmax() api (3)

Listing 2.19 displays the contents of tf2_argmax3.py with another
example of invoking the TF 2 argmax() API, this time involving two 3x3
NumPy arrays.

Listing 2.19: tf2_argmax3.py

import tensorflow as tf
import numpy as np

x = np.array([[31, 23, 4, 54],
 [18, 3, 25, 0],

Useful tF 2 apIs • 55

 [28, 14, 33, 22],
 [17, 12, 5, 81]])

y = np.array([[31, 23, 4, 24],
 [18, 3, 25, 0],
 [28, 14, 33, 22],
 [17, 12, 5, 11]])

print('xmax:', tf.argmax(input=x,axis=1))
print('ymax:', tf.argmax(input=y,axis=1))
print('equal:',tf.equal(x,y))

Listing 2.19 defines the 3x3 NumPy arrays x and y that contain integer
values. The print() statement displays the index of the maximum value for
each row of x, followed by another print() statement that displays the index
of the maximum value for each row of y.

The third print() statement displays a tensor of Boolean values that are
the result of performing an element-by-element comparison of the elements
of x and y to determine which pairs contain equal values. The output from
launching the code in Listing 2.19 is here:

xmax: tf.Tensor([3 2 2 3], shape=(4,), dtype=int64)
ymax: tf.Tensor([0 2 2 0], shape=(4,), dtype=int64)

equal: tf.Tensor(
[[True True True False]
 [True True True True]
 [True True True True]
 [True True True False]], shape=(4, 4), dtype=bool)

Combining tf.argmax() and tf.equal() apis

Listing 2.20 displays the contents of tf2_argmax_equal.py, which
illustrates how to invoke the TF 2 equal() API with the TF 2 tf.argmax()
API.

Listing 2.20: tf2_argmax_equal.py

import tensorflow as tf
import numpy as np

pred = np.array([[31, 23, 4, 24, 27, 34],
 [18, 3, 25, 0, 6, 35],
 [28, 14, 33, 22, 20, 8],
 [13, 30, 21, 19, 7, 9],
 [16, 1, 26, 32, 2, 29],
 [17, 12, 5, 11, 10, 15]])

y = np.array([[31, 23, 4, 24, 27, 14],
 [18, 3, 25, 0, 6, 35],

56 • tensorFlow 2 pocket primer

 [28, 14, 33, 22, 20, 8],
 [13, 30, 21, 19, 7, 9],
 [16, 1, 26, 32, 2, 29],
 [17, 12, 5, 11, 10, 15]])

prediction = tf.equal(tf.argmax(input=pred,axis=1),tf.
argmax(input=y,axis=1))
accuracy = tf.reduce_mean(input_tensor=tf.cast(prediction,
tf.float32))

print("prediction:",prediction)
print("accuracy: ",accuracy)

Listing 2.20 defines two NumPy two-dimensional arrays of integers. The
variable prediction contains the indexes of the maximum row values of x
and y. Next, the variable accuracy compares the index values in the pre-
diction variable to determine how often they are equal. The result (after
multiplying by 100) gives us the percentage of occurrences of equal index
positions.

In Listing 2.20, the maximum value in each of the rows 2 through 6 of x are
in the same position as the maximum value for rows 2 through 6 of y. However,
the index of the maximum value in row 1 of x is 5, whereas the index of the
maximum value in row 1 of y is 0 (i.e., the index values do not match). Hence,
the index values only match in 5 of the 6 rows, which equals the fraction 5/6
that equals the decimal value 0.8333333 (rounded to six decimal places), which
in turn is a percent value of 83.33333%.

This code sample is very helpful for understanding the logic (which is iden-
tical to this code sample) for calculating the accuracy of the training and testing
portion of CNNs that are trained for the purpose of correctly identifying im-
ages. The output from launching the code in Listing 2.20 is here:

prediction: tf.Tensor([False True True True True
True], shape=(6,), dtype=bool)
accuracy: tf.Tensor(0.8333333, shape=(), dtype=float32

Combining tf.argmax() and tf.equal() apis (2)

Listing 2.21 displays the contents of tf2_argmax_equal2.py, which
illustrates how to invoke the TF 2 equal() API with the TF 2 argmax()
API.

Listing 2.21: tf2_argmax_equal2.py

import tensorflow as tf
import numpy as np

predictions from our model:
pred = np.array([[0.1, 0.03, 0.2, 0.05, 0.02, 0.6],

Useful tF 2 apIs • 57

 [0.5, 0.04, 0.2, 0.06, 0.10, 0.1],
 [0.2, 0.04, 0.5, 0.06, 0.10, 0.1]])

true values from our labeled data:
y_vals = np.array([[0, 0, 0, 0, 0, 1],
 [1, 0, 0, 0, 0, 0],
 [0, 0, 1, 0, 0, 0]])

print("argmax(pred,1): ", tf.argmax(input=pred,axis=1))
print("argmax(y_vals,1):", tf.argmax(input=y_vals,axis=1))

prediction = tf.equal(tf.argmax(input=pred, axis=1),tf.
argmax(input=y_vals, axis=1))

accuracy = tf.reduce_mean(input_tensor=tf.cast(prediction,
tf.float32))

print("prediction:",prediction)
print("accuracy:",accuracy)

Listing 2.21 contains code that is very similar to Listing 2.20: the main
difference is that Listing 2.21 contains integer values for x and y, whereas
the NumPy arrays pred and y_vals in Listing 2.21 contain decimal values
that are between 0 and 1. The output from launching the code in Listing 2.21
is here:

argmax(pred,1): tf.Tensor([5 0 2], shape=(3,), dtype=int64)
argmax(y_vals,1): tf.Tensor([5 0 2], shape=(3,), dtype=int64)
prediction: tf.Tensor([True True True], shape=(3,),
dtype=bool)
accuracy: tf.Tensor(1.0, shape=(), dtype=float32)

The tf.map_fn() api

Although Chapter 3 contains more information about lazy operators, this
section contains a basic introduction to the tf.map_fn() API. In essence,
this API is similar to the map() API: both APIs take an array of numbers and
then “send” every number in the array to a function that is called a lambda
expression. Note that you specify the array as well as the function.

For example, suppose you want to double every number in the array [1,2,3].
A common solution involves a loop that creates a new array whose values are
twice their corresponding values in the initial array (or you could update the
initial array “in place” by doubling each value).

An easier way to accomplish the same task involves the tf.map_fn()
API. Listing 2.22 displays the contents of tf2_map_function.py, which
illustrates how to invoke the TF 2 tf.map_fn() API in order to perform
various operations on arrays of numbers, such as squaring every number in an
array.

58 • tensorFlow 2 pocket primer

Listing 2.22: tf2_map_function.py

import tensorflow as tf
import numpy as np

elems = np.array([1, 2, 3, 4, 5])

doubles = tf.map_fn(lambda x: 2 * x, elems)
print("doubles:",doubles)
[2, 4, 6, 8, 10]

squares = tf.map_fn(lambda x: x * x, elems)
print("squares:",squares)
[1, 4, 9, 16, 25]

elems = (np.array([1, 2, 3]), np.array([-1, 1, -1]))
neg_pos = tf.map_fn(lambda x: x[0] * x[1], elems, dtype=tf.
int64)
print("neg_pos:",neg_pos)
[-1, 2, -3]

elems = np.array([1, 2, 3])
pos_neg = tf.map_fn(lambda x: (x, -x), elems, dtype=(tf.
int64, tf.int64))
print("pos_neg:",pos_neg)

Listing 2.22 contains a NumPy array elems, followed by four code blocks,
each of which involves a lambda expression, all of which are displayed here:

lambda x: 2 * x
lambda x: x * x
lambda x: x[0] * x[1]
lambda x: (x, -x)

As you can see, the first lambda expression computes 2*x, where x is a
number in the NumPy array elems, whereas the second lambda expression
computes x*x, where x is also a number from the NumPy array elems. Note
that both lambda expressions execute independently of each other, which
means that they both process every element in the NumPy array elems.

Examine the first two output lines as follows to convince yourself that the
output consists of the doubled values and the squared values, respectively, of
the numbers in the NumPy array elems. Now look at the other two lambda
expressions to determine the resulting output, which you can confirm by in-
specting the following output. The complete output from launching the code
in Listing 2.22 is here:

doubles: tf.Tensor([2 4 6 8 10], shape=(5,), dtype=int64)
squares: tf.Tensor([1 4 9 16 25 36], shape=(6,), dtype=int64)
neg_pos: tf.Tensor([-1 2 -3], shape=(3,), dtype=int64)

Useful tF 2 apIs • 59

pos_neg: (<tf.Tensor: id=206, shape=(3,), dtype=int64,
numpy=array([1, 2, 3])>, <tf.Tensor: id=207, shape=(3,),
dtype=int64, numpy=array([-1, -2, -3])>)

whaT is a one-hoT enCoding?

This section briefly describes how to create a “one-hot” encoding for cate-
gorical (i.e., nonnumerical) data. Before we perform a one-hot encoding, keep
in mind that a feature in a dataset that contains nonnumerical values is called
categorical or nominal data.

A one-hot encoding “maps” nonnumerical feature values into a correspond-
ing set of numeric values, which is often required (in fact, it’s always required
when dealing with convolutional neural networks). The term one-hot encoding
involves the conversion of each nonnumerical value into a vector that contains
a single 1 (and zeroes elsewhere).

For example, suppose that we have a color variable whose values are red,
green, or blue. A one-hot encoding of this color variable happens to look
like a 3x3 identity matrix, as shown here:

red, green, blue
1, 0, 0
0, 1, 0
0, 0, 1

Now suppose that you have a dataset with six rows of data whose color
values are red, green, blue, red, green, and blue. Then the six
rows would contain the following values (let’s ignore the values of the other
elements of these six rows):

1, 0, 0
0, 1, 0
0, 0, 1
1, 0, 0
0, 1, 0
0, 0, 1

The TF one_hot() api

Listing 2.23 displays the contents of tf2_onehot2.py, which illustrates
how to use the TF 2 one_hot() API with a tensor.

Listing 2.23: tf2_onehot2.py

import tensorflow as tf

idx = tf.constant([2, 0, -1, 0])
target = tf.one_hot(idx, 3, 2, 0)

60 • tensorFlow 2 pocket primer

@tf.function
def compute_values():
 print(idx)
 print(target)

compute_values()

Listing 2.23 starts by defining the variable idx based on a TF 2 constant
that is a one-dimensional TF 2 tensor. Notice that the second and fourth ele-
ments in the TF 2 tensor are equal, which means that their one-hot encoding
will be the same. The next portion of Listing 2.23 defines target, which will
contain the one-hot encoded values for idx. Next, the compute_values
function prints the TF 2 variable idx and then prints the contents of tar-
get, which is a 4x3 tensor. The output from Listing 2.23 is here:

tf.Tensor([2 0 -1 0], shape=(4,), dtype=int32)

tf.Tensor(
[[0 0 2]
 [2 0 0]
 [0 0 0]
 [2 0 0]], shape=(4, 3), dtype=int32)

oTher UseFUL TF 2 apis

In addition to the TF 2 APIs that you have seen in this chapter, you will also
encounter the following APIs, whose names are intuitive. This section contains
short code blocks that illustrate the syntax for these APIs, and you can find
more detailed information in the online documentation.

The tf.zeros() API initializes a tensor with all zeroes, as shown here:

import tensorflow as tf
zeroes = tf.zeros([2, 3])
print("zeroes:",zeros)

The output from the preceding code block is a 2x3 second-order tensor
containing all zeroes, as shown here:

zeroes: tf.Tensor(
 [[0. 0. 0.]
 [0. 0. 0.]], shape=(2, 3), dtype=float32)

The tf.ones() API initializes a tensor with all ones, as shown here:

import tensorflow as tf
ones = tf.ones ([2, 3])
print("ones:",ones)

Useful tF 2 apIs • 61

The output from the preceding code block is a 2x3 second-order tensor
containing all ones, as shown here:

ones: tf.Tensor(
[[1. 1. 1.]
 [1. 1. 1.]], shape=(2, 3), dtype=float32)

The tf.fill() API initializes a tensor with a specified numeric or string
value, as shown here:

import tensorflow as tf
nines = tf.fill(dims=[2, 3], value=9)
pizza = tf.fill(dims=[2, 3], value="pizza")

print("nines:",nines)
print("pizza:",pizza)

The output from the preceding pair of print() statements is shown here:

nines: tf.Tensor(
 [[9 9 9]
 [9 9 9]], shape=(2, 3), dtype=int32)
pizza: tf.Tensor(
 [[b'pizza' b'pizza' b'pizza']
 [b'pizza' b'pizza' b'pizza']], shape=(2, 3), dtype=string)

The tf.unique() API finds the unique numbers or strings (duplicate
values are ignored) in a TF 2 tensor, as shown here:

import tensorflow as tf

x = tf.constant([1, 1, 2, 4, 4, 4, 7, 8, 8])
val, idx = tf.unique(x)
y = tf.constant(['a','a','b','b','c','c'])
val2, idx2 = tf.unique(y)

print("val: ",val)
print("idx: ",idx)
print("val2:",val2)
print("idx2:",idx2)

The output from the preceding four print() statements is shown here:

val: tf.Tensor([1 2 4 7 8], shape=(5,), dtype=int32)
idx: tf.Tensor([0 0 1 2 2 2 3 4 4], shape=(9,), dtype=int32)
val2: tf.Tensor([b'a' b'b' b'c'], shape=(3,), dtype=string)
idx2: tf.Tensor([0 0 1 1 2 2], shape=(6,), dtype=int32)

The tf.where() API determines the location of a matching number
(if any). For example, the following code block finds the location of the
 numbers 3 and 5 in the variable t1:

62 • tensorFlow 2 pocket primer

import tensorflow as tf

t1 = tf.constant([[1, 2, 3], [4, 5, 6]])
t2 = tf.where(tf.equal(t1, 3))
t3 = tf.where(tf.equal(t1, 5))

print("t1:",t1)
print("t2:",t2)
print("t3:",t3)

The output from the preceding three print() statements is shown here:

t1: tf.Tensor(
 [[1 2 3]
 [4 5 6]], shape=(2, 3), dtype=int32)
t2: tf.Tensor([[0 2]], shape=(1, 2), dtype=int64)
t3: tf.Tensor([[1 1]], shape=(1, 2), dtype=int64)

In the preceding code block, notice that t1 has dimensions 2x3; the num-
ber 3 appears in position 3 (which has index 2) of the first element (which has
index 0). Hence, the result is an element that contains the one-dimensional
tensor [0 2]. Similarly, the number 5 appears in t1 in position 2 (which has
index 1) of the second element (which has index 1). Hence, the result is an ele-
ment that contains the one-dimensional tensor [1 1].

saVe and resTore TF 2 VariabLes

Listing 2.24 displays the contents of tf2_save_restore.py, which
 illustrates how to save and restore TF 2 variables.

Listing 2.24: tf2_save_restore.py

import tensorflow as tf

x = tf.Variable(10.)
#checkpoint = tf.train.Checkpoint()
checkpoint = tf.train.Checkpoint(x=x)
print("x:",x) # => 10.0

Assign a new value to x and save
x.assign(3.)
print("x:",x) # => 3.0
checkpoint_path = './ckpt/'
checkpoint.save(checkpoint_path)

Change the variable after saving.
x.assign(25.)
print("x:",x) # => 25.0

Useful tF 2 apIs • 63

Restore values from the checkpoint
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_
path))
print("x:",x) # => 3.0

Listing 2.24 contains the TF 2 variable x with the value 10 and initializes
the TF 2 variable checkpoint (which has type tf.train.Checkpoint)
to “track” the value of x.

Checkpoints capture the exact value of all parameters (tf.Variable ob-
jects) used by a model. Since checkpoints do not contain any description of the
computation defined by the model, typically they are only useful when source
code that will use the saved parameter values is available. After you finish read-
ing this code sample, try using the commented out code snippet for the vari-
able checkpoint and compare the difference in the output.

The next code snippet in Listing 2.24 assigns the value 3 to x, after which
the checkpoint.save() code snippet creates the following directory
structure:

./ckpt

./ckpt/-1.data-00000-of-00001

./ckpt/-1.index

./ckpt/checkpoint

Notice how the next code snippet assigns the value 25 to the variable x,
but when the code checkpoint.restore() is invoked, x is restored to its
“saved” value. Launch the code in Listing 2.24 and you will see the following
output, and notice the sequence of values for the variable x (the values are
highlighted in bold):

x: <tf.Variable 'Variable:0' shape=() dtype=float32,
numpy=10.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32,
numpy=3.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32,
numpy=25.0>
x: <tf.Variable 'Variable:0' shape=() dtype=float32,
numpy=3.0>

TensorFLow ragged ConsTanTs and Tensors

As you probably know, every element in a “regular” multidimensional ten-
sor has the same dimensions. For example, a 2x3 second-order tensor contains
two rows and three columns: each row is a 1x3 vector, and each column is a 2x1
vector. As another example, a 2x3x4 tensor contains two 3x4 tensors (and the
same logic applies to each 3x4 tensor).

On the other hand, a ragged constant is a set of elements that have differ-
ent lengths. You can think of ragged constants as a generalization of “regular”
datasets.

64 • tensorFlow 2 pocket primer

Listing 2.25 displays the contents of tf2_ragged_tensors1.py,
which illustrates how to define a ragged dataset and then iterate through its
contents.

Listing 2.25: tf2_ragged_tensors1.py

import tensorflow as tf

digits = tf.ragged.constant([[3, 1, 4, 1], [], [5, 9, 2],
[6], []])
words = tf.ragged.constant([["Bye", "now"], ["thank",
"you", "again", "sir"]])

print(tf.add(digits, 3))
print(tf.reduce_mean(digits, axis=1))
print(tf.concat([digits, [[5, 3]]], axis=0))
print(tf.tile(digits, [1, 2]))
print(tf.strings.substr(words, 0, 2))

Listing 2.25 defines two ragged constants digits and words consisting
of integers and strings, respectively. The remaining portion of Listing 2.25 con-
sists of five print() statements that apply various operations to these two
datasets and then display the results.

The first print() statement adds the value 3 to every number in the
digits dataset, and the second print() statement computes the row-wise
average of the elements of the digits dataset because axis=1 (whereas
axis=0 performs column-wise operations).

The third print() statement appends the element [[5,3]] to the
digits dataset, and performs this operation in a column-wise fashion (be-
cause axis=0). The fourth print() statement “doubles” each non-empty
element of the digits dataset. Finally, the fifth print() statement extracts
the first two characters from every string in the words dataset. The output
from launching the code in Listing 2.25 is here:

<tf.RaggedTensor [[6, 4, 7, 4], [], [8, 12, 5], [9], []]>
tf.Tensor([2.25 nan 5.33333333 6.
nan], shape=(5,), dtype=float64)
<tf.RaggedTensor [[3, 1, 4, 1], [], [5, 9, 2], [6], [],
[5, 3]]>
<tf.RaggedTensor [[3, 1, 4, 1, 3, 1, 4, 1], [], [5, 9, 2,
5, 9, 2], [6, 6], []]>
<tf.RaggedTensor [[b'By', b'no'], [b'th', b'yo', b'ag',
b'si']]>

Listing 2.26 displays the contents of tf2_ragged_tensors2.py,
which illustrates how to define a ragged tensor in TF 2.

Useful tF 2 apIs • 65

Listing 2.26: tf2_ragged_tensors2.py

import tensorflow as tf

x1 = tf.RaggedTensor.from_row_splits(
 values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 row_splits=[0, 5, 10])
print("x1:",x1)

x2 = tf.RaggedTensor.from_row_splits(
 values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 row_splits=[0, 4, 7, 10])
print("x2:",x2)

x3 = tf.RaggedTensor.from_row_splits(
 values=[1, 2, 3, 4, 5, 6, 7, 8],
 row_splits=[0, 4, 4, 7, 8, 8])
print("x3:",x3)

Listing 2.26 defines the TF 2 ragged tensors x1, x2, and x3 that are based
on the integers from 1 to 10 inclusive. The values parameter specifies a
set of values that will be “split” into a set of vectors, using the numbers in the
row_splits parameter for the start index and the end index of each vector.

For example, x1 specifies row_splits with the value [0,5,10] whose
values are used as index positions in order to create two vectors: the vector
whose values are from index 0 through index 4 of x1, and the vector whose
values are from index 5 through index 9 of x1. The contents of those two vec-
tors are [1, 2, 3, 4, 5] and [6, 7, 8, 9, 10], respectively (see
the output as follows).

As another example, x2 specifies row_splits with the value
[0,4,7,10], which determines three vectors: the vector whose values are
from index 0 through index 3 of x1, the vector whose values are from index 4
through index 6 of x1, and the vector whose values are from index 7 through
index 9 of x1. The contents of those two vectors are [1,2,3,4], [5,6,7],
and [8, 9, 10], respectively (see the output as follows).

You can perform a similar analysis for x3, keeping mind that the vector
whose start index and end index are [4,4] is an empty vector. The output
from launching the code in Listing 2.26 is here:

x1: <tf.RaggedTensor [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]>
x2: <tf.RaggedTensor [[1, 2, 3, 4], [5, 6, 7], [8, 9, 10]]>
x3: <tf.RaggedTensor [[1, 2, 3, 4], [], [5, 6, 7], [8], []]>

If you want to generate a list of values, invoke the to_list() operator.
For instance, suppose you define x4 as follows:

66 • tensorFlow 2 pocket primer

x4 = tf.RaggedTensor.from_row_splits(
 values=[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
 row_splits=[0, 5, 10]).to_list()
print("x4:",x4)

The output from the preceding code snippet is here (which you can com-
pare with the output for x1 in the preceding output block):

x4: [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]

You can also create higher-dimensional ragged tensors in TF 2. For
 example, the following code snippet creates a two-dimensional ragged tensor in
TF 2:

RaggedTensor.from_nested_row_splits(
 flat_values=[3,1,4,1,5,9,2,6],
 nested_row_splits=([0,3,3,5], [0,4,4,7,8,8])).to_list()

The preceding code snippet generates the following output:

[[[3, 1, 4, 1], [], [5, 9, 2]], [], [[6], []]]

whaT is a TFrecord?

A TFRecord is a file that describes the data required during the training
phase and the testing phase of a model. There are two protocol buffer message
types available for a TFRecord: the Example message type and the Se-
quenceExample message type. These protocol buffer message types enable
you to arrange data as a map from string keys to values that are lists of integers,
32-bit floats, or bytes.

The data in a TFRecord is “wrapped” inside a Feature class. In addi-
tion, each feature is stored in a key value pair, where the key corresponds to
the title that is allotted to each feature. These titles are used later for extract-
ing the data from TFRecord. The created dictionary is passed as input to a
Feature class. Finally, the features object is passed as input to an Example
class that is appended to the TFRecord. The preceding process is repeated
for every type of data that is stored in TFRecord.

The TFRecord file format is a record-oriented binary format that you can
use for training data. In addition, the tf.data.TFRecordDataset class
enables you to stream over the contents of one or more TFRecord files as part
of an input pipeline.

You can store any type of data, including images, in the tf.train.
Example format. However, you specify the mechanism for arranging the data
into serialized bytes, as well as reconstructing the original format.

a simple TFrecord

Listing 2.27 displays the contents of tf2_record1.py, which illustrates
how to define a TFRecord in TF 2.

Useful tF 2 apIs • 67

Listing 2.27: tf2_record1.py

import tensorflow as tf

data = b"pasta"
simple1 = tf.train.Example(features=tf.train.
Features(feature={
 'my_ints': tf.train.Feature(int64_list=tf.train.
Int64List(value=[2, 5])),
 'my_float': tf.train.Feature(float_list=tf.train.
FloatList(value=[3.6])),
 'my_bytes': tf.train.Feature(bytes_list=tf.train.
BytesList(value=[data]))
}))

print("my_ints:", simple1.features.feature['my_ints'].
int64_list.value)
print("my_floats:",simple1.features.feature['my_float'].
float_list.value)
print("my_bytes:", simple1.features.feature['my_bytes'].
bytes_list.value)

#print("simple1:",simple1)

Listing 2.27 contains the definition of the variable simple1 that is an
instance of the tf.train.Example class. The simple1 variable defines a
record consisting of the fields my_ints, my_floats, and my_bytes that
are of type Int64List, FloatList, and ByteList, respectively.

The final portion of Listing 2.27 contains print() statements that display
the values of various elements in the simple1 variable, as shown here:

('my_ints:', [2L, 5L])
('my_floats:', [3.5999999046325684])
('my_bytes:', [b'pasta'])

whaT are tf.layers?

The tf.layers namespace contains an assortment of classes for the
layers in Neural Networks, including DNNs (Dense Neural Networks) and
CNNs (Convolutional Neural Networks). Some of the more common classes
in the tf.layers namespace are listed as follows (and are discussed in more
detail in the appendix):

•	 BatchNormalization:	Batch	normalization	layer	
•	 Conv2D:	2D	convolution	layer	(e.g.,	spatial	convolution	over	images)
•	 Dense:	Densely	connected	layer	class
•	 Dropout:	Applies	Dropout	to	the	input
•	 Flatten:	Flattens	an	input	tensor	while	preserving	the	batch	axis	(axis	0)
•	 Layer:	Base	layer	class
•	 MaxPooling2D:	Max	pooling	layer	for	2D	inputs	(e.g.,	images)

68 • tensorFlow 2 pocket primer

For example, a minimalistic CNN starts with a “triple” that consists of a
Conv2D layer, followed by ReLU (Rectified Linear Unit) activation function,
and then a MaxPooling2D layer. If you see this triple appear a second time,
followed by two consecutive Dense layers and then a softmax activation func-
tion, it’s known as “LeNet.”

A bit of trivia: in the late 1990s, when people deposited checks at an auto-
mated bank machine, LeNet scanned the contents of those checks to deter-
mine the digits of the check amount (of course, customers had to confirm that
the number determined by LeNet was correct). LeNet had an accuracy rate
around 90%, which is a very impressive result for such a simple Convolutional
Neural Network!

whaT is Tensorboard?

TensorBoard is very powerful data and graph visualization tool that pro-
vides a great deal of useful information as well as debugging support. Tensor-
Board is part of the TensorFlow distribution, so you don’t need to perform a
separate installation.

TensorBoard has a background thread that loads event data from event files
that are in the directory that you specify with “—logdir” when you launch Ten-
sorBoard from the command line. Data from event files is loaded into memory
because it’s more efficient than querying data from files.

TensorBoard itself is an extensible Web server with a plug-in architec-
ture, which is the mechanism for adding dashboards. You access TensorBoard
through a Polymer-based Web component framework in a Web browser ses-
sion. The Web application involves a mix of JavaScript and TypeScript. In ad-
dition, D3.js, dagre.js, and three.js are used for the visualizations.

TensorBoard supports multiple dashboards for scalars, graph, histograms,
images, and so forth. TensorBoard enables you to analyze data based on a spe-
cific “run” and also by “tag,” which enables you to perform analysis of the man-
ner in which your data changes over time.

TensorBoard provides a “writer” for saving the contents of a TensorFlow
graph to a file in a directory (that is specified by you). In addition, TensorBoard
provides various APIs in order to insert the values of variables in a Tensor-
Board visualization.

In order to view the contents of a TF 2 graph in TensorBoard, open a com-
mand shell, navigate to the parent directory of the directory that contains
graph-related files (let’s pretend its name is tf_log_files), and launch the
following command:

tensorboard –logdir=./tf_log_files

Next, launch a Chrome browser and navigate to this URL:

localhost:6006

Useful tF 2 apIs • 69

When you see the TensorFlow graph rendered in your browser, use your
mouse to resize the graph, and double-click on nodes to “drill down” and find
more information about each node.

TensorBoard provides support for CPUs, GPUs, and TPUs, in conjunction
with TF 1.x and TF 2, with one exception: TensorBoard currently does not
support TPUs with TF 2. You can follow this issue for updates on the support
status:

https://github.com/tensorflow/tensorflow/issues/24412

TF 2 with Tensorboard

This section contains some useful links that provide more detailed and
instructive information regarding TensorBoard with TF 2 as well as TF 1.x.
Navigate to the following link if you want to see an example of TF 2 and Ten-
sorBoard in a Jupyter notebook:

https://colab.research.google.com/github/tensorflow/
tensorboard/blob/master/docs/r2/get_started.
ipynb#scrollTo=XKUjdIoV87um

You can download the preceding Jupyter notebook and also a Python file
that contains the same code as the Jupyter notebook; in the latter case you also
need to “comment out” the so-called magic commands in Jupyter.

If the Keras code in the preceding Jupyter notebook is unfamiliar to you,
read the Keras-based code samples that are discussed later in this book and
then the code in this Jupyter notebook will make more sense.

If you have not upgraded to TF 2 yet, navigate to this link for more infor-
mation about TensorBoard with TensorFlow 1.x:

https://www.tensorflow.org/guide/summaries_and_tensorboard

Other tips and how-to information about TensorBoard is available here:

https://github.com/TF 2 2/tensorboard/blob/master/README.
md#my-tensorboard-isnt-showing-any-data-whats-wrong

Some information about TF 2 with Keras and how to write image summa-
ries for TensorBoard is here:

https://stackoverflow.com/questions/55421290/
tensorflow-2-0-keras-how-to-write-image-summaries-for-
tensorboard/55754700#55754700

A video about TensorBoard during the TF Summit (2019):

https://www.youtube.com/watch?v=xM8sO33x_OU&list=PLQY2H8rRo
yvzoUYI26kHmKSJBedn3SQuB&index=11&t=0s

70 • tensorFlow 2 pocket primer

The appendix contains a brief section about TensorFlow Graphics, which
supports 3D effects in TensorBoard.

Tensorboard dashboards

TensorBoard supports a variety of dashboards, some of which are listed as
follows with a brief description of their functionality:

•	 Scalar	Dashboard
•	 Histogram	Dashboard
•	 Distribution	Dashboard
•	 Image	Dashboard
•	 Audio	Dashboard
•	 Text	Dashboard

The Scalar Dashboard visualizes scalar statistics that vary over time (e.g.,
the loss values of a model). The Histogram Dashboard visualizes data recorded
via the tf.summary.histogram API and displays how the statistical distri-
bution of a Tensor has varied over time. The charts display temporal “slices” of
data, where each slice is a histogram of the tensor at a given step.

The Distribution Dashboard also displays histogram data (via the
tf.summary.histogram API) and shows high-level statistics on a distri-
bution. Each line on the chart represents a percentile in the distribution over
the data. Moreover, the percentiles can also be viewed as standard deviation
boundaries on a normal distribution.

Finally, the Image Dashboard, Audio Dashboard, and Text Dashboard dis-
play PNGs, audio files, and text, respectively.

There are a few things to keep in mind. First, TensorBoard expects a sin-
gle events file, which is to say that multiple summary writers involve multiple
events files. In the case of a distributed TensorFlow instance, designate one
worker as the “chief” that is responsible for all summary processing. Second,
if data appears to overlap with itself, you might have multiple executions of
TensorFlow that wrote to the same log directory.

The tf.summary api

The tf.summary API is the primary way for “serving up” data from event
files to TensorBoard. This API also assists in displaying log metrics and predic-
tion details. TF 1.x has a tf.summary module that will be replaced by a new
API for TensorBoard in TF 2 that differs as follows:

•	 The	 data-format-specific	 parts	 will	 be	 defined	 in	 tensorboard.
summary

•	 The	generated	summary	events	will	use	a	more	extensible	“wire	format”
•	 The	write-side	code	will	use	the	V2	summary-writing	API

Useful tF 2 apIs • 71

Navigate to the following URL for more information about TensorBoard
in TF 2:

https://www.tensorflow.org/tensorboard/r2/get_started

In addition, the following URL contains an example of profiling training
metrics for a Keras-based model:

https://www.tensorflow.org/tensorboard/r2/tensorboard_
profiling_keras

googLe CoLaboraTory

Depending on the hardware, GPU-based TF 2 code is typically at least
fifteen times faster than CPU-based TF 2 code. However, the cost of a good
GPU	can	be	a	significant	factor.	Although	NVIDIA	provides	GPUs,	those	con-
sumer-based GPUs are not optimized for multi-GPU support (which is sup-
ported by TF 2).

Fortunately Google Colaboratory is an affordable alternative that provides
free GPU support, and also runs as a Jupyter notebook environment. In ad-
dition, Google Colaboratory executes your code in the cloud and involves zero
configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and testing
ideas quickly. Google Colaboratory makes it easy to upload local files, install
software in Jupyter notebooks, and even connect Google Colaboratory to a
Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution
with GPUs, visualization using Matplotlib, and the ability to save a copy of your
Google Colaboratory notebook to Github by using File > Save a copy
to GitHub.

Moreover, you can load any .ipynb on GitHub just by adding the path to
the URL colab.research.google.com/github/ (see the Colabora-
tory website for details).

Google Colaboratory has support for other technologies such as HTML
and	SVG,	enabling	you	to	render	SVG-based	graphics	in	notebooks	that	are	in	
Google Colaboratory. One point to keep in mind: any software that you install
in a Google Colaboratory notebook is only available on a per-session basis: if
you log out and log in again, you need to perform the same installation steps
that you performed during your earlier Google Colaboratory session.

As mentioned earlier, there is one other very nice feature of Google Co-
laboratory: you can execute code on a GPU for up to twelve hours per day for
free. This free GPU support is extremely useful for people who don’t have a

72 • tensorFlow 2 pocket primer

suitable GPU on their local machine (which is probably the majority of users),
and now they launch TF 2 code to train neural networks in less than twenty
or thirty minutes that would otherwise require multiple hours of CPU-based
execution time.

In case you’re interested, you can launch TensorBoard inside a Google Co-
laboratory notebook with the following command (replace the specified direc-
tory with your own location):

%tensorboard --logdir /logs/images

Keep in mind the following details about Google Colaboratory. First, when-
ever you connect to a server in Google Colaboratory, you start what’s known as
a session. You can execute the code in a session with either a GPU or a TPU
without any cost to you, and you can execute your code without any time limit
for your session. However, if you select the GPU option for your session, only
the first twelve hours of GPU execution time are free. Any additional GPU
time during that same session incurs a small charge (see the website for those
details).

The other point to keep in mind is that any software that you install in a
Jupyter notebook during a given session will not be saved when you exit that
session. For example, the following code snippet installs TFLearn in a Jupyter
notebook:

!pip install tflearn

When you exit the current session, and at some point later you start a new
session, you need to install TFLearn again, as well as any other software (such
as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google Co-
laboratory, with support for CPUs and GPUs (and support for TPUs will be
available later). Navigate to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_
notebooks

oTher CLoUd pLaTForms

GCP (Google Cloud Platform) is a cloud-based service that enables you to
train TF 2 code in the cloud. GCP provides Deep Learning DL images (similar
in concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation and also a link to DL images
based on different technologies, including TF 2 and PyTorch, with GPU and
CPU versions of those images. Along with support for multiple versions of Py-
thon, you can work in a browser session or from the command line.

Useful tF 2 apIs • 73

gCp sdk

Install GCloud SDK on a Mac-based laptop by downloading the software
at this link:

https://cloud.google.com/sdk/docs/quickstart-macos

You will also receive USD 300 dollars worth of credit (over one year) if you
have never used Google cloud.

This concludes the material for this chapter, and if you want to learn more
about any of the features that you have seen, perform an Internet search for
additional tutorials.

sUmmary

In this chapter, you learned about some TF 2 features such as eager execu-
tion, which has a more Python-like syntax than “regular” TensorFlow syntax,
tensor operations (such as multiplying tensors), and also how to create for
loops and while loops in TF 2.

Next, you saw how to use the TF 2 tf.random_normal() API for gen-
erating random numbers (which is useful for initializing the weights of edges
in neural networks), followed by the tf.argmax() API for finding the index
of each row (or column) that contains the maximum value in each row (or col-
umn), which is used for calculating the accuracy of the training process involv-
ing various algorithms. You also saw the tf.range() API, which is similar to
the NumPy linspace() API.

In addition, you learned about the TF 2 reduce_mean() and equal()
APIs, both of which are involved in calculating the accuracy of the training
of a neural network (in conjunction with tf.argmax()). Next, you saw
the TensorFlow truncated_normal() API, which is a variant of the
tf.random_normal() API, and the TF 2 one_hot() API for encod-
ing data in a particular fashion. Moreover, you learned about the TF 2 re-
shape() API, which you will see in any TF 2 code that involves training a
CNN (Convolutional Neural Network).

In the second half of this chapter you were introduced to TensorBoard,
which is a very powerful visualization tool that is part of the TensorFlow distri-
bution. You saw some code samples that invoke TensorBoard APIs alongside
other TF 2 APIs in order to augment the TensorFlow graph with supplemental
information that was rendered in TensorBoard in a Web browser. Finally, you
got an introduction to Google Colaboratory, which is a fully online Jupyter-
based environment.

Chapter 3
TF 2 DaTaseTs

This chapter discusses the TF 2 tf.data.Dataset namespace and
the classes therein that support a rich set of operators for processing
very large datasets (i.e., datasets that are too large to fit in memory).

You will learn about so-called lazy operators (such as filter() and map())
that you can invoke via “method chaining” to extract a desired subset of data
from a dataset. In addition, you’ll learn about TF 2 Estimators (in the
tf.estimator namespace) and TF 2 layers (in the tf.keras. layers
namespace).

Please note that the word “dataset” in this chapter refers to a TF 2 class in
the tf.data.Dataset namespace. Such a dataset acts as a “wrapper” for
actual data, where the latter can be a CSV file or some other data source. This
chapter does not cover TF 2 built-in datasets of “pure” data, such as MNIST,
CIFAR, and IRIS, except for cases in which they are part of code samples that
involve TF 2 lazy operators.

Familiarity with lambda expressions (discussed later) and Functional Reac-
tive Programming will be very helpful for this chapter. In fact, the code sam-
ples chapter will be very straightforward if you already have experience with
Observables in RxJS, RxAndroid, RxJava, or some other environment
that involves lazy execution.

The first part of this chapter briefly introduces you to TF 2 Datasets
and lambda expressions, along with some simple code samples. You will
learn about iterators that work with TF 1.x tf.data.Datasets, and
also TF 2 generators (which are Python functions with a @tf.function
 decorator).

