


Python 3  
for  

Machine Learning



LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and its companion files (the “Work”), you 
agree that this license grants permission to use the contents contained herein, 
but does not give you the right of ownership to any of the textual content in the 
book or ownership to any of the information, files, or products contained in it. 
This license does not permit uploading of the Work onto the Internet or on a 
network (of any kind) without the written consent of the Publisher. Duplication 
or dissemination of any text, code, simulations, images, etc. contained herein 
is limited to and subject to licensing terms for the respective products, and 
permission must be obtained from the Publisher or the owner of the content, 
etc., in order to reproduce or network any portion of the textual material (in any 
media) that is contained in the Work.

Mercury Learning and inforMation (“MLI” or “the Publisher”) and anyone 
involved in the creation, writing, production, accompanying algorithms, code, 
or computer programs (“the software”), and any accompanying Web site or 
software of the Work, cannot and do not warrant the performance or results that 
might be obtained by using the contents of the Work. The author, developers, 
and the Publisher have used their best efforts to insure the accuracy and 
functionality of the textual material and/or programs contained in this package; 
we, however, make no warranty of any kind, express or implied, regarding the 
performance of these contents or programs. The Work is sold “as is” without 
warranty (except for defective materials used in manufacturing the book or due 
to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and 
anyone involved in the composition, production, and manufacturing of this 
work will not be liable for damages of any kind arising out of the use of (or the 
inability to use) the algorithms, source code, computer programs, or textual 
material contained in this publication. This includes, but is not limited to, loss 
of revenue or profit, or other incidental, physical, or consequential damages 
arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to 
replacement of the book and only at the discretion of the Publisher. The use of 
“implied warranty” and certain “exclusions” vary from state to state, and might 
not apply to the purchaser of this product.

Companion files also available for downloading from the publisher by writing 
to info@merclearning.com.



Mercury Learning and inforMation

Dulles, Virginia 
Boston, Massachusetts 

New Delhi 

Python 3  
for  

Machine Learning

oswaLd caMPesato



Copyright ©2020 by Mercury Learning and Information LLC. All rights reserved. 

This publication, portions of it, or any accompanying software may not be reproduced in any way,  
stored in a retrieval system of any type, or transmitted by any means, media, electronic display  
or mechanical display, including, but not limited to, photocopy, recording, Internet postings,  
or scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
1-800-232-0223

O. Campesato. Python 3 for Machine Learning.
ISBN: 978-1-68392-495-1

The publisher recognizes and respects all marks used by companies, manufacturers, and developers as 
a means to distinguish their products. All brand names and product names mentioned in this book are 
trademarks or service marks of their respective companies. Any omission or misuse (of any kind) of service 
marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2020930258

202122321 Printed on acid-free paper in the United States of America.

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. 
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

Companion files are available for download by writing to the publisher at info@merclearning.com. All of our 
titles are available in digital format at Academiccourseware.com and other digital vendors. The sole obligation 
of Mercury Learning and Information to the purchaser is to replace the book, based on defective 
materials or faulty workmanship, but not based on the operation or functionality of the product.

http://Academiccourseware.com


I’d like to dedicate this book to my parents –  
may this bring joy and happiness into their lives.





CONTENTS

Preface xvii

Chapter 1 Introduction to Python 3 1
1.1 Tools for Python 2

1.1.1 easy_install and pip 3
1.1.2 virtualenv 3
1.1.3 IPython 3

1.2 Python Installation 4
1.3 Setting the PATH Environment Variable (Windows Only) 5
1.4 Launching Python on Your Machine 5

1.4.1 The Python Interactive Interpreter 5
1.5 Python Identifiers 6
1.6 Lines, Indentation, and Multilines 7
1.7 Quotation and Comments in Python 8
1.8 Saving Your Code in a Module 9
1.9 Some Standard Modules in Python 10
1.10 The help() and dir() Functions 11
1.11 Compile Time and Runtime Code Checking 12
1.12 Simple Data Types in Python 13
1.13 Working with Numbers 13

1.13.1 Working with Other Bases 15
1.13.2 The chr() Function 15
1.13.3 The round() Function in Python 16
1.13.4 Formatting Numbers in Python 16

1.14 Working with Fractions 17
1.15 Unicode and UTF-8 18
1.16 Working with Unicode 18
1.17 Working with Strings 19

1.17.1 Comparing Strings 21
1.17.2 Formatting Strings in Python 21

1.18 Uninitialized Variables and the Value None in Python 22
1.19 Slicing Strings 22

1.19.1 Testing for Digits and Alphabetic Characters 23
1.20 Search and Replace a String in Other Strings 24
1.21 Remove Leading and Trailing Characters 25
1.22 Printing Text without NewLine Characters 26
1.23 Text Alignment 27
1.24 Working with Dates 27

1.24.1 Converting Strings to Dates 29



viii • Contents

1.25 Exception Handling in Python 29
1.26 Handling User Input 31
1.27 Command-Line Arguments 33
1.28 Summary 35

Chapter 2 Conditional Logic, Loops, and Functions 37
2.1 Precedence of Operators in Python 38
2.2 Python Reserved Words 39
2.3 Working with Loops in Python 39

2.3.1 Python for Loops 39
2.3.2 A for Loop with try/except in Python 40
2.3.3 Numeric Exponents in Python 41

2.4 Nested Loops 42
2.5 The split() Function with for Loops 43
2.6 Using the split() Function to Compare Words 43
2.7 Using the split() Function to Print Justified Text 44
2.8 Using the split() Function to Print Fixed Width Text 45
2.9 Using the split() Function to Compare Text Strings 47
2.10  Using a Basic for Loop to Display Characters in a String 48
2.11 The join() Function  48
2.12 Python while Loops 49
2.13 Conditional Logic in Python 50
2.14 The break/continue/pass Statements 50
2.15 Comparison and Boolean Operators 51

2.15.1 The in/not in/is/is not Comparison Operators 51
2.15.2 The and, or, and not Boolean Operators 52

2.16 Local and Global Variables 52
2.17 Scope of Variables 53
2.18 Pass by Reference versus Value 55
2.19 Arguments and Parameters 56
2.20 Using a while loop to Find the Divisors of a Number 56

2.20.1 Using a while loop to Find Prime Numbers 57
2.21 User-Defined Functions in Python 58
2.22 Specifying Default Values in a Function 59

2.22.1 Returning Multiple Values from a Function 60
2.23 Functions with a Variable Number of Arguments 60
2.24 Lambda Expressions 61
2.25 Recursion 62

2.25.1 Calculating Factorial Values 62
2.25.2 Calculating Fibonacci Numbers 63
2.25.3 Calculating the GCD of Two Numbers 64
2.25.4 Calculating the LCM of Two Numbers 65

2.26 Summary 66



Contents • ix

Chapter 3 Python Collections 67
3.1 Working with Lists  68

3.1.1 Lists and Basic Operations 68
3.1.2 Reversing and Sorting a List 70
3.1.3 Lists and Arithmetic Operations 71
3.1.4 Lists and Filter-Related Operations 72

3.2 Sorting Lists of Numbers and Strings 73
3.3 Expressions in Lists 74
3.4 Concatenating a List of Words 74
3.5 The BubbleSort in Python 75
3.6 The Python range() Function 76

3.6.1 Counting Digits, Uppercase, and Lowercase Letters 76
3.7 Arrays and the append() Function 77
3.8 Working with Lists and the split()Function 78
3.9 Counting Words in a List 79
3.10 Iterating through Pairs of Lists 79
3.11 Other List-Related Functions 80
3.12 Using a List as a Stack and a Queue 82
3.13 Working with Vectors 83
3.14 Working with Matrices 84
3.15 The NumPy Library for Matrices 85
3.16 Queues 86
3.17 Tuples (Immutable Lists) 87
3.18 Sets 88
3.19 Dictionaries 89

3.19.1 Creating a Dictionary 89
3.19.2 Displaying the Contents of a Dictionary 90
3.19.3 Checking for Keys in a Dictionary 90
3.19.4 Deleting Keys from a Dictionary 91
3.19.5 Iterating through a Dictionary 91
3.19.6 Interpolating Data from a Dictionary 92

3.20 Dictionary Functions and Methods 92
3.21 Dictionary Formatting 92
3.22 Ordered Dictionaries 93

3.22.1 Sorting Dictionaries 93
3.22.2 Python Multidictionaries 94

3.23 Other Sequence Types in Python 94
3.24 Mutable and Immutable Types in Python 95
3.25 The type() Function 96
3.26 Summary 97

Chapter 4 Introduction to NumPy and Pandas 99
4.1 What is NumPy?  101

4.1.1 Useful NumPy Features 101



x • Contents

4.2 What are NumPy Arrays? 102
4.3 Working with Loops 103
4.4 Appending Elements to Arrays (1) 104
4.5 Appending Elements to Arrays (2) 105
4.6 Multiply Lists and Arrays 106
4.7 Doubling the Elements in a List 106
4.8 Lists and Exponents 107
4.9 Arrays and Exponents 107
4.10 Math Operations and Arrays 108
4.11 Working with “-1” Subranges with Vectors 109
4.12 Working with “-1” Subranges with Arrays 109
4.13 Other Useful NumPy Methods 110
4.14 Arrays and Vector Operations 111
4.15 NumPy and Dot Products (1) 112
4.16 NumPy and Dot Products (2) 112
4.17 NumPy and the “Norm” of Vectors 113
4.18 NumPy and Other Operations 114
4.19 NumPy and the reshape() Method 115
4.20 Calculating the Mean and Standard Deviation 116
4.21 Calculating Mean and Standard Deviation: Another Example 117
4.22 What is Pandas?  118

4.22.1 Pandas Dataframes 119
4.22.2  Dataframes and Data Cleaning Tasks 119

4.23 A Labeled Pandas Dataframe  120
4.24 Pandas Numeric DataFrames 121
4.25 Pandas Boolean DataFrames 122

4.25.1 Transposing a Pandas Dataframe 123
4.26 Pandas Dataframes and Random Numbers  124
4.27 Combining Pandas DataFrames (1) 125
4.28 Combining Pandas DataFrames (2) 126
4.29 Data Manipulation with Pandas Dataframes (1) 127
4.30 Data Manipulation with Pandas DataFrames (2) 128
4.31 Data Manipulation with Pandas Dataframes (3) 129
4.32 Pandas DataFrames and CSV Files 130
4.33 Pandas DataFrames and Excel Spreadsheets (1) 133
4.34 Select, Add, and Delete Columns in DataFrames 134
4.35 Pandas DataFrames and Scatterplots 135
4.36 Pandas DataFrames and Simple Statistics 136
4.37 Useful One_line Commands in Pandas  138
4.38 Summary 139



Contents • xi

Chapter 5 Introduction to Machine Learning 141
5.1 What is Machine Learning? 143

5.1.1 Types of Machine Learning 143
5.2 Types of Machine Learning Algorithms 145

5.2.1 Machine Learning Tasks 146
5.3 Feature Engineering, Selection, and Extraction 148
5.4 Dimensionality Reduction 150

5.4.1 PCA 151
5.4.2 Covariance Matrix 151

5.5 Working with Datasets 152
5.5.1 Training Data versus Test Data 152
5.5.2 What is Cross-validation? 152

5.6 What is Regularization? 153
5.6.1 ML and Feature Scaling 153
5.6.2 Data Normalization versus Standardization 153

5.7 The Bias-Variance Tradeoff 154
5.8 Metrics for Measuring Models 154

5.8.1 Limitations of R-Squared 155
5.8.2 Confusion Matrix 155
5.8.3 Accuracy versus Precision versus Recall 155

5.8.4 The ROC Curve 156
5.9 Other Useful Statistical Terms 156

5.9.1 What Is an F1 score? 157
5.9.2 What Is a p-value? 157

5.10 What is Linear Regression? 157
5.10.1 Linear Regression versus Curve-Fitting 158
5.10.2 When Are Solutions Exact Values? 159
5.10.3 What is Multivariate Analysis? 159

5.11 Other Types of Regression 160
5.12 Working with Lines in the Plane (optional) 161
5.13 Scatter Plots with NumPy and Matplotlib (1) 164

5.13.1 Why the “Perturbation Technique” is Useful  165
5.14 Scatter Plots with NumPy and Matplotlib (2) 166
5.15 A Quadratic Scatterplot with NumPy and matplotlib 167
5.16 The MSE Formula 168

5.16.1 A List of Error Types 168
5.16.2 Nonlinear Least Squares  169

5.17 Calculating the MSE Manually 169
5.18 Approximating Linear Data with np.linspace()  171
5.19 Calculating MSE with np.linspace() API 172



xii • Contents

5.20 Linear Regression with Keras 174
5.21 Summary 178

Chapter 6 Classifiers in Machine Learning 179
6.1 What is Classification? 180

6.1.1 What Are Classifiers? 181
6.1.2 Common Classifiers 181
6.1.3 Binary versus Multiclass Classification 182
6.1.4 Multilabel Classification 182

6.2 What are Linear Classifiers? 183
6.3 What is kNN? 183

6.3.1 How to Handle a Tie in kNN 184
6.4 What are Decision Trees? 184
6.5 What are Random Forests? 189
6.6 What are SVMs? 189

6.6.1 Tradeoffs of SVMs 190
6.7 What is Bayesian Inference? 190

6.7.1 Bayes Theorem 191
6.7.2 Some Bayesian Terminology 191
6.7.3 What Is MAP? 192
6.7.4 Why Use Bayes Theorem? 192

6.8 What is a Bayesian Classifier? 192
6.8.1 Types of Naïve Bayes Classifiers 193

6.9 Training Classifiers 193
6.10 Evaluating Classifiers 194
6.11 What are Activation Functions? 195

6.11.1  Why Do We Need Activation Functions? 196
6.11.2 How Do Activation Functions Work? 196

6.12 Common Activation Functions 197
6.12.1 Activation Functions in Python 198
6.12.2 Keras Activation Functions 198

6.13 The ReLU and ELU Activation Functions 199
6.13.1  The Advantages and Disadvantages of ReLU 199
6.13.2 ELU 200

6.14 Sigmoid, Softmax, and Hardmax Similarities 200
6.14.1 Softmax 200
6.14.2 Softplus 201
6.14.3 Tanh 201

6.15 Sigmoid, Softmax, and HardMax Differences 201
6.16 What is Logistic Regression? 202

6.16.1 Setting a Threshold Value 202
6.16.2 Logistic Regression: Important Assumptions 203
6.16.3 Linearly Separable Data 203



Contents • xiii

6.17 Keras, Logistic Regression, and Iris Dataset 203
6.18 Summary 206

Chapter 7 Natural Language Processing and Reinforcement Learning 209
7.1 Working with NLP 210

7.1.1 NLP Techniques 211
7.1.2 The Transformer Architecture and NLP 211
7.1.3 Transformer-XL Architecture 213
7.1.4 Reformer Architecture 213
7.1.5 NLP and Deep Learning 213
7.1.6 Data Preprocessing Tasks in NLP 214

7.2 Popular NLP Algorithms 214
7.2.1 What is an n-gram? 215
7.2.2 What is a skip-gram? 215
7.2.3 What is BoW? 216
7.2.4 What is Term Frequency? 217
7.2.5 What is Inverse Document Frequency (idf)? 217
7.2.6 What is tf-idf? 217

7.3 What are Word Embeddings? 218
7.4 ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0 219
7.5 What is Translatotron? 221
7.6 Deep Learning and NLP 222
7.7 NLU versus NLG 222
7.8 What is Reinforcement Learning (RL)? 223

7.8.1 RL Applications 224
7.8.2 NLP and RL 225
7.8.3 Values, Policies, and Models in RL 225

7.9 From NFAs to MDPs 226
7.9.1 What Are NFAs? 226
7.9.2 What Are Markov Chains? 227
7.9.3 MDPs 228

7.10 The Epsilon-Greedy Algorithm 229
7.11 The Bellman Equation 230

7.11.1 Other Important Concepts in RL 231
7.12 RL Toolkits and Frameworks 232

7.12.1 TF-Agents 232
7.13 What is Deep RL (DRL)? 233
7.14 Summary 234

Appendix A Introduction to Regular Expressions 235
A.1 What Are Regular Expressions? 237
A.2 Metacharacters in Python 237
A.3 Character Sets in Python 240



xiv • Contents

A.4 Character Classes in Python 241
A.5 Matching Character Classes with the re Module 242
A.6 Using the re.match() Method 243
A.7 Options for the re.match() Method  247
A.8  Matching Character Classes with the re.search() Method 247
A.9 Matching Character Classes with the findAll() Method 248

A.9.1 Finding Capitalized Words in a String 249
A.10 Additional Matching Function for Regular Expressions  250
A.11 Grouping with Character Classes in Regular Expressions  251
A.12 Using Character Classes in Regular Expressions  252

A.12.1 Matching Strings with Multiple Consecutive Digits 252
A.12.2 Reversing Words in Strings 253

A.13 Modifying Text Strings with the re Module 254
A.14 Splitting Text Strings with the re.split() Method 254
A.15 Splitting Text Strings Using Digits and Delimiters 255
A.16 Substituting Text Strings with the re.sub() Method 255
A.17 Matching the Beginning and the End of Text Strings 256
A.18 Compilation Flags 258
A.19 Compound Regular Expressions 259
A.20 Counting Character Types in a String 260
A.21 Regular Expressions and Grouping 260
A.22 Simple String Matches 261
A.23 Additional Topics for Regular Expressions 262
A.24 Summary 263
A.25 Exercises 263

Appendix B Introduction to Keras 265
B.1 What is Keras?  266

B.1.1 Working with Keras Namespaces in TF 2 266
B.1.2 Working with the tf.keras.layers Namespace 267
B.1.3 Working with the tf.keras.activations Namespace 268
B.1.4 Working with the keras.tf.datasets Namespace 269
B.1.5 Working with the tf.keras.experimental Namespace 269
B.1.6 Working with Other tf.keras Namespaces 270
B.1.7 TF 2 Keras versus “Standalone” Keras 270

B.2 Creating a Keras-based Model 271
B.3 Keras and Linear Regression 273
B.4 Keras, MLPs, and MNIST 275
B.5 Keras, CNNs, and cifar10 278
B.6 Resizing Images in Keras 281
B.7 Keras and Early Stopping (1) 282
B.8 Keras and Early Stopping (2) 284
B.9 Keras and Metrics 287



Contents • xv

B.10 Saving and Restoring Keras Models 288
B.11 Summary 291

Appendix C Introduction to TF 2 293
C.1 What is TF 2?  295

C.1.1 TF 2 Use Cases 297
C.1.2 TF 2 Architecture: The Short Version 297
C.1.3 TF 2 Installation 298
C.1.4 TF 2 and the Python REPL 299

C.2 Other TF 2-based Toolkits 299
C.3 TF 2 Eager Execution 300
C.4 TF 2 Tensors, Data Types, and Primitive Types 301

C4.1 TF 2 Data Types 301
C.4.2 TF 2 Primitive Types 302

C.5 Constants in TF 2 302
C.6 Variables in TF 2 304
C.7 The tf.rank() API 305
C.8 The tf.shape() API 306
C.9 Variables in TF 2 (Revisited) 307

C.9.1 TF 2 Variables versus Tensors  309
C.10 What is @tf.function in TF 2? 309

C.10.1 How Does @tf.function Work? 309
C.10.2 A Caveat about @tf.function in TF 2 310
C.10.3 The tf.print() Function and Standard Error 311

C.11 Working with @tf.function in TF 2 312
C.11.1 An Example without @tf.function 312
C.11.2 An Example with @tf.function 313
C.11.3 Overloading Functions with @tf.function 313
C.11.4 What is AutoGraph in TF 2? 315

C.12 Arithmetic Operations in TF 2 315
C.13 Caveats for Arithmetic Operations in TF 2 316

C.13.1 TF 2 and Built-in Functions  317
C.14 Calculating Trigonometric Values in TF 2 319
C.15 Calculating Exponential Values in TF 2 319
C.16 Working with Strings in TF 2 320
C.17 Working with Tensors and Operations in TF 2 321
C.18 2nd Order Tensors in TF 2 (1) 323
C.19 2nd Order Tensors in TF 2 (2) 324
C.20 Multiplying Two 2nd Order Tensors in TF  325
C.21 Convert Python Arrays to TF Tensors 325

C.21.1 Conflicting Types in TF 2 326
C.22 Differentiation and tf.GradientTape in TF 2 327
C.23 Examples of tf.GradientTape 328



xvi • Contents

C.23.1 Using the watch() Method of tf.GradientTape 328
C.23.2 Using Nested Loops with tf.GradientTape 329
C.23.3 Other Tensors with tf.GradientTape 330
C.23.4 A Persistent Gradient Tape 331

C.24 Google Colaboratory 332
C.25 Other Cloud Platforms 334

C.25.1 GCP SDK 334
C.26 Summary 334

Index 335



PREFACE

What is the Primary Value Proposition for this Book?

This book endeavors to provide you with as much relevant information 
about Python and machine learning as possible that can be reasonably 
included in a book of this size. 

The Target Audience

This book is intended to reach an international audience of readers with 
highly diverse backgrounds in various age groups. While many readers know 
how to read English, their native spoken language is not English (which 
could be their second, third, or even fourth language). Consequently, this 
book uses standard English rather than colloquial expressions that might be 
confusing to those readers. As you know, many people learn by different 
types of imitation, which includes reading, writing, or hearing new material. 
This book takes these points into consideration in order to provide a 
comfortable and meaningful learning experience for the intended readers.

Getting the Most from this Book

Some programmers learn well from prose, others learn well from 
sample code (and lots of it), which means that there's no single style that 
can be used for everyone. 

Moreover, some programmers want to run the code first, see what it 
does, and then return to the code to delve into the details (and others use 
the opposite approach).

Consequently, there are various types of code samples in this book: 
some are short, some are long, and other code samples "build" from earlier 
code samples.

Why Are Software Installation Instructions not Included?

There are useful websites containing installation instructions for 
Python for various platforms. Instead of repeating those instructions in this 



xviii • PrefaCe

book, that space is used for Python material. In general, this book attempts 
to avoid “filler” content as well as easily accessible set-up steps that are 
available online.

How Was the Code for This Book Tested?

The code samples in this book have been tested in Python version 3.6.8 
on a Macbook Pro with OS X 10.8.5. 

What Do I Need to Know for This Book?

The most useful prerequisite is some familiarity with another scripting 
language, such as Perl or PHP. Knowledge of other programming languages 
(such as Java) can also be helpful because of the exposure to programming 
concepts and constructs. The less technical knowledge that you have, the 
more diligence will be required in order to understand the various topics 
that are covered. Basic machine learning is helpful but not required. 

If you want to be sure that you can grasp the material in this book, 
glance through some of the code samples to get an idea of how much is 
familiar to you and how much is new for you.

Why Doesn't This Book Have 600 or More Pages?

The target audience consists of readers ranging from beginners to 
intermediate in terms of their knowledge of programming languages. During 
the preparation of this book, every effort has been made to accommodate 
those readers so that they will be adequately prepared to explore more 
advanced features of Python during their self-study.

Why so Many Code Samples in the Chapters?

One of the primary rules of exposition of virtually any kind is "show, don't 
tell." While this rule is not taken literally in this book, it’s the motivation for 
showing first and telling second. You can decide for yourself if show-first-
then-tell is valid in this book by performing a simple experiment: when you 
see the code samples and the accompanying graphics effects in this book, 
determine if it's more effective to explain ("tell") the visual effects or to 
show them. If the adage “a picture is worth a thousand words” is true, then 
this book endeavors to provide both the pictures and the words.



PrefaCe • xix

Do the Companion Files Obviate the Need for this Book?

The companion files contain all of the code samples to save you time and 
effort from the error-prone process of manually typing code into a text file. 
Moreover, the book provides explanations that assist you in understanding 
the code samples.

The code samples are available for download by writing to the publisher 
at info@merclearning.com.

Does this Book Contain Production-Level Code Samples?

The code samples show you some features of Python3 that are useful for 
machine learning. In addition, clarity has higher priority than writing more 
compact code that is more difficult to understand (and possibly more prone 
to bugs). If you decide to use any of the code in this book in a production 
environment, submit that code to the same rigorous analysis as the other 
parts of your code base.





C H A P T E R1

In This Chapter

●●  Tools for Python
●●  Python Installation
●●  Setting the PATH Environment Variable (Windows Only)
●●  Launching Python on Your Machine
●●  Python Identifiers
●●  Lines, Indentation, and Multilines 
●●  Quotation and Comments in Python
●●  Saving Your Code in a Module
●●  Some Standard Modules in Python
●●  The help() and dir() Functions
●●  Compile Time and Runtime Code Checking 
●●  Simple Data Types in Python
●●  Working with Numbers
●●  Working with Fractions
●●  Unicode and UTF-8
●●  Working with Unicode
●●  Working with Strings
●●  Uninitialized Variables and the Value None in Python

INTRODUCTION TO  
PYTHON 3



2 • Python 3 for Machine Learning

This chapter contains an introduction to Python, with information 
about useful tools for installing Python modules, basic Python constructs, 
and how to work with some data types in Python.

The first part of this chapter covers how to install Python, some Python 
environment variables, and how to use the Python interpreter. You will see 
Python code samples, and you will also learn how to save Python code in 
text files that you can launch from the command line. The second part of 
this chapter shows you how to work with simple data types, such as num-
bers, fractions, and strings. The final part of this chapter discusses excep-
tions and how to use them in Python scripts.

If you like to read documentation, one of the best third-party documen-
tation websites is pymotw (Python Module of the Week) by Doug Hellman, 
and its home page is here:

http://pymotw.com/2/

Note: the Python scripts in this book are for Python 2.7.5 and although 
most of them are probably compatible with Python 2.6, these scripts are not 
compatible with Python 3.

1.1 Tools for Python

The Anaconda Python distribution available for Windows, Linux, and 
Mac, and it’s downloadable here:

http://continuum.io/downloads

●●  Slicing and Splicing Strings
●●  Search and Replace a String in Other Strings
●●  Remove Leading and Trailing Characters
●●  Printing Text without NewLine Characters
●●  Text Alignment
●●  Working with Dates
●●  Exception Handling in Python
●●  Handling User Input
●●  Command-Line Arguments
●●  Summary



Introduction to Python 3 • 3

Anaconda is well-suited for modules such as numPy and sciPy (dis-
cussed in Chapter 7), and if you are a Windows user, Anaconda appears to 
be a better alternative.

1.1.1 easy_install and pip
Both easy_install and pip are very easy to use when you need to 

install Python modules.

Whenever you need to install a Python module (and there are many 
in this book), use either easy_install or pip with the following syntax:

easy_install <module-name>
pip install <module-name>

Note: Python-based modules are easier to install, whereas modules with 
code written in C are usually faster but more difficult in terms of installation.

1.1.2 virtualenv
The virtualenv tool enables you to create isolated Python environ-

ments, and its home page is here:

http://www.virtualenv.org/en/latest/virtualenv.html

virtualenv addresses the problem of preserving the correct dependen-
cies and versions (and indirectly permissions) for different applications. 
If you are a Python novice you might not need virtualenv right now, 
but keep this tool in mind.

1.1.3 IPython
Another very good tool is IPython (which won a Jolt award), and its 

home page is here:

http://ipython.org/install.html

Two very nice features of IPython are tab expansion and “? ”, and an ex-
ample of tab expansion is shown here:

python
Python 3.6.8 (v3.6.8:3c6b436a57, Dec 24 2018, 02:04:31)
Type "copyright", "credits" or "license" for more 
information.
IPython 0.13.2 -- An enhanced Interactive Python.
? ->  Introduction and overview of IPython's 

features.



4 • Python 3 for Machine Learning

%quickref -> Quick reference.
help -> Python's own help system.
object? ->  Details about 'object', use 'object??' for 

extra details.
In [1]: di
%dirs   dict    dir     divmod  

In the preceding session, if you type the characters di, iPython re-
sponds with the following line that contains all the functions that start with 
the letters di:

%dirs   dict    dir     divmod  

If you enter a question mark (“? ”), ipython provides textual assistance, 
the first part of which is here:

IPython -- An enhanced Interactive Python
IPython offers a combination of convenient shell 
features, special commands and a history mechanism 
for both input (command history) and output (results 
caching, similar to Mathematica). It is intended to be 
a fully compatible replacement for the standard Python 
interpreter, while offering vastly improved functionality 
and flexibility.

The next section shows you how to check whether or not Python is in-
stalled on your machine, and also where you can download Python.

1.2 Python Installation

Before you download anything, check if you have Python already in-
stalled on your machine (which is likely if you have a Macbook or a Linux 
machine) by typing the following command in a command shell:

python3 -V

The output for the Macbook used in this book is here:

Python 3.6.8

Note: install Python 3.6.8 (or as close as possible to this version) on your 
machine so that you will have the same version of Python that was used to 
test the Python scripts in this book.

If you need to install Python on your machine, navigate to the Python 
home page and select the downloads link or navigate directly to this website:



Introduction to Python 3 • 5

http://www.python.org/download/

In addition, PythonWin is available for Windows, and its home page is here:

http://www.cgl.ucsf.edu/Outreach/pc204/pythonwin.html

Use any text editor that can create, edit, and save Python scripts and save 
them as plain text files (don’t use Microsoft Word).

After you have Python installed and configured on your machine, you 
are ready to work with the Python scripts in this book.

1.3 Setting the PATH Environment Variable (Windows Only)

The PATH environment variable specifies a list of directories that are 
searched whenever you specify an executable program from the command 
line. A very good guide to setting up your environment so that the Python 
executable is always available in every command shell is to follow the in-
structions here:

http://www.blog.pythonlibrary.org/2011/11/24/python-101-setting-up-py-
thon-on-windows/ 

1.4 Launching Python on Your Machine

There are three different ways to launch Python:

●■ Use the Python interactive interpreter.

●■ Launch Python scripts from the command line.

●■ Use an IDE.

The next section shows you how to launch the Python interpreter from 
the command line, and later in this chapter you will learn how to launch 
Python scripts from the command line and also about Python IDEs. 

Note: The emphasis in this book is to launch Python scripts from the com-
mand line or to enter code in the Python interpreter.

1.4.1 The Python Interactive Interpreter
Launch the Python interactive interpreter from the command line by 

opening a command shell and typing the following command:

python3



6 • Python 3 for Machine Learning

You will see the following prompt (or something similar):

Python 3.6.8 (v3.6.8:3c6b436a57, Dec 24 2018, 02:04:31)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] 
on darwin
Type "help", "copyright", "credits" or "license" for 
more information.
>>>

Now type the expression 2 + 7 at the prompt:

>>> 2 + 7

Python displays the following result:

9
>>>

Press ctrl-d to exit the Python shell.

You can launch any Python script from the command line by preced-
ing it with the word “python.” For example, if you have a Python script 
myscript.py that contains Python commands, launch the script as follows:

python myscript.py

As a simple illustration, suppose that the Python script myscript.py 
contains the following Python code:

print('Hello World from Python')
print('2 + 7 = ', 2+7)

When you launch the preceding Python script you will see the following 
output:

Hello World from Python
2 + 7 = 9

1.5 Python Identifiers

A Python identifier is the name of a variable, function, class, module, or 
other Python object, and a valid identifier conforms to the following rules:

●■ starts with a letter A to Z or a to z or an underscore (_) 

●■ zero or more letters, underscores, and digits (0 to 9)

Note: Python identifiers cannot contain characters such as @, $, and %. 



Introduction to Python 3 • 7

Python is a case-sensitive language, so Abc and abc different identifiers 
in Python.

In addition, Python has the following naming convention:

●■ Class names start with an uppercase letter and all other identifiers with 
a lowercase letter.

●■ An initial underscore is used for private identifiers.
●■ Two initial underscores is used for strongly private identifiers.

A Python identifier with two initial underscore and two trailing under-
score characters indicates a language-defined special name. 

1.6 Lines, Indentation, and Multilines

Unlike other programming languages (such as Java or Objective-C), Py-
thon uses indentation instead of curly braces for code blocks. Indentation 
must be consistent in a code block, as shown here:
if True:
    print("ABC")
    print("DEF")
else:
    print("ABC")
    print("DEF")

Multiline statements in Python can terminate with a new line or the 
backslash (“ \”) character, as shown here:
total = x1 + \
        x2 + \
        x3

Obviously you can place x1, x2, and x3 on the same line, so there is no 
reason to use three separate lines; however, this functionality is available in 
case you need to add a set of variables that do not fit on a single line.

You can specify multiple statements in one line by using a semicolon 
(“;”) to separate each statement, as shown here:
a=10; b=5; print(a); print(a+b)

The output of the preceding code snippet is here:

10
15



8 • Python 3 for Machine Learning

Note: the use of semicolons and the continuation character are discour-
aged in Python.

1.7 Quotation and Comments in Python

Python allows single (‘), double (“), and triple (‘’’ or “””) quotes for string 
literals, provided that they match at the beginning and the end of the string. 
You can use triple quotes for strings that span multiple lines. The following 
examples are legal Python strings:

word = 'word'
line = "This is a sentence."
para = """This is a paragraph. This paragraph contains
more than one sentence."""

A string literal that begins with the letter “r” (for “raw”) treats every-
thing as a literal character and “escapes” the meaning of metacharacters, as 
shown here:

a1 = r'\n'
a2 = r'\r'
a3 = r'\t'
print('a1:',a1,'a2:',a2,'a3:',a3)

The output of the preceding code block is here:

a1: \n a2: \r a3: \t

You can embed a single quote in a pair of double quotes (and vice versa) 
in order to display a single quote or a double quote. Another way to accom-
plish the same result is to precede a single or double quote with a backslash 
(“ \”) character. The following code block illustrates these techniques:

b1 = "'"
b2 = '"'
b3 = '\''
b4 = "\""
print('b1:',b1,'b2:',b2)
print('b3:',b3,'b4:',b4)

The output of the preceding code block is here:

b1: ' b2: "
b3: ' b4: "



Introduction to Python 3 • 9

A hash sign (#) that is not inside a string literal is the character that 
indicates the beginning of a comment. Moreover, all characters after the # 
and up to the physical line end are part of the comment (and ignored by the 
Python interpreter). Consider the following code block:

#!/usr/bin/python
# First comment
print("Hello, Python!")  # second comment

This will produce following result:

Hello, Python!

A comment may be on the same line after a statement or expression:

name = "Tom Jones" # This is also comment

You can comment multiple lines as follows:

# This is comment one
# This is comment two
# This is comment three

A blank line in Python is a line containing only whitespace, a comment, 
or both.

1.8 Saving Your Code in a Module

Earlier you saw how to launch the Python interpreter from the com-
mand line and then enter Python commands. However, that everything that 
you type in the Python interpreter is only valid for the current session: if 
you exit the interpreter and then launch the interpreter again, your previ-
ous definitions are no longer valid. Fortunately, Python enables you to store 
code in a text file, as discussed in the next section.

A module in Python is a text file that contains Python statements. In 
the previous section, you saw how the Python interpreter enables you to 
test code snippets whose definitions are valid for the current session. If you 
want to retain the code snippets and other definitions, place them in a text 
file so that you can execute that code outside of the Python interpreter. 

The outermost statements in a Python are executed from top to bottom 
when the module is imported for the first time, which will then set up its 
variables and functions.



10 • Python 3 for Machine Learning

A Python module can be run directly from the command line, as shown 
here:

python First.py
As an illustration, place the following two statements in a text file called 

First.py:

x = 3
print(x)

Now type the following command:

python First.py

The output from the preceding command is 3, which is the same as 
executing the preceding code from the Python interpreter.

When a Python module is run directly, the special variable __name__ is 
set to __main__. You will often see the following type of code in a Python 
module:

if __name__ == '__main__':
    # do something here 
    print('Running directly')

The preceding code snippet enables Python to determine if a Python 
module was launched from the command line or imported into another 
Python module.

1.9 Some Standard Modules in Python

The Python Standard Library provides many modules that can simplify 
your own Python scripts. A list of the Standard Library modules is here:

http://www.python.org/doc/

Some of the most important Python modules include cgi, math, os, 
pickle, random, re, socket, sys, time, and urllib.

The code samples in this book use the modules math, os, random, 
re, socket, sys, time, and urllib. You need to import these modules 
in order to use them in your code. For example, the following code block 
shows you how to import 4 standard Python modules:

import datetime
import re



Introduction to Python 3 • 11

import sys
import time

The code samples in this book import one or more of the preceding 
modules, as well as other Python modules. In Chapter 8, you will learn how 
to write Python modules that import other user-defined Python modules.

1.10 The help() and dir() Functions

An Internet search for Python-related topics usually returns a number 
of links with useful information. Alternatively, you can check the official 
Python documentation site: docs.python.org

In addition, Python provides the help() and dir() functions that are 
accessible from the Python interpreter. The help() function displays doc-
umentation strings, whereas the dir() function displays defined symbols.

For example, if you type help(sys) you will see documentation for 
the sys module, whereas dir(sys) displays a list of the defined symbols. 

Type the following command in the Python interpreter to display the 
string-related methods in Python:

>>> dir(str)

The preceding command generates the following output:

['__add__', '__class__', '__contains__', '__delattr__', 
'__doc__', '__eq__', '__format__', '__ge__', '__
getattribute__', '__getitem__', '__getnewargs__', '__
getslice__', '__gt__', '__hash__', '__init__', '__le__', 
'__len__', '__lt__', '__mod__', '__mul__', '__ne__', 
'__new__', '__reduce__', '__reduce_ex__', '__repr__', 
'__rmod__', '__rmul__', '__setattr__', '__sizeof__', 
'__str__', '__subclasshook__', '_formatter_field_name_
split', '_formatter_parser', 'capitalize', 'center', 
'count', 'decode', 'encode', 'endswith', 'expandtabs', 
'find', 'format', 'index', 'isalnum', 'isalpha', 
'isdigit', 'islower', 'isspace', 'istitle', 'isupper', 
'join', 'ljust', 'lower', 'lstrip', 'partition', 
'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 
'rsplit', 'rstrip', 'split', 'splitlines', 'startswith', 
'strip', 'swapcase', 'title', 'translate', 'upper', 
'zfill']

http://docs.python.org


12 • Python 3 for Machine Learning

The preceding list gives you a consolidated “dump” of built-in func-
tions (including some that are discussed later in this chapter). Although the 
max() function obviously returns the maximum value of its arguments, the 
purpose of other functions such as filter() or map() is not immediately 
apparent (unless you have used them in other programming languages). In 
any case, the preceding list provides a starting point for finding out more 
about various Python built-in functions that are not discussed in this chap-
ter.

Note that while dir() does not list the names of built-in functions 
and variables, you can obtain this information from the standard module 
__builtin__ that is automatically imported under the name __built-
ins__:

>>> dir(__builtins__)

The following command shows you how to get more information about 
a function:

help(str.lower)
The output from the preceding command is here:

Help on method_descriptor:
lower(...)
    S.lower() -> string
    
    Return a copy of the string S converted to 
lowercase.
(END)

Check the online documentation and also experiment with help() and 
dir() when you need additional information about a particular function or 
module.

1.11 Compile Time and Runtime Code Checking

Python performs some compile-time checking, but most checks (in-
cluding type, name, and so forth) are deferred until code execution. Con-
sequently, if your Python code references a user-defined function that that 
does not exist, the code will compile successfully. In fact, the code will fail 
with an exception only when the code execution path references the non-
existent function.



Introduction to Python 3 • 13

As a simple example, consider the following Python function myFunc 
that references the nonexistent function called DoesNotExist:

def myFunc(x):
    if x == 3:
        print(DoesNotExist(x))
    else:
        print('x: ',x)

The preceding code will only fail when the myFunc function is passed 
the value 3, after which Python raises an error.

In Chapter 2, you will learn how to define and invoke user-defined 
functions, along with an explanation of the difference between local versus 
global variables in Python.

Now that you understand some basic concepts (such as how to use the 
Python interpreter) and how to launch your custom Python modules, the 
next section discusses primitive data types in Python.

1.12 Simple Data Types in Python

Python supports primitive data types, such as numbers (integers, float-
ing point numbers, and exponential numbers), strings, and dates. Python 
also supports more complex data types, such as lists (or arrays), tuples, and 
dictionaries, all of which are discussed in Chapter 3. The next several sec-
tions discuss some of the Python primitive data types, along with code snip-
pets that show you how to perform various operations on those data types.

1.13 Working with Numbers

Python provides arithmetic operations for manipulating numbers a 
straightforward manner that is similar to other programming languages. 
The following examples involve arithmetic operations on integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24



14 • Python 3 for Machine Learning

The following example assigns numbers to two variables and computes 
their product:

>>> x = 4
>>> y = 7
>>> x * y
28

The following examples demonstrate arithmetic operations involving 
integers:

>>> 2+2
4
>>> 4/3
1
>>> 3*8
24

Notice that division (“/”) of two integers is actually truncation in which 
only the integer result is retained. The following example converts a float-
ing point number into exponential form:

>>> fnum = 0.00012345689000007
>>> "%.14e"%fnum
'1.23456890000070e-04'

You can use the int() function and the float() function to convert 
strings to numbers:

word1 = "123"
word2 = "456.78"
var1 = int(word1)
var2 = float(word2)
print("var1: ",var1," var2: ",var2)

The output from the preceding code block is here:

var1:  123  var2:  456.78

Alternatively, you can use the eval() function:

word1 = "123"
word2 = "456.78"
var1 = eval(word1)
var2 = eval(word2)
print("var1: ",var1," var2: ",var2)



Introduction to Python 3 • 15

If you attempt to convert a string that is not a valid integer or a floating 
point number, Python raises an exception, so it’s advisable to place your 
code in a try/except block (discussed later in this chapter).

1.13.1 Working with Other Bases
Numbers in Python are in base 10 (the default), but you can easily con-

vert numbers to other bases. For example, the following code block initial-
izes the variable x with the value 1234, and then displays that number in 
base 2, 8, and 16, respectively:

>>> x = 1234 
>>> bin(x) '0b10011010010'
>>> oct(x) '0o2322'
>>> hex(x) '0x4d2' >>>

Use the format() function if you wan to suppress the 0b, 0o, or 0x 
prefixes, as shown here:

>>> format(x, 'b') '10011010010'
>>> format(x, 'o') '2322'
>>> format(x, 'x') '4d2'

Negative integers are displayed with a negative sign:

>>> x = -1234
>>> format(x, 'b') '-10011010010'
>>> format(x, 'x') '-4d2'

1.13.2 The chr() Function
The Python chr() function takes a positive integer as a parameter and 

converts it to its corresponding alphabetic value (if one exists). The letters A 
through Z have decimal representation of 65 through 91 (which corresponds 
to hexadecimal 41 through 5b), and the lowercase letters a through z have 
decimal representation 97 through 122 (hexadecimal 61 through 7b).

Here is an example of using the chr() function to print uppercase A:

>>> x=chr(65)
>>> x
'A'

The following code block prints the ASCII values for a range of 
integers:

result = ""



16 • Python 3 for Machine Learning

for x in range(65,91):
  print(x, chr(x))
  result = result+chr(x)+' '
print("result: ",result)

Note: Python 2 uses ASCII strings whereas Python 3 uses UTF-8.

You can represent a range of characters with the following line:

for x in range(65,91):

However, the following equivalent code snippet is more intuitive:

for x in range(ord('A'), ord('Z')):

If you want to display the result for lowercase letters, change the pre-
ceding range from (65,91) to either of the following statements:

for x in range(65,91):
for x in range(ord('a'), ord('z')):

1.13.3 The round() Function in Python
The Python round() function enables you to round decimal values to 

the nearest precision:

>>> round(1.23, 1) 
1.2
>>> round(-3.42,1)
-3.4

1.13.4 Formatting Numbers in Python
Python allows you to specify the number of decimal places of precision 

to use when printing decimal numbers, as shown here:

>>> x = 1.23456
>>> format(x, '0.2f')
'1.23'
>>> format(x, '0.3f')
'1.235'
>>> 'value is {:0.3f}'.format(x) 'value is 1.235'
>>> from decimal import Decimal
>>> a = Decimal('4.2')
>>> b = Decimal('2.1')
>>> a + b
Decimal('6.3')
>>> print(a + b)



Introduction to Python 3 • 17

6.3
>>> (a + b) == Decimal('6.3') 
True
>>> x = 1234.56789
>>> # Two decimal places of accuracy
>>> format(x, '0.2f')
'1234.57'
>>> # Right justified in 10 chars, one-digit accuracy
>>> format(x, '>10.1f')
' 1234.6'
>>> # Left justified
>>> format(x, '<10.1f') '1234.6 '
>>> # Centered
>>> format(x, '^10.1f') ' 1234.6 '
>>> # Inclusion of thousands separator
>>> format(x, ',')
'1,234.56789'
>>> format(x, '0,.1f')
'1,234.6'

1.14 Working with Fractions

Python supports the Fraction() function (which is define in the 
fractions module) that accepts two integers that represent the numera-
tor and the denominator (which must be nonzero) of a fraction. Several 
example of defining and manipulating fractions in Python are shown here:

>>> from fractions import Fraction 
>>> a = Fraction(5, 4)
>>> b = Fraction(7, 16)
>>> print(a + b)
27/16
>>> print(a * b) 35/64
>>> # Getting numerator/denominator 
>>> c = a * b
>>> c.numerator
35
>>> c.denominator 64
>>> # Converting to a float >>> float(c)
0.546875
>>> # Limiting the denominator of a value 
>>> print(c.limit_denominator(8))



18 • Python 3 for Machine Learning

4
>>> # Converting a float to a fraction >>> x = 3.75
>>> y = Fraction(*x.as_integer_ratio()) 
>>> y
Fraction(15, 4)

Before delving into Python code samples that work with strings, the 
next section briefly discusses Unicode and UTF-8, both of which are char-
acter encodings.

1.15 Unicode and UTF-8

A Unicode string consists of a sequence of numbers that are between 
0 and 0x10ffff, where each number represents a group of bytes. An encod-
ing is the manner in which a Unicode string is translated into a sequence 
of bytes. Among the various encodings, Unicode Transformation Format 
(UTF)-8 is perhaps the most common, and it’s also the default encoding for 
many systems. The digit 8 in UTF-8 indicates that the encoding uses 8-bit 
numbers, whereas UTF-16 uses 16-bit numbers (but this encoding is less 
common).

The ASCII character set is a subset of UTF-8, so a valid ASCII string 
can be read as a UTF-8 string without any re-encoding required. In addi-
tion, a Unicode string can be converted into a UTF-8 string.

1.16 Working with Unicode

Python supports Unicode, which means that you can render characters 
in different languages. Unicode data can be stored and manipulated in the 
same way as strings. Create a Unicode string by prepending the letter “u,” 
as shown here:

>>> u'Hello from Python!'
u'Hello from Python!'

Special characters can be included in a string by specifying their Uni-
code value. For example, the following Unicode string embeds a space 
(which has the Unicode value 0x0020) in a string:

>>> u'Hello\u0020from Python!'
u'Hello from Python!'



Introduction to Python 3 • 19

Listing 1.1 displays the contents of Unicode1.py that illustrates how 
to display a string of characters in Japanese and another string of characters 
in Chinese (Mandarin).

Listing 1.1: Unicode1.py

chinese1 = u'\u5c07\u63a2\u8a0e HTML5 \u53ca\u5176\
u4ed6'
hiragana = u'D3 \u306F \u304B\u3063\u3053\u3043\u3043 \
u3067\u3059!'

print('Chinese:',chinese1)
print('Hiragana:',hiragana)

The output of Listing 1.2 is here:

Chinese: 將探討 HTML5 及其他

Hiragana: D3 は かっこぃぃ です!

The next portion of this chapter shows you how to “slice and dice” text 
strings with built-in Python functions.

1.17 Working with Strings

A string in Python 2 is a sequence of ASCII-encoded bytes. You can 
concatenate two strings using the “+” operator. The following example 
prints a string and then concatenates two single-letter strings:

>>> 'abc'
'abc'
>>> 'a' + 'b'
'ab'

You can use “+” or “*” to concatenate identical strings, as shown here:

>>> 'a' + 'a' + 'a'
'aaa'
>>> 'a' * 3
'aaa'

You can assign strings to variables and print them using the print com-
mand:

>>> print('abc')
abc
>>> x = 'abc'



20 • Python 3 for Machine Learning

>>> print(x)
abc
>>> y = 'def'
>>> print(x + y)
abcdef

You can “unpack” the letters of a string and assign them to variables, as 
shown here:

>>> str = "World"
>>> x1,x2,x3,x4,x5 = str
>>> x1
'W'
>>> x2
'o'
>>> x3
'r'
>>> x4
'l'
>>> x5
'd'

The preceding code snippets shows you how easy it is to extract the let-
ters in a text string, and in Chapter 3 you will learn how to “unpack” other 
Python data structures.

You can extract substrings of a string as shown in the following examples:

>>> x = "abcdef"
>>> x[0]
'a'
>>> x[-1]
'f'
>>> x[1:3]
'bc'
>>> x[0:2] + x[5:]
'abf'

However, you will cause an error if you attempt to “subtract” two 
strings, as you probably expect:

>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 
'str'



Introduction to Python 3 • 21

The try/except construct in Python (discussed later in this chapter) 
enables you to handle the preceding type of exception more gracefully.

1.17.1 Comparing Strings
You can use the methods lower() and upper() to convert a string to 

lowercase and uppercase, respectively, as shown here:

>>> 'Python'.lower()
'python'
>>> 'Python'.upper()
'PYTHON'
>>> 

The methods lower() and upper() are useful for performing a case 
insensitive comparison of two ASCII strings. Listing 1.2 displays the con-
tents of Compare.py that uses the lower() function in order to compare 
two ASCII strings.

Listing 1.2: Compare.py

x = 'Abc'
y = 'abc'
if(x == y):
  print('x and y: identical')
elif (x.lower() == y.lower()):
  print('x and y: case insensitive match')
else:
  print('x and y: different')

Since x contains mixed case letters and y contains lowercase letters, 
Listing 1.2 displays the following output:

x and y: different 

1.17.2 Formatting Strings in Python
Python provides the functions string.lstring(), string.

rstring(), and string.center() for positioning a text string so that it 
is left-justified, right-justified, and centered, respectively. As you saw in a 
previous section, Python also provides the format() method for advanced 
interpolation features.

Now enter the following commands in the Python interpreter:

import string
str1 = 'this is a string'



22 • Python 3 for Machine Learning

print(string.ljust(str1, 10))
print(string.rjust(str1, 40))
print(string.center(str1,40))

The output is shown here:

this is a string
                        this is a string
            this is a string 

1.18 Uninitialized Variables and the Value None in Python

Python distinguishes between an uninitialized variable and the value 
None. The former is a variable that has not been assigned a value, whereas 
the value None is a value that indicates “no value.” Collections and methods 
often return the value None, and you can test for the value None in condi-
tional logic (shown in Chapter 2).

The next portion of this chapter shows you how to “slice and dice” text 
strings with built-in Python functions.

1.19 Slicing Strings

Python enables you to extract substrings of a string (called “slicing”) 
using array notation. Slice notation is start:stop:step, where the start, 
stop, and step values are integers that specify the start value, end value, and 
the increment value. The interesting part about slicing in Python is that you 
can use the value -1, which operates from the right side instead of the left 
side of a string.

Some examples of slicing a string are here:

text1 = "this is a string"
print('First 7 characters:',text1[0:7])
print('Characters 2-4:',text1[2:4])
print('Right-most character:',text1[-1])
print('Right-most 2 characters:',text1[-3:-1])

The output from the preceding code block is here:

First 7 characters: this is
Characters 2-4: is
Right-most character: g
Right-most 2 characters: in



Introduction to Python 3 • 23

Later in this chapter you will see how to insert a string in the middle of 
another string.

1.19.1 Testing for Digits and Alphabetic Characters
Python enables you to examine each character in a string and then test 

whether that character is a bona fide digit or an alphabetic character. This 
section provides a precursor to regular expressions that are discussed in 
Chapter 4.

Listing 1.3 displays the contents of CharTypes.py that illustrates how 
to determine if a string contains digits or characters. In case you are un-
familiar with the conditional “if” statement in Listing 1.3, more detailed 
information is available in Chapter 2.

Listing 1.3: CharTypes.py

str1 = "4"
str2 = "4234"
str3 = "b"
str4 = "abc"
str5 = "a1b2c3"
if(str1.isdigit()):
  print("this is a digit:",str1)
if(str2.isdigit()):
  print("this is a digit:",str2)
if(str3.isalpha()):
  print("this is alphabetic:",str3)
if(str4.isalpha()):
  print("this is alphabetic:",str4)
if(not str5.isalpha()):
  print("this is not pure alphabetic:",str5)
print("capitalized first letter:",str5.title())

Listing 1.3 initializes some variables, followed by 2 conditional tests 
that check whether or not str1 and str2 are digits using the isdigit() 
function. The next portion of Listing 1.3 checks if str3, str4, and str5 
are alphabetic strings using the isalpha() function. The output of Listing 
1.3 is here:

this is a digit: 4
this is a digit: 4234
this is alphabetic: b
this is alphabetic: abc



24 • Python 3 for Machine Learning

this is not pure alphabetic: a1b2c3
capitalized first letter: A1B2C3

1.20 Search and Replace a String in Other Strings

Python provides methods for searching and also for replacing a string in 
a second text string. Listing 1.4 displays the contents of FindPos1.py that 
shows you how to use the find function to search for the occurrence of one 
string in another string.

Listing 1.4: FindPos1.py

item1 = 'abc'
item2 = 'Abc'
text = 'This is a text string with abc'
pos1 = text.find(item1)
pos2 = text.find(item2)
print('pos1=',pos1)
print('pos2=',pos2)

Listing 1.4 initializes the variables item1, item2, and text, and then 
searches for the index of the contents of item1 and item2 in the string 
text. The Python find() function returns the column number where the 
first successful match occurs; otherwise, the find() function returns a -1 if 
a match is unsuccessful.

The output from launching Listing 1.4 is here:

pos1= 27 
pos2= -1

In addition to the find() method, you can use the in operator when 
you want to test for the presence of an element, as shown here:

>>> lst = [1,2,3]
>>> 1 in lst
True

Listing 1.5 displays the contents of Replace1.py that shows you how 
to replace one string with another string.

Listing 1.5: Replace1.py

text = 'This is a text string with abc'
print('text:',text)



Introduction to Python 3 • 25

text = text.replace('is a', 'was a')
print('text:',text)

Listing 1.5 starts by initializing the variable text and then printing its 
contents. The next portion of Listing 1.5 replaces the occurrence of “is a” 
with “was a” in the string text, and then prints the modified string. The out-
put from launching Listing 1.5 is here:
text: This is a text string with abc
text: This was a text string with abc

1.21 Remove Leading and Trailing Characters

Python provides the functions strip(), lstrip(), and rstrip() to 
remove characters in a text string. Listing 1.6 displays the contents of Re-
move1.py that shows you how to search for a string.

Listing 1.6: Remove1.py

text = '   leading and trailing white space   '
print('text1:','x',text,'y')
text = text.lstrip()
print('text2:','x',text,'y')
text = text.rstrip()
print('text3:','x',text,'y')

Listing 1.6 starts by concatenating the letter x and the contents of the 
variable text, and then printing the result. The second part of Listing 1.6 
removes the leading white spaces in the string text and then appends the 
result to the letter x. The third part of Listing 1.6 removes the trailing white 
spaces in the string text (note that the leading white spaces have already 
been removed) and then appends the result to the letter x.