The second part of this chapter discusses TextLineDatasets that are
very convenient for working with text files. As explained previously, the TF 2
code samples in this section use TF 2 generators instead of iterators (which
work with TF 1.x).

tF 2 Datasets • 75

The third part of this chapter discusses various lazy operators, such as
filter(), map(), and batch() operators, and also briefly describes how
they work (and when you might need to use them). You’ll also learn method
chaining for combining these operators, which results in powerful code combi-
nations that can significantly reduce the complexity of your TF 2 code.

The final portion of the chapter briefly discusses TF 2 estimators in
the tf.estimator namespace (which are a layer of abstraction above
tf.keras.layers), as well as TF 2 layers that provide an assortment of
classes for DNNs (Dense Neural Networks) and CNNs (Convolutional Neural
Networks) that are discussed in the appendix.

The TF 2 tf.data.Datasets

Before we delve into this topic, we need to make sure that the following
distinction is clear: a “dataset” contains rows of data (often in a flat file), where
the columns are called “features” and the rows represent an “instance” of
the dataset. By contrast, a TF 2 Dataset refers to a class in the tf.data.
Dataset namespace that acts like a “wrapper” around a “regular” dataset that
contains rows of data.

You can also think of a TF 2 Dataset as being analogous to a Pandas
DataFrame. Again, if you are familiar with Observables in Angular (or
something similar), you can perform a quick knowledge transfer as you learn
about TF 2 Datasets.

TF 2 tf.data.Datasets are well-suited for creating asynchronous and
optimized data pipelines. In brief, the TF 2 Dataset API loads data from
the disk (both images and text), applies optimized transformations, creates
batches, and sends the batches to the GPU. In fact, the TF 2 Dataset API is
well-suited for better GPU utilization. In addition, use tf.functions in TF
2.0 to fully utilize dataset asynchronous prefetching/streaming features.

According to the TF 2 documentation: “A Dataset can be used to represent
an input pipeline as a collection of elements (nested structures of tensors) and
a ‘logical plan’ of transformations that act on those elements.”

A TF 2 tf.data.Dataset is designed to handle very large datasets. A
TF 2 Dataset can also represent an input pipeline as a collection of elements
(i.e., a nested structure of tensors), along with a “logical plan” of transforma-
tions that act on those elements. For example, you can define a TF 2 Dataset
that initially contains the lines of text in a text file, then extract the lines of text
that start with a “#” character, and then display only the first three matching
lines. Creating this pipeline is easy: create a TF 2 Dataset and then chain the
lazy operators filter() and take(), which is similar to an example that
you will see later in this chapter.

Creating a Pipeline

Think of a dataset as a pipeline that starts with a source, which can be a
NumPy array, tensors in memory, or some other source. If the source involves

76 • tensorFlow 2 pocket primer

tensors, use tf.data.Dataset.from_tensors() to combine the input,
otherwise use tf.data.Dataset.from_tensor_slices() if you want
a separate row for each input tensor. On the other hand, if the input data is
located on disk in a TFRecord format (which is recommended), construct a
tf.data.TFRecordDataset.

The difference between the first two APIs is shown as follows:

#combine the input into one element => [[1, 2], [3, 4]]
t1 = tf.constant([[1, 2], [3, 4]])
ds1 = tf.data.Dataset.from_tensors(t1)

#a separate element for each item: [1, 2], [3, 4]
t2 = tf.constant([[1, 2], [3, 4]])
ds2 = tf.data.Dataset.from_tensor_slices(t2)
for item in ds1:
 print("1item:",item)

print("--------------")

for item in ds2:
 print("2item:",item)

The output from the preceding code block is here:

1item: tf.Tensor(
[[1 2]
 [3 4]], shape=(2, 2), dtype=int32)

2item: tf.Tensor([1 2], shape=(2,), dtype=int32)
2item: tf.Tensor([3 4], shape=(2,), dtype=int32)

The TF 2 from_tensors() API also requires compatible dimensions,
which means that the following code snippet causes an error:

exception: ValueError: Dimensions 10 and 9 are not
compatible
ds1 = tf.data.Dataset.from_tensor_slices(
 (tf.random_uniform([10, 4]), tf.random_
uniform([9])))

On the other hand, the TF 2 from_tensor_slices() API does not
have a compatibility restriction, so the following code snippet works correctly:

ds2 = tf.data.Dataset.from_tensors(
 (tf.random_uniform([10, 4]), tf.random_uniform([9])))

Another situation in which there are differences in these two APIs involves
the use of lists, as shown here:

ds1 = tf.data.Dataset.from_tensor_slices(
 [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])

tF 2 Datasets • 77

ds2 = tf.data.Dataset.from_tensors(
 [tf.random_uniform([2, 3]), tf.random_uniform([2, 3])])

print(ds1) # shapes: (2, 3)
print(ds2) # shapes: (2, 2, 3)

In the preceding code block, the TF 2 from_tensors() API creates
a 3D tensor whose shape is (2,2,3), whereas the TF 2 from_tensor_
slices() API merges the input tensor and produces a tensor whose shape
is (2,3).

As a further illustration of these two APIs, consider the following code
block:

import tensorflow as tf

ds1 = tf.data.Dataset.from_tensor_slices(
 (tf.random.uniform([3, 2]), tf.random.uniform([3])))

ds2 = tf.data.Dataset.from_tensors(
 (tf.random.uniform([3, 2]), tf.random.uniform([3])))

print('-----------------------------')
for i, item in enumerate(ds1):
 print('elem1: ' + str(i + 1), item[0], item[1])

print('-----------------------------')
for i, item in enumerate(ds2):
 print('elem2: ' + str(i + 1), item[0], item[1])
print('-----------------------------')

Launch the preceding code and you will see the following output:

elem1: 1 tf.Tensor([0.965013 0.8327141], shape=(2,),
dtype=float32) tf.Tensor(0.03369963, shape=(),
dtype=float32)
elem1: 2 tf.Tensor([0.2875235 0.11409616], shape=(2,),
dtype=float32) tf.Tensor(0.05131495, shape=(),
dtype=float32)
elem1: 3 tf.Tensor([0.08330548 0.13498652], shape=(2,),
dtype=float32) tf.Tensor(0.3145547, shape=(),
dtype=float32)

elem2: 1 tf.Tensor(
[[0.9139079 0.13430142]
 [0.9585271 0.58751714]
 [0.4501326 0.8380357]], shape=(3, 2), dtype=float32)
tf.Tensor([0.00776255 0.2655964 0.61935973], shape=(3,),
dtype=float32)

78 • tensorFlow 2 pocket primer

Basic steps for TF 2 Datasets

Perform the following three steps in order to create and process the con-
tents of a TF 2 Dataset:

1. Create or import data
2. Define a generator (Python function)
3. Consume the data

There are many ways to populate a TF 2 Dataset from multiple sources.
For simplicity, the code samples in the first part of this chapter perform the
following steps: start by creating a TF 2 Dataset instance with an initial-
ized NumPy array of data; second, define a Python function in order to iterate
through the TF 2 Dataset; and third, access the elements of the dataset (and
in some cases, supply those elements to a TF 2 model).

As you saw earlier in this chapter, keep in mind that TF 1.x combines
Datasets with iterators, whereas TF 2 uses generators with Datasets. TF 2
uses generators because eager execution (the default execution mode for TF 2)
does not support iterators.

A simple TF 2 tf.data.Dataset

Listing 3.1 displays the contents of tf2_numpy_dataset.py, which
 illustrates how to create a very basic TF 2 tf.data.Dataset from a NumPy
array of numbers. Although this code sample is minimalistic, it’s the initial code
block that appears in other code samples in this chapter.

Listing 3.1: tf2_numpy_dataset.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)

make a dataset from a numpy array
ds = tf.data.Dataset.from_tensor_slices(x)

Listing 3.1 contains two familiar import statements and then initializes
the variable x as a NumPy array with the integers from 0 through 9 inclusive.
The variable ds is initialized as a TF 2 Dataset that’s based on the contents
of the variable x.

Note that nothing else happens in Listing 3.1, and no output is generated:
later you will see more meaningful code samples involving TF 2 Datasets.

WhAT Are LAmBDA exPressions?

In brief, a lambda expression is an anonymous function. Use lambda
 expressions to define local functions that can be passed as arguments, returned
as the value of function calls, or used as “one-off” function definitions.

tF 2 Datasets • 79

Informally, a lambda expression takes an input variable and performs some
type of operation (specified by you) on that variable. For example, here’s a
“bare bones” lambda expression that adds the number 1 to an input variable x:

lambda x: x + 1

The term on the left of the “:” is x, and it’s just a formal variable name that
acts as the input (you can replace x with another string that’s convenient for
you). The term on the right of the “:” is x+1, which simply increments the
value of the input x.

As another example, the following lambda expression doubles the value of
the input parameter:

lambda x: 2*x

You can also define a lambda expression in a valid TF 2 code snippet, as
shown here (ds is a TF 2 Dataset that is defined elsewhere):

ds.map(lambda x: x + 1)

Even if you are unfamiliar with TF 2 Datasets or the map() operator,
you can still understand the preceding code snippet. Later in this chapter
you’ll see other examples of lambda expressions that are used in conjunction
with lazy operators.

The next section contains a complete TF 2 code sample that illustrates how
to define a generator (which is a Python function) that adds the number 1 to
the elements of a TF 2 Dataset.

Working WiTh generATors in TF 2

Listing 3.2 displays the contents of tf2_plusone.py, which illustrates
how to use a lambda expression to add the number 1 to the elements of a TF
2 Dataset.

Listing 3.2: tf2_plusone.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)

def gener():
 for i in x:
 yield (i+1)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

#for value in ds.take(len(x)):
for value in ds:
 print("1value:",value)

80 • tensorFlow 2 pocket primer

for value in ds.take(2*len(x)):
 print("2value:",value)

Listing 3.2 initializes the variable x as a NumPy array consisting of the
 integers from 0 through 9 inclusive. Next, the variable ds is initialized as a TF 2
Dataset that is created from the Python function gener(), which returns
the input value incremented by 1. Notice that the Python function gener()
does not have a @tf.function() decorator: even so, this function is treated
as a generator because it’s specified as such in the from_generator() API.

The next portion of Listing 3.2 contains two for loops that iterate through
the elements of ds and display their values. Since the first for loop does not
specify the number of elements in ds, that for loop will process all the num-
bers in ds.

Here’s an important detail regarding generators in TF 2: they only emit
a single value when they are invoked. This means that the for loop in the
Python gener() function does not execute ten times: it executes only once
when it is invoked, and then it “waits” until the gener() function is invoked
again.

In case it’s helpful, you can think of the gener() function as a “writer”
that prints a single value to a pipe, and elsewhere there is some code that acts
like a “reader” that reads a data value from the pipe. The code that acts as a
reader is the first for loop that is reproduced here:

for value in ds:
 print("1value:",value)

How does the preceding code block invoke the gener() function when
it doesn’t even appear in the code? The answer is simple: the preceding code
block indirectly invokes the gener() function because it’s specified in the
definition of ds, as shown here in bold:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

To summarize, each time that the preceding for loop executes, it invokes
the Python gener() function, which in turn prints a value and then “waits”
until it is invoked again.

The second for loop also acts as a “reader,” and this time the code invokes
the take() operator (it will “take” data from the dataset) that specifies twice
the length of the NumPy array x. Why would anyone specify a length that is
greater than the number of elements in the underlying array? There may be
various reasons (perhaps it was accidental), so it’s good to know what will hap-
pen in this situation (see if you can correctly guess the result). The output from
launching the code in Listing 3.2 is here:

1value: tf.Tensor(1, shape=(), dtype=int64)
1value: tf.Tensor(2, shape=(), dtype=int64)
1value: tf.Tensor(3, shape=(), dtype=int64)
1value: tf.Tensor(4, shape=(), dtype=int64)

tF 2 Datasets • 81

1value: tf.Tensor(5, shape=(), dtype=int64)
1value: tf.Tensor(6, shape=(), dtype=int64)
1value: tf.Tensor(7, shape=(), dtype=int64)
1value: tf.Tensor(8, shape=(), dtype=int64)
1value: tf.Tensor(9, shape=(), dtype=int64)
1value: tf.Tensor(10, shape=(), dtype=int64)
2value: tf.Tensor(1, shape=(), dtype=int64)
2value: tf.Tensor(2, shape=(), dtype=int64)
2value: tf.Tensor(3, shape=(), dtype=int64)
2value: tf.Tensor(4, shape=(), dtype=int64)
2value: tf.Tensor(5, shape=(), dtype=int64)
2value: tf.Tensor(6, shape=(), dtype=int64)
2value: tf.Tensor(7, shape=(), dtype=int64)
2value: tf.Tensor(8, shape=(), dtype=int64)
2value: tf.Tensor(9, shape=(), dtype=int64)
2value: tf.Tensor(10, shape=(), dtype=int64)

WhAT Are iTerATors? (oPTionAL)

As you saw earlier in this chapter, iterators are used with Datasets in TF
1.x code, so if you only work with TF 2, consider this section as optional.

An iterator bears some resemblance to a “cursor” in other languages, which
is to say that an iterator is something that “points” to a row of data in a dataset.
By way of analogy, if you have a linked list of items, an iterator is analogous to a
pointer that “points” to the first element in the list, and each time you move the
pointer to the next item in the list, you are “advancing” the iterator. Working
with datasets and iterators involves the following sequence of steps:

1. create a dataset
2. create an iterator (see next section)
3. “point” the iterator to the dataset
4. print the contents of the current item
5. “advance” the iterator to the next item
6. go to step 4) if there are more items

Notice that step 6 in the preceding list specifies “if there are more items,”
which you can handle via a try/except block (shown later in this chapter)
when the iterator goes beyond the last item in the dataset. This technique is
very useful because it obviates the need to know the number of items in a data-
set. TF 1.x provides several types of iterators, as discussed in the next section.

TF 1.x iterators (optional)

If you are working exclusively with TF 2, then this section is optional. If
you are working with TensorFlow 1.x, it’s probably useful to know that TF 1.x
supports four types of iterators, as listed here:

1. One shot
2. Initializable

82 • tensorFlow 2 pocket primer

3. Reinitializable
4. Feedable

A one-shot iterator can iterate only once through a dataset. After we reach
the end of the dataset, the iterator will no longer yield elements; instead, it will
raise an Exception. For example, if dx is an instance of tf.Dataset, then
the following code snippet defines a one-shot iterator:

iterator = dx.make_one_shot_iterator()

An initializable iterator can be dynamically updated: invoke its initializer
operation and pass new data via the parameter feed_dict. If dx is an in-
stance of tf.Dataset, then the following code snippet defines a reusable
iterator:

iterator = dx.make_initializable_iterator()

A reinitializable iterator can be initialized from a different Dataset. This
type of iterator is very useful for training datasets that require some additional
transformation, such as shuffling their contents.

A feedable iterator allows you to select from different iterators: this type
of iterator is essentially a “selector” to select an iterator from a collection of
iterators.

Keep in mind that initializable iterators are not supported in eager mode:
the alternative is to use generators.

This concludes the section regarding iterators in TF 1.x. The next section
contains a code sample that illustrates how to concatenate two TF 2 Datasets.

ConCATenATing TF 2 tf.Data.Datasets

Listing 3.3 displays the contents of tf2_concatenate.py, which illus-
trates how to concatenate two TF 2 Datasets.

Listing 3.3: tf2_concatenate.py

import tensorflow as tf
import numpy as np

x1 = np.array([1,2,3,4,5])
x2 = np.array([6,7,8,9,10])

ds1 = tf.data.Dataset.from_tensor_slices(x1)
ds2 = tf.data.Dataset.from_tensor_slices(x2)
ds3 = ds1.concatenate(ds2)

try:
 for value in ds3.take(20):
 print("value:",value)

tF 2 Datasets • 83

except tf.errors.OutOfRangeError:
 pass

Listing 3.3 contains two NumPy arrays x1 and x2, followed by the TF 2
Datasets ds1 and ds2 that act as “containers” for x1 and x2, respec-
tively. Next, the dataset ds3 is defined as the concatenation of ds1 and ds2.

The next portion of Listing 3.3 is a try/except block that contains a for
loop in order to display the contents of ds3. The output from launching the
code in Listing 3.4 is here:

ds3 value: tf.Tensor(1, shape=(), dtype=int64)
ds3 value: tf.Tensor(2, shape=(), dtype=int64)
ds3 value: tf.Tensor(3, shape=(), dtype=int64)
ds3 value: tf.Tensor(4, shape=(), dtype=int64)
ds3 value: tf.Tensor(5, shape=(), dtype=int64)
ds3 value: tf.Tensor(6, shape=(), dtype=int64)
ds3 value: tf.Tensor(7, shape=(), dtype=int64)
ds3 value: tf.Tensor(8, shape=(), dtype=int64)
ds3 value: tf.Tensor(9, shape=(), dtype=int64)
ds3 value: tf.Tensor(10, shape=(), dtype=int64)

One other point to keep in mind: different structures cannot be concat-
enated. For example, consider the variables y1 and y2:

y1 = { (8, 9), (10, 11), (12, 13) }
y2 = { 14.0, 15.0, 16.0 }

If you create a TF 2 Dataset from y1 and y2, the resulting datasets can-
not be concatenated to ds1.

The TF 2 reduce() oPerATor

The TF 2 reduce() operator performs a reduction on its input until a
single value is produced. For example, you can use the reduce() operator to
add all the numbers in an array. Listing 3.4 displays the contents of tf2_re-
duce.py, which illustrates how to use the reduce() API in TF 2.

Listing 3.4: tf2_reduce.py

import tensorflow as tf
import numpy as np

x1 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x,
_: x + 1)
x2 = tf.data.Dataset.range(8).reduce(np.int64(0),lambda x,
y: x + y)

print("x1:",x1)
print("x2:",x2)

84 • tensorFlow 2 pocket primer

Listing 3.4 defines the variables x1 and x2 as instances of tf.data.
Dataset, which in turn is based on the digits from 0 to 7 inclusive. Notice
that x1 and x2 specify different lambda expressions. The lambda expression
for x1 returns its input value incremented by one. Since the largest number in
the input set of values is 7, the last output value is 8.

On the other hand, x2 defines a lambda expression that returns the sum
of two consecutive input values. The initial sum is 0, so the final output equals
the sum of the numbers 1, 2, . . . , and 7, which equals 28. The output from
launching the code in Listing 3.4 is here:

x1: tf.Tensor(8, shape=(), dtype=int64)
x2: tf.Tensor(28, shape=(), dtype=int64)

Working WiTh generATors in TF 2

Earlier in the chapter you were introduced to TF 2 generators, which are a
Python function (for our code samples, let’s just name this function gener())
that works somewhat like a “pipe”: you read a single value each time that the
gener() function is invoked. You can also think of a TF 2 generator as a func-
tion that “emits” one value when the function is invoked. [If you are familiar
with the Go programming language, this is essentially the same as a “channel.”]

After emitting the last available value, the “pipe” no longer returns any
values. Contrary to what you might expect, no error message is displayed when
the “pipe” is empty.

Now that you understand the underlying behavior of a generator in TF 2,
let’s look at the following code snippet (which you’ve seen already) that shows
you how to define a TF 2 tf.data.Dataset that involves a generator:

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

If you read the previous code snippet in English, it is as follows: “the
Dataset ds obtains its values from the Python function gener() that
emits a value of type tf.int64.” If you iterate through the values of ds via
a for loop, the gener() function is invoked and it will “yield” a single value.
Hence, the number of times your code iterates through the values of ds equals
the number of times that the gener() function is invoked.

Listing 3.5 displays the contents of tf2_generator1.py, which illus-
trates how to define a generator in TF 2 that “yields” a value that is three times
its input value.

Listing 3.5: tf2_generator1.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)

tF 2 Datasets • 85

def gener():
 for i in x:
 yield (3*i)

ds = tf.data.Dataset.from_generator(gener, (tf.int64))

for value in ds.take(len(x)):
 print("value:",value)

for value in ds.take(2*len(x)):
 print("value:",value)

Listing 3.5 contains the NumPy variable x that contains the digits from
0 to 9 inclusive. The next portion of Listing 3.4 defines the Python function
gener() that contains a for loop that iterates through the values in x.
 Notice that it’s not necessary to specify a @tf.function decorator, because
the definition of ds specifies the Python function gener() as a generator.

However, recall that the yield keyword performs a parsimonious opera-
tion: it “yields” only a single value. In this example, the variable i ranges from
0 to 9, but the first invocation of gener() returns only the value 3*0 because
i equals 0.

The next invocation of gener() returns the value 3*1 because i equals 1.
Each subsequent invocation of gener() returns the sequence of values 3*2,
3*3, . . . , 3*9. In a sense, the for loop in the gener() function is a “stateful”
loop in the sense that it “remembers” the current value of i during subsequent
invocations of the gener() function.

The output from launching the code in Listing 3.5 is here:

value: tf.Tensor(0, shape=(), dtype=int64)
value: tf.Tensor(3, shape=(), dtype=int64)
value: tf.Tensor(6, shape=(), dtype=int64)
value: tf.Tensor(9, shape=(), dtype=int64)
value: tf.Tensor(12, shape=(), dtype=int64)
value: tf.Tensor(15, shape=(), dtype=int64)
value: tf.Tensor(18, shape=(), dtype=int64)
value: tf.Tensor(21, shape=(), dtype=int64)
value: tf.Tensor(24, shape=(), dtype=int64)
value: tf.Tensor(27, shape=(), dtype=int64)
value: tf.Tensor(0, shape=(), dtype=int64)
value: tf.Tensor(3, shape=(), dtype=int64)
value: tf.Tensor(6, shape=(), dtype=int64)
value: tf.Tensor(9, shape=(), dtype=int64)
value: tf.Tensor(12, shape=(), dtype=int64)
value: tf.Tensor(15, shape=(), dtype=int64)
value: tf.Tensor(18, shape=(), dtype=int64)
value: tf.Tensor(21, shape=(), dtype=int64)
value: tf.Tensor(24, shape=(), dtype=int64)
value: tf.Tensor(27, shape=(), dtype=int64)

86 • tensorFlow 2 pocket primer

The TF 2 filter() oPerATor (1)

The filter() operator uses Boolean logic to “filter” the elements in
an array in order to determine which elements satisfy the Boolean condition.
As an analogy, if you hold a piece of smoked glass in front of your eyes, the
glass will “filter out” a portion of the light spectrum. A filter in TF 2 per-
forms an analogous function: it generally results in a subset of the original
set. [A filter that returns every input element is technically possible, but it’s
also pointless.]

As a simple example, suppose that we have a NumPy array [1,2,3,4]
and we want to select only the even numbers in this array. The result is [2,4],
whose contents are a subset of the original array. Listing 3.6 displays the
contents of tf2_filter.py, which illustrates how to use the filter()
 operator in TF 2.

Listing 3.6: tf2_filter.py

import tensorflow as tf
import numpy as np

#def filter_fn(x):
return tf.reshape(tf.not_equal(x % 2, 1), [])

x = np.array([1,2,3,4,5,6,7,8,9,10])

ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.filter(lambda x: tf.reshape(tf.not_equal(x%2,1),
[]))
#ds = ds.filter(filter_fn)

for value in ds:
 print("value:",value)

Listing 3.6 initializes the variable x as a NumPy array consisting of the inte-
gers from 1 through 10 inclusive. Next, the variable ds is initialized as a TF 2
Dataset that is created from the contents of the variable x. The next code
snippet invokes the filter() operator, inside of which a lambda expression
returns only even numbers because of this expression:

tf.not_equal(x%2,1)

The next portion of Listing 3.6 is a for loop that iterates through the ele-
ments of the dataset ds. The output from launching the code in Listing 3.6 is
here:

value: tf.Tensor(2, shape=(), dtype=int64)
value: tf.Tensor(4, shape=(), dtype=int64)
value: tf.Tensor(6, shape=(), dtype=int64)

tF 2 Datasets • 87

value: tf.Tensor(8, shape=(), dtype=int64)
value: tf.Tensor(10, shape=(), dtype=int64)

The TF 2 filter() oPerATor (2)

Listing 3.7 displays the contents of tf2_filter2.py, which illustrates
another example of the filter() operator in TF 2.

Listing 3.7: tf2_filter2.py

import tensorflow as tf
import numpy as np

ds = tf.data.Dataset.from_tensor_slices([1,2,3,4,5])
ds = ds.filter(lambda x: x < 4) # [1,2,3]

print("First iteration:")
for value in ds:
 print("value:",value)

"tf.math.equal(x, y)" is required for equality comparison
def filter_fn(x):
 return tf.math.equal(x, 1)

ds = ds.filter(filter_fn)

print("Second iteration:")
for value in ds:
 print("value:",value)

Listing 3.7 defines the variable ds as a TF 2 Dataset that is created
from the array [1,2,3,4,5]. The next code snippet invokes the filter()
 operator, inside of which a lambda expression returns numbers that are less
than 4. The for loop prints the numbers in the ds variable, which consist of
the “filtered” list of digits 1, 2, and 3.

The next portion of Listing 3.7 is the decorated Python function filter_
fn() that is specified as part of the new definition of ds, as shown here:

ds = ds.filter(filter_fn)

The preceding code snippet executes the decorated Python function fil-
ter_fn() in the second for loop in Listing 3.7. The output from launching
the code in Listing 3.7 is here:

First iteration:
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
Second iteration:
value: tf.Tensor(1, shape=(), dtype=int32)

88 • tensorFlow 2 pocket primer

The TF 2 batch() oPerATor (1)

The batch(n) operator processes a “batch” of n elements during each
iteration. Listing 3.8 displays the contents of tf2_batch1.py, which illus-
trates how to use the batch() operator in TF 2.

Listing 3.8: tf2_batch1.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 34)
ds = tf.data.Dataset.from_tensor_slices(x).batch(3)

for value in ds:
 print("value:",value)

Listing 3.8 initializes the variable x as a NumPy array consisting of the
integers from 0 through 33 inclusive (note that this array contains 34 num-
bers). Next, the variable ds is initialized as a TF 2 Dataset that is a con-
tainer for the contents of the variable x. Notice that the definition of x
involves method chaining by “tacking on” the batch(3) operator as part
of the definition of ds.

The final portion of Listing 3.8 contains a loop that iterates through the ele-
ments of the dataset ds. Now launch the code in Listing 3.8 to see the output
in its entirety, as shown here:

tf.Tensor([0 1 2], shape=(3,), dtype=int64)
tf.Tensor([3 4 5], shape=(3,), dtype=int64)
tf.Tensor([6 7 8], shape=(3,), dtype=int64)
tf.Tensor([9 10 11], shape=(3,), dtype=int64)
tf.Tensor([12 13 14], shape=(3,), dtype=int64)
tf.Tensor([15 16 17], shape=(3,), dtype=int64)
tf.Tensor([18 19 20], shape=(3,), dtype=int64)
tf.Tensor([21 22 23], shape=(3,), dtype=int64)
tf.Tensor([24 25 26], shape=(3,), dtype=int64)
tf.Tensor([27 28 29], shape=(3,), dtype=int64)
tf.Tensor([30 31 32], shape=(3,), dtype=int64)
tf.Tensor([33], shape=(1,), dtype=int64)

The TF 2 batch() oPerATor (2)

Listing 3.9 displays the contents of tf2_generator2.py, which illus-
trates how to use a generator function to display “batches” of numbers.

Listing 3.9: tf2_generator2.py

import tensorflow as tf
import numpy as np

tF 2 Datasets • 89

x = np.arange(0, 12)

def gener():
 i = 0
 while(i < len(x/3)):
 yield (i, i+1, i+2)
 i += 3

ds = tf.data.Dataset.from_generator(gener, (tf.int64,tf.
int64,tf.int64))

third = int(len(x)/3)
for value in ds.take(third):
 print("value:",value)

Listing 3.9 initializes the variable x as a NumPy array consisting of the in-
tegers from 0 through 12 inclusive. The Python function gener() returns
a “triple” of three consecutive numbers from the NumPy array x. Since the
next code snippet invokes the from_generator() API with the gener()
function, the latter is treated as a generator (you saw an example of this behav-
ior earlier in this chapter).

The final portion of Listing 3.9 contains a for loop that iterates through
the elements of ds, printing three consecutive values during each print()
statement. The output from launching the code in Listing 3.9 is here:

value: (<tf.Tensor: id=34, shape=(), dtype=int64, numpy=0>,
<tf.Tensor: id=35, shape=(), dtype=int64, numpy=1>, <tf.
Tensor: id=36, shape=(), dtype=int64, numpy=2>)
value: (<tf.Tensor: id=40, shape=(), dtype=int64, numpy=3>,
<tf.Tensor: id=41, shape=(), dtype=int64, numpy=4>, <tf.
Tensor: id=42, shape=(), dtype=int64, numpy=5>)
value: (<tf.Tensor: id=46, shape=(), dtype=int64, numpy=6>,
<tf.Tensor: id=47, shape=(), dtype=int64, numpy=7>, <tf.
Tensor: id=48, shape=(), dtype=int64, numpy=8>)
value: (<tf.Tensor: id=52, shape=(), dtype=int64, numpy=9>,
<tf.Tensor: id=53, shape=(), dtype=int64, numpy=10>, <tf.
Tensor: id=54, shape=(), dtype=int64, numpy=11>)

The companion files contains tf2_generator1.py and tf2_gen-
erator3.py, which illustrate variations of the preceding code sample. Ex-
periment with the code by changing the hard-coded values and then see if you
can correctly predict the output.

The TF 2 map() oPerATor (1)

The map() operator is often defined as a projection, and while this is tech-
nically correct, the actual behavior might not be clear. Here’s the basic idea:
when you provide a list or an array of values as input for the map() operator,
this operator “applies” a lambda expression to each input element.

90 • tensorFlow 2 pocket primer

For example, the lambda expression lambda x: x*2 returns twice its
input value x, whereas the lambda expression lambda x: x/2 returns half
its input value x. In both lambda expressions the input list and the output list
have the same number of elements. In many cases the values in the two lists
are different, but there are many exceptions. For example, the lambda expres-
sion lambda x: x%2 returns the value 0 for even numbers and the value 1
for odd numbers, so the output consists of two distinct numbers, whereas the
input list can be arbitrarily large. Listing 3.10 displays the contents of tf2_
map.py, which illustrates a complete example of the map() operator in TF 2.

Listing 3.10: tf2_map.py

import tensorflow as tf
import numpy as np

x = np.array([[1],[2],[3],[4]])
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(lambda x: x*2)

for value in ds:
 print("value:",value)

Listing 3.10 initializes the variable x as a NumPy array consisting of four
elements, where each element is a 1x1 array consisting of the numbers 1, 2, 3,
and 4. Next, the variable ds is initialized as a TF 2 Dataset that is created
from the contents of the variable x. Notice how ds.map() then defines a
lambda expression that doubles each input value (which takes the value of each
integer from 1 to 4) in this example.

The final portion of Listing 3.10 contains a for loop that iterates through
the elements of ds and displays their values. The output from launching the
code in Listing 3.10 is here:

value: tf.Tensor([2], shape=(1,), dtype=int64)
value: tf.Tensor([4], shape=(1,), dtype=int64)
value: tf.Tensor([6], shape=(1,), dtype=int64)
value: tf.Tensor([8], shape=(1,), dtype=int64)

The TF 2 map() oPerATor (2)

Listing 3.11 displays the contents of tf2_map2.py, which illustrates two
techniques for defining a dataset, as well as how to invoke multiple occur-
rences of the map() operator in TF 2.

Listing 3.11: tf2_map2.py

import tensorflow as tf
import numpy as np

tF 2 Datasets • 91

a simple Numpy array
x = np.array([[1],[2],[3],[4]])

make a dataset from a Numpy array
dataset = tf.data.Dataset.from_tensor_slices(x)

METHOD #1: THE LONG WAY
a lambda expression to double each value
#dataset = dataset.map(lambda x: x*2)
a lambda expression to add one to each value
#dataset = dataset.map(lambda x: x+1)
a lambda expression to cube each value
#dataset = dataset.map(lambda x: x**3)

METHOD #2: A SHORTER WAY
dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).
map(lambda x: x**3)

for value in ds:
 print("value:",value)

Listing 3.11 initializes the variable x as a NumPy array consisting of four
elements, where each element is a 1x1 array consisting of the numbers 1, 2,
3, and 4. Next, the variable dataset is initialized as a TF 2 Dataset that is
created from the contents of the variable x.

The next portion of Listing 3.11 is a “commented out” code block that con-
sists of three lambda expressions, followed by a code snippet (shown in bold)
that uses method chaining in order to produce a more compact way of invoking
the same three lambda expressions:

dataset = dataset.map(lambda x: x*2).map(lambda x: x+1).
map(lambda x: x**3)

The preceding code snippet transforms each input value by first doubling
the value, then adding one to the output from the first lambda expression, and
then cubing the output from the second lambda expression.

Although method chaining is a concise way to combine operators, invok-
ing many lazy operators in a single (very long) line of code can also become
difficult to understand, whereas writing code using the “longer way” would be
easier to debug.

A suggestion: start with each lazy operator in a separate line of code, and
after you are satisfied that the individual results are correct, then use method
chaining to combine the operators into a single line of code (perhaps up to a
maximum of four or five lazy operators).

The final portion of Listing 3.11 contains a for loop that iterates through
the transformed values and displays their values. The output from launching
the code in Listing 3.11 is here:

value: tf.Tensor([27], shape=(1,), dtype=int64)
value: tf.Tensor([125], shape=(1,), dtype=int64)

92 • tensorFlow 2 pocket primer

value: tf.Tensor([343], shape=(1,), dtype=int64)
value: tf.Tensor([729], shape=(1,), dtype=int64)

The TF 2 flatmap() oPerATor (1)

In addition to the TF 2 map() operator, TF 2 also supports the TF 2
flat_map() operator. However, the TF 2 map() and TF 2 flat_map()
operators expect functions with different signatures. Specifically, map() takes
a function that maps a single element of the input dataset to a single new ele-
ment, whereas flat_map() takes a function that maps a single element of
the input dataset to a Dataset of elements.

Listing 3.12 displays the contents of tf2_flatmap1.py, which illus-
trates how to use the flatmap() operator in TF 2.

Listing 3.12: tf2_flatmap1.py

import tensorflow as tf
import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)
ds.flat_map(lambda x: tf.data.Dataset.from_tensor_
slices(x))

for value in ds.take(3):
 print("value:",value)

Listing 3.12 initializes the variable x as a NumPy array consisting of three
elements, where each element is a 1x3 array of numbers. Next, the variable
ds is initialized as a TF 2 Dataset that is a container for the contents of the
variable x.

The final portion of Listing 3.12 contains a for loop that iterates through
the elements of dataset and displays their values. Once again, note that the
try/except block is unnecessary, even if the take() method specifies a
number that is greater than the number of elements in ds. The output from
launching the code in Listing 3.12 is here:

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)
value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)
value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flatmap() oPerATor (2)

The code in the previous section works fine, but there is a hard-coded value
3 in the code block that displays the elements of the dataset. The code sample
in this section removes the hard-coded value.

tF 2 Datasets • 93

Listing 3.13 displays the contents of tf2_flatmap2.py, which illus-
trates how to use the flatmap() operator in TF 2 and then iterate through
the elements of the dataset.

Listing 3.13: tf2_flatmap2.py

import tensorflow as tf
import numpy as np

x = np.array([[1,2,3], [4,5,6], [7,8,9]])

ds = tf.data.Dataset.from_tensor_slices(x)
ds.flat_map(lambda x: tf.data.Dataset.from_tensor_
slices(x))

for value in ds:
 print("value:",value)

Listing 3.13 initializes the variable x as a NumPy array consisting of three
elements, where each element is a 1x3 array of numbers. Next, the variable
ds is initialized as a TF 2 Dataset that is created from the contents of the
variable x.

The final portion of Listing 3.13 iterates through the elements of ds and
displays their values. The for loop iterates through the elements of ds. The
output from launching the code in Listing 3.13 is the same as the output from
Listing 3.12:

value: tf.Tensor([1 2 3], shape=(3,), dtype=int64)
value: tf.Tensor([4 5 6], shape=(3,), dtype=int64)
value: tf.Tensor([7 8 9], shape=(3,), dtype=int64)

The TF 2 flat_map() AnD filter() oPerATors

Listing 3.14 displays the contents of comments.txt, and Listing 3.15
displays the contents of tf2_flatmap_filter.py, which illustrates how
to use the filter() operator in TF 2.

Listing 3.14: comments.txt

#this is file line #1
#this is file line #2
this is file line #3
this is file line #4
#this is file line #5

Listing 3.15: tf2_flatmap_filter.py

import tensorflow as tf

94 • tensorFlow 2 pocket primer

filenames = ["comments.txt"]

ds = tf.data.Dataset.from_tensor_slices(filenames)

1) Use Dataset.flat_map() to transform each file
as a separate nested ds, then concatenate their
contents sequentially into a single "flat" ds
2) Skip the first line (header row)
3) Filter out lines beginning with "#" (comments)

ds = ds.flat_map(
 lambda filename: (
 tf.data.TextLineDataset(filename)
 .skip(1)
 .filter(lambda line:
tf.not_equal(tf.strings.substr(line,0,1),"#"))))

for value in ds.take(2):
 print("value:",value)

Listing 3.15 defines the variable filenames as an array of text filenames,
which in this case consists of just one text file named comments.txt (whose
contents are shown in Listing 3.14). Next, the variable dataset is initialized
as a TF 2 Dataset that contains the contents of comments.txt.

The next section of Listing 3.15 is a comment block that explains the pur-
pose of the subsequent code block that defines the variable ds. As you can see,
ds involves a small set of operations that are executed via method chaining in
order to perform various transformations on the contents of the variable ds.

Specifically, the flat_map() operator “flattens” whatever is returned
by the nested lambda expression, which involves several transformations.
The first transformation involves passing each input filename, one at a time,
to the tf.data.TextLineDataset class. The second transformation
skips the first line of text from the current input file. The third transforma-
tion invokes a filter() operator that specifies another lambda expression
with conditional logic, as shown here:

tf.not_equal(tf.strings.substr(line,0,1),"#"))

The preceding code snippet returns the current line of text (from the cur-
rently processed text file) if and only if the character in the first position of the
line of text is not the character “#”; otherwise, nothing is returned (i.e., the line
of text is skipped). These transformations can be summarized as follows: “for
each input file, skip the first line, and print any subsequent lines that do not
start with the character #.”