The output from launching Listing 1.6 is here:
text1: x    leading and trailing white space y
text2: x leading and trailing white space    y
text3: x leading and trailing white space y

If you want to remove extra white spaces inside a text string, use the 
replace() function as discussed in the previous section. The following 
example illustrates how this can be accomplished, which also contains the 
re module as a “preview” for what you will learn in Chapter 4:
import re
text = 'a    b'



26 • Python 3 for Machine Learning

a = text.replace(' ', '')
b = re.sub('\s+', ' ', text)
print(a)
print(b)

The result is here:

ab
a b

Chapter 2 shows you how to use the join() function in order to re-
move extra white spaces in a text string.

1.22 Printing Text without NewLine Characters

If you need to suppress white space and a newline between objects 
output with multiple print statements, you can use concatenation or the 
write() function.

The first technique is to concatenate the string representations of each 
object using the str() function prior to printing the result. For example, 
run the following statement in Python:

x = str(9)+str(0xff)+str(-3.1)
print('x: ',x)

The output is shown here:

x:  9255-3.1
The preceding line contains the concatenation of the numbers 9 and 

255 (which is the decimal value of the hexadecimal number 0xff) and 
-3.1.

Incidentally, you can use the str() function with modules and user-
defined classes. An example involving the Python built-in module sys is 
here:

>>> import sys
>>> print(str(sys))
<module 'sys' (built-in)>

The following code snippet illustrates how to use the write() function 
to display a string:

import sys
write = sys.stdout.write



Introduction to Python 3 • 27

write('123')
write('123456789')
The output is here:
1233
1234567899

1.23 Text Alignment

Python provides the methods ljust(), rjust(), and center() for 
aligning text. The ljust() and rjust() functions left justify and right 
justify a text string, respectively, whereas the center() function will cen-
ter a string. An example is shown in the following code block:

text = 'Hello World' 
text.ljust(20) 
'Hello World ' 
>>> text.rjust(20)
' Hello World' 
>>> text.center(20)
' Hello World '

You can use the Python format() function to align text. Use the <, >, 
or ^ characters, along with a desired width, in order to right justify, left 
justify, and center the text, respectively. The following examples illustrate 
how you can specify text justification:

>>> format(text, '>20')
'         Hello World'
>>> 
>>> format(text, '<20')
'Hello World         '
>>>
>>> format(text, '^20')
'    Hello World     '
>>>

1.24 Working with Dates

Python provides a rich set of date-related functions that are document-
ed here: 

https://docs.python.org/3/library/datetime.html

https://docs.python.org/3/library/datetime.html


28 • Python 3 for Machine Learning

Listing 1.7 displays the contents of the Python script Datetime2.py that 
displays various date-related values, such as the current date and time; the 
day of the week, month, and year; and the time in seconds since the epoch.

Listing 1.7: Datetime2.py

import time
import datetime

print("Time in seconds since the epoch: %s" %time.time())
print("Current date and time: " , datetime.datetime.
now())
print("Or like this: " ,datetime.datetime.now().
strftime("%y-%m-%d-%H-%M"))
print("Current year: ", datetime.date.today().
strftime("%Y"))
print("Month of year: ", datetime.date.today().
strftime("%B"))
print("Week number of the year: ", datetime.date.
today().strftime("%W"))
print("Weekday of the week: ", datetime.date.today().
strftime("%w"))
print("Day of year: ", datetime.date.today().
strftime("%j"))
print("Day of the month : ", datetime.date.today().
strftime("%d"))
print("Day of week: ", datetime.date.today().
strftime("%A"))

Listing 1.8 displays the output generated by running the code in 
Listing 1.7.

Listing 1.8: datetime2.out

Time in seconds since the epoch: 1375144195.66
Current date and time:  2013-07-29 17:29:55.664164
Or like this:  13-07-29-17-29
Current year:  2013
Month of year:  July
Week number of the year:  30
Weekday of the week:  1
Day of year:  210
Day of the month :  29
Day of week:  Monday



Introduction to Python 3 • 29

Python also enables you to perform arithmetic calculates with date-
related values, as shown in the following code block:

>>> from datetime import timedelta 
>>> a = timedelta(days=2, hours=6) 
>>> b = timedelta(hours=4.5)
>>> c = a + b
>>> c.days
2   
>>> c.seconds
37800
>>> c.seconds / 3600
10.5
>>> c.total_seconds() / 3600
58.5

1.24.1 Converting Strings to Dates
Listing 1.9 displays the contents of String2Date.py that illustrates 

how to convert a string to a date, and also how to calculate the difference 
between two dates.

Listing 1.9: String2Date.py

from datetime import datetime
text = '2014-08-13'
y = datetime.strptime(text, '%Y-%m-%d')
z = datetime.now()
diff = z - y
print('Date difference:',diff)

The output from Listing 1.9 is shown here:

Date difference: -210 days, 18:58:40.197130

1.25 Exception Handling in Python

Unlike JavaScript you cannot add a number and a string in Python. 
However, you can detect an illegal operation using the try/except con-
struct in Python, which is similar to the try/catch construct in languages 
such as JavaScript and Java.

An example of a try/except block is here:

try:



30 • Python 3 for Machine Learning

  x = 4
  y = 'abc'
  z = x + y
except:
  print 'cannot add incompatible types:', x, y

When you run the preceding code in Python, the print statement in 
the except code block is executed because the variables x and y have in-
compatible types.

Earlier in the chapter you also saw that subtracting two strings throws 
an exception:

>>> 'a' - 'b'
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for -: 'str' and 
'str'

A simple way to handle this situation is to use a try/except block:

>>> try:
...  print('a' - 'b')
... except TypeError:
...  print('TypeError exception while trying to subtract 
two strings')
... except:
...  print('Exception while trying to subtract two 
strings')
... 

The output from the preceding code block is here:

TypeError exception while trying to subtract two strings

As you can see, the preceding code block specifies the finer-grained 
exception called TypeError, followed by a “generic” except code block 
to handle all other exceptions that might occur during the execution of your 
Python code. This style is similar to the exception handling in Java code.

Listing 1.10 displays the contents of Exception1.py that illustrates 
how to handle various types of exceptions.

Listing 1.10: Exception1.py

import sys



Introduction to Python 3 • 31

try:
    f = open('myfile.txt')
    s = f.readline()
    i = int(s.strip())
except IOError as err:
    print("I/O error: {0}".format(err))
except ValueError:
    print("Could not convert data to an integer.")
except:
    print("Unexpected error:", sys.exc_info()[0])
    raise

Listing 1.10 contains a try block followed by three except statements. 
If an error occurs in the try block, the first except statement is com-
pared with the type of exception that occurred. If there is a match, then 
the subsequent print statement is executed, and the program terminates. If 
not, a similar test is performed with the second except statement. If nei-
ther except statement matches the exception, the third except statement 
handles the exception, which involves printing a message and then “raising” 
an exception.

Note that you can also specify multiple exception types in a single state-
ment, as shown here:

except (NameError, RuntimeError, TypeError):
    print('One of three error types occurred')

The preceding code block is more compact, but you do not know which 
of the three error types occurred. Python allows you to define custom ex-
ceptions, but this topic is beyond the scope of this book.

1.26 Handling User Input

Python enables you to read user input from the command line via the 
input() function or the raw_input() function. Typically you assign user 
input to a variable, which will contain all characters that users enter from 
the keyboard. User input terminates when users press the <return> key 
(which is included with the input characters). Listing 1.11 displays the con-
tents of UserInput1.py that prompts users for their name and then uses 
interpolation to display a response.



32 • Python 3 for Machine Learning

Listing 1.11: UserInput1.py

userInput = input("Enter your name: ")
print ("Hello %s, my name is Python" % userInput)

The output of Listing 1.11 is here (assume that the user entered the 
word Dave):

Hello Dave, my name is Python
The print statement in Listing 1.11 uses string interpolation via %s, 

which substitutes the value of the variable after the % symbol. This func-
tionality is obviously useful when you want to specify something that is de-
termined at runtime.

User input can cause exceptions (depending on the operations that 
your code performs), so it’s important to include exception-handling code.

Listing 1.12 displays the contents of UserInput2.py that prompts us-
ers for a string and attempts to convert the string to a number in a try/
except block.

Listing 1.12: UserInput2.py

userInput = input("Enter something: ")
 try:
  x = 0 + eval(userInput)
  print('you entered the number:',userInput)
except:
  print(userInput,'is a string')

Listing 1.12 adds the number 0 to the result of converting a user’s input 
to a number. If the conversion was successful, a message with the user’s 
input is displayed. If the conversion failed, the except code block consists 
of a print statement that displays a message.

Note: this code sample uses the eval() function, which should be avoid-
ed so that your code does not evaluate arbitrary (and possibly destructive) 
commands.

Listing 1.13 displays the contents of UserInput3.py that prompts us-
ers for two numbers and attempts to compute their sum in a pair of try/
except blocks.

Listing 1.13: UserInput3.py

sum = 0
msg = 'Enter a number:'



Introduction to Python 3 • 33

val1 = input(msg)
 try:
  sum = sum + eval(val1)
except:
  print(val1,'is a string')
msg = 'Enter a number:'
val2 = input(msg)
try:
  sum = sum + eval(val2)
except:
  print(val2,'is a string')
print('The sum of',val1,'and',val2,'is',sum)

Listing 1.13 contains two try blocks, each of which is followed by an 
except statement. The first try block attempts to add the first user-sup-
plied number to the variable sum, and the second try block attempts to 
add the second user-supplied number to the previously entered number. 
An error message occurs if either input string is not a valid number; if both 
are valid numbers, a message is displayed containing the input numbers 
and their sum. Be sure to read the caveat regarding the eval() function 
that is mentioned earlier in this chapter.

1.27 Command-Line Arguments

Python provides a getopt module to parse command-line options and 
arguments, and the Python sys module provides access to any command-
line arguments via the sys.argv. This serves two purposes:

●➡  sys.argv is the list of command line arguments

●➡  len(sys.argv) is the number of command line arguments

Here sys.argv[0] is the program name, so if the Python program is 
called test.py, it matches the value of sys.argv[0].

Now you can provide input values for a Python program on the com-
mand line instead of providing input values by prompting users for their 
input.

As an example, consider the script test.py shown here:

#!/usr/bin/python
import sys
print('Number of arguments:',len(sys.argv),'arguments')
print('Argument List:', str(sys.argv))



34 • Python 3 for Machine Learning

Now run preceding script as follows:

python test.py arg1 arg2 arg3
This will produce following result:

Number of arguments: 4 arguments.
Argument List: ['test.py', 'arg1', 'arg2', 'arg3']

The ability to specify input values from the command line provides use-
ful functionality. For example, suppose that you have a custom Python class 
that contains the methods add and subtract to add and subtract a pair of 
numbers.

You can use command-line arguments in order to specify which method 
to execute on a pair of numbers, as shown here:

python MyClass add 3 5
python MyClass subtract 3 5

This functionality is very useful because you can programmatically ex-
ecute different methods in a Python class, which means that you can write 
unit tests for your code as well. Read Chapter 8 to learn how to create cus-
tom Python classes.

Listing 1.14 displays the contents of Hello.py that shows you how to 
use sys.argv to check the number of command line parameters.

Listing 1.14: Hello.py

import sys
def main():
  if len(sys.argv) >= 2:
    name = sys.argv[1]
  else:
    name = 'World'
  print('Hello', name)
# Standard boilerplate to invoke the main() function
if __name__ == '__main__':
  main()

Listing 1.14 defines the main() function that checks the number of 
command-line parameters: if this value is at least 2, then the variable name 
is assigned the value of the second parameter (the first parameter is Hel-
lo.py), otherwise name is assigned the value Hello. The print statement 
then prints the value of the variable name.



Introduction to Python 3 • 35

The final portion of Listing 1.14 uses conditional logic to determine 
whether or not to execute the main() function.

1.28 Summary

This chapter showed you how to work with numbers and perform 
arithmetic operations on numbers, and then you learned how to work with 
strings and use string operations. The next chapter shows you how to work 
with conditional statements, loops, and user-defined functions in Python.





C H A P T E R2

●●  Precedence of Operators in Python
●●  Python Reserved Words
●●  Working with Loops in Python
●●  Nested Loops
●●  The split() Function with for Loops
●●  Using the split()Function to Compare Words
●●  Using the split()Function to Print Justified Text
●●  Using the split()Function to Print Fixed Width Text
●●  Using the split()Function to Compare Text Strings
●●  Using the split()Function to Display Characters in a String
●●  The join()Function
●●  Python while Loops
●●  Conditional Logic in Python
●●  The break/continue/pass Statements
●●  Comparison and Boolean Operators
●●  Local and Global Variables
●●  Scope of Variables
●●  Pass by Reference versus Value
●●  Arguments and Parameters

CONDITIONAL LOGIC, 
LOOPS, AND FUNCTIONS



38 • Python 3 for Machine Learning

This chapter introduces you to various ways to perform conditional 
logic in Python, as well as control structures and user-defined functions in 
Python. Virtually every Python program that performs useful calculations 
requires some type of conditional logic or control structure (or both). Al-
though the syntax for these Python features is slightly different from other 
languages, the functionality will be familiar to you.

The first part of this chapter contains code samples that illustrate how 
to handle if-else conditional logic in Python, as well as if-elsif-else 
statements. The second part of this chapter discusses loops and while state-
ments in Python. This section contains an assortment of examples (compar-
ing strings, computing numbers raised to different exponents, and so forth) 
that illustrate various ways that you can use loops and while statements in 
Python. The third part of this chapter contains examples that involve nested 
loops and recursion. The final part of this chapter introduces you to user-
defined Python functions. 

2.1 Precedence of Operators in Python

When you have an expression involving numbers, you might remem-
ber that multiplication (“*”) and division (“/”) have higher precedence than 
addition (“+”) or subtraction (“-”). Exponentiation has even higher prece-
dence than these four arithmetic operators.

However, instead of relying on precedence rules, it’s simpler (as well as 
safer) to use parentheses. For example, (x/y)+10 is clearer than x/y+10, 
even though they are equivalent expressions.

As another example, the following two arithmetic expressions are the 
equivalent, but the second is less error prone than the first:

●●  Using a while loop to Find the Divisors of a Number
●●  User-Defined Functions in Python
●●  Specifying Default Values in a Function
●●  Functions with a Variable Number of Arguments
●●  Lambda Expressions
●●  Recursion
●●  Summary



conditionaL Logic, LooPs, and functions • 39

x/y+3*z/8+x*y/z-3*x
x/y)+(3*z)/8+(x*y)/z-(3*x)

In any case, the following website contains precedence rules for opera-
tors in Python:

http://www.mathcs.emory.edu/~valerie/courses/fall10/155/resources/op_
precedence.html

2.2 Python Reserved Words

Every programming language has a set of reserved words, which is a set 
of words that cannot be used as identifiers, and Python is no exception. The 
Python reserved words are: and, exec, not, assert, finally, or, 
break, for, pass, class, from, print, continue, global, 
raise, def, if, return, del, import, try, elif, in, while, 
else, is, with, except, lambda, and yield. 

If you inadvertently use a reserved word as a variable, you will see an “in-
valid syntax” error message instead of a “reserved word” error message. For ex-
ample, suppose you create a Python script test1.py with the following code:

break = 2
print('break =', break)

If you run the preceding Python code you will see the following output:

  File "test1.py", line 2
    break = 2
          ^
SyntaxError: invalid syntax

However, a quick inspection of the Python code reveals the fact that 
you are attempting to use the reserved word break as a variable.

2.3 Working with Loops in Python

Python supports for loops, while loops, and range() statements. The 
following subsections illustrate how you can use each of these constructs.

2.3.1 Python for Loops
Python supports the for loop whose syntax is slightly different from 

other languages (such as JavaScript and Java). The following code block 



40 • Python 3 for Machine Learning

shows you how to use a for loop in Python in order to iterate through the 
elements in a list:
>>> x = ['a', 'b', 'c']
>>> for w in x:
...   print(w)
... 
a
b
c

The preceding code snippet prints three letters on three separate lines. 
You can force the output to be displayed on the same line (which will “wrap” 
if you specify a large enough number of characters) by appending a comma 
“,” in the print statement, as shown here:
>>> x = ['a', 'b', 'c']
>>> for w in x:
...   print(w, end=' ')
... 
a b c

You can use this type of code when you want to display the contents of 
a text file in a single line instead of multiple lines. 

Python also provides the built-in reversed() function that reverses 
the direction of the loop, as shown here:
>>> a = [1, 2, 3, 4, 5]
>>> for x in reversed(a): 
... print(x)
5
4 
3 
2 
1

Note that reversed iteration only works if the size of the current object 
can be determined or if the object implements a __reversed__() special 
method.

2.3.2 A for Loop with try/except in Python
Listing 2.1 displays the contents of StringToNums.py that illustrates 

how to calculate the sum of a set of integers that have been converted from 
strings.



conditionaL Logic, LooPs, and functions • 41

Listing 2.1: StringToNums.py

line = '1 2 3 4 10e abc'
sum  = 0
invalidStr = ""

print('String of numbers:',line)

for str in line.split(" "):
  try:
    sum = sum + eval(str)
  except:
    invalidStr = invalidStr + str + ' '

print('sum:', sum)
if(invalidStr != ""):
  print('Invalid strings:',invalidStr)
else:
  print('All substrings are valid numbers')

Listing 2.1 initializes the variables line, sum, and invalidStr, 
and then displays the contents of line. The next portion of Listing 2.1 splits 
the contents of line into words, and then uses a try block in order to add 
the numeric value of each word to the variable sum. If an exception occurs, 
the contents of the current str is appended to the variable invalidStr. 

When the loop has finished execution, Listing 2.1 displays the sum of 
the numeric words, followed by the list of words that are not numbers. The 
output from Listing 2.1 is here:

String of numbers: 1 2 3 4 10e abc
sum: 10
Invalid strings: 10e abc 

2.3.3 Numeric Exponents in Python
Listing 2.2 displays the contents of Nth_exponent.py that illustrates 

how to calculate intermediate powers of a set of integers.

Listing 2.2: Nth_exponent.py

maxPower = 4
maxCount = 4

def pwr(num):
  prod = 1
  for n in range(1,maxPower+1):



42 • Python 3 for Machine Learning

    prod = prod*num
    print(num,'to the power',n, 'equals',prod)
  print('-----------')

for num in range(1,maxCount+1):
    pwr(num)

Listing 2.2 contains a function called pwr() that accepts a nu-
meric value. This function contains a loop that prints the value of 
that number raised to the power n, where n ranges between 1 and  
maxPower+1.

The second part of Listing 2.2 contains a for loop that invokes the 
function pwr() with the numbers between 1 and maxPower+1. The output 
from Listing 2.2 is here:

1 to the power 1 equals 1
1 to the power 2 equals 1
1 to the power 3 equals 1
1 to the power 4 equals 1
-----------
2 to the power 1 equals 2
2 to the power 2 equals 4
2 to the power 3 equals 8
2 to the power 4 equals 16
-----------
3 to the power 1 equals 3
3 to the power 2 equals 9
3 to the power 3 equals 27
3 to the power 4 equals 81
-----------
4 to the power 1 equals 4
4 to the power 2 equals 16
4 to the power 3 equals 64
4 to the power 4 equals 256
-----------

2.4 Nested Loops

Listing 2.3 displays the contents of Triangular1.py that illustrates 
how to print a row of consecutive integers (starting from 1), where the 
length of each row is one greater than the previous row.



conditionaL Logic, LooPs, and functions • 43

Listing 2.3: Triangular1.py

max = 8
for x in range(1,max+1):
  for y in range(1,x+1):
    print(y, '', end='')
  print()

Listing 2.3 initializes the variable max with the value 8, followed by an 
outer for loop whose loop variable x ranges from 1 to max+1. The inner 
loop has a loop variable y that ranges from 1 to x+1, and the inner loop 
prints the value of y. The output of Listing 2.4 is here:

1
1 2
1 2 3
1 2 3 4
1 2 3 4 5
1 2 3 4 5 6
1 2 3 4 5 6 7
1 2 3 4 5 6 7 8

2.5 The split() Function with for Loops

Python supports various useful string-related functions, including the 
split() function and the join() function. The split() function is use-
ful when you want to tokenize (“split”) a line of text into words and then use 
a for loop to iterate through those words and process them accordingly. 

The join() function does the opposite of split(): it “joins” two or more 
words into a single line. You can easily remove extra spaces in a sentence by 
using the split() function and then invoking the join() function, thereby 
creating a line of text with one white space between any two words.

2.6 Using the split() Function to Compare Words

Listing 2.4 displays the contents of Compare2.py that illustrates how to 
use the split function to compare each word in a text string with another word.

Listing 2.4: Compare2.py

x = 'This is a string that contains abc and Abc'



44 • Python 3 for Machine Learning

y = 'abc'
identical = 0
casematch = 0

for w in x.split():
  if(w == y):
    identical = identical + 1
  elif (w.lower() == y.lower()):
    casematch = casematch + 1

if(identical > 0):
 print('found identical matches:', identical)

if(casematch > 0):
 print('found case matches:', casematch)

if(casematch == 0 and identical == 0):
 print('no matches found')

Listing 2.4 uses the split() function in order to compare each word 
in the string x with the word abc. If there is an exact match, the variable 
identical is incremented. If a match does not occur, a case-insensitive 
match of the current word is performed with the string abc, and the vari-
able casematch is incremented if the match is successful.

The output from Listing 2.5 is here:

found identical matches: 1
found case matches: 1

2.7 Using the split() Function to Print Justified Text

Listing 2.5 displays the contents of FixedColumnCount.py that illus-
trates how to print a set of words from a text string as justified text using a 
fixed number of columns.

Listing 2.5: FixedColumnCount1.py

import string

wordCount = 0
str1 = 'this is a string with a set of words in it'

print('Left-justified strings:')
print('-----------------------')
for w in str1.split():
   print('%-10s' % w)



conditionaL Logic, LooPs, and functions • 45

   wordCount = wordCount + 1
   if(wordCount % 2 == 0):
      print("")
print("\n")

print('Right-justified strings:')
print('------------------------')

wordCount = 0
for w in str1.split():
   print('%10s' % w)
   wordCount = wordCount + 1
   if(wordCount % 2 == 0):
      print()

Listing 2.5 initializes the variables wordCount and str1, followed by 
two for loops. The first for loop prints the words in str1 in left-justified 
format, and the second for loop prints the words in str1 in right-justified 
format. In both loops, a linefeed is printed after a pair of consecutive words 
is printed, which occurs whenever the variable wordCount is even. The 
output from Listing 2.5 is here:

Left-justified strings:
-----------------------
this       is        
a          string    
with       a         
set        of        
words      in        
it        

Right-justified strings:
------------------------
      this         is
         a     string
      with          a
       set         of
     words         in
        it

2.8 Using the split() Function to Print Fixed Width Text

Listing 2.6 displays the contents of FixedColumnWidth1.py that il-
lustrates how to print a text string in a column of fixed width.



46 • Python 3 for Machine Learning

Listing 2.6: FixedColumnWidth1.py

import string

left = 0
right = 0
columnWidth = 8

str1 = 'this is a string with a set of words in it and 
it will be split into a fixed column width'
strLen = len(str1)

print('Left-justified column:') 
print('----------------------') 
rowCount = int(strLen/columnWidth)

for i in range(0,rowCount):
   left  = i*columnWidth
   right = (i+1)*columnWidth-1
   word  = str1[left:right]
   print("%-10s" % word)

# check for a 'partial row'
if(rowCount*columnWidth < strLen):
   left  = rowCount*columnWidth-1;
   right = strLen
   word  = str1[left:right]
   print("%-10s" % word)

Listing 2.6 initializes the integer variable columnWidth and the string 
variable str1. The variable strLen is the length of str1, and rowCount is 
strLen divided by columnWidth.

The next part of Listing 2.6 contains a loop that prints rowCount rows of 
characters, where each row contains columnWidth characters. The final por-
tion of Listing 2.6 prints any “leftover” characters that comprise a partial row.

The newspaper-style output (but without any partial whitespace for-
matting) from Listing 2.6 is here:

Left-justified column:
----------------------
this is   
a strin   
 with a   
set of    
ords in   



conditionaL Logic, LooPs, and functions • 47

it and    
t will    
e split   
into a    
ixed co   
umn wid   
th        

2.9 Using the split() Function to Compare Text Strings

Listing 2.7 displays the contents of CompareStrings1.py that illus-
trates how to determine whether or not the words in one text string are also 
words in a second text string.

Listing 2.7: CompareStrings1.py
text1 = 'a b c d'
text2 = 'a b c e d'

if(text2.find(text1) >= 0):
  print('text1 is a substring of text2')
else:
  print('text1 is not a substring of text2')

subStr = True
for w in text1.split():
  if(text2.find(w) == -1):
    subStr = False
    break

if(subStr == True):
  print('Every word in text1 is a word in text2')
else:
  print('Not every word in text1 is a word in text2')

Listing 2.7 initializes the string variables text1 and text2, and uses 
conditional logic to determine whether or not text1 is a substring of text2 
(and then prints a suitable message).

The next part of Listing 2.7 is a loop that iterates through the words 
in the string text1 and checks if each of those words is also a word in the 
string text2. If a nonmatch occurs, the variable subStr is set to False, 
followed by the break statement that causes an early exit from the loop. 
The final portion of Listing 2.7 prints the appropriate message based on the 
value of subStr. The output from Listing 2.7 is here:



48 • Python 3 for Machine Learning

text1 is not a substring of text2
Every word in text1 is a word in text2

2.10  Using a Basic for Loop to Display  
Characters in a String

Listing 2.8 displays the contents of StringChars1.py that illustrates 
how to print the characters in a text string.

Listing 2.8: StringChars1.py

text = 'abcdef'
for ch in text:
   print('char:',ch,'ord value:',ord(ch))
print

Listing 2.8 is straightforward: a for loop iterates through the charac-
ters in the string text and then prints the character and its ord value. The 
output from Listing 2.8 is here:

('char:', 'a', 'ord value:', 97)
('char:', 'b', 'ord value:', 98)
('char:', 'c', 'ord value:', 99)
('char:', 'd', 'ord value:', 100)
('char:', 'e', 'ord value:', 101)
('char:', 'f', 'ord value:', 102)

2.11 The join() Function 

Another way to remove extraneous spaces is to use the join() func-
tion, as shown here:

text1 = '   there are     extra   spaces   '
print('text1:',text1)

text2 = ' '.join(text1.split())
print('text2:',text2)

text2 = 'XYZ'.join(text1.split())
print('text2:',text2)

The split() function “splits” a text string into a set of words, and also 
removes the extraneous white spaces. Next, the join() function “joins” 
together the words in the string text1, using a single white space as the 
delimiter. The last code portion of the preceding code block uses the string 
XYZ as the delimiter instead of a single white space.



conditionaL Logic, LooPs, and functions • 49

The output of the preceding code block is here:

text1:    there are     extra   spaces   
text2: there are extra spaces
text2: thereXYZareXYZextraXYZspaces

2.12 Python while Loops

You can define a while loop to iterate through a set of numbers, as 
shown in the following examples:

>>> x = 0
>>> while x < 5:
...   print(x)
...   x = x + 1
... 
0
1
2
3
4
5

Python uses indentation instead of curly braces that are used in other 
languages such as JavaScript and Java. Although the Python list data struc-
ture is not discussed until Chapter 3, you can probably understand the fol-
lowing simple code block that contains a variant of the preceding while loop 
that you can use when working with lists:

lst  = [1,2,3,4]

while lst:
  print('list:',lst)
  print('item:',lst.pop())

The preceding while loop terminates when the lst variable is empty, 
and there is no need to explicitly test for an empty list. The output from the 
preceding code is here:

list: [1, 2, 3, 4]
item: 4
list: [1, 2, 3]
item: 3
list: [1, 2]
item: 2
list: [1]
item: 1



50 • Python 3 for Machine Learning

This concludes the examples that use the split() function in order to 
process words and characters in a text string. The next part of this chapter 
shows you examples of using conditional logic in Python code.

2.13 Conditional Logic in Python

If you have written code in other programming languages, you have 
undoubtedly seen if/then/else (or if-elseif-else) conditional 
statements. Although the syntax varies between languages, the logic is es-
sentially the same. The following example shows you how to use if/elif 
statements in Python:

>>> x = 25
>>> if x < 0:
...   print('negative')
... elif x < 25:
...   print('under 25')
... elif x == 25:
...   print('exactly 25')
... else:
...  print('over 25')
... 
exactly 25

The preceding code block illustrates how to use multiple conditional 
statements, and the output is exactly what you expected.

2.14 The break/continue/pass Statements

The break statement in Python enables you to perform an “early exit” 
from a loop, whereas the continue statement essentially returns to the top 
of the loop and continues with the next value of the loop variable. The pass 
statement is essentially a “do nothing” statement. 

Listing 2.9 displays the contents of BreakContinuePass.py that il-
lustrates the use of these three statements.

Listing 2.9: BreakContinuePass.py

print('first loop')
for x in range(1,4):
  if(x == 2):



conditionaL Logic, LooPs, and functions • 51

    break
  print(x)

print('second loop')
for x in range(1,4):
  if(x == 2):
    continue 
  print(x)

print('third loop')
for x in range(1,4):
  if(x == 2):
    pass 
  print(x)

The output of Listing 2.9 is here:

first loop
1
second loop
1
3
third loop
1
2
3

2.15 Comparison and Boolean Operators

Python supports a variety of Boolean operators, such as in, not in, is, 
is not, and, or, and not. The next several sections discuss these opera-
tors and provide some examples of how to use them.

2.15.1 The in/not in/is/is not Comparison Operators
The in and not in operators are used with sequences to check 

whether a value occurs or does not occur in a sequence. The opera-
tors is and is not determine whether or not two objects are the same 
object, which is important only for mutable objects such as lists. All 
comparison operators have the same priority, which is lower than that 
of all numerical operators. Comparisons can also be chained. For ex-
ample, a < b == c tests whether a is less than b and moreover b  
equals c.



52 • Python 3 for Machine Learning

2.15.2 The and, or, and not Boolean Operators
The Boolean operators and, or, and not have lower priority than com-

parison operators. The Boolean and and or are binary operators whereas 
the Boolean or operator is a unary operator. Here are some examples:

A and B can only be true if both A and B are true

A or B is true if either A or B is true

not(A) is true if and only if A is false

You can also assign the result of a comparison or other Boolean expres-
sion to a variable, as shown here:

>>> string1, string2, string3 = '', 'b', 'cd'
>>> str4 = string1 or string2 or string3
>>> str4
'b'

The preceding code block initializes the variables string1, string2,  
and string3, where string1 is an empty string. Next, str4 is initialized via 
the or operator, and since the first non-null value is string2, the value of 
str4 is equal to string2.

2.16 Local and Global Variables

Python variables can be local or global. A Python variable is local to a 
function if the following are true:

●➡ a parameter of the function

●➡ on the left-side of a statement in the function

●➡ bound to a control structure (such as for, with, and except)

A variable that is referenced in a function but is not local (according to 
the previous list) is a non-local variable. You can specify a variable as non-
local with this snippet: 

nonlocal z

A variable can be explicitly declared as global with this statement:

global z

The following code block illustrates the behavior of a global versus a 
local variable:



conditionaL Logic, LooPs, and functions • 53

global z
z = 3

def changeVar(z):
  z = 4
  print('z in function:',z)

print('first global z:',z)

if __name__ == '__main__':
  changeVar(z)
  print('second global z:',z)

The output from the preceding code block is here:

first global z: 3
z in function: 4
second global z: 3

2.17 Scope of Variables

The accessibility or scope of a variable depends on where that variable 
has been defined. Python provides two scopes: global and local, with the 
added “twist” that global is actually module-level scope (i.e., the current 
file), and therefore you can have a variable with the same name in different 
files and they will be treated differently. 

Local variables are straightforward: they are defined inside a function, 
and they can only be accessed inside the function where they are defined. 
Any variables that are not local variables have global scope, which means 
that those variables are “global” only with respect to the file where it has 
been defined, and they can be accessed anywhere in a file. 

There are two scenarios to consider regarding variables. First, suppose 
two files (aka modules) file1.py and file2.py have a variable called x, and 
file1.py also imports file2.py. The question now is how to disambiguate 
between the x in the two different modules. As an example, suppose that 
file2.py contains the following two lines of code:
x = 3
print('unscoped x in file2:',x)

Suppose that file1.py contains the following code:

import file2 as file2

x = 5



54 • Python 3 for Machine Learning

print('unscoped x in file1:',x)
print('scoped x from file2:',file2.x)

Launch file1.y from the command line, and you will see the following 
output:

unscoped x in file2: 3
unscoped x in file1: 5
scoped x from file2: 3

The second scenario involves a program contains a local variable and a 
global variable with the same name. According to the earlier rule, the local 
variable is used in the function where it is defined, and the global variable 
is used outside of that function.

The following code block illustrates the use of a global and local vari-
able with the same name:

#!/usr/bin/python
# a global variable:
total = 0; 

def sum(x1, x2):
   # this total is local:
   total = x1+x2; 

   print("Local total : ", total)
   return total

# invoke the sum function
sum(2,3);
print("Global total : ", total)

When the above code is executed, it produces following result:

Local total :   5
Global total :  0

What about unscoped variables, such as specifying the variable x with-
out a module prefix? The answer consists of the following sequence of steps 
that Python will perform:

1. check the local scope for the name
2. ascend the enclosing scopes and check for the name 
3. perform step #2 until the global scope (ie module level)

4. if x still hasn't been found, Python checks__builtins__



conditionaL Logic, LooPs, and functions • 55

Python 3.6.8 (v3.6.8:3c6b436a57, Dec 24 2018, 02:04:31)
[GCC 4.2.1 Compatible Apple LLVM 6.0 (clang-600.0.57)] 
on darwin
Type "help", "copyright", "credits" or "license" for 
more information.
>>> x = 1
>>> g = globals()
>>> g
{'g': {...}, '__builtins__': <module '__builtin__' 
(built-in)>, '__package__': None, 'x': 1, '__name__': 
'__main__', '__doc__': None}
>>> g.pop('x')
1
>>> x
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined

Note: You can access the dicts that Python uses to track local and global 
scope by invoking locals() and globals() respectively.

2.18 Pass by Reference versus Value

All parameters (arguments) in the Python language are passed by refer-
ence. Thus, if you change what a parameter refers to within a function, the 
change is reflected in the calling function. For example:

def changeme(mylist):
   #This changes a passed list into this function
   mylist.append([1,2,3,4])
   print("Values inside the function: ", mylist)
   return

# Now you can call changeme function
mylist = [10,20,30]
changeme(mylist)
print("Values outside the function: ", mylist)

Here we are maintaining reference of the passed object and appending 
values in the same object, and the result is shown here:

Values inside the function:  [10, 20, 30, [1, 2, 3, 4]]
Values outside the function:  [10, 20, 30, [1, 2, 3, 4]]



56 • Python 3 for Machine Learning

The fact that values are passed by reference gives rise to the notion of 
mutability versus immutability that is discussed in Chapter 3.

2.19 Arguments and Parameters

Python differentiates between arguments to functions and parameter 
declarations in functions: a positional (mandatory) and keyword (optional/
default value). This concept is important because Python has operators for 
packing and unpacking these kinds of arguments.

Python unpacks positional arguments from an iterable, as shown here:

>>> def foo(x, y):
...   return x - y
...
>>> data = 4,5
>>> foo(data) # only passed one arg
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
TypeError: foo() takes exactly 2 arguments (1 given)
>>> foo(*data) # passed however many args are in tuple
-1

2.20 Using a while loop to Find the Divisors of a Number

Listing 2.10 contains a while loop, conditional logic, and the % (modu-
lus) operator in order to find the factors of any integer greater than 1.

Listing 2.10: Divisors.py

def divisors(num):
  div = 2

  while(num > 1):
    if(num % div == 0):
      print("divisor: ", div)
      num = num / div
    else:
      div = div + 1
  print("** finished **")

divisors(12)

Listing 2.10 defines a function divisors() that takes an integer value 
num and then initializes the variable div with the value 2. The while loop 



conditionaL Logic, LooPs, and functions • 57

divides num by div and if the remainder is 0, it prints the value of div and 
then it divides num by div; if the value is not 0, then div is incremented by 
1. This while loop continues as long as the value of num is greater than 1.

The output from Listing 2.10 passing in the value 12 to the function 
divisors() is here:

divisor:  2
divisor:  2
divisor:  3
** finished **

Listing 2.11 displays the contents of Divisors2.py that contains a 
while loop, conditional logic, and the % (modulus) operator in order to 
find the factors of any integer greater than 1.

Listing 2.11: Divisors2.py

def divisors(num):
  primes = ""
  div = 2

  while(num > 1):
    if(num % div == 0):
      divList = divList + str(div) + ' '
      num = num / div
    else:
      div = div + 1
  return divList

result = divisors(12)
print('The divisors of',12,'are:',result)

Listing 2.11 is very similar to Listing 2.10: the main difference is that 
Listing 2.10 constructs the variable divList (which is a concatenated list 
of the divisors of a number) in the while loop, and then returns the value 
of divList when the while loop has completed. The output from Listing 
2.11 is here:

The divisors of 12 are: 2 2 3

2.20.1 Using a while loop to Find Prime Numbers
Listing 2.12 displays the contents of Divisors3.py that contains a 

while loop, conditional logic, and the % (modulus) operator in order to 
count the number of prime factors of any integer greater than 1. If there is 
only one divisor for a number, then that number is a prime number.



58 • Python 3 for Machine Learning

Listing 2.12: Divisors3.py

def divisors(num):
  count = 1
  div = 2
  while(div < num):
    if(num % div == 0):
      count = count + 1
    div = div + 1
  return count

result = divisors(12)

if(result == 1):
  print('12 is prime')
else:
  print('12 is not prime')

2.21 User-Defined Functions in Python

Python provides built-in functions and also enables you to define your 
own functions. You can define functions to provide the required functional-
ity. Here are simple rules to define a function in Python:

●■  Function blocks begin with the keyword def followed by the function 
name and parentheses.

●■ Any input arguments should be placed within these parentheses.

●■  The first statement of a function can be an optional statement—the 
documentation string of the function or docstring.

●■  The code block within every function starts with a colon (:) and is in-
dented.

●■  The statement return [expression] exits a function, optionally passing 
back an expression to the caller. A return statement with no arguments 
is the same as return None.

●■  If a function does not specify return statement, the function automati-
cally returns None, which is a special type of value in Python.

A very simple custom Python function is here:

>>> def func():



conditionaL Logic, LooPs, and functions • 59

...   print 3

... 
>>> func()
3

The preceding function is trivial, but it does illustrate the syntax for de-
fining custom functions in Python. The following example is slightly more 
useful:

>>> def func(x):
...   for i in range(0,x):
...     print(i)
... 
>>> func(5)
0
1
2
3
4

2.22 Specifying Default Values in a Function

Listing 2.13 displays the contents of DefaultValues.py that illus-
trates how to specify default values in a function.

Listing 2.13: DefaultValues.py

def numberFunc(a, b=10):
  print (a,b)

def stringFunc(a, b='xyz'):
  print (a,b)

def collectionFunc(a, b=None):
  if(b is None):
     print('No value assigned to b')

numberFunc(3)
stringFunc('one')
collectionFunc([1,2,3])

Listing 2.13 defines three functions, followed by an invocation of each of 
those functions. The functions numberFunc() and stringFunc() print a list 
contain the values of their two parameters, and collectionFunc() displays a 
message if the second parameter is None. The output from Listing 2.13 is here:



60 • Python 3 for Machine Learning

(3, 10)
('one', 'xyz')
No value assigned to b

2.22.1 Returning Multiple Values from a Function
This task is accomplished by the code in Listing 2.14, which displays the 

contents of MultipleValues.py.

Listing 2.14: MultipleValues.py

def MultipleValues():
    return 'a', 'b', 'c'

x, y, z = MultipleValues() 

print('x:',x)
print('y:',y)
print('z:',z)

The output from Listing 2.14 is here:

x: a
y: b
z: c

2.23 Functions with a Variable Number of Arguments

Python enables you to define functions with a variable number of argu-
ments. This functionality is useful in many situations, such as computing 
the sum, average, or product of a set of numbers. For example, the follow-
ing code block computes the sum of two numbers:

def sum(a, b):
    return a + b

values = (1, 2)
s1 = sum(*values)
print('s1 = ', s1)

The output of the preceding code block is here:

s1 =  3

However, the sum function in the preceding code block can only be 
used for two numeric values. 

Listing 2.15 displays the contents of VariableSum1.py that illustrates 
how to compute the sum of a variable number of numbers.



conditionaL Logic, LooPs, and functions • 61

Listing 2.15:VariableSum1.py

def sum(*values):
  sum = 0
  for x in values:
    sum = sum + x
  return sum

values1 = (1, 2)
s1 = sum(*values1)
print('s1 = ',s1)

values2 = (1, 2, 3, 4)
s2 = sum(*values2)
print('s2 = ',s2)

Listing 2.15 defines the function sum whose parameter values can be 
an arbitrary list of numbers. The next portion of this function initializes sum 
to 0, and then a for loop iterates through values and adds each of its ele-
ments to the variable sum. The last line in the function sum() returns the 
value of the variable sum. The output from Listing 2.15 is here:

s1 =  3
s2 =  10

2.24 Lambda Expressions

Listing 2.16 displays the contents of Lambda1.py that illustrates how 
to create a simple lambda function in Python.

Listing 2.16 Lambda1.py

add = lambda x, y: x + y 

x1 = add(5,7)
x2 = add('Hello', 'Python')

print(x1)
print(x2)

Listing 2.16 defines the lambda expression add that accepts two input 
parameters and then returns their sum (for numbers) or their concatena-
tion (for strings).

The output from Listing 2.16 is here:

12
HelloPython



62 • Python 3 for Machine Learning

2.25 Recursion

Recursion is a powerful technique that can provide an elegant solution 
to various problems. The following subsections contain examples of using 
recursion to calculate some well-known numbers.

2.25.1 Calculating Factorial Values
The factorial value of a positive integer n is the product of all the inte-

gers between 1 and n. The symbol for factorial is the exclamation point (“!”) 
and some sample factorial values are here:

1! = 1
2! = 2
3! = 6
4! = 20
5! = 120

The formula for the factorial value of a number is succinctly defined as 
follows:

Factorial(n) = n*Factorial(n-1) for n > 0 and 
Factorial(0) = 1

Listing 2.17 displays the contents of Factorial.py that illustrates how 
to use recursion in order to calculate the factorial value of a positive integer.

Listing 2.17 Factorial.py

def factorial(num):
  if (num > 1):
    return num * factorial(num-1)
  else:
    return 1

result = factorial(5)
print('The factorial of 5 =', result)

Listing 2.17 contains the function factorial that implements the re-
cursive definition of the factorial value of a number. The output from List-
ing 2.17 is here:

The factorial of 5 = 120

In addition to a recursive solution, there is also an iterative solution for 
calculating the factorial value of a number. Listing 2.18 displays the con-
tents of Factorial2.py that illustrates how to use the range() function 
in order to calculate the factorial value of a positive integer.



conditionaL Logic, LooPs, and functions • 63

Listing 2.18: Factorial2.py

def factorial2(num):
  prod = 1
  for x in range(1,num+1):
    prod = prod * x
  return prod

result = factorial2(5)
print 'The factorial of 5 =', result

Listing 2.18 defines the function factorial2() with a parameter 
num, followed by the variable prod which has an initial value of 1. The next 
part of factorial2() is a for loop whose loop variable x ranges between 
1 and num+1, and each iteration through that loop multiples the value of 
prod with the value of x, thereby computing the factorial value of num. The 
output from Listing 2.18 is here:

The factorial of 5 = 120

2.25.2 Calculating Fibonacci Numbers
The set of Fibonacci numbers represent some interesting patterns 

(such as the pattern of a sunflower) in nature, and its recursive definition 
is here:

Fib(0) = 0 
Fib(1) = 1
Fib(n) = Fib(n-1) + Fib(n-2) for n >= 2

Listing 2.19 displays the contents of fib.py that illustrates how to cal-
culate Fibonacci numbers.

Listing 2.19: fib.py

def fib(num):
  if (num == 0):
    return 1
  elif (num == 1):
    return 1
  else:
    return fib(num-1) + fib(num-2)

result = fib(10)
print('Fibonacci value of 5 =', result)

Listing 2.19 defines the fib() function with the parameter num. If num 
equals 0 or 1 then fib() returns num; otherwise, fib() returns the result of 
adding fib(num-1) and fib(num-2). The output from Listing 2.19 is here:



64 • Python 3 for Machine Learning

Fibonacci value of 10 = 89

2.25.3 Calculating the GCD of Two Numbers
The greatest common divisor (GCD) of two positive integers is the larg-

est integer that divides both integers with a remainder of 0. Some values 
are shown here:

gcd(6,2)   = 2
gcd(10,4)  = 2
gcd(24,16) = 8

Listing 2.20 uses recursion and Euclid’s algorithm in order to find the 
GCD of two positive integers.

Listing 2.20: gcd.py

def gcd(num1, num2):
  if(num1 % num2 == 0):
    return num2
  elif (num1 < num2):
    print("switching ", num1, " and ", num2)
    return gcd(num2, num1)
  else:
    print("reducing", num1, " and ", num2)
    return gcd(num1-num2, num2)

result = gcd(24, 10)
print("GCD of", 24, "and", 10, "=", result)

Listing 2.20 defines the function gcd() with the parameters num1 
and num2. If num1 is divisible by num2, the function returns num2. If 
num1 is less than num2, then gcd is invoked by switching the order of 
num1 and num2. In all other cases, gcd() returns the result of computing 
gcd() with the values num1-num2 and num2. The output from Listing 
2.20 is here:

reducing 24  and  10
reducing 14  and  10
switching  4  and  10
reducing 10  and  4
reducing 6  and  4
switching  2  and  4
GCD of 24 and 10 = 2



conditionaL Logic, LooPs, and functions • 65

2.25.4 Calculating the LCM of Two Numbers
The lowest common multiple (LCM) of two positive integers is the 

smallest integer that is a multiple of those two integers. Some values are 
shown here:

lcm(6,2)   = 2
lcm(10,4)  = 20
lcm(24,16) = 48

In general, if x and y are two positive integers, you can calculate their 
LCM as follows:

lcm(x,y) = x/gcd(x,y)*y/gcd(x,y)

Listing 2.21 uses the gcd() function that is defined in the previous sec-
tion in order to calculate the LCM of two positive integers.

Listing 2.21: lcm.py

def gcd(num1, num2):
  if(num1 % num2 == 0):
    return num2
  elif (num1 < num2):
   #print("switching ", num1, " and ", num2)
    return gcd(num2, num1)
  else:
   #print("reducing", num1, " and ", num2)
    return gcd(num1-num2, num2)

def lcm(num1, num2):
  gcd1 = gcd(num1, num2)
  lcm1 = num1*num2/gcd1
  return lcm1

result = lcm(24, 10)
print("The LCM of", 24, "and", 10, "=", result)

Listing 2.21 defines the function gcd() that was discussed in the previ-
ous section, followed by the function lcm that takes the parameters num1 
and num2. The first line in lcm() computes gcd1, which is the gcd() of 
num1 and num2. The second line in lcm() computes lcm1, which is num1 
divided by three values. The third line in lcm() returns the value of lcm1. 
The output of Listing 2.21 is here:



66 • Python 3 for Machine Learning

The LCM of 24 and 10 = 120

2.26 Summary

This chapter showed you how to use condition logic, such as if/elif 
statement. You also learned how to work with loops in Python, including for 
loops and while loops. You learned how to compute various values, such as 
the GCD (greatest common divisor) and LCM (lowest common multiple) 
of a pair of numbers, and also how to determine whether or not a positive 
number is prime.



C H A P T E R3

●●  Working with Lists
●●  Sorting Lists of Numbers and Strings
●●  Expressions in Lists
●●  Concatenating a List of Words
●●  The BubbleSort in Python
●●  The Python range() Function
●●  Arrays and the append() Function
●●  Working with Lists and the split() Function
●●  Counting Words in a List
●●  Iterating through Pairs of Lists
●●  Other List-Related Functions
●●  Using a List as a Stack and a Queue
●●  Working with Vectors
●●  Working with Matrices
●●  The NumPy Library for Matrices
●●  Queues
●●  Tuples (Immutable Lists)
●●  Sets
●●  Dictionaries
●●  Dictionary Functions and Methods

PYTHON COLLECTIONS



68 • Python 3 for Machine Learning

In Chapters 1 and 2, you learned how to work with numbers and strings, 
as well as control structures in Python. This chapter discusses Python col-
lections, such as lists (or arrays), sets, tuples, and dictionaries. You will see 
many short code blocks that will help you rapidly learn how to work with 
these data structures in Python. After you have finished reading this chap-
ter, you will be in a better position to create more complex Python modules 
using one or more of these data structures.

The first part of this chapter discusses Python lists and shows you code 
samples that illustrate various methods that are available for manipulating 
lists. The second part of this chapter discusses Python sets and how they 
differ from Python lists.

The third part of this chapter discusses Python tuples, and the final part 
of this chapter discusses Python dictionaries.

3.1 Working with Lists 

Python supports a list data type, along with a rich set of list-related 
functions. Since lists are not typed, you can create a list of different data 
types, as well as multidimensional lists. The next several sections show you 
how to manipulate list structures in Python.

3.1.1 Lists and Basic Operations
A Python list consists of comma-separated values enclosed in a pair of 

square brackets. The following examples illustrate the syntax for defining a 
list in Python, and also how to perform various operations on a Python list:

>>> list = [1, 2, 3, 4, 5]
>>> list
[1, 2, 3, 4, 5]
>>> list[2]

●●  Dictionary Formatting
●●  Ordered Dictionaries
●●  Other Sequence Types in Python
●●  Mutable and Immutable Types in Python
●●  The type() Function
●●  Summary



Python coLLections • 69

3
>>> list2 = list + [1, 2, 3, 4, 5]
>>> list2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5]
>>> list2.append(6)
>>> list2
[1, 2, 3, 4, 5, 1, 2, 3, 4, 5, 6]
>>> len(list)
5
>>> x = ['a', 'b', 'c']
>>> y = [1, 2, 3]
>>> z = [x, y]
>>> z[0]
['a', 'b', 'c']
>>> len(x)
3

You can assign multiple variables to a list, provided that the number and 
type of the variables match the structure. Here is an example:

>>> point = [7,8]
>>> x,y = point
>>> x
7
>>> y
8

The following example shows you how to assign values to variables from 
a more complex data structure:

>>> line = [‘a’, 10, 20, (2020,10,31)]
>>> x1,x2,x3,date1 = line
>>> x1
'a'
>>> x2
10
>>> x3
20
>>> date1
(2020, 10, 31)

If you want to access the year/month/date components of the date1 
element in the preceding code block, you can do so with the following code 
block:



70 • Python 3 for Machine Learning

>>> line = [‘a’, 10, 20, (2020,10,31)]
>>> x1,x2,x3,(year,month,day) = line
>>> x1
'a'
>>> x2
10
>>> x3
20
>>> year
2020
>>> month
10
>>> day
31

If the number and/or structure of the variables do not match the data, 
an error message is displayed, as shown here:

>>> point = (1,2)
>>> x,y,z = point
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: need more than 2 values to unpack

If the number of variables that you specify is less than the number of 
data items, you will see an error message, as shown here:

>>> line = ['a', 10, 20, (2014,01,31)]
>>> x1,x2 = line
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
ValueError: too many values to unpack

3.1.2 Reversing and Sorting a List
The Python reverse() method reverses the contents of a list, as 

shown here:

>>> a = [4, 1, 2, 3]
>>> a.reverse()
[3, 2, 1, 4]

The Python sort() method sorts a list:

>>> a = [4, 1, 2, 3]
>>> a.sort()



Python coLLections • 71

[1, 2, 3, 4]

You can sort a list and then reverse its contents, as shown here:

>>> a = [4, 1, 2, 3]
>>> a.reverse(a.sort())
[4, 3, 2, 1]

Another way to reverse a list:

>>> L = [0,10,20,40]
>>> L[::-1]
[40, 20, 10, 0]

Keep in mind is that reversed(array) is an iterable and not a list. 
However, you can convert the reversed array to a list with this code snippet:

list(reversed(array)) or L[::-1] 

Listing 3.1 contains a while loop whose logic is the opposite of the list-
ing in the previous section: if num is divisible by multiple numbers (each of 
which is strictly less than num), then num is not prime.

Listing 3.1: Uppercase1.py

list1 = ['a', 'list', 'of', 'words']
list2 = [s.upper() for s in list1]
list3 = [s for s in list1 if len(s) <=2 ]
list4 = [s for s in list1 if 'w' in s ]

print('list1:',list1)
print('list2:',list2)
print('list3:',list3)
print('list4:',list4)

The output from launching the code in Listing 3.1 is here:

list1: ['a', 'list', 'of', 'words']
list2: ['A', 'LIST', 'OF', 'WORDS']
list3: ['a', 'of']
list4: ['words']

3.1.3 Lists and Arithmetic Operations
The minimum value of a list of numbers is the first number of in the 

sorted list of numbers. If you reverse the sorted list, the first number is the 
maximum value. There are several ways to reverse a list, starting with the 
technique shown in the following code:



72 • Python 3 for Machine Learning

x = [3,1,2,4]
maxList = x.sort()
minList = x.sort(x.reverse())

min1 = min(x)
max1 = max(x)
print min1
print max1

The output of the preceding code block is here:

1
4

A second (and better) way to sort a list is shown here:

minList = x.sort(reverse=True)

A third way to sort a list involves the built-in functional version of the 
sort() method, as shown here:

sorted(x, reverse=True)

The preceding code snippet is useful when you do not want to modify 
the original order of the list or you want to compose multiple list operations 
on a single line.

3.1.4 Lists and Filter-Related Operations
Python enables you to filter a list (also called list comprehension) as 

shown here:

mylist = [1, -2, 3, -5, 6, -7, 8]
pos = [n for n in mylist if n > 0]
neg = [n for n in mylist if n < 0]

print pos
print neg

You can also specify if/else logic in a filter, as shown here:

mylist = [1, -2, 3, -5, 6, -7, 8]
negativeList = [n if n < 0 else 0 for n in mylist]
positiveList = [n if n > 0 else 0 for n in mylist]

print positiveList
print negativeList

The output of the preceding code block is here:



Python coLLections • 73

[1, 3, 6, 8]
[-2, -5, -7]
[1, 0, 3, 0, 6, 0, 8]
[0, -2, 0, -5, 0, -7, 0]

3.2 Sorting Lists of Numbers and Strings

Listing 3.2 displays the contents of the Python script Sorted1.py that 
determines whether or not two lists are sorted.

Listing 3.2: Sorted1.py

list1 = [1,2,3,4,5]
list2 = [2,1,3,4,5]

sort1 = sorted(list1)
sort2 = sorted(list2)

if(list1 == sort1):
  print(list1,'is sorted')
else:
  print(list1,'is not sorted')

if(list2 == sort2):
  print(list2,'is sorted')
else:
  print(list2,'is not sorted')

Listing 3.2 initializes the lists list1 and list2, and the sorted lists 
sort1 and sort2 based on the lists list1 and list2, respectively. If 
list1 equals sort1 then list1 is already sorted; similarly, if list2 
equals sort2 then list2 is already sorted.

The output from Listing 3.2 is here:

[1, 2, 3, 4, 5] is sorted
[2, 1, 3, 4, 5] is not sorted

Note that if you sort a list of character strings the output is case sen-
sitive, and that uppercase letters appear before lowercase letters. This is 
due to the fact that the collating sequence for ASCII places uppercase let-
ter (decimal 65 through decimal 91) before lowercase letters (decimal 97 
through decimal 127). The following example provides an illustration:

>>> list1 = ['a', 'A', 'b', 'B', 'Z']
>>> print sorted(list1)



74 • Python 3 for Machine Learning

['A', 'B', 'Z', 'a', 'b']

You can also specify the reverse option so that the list is sorted in re-
verse order:

>>> list1 = ['a', 'A', 'b', 'B', 'Z']
>>> print sorted(list1, reverse=True)
['b', 'a', 'Z', 'B', 'A']

You can even sort a list based on the length of the items in the list:

>>> list1 = ['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']
>>> print sorted(list1, key=len)
['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']
>>> print sorted(list1, key=len, reverse=True)
['ZZZZZZZ', 'BBBBB', 'bbb', 'AA', 'a']

You can specify str.lower if you want treat uppercase letters as though 
they are lowercase letters during the sorting operation, as shown here:

>>> print sorted(list1, key=str.lower)
['a', 'AA', 'bbb', 'BBBBB', 'ZZZZZZZ']

3.3 Expressions in Lists

The following construct is similar to a  for loop but without the colon 
“:” character that appears at the end of a loop construct. Consider the fol-
lowing example:

nums = [1, 2, 3, 4]
cubes = [ n*n*n for n in nums ]

print 'nums: ',nums
print 'cubes:',cubes 
The output from the preceding code block is here:
nums:  [1, 2, 3, 4]
cubes: [1, 8, 27, 64]

3.4 Concatenating a List of Words

Python provides the join() method for concatenating text strings, as 
shown here:

>>> parts = ['Is', 'SF', 'In', 'California?'] 



Python coLLections • 75

>>> ' '.join(parts)
'Is SF In California?'
>>> ','.join(parts)
'Is,SF,In,California?' 
>>> ''.join(parts) 

'IsSFInCalifornia?'

There are several ways to concatenate a set of strings and then print the 
result. The following is the most inefficient way to do so:

print "This" + " is" + " a" + " sentence"               

Either of the following is preferred:

print "%s %s %s %s" % ("This", "is", "a", "sentence")   
print " ".join(["This","is","a","sentence"])

3.5 The BubbleSort in Python

The previous sections contain examples that illustrate how to sort a list 
of numbers using the sort() function. However, sometimes you need to 
implement different types of sorts in Python. Listing 3.3 displays the con-
tents of BubbleSort.py that illustrates how to implement the bubble sort 
in Python.

Listing 3.3: BubbleSort.py

list1 = [1, 5, 3, 4]

print("Initial list:",list1)

for i in range(0,len(list1)-1):
  for j in range(i+1,len(list1)):
    if(list1[i] > list1[j]):
      temp = list1[i]
      list1[i] = list1[j]
      list1[j] = temp

print("Sorted list: ",list1)

The output from Listing 3.3 is here:

Initial list: [1, 5, 3, 4]
Sorted list:  [1, 3, 4, 5]



76 • Python 3 for Machine Learning

3.6 The Python range() Function

In this section you will learn about the Python range() function that 
you can use to iterate through a list, as shown here:

>>> for i in range(0,5):
...   print i
... 
0
1
2
3
4

You can use a for loop to iterate through a list of strings, as shown here:

>>> x
['a', 'b', 'c']
>>> for w in x:
...   print w
... 
a
b
c

You can use a for loop to iterate through a list of strings and provide 
additional details, as shown here:

>>> x
['a', 'b', 'c']
>>> for w in x:
...   print len(w), w
... 
1 a 
1 b
1 c

The preceding output displays the length of each word in the list x, fol-
lowed by the word itself.

3.6.1 Counting Digits, Uppercase, and Lowercase Letters
Listing 3.4 displays the contents of the Python script CountChar-

Types.py that counts the occurrences of digits and letters in a string.

Listing 3.4: Counter1.py

str1 = "abc4234AFde"



Python coLLections • 77

digitCount = 0
alphaCount = 0
upperCount = 0
lowerCount = 0

for i in range(0,len(str1)):
  char = str1[i]
  if(char.isdigit()):
   #print(“this is a digit:”,char)
    digitCount += 1
    alphaCount += 1
  elif(char.isalpha()):
   #print("this is alphabetic:",char)
    alphaCount  += 1
    if(char.upper() == char):
      upperCount  += 1
    else:
      lowerCount  += 1

print('Original String:   ',str1)
print('Number of digits:  ',digitCount)
print('Total alphanumeric:',alphaCount)
print('Upper Case Count:  ',upperCount)
print('Lower Case Count:  ',lowerCount)

Listing 3.4 initializes counter-related variables, followed by a loop (with 
loop variable i) that iterates from 0 to the length of the string str1. The 
string variable char is initialized with the letter at index i of the string str1. 
The next portion of the loop uses conditional logic to determine whether 
char is a digit or an alphabetic character; in the latter case, the code checks 
whether or not the character is uppercase or lowercase. In all cases, the val-
ues of the appropriate counter-related variables are incremented.

The output of Listing 3.4 is here:

Original String:    abc4234AFde
Number of digits:   4
Total alphanumeric: 11
Upper Case Count:   2
Lower Case Count:   5

3.7 Arrays and the append() Function

Although Python does have an array type (import array), which is 
essentially a heterogeneous list, the array type has no advantages over the 



78 • Python 3 for Machine Learning

list type other than a slight saving in memory use. You can also define het-
erogeneous arrays:

a = [10, ‘hello’, [5, ‘77’]]

You can append a new element to an element inside a list:

>>> a = [10, 'hello', [5, '77']]
>>> a[2].append('abc')
>>> a
[10, 'hello', [5, '77', 'abc']]

You can assign simple variables to the elements of a list, as shown here:

myList = [ 'a', 'b', 91.1, (2014, 01, 31) ]
x1, x2, x3, x4 = myList
print 'x1:',x1
print 'x2:',x2
print 'x3:',x3
print 'x4:',x4

The output of the preceding code block is here:

x1: a
x2: b
x3: 91.1
x4: (2014, 1, 31)

The Python split() function is more convenient (especially when 
the number of elements is unknown or variable) than the preceding 
sample, and you will see examples of the split() function in the next 
section.

3.8 Working with Lists and the split()Function

You can use the Python split() function to split the words in a text 
string and populate a list with those words. An example is here:

>>> x = "this is a string"
>>> list = x.split()
>>> list
['this', 'is', 'a', 'string']

A simple way to print the list of words in a text string is shown here:

>>> x = "this is a string"
>>> for w in x.split():
...   print w



Python coLLections • 79

... 
this
is
a
string

You can search for a word in a string as follows:

>>> x = "this is a string"
>>> for w in x.split():
...   if(w == 'this'):
...     print "x contains this"
... 
x contains this
... 

3.9 Counting Words in a List

Python provides the Counter class that enables you to count the words 
in a list. Listing 3.5 displays the contents of CountWord2.py that displays 
the top three words with greatest frequency.

Listing 3.5: CountWord2.py

from collections import Counter 

mywords = ['a', 'b', 'a', 'b', 'c', 'a', 'd', 'e', 
'f', 'b']

word_counts = Counter(mywords)
topThree = word_counts.most_common(3)
print(topThree)

Listing 3.5 initializes the variable mywords with a set of characters and 
then initializes the variable word_counts by passing mywords as an argu-
ment to Counter. The variable topThree is an array containing the three 
most common characters (and their frequency) that appear in mywords. 
The output from Listing 3.5 is here:

[('a', 3), ('b', 3), ('c', 1)] 

3.10 Iterating through Pairs of Lists

Python supports operations on pairs of lists, which means that you can 
perform vector-like operations. The following snippet multiplies every list 
element by 3:



80 • Python 3 for Machine Learning

>>> list1 = [1, 2, 3]
>>> [3*x for x in list1]
[3, 6, 9]

Create a new list with pairs of elements consisting of the original ele-
ment and the original element multiplied by 3:

>>> list1 = [1, 2, 3]
>>> [[x, 3*x] for x in list1]
[[1, 3], [2, 6], [3, 9]] 

Compute the product of every pair of numbers from two lists:

>>> list1 = [1, 2, 3]
>>> list2 = [5, 6, 7]
>>> [a*b for a in list1 for b in list2]
[5, 6, 7, 10, 12, 14, 15, 18, 21] 

Calculate the sum of every pair of numbers from two lists:

>>> list1 = [1, 2, 3]
>>> list2 = [5, 6, 7]
>>> [a+b for a in list1 for b in list2]
[6, 7, 8, 7, 8, 9, 8, 9, 10] 

Calculate the pair-wise product of two lists:

>>> [list1[i]*list2[i] for i in range(len(list1))]
[8, 12, -54]

3.11 Other List-Related Functions

Python provides additional functions that you can use with lists, such as 
append(), insert(), delete(), pop(), and extend(). Python also sup-
ports the functions index(), count(), sort(), and reverse(). Examples 
of these functions are illustrated in the following code block.

Define a Python list (notice that duplicates are allowed):

>>> a = [1, 2, 3, 2, 4, 2, 5]

Display the number of occurrences of 1 and 2:

>>> print a.count(1), a.count(2)
1 3

Insert -8 in position 3:

>>> a.insert(3,-8)



Python coLLections • 81

>>> a
[1, 2, 3, -8, 2, 4, 2, 5]

Remove occurrences of 3:

>>> a.remove(3)
>>> a
[1, 2, -8, 2, 4, 2, 5]

Remove occurrences of 1:

>>> a.remove(1)
>>> a
[2, -8, 2, 4, 2, 5]

Append 19 to the list:

>>> a.append(19)
>>> a
[2, -8, 2, 4, 2, 5, 19]

Print the index of 19 in the list:

>>> a.index(19)
6

Reverse the list:

>>> a.reverse()
>>> a
[19, 5, 2, 4, 2, -8, 2]

Sort the list:

>>> a.sort()
>>> a
[-8, 2, 2, 2, 4, 5, 19]

Extend list a with list b:

>>> b = [100,200,300]
>>> a.extend(b)
>>> a
[-8, 2, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the first occurrence of 2:

>>> a.pop(2)
2
>>> a



82 • Python 3 for Machine Learning

[-8, 2, 2, 4, 5, 19, 100, 200, 300]

Remove the last item of the list:

>>> a.pop()
300
>>> a
[-8, 2, 2, 4, 5, 19, 100, 200]

Now that you understand how to use list-related operations, the next 
section shows you how to use a Python list as a stack.

3.12 Using a List as a Stack and a Queue

A stack is a LIFO (“Last In First Out”) data structure with push() and 
pop() functions for adding and removing elements, respectively. The most 
recently added element in a stack is in the top position, and therefore the 
first element that can be removed from the stack.

The following code block illustrates how to create a stack and also re-
move and append items from a stack in Python. Create a Python list (which 
we’ll use as a stack):

>>> s = [1,2,3,4]

Append 5 to the stack:

>>> s.append(5)
>>> s
[1, 2, 3, 4, 5]

Remove the last element from the stack:

>>> s.pop()
5
>>> s
[1, 2, 3, 4]

A queue is a FIFO (“First In First Out”) data structure with in-
sert() and pop() functions for inserting and removing elements, re-
spectively. The most recently added element in a queue is in the top 
position, and therefore the last element that can be removed from the 
queue.

The following code block illustrates how to create a queue and also 
insert and append items to a queue in Python.



Python coLLections • 83

Create a Python list (which we’ll use as a queue):

>>> q = [1,2,3,4]

Insert 5 at the beginning of the queue:

>>> q.insert(0,5)
>>> q
[5, 1, 2, 3, 4]

Remove the last element from the queue:

>>> q.pop(0)
1
>>> q
[5, 2, 3, 4]

The preceding code uses q.insert(0, 5) to insert in the beginning 
and q.pop() to remove from the end. However, keep in mind that the in-
sert() operation is slow in Python: insert at 0 requires copying all the ele-
ments in underlying array down one space. Therefore, use collections.
deque with coll.appendleft() and coll.pop(), where coll is an 
instance of the Collection class.

The next section shows you how to work with vectors in Python.

3.13 Working with Vectors

A vector is a one-dimensional array of values, and you can perform 
vector-based operations, such as addition, subtraction, and inner product. 
Listing 3.6 displays the contents of MyVectors.py that illustrates how to 
perform vector-based operations.

Listing 3.6: MyVectors.py

v1 = [1,2,3]
v2 = [1,2,3]
v3 = [5,5,5]

s1 = [0,0,0]
d1 = [0,0,0]
p1 = 0

print("Initial Vectors"
print('v1:',v1)
print('v2:',v2)



84 • Python 3 for Machine Learning

print('v3:',v3)

for i in range(len(v1)):
    d1[i] = v3[i] - v2[i]
    s1[i] = v3[i] + v2[i]
    p1    = v3[i] * v2[i] + p1

print("After operations")
print('d1:',d1)
print('s1:',s1)
print('p1:',p1)

Listing 3.6 starts with the definition of three lists in Python, each of 
which represents a vector. The lists d1 and s1 represent the difference 
of v2 and the sum v2, respectively. The number p1 represents the “inner 
product” (also called the “dot product”) of v3 and v2. The output from 
Listing 3.6 is here:

Initial Vectors
v1: [1, 2, 3]
v2: [1, 2, 3]
v3: [5, 5, 5]
After operations
d1: [4, 3, 2]
s1: [6, 7, 8]
p1: 30

3.14 Working with Matrices

A two-dimensional matrix is a two-dimensional array of values, and 
you can easily create such a matrix. For example, the following code 
block illustrates how to access different elements in a 2D matrix:

mm = [["a","b","c"],["d","e","f"],["g","h","i"]];
print 'mm:      ',mm
print 'mm[0]:   ',mm[0]
print 'mm[0][1]:',mm[0][1]

The output from the preceding code block is here:

mm:       [['a', 'b', 'c'], ['d', 'e', 'f'], ['g', 'h', 
'i']]
mm[0]:    ['a', 'b', 'c']
mm[0][1]: b



Python coLLections • 85

Listing 3.7 displays the contents of My2DMatrix.py that illustrates 
how to create and populate 2 two-dimensional matrix.

Listing 3.7: My2DMatrix.py

rows = 3 
cols = 3 

my2DMatrix = [[0 for i in range(rows)] for j in 
range(rows)]
print('Before:',my2DMatrix)

for row in range(rows):
  for col in range(cols):
    my2DMatrix[row][col] = row*row+col*col
print('After: ',my2DMatrix)

Listing 3.7 initializes the variables rows and cols and then uses them 
to create the rows x cols matrix my2DMatrix whose values are ini-
tially 0. The next part of Listing 3.7 contains a nested loop that initializes 
the element of my2DMatrix whose position is (row,col) with the value 
row*row+col*col. The last line of code in Listing 3.7 prints the contents 
of my2DArray. The output from Listing 3.7 is here:

Before: [[0, 0, 0], [0, 0, 0], [0, 0, 0]]
After:  [[0, 1, 4], [1, 2, 5], [4, 5, 8]]

3.15 The NumPy Library for Matrices

The NumPy library (which you can install via pip) has a matrix object for 
manipulating matrices in Python. The following examples illustrate some of 
the features of NumPy.

Initialize a matrix m and then display its contents:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]]) 
>>> m
matrix([[ 1, -2, 3],
        [ 0,  4,  5],
        [ 7,  8, -9]])

The next snippet returns the transpose of matrix m:

>>> m.T



86 • Python 3 for Machine Learning

matrix([[ 1, 0, 7],
        [-2,  4,  8],
        [ 3,  5, -9]])

The next snippet returns the inverse of matrix m (if it exists):

>>> m.I
matrix([[ 0.33043478, -0.02608696, 0.09565217],
        [-0.15217391,  0.13043478,  0.02173913],
        [ 0.12173913,  0.09565217, -0.0173913 ]])

The next snippet defines a vector y and then computes the product m*v:

>>> v = np.matrix([[2],[3],[4]]) 
>>> v
matrix([[2],[3],[4]])
>>> m * v 
matrix([[ 8],[32],[ 2]]) 

The next snippet imports the numpy.linalg subpackage and then 
computes the determinant of the matrix m:

>>> import numpy.linalg
>>> numpy.linalg.det(m) 
-229.99999999999983

The next snippet finds the eigenvalues of the matrix m:

>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

The next snippet finds solutions to the equation m*x = v:

>>> x = numpy.linalg.solve(m, v) 
>>> x
matrix([[ 0.96521739],
        [ 0.17391304],
        [ 0.46086957]])

In addition to the preceding samples, the NumPy package provides ad-
ditional functionality, which you can find by performing an Internet search 
for articles and tutorials.

3.16 Queues

A queue is a FIFO (“First In First Out”) data structure. Thus, the old-
est item in a queue is removed when a new item is added to a queue that 
is already full. 



Python coLLections • 87

Earlier in the chapter you learned how to use a Python List to emulate a 
queue. However, there is also a queue object in Python. The following code 
snippets illustrate how to use a queue in Python.

>>> from collections import deque
>>> q = deque('',maxlen=10)
>>> for i in range(10,20):
...   q.append(i)
... 
>>> print q
deque([10, 11, 12, 13, 14, 15, 16, 17, 18, 19], 
maxlen=10)

The next section shows you how to use tuples in Python.

3.17 Tuples (Immutable Lists)

Python supports a data type called a tuple that consists of comma-sepa-
rated values without brackets (square brackets are for lists, round brackets 
are for arrays, and curly braces are for dictionaries). Various examples of 
Python tuples are here:

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-se-
quences

The following code block illustrates how to create a tuple and create 
new tuples from an existing type in Python. 

Define a Python tuple t as follows:

>>> t = 1,'a', 2,'hello',3
>>> t
(1, 'a', 2, 'hello', 3)

Display the first element of t:

>>> t[0]
1

Create a tuple v containing 10, 11, and t:

>>> v = 10,11,t
>>> v
(10, 11, (1, 'a', 2, 'hello', 3))

Try modifying an element of t (which is immutable):

>>> t[0] = 1000
Traceback (most recent call last):

https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences
https://docs.python.org/3.6/tutorial/datastructures.html#tuples-and-sequences


88 • Python 3 for Machine Learning

  File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item 
assignment

Python "deduplication" is useful because you can remove duplicates 
from a set and obtain a list, as shown here:

>>> lst = list(set(lst))

Note: The "in" operator on a list to search is O(n) whereas the "in" operator 
on set is O(1).

The next section discusses Python sets.

3.18 Sets

A Python set in Python is an unordered collection that does not contain 
duplicate elements. Use curly braces or the set() function to create sets. 
Set objects support set-theoretic operations such as union, intersection, and 
difference. 

Note: set() is required in order to create an empty set because {} 
creates an empty dictionary.

The following code block illustrates how to work with a Python set.

Create a list of elements:

>>> l = ['a', 'b', 'a', 'c']

Create a set from the preceding list:

>>> s = set(l)
>>> s
set(['a', 'c', 'b'])

Test if an element is in the set:

>>> 'a' in s
True
>>> 'd' in s
False
>>> 

Create a set from a string:

>>> n = set('abacad')
>>> n



Python coLLections • 89

set(['a', 'c', 'b', 'd'])
>>> 

Subtract n from s:

>>> s - n
set([])

Subtract s from n:

>>> n - s
set(['d'])
>>> 

The union of s and n:

>>> s | n
set(['a', 'c', 'b', 'd'])

The intersection of s and n:

>>> s & n
set(['a', 'c', 'b'])

The exclusive-or of s and n:

>>> s ^ n
set(['d'])

The next section shows you how to work with Python dictionaries.

3.19 Dictionaries

Python has a key/value structure called a "dict" that is a hash table. A 
Python dictionary (and hash tables in general) can retrieve the value of a 
key in constant time, regardless of the number of entries in the dictionary 
(and the same is true for sets). You can think of a set as essentially just the 
keys (not the values) of a dict implementation.

The contents of a dict can be written as a series of key:value pairs, as 
shown here:
dict1 = {key1:value1, key2:value2, ... }

The "empty dict" is just an empty pair of curly braces {}.

3.19.1 Creating a Dictionary
A Python dictionary (or hash table) contains of colon-separated key/

value bindings inside a pair of curly braces, as shown here:



90 • Python 3 for Machine Learning

dict1 = {}
dict1 = {'x' : 1, 'y' : 2}

The preceding code snippet defines dict1 as an empty dictionary, and 
then adds two key/value bindings.

3.19.2 Displaying the Contents of a Dictionary
You can display the contents of dict1 with the following code:

>>> dict1 = {'x':1,'y':2}
>>> dict1
{'y': 2, 'x': 1}
>>> dict1['x']
1
>>> dict1['y']
2
>>> dict1['z']
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
KeyError: 'z'

Note: Key/value bindings for a dict and a set are not necessarily stored in 
the same order that you defined them.

Python dictionaries also provide the get method in order to retrieve 
key values:

>>> dict1.get('x')
1
>>> dict1.get('y')
2
>>> dict1.get('z')

As you can see, the Python get method returns None (which is dis-
played as an empty string) instead of an error when referencing a key that 
is not defined in a dictionary.

You can also use dict comprehensions to create dictionaries from ex-
pressions, as shown here:

>>> {x: x**3 for x in (1, 2, 3)}
{1: 1, 2: 8, 3: 37}

3.19.3 Checking for Keys in a Dictionary
You can easily check for the presence of a key in a Python dictionary as 

follows:



Python coLLections • 91

>>> 'x' in dict1
True
>>> 'z' in dict1
False

Use square brackets for finding or setting a value in a dictionary. For 
example, dict['abc'] finds the value associated with the key 'abc'. You 
can use strings, numbers, and tuples work as key values, and you can use 
any type as the value. 

If you access a value that is not in the dict, Python throws a KeyEr-
ror. Consequently, use the "in" operator to check if the key is in the dict. 
Alternatively, use dict.get(key) which returns the value or None if 
the key is not present. You can even use the expression get(key, not-
found-string) to specify the value to return if a key is not found.

3.19.4 Deleting Keys from a Dictionary
Launch the Python interpreter and enter the following commands:

>>> MyDict = {'x' : 5,  'y' : 7}
>>> MyDict['z'] = 13
>>> MyDict
{'y': 7, 'x': 5, 'z': 13}
>>> del MyDict['x']
>>> MyDict
{'y': 7, 'z': 13}
>>> MyDict.keys()
['y', 'z']
>>> MyDict.values()
[13, 7]
>>> 'z' in MyDict
True

3.19.5 Iterating through a Dictionary
The following code snippet shows you how to iterate through a 

dictionary:

MyDict = {'x' : 5,  'y' : 7, 'z' : 13}

for key, value in MyDict.iteritems():
    print key, value

The output from the preceding code block is here:

y 7
x 5



92 • Python 3 for Machine Learning

z 13

3.19.6 Interpolating Data from a Dictionary
The % operator substitutes values from a Python dictionary into a string 

by name. Listing 3.8 contains an example of doing so.

Listing 3.8: InterpolateDict1.py

hash = {}
hash['beverage'] = 'coffee'
hash['count'] = 3

# %d for int, %s for string
s = 'Today I drank %(count)d cups of %(beverage)s' % 
hash
print('s:', s)

The output from the preceding code block is here:

Today I drank 3 cups of coffee

3.20 Dictionary Functions and Methods

Python provides various functions and methods for a Python dictionary, 
such as cmp(), len(), and str() that compare two dictionaries, return 
the length of a dictionary, and display a string representation of a dictionary, 
respectively.

You can also manipulate the contents of a Python dictionary using the 
functions clear() to remove all elements, copy() to return a shall copy, 
get() to retrieve the value of a key, items() to display the (key,value) pairs of 
a dictionary, keys() to displays the keys of a dictionary, and values() to return 
the list of values of a dictionary.

3.21 Dictionary Formatting

The % operator works conveniently to substitute values from a dict 
into a string by name:

#create a dictionary
>>> h = {}
#add a key/value pair
>>> h['item'] = 'beer'



Python coLLections • 93

>>> h['count'] = 4
#interpolate using %d for int, %s for string
>>> s = 'I want %(count)d bottles of %(item)s' % h
>>> s
'I want 4 bottles of beer'

The next section shows you how to create an ordered Python  
dictionary.

3.22 Ordered Dictionaries

Regular Python dictionaries iterate over key/value pairs in arbitrary 
order. Python 2.7 introduced a new OrderedDict class in the collections 
module. The OrderedDict application programming interface (API) pro-
vides the same interface as regular dictionaries but iterates over keys and 
values in a guaranteed order depending on when a key was first inserted:

>>> from collections import OrderedDict
>>> d = OrderedDict([('first', 1),
...                  ('second', 2),
...                  ('third', 3)])
>>> d.items()
[('first', 1), ('second', 2), ('third', 3)]

If a new entry overwrites an existing entry, the original insertion posi-
tion is left unchanged:

>>> d['second'] = 4
>>> d.items()
[('first', 1), ('second', 4), ('third', 3)]

Deleting an entry and reinserting it will move it to the end:

>>> del d['second']
>>> d['second'] = 5
>>> d.items()
[('first', 1), ('third', 3), ('second', 5)]

3.22.1 Sorting Dictionaries
Python enables you to support the entries in a dictionary. For example, 

you can modify the code in the preceding section to display the alphabeti-
cally sorted words and their associated word count.



94 • Python 3 for Machine Learning

3.22.2 Python Multidictionaries
You can define entries in a Python dictionary so that they reference lists 

or other types of Python structures. Listing 3.9 displays the contents of Mul-
tiDictionary1.py that illustrates how to define more complex dictionaries.

Listing 3.9: MultiDictionary1.py

from collections import defaultdict

d = {'a' : [1, 2, 3], 'b' : [4, 5]}
print 'firsts:',d

d = defaultdict(list)
d['a'].append(1)
d['a'].append(2)
d['b'].append(4)
print 'second:',d

d = defaultdict(set)
d['a'].add(1)
d['a'].add(2)
d['b'].add(4)
print 'third:',d

Listing 3.9 starts by defining the dictionary d and printing its contents. 
The next portion of Listing 3.9 specifies a list-oriented dictionary, and then 
modifies the values for the keys a and b. The final portion of Listing 3.9 
specifies a set-oriented dictionary, and then modifies the values for the keys 
a and b, as well.

The output from Listing 3.9 is here:

first: {'a': [1, 2, 3], 'b': [4, 5]}
second: defaultdict(<type 'list'>, {'a': [1, 2], 'b': 
[4]})
third: defaultdict(<type 'set'>, {'a': set([1, 2]), 'b': 
set([4])})

The next section discusses other Python sequence types that have not 
been discussed in previous sections of this chapter.

3.23 Other Sequence Types in Python

Python supports 7 sequence types: str, unicode, list, tuple, 
bytearray, buffer, and xrange.



Python coLLections • 95

You can iterate through a sequence and retrieve the position index and 
corresponding value at the same time using the enumerate() function. 

>>> for i, v in enumerate(['x', 'y', 'z']):
...     print i, v
...
0 x
1 y
2 z

Bytearray objects are created with the built-in function bytear-
ray(). Although buffer objects are not directly supported by Python syn-
tax, you can create them via the built-in buffer() function. 

Objects of type xrange are created with the xrange() function. An 
xrange object is similar to a buffer in the sense that there is no specific 
syntax to create them. Moreover, xrange objects do not support operations 
such as slicing, concatenation or repetition.

At this point you have seen all the Python type that you will encoun-
ter in the remaining chapters of this book, so it makes sense to discuss 
mutable and immutable types in Python, which is the topic of the next 
section.

3.24 Mutable and Immutable Types in Python

Python represents its data as objects. Some of these objects (such as 
lists and dictionaries) are mutable, which means you can change their con-
tent without changing their identity. Objects such as integers, floats, strings 
and tuples are objects that cannot be changed. The key point to understand 
is the difference between changing the value versus assigning a new value 
to an object; you cannot change a string but you can assign it a different 
value. This detail can be verified by checking the id value of an object, as 
shown in Listing 3.10.

Listing 3.10: Mutability.py

s = "abc"
print('id #1:', id(s))
print('first char:', s[0])

try:
  s[0] = "o"



96 • Python 3 for Machine Learning

except:
  print('Cannot perform reassignment')

s = "xyz"
print('id #2:',id(s))
s += "uvw"
print('id #3:',id(s))

The output of Listing 3.x is here:

id #1: 4297972672
first char: a
Cannot perform reassignment
id #2: 4299809336
id #3: 4299777872

Thus, a Python type is immutable if its value cannot be changed (even 
though it’s possible to assign a new value to such a type), otherwise a Python 
type is mutable. The Python immutable objects are of type bytes, com-
plex, float, int, str,  or tuple. On the other hand, dictionaries, lists, 
and sets are mutable. The key in a hash table must be an immutable type.

Since strings are immutable in Python, you cannot insert a string in the 
“middle” of a given text string unless you construct a second string using 
concatenation. For example, suppose you have the string:

"this is a string"

and you want to create the following string:

"this is a longer string"

The following Python code block illustrates how to perform this task:

text1 = "this is a string"
text2 = text1[0:10] + "longer" + text1[9:]
print 'text1:',text1
print 'text2:',text2

The output of the preceding code block is here:

text1: this is a string
text2: this is a longer string

3.25 The type() Function

The type() primitive returns the type of any object, including Python 
primitives, functions, and user-defined objects. The following code sample 
displays the type of an integer and a string:



Python coLLections • 97

var1 = 123 
var2 = 456.78
print("type var1: ",type(var1))
print("type var2: ",type(var2))

The output of the preceding code block is here:

type var1:  <type 'int'>
type var2:  <type 'float'>

3.26 Summary

This chapter showed you how to work with various Python data types. 
In particular, you learned about tuples, sets, and dictionaries. Next you 
learned how to work with lists and how to use list-related operations to 
extract sublists. You also learned how to use Python data types in order to 
define tree-like structures of data.





C H A P T E R4

●●  What is NumPy?
●●  What Are NumPy Arrays?
●●  Working with Loops
●●  Appending Elements to Arrays (1)
●●  Appending Elements to Arrays (2)
●●  Multiply Lists and Arrays
●●  Doubling the Elements in a List
●●  Lists and Exponents
●●  Arrays and Exponents
●●  Math Operations and Arrays
●●  Working with “-1” Subranges with Vectors
●●  Working with “_1” Subranges with Arrays
●●  Other Useful NumPy Methods
●●  Arrays and Vector Operations
●●  NumPy and Dot Products (1)
●●  NumPy and Dot Products (2)
●●  NumPy and the “Norm” of Vectors
●●  NumPy and Other Operations
●●  NumPy and the reshape() Method

INTRODUCTION TO NUMPY 
AND PANDAS



100 • Python 3 for Machine Learning

The first half of this chapter starts with a quick introduction to the Py-
thon NumPy package, followed by a quick introduction to Pandas and some 
of its useful features. The Pandas package for Python provides a rich and 
powerful set of APIs for managing datasets. These APIs are very useful for 
machine learning and deep learning tasks that involve dynamically “slicing 
and dicing” subsets of datasets.

The first section contains examples of working arrays in NumPy, and 
contrasts some of the APIs for lists with the same APIs for arrays. In ad-
dition, you will see how easy it is to compute the exponent-related values 
(square, cube, and so forth) of elements in an array.

The second section introduces subranges, which are very useful (and 
frequently used) for extracting portions of datasets in machine learning 

●●  Calculating the Mean and Standard Deviation
●●  Calculating Mean and Standard Deviation: another Example
●●  What is Pandas?
●●  A Labeled Pandas Dataframe
●●  Pandas Numeric
●●  Pandas Boolean DataFrames
●●  Transposing a Pandas Dataframe
●●  Pandas Dataframes and Random Numbers
●●  Combining Pandas DataFrames (1)
●●  Combining Pandas DataFrames (2)
●●  Data Manipulation with Pandas Dataframes (1)
●●  Data Manipulation with Pandas Dataframes (2)
●●  Data Manipulation with Pandas Dataframes (3)
●●  Pandas DataFrames and CSV Files
●●  Pandas DataFrames and Excel Spreadsheets (1)
●●  Select, Add, and Delete Columns in DataFrames
●●  Pandas DataFrames and Scatterplots
●●  Pandas DataFrames and Simple Statistics
●●  Useful One_line Commands in Pandas
●●  Summary



introduction to nuMPy and Pandas • 101

tasks. In particular, you will see code samples that handle negative (-1) sub-
ranges for vectors as well as for arrays, because they are interpreted one 
way for vectors and a different way for arrays. 

The third part of this chapter delves into other NumPy methods, including 
the reshape() method, which is extremely useful (and very common) when 
working with images files: some TensorFlow APIs require converting a 2D 
array of (R,G,B) values into a corresponding one-dimensional vector.

The fourth part of this chapter briefly describes Pandas and some of its 
useful features. This section contains code samples that illustrate some nice 
features of DataFrames and a brief discussion of series, which are two of 
the main features of Pandas. The second part of this chapter discusses vari-
ous types of DataFrames that you can create, such as numeric and Boolean 
DataFrames. In addition, you will see examples of creating DataFrames 
with NumPy functions and random numbers.

The fifth section of this chapter shows you how to manipulate the 
contents of DataFrames with various operations. In particular, you will 
also see code samples that illustrate how to create Pandas DataFrames 
from CSV (Comma Separated Values) files, Excel spreadsheets, and data 
that is retrieved from a URL. The third section of this chapter gives you 
an overview of important data cleaning tasks that you can perform with 
Pandas APIs. 

4.1 What is NumPy? 

NumPy is a Python module that provides many convenience methods 
and also better performance. NumPy provides a core library for scientific 
computing in Python, with performant multidimensional arrays and good 
vectorized math functions, along with support for linear algebra and ran-
dom numbers.

NumPy is modeled after MatLab, with support for lists, arrays, and so 
forth. NumPy is easier to use than Matlab, and it’s very common in Ten-
sorFlow code as well as Python code.

4.1.1 Useful NumPy Features
The NumPy package provides the ndarray object that encapsulates mul-

tidimensional arrays of homogeneous data types. Many ndarray opera-
tions are performed in compiled code in order to improve performance. 



102 • Python 3 for Machine Learning

Keep in mind the following important differences between NumPy ar-
rays and the standard Python sequences:

●■  NumPy arrays have a fixed size, whereas Python lists can expand dynami-
cally. Whenever you modify the size of an ndarray, a new array is cre-
ated and the original array is deleted.

●■  NumPy arrays are homogeneous, which means that the elements in a 
NumPy array must all have the same data type. Except for NumPy arrays 
of objects, the elements in NumPy arrays of any other data type must 
have the same size in memory. 

●■  NumPy arrays support more efficient execution (and require less code) of 
various types of operations on large numbers of data.

●■  Many scientific Python-based packages rely on NumPy arrays, and 
knowledge of NumPy arrays is becoming increasingly important.

●■  Now that you have a general idea about NumPy, let’s delve into some ex-
amples that illustrate how to work with NumPy arrays, which is the topic 
of the next section.

4.2 What are NumPy Arrays?

An array is a set of consecutive memory locations used to store data. 
Each item in the array is called an element. The number of elements in 
an array is called the dimension of the array. A typical array declaration is 
shown here:

arr1 = np.array([1,2,3,4,5])
The preceding code snippet declares arr1 as an array of five elements, 

which you can access via arr1[0] through arr1[4]. Notice that the first 
element has an index value of 0, the second element has an index value of 1, 
and so forth. Thus, if you declare an array of 100 elements, then the 100th 
element has index value of 99.

Note: The first position in a NumPy array has index 0.

NumPy treats arrays as vectors. Math operations are performed element-
by-element. Remember the following difference: “doubling” an array mul-
tiplies each element by 2, whereas “doubling” a list appends a list to itself.



introduction to nuMPy and Pandas • 103

Listing 4.1 displays the contents of nparray1.py that illustrates some 
operations on a NumPy array.

Listing 4.1: nparray1.py
import numpy as np

list1 = [1,2,3,4,5]
print(list1)

arr1  = np.array([1,2,3,4,5])
print(arr1)

list2 = [(1,2,3),(4,5,6)]
print(list2)

arr2  = np.array([(1,2,3),(4,5,6)])
print(arr2)

Listing 4.1 defines the variables list1 and list2 (which are Python 
lists), as well as the variables arr1 and arr2 (which are arrays), and prints 
their values. The output from launching Listing 4.1 is here:

[1, 2, 3, 4, 5]
[1 2 3 4 5]
[(1, 2, 3), (4, 5, 6)]
[[1 2 3]
 [4 5 6]]

As you can see, Python lists and arrays are very easy to define, and now 
we’re ready to look at some loop operations for lists and arrays.

4.3 Working with Loops

Listing 4.2 displays the contents of loop1.py that illustrates how to 
iterate through the elements of a NumPy array and a Python list.

Listing 4.2: loop1.py

import numpy as np

list = [1,2,3]
arr1 = np.array([1,2,3])

for e in list:
  print(e)



104 • Python 3 for Machine Learning

for e in arr1:
  print(e)

list1 = [1,2,3,4,5]

Listing 4.2 initializes the variable list, which is a Python list, and also 
the variable arr1, which is a NumPy array. The next portion of Listing 4.2 
contains two loops, each of which iterates through the elements in list 
and arr1. As you can see, the syntax is identical in both loops. The output 
from launching Listing 4.2 is here:

1
2
3
1
2
3

4.4 Appending Elements to Arrays (1)

Listing 4.3 displays the contents of append1.py that illustrates how to 
append elements to a NumPy array and a Python list.

Listing 4.3: append1.py

import numpy as np

arr1 = np.array([1,2,3])

# these do not work:
#arr1.append(4)
#arr1 = arr1 + [5]

arr1 = np.append(arr1,4)
arr1 = np.append(arr1,[5])

for e in arr1:
  print(e)

arr2 = arr1 + arr1

for e in arr2:
  print(e)

Listing 4.3 initializes the variable list, which is a Python list, and also 
the variable arr1, which is a NumPy array. The output from launching List-
ing 4.3 is here:



introduction to nuMPy and Pandas • 105

1
2
3
4
5
2
4
6
8
10

4.5 Appending Elements to Arrays (2)

Listing 4.4 displays the contents of append2.py that illustrates how to 
append elements to a NumPy array and a Python list.

Listing 4.4: append2.py

import numpy as np

arr1 = np.array([1,2,3])
arr1 = np.append(arr1,4)

for e in arr1:
  print(e)

arr1 = np.array([1,2,3])
arr1 = np.append(arr1,4)

arr2 = arr1 + arr1

for e in arr2:
  print(e)

Listing 4.4 initializes the variable arr1, which is a NumPy array. Notice 
that NumPy arrays do not have an “append” method: this method is available 
through NumPy itself. Another important difference between Python lists 
and NumPy arrays: the “+” operator concatenates Python lists, whereas this 
operator doubles the elements in a NumPy array. The output from launching 
Listing 4.4 is here:

1
2
3
4



106 • Python 3 for Machine Learning

2
4
6
8

4.6 Multiply Lists and Arrays

Listing 4.5 displays the contents of multiply1.py that illustrates how 
to multiply elements in a Python list and a NumPy array.

Listing 4.5: multiply1.py

import numpy as np

list1 = [1,2,3]
arr1  = np.array([1,2,3])
print('list:  ',list1)
print('arr1:  ',arr1)
print('2*list:',2*list)
print('2*arr1:',2*arr1)

Listing 4.5 contains a Python list called list and a NumPy array called 
arr1. The print() statements display the contents of list and arr1 as well 
as the result of doubling list1 and arr1. Recall that “doubling” a Python 
list is different from doubling a Python array, which you can see in the out-
put from launching Listing 4.5:

('list:  ', [1, 2, 3])
('arr1:  ', array([1, 2, 3]))
('2*list:', [1, 2, 3, 1, 2, 3])
('2*arr1:', array([2, 4, 6]))

4.7 Doubling the Elements in a List

Listing 4.6 displays the contents of double_list1.py that illustrates 
how to double the elements in a Python list.

Listing 4.6: double_list1.py

import numpy as np

list1 = [1,2,3]
list2 = []

for e in list1:



introduction to nuMPy and Pandas • 107

  list2.append(2*e)

print('list1:',list1)
print('list2:',list2)

Listing 4.6 contains a Python list called list1 and an empty NumPy 
list called list2. The next code snippet iterates through the elements of 
list1 and appends them to the variable list2. The pair of print() 
statements display the contents of list1 and list2 to show you that they 
are the same. The output from launching Listing 4.6 is here:

('list: ', [1, 2, 3])
('list2:', [2, 4, 6])

4.8 Lists and Exponents

Listing 4.7 displays the contents of exponent_list1.py that illus-
trates how to compute exponents of the elements in a Python list.

Listing 4.7: exponent_list1.py

import numpy as np

list1 = [1,2,3]
list2 = []

for e in list1:
  list2.append(e*e) # e*e = squared

print('list1:',list1)
print('list2:',list2)

Listing 4.7 contains a Python list called list1 and an empty NumPy 
list called list2. The next code snippet iterates through the elements of 
list1 and appends the square of each element to the variable list2. The 
pair of print() statements display the contents of list1 and list2. The 
output from launching Listing 4.7 is here:

('list1:', [1, 2, 3])
('list2:', [1, 4, 9])

4.9 Arrays and Exponents

Listing 4.8 displays the contents of exponent_array1.py that illus-
trates how to compute exponents of the elements in a NumPy array.



108 • Python 3 for Machine Learning

Listing 4.8: exponent_array1.py

import numpy as np

arr1 = np.array([1,2,3])
arr2 = arr1**2
arr3 = arr1**3

print('arr1:',arr1)
print('arr2:',arr2)
print('arr3:',arr3)

Listing 4.8 contains a NumPy array called arr1 followed by two NumPy 
arrays called arr2 and arr3. Notice the compact manner in which the 
NumPy arr2 is initialized with the square of the elements in in arr1, fol-
lowed by the initialization of the NumPy array arr3 with the cube of the 
elements in arr1. The three print() statements display the contents of 
arr1, arr2, and arr3. The output from launching Listing 4.8 is here:

('arr1:', array([1, 2, 3]))
('arr2:', array([1, 4, 9]))
('arr3:', array([ 1,  8, 27]))

4.10 Math Operations and Arrays

Listing 4.9 displays the contents of mathops_array1.py that illus-
trates how to compute exponents of the elements in a NumPy array.

Listing 4.9: mathops_array1.py

import numpy as np

arr1 = np.array([1,2,3])
sqrt = np.sqrt(arr1)
log1 = np.log(arr1)
exp1 = np.exp(arr1)

print('sqrt:',sqrt)
print('log1:',log1)
print('exp1:',exp1)

Listing 4.9 contains a NumPy array called arr1 followed by three 
NumPy arrays called sqrt, log1, and exp1 that are initialized with the 
square root, the log, and the exponential value of the elements in arr1, 



introduction to nuMPy and Pandas • 109

respectively. The three print() statements display the contents of sqrt, 
log1, and exp1. The output from launching Listing 4.9 is here:

('sqrt:', array([1.        , 1.41421356, 1.73205081]))
('log1:', array([0.        , 0.69314718, 1.09861229]))
('exp1:', array([2.71828183, 7.3890561,  20.08553692]))

4.11 Working with “-1” Subranges with Vectors

Listing 4.10 displays the contents of npsubarray2.py that illustrates 
how to compute exponents of the elements in a NumPy array.

Listing 4.10: npsubarray2.py

import numpy as np

# _1 => "all except the last element in …" (row or col)

arr1  = np.array([1,2,3,4,5])
print('arr1:',arr1)
print('arr1[0:_1]:',arr1[0:_1])
print('arr1[1:_1]:',arr1[1:_1])
print('arr1[::_1]:', arr1[::_1]) # reverse!

Listing 4.10 contains a NumPy array called arr1 followed by four 
print statements, each of which displays a different subrange of values in 
arr1. The output from launching Listing 4.10 is here:

('arr1:',       array([1, 2, 3, 4, 5]))
('arr1[0:_1]:', array([1, 2, 3, 4]))
('arr1[1:_1]:', array([2, 3, 4]))
('arr1[::_1]:', array([5, 4, 3, 2, 1]))

4.12 Working with “-1” Subranges with Arrays

Listing 4.11 displays the contents of np2darray2.py that illustrates 
how to compute exponents of the elements in a NumPy array.

Listing 4.11: np2darray2.py

import numpy as np

# -1 => "the last element in …" (row or col)



110 • Python 3 for Machine Learning

arr1  = np.array([(1,2,3),(4,5,6),(7,8,9),(10,11,12)])
print('arr1:',        arr1)
print('arr1[-1,:]:',  arr1[-1,:])
print('arr1[:,-1]:',  arr1[:,-1])
print('arr1[-1:,-1]:',arr1[-1:,-1])

Listing 4.11 contains a NumPy array called arr1 followed by four 
print statements, each of which displays a different subrange of values in 
arr1. The output from launching Listing 4.11 is here:

(arr1:', array([[1,  2,  3],
                [4,  5,  6],
                [7,  8,  9],
                [10, 11, 12]]))
(arr1[-1,:]]',   array([10, 11, 12]))
(arr1[:,-1]:',   array([3,  6,  9, 12]))
(arr1[-1:,-1]]', array([12]))

4.13 Other Useful NumPy Methods

In addition to the NumPy methods that you saw in the code samples 
prior to this section, the following (often intuitively-named) NumPy meth-
ods are also very useful.

●➡ The method np.zeros() initializes an array with 0 values.

●➡ The method np.ones() initializes an array with 1 values.

●➡ The method np.empty()initializes an array with 0 values.

●➡ The method np.arange() provides a range of numbers:

●➡ The method np.shape() displays the shape of an object:

●➡ The method np.reshape()  <= very useful! 

●➡ The method np.linspace() <= useful in regression

●➡ The method np.mean() computes the mean of a set of numbers:

●➡  The method np.std() computes the standard deviation of a set of 
numbers:

Although the np.zeros() and np.empty() both initialize a 2D ar-
ray with 0, np.zeros() requires less execution time. You could also use 
np.full(size, 0), but this method is the slowest of all three methods.



introduction to nuMPy and Pandas • 111

The reshape() method and the linspace() method are very useful 
for changing the dimensions of an array and generating a list of numeric 
values, respectively. The reshape() method often appears in TensorFlow 
code, and the linspace() method is useful for generating a set of numbers 
in linear regression (discussed in Chapter 4). The mean() and std() meth-
ods are useful for calculating the mean and the standard deviation of a set 
of numbers. For example, you can use these two methods in order to resize 
the values in a Gaussian distribution so that their mean is 0 and the standard 
deviation is 1. This process is called standardizing a Gaussian distribution.

4.14 Arrays and Vector Operations

Listing 4.12 displays the contents of array_vector.py that illustrates 
how to perform vector operations on the elements in a NumPy array.

Listing 4.12: array_vector.py

import numpy as np

a = np.array([[1,2], [3, 4]])
b = np.array([[5,6], [7,8]])

print('a:       ', a)
print('b:       ', b)
print('a + b:   ', a+b)
print('a _ b:   ', a_b)
print('a * b:   ', a*b)
print('a / b:   ', a/b)
print('b / a:   ', b/a)
print('a.dot(b):',a.dot(b))

Listing 4.12 contains two NumPy arrays called a and b followed by eight 
print statements, each of which displays the result of “applying” a dif-
ferent arithmetic operation to the NumPy arrays a and b. The output from 
launching Listing 4.12 is here:

('a    :   ', array([[1, 2], [3, 4]]))
('b    :   ', array([[5, 6], [7, 8]]))
('a + b:   ', array([[ 6,  8], [10, 12]]))
('a _ b:   ', array([[_4, _4], [_4, _4]]))
('a * b:   ', array([[ 5, 12], [21, 32]]))
('a / b:   ', array([[0, 0], [0, 0]]))
('b / a:   ', array([[5, 3], [2, 2]]))
('a.dot(b):', array([[19, 22], [43, 50]]))



112 • Python 3 for Machine Learning

4.15 NumPy and Dot Products (1)

Listing 4.13 displays the contents of dotproduct1.py that illustrates 
how to perform the dot product on the elements in a NumPy array.

Listing 4.13: dotproduct1.py

import numpy as np

a = np.array([1,2])
b = np.array([2,3])

dot2 = 0
for e,f in zip(a,b):
  dot2 += e*f

print('a:   ',a)
print('b:   ',b)
print('a*b: ',a*b)
print('dot1:',a.dot(b))
print('dot2:',dot2)

Listing 4.13 contains two NumPy arrays called a and b followed by a 
simple loop that computes the dot product of a and b. The next section 
contains five print statements that display the contents of a and b, their 
inner product that’s calculated in three different ways. The output from 
launching Listing 4.13 is here:

('a:   ', array([1, 2]))
('b:   ', array([2, 3]))
('a*b: ', array([2, 6]))
('dot1:', 8)
('dot2:', 8)

4.16 NumPy and Dot Products (2)

NumPy arrays support a “dot” method for calculating the inner product 
of an array of numbers, which uses the same formula that you use for calcu-
lating the inner product of a pair of vectors. Listing 4.14 displays the con-
tents of dotproduct2.py that illustrates how to calculate the dot product 
of two NumPy arrays.

Listing 4.14: dotproduct2.py

import numpy as np



introduction to nuMPy and Pandas • 113

a = np.array([1,2])
b = np.array([2,3])

print('a:          ',a)
print('b:          ',b)
print('a.dot(b):   ’,a.dot(b))
print('b.dot(a):   ',b.dot(a))
print('np.dot(a,b):',np.dot(a,b))
print('np.dot(b,a):',np.dot(b,a))

Listing 4.14 contains two NumPy arrays called a and b followed by six 
print statements that display the contents of a and b, and also their inner 
product that’s calculated in three different ways. The output from launch-
ing Listing 4.14 is here:

('a:          ', array([1, 2]))
('b:          ', array([2, 3]))
('a.dot(b):   ', 8)
('b.dot(a):   ', 8)
('np.dot(a,b):', 8)
('np.dot(b,a):', 8)

4.17 NumPy and the “Norm” of Vectors

The “norm” of a vector (or an array of numbers) is the length of a vec-
tor, which is the square root of the dot product of a vector with itself. NumPy 
also provides the “sum” and “square” functions that you can use to calculate 
the norm of a vector.

Listing 4.15 displays the contents of array_norm.py that illustrates 
how to calculate the magnitude (“norm”) of a NumPy array of numbers.

Listing 4.15: array_norm.py

import numpy as np

a = np.array([2,3])
asquare = np.square(a)
asqsum  = np.sum(np.square(a))
anorm1  = np.sqrt(np.sum(a*a))
anorm2  = np.sqrt(np.sum(np.square(a)))
anorm3  = np.linalg.norm(a)

print('a:      ',a)
print('asquare:',asquare)



114 • Python 3 for Machine Learning

print('asqsum: ',asqsum)
print('anorm1: ',anorm1)
print('anorm2: ',anorm2)
print('anorm3: ',anorm3)

Listing 4.15 contains an initial NumPy array called a, followed by the 
NumPy array asquare and the numeric values asqsum, anorm1, anorm2, 
and anorm3. The NumPy array asquare contains the square of the ele-
ments in the NumPy array a, and the numeric value asqsum contains the 
sum of the elements in the NumPy array asquare. Next, the numeric value 
anorm1 equals the square root of the sum of the square of the elements 
in a. The numeric value anorm2 is the same as anorm1, computed in a 
slightly different fashion. Finally, the numeric value anorm3 is equal to 
anorm2, but as you can see, anorm3 is calculated via a single NumPy meth-
od, whereas anorm2 requires a succession of NumPy methods.

The last portion of Listing 4.15 consists of six print statements, each 
of which displays the computed values. The output from launching Listing 
4.15 is here:

('a:      ', array([2, 3]))
('asquare:', array([4, 9]))
('asqsum: ', 13)
('anorm1: ', 3.605551275463989)
('anorm2: ', 3.605551275463989)
('anorm3: ', 3.605551275463989)

4.18 NumPy and Other Operations

NumPy provides the “*” operator to multiply the components of two 
vectors to produce a third vector whose components are the products of 
the corresponding components of the initial pair of vectors. This operation 
is called a “Hadamard” product, which is the name of a famous mathemati-
cian. If you then add the components of the third vector, the sum is equal 
to the inner product of the initial pair of vectors.

Listing 4.16 displays the contents of otherops.py that illustrates how 
to perform other operations on a NumPy array.

Listing 4.16: otherops.py

import numpy as np



introduction to nuMPy and Pandas • 115

a = np.array([1,2])
b = np.array([3,4])

print('a:           ',a)
print('b:           ',b)
print('a*b:         ',a*b)
print('np.sum(a*b): ',np.sum(a*b))
print('(a*b.sum()): ',(a*b).sum())

Listing 4.16 contains two NumPy arrays called a and b followed five 
print statements that display the contents of a and b, their Hadamard 
product, and also their inner product that’s calculated in two different ways. 
The output from launching Listing 4.16 is here:

('a:           ', array([1, 2]))
('b:           ', array([3, 4]))
('a*b:         ', array([3, 8]))
('np.sum(a*b): ', 11)
('(a*b.sum()): ', 11)

4.19 NumPy and the reshape() Method

NumPy arrays support the “reshape” method that enables you to re-
structure the dimensions of an array of numbers. In general, if a NumPy 
array contains m elements, where m is a positive integer, then that array can 
be restructured as an m1 x m2 NumPy array, where m1 and m2 are positive 
integers such that m1*m2 = m. 

Listing 4.17 displays the contents of numpy_reshape.py that illus-
trates how to use the reshape() method on a NumPy array.

Listing 4.17: numpy_reshape.py

import numpy as np

x = np.array([[2, 3], [4, 5], [6, 7]])
print(x.shape) # (3, 2)

x = x.reshape((2, 3))
print(x.shape) # (2, 3)
print('x1:',x)

x = x.reshape((_1))
print(x.shape) # (6,)
print('x2:',x)



116 • Python 3 for Machine Learning

x = x.reshape((6, _1))
print(x.shape) # (6, 1)
print('x3:',x)

x = x.reshape((_1, 6))
print(x.shape) # (1, 6)
print('x4:',x)

Listing 4.17 contains a NumPy array called x whose dimensions are 3x2, 
followed by a set of invocations of the reshape() method that reshape the 
contents of x. The first invocation of the reshape() method changes the 
shape of x from 3x2 to 2x3. The second invocation changes the shape of x 
from 2x3 to 6x1. The third invocation changes the shape of x from 1x6 to 
6x1. The final invocation changes the shape of x from 6x1 to 1x6 again. 

Each invocation of the reshape() method is followed by a print() 
statement so that you can see the effect of the invocation. The output from 
launching Listing 4.17 is here:

(3, 2)
(2, 3)
('x1:', array([[2, 3, 4],
       [5, 6, 7]]))
(6,)
('x2:', array([2, 3, 4, 5, 6, 7]))
(6, 1)
('x3:', array([,
       [3],
       [4],
       [5],
       [6],
       [7]]))
(1, 6) 

4.20 Calculating the Mean and Standard Deviation

If you need to review these concepts from statistics (and perhaps also 
the mean, median, and mode as well), please read the appropriate online 
tutorials.