The final portion of Listing 3.15 prints two lines of output, which might
seem anticlimactic after defining such a fancy set of transformations! Launch
the code in Listing 3.15 and you will see the following output:

tF 2 Datasets • 95

value: tf.Tensor(b'this is file line #3 ', shape=(),
dtype=string)
value: tf.Tensor(b'this is file line #4 ', shape=(),
dtype=string)

The TF 2 repeat() oPerATor

The repeat(n) operator simply repeats its input values n times. Listing
3.16 displays the contents of tf2_repeat.py, which illustrates how to use
the repeat() operator in TF 2.

Listing 3.16: tf2_repeat.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(4))
ds = ds.repeat(2)

for value in ds.take(20):
 print("value:",value)

Listing 3.16 initializes the variable ds1 as a TF 2 Dataset that is created
from the integers between 0 and 3 inclusive. The next code snippet “tacks on”
the repeat() operator to ds, which has the effect of appending the con-
tents of ds to itself. Hence, ds contains eight numbers: the numbers from 0
through 3 inclusive, and again the numbers 0 through 3 inclusive.

The final portion of Listing 3.16 contains a for loop that iterates through
the elements of the dataset ds. Although the take() method specifies the
number 20, the loop is only executed 8 times because the repeat() op-
erator specifies the value 2. The output from launching the code in Listing
3.16 is here:

value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)

The TF 2 take() oPerATor

The take(n) operator “takes” n input values. Listing 3.17 displays the
contents of tf2_take.py, which illustrates another example of the take()
operator in TF 2.

96 • tensorFlow 2 pocket primer

Listing 3.17: tf2_take.py

import tensorflow as tf

ds = tf.data.Dataset.from_tensor_slices(tf.range(8))
ds = ds.take(5)

for value in ds.take(20):
 print("value:",value)

Listing 3.17 initializes the variable ds1 as a TF 2 Dataset that is created
from the integers between 0 and 7 inclusive. The next code snippet “tacks on”
the take() operator to ds, which has the effect of limiting the output to the
first five integers.

The final portion of Listing 3.17 contains a for loop that iterates through
the elements of the dataset ds. See the code in the preceding section for an
explanation of the how the output is generated. The output from launching the
code in Listing 3.17 is here:

value: tf.Tensor(0, shape=(), dtype=int32)
value: tf.Tensor(1, shape=(), dtype=int32)
value: tf.Tensor(2, shape=(), dtype=int32)
value: tf.Tensor(3, shape=(), dtype=int32)
value: tf.Tensor(4, shape=(), dtype=int32)

ComBining The TF 2 map() AnD take() oPerATors

Listing 3.18 displays the contents of tf2_map_take.py, which illus-
trates how to use method chaining in order to invoke the map() operator
three times, using three different lambda expressions, followed by the take()
operator in TF 2.

Listing 3.18: tf2_map_take.py

import tensorflow as tf
import numpy as np

x = np.array([[1],[2],[3],[4]])

make a ds from a numpy array
ds = tf.data.Dataset.from_tensor_slices(x)
ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda x:
x**3)

for value in ds.take(4):
 print("value:",value)

Listing 3.18 initializes the variable x as a NumPy array consisting of four
elements, where each element is a 1x1 array consisting of the numbers 1, 2, 3,

tF 2 Datasets • 97

and 4. Next, the variable dataset is initialized as a TF 2 Dataset that is
created from the contents of the variable x. The next portion of Listing 3.18
involves three lambda expressions that are shown in bold and reproduced here:

ds = ds.map(lambda x: x*2).map(lambda x: x+1).map(lambda x:
x**3)

The preceding code snippet transforms each input value by first doubling
the value, then adding one to the first result, and then cubing the second result.

The final portion of Listing 3.18 “takes” the first four elements from the
variable dataset and displays their contents, as shown here:

value: tf.Tensor([27], shape=(1,), dtype=int64)
value: tf.Tensor([125], shape=(1,), dtype=int64)
value: tf.Tensor([343], shape=(1,), dtype=int64)
value: tf.Tensor([729], shape=(1,), dtype=int64)

ComBining The TF 2 zip() AnD batch() oPerATors

Listing 3.19 displays the contents of tf2_zip_batch.py, which illus-
trates how to combine the zip() and batch() operators in TF 2.

Listing 3.19: tf2_zip_batch.py

import tensorflow as tf

ds1 = tf.data.Dataset.range(100)
ds2 = tf.data.Dataset.range(0, -100, -1)
ds3 = tf.data.Dataset.zip((ds1, ds2))
ds4 = ds3.batch(4)

for value in ds.take(10):
 print("value:",value)

Listing 3.19 initializes the variables ds1, ds2, ds3, and ds4 as TF 2
Datasets that are created successively starting from ds1, which contains the
integers between 0 and 99 inclusive. The variable ds2 is initialized via the
range() operator that starts from 0 and is decreased to -99, and the variable
ds3 is initialized via the zip() operator that processes two elements at a
time, in a pairwise fashion. Next, the variable ds3 is initialized by invoking
the batch() operator on the variable ds3. The final portion of Listing 3.19
prints three lines of “batched” output, as shown here:

value: (<tf.Tensor: id=20, shape=(4,), dtype=int64,
numpy=array([0, 1, 2, 3])>, <tf.Tensor: id=21, shape=(4,),
dtype=int64, numpy=array([0, -1, -2, -3])>)
value: (<tf.Tensor: id=24, shape=(4,), dtype=int64,
numpy=array([4, 5, 6, 7])>, <tf.Tensor: id=25, shape=(4,),
dtype=int64, numpy=array([-4, -5, -6, -7])>)

98 • tensorFlow 2 pocket primer

value: (<tf.Tensor: id=28, shape=(4,), dtype=int64,
numpy=array([8, 9, 10, 11])>, <tf.Tensor: id=29,
shape=(4,), dtype=int64, numpy=array([-8, -9, -10,
-11])>)
value: (<tf.Tensor: id=32, shape=(4,), dtype=int64,
numpy=array([12, 13, 14, 15])>, <tf.Tensor: id=33,
shape=(4,), dtype=int64, numpy=array([-12, -13, -14,
-15])>)
value: (<tf.Tensor: id=36, shape=(4,), dtype=int64,
numpy=array([16, 17, 18, 19])>, <tf.Tensor: id=37,
shape=(4,), dtype=int64, numpy=array([-16, -17, -18,
-19])>)
value: (<tf.Tensor: id=40, shape=(4,), dtype=int64,
numpy=array([20, 21, 22, 23])>, <tf.Tensor: id=41,
shape=(4,), dtype=int64, numpy=array([-20, -21, -22,
-23])>)
value: (<tf.Tensor: id=44, shape=(4,), dtype=int64,
numpy=array([24, 25, 26, 27])>, <tf.Tensor: id=45,
shape=(4,), dtype=int64, numpy=array([-24, -25, -26,
-27])>)
value: (<tf.Tensor: id=48, shape=(4,), dtype=int64,
numpy=array([28, 29, 30, 31])>, <tf.Tensor: id=49,
shape=(4,), dtype=int64, numpy=array([-28, -29, -30,
-31])>)
value: (<tf.Tensor: id=52, shape=(4,), dtype=int64,
numpy=array([32, 33, 34, 35])>, <tf.Tensor: id=53,
shape=(4,), dtype=int64, numpy=array([-32, -33, -34,
-35])>)
value: (<tf.Tensor: id=56, shape=(4,), dtype=int64,
numpy=array([36, 37, 38, 39])>, <tf.Tensor: id=57,
shape=(4,), dtype=int64, numpy=array([-36, -37, -38,
-39])>)

For your convenience, here is a slightly more condensed and clearer ver-
sion of the output from Listing 3.19:

[0, 1, 2, 3], [0, -1, -2, -3]
[4, 5, 6, 7], [-4, -5, -6, -7]
[8, 9, 10, 11], [-8, -9, -10, -11]
[12, 13, 14, 15], [-12, -13, -14, -15]
[16, 17, 18, 19], [-16, -17, -18, -19]
[20, 21, 22, 23], [-20, -21, -22, -23]
[24, 25, 26, 27], [-24, -25, -26, -27]
[28, 29, 30, 31], [-28, -29, -30, -31]
[32, 33, 34, 35], [-32, -33, -34, -35]
[36, 37, 38, 39], [-36, -37, -38, -39]
[40, 41, 42, 43], [-40, -41, -42, -43]
[44, 45, 46, 47], [-44, -45, -46, -47]
. . . .
[96, 97, 98, 99], [-96, -97, -98, -99]

tF 2 Datasets • 99

ComBining The TF 2 zip() AnD take() oPerATors

The zip() operator processes two elements at a time, in a pairwise fash-
ion. Think of two lines of people waiting at the entrance to a movie theater
with double doors. After opening the doors, a “pair” of people—one from each
“line”—enters the theater.

Listing 3.20 displays the contents of tf2_zip_take.py, which illus-
trates how to combine the zip() and take() operators in TF 2.

Listing 3.20: tf2_zip_take.py

import tensorflow as tf
import numpy as np

x = np.arange(0, 10)
y = np.arange(1, 11)

create dataset objects from the arrays
dx = tf.data.Dataset.from_tensor_slices(x)
dy = tf.data.Dataset.from_tensor_slices(y)

zip the two datasets together
d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

for value in d2.take(8):
 print("value:",value)

Listing 3.20 initializes the variables x and y as a range of integers from 0 to
9 and from 1 to 10, respectively. Next, the variables dx and dy are initialized
as TF 2 Datasets that are created from the contents of the variables x and
y, respectively.

The next code snippet defines the variable d2 as a TF 2 Dataset that
combines the elements from dx and dy in a pairwise fashion via the zip()
operator, as shown here:

d2 = tf.data.Dataset.zip((dx, dy)).batch(3)

Notice how method chaining is performed by “tacking on” the batch(3)
operator as part of the definition of dcomb.

The final portion of Listing 3.20 contains a loop that executes fifteen times,
and during each iteration the loop prints the current contents of the variable
iterator. Each line of output consists of two “blocks” of numbers, where
a block consists of three consecutive integers. The output from launching the
code in Listing 3.20 is here:

value: (<tf.Tensor: id=16, shape=(3,), dtype=int64,
numpy=array([0, 1, 2])>, <tf.Tensor: id=17, shape=(3,),
dtype=int64, numpy=array([1, 2, 3])>)

100 • tensorFlow 2 pocket primer

value: (<tf.Tensor: id=20, shape=(3,), dtype=int64,
numpy=array([3, 4, 5])>, <tf.Tensor: id=21, shape=(3,),
dtype=int64, numpy=array([4, 5, 6])>)
value: (<tf.Tensor: id=24, shape=(3,), dtype=int64,
numpy=array([6, 7, 8])>, <tf.Tensor: id=25, shape=(3,),
dtype=int64, numpy=array([7, 8, 9])>)
value: (<tf.Tensor: id=28, shape=(1,), dtype=int64,
numpy=array([9])>, <tf.Tensor: id=29, shape=(1,),
dtype=int64, numpy=array([10])>)

TF 2 tf.data.Datasets and random numbers

Listing 3.21 displays the contents of tf2_generator3.py, which illus-
trates how to create a TF 2 Dataset with random numbers.

Listing 3.21: tf2_generator3.py

import tensorflow as tf
import numpy as np

x = np.random.sample((8,2))
size = x.shape[0]

def gener():
 for i in range(0,size):
 yield (x[i][0], x[i][1])

ds = tf.data.Dataset.from_generator(gener, (tf.float64,tf.
float64))

for value in ds:
 print("value:",value)

Listing 3.21 initializes the variable x as a NumPy array consisting of 100
rows and 2 columns of randomly generated numbers. Next, the variable ds
is initialized as a TF 2 Dataset that is created from the contents of the
 variable x.

The next portion of Listing 3.21 defines the Python function gener(),
which is a generator, for the same reason that has been discussed in previous
code samples. The final portion of Listing 3.21 prints the first line of trans-
formed data, as shown here:

value: (<tf.Tensor: id=32, shape=(), dtype=float64,
numpy=0.20591749665857995>, <tf.Tensor: id=33, shape=(),
dtype=float64, numpy=0.5990477322965386>)
value: (<tf.Tensor: id=36, shape=(), dtype=float64,
numpy=0.4384201871832957>, <tf.Tensor: id=37, shape=(),
dtype=float64, numpy=0.5169209418998256>)

tF 2 Datasets • 101

value: (<tf.Tensor: id=40, shape=(), dtype=float64,
numpy=0.587374875326609>, <tf.Tensor: id=41, shape=(),
dtype=float64, numpy=0.8141864916735249>)
value: (<tf.Tensor: id=44, shape=(), dtype=float64,
numpy=0.05471699195088109>, <tf.Tensor: id=45, shape=(),
dtype=float64, numpy=0.806596986559444>)
value: (<tf.Tensor: id=48, shape=(), dtype=float64,
numpy=0.8878379222956106>, <tf.Tensor: id=49, shape=(),
dtype=float64, numpy=0.9533861033011681>)
value: (<tf.Tensor: id=52, shape=(), dtype=float64,
numpy=0.4504035573049521>, <tf.Tensor: id=53, shape=(),
dtype=float64, numpy=0.6303139480618501>)
value: (<tf.Tensor: id=56, shape=(), dtype=float64,
numpy=0.84588294357816>, <tf.Tensor: id=57, shape=(),
dtype=float64, numpy=0.916291642540712>)
value: (<tf.Tensor: id=60, shape=(), dtype=float64,
numpy=0.8851826544276614>, <tf.Tensor: id=61, shape=(),
dtype=float64, numpy=0.6337544549532578>)

TF 2, mnisT, and tf.data.Dataset

In addition to creating a dataset from NumPy arrays of data or from Pan-
das Dataframes, you can create a dataset from existing datasets. For exam-
ple, Listing 3.22 displays the contents of tf2_mnist.py, which illustrates
how to create a tf.data.Dataset from the MNIST dataset.

Listing 3.22: tf2_mnist.py

import tensorflow as tf

train, test = tf.keras.datasets.mnist.load_data()
mnist_x, mnist_y = train

print("mnist_x.shape:",mnist_x.shape)
print("mnist_y.shape:",mnist_y.shape)

mnist_ds = tf.data.Dataset.from_tensor_slices(mnist_x)
#print(mnist_ds)

for value in mnist_ds:
 print("value:",value)

Listing 3.22 initializes the variables train and test from the MNIST
dataset, and then initializes the variables mnist_x and mnist_y from the
train variable. The next code snippet initializes the mnist_ds variable as
a tf.data.Dataset that is created from the mnist_x variable. The next
portion of Listing 3.22 contains a for loop that iterates through the elements
in mnist_ds.

102 • tensorFlow 2 pocket primer

The complete output from launching the code in Listing 3.22 is very
lengthy, and you can see the full output by launching this code sample from
the command line.

The next block shows you the shape of mnist_x and mnist_y, followed
by a portion of the data (i.e., the pixel values) in the first image contained in
the MNIST dataset.

mnist_x.shape: (60000, 28, 28)
mnist_y.shape: (60000,)

value: tf.Tensor(
[[0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 3 18
18 18 126 136
 175 26 166 255 247 127 0 0 0 0]
 [0 0 0 0 0 0 0 0 30 36 94 154 170 253
253 253 253 253
 225 172 253 242 195 64 0 0 0 0]
// output omitted for brevity
[0 0 0 0 55 172 226 253 253 253 253 244 133 11
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 136 253 253 253 212 135 132 16 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]
 [0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0
 0 0 0 0 0 0 0 0 0 0]], shape=(28,
28), dtype=uint8)

tF 2 Datasets • 103

If you launch the code in Listing 3.22 from the command line, you will see
the complete set of 784 (=28 x 28) pixel values.

Working WiTh The TFDs PACkAge in TF 2

The tensorflow_datasets package (tfds) contains utilities for load-
ing predefined datasets. Keep in mind that these are datasets that contain data
and are not to be confused with tf.data.Dataset. Listing 3.23 displays
the contents of tfds.py, which illustrates how to display the list of available
built-in datasets in TF 2 by means of the tfds package.

Listing 3.23: tfds.py

import tensorflow as tf
import tensorflow_datasets as tfds

See available datasets
print(tfds.list_builders())

Construct a tf.data.Dataset
ds = tfds.load(name="mnist", split=tfds.Split.TRAIN)

Build your input pipeline
ds = ds.shuffle(1024).batch(32).prefetch(tf.data.
experimental.AUTOTUNE)

for features in ds.take(1):
 image, label = features["image"], features["label"]

Listing 3.23 contains a print() statement that displays the complete list
of built-in datasets in TF 2. The variable ds is initialized as the training-related
data in the MNIST dataset. The next code snippet uses method chaining to
invoke three operators: first the shuffle() operator (to shuffle the input
data), then the batch() operator to specify 32 rows per batch, and then the
prefetch() method to select the first batch of data. The final code block
is a for loop that “takes” only the first row of data from ds. The output from
launching the code in Listing 3.23 is here:

['bair_robot_pushing_small', 'cats_vs_dogs', 'celeb_a',
'celeb_a_hq', 'cifar10', 'cifar100', 'coco2014', 'diabetic_
retinopathy_detection', 'dummy_dataset_shared_generator',
'dummy_mnist', 'fashion_mnist', 'image_label_folder',
'imagenet2012', 'imdb_reviews', 'lm1b', 'lsun', 'mnist',
'moving_mnist', 'nsynth', 'omniglot', 'open_images_v4',
'quickdraw_bitmap', 'squad', 'starcraft_video', 'svhn_
cropped', 'tf_flowers', 'wmt_translate_ende', 'wmt_
translate_enfr']

104 • tensorFlow 2 pocket primer

As you can see, the previous output contains some well-known datasets,
including CIFAR10, CIFAR100, MNIST, and FASHION_MNIST (among
others).

The CiFAr10 Dataset and TFDs in TF 2

Listing 3.24 displays the contents of tfds-cifar10.py, which illus-
trates how to perform some processing on the CIFAR10 dataset and use
lambda expressions and the map() operator to train the datasets.

Listing 3.24: tfds-cifar10.py

import tensorflow as tf
import tensorflow_datasets as tfds

loader = tfds.load("cifar10", as_supervised=True)
train, test = loader["train"], loader["test"]

train = train.map(
 lambda image, label: (tf.image.convert_image_dtype(image,
tf.float32), label)
).cache().map(
 lambda image, label: (tf.image.random_flip_left_
right(image), label)
).map(
 lambda image, label: (tf.image.random_contrast(image,
lower=0.0, upper=1.0), label)
).shuffle(100).batch(64).repeat()

The code in this section is from the following stackoverflow post (which
contains additional details):

https://stackoverflow.com/questions/55141076/how-to-apply-data-aug-
mentation-in-tensorflow-2-0-after-tfds-load

Working WiTh tf.estimator

The first subsection introduced as follows is useful if you have some experi-
ence with well-known machine learning algorithms using a Python library such
as scikit-learn. You will see a list of the TF 2 classes that are similar to
their Python-based counterparts in machine learning, with classes for regres-
sion tasks and classes for classification tasks.

The second subsection contains a list of TF 2 classes that are relevant for
defining CNNs (Convolutional Neural Networks) in TF 2.

If you are new to machine learning then this section will have limited value
to you right now, but you can still learn what’s available in TF 2 (perhaps for
future reference).

tF 2 Datasets • 105

What Are TF 2 estimators?

The tf.estimator namespace contains an assortment of classes that
implement various algorithms that are available in machine learning, such as
boosted trees, DNN classifiers, DNN regressors, linear classifiers, and linear
regressors.

The estimator-related classes DNNRegressor, LinearRegressor, and
DNNLinearCombinedRegressor are for regression tasks, whereas the
classes DNNClassifier, LinearClassifier, and DNNLinearCom-
binedClassifier are for classification tasks. A more extensive list of esti-
mator classes (with very brief descriptions) is listed as follows:

•	 BoostedTreesClassifier:	A	Classifier	for	TF	2	Boosted	Trees	models
•	 BoostedTreesRegressor:	A	Regressor	for	TF	2	Boosted	Trees	models
•	 CheckpointSaverHook:	Saves	checkpoints	every	N	steps	or	seconds
•	 DNNClassifier:	A	classifier	for	TF	2	DNN	models
•	 DNNEstimator:	An	estimator	for	TF	2	DNN	models	with	user-specified	

head
•	 DNNLinearCombinedClassifier:	 An	 estimator	 for	 TF	 2	 Linear	 and	

DNN joined classification models
•	 DNNLinearCombinedRegressor:	 An	 estimator	 for	 TF	 2	 Linear	 and	

DNN joined models for regression
•	 DNNRegressor:	A	regressor	for	TF	2	DNN	models
•	 Estimator:	Estimator	class	to	train	and	evaluate	TF	2	models
•	 LinearClassifier:	Linear	classifier	model
•	 LinearEstimator:	An	estimator	for	TF	2	linear	models	with	user-speci-

fied head
•	 LinearRegressor:	An	estimator	for	TF	2	Linear	regression	problems

All estimator classes are in the tf.estimator namespace, and all esti-
mator classes inherit from the tf.estimator.Estimator class. Read the
online documentation for the details of the preceding classes as well as online
tutorials for relevant code samples.

oTher TF 2 nAmesPACes

In addition to the classes and namespaces that are mentioned in previ-
ous sections, TF 2 provides various other useful namespaces, including the
 following:

•	 tf.data	(contains	tf.data.Dataset)
•	 tf.keras	(Keras-based	functionality)
•	 tf.linalg	(linear	algebra)
•	 tf.lite	(for	mobile	applications)
•	 tf.losses	(cost	functions)
•	 tf.math	(mathematical	functions)

106 • tensorFlow 2 pocket primer

•	 tf.nn	(neural	networks)
•	 tf.random	(random	values)
•	 tf.saved_model	
•	 tf.test	
•	 tf.train	
•	 tf.version

The tf.data namespace contains the tf.data.Dataset names-
pace, which contains classes that are discussed in the first half of this chapter;
the tf.linalg namespace contains an assortment of classes that perform
operations in linear algebra; and the tf.lite namespace contains classes for
mobile application development.

The tf.keras namespace contains functionality that is relevant to any-
one who wants to work with Keras-based code. In particular, tf.keras con-
tains many important namespaces, including the following:

•	 tf.keras.layers	(Activation,	Dense,	Dropout,	etc.)
•	 tf.keras.models	(Sequential	and	Functional)
•	 tf.keras.optimizers	(algorithms	for	cost	functions)

The appendix contains code samples that involve classes from each of the
three namespaces in the preceding list.

summAry

This chapter introduced you to TF 2 Datasets that are well-suited for
processing the contents of “normal” size datasets as well datasets that are too
large to fit in memory. You saw how to define a lambda expression and use that
expression in a TF 2 Dataset.

Next, you learned about various “lazy operators,” including batch(),
filter(), flatmap(), map(), take(), and zip(), and how to
use them to define a subset of the data in a TF 2 Dataset. You also learned
how to use TF 2 generators in order to iterate through the elements of a TF 2
Dataset.

Next, you learned how to create a TF 2 Dataset from a CSV file and then
display its contents. Then you got a brief introduction to the tf.estimator
namespace, which contains an assortment of classes that implement various
algorithms, such as boosted trees, DNN classifiers, DNN regressors, linear
classifiers, and linear regressors.

Finally, you learned about various other important aspects of TF 2, such as
the tf.keras.layers namespace that contains an assortment of classes for
DNNs (Dense Neural Networks) and CNNs (Convolutional Neural Networks).

Chapter 4
Linear regression

This chapter introduces linear regression, which is a well-known algo-
rithm in machine learning. You’ll learn some important aspects and as-
sumptions regarding linear regression, and some statistical quantities

for determining how well a model represents a dataset. You will see code ex-
amples that involve Python and NumPy code (often using the NumPy lins-
pace() API), as well as code samples involving TF 2 code.

The first part of this chapter briefly discusses the basic concepts involved
in linear regression. Although linear regression was developed more than 200
years ago, this technique is still one of the “core” techniques for solving (albeit
simple) problems in statistics and machine learning. This section introduces
“Mean Squared Error” (MSE) for finding a best-fitting line for data points in a
2D plane (or a hyperplane for higher dimensions).

The second section in this chapter contains very simple graphs of lines,
scatterplots, and a quadratic plot in the plane (skip them if they are familiar).
The third section discusses regularization, ML and feature scaling, and data
normalization versus standardization.

The fourth section discusses various metrics for measuring models, such as
R-Squared and its limitations, the confusion matrix, and accuracy versus preci-
sion versus recall. You will also learn about other useful statistical terms, such
as RSS, TSS, F1 score, and p-value.

The fifth section shows you how to calculate the MSE value manually for
a small dataset in the 2D plane. The sixth section discusses linear regression
in conjunction with TF 2 estimators (in the tf.estimator namespace)
that provides “canned” APIs for various algorithms. You will also see an exam-
ple of solving linear regression using the TF 2 LinearRegressor() class
that is also a TF 2 estimator.

The final section contains a Keras-based code sample to train a model in
order to solve a task in linear regression. Although the Keras code is minimal

108 • tensorFlow 2 pocket primer

(only a single layer), you do need to have some understanding of some Keras
APIs, some of which are discussed briefly in this section.

As you will soon see, roughly two-thirds of this chapter discusses linear re-
gression and topics pertaining to machine learning, and the TF 2 code samples
are in the final third of this chapter. The amount of material that you read is
obviously your choice, and although you can skip many of the theoretical con-
cepts in this chapter, eventually you will need to learn them if you intend to
deepen your knowledge of machine learning.

What Is LInear regressIon?

In simplified terms, linear regression in the 2D plane attempts to deter-
mine the best-fitting line that “represents” a dataset. A best-fitting line min-
imizes the distance of that line from the points in the dataset. There is no
correlation between best-fitting line and the number of points in the dataset
that actually lie on the best-fitting line. In addition, linear regression differs
from curve-fitting: the latter typically involves finding a polynomial that actu-
ally passes through points in a dataset.

In fact, 2D datasets consist of points that are often “scattered” in such a
way that they cannot be points on a polynomial curve, regardless of how large
a value that you choose for the degree of the polynomial. The reason is due to
an important limiting factor: a polynomial can never intersect more than one
point on any vertical line in the Euclidean plane. Since a dataset in the plane
can contain many points that lie on the same vertical line, a different polyno-
mial must be found to intersect each of the points on such a line.

Incidentally, the same property holds for continuous as well as noncontinu-
ous functions in the plane: they can intersect at most one point of any vertical
line in the plane. In fact, the definition of a function (which includes polyno-
mials) states the following: if a function intersects two points (x1,y1) and
(x2,y2) that have the same x value, then those two points must have the
same y value. That is to say, if x1=x2 then y1=y2 must be true. Note that
there is no such restriction for points that have the same y value because such
points lie on a horizontal line (which is a function).

Now perform the following thought experiment: consider a scatter plot with
many points in the plane that are sort of “clustered” in a tilted and elongated
cloud-like shape. For such a dataset, a best-fitting line will probably intersect
only a limited number of points. In fact, it’s even possible that a best-fitting line
doesn’t intersect any of the points in the dataset.

One other scenario: suppose a dataset contains a set of 2D points that lie
on the same line. For instance, let’s suppose that the x values are in the set
{1,2,3,...,10} and also that the y values are in the set {2,4,6,...,20}.
Then the equation of the best-fitting line is y=2*x+0. In this scenario, all the
points are collinear, which is to say that they lie on the same line.

Linear regression • 109

Linear regression versus Curve-Fitting

In some situations, it’s possible to determine the maximum degree of a
polynomial that fits a set of points in the 2D plane. For instance, suppose we
have a set of n points of the form (x,y). Let’s also make the assumption that
no pair of points have the same x value; this means that no two points lie on the
same vertical line. In this situation, there is a polynomial of degree at most n-1
that passes through those n points (if you are really interested, you can find a
mathematical proof of this statement in online articles).

For example, a non-vertical line in the 2D plane is a polynomial of degree
one, and it intersects any pair of points in the 2D plane (as long as the pair of
points are not on a vertical line). For any triple of points that are not collinear
in the plane (i.e., they do not all lie on the same line), there is a polynomial of
degree two (also known as a quadratic polynomial) that passes through those
three points. If you have 100 such points, then there is a polynomial of degree
at most 99 that passes through all those points.

The good news is that sometimes a lower degree polynomial is available.
For instance, consider the set of 100 points in which the x value equals the y
value: in this case, the line y = x (which is a polynomial of degree one) passes
through all 100 points.

Notice that the preceding paragraphs mentioned “a set of points” along
with a set of assumptions. In general, a dataset of points in a 2D plane might
not satisfy all those assumptions.

However, keep in mind that the extent to which a line “represents” a set of
points in the plane depends on how closely those points can be approximated
by a line, which is measured by the variance of the points (the variance is a
statistical quantity). The more collinear the points, the smaller the variance;
conversely, the more “spread out” the points are, the larger the variance.

What Is Multivariate analysis?

Multivariate analysis generalizes the equation of a line in the Euclidean
plane to higher dimensions, and it’s called a hyper plane instead of a line. The
generalized equation has the following form:

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of the
slope (m) and the y-intercept (b), whereas in multivariate analysis you need to
find the values for w1, w2, . . ., wn. Note that multivariate analysis is a
term from statistics, and in machine learning it’s often referred to as “general-
ized linear regression.”

Keep in mind that most of the code samples in this book that pertain to
linear regression involve 2D points in the Euclidean plane.

110 • tensorFlow 2 pocket primer

When are soLutIons exaCt In MaChIne LearnIng?

Although statistics-based solutions provide closed-form solutions for linear
regression, neural networks generally provide approximate solutions. This is
due to the fact that machine learning algorithms involve a sequence of approxi-
mations that “converges” to optimal values, which means that machine learning
algorithms produce estimates of the exact values. For example, the slope m and
y-intercept b of a best-fitting line for a set of points in a 2D plane have a closed-
form solution in statistics, but they can only be approximated via machine learn-
ing algorithms (exceptions do exist, but they are rare situations).

Keep in mind that even though a closed-form solution for “traditional” lin-
ear regression provides an exact value for both m and b, sometimes you can only
use an approximation of the exact value. For instance, suppose that the slope
m of a best-fitting line equals the square root of 3 and the y-intercept b is the
square root of 2. If you plan to use these values in source code, you can only
work with an approximation of these two numbers. In the same scenario, a neu-
ral network computes approximations for m and b, regardless of whether or not
the exact values for m and b are irrational, fractional, or integer values. How-
ever, machine learning algorithms are better suited for complex, nonlinear,
multidimensional datasets, which is beyond the capacity of linear regression.

As a simple example, suppose that the closed-form solution for a linear
regression problem produces integer or rational values for both m and b. Spe-
cifically, let’s suppose that a closed-form solution yields the values 2.0 and 1.0
for the slope and y-intercept, respectively, of a best-fitting line. The equation
of the line looks like this:

y = 2.0 * x + 1.0

However, the corresponding solution from training a neural network might
produce the values 2.0001 and 0.9997 for the slope m and the y-intercept b,
respectively, as the values of m and b for a best-fitting line. Always keep this
point in mind, especially when you are training a neural network.

ChaLLenges WIth LInear regressIon

Linear regression models are very powerful and simpler than their alterna-
tives. However, issues can arise because of various factors, and an accurate
analysis of these issues can be difficult. Here is a list of potential problems that
can arise:

•	 Nonlinear data
•	 Nonconstant variance of error terms (heteroscedasticity)
•	 Correlation of error terms
•	 Collinearity
•	 Outliers

Linear regression • 111

nonlinear Data

Linear regression is based on the assumption that a line is an accurate
model for the data. If you suspect that the data is not sufficiently linear, use
residual plots to check for nonlinearity. Recall that the residual values are the
differences between the y-coordinate of each point and the y-coordinate of
its corresponding point on the estimated line: ei = yi - y_i.

nonconstant Variance of error terms

Various terms in linear models, including standard errors and confidence
intervals, rely on the assumption that error terms have constant variance. Some-
times a transformation of the dependent variable Y can reduce heteroscedas-
ticity. Two examples of transformation functions are log(Y) or sqrt(Y);
however, you can specify other functions as well (just make sure that they are
monotonically nondecreasing functions).

Correlation of error terms

A correlation among the error terms results in estimated standard errors
that tend to underestimate the true standard errors. In addition, confidence
and prediction intervals are correspondingly narrower. Error correlations can
occur in consecutive time periods for time series data.

Collinearity

Collinearity refers to variables that are very close to each other, and it can
be difficult to distinguish the individual effects of collinear variables. Moreo-
ver, collinearity reduces the accuracy of the estimates of the regression coef-
ficients. Inspect the correlation matrix of the predictors for relatively large
elements, which indicates a pair of highly correlated variables, and hence col-
linearity in the data.

However, collinearity can exist among more than two variables (multi-
collinearity), and collinearity among those variables is not detectable in the
correlation matrix. Collinearity can be problematic in regression models, espe-
cially when there is a high degree of correlation between two or more variables.

Fortunately, there are techniques for addressing collinearity, such as PCA
(Principal Component Analysis), LDA (Linear Discriminant Analysis), SVD
(Singular Value Decomposition), and various other techniques. However,
these techniques are beyond the scope of this book (search online and you will
find many articles).

outliers and anomalies

Outliers are “unusual” or unexpected data points, and while you might be
tempted to ignore them, it’s not always possible to do so. For instance, a stock
market crash is an outlier, and it most likely contains important information, so
it’s advisable to retain such data.

112 • tensorFlow 2 pocket primer

Although an outlier might not significantly affect the MSE value, it can
have a more significant effect on the RSE value. Residual plots can help you
detect outliers in a dataset.

Anomalies are outliers that cannot be ignored, which is to say that anoma-
lies are more serious than outliers. Thus, anomalies are outliers, but outliers
are not necessarily anomalies. This means that anomalies form a subset of out-
liers. The earlier example of a stock market crash in a stock-related dataset is
an example of an outlier that is also an anomaly.

By contrast, suppose that your credit card purchases are always within a
fifty-mile radius, and suddenly a purchase in a different state or country ap-
pears on your credit card. That purchase is an outlier because it’s much dif-
ferent from all your other purchases; however, it’s not necessarily a fraudulent
transaction (you might be on a business trip or on vacation), which means that
this purchase is not automatically an anomaly.

other types oF regressIon

Linear regression finds the best-fitting line that “represents” a dataset, but
what happens if a line in the plane is not a good fit for the dataset? This is a very
important question when you work with datasets. Some alternatives to linear
regression include quadratic equations, cubic equations, or higher-degree pol-
ynomials. However, these alternatives involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves a piecewise lin-
ear function that comprises a set of line segments. If contiguous line segments
are connected, then it’s a piecewise linear continuous function; otherwise it’s a
piecewise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing the
following questions:

1. What type of curve fits the data well? How do we know?
2. Does another type of curve fit the data better?
3. What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this
approach does not work for data points that are higher than two dimensions.
Moreover, this is a subjective decision, and some sample datasets are displayed
later in this chapter. By visual inspection of a dataset, you might decide that
a quadratic or cubic (or even higher degree) polynomial has the potential of
being a better fit for the data. However, visual inspection is probably limited to
points in a 2D plane or in three dimensions.

Let’s defer the nonlinear scenario and let’s make the assumption that a line
would be a good fit for the data. There is a well-known technique for finding
the “best-fitting” line for such a dataset called Mean Squared Error (MSE),
and we’ll discuss it later in this chapter.

The next section provides a quick review of linear equations in the plane,
along with some images that illustrate examples of linear equations.

Linear regression • 113

WorkIng WIth LInes In the pLane

This section starts with basic examples involving lines in a 2D plane. If you
are comfortable with this topic, feel free to skip this section and proceed to the
next section.

In case you don’t remember, here is a general equation for a line in the
Euclidean plane (except for vertical lines):

y = m*x + b

The value of m is the slope of the line and the value of b is the y-intercept
(i.e., the place where the line intersects the y-axis).

If need be, you can use a more general equation that can also represent
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the
first formula.

Figure 4.1 displays three horizontal lines whose equations (from top to bot-
tom) are y = 3, y = 0, and y = -3, respectively.

Figure 4.2 displays two slanted lines whose equations are y = x and y = -x.
Figure 4.3 displays two slanted parallel lines whose equations are y = 2*x

and y = 2*x + 3.
Figure 4.4 displays a piecewise linear graph consisting of connected line

segments.
Now let’s turn our attention to generating quasi-random data using a

NumPy API, and then we’ll plot the data using Matplotlib.

Figure 4.1. a graph of three horizontal line segments.

114 • tensorFlow 2 pocket primer

Figure 4.2. a graph of two diagonal line segments.

Figure 4.3. a graph of two slanted parallel line segments.

Linear regression • 115

sCatter pLots WIth NumPy anD Matplotlib (1)

Listing 4.1 displays the contents of np_plot.py, which illustrates how to
use the NumPy randn() API to generate a dataset and then the scatter()
API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally
spaced, whereas the vertical values are based on a linear equation plus a “per-
turbation” value. This “perturbation technique” (which is not a standard term)
is used in other code samples in this chapter in order to add a slightly rand-
omized effect when the points are plotted. The advantage of this technique is
that the best-fitting values for m and b are known in advance, and therefore we
do not need to guess their values.

Listing 4.1: np_plot.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

Figure 4.4. a piecewise linear graph of line segments.

116 • tensorFlow 2 pocket primer

plt.scatter(x,y)
plt.show()

Listing 4.1 contains two import statements and then initializes the NumPy
array x with fifteen random numbers between 0 and 1. Next, the NumPy array
y is defined in two parts: the first part is a linear equation 2.5*x + 5 and
the second part is a “perturbation” value that is based on a random number.
Thus, the array variable y simulates a set of values that closely approximates a
line segment.

This technique is used in code samples that simulate a line segment, and
then the training portion approximates the values of m and b for the best-fitting
line. Obviously, we already know the equation of the best-fitting line: the pur-
pose of this technique is to compare the trained values for the slope m and y-
intercept b with the known values (which in this case are 2.5 and 5). A partial
output from Listing 4.1 is here:

x: [[-1.42736308]
 [0.09482338]
 [-0.45071331]
 [0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 4.5 displays a scatter plot of points based on the values of x and y.