NumPy provides various built-in functions that perform statistical calcu-
lations, such as the following list of methods:

np.linspace() <= useful for regression
np.mean() 



introduction to nuMPy and Pandas • 117

np.std()
The np.linspace()method generates a set of equally spaced num-

bers between a lower bound and an upper bound. The np.mean() and 
np.std() methods calculate the mean and standard deviation, respective-
ly, of a set of numbers. Listing 4.18 displays the contents of sample_mean_
std.py that illustrates how to calculate statistical values from a NumPy ar-
ray.

Listing 4.18: sample_mean_std.py

import numpy as np

x2 = np.arange(8)
print 'mean = ',x2.mean()
print 'std  = ',x2.std()

x3 = (x2 - x2.mean())/x2.std()
print 'x3 mean = ',x3.mean()
print 'x3 std  = ',x3.std()

Listing 4.18 contains a NumPy array x2 that consists of the first eight 
integers. Next, the mean() and std() that are “associated” with x2 are 
invoked in order to calculate the mean and standard deviation, respectively, 
of the elements of x2. The output from launching Listing 4.18 is here:

('a:           ', array([1, 2]))
('b:           ', array([3, 4]))

4.21 Calculating Mean and Standard Deviation: Another Example

The code sample in this section extends the code sample in the previ-
ous section with additional statistical values, and the code in Listing 4.19 
can be used for any data distribution. Keep in mind that the code sample 
uses random numbers simply for the purposes of illustration: after you have 
launched the code sample, replace those numbers with values from a CSV 
file or some other dataset containing meaningful values. 

Moreover, this section does not provide details regarding the meaning 
of quartiles, but you can learn about quartiles here:

https://en.wikipedia.org/wiki/Quartile 

Listing 4.19 displays the contents of stat_summary.py that illustrates 
how to display various statistical values from a NumPy array of random num-
bers.



118 • Python 3 for Machine Learning

Listing 4.19: stat_values.py

import numpy as np

from numpy import percentile
from numpy.random import rand

# generate data sample
data = np.random.rand(1000)

# calculate quartiles, min, and max
quartiles = percentile(data, [25, 50, 75])
data_min, data_max = data.min(), data.max()

# print summary information
print('Minimum:  %.3f' % data_min)
print('Q1 value: %.3f' % quartiles[0])
print('Median:   %.3f' % quartiles[1])
print('Mean Val: %.3f' % data.mean())
print('Std Dev:  %.3f' % data.std())
print('Q3 value: %.3f' % quartiles)
print('Maximum:  %.3f' % data_max)

The data sample (shown in bold) in Listing 4.19 is from a uniform distribu-
tion between 0 and 1. The NumPy percentile() function calculates a linear 
interpolation (average) between observations, which is needed to calculate the 
median on a sample with an even number of values. As you can surmise, the 
NumPy functions min() and max() calculate the smallest and largest values in 
the data sample. The output from launching Listing 4.19 is here:

Minimum:  0.000
Q1 value: 0.237
Median:   0.500
Mean Val: 0.495
Std Dev:  0.295
Q3 value: 0.747
Maximum:  0.999

This concludes the portion of the chapter pertaining to NumPy. The 
second half of this chapter discusses some of the features of Pandas.

4.22 What is Pandas? 

Pandas is a Python package that is compatible with other Py-
thon packages, such as NumPy, Matplotlib, and so forth. Install 



introduction to nuMPy and Pandas • 119

Pandas by opening a command shell and invoking this command for  
Python 3.x:

pip3 install pandas

In many ways the Pandas package has the semantics of a spreadsheet, 
and it also works with xsl, xml, html, csv file types. Pandas provides 
a data type called a DataFrame (similar to a Python dictionary) with ex-
tremely powerful functionality, which is discussed in the next section. 

Pandas DataFrames support a variety of input types, such as ndar-
rays, lists, dicts, or Series. Pandas also provides another data type 
called Pandas Series (not discussed in this chapter), this data structure 
provides another mechanism for managing data (search online for more 
details).

4.22.1 Pandas Dataframes
In simplified terms, a Pandas DataFrame is a two-dimensional data 

structure, and it’s convenient to think of the data structure in terms of rows 
and columns. DataFrames can be labeled (rows as well as columns), and 
the columns can contain different data types. 

By way of analogy, it might be useful to think of a DataFrame as the 
counterpart to a spreadsheet, which makes it a very useful data type in 
Pandas-related Python scripts. The source of the dataset can be a data file, 
database tables, Web service, and so forth. Pandas DataFrame features 
include:

●➡ Dataframe methods

●➡ Dataframe statistics

●➡ Grouping, pivoting, and reshaping

●➡ Dealing with missing data

●➡ Joining dataframes

4.22.2  Dataframes and Data Cleaning Tasks
The specific tasks that you need to perform depend on the structure 

and contents of a dataset. In general you will perform a workflow with the 
following steps (not necessarily always in this order), all of which can be 
performed with a Pandas DataFrame:



120 • Python 3 for Machine Learning

●■ Read data into a dataframe

●■ Display top of dataframe

●■ Display column data types

●■ Display non_missing values

●■ Replace NA with a value

●■ Iterate through the columns

●■ Statistics for each column

●■ Find missing values

●■ Total missing values

●■ Percentage of missing values

●■ Sort table values

●■ Print summary information

●■ Columns with > 50% missing

●■ Rename columns

4.23 A Labeled Pandas Dataframe 

Listing 4.20 displays the contents of Pandas_labeled_df.py that il-
lustrates how to define a Pandas DataFrame whose rows and columns are 
labeled.

Listing 4.20: pandas_labeled_df.py

import numpy
import pandas

myarray = numpy.array([[10,30,20], 
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = Pandas.DataFrame(myarray, index=rownames, 
columns=colnames)

print(mydf)
print(mydf.describe())



introduction to nuMPy and Pandas • 121

Listing 4.20 contains two important statements followed by the variable 
myarray, which is a 3x3 NumPy array of numbers. The variables rownames 
and colnames provide names for the rows and columns, respectively, of 
the data in myarray. Next, the variable mydf is initialized as a Pandas 
DataFrame with the specified datasource (i.e., myarray).

You might be surprised to see that the first portion of the following out-
put requires a single print statement (which simply displays the contents 
of mydf). The second portion of the output is generated by invoking the 
describe() method that is available for any NumPy DataFrame. The de-
scribe() method is very useful: you will see various statistical quantities, 
such as the mean, standard deviation minimum, and maximum performed 
column_wise (not row_wise), along with values for the 25th, 50th, and 75th 
percentiles. The output of Listing 4.20 is here:

 January February March
apples 10 30 20
oranges 50 40 60
beer 1000 2000 3000
 January February March
count 3.000000 3.000000 3.000000
mean 353.333333 690.000000 1026.666667
std 560.386771 1134.504297 1709.073823
min 10.000000 30.000000 20.000000
25% 30.000000 35.000000 40.000000
50% 50.000000 40.000000 60.000000
75% 525.000000 1020.000000 1530.000000
max 1000.000000 2000.000000 3000.000000

4.24 Pandas Numeric DataFrames

Listing 4.21 displays the contents of pandas_numeric_df.py that il-
lustrates how to define a Pandas DataFrame whose rows and columns are 
numbers (but the column labels are characters).

Listing 4.21: pandas_numeric_df.py

import pandas as pd

df1 = pd.DataFrame(np.random.randn(10, 
4),columns=['A','B','C','D'])
df2 = pd.DataFrame(np.random.randn(7, 3), 
columns=['A','B','C'])
df3 = df1 + df2



122 • Python 3 for Machine Learning

The essence of Listing 4.21 involves initializing the DataFrames df1 
and df2, and then defining the DataFrame df3 as the sum of df1 and 
df2. The output from Listing 4.21 is here:

 A B C D
0 0.0457 _0.0141 1.3809 NaN
1 _0.9554 _1.5010 0.0372 NaN
2 _0.6627 1.5348 _0.8597 NaN
3 _2.4529 1.2373 _0.1337 NaN
4 1.4145 1.9517 _2.3204 NaN
5 _0.4949 _1.6497 _1.0846 NaN
6 _1.0476 _0.7486 _0.8055 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN

Keep in mind that the default behavior for operations involving a 
DataFrame and Series is to align the Series index on the DataFrame 
columns; this results in a row-wise output. Here is a simple illustration:

names = pd.Series(['SF', 'San Jose', 'Sacramento'])
sizes = pd.Series([852469, 1015785, 485199])

df = pd.DataFrame({ 'Cities': names, 'Size': sizes })
df = pd.DataFrame({ 'City name': names,’sizes': sizes })
print(df)

The output of the preceding code block is here:

    City name    sizes
0          SF   852469
1    San Jose  1015785
2  Sacramento   485199

4.25 Pandas Boolean DataFrames

Pandas supports Boolean operations on DataFrames, such as the logi-
cal or, the logical and, and the logical negation of a pair of DataFrames. 
Listing 4.22 displays the contents of pandas_boolean_df.py that illus-
trates how to define a Pandas DataFrame whose rows and columns are 
Boolean values.

Listing 4.22: pandas_boolean_df.py

import pandas as pd



introduction to nuMPy and Pandas • 123

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=bool)
df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, 
dtype=bool)

print("df1 & df2:")
print(df1 & df2)

print("df1 | df2:")
print(df1 | df2)

print("df1 ^ df2:")
print(df1 ^ df2)

Listing 4.22 initializes the DataFrames df1 and df2, and then com-
putes df1 & df2, df1 | df2, df1 ^ df2, which represent the logical AND, 
the logical OR, and the logical negation, respectively, of df1 and df2. The 
output from launching the code in Listing 4.22 is here:

df1 & df2:
 a b
0 False False
1 False True
2 True False
df1 | df2:
 a b
0 True True
1 True True
2 True True
df1 ^ df2:
 a b
0 True True
1 True False
2 False True

4.25.1 Transposing a Pandas Dataframe
The T attribute (as well as the transpose function) enables you to 

generate the transpose of a Pandas DataFrame, similar to a NumpPy  
ndarray.

For example, the following code snippet defines a Pandas dataFrame 
df1 and then displays the transpose of df1:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=int)



124 • Python 3 for Machine Learning

print("df1.T:")
print(df1.T)

The output is here: 

df1.T:
   0  1  2
a  1  0  1
b  0  1  1

The following code snippet defines Pandas dataFrames df1 and df2 and 
then displays their sum:

df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, 
dtype=int)
df2 = pd.DataFrame({'a' : [3, 3, 3], 'b' : [5, 5, 5] }, 
dtype=int)

print("df1 + df2:")
print(df1 + df2)

The output is here: 

df1 + df2:
   a  b
0  4  5
1  3  6
2  4  6

4.26 Pandas Dataframes and Random Numbers 

Listing 4.23 displays the contents of pandas_random_df.py that il-
lustrates how to create a Pandas DataFrame with random numbers.

Listing 4.23: pandas_random_df.py

import pandas as pd
import numpy as np

df = pd.DataFrame(np.random.randint(1, 5, size=(5, 2)), 
columns=['a','b'])
df = df.append(df.agg(['sum', 'mean']))

print("Contents of dataframe:")
print(df)

Listing 4.23 defines the Pandas DataFrame df that consists of 5 rows 
and 2 columns of random integers between 1 and 5. Notice that the col-



introduction to nuMPy and Pandas • 125

umns of df are labeled “a” and “b.” In addition, the next code snippet ap-
pends two rows consisting of the sum and the mean of the numbers in both 
columns. The output of Listing 4.23 is here:

        a    b
0      1.0  2.0
1      1.0  1.0
2      4.0  3.0
3      3.0  1.0
4      1.0  2.0
sum   10.0  9.0
mean   2.0  1.8

4.27 Combining Pandas DataFrames (1)

Listing 4.24 displays the contents of Pandas_combine_df.py that il-
lustrates how to combine Pandas DataFrames.

Listing 4.24: pandas_combine_df.py

import pandas as pd
import numpy as np

df = pd.DataFrame({'foo1' : np.random.randn(5),
                   'foo2' : np.random.randn(5)})

print("contents of df:")
print(df)

print("contents of foo1:")
print(df.foo1)

print("contents of foo2:")
print(df.foo2)

Listing 4.24 defines the Pandas DataFrame df that consists of 5 rows 
and 2 columns (labeled “foo1” and “foo2”) of random real numbers be-
tween 0 and 5. The next portion of Listing 4.5 displays the contents of df 
and foo1. The output of Listing 4.24 is here:

contents of df:
       foo1      foo2
0  0.274680 _0.848669
1 _0.399771 _0.814679
2  0.454443 _0.363392
3  0.473753  0.550849



126 • Python 3 for Machine Learning

4 _0.211783 _0.015014
contents of foo1:
0    0.256773
1    1.204322
2    1.040515
3   _0.518414
4    0.634141
Name: foo1, dtype: float64
contents of foo2:
0   _2.506550
1   _0.896516
2   _0.222923
3    0.934574
4    0.527033
Name: foo2, dtype: float64

4.28 Combining Pandas DataFrames (2)

Pandas supports the “concat” method in DataFrames in order to 
concatenate DataFrames. Listing 4.25 displays the contents of concat_
frames.py that illustrates how to combine two Pandas DataFrames.

Listing 4.25: concat_frames.py

import pandas as pd

can_weather = pd.DataFrame({
    "city": ["Vancouver","Toronto","Montreal"],
    "temperature": [72,65,50],
    "humidity": [40, 20, 25]
})

us_weather = pd.DataFrame({
    "city": ["SF","Chicago","LA"],
    "temperature": [60,40,85],
    "humidity": [30, 15, 55]
})

df = pd.concat([can_weather, us_weather])
print(df)

The first line in Listing 4.25 is an import statement, followed by the 
definition of the Pandas dataframes can_weather and us_weather 
that contain weather-related information for cities in Canada and the Unit-



introduction to nuMPy and Pandas • 127

ed States, respectively. The Pandas dataframe df is the concatenation of  
can_weather and us_weather. The output from Listing 4.25 is here:

0  Vancouver        40           72
1    Toronto        20           65
2   Montreal        25           50
0         SF        30           60
1    Chicago        15           40
2         LA        55           85

4.29 Data Manipulation with Pandas Dataframes (1)

As a simple example, suppose that we have a two-person company that 
keeps track of income and expenses on a quarterly basis, and we want to 
calculate the profit/loss for each quarter, and also the overall profit/loss.

Listing 4.26 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-relat-
ed values.

Listing 4.26: pandas_quarterly_df1.py

import pandas as pd

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [23500, 34000, 57000, 32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)

print("Entire Dataset:\n",df)
print("Quarter:\n",df.Quarter)
print("Cost:\n",df.Cost)
print("Revenue:\n",df.Revenue)

Listing 4.26 defines the variable summary that contains hard-coded 
quarterly information about cost and revenue for our two-person company. 
In general these hard-coded values would be replaced by data from another 
source (such as a CSV file), so think of this code sample as a simple way to 
illustrate some of the functionality that is available in Pandas DataFrames.



128 • Python 3 for Machine Learning

The variable df is a Pandas DataFrame based on the data in the sum-
mary variable. The three print statements display the quarters, the cost 
per quarter, and the revenue per quarter.

The output from Listing 4.26 is here:

Entire Dataset:
    Cost    Quarter  Revenue
0  23500      Q1      40000
1  34000      Q2      60000
2  57000      Q3      50000
3  32000      Q4      30000
Quarter:
0    Q1
1    Q2
2    Q3
3    Q4
Name: Quarter, dtype: object
Cost:
0    23500
1    34000
2    57000
3    32000
Name: Cost, dtype: int64
Revenue:
0    40000
1    60000
2    50000
3    30000
Name: Revenue, dtype: int64

4.30 Data Manipulation with Pandas DataFrames (2)

In this section, let’s suppose that we have a two-person company that 
keeps track of income and expenses on a quarterly basis, and we want to 
calculate the profit/loss for each quarter, and also the overall profit/loss.

Listing 4.27 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-relat-
ed values.

Listing 4.27: pandas_quarterly_df2.py

import pandas as pd



introduction to nuMPy and Pandas • 129

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [_23500, _34000, _57000, _32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
print("Second Dataset:\n",df)

Listing 4.27 defines the variable summary that contains quarterly infor-
mation about cost and revenue for our two-person company. The variable 
df is a Pandas DataFrame based on the data in the summary variable. 
The three print statements display the quarters, the cost per quarter, and 
the revenue per quarter. The output from Listing 4.27 is here:

First Dataset:
   Cost     Quarter  Revenue
0 _23500      Q1      40000
1 _34000      Q2      60000
2 _57000      Q3      50000
3 _32000      Q4      30000
Second Dataset:
   Cost     Quarter  Revenue  Total
0 _23500      Q1      40000   16500
1 _34000      Q2      60000   26000
2 _57000      Q3      50000   _7000
3 _32000      Q4      30000   _2000

4.31 Data Manipulation with Pandas Dataframes (3)

Let’s start with the same assumption as the previous section: we have a two-
person company that keeps track of income and expenses on a quarterly basis, 
and we want to calculate the profit/loss for each quarter, and also the overall 
profit/loss. In addition, we want to compute column totals and row totals.

Listing 4.28 displays the contents of pandas_quarterly_df1.py that 
illustrates how to define a Pandas DataFrame consisting of income-relat-
ed values.

Listing 4.28: pandas_quarterly_df3.py

import pandas as pd



130 • Python 3 for Machine Learning

summary = {
    'Quarter': ['Q1', 'Q2', 'Q3', 'Q4'],
    'Cost':    [_23500, _34000, _57000, _32000],
    'Revenue': [40000, 40000, 40000, 40000]
}

df = pd.DataFrame(summary)
print("First Dataset:\n",df)

df['Total'] = df.sum(axis=1)
df.loc['Sum'] = df.sum()
print("Second Dataset:\n",df)

# or df.loc['avg'] / 3
#df.loc['avg'] = df[:3].mean()
#print("Third Dataset:\n",df)

Listing 4.28 defines the variable summary that contains quarterly infor-
mation about cost and revenue for our two-person company. The variable 
df is a Pandas DataFrame based on the data in the summary variable. The 
three print statements display the quarters, the cost per quarter, and the 
revenue per quarter. The output from Listing 4.28 is here:

First Dataset:
   Cost     Quarter  Revenue
0 _23500      Q1      40000
1 _34000      Q2      60000
2 _57000      Q3      50000
3 _32000      Q4      30000
Second Dataset:
     Cost    Quarter   Revenue  Total
0   _23500     Q1      40000    16500
1   _34000     Q2      60000    26000
2   _57000     Q3      50000    _7000
3   _32000     Q4      30000    _2000
Sum _146500  Q1Q2Q3Q4  180000   33500

4.32 Pandas DataFrames and CSV Files

The code samples in several earlier sections contain hard-coded data 
inside the Python scripts. However, it’s also very common to read data from 
a CSV file. You can use the Python csv.reader() function, the NumPy 
loadtxt() function, or the Pandas function read_csv() function (shown 
in this section) to read the contents of CSV files.



introduction to nuMPy and Pandas • 131

Listing 4.29 displays the contents of weather_data.py that illustrates 
how to read a CSV file, initialize a Pandas DataFrame with the contents 
of that CSV file, and display various subsets of the data in the Pandas 
DataFrames.

Listing 4.29: weather_data.py

import pandas as pd

df = pd.read_csv("weather_data.csv")

print(df)
print(df.shape)  # rows, columns
print(df.head()) # df.head(3)
print(df.tail())
print(df[1:3])
print(df.columns)
print(type(df['day']))
print(df[['day','temperature']])
print(df['temperature'].max())

Listing 4.29 invokes the Pandas read_csv() function to read the 
contents of the CSV file weather_data.csv, followed by a set of Python 
print() statements that display various portions of the CSV file. The out-
put from Listing 4.29 is here:

day,temperature,windspeed,event
7/1/2018,42,16,Rain   
7/2/2018,45,3,Sunny   
7/3/2018,78,12,Snow   
7/4/2018,74,9,Snow    
7/5/2018,42,24,Rain   
7/6/2018,51,32,Sunny 

In some situations you might need to apply Boolean conditional logic 
to “filter out” some rows of data, based on a conditional condition that’s ap-
plied to a column value. 

Listing 4.30 displays the contents of the CSV file people.csv and 
Listing 4.31 displays the contents of people_pandas.py that illustrates 
how to define a Pandas DataFrame that reads the CSV file and manipu-
lates the data.

Listing 4.30: people.csv

fname,lname,age,gender,country



132 • Python 3 for Machine Learning

john,smith,30,m,usa
jane,smith,31,f,france
jack,jones,32,f,france
dave,stone,33,f,france
sara,stein,34,f,france
eddy,bower,35,f,france

Listing 4.31: people_pandas.py

import pandas as pd

df = pd.read_csv('people.csv')
df.info()
print('fname:')
print(df['fname'])
print('____________')
print('age over 33:')
print(df['age'] > 33)
print('____________')
print('age over 33:')
myfilter = df['age'] >  33
print(df[myfilter])

Listing 4.31 populate the Pandas dataframe df with the contents of 
the CSV file people.csv. The next portion of Listing 4.12 displays the struc-
ture of df, followed by the first names of all the people. The next portion 
of Listing 4.12 displays a tabular list of six rows containing either True or 
False depending on whether a person is over 33 or at most 33, respectively. 
The final portion of Listing 4.31 displays a tabular list of two rows contain-
ing all the details of the people who are over 33. The output from Listing 
4.31 is here:

myfilter = df['age'] >  33
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 5 columns):
fname      6 non_null object
lname      6 non_null object
age        6 non_null int64
gender     6 non_null object
country    6 non_null object
dtypes: int64(1), object(4)
memory usage: 320.0+ bytes
fname:



introduction to nuMPy and Pandas • 133

0    john
1    jane
2    jack
3    dave
4    sara
5    eddy
Name: fname, dtype: object
____________
age over 33:
0    False
1    False
2    False
3    False
4     True
5     True
Name: age, dtype: bool
____________
age over 33:
  fname  lname   age   gender  country
4  sara  stein   34      f     france
5  eddy  bower   35      m     france

4.33 Pandas DataFrames and Excel Spreadsheets (1)

Listing 4.32 displays the contents of people_xslx.py that illus-
trates how to read data from an Excel spreadsheet and create a Pandas 
DataFrame with that data.

Listing 4.32: people_xslx.py

import pandas as pd

df = pd.read_excel("people.xlsx")
print("Contents of Excel spreadsheet:")
print(df)

Listing 4.32 is straightforward: the Pandas dataframe df is initialized 
with the contents of the spreadsheet people.xlsx (whose contents are 
the same as people.csv) via the Pandas function read_excel(). The 
output from Listing 4.32 is here:

  fname  lname  age gender country
0  john  smith   30      m      usa



134 • Python 3 for Machine Learning

1  jane  smith   31      f   france
2  jack  jones   32      f   france
3  dave  stone   33      f   france
4  sara  stein   34      f   france
5  eddy  bower   35      f   france

4.34 Select, Add, and Delete Columns in DataFrames

This section contains short code blocks that illustrate how to perform 
operations on a DataFrame that resemble the operations on a Python dic-
tionary. For example, getting, setting, and deleting columns works with the 
same syntax as the analogous Python dict operations, as shown here:

df = pd.DataFrame.from_dict(dict([(‘A’,[1,2,3]), 
( ‘B’,[4,5,6])]),
orient=’index’, columns=[‘one’, ‘two’, ‘three’])

print(df)

The output from the preceding code snippet is here:

   one  two  three
A    1    2      3    
B    4    5      6  

Now look at the following sequence of operations on the contents of 
the dataframe df:

df['three'] = df['one'] * df['two']
df['flag'] = df['one'] > 2
print(df)

The output from the preceding code block is here:

   one  two   three    flag
a  1.0  1.0    1.0   False
b  2.0  2.0    4.0   False
c  3.0  3.0    9.0    True
d  NaN  4.0    NaN   False

Columns can be deleted or popped like with a Python dict, as shown 
in following code snippet:

del df['two']
three = df.pop('three')
print(df)



introduction to nuMPy and Pandas • 135

The output from the preceding code block is here:

   one   flag
a  1.0  False
b  2.0  False
c  3.0   True
d  NaN  False

When inserting a scalar value, it will naturally be propagated to fill the 
column:

df['foo'] = 'bar'
print(df)

The output from the preceding code snippet is here:

   one   flag   foo
a  1.0  False  bar
b  2.0  False  bar
c  3.0   True  bar
d  NaN  False  bar

When inserting a Series that does not have the same index as the 
DataFrame, it will be “conformed” to the index of the DataFrame:

df['one_trunc'] = df['one'][:2]
print(df)

The output from the preceding code snippet is here:

   one   flag   foo   one_trunc
a  1.0  False  bar        1.0
b  2.0  False  bar        2.0
c  3.0   True  bar        NaN
d  NaN  False  bar        NaN

You can insert raw ndarrays but their length must match the length of 
the index of the DataFrame.

4.35 Pandas DataFrames and Scatterplots

Listing 4.33 displays the contents of pandas_scatter_df.py that 
illustrates how to generate a scatterplot from a Pandas DataFrame.

Listing 4.33: pandas_scatter_df.py

import numpy as np



136 • Python 3 for Machine Learning

import pandas as pd
import matplotlib.pyplot as plt
from pandas import read_csv
from pandas.plotting import scatter_matrix

myarray = np.array([[10,30,20], 
[50,40,60],[1000,2000,3000]])

rownames = ['apples', 'oranges', 'beer']
colnames = ['January', 'February', 'March']

mydf = pd.DataFrame(myarray, index=rownames, 
columns=colnames)

print(mydf)
print(mydf.describe())

scatter_matrix(mydf)
plt.show()

Listing 4.33 starts with various import statements, followed by the defi-
nition of the NumPy array myarray. Next, the variables myarray and col-
names are initialized with values for the rows and columns, respectively. The 
next portion of Listing 4.33 initializes the Pandas DataFrame mydf so that 
the rows and columns are labeled in the output, as shown here:

           January   February  March
apples        10        30      20
oranges       50        40      60
beer        1000      2000    3000
           January     February        March
count     3.000000     3.000000     3.000000
mean    353.333333   690.000000  1026.666667
std     560.386771  1134.504297  1709.073823
min      10.000000    30.000000    20.000000
25%      30.000000    35.000000    40.000000
50%      50.000000    40.000000    60.000000
75%     525.000000  1020.000000  1530.000000
max    1000.000000  2000.000000  3000.0000000

4.36 Pandas DataFrames and Simple Statistics

Listing 4.34 displays the contents of housing_stats.py that illus-
trates how to gather basic statistics from data in a Pandas DataFrame.



introduction to nuMPy and Pandas • 137

Listing 4.34: housing_stats.py

import pandas as pd

df = pd.read_csv("Housing.csv")

minimum_bdrms = df["bedrooms"].min()
median_bdrms  = df["bedrooms"].median()
maximum_bdrms = df["bedrooms"].max()

print("minimum # of bedrooms:",minimum_bdrms)
print("median  # of bedrooms:",median_bdrms)
print("maximum # of bedrooms:",maximum_bdrms)
print("")

print("median values:",df.median().values)
print("")

prices = df["price"]
print("first 5 prices:")
print(prices.head())
print("")

median_price = df["price"].median()
print("median price:",median_price)
print("")

corr_matrix = df.corr()
print("correlation matrix:")
print(corr_matrix["price"].sort_values(ascending=False))

Listing 4.34 initializes the Pandas DataFrame df with the contents of 
the CSV file Housing.csv. The next three variables are initialized with the 
minimum, median, and maximum number of bedrooms, respectively, and 
then these values are displayed.

The next portion of Listing 4.34 initializes the variable prices with 
the contents of the prices column of the Pandas DataFrame df. Next, the 
first five rows are printed via the prices.head() statement, followed by 
the median value of the prices. 

The final portion of Listing 4.34 initializes the variable corr_matrix 
with the contents of the correlation matrix for the Pandas DataFrame df, 
and then displays its contents. The output from Listing 4.34 is here:

Apples
10



138 • Python 3 for Machine Learning

4.37 Useful One_line Commands in Pandas 

This section contains an eclectic mix of one-line commands in Pandas 
(some of which you have already seen in this chapter) that are useful to know:

Save a dataframe to a CSV file (comma separated and without indices):

df.to_csv("data.csv", sep=",", index=False)

List the column names of a DataFrame:

df.columns

Drop missing data from a DataFrame:

df.dropna(axis=0, how='any')

Replace missing data in a DataFrame:

df.replace(to_replace=None, value=None)

Check for NANs in a DataFrame:

pd.isnull(object)

Drop a feature in a DataFrame:

df.drop('feature_variable_name', axis=1)

Convert object type to float in a DataFrame:

pd.to_numeric(df["feature_name"], errors='coerce')

Convert data in a DataFrame to NumpPy array:

df.as_matrix()

Display the first n rows of a dataframe:

df.head(n)

Get data by feature name in a DataFrame:

df.loc[feature_name]

Apply a function to a DataFrame: multiply all values in the “height” 
column of the dataframe by 3:

df["height"].apply(lambda height: 3 * height)

OR:

def multiply(x):
    return x * 3



introduction to nuMPy and Pandas • 139

df["height"].apply(multiply)

Rename the fourth column of the dataframe as "height":

df.rename(columns = {df.columns[3]:'height'}, 
inplace=True)

Get the unique entries of the column "first" in a DataFrame:

df[""first"].unique()

Create a dataframe with columns "first" and "last" from an existing 
DataFrame:

new_df = df[["name", "size"]]

Sort the data in a DataFrame:

df.sort_values(ascending = False)

Filter the data column named "size" to display only values equal to 7:

df[df["size"] == 7]

Select the first row of the "height" column in a DataFrame:

df.loc([0], ['height'])

This concludes the Pandas related portion of the chapter. The next 
section contains a brief introduction to Jupyter, which is a Flask-based 
Python application that enables you to execute Python code in a browser. 
Instead of Python scripts, you will use Jupyter “notebooks,” which sup-
port various interactive features for executing Python code. In addition, 
your knowledge of Jupyter will be very useful when you decide to use 
Google Colaboratory (discussed later) that also supports Jupyter note-
books in a browser.

4.38 Summary

This chapter introduced you to Pandas for creating labeled Dataframes 
and displaying metadata of Pandas Dataframes. Then you learned how to 
create  Pandas Dataframes from various sources of data, such as random 
numbers and hard_coded data values.

You also learned how to read Excel spreadsheets and perform numeric 
calculations on that data, such as the min, mean, and max values in nu-
meric columns. Then you saw how to create Pandas Dataframes from 



140 • Python 3 for Machine Learning

data stored in CSV files. Then you learned how to invoke a Web service 
to retrieve data and populate a Pandas Dataframe with that data. In ad-
dition, you learned how to generate a scatterplot from data in a Pandas 
Dataframe. Finally, you saw how to use Jupyter, which is a Python-based 
application for displaying and executing Python code in a browser. 



C H A P T E R5

●●  What is Machine Learning?
●●  Types of Machine Learning Algorithms
●●  Feature Engineering, Selection, and Extraction
●●  Dimensionality Reduction
●●  Working with Datasets
●●  What is Regularization?
●●  The Bias-Variance Tradeoff
●●  Metrics for Measuring Models
●●  Other Useful Statistical Terms
●●  What is Linear Regression? 
●●  Other Types of Regression
●●  Working with Lines in the Plane (optional)
●●  Scatter Plots with Numpy and Matplotlib (1)
●●  Scatter Plots with Numpy and Matplotlib (2)
●●  A Quadratic Scatterplot with Numpy and matplotlib
●●  The MSE Formula
●●  Calculating the MSE Manually
●●  Approximating Linear Data with np.linspace() 
●●  Calculating MSE with np.linspace() API

INTRODUCTION TO  
MACHINE LEARNING



142 • Python 3 for Machine Learning

This chapter introduces numerous concepts in machine learning, such 
as feature selection, feature engineering, data cleaning, training sets, and 
test sets. 

The first part of this chapter briefly discusses machine learning and the 
sequence of steps that are typically required in order to prepare a dataset. 
These steps include feature selection or feature extraction that can be per-
formed using various algorithms. 

The second section describes the types of data that you can encounter, 
issues that can arise with the data in datasets, and how to rectify them. You 
will also learn about the difference between hold out and k-fold when you 
perform the training step.

The third part of this chapter briefly discusses the basic concepts in-
volved in linear regression. Although linear regression was developed more 
than 200 years ago, this technique is still one of the core techniques for solv-
ing (albeit simple) problems in statistics and machine learning. In fact, the 
technique known as mean squared error (MSE) for finding a best-fitting 
line for data points in a 2D plane (or a hyperplane for higher dimensions) 
is implemented in Python and TensorFlow in order to minimize so-called 
loss functions that are discussed later.

The fourth section in this chapter contains additional code samples in-
volving linear regression tasks using standard techniques in NumPy. Hence, 
if you are comfortable with this topic, you can probably skim quickly 
through the first two sections of this chapter. The third section shows you 
how to solve linear regression using Keras.

One point to keep in mind is that some algorithms are mentioned with-
out delving into details about them. For instance, the section pertaining 
to supervised learning contains a list of algorithms that appear later in the 
chapter in the section that pertains to classification algorithms. The algo-
rithms that are displayed in bold in a list are the algorithms that are of 
greater interest for this book. In some cases the algorithms are discussed 
in greater detail in the next chapter; otherwise, you can perform an on-
line search for additional information about the algorithms that are not dis-
cussed in detail in this book.

●●  Linear Regression with Keras 
●●  Summary



introduction to Machine Learning • 143

5.1 What is Machine Learning?

In high-level terms, machine learning is a subset of AI that can solve 
tasks that are infeasible or too cumbersome with more traditional program-
ming languages. A spam filter for email is an early example of machine 
learning. Machine learning generally supersedes the accuracy of older al-
gorithms. 

Despite the variety of machine learning algorithms, the data is argu-
ably more important than the selected algorithm. Many issues can arise 
with data, such as insufficient data, poor quality of data, incorrect data, 
missing data, irrelevant data, duplicate data values, and so forth. Later 
in this chapter you will see techniques that address many of these data-
related issues.

If you are unfamiliar with machine learning terminology, a dataset is 
a collection of data values, which can be in the form of a CSV file or a 
spreadsheet. Each column is called a feature, and each row is a datapoint 
that contains a set of specific values for each feature. If a dataset contains 
information about customers, then each row pertains to a specific customer.

5.1.1 Types of Machine Learning
There are three main types of machine learning (combinations of these 

are also possible) that you will encounter:

●■ supervised learning
●■ unsupervised learning
●■ semisupervised learning

Supervised learning means that the datapoints in a dataset have a label 
that identifies its contents. For example, the MNIST dataset contains 28x28 
PNG files, each of which contains a single hand-drawn digit (i.e. 0 through 
9 inclusive). Every image with the digit 0 has the label 0; every image with 
the digit 1 has the label 1; all other images are labeled according to the digit 
that is displayed in those images. 

As another example, the columns in the Titanic dataset are features 
about passengers, such as their gender, the cabin class, the price of their 
ticket, whether or not the passenger survived, and so forth. Each row con-
tains information about a single passenger, including the value 1 if the 
passenger survived. The MNIST dataset and the Titanic dataset involve 



144 • Python 3 for Machine Learning

classification tasks: the goal is to train a model based on a training dataset 
and then predict the class of each row in a test dataset.

In general, the datasets for classification tasks have a small number of 
possible values: one of nine digits in the range of 0 through 9, one of four 
animals (dog, cat, horse, giraffe), one of two values (survived versus perished, 
purchased versus not purchased). As a rule of thumb, if the number of out-
comes can be displayed in a relatively small number of values (which is sub-
jective number) in a drop-down list, then it’s probably a classification task.

In the case of a dataset that contains real estate data, each row contains 
information about a specific house, such as the number of bedrooms, the 
square feet of the house, the number of bathrooms, the price of the house, 
and so forth. In this dataset the price of the house is the label for each row. 
Notice that the range of possible prices is too large to fit reasonably well in 
a drop-down list. A real estate dataset involves a regression task: the goal is 
to train a model based on a training dataset and then predict the price of 
each house in a test dataset.

Unsupervised learning involves unlabeled data, which is typically the 
case for clustering algorithms (discussed later). Some important unsuper-
vised learning algorithms that involve clustering are as follows:

●■ k-Means
●■ hierarchical cluster analysis (HCA)
●■ expectation maximization

Some important unsupervised learning algorithms that involve dimen-
sionality reduction (discussed in more detail later) are as follows:

●■ principal component analysis (PCA)
●■ kernel PCA 
●■ locally linear embedding (LLE)
●■ t-distributed stochastic neighbor embedding (t-SNE)

There is one more very important unsupervised task called anomaly 
detection. This task is relevant for fraud detection and detecting outliers 
(discussed later in more detail).

Semisupervised learning is a combination of supervised and unsuper-
vised learning: some datapoints are labeled and some are unlabeled. One 



introduction to Machine Learning • 145

technique involves using the labeled data in order to classify (i.e., label) the 
unlabeled data, after which you can apply a classification algorithm.

5.2 Types of Machine Learning Algorithms

There are three main types of machine learning algorithms:

●■ regression (ex., linear regression)
●■ classification (ex., k-nearest-neighbor)
●■ clustering (ex., kMeans)

Regression is a supervised learning technique to predict numerical 
quantities. An example of a regression task is predicting the value of a par-
ticular stock. Note that this task is different from predicting whether the 
value of a particular stock will increase or decrease tomorrow (or some 
other future time period). Another example of a regression task involves 
predicting the cost of a house in a real estate dataset. Both of these tasks are 
examples of a regression task.

Regression algorithms in machine learning include linear regression 
and generalized linear regression (also called multivariate analysis in tradi-
tional statistics).

Classification is also a supervised learning technique, for predicting nu-
meric or categorical quantities. An example of a classification task is detect-
ing the occurrence of spam, fraud, or determining the digit in a PNG file 
(such as the MNIST dataset). In this case, the data is already labeled, so you 
can compare the prediction with the label that was assigned to the given 
PNG.

Classification algorithms in machine learning include the following list 
of algorithms (they are discussed in greater detail in the next chapter):

●■ decision trees (a single tree)
●■ random forests (multiple trees)
●■ kNN (k nearest neighbor)
●■ logistic regression (despite its name)
●■ naïve Bayes
●■ support vector machines (SVM)



146 • Python 3 for Machine Learning

Some machine learning algorithms (such as SVMs, random forests, and 
kNN) support regression as well as classification. In the case of SVMs, the 
scikit-learn implementation of this algorithm provides two APIs: SVC for 
classification and SVR for regression.

Each of the preceding algorithms involves a model that is trained on a 
dataset, after which the model is used to make a prediction. By contrast, a 
random forest consists of multiple independent trees (the number is speci-
fied by you), and each tree makes a prediction regarding the value of a fea-
ture. If the feature is numeric, take the mean or the mode (or perform some 
other calculation) in order to determine the final prediction. If the feature 
is categorical, use the mode (i.e., the most frequently occurring class) as the 
result; in the case of a tie you can select one of them in a random fashion. 

Incidentally, the following link contains more information regarding 
the kNN algorithm for classification as well as regression: 

http://saedsayad.com/k_nearest_neighbors_reg.htm

Clustering is an unsupervised learning technique for grouping similar 
data together. Clustering algorithms put data points in different clusters 
without knowing the nature of the data points. After the data has been 
separated into different clusters, you can use the SVM (Support Vector Ma-
chine) algorithm to perform classification.

Clustering algorithms in machine learning include the following (some 
of which are variations of each other):

●■ k-Means
●■ meanshift
●■ hierarchical cluster analysis (HCA)
●■ expectation maximization

Keep in mind the following points. First, the value of k in k-Means is a 
hyperparameter, and it’s usually an odd number to avoid ties between two 
classes. Next, the meanshift algorithm is a variation of the k-Means algo-
rithm that does not require you to specify a value for k. In fact, the mean-
shift algorithm determines the optimal number of clusters. However, this 
algorithm does not scale well for large datasets.

5.2.1 Machine Learning Tasks
Unless you have a dataset that has already been sanitized, you need to 

examine the data in a dataset to make sure that it’s in a suitable condition. 



introduction to Machine Learning • 147

The data preparation phase involves (1) examining the rows (data cleaning) 
to ensure that they contain valid data (which might require domain-specific 
knowledge), and (2) examining the columns (feature selection or feature 
extraction) to determine if you can retain only the most important columns.

A high-level list of the sequence of machine learning tasks (some of 
which might not be required) is shown here:

●■ obtain a dataset

●■ data cleaning

●■ feature selection

●■ dimensionality reduction

●■ algorithm selection

●■ train-versus-test data 

●■ training a model

●■ testing a model

●■ fine-tuning a model
●■ obtain metrics for the model

First, you obviously need to obtain a dataset for your task. In the ideal 
scenario, this dataset already exists; otherwise, you need to cull the data 
from one or more data sources (e.g., a CSV file, a relational database, a no-
SQL database, a Web service, and so forth).

Second, you need to perform data cleaning, which you can do via the 
following techniques:

●■ missing value ratio
●■ low variance filter
●■ high correlation filter

In general, data cleaning involves checking the data values in a dataset 
in order to resolve one or more of the following:

●■ Fix incorrect values.
●■ Resolve duplicate values.
●■ Resolve missing values.
●■ Decide what to do with outliers.



148 • Python 3 for Machine Learning

Use the missing value ratio technique if the dataset has too many 
missing values. In extreme cases, you might be able to drop features 
with a large number of missing values. Use the low variance filter tech-
nique to identify and drop features with constant values from the data-
set. Use the high correlation filter technique to find highly correlated 
features, which increase multicollinearity in the dataset: such features 
can be removed from a dataset (but check with your domain expert be-
fore doing so).

Depending on your background and the nature of the dataset, you 
might need to work with a domain expert, which is a person who has a deep 
understanding of the contents of the dataset.

For example, you can use a statistical value (mean, mode, and so forth) 
to replace incorrect values with suitable values. Duplicate values can be 
handled in a similar fashion. You can replace missing numeric values with 
zero, the minimum, the mean, the mode, or the maximum value in a nu-
meric column. You can replace missing categorical values with the mode of 
the categorical column. 

If a row in a dataset contains a value that is an outlier, you have three 
choices:

●■ Delete the row.
●■ Keep the row.
●■ Replace the outlier with some other value (mean?).

When a dataset contains an outlier, you need to make a decision based 
on domain knowledge that is specific to the given dataset.

Suppose that a dataset contains stock-related information. As you know, 
there was a stock market crash in 1929, which you can view as an outlier. 
Such an occurrence is rare, but it can contain meaningful information. In-
cidentally, the source of wealth for some families in the 20th century was 
based on buying massive amounts of stock are very low prices during the 
Great Depression.

5.3 Feature Engineering, Selection, and Extraction

In addition to creating a dataset and cleaning its values, you also need 
to examine the features in that dataset to determine whether or not you can 



introduction to Machine Learning • 149

reduce the dimensionality (i.e., the number of columns) of the dataset. The 
process for doing so involves three main techniques:

●➡ feature engineering
●➡ feature selection
●➡ feature extraction (aka feature projection)

Feature engineering is the process of determining a new set of features 
that are based on a combination of existing features in order to create a 
meaningful dataset for a given task. Domain expertise is often required for 
this process, even in cases of relatively simple datasets. Feature engineering 
can be tedious and expensive, and in some cases you might consider using 
automated feature learning. After you have created a dataset, it’s a good 
idea to perform feature selection or feature extraction (or both) to ensure 
that you have a high quality dataset.

Feature selection is also called variable selection, attribute selection or 
variable subset selection. Feature selection involves of selecting a subset of 
relevant features in a dataset. In essence, feature selection involves select-
ing the most significant  features in a dataset, which provides these advan-
tages:

●■ reduced training time
●■ simpler models are easier to interpret
●■ avoidance of the curse of dimensionality
●■  better generalization due to a reduction in overfitting (reduction of 

variance)

Feature selection techniques are often used in domains where there 
are many features and comparatively few samples (or data points). Keep 
in mind that a low-value feature can be redundant or irrelevant, which are 
two different concepts. For instance, a relevant feature might be redundant 
when it's combined with another strongly correlated feature.

Feature selection can use three strategies: the filter strategy (e.g., in-
formation gain), the wrapper strategy (e.g., search guided by accuracy), and 
the embedded strategy (prediction errors are used to determine whether 
features are included or excluded while developing a model). One other 
interesting point is that feature selection can also be useful for regression as 
well as for classification tasks.



150 • Python 3 for Machine Learning

Feature extraction creates new features from functions that produce 
combinations of the original features. By contrast, feature selection involves 
determining a subset of the existing features. 

Feature selection and feature extraction both result in dimensionality 
reduction for a given dataset, which is the topic of the next section.

5.4 Dimensionality Reduction

Dimensionality Reduction refers to algorithms that reduce the number 
of features in a dataset: hence the term dimensionality reduction. As you 
will see, there are many techniques available, and they involve either fea-
ture selection or feature extraction. 

Algorithms that use feature selection to perform dimensionality reduc-
tion are listed here:

●■ backward feature elimination

●■ forward feature selection

●■ factor analysis

●■ independent component analysis 

Algorithms that use feature extraction to perform dimensionality re-
duction are listed here:

●■ principal component analysis (PCA)

●■ nonnegative matrix factorization (NMF)

●■ kernel PCA

●■ graph-based kernel PCA

●■ linear discriminant analysis (LDA)

●■ generalized discriminant analysis (GDA)

●■ autoencoder

The following algorithms combine feature extraction and dimensional-
ity reduction:

●■ principal component analysis (PCA)

●■ linear discriminant analysis (LDA)



introduction to Machine Learning • 151

●■ canonical correlation analysis (CCA)

●■ nonnegative matrix factorization (NMF)

These algorithms can be used during a preprocessing step before using 
clustering or some other algorithm (such as kNN) on a dataset.

One other group of algorithms involves methods based on projections, 
which includes t-distributed stochastic neighbor embedding (t-SNE) as 
well as UMAP (Uniform Manifold Approximation and Projection).

This chapter discusses PCA, and you can perform an online search to 
find more information about the other algorithms.

5.4.1 PCA
Principal components are new components that are linear combina-

tions of the initial variables in a dataset. In addition, these components are 
uncorrelated and the most meaningful or important information is con-
tained in these new components.

There are two advantages to PCA: (1) reduced computation time due to 
far fewer features, and (2) the ability to graph the components when there are 
at most three components. If you have four or five components, you won’t be 
able to display them visually, but you could select subsets of three components 
for visualization, and perhaps gain some additional insight into the dataset.

PCA uses the variance as a measure of information: the higher the 
variance, the more important the component. In fact, just to jump ahead 
slightly: PCA determines the eigenvalues and eigenvectors of a covariance 
matrix (discussed later), and constructs a new matrix whose columns are 
eigenvectors, ordered from left-to-right based on the maximum eigenvalue 
in the left-most column, decreasing until the right-most eigenvector also 
has the smallest eigenvalue.

5.4.2 Covariance Matrix
As a reminder, the statistical quantity called the variance of a random 

variable X is defined as follows:

variance(x) = [SUM (x – xbar)*(x-xbar)]/n

A covariance matrix C is an nxn matrix whose values on the main diago-
nal are the variance of the variables X1, X2, . . ., Xn. The other values of C 
are the covariance values of each pair of variables Xi and Xj.  



152 • Python 3 for Machine Learning

The formula for the covariance of the variables X and Y is a generaliza-
tion of the variance of a variable, and the formula is shown here:

covariance(X, Y) = [SUM (x – xbar)*(y-ybar)]/n

Notice that you can reverse the order of the product of terms (multi-
plication is commutative), and therefore the covariance matrix C is a sym-
metric matrix:

covariance(X, Y) = covariance(Y,X)

PCA calculates the eigenvalues and the eigenvectors of the covariance 
matrix A.

5.5 Working with Datasets

In addition to data cleaning, there are several other steps that you need 
to perform, such as selecting training data versus test data, and deciding 
whether to use hold out or cross-validation during the training process. 
More details are provided in the subsequent sections.

5.5.1 Training Data versus Test Data
After you have performed the tasks described earlier in this chapter 

(i.e., data cleaning and perhaps dimensionality reduction), you are ready 
to split the dataset into two parts. The first part is the training set, which 
is used to train a model, and the second part is the test set, which is used 
for inferencing (another term for making predictions). Make sure that you 
conform to the following guidelines for your test sets:

1. The set is large enough to yield statistically meaningful results.

2. It's representative of the dataset as a whole.

3. Never train on test data.

4. Never test on training data.

5.5.2 What is Cross-validation?
The purpose of cross-validation is to test a model with nonoverlapping 

test sets, and is performed in the following manner:

1. Split the data into k subsets of equal size.

2. Select one subset for testing and the others for training.

3. Repeat step 2 for the other k-1 subsets.



introduction to Machine Learning • 153

This process is called k-fold cross-validation, and the overall error es-
timate is the average of the error estimates. A standard method for evalua-
tion involves ten-fold cross-validation. Extensive experiments have shown 
that 10 subsets is the best choice to obtain an accurate estimate. In fact, you 
can repeat ten-fold cross-validation ten times and compute the average of 
the results, which helps to reduce the variance.

The next section discusses regularization, which is an important yet op-
tional topic if you are primarily interested in TF 2 code. If you plan to become 
proficient in machine learning, you will need to learn about regularization.

5.6 What is Regularization?

Regularization helps to solve overfitting problem, which occurs when a 
model performs well on training data but poorly on validation or test data.

Regularization solves this problem by adding a penalty term to the cost 
function, thereby controlling the model complexity with this penalty term. 
Regularization is generally useful for:

●■ large number of variables
●■ low ration of (# observations)/(# of variables
●■ high multicollinearity

There are two main types of regularization: L1 regularization (which is 
related to MAE, or the absolute value of differences) and L2 regularization 
(which is related to MSE, or the square of differences). In general, L2 per-
forms better than L1 and L2 is efficient in terms of computation.

5.6.1 ML and Feature Scaling
Feature scaling standardizes the range of features of data. This step 

is performed during the data preprocessing step, in part because gradient 
descent benefits from feature scaling.

The assumption is that the data conforms to a standard normal distribution, 
and standardization involves subtracting the mean and divide by the standard 
deviation for every data point, which results in a N(0,1) normal distribution.

5.6.2 Data Normalization versus Standardization
Data normalization is a linear scaling technique. Let’s assume that a data-

set has the values {X1, X2, . . . , Xn} along with the following terms: 

Minx = minimum of Xi values 



154 • Python 3 for Machine Learning

Maxx = maximum of Xi values

Now calculate a set of new Xi values as follows:

Xi = (Xi – Minx)/[Maxx – Minx]

The new Xi values are now scaled so that they are between 0 and 1.

5.7 The Bias-Variance Tradeoff

Bias in machine learning can be due to an error from wrong assump-
tions in a learning algorithm. High bias might cause an algorithm to miss 
relevant relations between features and target outputs (underfitting). Pre-
diction bias can occur because of “noisy” data, an incomplete feature set, or 
a biased training sample.

Error due to bias is the difference between the expected (or average) 
prediction of your model and the correct value that you want to predict. Re-
peat the model building process multiple times, and gather new data each 
time, and also perform an analysis to produce a new model. The resulting 
models have a range of predictions because the underlying datasets have a 
degree of randomness. Bias measures the extent to the predictions for these 
models are from the correct value.

Variance in machine learning is the expected value of the squared devi-
ation from the mean. High variance can/might cause an algorithm to model 
the random noise in the training data, rather than the intended outputs (aka 
overfitting).

Adding parameters to a model increases its complexity, increases the 
variance, and decreases the bias. Dealing with bias and variance is dealing 
with underfitting and overfitting. 

Error due to variance is the variability of a model prediction for a given 
data point. As before, repeat the entire model building process, and the 
variance is the extent to which predictions for a given point vary among dif-
ferent instances of the model.

5.8 Metrics for Measuring Models

One of the most frequently used metrics is R-squared, which measures 
how close the data is to the fitted regression line (regression coefficient). 
The R-squared value is always a percentage between 0 and 100%. The value 



introduction to Machine Learning • 155

0% indicates that the model explains none of the variability of the response 
data around its mean. The value 100% indicates that the model explains all 
the variability of the response data around its mean. In general, a higher 
R-squared value indicates a better model.

5.8.1 Limitations of R-Squared
Although high R-squared values are preferred, they are not necessarily 

always good values. Similarly, low R-squared values are not always bad. For 
example, an R-squared value for predicting human behavior is often less 
than 50%. Moreover, R-squared cannot determine whether the coefficient 
estimates and predictions are biased. In addition, an R-squared value does 
not indicate whether a regression model is adequate. Thus, it's possible to 
have a low R-squared value for a good model, or a high R-squared value 
for a poorly fitting model. Evaluate R-squared values in conjunction with 
residual plots, other model statistics, and subject area knowledge.

5.8.2 Confusion Matrix
In its simplest form, a confusion matrix (also called an error matrix) is a 

type of contingency table with two rows and two columns that contains the 
# of false positives, false negatives, true positives, and true negatives. The 
four entries in a 2x2 confusion matrix can be labeled as follows:

TP: True Positive
FP: False Positive
TN: True Negative
FN: False Negative

The diagonal values of the confusion matrix are correct, whereas the 
off-diagonal values are incorrect predictions. In general a lower FP value is 
better than a FN value. For example, an FP indicates that a healthy person 
was incorrectly diagnosed with a disease, whereas an FN indicates that an 
unhealthy person was incorrectly diagnosed as healthy. 

5.8.3 Accuracy versus Precision versus Recall
A 2x2 confusion matrix has four entries that that represent the various 

combinations of correct and incorrect classifications. Given the definitions 
in the preceding section, the definitions of precision, accuracy, and recall 
are given by the following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]



156 • Python 3 for Machine Learning

recall    = TP/[TP + FN]

Accuracy can be an unreliable metric because it yields misleading results 
in unbalanced datasets. When the number of observations in different class-
es are significantly different, it gives equal importance to both false positive 
and false negative classifications. For example, declaring cancer as benign is 
worse than incorrectly informing patients that they are suffering from cancer. 
Unfortunately, accuracy won’t differentiate between these two cases.

Keep in mind that the confusion matrix can be an nxn matrix and not 
just a 2x2 matrix. For example, if a class has 5 possible values, then the con-
fusion matrix is a 5x5 matrix, and the numbers on the main diagonal are the 
true positive results.

5.8.4 The ROC Curve
The receiver operating characteristic (ROC) curve is a curve that plots 

the the true positive rate (TPR; i.e., the recall) against the false positive 
rate (FPR). Note that the the true negative rate (TNR) is also called the 
specificity.

The following link contains a Python code sample using SKLearn and 
the Iris dataset, and also code for plotting the ROC:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html

The following link contains an assortment of Python code samples for 
plotting the ROC:

https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-in-
python

5.9 Other Useful Statistical Terms

Machine learning relies on a number of statistical quantities in order to 
assess the validity of a model, some of which are listed here:

●■ RSS

●■ TSS

●■ R^2

●■ F1 score

●■ p-value

https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-in-python
https://stackoverflow.com/questions/25009284/how-to-plot-roc-curve-in-python


introduction to Machine Learning • 157

The definitions of RSS, TSS, and R^2 are shown in the following, 
where y^ is the y-coordinate of a point on a best-fitting line and y_ is the 
mean of the y-values of the points in the dataset:

●➡ RSS = sum of squares of residuals (y - y^)**2
●➡ TSS = toal sum of squares         (y - y_)**2
R^2 = 1 - RSS/TSS

5.9.1 What Is an F1 score?
The F1 score is a measure of the accuracy of a test, and it’s defined as 

the harmonic mean of precision and recall. Here are the relevant formulas, 
where p is the precision and r is the recall:

p = (# of correct positive results)/(# of all positive 
results)
r = (# of correct positive results)/(# of all relevant 
samples)

F1-score  = 1/[((1/r) + (1/p))/2]
          = 2*[p*r]/[p+r]

The best value of an F1 score is 0 and the worse value is 0. Keep in mind 
that an F1 score tends to be used for categorical classification problems, where-
as the R^2 value is typically for regression tasks (such as linear regression).

5.9.2 What Is a p-value?
The p-value is used to reject the null hypothesis if the p-value is small 

enough (< 0.005) which indicates a higher significance. Recall that the null 
hypothesis states that there is no correlation between a dependent variable 
(such as y) and an independent variable (such as x). The threshold value for 
p is typically 1% or 5%.

There is no straightforward formula for calculating p-values, which are 
values that are always between 0 and 1. In fact, p-values are statistical quan-
tities to evaluate the so-called null hypothesis, and they are calculated by 
means of p-value tables or via spreadsheet/statistical software.

5.10 What is Linear Regression?

The goal of linear regression is to find the best-fitting line that repre-
sents a dataset. Keep in mind two key points. First, the best-fitting line does 



158 • Python 3 for Machine Learning

not necessarily pass through all (or even most of) the points in the dataset. 
The purpose of a best-fitting line is to minimize the vertical distance of that 
line from the points in dataset. Second, linear regression does not deter-
mine the best-fitting polynomial: the latter involves finding a higher-degree 
polynomial that passes through many of the points in a dataset. 

Moreover, a dataset in the plane can contain two or more points that lie 
on the same vertical line, which is to say that those points have the same x 
value. However, a function cannot pass through such a pair of points: if two 
points (x1,y1) and (x2,y2) have the same x value then they must have 
the same y value (i.e., y1=y2). On the other hand, a function can have two 
or more points that lie on the same horizontal line. 

Now consider a scatter plot with many points in the plane that are sort 
of clustered in an elongated cloud-like shape: a best-fitting line will proba-
bly intersect only limited number of points (in fact, a best-fitting line might 
not intersect any of the points).

One other scenario to keep in mind: suppose a dataset contains a set 
of points that lie on the same line. For instance, let’s say the x values are in 
the set {1,2,3,...,10} and the y values are in the set {2,4,6,...,20}. 
Then the equation of the best-fitting line is y=2*x+0. In this scenario, all 
the points are collinear, which is to say that they lie on the same line.

5.10.1 Linear Regression versus Curve-Fitting
Suppose a dataset consists of n data points of the form (x, y), and no two 

of those data points have the same x value. Then according to a well-known 
result in mathematics, there is a polynomial of degree less than or equal to 
n-1 that passes through those n points (if you are really interested, you can 
find a mathematical proof of this statement in online articles). For example, a 
line is a polynomial of degree one and it can intersect any pair of nonvertical 
points in the plane. For any triple of points (that are not all on the same line) 
in the plane, there is a quadratic equation that passes through those points.

In addition, sometimes a lower degree polynomial is available. For in-
stance, consider the set of 100 points in which the x value equals the y 
value: in this case, the line y = x (which is a polynomial of degree one) 
passes through all 100 points.

However, keep in mind that the extent to which a line represents a set of 
points in the plane depends on how closely those points can be approximat-
ed by a line, which is measured by the variance of the points (the variance 



introduction to Machine Learning • 159

is a statistical quantity). The more collinear the points, the smaller the vari-
ance; conversely, the more spread out the points are, the larger the variance.

5.10.2 When Are Solutions Exact Values?
Although statistics-based solutions provide closed-form solutions for 

linear regression, neural networks provide approximate solutions. This is 
due to the fact that machine learning algorithms for linear regression in-
volve a sequence of approximations that converges to optimal values, which 
means that machine learning algorithms produce estimates of the exact val-
ues. For example, the slope m and y-intercept b of a best-fitting line for a set 
of points a 2D plane have a closed-form solution in statistics, but they can 
only be approximated via machine learning algorithms (exceptions do exist, 
but they are rare situations). 

Keep in mind that even though a closed-form solution for traditional linear 
regression provides an exact value for both m and b, sometimes you can only use 
an approximation of the exact value. For instance, suppose that the slope m of 
a best-fitting line equals the square root of 3 and the y-intercept b is the square 
root of 2. If you plan to use these values in source code, you can only work with 
an approximation of these two numbers. In the same scenario, a neural network 
computes approximations for m and b, regardless of whether or not the exact 
values for m and b are irrational, rational, or integer values. However, machine 
learning algorithms are better suited for complex, nonlinear, multi-dimensional 
datasets, which is beyond the capacity of linear regression.

As a simple example, suppose that the closed form solution for a linear 
regression problem produces integer or rational values for both m and b. 
Specifically, let’s suppose that a closed form solution yields the values 2.0 
and 1.0 for the slope and y-intercept, respectively, of a best-fitting line. The 
equation of the line looks like this:

y = 2.0 * x + 1.0
However, the corresponding solution from training a neural network 

might produce the values 2.0001 and 0.9997 for the slope m and the y-in-
tercept b, respectively, as the values of m and b for a best-fitting line. Always 
keep this point in mind, especially when you are training a neural network.

5.10.3 What is Multivariate Analysis?
Multivariate analysis generalizes the equation of a line in the Euclidean 

plane to higher dimensions, and it’s called a hyperplane instead of a line. 
The generalized equation has the following form:



160 • Python 3 for Machine Learning

y = w1*x1 + w2*x2 + . . . + wn*xn + b

In the case of 2D linear regression, you only need to find the value of 
the slope (m) and the y-intercept (b), whereas in multivariate analysis you 
need to find the values for w1, w2, . . ., wn. Note that multivariate 
analysis is a term from statistics, and in machine learning it’s often referred 
to as generalized linear regression.

Keep in mind that most of the code samples in this book that pertain to 
linear regression involve 2D points in the Euclidean plane.

5.11 Other Types of Regression

Linear regression finds the best-fitting line that represents a dataset, 
but what happens if a line in the plane is not a good fit for the dataset? This 
is a relevant question when you work with datasets. 

Some alternatives to linear regression include quadratic equations, cu-
bic equations, or higher-degree polynomials. However, these alternatives 
involve trade-offs, as we’ll discuss later.

Another possibility is a sort of hybrid approach that involves piece-wise 
linear functions, which comprises a set of line segments. If contiguous line 
segments are connected then it’s a piece-wise linear continuous function; 
otherwise it’s a piece-wise linear discontinuous function.

Thus, given a set of points in the plane, regression involves addressing 
the following questions:

1. What type of curve fits the data well? How do we know?

2. Does another type of curve fit the data better?

3. What does “best fit” mean?

One way to check if a line fits the data involves a visual check, but this 
approach does not work for data points that are higher than two dimen-
sions. Moreover, this is a subjective decision, and some sample datasets are 
displayed later in this chapter. By visual inspection of a dataset, you might 
decide that a quadratic or cubic (or even higher degree) polynomial has 
the potential of being a better fit for the data. However, visual inspection is 
probably limited to points in a 2D plane or in three dimensions.



introduction to Machine Learning • 161

Let’s defer the nonlinear scenario and let’s make the assumption 
that a line would be a good fit for the data. There is a well-known tech-
nique for finding the “best-fitting” line for such a dataset that involves 
minimizing the mean squared error (MSE) that we’ll discuss later in this 
chapter. 

The next section provides a quick review of linear equations in the 
plane, along with some images that illustrate examples of linear equations.

5.12 Working with Lines in the Plane (optional)

This section contains a short review of lines in the Euclidean plane, 
so you can skip this section if you are comfortable with this topic. A minor 
point that’s often overlooked is that lines in the Euclidean plane have in-
finite length. If you select two distinct points of a line, then all the points 
between those two selected points is a line segment. A ray is a line that is 
infinite in one direction: when you select one point as an endpoint, then all 
the points on one side of the line constitutes a ray.

For example, the points in the plane whose y-coordinate is 0 is a line 
and also the x-axis, whereas the points between (0,0) and (1,0) on the x-axis 
form a line segment. In addition, the points on the x-axis that are to the 
right of (0,0) form a ray, and the points on the x-axis that are to the left of 
(0,0) also form a ray.

For simplicity and convenience, in this book we’ll use the terms “line” 
and “line segment” interchangeably, and now let’s delve into the details of 
lines in the Euclidean plane. Just in case you’re a bit fuzzy on the details, 
here is the equation of a (nonvertical) line in the Euclidean plane:

y = m*x + b

The value of m is the slope of the line and the value of b is the y-inter-
cept (i.e., the place where the line intersects the y-axis). 

If need be, you can use a more general equation that can also represent 
vertical lines, as shown here:

a*x + b*y + c = 0

However, we won’t be working with vertical lines, so we’ll stick with the 
first formula.



162 • Python 3 for Machine Learning

Figure 5.1 displays three horizontal lines whose equations (from top to bot-
tom) are y = 3, y = 0, and y = -3, respectively.

FIGURE 5.1: A graph of three horizontal line segments.

Figure 5.2 displays two slanted lines whose equations are y = x and y = 
-x, respectively.

FIGURE 5.2: A graph of two diagonal line segments.



introduction to Machine Learning • 163

Figure 5.3 displays two slanted parallel lines whose equations are y = 2*x 
and y = 2*x + 3, respectively.

FIGURE 5.3: A graph of two slanted parallel line segments.

Figure 5.4 displays a piece-wise linear graph consisting of connected line 
segments.

FIGURE 5.4: A piecewise linear graph of line segments.



164 • Python 3 for Machine Learning

Now let’s turn our attention to generating quasi-random data using a  
NumPy API, and then we’ll plot the data using Matplotlib.

5.13 Scatter Plots with NumPy and Matplotlib (1)

Listing 5.1 displays the contents of np_plot1.py that illustrates how 
to use the NumPy randn() API to generate a dataset and then the scat-
ter() API in Matplotlib to plot the points in the dataset.

One detail to note is that all the adjacent horizontal values are equally 
spaced, whereas the vertical values are based on a linear equation plus a 
“perturbation” value. This perturbation technique (which is not a standard 
term) is used in other code samples in this chapter in order to add a slightly 
randomized effect when the points are plotted. The advantage of this tech-
nique is that the best-fitting values for m and b are known in advance, and 
therefore we do not need to guess their values.

Listing 5.1: np_plot1.py

import numpy as np
import matplotlib.pyplot as plt

x = np.random.randn(15,1)
y = 2.5*x + 5 + 0.2*np.random.randn(15,1)

print("x:",x)
print("y:",y)

plt.scatter(x,y)
plt.show()

Listing 5.1 contains two import statements and then initializes the ar-
ray variable x with 15 random numbers between 0 and 1. 

Next, the array variable y is defined in two parts: the first part is a linear 
equation 2.5*x + 5 and the second part is a “perturbation” value that is 
based on a random number. Thus, the array variable y simulates a set of 
values that closely approximate a line segment. 

This technique is used in code samples that simulate a line segment, 
and then the training portion approximates the values of m and b for the 
best-fitting line. Obviously we already know the equation of the best-fitting 
line: the purpose of this technique is to compare the trained values for the 
slope m and y-intercept b with the known values (which in this case are 2.5 
and 5).

A partial output from Listing 5.1 is here:



introduction to Machine Learning • 165

x: [[-1.42736308]
 [ 0.09482338]
 [-0.45071331]
 [ 0.19536304]
 [-0.22295205]
 // values omitted for brevity
y: [[1.12530514]
 [5.05168677]
 [3.93320782]
 [5.49760999]
 [4.46994978]
 // values omitted for brevity

Figure 5.5 displays a scatter plot of points based on the values of x and y.

FIGURE 5.5: A scatter plot of points for a line segment.

5.13.1 Why the “Perturbation Technique” is Useful 
You already saw how to use the “perturbation technique” and by way of 

comparison, consider a dataset with the following points that are defined in 
the Python array variables X and Y:

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

If you need to find the best-fitting line for the preceding dataset, how 
would you guess the values for the slope m and the y-intercept b? In most 
cases, you probably cannot guess their values. On the other hand, the “per-



166 • Python 3 for Machine Learning

turbation technique” enables you to randomize the points on a line whose 
value for the slope m (and optionally the value for the y-intercept b) is speci-
fied in advance.

Keep in mind that the “perturbation technique” only works when you 
introduce small random values that do not result in different values for m 
and b. 

5.14 Scatter Plots with NumPy and Matplotlib (2)

The code in Listing 5.1 assigned random values to the variable x, 
whereas a hard-coded value is assigned to the slope m. The y values are a 
hard-coded multiple of the x values, plus a random value that is calculated 
via the “perturbation technique.” Hence we do not know the value of the 
y-intercept b. 

In this section the values for trainX are based on the np.linspace() 
API, and the values for trainY involve the “perturbation technique” that 
is described in the previous section.

The code in this example simply prints the values for trainX and 
trainY, which correspond to data points in the Euclidean plane. Listing 
5.2 displays the contents of np_plot2.py that illustrates how to simulate a 
linear dataset in NumpPy.

Listing 5.2: np_plot2.py

import numpy as np

  trainX = np.linspace(-1, 1, 11)
trainY = 4*trainX + np.random.randn(*trainX.shape)*0.5

print("trainX: ",trainX)
print("trainY: ",trainY)

Listing 5.6 initializes the NumPy array variable trainX via the NumPy 
linspace() API, followed by the array variable trainY that is defined in 
two parts. The first part is the linear term 4*trainX and the second part 
involves the “perturbation technique” that is a randomly generated num-
ber. The output from Listing 5.6 is here:

trainX:  [-1.  -0.8 -0.6 -0.4 -0.2  0.   0.2  0.4  0.6  
0.8  1. ]
trainY:  [-3.60147459 -2.66593108 -2.26491189 



introduction to Machine Learning • 167

-1.65121314 -0.56454605  0.22746004 0.86830728  
1.60673482  2.51151543  3.59573877  3.05506056]

The next section contains an example that is similar to Listing 5.2, using 
the same “perturbation technique” to generate a set of points that approxi-
mate a quadratic equation instead of a line segment.

5.15 A Quadratic Scatterplot with NumPy and matplotlib

Listing 5.3 displays the contents of np_plot_quadratic.py that il-
lustrates how to plot a quadratic function in the plane.

Listing 5.3: np_plot_quadratic.py

import numpy as np
import matplotlib.pyplot as plt

#see what happens with this set of values:
#x = np.linspace(-5,5,num=100)

x = np.linspace(-5,5,num=100)[:,None]
y = -0.5 + 2.2*x +0.3*x**2 + 2*np.random.randn(100,1)
print("x:",x)

plt.plot(x,y)
plt.show()

Listing 5.3 initializes the array variable x with the values that are gener-
ated via the np.linspace() API, which in this case is a set of 100 equally 
spaced decimal numbers between -5 and 5. Notice the snippet [:,None] 
in the initialization of x, which results in an array of elements, each of which 
is an array consisting of a single number. 

The array variable y is defined in two parts: the first part is a quadratic 
equation -0.5 + 2.2*x +0.3*x**2 and the second part is a “perturba-
tion” value that is based on a random number (similar to the code in Listing 
5.1). Thus, the array variable y simulates a set of values that approximates a 
quadratic equation. The output from Listing 5.3 is  here:

x: 
[[-5.        ]
 [-4.8989899 ]
 [-4.7979798 ]
 [-4.6969697 ]
 [-4.5959596 ]



168 • Python 3 for Machine Learning

 [-4.49494949]
 // values omitted for brevity
 [ 4.8989899 ]
 [ 5.        ]]

Figure 5.6 displays a scatter plot of points based on the values of x and 
y, which have an approximate shape of a quadratic equation.

FIGURE 5.6: A scatter plot of points for a quadratic equation.

5.16 The MSE Formula

In plain English, the MSE is the sum of the squares of the difference 
between an actual y value and the predicted y value, divided by the number 
of points. Notice that the predicted y value is the y value that each point 
would have if that point were actually on the best-fitting line.

Although the MSE is popular for linear regression, there are other er-
ror types available, some of which are discussed briefly in the next section.

5.16.1 A List of Error Types
Although we will only discuss MSE for linear regression in this book, 

there are other types of formulas that you can use for linear regression, 
some of which are listed here:

●■ MSE

●■ RMSE



introduction to Machine Learning • 169

●■ RMSPROP

●■ MAE

The MSE is the basis for the preceding error types. For example, 
RMSE is root mean squared error, which is the square root of MSE.

On the other hand, MAE is mean absolute error, which is the sum of 
the absolute value of the differences of the y terms (not the square of the 
differences of the y terms), which is then divided by the number of terms.

The RMSProp optimizer utilizes the magnitude of recent gradients to 
normalize the gradients. Specifically, RMSProp maintain a moving average 
over the root mean squared (RMS) gradients, and then divides that term by 
the current gradient.

Although it’s easier to compute the derivative of MSE, it’s also true that 
MSE is more susceptible to outliers, whereas MAE is less susceptible to 
outliers. The reason is simple: a squared term can be significantly larger 
than the absolute value of a term. For example, if a difference term is 10, 
then a squared term of 100 is added to MSE, whereas only 10 is added 
to MAE. Similarly, if a difference term is -20, then a squared term 400 
is added to MSE, whereas only 20 (which is the absolute value of -20) is 
added to MAE.

5.16.2 Nonlinear Least Squares 
When predicting housing prices, where the dataset contains a wide 

range of values, techniques such as linear regression or random forests can 
cause the model to overfit the samples with the highest values in order to 
reduce quantities such as mean absolute error. 

In this scenario, you probably want an error metric, such as relative 
error that reduces the importance of fitting the samples with the largest 
values. This technique is called nonlinear least squares, which may use a 
log-based transformation of labels and predicted values.

The next section contains several code samples, the first of which in-
volves calculating the MSE manually, followed by an example that uses 
NumPy formulas to perform the calculations. Finally, we’ll look at a Tensor-
Flow example for calculating the MSE.

5.17 Calculating the MSE Manually

This section contains two line graphs, both of which contain a line that 
approximates a set of points in a scatter plot. 



170 • Python 3 for Machine Learning

Figure 5.7 displays a line segment that approximates a scatter plot of 
points (some of which intersect the line segment). The MSE for the line in 
Figure 5.7 is computed as follows:

MSE = [1*1 + (-1)*(-1) + (-1)*(-1) + 1*1]/7 = 4/7

FIGURE 5.7: A line graph that approximates points of a scatter plot.

Figure 5.8 displays a set of points and a line that is a potential candi-
date for best-fitting line for the data. The MSE for the line in Figure 5.8 is 
computed as follows:

MSE = [(-2)*(-2) + 2*2]/7 = 8/7

FIGURE 5.8: A line graph that approximates points of a scatter plot.



introduction to Machine Learning • 171

Thus, the line in Figure 5.7 has a smaller MSE than the line in Figure 
5.8, which might have surprised you (or did you guess correctly?)

In these two figures we calculated the MSE easily and quickly, but in 
general it’s significantly more difficult. For instance, if we plot 10 points in 
the Euclidean plane that do not closely fit a line, with individual terms that 
involve noninteger values, we would probably need a calculator. 

A better solution involves NumPy functions, such as the np.linspace() 
API, as discussed in the next section.

5.18 Approximating Linear Data with np.linspace() 

Listing 5.4 displays the contents of np_linspace1.py that illustrates 
how to generate some data with the np.linspace() API in conjunction 
with the “perturbation technique.”

Listing 5.4: np_linspace1.py

import numpy as np

trainX = np.linspace(-1, 1, 6)
trainY = 3*trainX+ np.random.randn(*trainX.shape)*0.5

print("trainX: ", trainX)
print("trainY: ", trainY)

The purpose of this code sample is merely to generate and display a set 
of randomly generated numbers. Later in this chapter we will use this code 
as a starting point for an actual linear regression task.

Listing 5.4 starts with the definition of the array variable trainX that 
is initialized via the np.linspace() API. Next, the array variable trainY 
is defined via the “perturbation technique” that you have seen in previous 
code samples. The output from Listing 5.4 is here:

trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [-2.9008553  -2.26684745 -0.59516253  
0.66452207  1.82669051  2.30549295]
trainX:  [-1.  -0.6 -0.2  0.2  0.6  1. ]
trainY:  [-2.9008553  -2.26684745 -0.59516253  
0.66452207  1.82669051  2.30549295]

Now that we know how to generate (x,y) values for a linear equation, 
let’s learn how to calculate the MSE, which is discussed in the next section.



172 • Python 3 for Machine Learning

The next example generates a set of data values using the 
np.linspace() method and the np.random.randn() method in order 
to introduces some randomness in the data points.

5.19 Calculating MSE with np.linspace() API

The code sample in this section differs from many of the earlier code 
samples in this chapter: it uses a hard-coded array of values for X and also 
for Y instead of the “perturbation” technique. Hence, you will not know 
the correct value for the slope and y-intercept (and you probably will not 
be able to guess their correct values). Listing 5.5 displays the contents of 
plain_linreg1.py that illustrates how to compute the MSE with simu-
lated data.

Listing 5.5: plain_linreg1.py

import numpy as np
import matplotlib.pyplot as plt

X = [0,0.12,0.25,0.27,0.38,0.42,0.44,0.55,0.92,1.0]
Y = [0,0.15,0.54,0.51, 0.34,0.1,0.19,0.53,1.0,0.58]

costs = []
#Step 1: Parameter initialization
W = 0.45
b = 0.75

for i in range(1, 100):
  #Step 2: Calculate Cost
  Y_pred = np.multiply(W, X) + b
  Loss_error = 0.5 * (Y_pred - Y)**2
  cost = np.sum(Loss_error)/10

  #Step 3: Calculate dW and db
  db = np.sum((Y_pred - Y))
  dw = np.dot((Y_pred - Y), X)
  costs.append(cost)

  #Step 4: Update parameters:
  W = W - 0.01*dw
  b = b - 0.01*db

  if i%10 == 0:
    print("Cost at", i,"iteration = ", cost)



introduction to Machine Learning • 173

#Step 5: Repeat via a for loop with 1000 iterations

#Plot cost versus # of iterations
print("W = ", W,"& b = ",  b)
plt.plot(costs)
plt.ylabel('cost')
plt.xlabel('iterations (per tens)')
plt.show()

Listing 5.5 initializes the array variables X and Y with hard-coded val-
ues, and then initializes the scalar variables W and b. The next portion of 
Listing 5.5 contains a for loop that iterates 100 times. After each iteration 
of the loop, the variables Y_pred, Loss_error, and cost are calculated. 
Next, the values for dw and db are calculated, based on the sum of the 
terms in the array Y_pred-Y, and the inner product of Y_pred-y and X, 
respectively.

Notice how W and b are updated: their values are decremented 
by the term 0.01*dw and 0.01*db, respectively. This calculation 
ought to look somewhat familiar: the code is programmatically calcu-
lating an approximate value of the gradient for W and b, both of which 
are multiplied by the learning rate (the hard-coded value 0.01), and 
the resulting term is decremented from the current values of W and 
b in order to produce a new approximation for W and b. Although 
this technique is very simple, it does calculate reasonable values for W  
and b. 

The final block of code in Listing 5.5 displays the intermediate ap-
proximations for W and b, along with a plot of the cost (vertical axis) 
versus the number of iterations (horizontal axis). The output from Listing 
5.5 is here:

Cost at 10 iteration =  0.04114630674619492
Cost at 20 iteration =  0.026706242729839392
Cost at 30 iteration =  0.024738889446900423
Cost at 40 iteration =  0.023850565034634254
Cost at 50 iteration =  0.0231499048706651
Cost at 60 iteration =  0.02255361434242207
Cost at 70 iteration =  0.0220425055291673
Cost at 80 iteration =  0.021604128492245713
Cost at 90 iteration =  0.021228111750568435
W =  0.47256473531193927 & b =  0.19578262688662174



174 • Python 3 for Machine Learning

Figure 5.9 displays a scatter plot of points generated by the code in 
Listing 5.5.

FIGURE 5.9: MSE values with linear regression.

The code sample plain-linreg2.py is similar to the code in Listing 
5.5: the difference is that instead of a single loop with 100 iterations, there 
is an outer loop that execute 100 times, and during each iteration of the 
outer loop, the inner loop also execute 100 times.

5.20 Linear Regression with Keras

The code sample in this section contains primarily Keras code in order 
to perform linear regression. If you have read the previous examples in this 
chapter, this section will be easier for you to understand because the steps 
for linear regression are the same.

Listing 5.6 displays the contents of keras_linear_regression.py 
that illustrates how to perform linear regression in Keras.

Listing 5.6: keras_linear_regression.py

########################################################
#######
#Keep in mind the following important points:



introduction to Machine Learning • 175

#1) Always standardize both input features and target 
variable:
#doing so only on input feature produces incorrect 
predictions
#2) Data might not be normally distributed: check the 
data and
#based on the distribution apply StandardScaler, 
MinMaxScaler,
#Normalizer or RobustScaler
########################################################
#######

import tensorflow as tf
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import train_test_split

df = pd.read_csv('housing.csv')
X  = df.iloc[:,0:13]
y  = df.iloc[:,13].values

mmsc = MinMaxScaler()
X  = mmsc.fit_transform(X)
y  = y.reshape(-1,1)
y  = mmsc.fit_transform(y)

X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size=0.3)

# this Python method creates a Keras model
def build_keras_model():
  model = tf.keras.models.Sequential()
  model.add(tf.keras.layers.Dense(units=13, input_
dim=13))
  model.add(tf.keras.layers.Dense(units=1))
  model.compile(optimizer='adam',loss='mean_squared_erro
r',metrics=['mae','accuracy'])
  return model

batch_size=32
epochs = 40

# specify the Python method 'build_keras_model' to 
create a Keras model



176 • Python 3 for Machine Learning

# using the implementation of the scikit-learn regressor 
API for Keras
model = tf.keras.wrappers.scikit_learn.
KerasRegressor(build_fn=build_keras_model, batch_
size=batch_size,epochs=epochs)

# train ('fit') the model and then make predictions:
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
#print("y_test:",y_test)
#print("y_pred:",y_pred)

# scatter plot of test values-vs-predictions
fig, ax = plt.subplots()
ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_
test.max()], 'r*--')
ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

Listing 5.6 starts with multiple import statements and then initializes 
the dataframe df with the contents of the CSV file housing.csv (a portion 
of which is shown in Listing 5.7). Notice that the training set X is initial-
ized with the contents of the first 13 columns of the dataset housing.
csv, and the variable y contains the rightmost column of the dataset  
housing.csv. 

The next section in Listing 5.6 uses the MinMaxScaler class to cal-
culate the mean and standard deviation, and then invokes the fit_trans-
form() method in order to update the X values and the y values so that 
they have a mean of 0 and a standard deviation of 1.

Next, the build_keras_mode() Python method creates a Keras-
based model with two dense layers. Notice that the input layer has size 13, 
which is the number of columns in the dataframe X. The next code snippet 
compiles the model with an adam optimizer, the MSE loss function, and 
also specifies the MAE and accuracy for the metrics. The compiled model 
is then returned to the caller.

The next portion of Listing 5.6 initializes the batch_size variable to 
32 and the epochs variable to 40, and specifies them in the code snippet 
that creates the model, as shown here:



introduction to Machine Learning • 177

model = tf.keras.wrappers.scikit_learn.
KerasRegressor(build_fn=build_keras_model, batch_
size=batch_size,epochs=epochs)

The short comment block that appears in Listing 5.6 explains the pur-
pose of the preceding code snippet, which constructs our Keras model.

The next portion of Listing 5.6 invokes the fit() method to train the model 
and then invokes the predict() method on the X_test data to calculate a set 
of predictions and initialize the variable y_pred with those predictions.

The final portion of Listing 5.6 displays a scatter plot in which the hori-
zontal axis is the values in y_test (the actual values from the CSV file 
housing.csv) and the vertical axis is the set of predicted values.

Figure 5.10 displays a scatter plot of points based on the test values and 
the predictions for those test values.

FIGURE 5.10: A scatter plot and a best-fitting line.

Listing 5.7 displays the first four rows of the CSV file housing.csv 
that is used in the Python code in Listing 5.6.

Listing 5.7: housing.csv

0.00632,18,2.31,0,0.538,6.575,65.2,4.09,1,296,15.3,396.9
,4.98,24



178 • Python 3 for Machine Learning

0.02731,0,7.07,0,0.469,6.421,78.9,4.9671,2,242,17.8,396.
9,9.14,21.6
0.02729,0,7.07,0,0.469,7.185,61.1,4.9671,2,242,17.8,392.
83,4.03,34.7
0.03237,0,2.18,0,0.458,6.998,45.8,6.0622,3,222,18.7,394.
63,2.94,33.4

5.21 Summary

This chapter introduced you to machine learning and concepts such as 
feature selection, feature engineering, data cleaning, training sets, and test 
sets. Next you learned about supervised, unsupervised, and semisupervised 
learning. Then you learned regression tasks, classification tasks, and clus-
tering, as well as the steps that are typically required in order to prepare a 
dataset. These steps include feature selection or feature extraction that can 
be performed using various algorithms. Then you learned about issue that 
can arise with the data in datasets, and how to rectify them.

In addition, you also learned about linear regression, along with a brief 
description of how to calculate a best-fitting line for a dataset of values 
in the Euclidean plane. You saw how to perform linear regression using 
NumPy in order to initialize arrays with data values, along with a “perturba-
tion” technique that introduces some randomness for the y values. This 
technique is useful because you will know the correct values for the slope 
and y-intercept of the best-fitting line, which you can then compare with 
the trained values.

You then learned how to perform linear regression in code samples that 
involve Keras. In addition, you saw how to use Matplotlib in order to dis-
play line graphs for best-fitting lines and graphs that display the cost versus 
the number of iterations during the training-related code blocks. 



C H A P T E R6

●●  What is Classification?
●●  What Are Linear Classifiers?
●●  What is kNN?
●●  What Are Decision Trees?
●●  What Are Random Forests?
●●  What Are SVMs?
●●  What is Bayesian Inference?
●●  What is a Bayesian Classifier?
●●  Training Classifiers
●●  Evaluating Classifiers
●●  What Are Activation Functions?
●●  Common Activation Functions
●●  The ReLU and ELU Activation Functions
●●  Sigmoid, Softmax, and Hardmax Similarities
●●  Sigmoid, Softmax, and HardMax Differences
●●  What is Logistic Regression?
●●  Keras and Logistic Regression
●●  Keras, Logistic Regression, and Iris Dataset
●●  Summary

CLASSIFIERS IN MACHINE 
LEARNING



180 • Python 3 for Machine Learning

This chapter presents numerous classification algorithms in machine 
learning. This includes algorithms such as the k nearest neighbor (kNN) 
algorithm, logistic regression (despite its name it is a classifier), decision 
trees, random forests, SVMs, and Bayesian classifiers. The emphasis on al-
gorithms is intended to introduce you to machine learning, which includes 
a tree-based code sample that relies on scikit-learn. The latter portion 
of this chapter contains Keras-based code samples for standard datasets.

Due to space constraints, this chapter does not cover other well-known 
algorithms, such as linear discriminant analysis and the kMeans algorithm 
(which is for unsupervised learning and clustering). However, there are 
many online tutorials available that discuss these and other algorithms in 
machine learning.

With the preceding points in mind, the first section of this chapter 
briefly discusses the classifiers that are mentioned in the introductory para-
graph. The second section of this chapter provides an overview of activation 
functions, which will be very useful if you decide to learn about deep neural 
networks. In this section you will learn how and why they are used in neural 
networks. This section also contains a list of the TensorFlow APIs for activa-
tion functions, followed by a description of some of their merits. 

The third section introduces logistic regression, which relies on the sig-
moid function, which is also used in recurrent neural networks (RNNs) and 
long short term memory (LSTMs). The fourth part of this chapter contains 
a code sample involving logistic regression and the MNIST dataset. 

In order to give you some context, classifiers are one of three major 
types of algorithms: regression algorithms (such as linear regression in 
Chapter 4), classification algorithms (discussed in this chapter), and clus-
tering algorithms (such as kMeans, which is not discussed in this book). 

Another point: the section pertaining to activation functions does 
involve a basic understanding of hidden layers in a neural network. De-
pending on your comfort level, you might benefit from reading some pre-
paratory material before diving into this section (there are many articles 
available online).

6.1 What is Classification?

Given a dataset that contains observations whose class membership is 
known, classification is the task of determining the class to which a new 



cLassifiers in Machine Learning • 181

data point belongs. Classes refer to categories and are also called targets 
or labels. For example, spam detection in email service providers involves 
binary classification (only 2 classes). The MNIST dataset contains a set of 
images, where each image is a single digit, which means there are 10 labels. 
Some applications in classification include: credit approval, medical diag-
nosis, and target marketing.

6.1.1 What Are Classifiers?
In the previous chapter, you learned that linear regression uses super-

vised learning in conjunction with numeric data: the goal is to train a model 
that can make numeric predictions (e.g., the price of stock tomorrow, the 
temperature of a system, its barometric pressure, and so forth). By contrast, 
classifiers use supervised learning in conjunction with nonnumeric classes 
of data: the goal is to train a model that can make categorical predictions. 

For instance, suppose that each row in a dataset is a specific wine, and 
each column pertains to a specific wine feature (tannin, acidity, and so 
forth). Suppose further that there are five classes of wine in the dataset: for 
simplicity, let’s label them A, B, C, D, and E. Given a new data point, which 
is to say a new row of data, a classifier for this dataset attempts to determine 
the label for this wine. 

Some of the classifiers in this chapter can perform categorical classifica-
tion and also make numeric predictions (i.e., they can be used for regres-
sion as well as classification).

6.1.2 Common Classifiers
Some of the most popular classifiers for machine learning are listed 

here (in no particular order):

●■ linear classifiers

●■ kNN

●■ logistic regression 

●■ decision trees

●■ random forests

●■ SVMs

●■ Bayesian classifiers

●■ CNNs (deep learning)



182 • Python 3 for Machine Learning

Keep in mind that different classifiers have different advantages and 
disadvantages, which often involves a trade-off between complexity and ac-
curacy, similar to algorithms in fields that are outside of AI.

In the case of deep learning, convolutional neural networks (CNNs) 
perform image classification, which makes them classifiers (they can also be 
used for audio and text processing).

The upcoming sections provide a brief description of the ML classifiers 
that are listed in the previous list.

6.1.3 Binary versus Multiclass Classification
Binary classifiers work with dataset that have two classes, whereas 

multiclass classifiers (sometimes called multinomial classifiers) distinguish 
more than two classes. Random forest classifiers and naïve Bayes classifiers 
support multiple classes, whereas SVMs and linear classifiers are binary 
classifiers (but multi-class extensions exist for SVM).

In addition, there are techniques for multiclass classification that are 
based on binary classifiers: one-versus-all (OvA) and one-versus-one (OvO).

The OvA technique (also called one-versus-the-rest) involves multiple 
binary classifiers that is equal to the number of classes. For example, if a 
dataset has five classes, then OvA uses five binary classifiers, each of which 
detects one of the five classes. In order to classify a data point in this par-
ticular dataset, select the binary classifier that has output the highest score. 

The OvO technique also involves multiple binary classifiers, but in this 
case a binary classifier is used to train on a pair of classes. For instance, if 
the classes are A, B, C, D, and E, then 10 binary classifiers are required: 
one for A and B, one for A and C, one for A and D, and so forth, until the 
last binary classifier for D and E. 

In general, if there are n classes, then n*(n-1)/2 binary classifiers are 
required. Although the OvO technique requires considerably more binary 
classifiers (e.g., 190 are required for 20 classes) than the OvA technique 
(e.g., a mere 20 binary classifiers for 20 classes), the OvO technique has the 
advantage that each binary classifier is only trained on the portion of the 
dataset that pertains to its two chosen classes.

6.1.4 Multilabel Classification
Multilabel classification involves assigning multiple labels to an instance 

from a dataset. Hence, multilabel classification generalizes multiclass clas-



cLassifiers in Machine Learning • 183

sification (discussed in the previous section), where the latter involves as-
signing a single label to an instance belonging to a dataset that has multiple 
classes. An article involving multilabel classification that contains Keras-
based code is here:

https://medium.com/@vijayabhaskar96/multi-label-image-classification-
tutorial-with-keras-imagedatagenerator-cd541f8eaf24

You can also perform an online search for articles that involve SKLearn 
or PyTorch for multilabel classification tasks.

6.2 What are Linear Classifiers?

A linear classifier separates a dataset into two classes. A linear classifier 
is a line for 2D points, a plane for 3D points, and a hyperplane (a general-
ization of a plane) for higher dimensional points. 

Linear classifiers are often the fastest classifiers, so they are often used 
when the speed of classification is of high importance. Linear classifiers 
usually work well when the input vectors are sparse (i.e., mostly zero val-
ues) or when the number of dimensions is large.

6.3 What is kNN?

The k nearest neighbor (kNN) algorithm is a classification algorithm. 
In brief, data points that are “near” each other are classified as belonging to 
the same class. When a new point is introduced, it’s added to the class of the 
majority of its nearest neighbor. For example, suppose that k equals 3, and 
a new data point is introduced. Look at the class of its 3 nearest neighbors: 
let’s say they are A, A, and B. Then by majority vote, the new data point is 
labeled as a data point of class A. 

The kNN algorithm is essentially a heuristic and not a technique with 
complex mathematical underpinnings, and yet it’s still an effective and use-
ful algorithm.

Try the kNN algorithm if you want to use a simple algorithm, or when 
you believe that the nature of your dataset is highly unstructured. The kNN 
algorithm can produce highly nonlinear decisions despite being very sim-
ple. You can use kNN in search applications where you are searching for 
“similar” items.



184 • Python 3 for Machine Learning

Measure similarity by creating a vector representation of the items, and 
then compare the vectors using an appropriate distance metric (such as 
Euclidean distance).

Some concrete examples of kNN search include searching for semanti-
cally similar documents.

6.3.1 How to Handle a Tie in kNN
An odd value for k is less likely to result in a tie vote, but it’s not impos-

sible. For example, suppose that k equals 7, and when a new data point is 
introduced, its 7 nearest neighbors belong to the set {A,B,A,B,A,B,C}. As 
you can see, there is no majority vote, because there are 3 points in class A, 
3 points in class B, and 1 point in class C.

There are several techniques for handling a tie in kNN, as listed here:

●➡ Assign higher weights to closer points
●➡ Increase the value of k until a winner is determined
●➡ Decrease the value of k until a winner is determined
●➡ Randomly select one class

If you reduce k until it equals 1, it’s still possible to have a tie vote: there 
might be two points that are equally distant from the new point, so you 
need a mechanism for deciding which of those two points to select as the 
1-neighbor.

If there is a tie between classes A and B, then randomly select either 
class A or class B. Another variant is to keep track of the “tie” votes, and 
alternate round-robin style to make ensure a more even distribution. 

6.4 What are Decision Trees?

Decision trees are another type of classification algorithm that involves 
a tree-like structure. In a “generic” tree, the placement of a data point is de-
termined by simple conditional logic. As a simple illustration, suppose that 
a dataset contains a set of numbers that represent ages of people, and let’s 
also suppose that the first number is 50. This number is chosen as the root 
of the tree, and all numbers that are smaller than 50 are added on the left 
branch of the tree, whereas all numbers that are greater than 50 are added 
on the right branch of the tree. 



cLassifiers in Machine Learning • 185

For example, suppose we have the sequence of numbers is {50, 25, 70, 
40}. Then we can construct a tree as follows: 50 is the root node; 25 is the left 
child of 50; 70 is the right child of 50; and 40 is the right child of 20. Each ad-
ditional numeric value that we add to this dataset is processed to determine 
which direction to proceed (“left or right”) at each node in the tree.

Listing 6.1 displays the contents of sklearn_tree2.py that defines a set 
of 2D points in the Euclidean plane, along with their labels, and then predicts 
the label (i.e., the class) of several other 2D points in the Euclidean plane.

Listing 6.1: sklearn_tree2.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each point
X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 1]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

# the percentage of training samples of the same class
# in a leaf note equals the probability of each class
print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Listing 6.1 imports the tree class from sklearn and then initializes the 
arrays X and y with data values. Next, the variable tree_clf is initialized as 
an instance of the DecisionTreeClassifier class, after which it is trained 
by invoking the fit() method with the values of X and y.

Now launch the code in Listing 6.3 and you will see the following output:

predict class of [-1., -1.]:
[0]
predict class of [2., 2.]:
[1]
probability of each class in [2.,2.]:
[[0. 1.]]



186 • Python 3 for Machine Learning

As you can see, the points [-1,-1] and [2,2] are correctly labeled with the 
values 0 and 1, respectively, which is probably what you expected.

Listing 6.2 displays the contents of sklearn_tree3.py that extends 
the code in Listing 6.1 by adding a third label, and also by predicting the 
label of three points instead of two points in the Euclidean plane (the modi-
fications are shown in bold).

Listing 6.2: sklearn_tree3.py

from sklearn import tree

# X = pairs of 2D points and Y = the class of each point
X = [[0, 0], [1, 1], [2,2]]
Y = [0, 1, 2]

tree_clf = tree.DecisionTreeClassifier()
tree_clf = tree_clf.fit(X, Y)

#predict the class of samples:
print("predict class of [-1., -1.]:")
print(tree_clf.predict([[-1., -1.]]))

print("predict class of [0.8, 0.8]:")
print(tree_clf.predict([[0.8, 0.8]]))

print("predict class of [2., 2.]:")
print(tree_clf.predict([[2., 2.]]))

# the percentage of training samples of the same class
# in a leaf note equals the probability of each class
print("probability of each class in [2.,2.]:")
print(tree_clf.predict_proba([[2., 2.]]))

Now launch the code in Listing 6.2 and you will see the following output:

predict class of [-1., -1.]:
[0]
predict class of [0.8, 0.8]:
[1]
predict class of [2., 2.]:
[2]
probability of each class in [2.,2.]:
[[0. 0. 1.]]

As you can see, the points [-1,-1], [0.8, 0.8], and [2,2] are correctly la-
beled with the values 0, 1, and 2, respectively, which again is probably what 
you expected.



cLassifiers in Machine Learning • 187

Listing 6.3 displays a portion of the dataset partial_wine.csv, which 
contains two features and a label column (there are three classes). The total 
row count for this dataset is 178.

Listing 6.3: partial_wine.csv
Alcohol, Malic acid, class
14.23,1.71,1
13.2,1.78,1
13.16,2.36,1
14.37,1.95,1
13.24,2.59,1
14.2,1.76,1

Listing 6.4 displays contents of tree_classifier.py that uses a deci-
sion tree in order to train a model on the dataset partial_wine.csv.

Listing 6.4: tree_classifier.py
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

# Importing the dataset
dataset = pd.read_csv('partial_wine.csv')
X = dataset.iloc[:, [0, 1]].values
y = dataset.iloc[:, 2].values

# split the dataset into a training set and a test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, 
y, test_size = 0.25, random_state = 0)

# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# ====> INSERT YOUR CLASSIFIER CODE HERE <====
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion='entropy', 
random_state=0)
classifier.fit(X_train, y_train)
# ====> INSERT YOUR CLASSIFIER CODE HERE <====

# predict the test set results



188 • Python 3 for Machine Learning

y_pred = classifier.predict(X_test)

# generate the confusion matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
print("confusion matrix:")
print(cm)

Listing 6.4 contains some import statements and then populates the 
Pandas DataFrame dataset with the contents of the CSV file partial_
wine.csv. Next, the variable X is initialized with the first two columns 
(and all the rows) of dataset, and the variable y is initialized with the third 
column (and all the rows) of dataset. 

Next, the variables X_train, X_test, y_train, y_test are popu-
lated with data from X and y using a 75/25 split proportion. Notice that the 
variable sc (which is an instance of the StandardScalar class) performs a 
scaling operation on the variables X_train and X_test. 

The code block shown in bold in Listing 6.4 is where we create an in-
stance of the DecisionTreeClassifier class and then train the instance 
with the data in the variables X_train and X_test.

The next portion of Listing 6.4 populates the variable y_pred with a 
set of predictions that are generated from the data in the X_test variable. 
The last portion of Listing 6.4 creates a confusion matrix based on the data 
in y_test and the predicted data in y_pred. 

Remember that all the diagonal elements of a confusion matrix are cor-
rect predictions (such as true positive and true negative); all the other cells 
contain a numeric value that specifies the number of predictions that are 
incorrect (such as false positive and false negative).

Now launch the code in Listing 6.4 and you will see the following out-
put for the confusion matrix in which there are 36 correct predictions and 9 
incorrect predictions (with an accuracy of 80%):

confusion matrix:
[[13  1  2]
 [ 0 17  4]
 [ 1  1  6]]
from sklearn.metrics import confusion_matrix

There is a total of 45 entries in the preceding 3x3 matrix, and the diagonal 
entries are correctly identified labels. Hence the accuracy is 36/45 = 0.80.



cLassifiers in Machine Learning • 189

6.5 What are Random Forests?

Random forests are a generalization of decision trees: this classification 
algorithm involves multiple trees (the number is specified by you). If the 
data involves making a numeric prediction, the average of the predictions 
of the trees is computed. If the data involves a categorical prediction, the 
mode of the predictions of the trees is determined. 

By way of analogy, random forests operate in a manner similar to finan-
cial portfolio diversification: the goal is to balance the losses with higher 
gains. Random forests use a “majority vote” to make predictions, which 
operates under the assumption that selecting the majority vote is more 
likely to be correct (and more often) than any individual prediction from 
a single tree.

You can easily modify the code in Listing 6.4 to use a random forest by 
replacing the two lines shown in bold with the following code:

from sklearn.ensemble import RandomForestClassifier
classifier = RandomForestClassifier(n_estimators = 10,
criterion='entropy', random_state = 0)

Make this code change, launch the code, and examine the confusion matrix 
to compare its accuracy with the accuracy of the decision tree in Listing 6.4.

6.6 What are SVMs?

Support vector machines (SVM) involve a supervised ML algorithm 
and can be used for classification or regression problems. SVM can work 
with nonlinearly separable data as well as linearly separable data. SVM uses 
a technique called the "kernel trick" to transform data and then finds an 
optimal boundary the transform involves higher dimensionality. This tech-
nique results in a separation of the transformed data, after which it’s pos-
sible to find a hyperplane that separates the data into two classes. 

SVMs are more common in classification tasks than regression tasks. 
Some use cases for SVMs include:

●■ text classification tasks:  category assignment
●■ detecting spam / sentiment analysis
●■  used for image recognition:  aspect-based recognition color-based clas-

sification



190 • Python 3 for Machine Learning

●■ handwritten digit recognition (postal automation)

6.6.1 Tradeoffs of SVMs
Although SVMs are extremely powerful, there are tradeoffs involved. 

Some of the advantages of SVMs are listed here:

●■ high accuracy
●■ works well on smaller cleaner datasets
●■ can be more efficient because it uses a subset of training points
●■ an alternative to CNNs in cases of limited datasets
●■ captures more complex relationships between data points

Despite the power of SVMS, there are some disadvantages of SVMs, 
which are listed here:

●■ not suited to larger datasets: training time can be lengthy
●■ less effective on noisier datasets with overlapping classes

SVMs involve more parameters than decision trees and random forests 

Suggestion: modify Listing 6.4 to use an SVM by replacing the two lines 
shown in bold with the following two lines shown in bold:

from sklearn.svm import SVC
classifier = SVC(kernel = 'linear', random_state = 0)

You now have an SVM-based model, simply by making the previous 
code update. Make the code change, then launch the code and examine 
the confusion matrix in order to compare its accuracy with the accuracy 
of the decision tree model and the random forest model earlier in this 
chapter.

6.7 What is Bayesian Inference?

Bayesian inference is an important technique in statistics that involves 
statistical inference and Bayes' theorem to update the probability for a hy-
pothesis as more information becomes available. Bayesian inference is of-
ten called Bayesian probability, and it's important in dynamic analysis of 
sequential data.



cLassifiers in Machine Learning • 191

6.7.1 Bayes Theorem
Given two sets A and B, let’s define the following numeric values (all of 

them are between 0 and 1):

P(A) = probability of being in set A
P(B) = probability of being in set B
P(Both) = probability of being in A intersect B
P(A|B) = probability of being in A (given you’re in B)
P(B|A) = probability of being in B (given you’re in A)

Then the following formulas are also true:

P(A|B) = P(Both)/P(B) (#1)
P(B|A) = P(Both)/P(A) (#2)

Multiply the preceding pair of equations by the term that appears in the 
denominator and we get these equations:

P(B)*P(A|B) = P(Both) (#3)
P(A)*P(B|A) = P(Both) (#4)

Now set the left-side of equations #3 and #4 equal to each another and 
that gives us this equation:

P(B)*P(A|B) = P(A)*P(B|A) (#5)

Divide both sides of #5 by P(B) and we get this well-known equation:

P(A|B) = P(A)*P(A|B)/P(B) (#6) 

6.7.2 Some Bayesian Terminology
In the previous section, we derived the following relationship:

P(h|d) = (P(d|h) * P(h)) / P(d)

There is a name for each of the four terms in the preceding equation, 
and they are: 

First, the posterior probability is P(h|d), which is the probability of 
hypothesis h given the data d. 

Second, P(d|h) is the probability of data d given that the hypothesis 
h was true.

Third, the prior probability of h is P(h), which is the probability of 
hypothesis h being true (regardless of the data). 

Finally, P(d) is the probability of the data (regardless of the hypothesis).



192 • Python 3 for Machine Learning

We are interested in calculating the posterior probability of P(h|d) from 
the prior probability p(h) with P(d) and P(d|h).

6.7.3 What Is MAP?
The maximum a posteriori (MAP) hypothesis is the hypothesis with the 

highest probability, which is the maximum probable hypothesis. This can 
be written as follows:

MAP(h) = max(P(h|d))
or:
MAP(h) = max((P(d|h) * P(h)) / P(d))
or:
MAP(h) = max(P(d|h) * P(h))

6.7.4 Why Use Bayes Theorem?
Bayes' theorem describes the probability of an event based on the prior 

knowledge of the conditions that might be related to the event. If we know 
the conditional probability, we can use Bayes rule to find out the reverse 
probabilities. The previous statement is the general representation of the 
Bayes rule.

6.8 What is a Bayesian Classifier?

A naïve Bayes (NB) classifier is a probabilistic classifier inspired by 
the Bayes theorem. An NB classifier assumes the attributes are con-
ditionally independent and it works well even when assumption is not 
true. This assumption greatly reduces computational cost, and it’s a 
simple algorithm to implement that only requires linear time. More-
over, an NB classifier is easily scalable to larger datasets and good re-
sults are obtained in most cases. Other advantages of an NB classifier  
include:

●■ can be used for binary and multiclass classification
●■ provides different types of NB algorithms
●■ good choice for text classification problems
●■ a popular choice for spam email classification
●■ can be easily trained on small datasets



cLassifiers in Machine Learning • 193

As you can probably surmise, NB classifiers do have some disadvan-
tages, as listed here:

●■ all features are assumed unrelated

●■ it cannot learn relationships between features

●■ it can suffer from “the zero probability problem” 

The zero probability problem refers to the case when the conditional 
probability is zero for an attribute, it fails to give a valid prediction. How-
ever, can be fixed explicitly using a Laplacian estimator.

6.8.1 Types of Naïve Bayes Classifiers
There are three major types of NB classifiers:

●➡ Gaussian Naïve Bayes

●➡ multinomialNB Naïve Bayes

●➡ Bernoulli Naïve Bayes

Details of these classifiers are beyond the scope of this chapter, but you 
can perform an online search for more information.

6.9 Training Classifiers

Some common techniques for training classifiers are here:

●■ holdout method

●■ k-fold cross-validation

The holdout method is the most common method, which starts by di-
viding the dataset into two partitions called train and test (80% and 20%, 
respectively). The train set is used for training the model, and the test data 
tests its predictive power.

The k-fold cross-validation technique is used to verify that the model is 
not over-fitted. The dataset is randomly partitioned into k mutually exclusive 
subsets, where each partition has equal size. One partition is for testing and the 
other partitions are for training. Iterate throughout the whole of the k-folds.



194 • Python 3 for Machine Learning

6.10 Evaluating Classifiers

Whenever you select a classifier for a dataset, it’s obviously important 
to evaluate the accuracy of that classifier. Some common techniques for 
evaluating classifiers are listed here:

●■ precision and recall

●■ receiver operating characteristics (ROC) curve

Precision and recall are discussed in Chapter 2 and reproduced here for 
your convenience. Let’s define the following variables:

TP = the number of true positive results
FP = the number of false positive results
TN = the number of true negative results
FN = the number of false negative results

Then the definitions of precision, accuracy, and recall are given by the 
following formulas:

precision = TP/(TN + FP)
accuracy  = (TP + TN)/[P + N]
recall    = TP/[TP + FN]

The receiver operating characteristics (ROC) curve is used for visual 
comparison of classification models that shows the trade-off between the 
true positive rate and the false positive rate. The area under the ROC curve 
is a measure of the accuracy of the model. When a model is closer to the 
diagonal, it is less accurate and the model with perfect accuracy will have 
an area of 1.0.

The ROC curve plots true positive rate versus false positive rate. An-
other type of curve is the precision-recall (PR) curve that plots rrecision 
versus recall. When dealing with highly skewed datasets (strong class imbal-
ance), PR curves give better results.

Later in this chapter you will see many of the Keras-based classes (lo-
cated in the tf.keras.metrics namespace) that correspond to common 
statistical terms, which includes some of the terms in this section. 

This concludes the portion of the chapter pertaining to statistical 
terms and techniques for measuring the validity of a dataset. Now let’s 
look at activation functions in machine learning, which is the topic of the 
next section.



cLassifiers in Machine Learning • 195

6.11 What are Activation Functions?

A one-sentence description: an activation function is (usually) a non-
linear function that introduces nonlinearity into a neural network, thereby 
preventing a consolidation of the hidden layers in neural network. Specifi-
cally, suppose that every pair of adjacent layers in a neural network involves 
just a matrix transformation and no activation function. Such a network is a 
linear system, which means that its layers can be consolidated into a much 
smaller system. 

First, the weights of the edges that connect the input layer with 
the first hidden layer can be represented by a matrix: let’s call it W1. 
Next, the weights of the edges that connect the first hidden layer with 
the second hidden layer can also be represented by a matrix: let’s call it 
W2. Repeat this process until we reach the edges that connect the final 
hidden layer with the output layer: let’s call this matrix Wk. Since we do 
not have an activation function, we can simply multiply the matrices W1, 
W2, …, Wk together and produce one matrix: let’s call it W. We have now 
replaced the original neural network with an equivalent neural network 
that contains one input layer, a single matrix of weights W, and an output 
layer. In other words, we no longer have our original multilayered neu-
ral network.

Fortunately, we can prevent the previous scenario from happening 
when we specify an activation function between every pair of adjacent lay-
ers. In other words, an activation function at each layer prevents this matrix 
consolidation. Hence, we can maintain all the intermediate hidden layers 
during the process of training the neural network. 

For simplicity, let’s assume that we have the same activation function 
between every pair of adjacent layers (we’ll remove this assumption short-
ly). The process for using an activation function in a neural network is ini-
tially a “three step,” after which it’s a “two-step,” as described here:

1. Start with an input vector x1 of numbers.

2.  Multiply x1 by the matrix of weights W1 that represents the edges that 
connect the input layer with the first hidden layer: the result is a new 
vector x2.