Why the “perturbation technique” Is useful

The code sample in this section initializes a dataset with points that are
defined in the Python array variables X and Y:

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best-fitting line for the preceding dataset, how would
you estimate the values for the slope m and the y-intercept b? In most cases,
you probably cannot guess their values. On the other hand, the “perturbation
technique” enables you to “jiggle” the points on a line whose value for the slope
m (and optionally the value for the y-intercept b) is specified in advance.

Keep in mind that the “perturbation technique” only works when you in-
troduce small random values that do not result in different values for m and b.

Linear regression • 117

sCatter pLots WIth NumPy anD Matplotlib (2)

The code in Listing 4.1 in the previous section assigned random values to
the variable x, whereas a hard-coded value is assigned to the slope m. The y
values are a hard-coded multiple of the x values, plus a random value that is
calculated via the “perturbation technique.” Hence, we do not know the value
of the y-intercept b.

In this section the values for trainX are based on the np.linspace()
API, and the values for trainY involve the “perturbation technique” that is
described in the previous section.

The code in this example simply prints the values for trainX and
trainY, which correspond to data points in the Euclidean plane. Listing 4.2
displays the contents of np_plot2.py, which illustrates how to simulate a
linear dataset in NumPy.

Listing 4.2: np_plot2.py

import numpy as np

x_data = np.linspace(-1, 1, 11)
y_data = 4*x_data + np.random.randn(*x_data.shape)*0.5

print("x_data: ",x_data)
print("y_data: ",y_data)

Figure 4.5. a scatter plot of points for a line segment.

118 • tensorFlow 2 pocket primer

Listing 4.2 initializes the NumPy variable x_data via the NumPy lins-
pace() API, followed by the NumPy variable y_data that is defined in two
parts. The first part is the linear term 4*x_data and the second part involves
the “perturbation technique” that is a randomly generated number. The output
from Listing 4.2 is here:

x_data: [-1. -0.8 -0.6 -0.4 -0.2 0. 0.2 0.4 0.6 0.8
1.]
y_data: [-3.60147459 -2.66593108 -2.26491189 -1.65121314
-0.56454605 0.22746004 0.86830728 1.60673482 2.51151543
3.59573877 3.05506056]

The purpose of this code sample is merely to generate and display a set of
randomly generated numbers. Later in this chapter we will use this code as a
starting point for an actual linear regression task.

The next section contains an example that is similar to Listing 4.2, using the
same “perturbation technique” to generate a set of points that approximates a
quadratic equation instead of a line segment.

a QuaDratIC sCatter pLot WIth NumPy anD Matplotlib

Listing 4.3 displays the contents of np_plot_quadratic.py, which il-
lustrates how to plot a quadratic function in the plane.

Listing 4.3: np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = -0.5 + 2.2*x +0.3*x**2 + 2*np.random.randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 4.3 initializes the NumPy variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally
spaced decimal numbers between -5 and 5. Notice the snippet [:,None] in
the initialization of x, which results in an array of elements, each of which is an
array consisting of a single number.

The array variable y is defined in two parts: the first part is a quadratic
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a “perturba-

Linear regression • 119

tion” value that is based on a random number (similar to the code in Listing
4.1). Thus, the array variable y simulates a set of values that approximates a
quadratic equation. The output from Listing 4.3 is here:

x:
[[-5.]
 [-4.8989899]
 [-4.7979798]
 [-4.6969697]
 [-4.5959596]
 [-4.49494949]
 // values omitted for brevity
 [4.8989899]
 [5.]]

Figure 4.6 displays a scatter plot of points based on the values of x and y,
which have an approximate shape of a quadratic equation.

Figure 4.6. a scatter plot of points for a quadratic equation.

120 • tensorFlow 2 pocket primer

the Mean sQuareD error (Mse) ForMuLa

Figure 4.8 displays the formula for the MSE. In plain English, the MSE
is the sum of the squares of the difference between an actual y value and the
predicted y value (this difference is called a “residual value”), divided by the
number of points. Notice that the predicted y value is the y value that each
point would have if that point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other error
types available, some of which are discussed briefly in the next section.

a List of error types

Although we will only discuss MSE for linear regression in this book, there
are other types of formulas that you can use for linear regression, some of
which are listed here:

•	 MSE
•	 RMSE
•	 RMSPROP
•	 MAE

The MSE is the basis for the preceding error types. For example, RMSE is
“Root Mean Squared Error,” which is the square root of the MSE.

On the other hand, MAE is “Mean Absolute Error,” which is the sum of
the absolute value of the differences of the y terms (not the square of the differ-
ences of the y terms), which is then divided by the number of terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to nor-
malize the gradients. Maintain a moving average over the RMS (root mean
squared) gradients, and then divide that term by the current gradient.

Although it’s easier to compute the derivative of MSE, it’s also true that
MSE is more susceptible to outliers, whereas MAE is less susceptible to outli-
ers. The reason is simple: a squared term can be significantly larger than the
absolute value of a term. For example, if a difference term is 10, then a squared
term of 100 is added to the MSE, whereas only 10 is added to the MAE. Simi-
larly, if a difference term is -20, then a squared term 400 is added to the MSE,
whereas only 20 (which is the absolute value of -20) is added to the MAE.

nonlinear Least squares

When predicting housing prices, where the dataset contains a wide range
of values, techniques such as linear regression or random forests can cause the
model to overfit the samples with the highest values in order to reduce quanti-
ties such as mean absolute error.

In this scenario you probably want an error metric, such as relative error,
that reduces the importance of fitting the samples with the largest values. This
technique is called nonlinear least squares, which may use a log-based trans-
formation of labels and predicted values.

Linear regression • 121

The next section discusses regularization, which is an important yet op-
tional topic if you are primarily interested in TF 2 code. If you plan to become
proficient in machine learning, you will need to learn about regularization.

What Is reguLarIzatIon?

Regularization helps to solve overfitting problems, which occur when a
model performs well on training data but poorly on validation or test data.
Regularization solves this problem by adding a penalty term to the cost func-
tion, thereby controlling the model complexity with this penalty term. Regu-
larization is generally useful for:

1. large number of variables
2. low ratio of (# observations)/(# of variables)
3. high multi-collinearity

There are two main types of regularization: L1 Regularization (which is
related to MAE, or the absolute value of differences) and L2 Regularization
(which is related to MSE, or the square of differences). In general, L2 per-
forms better than L1 and L2 is efficient in terms of computation.

Machine Learning and Feature scaling

Feature scaling standardizes the range of features of data. This step is per-
formed during the data preprocessing step, in part because gradient descent
benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribution,
and standardization involves subtracting the mean and dividing by the standard
deviation for every data point, which results in a N(0,1) normal distribution.

Data normalization vs. standardization

Data normalization is a linear scaling technique. Let’s assume that a dataset
has the values {X1, X2, . . . , Xn} along with the following terms:

Minx = minimum of Xi values
Maxx = maximum of Xi values

Now calculate new Xi values as follows:

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

the BIas-VarIanCe traDe-oFF

Bias in machine learning can be due to an error from wrong assumptions
in a learning algorithm. High bias might cause an algorithm to miss relevant
relations between features and target outputs (underfitting).

122 • tensorFlow 2 pocket primer

Prediction bias can occur because of “noisy” data, an incomplete feature
set, or a biased training sample.

Error due to bias is the difference between the expected (or average) pre-
diction of your model and the correct value that you want to predict. Repeat
the model-building process multiple times, gather new data each time, and
also run an analysis to produce a new model. The resulting models have a
range of predictions, because the underlying data sets have a degree of ran-
domness. Bias measures the extent to which the predictions for these models
deviate from the correct value.

Variance in machine learning is the expected value of the squared devia-
tion from the mean. High variance can/might cause an algorithm to model
the random noise in the training data, rather than the intended outputs (aka
overfitting).

Adding parameters to a model increases its complexity, increases the vari-
ance, and decreases the bias. Dealing with bias and variance is dealing with
underfitting and overfitting.

Error due to variance is the variability of a model prediction for a given
data point. As before, repeat the entire model-building process, and the vari-
ance is the extent to which predictions for a given point vary among different
“instances” of the model.

MetrICs For MeasurIng MoDeLs

One of the most frequently used metrics is R-squared, in which R-squared
measures how close the data is to the fitted regression line (regression coef-
ficient). R-squared is always between 0% and 100%. The value 0% indicates
that the model explains none of the variability of the response data around its
mean. The value 100% indicates that the model explains all the variability of
the response data around its mean. In general, a higher R-squared indicates a
better model.

Limitations of r-squared

Although high R-squared values are preferred, they are not necessarily al-
ways good values. Similarly, low R-squared values are not always bad. An R-
squared value for predicting human behavior is often less than 50%. Moreover,
R-squared cannot determine whether the coefficient estimates and predic-
tions are biased. In addition, R-squared does not indicate whether a regres-
sion model is adequate. Thus, it’s possible to have a low R-squared value for
a good model, or a high R-squared value for a poorly fitting model. Evaluate
R-squared values in conjunction with residual plots, other model statistics, and
subject area knowledge.

Confusion Matrix

In its simplest form, a confusion matrix (also called an error matrix) is a type
of contingency table with two rows and two columns that contains the number

Linear regression • 123

of false positives, false negatives, true positives, and true negatives. The four
entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the off-
diagonal values are incorrect predictions. In general a lower FP value is better
than an FN value. For example, an FP indicates that a healthy person was in-
correctly diagnosed with a disease, whereas an FN indicates that an unhealthy
person was incorrectly diagnosed as healthy.

accuracy vs. precision vs. recall

A 2x2 confusion matrix has four entries that represent the various com-
binations of correct and incorrect classifications. Given the definitions in the
preceding section, the definitions of precision, accuracy, and recall are given
by the following formulas:

precision = TP/(TN + FP)
accuracy = (TP + TN)/[P + N]
recall = TP/[TP + FN]

Accuracy is an unreliable metric because it yields misleading results in un-
balanced data sets. When the numbers of observations in different classes are
significantly different, it gives equal importance to both false positive and false
negative classifications. For example, declaring cancer as benign is worse than
incorrectly informing patients that they are suffering from cancer. Unfortu-
nately, accuracy won’t differentiate between these two cases.

other useFuL statIstICaL terMs

Machine learning relies on a number of statistical quantities in order to as-
sess the validity of a model, some of which are listed here:

•	 RSS
•	 TSS
•	 R^2
•	 F1 score
•	 p-value

The definitions of RSS, TSS, and R^2 are shown as follows, where y^
is the y-coordinate of a point on a best-fitting line and y_ is the mean of the
y-values of the points in the dataset:

RSS = sum of squares of residuals (y - y^)**2
TSS = total sum of squares (y - y_)**2
R^2 = 1 - RSS/TSS

124 • tensorFlow 2 pocket primer

What Is an F1 score?

The F1 score is a measure of the accuracy of a test, and it’s defined as the
harmonic mean of precision and recall. Here are the relevant formulas, where
p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive
results)
r = (# of correct positive results)/(# of all relevant
samples)

F1-score = 1/[((1/r) + (1/p))/2]
 = 2*[p*r]/[p+r]

The best value of an F1 score is 1 and the worst value is 0. Keep in mind that
an F1 score tends to be used for categorical classification problems, whereas
the R^2 value is typically used for regression tasks (such as linear regression).

What Is a p-value?

The p-value is used to reject the null hypothesis if the p-value is small
enough (< 0.005), which indicates a higher significance. Recall that the null
hypothesis states that there is no correlation between a dependent variable
(such as y) and an independent variable (such as x). The threshold value for p
is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are val-
ues that are always between 0 and 1. In fact, p-values are statistical quantities
to evaluate the null hypothesis, and they are calculated using p-value tables or
spreadsheet/statistical software.

WorkIng WIth Datasets

There are several aspects of working with datasets that contain data (i.e.,
not the tf.data.Dataset class in Chapter 3), such as selecting training
data versus test data, and also performing cross-validation on data. More de-
tails are provided in the subsequent sections.

training Data Versus test Data

A training set is a subset of a dataset that is used to train a model, whereas
a test set is a subset to test the trained model. Ensure the following for your
test sets:

1. the set is large enough to yield statistically meaningful results
2. it’s representative of the data set as a whole
3. never train on test data
4. never test on training data

Linear regression • 125

What Is Cross-Validation?

The purpose of cross-validation is to test a model with non-overlapping test
sets, which is performed in the following manner:

Step 1) split the data into k subsets of equal size
Step 2) select one subset for testing and the others for training
Step 3) repeat step 2) for the other k-1 subsets

This process is called k-fold cross-validation, and the overall
error estimate is the average of the error estimates.

A standard method for evaluation involves ten-fold cross-validation. Exten-
sive experiments have shown that ten subsets is the best choice to obtain an
accurate estimate. In fact, you can repeat ten-fold cross-validation ten times
and compute the average of the results, which helps to reduce the variance.

The next section contains several code samples, the first of which involves
calculating the MSE manually, followed by an example that uses NumPy for-
mulas to perform the calculations. Finally, we’ll look at a TF 2 example for
calculating the MSE.

CaLCuLatIng the Mse ManuaLLy

This section contains two line graphs, both of which contain a line that ap-
proximates a set of points in a scatter plot.

Figure 4.7 displays a line segment that approximates a scatter plot of points
(some of which intersect the line segment).

Figure 4.8 displays a set of points and a line that is a potential candidate for
best-fitting line for the data. The MSE for the line in Figure 4.7 is computed
as follows:

MSE = (-2)*(-2) + 2*2 = 8

Figure 4.7. a line graph that approximates points of a scatter plot.

126 • tensorFlow 2 pocket primer

Now look at Figure 4.10, which also displays a set of points and a line that
is a potential candidate for best-fitting line for the data.

The MSE for the line in Figure 4.8 is computed as follows:

MSE = 1*1 + (-1)*(-1) + (-1)*(-1) + 1*1 = 4

Thus, the line in Figure 4.8 has a smaller MSE than the line in Figure 4.7,
which might have surprised you (or did you guess correctly?).

In these two figures we calculated the MSE easily and quickly, but in gen-
eral it’s significantly more difficult. For instance, if we plot ten points in the
Euclidean plane that do not closely fit a line, with individual terms that involve
non-integer values, we would probably need a calculator.

A better solution involves NumPy functions, such as the np.linspace()
API, as discussed in the next section.

sIMpLe 2D Data poInts In tF 2

Listing 4.4 displays the contents of basic_linear1.py, which calcu-
lates the y-coordinates of 2D points based on simulated data for the x-coordi-
nates (but linear regression is not performed in this code sample).

Listing 4.4: basic_linear1.py

import tensorflow as tf

W = tf.Variable([.5], dtype=tf.float32)
b = tf.Variable([-1], dtype=tf.float32)
x = tf.Variable([0], dtype=tf.float32)

Figure 4.8. a line graph that approximates points of a scatter plot.

Linear regression • 127

@tf.function
def compute_values(x):
 lm = W*x + b
 return lm

for x in range(4):
 val = compute_values(x+1)
 print("val:", val)

Listing 4.4 contains the variables W, b, and x, which are combined in the
decorated Python function compute_values() to calculate a linear com-
bination of values. Finally, a loop with a print() statement generates the
output, as shown here:

val: tf.Tensor([-0.5],shape=(1,), dtype=float32)
val: tf.Tensor([0.], shape=(1,), dtype=float32)
val: tf.Tensor([0.5], shape=(1,), dtype=float32)
val: tf.Tensor([1.], shape=(1,), dtype=float32)

The preceding four tensor values are computed by invoking the decorated
Python function compute_values() with the x values 1, 2, 3, and 4. Now
that we know how to generate (x,y) values for a linear equation, let’s learn
how to calculate the MSE, which is discussed in the next section.

tF2, tf.GradientTape(), anD LInear regressIon

The code sample in this section shows you how to perform linear regression
with tf.GradientTape(), which supersedes the TF 1.x code style that
involves tf.Session().

Listing 4.5 displays the contents of tf2_linreg_tape.py, which illus-
trates how to use tf.GradientTape() in order to train the values for the
slope m and intercept b of a best-fitting line in the Euclidean plane.

Listing 4.5: tf2_linreg_tape.py

import tensorflow as tf

step = 20
rows = 100
slope = 0.4
bias = 1.5

x_train = tf.random.uniform(shape=(rows,))
perturb = tf.random.normal(shape=(len(x_train),),
stddev=0.01)
y_train = slope * x_train + bias + perturb

initial values for slope 'm' and bias 'b'
m = tf.Variable(0.)
b = tf.Variable(0.)

128 • tensorFlow 2 pocket primer

predict the y value based on a value for x
def predict_y_value(x):
 y = m * x + b
 return y

loss = RSS = residual sum of squares
= sum of squares of difference
between predicted and true values
def squared_error(y_pred, y_true):
 return tf.reduce_mean(tf.square(y_pred - y_true))

loss = squared_error(predict_y_value(x_train), y_train)
print("Initial loss:", loss.numpy())

######################################
backward error propagation requires:
a loss function (squared_error)
an optimizer (tape.gradient)
a value for the learning rate
#####################################

learning_rate = 0.05
steps = 200

for i in range(steps):
 with tf.GradientTape() as tape:
 predictions = predict_y_value(x_train)
 loss = squared_error(predictions, y_train)

 gradients = tape.gradient(loss, [m, b])

 m.assign_sub(gradients[0] * learning_rate)
 b.assign_sub(gradients[1] * learning_rate)

 if(i % step) == 0:
 print("Step %d, Loss %f" % (i, loss.numpy()))

display trained values for slope m and bias b
print ("m: %f, b: %f" % (m.numpy(), b.numpy()))

Listing 4.5 starts with the initialization of four variables, followed by a
code block that initializes the variables x_train and x_train, along with
the “perturbation” technique that you have seen in previous code samples.
The next two lines of code initialize the two trainable variables m (the slope)
and b (the bias) with the value 0. When the code finishes execution, you will
see the calculated value for m and b, both of which are close to the values of
slope and bias that are initialized in the beginning of this code sample.

The next portion of Listing 4.5 is the Python function predict_y_
value() that calculates (and returns) the value of y based on the value of x.
This function is invoked when we calculate the value of loss later in the code.

Linear regression • 129

Next, the Python function squared_error() is the loss function, which
is essentially the MSE (Mean Squared Error) that is discussed earlier in this
chapter. This function takes the predicted y values and the initial y values as
input in order to compute the current MSE value.

Next, the value of loss is determined by first invoking the Python func-
tion predict_y_value, and then passing the result of that invocation to the
Python function squared_error.

Now that the initializations and Python functions are defined, let’s look at
the training loop in the next portion of Listing 4.5. This loop calculates the
predictions variable and the loss variable, as shown here:

with tf.GradientTape() as tape:
 predictions = predict_y_value(x_train)
 loss = squared_error(predictions, y_train)

gradients = tape.gradient(loss, [m, b])

Notice how the tape variable (an instance of tf.GradientTape())
calculates the new gradient values based on the current values of loss, m,
and b. The gradients variable contains the partial derivative of the loss
function loss with respect to the variables m and b, which are the only two
variables that we need to update for linear regression in the Euclidean plan.

Specifically, gradients[0] is the partial derivative of the loss variable
with respect to m, and gradients[1] is the partial derivative of the loss
variable with respect to b. In the case of a linear regression task in n dimen-
sions, the gradients variable is a 1xn vector whose elements are partial de-
rivatives for each of those n dimensions.

The next section of Listing 4.5 uses the values in the gradients array to
update the values of m and b via a very simple calculation, as shown here:

m.assign_sub(gradients[0] * learning_rate)
b.assign_sub(gradients[1] * learning_rate)

The preceding code snippet calculates the new value of b by subtracting the
quantity gradients[0]*learning_rate from the current value of m,
and then updates b by subtracting the quantity gradients[1]*learning_
rate from the current value of b.

The final portion of Listing 4.5 periodically displays the values of the loss
variable, and the last code snippet displays the trained values for m and b.
Launch the code in Listing 4.5 and you will see the following output:

Initial loss: 2.9317048
Step 0, Loss 2.931705
Step 20, Loss 0.018575
Step 40, Loss 0.005255
Step 60, Loss 0.004075
Step 80, Loss 0.003194
Step 100, Loss 0.002508

130 • tensorFlow 2 pocket primer

Step 120, Loss 0.001974
Step 140, Loss 0.001558
Step 160, Loss 0.001234
Step 180, Loss 0.000982
m: 0.498547, b: 1.447338

As you can see from the preceding output, the trained values for m and b
are 0.498547 and 1.447338, respectively, which are reasonably close to the ini-
tial values of 0.4 and 1.5 for the slope and bias, respectively.

If you increase the value of steps from 200 to 500, the trained values for m
and b are 0.410014 and 1.494226, respectively, which are considerably closer
to the initial values of 0.4 and 1.5 for the slope and bias, respectively.

WorkIng WIth keras

If you are already comfortable with Keras, you can skim this section to learn
about the new namespaces and what they contain, and then proceed to the
next section that contains details for creating a Keras-based model.

If you are new to Keras, you might be wondering why this section is in-
cluded in this chapter. First, Keras is well-integrated into TF 2, and it’s in the
tf.keras namespace. Second, Keras is well-suited for defining models to
solve a myriad of tasks, such as linear regression and logistic regression, as well
as deep learning tasks involving CNNs, RNNs, and LSTMs that are discussed
in the appendix.

The next several subsections contain lists of bullet items for various Keras-
related namespaces, and they will be very familiar if you have worked with TF
1.x. If you are new to TF 2, you’ll see examples of some of Keras-related classes
in subsequent code samples.

Working with keras namespaces in tF 2

TF 2 provides the tf.keras namespace, which in turn contains the fol-
lowing namespaces:

•	 tf.keras.layers
•	 tf.keras.models
•	 tf.keras.optimizers
•	 tf.keras.utils
•	 tf.keras.regularizers

The preceding namespaces contain various layers in Keras models, differ-
ent types of Keras models, optimizers (Adam et al.), utility classes, and regular-
izers (such as L1 and L2), respectively.

Currently there are three ways to create Keras-based models:

•	 The Sequential API
•	 The Functional API
•	 The Model API

Linear regression • 131

The Keras-based code samples in this book use primarily the Sequential
API (it’s the most intuitive and straightforward). The Sequential API ena-
bles you to specify a list of layers, most of which are defined in the tf.keras.
layers namespace (discussed later).

The Keras-based models that use the functional API involve specifying
layers that are passed as function-like elements in a “pipeline-like” fashion.
Although the functional API provides some additional flexibility, you will prob-
ably use the Sequential API to define Keras-based models if you are a TF
2 beginner.

The model-based API provides the greatest flexibility, and it involves de-
fining a Python class that encapsulates the semantics of your Keras model.
This class is a subclass of the tf.keras.model.Model class, and you must
implement the two methods __init__ and call in order to define a Keras
model in this subclass.

Perform an online search for more details regarding the Functional API
and the Model API.

Working with the tf.keras.layers namespace

The most common (and also the simplest) Keras-based model is the Se-
quential() class that is in the tf.keras.models namespace. This
model is comprised of various layers that belong to the tf.keras.layers
namespace, as shown here:

•	 tf.keras.layers.Conv2D()
•	 tf.keras.layers.MaxPooling2D()
•	 tf.keras.layers.Flatten()
•	 tf.keras.layers.Dense()
•	 tf.keras.layers.Dropout()
•	 tf.keras.layers.BatchNormalization()
•	 tf.keras.layers.embedding()
•	 tf.keras.layers.RNN()
•	 tf.keras.layers.LSTM()
•	 tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based
models for CNNs, which are discussed in the appendix. Generally speaking,
the next six classes in the preceding list can appear in models for CNNs as well
as models for machine learning. The RNN() class is for simple RNNS and the
LSTM class is for LSTM-based models. The Bidirectional() class is a
bidirectional LSTM that you will often see in models for solving NLP (Natural
Language Processing) tasks. Two very important NLP frameworks that use
bidirectional architectures were released as open source (on GitHub) in 2018:
ELMo from Facebook and BERT from Google.

132 • tensorFlow 2 pocket primer

Working with the tf.keras.activations namespace

Machine learning and deep learning models require activation functions.
For Keras-based models, the activation functions are in the tf.keras.ac-
tivations namespace, some of which are listed here:

•	 tf.keras.activations.relu
•	 tf.keras.activations.selu
•	 tf.keras.activations.linear
•	 tf.keras.activations.elu
•	 tf.keras.activations.sigmoid
•	 tf.keras.activations.softmax
•	 tf.keras.activations.softplus
•	 tf.keras.activations.tanh
•	 Others …

The ReLU/SELU/ELU activation functions are closely related, and they
often appear in ANNs (Artificial Neural Networks) and CNNs. Before the
relu() function became popular, the sigmoid() and tanh() functions
were used in ANNs and CNNs. However, they are still important and they
are used in various gates in GRUs and LSTMs. The softmax() function is
typically used in the pair of layers consisting of the rightmost hidden layer and
the output layer.

Working with the tf.keras.datasets namespace

For your convenience, TF 2 provides a set of built-in datasets in the
tf.keras.datasets namespace, some of which are listed here:

•	 tf.keras.datasets.boston_housing
•	 tf.keras.datasets.cifar10
•	 tf.keras.datasets.cifar100
•	 tf.keras.datasets.fashion_mnist
•	 tf.keras.datasets.imdb
•	 tf.keras.datasets.mnist
•	 tf.keras.datasets.reuters

The preceding datasets are popular for training models with small datasets.
The mnist dataset and fashion_mnist dataset are both popular when
training CNNs, whereas the boston_housing dataset is popular for linear
regression. The Titanic dataset is also popular for linear regression, but it’s
not currently supported as a default dataset in the tf.keras.datasets
namespace.

Working with the tf.keras.experimental namespace

The contrib namespace in TF 1.x has been deprecated in TF 2, and its
“successor” is the tf.keras.experimental namespace, which contains
the following classes (among others):

Linear regression • 133

•	 tf.keras.experimental.CosineDecay
•	 tf.keras.experimental.CosineDecayRestarts
•	 tf.keras.experimental.LinearCosineDecay
•	 tf.keras.experimental.NoisyLinearCosineDecay
•	 tf.keras.experimental.PeepholeLSTMCell

If you are a beginner, you probably won’t use any of the classes in the pre-
ceding list. Although the PeepholeLSTMCell class is a variation of the
LSTM class, there are limited use cases for this class.

Working with other tf.keras namespaces

TF 2 provides a number of other namespaces that contain useful classes,
some of which are listed here:

•	 tf.keras.callbacks (early stopping)
•	 tf.keras.optimizers (Adam et al)
•	 tf.keras.regularizers (L1 and L2)
•	 tf.keras.utils (to_categorical)

The tf.keras.callbacks namespace contains a class that you can use
for “early stopping,” which is to say that it’s possible to terminate the training
process if there is insufficient reduction in the cost function in two successive
iterations.

The tf.keras.optimizers namespace contains the various optimiz-
ers that are available for working in conjunction with cost functions, which
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular regu-
larizers: L1 regularizer (also called LASSO in machine learning) and the L2
regularizer (also called the Ridge regularizer in machine learning). L1 is for
MAE (Mean Absolute Error) and L2 is for MSE (Mean Squared Error). Both
of these regularizers act as “penalty” terms that are added to the chosen cost
function in order to reduce the “influence” of features in a machine learning
model. Note that LASSO can drive values to zero, with the result that features
are actually eliminated from a model, and hence it is related to something
called feature selection in machine learning.

The tf.keras.utils namespace contains an assortment of functions,
including the to_categorical() function for converting a class vector
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all the
preceding subsections will probably suffice for the majority of your tasks if you
are a beginner in TF 2 and machine learning.

tF 2 keras versus “standalone” keras

The original Keras is actually a specification, with various “backend” frame-
works such as TensorFlow, Theano, and CNTK. Currently Keras standalone

134 • tensorFlow 2 pocket primer

does not support TF 2, whereas the implementation of Keras in tf.keras
has been optimized for performance.

Keras standalone will live in perpetuity in the keras.io package, which is
discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras and
the classes that they contain, let’s find out how to create a Keras-based model,
which is the subject of the next section.

CreatIng a keras-BaseD MoDeL

A Keras model generally involves at least the following sequence of steps:

•	 Specify a dataset (if necessary, convert data to numeric data)
•	 Split the dataset into training data and test data (usually 80/20 split)
•	 Define the Keras model (the tf.keras.models.Sequential()

API)
•	 Compile the Keras model (the compile() API)
•	 Train (fit) the Keras model (the fit() API)
•	 Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a real
Keras model, such as evaluating the Keras model on the test data, as well as
dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as simple
as a CSV file with 100 rows of data (and just 3 columns). In general, a dataset
is substantially larger: it can be a file with 1,000,000 rows of data and 10,000
columns in each row. We’ll look at a concrete dataset in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the
tf.keras.layers namespace, such as tf.keras.Dense (which means
that two adjacent layers are completely connected).

The activation functions that are referenced in Keras layers are in the
tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation
function.

Here’s a code block of the Keras model that’s described in the preceding
paragraphs (which covers the first four bullet points):

import tensorflow as tf

model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
])

Linear regression • 135

We have three more bullet items to discuss, starting with the compilation
step. Keras provides a compile() API for this step, an example of which is
here:

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the fit() API
(as you can see, it’s not called train()), an example of which is here:

model.fit(x_train, y_train, epochs=5)

The final step is the prediction, and Keras provides the predict() API,
an example of which is here:

pred = model.predict(x)

Listing 4.6 displays the contents of tf2_basic_keras.py, which com-
bines the code blocks in the preceding steps into a single code sample.

Listing 4.6: tf2_basic_keras.py

import tensorflow as tf

NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(1, activation=tf.nn.relu),
])

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing 4.6 contains no new code, and we’ve essentially glossed over some
of the terms such as the optimizer (an algorithm that is used in conjunction
with a cost function), the loss (the type of loss function), and the metrics (how
to evaluate the efficacy of a model).

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed
online blog posts that discuss these terms. The appendix contains additional
Keras-based code samples involving advanced topics.

136 • tensorFlow 2 pocket primer

keras anD LInear regressIon

This section contains a simple example of creating a Keras-based model
in order to solve a task involving linear regression: given a positive number
representing kilograms of pasta, predict its corresponding price. Listing 4.7
displays the contents of pasta.csv and Listing 4.8 displays the contents of
tf2_pasta.py that performs this task.

Listing 4.7: pasta.csv

weight,price
5,30
10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

Listing 4.8: tf2_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

price of pasta per kilogram
df = pd.read_csv("pasta.csv")

weight = df['weight']
price = df['price']

model = tf.keras.models.Sequential([
 tf.keras.layers.Dense(units=1,input_shape=[1])
])

MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
 optimizer=tf.keras.optimizers.Adam(0.1))

train the model
history = model.fit(weight, price, epochs=100, verbose=False)

graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values")
plt.plot(history.history['loss'])
plt.show()

Linear regression • 137

print("Cost for 11kg:",model.predict([11.0]))
print("Cost for 45kg:",model.predict([45.0]))

Listing 4.8 initializes the Pandas Dataframe df with the contents of the
CSV file pasta.csv, and then initializes the variables weight and cost
with the first and second columns, respectively, of df.

The next portion of Listing 4.8 defines a Keras-based model that consists
of a single Dense layer. This model is compiled and trained, and then a graph
is displayed that shows the “number of epochs” on the horizontal axis and the
corresponding value of the loss function for the vertical axis. Launch the code
in Listing 4.8 and you will see the following output:

Cost for 11kg: [[41.727108]]
Cost for 45kg: [[159.02121]]

Figure 4.9 displays a graph of epochs versus loss during the training
process.

The next section introduces the tf.estimator namespace, followed by
an example of using a TF estimator with a TF Dataset.

Figure 4.9. a graph of epochs versus loss.

138 • tensorFlow 2 pocket primer

WorkIng WIth tf.estimator

Estimators are a layer above tf.keras.layers, which means that es-
timators provide a layer of abstraction. Estimator-based models run on CPUs,
GPUs, or TPUs without model changes. Moreover, estimator-based models
run locally or in a distributed environment without model changes.

The estimator classes “live” in the tf.estimator namespace. Estima-
tors exist for an assortment of classes that implement various algorithms in
machine learning, such as boosted trees, DNN classifiers, DNN regressors,
linear classifiers, and linear regressors.

Every estimator has a model function that constructs graphs for training,
evaluation, and prediction. Whenever you create a custom Estimator, you
must define the model function (they are already defined for existing Esti-
mators).

The estimator-related classes DNNRegressor, LinearRegressor,
and DNNLinearCombinedRegressor are for regression tasks, whereas
the classes DNNClassifier, LinearClassifier, and DNNLine-
arCombinedClassifier are for classification tasks. A more extensive list
of estimator classes (with very brief descriptions) is listed as follows:

•	 BoostedTreesClassifier: A classifier for Tensorflow Boosted Trees
models

•	 BoostedTreesRegressor: A regressor for Tensorflow Boosted Trees
models

•	 CheckpointSaverHook: Saves checkpoints every N steps or seconds
•	 DNNClassifier: A classifier for TensorFlow DNN models
•	 DNNEstimator: An estimator for TensorFlow DNN models with user-

specified head
•	 DNNLinearCombinedClassifier: An estimator for TensorFlow Linear

and DNN joined classification models
•	 DNNLinearCombinedRegressor: An estimator for TensorFlow Linear

and DNN joined models for regression
•	 DNNRegressor: A regressor for TensorFlow DNN models
•	 Estimator: Estimator class to train and evaluate TensorFlow models
•	 LinearClassifier: Linear classifier model
•	 LinearEstimator: An estimator for TensorFlow Linear models with user-

specified head
•	 LinearRegressor: An estimator for TensorFlow Linear regression prob-

lems

All estimator classes are in the tf.estimator namespace, and all the
estimator classes inherit from the tf.estimator.Estimator class. Read
the online documentation for the details of the preceding classes as well as
online tutorials for relevant code samples.

Linear regression • 139

suMMary

This chapter introduced you to linear regression and a brief description
of how to calculate a best-fitting line for a dataset of points in the Euclid-
ean plane. You saw how to perform linear regression using NumPy in order to
initialize arrays with data values, along with a “perturbation” technique that
introduces some randomness for the y values. This technique is useful because
you will know the correct values for the slope and y-intercept of the best-fitting
line, which you can then compare with the trained values.

In addition, you learned about concepts such as regularization, ML and
feature scaling, and data normalization versus standardization. Then you were
introduced to metrics for measuring models, such as R-Squared and its limita-
tions, the confusion matrix, and accuracy versus precision versus recall. More-
over, you learned about other useful statistical terms, such as RSS, TSS, F1
score, and p-value.

You then learned how to perform linear regression in code samples that
involve TF 2. Furthermore, you learned about TF estimators and how they
provide implementations of various algorithms, such as linear regression
(LinearRegressor) and linear classification (LinearClassifier). You
also saw code samples involving the LinearRegressor class for training
TF 2 models to perform linear regression.

Finally, you got a very condensed introduction to Keras, with a description
of some of its more important namespaces, along with a Keras-based code
sample for solving a task involving linear regression.

Chapter 5
Working With Classifiers

This chapter presents numerous classification algorithms in machine
learning. This includes algorithms such as the kNN (k Nearest Neigh-
bor) algorithm, logistic regression (despite its name it is a classifier), de-

cision trees, random forests, SVMs, and Bayesian classifiers. The emphasis on
algorithms is intended to introduce you to machine learning, which includes
a tree-based code sample that relies on scikit-learn. The latter portion
of this chapter contains TF 2 code samples and Keras-based code samples for
standard datasets.

Due to space constraints, this chapter does not cover other well-known
algorithms such as linear discriminant analysis and the kMeans algorithm (for
unsupervised learning and clustering). However, there are many online tutori-
als available that discuss these and other algorithms in machine learning.

With the preceding points in mind, the first section of this chapter briefly
discusses the classifiers that are mentioned in the introductory paragraph. The
second section of this chapter provides an overview of activation functions,
which will be very useful if you decide to learn about deep neural networks. In
this section you will learn how and why they are used in neural networks. This
section also contains a list of the TensorFlow APIs for activation functions, fol-
lowed by a description of some of their merits.

The third section introduces logistic regression, along with a code sample
that involves logistic regression and TensorFlow. Logistic regression relies on
the sigmoid function, which is also used in RNNs (recurrent neural networks)
and LSTMs (long short term memory).

The fourth part of this chapter contains a code sample involving Tensor-
Flow, logistic regression, and the MNIST dataset. This code sample relies
on an understanding of other code samples that are discussed in Chapter 2
(the names of those code samples are provided in the description of the code
sample).

Working with Classifiers • 141

The final portion of this chapter contains Keras-based code samples that
illustrate how to perform “early stopping” and how to define a custom Python
class to handle various events during the Keras training life cycle.

In order to give you some context, classifiers are one of three major types
of algorithms: regression algorithms (such as linear regression in Chapter 4),
classification algorithms (discussed in this chapter), and clustering algorithms
(such as kMeans, which is not discussed in this book).

Another point: the section pertaining to activation functions does involve a
basic understanding of hidden layers in a neural network. Depending on your
comfort level, you might benefit from reading some preparatory material be-
fore diving into this section (there are many articles available online).

What Is ClassIfICatIon?

Given a dataset that contains observations whose class membership is
known, classification is the task of determining the class to which a new data
point belongs. Classes refer to categories and are also called targets or labels.
For example, spam detection in email service providers involves binary clas-
sification (only two classes). The MNIST dataset contains a set of images where
each image is a single digit, which means there are ten labels. Some applica-
tions in classification include credit approval, medical diagnosis, and target
marketing.

What are Classifiers?

In the previous chapter, you learned that linear regression uses supervised
learning in conjunction with numeric data: the goal is to train a model that can
make numeric predictions (e.g., the price of stock tomorrow, the temperature
of a system, its barometric pressure, and so forth). By contrast, classifiers use
supervised learning in conjunction with nonnumerical classes of data: the goal
is to train a model that can make categorical predictions.

For instance, suppose that each row in a dataset is a specific wine, and each
column pertains to a specific wine feature (tannin, acidity, and so forth). Sup-
pose further that there are five classes of wine in the dataset: for simplicity, let’s
label them A, B, C, D, and E. Given a new data point, which is to say a new row
of data, a classifier attempts to determine the label for the new wine.

Some of the classifiers in this chapter can perform categorical classification
and also make numeric predictions (i.e., they can be used for regression as well
as classification).

Common Classifiers

Some of the most popular classifiers for machine learning are listed here
(in no particular order):

•	 linear classifiers
•	 kNN (k Nearest Neighbor)

142 • tensorFlow 2 pocket primer

•	 logistic regression
•	 decision trees
•	 random forests
•	 SVMs (Support Vector Machines)
•	 Bayesian classifiers
•	 CNNs (Convolutional Neural Networks)

Keep in mind that different classifiers have different advantages and dis-
advantages, which often involves a trade-off between complexity and accuracy,
similar to algorithms in fields that are outside of AI.

In the case of deep learning, CNNs perform image classification, which
makes them classifiers (they can also be used for audio and text processing).
The subsequent sections provide a brief description of the ML classifiers that
are listed in the previous list.

What are lInear ClassIfIers?

A linear classifier separates a dataset into two classes. A linear classifier is a
line for 2D points, a plane for 3D points, and a hyperplane (a generalization of
a plane) for higher dimensional points.

Linear classifiers are often the fastest classifiers, so they are often used
when the speed of classification is of high importance. Linear classifiers usually
work well when the input vectors are sparse (i.e., mostly zero values) or when
the number of dimensions is large.

What Is knn?

The kNN (“k Nearest Neighbor”) algorithm is a classification algorithm. In
brief, data points that are “near” each other are classified as belonging to the
same class. When a new point is introduced, it’s added to the class of the ma-
jority of its nearest neighbor. For example, suppose that k equals 3, and a new
data point is introduced. Look at the class of its three nearest neighbors: let’s
say they are A, A, and B. Then by majority vote, the new data point is labeled
as a data point of class A.

The kNN algorithm is essentially a heuristic and not a technique with com-
plex mathematical underpinnings, and yet it’s still an effective and useful algo-
rithm. Try the kNN algorithm if you want to use a simple algorithm, or when
you believe that the nature of your dataset is highly unstructured. The kNN
algorithm can produce highly nonlinear decisions despite being very simple.

Note that kNN is often used in search applications where you are looking
for “similar” items; that is, when your task is some form of “find items similar
to this one.”

Measure similarity by creating a vector representation of the items, and
then compare the vectors using an appropriate distance metric (such as Eu-
clidean distance).

Working with Classifiers • 143

Some concrete examples of a kNN search include searching for semanti-
cally similar documents.

how to handle a tie in knn

An odd value for k is less likely to result in a tie vote, but it’s not impossible.
For example, suppose that k equals 7, and when a new data point is introduced,
the labels of its seven nearest neighbors belong to the set {A,B,A,B,A,B,C}. As
you can see, there is no majority vote, because there are three points in class A,
three points in class B, and one point in class C.

There are several techniques for handling a tie, as listed here:

•	 Assign higher weights to closer points
•	 Increase the value of k until a winner is determined
•	 Decrease the value of k until a winner is determined
•	 Randomly select one class

If you reduce k until it equals 1, it’s still possible to have a tie vote: there
might be two points that are equally distant from the new point, so you need a
mechanism for deciding which of those two points to select as the 1-neighbor.

If there is a tie between classes A and B, then randomly select either class
A or class B. Another variant is to keep track of the “tie” votes, and alternate
round-robin style to ensure a more even distribution.

What are DeCIsIon trees?

Decision trees are another type of classification algorithm that involves a
tree-like structure. Keep in mind that a “generic” tree is constructed using
conditional logic. As a simple illustration, suppose that a dataset contains a set
of numbers representing ages of people, and let’s also suppose that the first
number is 50. This number is chosen as the root of the tree, and all numbers
that are smaller than 50 are added on the left branch of the tree, whereas all
numbers that are greater than 50 are added on the right branch of the tree.

For example, suppose the sequence of numbers is {50, 25, 70, 40}. Then we
can construct a tree as follows: 50 is the root node; 25 is the left child of 50; 70
is the right child of 50; and 40 is the right child of 20. Each additional numeric
value that we add to this dataset is processed to determine which direction to
proceed (“left or right”) at each node in the tree.

Listing 5.1 displays a portion of the dataset partial_wine.csv, which
contains two features and a label column (there are three classes). The total
row count for this dataset is 178.

Listing 5.1: partial_wine.csv

Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1

144 • tensorFlow 2 pocket primer

13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 5.2 displays the contents of tree_classifier.py, which uses a
decision tree in order to train a model on the dataset partial_wine.csv.

Listing 5.2: tree_classifier.py

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

Importing the dataset
dataset = pd.read_csv('partial_wine.csv')
X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

split the dataset into a training set and a test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size = 0.25, random_state = 0)

Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy',ran
dom_state=0)
classifier.fit(X_train, y_train)
====> INSERT YOUR CLASSIFIER CODE HERE <====

predict the test set results
y_pred = classifier.predict(X_test)

generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

Listing 5.3 contains some import statements and then populates the
Pandas DataFrame variable dataset with the contents of the CSV file
partial_wine.csv. Next, the variable x is initialized with the first two
columns (and all the rows) of dataset, and the variable y is initialized with
the third column (and all the rows) of dataset.

Working with Classifiers • 145

Next, the variables X_train, X_test, y_train, and y_test are
populated with data from X and y using a 75/25 split proportion. Notice that
the variable sc (which is an instance of the StandardScalar class) per-
forms a scaling operation on the variables X_train and X_test.

The code block shown in bold in Listing 5.3 is where we create an instance
of the DecisionTreeClassifier class and then train the instance with
the data in the variables X_train and X_test.

The next portion of Listing 5.3 populates the variable y_pred with a set of
predictions that are generated from the data in the X_test variable. The last
portion of Listing 5.3 creates a confusion matrix based on the data in y_test
and the predicted data in y_pred.

Remember that the diagonal elements of a confusion matrix are the correct
predictions (such as true positive and true negative); all the other cells contain
a numeric value that specifies the number of predictions that are incorrect
(such as false positive and false negative).

Now launch the code in Listing 5.3 and you will see the following output for
the confusion matrix in which there are thirty-six correct predictions and nine
incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13 1 2]
 [0 17 4]
 [1 1 6]]

There is a total of forty-five entries in the preceding 3x3 matrix, and the
diagonal entries are correctly identified labels. Hence, the accuracy is 36/45
= 0.80.

What are ranDom forests?

Random forests are a generalization of decision trees: this classification al-
gorithm involves multiple trees (the number is specified by you). If the data
involves making a numeric prediction, the average of the predictions of the
trees is computed. If the data involves a categorical prediction, the mode of the
predictions of the trees is determined.

By way of analogy, random forests operate in a manner similar to financial
portfolio diversification: the goal is to balance the losses with higher gains.
Random forests use a “majority vote” to make predictions, which operates
under the assumption that selecting the majority vote is more likely to be cor-
rect (and more often) than any individual prediction from a single tree.

You can easily modify the code in Listing 5.3 to use a random forest by
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10,
criterion='entropy', random_state = 0)

146 • tensorFlow 2 pocket primer

Make this code change, launch the code, and examine the confusion matrix
to compare its accuracy with the accuracy of the decision tree in Listing 5.3.

What are sVms?

Support vector machines involve a supervised ML algorithm and can be
used for classification or regression problems. SVMs can work with nonlinearly
separable data as well as linearly separable data. An SVM uses a technique
called the “kernel trick” to transform data and then finds an optimal boundary.
The data points are “transformed” into a higher dimension in order to find a
linear separation of the transformed data.

The key idea involves finding a hyperplane that best divides a dataset into
two classes. SVMs are more common in classification tasks than regression
tasks. Some common use cases for SVMs include:

•	 text classification tasks: category assignment
•	 detecting spam/sentiment analysis
•	 used for image recognition: aspect-based recognition and color-based

classification
•	 handwritten digit recognition (postal automation)

trade-offs of sVms

Although SVMs are extremely powerful, there are trade-offs involved.
Some of the advantages of SVMs are listed here:

•	 high accuracy
•	 works well on smaller, cleaner datasets
•	 can be more efficient because it uses a subset of training points
•	 an alternative to CNNs in cases of limited datasets
•	 captures more complex relationships between data points

There are some disadvantages of SVMs that are listed here:

•	 not suited to larger datasets: training time can be high
•	 less effective on noisier datasets with overlapping classes
•	 SVMs involve more parameters than decision trees and random forests

Now modify Listing 5.3 to use an SVM by replacing the two lines shown in
bold with the following two lines shown in bold:

from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

You now have an SVM-based model, simply by making the previous code
update! Make the code change, launch the modified code, and examine the
confusion matrix in order to compare its accuracy with the accuracy of the de-
cision tree model and the random forest model earlier in this chapter.

Working with Classifiers • 147

What Is BayesIan InferenCe?

Bayesian inference is an important technique in statistics that involves sta-
tistical inference and Bayes’s theorem to update the probability for a hypoth-
esis as more information becomes available. Bayesian inference is often called
“Bayesian probability,” and it’s important in dynamic analysis of sequential
data.

Bayes’s theorem

Given two sets A and B, let’s define the following numeric values (all of
them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you're in B)
P(B|A) = probability of being in B (given you're in A)

Given the preceding definitions, the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left sides of equations #3 and #4 equal to each another, and
that gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6)

some Bayesian terminology

In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

Each of the four terms in the preceding equation has a name, as discussed
in the following.

First, the posterior probability is P(h|d), which is the probability of hy-
pothesis h given the data d.

Second, P(d|h) is the probability of data d given that the hypothesis h
was true.

148 • tensorFlow 2 pocket primer

Third, the prior probability of h is P(h), which is the probability of
hypothesis h being true (regardless of the data).

Finally, P(d) is the probability of the data (regardless of the hypothesis).
We are interested in calculating the posterior probability of P(h|d) from the

prior probability p(h) with P(D) and P(d|h).

What Is maP?

The maximum a posteriori (MAP) hypothesis is the hypothesis with the
highest probability, which is the maximum probable hypothesis. This can be
written as follows:

MAP(h) = max(P(h|d))

or:

MAP(h) = max((P(d|h) * P(h)) / P(d))

or:

MAP(h) = max(P(d|h) * P(h))

Why Use Bayes’s theorem?

Bayes’s Theorem describes the probability of an event based on the prior
knowledge of the conditions that might be related to the event. If we know the
conditional probability, we can use Bayes rule to find out the reverse probabili-
ties. The previous statement is the general representation of the Bayes rule.

What Is a BayesIan ClassIfIer?

A Naive Bayes (NB) classifier is a probabilistic classifier inspired by the
Bayes theorem. An NB classifier assumes the attributes are conditionally in-
dependent, and it can work even when this assumption is not true. This as-
sumption greatly reduces computational cost, and it’s a simple algorithm to
implement that only requires linear time. Moreover, an NB classifier is easily
scalable to larger datasets, and good results are obtained in most cases. Other
advantages of an NB classifier include:

•	 can be used for binary and multiclass classification
•	 provides different types of NB algorithms
•	 good choice for text classification problems
•	 a popular choice for spam email classification
•	 can be easily trained on small datasets

As you can probably surmise, NB classifiers do have some disadvantages, as
listed in the following:

Working with Classifiers • 149

•	 all features are assumed unrelated
•	 it cannot learn relationships between features
•	 it can suffer from “the zero probability problem”:

The “zero probability problem” refers to the case when the conditional
probability is zero for an attribute, and it fails to give a valid prediction. How-
ever, it can be fixed explicitly using a Laplacian estimator.

types of naive Bayes Classifiers

Naive Bayes classifiers consist of “probabilistic classifiers” that are based
on applying Bayes’s theorem with strong (naive) independence assumptions
among the features. Naive Bayes classifiers are highly scalable, requiring a
number of parameters that is linear in the number of variables (features/pre-
dictors) in a learning problem. Maximum-likelihood training is performed by
evaluating a closed-form expression that requires linear time, which is more
efficient than other types of classifiers.

There are three major types of NB classifiers. A Gaussian Naive Bayes
classifier is used in classification, and the assumption is that features follow a
normal distribution. A Multinomial Naive Bayes classifier involves 1xn feature
vectors representing the frequencies of events that have been generated. Each
feature vector contains data for a histogram whose elements equal the number
of times that an event was observed in an instance. This type of event model is
used for document classification. A Bernoulli Naive Bayes classifier is suitable
for binary feature vectors. An example is the Bag of Words (BoW) algorithm
for text classification where 0 and 1 represent absence or occurrence of a word,
respectively, in a document.

traInIng ClassIfIers

Some common techniques for training classifiers are listed here:

•	 holdout method
•	 k-fold cross-validation

The holdout method is the most common method, which starts by dividing
the dataset into two partitions called train and test (80% and 20%, respec-
tively). The train set is used for training the model, and the test data tests its
predictive power.

The k-fold cross-validation technique is used to verify that the model is
not over-fitted. The dataset is randomly partitioned into k mutually exclusive
subsets, where each partition has equal size. One partition is for testing and the
other partitions are for training. Iterate throughout the whole of the k folds.

150 • tensorFlow 2 pocket primer

eValUatIng ClassIfIers

Whenever you select a classifier for a dataset, it’s obviously important to
evaluate the accuracy of that classifier. Some common techniques for evaluat-
ing classifiers are listed here:

•	 precision and recall
•	 ROC curve (receiver operating characteristics)

Precision and recall are discussed in Chapter 4 and are reproduced here for
your convenience. Recall the following definitions from Chapter 4:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the fol-
lowing formulas:

precision = TP/(TN + FP)
accuracy = (TP + TN)/[P + N]
recall = TP/[TP + FN]

The ROC curve (receiver operating characteristics) is used for visual com-
parison of classification models that shows the trade-off between the true
positive rate and the false positive rate. The area under the ROC curve is a
measure of the accuracy of the model. When a model is closer to the diagonal,
it is less accurate, and the model with perfect accuracy will have an area of 1.0.

The ROC curve plots true positive rate versus false positive rate. Another
type of curve is the PR curve that plots precision versus recall. When deal-
ing with highly skewed datasets (strong class imbalance), precision-recall (PR)
curves give better results.

Later in this chapter you will see many of the Keras-based classes (located
in the tf.keras.metrics namespace) that correspond to common statisti-
cal terms, which include some of the terms in this section.

This concludes the portion of the chapter pertaining to statistical terms and
techniques for measuring the validity of a dataset. Now let’s look at activation
functions in machine learning, which is discussed in the next section.

What are aCtIVatIon fUnCtIons?

The following is a one-sentence description: an activation function is a
nonlinear function that introduces nonlinearity into a neural network, thereby
preventing a “consolidation” of the hidden layers in the neural network. Spe-
cifically, suppose that every pair of adjacent layers in a neural network involves
just a matrix transformation and no activation function. Such a network is a

Working with Classifiers • 151

linear system, which means that its layers can be consolidated into a much
smaller system.

Notice that the weights of the edges that connect the input layer with the
first hidden layer can be represented by a matrix: let’s call it W1. Next, the
weights of the edges that connect the first hidden layer with the second hidden
layer can also be represented by a matrix: let’s call it W2. Repeat this process
until we reach the edges that connect the final hidden layer with the output
layer: let’s call this matrix Wk. Since we do not have an activation function, we
can simply multiply the matrices W1, W2, …, Wk together and produce one
matrix: let’s call it W. We have now replaced the original neural network with
an equivalent neural network that contains one input layer, a single matrix of
weights W, and an output layer. In other words, we no longer have our original
multilayered neural network!

Fortunately, we can prevent the previous scenario from happening when
we specify an activation function between every pair of adjacent layers. In
other words, an activation function at each layer prevents this “matrix consoli-
dation.” Hence, we can maintain all the intermediate hidden layers during the
process of training the neural network.

For simplicity, let’s assume that we have the same activation function be-
tween every pair of adjacent layers (we’ll remove this assumption shortly). The
process for using an activation function in a neural network is described as
follows:

1. start with an input vector x1 of numbers
2. multiply x1 by the matrix of weights W1 that represents the edges that

connect the input layer with the first hidden layer: the result is a new
vector x2

3. “apply” the activation function to each element of x2 to create another
vector x3

Now repeat steps 2 and 3, except that we use the “starting” vector x3 and
the weights matrix W2 for the edges that connect the first hidden layer with the
second hidden layer (or just the output layer if there is only one hidden layer).

After completing the preceding process, we have “preserved” the neural
network, which means that it can be trained on a dataset. One other thing:
instead of using the same activation function at each step, you can replace each
activation function by a different activation function (the choice is yours).

Why Do We need activation functions?

The previous section outlines the process for transforming an input vector
from the input layer and then through the hidden layers until it reaches the
output layer. The purpose of activation functions in neural networks is vitally
important, so it’s worth repeating here: activation functions “maintain” the
structure of neural networks and prevent them from being reduced to an input
layer and an output layer. In other words, if we specify a nonlinear activation

152 • tensorFlow 2 pocket primer

function between every pair of consecutive layers, then the neural network
cannot be replaced with a neural network that contains fewer layers.

Without a nonlinear activation function, we simply multiply a weight matrix
for a given pair of consecutive layers with the output vector that is produced
from the previous pair of consecutive layers. We repeat this simple multiplica-
tion until we reach the output layer of the neural network.

how Do activation functions Work?

If this is the first time you have encountered the concept of an activation
function, it’s probably confusing, so here’s an analogy that might be helpful.
Suppose you’re driving your car late at night and there’s nobody else on the
highway. You can drive at a constant speed for as long as there are no obstacles
(stop signs, traffic lights, and so forth). On the other hand, suppose you drive
into the parking lot of a large grocery store. When you approach a speed bump
you must slow down, cross the speed bump, and increase speed again, and re-
peat this process for every speed bump, and also slow down for other vehicles
and pedestrians.

Think of the nonlinear activation functions in a neural network as the
counterpart to the speed bumps: you simply cannot maintain a constant speed,
which (by analogy) means that you cannot first multiply all the weight matri-
ces together and “collapse” them into a single weight matrix. Another analogy
involves a road with multiple toll booths: you must slow down, pay the toll,
and then resume driving until you reach the next toll booth. These are only
analogies (and hence imperfect) to help you understand the need for nonlin-
ear activation functions.

Common aCtIVatIon fUnCtIons

Although there are many activation functions (and you can define your own
if you know how to do so), here is a list of common activation functions, fol-
lowed by brief descriptions:

•	 Sigmoid
•	 Tanh
•	 ReLU
•	 ReLU6
•	 ELU
•	 SELU

The sigmoid activation function is based on Euler’s constant e, with a
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]

Working with Classifiers • 153

The tanh activation function is also based on Euler’s constant e, and its
formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)]

One way to remember the preceding formula is to note that the numerator
and denominator have the same pair of terms: they are separated by a “-” sign
in the numerator and a “+” sign in the denominator. The tanh function has a
range of values between -1 and 1.

The ReLU (rectified linear unit) activation function is straightforward: if
x is negative then ReLU(x) is 0; for all other values of x, ReLU(x) equals x.
ReLU6 is specific to TensorFlow, and it’s a variation of ReLU(x): the additional
constraint is that ReLU(x) equals 6 when x >= 6 (hence its name).

ELU is the exponential linear unit, and it’s the exponential “envelope” of
ReLU, which replaces the two linear segments of ReLU with an exponential
activation function that is differentiable for all values of x (including x = 0).

SELU is an acronym for scaled exponential linear unit, and it’s slightly more
complicated than the other activation functions (and used less frequently). For
a thorough explanation of these and other activation functions (along with
graphs that depict their shape), navigate to the following Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function
The preceding link provides a long list of activation functions as well as

their derivatives.

activation functions in Python

Listing 5.4 displays contents of the file activations.py, which con-
tains the formulas for various activation functions.

Listing 5.4: activations.py

import numpy as np

Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x)))

Python tanh example:
z = np.tanh(np.dot(W,x))

Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 5.4 contains Python code that uses NumPy methods in order to
define a sigmoid function, a tanh function, and a ReLU function. Figure 5.1
displays a graph of each of the activation functions in Listing 5.4.

TF 2 (in addition to other frameworks) provides implementations for many
activation functions, which saves you the time and effort from writing your own

154 • tensorFlow 2 pocket primer

implementation of activation functions. The list of TF 2 API activation func-
tions from Chapter 4 are reproduced here for your convenience:

•	 tf.keras.activations.relu
•	 tf.keras.activations.selu
•	 tf.keras.activations.linear
•	 tf.keras.activations.elu
•	 tf.keras.activations.sigmoid
•	 tf.keras.activations.softmax
•	 tf.keras.activations.softplus
•	 tf.keras.activations.tanh

The following subsections provide additional information regarding some
of the activation functions in the preceding list. Keep the following point in
mind: for simple neural networks, use ReLU as your first preference.

the relU anD elU aCtIVatIon fUnCtIons

Currently ReLU is often the “preferred” activation function: previously the
preferred activation function was tanh (and before tanh it was sigmoid).
ReLU behaves close to a linear unit and provides the best training accuracy and
validation accuracy.

Figure 5.1. tensorFlow activation functions.

Working with Classifiers • 155

ReLU is like a switch for linearity: it’s “off” if you don’t need it, and its
derivative is 1 when it’s active, which makes ReLU the simplest of all the cur-
rent activation functions. Note that the second derivative of the function is 0
everywhere (but undefined at the origin): it’s a very simple function that sim-
plifies optimization. In addition, the gradient is large whenever you need large
values, and it never “saturates” (i.e., it does not shrink to zero on the positive
horizontal axis).

Rectified linear units and generalized versions are based on the principle
that linear models are easier to optimize. Use the ReLU activation function or
one of its related alternatives (discussed later).

the advantages and Disadvantages of ReLU

The following list contains the advantages of the ReLU activation function:

•	 does not saturate in the positive region
•	 very efficient in terms of computation
•	 models with ReLU typically converge faster than those with other activa-

tion functions

However, ReLU does have a disadvantage when the activation value of a
ReLU neuron becomes 0: then the gradients of the neuron will also be 0 during
back-propagation. You can mitigate this scenario by judiciously assigning the
values for the initial weights as well as the learning rate.

elU

ELU is an acronym for exponential linear unit that is based on ReLU: the
key difference is that ELU is differentiable at the origin (ReLU is a continuous
function but not differentiable at the origin). However, keep in mind several
points. First, ELUs trade computational efficiency for “immortality” (immunity
to dying): read the following paper for more details: arxiv.org/abs/1511.07289.
Secondly, ReLUs are still popular and preferred over ELU because the use of
ELU introduces an additional new hyper-parameter.

sIgmoID, softmax, anD harDmax sImIlarItIes

The sigmoid activation function has a range in (0,1), and it saturates and
“kills” gradients. Unlike the tanh activation function, sigmoid outputs are
not zero-centered. In addition, both sigmoid and softmax (discussed later)
are discouraged for vanilla feed forward implementation (see Chapter 6 of the
online book by Ian Goodfellow et al.). However, the sigmoid activation func-
tion is still used in LSTMs (specifically for the forget gate, input gate, and the
output gate), GRUs (gated recurrent units), and probabilistic models. Moreo-
ver, some autoencoders have additional requirements that preclude the use of
piecewise linear activation functions.

156 • tensorFlow 2 pocket primer

softmax

The softmax activation function maps the values in a dataset to another
set of values that are between 0 and 1, and whose sum equals 1. Thus, soft-
max creates a probability distribution. In the case of image classification with
convolutional neural networks, the softmax activation function “maps” the
values in the final hidden layer (often abbreviated as “FC”) to the ten neurons
in the output layer. The index of the position that contains the largest probabil-
ity is matched with the index of the number 1 in the one-hot encoding of the
input image. If the index values are equal, then the image has been classified;
otherwise, it’s considered a mismatch.

softplus

The softplus activation function is a smooth (i.e., differentiable) ap-
proximation of the ReLU activation function. Recall that the origin is the only
non-differentiable point of the ReLU function, which is “smoothed” by the
softmax activation, whose equation is here:

f(x) = ln(1 + e^x)

tanh

The tanh activation function has a range of values in the interval (-1,1),
whereas the sigmoid function has a range of values in the interval (0,1).
Both of these activations saturate, but unlike the sigmoid neuron the tanh
output is zero-centered. Therefore, in practice the tanh nonlinearity is always
preferred to the sigmoid nonlinearity.

The sigmoid and tanh activation functions appear in LSTMs (sigmoid
for the three gates and tanh for the internal cell state) as well as GRUs (gated
recurrent units) during the calculations pertaining to input gates, forget gates,
and output gates (discussed in more detail in the next chapter).

sIgmoID, softmax, anD harDmax DIfferenCes

This section briefly discusses some of the differences among these three
functions. First, the sigmoid function is used for binary classification in
the logistic regression model, as well as for the gates in LSTMs and GRUs.
The sigmoid function is used as an activation function while building neu-
ral networks, but keep in mind that the sum of the probabilities is not neces-
sarily equal to 1.

Second, the softmax function generalizes the sigmoid function: it’s
used for multi-classification in the logistic regression model. The softmax
function is the activation function for the “fully connected layer” in CNNs,
which is the rightmost hidden layer and the output layer. Unlike in the sigmoid
function, the sum of the probabilities must equal 1. You can use either the
sigmoid function or softmax for binary (n=2) classification.

Working with Classifiers • 157

Third, the so-called “hardmax” function assigns 0 or 1 to output values
(similar to a step function). For example, suppose that we have three classes
{c1, c2, c3} whose scores are [1, 7, 2], respectively. The hardmax
probabilities are [0, 1, 0], whereas the softmax probabilities are [0.1,
0.7, 0.2]. Notice that the sum of the hardmax probabilities is 1, which
is also true of the sum of the softmax probabilities. However, the hardmax
probabilities are all or nothing, whereas the softmax probabilities are analo-
gous to receiving “partial credit.”

tf 2 anD the sIgmoID aCtIVatIon fUnCtIon

Listing 5.5 displays the contents of tf2_activation_functions.
py, which illustrates how to create a TensorFlow graph that involves seven
activation functions, including the sigmoid function for logistic regression.

Listing 5.5: tf2_activation_functions.py

import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np

ReLU activation
print(tf.nn.relu([-3., 3., 10.]))
y_relu = tf.nn.relu(x_vals)

ReLU-6 activation
print(tf.nn.relu6([-3., 3., 10.]))
y_relu6 = tf.nn.relu6(x_vals)

Sigmoid activation
print(tf.nn.sigmoid([-1., 0., 1.]))
y_sigmoid = tf.nn.sigmoid(x_vals)

Hyperbolic Tangent activation
print(tf.nn.tanh([-1., 0., 1.]))
y_tanh = tf.nn.tanh(x_vals)

Softsign activation
print(tf.nn.softsign([-1., 0., 1.]))
y_softsign = tf.nn.softsign(x_vals)

Softplus activation
print(tf.nn.softplus([-1., 0., 1.]))
y_softplus = tf.nn.softplus(x_vals)

Exponential linear activation (ELU)
print(tf.nn.elu([-1., 0., 1.]))
y_elu = tf.nn.elu(x_vals)

158 • tensorFlow 2 pocket primer

Plot the different functions
plt.plot(x_vals, y_softplus, 'r--', label='Softplus',
linewidth=2)
plt.plot(x_vals, y_relu, 'b:', label='ReLU', linewidth=2)
plt.plot(x_vals, y_relu6, 'g-.', label='ReLU6', linewidth=2)
plt.plot(x_vals, y_elu, 'k-', label='ExpLU', linewidth=0.5)
plt.ylim([-1.5,7])
plt.legend(loc='best')
plt.show()

plt.plot(x_vals, y_sigmoid, 'r--', label='Sigmoid',
linewidth=2)
plt.plot(x_vals, y_tanh, 'b:', label='Tanh', linewidth=2)
plt.plot(x_vals, y_softsign, 'g-.', label='Softsign',
linewidth=2)
plt.ylim([-2,2])
plt.legend(loc='best')
plt.show()

Listing 5.5 starts with some import statements, followed by an extensive
code block that shows you how to invoke the TensorFlow activation functions
that are listed in a previous section. The final section of code in Listing 5.5
plots the various TensorFlow functions.

Figure 5.2 displays the graph of the TensorFlow activation functions that
are defined in the first portion of Listing 5.5.

Figure 5.3 displays the graph of the TensorFlow activation functions that
are defined in the second portion of Listing 5.5.

Figure 5.2. tensorFlow activation functions.

Working with Classifiers • 159

What Is logIstIC regressIon?

Despite its name, logistic regression is a classifier as well as a model with a
binary output. Logistic regression works with multiple independent variables
and involves a sigmoid function for calculating probabilities. Logistic regres-
sion is essentially the result of “applying” the sigmoid activation function to
linear regression in order to perform binary classification.

Logistic regression is useful in a variety of unrelated fields. Such fields in-
clude machine learning, various medical fields, and social sciences. Logistic
regression can be used to predict the risk of developing a given disease, based
on various observed characteristics of the patient. Other fields that use logistic
regression include engineering, marketing, and economics.

Logistic regression can be binomial (only two outcomes for a dependent
variable), multinomial (three or more outcomes for a dependent variable), or
ordinal (dependent variables are ordered). For instance, suppose that a dataset
consists of data that belong either to class A or class B. If you are given a new
data point, logistic regression predicts whether that new data point belongs to
class A or class B. By contrast, linear regression predicts a numeric value, such
as the next-day value of a stock.

Figure 5.3. tensorFlow activation functions.

160 • tensorFlow 2 pocket primer

setting a threshold Value

The threshold value is a numeric value that determines which data points
belong to class A and which points belong to class B. For instance, a pass/fail
threshold might be 0.70. A pass/fail threshold for passing a written driver’s test
in California is 0.85.

As another example, suppose that p = 0.5 is the “cutoff” probability. Then
we can assign class A to the data points that occur with probability > 0.5 and
assign class B to data points that occur with probability <= 0.5. Since there are
only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-balanced
coin. We know that there is a 50% chance of throwing heads (let’s label this
outcome as class A) and a 50% chance of throwing tails (let’s label this out-
come as class B). If we have a dataset that consists of labeled outcomes, then
we have the expectation that approximately 50% of them are class A and 50%
are class B.

On the other hand, we have no way to determine (in advance) what per-
centage of people will pass their written driver’s test, or the percentage of peo-
ple who will pass their course. Datasets containing outcomes for these types
of scenarios need to be trained, and logistic regression is a suitable activation
function for doing so.

logistic regression: assumptions

Logistic regression requires the observations to be independent of each
other. In addition, logistic regression requires little or no multicollinearity
among the independent variables. Logistic regression handles numeric, cat-
egorical, and continuous variables, and also assumes linearity of independent
variables and log odds, which is defined here:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent variables
to be related linearly; however, another requirement is that independent vari-
ables are linearly related to the log odds.

Logistic regression is used to obtain an odds ratio in the presence of more
than one explanatory variable. The procedure is quite similar to multiple lin-
ear regression, with the exception that the response variable is binomial. The
result is the impact of each variable on the odds ratio of the observed event of
interest.

linearly separable Data

Linearly separable data is data that can be separated by a line (in 2D), a
plane (in 3D), or a hyperplane (in higher dimensions). Linearly non-separable
data is data (such as a set of clusters) that cannot be separated by a line or a
hyperplane.

Working with Classifiers • 161

For example, the XOR function involves datapoints that cannot be sepa-
rated by a line. If you create a truth table for an XOR function with two in-
puts, the points (0,0) and (1,1) belong to class 0, whereas the points (0,1) and
(1,0) belong to class 1 (draw these points in a 2D plane to convince yourself).
The solution involves transforming the data in a higher dimension so that it
becomes linearly separable, which is the technique used in SVMs (discussed
earlier in this chapter).

tensorfloW anD logIstIC regressIon

Listing 5.6 displays the contents of tf2_keras_log_reg.py, which
defines a Keras-based model to perform logistic regression.

Listing 5.6: tf2_keras_log_reg.py

import tensorflow as tf
import seaborn as sns
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegressionCV

Load the Iris Dataset
iris = sns.load_dataset("iris")
X = iris.values[:, 0:4]
y = iris.values[:, 4]

Create train and test data
train_X, test_X, train_y, test_y = train_test_split(X, y,
train_size=0.5, random_state=0)

Make one-hot encoder
def one_hot_encode_object_array(arr):
 #One hot encode a numpy array of objects (e.g. strings)
 uniq_vals, ids = np.unique(arr, return_inverse=True)
 return tf.keras.utils.to_categorical(ids, len(uniq_vals))

train_y_hot = one_hot_encode_object_array(train_y)
test_y_hot = one_hot_encode_object_array(test_y)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(16, input_shape=(4,)))
model.add(tf.keras.layers.Activation('sigmoid'))
model.add(tf.keras.layers.Dense(3))
model.add(tf.keras.layers.Activation('softmax'))
model.compile(loss='categorical_crossentropy',
metrics=['accuracy'], optimizer='adam')

train the model:
model.fit(train_X, train_y_hot, verbose=1, batch_size=1)

162 • tensorFlow 2 pocket primer

score, accuracy = model.evaluate(test_X, test_y_hot, batch_
size=16, verbose=0)

print("Test Score = {:.2f}".format(score))
print("Test Accuracy = {:.2f}".format(accuracy))

Listing 5.6 starts with an assortment of import statements, and then ini-
tializes the variable iris with the Iris dataset. The variable X contains the
first three columns (and all the rows) of the Iris dataset, and the variable y
contains the fourth column (and all the rows) of the Iris dataset.

The next portion of Listing 5.6 initializes the training set and the test set
equally: they both contain 50% of the data. The next code block is a Python
function that returns a one-hot encoding of its input (one-hot encoding is de-
scribed in Chapter 2). This Python function is invoked to populate train_y_
hot and test_y_hot as one-hot encoded data. Next, the Keras-based model
contains four hidden layers: a Dense layer and sigmoid activation function,
followed by another Dense layer and a softmax activation function.

The next portion of Listing 5.6 compiles the model, trains the model, and
then calculates the accuracy of the model via the test data. Launch the code in
Listing 5.6 and you will see the following output:

105/105 [==============================] - 0s 2ms/sample -
loss: 1.2798 - accuracy: 0.3048
45/45 [==============================] - 0s 1ms/sample -
loss: 1.0867 - accuracy: 0.4000
Test Score = 1.09
Test Accuracy = 0.40

keras anD early stoPPIng (1)

When you create a model for a neural network, you also need to decide on
the number of training epochs. This number is hardly an obvious choice; in
fact, a value that’s too large can lead to overfitting, whereas a value that’s too
small can lead to underfitting.

Early stopping is a technique that allows you to specify a large value for
the number of epochs, and yet the training will stop if the model performance
improvement drops below a threshold value.

There are several ways that you can specify early stopping, and they in-
volve the concept of a callback function. Listing 5.7 displays the contents of
tf2_keras_callback.py, which performs early stopping via a callback
mechanism.

Listing 5.7: tf2_keras_callback.py

import tensorflow as tf
import numpy as np

Working with Classifiers • 163

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
 loss='mse', # mean squared error
 metrics=['mae']) # mean absolute error

data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
 # stop training if "val_loss" stops improving for over 2
epochs
 tf.keras.callbacks.EarlyStopping(patience=2,
monitor='val_loss'),
 # write TensorBoard logs to the ./logs directory
 tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50,
callbacks=callbacks,
 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Listing 5.7 defines a Keras-based model with three hidden layers and then
compiles the model. The next portion of Listing 5.7 uses the np.random.
random function in order to initialize the variables data, labels, val_
data, and val_labels.

The interesting code involves the definition of the callbacks variable
that specifies the tf.keras.callbacks.EarlyStopping class with a
value of 2 for patience, which means that the model will stop training if
there is an insufficient reduction in the value of val_loss.

The callbacks variable includes the tf.keras.callbacks.Ten-
sorBoard class to specify the logs subdirectory as the location for the Ten-
sorBoard files.

Next, the model.fit() method is invoked with a value of 50 for epochs
(shown in bold), followed by the model.evaluate() method. Launch the
code in Listing 5.7 and you will see the following output:

Epoch 1/50
1000/1000 [==============================] - 0s 354us/
sample - loss: 0.2452 - mae: 0.4127 - val_loss: 0.2517 -
val_mae: 0.4205
Epoch 2/50

164 • tensorFlow 2 pocket primer

1000/1000 [==============================] - 0s 63us/sample
- loss: 0.2447 - mae: 0.4125 - val_loss: 0.2515 - val_mae:
0.4204
Epoch 3/50
1000/1000 [==============================] - 0s 63us/sample
- loss: 0.2445 - mae: 0.4124 - val_loss: 0.2520 - val_mae:
0.4209
Epoch 4/50
1000/1000 [==============================] - 0s 68us/sample
- loss: 0.2444 - mae: 0.4123 - val_loss: 0.2519 - val_mae:
0.4205
1000/1000 [==============================] - 0s 37us/sample
- loss: 0.2437 - mae: 0.4119
(1000, 10)

Notice that the code stopped training after four epochs, even though fifty
epochs are specified in the code.

keras anD early stoPPIng (2)

The previous section contains a code sample with minimalistic functional-
ity with respect to the use of callback functions in Keras. However, you can
also define a custom class that provides finer-grained functionality that uses a
callback mechanism.

Listing 5.8 displays the contents of tf2_keras_callback2.py, which
performs early stopping via a callback mechanism (the new code is shown in
bold).