3.  “Apply” the activation function to each element of x2 to create another 
vector x3.



196 • Python 3 for Machine Learning

Now repeat steps 2 and 3, except that we use the “starting” vector x3 
and the weights matrix W2 for the edges that connect the first hidden layer 
with the second hidden layer (or just the output layer if there is only one 
hidden layer).

After completing the preceding process, we have preserved the neural 
network, which means that it can be trained on a dataset. One other thing: in-
stead of using the same activation function at each step, you can replace each 
activation function by a different activation function (the choice is yours).

6.11.1  Why Do We Need Activation Functions?
The previous section outlines the process for transforming an input vec-

tor from the input layer and then through the hidden layers until it reaches 
the output layer. The purpose of activation functions in neural networks is 
vitally important, so it’s worth repeating here: activation functions “maintain” 
the structure of neural networks and prevent them from being reduced to 
an input layer and an output layer. In other words, if we specify a nonlinear 
activation function between every pair of consecutive layers, then the neural 
network cannot be replaced with a neural network that contains fewer layers. 

Without a nonlinear activation function, we simply multiply a weight 
matrix for a given pair of consecutive layers with the output vector that 
is produced from the previous pair of consecutive layers. We repeat this 
simple multiplication until we reach the output layer of the neural network. 
After reaching the output layer, we have effectively replaced multiple ma-
trices with a single matrix that connects the numbers in the input layer with 
the numbers in the output layer. 

6.11.2 How Do Activation Functions Work?
If this is the first time you have encountered the concept of an activa-

tion function, it’s probably confusing, so here’s an analogy that might be 
helpful. Suppose you’re driving your car late at night and there’s nobody 
else on the highway. You can drive at a constant speed for as long as there 
are no obstacles (stop signs, traffic lights, and so forth). However, suppose 
you drive into the parking lot of a large grocery store. When you approach 
a speed bump you must slow down, cross the speed bump, and increase 
speed again, and repeat this process for every speed bump. 

Think of the nonlinear activation functions in a neural network as the 
counterpart to the speed bumps: you simply cannot maintain a constant 
speed, which (by analogy) means that you cannot first multiply all the weight 



cLassifiers in Machine Learning • 197

matrices together and “collapse” them into a single weight matrix. Another 
analogy involves a road with multiple toll booths: you must slow down, pay 
the toll, and then resume driving until you reach the next toll booth. These 
are only analogies (and hence imperfect) to help you understand the need 
for nonlinear activation functions.

6.12 Common Activation Functions

Although there are many activation functions (and you can define your 
own if you know how to do so), here is a list of common activation functions, 
followed by brief descriptions:

●■ Sigmoid

●■ Tanh

●■ ReLU

●■ ReLU6

●■ ELU

●■ SELU

The sigmoid activation function is based on Euler’s constant e, with a 
range of values between 0 and 1, and its formula is shown here:

1/[1+e^(-x)]
The tanh activation function is also based on Euler’s constant e, and its 

formula is shown here:

[e^x – e^(-x)]/[e^x+e^(-x)] 
One way to remember the preceding formula is to note that the nu-

merator and denominator have the same pair of terms: they are separated 
by a “-” sign in the numerator and a “+” sign in the denominator. The tanh 
function has a range of values between -1 and 1.

The rectified linear unit (ReLU) activation function is straightforward: 
if x is negative then ReLU(x) is 0; for all other values of x, ReLU(x) equals 
x. ReLU6 is specific to TensorFlow, and it’s a variation of ReLU(x): the ad-
ditional constraint is that ReLU(x) equals 6 when x >= 6 (hence its name).

exponential linear unit (ELU) is the exponential “envelope” of ReLU, 
which replaces the two linear segments of ReLU with an Exponential ac-
tivation function that is differentiable for all values of x (including x = 0).



198 • Python 3 for Machine Learning

Scaled exponential linear unit (SELU)is slightly more complicated than 
the other activation functions (and used less frequently). For a thorough 
explanation of these and other activation functions (along with graphs that 
depict their shape), navigate to the following Wikipedia link:

https://en.wikipedia.org/wiki/Activation_function

The preceding link provides a long list of activation functions as well as 
their derivatives.

6.12.1 Activation Functions in Python
Listing 6.5 displays contents of the file activations.py that contains 

the formulas for various activation functions.

Listing 6.5: activations.py

import numpy as np

# Python sigmoid example:
z = 1/(1 + np.exp(-np.dot(W, x))) 

# Python tanh example:
z = np.tanh(np.dot(W,x))

# Python ReLU example:
z = np.maximum(0, np.dot(W, x))

Listing 6.5 contains Python code that use NumPy methods in order to de-
fine a sigmoid function, a tanh function, and a ReLU function. Note that you 
need to specify values for x and W in order to launch the code in Listing 6.5.

6.12.2 Keras Activation Functions
TensorFlow (and many other frameworks) provide implementations for 

many activation functions, which saves you the time and effort from writing 
your own implementation of activation functions. 

Here is a list of TF 2/Keras APIs for activation functions that are lo-
cated in the tf.keras.layers namespace:

●■ tf.keras.layers.leaky_relu

●■ tf.keras.layers.relu

●■ tf.keras.layers.relu6
●■ tf.keras.layers.selu
●■ tf.keras.layers.sigmoid



cLassifiers in Machine Learning • 199

●■ tf.keras.layers.sigmoid_cross_entropy_with_logits
●■ tf.keras.layers.softmax
●■ tf.keras.layers.softmax_cross_entropy_with_logits_v2
●■ tf.keras.layers.softplus
●■ tf.keras.layers.softsign
●■ tf.keras.layers.softmax_cross_entropy_with_logits
●■ tf.keras.layers.tanh

●■ tf.keras.layers.weighted_cross_entropy_with_logits

The following subsections provide additional information regarding some 
of the activation functions in the preceding list. Keep the following point in 
mind: for simple neural networks, use ReLU as your first preference.

6.13 The ReLU and ELU Activation Functions

Currently ReLU is often the recommended activation function: previ-
ously the preferred activation function was tanh (and before tanh it was 
sigmoid). ReLU behaves close to a linear unit and provides the best train-
ing accuracy and validation accuracy.

ReLU is like a switch for linearity: it’s “off” if you don’t need it, and its 
derivative is 1 when it’s active, which makes ReLU the simplest of all the 
current activation functions. Note that the second derivative of the function 
is 0 everywhere: it's a very simple function that simplifies optimization. In 
addition, the gradient is large whenever you need large values, and it never 
saturates (i.e., it does not shrink to zero on the positive horizontal axis).

Rectified linear units and generalized versions are based on the prin-
ciple that linear models are easier to optimize. Use the ReLU activation 
function or one of its related alternatives (discussed later).

6.13.1  The Advantages and Disadvantages of ReLU
The following list contains the advantages of the ReLU activation function:

●■ It does not saturate in the positive region.

●■ It’s very efficient in terms of computation. 

●■  Models with ReLU typically converge faster those with other activation 
functions.



200 • Python 3 for Machine Learning

However, ReLU does have a disadvantage when the activation value 
of a ReLU neuron becomes 0: then the gradients of the neuron will also 
be 0 during back-propagation. You can mitigate this scenario by judi-
ciously assigning the values for the initial weights as well as the learning 
rate.

6.13.2 ELU
Exponential linear unit (ELU) is based on ReLU: the key difference 

is that ELU is differentiable at the origin (ReLU is a continuous function 
but not differentiable at the origin). However, keep in mind several points. 
First, ELU’s trade computational efficiency for "immortality" (immunity to 
dying): read the following paper for more details: arxiv.org/abs/1511.07289. 
Secondly, RELUs are still popular and preferred over ELU because the use 
of ELU introduces an additional new hyper-parameter.

6.14 Sigmoid, Softmax, and Hardmax Similarities

The sigmoid activation function has a range in (0,1), and it saturates 
and “kills” gradients. Unlike the tanh activation function, sigmoid outputs 
are not zero-centered. In addition, both sigmoid and softmax (discussed 
later) are discouraged for vanilla feed forward implementation. (See Chap-
ter 6 of the online book Deep Learning by Ian Goodfellow et al. 2015). 
However, the sigmoid activation function is still used in LSTMs (specifi-
cally for the forget gate, input gate, and the output gate), gated recurrent 
units (GRUs), and probabilistic models. Moreover, some autoencoders 
have additional requirements that preclude the use of piecewise linear ac-
tivation functions.

6.14.1 Softmax
The softmax activation function maps the values in a dataset to an-

other set of values that are between 0 and 1, and whose sum equals 1. Thus, 
softmax creates a probability distribution. In the case of image classifica-
tion with convolutional neural networks (CNNs), the softmax activation 
function maps the values in the final hidden layer to the 10 neurons in the 
output layer. The index of the position that contains the largest probability 
is matched with the index of the number 1 in the one-hot encoding of the 
input image. If the index values are equal, then the image has been classi-
fied, otherwise it’s considered a mismatch.

http://arxiv.org/abs/1511.07289


cLassifiers in Machine Learning • 201

6.14.2 Softplus
The softplus activation function is a smooth (i.e., differentiable) ap-

proximation to the ReLU activation function. Recall that the origin is the 
only nondifferentiable point of the ReLU function, which is "smoothed" by 
the softmax activation whose equation is here:

f(x) = ln(1 + e^x)

6.14.3 Tanh
The tanh activation function has a range in (-1,1), whereas the sig-

moid function has a range in (0,1). Both of these two activations saturate, 
but unlike the sigmoid neuron the tanh output is zero-centered. There-
fore, in practice the tanh nonlinearity is always preferred to the sigmoid 
nonlinearity.

The sigmoid and tanh activation functions appear in LSTMs (sigmoid 
for the three gates and tanh for the internal cell state) as well as GRUs dur-
ing the calculations pertaining to input gates, forget gates, and output gates 
(discussed in more detail in the next chapter).

6.15 Sigmoid, Softmax, and HardMax Differences

This section briefly discusses some of the differences among these 
three functions. First, the sigmoid function is used for binary classifica-
tion in logistic regression model, as well as the gates in LSTMs and GRUs. 
The sigmoid function is used as activation function while building neural 
networks, but keep in mind that the sum of the probabilities is not neces-
sarily equal to 1.

Second, the softmax function generalizes the sigmoid function: it’s 
used for multiclassification in logistic regression model. The softmax 
function is the activation function for the fully connected layer in CNNs, 
which is the right-most hidden layer and the output layer. Unlike the sig-
moid function, the sum of the probabilities must equal 1. You can use either 
the sigmoid function or softmax for binary (n=2) classification.

Third, the so-called “hardmax” function assigns 0 or 1 to output values 
(similar to a step function). For example, suppose that we have three classes 
{c1, c2, c3} whose scores are [1, 7, 2], respectively. The hardmax 
probabilities are [0, 1, 0], whereas the softmax probabilities are [0.1, 



202 • Python 3 for Machine Learning

0.7, 0.2]. Notice that the sum of the hardmax probabilities is 1, which 
is also true of the sum of the softmax probabilities. However, the hard-
max probabilities are all-or-nothing, whereas the softmax probabilities are 
analogous to receiving “partial credit.”

6.16 What is Logistic Regression?

Despite its name, logistic regression is a classifier and a linear model 
with a binary output. Logistic regression works with multiple independent 
variables and involves a sigmoid function for calculating probabilities. Lo-
gistic regression is essentially the result of applying the sigmoid activation 
function to linear regression in order to perform binary classification. 

Logistic regression is useful in a variety of unrelated fields. Such fields 
include machine learning, various medical fields, and social sciences. Logis-
tic regression can be used to predict the risk of developing a given disease, 
based on various observed characteristics of the patient. Other fields that 
use logistic regression include engineering, marketing, and economics.

Logistic regression can be binomial (only two outcomes for a depen-
dent variable), multinomial (three or more), or ordinal (ordered dependent 
variables), but mainly used for binomial cases. For instance, suppose that a 
dataset consists of data that belong either to class A or to class B. If you are 
given a new data point, logistic regression predicts whether that new data 
point belongs to class A or to class B. By contrast, linear regression predicts 
a numeric value, such as the next-day value of a stock.

6.16.1 Setting a Threshold Value
The threshold value is a numeric value that determines which data 

points belong to class A and which points belong to class B. For instance, a 
pass/fail threshold might be 0.70. A pass/fail threshold for passing a writing 
driver’s test in California is 0.85.

As another example, suppose that p = 0.5 is the “cutoff” probability. 
Then we can assign class A to the data points that occur with probability 
> 0.5 and assign class B to data points that occur with probability <= 0.5. 
Since there are only two classes, we do have a classifier.

A similar (yet slightly different) scenario involves tossing a well-bal-
anced coin. We know that there is a 50% chance of throwing heads (let’s 
label this outcome as class A) and a 50% chance of throwing tails (let’s label 
this outcome as class B). If we have a dataset that consists of labeled out-



cLassifiers in Machine Learning • 203

comes, then we have the expectation that approximately 50% of them are 
class A and class B. 

However, we have no way to determine (in advance) what percentage 
of people will pass their written driver’s test, or the percentage of people 
who will pass their course. Datasets containing outcomes for these types 
of scenarios need to be trained, and logistic regression can be a suitable 
technique for doing so.

6.16.2 Logistic Regression: Important Assumptions
Logistic regression requires the observations to be independent of each 

other. In addition, logistic regression requires little or no multicollinear-
ity among the independent variables. Logistic regression handles numeric, 
categorical, and continuous variables, and also assumes linearity of inde-
pendent variables and log odds, which is defined here:

odds = p/(1-p) and logit = log(odds)

This analysis does not require the dependent and independent vari-
ables to be related linearly; however, another requirement is that indepen-
dent variables are linearly related to the log odds.

Logistic regression is used to obtain odds ratio in the presence of more 
than one explanatory variable. The procedure is quite similar to multiple linear 
regression, with the exception that the response variable is binomial. The result 
is the impact of each variable on the odds ratio of the observed event of interest.

6.16.3 Linearly Separable Data
Linearly separable data is data that can be separated by a line (in 2D), 

a plane (in 3D), or a hyperplane (in higher dimensions). Linearly nonsepa-
rable data is data (clusters) that cannot be separated by a line or a hyper-
plane. For example, the XOR function involves data points that cannot be 
separated by a line. If you create a truth table for an XOR function with two 
inputs, the points (0,0) and (1,1) belong to class 0, whereas the points (0,1) 
and (1,0) belong to class 1 (draw these points in a 2D plane to convince 
yourself). The solution involves transforming the data in a higher dimension 
so that it becomes linearly separable, which is the technique used in SVMS 
(discussed earlier in this chapter).

6.17 Keras, Logistic Regression, and Iris Dataset

Listing 6.6 displays the contents of tf2_keras_iris.py that defines 
a Keras-based model to perform logistic regression.



204 • Python 3 for Machine Learning

Listing 6.6: tf2_keras_iris.py

import tensorflow as tf
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder, 
StandardScaler

iris = load_iris()
X = iris['data']
y = iris['target']

#you can view the data and the labels:
#print("iris data:",X)
#print("iris target:",y)

# scale the X values so they are between 0 and 1
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X_
scaled, y, test_size = 0.2)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(activation='relu', 
input_dim=4,
           units=4, kernel_initializer='uniform'))

model.add(tf.keras.layers.Dense(activation='relu', 
units=4,
                     kernel_initializer='uniform'))
model.add(tf.keras.layers.Dense(activation='sigmoid', 
units=1,
                     kernel_initializer='uniform'))
#model.add(tf.keras.layers.Dense(1, 
activation='softmax'))

model.compile(optimizer='adam', loss='mean_squared_
error', metrics=['accuracy'])
model.fit(X_train, y_train, batch_size=10, epochs=100)

# Predicting values from the test set
y_pred = model.predict(X_test)

# scatter plot of test values-vs-predictions
fig, ax = plt.subplots()



cLassifiers in Machine Learning • 205

ax.scatter(y_test, y_pred)
ax.plot([y_test.min(), y_test.max()], [y_test.min(), y_
test.max()], 'r*--')

ax.set_xlabel('Calculated')
ax.set_ylabel('Predictions')
plt.show()

Listing 6.6 starts with an assortment of import statements, and then 
initializes the variable iris with the Iris dataset. The variable X contains 
the first three columns (and all the rows) of the Iris dataset, and the vari-
able y contains the fourth column (and all the rows) of the Iris dataset.

The next portion of Listing 6.6 initializes the training set and the test 
set using an 80/20 data split. Next, the Keras-based model contains three 
Dense layers, where the first two specify the relu activation function and 
the third layer specifies the sigmoid activation function.

The next portion of Listing 6.6 compiles the model, trains the model, 
and then calculates the accuracy of the model via the test data. Launch the 
code in Listing 6.6 and you will see the following output:

Train on 120 samples
Epoch 1/100120/120 [==============================] - 0s 
980us/sample - loss: 0.9819 - accuracy: 0.3167
Epoch 2/100
120/120 [==============================] - 0s 162us/
sample - loss: 0.9789 - accuracy: 0.3083
Epoch 3/100
120/120 [==============================] - 0s 204us/
sample - loss: 0.9758 - accuracy: 0.3083
Epoch 4/100
120/120 [==============================] - 0s 166us/
sample - loss: 0.9728 - accuracy: 0.3083
Epoch 5/100
120/120 [==============================] - 0s 160us/
sample - loss: 0.9700 - accuracy: 0.3083
// details omitted for brevity
Epoch 96/100
120/120 [==============================] - 0s 128us/
sample - loss: 0.3524 - accuracy: 0.6500
Epoch 97/100
120/120 [==============================] - 0s 184us/
sample - loss: 0.3523 - accuracy: 0.6500



206 • Python 3 for Machine Learning

Epoch 98/100
120/120 [==============================] - 0s 128us/
sample - loss: 0.3522 - accuracy: 0.6500
Epoch 99/100
120/120 [==============================] - 0s 187us/
sample - loss: 0.3522 - accuracy: 0.6500
Epoch 100/100
120/120 [==============================] - 0s 167us/
sample - loss: 0.3521 - accuracy: 0.6500

Figure 6.1 displays a scatter plot of points based on the test values and 
the predictions for those test values.

FIGURE 6.1: A scatter plot and a best-fitting line.

The accuracy is admittedly poor (abysmal?), and yet it’s quite possible 
that you will encounter this type of situation. Experiment with a different 
number of hidden layers and replace the final hidden layer with a Dense 
layer that specifies a softmax activation function—or some other activa-
tion function—to see if this change improves the accuracy.

6.18 Summary

This chapter started with an explanation of classification and classifiers, 
followed by a brief explanation of commonly used classifiers in machine 
learning.



cLassifiers in Machine Learning • 207

Next you learned about activation functions, why they are important in 
neural networks, and also how they are used in neural networks. Then you 
saw a list of the TensorFlow/Keras APIs for various activation functions, 
followed by a description of some of their merits. 

You also learned about logistic regression that involves the sigmoid ac-
tivation function, followed by a Keras-based code sample involving logistic 
regression.





C H A P T E R7

●●  Working with Natural Language Processing (NLP)
●●  Popular NLP Algorithms
●●  What Are Word Embeddings?
●●  ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0 (optional)
●●  What is Translatotron?
●●  Deep Learning and NLP (optional)
●●  NLU versus NLG (optional)
●●  What is Reinforcement Learning (RL)?
●●  From NFAs to MDPs
●●  The Epsilon-Greedy Algorithm
●●  The Bellman Equation
●●  RL Toolkits and Frameworks
●●  Deep Reinforcement Learning (optional)
●●  Summary

NATURAL LANGUAGE  
PROCESSING AND REIN-
FORCEMENT LEARNING

This chapter provides a casual introduction you to natural language 
processing (NLP) and reinforcement learning (RL). Both topics can eas-
ily fill entire books, often involving complex topics, which means that this 
chapter provides a limited introduction to these topics. If you want to 
acquire a thorough grasp of BERT (discussed briefly later in the chap-
ter), you need to learn about “attention” and the transformer architec-



210 • Python 3 for Machine Learning

ture. Similarly, if you want to acquire a solid understanding of deep RL, 
then you need to understand deep learning architectures. After you finish 
reading the cursory introduction to NLP and RL in this chapter, you can 
find additional online information about the facets of NLP or RL that 
interest you.

The first section discusses NLP, along with some code samples in 
Keras. This section also discusses natural language understanding (NLU) 
and natural language generation (NLG). 

The second section introduces RL, along with a description of the types 
of tasks that are well-suited to RL. You will learn about the nchain task and 
the epsilon-greedy algorithm that can solve problems that you cannot solve 
using a “pure” greedy algorithm. In this section you will also learn about the 
Bellman equation, which is a cornerstone of RLRL.

The third section discusses the TF-Agents toolkit from Google, deep 
RLRL (deep learning combined with RL), and the Google Dopamine toolkit.

7.1 Working with NLP

This section highlights some concepts in NLP, and depending on your 
background, you might need to perform an online search to learn more 
about some of the concepts (try Wikipedia). Although the concepts are 
treated in a very superficial manner, you will know what to pursue in order 
to further your study of NLP.

NLP is currently the focus of significant interest in the machine learn-
ing (ML) community. Some of the use cases for NLP are listed here:

●■ chatbots
●■ search (text and audio)
●■ text classification
●■ sentiment analysis
●■ recommendation systems
●■ question answering
●■ speech recognition
●■ NLU 
●■ NLG



naturaL Language Processing and reinforceMent Learning • 211

You encounter many of these use cases in every day life: when you visit 
Web pages, or perform an online search for books, or recommendations 
regarding movies.

7.1.1 NLP Techniques
The earliest approach for solving NLP tasks involved rule-based ap-

proaches, which dominated the industry for decades. Examples of tech-
niques using rule-based approaches include regular expressions (RegExs) 
and context-free grammars (CFGs). RegExs are sometimes used in order 
to remove HTML tags from text that has been “scraped” from a Web page, 
or unwanted special characters from a document.

The second approach involved training a ML model with some data 
that is based on some user-defined features. This technique requires a con-
siderable amount of feature engineering (a nontrivial task), and includes 
analyzing the text to remove undesired and superfluous content (including 
“stop” words), as well as transforming the words (e.g., converting uppercase 
to lowercase).

The most recent approach involves deep learning, whereby a neural 
network learns the features instead of relying on humans to perform feature 
engineering. One of the key ideas involves “mapping” words to numbers, 
which enables us to map sentences to vectors of numbers. After transform-
ing documents to vectors, we can perform a myriad of operations on those 
vectors. For example, we can use the notion of vector spaces to define vec-
tor space models, where the distance between two vectors can be measured 
by the angle between them (related to cosine similarity). If two vectors are 
“close” to each other, then it’s likelier that the corresponding sentences are 
similar in meaning. Their similarity is based on the distributional hypoth-
esis, which asserts that words in the same contexts tend to have similar 
meanings.

A nice article that discusses vector representations of words, along with 
links to code samples, is here:

https://www.tensorflow.org/tutorials/representation/word2vec

7.1.2 The Transformer Architecture and NLP
In 2017, Google introduced the Transformer neural network archi-

tecture, which is based on a “self-attention” mechanism that is well-suited 
for language understanding.



212 • Python 3 for Machine Learning

Google showed that the Transformer outperforms earlier bench-
marks for both RNNs and CNNs involving the translation of academic English 
to German as well as English to French. Moreover, the Transformer re-
quired less computation to train, and also improved the training time by as 
much as an order of magnitude.

The Transformer can process the sentence "I arrived at the bank after 
crossing the river" and correctly determine that the word "bank" refers to 
the shore of a river and not a financial institution. The Transformer makes 
this determination in a single step by making the association between "bank" 
and "river." As another example, the Transformer can determine the dif-
ferent meanings of “it” in these two sentences:

“The horse did not cross the street because it was too tired.”

“The horse did not cross the street because it was too narrow.”

The Transformer computes the next representation for a given word 
by comparing the word to every other word in the sentence, which results 
in an "attention score" for the words in the sentence. The Transformer 
uses these scores to determine the extent to which other words will contrib-
ute to the next representation of a given word.

The result of these comparisons is an attention score for every other 
word in the sentence. As a result, "river" received a high attention score 
when computing a new representation for "bank."

Although LSTMs and bidirectional LSTMs are heavily utilized in NLP 
tasks, the Transformer has gained a lot of traction in the AI community, 
not only for translation between languages, but also the fact that for some 
tasks it can outperform both RNNs and CNNs. The Transformer architec-
ture requires much less computation time in order to train a model, which 
explain why some people believe that the Transformer has already begun 
to supplant RNNs and LSTMs.

The following link contains a TF 2 code sample of a Transformer 
neural network that you can launch in Google Colaboratory:

https://www.tensorflow.org/alpha/tutorials/text/transformer

Another interesting and recent architecture is called “attention aug-
mented convolutional networks,” which is a combination of CNNs with self-
attention. This combination achieves better accuracy than “pure” CNNs, and 
you can find more details in this paper: https://arxiv.org/abs/1904.09925

https://arxiv.org/abs/1904.09925


naturaL Language Processing and reinforceMent Learning • 213

7.1.3 Transformer-XL Architecture
The Transformer-XL combines a Transformer architecture with 

two techniques called recurrence mechanism and relative positional encod-
ing to obtain better results than a Transformer. Transformer-XL works 
with word-level and character-level language modeling.

The Transformer-XL and Transformer both process the first seg-
ment of tokens, and the former also keeps the outputs of the hidden layers. 
Consequently, each hidden layer receives two inputs from the previous hid-
den layer, and then concatenates them to provide additional information to 
the neural network.

According to the following article, Transformer-XL significantly out-
performs Transformer, and its dependency is 80% longer than “vanilla” 
RNNs:

https://hub.packtpub.com/transformer-xl-a-google-architecture-with-
80-longer-dependency-than-rnns/

7.1.4 Reformer Architecture
Recently the Reformer architecture was released, which uses two 

techniques to improve the efficiency (i.e., lower memory and faster per-
formance on long sequences) of the Transformer architecture. As a re-
sult, the Reformer architecture also has lower complexity than the Trans-
former. More details regarding the Reformer are here:

https://openreview.net/pdf?id=rkgNKkHtvB

Some Reformer-related code is here: https://pastebin.com/62r5FuEW

7.1.5 NLP and Deep Learning
The NLP models that use deep learning can comprise CNNs, RNNs, LST-

Ms, and bi-directional LSTMs. For example, Google released BERT in 2018, 
which is an extremely powerful framework for NLP. BERT is quite sophis-
ticated, and involves bidirectional transformers and so-called “attention” 
(discussed briefly later in this chapter). 

Deep learning for NLP often yields higher accuracy than other tech-
niques, but keep in mind that sometimes it’s not as fast as rule-based and 
classical ML methods. In case you’re interested, a code sample that uses 
TensorFlow and RNNs for text classification is here:

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn

https://www.tensorflow.org/alpha/tutorials/text/text_classification_rnn


214 • Python 3 for Machine Learning

A code sample that uses TensorFlow and RNNs for text generation is 
here:

https://www.tensorflow.org/alpha/tutorials/text/text_generation

7.1.6 Data Preprocessing Tasks in NLP
There are some common preprocessing tasks that are performed on 

documents, as listed here: 

●■ [1] lowercasing
●■ [1] noise removal
●■ [2] normalization
●■ [3] text enrichment
●■ [3] stopword removal
●■ [3] stemming
●■ [3] lemmatization

The preceding tasks can be classified as follows:

●■ [1]: mandatory tasks
●■ [2]: recommended tasks
●■ [3]: task dependent

In brief, preprocessing tasks involve at least the removal of redundant 
words (“a,” “the,” and so forth), removing the endings of words (“running,” 
“runs,” and “ran” are treated the same as “run”), and converting text from 
uppercase to lowercase.

7.2 Popular NLP Algorithms

Some of the popular NLP algorithms appear in the following list, and 
in some cases they are the foundation for more sophisticated NLP toolkits:

●■ BoW: Bag of Words
●■ n-grams and skip-grams
●■ TF-IDF:  basic algorithm in extracting keywords
●■ Word2Vector (Google): O/S project to describe text



naturaL Language Processing and reinforceMent Learning • 215

●■ GloVe (Stanford NLP Group)

●■ LDA: text classification

●■  CF (collaborative filtering): an algorithm in news recommend system 
(Google News and Yahoo News)

The topics in the first half of the preceding list are discussed briefly in 
subsequent sections.

7.2.1 What is an n-gram?
An n-gram is a technique for creating a vocabulary that is based on ad-

jacent words that are grouped together. This technique retains some word 
positions (unlike BoW). You need to specify the value of "n" that in turn 
specifies the size of the group.

The idea is simple: for each word in a sentence, construct a vocabulary 
term that contains the n words on the left side of the given word and n 
words that are on the right side of the given word. As a simple example, 
"This is a sentence" has the following 2-grams:

(this, is), (is, a), (a, sentence)

As another example, we can use the same sentence "This is a sentence" 
to determine its 3-grams:

(this, is, a), (is, a, sentence)

The notion of n-grams is surprisingly powerful, and it’s used heavily in 
popular open source toolkits such as ELMo and BERT when they pre-train 
their models.

7.2.2 What is a skip-gram?
Given a word in a sentence, a skip gram creates a vocabulary term 

by constructing a list that contains the n words on both sides of a given 
word, followed by the word itself. For example, consider the following 
sentence:

the quick brown fox jumped over the lazy dog

A skip-gram of size 1 yields the following vocabulary terms:

([the,brown], quick), ([quick,fox], brown), 
([brown,jumped], fox),...

A skip-gram of size 2 yields the following vocabulary terms:



216 • Python 3 for Machine Learning

([the,quick,fox,jumped], brown), 
([quick,brown,jumped,over], fox), ([brown,fox,over,the], 
jumped),...

More details regarding skip-grams are discussed here:

https://www.tensorflow.org/tutorials/representation/word2vec#the_skip-
gram_model

7.2.3 What is BoW?
BoW (Bag of Words) assigns a numeric value to each word in a sentence 

and treats those words as a set (or bag). Hence, BoW does not keep track of 
adjacent words, so it’s a very simple algorithm.

Listing 7.1 displays the contents of the Python script bow_to_vector.
py that illustrates how to use the BoW algorithm.

Listing 7.1: bow_to_vector.py

VOCAB = ['dog', 'cheese', 'cat', 'mouse']
TEXT1 = 'the mouse ate the cheese'
TEXT2 = 'the horse ate the hay'

 def to_bow(text):
  words = text.split(" ")
  return [1 if w in words else 0 for w in VOCAB]

print("VOCAB: ",VOCAB)
print("TEXT1:",TEXT1)
print("BOW1: ",to_bow(TEXT1))  # [0, 1, 0, 1]
print("")

print("TEXT2:",TEXT2) 
print("BOW2: ",to_bow(TEXT2))  # [0, 0, 0, 0]

Listing 7.1 initializes a list VOCAB and two text strings TEXT1 and TEXT2. 
The next portion of Listing 7.1 defines the Python function to_bow() that 
returns an array containing 0s and 1s: if a word in the current sentence ap-
pears in the vocabulary, then a 1 is returned (otherwise a 0 is returned). The 
last portion of Listing 7.1 invokes the Python function with two different 
sentences. The output from launching the code in Listing 7.1 is here:

('VOCAB: ', ['dog', 'cheese', 'cat', 'mouse'])
('TEXT1:', 'the mouse ate the cheese')
('BOW1: ', [0, 1, 0, 1])

('TEXT2:', 'the horse ate the hay')
('BOW2: ', [0, 0, 0, 0])



naturaL Language Processing and reinforceMent Learning • 217

7.2.4 What is Term Frequency?
Term frequency is the number of times that a word appears in a docu-

ment, which can vary among different documents. Consider the following 
simple example that consists of two “documents” Doc1 and Doc2:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The term frequency for the word “is” and the word “short” is given 
here:

tf(is) = 1/5 for doc1
tf(is) = 0 for doc2
tf(short) = 1/5 for doc1
tf(short) = 1/4 for doc2

The preceding values will be used in the calculation of tf-idf that is 
explained in a later section.

7.2.5 What is Inverse Document Frequency (idf)?
Given a set of N documents and given a word in a document, let’s de-

fine dc and idf of each word as follows:

dc = # of documents containing a given word
idf = log(N/dc)

Now let’s use the same two documents Doc1 and Doc2 from a previous 
section:

Doc1 = "This is a short sentence"
Doc2 = "yet another short sentence"

The calculations of the idf value for the word “is” and the word “short” 
are shown here:

idf(is) = log(2/1) = log(2)
idf(short) = log(2/2) = 0

The following link provides more detailed information about inverse doc-
ument frequency: https://en.wikipedia.org/wiki/Tf–idf#Example_of_tf–idf

7.2.6 What is tf-idf?
The term tf-idf is an abbreviation for “term frequency, inverse docu-

ment frequency,” and it’s the product of the tf value and the idf value of 
a word, as shown here:

tf-idf = tf * idf



218 • Python 3 for Machine Learning

A high frequency word has a higher tf value but a lower idf value. In 
general, "rare" words are more relevant than "popular" ones, so they help 
to extract "relevance." For example, suppose you have a collection of 10 
documents (real documents, not the toy documents we used earlier). The 
word “the” occurs frequently in English sentences, but it does not provide 
any indication of the topics in any of the documents. On the other hand, if 
you determine that the word “universe” appears multiple times in a single 
document, this information can provide some indication of the theme of 
that document, and with the help of NLP techniques, assist in determining 
the topic (or topics) in that document. 

7.3 What are Word Embeddings?

An embedding is a fixed-length vector to encode and represent an en-
tity (document, sentence, word, graph). Each word is represented by a 
real-valued vector, which can result in hundreds of dimensions. Further-
more, such an encoding can result in sparse vectors: one example is one-
hot encoding, where one position has the value 1 and all other positions 
have the value 0.

Three popular word embedding algorithms are Word2vec, GloVe, and 
FastText. Keep in mind that these three algorithms involve unsupervised 
approaches. They are also based on the distributional hypothesis: words in 
the same contexts tend to have similar meanings: https://aclweb.org/aclwi-
ki/Distributional_Hypothesis.

A good article regarding Word2Vec in TensorFlow is here:

https://towardsdatascience.com/learn-word2vec-by-implementing-it-in-
tensorflow-45641adaf2ac

This article is useful if you want to see Word2Vec with FastText in gensim:

https://towardsdatascience.com/word-embedding-with-word2vec-and-fast-
text-a209c1d3e12c

Another good article, and this one pertains to the skip-gram model:

https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intu-
ition-78614e4d6e0b

A useful article that describes how FastText works “under the hood”:

https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3

https://towardsdatascience.com/fasttext-under-the-hood-11efc57b2b3
https://aclweb.org/aclwiki/Distributional_Hypothesis
https://aclweb.org/aclwiki/Distributional_Hypothesis


naturaL Language Processing and reinforceMent Learning • 219

Along with the preceding popular algorithms there are also some popu-
lar embedding models, some of which are listed here:

●■ baseline averaged sentence embeddings

●■ Doc2Vec

●■ neural-net language models

●■ skip-thought vectors

●■ quick-thought vectors

●■ inferSent

●■ universal sentence encoder

Perform an online search for more information about the preceding 
embedding models.

7.4 ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0

During 2018 there were some significant advances in NLP-related re-
search, resulting in the following toolkits and frameworks:

●■ ELMo:      released in 02/2018

●■ ULMFit:    released in 05/2018

●■ OpenAI:    released in 06/2018

●■ BERT:      released in 10/2018

●■ MT-DNN:    released in 01/2019

●■ ERNIE 2.0: released in 08/2019

ELMo is an acronym for "embeddings from language models," which 
provides deep contextualized word representations and state-of-the-art 
contextual word vectors, resulting in noticeable improvements in word em-
beddings.

Jeremy Howard and Sebastian Ruder created universal language model 
fine-tuning (ULMFit), which is a transfer learning method that can be ap-
plied to any task in NLP. ULMFit significantly outperforms the state-of-
the-art on six text classification tasks, reducing the error by 18–24% on the 
majority of datasets. 



220 • Python 3 for Machine Learning

Furthermore, with only 100 labeled examples, it matches the perfor-
mance of training from scratch on 100x more data. ULMFit is download-
able from GitHub:

https://github.com/jannenev/ulmfit-language-model

OpenAI developed GPT-2 (a successor to GPT), which is a model that 
was trained to predict the next word in 40GB of Internet text. OpenAI 
chose not to release the trained model due to concerns regarding malicious 
applications of their technology.

GPT-2 is a large transformer-based language model with 1.5 billion pa-
rameters, trained on a dataset of 8 million Web pages (curated by humans), 
with an emphasis on diversity of content. GPT-2 is trained to predict the next 
word, given all of the previous words within some text. The diversity of the 
dataset causes this goal to contain naturally occurring demonstrations of many 
tasks across diverse domains. GPT-2 is a direct scale-up of GPT, with more 
than 10X the parameters and trained on more than 10X the amount of data.

BERT is an acronym for "bidirectional encoder representations from 
transformers." BERT can pass this simple English test (i.e., BERT can deter-
mine the correct choice among multiple choices):

On stage, a woman takes a seat at the piano. She:

a)  sits on a bench as her sister plays with the doll.

b) smiles with someone as the music plays.

c) is in the crowd, watching the dancers.

d) nervously sets her fingers on the keys.

Details of BERT and this English test are here:

https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-
model-for-nlp/

The BERT (TensorFlow) source code is available here on GitHub:

https://github.com/google-research/bert

https://github.com/hanxiao/bert-as-service

Another interesting development is MT-DNN from Microsoft, which 
asserts that MT-DNN can outperform Google BERT:

https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-model-for-nlp/
https://www.lyrn.ai/2018/11/07/explained-bert-state-of-the-art-language-model-for-nlp/
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service


naturaL Language Processing and reinforceMent Learning • 221

https://medium.com/syncedreview/microsofts-new-mt-dnn-outperforms-
google-bert-b5fa15b1a03e

A Jupyter notebook with BERT is available, and you need the following 
in order to run the notebook in Google Colaboratory:

●➡ a GCP (Google Compute Engine) account

●➡ a GCS (Google Cloud Storage) bucket

Here is the link to the notebook in Google Colaboratory:

https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/
colab/bert_finetuning_with_cloud_tpus.ipynb

In March, 2019 Baidu open sourced ERNIE 1.0 (Enhanced Repre-
sentation through kNowledge IntEgration) that (according to Baidu) out-
performed BERT in tasks involving Chinese language understanding. In 
August, 2019 Baidu open sourced ERNIE 2.0, which is downloadable here:

https://github.com/PaddlePaddle/ERNIE/

An article with additional information about ERNIE 2.0 (including its 
architecture) is here:

https://hub.packtpub.com/baidu-open-sources-ernie-2-0-a-continual-pre-
training-nlp-model-that-outperforms-bert-and-xlnet-on-16-nlp-tasks/

7.5 What is Translatotron?

Translatotron is an end-to-end speech-to-speech translation model 
(from Google) whose output retains the original speaker's voice; moreover 
it's trained with less data.

Speech-to-speech translation systems have been developed over the 
past several decades with the goal of helping people who speak different 
languages to communicate with each other. Such systems have three parts:

●■ automatic speech recognition to transcribe the source speech as text
●■  machine translation to translate the transcribed text into the target language

●■  text-to-speech synthesis (TTS) to generate speech in the target language 
from the translated text

https://medium.com/syncedreview/microsofts-new-mt-dnn-outperforms-google-bert-b5fa15b1a03e
https://medium.com/syncedreview/microsofts-new-mt-dnn-outperforms-google-bert-b5fa15b1a03e
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb
https://colab.research.google.com/github/tensorflow/tpu/blob/master/tools/colab/bert_finetuning_with_cloud_tpus.ipynb


222 • Python 3 for Machine Learning

The preceding approach has been successful in commercial products 
(including Google Translate). However, Translatatron does not require sep-
arate stages, resulting in the following advantages:

●■ faster inference speed

●■ avoids compounding errors between recognition and translation

●■ easier to retain the voice of the original speaker after translation

●■ better handling of untranslated words (names and proper nouns)

This concludes the portion of this chapter that pertains to NLP. An-
other area of great interest in the AI community is RL, which is introduced 
later in this chapter.

7.6 Deep Learning and NLP

In Chapter 4, you learned about CNNs and how they are well-suited 
for image classification tasks. You might be surprised to discover that CNNs 
also work with NLP tasks. However, you must first “map” each word in a 
dictionary (which can be a subset of the words in English or some other 
language) to numeric values and then construct a vector of numeric values 
from the words in a sentence. A document can be transformed into a set of 
numeric vectors (involving various techniques that are not discussed here) 
in order to create a dataset that’s suitable for input to a CNN. 

Another option involves the use of RNNs and LSTMs instead of CNNs for 
NLP-related tasks. In fact, a “bidirectional LSTM” is being used successfully 
in ELMo (Embeddings from Language Models), whereas BERT is based 
on a bi-directional transformer architecture. The Google AI team devel-
oped BERT (open sourced in 2018) and it’s considered a breakthrough in its 
ability to solve NLP problems. The source code is here: https://github.com/
google-research/bert 

7.7 NLU versus NLG

NLU is an acronym for natural language understanding. NLU pertains 
to machine reading comprehension, and it's considered a difficult problem. 
At the same time, NLU is relevant to machine translation, question answer-
ing, and text categorization (among others). NLU attempts to discern the 

https://github.com/google-research/bert
https://github.com/google-research/bert


naturaL Language Processing and reinforceMent Learning • 223

meaning of fragmented sentences and run-on sentences, after which some 
type of action can be performed (e.g., respond to voice queries).

NLG is an acronym for natural language generation, which involves 
generating documents. The Markov chain (discussed later in this chapter) 
was one of the first algorithms for NLG. Another technique involves RNNs 
(discussed in Chapter 5) that can retain some history of previous words, 
and the probability of the next word in a sequence is calculated. Recall that 
RNNs suffer from limited memory, which limits the length of the sentences 
that can be generated. A third technique involves LSTMs, which can main-
tain state for a long period of time, and also avoid the “exploding gradient” 
problem. 

Recently (circa 2017) Google introduced the transformer architecture, 
which involves a stack of encoders for processing inputs and a set of decoders 
to produce generated sentences. A transformer-based architecture is more 
efficient than an LSTM because a transformer requires a small and fixed 
number of steps in order to apply the so-called “self-attention mechanism” 
in order to simulate the relationship among all the words in a sentence. 

In fact, the transformer differs from previous models in one important way: 
it uses the representation of all words in context without compressing all the 
information into a single fixed-length representation. This technique enables a 
transformer to handle longer sentences without high computational costs.

The transformer architecture is the foundation for the GPT-2 language 
model (from OpenAI). The model learns to predict the next word in a sentence 
by focusing on words that were previously seen in the model and related to 
predicting the next word. In 2018, Google released the BERT architecture for 
NLP, which is based on transformers with a two-way encoder representation. 

7.8 What is Reinforcement Learning (RL)?

RL is a subset of machine learning that attempts to find the maximum 
reward for a so-called “agent” that interacts with an “environment.” RL 
is suitable for solving tasks that involve deferred rewards, especially when 
those rewards are greater than intermediate rewards. 

In fact, RL can handle tasks that involve a combination of negative, 
zero, and positive rewards. For example, if you decide to leave your job in 
order to attend school on a full-time basis, you are spending money (a nega-
tive reward) with the believe that your investment of time and money will 



224 • Python 3 for Machine Learning

lead to a higher paying position (a positive reward) that outweighs the cost 
of school and lost earnings.

One thing that might surprise you is that RL agents are susceptible to 
GANs. Chapter 5 contains a section devoted to GANs, and you can find ad-
ditional details (along with related links) in this article:

https://openai.com/blog/adversarial-example-research/

7.8.1 RL Applications
There are many RL applications, some of which are listed here:

●■ game theory
●■ control theory  
●■ operations research  
●■ information theory  
●■ simulation-based optimization  
●■ multi-agent systems
●■ swarm intelligence  
●■ statistics and genetic algorithms
●■ resources management in computer clusters
●■ traffic light control (congestion problems)
●■ robotics operations
●■ autonomous cars/helicopters
●■ Web system Configuration/Web-page indexing
●■ personalized recommendations
●■ bidding and advertising
●■ robot legged locomotion 
●■ marketing strategy selection 
●■ factory control

RL refers to goal-oriented algorithms for reaching a complex goal, such 
as winning games that involve multiple moves (e.g., chess or Go). RL algo-
rithms are penalized for incorrect decisions and rewarded for correct deci-
sions: this reward mechanism is reinforcement. 

https://openai.com/blog/adversarial-example-research/


naturaL Language Processing and reinforceMent Learning • 225

7.8.2 NLP and RL
More recently RL with NLP has become a successful area of research. 

One technique for NLP-related tasks involves RNN-based encoder-decoder 
models that have achieved good results for short input and output sequenc-
es. Another technique involves a neural network, supervised word predic-
tion, and RL. This particular combination avoids exposure bias, which can 
occur in models that use only supervised learning. More details are here: 
https://arxiv.org/pdf/1705.04304.pdf

Yet another interesting technique involves deep reinforcement learn-
ing (i.e., DL combined with RL) with NLP. In case you don’t already know, 
DRL has achieved success in various areas, such as Atari games, defeating 
Lee Sedol (the world champion Go player), and robotics. In addition, DRL 
is also applicable to NLP-related tasks, which involves the key challenge of 
designing of a suitable model. Perform an online search for more informa-
tion about solving NLP-related tasks with RL and DRL.

7.8.3 Values, Policies, and Models in RL
There are three main approaches in RL. value-based RL estimates the 

optimal value function Q(s,a), which is the maximum value achievable 
under any policy. Policy-based RL searches directly for the optimal policy 
π, which is the policy achieving maximum future reward. Model-based RL 
builds a model of the environment and plans (by lookahead) using the model.

In addition to the preceding approaches to RL (value functions, poli-
cies, and models), you will need to learn the following RL concepts:

●■ Markov decision processes (MDPs)
●■ A policy (a sequence of actions)
●■ The state/value function
●■ The action/value function
●■ Bellman equation (for calculating rewards)

The RL material in this chapter only addresses the following list of top-
ics (after which you can learn the concepts in the previous list):

●■ Nondeterministic finite automata (NFAs)
●■ Markov chains
●■ MDPs 



226 • Python 3 for Machine Learning

●■ Epsilon-Greedy algorithm

●■ Bellman equation

Another key point: almost all RL problems can be formulated as Mar-
kov decision processes, (MDPs) which in turn are based on Markov chains. 
Let’s take a look at NFAs and Markov chains and then we can define MDPs.

7.9 From NFAs to MDPs

Let’s start with the two-minute summary. The underlying structure for 
an MDP is an NFA (nondeterministic finite automata), which is studied in 
great detail in an automata theory course (as part of a computer science 
degree). An NFA is a collection of states and transitions, each of which has 
equal probability. An NFA also has a start state and one or more end states.

Now add probabilities to transitions in an NFA, in such a way that the 
sum of the probabilities of the outgoing transitions of any state equals one. 
The result is a Markov chain. A Markov decision process is a Markov chain 
with several additional properties.

The following subsections expand the two-minute summary by provid-
ing additional explanatory details.

7.9.1 What Are NFAs?
An NFA is a nondeterministic finite automata, which is a generalization 

of a DFA (deterministic finite automata). Figure 7.1 displays an example of 
an NFA.

FIGURE 7.1: An example of an NFA. Image adapted from https://math.stackexchange.com/questions/1240601/
what-is-the-easiest-way-to-determine-the-accepted-language-of-a-deterministic-fi?rq=1.

An NFA enables you to define multiple transitions from a given state to 
other states. By way of analogy, consider the location of many (most?) gas 

https://math.stackexchange.com/questions/1240601/what-is-the-easiest-way-to-determine-the-accepted-language-of-a-deterministic-fi?rq=1
https://math.stackexchange.com/questions/1240601/what-is-the-easiest-way-to-determine-the-accepted-language-of-a-deterministic-fi?rq=1


naturaL Language Processing and reinforceMent Learning • 227

stations. Usually they are located at an intersection of two streets, which 
means there are at least two entrances to the gas station. After you make 
your purchase, you can exit from the same entrance or from the second en-
trance. In some cases, you might even be able to exit from one location and 
return to the gas station from the other entrance: this would be comparable 
to a “loop” transition of a state in a state machine.

The next step involves adding probabilities to NFAs in order to create a 
Markov Chain, which is described in more detail in the next section.

7.9.2 What Are Markov Chains?
Markov Chains are NFAs with an additional constraint: the sum of the 

probabilities of the outgoing edges of every state equals one. Figure 7.2 
displays a Markov chain.

FIGURE 7.2: An example of a Markov chain. Image adapted from https://en.wikipedia.org/wiki/Markov_chain.

As you can see in Figure 7.2, a Markov chain is an NFA because a state 
can have multiple transitions. The constraint involving probabilities ensures 
that we can perform statistical sampling in MDPs that are described in the 
next section.



228 • Python 3 for Machine Learning

7.9.3 MDPs
In high-level terms, an MDP is a method that samples from a complex 

distribution to infer its properties. More specifically, MDPs are an extension 
of Markov chains, which involves the addition of actions (allowing choice) 
and rewards (giving motivation). Conversely, if only one action exists for 
each state (e.g., "wait") and all rewards are the same (e.g., "zero"), an MDP 
reduces to a Markov chain. Figure 7.3 displays an example of an MDP.

FIGURE 7.3: An example of an MDP.

Thus, an MDP consists of a set of states and actions, and also the rules for 
transitioning from one state to another. One episode of this process (e.g., a 
single “game”) produces a finite sequence of states, actions, and rewards. 
A key property of MDPs: history does not affect future decisions. In other 
words, the process of selecting the next state is independent of everything 
that happened before reaching the current state.

MDPs are nondeterministic search problems that are solved via dynamic 
programming and RL, where outcomes are partly random and partly under 
control. As you learned earlier in this section, almost all RL problems can 
be formulated as MDPs; consequently, RL can solve tasks that cannot be 
solved by greedy algorithms. However, the epsilon-greedy algorithm is a 
clever algorithm that can solve such tasks. In addition, the Bellman equa-
tion enables us to compute rewards for states. Both are discussed in subse-
quent sections.



naturaL Language Processing and reinforceMent Learning • 229

7.10 The Epsilon-Greedy Algorithm

There are three fundamental problems that arise in RL:

●■ the exploration-exploitation tradeoff 
●■ the problem of delayed reward (credit assignment) 
●■ the need to generalize

The term exploration refers to trying something new or different, 
whereas the term exploitation refers to leveraging existing knowledge or 
information. For instance, going to a favorite restaurant is an example of 
exploitation (you are “exploiting” your knowledge of good restaurants), 
whereas going to an untried restaurant is an example of exploration (you 
are “exploring” a new venue). When people move to a new city, they tend to 
explore new restaurants, whereas people who are moving away from a city 
tend to exploit their knowledge of good restaurants.

In general, exploration refers to making random choices, whereas ex-
ploitation refers to using a greedy algorithm. The epsilon-greedy algorithm 
is an example of exploration and exploitation, where the “epsilon” portion 
of the algorithm refers to making random selections, and “exploitation” in-
volves a greedy algorithm.

An example of a simple task that can be solved via the epsilon-greedy 
algorithm is Open AI Gym’s NChain environment, as shown in Figure 7.4.

FIGURE 7.4: The Open AI Gym’s NChain environment.

Image adapted from [http://ceit.aut.ac.ir/~shiry/lecture/machine-learn-
ing/papers/BRL-2000.pdf]

http://ceit.aut.ac.ir/~shiry/lecture/machine-learning/papers/BRL-2000.pdf
http://ceit.aut.ac.ir/~shiry/lecture/machine-learning/papers/BRL-2000.pdf


230 • Python 3 for Machine Learning

Each state in Figure 7.4 has two actions, and each action has an associ-
ated reward. For each state, its “forward” action has reward 0, whereas its 
“backward” action has reward 3. Since a greedy algorithm will always select 
the larger reward at any state, this means that the “backward” action is al-
ways selected. Hence, we can never move toward the final state 4 that has 
a reward of 10. Indeed, we can never leave state 0 (the initial state) if we 
adhere to the greedy algorithm. 

Here is the key question: how do we go from the initial state 0 to the 
final state, which contains a large reward? We need a modified or hybrid 
algorithm in order to go through intermediate low-reward states that lead 
to the high reward state.

The hybrid algorithm is simple to describe: adhere to the greedy algo-
rithm about 90% of the time and randomly select a state for the remaining 
10% of the time. This technique is simple, elegant, and effective, and it’s 
called the epsilon-greedy algorithm (there are additional details required 
for a complete implementation).

Incidentally, a Python-based solution for OpenAI’s NChain task is here:

https://github.com/openai/gym/blob/master/gym/envs/toy_text/nchain.py

Another central concept in RL involves the Bellman equation, which is 
the topic of the next section.

7.11 The Bellman Equation

The Bellman equations are named after Richard Bellman who derived 
these equations that are ubiquitous in RL. There are several Bellman equa-
tions, including one for the state value function and one for the action value 
function. Figure 7.5 displays the Bellman equation for the state value func-
tion.

FIGURE 7.5: The Bellman equation.



naturaL Language Processing and reinforceMent Learning • 231

As you can see in Figure 7.5, the value of a given state depends on the 
discounted value of future states. The following analogy might help you un-
derstand the purpose of the discounted value called gamma in this equation. 
Suppose that you have USD 100 that you invest at a 5% annual interest rate. 
After one year you will have USD 105 (=100 + 5%*100 = 100*(1+0.05)), 
after two years you will have USD 110.25 (=100*(1+0.05)*(1+0.05)), 
and so forth.

Conversely, if you have a future value of USD 100 (with a 5% annual 
investment rate) that is two years in the future, what is its present value? 
The answer involves dividing 100 by powers of (1+0.05). Specifically, 
the present value of USD 100 from two years in the future equals 100/
[(1+0.05)*(1+0.05)]. 

In analogous fashion, the Bellman equation enables us to calculate the 
current value of a state by calculating the discounted reward of subsequent 
states. The discount factor is called gamma, and it’s often a value between 
0.9 and 0.99. In the preceding example involving USD 100, the value of 
gamma is 0.9523.

7.11.1 Other Important Concepts in RL
After you have studied the basic concepts in RL, you can delve into the 

topics that are listed here:

●■ policy gradient (rules for "best" actions) 

●■ Q-value  

●■ Monte Carlo  

●■ dynamic programming  

●■ temporal difference (TD) 

●■ Q-learning  

●■ Deep Q network

The preceding topics are explained in online articles (suggestion: use 
Wikipedia as a starting point for RL concepts), and they will be much more 
relevant after you grasp the introductory concepts in RL that are discussed 
in earlier sections. Be prepared to spend some time learning these topics 
because some of them are quite challenging in nature.