Listing 5.8: tf2_keras_callback2.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
 loss='mse', # mean squared error
 metrics=['mae']) # mean absolute error

data = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):
 def on_train_begin(self, logs={}):
 print("on_train_begin")

Working with Classifiers • 165

 def on_train_end(self, logs={}):
 print("on_train_begin")
 return

 def on_epoch_begin(self, epoch, logs={}):
 print("on_train_begin")
 return

 def on_epoch_end(self, epoch, logs={}):
 print("on_epoch_end")
 return

 def on_batch_begin(self, batch, logs={}):
 print("on_batch_begin")
 return

 def on_batch_end(self, batch, logs={}):
 print("on_batch_end")
 return

callbacks = [MyCallback()]

model.fit(data, labels, batch_size=32, epochs=50,
callbacks=callbacks,
 validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

The new code in Listing 5.8 that differs from Listing 5.7 is limited to the
code block that is displayed in bold. This new code defines a custom Python
class with several methods, each of which is invoked during the appropriate
point during the Keras life cycle execution. The six methods consists of three
pairs of methods for the start event and end event associated with training,
epochs, and batches, as listed here:

•	 on_train_begin()
•	 on_train_end()
•	 on_epoch_begin()
•	 on_epoch_end()
•	 on_batch_begin()
•	 on_batch_end()

The preceding methods contain just a print() statement in Listing 5.8,
and you can insert any code you wish in any of these methods. Launch the code
in Listing 5.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin

166 • tensorFlow 2 pocket primer

on_batch_end
 32/1000 [..............................] - ETA: 4s -
loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s - loss:
0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 335us/
sample - loss: 0.2466 - mae: 0.4136 - val_loss: 0.2445 -
val_mae: 0.4126
on_train_begin
Epoch 2/50
on_batch_begin
on_batch_end
 32/1000 [..............................] - ETA: 0s - loss:
0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 51us/sample
- loss: 0.2328 - mae: 0.4084 - val_loss: 0.2579 - val_mae:
0.4241
on_train_begin
 32/1000 [..............................] - ETA: 0s - loss:
0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s 22us/sample
- loss: 0.2313 - mae: 0.4077
(1000, 10)

keras anD metrICs

Many Keras-based models only specify accuracy as the metric for evalu-
ating a trained model, as shown here:

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

However, there are many other built-in metrics available, each of which is
encapsulated in a Keras class in the tf.keras.metrics namespace. A list
of many such metrics is displayed in the following list:

Working with Classifiers • 167

•	 class Accuracy: how often predictions match labels
•	 class BinaryAccuracy: how often predictions match labels
•	 class CategoricalAccuracy: how often predictions match labels
•	 class FalseNegatives: the number of false negatives
•	 class FalsePositives: the number of false positives
•	 class Mean: the (weighted) mean of the given values
•	 class Precision: the precision of the predictions wrt the labels
•	 class Recall: the recall of the predictions wrt the labels
•	 class TrueNegatives: the number of true negatives
•	 class TruePositives: the number of true positives

Earlier in this chapter you learned about the “confusion matrix” that
provides numeric values for TP, TN, FP, and FN; each of these values has a
corresponding Keras class TruePositive, TrueNegative, FalsePos-
itive, and FalseNegative, respectively. Perform an online search for
code samples that use the metrics in the preceding list.

DIstrIBUteD traInIng In tf 2 (oPtIonal)

The TF 2 API tf.distribute.Strategy enables you to distribute
the training of a model across multiple GPUs and TPUs, as well as multiple
machines with minimal code changes to existing models. This TF 2 API is easy
to use, with good performance and support for multiple strategies (discussed
later). Moreover, this TF 2 API works with tf.keras and tf.estimator
along with minor code changes. The TF 2 API tf.distribute.Strat-
egy supports various specialized strategies, as shown in the following:

•	 MirroredStrategy
•	 MultiWorkerMirroredStrategy
•	 TPUStrategy
•	 ParameterServerStrategy

The TF 2 tf.distribute.MirrorStrategy supports synchronous
distributed training on multiple GPUs on one machine. It creates one replica
per GPU device. Each variable in the model is mirrored across all the replicas.
Together, these variables form a single conceptual variable called Mirrored-
Variable. These variables are kept in sync with each other by applying iden-
tical updates.

The TF 2 tf.distribute.experimental.MultiWorkerMir-
roredStrategy is very similar to MirroredStrategy. This strategy im-
plements synchronous distributed training across multiple workers, each with
potentially multiple GPUs. In addition, this strategy creates copies of all vari-
ables in the model on each device across all workers, which is similar to Mir-
roredStrategy.

The TF 2 tf.distribute.experimental.TPUStrategy lets
users run their TensorFlow training on TPUs, which are available on Google

168 • tensorFlow 2 pocket primer

Colab, the TensorFlow Research Cloud, and Google Compute Engine. TPUS-
trategy has the same synchronous distributed training architecture as Mir-
roredStrategy. TPUs provide their own implementation of efficient
all-reduce and other collective operations across multiple TPU cores, which
are used in TPUStrategy.

The TF 2 tf.distribute.experimental.ParameterServer-
Strategy supports parameter servers training. This strategy is suitable for
multi-GPU synchronous local training or for asynchronous multi-machine
training. When used to train locally on one machine, variables are not mir-
rored; instead, they are placed on the CPU and operations are replicated across
all local GPUs. In a multi-machine setting, machines are designated as workers
or as parameter servers. Each variable of the model is placed on one parameter
server. Computation is replicated across all GPUs of the all the workers.

Using tf.distribute.Strategy with keras

The tf.distribute.Strategy strategy is integrated into tf.keras,
which means that it’s seamless for Keras users to distribute their training writ-
ten in Keras-based code. However, there are two code changes required: first,
create an instance of the appropriate tf.distribute.Strategy, and
second, move the creation and compiling of the Keras model inside strat-
egy.scope. The following code block illustrates how to do so with a Keras
model that contains one dense layer:

mirrored_strategy = tf.distribute.MirroredStrategy()

with mirrored_strategy.scope():
 model = tf.keras.Sequential([tf.keras.layers.Dense(1,
 input_shape=(1,))])
 model.compile(loss='mse',optimi
zer='sgd')

For more details regarding distributed training in TF 2, navigate to this
website:

https://www.tensorflow.org/guide/distribute_strategy

sUmmary

This chapter started with an explanation of classification and classifiers, fol-
lowed by a brief explanation of commonly used classifiers in machine learning.
Next you saw a list of the TF 2 APIs for various activation functions, followed
by a description of some of their merits.

You also learned about logistic regression that involves the sigmoid activa-
tion function, followed by a Keras-based code sample involving logistic regres-
sion. Then you saw an example of early stopping in Keras, followed by a very
brief description of the classes in the tf.keras.metrics namespace.

Finally, you learned about the TF 2 support for distributed training, and a
brief description of the available strategies.

This appendix briefly discusses an assortment of topics, such as NLP
(natural language processing), MLPs (multilayer perceptrons), CNNs
(convolutional neural networks), RNNs (recurrent neural networks),

LSTMs (long short term memory), reinforcement learning, and deep reinforce-
ment learning. Most of this appendix contains descriptive content, along with
some Keras-based code samples that assume you have read the Keras material
in the previous chapters. This appendix is meant to be a cursory introduction
to a diverse set of topics, along with suitable links to additional information.

If you are new to deep learning, many topics in this appendix (such as LSTMs)
will require additional study in order for you to become comfortable with them.
Nevertheless, there’s still value in learning about topics that are new to you:
think of this appendix as a modest step toward your mastery of deep learning.

The first portion of this appendix briefly discusses deep learning, the prob-
lems it can solve, and the challenges for the future. The second part of this ap-
pendix briefly introduces the perceptron, which is essentially a “core building
block” for neural networks. In fact ANNs, MLPs, RNNs, LSTMs, and VAEs are
all based on multiple layers that contain multiple perceptrons.

The third part of this appendix provides an introduction to CNNs, followed
by an example of training a Keras-based CNN with the MNIST dataset: this
code sample will make more sense if you have read the section pertaining to
activation functions in Chapter 5.

The fourth part of this appendix discusses the architectures of RNNs, LSTMs,
GRUs, autoencoders, and GANs. The final section of this appendix discusses re-
inforcement learning, the TF-Agents toolkit from Google, a short introduction
to deep reinforcement learning, and also the Google Dopamine toolkit.

Again, please read the sections in Chapter 4 and Chapter 5 pertaining to
the Keras material in order to derive greater benefit from the code samples in
this appendix.

Appendix

TF 2, Keras, and
advanced Topics

170 • TensorFlow 2 pocket primer

What Is Deep LearnIng?

Deep learning is a subset of machine learning, and it includes model archi-
tectures known as CNNs, RNNs, LSTMs, GRUs, variational autoencoders (VAEs),
and GANs. A deep learning model requires at least two hidden layers in a neu-
ral network (“very deep learning” involves neural networks with at least ten
hidden layers).

From a high-level viewpoint, deep learning with supervised learning in-
volves defining a model (aka neural network) as well as:

•	 making an estimate for a datapoint
•	 calculating the loss or error of each estimate
•	 reducing the error via gradient descent

In Chapter 4, you learned about linear regression in the context of machine
learning, which starts with initial values for m and b:

m = tf.Variable(0.)
b = tf.Variable(0.)

The training process involves finding the optimal values for m and b in the
following equation:

y = m*x + b

We want to calculate the dependent variable y given a value for the inde-
pendent variable x. In this case, the calculation is handled by the following
Python function:

def predict(x):
 y = m*x + b
 return y

The loss is another name for the error of the current estimate, which can be
calculated via the following Python function that determines the MSE value:

def squared_error(y_pred, y_actual):
 return tf.reduce_mean(tf.square(y_pred-y_actual))

We also need to initialize variables for the training data (often named x_
train and y_train) and the test-related data (often named x_test and
x_test), which is typically an 80/20 or 75/25 “split” between training data and
test data. Then the training process invokes the preceding Python functions in
the following manner:

loss = squared_error(predict(x_train), y_train)
print("Loss:", loss.numpy())

Although the Python functions in this section are simple, they can be gen-
eralized to handle complex models, such as the models that are described later
in this appendix.

TF 2, Keras, and Advanced Topics • 171

You can also solve linear regression via deep learning, which involves the
same code that you saw earlier in this section.

What are hyperparameters?

Deep learning involves hyperparameters, which are sort of like knobs and
dials whose values are initialized by you prior to the actual training process.
For instance, the number of hidden layers and the number of neurons in hid-
den layers are examples of hyperparameters. You will encounter many hyper-
parameters in deep learning models, some of which are listed here:

•	 Number of hidden layers
•	 Number of neurons in hidden layers
•	 Weight initialization
•	 An activation function
•	 A cost function
•	 An optimizer
•	 A learning rate
•	 A dropout rate

The first three hyperparameters in the preceding list are required for the
initial setup of a neural network. The fourth hyperparameter is required for
forward propagation. The next three hyperparameters (i.e., the cost function,
optimizer, and learning rate) are required in order to perform backward error
propagation (aka backprop) during supervised learning tasks. This step cal-
culates a set of numbers that is used to update the values of the weights in
the neural network in order to improve the accuracy of the neural network.
The final hyperparameter is useful if you need to reduce overfitting in your
model. In general, the cost function is the most complex of all these hyper-
parameters.

During back propagation, the vanishing gradient problem can occur, after
which some weights are no longer updated, in which case the neural network is
essentially inert (and debugging this problem is generally nontrivial). Another
consideration: deciding whether or not a local minima is “good enough” and
preferable to expending the additional time and effort that is required to find
an absolute minima.

Deep Learning architectures

As discussed previously, deep learning supports various architectures, in-
cluding ANNs, CNNs, RNNs, and LSTMs. Although there is overlap in
terms of the types of tasks that these architectures can solve, each one has a
specific reason for its creation. As you progress from MLPs to LSTMs, the ar-
chitectures become more complex. Sometimes combinations of these architec-
tures are well-suited for solving tasks. For example, capturing video and making
predictions typically involves a CNN (for processing each input image in a video
sequence) and an LSTM (to make predictions of the position of objects that are
in the video stream).

172 • TensorFlow 2 pocket primer

In addition, neural networks for NLP can contain one or more CNNs, RNNs,
LSTMs, and biLSTMs (bidirectional LSTMs). In particular, the combination of
reinforcement learning with these architectures is called deep reinforcement
learning.

Although MLPs have been popular for a long time, they suffer from two
disadvantages: they are not scalable for computer vision tasks, and they are
somewhat difficult to train. On the other hand, CNNs do not require adjacent
layers to be fully connected. Another advantage of CNNs is something called
“translation invariance,” which means that an image (such as a digit, cat, dog,
and so forth) is recognized as such, regardless of where it appears in a bitmap.

problems that Deep Learning Can solve

As you know, back propagation involves updating the weights of the edges
between consecutive layers, which is performed in a right-to-left fashion (i.e.,
from the output layer toward the input layer). The updates involve the chain
rule (a rule for computing derivatives) and an arithmetic product of param-
eters and gradient values. There are two anomalous results that can occur: the
product of terms approaches zero (which is called the “vanishing gradient”
problem) or the product of terms becomes arbitrarily large (which is called the
“exploding gradient” problem). These problems arise with the sigmoid activa-
tion function.

Deep learning can mitigate both of these problems via LSTMs. Keep in
mind that CNN models replace the sigmoid activation function with the ReLU
activation function. ReLU is a very simple continuous function that is differen-
tiable (with a value of 1 to the right of the y-axis and a value of -1 to the left of
the y-axis) everywhere except the origin. Hence, it’s necessary to perform some
“tweaking” to make things work nicely at the origin.

Challenges in Deep Learning

Although deep learning is powerful and has produced impressive results
in many fields, there are some important ongoing challenges that are being
explored, including:

•	 Bias in algorithms
•	 Susceptibility to adversarial attacks
•	 Limited ability to generalize
•	 Lack of explainability
•	 Lack of causality

Algorithms can contain unintentional bias, and even if the bias is removed,
there can be unintentional bias in data. For example, one neural network was
trained on a dataset containing pictures of Caucasian males and females. The
outcome of the training process “determined” that males were physicians and
that females were housewives (and did so with a high probability). The reason
was simple: the dataset depicted males and females almost exclusively in those

TF 2, Keras, and Advanced Topics • 173

two roles. The following article contains more information regarding bias in
algorithms:

https://www.technologyreview.com/s/612876/this-is-how-ai-bias-really-
happensand-why-its-so-hard-to-fix

Deep learning focuses on finding patterns in datasets, and generalizing
those results is a more difficult task. There are some initiatives that attempt to
provide explainability for the outcomes of neural networks, but such work is
still in its infancy. Deep learning finds patterns and can determine correlation,
but it’s incapable of determining causality.

Now that you have a bird’s-eye view of deep learning, let’s rewind and dis-
cuss an important cornerstone of neural networks called the perceptron, which
is the topic of the next section.

What are perCeptrons?

Recall from Chapter 4 that a model for linear regression involves an output
layer that contains a single neuron, whereas a multi-neuron output layer is
for classifiers (discussed in Chapter 5). DNNs (deep neural networks) contain
at least two hidden layers, and they can solve regression problems as well as
classification problems. In fact, the output layer of a model for classification
problems actually consists of a set of probabilities (one for each class in the
dataset) whose sum equals 1.

Figure A.1 displays a perceptron with incoming edges that have numeric
weights.

Figure A.1. An example of a perceptron.

image adapted from Arunava Chakraborty, source: https://towardsdatascience.com/the-perceptron-
3af34c84838c

174 • TensorFlow 2 pocket primer

The next section delves into the details of perceptrons and how they form
the backbone of MLPs.

Definition of the perceptron Function

A Perceptron involves a function f(x) where the following holds:

f(x) = 1 if w*x + b > 0 (otherwise f(x) = 0)

In the previous expression, w is a vector of weights, x is an input vector, and
b is a vector of biases. The product w*x is the inner product of the vectors w
and x, and activating a Perceptron is an all-or-nothing decision (e.g., a light
bulb is either on or off, with no intermediate states).

Notice that the function f(x) checks the value of the linear term w*x+b,
which is also specified in the sigmoid function for logistic regression. The same
term appears as part of the calculation of the sigmoid value, as shown here:

1/[1 + e^(w*x+b)]

Given a value for w*x+b, the preceding expression generates a numeric
value. However, in the general case, W is a weight matrix, and x and b are vectors.

The next section digresses slightly in order to describe artificial neural net-
works, after which we’ll discuss MLPs.

a Detailed View of a perceptron

A neuron is essentially a “building block” for neural networks. In gen-
eral, each neuron receives multiple inputs (which are numeric values),
each of which is from a neuron that belongs to a previous layer in a neural
network. The weighted sum of the inputs is calculated and assigned to the
neuron.

Specifically, suppose that a neuron N’ (N “prime”) receives inputs whose
weights are in the set {w1, w2, w3, . . . , wn}, where these numbers specify the
weights of the edges that are connected to neuron N’. Since forward propa-
gation involves a flow of data in a left-to-right fashion, this means that the
left endpoints of the edges are connected to neurons {N1, N2, . . ., Nk} in a
preceding layer, and the right endpoint of all these edges is N’. The weighted
sum is calculated as follows:

x1*w1 + x2*w2 + . . . + xn*wn

After the weighted sum is calculated, it’s “passed” to an activation func-
tion that calculates a second value. This step is required for artificial neural
networks, and it’s explained later in the chapter. This process of calculat-
ing a weighted sum is repeated for every neuron in a given layer, and then
the same process is repeated on the neurons in the next layer of a neural
network.

TF 2, Keras, and Advanced Topics • 175

The entire process is called forward propagation, which is “comple-
mented” by the backward error propagation step (also called “backprop”).
During the backward error propagation step, new weight values are calculated
for the entire neural network. The combination of forward prop and backward
prop is repeated for each data point (e.g., each row of data in a CSV file). The
goal is to finish this training process so that the finalized neural network (also
called a “model”) accurately represents the data in a dataset and can also ac-
curately predict values for the test data. Of course, the “accuracy” of a neural
network depends on the dataset in question, and the accuracy can be higher
than 99%.

the anatomy oF an artIFICIaL neuraL netWork (ann)

An ANN consists of an input layer, an output layer, and one or more hidden
layers. For each pair of adjacent layers in an ANN, neurons in the left layer
are connected with neurons in the right layer via an edge that has a numeric
weight. If all neurons in the left layer are connected to all neurons in the right
layer, it’s called an MLP (discussed later).

Keep in mind that the perceptrons in an ANN are “stateless”: they do
not retain any information about previously processed data. Furthermore, an
ANN does not contain cycles (hence ANNs are acyclic). By contrast, RNNs and
LSTMs do retain state and they do have cycle-like behavior, as you will see later
in this chapter.

Incidentally, if you have a mathematics background, you might be tempted
to think of an ANN as a set of contiguous bipartite graphs in which data “flows”
from the input layer (think “multiple sources”) toward the output layer (“the
sink”). Unfortunately, this viewpoint doesn’t prove useful for understanding
ANNs. A better way to understand ANNs is to think of their structure as a
combination of the hyperparameters in the following list:

1. the number of hidden layers
2. the number of neurons in each hidden layer
3. the initial weights of edges connecting pairs of neurons
4. the activation function
5. a cost (aka loss) function
6. an optimizer (used with the cost function)
7. the learning rate (a small number)
8. the dropout rate (optional)

Figure A.2 is a very small example of an ANN (there are many variations:
this is simply one example).

Since the output layer of the ANN in Figure A.2 contains more than one
neuron, we know that it’s a model for a classification task.

176 • TensorFlow 2 pocket primer

Figure A.2. An example of an Ann.

image adapted from Cburnett, source: https://commons.wikimedia.org/wiki/
File:artificial_neural_network.svg

the model Initialization hyperparameters

The first three parameters in the list of bullet items in the previous section
are required for initializing the neural network. The hidden layers are interme-
diate computational layers, each of which is composed of neurons. The num-
ber of edges between each pair of adjacent layers is flexible and determined by
you. More information about network initialization is here:

http://www.deeplearning.ai/ai-notes/initialization/
The edges that connect neurons in each pair of adjacent layers (including

the input layer and the output layer) have numeric weights. The initial values
of these weights are often small random numbers between 0 and 1. Keep in
mind that the connections between adjacent layers can affect the complexity
of a model. The purpose of the training process is to fine-tune edge weights in
order to produce an accurate model.

An ANN is not necessarily fully connected, which is to say that some edges
between pairs of neurons in adjacent layers might be missing. By contrast,
neural networks such as CNNs share edges (and their weights), which can make
them more computationally feasible (but even CNNs can require significant
training time). Note that the Keras tf.keras.layers.Dense() class
handles the task of fully connecting two adjacent layers. As discussed later,
MLPs are fully connected, which can greatly increase the training time for such
a neural network.

the activation hyperparameter

The fourth parameter is the activation function that is applied to weights
between each pair of consecutive layers. Neural networks with many layers
typically involve different activation functions. For instance, CNNs use the
ReLU activation function on feature maps (created by “applying” filters to an

TF 2, Keras, and Advanced Topics • 177

image), whereas the penultimate layer is “connected” to the output layer via
the softmax function (which is a generalization of the sigmoid function).

the Cost Function hyperparameter

The fifth, sixth, and seventh hyperparameters are required for backward
error propagation that starts from the output layer and moves right to left to-
ward the input layer. These hyperparameters perform the “heavy lifting” of
machine learning frameworks: they compute the updates to the weights of the
edges in neural networks.

The cost function is a function in multidimensional Euclidean space. For
example, the MSE cost function is a bowl-shaped cost function that has a
global minimum. In general, the goal is to minimize the MSE function in
order to minimize the cost, which in turn will help us maximize the accuracy
of a model (but this is not guaranteed for other cost functions). However,
sometimes a local minimum might be considered “good enough” instead of
finding a global minimum: you must make this decision (i.e., it’s not a purely
programmatic decision).

Alas, cost functions for larger datasets tend to be very complex, which is
necessary in order to detect potential patterns in datasets. Another cost func-
tion is the cross-entropy function, which involves maximizing the likelihood
function (contrast this with MSE). Search for online articles (such as Wikipe-
dia) for more details about cost functions.

the optimizer hyperparameter

An optimizer is an algorithm that is chosen in conjunction with a cost function,
and its purpose is to converge to the minimum value of the cost function during
the training phase (see the comment in the previous section regarding a local
minimum). Different optimizers make different assumptions regarding the man-
ner in which new approximations are calculated during the training process. Some
optimizers involve only the most recent approximation, whereas other optimizers
use a “rolling average” that takes into account several previous approximations.

There are several well-known optimizers, including SGD, RMSprop, Ad-
agrad, Adadelta, and Adam. Check online for details regarding the advan-
tages and trade-offs of these optimizers.

the Learning rate hyperparameter

The learning rate is a small number, often between 0.001 and 0.05, which
affects the magnitude of the number used to update the current weight of an
edge in order to train the model with these updated weights. The learning rate
has a sort of “throttling effect.” If the value is too large, the new approxima-
tion might “overshoot” the optimal point; if it’s too small, the training time can
increase significantly. By analogy, imagine you are in a passenger jet and you’re
100 miles away from an airport. The speed of the airplane decreases as you
approach the airport, which corresponds to decreasing the learning rate in a
neural network.

178 • TensorFlow 2 pocket primer

the Dropout rate hyperparameter

The dropout rate is the eighth hyperparameter, which is a decimal
value between 0 and 1, typically between 0.2 and 0.5. Multiply this deci-
mal value with 100 to determine the percentage of randomly selected
neurons to ignore during each forward pass in the training process. For
example, if the dropout rate is 0.2, then 20% of the neurons are selected
randomly and ignored during the forward propagation process. A different
set of neurons is randomly selected whenever a new data point is processed
in the neural network. Note that the neurons are not removed from the
neural network: they still exist, and ignoring them during forward propa-
gation has the effect of “thinning” the neural network. In TF 2, the Keras
tf.keras.layers.Dropout class performs the task of “thinning” a
neural network.

There are additional hyperparameters that you can specify, but they are
optional and not required in order to understand ANNs.

What Is Backward error propagation?

An ANN is typically drawn in a left-to-right fashion, where the leftmost
layer is the input layer. The output from each layer becomes the input for
the next layer. The term forward propagation refers to supplying values to the
input layer and progressing through the hidden layers toward the output layer.
The output layer contains the results (which are estimated numeric values) of
the forward pass through the model.

Here is a key point: backward error propagation involves the calculation of
numbers that are used to update the weights of the edges in the neural network.
The update process is performed by means of a loss function (and an optimizer
and a learning rate), starting from the output layer (the right-most layer) and
then moving in a right-to-left fashion in order to update the weights of the
edges between consecutive layers. This procedure trains the neural network,
which involves reducing the loss between the estimated values at the output
layer and the true values (in the case of supervised learning). This procedure
is repeated for each data point in the training portion of the dataset. Process-
ing the training dataset is called an epoch, and many times a neural network is
trained via multiple epochs.

The previous paragraph did not explain what the loss function is or how
it’s chosen: that’s because the loss function, the optimizer, and the learning
rate are hyperparameters that are discussed in previous sections. However, two
commonly used loss functions are MSE and cross entropy; a commonly used
optimizer is the Adam optimizer (and SGD and RMSprop and others); and a
common value for the learning rate is 0.01.

What Is a muLtILayer perCeptron (mLp)?

A multilayer perceptron (MLP) is a feedforward artificial neural net-
work that consists of at least three layers of nodes: an input layer, a hidden

TF 2, Keras, and Advanced Topics • 179

Figure A.3. An example of an MLp.

layer, and an output layer. An MLP is fully connected: given a pair of ad-
jacent layers, every node in the left layer is connected to every node in
the right layer. Apart from the nodes in the input layer, each node is a
neuron, and each layer of neurons involves a nonlinear activation function.
In addition, MLPs use a technique called backward error propagation (or
simply “backprop”) for training, which is also true for CNNs (convolutional
neural networks).

Figure A.3 displays the contents of an MLP with two hidden layers.
One point to keep in mind: the nonlinear activation function of an MLP

differentiates an MLP from a linear perceptron. In fact, an MLP can handle
data that is not linearly separable. For instance, the OR function and the
AND function involve linearly separable data, so they can be represented
via a linear perceptron. On the other hand, the XOR function involves data
that is not linearly separable, and therefore requires a neural network such
as an MLP.

activation Functions

An MLP without an activation function between any adjacent pair of layers
is a linear system: at each layer, simply multiply the vector from the previous
layer with the current matrix (which connects the current layer to the next
layer) to produce another vector.

On the other hand, it’s straightforward to multiply a set of matrices to pro-
duce a single matrix. Since a neural network without activation functions is a
linear system, we can multiply those matrices (one matrix for each pair of ad-
jacent layers) together to produce a single matrix: the original neural network
is thereby reduced to a two-layer neural network consisting of an input layer
and an output layer, which defeats the purpose of having a multilayered neural
network.

180 • TensorFlow 2 pocket primer

In order to prevent such a reduction of the layers of a neural network,
an MLP must include a nonlinear activation function between adjacent layers
(this is also true of any other deep neural network). The choice of nonlinear
activation function is typically sigmoid, tanh (which is a hyperbolic tangent
function), or ReLU (rectified linear unit).

The output of the sigmoid function ranges from 0 to 1, which has the
effect of “squashing” the data values. Similarly, the output of the tanh func-
tion ranges from -1 to 1. However, the ReLU activation function (or one of its
variants) is preferred for ANNs and CNNs, whereas sigmoid and tanh are
used in LSTMs.

Several upcoming sections contain the details of constructing an MLP, such
as how to initialize the weights of an MLP, storing weights and biases, and how
to train a neural network via backward error propagation.

hoW are Data poInts CorreCtLy CLassIFIeD?

As a point of reference: a “data point” refers to a row of data in a dataset,
which can be a dataset for real estate, a dataset of thumbnail images, or some
other type of dataset. Suppose that we want to train an MLP for a dataset that
contains four classes (aka “labels”). In this scenario, the output layer must also
contain four neurons, where the neurons have index values 0, 1, 2, and 3 (a
ten-neuron output layer has index values from 0 to 9 inclusive). The sum of
the probabilities in the output layer always equals 1 because of the softmax
activation function that is used when transitioning from the penultimate layer
to the output layer.

The index value that has the largest probability in the output layer is com-
pared with the index value one-hot encoding of the label of the current data
point. If the index values are equal, then the NN has correctly classified the
current data point (otherwise, it’s a mismatch).

For example, the MNIST dataset contains images of hand-drawn digits
from 0 through 9 inclusive, which means that an NN for the MNIST dataset
has ten outputs in the final layer, one for each digit. Suppose that an image
containing the digit 3 is currently being “passed” through the NN. The one-
hot encoding for 3 is [0,0,0,1,0,0,0,0,0,0], and the index value with
the largest value in the one-hot encoding is also 3. Now suppose that the out-
put layer of the NN is [0.05,0.05,0.2,0.6,0.02,0.02,0.01,0.01
,0.04] after processing the digit 3. As you can see, the index value with the
maximum value (which is 0.6) is also 3. In this scenario, the NN has correctly
identified the input image. One other point: the TF API tf.argmax() is
used to calculate the total number of images that have been correctly labeled
by an NN.

A binary classifier involves two outcomes for handling tasks such as de-
termining spam/not-spam, fraud/not-fraud, stock increase/decrease (or tem-
perature, or barometric pressure), and so forth. Predicting the future value

TF 2, Keras, and Advanced Topics • 181

of a stock price is a regression task, whereas predicting whether the price will
increase or decrease is a classification task.

In machine learning, the multilayer perceptron is an NN for supervised
learning of binary classifiers (and it’s a type of linear classifier). However,
 single-layer perceptrons are only capable of learning linearly separable pat-
terns. In fact, a famous book entitled Perceptrons by Marvin Minsky and Sey-
mour Papert (written in 1969) showed that it was impossible for these classes
of networks to learn an XOR function. However, an XOR function can be
“learned” by a two-layer perceptron.

keras anD the XOR FunCtIon

The XOR function is a well-known function that is not linearly separable in
the plane. The truth table for the XOR (“exclusive OR”) function is straight-
forward: given two binary inputs, the output is 1 if at most one input is a 1;
otherwise, the output is 0. If we treat XOR as the name of a function with two
binary inputs, here are the outputs:

XOR(0,0) = 0
XOR(1,0) = 1
XOR(0,1) = 1
XOR(1,1) = 0

We can treat the output values as labels that are associated with the
input values. Specifically, the points (0,0) and (1,1) are in class 0 and the
points (1,0) and (0,1) are in class 1. Draw these points in the plane, and
you will have the four vertices of a unit square whose lower-left vertex is
the origin. Moreover, each pair of diagonal elements belongs to the same
class, which makes the XOR function nonlinearly separable in the plane. If
you’re skeptical, try to find a linear separator for the XOR function in the
Euclidean plane.

Listing A.1 displays the contents of tf2_keras_xor.py, which illus-
trates how to create a Keras-based NN to train the XOR function.

Listing A.1: tf2_keras_xor.py

import tensorflow as tf
import numpy as np

Logical XOR operator and "truth" values:
x = np.array([[0., 0.],[0., 1.],[1., 0.],[1., 1.]])
y = np.array([[0.], [1.], [1.], [0.]])

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(2, input_dim=2,
activation='relu'))
model.add(tf.keras.layers.Dense(1))

182 • TensorFlow 2 pocket primer

print("compiling model...")
model.compile(loss='mean_squared_error', optimizer='adam')
print("fitting model...")
model.fit(x,y,verbose=0,epochs=1000)
pred = model.predict(x)

Test final prediction
print("Testing XOR operator")
p1 = np.array([[0., 0.]])
p2 = np.array([[0., 1.]])
p3 = np.array([[1., 0.]])
p4 = np.array([[1., 1.]])

print(p1,":", model.predict(p1))
print(p2,":", model.predict(p2))
print(p3,":", model.predict(p3))
print(p4,":", model.predict(p4))

Listing A.1 initializes the NumPy array x with four pairs of numbers that
are the four combinations of 0 and 1, followed by the NumPy array y that con-
tains the logical OR of each pair of numbers in x.

The next portion of Listing A.1 defines a Keras-based model with two
Dense layers. Next, the model is compiled and trained, and then the var-
iable pred is populated with a set of predictions based on the trained
model.

The next code block initializes the points p1, p2, p3, and p4 and then
displays the values that are predicted for those points. The output from launch-
ing the code in Listing A.1 is here:

compiling model...
fitting model...
Testing XOR operator
[[0. 0.]] : [[0.36438465]]
[[0. 1.]] : [[1.0067574]]
[[1. 0.]] : [[0.36437267]]
[[1. 1.]] : [[0.15084022]]

Experiment with different values for epochs and see how that affects the
predictions. Use the code in Listing A.1 as a “template” for other logical func-
tions. The only modification to Listing A.1 that is required is the replacement
of the variable y in Listing A.1 with the variable y that is specified as the labels
for several other logic gates that are listed as follows.

The labels for the NOR function:

y = np.array([[1.], [0.], [0.], [1.]])

The labels for the OR function:

y = np.array([[0.], [1.], [1.], [1.]])

TF 2, Keras, and Advanced Topics • 183

The labels for the XOR function:

y = np.array([[0.], [1.], [1.], [0.]])

The labels for the ANDR function:

y = np.array([[0.], [0.], [0.], [1.]])
mnist = tf.keras.datasets.mnist

The preceding code snippets are the only changes that you need to make to
Listing A.1 in order to train a model for a different logical function. For your
convenience, the companion files contains the following Keras-based code
samples for the preceding functions:

tf2_keras-nor.py
tf2_keras-or.py
tf2_keras-xor.py
tf2_keras-and.py

After you have finished working with the preceding samples, try the NAND
function, or create more complex combinations of these basic functions.

a hIgh-LeVeL VIeW oF Cnns

CNNs are deep NNs (with one or more convolutional layers) that are well-
suited for image classification, along with other use cases, such as audio and
NLP (natural language processing).

Although MLPs were successfully used for image recognition, they do not
scale well because every pair of adjacent layers is fully connected, which
in turn can result in massive neural networks. For large images (or other
large inputs) the complexity becomes significant and adversely affects
 performance.

Figure A.4 displays the contents of a CNN (there are many variations: this
is simply one example).

Figure A.4. An example of a Cnn.

Adapted from source: https://commons.wikimedia.org/w/index.php?curid=45679374

Input
image

Convolutions

Feature Maps

Output

Max Pooling

Max Pooling

Convolutions
Fully

Connected

184 • TensorFlow 2 pocket primer

Figure A.5. performing a convolution.

a minimalistic CNN

A production quality CNN can be very complex, comprising many hid-
den layers. However, in this section we’re going to look at a minimalistic CNN
(essentially a “toy” neural network), which consists of the following
layers:

•	 Conv2D (a convolutional layer)
•	 ReLU (activation function)
•	 max pooling (reduction technique)
•	 fully connected (FC) layer
•	 Softmax activation function

The next subsections briefly explain the purpose of each bullet point in the
preceding list of items.

the Convolutional Layer (Conv2D)

The convolutional layer is typically labeled as Conv2D in Python and TF
code. The Conv2D layer involves a set of filters, which are small square matri-
ces whose dimensions are often 3x3 but can also be 5x5, 7x7, or even 1x1. Each
filter is “scanned across” an image (think of tricorders in Star Trek movies), and
at each step, an inner product is calculated with the filter and the portion of
the image that is currently “underneath” the filter. The result of this scanning
process is a “feature map” that contains real numbers.

Figure A.5 displays a 7x7 grid of numbers and the inner product of a 3x3
filter with a 3x3 subregion that results in the number 4 that appears in the
feature map.

TF 2, Keras, and Advanced Topics • 185

the ReLU activation Function

After each feature map is created, it’s possible that some of the values in
the feature map are negative. The purpose of the ReLU activation function is
to replace negative values (if any) with zero. Recall the definition of the ReLU
function:

ReLU(x) = x if x >=0 and ReLU(x) = 0 if x < 0

If you draw a 2D graph of ReLU, it consists of two parts: the horizontal axis
for x less than zero and the identity function (which is a line) in the first quad-
rant for x greater than or equal to 0.

the max pooling Layer

The third step involves “max pooling,” which is actually simple to perform:
after processing the feature map with the ReLU activation function in the pre-
vious step, partition the updated feature map into 2x2 rectangles, and select
the largest value from each of those rectangles. The result is a smaller array
that contains 25% of the values of the feature map (i.e., 75% of the numbers
are discarded). There are several algorithms that you can use to perform this
extraction: the average of the numbers in each square; the square root of the
sum of the squares of the numbers in each square; or the maximum number
in each square.

In the case of CNNs, the algorithm for max pooling selects the maximum
number from each 2x2 rectangle. Figure A.6 displays the result of max pooling
in a CNN.

As you can see, the result is a small square array whose size is only 25% of
the previous feature map. This sequence is performed for each filter in the set
of filters that were chosen in the Conv2D layer. This set can have 8, 16, 32, or
more filters.

If you feel puzzled or skeptical about this technique, consider the analogy
involving compression algorithms, which can be divided into two types: lossy
and lossless. In case you didn’t already know, JPEG is a lossy algorithm (i.e.,

Figure A.6. An example of max pooling in a CNN.

186 • TensorFlow 2 pocket primer

data is lost during the compression process), and yet it works just fine for
compressing images. Think of max pooling as the counterpart to lossy com-
pression algorithms, and perhaps that will persuade you of the efficacy of this
algorithm.

At the same time, your skepticism is valid. In fact, Geoffrey Hinton (often
called the “godfather” of deep learning) proposed a replacement for max
pooling called “capsule networks.” This architecture is more complex and
more difficult to train, and is also beyond the scope of this book (you can
find online tutorials that discuss capsule networks in detail). However, cap-
sule networks tend to be more “resistant” to GANs (Generative Adversarial
Networks).

Repeat the previous sequence of steps (as in LeNet), and then perform a
rather nonintuitive action: “flatten” all these small arrays so that they are one-
dimensional vectors, and concatenate these vectors into one (very long) vector.
The resulting vector is then fully connected with the output layer, where the
latter consists of ten “buckets.” In the case of MNIST, these placeholders are
for the digits from 0 to 9 inclusive. Note that the Keras tf.keras.layers.
Flatten class performs this “flattening” process.

The softmax activation function is “applied” to the “long vector” of num-
bers in order to populate the ten “buckets” of the output layer. The result: the
ten buckets are populated with a set of nonzero (and nonnegative) numbers
whose sum equals one. Find the index of the bucket containing the largest
number and compare this number with the index of the one-hot encoded label
associated with the image that was just processed. If the index values are equal,
then the image was successfully identified.

More complex CNNs involve multiple Conv2D layers, multiple FC (fully
connected) layers, different filter sizes, and techniques for combining previous
layers (such as ResNet) to “boost” the data values’ current layer. Additional
information about CNNs is here: https://en.wikipedia.org/wiki/Convolutional_
neural_network

Cnns WIth auDIo sIgnaLs

In addition to image classification, you can train CNNs with audio signals,
which can be converted from analog to digital. Audio signals have various
numeric parameters (such as decibel level and voltage level) that are de-
scribed here:

https://en.wikipedia.org/wiki/Audio_signal
If you have a set of audio signals, the numeric values of their associ-

ated parameters become the dataset for a CNN. Remember that CNNs have
no “understanding” of the numeric input values: the numeric values are
processed in the same fashion, regardless of the source of the numeric
values.