232 • Python 3 for Machine Learning

7.12 RL Toolkits and Frameworks

There are many toolkits and libraries for RL, typically based on Python, 
Keras, Torch, or Java. Some of them are listed here:

●■ OpenAI gym: A toolkit for developing and comparing RL algorithms

●■  OpenAI universe: A software platform for measuring and training an 
AI's general intelligence across the world's supply of games, websites 
and other applications

●■  DeepMind Lab: A customisable 3D platform for agent-based AI re-
search

●■  rllab: A framework for developing and evaluating RL algorithms, fully 
compatible with OpenAI Gym

●■  TensorForce: Practical deep RL on TensorFlow with Gitter support and 
OpenAI Gym/Universe/DeepMind Lab integration

●■  tf-TRFL: A library built on top of TensorFlow that exposes several use-
ful building blocks for implementing RL agents

●■  OpenAI lab: An experimentation system for RL using OpenAI Gym, 
Tensorflow, and Keras

●■ MAgent: A Platform for Many-agent RL

●■  Intel Coach: Coach is a python RL research framework containing 
implementation of many state-of-the-art algorithms</BL>

As you can see from the preceding list, there is a considerable variety 
of available RL toolkits, and visit their homepages to determine which ones 
have the features that meet your specific requirements. 

7.12.1 TF-Agents
Google created the TF-Agents library for RL in TensorFlow. Google 

TF-Agents is open source and downloadable from Github:

https://github.com/tensorflow/agents

The core elements of RL algorithms are implemented as agents. An 
agent encompasses two main responsibilities: defining a policy to interact 
with the environment, and how to learn/train that policy from collected 
experience. TF-Agents implements the following algorithms:



naturaL Language Processing and reinforceMent Learning • 233

●■ DQN: Human level control through deep RL Mnih et al., 2015

●■ DDQN: Deep RL with Double Q-learning Hasselt et al., 2015

●■ DDPG: Continuous control with deep RL Lillicrap et al., 2015

●■  TD3: Addressing Function Approximation Error in Actor-Critic Meth-
ods Fujimoto et al., 2018

●■  REINFORCE: Simple Statistical Gradient-Following Algorithms for 
Connectionist RL Williams, 1992

●■ PPO: Proximal Policy Optimization Algorithms Schulman et al., 2017

●■ SAC: Soft Actor Critic Haarnoja et al., 2018

Before you can use TF-Agents, first install the nightly build version of 
TF-Agents with this command (pip or pip3):

# the --upgrade flag ensures you'll get the latest 
version
pip install --user --upgrade tf-nightly  
pip install --user --upgrade tf-agents-nightly # 
requires tf-nightly

There are "end-to-end" examples training agents under each agent di-
rectory, an example of which is here for DQN:

tf_agents/agents/dqn/examples/v1/train_eval_gym.py

Keep in mind that TF-Agents is in prerelease status and therefore un-
der active development, which means that interfaces may change at any 
time.

7.13 What is Deep RL (DRL)?

Deep RL is a surprisingly effective combination of deep learning and 
RL that has shown remarkable results in a variety of tasks. For example, 
DRL has won game competitions such as Go (Alpha Go versus world cham-
pion Lee Sedol) and even prevailed in the complexity of StarCraft (Alpha-
Star of DeepMind) and Dota. 

With the release of ELMo and BERT in 2018 (discussed earlier in this 
chapter), DRL made significant advances in NLP with these toolkits, sur-
passing previous benchmarks in NLP.



234 • Python 3 for Machine Learning

Google released the Dopamine toolkit for DRL, which is downloadable 
here from GitHub: https://github.com/google/dopamine.

The keras-rl toolkit supports state-of-the-art Deep RL algorithms in 
Keras, which are also designed for compatibility with OpenAI (discussed 
earlier in this chapter). This toolkit includes the following:

●■ Deep Q Learning (DQN) 
●■ Double DQN 
●■ Deep Deterministic Policy Gradient (DDPG) 
●■ Continuous DQN (CDQN or NAF) 
●■ Cross-Entropy Method (CEM) 
●■ Dueling network DQN (Dueling DQN) 
●■ Deep SARSA 
●■ Asynchronous Advantage Actor-Critic (A3C) 
●■ Proximal Policy Optimization Algorithms (PPO)

Please keep in mind that the details of the algorithms in the preceding 
list require a decent understanding of RL. The keras-rl toolkit is down-
loadable here from GitHub: https://github.com/keras-rl/keras-rl

7.14 Summary

This chapter introduced you to NLP, along with some code samples in 
Keras, as well as NLU and NLG. In addition, you learned about some basic 
concepts in NLP, such as n-grams, BoW, tf-idf, and word embeddings.

Then you got an introduction to RL, along with a description of the 
types of tasks that are well-suited to RL. You will learn about the nchain 
task and the epsilon-greedy algorithm that can solve problems that you can-
not solve using a “pure” greedy algorithm. You also learned about the Bell-
man equation, which is a cornerstone of RL.

Next, you were exposed to the TF-Agents toolkit from Google, deep 
RL (deep learning combined with RL), and the Google Dopamine toolkit.

Congratulations! You have reached the end of this book, which has cov-
ered many ML concepts. You also learned about Keras, as well as linear 
regression, logistic regression, and deep learning. You are now in a good 
position to delve further into ML algorithms or proceed with deep learning, 
and good luck in your journey!



A P P E N D I XA

●●  What Are Regular Expressions?
●●  Meta Characters in Python
●●  Character Sets in Python
●●  Character Classes in Python
●●  Matching Character Classes with the re Module
●●  Using the re.match() Method
●●  Options for the re.match() Method
●●  Matching Character Classes with the re.search() Method
●●  Matching Character Classes with the findAll()Method
●●  Additional Matching Function for Regular Expressions
●●  Grouping with Character Classes in Regular Expressions
●●  Using Character Classes in Regular Expressions
●●  Modifying Text Strings with the re Module
●●  Splitting Text Strings with the re.split() Method
●●  Splitting Text Strings Using Digits and Delimiters
●●  Substituting Text Strings with the re.sub()Method
●●  Matching the Beginning and the End of Text Strings
●●  Compilation Flags
●●  Compound Regular Expressions

INTRODUCTION TO 
REGULAR EXPRESSIONS



236 • Python 3 for Machine Learning

This appendix introduces you to regular expressions, which is a very 
powerful language feature in Python. Since regular expressions are avail-
able in other programming languages (such as JavaScript and Java), the 
knowledge that you gain from the material in this appendix will be useful 
to you outside of Python. This appendix contains a mixture of code blocks 
and complete code samples, with varying degrees of complexity, that are 
suitable for beginners as well as people who have had some exposure to 
regular expressions. In fact, you have probably used (albeit simple) regular 
expressions in a command line on a laptop, whether it be Windows, Unix, 
or Linux-based systems. In this appendix you will learn how to define and 
use more complex regular expressions than the regular expressions that you 
have used from the command line. Recall that in Chapter 1 you learned 
about some basic metacharacters, and you can use them as part of regular 
expressions in order to perform sophisticated search-and-replace opera-
tions involving text strings and text files.

The first part of this appendix shows you how to define regular expressions 
with digits and letters (uppercase as well as lowercase), and also how to use 
character classes in regular expressions. You will also learn about character sets 
and character classes. The second portion discusses the Python re module, 
which contains several useful methods, such as the re.match() method for 
matching groups of characters, the re.search() method to perform search-
es in character strings, and the findAll() method. You will also learn how to 
use character classes (and how to group them) in regular expressions.

The final portion of this appendix contains an assortment of code samples, 
such as modifying text strings, splitting text strings with the re.split() 
method, and substituting text strings with the re.sub() method.

As you read the code samples in this appendix, some concepts and fac-
ets of regular expressions might make you feel overwhelmed with the den-
sity of the material if you are a novice. However, practice and repetition will 
help you become more comfortable with regular expressions.

●●  Counting Character Types in a String
●●  Regular Expressions and Grouping
●●  Simple String Matches
●●  Additional Topics for Regular Expressions
●●  Summary
●●  Exercises



introduction to reguLar exPressions • 237

Finally, please keep in mind that the code samples were originally writ-
ten for Python 2.7.5, which means that you might encounter some code 
samples that need to be updated to work in Python 3.x.

A.1 What Are Regular Expressions?

Regular expressions are referred to as REs, or regexes, or regex patterns, 
and they enable you to specify expressions that can match specific “parts” of 
a string. For instance, you can define a regular expression to match a single 
character or digit, a telephone number, a zip code, or an email address. You 
can use metacharacters and character classes (defined in the next section) as 
part of regular expressions to search text documents for specific patterns. As 
you learn how to use RE you will find other ways to use them as well.

The re module (added in Python 1.5) provides Perl-style regular ex-
pression patterns. Note that earlier versions of Python provided the regex 
module that was removed in Python 2.5. The re module provides an assort-
ment of methods (discussed later in this appendix) for searching text strings 
or replacing text strings, which is similar to the basic search and/or replace 
functionality that is available in word processors (but usually without regu-
lar expression support). The re module also provides methods for splitting 
text strings based on regular expressions.

Before delving into the methods in the re module, you need to learn about 
metacharacters and character classes, which are the topic of the next section.

A.2 Metacharacters in Python

Python supports a set of metacharacters, most of which are the same 
as the metacharacters in other scripting languages such as Perl, as well as 
programming languages such as JavaScript and Java. The complete list of 
metacharacters in Python is here:

. ^ $ * + ? { } [ ] \ | ( )

The meaning of the preceding metacharacters is here:
? (matches 0 or 1): the expression a? matches the string a (but not ab)
* (matches 0 or more): the expression a* matches the string aaa (but 

not baa)
+ (matches 1 or more): the expression a+ matches aaa (but not baa)
^ (beginning of line): the expression ^[a] matches the string abc (but 

not bc)
$ (end of line): [c]$ matches the string abc (but not cab)



238 • Python 3 for Machine Learning

. (a single dot): matches any character (except newline)

Sometimes you need to match the metacharacters themselves rather 
than their representation, which can be done in two ways. The first way 
involves “escaping” their symbolic meaning with the backslash (“\”) char-
acter. Thus, the sequences \?, \*, \+, \^, \$, and \. represent the 
literal characters instead of their symbolic meaning. You can also “escape” 
the backslash character with the sequence “\\”. If you have two consecu-
tive backslash characters, you need an additional backslash for each of 
them, which means that “\\\\” is the “escaped” sequence for “\\”.

The second way is to list the metacharacters inside a pair of square 
brackets. For example, [+?] treats the two characters “+” and “?” as lit-
eral characters instead of metacharacters. The second approach is obviously 
more compact and less prone to error (it’s easy to forget a backslash in a 
long sequence of metacharacters). As you might surmise, the methods in 
the re module support metacharacters.

Note: The “^” character that is to the left (and outside) of a sequence in 
square brackets (such as ^[A-Z]) “anchors” the regular expression to the 
beginning of a line, whereas the “^” character that is the first character in-
side a pair of square brackets negates the regular expression (such as [^A-Z]) 
inside the square brackets.

The interpretation of the “^” character in a regular expression depends 
on its location in a regular expression, as shown here:

●➡ “^[a-z]” means any string that starts with any lowercase letter
●➡ “[^a-z]” means any string that does not contain any lowercase letters
●➡  “^[^a-z]” means any string that starts with anything except a lowercase 

letter
●➡ “^[a-z]$” means a single lowercase letter
●➡  “^[^a-z]$” means a single character (including digits) that is not a 

lowercase letter

As a quick preview of the re module that is discussed later in this ap-
pendix, the re.sub() method enables you to remove characters (including 
metacharacters) from a text string. For example, the following code snippet 
removes all occurrences of a forward slash (“/”) and the plus sign (“+”) from 
the variable str:



introduction to reguLar exPressions • 239

>>> import re
>>> str  = "this string has a / and + in it"
>>> str2 = re.sub("[/]+","",str)
>>> print 'original:',str
original: this string has a / and + in it
>>> print 'replaced:',str2
replaced: this string has a  and + in it

We can easily remove occurrences of other metacharacters in a text 
string by listing them inside the square brackets, just as we have done in the 
preceding code snippet.

Listing A.1 displays the contents of RemoveMetaChars1.py that illus-
trates how to remove other metacharacters from a line of text.

Listing A.1: RemoveMetaChars1.py

import re

text1 = "meta characters ? and / and + and ."
text2 = re.sub("[/\.*?=+]+","",text1)

print 'text1:',text1
print 'text2:',text2

The regular expression in Listing A.1 might seem daunting if you are 
new to regular expressions, but let’s demystify its contents by examining 
the entire expression and then the meaning of each character. First of all, 
the term [/\.*?=+] matches a forward slash (“/”), a dot (“.”), a question 
mark (“?”), an equals sign (“=”), or a plus sign (“+”). Notice that the dot “.” 
is preceded by a backslash character “\”. Doing so “escapes” the meaning of 
the “.” metacharacter (which matches any single nonwhitespace character) 
and treats it as a literal character.

Thus the term [/\.*?=+]+ means “one or more occurrences of any of 
the metacharacters—treated as literal characters—inside the square brack-
ets.”

Consequently, the expression re.sub("[/\.*?=+]+","",text1)
matches any occurrence of the previously listed metacharacters, and then 
replaces them with an empty string in the text string specified by the vari-
able text1. The output from Listing A.1 is here:

text1: meta characters ? and / and + and .
text2: meta characters  and  and  and 



240 • Python 3 for Machine Learning

Later in this appendix you will learn about other functions in the re 
module that enable you to modify and split text strings.

A.3 Character Sets in Python

A single digit in base 10 is a number between 0 and 9 inclusive, which 
is represented by the sequence [0-9]. Similarly, a lowercase letter can be 
any letter between a and z, which is represented by the sequence [a-z]. 
An uppercase letter can be any letter between A and Z, which is repre-
sented by the sequence [A-Z].

The following code snippets illustrate how to specify sequences of dig-
its and sequences of character strings using a shorthand notation that is 
much simpler than specifying every matching digit:

●➡ [0-9] matches a single digit

●➡ [0-9][0-9] matches 2 consecutive digits

●➡ [0-9]{3} matches 3 consecutive digits

●➡ [0-9]{2,4} matches 2, 3, or 4 consecutive digits

●➡ [0-9]{5,} matches 5 or more consecutive digits

●➡ ^[0-9]+$ matches a string consisting solely of digits

You can define similar patterns using uppercase or lowercase letters in 
a way that is much simpler than explicitly specifying every lowercase letter 
or every uppercase letter:

●➡  [a-z][A-Z] matches a single lowercase letter that is followed by 1 up-
percase letter

●➡ [a-zA-Z] matches any upper- or lowercase letter

●➡ [2] Working with “^” and “\”

The purpose of the “^” character depends on its context in a regular 
expression. For example, the following expression matches a text string that 
starts with a digit:

^[0-9].



introduction to reguLar exPressions • 241

However, the following expression matches a text string that does not 
start with a digit because of the “^” metacharacter that is at the beginning 
of an expression in square brackets as well as the “^” metacharacter that 
is to the left (and outside) the expression in square brackets (which you 
learned in a previous note):

^[^0-9]

Thus, the “^” character inside a pair of matching square brackets (“[]”) 
negates the expression immediately to its right that is also located inside the 
square brackets.

The backslash (“\”) allows you to “escape” the meaning of a metacharac-
ter. Consequently, a dot “.” matches a single character (except for whitespace 
characters), whereas the sequence “\.” matches the dot “.” character. Other 
examples involving the backslash metacharacter are here

●➡ \.H.* matches the string .Hello

●➡ H.* matches the string Hello

●➡ H.*\. matches the string Hello.

●➡ .ell. matches the string Hello

●➡ .* matches the string Hello

●➡ \..* matches the string .Hello

A.4 Character Classes in Python

Character classes are convenient expressions that are shorter and sim-
pler than their “bare” counterparts that you saw in the previous section. 
Some convenient character sequences that express patterns of digits and 
letters are as follows:

●➡ \d matches a single digit

●➡ \w matches a single character (digit or letter) 

●➡ \s matches a single whitespace (space, newline, return, or tab)

●➡ \b matches a boundary between a word and a nonword



242 • Python 3 for Machine Learning

●➡ \n, \r, \t represent a newline, a return, and a tab, respectively

●➡ \  "escapes" any character

Based on the preceding definitions, \d+ matches one or more digits 
and \w+ matches one or more characters, both of which are more compact 
expressions than using character sets. In addition, we can reformulate the 
expressions in the previous section:

●➡ \d is the same as [0-9] and \D is the same as [^0-9]

●➡  \s is the same as [ \t\n\r\f\v] and it matches any nonwhitespace 
character, whereas 

●➡ \S is the opposite (it matches [^ \t\n\r\f\v])

●➡  \w is the same as [a-zA-Z0-9_] and it matches any alphanumeric 
character, whereas \W is the opposite (it matches [^a-zA-Z0-9_])

Additional examples are here:

●➡ \d{2} is the same as [0-9][0-9] 

●➡ \d{3} is the same as [0-9]{3} 

●➡ \d{2,4} is the same as [0-9]{2,4} 

●➡ \d{5,} is the same as [0-9]{5,}

●➡ ^\d+$ is the same as ^[0-9]+$

The curly braces (“{}”) are called quantifiers, and they specify the 
number (or range) of characters in the expressions that precede them.

A.5 Matching Character Classes with the re Module

The re module provides the following methods for matching and 
searching one or more occurrences of a regular expression in a text string:

●➡ match(): Determine if the RE matches at the beginning of the string

●➡  search(): Scan through a string, looking for any location where the 
RE matches

●➡  findall(): Find all substrings where the RE matches and return them 
as a list



introduction to reguLar exPressions • 243

●➡ finditer(): Find all substrings where the RE matches and return them 
as an iterator

●➡ Note: The match() function only matches pattern to the start of string.

The next section shows you how to use the match() function in the re 
module.

A.6 Using the re.match() Method

The re.match() method attempts to match RE pattern in a text string 
(with optional flags), and it has the following syntax:

re.match(pattern, string, flags=0)

The pattern parameter is the regular expression that you want to 
match in the string parameter. The flags parameter allows you to specify 
multiple flags using the bitwise OR operator that is represented by the pipe 
“|” symbol.

The re.match method returns a match object on success and None on 
failure. Use group(num) or groups() function of the match object to get 
a matched expression.

group(num=0):  This method returns entire match (or specific sub-
group num)

groups():  This method returns all matching subgroups in a tuple 
(empty if there weren't any) 

Note: The re.match() method only matches patterns from the start 
of a text string, which is different from the re.search() method discussed 
later in this appendix.

The following code block illustrates how to use the group() function 
in regular expressions:

>>> import re
>>> p = re.compile('(a(b)c)de')
>>> m = p.match('abcde')
>>> m.group(0)
'abcde'
>>> m.group(1)
'abc'
>>> m.group(2)



244 • Python 3 for Machine Learning

'b'

Notice that the higher numbers inside the group() method match 
more deeply nested expressions that are specified in the initial regular ex-
pression.

Listing A.2 displays the contents of MatchGroup1.py that illustrates 
how to use the group() function to match an alphanumeric text string and 
an alphabetic string.

Listing A.2: MatchGroup1.py

import re

line1 = 'abcd123'
line2 = 'abcdefg'
mixed = re.compile(r"^[a-z0-9]{5,7}$")
line3 = mixed.match(line1)
line4 = mixed.match(line2)

print 'line1:',line1
print 'line2:',line2
print 'line3:',line3
print 'line4:',line4
print 'line5:',line4.group(0)

line6 = 'a1b2c3d4e5f6g7'
mixed2 = re.compile(r"^([a-z]+[0-9]+){5,7}$")
line7 = mixed2.match(line6)

print 'line6:',line6
print 'line7:',line7.group(0)
print 'line8:',line7.group(1)

line9 = 'abc123fgh4567'
mixed3 = re.compile(r"^([a-z]*[0-9]*){5,7}$")
line10 = mixed3.match(line9)
print 'line9:',line9
print 'line10:',line10.group(0)

The output from Listing A.2 is here:

line1: abcd123
line2: abcdefg
line3: <_sre.SRE_Match object at 0x100485440>
line4: <_sre.SRE_Match object at 0x1004854a8>
line5: abcdefg



introduction to reguLar exPressions • 245

line6: a1b2c3d4e5f6g7
line7: a1b2c3d4e5f6g7
line8: g7
line9: abc123fgh4567
line10: abc123fgh4567

Notice that line3 and line7 involve two similar but different regular 
expressions. The variable mixed specifies a sequence of lowercase letters 
followed by digits, where the length of the text string is also between 5 and 
7. The string 'abcd123' satisfies all of these conditions.

On the other hand, mixed2 specifies a pattern consisting of one or 
more pairs, where each pair contains one or more lowercase letters fol-
lowed by one or more digits, where the length of the matching pairs is also 
between 5 and 7. In this case, the string 'abcd123'as well as the string 
'a1b2c3d4e5f6g7' both satisfy these criteria.

The third regular expression mixed3 specifies a pair such that each pair 
consists of zero or more occurrences of lowercase letters and zero or more 
occurrences of a digit, and also that the number of such pairs is between 5 
and 7. As you can see from the output, the regular expression in mixed3 
matches lowercase letters and digits in any order.

In the preceding example, the regular expression specified a range 
for the length of the string, which involves a lower limit of 5 and an upper 
limit of 7. 

However, you can also specify a lower limit without an upper limit (or 
an upper limit without a lower limit).

Listing A.3 displays the contents of MatchGroup2.py that illustrates 
how to use a regular expression and the group() function to match an 
alphanumeric text string and an alphabetic string.

Listing A.3: MatchGroup2.py

import re

alphas = re.compile(r"^[abcde]{5,}")

line1 = alphas.match("abcde").group(0)
line2 = alphas.match("edcba").group(0)
line3 = alphas.match("acbedf").group(0)
line4 = alphas.match("abcdefghi").group(0)
line5 = alphas.match("abcdefghi abcdef")



246 • Python 3 for Machine Learning

print 'line1:',line1
print 'line2:',line2
print 'line3:',line3
print 'line4:',line4
print 'line5:',line5

Listing A.3 initializes the variable alphas as a regular expression that 
matches any string that starts with one of the letters a through e, and con-
sists of at least 5 characters. The next portion of Listing A.3 initializes the 4 
variables line1, line2, line3, and line4 by means of the alphas RE 
that is applied to various text strings. These 4 variables are set to the first 
matching group by means of the expression group(0). 

The output from Listing A.3 is here:

line1: abcde
line2: edcba
line3: acbed
line4: abcde
line5: <_sre.SRE_Match object at 0x1004854a8>

Listing A.4 displays the contents of MatchGroup3.py that illustrates 
how to use a regular expression with the group() function to match words 
in a text string.

Listing A.4: MatchGroup3.py

import re

line = "Giraffes are taller than elephants";

matchObj = re.match( r'(.*) are(\.*)', line, re.M|re.I)

if matchObj:
   print "matchObj.group()  : ", matchObj.group()
   print "matchObj.group(1) : ", matchObj.group(1)
   print "matchObj.group(2) : ", matchObj.group(2)
else:
   print "matchObj does not match line:", line

The code in Listing A.4 produces the following output:

matchObj.group()  :  Giraffes are
matchObj.group(1) :  Giraffes
matchObj.group(2) :  

Listing A.4 contains a pair of delimiters separated by a pipe (“|”) sym-
bol. The first delimiter is re.M for “multi-line” (this example contains only 
a single line of text), and the second delimiter re.I means “ignore case” 



introduction to reguLar exPressions • 247

during the pattern matching operation. The re.match() method supports 
additional delimiters, as discussed in the next section.

A.7 Options for the re.match() Method 

The match() method supports various optional modifiers that affect 
the type of matching that will be performed. As you saw in the previous 
example, you can also specify multiple modifiers separated by the OR (“|”) 
symbol. Additional modifiers that are available for RE are shown here:

●➡ re.I performs case-insensitive matches (see previous section)

●➡ re.L  interprets words according to the current locale

●➡  re.M  makes $ match the end of a line and makes ^ match the start of 
any line

●➡ re.S  makes a period (“.”) match any character (including a newline)

●➡ re.U  interprets letters according to the Unicode character set

●➡  Experiment with these modifiers by writing Python code that uses them 
in conjunction with different text strings.

A.8  Matching Character Classes with the re.search() Method

As you saw earlier in this appendix, the re.match() method only 
matches from the beginning of a string, whereas the re.search() method 
can successfully match a substring anywhere in a text string. 

The re.search() method takes two arguments: a regular expression 
pattern and a string and then searches for the specified pattern in the given 
string. The search() method returns a match object (if the search was 
successful) or None. 

As a simple example, the following searches for the pattern tasty fol-
lowed by a 5 letter word:

import re

str = 'I want a tasty pizza'
match = re.search(r'tasty \w\w\w\w\w', str)

if match:
  ## 'found tasty pizza'



248 • Python 3 for Machine Learning

  print 'found', match.group()
else:
  print 'Nothing tasty here'

The output of the preceding code block is here:

found tasty pizza

The following code block further illustrates the difference between the 
match() method and the search() methods:

>>> import re
>>> print re.search('this', 'this is the one').span()
(0, 4)
>>> 
>>> print re.search('the', 'this is the one').span()
(8, 11)
>>> print re.match('this', 'this is the one').span()
(0, 4)
>>> print re.match('the', 'this is the one').span()
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'NoneType' object has no attribute 
'span'

A.9 Matching Character Classes with the findAll() Method

Listing A.5 displays the contents of the Python script RegEx1.py that 
illustrates how to define simple character classes that match various text 
strings.

Listing A.5: RegEx1.py

import re

str1 = "123456"
matches1 = re.findall("(\d+)", str1)
print 'matches1:',matches1

str1 = "123456"
matches1 = re.findall("(\d\d\d)", str1)
print 'matches1:',matches1

str1 = "123456"
matches1 = re.findall("(\d\d)", str1)
print 'matches1:',matches1



introduction to reguLar exPressions • 249

print
str2 = "1a2b3c456"
matches2 = re.findall("(\d)", str2)
print 'matches2:',matches2

print
str2 = "1a2b3c456"
matches2 = re.findall("\d", str2)
print 'matches2:',matches2

print
str3 = "1a2b3c456"
matches3 = re.findall("(\w)", str3)
print 'matches3:',matches3

Listing A.5 contains simple regular expressions (which you have seen 
already) for matching digits in the variables str1 and str2. The final code 
block of Listing A.5 matches every character in the string str3, effectively 
“splitting” str3 into a list where each element consists of one character. 
The output from Listing A.5 is here (notice the blank lines after the first 
three output lines):

matches1: ['123456']
matches1: ['123', '456']
matches1: ['12', '34', '56']

matches2: ['1', '2', '3', '4', '5', '6']

matches2: ['1', '2', '3', '4', '5', '6']

matches3: ['1', 'a', '2', 'b', '3', 'c', '4', '5', '6']

A.9.1 Finding Capitalized Words in a String
Listing A.6 displays the contents of the Python script FindCapital-

ized.py that illustrates how to define simple character classes that match 
various text strings.

Listing A.6: FindCapitalized.py

import re

str = "This Sentence contains Capitalized words"
caps = re.findall(r'[A-Z][\w\.-]+', str)

print 'str: ',str
print 'caps:',caps



250 • Python 3 for Machine Learning

Listing A.6 initializes the string variable str and the RE caps that 
matches any word that starts with a capital letter because the first portion 
of caps is the pattern [A-Z] that matches any capital letter between A and 
Z inclusive.

The output of Listing A.6 is here:

str:  This Sentence contains Capitalized words
caps: ['This', 'Sentence', 'Capitalized']

A.10 Additional Matching Function for Regular Expressions 

After invoking any of the methods match(), search(), findAll(), 
or finditer(), you can invoke additional methods on the “matching ob-
ject.” An example of this functionality using the match() method is here:

import re

p1 = re.compile('[a-z]+')
m1 = p1.match("hello")

In the preceding code block, the p1 object represents the compiled 
regular expression for one or more lowercase letters, and the “matching 
object” m1 object supports the following methods:

●➡ group() return the string matched by the RE

●➡ start() return the starting position of the match

●➡ end() return the ending position of the match

●➡  span() return a tuple containing the (start, end) positions of the match

As a further illustration, Listing A.7 displays the contents of Search-
Function1.py that illustrates how to use the search() method and the 
group() method.

Listing A.7: SearchFunction1.py

import re

line = "Giraffes are taller than elephants";

searchObj = re.search( r'(.*) are(\.*)', line, 
re.M|re.I)

if searchObj:



introduction to reguLar exPressions • 251

   print "searchObj.group()  : ", searchObj.group()
   print "searchObj.group(1) : ", searchObj.group(1)
   print "searchObj.group(2) : ", searchObj.group(2)
else:
   print "searchObj does not match line:", line

Listing A.7 contains the variable line that represents a text string and 
the variable searchObj is an RE involving the search() method and pair 
of pipe-delimited modifiers (discussed in more detail in the next section). 
If searchObj is not null, the if/else conditional code in Listing A.7 displays 
the contents of the three groups resulting from the successful match with 
the contents of the variable line. The output from Listing A.7 is here:

searchObj.group()  :  Giraffes are
searchObj.group(1) :  Giraffes
searchObj.group(2) : 

A.11 Grouping with Character Classes in Regular Expressions 

In addition to the character classes that you have seen earlier in this ap-
pendix, you can specify subexpressions of character classes.

Listing A.8 displays the contents of Grouping1.py that illustrates how 
to use the search() method.

Listing A.8: Grouping1.py

import re

p1 = re.compile('(ab)*')
print 'match1:',p1.match('ababababab').group()
print 'span1: ',p1.match('ababababab').span()

p2 = re.compile('(a)b')
m2 = p2.match('ab')
print 'match2:',m2.group(0)
print 'match3:',m2.group(1)

Listing A.8 starts by defining the RE p1 that matches zero or more 
occurrences of the string ab. The first print statement displays the result 
of using the match() function of p1 (followed by the group() function) 
against a string, and the result is a string. This illustrates the use of “method 
chaining,” which eliminates the need for an intermediate object (as shown 
in the second code block). The second print statement displays the result 



252 • Python 3 for Machine Learning

of using the match() function of p1, followed by applying the span() 
function, against a string. In this case the result is a numeric range (see fol-
lowing output).

The second part of Listing A.8 defines the RE p2 that matches an op-
tional letter a followed by the letter b. The variable m2 invokes the match 
method on p2 using the string ab. The third print statement displays the 
result of invoking group(0) on m2, and the fourth print statement dis-
plays the result of involving group(1) on m2. Both results are substrings of 
the input string ab. Recall that group(0) returns the highest level match 
that occurred, and group(1) returns a more “specific” match that occurred, 
such as one that involves the parentheses in the definition of p2. The higher 
the value of the integer in the expression group(n), the more specific the 
match.

The output from Listing A.8 is here:

match1: ababababab
span1:  (0, 10)
match2: ab
match3: a

A.12 Using Character Classes in Regular Expressions 

This section contains some examples that illustrate how to use charac-
ter classes to match various strings and also how to use delimiters in order 
to split a text string. For example, one common date string involves a date 
format of the form MM/DD/YY. Another common scenario involves re-
cords with a delimiter that separates multiple fields. Usually such records 
contain one delimiter, but as you will see, Python makes it very easy to split 
records using multiple delimiters.

A.12.1 Matching Strings with Multiple Consecutive Digits
Listing A.9 displays the contents of the Python script MatchPat-

terns1.py that illustrates how to define simple regular expressions in or-
der to split the contents of a text string based on the occurrence of one or 
more consecutive digits. 

Although the regular expressions \d+/\d+/\d+  and \d\d/\d\d/\
d\d\d\d both match the string 08/13/2014, the first regular expression 



introduction to reguLar exPressions • 253

matches more patterns than the second regular expression which is an 
“exact match” with respect to the number of matching digits that are al-
lowed.

Listing A.9: MatchPatterns1.py

import re

date1 = '02/28/2013'
date2 = 'February 28, 2013'

# Simple matching: \d+ means match one or more digits
if re.match(r'\d+/\d+/\d+', date1):
  print('date1 matches this pattern')
else:
  print('date1 does not match this pattern')

if re.match(r'\d+/\d+/\d+', date2):
  print('date2 matches this pattern')
else:
  print('date2 does not match this pattern')

The output from launching Listing A.9 is here:

date1 matches this pattern
date2 does not match this pattern

A.12.2 Reversing Words in Strings
Listing A.10 displays the contents of the Python script Reverse-

Words1.py that illustrates how to reverse a pair of words in a string.

Listing A.10: ReverseWords1.py

import re

str1 = 'one two'
match = re.search('([\w.-]+) ([\w.-]+)', str1)
str2 = match.group(2) + ' ' + match.group(1)
print 'str1:',str1
print 'str2:',str2

The output from Listing A.10 is here:

str1: one two
str2: two one



254 • Python 3 for Machine Learning

Now that you understand how to define regular expressions for digits 
and letters, let’s look at some more sophisticated regular expressions.

For example, the following expression matches a string that is any com-
bination of digits, uppercase letters, or lowercase letters (i.e., no special 
characters):

^[a-zA-Z0-9]$

Here is the same expression rewritten using character classes:

^[\w\W\d]$

A.13 Modifying Text Strings with the re Module

The Python re module contains several methods for modifying strings. 
The split() method uses a regular expression to "split" a string into a 
list. The sub() method finds all substrings where the regular expression 
matches, and then replaces them with a different string. The subn() per-
forms the same functionality as sub(), and also returns the new string and 
the number of replacements. The following subsections contain examples 
that illustrate how to use the functions split(), sub(), and subn() in 
regular expressions.

A.14 Splitting Text Strings with the re.split() Method

Listing A.11 displays the contents of the Python script RegEx2.py that 
illustrates how to define simple regular expressions in order to split the 
contents of a text string.

Listing A.11: RegEx2.py

import re

line1 = "abc def"
result1 = re.split(r'[\s]', line1)
print 'result1:',result1

line2 = "abc1,abc2:abc3;abc4"
result2 = re.split(r'[,:;]', line2)
print 'result2:',result2

line3 = "abc1,abc2:abc3;abc4 123 456"
result3 = re.split(r'[,:;\s]', line3)
print 'result3:',result3



introduction to reguLar exPressions • 255

Listing A.11 contains three blocks of code, each of which uses the 
split() method in the re module in order to tokenize three different 
strings. The first regular expression specifies a whitespace, the second regu-
lar expression specifies three punctuation characters, and the third regular 
expression specifies the combination of the first two regular expressions.

The output from launching RegEx2.py is here:

result1: ['abc', 'def']
result2: ['abc1', 'abc2', 'abc3', 'abc4']
result3: ['abc1', 'abc2', 'abc3', 'abc4', '123', '456']

A.15 Splitting Text Strings Using Digits and Delimiters

Listing A.12 displays the contents of SplitCharClass1.py that illus-
trates how to use regular expression consisting of a character class, the “.” 
character, and a whitespace to split the contents of two text strings.

Listing A.12: SplitCharClass1.py

import re

line1 = '1. Section one 2. Section two 3. Section three'
line2 = '11. Section eleven 12. Section twelve 13. 
Section thirteen'

print re.split(r'\d+\. ', line1)
print re.split(r'\d+\. ', line2)

Listing A.12 contains two text strings that can be split using the same 
regular expression '\d+\. '. Note that if you use the expression '\d\. ' 
only the first text string will split correctly. The result of launching Listing 
A.12 is here:

['', 'Section one ', 'Section two ', 'Section three']
['', 'Section eleven ', 'Section twelve ', 'Section 
thirteen']

A.16 Substituting Text Strings with the re.sub() Method

Earlier in this appendix you saw a preview of using the sub() method 
to remove all the metacharacters in a text string. The following code block 
illustrates how to use the re.sub() method to substitute alphabetic char-
acters in a text string.



256 • Python 3 for Machine Learning

>>> import re
>>> p = re.compile( '(one|two|three)')
>>> p.sub( 'some', 'one book two books three books')
'some book some books some books'
>>> 
>>> p.sub( 'some', 'one book two books three books', 
count=1)
'some book two books three books'

The following code block uses the re.sub() method in order to insert 
a line feed after each alphabetic character in a text string:

>>> line = 'abcde'
>>> line2 = re.sub('', '\n', line)
>>> print 'line2:',line2
line2: 
a
b
c
d
e

A.17 Matching the Beginning and the End of Text Strings

Listing A.13 displays the contents of the Python script RegEx3.py that 
illustrates how to find substrings using the startswith() function and 
endswith() function.

Listing A.13: RegEx3.py
import re

line2 = "abc1,Abc2:def3;Def4"
result2 = re.split(r'[,:;]', line2)

for w in result2:
  if(w.startswith('Abc')):
    print 'Word starts with Abc:',w
  elif(w.endswith('4')):
    print 'Word ends with 4:',w
  else:
    print 'Word:',w

Listing A.13 starts by initializing the string line2 (with punctuation 
characters as word delimiters) and the RE result2 that uses the split() 



introduction to reguLar exPressions • 257

function with a comma, colon, and semicolon as “split delimiters” in order 
to tokenize the string variable line2.

The output after launching Listing A.13 is here:

Word: abc1
Word starts with Abc: Abc2
Word: def3
Word ends with 4: Def4

Listing A.14 displays the contents of the Python script MatchLines1.
py that illustrates how to find substrings using character classes.

Listing A.14 MatchLines1.py

import re

line1 = "abcdef"
line2 = "123,abc1,abc2,abc3"
line3 = "abc1,abc2,123,456f"

if re.match("^[A-Za-z]*$", line1):
  print 'line1 contains only letters:',line1

# better than the preceding snippet:
line1[:-1].isalpha()
  print 'line1 contains only letters:',line1

if re.match("^[\w]*$", line1):
  print 'line1 contains only letters:',line1

if re.match(r"^[^\W\d_]+$", line1, re.LOCALE):
  print 'line1 contains only letters:',line1
print

if re.match("^[0-9][0-9][0-9]", line2):
  print 'line2 starts with 3 digits:',line2

if re.match("^\d\d\d", line2):
  print 'line2 starts with 3 digits:',line2
print

# does not work: fixme
if re.match("[0-9][0-9][0-9][a-z]$", line3):
  print 'line3 ends with 3 digits and 1 char:',line3

# does not work: fixme
if re.match("[a-z]$", line3):



258 • Python 3 for Machine Learning

  print 'line3 ends with 1 char:',line3

Listing A.14 starts by initializing 3 string variables line1, line2, and 
line3. The first RE contains an expression that matches any line contain-
ing uppercase or lowercase letters (or both):

if re.match("^[A-Za-z]*$", line1):

The following two snippets also test for the same thing:

line1[:-1].isalpha()

The preceding snippet starts from the right-most position of the string 
and checks if each character is alphabetic.

The next snippet checks if line1 can be tokenized into words (a word 
contains only alphabetic characters):

if re.match("^[\w]*$", line1):

The next portion of Listing A.14 checks if a string contains three con-
secutive digits:

if re.match("^[0-9][0-9][0-9]", line2):
  print 'line2 starts with 3 digits:',line2

if re.match("^\d\d\d", line2):

The first snippet uses the pattern [0-9] to match a digit, whereas the 
second snippet uses the expression \d to match a digit.

The output from Listing A.14 is here:

line1 contains only letters: abcdef
line1 contains only letters: abcdef
line1 contains only letters: abcdef
line1 contains only letters: abcdef

line2 starts with 3 digits: 123,abc1,abc2,abc3
line2 starts with 3 digits: 123,abc1,abc2,abc3

A.18 Compilation Flags

Compilation flags modify the manner in which regular expressions 
work. Flags are available in the re module as a long name (such as IGNO-
RECASE) and a short, one-letter form (such as I). The short form is the 
same as the flags in pattern modifiers in Perl. You can specify multiple 



introduction to reguLar exPressions • 259

flags by using the "|" symbol. For example, re.I | re.M sets both the I 
and M flags.

You can check the online Python documentation regarding all the avail-
able compilation flags in Python.

A.19 Compound Regular Expressions

Listing A.15 displays the contents of MatchMixedCase1.py that illus-
trates how to use the pipe (“|”) symbol to specify two regular expressions in 
the same match() function.

Listing A.15: MatchMixedCase1.py

import re

line1 = "This is a line"
line2 = "That is a line"

if re.match("^[Tt]his", line1):
  print 'line1 starts with This or this:'
  print line1
else:
  print 'no match'

if re.match("^This|That", line2):
  print 'line2 starts with This or That:'
  print line2
else:
  print 'no match'

Listing A.15 starts with two string variables line1 and line2, followed 
by an if/else conditional code block that checks if line1 starts with the RE 
[Tt]his, which matches the string This as well as the string this. 

The second conditional code block checks if line2 starts with the 
string This or the string That. Notice the “^” metacharacter, which in this 
context anchors the RE to the beginning of the string. The output from 
Listing A.15 is here:

line1 starts with This or this:
This is a line
line2 starts with This or That:
That is a line



260 • Python 3 for Machine Learning

A.20 Counting Character Types in a String

You can use a regular expression to check whether a character is a digit, 
a letter, or some other type of character. Listing A.16 displays the contents 
of CountDigitsAndChars.py that performs this task.

Listing A.16: CountDigitsAndChars.py

import re

charCount  = 0
digitCount = 0
otherCount = 0

line1 = "A line with numbers: 12 345"

for ch in line1:
   if(re.match(r'\d', ch)):
     digitCount = digitCount + 1
   elif(re.match(r'\w', ch)):
     charCount = charCount + 1
   else:
     otherCount = otherCount + 1

print 'charcount:',charCount
print 'digitcount:',digitCount
print 'othercount:',otherCount

Listing A.16 initializes three numeric counter-related variables, fol-
lowed by the string variable line1. The next part of Listing A.16 contains 
a for loop that processes each character in the string line1. The body of 
the for loop contains a conditional code block that checks whether the cur-
rent character is a digit, a letter, or some other nonalphanumeric character. 
Each time there is a successful match, the corresponding “counter” variable 
is incremented.

The output from Listing A.16 is here:

charcount: 16
digitcount: 5
othercount: 6

A.21 Regular Expressions and Grouping

You can also “group” sub-expressions and even refer to them symboli-
cally. For example, the following expression matches zero or 1 occurrences 
of 3 consecutive letters or digits:



introduction to reguLar exPressions • 261

^([a-zA-Z0-9]{3,3})?

The following expression matches a telephone number (such as 650-
555-1212) in the USA:

^\d{3,3}[-]\d{3,3}[-]\d{4,4}

The following expression matches a zip code (such as 67827 or 94343-
04005) in the USA:

^\d{5,5}([-]\d{5,5})?

The following code block partially matches an email address:

str = 'john.doe@google.com'  
  match = re.search(r'\w+@\w+', str)
  if match:
    print match.group()  ## 'doe@google'

Exercise: Use the preceding code block as a starting point in order to 
define a regular expression for email addresses.

A.22 Simple String Matches

Listing A.17 displays the contents of the Python script RegEx4.py that 
illustrates how to define regular expressions that match various text strings.

Listing A.17: RegEx4.py

import re

searchString = "Testing pattern matches"

expr1 = re.compile( r"Test" )
expr2 = re.compile( r"^Test" )
expr3 = re.compile( r"Test$" )
expr4 = re.compile( r"\b\w*es\b" )
expr5 = re.compile( r"t[aeiou]", re.I )

if expr1.search( searchString ):
   print '"Test" was found.'

if expr2.match( searchString ):
   print '"Test" was found at the beginning of the 
line.'

if expr3.match( searchString ):
   print '"Test" was found at the end of the line.'

result = expr4.findall( searchString )



262 • Python 3 for Machine Learning

if result:
   print 'There are %d words(s) ending in "es":' % \
      ( len( result ) ),

   for item in result:
      print " " + item,

print

result = expr5.findall( searchString )
if result:
   print 'The letter t, followed by a vowel, occurs %d 
times:' % \
      ( len( result ) ),

   for item in result:
      print " "+item,

print

Listing A.17 starts with the variable searchString that specifies a 
text string, followed by the REs expr1, expr2, expr3. The RE expr1 
matches the string Test that occurs anywhere in searchString, whereas 
expr2 matches Test if it occurs at the beginning of searchString, and 
expr3 matches Test if it occurs at the end of searchString. The RE 
expr matches words that end in the letters es, and the RE expr5 matches 
the letter t followed by a vowel.

The output from Listing A.17 is here:

"Test" was found.
"Test" was found at the beginning of the line.
There are 1 words(s) ending in "es":  matches
The letter t, followed by a vowel, occurs 3 times: 
Te ti te

A.23 Additional Topics for Regular Expressions

In addition to the Python-based search/replace functionality that you 
have seen in this appendix, you can also perform a greedy search and sub-
stitution. Perform an Internet search to learn what these features are and 
how to use them in Python code.



introduction to reguLar exPressions • 263

A.24 Summary

This appendix showed you how to create various types of regular ex-
pressions. First you learned how to define primitive regular expressions 
using sequences of digits, lowercase letters, and uppercase letters. Next you 
learned how to use character classes, which are more convenient and sim-
pler expressions that can perform the same functionality. You also learned 
how to use the Python re library in order to compile regular expressions 
and then use them to see if they match substrings of text strings.

A.25 Exercises

Exercise 1: Given a text string, find the list of words (if any) that start 
or end with a vowel, and treat upper- and lowercase vowels as distinct let-
ters. Display this list of words in alphabetical order, and also in descending 
order based their frequency.

Exercise 2: Given a text string, find the list of words (if any) that con-
tain lowercase vowels or digits or both, but no uppercase letters. Display 
this list of words in alphabetical order, and also in descending order based 
their frequency.

Exercise 3: There is a spelling rule in English specifying that “the 
letter i is before e, except after c,” which means that “receive” is correct 
but “recieve” is incorrect. Write a Python script that checks for incorrectly 
spelled words in a text string.

Exercise 4: Subject pronouns cannot follow a preposition in the Eng-
lish language. Thus, “between you and me” and “for you and me” are cor-
rect, whereas “between you and I” and “for you and I” are incorrect. Write a 
Python script that checks for incorrect grammar in a text string, and search 
for the prepositions “between,” “for,” and “with.” In addition, search for the 
subject pronouns “I,” “you,” “he,” and “she.” Modify and display the text 
with the correct grammar usage.

Exercise 5: Find the words in a text string whose length is at most 4 
and then print all the substrings of those characters. For example, if a text 
string contains the word “text,” print the strings “t,” “te,” “tex,” and “text.”





A P P E N D I XB

●●  What is Keras?
●●  Creating a Keras-based Model
●●  Keras and Linear Regression
●●  Keras, MLPs, and MNIST
●●  Keras, CNNs, and cifar10
●●  Resizing Images in Keras
●●  Keras and Early Stopping (1)
●●  Keras and Early Stopping (2)
●●  Keras and Metrics
●●  Saving and Restoring Keras Models
●●  Summary

INTRODUCTION TO KERAS

This appendix introduces you to Keras, along with code samples that 
illustrate how to define basic neural networks as well as and deep neural 
networks with various datasets with as MNIST and Cifar10.

The first part of this appendix briefly discusses some of the important 
namespaces (such as tf.keras.layers) and their contents, as well as a 
simple Keras-based model.

The second section contains an example of performing linear regres-
sion with Keras and a simple CSV file. You will also see a Keras-based 
MLP neural network that is trained on the MNIST dataset.



266 • Python 3 for Machine Learning

The third section contains a simple example of training a neural net-
work with the cifar10 dataset. This code sample is similar to training a neu-
ral network on the MNIST dataset, and requires a very small code change. 

The final section contains two examples of Keras-based models that 
perform “early stopping,” which is convenient when the model exhibits 
minimal improvement (that is specified by you) during the training process.

B.1 What is Keras? 

If you are already comfortable with Keras, you can skim this section to 
learn about the new namespaces and what they contain, and then proceed 
to the next section that contains details for creating a Keras-based model.

If you are new to Keras, you might be wondering why this section is 
included in this appendix. First, Keras is well-integrated into TF 2, and 
it’s in the tf.keras namespace. Second, Keras is well-suited for defining 
models to solve a myriad of tasks, such as linear regression and logistic re-
gression, as well as deep learning tasks involving CNNs, RNNs, and LSTMs 
that are discussed in the appendix. 

The next several subsections contain lists of bullet items for various 
Keras-related namespaces, and they will be very familiar if you have 
worked with TF 1.x. If you are new to TF 2, you’ll see examples of some of 
the classes in subsequent code samples.

B.1.1 Working with Keras Namespaces in TF 2
TF 2 provides the tf.keras namespace, which in turn contains the 

following namespaces:

●■ tf.keras.layers

●■ tf.keras.models

●■ tf.keras.optimizers

●■ tf.keras.utils

●■ tf.keras.regularizers 

The preceding namespaces contain various layers in Keras models, dif-
ferent types of Keras models, optimizers (Adam et al.), utility classes, and 
regularizers (such as L1 and L2), respectively.



introduction to Keras • 267

Currently there are three ways to create Keras-based models:

●■ The sequential API

●■ The functional API

●■ The model API

The Keras-based code samples in this book use primarily the sequen-
tial API (it’s the most intuitive and straightforward). The sequential API 
enables you to specify a list of layers, most of which are available in the 
tf.keras.layers namespace (discussed later).

The Keras-based models that use the functional API involve specifying 
layers that are passed as function-like elements in a pipeline-like fashion. 
Although the functional API provides some additional flexibility, you will 
probably use the sequential API to define Keras-based models if you are 
a TF 2 beginner.

The model-based API provides the greatest flexibility, and it involves 
defining a Python class that encapsulates the semantics of your Keras 
model. This class is a subclass of the tf.model.Model class, and you 
must implement the two methods __init__ and call in order to define a 
Keras model in this subclass. 

Perform an online search for more details regarding the functional API 
and the model API.

B.1.2 Working with the tf.keras.layers Namespace
The most common (and also the simplest) Keras-based model is the 

Sequential() class that is in the tf.keras.models namespace. This 
model is comprised of various layers that belong to the tf.keras.layers 
namespace, as shown here:

●■ tf.keras.layers.Conv2D()

●■ tf.keras.layers.MaxPooling2D()

●■ tf.keras.layers.Flatten()

●■ tf.keras.layers.Dense()

●■ tf.keras.layers.Dropout()

●■ tf.keras.layers.BatchNormalization()



268 • Python 3 for Machine Learning

●■ tf.keras.layers.embedding()

●■ tf.keras.layers.RNN()

●■ tf.keras.layers.LSTM()

●■ tf.keras.layers.Bidirectional (ex: BERT)

The Conv2D() and MaxPooling2D() classes are used in Keras-based 
models for CNNs, which are discussed in Chapter 5. Generally speaking, 
the next six classes in the preceding list can appear in models for CNNs as 
well as models for machine learning. The RNN() class is for simple RNNS 
and the LSTM class is for LSTM-based models.  The Bidirectional() 
class is a bidirectional LSTM that you will often see in models for solv-
ing natural language processing (NLP) tasks. Two very important NLP 
frameworks that use bidirectional LSTMs were released as open source (on 
GitHub) in 2018: ELMo from Facebook and BERT from Google. 

B.1.3 Working with the tf.keras.activations Namespace
Machine learning and deep learning models require activation functions. 

For Keras-based models, the activation functions are in the tf.keras.
activations namespace, some of which are listed here:

●■ tf.keras.activations.relu

●■ tf.keras.activations.selu

●■ tf.keras.activations.linear

●■ tf.keras.activations.elu

●■ tf.keras.activations.sigmoid

●■ tf.keras.activations.softmax

●■ tf.keras.activations.softplus

●■ tf.keras.activations.tanh 

●■ Others …

The ReLU/SELU/ELU functions are closely related, and they often 
appear in artificial neural networks (ANNs) and CNNs. Before the relu() 
function became popular, the sigmoid() and tanh() functions were used 
in ANNs and CNNs. However, they are still important and they are used 
in various gates in GRUs and LSTMs. The softmax() function is typically 



introduction to Keras • 269

used in the pair of layers consisting of the right-most hidden layer and the 
output layer. 

B.1.4 Working with the keras.tf.datasets Namespace
For your convenience, TF 2 provides a set of built-in datasets in the 

tf.keras.datasets namespace, some of which are listed here:

●■ tf.keras.datasets.boston_housing

●■ tf.keras.datasets.cifar10

●■ tf.keras.datasets.cifar100

●■ tf.keras.datasets.fashion_mnist

●■ tf.keras.datasets.imdb

●■ tf.keras.datasets.mnist

●■ tf.keras.datasets.reuters

The preceding datasets are popular for training models with small da-
tasets. The mnist dataset and fashion_mnist dataset are both popular 
when training CNNs, whereas the boston_housing dataset is popular for 
linear regression. The Titanic dataset is also popular for linear regression, 
but it’s not currently supported as a default dataset in the tf.keras.da-
tasets namespace.

B.1.5 Working with the tf.keras.experimental Namespace
The contrib namespace in TF 1.x has been deprecated in TF 2, and 

it's "successor" is the tf.keras.experimental namespace, which con-
tains the following classes (among others):

●■ tf.keras.experimental.CosineDecay

●■ tf.keras.experimental.CosineDecayRestarts

●■ tf.keras.experimental.LinearCosineDecay

●■ tf.keras.experimental.NoisyLinearCosineDecay

●■ tf.keras.experimental.PeepholeLSTMCell 

If you are a beginner, you probably won’t use any of the classes in the 
preceding list. Although the PeepholeLSTMCell class is a variation of the 
LSTM class, there are limited use cases for this class.



270 • Python 3 for Machine Learning

B.1.6 Working with Other tf.keras Namespaces
TF 2 provides a number of other namespaces that contain useful classes, 

some of which are listed here:

●■ tf.keras.callbacks     (early stopping)

●■ tf.keras.optimizers    (Adam et al)

●■ tf.keras.regularizers  (L1 and L2)

●■ tf.keras.utils         (to_categorical)

The tf.keras.callbacks namespace contains a class that you can 
use for “early stopping,” which is to say that it’s possible to terminate the 
training process if there is insufficient reduction in the cost function in two 
successive iterations.

The tf.keras.optimizers namespace contains the various optimiz-
ers that are available for working in conjunction with cost functions, which 
includes the popular Adam optimizer.

The tf.keras.regularizers namespace contains two popular 
regularizers: the L1 regularizer (also called LASSO in machine learn-
ing) and the L2 regularizer (also called the Ridge regularizer in ma-
chine learning). L1 is for mean absolute error (MAE) and L2 is for mean 
squared error (MSE). Both of these regularizers act as “penalty” terms 
that are added to the chosen cost function in order to reduce the “influ-
ence” of features in a machine learning model. Note that LASSO can 
drive values to zero, with the result that features are actually eliminated 
from a model, and hence is related to something called feature selection 
in machine learning.

The tf.keras.utils namespace contains an assortment of functions, 
including the to_categorical() function for converting a class vector 
into a binary class.

Although there are other namespaces in TF 2, the classes listed in all 
the preceding subsections will probably suffice for the majority of your 
tasks if you are a beginner in TF 2 and machine learning.

B.1.7 TF 2 Keras versus “Standalone” Keras
The original Keras is actually a specification, with various “backend” 

frameworks such as TensorFlow, Theano, and CNTK. Currently Keras 
standalone does not support TF 2, whereas the implementation of Keras 
in tf.keras has been optimized for performance. 



introduction to Keras • 271

Keras standalone will live in perpetuity in the keras.io package, 
which is discussed in detail at the Keras website: keras.io.

Now that you have a high-level view of the TF 2 namespaces for Keras 
and the classes that they contain, let’s find out how to create a Keras-based 
model, which is the subject of the next section.

B.2 Creating a Keras-based Model

The following list of steps describe the high-level sequence involved in 
creating, training, and testing a Keras model:

●➡ Step 1: Determine a model architecture (the number of hidden layers, 
various activation functions, and so forth).

●➡ Step 2: Invoke the compile() method.