One use case involves a microphone outside of a building that detects and
identifies various sounds. Obviously, it’s important to identify the sound of a

TF 2, Keras, and Advanced Topics • 187

“backfire” from a vehicle versus the sound of a gunshot. In the latter case, the
police would be notified about a potential crime. There are companies that use
CNNs to identify different types of sounds; other companies are exploring the
use of RNNs and LSTMs instead of CNNs.

Cnns anD nLps

In the case of NLPs, it’s possible to “map” words to numeric values and
construct a vector of numeric values from the words in a sentence. Hence, the
text in a document can be transformed into a set of numeric vectors (involv-
ing various techniques that are not discussed here) in order to create a dataset
that’s suitable for input to a CNN.

Another option involves the use of RNNs and LSTMs instead of CNNs for
NLP-related tasks. A bidirectional architecture is being used successfully in
BERT (Bidirectional Encoder Representations from Transformers). The
Google AI team developed BERT (open sourced in 2018), and it’s considered
a breakthrough in its ability to solve NLP problems. The source code is here:

https://github.com/google-research/bert
Now that you have a high-level understanding of CNNs, let’s look at a code

sample that illustrates an image in the MNIST dataset (and the pixel values of
that image), followed by two code samples that use Keras to train a model on
the MNIST dataset.

DIspLayIng an Image In the MNIST Dataset

Listing A.2 displays the contents of tf2_keras-mnist_digit.py,
which illustrates how to create a neural network in TensorFlow that processes
the MNIST dataset.

Listing A.2: tf2_keras-mnist_digit.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist

(X_train, y_train), (X_test, y_test) = mnist.load_data()

print("X_train.shape:",X_train.shape)
print("X_test.shape: ",X_test.shape)

first_img = X_train[0]

uncomment this line to see the pixel values
#print(first_img)

import matplotlib.pyplot as plt
plt.imshow(first_img, cmap='gray')
plt.show()

188 • TensorFlow 2 pocket primer

Figure A.7. The first image in the MniST dataset.

Listing A.2 starts with some import statements and then populates the
training data and test data from the MNIST dataset. The variable first_img
is initialized as the first entry in the X_train array, which is the first image
in the training dataset. The final block of code in Listing A.2 displays the pixel
values for the first image. The output from Listing A.2 is here:

X_train.shape: (60000, 28, 28)
X_test.shape: (10000, 28, 28)

Figure A.7 displays the contents of the first image in the MNIST dataset.

keras anD the MNIST Dataset

When you read code samples that contain Keras-based models that use the
MNIST dataset, the models use a different API in the input layer.

Specifically, a model that is not a CNN flattens the input images into a one-
dimensional vector via the tf.keras.layers.Flatten() API, an exam-
ple of which is here (see Listing A.3 for details):

tf.keras.layers.Flatten(input_shape=(28,28))

On the other hand, a CNN uses the tf.keras.layers.Conv2D() API,
an example of which is here (see Listing A.4 for details):

tf.keras.layers.Conv2D(32,(3,3),activation='relu',input_
shape=(28,28,1))

Listing A.3 displays the contents of tf2_simple_keras_mnist.py,
which illustrates how to create a Keras-based neural network in TensorFlow
that processes the MNIST dataset.

TF 2, Keras, and Advanced Topics • 189

Listing A.3: tf2_simple_keras_mnist.py

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()

x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
 tf.keras.layers.Flatten(input_shape=(28, 28)),
 tf.keras.layers.Dense(512, activation=tf.nn.relu),
 tf.keras.layers.Dropout(0.2),
 tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.summary()

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing A.3 starts with some import statements and then initializes the
variable mnist as a reference to the built-in MNIST dataset. Next, the train-
ing-related and test-related variables are initialized with their respective por-
tions of the MNIST dataset, followed by a scaling transformation for x_train
and x_test.

The next portion of Listing A.3 defines a very simple Keras-based model
with four layers that are created from classes in the tf.keras.layers
package. The next code snippet displays a summary of the model definition,
as shown here:

Model: "sequential"

Layer (type) Output Shape Param #
===
flatten (Flatten) (None, 784) 0

dense (Dense) (None, 512) 401920

dropout (Dropout) (None, 512) 0

dense_1 (Dense) (None, 10) 5130
===
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

190 • TensorFlow 2 pocket primer

The remaining portion of Listing A.3 compiles, fits, and evaluates the
model, which produces the following output:

Epoch 1/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.2186 - acc: 0.9360
Epoch 2/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.0958 - acc: 0.9704
Epoch 3/5
60000/60000 [==============================] - 14s 232us/
step - loss: 0.0685 - acc: 0.9783
Epoch 4/5
60000/60000 [==============================] - 14s 227us/
step - loss: 0.0527 - acc: 0.9832
Epoch 5/5
60000/60000 [==============================] - 14s 225us/
step - loss: 0.0426 - acc: 0.9861
10000/10000 [==============================] - 1s 59us/step

As you can see, the final accuracy for this model is 98.6%, which is a re-
spectable value.

keras, Cnns, anD the MNIST Dataset

Listing A.4 displays the contents of tf2_cnn_dataset_mnist.py,
which illustrates how to create a Keras-based neural network in TensorFlow
that processes the MNIST dataset.

Listing A.4: tf2_cnn_dataset_mnist.py

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

(train_images, train_labels), (test_images, test_labels) =
tf.keras.datasets.mnist.load_data()

train_images = train_images.reshape((60000, 28, 28, 1))
test_images = test_images.reshape((10000, 28, 28, 1))

Normalize pixel values: from the range 0-255 to the range
0-1
train_images, test_images = train_images/255.0, test_
images/255.0

TF 2, Keras, and Advanced Topics • 191

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3),
activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3),
activation='relu'))
model.add(tf.keras.layers.MaxPooling2D((2, 2)))
model.add(tf.keras.layers.Conv2D(64, (3, 3),
activation='relu'))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.summary()

model.compile(optimizer='adam',
 loss='sparse_categorical_crossentropy',
 metrics=['accuracy'])

model.fit(train_images, train_labels, epochs=1)
test_loss, test_acc = model.evaluate(test_images, test_
labels)
print(test_acc)

predict the label of one image
test_image = np.expand_dims(test_images[300],axis = 0)
plt.imshow(test_image.reshape(28,28))
plt.show()

result = model.predict(test_image)
print("result:", result)
print("result.argmax():", result.argmax())

Listing A.4 initializes the training data and labels, as well as the test data
and labels, via the load_data() function. Next, the images are reshaped
so that they are 28x28 images, and then the pixel values are rescaled from the
range 0–255 (all integers) to the range 0–1 (decimal values).

The next portion of Listing A.4 uses the Keras Sequential() API to de-
fine a Keras-based model called model, which contains two pairs of Conv2D
and MaxPooling2D layers, followed by the Flatten layer, and then two
consecutive Dense layers.

Next, the model is compiled, trained, and evaluated via the compile(),
fit(), and evaluate() methods, respectively. The final portion of Listing
A.4 successfully predicts the image whose label is 4, which is then displayed via
Matplotlib. Launch the code in Listing A.4 and you will see the following
output on the command line:

192 • TensorFlow 2 pocket primer

Model: "sequential"

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 26, 26, 32) 320

max_pooling2d (MaxPooling2D) (None, 13, 13, 32) 0

conv2d_1 (Conv2D) (None, 11, 11, 64) 18496

max_pooling2d_1 (MaxPooling2 (None, 5, 5, 64) 0

conv2d_2 (Conv2D) (None, 3, 3, 64) 36928

flatten (Flatten) (None, 576) 0

dense (Dense) (None, 64) 36928

dense_1 (Dense) (None, 10) 650
===
Total params: 93,322
Trainable params: 93,322
Non-trainable params: 0

60000/60000 [==============================] - 54s 907us/
sample - loss: 0.1452 - accuracy: 0.9563
10000/10000 [==============================] - 3s 297us/
sample - loss: 0.0408 - accuracy: 0.9868
0.9868
Using TensorFlow backend.
result: [[6.2746993e-05 1.7837329e-03 3.8957372e-04
4.6143982e-06 9.9723744e-01
 1.5522403e-06 1.9182076e-04 3.0044283e-04 2.2602901e-05
5.3929521e-06]]
result.argmax(): 4

Figure A.8 displays the image that is displayed when you launch the code
in Listing A.4.

You might be asking yourself how non-CNN models in machine learning
achieve high accuracy when every input image is flattened into a one-dimen-
sional vector, which loses the “adjacency” information that is available in a two-
dimensional image. Before CNNs became popular, one technique involved
using MLPs and another technique involved SVMs as models for images. In
fact, if you don’t have enough images to train a model, you can still use an SVM.
Another option is to generate synthetic data using a GAN (which was its original
purpose).

TF 2, Keras, and Advanced Topics • 193

What Is an rnn?

An RNN is a recurrent neural network, which is a type of architecture that
was developed during the 1980s. RNNs are suitable for datasets that contain se-
quential data and also for NLP tasks, such as language modeling, text genera-
tion, or auto-completion of sentences. In fact, you might be surprised to learn
that you can even perform image classification (such as MNIST) via an RNN.
Figure A.9 displays the contents of a simple RNN.

In addition to simple RNNs there are more powerful constructs such as
LSTMs and GRUs. A basic RNN has the simplest type of feedback mechanism
(described later), which involves a sigmoid activation function.

RNNs (which includes LSTMs and GRUs) differ from ANNs in several impor-
tant ways, as listed here:

•	 Statefulness (all RNNs)
•	 Feedback mechanism (all RNNs)
•	 A sigmoid or tanh activation function
•	 Multiple gates (LSTMs and GRUs)
•	 BPTT (Back Propagation Through Time)
•	 Truncated BPTT (simple RNNs)

First, ANNs and CNNs are essentially “stateless,” whereas RNNs are “stateful”
because they have an internal state. Hence, RNNs can process more complex
sequences of inputs, which makes them suitable for tasks such as handwriting
recognition and speech recognition.

Figure A.8. An image in the MNIST dataset.

194 • TensorFlow 2 pocket primer

anatomy of an rnn

Consider the RNN in Figure A.9. Suppose that the sequence of inputs is la-
beled x1, x2, x3, . . . , x(t), and also that the sequence of “hidden states”
is labeled h1, h2, h3, . . . , h(t). Note that each input sequence and hidden
state is a 1xn vector, where n is the number of features.

At time period t, the input is based on a combination of h(t-1) and x(t),
after which an activation function is “applied” to this combination (which can
also involve adding a bias vector).

Another difference is the feedback mechanism for RNNs that occurs be-
tween consecutive time periods. Specifically, the output at a previous time
period is combined with the new input of the current time period in order to
calculate the new internal state. Let’s use the sequence {h(0), h(1), h(2),
. . . h(t-1), h(t)} to represent the set of internal states of an RNN
during time periods {0, 1, 2, . . . , t-1, t}, and let’s also suppose that
the sequence {x(0) , x(1), x(2), ... , x(t-1), x(t)} is the inputs
during the same time periods.

The fundamental relationship for an RNN at time period t is here:

h(t) = f(W*x(t) + U*h(t-1))

In the preceding formula, W and U are weight matrices, and f is typically
the tanh activation function.

Here is a code snippet of a TF 2 Keras-based model that involves the Sim-
pleRNN class:

import tensorflow as tf
...
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.SimpleRNN(5, input_shape=(1,2),
batch_input_shape=[1,1,2], stateful=True))
...

Perform an online search for more information and code samples involving
Keras and RNNs.

Figure A.9. An example of an Rnn.

image adapted from source: https://commons.wikimedia.org/w/index.php?curid=60109157

TF 2, Keras, and Advanced Topics • 195

What Is Bptt?

BPTT (back propagation through time) in RNNs is the counterpart to “back-
prop” for CNNs. The weight matrices of RNNs are updated during BPTT in
order to train the neural network.

However, there is a problem called the “exploding gradient” that can occur
in RNNs, which is to say that the gradient becomes arbitrarily large (versus
the gradient becoming arbitrarily small in the so-called “vanishing gradient”
scenario). One way to deal with the exploding gradient problem is to use a
“truncated BPTT,” which means that BPTT is computed for a small number
of steps instead of all time steps. Another technique is to specify a maximum
value for the gradient, which involves simple conditional logic.

The good news is that there is another way to overcome both the explod-
ing gradient and vanishing gradient problems, which involves LSTMs that are
discussed later in this chapter.

WorkIng WIth rnns anD tF 2

Listing A.5 displays the contents of tf2_rnn_model.py, which illus-
trates how to create a simple Keras-based RNN model.

Listing A.5: tf2_rnn_model.py

import tensorflow as tf

timesteps = 30
input_dim = 12

number of units in RNN cell
units = 512

number of classes to be identified
n_activities = 5
model = tf.keras.models.Sequential()

RNN with dropout:
model.add(tf.keras.layers.SimpleRNN(units=units,
 dropout=0.2,
 input_shape=(timesteps, input_dim)))

one Dense layer:
model.add(tf.keras.layers.Dense(n_activities,
activation='softmax'))

model loss function and optimizer
model.compile(loss='categorical_crossentropy',
 optimizer=tf.keras.optimizers.Adam(),
 metrics=['accuracy'])

model.summary()

196 • TensorFlow 2 pocket primer

Launch the code in Listing A.5 and you will see the following output:

Model: "sequential"

Layer (type) Output Shape Param #
===
simple_rnn (SimpleRNN) (None, 512) 268800

dense (Dense) (None, 5) 2565
===
Total params: 271,365
Trainable params: 271,365
Non-trainable params: 0

There are many variants of RNNs, and you can read about some of them
here:

https://en.wikipedia.org/wiki/Recurrent_neural_network

What Is an Lstm?

LSTMs are a special type of RNN, and they are well-suited for many use
cases, including NLP, speech recognition, and handwriting recognition. LSTMs
are designed for handling something called “long term dependency,” which
refers to the distance gap between relevant information and the location where
that information is required. This situation arises when information in one sec-
tion of a document needs to be “linked” to information that is in a more distant
location of the document.

LSTMs were developed in 1997 and went on to exceed the accuracy perfor-
mance of state-of-the-art algorithms. LSTMs also began revolutionizing speech
recognition (circa 2007). Then in 2009 an LSTM won pattern recognition con-
tests, and in 2014, Baidu used RNNs to exceed speech recognition records.
Navigate to the following link in order to see an example of an LSTM: https://
commons.wikimedia.org/w/index.php?curid=60149410

anatomy of an Lstm

LSTMs are “stateful” and they contain three gates (forget gate, input gate,
and an output gate) that involve a sigmoid function, and also a cell state that
involves the tanh activation function. At time period t the input to an LSTM
is based on a combination of the two vectors h(t-1) and x(t). This pair of
inputs is combined, after which a sigmoid activation function is “applied” to
this combination (which can also include a bias vector) in the case of the forget
gate, input gate, and the output gate.

The processing that occurs at time step t is the “short term” memory of an
LSTM. The internal cell state of LSTMs maintains “long term” memory. Updat-
ing the internal cell state involves the tanh activation function, whereas the
other gates use the sigmoid activation function, as mentioned in the previous

TF 2, Keras, and Advanced Topics • 197

paragraph. Here is a TF 2 code block that defines a Keras-based model for an
LSTM (with the LSTM shown in bold):

import tensorflow as tf
. . .
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.LSTMCell(6,batch_input_
shape=(1,1,1),kernel_initializer='ones',stateful=True))
model.add(tf.keras.layers.Dense(1))
. . .

You can learn about the difference between an LSTM and an LSTMCell
here:

https://stackoverflow.com/questions/48187283/whats-the-difference-be-
tween-lstm-and-lstmcell

In case you’re interested, additional information about LSTMs and also how
to define a custom LSTM cell is here:

https://en.wikipedia.org/wiki/Recurrent_neural_network
https://stackoverflow.com/questions/54231440/define-custom-lstm-cell-in-

keras

Bidirectional Lstms

In addition to one-directional LSTMs, you can also define a “bidirectional”
LSTM that consists of two “regular” LSTMs: one LSTM for the forward direction
and one LSTM in the backward or opposite direction. You might be surprised
to discover that bidirectional LSTMs are well-suited for solving NLP tasks.

For instance, ELMo is a deep word representation for NLP tasks that uses
bidirectional LSTMs.

An even newer architecture in the NLP world is called a “transformer,”;
bidirectional transformers are used in BERT, which is a very well-known sys-
tem (released by Google in 2018) that can solve solve complex NLP problems.

The following TF 2 code block contains a Keras-based model that involves
bidirectional LSTMs:

import tensorflow as tf
. . .
model = Sequential()
model.add(Bidirectional(LSTM(10, return_sequences=True),
input_shape=(5,10)))
model.add(Bidirectional(LSTM(10)))
model.add(Dense(5))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',
optimizer='rmsprop')
. . .

The previous code block contains two bidirectional LSTM cells, both of
which are shown in bold.

198 • TensorFlow 2 pocket primer

Lstm Formulas

The formulas for LSTMs are more complex than the update formula for a
simple RNN, but there are some patterns that can help you understand those
formulas.

Navigate to the following link in order to see the formulas for an LSTM:
https://en.wikipedia.org/wiki/Long_short-term_memory#cite_note-

lstm1997-1
The formulas show you how the new weights are calculated for the forget

gate f, the input gate i, and the output gate o during time step t. In addition,
Figure A.10 shows you how the new internal state and the hidden state (both
at time step t) are calculated.

Notice the pattern for gates f, i, and o: all of them calculate the sum of
two terms, each of which is a product involving x(t) and h(t), after which
the sigmoid function is applied to that sum. Specifically, here’s the formula for
the forget gate at time t:

f(t) = sigma(W(f)*x(t) + U(f)*h(t) + b(f))

In the preceding formula, W(f), U(f), and b(f) are the weight matrix
associated with x(t), the weight matrix associated with h(t), and the bias
vector for the forget gate f, respectively.

Notice that the calculations for i(t) and o(t) have the same pattern as the
calculation for f(t). The difference is that i(t) has the matrices W(i) and
U(i), whereas o(t) has the matrices W(o) and U(o). Thus, f(t), i(t), and
o(t) have a “parallel construction.”

The calculations for c(t), i(t), and h(t) are based on the values for
f(t), i(t), and o(t), as shown here:

c(t) = f(t) * c(t-1) + i(t) * tanh(c'(t))
c'(t) = sigma(W(c) * x(t) + U(c) * h(t-1))
h(t) = o(t) * tanh(c(t))

The final state of an LSTM is a one-dimensional vector that contains the
output from all the other layers in the LSTM. If you have a model that contains
multiple LSTMs, the final state vector for a given LSTM becomes the input for
the next LSTM in that model.

Lstm hyperparameter tuning

LSTMs are also prone to overfitting, and here is a list of things to consider if
you are manually optimizing hyperparameters for LSTMs:

•	 overfitting (use regularization such as L1 or L2)
•	 larger networks are more prone to overfitting
•	 more data tends to reduce overfitting
•	 train the networks over multiple epochs
•	 the learning rate is vitally important

TF 2, Keras, and Advanced Topics • 199

•	 stacking layers can be helpful
•	 use softsign instead of softmax for LSTMs
•	 RMSprop, AdaGrad, or momentum are good choices
•	 Xavier weight initialization

Perform an online search to obtain more information about the optimizers
in the preceding list.

What are grus?

A GRU (gated recurrent unit) is an RNN that is a simplified type of LSTM.
The key difference between a GRU and an LSTM is that a GRU has two gates
(reset and update gates) whereas an LSTM has three gates (reset, output, and
forget gates). The reset gate in a GRU performs the functionality of the input
gate and the forget gate of an LSTM.

Keep in mind that GRUs and LSTMs both have the goal of tracking long-
term dependencies effectively, and they both address the problem of vanishing
gradients and exploding gradients. Navigate to the following link in order to
see an example of a GRU:

https://commons.wikimedia.org/wiki/File:Gated_Recurrent_Unit,_base_
type.svg

Navigate to the following link in order to see the formulas for a GRU (which
are similar to the formulas for an LSTM):

https://en.wikipedia.org/wiki/Gated_recurrent_unit

What are autoenCoDers?

An autoencoder (AE) is a neural network that is similar to an MLP, where
the output layer is the same as the input layer. The simplest type of AE con-
tains a single hidden layer that has fewer neurons than either the input layer
or the output layer. However, there are many different types of AEs in which
there are multiple hidden layers, sometimes containing more neurons than the
input layer (and sometimes containing fewer neurons).

An AE uses unsupervised learning and back propagation to learn an ef-
ficient data encoding. Their purpose is dimensionality reduction: AEs set the
input values equal to the inputs and then try to find the identity function. Fig-
ure A.10 displays a simple AE that involves a single hidden layer.

In essence, a basic AE compresses the input to an “intermediate” vector
with fewer dimensions than the input data, and then transforms that vector
into a tensor with the same shape as the input. Several use cases for AEs are
listed as follows:

•	 document retrieval
•	 classification
•	 anomaly detection

200 • TensorFlow 2 pocket primer

•	 adversarial autoencoders
•	 image denoising (generating clear images)

An example of using TensorFlow and Keras with an autoencoder in order
to perform fraud detection is here:

https://www.datascience.com/blog/fraud-detection-with-tensorflow
AEs can also be used for feature extraction because they can yield better

results than PCAs. Keep in mind that AEs are data-specific, which means that
they only work with similar data. However, they differ from image compression
(and are mediocre for data compression). For example, an autoencoder trained
on faces would work poorly on pictures of trees. In summary, an AE involves:

•	 “squeezing” the input to a smaller layer
•	 learning a representation for a set of data
•	 typically for dimensionality reduction (PCA)
•	 keep only the middle “compressed” layer

As a high-level example, consider a 10x10 image (100 pixels) and an AE
that has 100 neurons (10x10 pixels), a hidden layer with 50 neurons, and an
output layer with 100 neurons. Hence, the AE “compresses” 100 neurons to
50 neurons.

As you saw earlier, there are numerous variations of the basic AE, some of
which are listed as follows:

•	 LSTM autoencoders
•	 Denoising autoencoders
•	 Contractive autoencoders
•	 Sparse autoencoders

Figure A.10. A basic autoencoder.

image adapted from philippe Remy, source: http://philipperemy.github.io/anomaly-detection/

TF 2, Keras, and Advanced Topics • 201

•	 Stacked autoencoders
•	 Deep autoencoders
•	 Linear autoencoders

If you’re interested, the following link contains a wide assortment of
autoencoders, including those that are mentioned in this section:

https://www.google.com/search?sa=X&q=Autoencoder&tbm=isch&source
=univ&ved=2ahUKEwjo-8zRrIniAhUGup4KHVgvC10QiR56BAgMEBY&bi
w=967&bih=672

Perform an online search for code samples and more details regarding AEs
and their associated use cases.

autoencoders and pCa

The optimal solution to an autoencoder is strongly related to principal com-
ponent analysis (PCA) if the autoencoder involves linear activations or only a
single sigmoid hidden layer.

The weights of an autoencoder with a single hidden layer of size p (where
p is less than the size of the input) span the same vector subspace as the one
spanned by the first p principal components.

The output of the autoencoder is an orthogonal projection onto this sub-
space. The autoencoder weights are not equal to the principal components,
and are generally not orthogonal, yet the principal components may be recov-
ered from them using the singular value decomposition.

What are Variational autoencoders?

In very brief terms, a variational autoencoder is sort of an enhanced “regu-
lar” autoencoder in which the “left side” acts as an encoder, and the right side
acts as a decoder. Both sides have a probability distribution associated with the
encoding and decoding process.

In addition, both the encoder and the decoder are actually neural networks.
The input for the encoder is a vector x of numeric values, and its output is a
hidden representation z that has weights and biases. The decoder has input
a (i.e., the output of the encoder), and its output is the parameters of a prob-
ability distribution of the data, which also has weights and biases. Note that the
probability distributions for the encoder and the decoder are different. If you
want to learn more about VAEs, navigate to the Wikipedia page that discusses
VAEs in a detailed fashion.

Figure A.11 displays a high-level and simplified VAE that involves a single
hidden layer.

Another interesting model architecture is a combination of a CNN and a
VAE, which you can read about here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

In the next section, you will learn about GANs, and also how to combine a
VAE with a GAN.

202 • TensorFlow 2 pocket primer

Figure A.11. A variational autoencoder.

What are gans?

A GAN is a generative adversarial network, whose original purpose was to
generate synthetic data, typically for augmenting small datasets or unbalanced
datasets. One use case pertains to missing persons: supply the available images
of those persons to a GAN in order to generate an image of how those people
might look today. There are many other use cases for GANs, some of which are
listed here:

•	 Generating art
•	 Creating fashion styles
•	 Improving images of low quality
•	 Creating “artificial” faces
•	 Reconstructing incomplete/damaged images

Ian Goodfellow (PhD in Machine Learning from the University of Mon-
treal) created GANs in 2014. Yann LeCun (AI research director at Facebook)
called adversarial training “the most interesting idea in the last 10 years in
ML.” Incidentally, Yann LeCun was one of the three recipients of the Turing
Award in 2019: Yoshua Bengio, Geoffrey Hinton, and Yann LeCun.

GANs are becoming increasingly common, and people are finding creative
(unexpected?) uses for them. Alas, GANs have been used for nefarious pur-
poses, such as circumventing image-recognition systems. GANs can generate
“counterfeit” images from valid images by changing the pixel values in order to
deceive neural networks. Since those systems rely on pixel patterns, they can
be deceived via adversarial images, which are images whose pixel values have
been altered.

Navigate to the following link in order to see an example of a GAN that
distorts the image of a panda: https://arxiv.org/pdf/1412.6572.pdf

TF 2, Keras, and Advanced Topics • 203

An article that delves into details of adversarial examples (including the
misclassified panda) is here:

https://openai.com/blog/adversarial-example-research/
According to an MIT paper, the modified values that trigger misclassifica-

tions exploit precise patterns that the image system associates with specific
objects. The researchers noticed that datasets contain two types of correla-
tions: patterns that are correlated with the dataset data, and non-generalizable
patterns in the dataset data. GANs successfully exploit the latter correlations
in order to deceive image-recognition systems. Details of the MIT paper are
here: https://gandissect.csail.mit.edu

Various techniques are being developed to thwart adversarial attacks, but
their effectiveness tends to be short-lived: new GANs are created that can out-
wit those techniques. The following article contains more information about
adversarial attacks:

https://www.technologyreview.com/s/613170/emtech-digital-dawn-song-
adversarial-machine-learning

Unfortunately, there are no long-term solutions to adversarial attacks, and
given their nature, it might never be possible to completely defend against
them. Interestingly, GANs can have problems in terms of convergence, just like
other neural networks. One technique for addressing this problem is called
“minibatch discrimination,” details of which are here:

https://www.inference.vc/understanding-minibatch-discrimination-in-
gans/

Please note that the preceding link involves Kullback Leibler Divergence
and JS Divergence, which are more advanced topics. The preceding blog post
also contains a link to the following Jupyter notebook:

https://gist.github.com/fhuszar/a91c7d0672036335c1783d02c3a3dfe5
If you’re interested in working with GANs, this GitHub link contains Python

and TensorFlow code samples for “constructing attacks and defenses”:
https://github.com/tensorflow/cleverhans

the Vae-gan model

Another interesting model is the VAE-GAN model, which is a hybrid of a
VAE and a GAN, and details about this model are here:

https://towardsdatascience.com/gans-vs-autoencoders-comparison-of-
deep-generative-models-985cf15936ea

According to the preceding link, GANs are superior to VAEs, but they are
also difficult to work with and require a lot of data and tuning. If you’re inter-
ested, a GAN tutorial (by the same author) is available here:

https://github.com/mrdragonbear/GAN-Tutorial

WorkIng WIth nLp (naturaL Language proCessIng)

This section highlights some concepts in NLP, and in many cases you need
to perform an online search to learn about the meaning of the concepts (try

204 • TensorFlow 2 pocket primer

Wikipedia). Although the concepts are treated in a very superficial manner,
you will know what to pursue in order to further your study of NLP.

NLP is currently the focus of significant interest in the machine learning
community. Some of the use cases for NLP are listed here:

•	 Chatbots
•	 Search (text and audio)
•	 Text classification
•	 Sentiment analysis
•	 Recommendation systems
•	 Question answering
•	 Speech recognition
•	 NLU (natural language understanding)
•	 NLG (natural language generation)

You encounter many of these use cases in everyday life when you visit web
pages, or when you perform an online search for books or recommendations
regarding movies.

nLp techniques

The earliest approach for solving NLP tasks involved rule-based ap-
proaches, which dominated the industry for decades. Examples of techniques
using rule-based approaches include regular expressions (RegExs) and context
free grammars (CFGs). RegExs are sometimes used in order to remove me-
tacharacters from text that has been “scraped” from a web page.

The second approach involved training a machine learning model with
some data that was based on some user-defined features. This technique
requires a considerable amount of feature engineering (a nontrivial task) and
includes analyzing the text to remove undesired and superfluous content
(including “stop” words), as well as transforming the words (e.g., converting
uppercase to lowercase).

The most recent approach involves deep learning, whereby a neural net-
work learns the features instead of relying on humans to perform feature en-
gineering. One of the key ideas involves “mapping” words to numbers, which
enables us to map sentences to vectors of numbers. After transforming docu-
ments to vectors, we can perform a myriad of operations on those vectors. For
example, we can use the notion of vector spaces to define vector space models,
where the distance between two vectors can be measured by the angle be-
tween them (this is “cosine similarity”). If two vectors are “close” to each other,
then it’s likelier that the corresponding sentences are similar in meaning. Their
similarity is based on the distributional hypothesis: words in the same contexts
tend to have similar meanings.

A nice article that discusses vector representations of words, along with
links to code samples, is here:

https://www.tensorflow.org/tutorials/representation/word2vec

TF 2, Keras, and Advanced Topics • 205

the transformer architecture and nLp

In 2017, Google introduced the Transformer neural network architec-
ture, which is based on a self-attention mechanism that is well-suited for lan-
guage understanding.

Google showed that the Transformer outperforms earlier benchmarks
for both RNNs and CNNs involving the translation of academic English to Ger-
man as well as English to French. Moreover, the Transformer required less
computation to train, and improved the training time by as much as an order
of magnitude.

The Transformer can process the sentence “I arrived at the bank after
crossing the river” and correctly determine that the word “bank” refers to the
shore of a river and not a financial institution. The Transformer makes this
determination in a single step by making the association between “bank” and
“river.”

The Transformer computes the next representation for a given word
by comparing the word to every other word in the sentence, which results in
an “attention score” for the words in the sentence. The Transformer uses
these scores to determine the extent to which other words will contribute to
the next representation of a given word.

The result of these comparisons is an attention score for every other word
in the sentence. As a result, “river” received a high attention score when com-
puting a new representation for “bank.”

Although LSTMs and bidirectional LSTMs are heavily utilized in NLP tasks,
the Transformer has gained a lot of attention in the AI community, not only
for translation between languages, but also the fact that for some tasks it can
outperform both RNNs and CNNs. The Transformer architecture requires
much less computation time in order to train a model, which explains why
some people believe that the Transformer will supplant RNNs and LSTMs.

The following link contains a TF 2 code sample of a Transformer neural
network that you can launch in Google Colaboratory:

https://www.tensorflow.org/alpha/tutorials/text/transformer
Another interesting and recent architecture is called “attention augmented

convolutional networks,” which is a combination of CNNs with self-attention.
This combination achieves better accuracy than “pure” CNNs, and you can find
more details in this paper: https://arxiv.org/abs/1904.09925

transformer-XL architecture

The Transformer-XL combines a Transformer architecture with two tech-
niques called recurrence mechanism and relative positional encoding to obtain
better results than a Transformer. Transformer-XL works with word-level and
character-level language modeling.

The Transformer-XL and Transformer both process the first segment of
tokens, and the former also keeps the outputs of the hidden layers. Conse-
quently, each hidden layer receives two inputs from the previous hidden layer,

206 • TensorFlow 2 pocket primer

and then concatenates them to provide additional information to the neural
network.

nLp and Deep Learning

The NLP models that use deep learning can comprise CNNs, RNNs, LSTMs,
and bidirectional LSTMs. For example, Google released BERT in 2018, which
is an extremely powerful framework for NLP. BERT is quite sophisticated, and
involves bidirectional transformers and so-called “attention” (discussed briefly
later in this appendix). Deep learning for NLP often yields higher accuracy
than other techniques, but keep in mind that sometimes it’s not as fast as rule-
based and classical machine learning methods.

In case you’re interested, a code sample that uses TensorFlow and RNNs for
text classification is here:

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn
A code sample that uses TensorFlow and RNNs for text generation is here:
https://www.tensorflow.org/alpha/tutorials/text/text_generation

nLp and reinforcement Learning

More recently reinforcement learning with NLP has become a successful
area of research. One technique for NLP-related tasks involves RNN-based
encoder–decoder models that have achieved good results for short input and
output sequences. Another technique involves a neural network, supervised
word prediction, and reinforcement learning. This particular combination
avoids exposure bias, which can occur in models that use only supervised learn-
ing. More details are here: https://arxiv.org/pdf/1705.04304.pdf

Yet another interesting technique involves deep reinforcement learning
(i.e., DL combined with RL) with NLP. In case you don’t already know, DRL
has achieved success in various areas, such as Atari games, defeating Lee Sedol
(the world champion Go player), and robotics. In addition, DRL is also appli-
cable to NLP-related tasks, which involves the key challenge of designing of a
suitable model. Perform an online search for more information about solving
NLP-related tasks with RL and DRL.

Data preprocessing tasks

There are some common preprocessing tasks that are performed on
 documents, listed as follows:

•	 [1] lowercasing
•	 [1] noise removal
•	 [2] normalization
•	 [3] text enrichment
•	 [3] stopword removal
•	 [3] stemming
•	 [3] lemmatization

TF 2, Keras, and Advanced Topics • 207

The preceding tasks can be classified as follows:

1. [1]: mandatory tasks
2. [2]: recommended tasks
3. [3]: task dependent

In brief, preprocessing tasks involve at least the removal of redundant
words (“a,” “the,” and so forth), removing the endings of words (“running,”
“runs,” and “ran” are treated the same as “run”), and converting text from up-
percase to lowercase.

popuLar nLp aLgorIthms

Some of the popular NLP algorithms are listed as follows, and in some
cases they are the foundation for more sophisticated NLP toolkits:

•	 n-grams and skip-grams
•	 BoW: Bag of Words
•	 TF-IDF: basic algorithm in extracting keywords
•	 Word2Vector (Google): O/S project to describe text
•	 GloVe (Stanford NLP Group)
•	 LDA: text classification
•	 CF (collaborative filtering): an algorithm in news recommend system

(Google News and Yahoo News)

The topics in the first half of the preceding list are discussed briefly in
subsequent sections.

What Is an n-gram?

An n-gram is a technique for creating a vocabulary that is based on adjacent
words that are grouped together. This technique retains some word positions
(unlike BoW). You need to specify the value of “n” that in turn specifies the
size of the group.

The idea is simple: for each word in a sentence, construct a vocabulary
term that contains the n words on the left side of the given word and n words
that are on the right side of the given word. As a simple example, “This is a
sentence” has the following 2-grams:

(this, is), (is, a), (a, sentence)

As another example, we can use the same sentence “This is a sentence” to
determine its 3-grams:

(this, is, a), (is, a, sentence)

The notion of n-grams is surprisingly powerful, and it’s used heavily in pop-
ular open-source toolkits such as ELMo and BERT when they pretrain their
models.

208 • TensorFlow 2 pocket primer

What Is a skip-gram?

Given a word in a sentence, a skip-gram creates a vocabulary term by con-
structing a list that contains the n words on both sides of a given word, followed
by the word itself. For example, consider the following sentence:

the quick brown fox jumped over the lazy dog

A skip-gram of size 1 yields the following vocabulary terms:

([the,brown], quick), ([quick,fox], brown),
([brown,jumped], fox),...

A skip-gram of size 2 yields the following vocabulary terms:

([the,quick,fox,jumped], brown),
([quick,brown,jumped,over], fox), ([brown,fox,over,the],
jumped),...

More details regarding skip-grams are discussed here:
https://www.tensorflow.org/tutorials/representation/word2vec#the_skip-

gram_model

What Is BoW?

BoW (Bag of Words) assigns a numeric value to each word in a sentence
and treats those words as a set (or bag). Hence, BoW does not keep track of
adjacent words, so it’s a very simple algorithm.

Listing A.6 displays the contents of the Python script bow_to_vector.
py, which illustrates how to use the BoW algorithm.

Listing A.6: bow_to_vector.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

def to_bow(text):
 words = text.split(" ")
 return [1 if w in words else 0 for w in VOCAB]

print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",to_bow(TEXT1)) # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2)
print("BOW2: ",to_bow(TEXT2)) # [0, 0, 0, 0]

Listing A.6 initializes a list VOCAB and two text strings TEXT1 and TEXT2.
The next portion of Listing A.6 defines the Python function to_bow() that

TF 2, Keras, and Advanced Topics • 209

returns an array containing 0s and 1s: if a word in the current sentence appears
in the vocabulary, then a 1 is returned (otherwise a 0 is returned). The last por-
tion of Listing A.6 invokes the Python function with two different sentences.
The output from launching the code in Listing A.6 is here:

('VOCAB: ', ['dog', 'cheese', 'cat', 'mouse'])
('TEXT1:', 'the mouse ate the cheese')
('BOW1: ', [0, 1, 0, 1])

('TEXT2:', 'the horse ate the hay')
('BOW2: ', [0, 0, 0, 0])
fitting model...

What Is term Frequency?

Term frequency is the number of times that a word appears in a document,
which can vary among different documents. Consider the following simple
example that consists of two “documents” Doc1 and Doc2:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The term frequency for the word “is” and the word “short” is given as fol-
lows:

tf(is) = 1/5 for doc1
tf(is) = 0 for doc2
tf(short) = 1/5 for doc1
tf(short) = 1/4 for doc2

The preceding values will be used in the calculation of tf-idf that is
explained in a later section.

What Is Inverse Document Frequency (idf)?

Given a set of N documents and given a word in a document, let’s define dc
and idf of each word as follows:

dc = # of documents containing a given word
idf = log(N/dc)

Now let’s use the same two documents Doc1 and Doc2 from a previous
section:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The calculations of the idf value for the word “is” and the word “short”
are shown here:

idf(is) = log(2/1) = log(2)
idf(short) = log(2/2) = 0

210 • TensorFlow 2 pocket primer

The following link provides more detailed information about inverse docu-
ment frequency: https://en.wikipedia.org/wiki/Tf–idf#Example_of_tf–idf

What Is tf-idf?

The term tf-idf is an abbreviation for “term frequency, inverse docu-
ment frequency,” and it’s the product of the tf value and the idf value of a
word, as shown here:

tf-idf = tf * idf

A high-frequency word has a higher tf value but a lower idf value. In
general, “rare” words are more relevant than “popular” ones, so they help to
extract “relevance.” For example, suppose you have a collection of ten docu-
ments (real documents, not the toy documents we used earlier). The word
“the” occurs frequently in English sentences, but it does not provide any indi-
cation of the topics in any of the documents. On the other hand, if you deter-
mine that the word “universe” appears multiple times in a single document,
this information can provide some indication of the theme of that document,
and with the help of NLP techniques, assist in determining the topic (or topics)
in that document.

What are WorD emBeDDIngs?

An embedding is a fixed-length vector to encode and represent an entity
(document, sentence, word, or graph). Each word is represented by a real-
valued vector, which can result in hundreds of dimensions. Furthermore,
such an encoding can result in sparse vectors: one example is one-hot en-
coding, where one position has the value 1 and all other positions have the
value 0.

Three popular word-embedding algorithms are Word2vec, GloVe, and
FastText. Keep in mind that these three algorithms involve unsupervised ap-
proaches. They are also based on the distributional hypothesis, which asserts
that words in the same contexts tend to have similar meanings: https://aclweb.
org/aclwiki/Distributional_Hypothesis

A good article regarding Word2Vec in TensorFlow is here:
https://towardsdatascience.com/learn-word2vec-by-implementing-it-in-

tensorflow-45641adaf2ac
This article is useful if you want to see Word2Vec with FastText in gensim:
https://towardsdatascience.com/word-embedding-with-word2vec-and-

fasttext-a209c1d3e12c
Another good article, and this one pertains to the skip-gram model:
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intui-

tion-78614e4d6e0b
A useful article that describes how FastText works “under the hood”:
https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3

TF 2, Keras, and Advanced Topics • 211

Along with the preceding popular algorithms, there are also some popular
embedding models, some of which are listed as follows:

•	 Baseline Averaged Sentence Embeddings
•	 Doc2Vec
•	 Neural-Net Language Models
•	 Skip-Thought Vectors
•	 Quick-Thought Vectors
•	 InferSent
•	 Universal Sentence Encoder

Perform an online search for more information about the preceding em-
bedding models.

eLmo, uLmFit, openaI, and Bert

During 2018 there were some significant advances in NLP-related
research, resulting in the following toolkits and frameworks:

•	 ELMo: released in 02/2018
•	 ULMFit: released in 05/2018
•	 OpenAI: released in 06/2018
•	 BERT: released in 10/2018
•	 MT-DNN: released in 01/2019

ELMo is an acronym for “embeddings from language models,” which pro-
vides deep contextualized word representations and state-of-the-art contextual
word vectors, resulting in noticeable improvements in word embeddings.

Jeremy Howard and Sebastian Ruder created ULMFit (universal language
model fine-tuning), which is a transfer learning method that can be applied
to any task in NLP. ULMFit significantly outperforms the state of the art on
six text classification tasks, reducing the error by 18–24% on the majority of
datasets.

Furthermore, with only 100 labeled examples, it matches the performance
of training from scratch on 100x more data. ULMFit is downloadable here
from GitHub:

https://github.com/jannenev/ulmfit-language-model
OpenAI developed GPT-2 (a successor to GPT), which is a model that was

trained to predict the next word in 40GB of Internet text. OpenAI chose not
to release the trained model due to concerns regarding malicious applications
of their technology.

GPT-2 is a large transformer-based language model with 1.5 billion param-
eters, trained on a dataset of 8 million web pages (curated by humans), with
an emphasis on diversity of content. GPT-2 is trained to predict the next word,
given all of the previous words within some text. The diversity of the dataset
causes this goal to contain naturally occurring demonstrations of many tasks

212 • TensorFlow 2 pocket primer

across diverse domains. GPT-2 is a direct scale-up of GPT, with more than 10X
the parameters and trained on more than 10X the amount of data.

BERT is an acronym for “bidirectional encoder representations from trans-
formers.” BERT can pass this simple English test (i.e., BERT can determine the
correct choice among multiple choices):

On stage, a woman takes a seat at the piano. She:
a) sits on a bench as her sister plays with the doll.
b) smiles with someone as the music plays.
c) is in the crowd, watching the dancers.
d) nervously sets her fingers on the keys.

Details of BERT and this English test are here:
https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-

model-for-nlp/
The BERT (TensorFlow) source code is available here on GitHub:
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service
Another interesting development is MT-DNN from Microsoft, which as-

serts that MT-DNN can outperform Google BERT:
https://medium.com/syncedreview/microsofts-new-mt-dnn-outperforms-

google-bert-b5fa15b1a03e
A Jupyter notebook with BERT is available, and you need the following in

order to run the notebook in Google Colaboratory:

a GCP (Google Compute Engine) account
a GCS (Google Cloud Storage) bucket

Here is the link to the notebook in Google Colaboratory:
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/

colab/bert_finetuning_with_cloud_tpus.ipynb

What Is transLatotron?

Translatotron is an end-to-end speech-to-speech translation model (from
Google) whose output retains the original speaker’s voice; moreover, it’s trained
with less data.

Speech-to-speech translation systems have been developed over the past
several decades with the goal of helping people who speak different languages
to communicate with each other. Such systems have three parts:

•	 automatic speech recognition to transcribe the source speech as text
•	 machine translation to translate the transcribed text into the target lan-

guage
•	 text-to-speech synthesis (TTS) to generate speech in the target language

from the translated text

TF 2, Keras, and Advanced Topics • 213

The preceding approach has been successful in commercial products (in-
cluding Google Translate). However, Translatotron does not require separate
stages, resulting in the following advantages:

•	 faster inference speed
•	 avoiding compounding errors between recognition and translation
•	 easier to retain the voice of the original speaker after translation
•	 better handling of untranslated words (names and proper nouns)

This concludes the portion of the appendix that pertains to NLP. Another
area of great interest in the AI community is reinforcement learning, which is
introduced in the next section.

What Is reInForCement LearnIng (rL)?

Reinforcement learning is a subset of machine learning that attempts to
find the maximum reward for a so-called “agent” that interacts with an “envi-
ronment.” RL is suitable for solving tasks that involve deferred rewards .

In fact, RL can handle tasks that involve a combination of negative, zero,
and positive rewards. For example, if you decide to leave your job in order to
attend school on a full-time basis, you are spending money (a negative reward)
with the belief that your investment of time and money will lead to a higher
paying position (a positive reward) that outweighs the cost of school and lost
earnings.

One thing that might surprise you is that reinforcement learning agents are
susceptible to GANs. More details (along with related links) are in this article:

https://openai.com/blog/adversarial-example-research/
There are many RL applications, some of which are listed here:

•	 game theory
•	 control theory
•	 operations research
•	 information theory
•	 simulation-based optimization
•	 multi-agent systems
•	 swarm intelligence
•	 statistics and genetic algorithms
•	 resources management in computer clusters
•	 traffic light control (congestion problems)
•	 robotics operations
•	 autonomous cars/helicopters
•	 web system configuration/web-page indexing
•	 personalized recommendations
•	 bidding and advertising
•	 robot legged locomotion

214 • TensorFlow 2 pocket primer

•	 marketing strategy selection
•	 factory control

RL refers to goal-oriented algorithms for reaching a complex goal, such as
winning games that involve multiple moves (e.g., chess or Go). RL algorithms
are penalized for incorrect decisions and rewarded for correct decisions: this
reward mechanism is reinforcement.

There are three main approaches in reinforcement learning. Value-based
RL estimates the optimal value function Q(s,a), which is the maximum value
achievable under any policy. Policy-based RL searches directly for the optimal
policy π, which is the policy achieving maximum future reward. Model-based
RL builds a model of the environment and plans (by lookahead) using the
model.

In addition to the preceding approaches to RL (value functions, policies,
and models), you will need to learn the following RL concepts:

•	 MDPs (Markov decision processes)
•	 A policy (a sequence of actions)
•	 The state/value function
•	 The action/value function
•	 Bellman equation (for calculating rewards)

The RL material in this appendix only addresses the following list of topics
(after which you can learn the concepts in the previous list):

•	 NFAs (nondeterministic finite automata)
•	 Markov chains
•	 MDPs (Markov decision processes)
•	 Epsilon-greedy Algorithm
•	 Bellman equation

Another key point: almost all RL problems can be formulated as Markov
Decision Processes, which in turn are based on Markov chains. Let’s take a look
at NFAs and Markov chains and then we can define Markov decision processes.

What are NFAs?

An NFA is a nondeterministic finite automata, which is a generalization of a
DFA (deterministic finite automata). Figure A.12 displays an example of an NFA.

An NFA enables you to define multiple transitions from a given state to
other states. By way of analogy, consider the location of many (most?) gas
stations. Usually they are located at an intersection of two streets, which
means there are at least two entrances to the gas station. After you make your
 purchase, you can exit from the same entrance or from the second entrance.
In some cases, you might even be able to exit from one location and return to
the gas station from the other entrance: this would be comparable to a “loop”
transition of a state in a state machine.

TF 2, Keras, and Advanced Topics • 215

The next step involves adding probabilities to NFAs in order to create a
Markov chain, which is described in more detail in the next section.

What are markov Chains?

Markov chains are NFAs with an additional constraint: the sum of the prob-
abilities of the outgoing edges of every state equals one. Figure A.13 displays
a Markov chain.

As you can see in Figure A.13, a Markov chain is an NFA because a state
can have multiple transitions. The constraint involving probabilities ensures
that we can perform statistical sampling in MDPs that are described in the next
section.

Figure A.12. An example of an nFA.

image adapted from source: https://math.stackexchange.com/questions/1240601/what-is-the-easiest-way-to-
determine-the-accepted-language-of-a-deterministic-fi?rq=1

Figure A.13. An example of a Markov chain.

image adapted from source: https://en.wikipedia.org/wiki/Markov_chain

216 • TensorFlow 2 pocket primer

markov Decision processes (MDPs)

In high-level terms, a Markov decision process is a method that samples
from a complex distribution to infer its properties. More specifically, MDPs
are an extension of Markov chains, which involves the addition of actions
(allowing choice) and rewards (giving motivation). Conversely, if only one
action exists for each state (e.g., “wait”) and all rewards are the same (e.g.,
“zero”), an MDP reduces to a Markov chain. Figure A.14 displays an example
of an MDP.

Thus, an MDP consists of a set of states and actions, and also the rules for
transitioning from one state to another. One episode of this process (e.g., a
single game) produces a finite sequence of states, actions, and rewards. A key
property of MDPs: history does not affect future decisions. In other words, the
process of selecting the next state is independent of everything that happened
before reaching the current state.

MDPs are nondeterministic search problems that are solved via dynamic
programming and RL, where outcomes are partly random and partly under
control. As you learned earlier in this section, almost all RL problems can
be formulated as MDPs; consequently, RL can solve tasks that cannot be
solved by greedy algorithms. However, the epsilon-greedy algorithm is a
clever algorithm that can solve such tasks. In addition, the Bellman equa-
tion enables us to compute rewards for states. Both are discussed in sub-
sequent sections.

the epsILon-greeDy aLgorIthm

There are three fundamental problems that arise in reinforcement learning:

•	 the exploration-exploitation trade-off
•	 the problem of delayed reward (credit assignment)
•	 the need to generalize

Figure A.14. An example of an MDP.

TF 2, Keras, and Advanced Topics • 217

The term “exploration” refers to trying something new or different, whereas
the term exploitation refers to leveraging existing knowledge or information.
For instance, going to a favorite restaurant is an example of exploitation (you
are “exploiting” your knowledge of good restaurants), whereas going to an
untried restaurant is an example of exploration (you are “exploring” a new
venue). When people move to a new city, they tend to explore new restaurants,
whereas people who are moving away from a city tend to exploit their knowl-
edge of good restaurants.

In general, exploration refers to making random choices, whereas exploi-
tation refers to using a greedy algorithm. The epsilon-greedy algorithm is an
example of exploration and exploitation, where the “epsilon” portion of the
algorithm refers to making random selections, and “exploitation” involves a
greedy algorithm.

An example of a simple task that can be solved via the epsilon-greedy algo-
rithm is Open AI Gym’s NChain environment, as shown in Figure A.15.

Each state in Figure A.15 has two actions, and each action has an associ-
ated reward. For each state, its “forward” action has reward 0, whereas its
“backward” action has reward 2. Since a greedy algorithm will always select
the larger reward at any state, this means that the “backward” action is always
selected. Hence, we can never move toward the final state 4 that has a reward
of 10. Indeed, we can never leave state 0 (the initial state) if we adhere to the
greedy algorithm.

Here is the key question: how do we go from the initial state 0 to the final
state, which contains a large reward? We need a modified or hybrid algorithm
in order to go through intermediate low-reward states that lead to the high
reward state.

The hybrid algorithm is simple to describe: adhere to the greedy algorithm
about 90% of the time and randomly select a state for the remaining 10% of

Figure A.15. The Open Ai Gym’s nChain environment.

image adapted from http://ceit.aut.ac.ir/~shiry/lecture/machine-learning/papers/BrL-2000.pdf

218 • TensorFlow 2 pocket primer

the time. This technique is simple, elegant, and effective, and it’s called the
epsilon-greedy algorithm.

Incidentally, a Python-based solution for OpenAI’s NChain task is here:
https://github.com/openai/gym/blob/master/gym/envs/toy_text/nchain.py
Another central concept in reinforcement learning involves the Bellman

equation, which is the topic of the next section.

the BeLLman equatIon

The Bellman equations are named after Richard Bellman, who derived
these equations that are ubiquitous in reinforcement learning. There are sev-
eral Bellman equations, including one for the state value function and one for
the action value function. Figure A.16 displays the Bellman equation for the
state value function.

As you can see in Figure A.16, the value of a given state depends on the
discounted value of future states. The following analogy might help you un-
derstand the purpose of the discounted value gamma in this equation. Sup-
pose that you have USD 100 that you invest at a 5% annual interest rate. After
one year you will have USD 105 (=100 + 5%*100 = 100*(1+0.05)),
after two years you will have USD 110.25 (=100*(1+0.05)*(1+0.05)),
and so forth.

Conversely, if you have a future value of USD 100 (with a 5% annual
investment rate) that is two years in the future, what is its present value?
The answer involves dividing 100 by powers of (1+0.05). Specifically,
the present value of USD 100 from two years in the future equals 100/
[(1+0.05)*(1+0.05)].

In analogous fashion, the Bellman equation enables us to calculate the cur-
rent value of a state by calculating the discounted reward of subsequent states.
The discount factor is called gamma, and it’s often a value between 0.9 and 0.99.
In the preceding example involving USD 100, the value of gamma is 0.9523.

other Important Concepts in rL

After you have studied the basic concepts in RL, you can delve into the
following topics:

•	 Policy gradient (rules for “best” actions)
•	 Q-value
•	 Monte Carlo

Figure A.16. The Bellman equation.

TF 2, Keras, and Advanced Topics • 219

•	 dynamic programming
•	 Temporal difference (TD)
•	 Q-learning
•	 Deep Q network

The preceding topics are explained in online articles (suggestion: use Wiki-
pedia as a starting point for RL concepts), and they will be much more relevant
after you grasp the introductory concepts in RL that are discussed in earlier
sections. Be prepared to spend some time learning these topics, because some
of them are quite challenging in nature.

rL tooLkIts anD FrameWorks

There are many toolkits and libraries for reinforcement learning, typically
based on Python, Keras, Torch, or Java. Some of them are listed here:

•	 OpenAI gym: A toolkit for developing and comparing reinforcement
learning algorithms

•	 OpenAI universe: A software platform for measuring and training an
AI’s general intelligence across the world’s supply of games, websites,
and other applications

•	 DeepMind Lab: A customizable 3D platform for agent-based AI re-
search

•	 rllab: A framework for developing and evaluating reinforcement learn-
ing algorithms, fully compatible with OpenAI Gym

•	 TensorForce: Practical deep reinforcement learning on TensorFlow with
Gitter support and OpenAI Gym/Universe/DeepMind Lab integration

•	 tf-TRFL: A library built on top of TensorFlow that exposes several use-
ful building blocks for implementing RL agents

•	 OpenAI lab: An experimentation system for RL using OpenAI Gym,
Tensorflow, and Keras

•	 MAgent: A platform for many-agent reinforcement learning
•	 Intel Coach: Coach is a Python reinforcement learning research frame-

work containing implementation of many state-of-the-art algorithms

As you can see from the preceding list, there is a considerable variety of
available RL toolkits, and you can visit their home pages to determine which
ones have the features that meet your specific requirements.

tF-agents

Google created the TF-Agents library for RL in TensorFlow. Google
TF-Agents is open source and downloadable from Github:

https://github.com/tensorflow/agents
The core elements of RL algorithms are implemented as agents. An agent

encompasses two main responsibilities: defining a policy to interact with the

220 • TensorFlow 2 pocket primer

environment, and how to learn/train that policy from collected experience.
TF-Agents implements the following algorithms:

•	 DQN: Human-Level Control through Deep Reinforcement Learning,
Mnih et al., 2015

•	 DDQN: Deep Reinforcement Learning with Double Q-Learning, Has-
selt et al., 2015

•	 DDPG: Continuous Control with Deep Reinforcement Learning, Lil-
licrap et al., 2015

•	 TD3: Addressing Function Approximation Error in Actor-Critic Meth-
ods, Fujimoto et al., 2018

•	 REINFORCE: Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning, Williams, 1992

•	 PPO: Proximal Policy Optimization Algorithms, Schulman et al., 2017
•	 SAC: Soft Actor Critic, Haarnoja et al., 2018

Before you can use TF-Agents, first install the nightly build version of
TF-Agents with this command (pip or pip3):

the --upgrade flag ensures you'll get the latest version
pip install --user --upgrade tf-nightly
pip install --user --upgrade tf-agents-nightly # requires
tf-nightly

There are “end-to-end” examples training agents under each agent direc-
tory, an example of which is here for DQN:

tf_agents/agents/dqn/examples/v1/train_eval_gym.py

Keep in mind that TF-Agents is in prerelease status and therefore under
active development, which means that interfaces may change at any time.

What Is Deep reInForCement LearnIng (DrL)?

Deep reinforcement learning is a surprisingly effective combination of
deep learning and RL that has shown remarkable results in a variety of tasks.
For example, DRL has won game competitions such as Go (Alpha Go versus
world champion Lee Sedol) and even prevailed in the complexity of StarCraft
(AlphaStar of DeepMind).

With the release of ELMo and BERT in 2018 (discussed earlier in this
appendix), DRL made significant advances in NLP with these toolkits, surpass-
ing previous benchmarks in NLP.

Google released the Dopamine toolkit for DRL, which is downloadable
here from GitHub: https://github.com/google/dopamine

The keras-rl toolkit supports state-of-the-art Deep RL algorithms in
Keras, which are also designed for compatibility with OpenAI (discussed ear-
lier in this appendix). This toolkit includes the following:

TF 2, Keras, and Advanced Topics • 221

•	 Deep Q learning (DQN)
•	 Double DQN
•	 Deep deterministic policy gradient (DDPG)
•	 Continuous DQN (CDQN or NAF)
•	 Cross-entropy method (CEM)
•	 Dueling network DQN (Dueling DQN)
•	 Deep SARSA
•	 Asynchronous advantage actor-critic (A3C)
•	 Proximal policy optimization algorithms (PPO)

Please keep in mind that the details of the algorithms in the preceding list
require a decent understanding of reinforcement learning. The keras-rl
toolkit is downloadable here from GitHub: https://github.com/keras-rl/keras-rl

mIsCeLLaneous topICs

This section contains a very brief description of other areas of TensorFlow
that might be of interest to you:

•	 TFX (TensorFlow Extended)
•	 TensorFlow Probability
•	 TensorFlow Graphics
•	 TF Privacy

The following subsections provide a very brief description of these topics,
along with links where you can find additional information.

tFX (tensorFlow extended)

TFX is a TensorFlow-based ML platform that provides a configuration
framework and shared libraries to integrate common components needed to
define, launch, and monitor your ML system. TFX involves pipelines that de-
fine a data flow through several components (based on TFX libraries), in order
to perform a given ML task.

TFX pipeline components enable you to perform a variety of ML tasks,
including modeling, training, and serving inference. You can also manage de-
ployments to online, native mobile, and JavaScript targets. A TFX pipeline
often includes the following components:

•	 ExampleGen is the initial input component of a pipeline that ingests and
optionally splits the input dataset

•	 StatisticsGen calculates statistics for the dataset
•	 SchemaGen examines the statistics and creates a data schema
•	 ExampleValidator looks for anomalies and missing values in the dataset
•	 Transform performs feature engineering on the dataset
•	 Trainer trains the model
•	 Evaluator performs deep analysis of the training results

222 • TensorFlow 2 pocket primer

•	 ModelValidator helps you validate your exported models, ensuring that
they are “good enough” to be pushed to production

•	 Pusher deploys the model on a serving infrastructure

TFX is downloadable here on GitHub: https://github.com/tensorflow/tfx

tensorFlow probability

TensorFlow Probability (TFP) is a Python library built on TensorFlow that
combines probabilistic models and deep learning on modern hardware. TFP is
suitable for data scientists (among others) who want to encode domain knowl-
edge to understand data and make predictions. TFP includes:

•	 multiple probability distributions and bijectors
•	 tools to build deep probabilistic models
•	 variational inference and Markov chain Monte Carlo
•	 optimizers such as Nelder-Mead, BFGS, and SGLD

Since TFP is based on TensorFlow, TFP enables you to manage models in
one language in a start-to-finish manner. More details regarding TFP are here:

https://www.tensorflow.org/probability

tensorFlow graphics

TensorFlow Graphics is intended to help you train ML systems that con-
tain complex 3D vision tasks. As such, TensorFlow Graphics provides a set of
differentiable graphics and geometry layers (cameras, spatial transformations,
mesh convolutions, and so forth) and 3D viewer functionalities (such as 3D
TensorBoard) to train and debug ML models. More details regarding Tensor-
Flow Graphics are here:

https://github.com/tensorflow/graphics

tF privacy

TensorFlow Privacy is a Python library that includes implementations of
TensorFlow optimizers for training machine learning models with differential
privacy. The library comes with tutorials and analysis tools for computing the
privacy guarantees provided. More information is here: https://github.com/ten-
sorflow/privacy

summary

This appendix started with an overview of aspects of deep learning, along
with some of the issues (such as the vanishing gradient and exploding gradient)
that deep learning has solved. You learned about the challenges that exist in
deep learning, which include bias in algorithms, susceptibility to adversarial
attacks, limited ability to generalize, lack of explainability in neural networks,
and the lack of causality.

TF 2, Keras, and Advanced Topics • 223

Then you learned about perceptrons and how they are used as neural net-
works. Then you saw a TF 2 code sample that shows you how to define a hid-
den layer in a neural network.

You also learned about the architecture of an ANN, along with commonly
used hyperparameters. Next, you saw TF code samples for an XOR function
and an OR function. In addition, you saw a Keras-based model for a CNN and
the MNIST dataset.

Then you learned about the architecture of an RNN, followed by a Keras-
based code sample. Next you saw the architecture of an LSTM, as well as a
basic code sample. You also got an introduction to variational autoencoders
and some of their use cases. In addition, you were introduced to GANs and how
you can use them.

In addition, you learned about some basic concepts in NLP, such as n-
grams, BoW, tf-idf, and word embeddings.

Finally, you learned about reinforcement learning, including the epsilon-
greedy algorithm and the Bellman equation, followed by some aspects of deep
reinforcement learning, which combines deep learning with reinforcement
learning.

Congratulations! You have reached the end of this book, which has cov-
ered many TF 2 concepts and has introduced you to Keras, as well as linear
regression, logistic regression, and deep learning. You can delve further into
machine learning algorithms or proceed with deep learning, and good luck in
your journey!

Index

A
Accuracy vs. precision vs. recall, 123
Activation functions, 150–152

common, 152–154
need for, 151–152
in Python, 153–154
working of, 152

Activation hyperparameter, 176–177
Android neural networks, 6
Arithmetic operations, 7, 20

caveats for, 20–21
Artificial neural network (ANN), 132

activation hyperparameter, 176–177
anatomy of, 175–178
cost function hyperparameter, 177
dropout rate hyperparameter, 178
learning rate hyperparameter, 177
model initialization hyperparameters, 176
optimizer hyperparameter, 177

Audio Dashboard, 70
Autoencoders (AE), 199–202

and principal component analysis (PCA),
201

variational, 201–202
AutoGraph, 19
Automatic differentiation, 30

B
Back propagation through time

(BPTT), 195
Backward error propagation, 175, 178

Bag of Words (BoW) algorithm, 149,
208–209

batch() operator, 88–89, 97–98
Bayesian classifier, 148–149
Bayesian inference, 147–148
Bayesian terminology, 147–148
Bayes’s Theorem, 147, 148
Bellman equation, 218
Bernoulli Naive Bayes classifier, 149
Bias-variance trade-off, 121–122
Bidirectional Encoder Representations from

Transformers (BERT), 187, 212
Binary classifier, 180
BoostedTreesClassifier, 138
BoostedTreesRegressor, 138
Built-in functions, 21–23

C
Callback function, 162
CheckpointSaverHook, 138
Classifiers, 140–168

Bayesian classifier, 148–149
classification, 141–142
common classifiers, 141–142
decision trees, 143–145
evaluating, 150
random forests, 145–146
support vector machines, 146

Class membership, 141
cloud platforms, 72
Common classifiers, 141–142

226 • TensorFlow 2 Pocket Primer

confusion matrix, 122–123
Convolutional neural networks (CNNs), 68,

104, 130, 132, 190–193
with audio signals, 186–187
convolutional layer (Conv2D), 184
high-level view of, 183–186
max pooling layer, 185–186
minimalistic CNN, 184
and NLPs, 187
ReLU activation function, 185

Cost function hyperparameter, 177

D
Data points, classification,

180–181
Datasets, 74–106

basic steps for, 78
cross-validation, 125
iterators, 81–82
pipeline, creating, 75–77
training data versus test data, 124

Data visualization, 4
Debugging process, 7
Decision trees, 143–145
Deep learning (DL), 170–173

architectures, 171–172
challenges, 172–173
hyperparameters, 171
images, 72
problems, solving, 172

deeplearning.js, 6
Deep reinforcement learning (DRL),

220–221
Deferred execution, 4, 6
Distributed training, 167–168
Distribution Dashboard, 70
DNNClassifier, 138
DNNEstimator, 138
DNNLinearCombinedClassifier, 138
DNNLinearCombinedRegressor, 138
DNNRegressor, 138
Dropout rate hyperparameter, 178

E
Eager execution, 4, 6–7
Early stopping technique, 162–166
Embeddings from language models

(ELMo), 211
Error matrix, 122–123
Exponential linear unit (ELU) activation

function, 153, 155

F
FastText, 210
Feedable iterator, 82
filter() operator, 86–87, 93–95
flatmap() operator, 92–93
flat_map() operator, 93–95
Forward propagation, 175
F1 score, 124

G
Gated recurrent unit (GRU), 132, 199
Gaussian Naive Bayes classifier, 149
GCloud SDK, 73
GCP SDK, 72
gener(), 85
Generative adversarial networks (GANs),

202–203
GitHub, 71
GloVe, 210
Google, 1, 2
Google Cloud Platform (GCP), 72
Google Colaboratory, 71–72
GPT-2, 211, 212
GPU support, 71–72

H
Hardmax function, 157
Hardware platforms, 3
Histogram Dashboard, 70
Holdout method, 149
Hyperparameters, 171

activation, 176–177
cost function, 177
learning rate, 177
model initialization, 176

I
Image Dashboard, 70
Initializable iterator, 82
Inverse document frequency (idf), 209–210

J
Jupyter notebook, 69, 71, 72

K
Keras, 130–134, 136–137, 190–193

and early stopping, 162–166
and metrics, 166–167
MNIST dataset and, 188–190
namespaces, 130–131
versus “standalone” Keras, 133–134

Index • 227

tf.distribute.Strategy with, 168
and XOR function, 181–183

Keras-based model, 134–135
k-fold cross-validation, 125, 149
kNN (“k Nearest Neighbor”) algorithm,

142–143
handle a tie in, 143

L
Lambda expressions, 57, 74, 78–79, 89–91
Learning rate hyperparameter, 177
LeNet, 68
LinearClassifier, 138
Linear classifiers, 142
LinearEstimator, 138
Linear regression, 107–139

challenges, 110–112
collinearity, 111
collinear, points, 108
correlation, error terms, 111
versus curve-fitting, 109
Keras and, 136–137
lines in plane, 113–115
multivariate analysis, 109
nonconstant variance, error terms, 111
nonlinear data, 111
NumPy and Matplotlib, 115–119
perturbation technique, 115–117
scatter plots, 115–118
tf.GradientTape() and, 127–130
types of, 112

LinearRegressor, 138
logdir parameter, 6
Logistic regression, 159–161

assumptions, 160
Keras and early stopping, 162–166
Keras and metrics, 166–167
linearly separable data, 160–161
TensorFlow and, 161–162
threshold value, setting, 160

Long short term memory (LSTMs), 130,
132, 140, 196–199

anatomy of, 196–197
bidirectional, 197
formulas, 198
hyperparameter tuning, 198–199

M
Machine learning, 123

solutions, 110
map() operator, 89–92, 96–97

Markov chains, 215
Markov decision processes (MDPs), 216
Matplotlib, 71, 115–116
Maximum a posteriori (MAP) hypothesis, 148
Mean Squared Error (MSE), 107, 112,

120–121, 125
calculating, manually, 125–126
error types, list of, 120
nonlinear least squares, 120–121

Metrics, measuring models, 122–123
MNIST dataset, 101–103, 140, 141, 190–193

displaying image in, 187–188
Keras and, 188–190

Multilayer perceptron (MLP), 178–180
activation functions, 178–180

Multinomial Naive Bayes classifier, 149
Multivariate analysis, 109

N
Naive Bayes (NB) classifier, 148–149

types of, 149
Natural Language Processing (NLP)

models, 187, 203–207
data preprocessing tasks, 206–207
and deep learning, 206
popular NLP algorithms, 207–210
and reinforcement learning, 206
techniques, 204
transformer architecture and, 205
transformer-XL architecture, 205–206

Neural networks, 30, 67
n-gram, 207
Nondeterministic finite automata (NFAs),

214–215
NumPy, 115–116, 153

O
one_hot() API, 59–60
“one-hot” encoding, 59–60
One-shot iterator, 82
OpenAI, 211
Optimizer hyperparameter, 177

P
Pandas DataFrame, 75
Perceptrons, 173–175

definition of, 174
detailed view of, 174–175

Persistent gradient tape, 34–35
Perturbation technique, 115–117
Precision-recall (PR) curves, 150

228 • TensorFlow 2 Pocket Primer

print() function, 15, 22
Programming languages, 3, 18
p-value, 124
Python functions, 9, 14, 18, 19, 162, 170
Python REPL (read-eval-printloop), 5
Python scripts, 4, 5

R
R^2, 123, 124
Ragged constant, 63–66
Ragged tensor, 63–66
Random forests, 145–146
random_normal() API, 49–50
random numbers, 100–101
Receiver operating characteristics (ROC)

curve, 150
Recurrent neural network (RNN), 130, 140,

193–195
anatomy of, 194
BPTT in, 195
working with, 195–196

reduce() operator, 83–84
Regularization, 121

data normalization vs. standardization, 121
machine learning and feature scaling, 121

Reinforcement learning (RL), 213–216
Bellman equation, 218
Epsilon-greedy Algorithm, 216–218
important concepts in, 218–219
Markov chains, 215
MDPs (Markov decision processes), 216
NFAs (nondeterministic finite automata),

214–215
TF-agents, 219–220
toolkits and frameworks, 219–220

reinitializable iterator, 82
ReLU6, 153
ReLU (rectified linear unit) activation

function, 153, 154–155
advantages and disadvantages of, 155

repeat() operator, 95
Residual sum of squares (RSS), 123
R-squared values limitations, 122

S
Scalar Dashboard, 70
Scaled exponential linear unit (SELU), 153
Second-order tensors, 27–28
Sigmoid activation function, 152, 153, 155–159
simple tf.data.Dataset, 78
simple TFRecord, 66–67

Skip-gram, 208
Softmax activation function, 156, 186
softmax() function, 132
Softplus activation function, 156
Standard error, 16
Support vector machines, 146

trade-offs of, 146

T
take() operator, 95–97, 99–100
Tanh activation function, 153, 156, 196
TensorBoard, 4, 6, 68–71

dashboards, 70
in Jupyter notebook, 69

TensorFlow 1.x (TF 1.x), 1, 3
TensorFlow 2 (TF 2), 2–3

architecture, short version, 4
arithmetic operations in, 20
AutoGraph in, 19
and built-in functions, 21–23
caveats for arithmetic operations, 20–21
CIFAR10 Dataset and TFDS in, 104
concatenating, 82–83
conflicting types in, 29–30
constants in, 8–9
converting sessions to functions, 36
converting to pure functionality, 36
datasets, 74–106
data types, 7
differentiation, 30–31
distributed training in, 167–168
eager execution, 6–7
exponential values in, 23–24
installation, 4–5
Keras layers and models, manage

variables, 36
migrating TF 1.x code, 35
multiplying two second-order tensors in,

28–29
namespaces, 105–106
operations with nodes, 45–59
operations with random numbers, 41–43
primitive types, 7–8
and Python REPL, 5
ragged constants and tensors, 63–66
range() API, 44–45
save and restore variables, 62–63
second-order tensors in, 27–28
sigmoid activation function, 157–159
simple 2D data points in, 126–127
tensor operations, 40

Index • 229

tensors, python arrays conversion, 29–30
tensors and maximum values, 44–45
tensors and operations in, 25–27
tf.data.Dataset and @tf.function, 36
@tf.function in, 14–16
tf.GradientTape in, 30–31
trigonometric values in, 23
two conversion techniques from TF 1.x, 35
use cases, 3
useful APIs, 60–62
using for loops in, 40–41
using while loops in, 41
variables in, 9–10, 13–14
variables versus tensors, 14
working with generators, 79–81, 84–85
working with strings, 24–25
working with TFDS package, 103–104

tensorflow_datasets package (tfds), 103–104
TensorFlow Extended (TFX), 221–222
TensorFlow Graphics, 222
tensorflow.js, 6
TensorFlow Lite, 6
TensorFlow Privacy, 222
TensorFlow Probability (TFP), 3, 222
TensorFlow Serving, 6
TensorFlow upgrade script, 37
Term frequency, 209
Term frequency, inverse document

frequency (tf-idf), 210
Text Dashboard, 70
TF 1.x Iterators, 81–82
TF 2 APIs, 1, 4, 39–73
tf2_arithmetic.py, 20
TF 2-based tool kits, 5–6
tf2_conflict_types.py, 29
TF 2 constant, 8
tf2_constants2.py, 9
tf2_const_var.py, 20
tf2_convert_tensors.py, 29
tf2_elem2.py, 27
tf2_elem3.py, 27
tf2_getshape.py, 11
tf2_gradient_tape4.py, 33
tf2_gradient_tape5.py, 34
tf2_math-ops_pi.py, 22
tf2_overload.py, 18
TF 2 Python function decorator, 1
tf2_row_max.py, 44
tf2_save_restore.py, 62
tf2_strings.py, 24
TF 2 tensor, 7, 10

TF 2 variable, 8
tf2_variables.py, 9
tf.argmax() API, 39, 40, 44, 53–57
tf.assign(), 13
tf.constant(), 7, 9
tf.data.Dataset namespace, 106
tf.data.Datasets, 36, 75, 82–83, 100–103
tf.data namespace, 106
tf.distribute.Strategy, 167, 168
tf.equal() API, 52–53, 55–57
tf.estimator, 104, 105, 138
tf.fill() API, 61
@tf.function, 1, 14–16, 36

caveat about, 15–16
example with, 17–18
example without, 17
overloading functions with, 18–19
working, 14
working with, 17

@tf.function “decorator,” 14
tf.GradientTape, 30–31

examples of, 31
nested loops with, 32–33
tensors with, 33–34
watch() method of, 31–32

tf.GradientTape(), 127–130
tf.keras, 3
tf.keras.activations

namespace, 132
tf.keras.callbacks, 133
tf.keras.datasets

namespace, 132
tf.keras.experimental namespace, 132–133
tf.keras.layers, 130

namespace, 131
tf.keras.models, 130
tf.keras namespaces, 106, 133
tf.keras.optimizers, 130, 133
tf.keras.regularizers, 130, 133
tf.keras.utils, 130, 133
tf.layers, 67–68
TFLearn, 72
tf.linalg namespace, 106
tf.lite namespace, 106
tf.map_fn() API, 57–59
tf.print() function, 16
tf.random_normal() API, 41, 48–49
tf.range() API, 51–52
tf.rank() API, 10–11, 46
TFRecord, 66
tf.reduce_mean() API, 47–48

230 • TensorFlow 2 Pocket Primer

tf.reduce_prod() API, 46–47
tf.reduce_sum() API, 46–47
tf.reshape() API, 50–51
tf.shape() API, 11–13, 46
tf.size() API, 46
tf.summary API, 70–71
TF Summit, 69
tf.truncated_normal() API, 50
tf.unique() API, 61
tf.Variable(), 7
tf.where() API, 61
tf.zeros() API, 60
Total sum of squares (TSS), 123
Training classifiers, 149
Translatotron, 212–213

U
Universal language model fine-tuning

(ULMFit), 211

V
VAE-GAN model, 203
Variables, 13–14

versus tensors, 14
Variance, 122
Variational autoencoders,

201–202

W
watch() method, 31–32
Word2vec, 210
Word embeddings, 210–211

X
XOR function, 161, 181–183

Z
Zero probability problem, 149
zip() operator, 97–100

	FM
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Appendix
	Index