●➡ Step 3: Invoke the fit() method to train the model.

●➡ Step 4: Invoke the evaluate() method to evaluate the trained model.

●➡ Step 5: Invoke the predict() method to make predictions.

Step 1 involves determining the values of a number of hyperparam-
eters, including:

●■ the number of hidden layers

●■ the number of neurons in each hidden layer

●■ the initial values of the weights of edges

●■ the cost function

●■ the optimizer

●■ the learning rate

●■ the dropout rate

●■ the activation function(s)

Steps 2 through 4 involve the training data, whereas step 5 involves the 
test data, which are included in the following more detailed sequence of 
steps for the preceding list: 

●■ Specify a dataset (if necessary, convert data to numeric data)

●■ Split the dataset into training data and test data (usually 80/20 split)

http://keras.io
http://keras.io


272 • Python 3 for Machine Learning

●■ Define the Keras model (such as the tf.keras.models.Sequen-
tial() API)

●■ Compile the Keras model (the compile() API)

●■ Train (fit) the Keras model (the fit() API)

●■ Make a prediction (the prediction() API)

Note that the preceding bullet items skip some steps that are part of a 
real Keras model, such as evaluating the Keras model on the test data, as 
well as dealing with issues such as overfitting.

The first bullet item states that you need a dataset, which can be as sim-
ple as a CSV file with 100 rows of data and just 3 columns (or even smaller). 
In general, a dataset is substantially larger: it can be a file with 1,000,000 
rows of data and 10,000 columns in each row. We’ll look at a concrete data-
set in a subsequent section.

Next, a Keras model is in the tf.keras.models namespace, and the 
simplest (and also very common) Keras model is tf.keras.models.
Sequential. In general, a Keras model contains layers that are in the 
tf.keras.layers namespace, such as tf.keras.Dense (which means 
that two adjacent layers are completely connected). 

The activation functions that are referenced in Keras layers are in the 
tf.nn namespace, such as the tf.nn.ReLU for the ReLU activation function.

Here’s a code block of the Keras model that’s described in the preced-
ing paragraphs (which covers the first four bullet points):

import tensorflow as tf

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(512, activation=tf.nn.relu),

])

We have three more bullet items to discuss, starting with the compila-
tion step. Keras provides a compile() API for this step, an example of 
which is here: 

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

Next we need to specify a training step, and Keras provides the 
fit() API (as you can see, it’s not called train()), an example of which 
is here:



introduction to Keras • 273

model.fit(x_train, y_train, epochs=5)

The final step is the prediction that is performed via the predict() 
API, an example of which is here:

pred = model.predict(x)

Keep in mind that the evaluate() method is used for evaluating an 
trained model, and the output of this method is accuracy or loss. On the 
other hand, the predict() method makes predictions from the input 
data.

Listing B.1 displays the contents of tf2_basic_keras.py that com-
bines the code blocks in the preceding steps into a single code sample.

Listing B.1: tf2_basic_keras.py

import tensorflow as tf

# NOTE: we need the train data and test data

model = tf.keras.models.Sequential([
  tf.keras.layers.Dense(1, activation=tf.nn.relu),
])

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)

Listing B.1 contains no new code, and we’ve essentially glossed over 
some of the terms such as the optimizer (an algorithm that is used in con-
junction with a cost function), the loss (the type of loss function) and the 
metrics (how to evaluate the efficacy of a model). 

The explanations for these details cannot be condensed into a few para-
graphs (alas), but the good news is that you can find a plethora of detailed 
online blog posts that discuss these terms.

B.3 Keras and Linear Regression

This section contains a simple example of creating a Keras-based 
model in order to solve a task involving linear regression: given a positive 
number representing kilograms of pasta, predict its corresponding price. 
Listing B.2 displays the contents of pasta.csv and Listing B.3 displays the 
contents of keras_pasta.py that performs this task. 



274 • Python 3 for Machine Learning

Listing B.2: pasta.csv

weight,price
5,30
10,45
15,70
20,80
25,105
30,120
35,130
40,140
50,150

Listing B.3: keras_pasta.py

import tensorflow as tf
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# price of pasta per kilogram
df = pd.read_csv("pasta.csv")

weight = df['weight']
price  = df['price']

model = tf.keras.models.Sequential([
   tf.keras.layers.Dense(units=1,input_shape=[1])
])

# MSE loss function and Adam optimizer
model.compile(loss='mean_squared_error',
              optimizer=tf.keras.optimizers.Adam(0.1))

# train the model
history = model.fit(weight, price, epochs=100, 
verbose=False)

# graph the # of epochs versus the loss
plt.xlabel('Number of Epochs')
plt.ylabel("Loss Values")
plt.plot(history.history['loss'])
plt.show()

print("Cost for 11kg:",model.predict([11.0]))
print("Cost for 45kg:",model.predict([45.0]))

Listing B.3 initializes the Pandas Dataframe df with the contents 
of the CSV file pasta.csv, and then initializes the variables weight and 
cost with the first and second columns, respectively, of df. 



introduction to Keras • 275

The next portion of Listing B.3 defines a Keras-based model that con-
sists of a single Dense layer. This model is compiled and trained, and then 
a graph is displayed that shows the number of epochs on the horizontal 
axis and the corresponding value of the loss function for the vertical axis. 
Launch the code in Listing B.3 and you will see the following output:

Cost for 11kg: [[41.727108]]
Cost for 45kg: [[159.02121]]

Figure B.1 displays a graph of epochs versus loss during the training 
process.

FIGURE B.1: A graph of epochs versus loss.

B.4 Keras, MLPs, and MNIST

This section contains a simple example of creating a Keras-based MLP 
neural network that will be trained with the MNIST dataset. Listing B.4 
displays the contents of keras_mlp_mnist.py that performs this task. 

Listing B.4: keras_mlp_mnist.py 

import tensorflow as tf
import numpy as np

# instantiate mnist and load data:



276 • Python 3 for Machine Learning

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()

# one-hot encoding for all labels to create 1x10
# vectors that are compared with the final layer:
y_train = tf.keras.utils.to_categorical(y_train)
y_test  = tf.keras.utils.to_categorical(y_test)

# resize and normalize the 28x28 images:
x_train = np.reshape(x_train, [-1, input_size])
x_train = x_train.astype('float32') / 255
x_test  = np.reshape(x_test, [-1, input_size])
x_test  = x_test.astype('float32') / 255

# initialize some hyper-parameters:
batch_size = 128
hidden_units = 218
dropout_rate = 0.3

# define a Keras based model:
model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Dense(hidden_units, input_
dim=input_size))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(dropout_rate))
model.add(tf.keras.layers.Dense(hidden_units))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dense(10))
model.add(tf.keras.layers.Activation('softmax'))

model.summary()

model.compile(loss='categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])

# train the network on the training data:
model.fit(x_train, y_train, epochs=10, batch_size=batch_
size)

# calculate and then display the accuracy:
loss, acc = model.evaluate(x_test, y_test, batch_
size=batch_size)
print("\nTest accuracy: %.1f%%" % (100.0 * acc))

Listing B.4 contains the usual import statements and then initializes 
the variable mnist as a reference to the MNIST dataset. The next portion 



introduction to Keras • 277

of Listing B.4 contains some typical code that populates the training dataset 
and the test dataset and converts the labels to numeric values via the tech-
nique known as “one-hot” encoding.

Next, several hyperparameters are initialized, and a Keras-based 
model is defined that specifies three Dense layers and the relu activation 
function. This model is compiled and trained, and the accuracy on the test 
dataset is computed and then displayed. Launch the code in Listing B.4 and 
you will see the following output:

Model: "sequential"
________________________________________________________
Layer (type) Output Shape Param #
========================================================
dense (Dense) (None, 256) 200960
________________________________________________________
activation (Activation) (None, 256) 0
________________________________________________________
dropout (Dropout) (None, 256) 0
________________________________________________________
dense_1 (Dense) (None, 256) 65792
________________________________________________________
activation_1 (Activation) (None, 256) 0
________________________________________________________
dense_2 (Dense) (None, 10) 2570
________________________________________________________
activation_2 (Activation) (None, 10) 0
========================================================
Total params: 269,322
Trainable params: 269,322
Non-trainable params: 0

Train on 60000 samples
Epoch 1/10
60000/60000 [==============================] - 4s 74us/
sample - loss: 0.4281 - accuracy: 0.8683
Epoch 2/10
60000/60000 [==============================] - 4s 66us/
sample - loss: 0.1967 - accuracy: 0.9417
Epoch 3/10
60000/60000 [==============================] - 4s 63us/
sample - loss: 0.1507 - accuracy: 0.9547
Epoch 4/10
60000/60000 [==============================] - 4s 63us/



278 • Python 3 for Machine Learning

sample - loss: 0.1298 - accuracy: 0.9600
Epoch 5/10
60000/60000 [==============================] - 4s 60us/
sample - loss: 0.1141 - accuracy: 0.9651
Epoch 6/10
60000/60000 [==============================] - 4s 66us/
sample - loss: 0.1037 - accuracy: 0.9677
Epoch 7/10
60000/60000 [==============================] - 4s 61us/
sample - loss: 0.0940 - accuracy: 0.9702
Epoch 8/10
60000/60000 [==============================] - 4s 61us/
sample - loss: 0.0897 - accuracy: 0.9718
Epoch 9/10
60000/60000 [==============================] - 4s 62us/
sample - loss: 0.0830 - accuracy: 0.9747
Epoch 10/10
60000/60000 [==============================] - 4s 64us/
sample - loss: 0.0805 - accuracy: 0.9748
10000/10000 [==============================] - 0s 39us/
sample - loss: 0.0654 - accuracy: 0.9797

Test accuracy: 98.0%

B.5 Keras, CNNs, and cifar10

This section contains a simple example of training a neural network 
with the cifar10 dataset. This code sample is similar to training a neural 
network on the MNIST dataset, and requires a very small code change. 

Keep in mind that images in MNIST have dimensions 28x28, whereas 
images in cifar10 have dimensions 32x32. Always ensure that images have 
the same dimensions in a dataset, otherwise the results can be unpredictable.

Note: Make sure that the images in your dataset have the same dimensions 

Listing B.5 displays the contents of keras_cnn_cifar10.py that 
trains a CNN with the cifar10 dataset. 

Listing B.5: keras_cnn_cifar10.py

import tensorflow as tf

batch_size = 32



introduction to Keras • 279

num_classes = 10
epochs = 100
num_predictions = 20

cifar10 = tf.keras.datasets.cifar10

# The data, split between train and test sets:
(x_train, y_train), (x_test, y_test) = cifar10. 
load_data()
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')

# Convert class vectors to binary class matrices
y_train = tf.keras.utils.to_categorical(y_train,  
num_classes)
y_test = tf.keras.utils.to_categorical(y_test,  
num_classes)

model = tf.keras.models.Sequential()
model.add(tf.keras.layers.Conv2D(32, (3, 3), 
padding='same', input_shape=x_train.shape[1:]))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Conv2D(32, (3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D 
(pool_size=(2, 2)))
model.add(tf.keras.layers.Dropout(0.25))

# you can also duplicate the preceding code block here

model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(512))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(num_classes))
model.add(tf.keras.layers.Activation('softmax'))

# use RMSprop optimizer to train the model
model.compile(loss='categorical_crossentropy',
              optimizer=opt,
              metrics=['accuracy'])

x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255



280 • Python 3 for Machine Learning

x_test /= 255

model.fit(x_train, y_train,
          batch_size=batch_size,
          epochs=epochs,
          validation_data=(x_test, y_test),
          shuffle=True)

# evaluate and display results from test data
scores = model.evaluate(x_test, y_test, verbose=1)
print('Test loss:', scores[0])
print('Test accuracy:', scores[1])

Listing B.5 contains the usual import statement and then initializes 
the variable cifar10 as a reference to the cifar10 dataset. The next sec-
tion of code is similar to the contents of Listing B.4: the main difference is 
that this Keras-based model defines a CNN instead of an MLP. Hence, the 
first layer is a convolutional layer, as shown here:

model.add(tf.keras.layers.Conv2D(32, (3, 3), 
padding='same',
                 input_shape=x_train.shape[1:]))

Note that a “vanilla” CNN involves a convolutional layer (which is the 
purpose of the preceding code snippet), followed by the ReLU activation 
function, and a max pooling layer, both of which are displayed in Listing 
B.5. In addition, the final layer of the Keras model is the softmax acti-
vation function, which converts the 10 numeric values in the “fully con-
nected” layer to a set of 10 non-negative numbers between 0 and 1, whose 
sum equals 1 (this gives us a probability distribution).

This model is compiled and trained, and then evaluated on the test data-
set. The last portion of Listing B.5 displays the value of the test-related loss 
and accuracy, both of which are calculated during the preceding evaluation 
step. Launch the code in Listing B.5 and you will see the following output 
(note that the code was stopped after partially completing the second epoch):

x_train shape: (50000, 32, 32, 3)
50000 train samples
10000 test samples 

Epoch 1/100
50000/50000 [==============================] - 285s 6ms/
sample - loss: 1.7187 - accuracy: 0.3802 - val_loss: 
1.4294 - val_accuracy: 0.4926



introduction to Keras • 281

Epoch 2/100
 1888/50000 [>.............................] - ETA: 4:39 
- loss: 1.4722 
- accuracy: 0.4635

B.6 Resizing Images in Keras

Listing B.6 displays the contents of keras_resize_image.py that 
illustrates how to resize an image in Keras. 

Listing B.6: keras_resize_image.py

import tensorflow as tf
import numpy as np
import imageio
import matplotlib.pyplot as plt

# use any image that has 3 channels
inp = tf.keras.layers.Input(shape=(None, None, 3))
out = tf.keras.layers.Lambda(lambda image: tf.image.
resize(image, (128, 128)))(inp)

model = tf.keras.Model(inputs=inp, outputs=out)
model.summary()

# read the contents of a PNG or JPG
X = imageio.imread('sample3.png')

out = model.predict(X[np.newaxis, ...])

fig, axes = plt.subplots(nrows=1, ncols=2)
axes[0].imshow(X)
axes[1].imshow(np.int8(out[0,...]))

plt.show()

Listing B.6 contains the usual import statements and then initializes 
the variable inp so that it can accommodate a color image, followed by 
the variable out that is the result of resizing inp so that it has three color 
channels. Next, inp and out are specified as the values of inputs and 
outputs, respectively, for the Keras model, as shown in this code snippet:

model = tf.keras.Model(inputs=inp, outputs=out)

Next, the variable X is initialized as a reference to the result of reading 
the contents of the image sample3.png. The remainder of Listing B.6 
involves displaying two images: the original image and the resized image. 



282 • Python 3 for Machine Learning

Launch the code in Listing B.6 and you will see a graph of an image and its 
resized image as shown in Figure B.2.

FIGURE B.2: A Graph of an image and its resized image.

B.7 Keras and Early Stopping (1)

After specifying the training set and the test set from a dataset, you also 
decide on the number of training epochs. A value that’s too large can lead to 
overfitting, whereas a value that's too small can lead to underfitting. More-
over, model improvement can diminish and subsequent training iterations 
become redundant.

Early stopping is a technique that allows you to specify a large value for 
the number of epochs, and yet the training will stop if the model perfor-
mance improvement drops below a threshold value.

There are several ways that you can specify early stopping, and they involve 
the concept of a callback function. Listing B.7 displays the contents of tf2_
keras_callback.py that performs early stopping via a callback mechanism.

Listing B.7: tf2_keras_callback.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))



introduction to Keras • 283

model.add(tf.keras.layers.Dense(10, activation='softmax'))

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

callbacks = [
  # stop training if "val_loss" stops improving for over 
2 epochs
  tf.keras.callbacks.EarlyStopping(patience=2, 
monitor='val_loss'),
  # write TensorBoard logs to the ./logs directory
  tf.keras.callbacks.TensorBoard(log_dir='./logs')
]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,
          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

Listing B.7 defines a Keras-based model with three hidden layers 
and then compiles the model. The next portion of Listing B.7 uses the 
np.random.random function in order to initialize the variables data, 
labels, val_data, and val_labels.

The interesting code involves the definition of the callbacks vari-
able that specifies tf.keras.callbacks.EarlyStopping class with 
a value of 2 for patience, which means that the model will stop train-
ing if there is an insufficient reduction in the value of val_loss. The 
callbacks variable includes the tf.keras.callbacks.Tensor-
Board class to specify the logs subdirectory as the location for the Ten-
sorBoard files.

Next, the model.fit() method is invoked with a value of 50 for epochs 
(shown in bold), followed by the model.evaluate() method. Launch the 
code in Listing B.7 and you will see the following output:

Epoch 1/50
1000/1000 [==============================] - 0s 354us/



284 • Python 3 for Machine Learning

sample - loss: 0.2452 - mae: 0.4127 - val_loss: 0.2517 - 
val_mae: 0.4205
Epoch 2/50
1000/1000 [==============================] - 0s 63us/
sample - loss: 0.2447 - mae: 0.4125 - val_loss: 0.2515 - 
val_mae: 0.4204
Epoch 3/50
1000/1000 [==============================] - 0s 63us/
sample - loss: 0.2445 - mae: 0.4124 - val_loss: 0.2520 - 
val_mae: 0.4209
Epoch 4/50
1000/1000 [==============================] - 0s 68us/
sample - loss: 0.2444 - mae: 0.4123 - val_loss: 0.2519 - 
val_mae: 0.4205
1000/1000 [==============================] - 0s 37us/
sample - loss: 0.2437 - mae: 0.4119
(1000, 10)

Notice that the code stopped training after four epochs, even though 50 
epochs are specified in the code.

B.8 Keras and Early Stopping (2)

The previous section contains a code sample with minimalistic func-
tionality with respect to the use of callback functions in Keras. However, 
you can also define a custom class that provides finer-grained functionality 
that uses a callback mechanism. 

Listing B.8 displays the contents of tf2_keras_callback2.py that 
performs early stopping via a callback mechanism (the new code is shown 
in bold).

Listing B.8: tf2_keras_callback2.py

import tensorflow as tf
import numpy as np

model = tf.keras.Sequential()
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(64, activation='relu'))
model.add(tf.keras.layers.Dense(10, 
activation='softmax'))



introduction to Keras • 285

model.compile(optimizer=tf.keras.optimizers.Adam(0.01),
              loss='mse',       # mean squared error
              metrics=['mae'])  # mean absolute error

data   = np.random.random((1000, 32))
labels = np.random.random((1000, 10))

val_data   = np.random.random((100, 32))
val_labels = np.random.random((100, 10))

class MyCallback(tf.keras.callbacks.Callback):
  def on_train_begin(self, logs={}):
    print("on_train_begin")

  def on_train_end(self, logs={}):
    print("on_train_begin")
    return

  def on_epoch_begin(self, epoch, logs={}):
    print("on_train_begin")
    return

  def on_epoch_end(self, epoch, logs={}):
    print("on_epoch_end")
    return

  def on_batch_begin(self, batch, logs={}):
    print("on_batch_begin")
    return

  def on_batch_end(self, batch, logs={}):
    print("on_batch_end")
    return

callbacks = [MyCallback()]

model.fit(data, labels, batch_size=32, epochs=50, 
callbacks=callbacks,
          validation_data=(val_data, val_labels))

model.evaluate(data, labels, batch_size=32)

The new code in Listing B.8 differs from Listing B.7 is limited to the 
code block that is displayed in bold. This new code defines a custom Python 
class with several methods, each of which is invoked during the appropri-
ate point during the Keras lifecycle execution. The six methods consists 



286 • Python 3 for Machine Learning

of three pairs of methods for the start event and end event associated with 
training, epochs, and batches, as listed here:

●■ def on_train_begin()

●■ def on_train_end()

●■ def on_epoch_begin()

●■ def on_epoch_end()

●■ def on_batch_begin()

●■ def on_batch_end()

The preceding methods contain just a print() statement in Listing 
B.8, and you can insert any code you wish in any of these methods. Launch 
the code in Listing B.8 and you will see the following output:

on_train_begin
on_train_begin
Epoch 1/50
on_batch_begin
on_batch_end
  32/1000 [..............................] - ETA: 4s - 
loss: 0.2489 - mae: 0.4170on_batch_begin
on_batch_end
on_batch_begin on_batch_end
// details omitted for brevity
on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
992/1000 [============================>.] - ETA: 0s - 
loss: 0.2468 - mae: 0.4138on_batch_begin
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 335us/
sample - loss: 0.2466 - mae: 0.4136 - val_loss: 0.2445 - 
val_mae: 0.4126
on_train_begin
Epoch 2/50
on_batch_begin
on_batch_end



introduction to Keras • 287

 32/1000 [..............................] - ETA: 0s - 
loss: 0.2465 - mae: 0.4133on_batch_begin
on_batch_end
on_batch_begin
on_batch_end
// details omitted for brevity 
on_batch_end
on_epoch_end
1000/1000 [==============================] - 0s 51us/
sample - loss: 0.2328 - mae: 0.4084 - val_loss: 0.2579 - 
val_mae: 0.4241
on_train_begin
 32/1000 [..............................] - ETA: 0s - 
loss: 0.2295 - mae: 0.4030
1000/1000 [==============================] - 0s 22us/
sample - loss: 0.2313 - mae: 0.4077
(1000, 10)

B.9 Keras and Metrics

Many Keras-based models only specify “accuracy” as the metric for 
evaluating a trained model, as shown here:

model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

However, there are many other built-in metrics available, each of which 
is encapsulated in a Keras class in the tf.keras.metrics namespace. A 
list of many such metrics are displayed in the following list:

●■ class Accuracy: how often predictions matches labels

●■ class BinaryAccuracy: how often predictions matches labels

●■ class CategoricalAccuracy: how often predictions matches labels

●■ class FalseNegatives: the number of false negatives

●■ class FalsePositives: the number of false positives

●■ class Mean: the (weighted) mean of the given values

●■ class Precision: the precision of the predictions wrt the labels

●■ class Recall: the recall of the predictions wrt the labels



288 • Python 3 for Machine Learning

●■ class TrueNegatives: the number of true negatives

●■ class TruePositives: the number of true positives 

Earlier in this chapter you learned about the "confusion matrix" that 
provides numeric values for TP, TN, FP, and FN; each of these values has 
a corresponding Keras class TruePositive, TrueNegative, False-
Positive, and FalseNegative, respectively. Perform an online search 
for code samples that use the metrics in the preceding list.

B.10 Saving and Restoring Keras Models

Listing B.9 displays the contents of tf2_keras_save_model.py that 
creates, trains, and saves a Keras-based model, then creates a new model 
that is populated with the data from the saved model.

Listing B.9: tf2_keras_save_model.py

import tensorflow as tf
import os
def create_model():
  model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(512, activation=tf.nn.relu),
    tf.keras.layers.Dropout(0.2),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
  ])

  model.compile(optimizer=tf.keras.optimizers.Adam(),
               loss=tf.keras.losses.sparse_categorical_ 
crossentropy, metrics=['accuracy'])
  return model

# Create a basic model instance
model = create_model()
model.summary()

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback
cp_callback = tf.keras.callbacks.
ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)



introduction to Keras • 289

# => model #1: create the first model
model = create_model()

mnist = tf.keras.datasets.mnist
(X_train, y_train),(X_test, y_test) = mnist.load_data()

X_train, X_test = X_train / 255.0, X_test / 255.0
print("X_train.shape:",X_train.shape)

model.fit(X_train, y_train,  epochs = 2,
          validation_data = (X_test,y_test),
          callbacks = [cp_callback])  # pass callback to 
training

# => model #2: create a new model and load saved model
model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".
format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".
format(100*acc))

Listing B.9 starts with the create_model() Python function that cre-
ates and compiles a Keras-based model. The next portion of Listing B.9 
defines the location of the file that will be saved as well as the checkpoint 
callback, as shown here:

checkpoint_path = "checkpoint/cp.ckpt"
checkpoint_dir = os.path.dirname(checkpoint_path)

# Create checkpoint callback
cp_callback = tf.keras.callbacks.
ModelCheckpoint(checkpoint_path,
save_weights_only=True, verbose=1)

The next portion of Listing B.9 trains the current model using the MNIST 
dataset, and also specifies cp_callback so that the model can be saved.

The final code block in Listing B.8 creates a new Keras-based model 
by invoking the Python method create_model() again, evaluating this 
new model on the test-related data, and displaying the value of the accu-
racy. Next, the model is loaded with the saved model weights via the load_
weights() API. The relevant code block is reproduced here:



290 • Python 3 for Machine Learning

model = create_model()
loss, acc = model.evaluate(X_test, y_test)
print("Untrained model, accuracy: {:5.2f}%".
format(100*acc))

model.load_weights(checkpoint_path)
loss,acc = model.evaluate(X_test, y_test)
print("Restored model, accuracy: {:5.2f}%".
format(100*acc))

Now launch the code in Listing B.9 and you will see the following output:

on_train_begin
Model: "sequential"
________________________________________________________
Layer (type) Output Shape Param #
========================================================
flatten (Flatten) (None, 784) 0
________________________________________________________
dense (Dense) (None, 512) 401920
________________________________________________________
dropout (Dropout) (None, 512) 0
________________________________________________________
dense_1 (Dense) (None, 10) 5130
========================================================
Total params: 407,050
Trainable params: 407,050
Non-trainable params: 0

Train on 60000 samples, validate on 10000 samples
Epoch 1/2
59840/60000 [============================>.] - ETA: 0s - 
loss: 0.2173 - accuracy: 0.9351  
Epoch 00001: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s 
168us/sample - loss: 0.2170 - accuracy: 0.9352 - val_
loss: 0.0980 - val_accuracy: 0.9696
Epoch 2/2
59936/60000 [============================>.] - ETA: 0s - 
loss: 0.0960 - accuracy: 0.9707 
Epoch 00002: saving model to checkpoint/cp.ckpt
60000/60000 [==============================] - 10s 
174us/sample - loss: 0.0959 - accuracy: 0.9707 - val_
loss: 0.0735 - val_accuracy: 0.9761



introduction to Keras • 291

10000/10000 [==============================] - 1s 86us/
sample - loss: 2.3986 - accuracy: 0.0777
Untrained model, accuracy:  7.77%
10000/10000 [==============================] - 1s 67us/
sample - loss: 0.0735 - accuracy: 0.9761
Restored model, accuracy: 97.61%

The directory where you launched this code sample contains a new 
subdirectory called checkpoint whose contents are shown here:

-rw-r--r--  1 owner  staff     1222 Aug 17 14:34 cp.ckpt.
index
-rw-r--r--  1 owner  staff  4886716 Aug 17 14:34 cp.ckpt.
data-00000-of-00001
-rw-r--r--  1 owner  staff       71 Aug 17 14:34 
checkpoint

B.11 Summary

This appendix introduced you to some of the features of Keras and 
an assortment of Keras-based code samples involving basic neural net-
works with the MNIST and Cifar10 datasets. You learned about some 
of the important namespaces (such as tf.keras.layers) and their 
contents.

Next, you saw an example of performing linear regression with Keras 
and a simple CSV file. Then you learned how to create a Keras-based MLP 
neural network that is trained on the MNIST dataset.

In addition, you saw examples of Keras-based models that perform 
“early stopping,” which is convenient when the model exhibits minimal im-
provement (that is specified by you) during the training process. 





A P P E N D I XC

●●  What is TF 2? 
●●  Other TF 2-based Toolkits
●●  TF 2 Eager Execution
●●  TF2 Tensors, Data Types, and Primitive Types
●●  Constants in TF 2 
●●  Variables in TF 2
●●  The tf.rank() API 
●●  The tf.shape() API 
●●  Variables in TF 2 (Revisited)
●●  What is @tf.function in TF 2?
●●  Working with @tf.print() in TF 2
●●  Arithmetic Operations in TF 2
●●  Caveats for Arithmetic Operations in TF 2 
●●  TF 2 and Built-in Functions
●●  Calculating Trigonometric Values in TF 2
●●  Calculating Exponential Values in TF 2
●●  Working with Strings in TF 2
●●  Working with Tensors and Operations in TF 2
●●  2nd Order Tensors in TF 2 (1)

INTRODUCTION TO TF 2



294 • Python 3 for Machine Learning

Welcome to TensorFlow 2! This chapter introduces you to various 
features of TensorFlow 2 (abbreviated as TF 2), as well as some of the 
TF 2 tools and projects that are covered under the TF 2 “umbrella.” 
You will see TF 2 code samples that illustrate new TF 2 features (such 
as tf.GradientTape and the @tf.function decorator), plus an assort-
ment of  code samples that illustrate how to write code “the TF 2 way.” 

Despite the simplicity of many topics in this chapter, they provide you 
with a foundation for TF 2. This chapter also prepares you for Chapter 2 
that delves into frequently used TF 2 APIs that you will encounter in other 
chapters of this book. 

Keep in mind that the TensorFlow 1.x releases are considered legacy 
code after the production release of TF 2. Google will provide only security 
related updates for TF 1.x (i.e., no new code development), and support 
TensorFlow 1.x for at least another year beyond the initial production re-
lease of TF 2. For your convenience, TensorFlow provides a conversion 
script to facilitate the automatic conversion of TensorFlow 1.x code to TF 2 
code in many cases (details provided later in this chapter). 

As you saw in the Preface, this chapter contains several sections regard-
ing TF 1.x, all of which are placed near the end of this chapter. If you do 
not have TF 1.x code, obviously these sections are optional (and they are 
labeled as such).

The first part of this chapter briefly discusses some TF 2 features and 
some of the tools that are included under the TF 2 “umbrella.” The second 
section of this chapter shows you how to write TF 2 code involving TF con-
stants and TF variables.

The third section digresses a bit: you will learn about the new TF 2 Py-
thon function decorator @tf.function that is used in many code samples 

●●  2nd Order Tensors in TF 2 (2)
●●  Multiplying Two 2nd Order Tensors in TF  
●●  Convert Python Arrays to TF Arrays
●●  Differentiation and tf.GradientTape in TF 2
●●  Examples of tf.GradientTape
●●  Google Colaboratory
●●  Other Cloud Platforms
●●  Summary



introduction to tf 2 • 295

in this chapter. Although this decorator is not always required, it’s important 
to become comfortable with this feature, and there are some nonintuitive 
caveats regarding its use that are discussed in this section.

The fourth section of this chapter shows you how to perform typical 
arithmetic operations in TF 2, how to use some of the built-in TF 2 func-
tions, and how to calculate trigonometric values. If you need to perform 
scientific calculations, see the code samples that pertain to the type of pre-
cision that you can achieve with floating point numbers in TF 2. This sec-
tion also shows you how to use for loops and how to calculate exponential 
values.

The fifth section contains TF 2 code samples involving arrays, such as 
creating an identity matrix, a constant matrix, a random uniform matrix, 
and a truncated normal matrix, along with an explanation about the differ-
ence between a truncated matrix and a random matrix. This section also 
shows you how to multiply 2nd order tensors in TF 2 and how to convert 
Python arrays to 2nd order tensors in TF 2. The sixth section contains code 
samples that illustrate how to use some of the new features of TF 2, such as 
tf.GradientTape. 

Although the TF 2 code samples in this book use Python 3.x, it’s pos-
sible to modify the code samples in order to run under Python 2.7. Also 
make note of the following convention in this book (and only this book): TF 
1.x files have a “tf_” prefix and TF 2 files have a “tf2_” prefix.

With all that in mind, the next section discusses a few details of TF 2, 
its architecture, and some of its features.

C.1 What is TF 2? 

TF 2 is an open source framework from Google that is the newest ver-
sion of TensorFlow. The TF 2 framework is a modern framework that’s well-
suited for machine learning and deep learning, and it’s available through an 
Apache license. Interestingly, TensorFlow surprised many people, perhaps 
even members of the TF team, in terms of the creativity and plethora of 
use cases for TF in areas such as art, music, and medicine. For a variety of 
reasons, the TensorFlow team created TF 2 with the goal of consolidating 
the TF APIs, eliminating duplication of APIs, enabling rapid prototyping, 
and making debugging an easier experience. 

There is good news if you are a fan of Keras: improvements in TF 2 are 
partially due to the adoption of Keras as part of the core functionality of 



296 • Python 3 for Machine Learning

TF 2. In fact, TF 2 extends and optimizes Keras so that it can take advan-
tage of all the advanced features in TF 2. 

If you work primarily with deep learning models (CNNs, RNNs, LST-
Ms, and so forth), you'll probably use some of the classes in the tf.keras 
namespace, which is the implementation of Keras in TF 2. Moreover, 
tf.keras.layers provides several standard layers for neural networks. 
As you'll see later, there are several ways to define Keras-based models, via 
the tf.keras.Sequential class, a functional style definition, and via a 
subclassing technique. Alternatively, you can still use lower-level operations 
and automatic differentiation if you wish to do so.

Furthermore, TF 2 removes duplicate functionality, provides a more 
intuitive syntax across APIs, and also compatibility throughout the TF 2 
ecosystem. TF 2 even provides a backward compatibility module called 
tf.compat.v1 (which does not include tf.contrib), and a conversion 
script tf_upgrade_v2 to help users migrate from TF 1.x to TF 2.

Another significant change in TF 2 is eager execution as the default mode 
(not deferred execution), with new features such as the @tf.function 
decorator and TF 2 privacy-related features. Here is a condensed list of 
some TF 2 features and related technologies:

●■ Support for tf.keras: a specification for high-level code for ML and DL

●■ TensorFlow.js v1.0: TF in modern browsers

●■  TensorFlow Federated: an open source framework for ML and decen-
tralized data

●■ Ragged tensors: nested variable-length (“uneven”) lists

●■  TensorFlow probability: probabilistic models combined with deep 
learning

●■ Tensor2Tensor: a library of DL models and datasets

TF 2 also supports a variety of programming languages and hardware 
platforms, including:

●■ Support for Python, Java, C++
●■ Desktop, server, mobile device (TF Lite)
●■ CPU/GPU/TPU support



introduction to tf 2 • 297

●■ Linux and Mac OS X support
●■ VM for Windows 

Navigate to the TF 2 home page, where you will find links to many re-
sources for TF 2: https://www.tensorflow.org 

C.1.1 TF 2 Use Cases
TF 2 is designed to solve tasks that arise in a plethora of use cases, some 

of which are listed here:

●■ image recognition

●■ computer vision

●■ voice/sound recognition

●■ time series analysis

●■ language detection

●■ language translation

●■ text-based processing 
●■ handwriting recognition

The preceding list of use cases can be solved in TF 1.x as well as TF 2, 
and in the latter case, the code tends to be simpler and cleaner compared 
to their TF 1.x counterpart.

C.1.2 TF 2 Architecture: The Short Version
TF 2 is written in C++ and supports operations involving primitive val-

ues and tensors (discussed later). The default execution mode for TF 1.x is 
deferred execution whereas TF 2 uses eager execution (think “immediate 
mode”). Although TF 1.4 introduced eager execution, the vast majority of 
TF 1.x code samples that you will find online use deferred execution. 

TF 2 supports arithmetic operations on tensors (i.e., multi-dimension-
al arrays with enhancements) as well as conditional logic, “for” loops, and 
“while” loops. Although it’s possible to switch between eager execution 
mode and deferred mode in TF 2, all the code samples in this book use 
eager execution mode. 

Data visualization is handled via TensorBoard (discussed in Chapter 2) 
that is included as part of TF 2. As you will see in the code samples in this 



298 • Python 3 for Machine Learning

book, TF 2 APIs are available in Python and can therefore be embedded in 
Python scripts.

So, enough already with the high-level introduction: let’s learn how to 
install TF 2, which is the topic of the next section.

C.1.3 TF 2 Installation
Install TensorFlow by issuing the following command from the com-

mand line:

pip install tensorflow==2.0.0

When a production release of TF 2 is available, you can issue the fol-
lowing command from the command line (which will be the most current 
version of TF 2):

pip install --upgrade tensorflow

If you want to install a specific version (let’s say version 1.13.1) of Ten-
sorFlow, type the following command:

pip install --upgrade tensorflow==1.13.1

You can also downgrade the installed version of TensorFlow. For ex-
ample, if you have installed version 1.13.1 and you want to install version 
1.10, specify the value 1.10 in the preceding code snippet. TensorFlow 
will uninstall your current version and install the version that you specified  
(i.e., 1.10).

As a sanity check, create a Python script with the following three line 
of code to determine the version number of TF that is installed on your 
machine:

import tensorflow as tf
print("TF Version:",tf.__version__)
print("eager execution:",tf.executing_eagerly())

Launch the preceding code and you ought to see something similar to 
the following output:

TF version: 2.0.0
eager execution: True

As a simple example of TF 2 code, place this code snippet in a text file:

import tensorflow as tf
print("1 + 2 + 3 + 4 =", tf.reduce_sum([1, 2, 3, 4]))



introduction to tf 2 • 299

Launch the preceding code from the command line and you should see 
the following output:

1 + 2 + 3 + 4 = tf.Tensor(10, shape=(), dtype=int32)

C.1.4 TF 2 and the Python REPL
In case you aren’t already familiar with the Python REPL (read-eval-

print-loop), it’s accessible by opening a command shell and then typing the 
following command:

python

As a simple illustration, access TF 2-related functionality in the REPL 
by importing the TF 2 library as follows:

>>> import tensorflow as tf

Now check the version of TF 2 that is installed on your machine with 
this command:

>>> print('TF version:',tf.__version__)

The output of the preceding code snippet is shown here (the number 
that you see depends on which version of TF 2 that you installed):

TF version: 2.0.0

Although the REPL is useful for short code blocks, the TF 2 code samples 
in this book are Python scripts that you can launch with the Python executable.

C.2 Other TF 2-based Toolkits

In addition to providing support for TF 2-based code on multiple de-
vices, TF 2 provides the following toolkits:

●■ TensorBoard for visualization (included as part of TensorFlow)

●■ TensorFlow Serving (hosting on a server)

●■ TensorFlow Hub

●■ TensorFlow Lite (for mobile applications)

●■ Tensorflow.js (for Web pages and NodeJS)

TensorBoard is a graph visualization tool that runs in a browser. Launch 
TensorBoard from the command line as follows: open a command shell and 



300 • Python 3 for Machine Learning

type the following command to access a saved TF graph in the subdirectory 
/tmp/abc (or a directory of your choice):

tensorboard –logdir /tmp/abc

Note that there are two consecutive dashes (“-”) that precede the log-
dir parameter in the preceding command. Now launch a browser session 
and navigate to this URL: localhost:6006

After a few moments you will see a visualization of the TF 2 graph that 
was created in your code and then saved in the directory /tmp/abc.

TensorFlow Serving is a cloud-based flexible, high-performance serving 
system for ML models that is designed for production environments. Ten-
sorFlow Serving makes it easy to deploy new algorithms and experiments, 
while keeping the same server architecture and APIs. More information is 
here: https://www.TF 2.org/serving/

TensorFlow Lite was specifically created for mobile development (both 
Android and iOS). Please keep in mind that TensorFlow Lite supersedes 
TF 2 Mobile, which was an earlier SDK for developing mobile applications. 
TensorFlow Lite (which also exists for TF 1.x) supports on-device ML in-
ference with low latency and a small binary size. Moreover, TensorFlow 
Lite supports hardware acceleration with the Android Neural Networks 
API. More information about TensorFlow Lite can be found at:

https://www.tensorflow.org/lite/

A more recent addition is tensorflow.js that provides JavaScript APIs 
to access TensorFlow in a Web page. The tensorflow.js toolkit was pre-
viously called deeplearning.js. You can also use tensorflow.js with 
NodeJS. More information about tensorflow.js can be found at: https://
js.tensorflow.org. 

C.3 TF 2 Eager Execution

TF 2 eager execution mode makes TF 2 code much easier to write com-
pared to TF 1.x code (which used deferred execution mode). You might be 
surprised to discover that TF introduced “eager execution” as an alternative 
to deferred execution in version 1.4.1, but this feature was vastly underuti-
lized. With TF 1.x code, TensorFlow creates a dataflow graph that consists 
of (1) a set of tf.Operation objects that represent units of computation, 
and (2) tf.Tensor objects that represent the units of data that flow be-
tween operations.

https://www.TF2.org/serving/


introduction to tf 2 • 301

Variously, TF 2 evaluates operations immediately without instantiating 
a session object or a creating a graph. Operations return concrete values 
instead of creating a computational graph. TF 2 eager execution is based on 
Python control flow instead of graph control flow. Arithmetic operations are 
simpler and intuitive, as you will see in code samples later in this chapter. 
Moreover, TF 2 eager execution mode simplifies the debugging process. 
However, keep in mind that there isn’t a 1:1 relationship between a graph 
and eager execution.

C.4 TF 2 Tensors, Data Types, and Primitive Types

In simplified terms, a TF 2 tensor is an n-dimensional array that is simi-
lar to a NumPy ndarray. A TF 2 tensor is defined by its dimensionality, as 
illustrated here:

scalar number:       a zeroth-order tensor
vector:              a first-order tensor
matrix:              a second-order tensor
3-dimensional array: a 3rd order tensor

The next section discusses some of the data types that are available in 
TF 2, followed by a section that discusses TF 2 primitive types.

C4.1 TF 2 Data Types
TF 2 supports the following data types (similar to the supported data 

types in TensorFlow 1.x):

●■ tf.float32

●■ tf.float64

●■ tf.int8

●■ tf.int16

●■ tf.int32

●■ tf.int64

●■ tf.uint8

●■ tf.string

●■ tf.bool



302 • Python 3 for Machine Learning

The data types in the preceding list are self-explanatory: two floating 
point types, four integer types, one unsigned integer type, one string type, 
and one Boolean type. As you can see, there is a 32-bit and a 64-bit floating 
point type, and integer types that range from 8-bit through 64-bit.

C.4.2 TF 2 Primitive Types
TF 2 supports tf.constant() and tf.Variable() as primi-

tive types. Notice the capital “V” in tf.Variable(): this indicates 
a TF 2 class (which is not the case for lowercase initial letter such as 
tf.constant()).

A TF 2 constant is an immutable value, and a simple example is shown 
here:

aconst = tf.constant(3.0)
A TF 2 variable is a “trainable value” in a TF 2 graph. For example, 

the slope m and y-intercept b of a best-fitting line for a dataset consisting of 
points in the Euclidean plane are two examples of trainable values. Some 
examples of TF variables are shown here:

b = tf.Variable(3, name="b")
x = tf.Variable(2, name="x")
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm")

Notice that b, x, and z are defined as TF variables. In addition, b and x 
are initialized with numeric values, whereas the value of the variable z is an 
expression that epends on the value of x (which equals 2).

C.5 Constants in TF 2

Here is a short list of some properties of TF 2 constants:

●■ initialized during their definition

●■ cannot change its value (“immutable”)

●■ can specify its name (optional)

●■ the type is required (ex: tf.float32)

●■ are not modified during training



introduction to tf 2 • 303

Listing C.1 displays the contents of tf2_constants1.py that illus-
trates how to assign and print the values of some TF 2 constants.

Listing C.1: tf2_constants1.py

import tensorflow as tf 

scalar = tf.constant(10)
vector = tf.constant([1,2,3,4,5])
matrix = tf.constant([[1,2,3],[4,5,6]])
cube   = tf.consta
nt([[[1],[2],[3]],[[4],[5],[6]],[[7],[8],[9]]])

print(scalar.get_shape())
print(vector.get_shape())
print(matrix.get_shape())
print(cube.get_shape())

Listing C.1 contains four tf.constant() statements that define TF 2 
tensors of dimension 0, 1, 2, and 3, respectively. The second part of Listing 
C.1 contains four print() statements that display the shape of the four TF 
2 constants that are defined in the first section of Listing C.1. The output 
from Listing C.1 is here:

()
(5,)
(2, 3)
(3, 3, 1)

Listing C.2 displays the contents of tf2_constants2.py that illus-
trates how to assign values to TF 2 constants and then print those values.

Listing C.2: tf2_constants2.py

import tensorflow as tf 

x = tf.constant(5,name="x")
y = tf.constant(8,name="y")

@tf.function
def calc_prod(x, y):
  z = 2*x + 3*y
  return z

result = calc_prod(x, y)
print('result =',result)



304 • Python 3 for Machine Learning

Listing C.2 defines a “decorated” (shown in bold) Python function 
calc_prod()with TF 2 code that would otherwise be included in a TF 1.x 
tf.Session() code block. Specifically, z would be included in a sess.
run() statement, along with a feed_dict that provides values for x and y. 
Fortunately, a decorated Python function in TF 2 makes the code look like 
“normal” Python code.

C.6 Variables in TF 2

TF 2.0 eliminates global collections and their associated APIs, such as 
tf.get_variable, tf.variable_scope, and tf.initializers.
global_variables. Whenever you need a tf.Variable in TF 2, con-
struct and initialize it directly, as shown here:

tf.Variable(tf.random.normal([2, 4])
Listing C.3 displays the contents of tf2_variables.py that illustrates 

how to compute values involving TF constants and variables in a with code 
block.

Listing C.3: tf2_variables.py

import tensorflow as tf

v = tf.Variable([[1., 2., 3.], [4., 5., 6.]])
print("v.value():", v.value())
print("")
print("v.numpy():", v.numpy())
print("")

v.assign(2 * v)
v[0, 1].assign(42)
v[1].assign([7., 8., 9.])
print("v:",v)
print("")

try:
  v= [7., 8., 9.]
except TypeError as ex:
  print(ex)

Listing C.3 defines a TF 2 variable v and prints its value. The next 
portion of Listing C.3 updates the value of v and prints its new value. The 
last portion of Listing C.3 contains a try/except block that attempts to 
update the value of v[1]. The output from Listing C.3 is here:



introduction to tf 2 • 305

v.value(): tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

v.numpy(): [[1. 2. 3.]
 [4. 5. 6.]]

v: <tf.Variable 'Variable:0' shape=(2, 3) dtype=float32, 
numpy=
array([[ 2., 42.,  6.],
       [ 7.,  8.,  9.]], dtype=float32)>

'ResourceVariable' object does not support item 
assignment

This concludes the quick tour involving TF 2 code that contains vari-
ous combinations of TF constants and TF variables. The next few sections 
delve into more details regarding the TF primitive types that you saw in the 
preceding sections.

C.7 The tf.rank() API

The rank of a TF 2 tensor is the dimensionality of the tensor, whereas 
the shape of a tensor is the number of elements in each dimension. Listing 
C.4 displays the contents of tf2_rank.py that illustrates how to find the 
rank of TF 2 tensors.

Listing C.4: tf2_rank.py

import tensorflow as tf # tf2_rank.py

A = tf.constant(3.0)
B = tf.fill([2,3], 5.0)
C = tf.constant([3.0, 4.0])

@tf.function
def show_rank(x):
  return tf.rank(x)

print('A:',show_rank(A))
print('B:',show_rank(B))
print('C:',show_rank(C))

Listing C.4 contains familiar code for defining the TF constant A, fol-
lowed by the TF tensor B, which is a 2x3 tensor in which every element 
has the value 5. The TF tensor C is a 1x2 tensor with the values 3.0 and 4.0.



306 • Python 3 for Machine Learning

The next code block defines the decorated Python function show_
rank() that returns the rank of its input variable. The final section invokes 
show_rank() with A and then with B. The output from Listing C.4 is here:

A: tf.Tensor(0, shape=(), dtype=int32)
B: tf.Tensor(2, shape=(), dtype=int32)
C: tf.Tensor(1, shape=(), dtype=int32)

C.8 The tf.shape() API

The shape of a TF 2 tensor is the number of elements in each dimen-
sion of a given tensor.

Listing C.5 displays the contents of tf2_getshape.py that illustrates 
how to find the shape of TF 2 tensors.

Listing C.5: tf2_getshape.py

import tensorflow as tf

a = tf.constant(3.0)
print("a shape:",a.get_shape())

b = tf.fill([2,3], 5.0)
print("b shape:",b.get_shape())

c = tf.constant([[1.0,2.0,3.0], [4.0,5.0,6.0]])
print("c shape:",c.get_shape())

Listing C.5 contains the definition of the TF constant a whose val-
ue is 3.0. Next, the TF variable b is initialized as a 1x2 vector with the 
value [[2,3], 5.0], followed by the constant c whose value is 
[[1.0,2.0,3.0],[4.0,5.0,6.0]]. The three print() statements dis-
play the values of a, b, and c. The output from Listing C.5 is here:

a shape: ()
b shape: (2, 3)
c shape: (2, 3)

Shapes that specify a 0-D Tensor (scalar) are numbers (9, -5, 2.34, and 
so forth), [], and (). As another example, Listing C.6 displays the contents 
of tf2_shapes.py that contains an assortment of tensors and their shapes.

Listing C.6: tf2_shapes.py

import tensorflow as tf



introduction to tf 2 • 307

list_0 = []
tuple_0 = ()
print("list_0:",list_0)
print("tuple_0:",tuple_0)

list_1 = [3]
tuple_1 = (3)
print("list_1:",list_1)
print("tuple_1:",tuple_1)

list_2 = [3, 7]
tuple_2 = (3, 7)
print("list_2:",list_2)
print("tuple_2:",tuple_2)

any_list1  = [None]
any_tuple1 = (None)
print("any_list1:",any_list1)
print("any_tuple1:",any_tuple1)

any_list2 = [7,None]
any_list3 = [7,None,None]
print("any_list2:",any_list2)
print("any_list3:",any_list3)

Listing C.6 contains simple lists and tuples of various dimensions in 
order to illustrate the difference between these two types. The output from 
Listing C.6 is probably what you would expect, and it’s shown here:

list_0: []
tuple_0: ()
list_1: [3]
tuple_1: 3
list_2: [3, 7]
tuple_2: (3, 7)
any_list1: [None]
any_tuple1: None
any_list2: [7, None]
any_list3: [7, None, None]

C.9 Variables in TF 2 (Revisited)

TF 2 variables can be updated during backward error propagation. TF 
2 variables can also be saved and then restored at a later point in time. The 
following list contains some properties of TF 2 variables:



308 • Python 3 for Machine Learning

●■ initial value is optional
●■ must be initialized before graph execution
●■ updated during training
●■ constantly recomputed
●■ they hold values for weights and biases
●■ in-memory buffer (saved/restored from disk)

Here are some simple examples of TF 2 variables:

b = tf.Variable(3, name='b')
x = tf.Variable(2, name='x')
z = tf.Variable(5*x, name="z")

W = tf.Variable(20)
lm = tf.Variable(W*x + b, name="lm") 

Notice that the variables b, x, and W specify constant values, whereas 
the variables z and lm specify expressions that are defined in terms of other 
variables. If you are familiar with linear regression, you undoubtedly no-
ticed that the variable lm (“linear model”) defines a line in the Euclidean 
plane. Other properties of TF 2 variables are listed here:

●■ a tensor that's updateable via operations

●■ exist outside the context of session.run

●■ like a "regular" variable

●■ holds the learned model parameters

●■ variables can be shared (or nontrainable)

●■ used for storing/maintaining state

●■ internally stores a persistent tensor

●■ you can read/modify the values of the tensor

●■ multiple workers see the same values for tf.Variables

●■ the best way to represent shared, persistent state manipulated by your 
program

TF 2 also provides the method tf.assign() in order to modify values 
of TF 2 variables; be sure to read the relevant code sample later in this 
chapter so that you learn how to use this API correctly.



introduction to tf 2 • 309

C.9.1 TF 2 Variables versus Tensors 
Keep in mind the following distinction between TF variables and TF 

tensors:

TF variables represent your model's trainable parameters (e.g., weights 
and biases of a neural network), whereas TF tensors represents the data 
fed into your model and the intermediate representations of that data as it 
passes through your model.

In the next section you will learn about the @tf.function “decorator” 
for Python functions and how it can improve performance.

C.10 What is @tf.function in TF 2?

TF 2 introduced the @tf.function “decorator” for Python functions 
that defines a graph and performs session execution: it’s sort of a “suc-
cessor” to tf.Session() in TF 1.x. Since graphs can still be useful, @
tf.function transparently converts Python functions into functions that 
are "backed" by graphs. This decorator also converts tensor-dependent Py-
thon control flow into TF control flow, and also adds control dependen-
cies to order read and write operations to TF 2 state. Remember that @
tf.function works best with TF 2 operations instead of NumPy opera-
tions or Python primitives.

In general, you won't need to decorate functions with @tf.function; use 
it to decorate high-level computations, such as one step of training, or the 
forward pass of a model.

Although TF 2 eager execution mode facilitates a more intuitive user 
interface, this ease-of-use can be at the expense of decreased performance. 
Fortunately, the @tf.function decorator is a technique for generating 
graphs in TF 2 code that execute more quickly than eager execution mode. 

The performance benefit depends on the type of operations that 
are performed: matrix multiplication does not benefit from the use of @
tf.function, whereas optimizing a deep neural network can benefit from 
@tf.function.

C.10.1 How Does @tf.function Work?
Whenever you decorate a Python function with @tf.function, TF 2 

automatically builds the function in graph mode. If a Python function that 



310 • Python 3 for Machine Learning

is decorated with @tf.function invokes other Python functions that are 
not decorated with @tf.function, then the code in those “nondeco-
rated” Python functions will also be included in the generated graph. 

Another point to keep in mind is that a tf.Variable in eager mode 
is actually a "plain" Python object: this object is destroyed when it's out of 
scope. However, a tf.Variable object defines a persistent object if the 
function is decorated via @tf.function. In this scenario, eager mode is 
disabled and the tf.Variable object defines a node in a persistent TF 2 
graph. Consequently, a function that works in eager mode without annota-
tion can fail when it is decorated with @tf.function.

C.10.2 A Caveat about @tf.function in TF 2
If constants are defined before the definition of a decorated Python 

function, you can print their values inside the function using the Python 
print() function. But if constants are defined inside the definition of a 
decorated Python function, you can print their values inside the function 
using the TF 2 tf.print() function. Consider this code block:

import tensorflow as tf

a = tf.add(4, 2)

@tf.function
def compute_values():
  print(a) # 6

compute_values()

# output:

# tf.Tensor(6, shape=(), dtype=int32)

As you can see, the correct result is displayed (shown in bold). How-
ever, if you define constants inside a decorated Python function, the output 
contains types and attributes but not the execution of the addition opera-
tion. Consider the following code block:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(4, 2)
  print(a)

compute_values()



introduction to tf 2 • 311

# output:
# Tensor("Add:0", shape=(), dtype=int32)

The zero in the preceding output is part of the tensor name and not an 
outputted value. Specifically, Add:0 is output zero of the tf.add() opera-
tion. Any additional invocation of compute_values() prints nothing. If 
you want actual results, one solution is to return a value from the function, 
as shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(4, 2)
  return a

result = compute_values()
print("result:", result)

The output from the preceding code block is here:

result: tf.Tensor(6, shape=(), dtype=int32)
A second solution involves the TF tf.print() function instead of the 

Python print() function, as shown in bold in this code block:

@tf.function
def compute_values():
  a = tf.add(4, 2)

  tf.print(a)

A third solution is to cast the numeric values to tensors if they do not 
affect the shape of the generated graph, as shown here:

import tensorflow as tf

@tf.function
def compute_values():
  a = tf.add(tf.constant(4), tf.constant(2))
  return a

result = compute_values()
print("result:", result)

C.10.3 The tf.print() Function and Standard Error
There is one more detail to remember: the Python print() function 

“sends” output to something called “standard output” that is associated with 
a file descriptor whose value is 1; however, tf.print() sends output to 



312 • Python 3 for Machine Learning

“standard error” that is associated with a file descriptor whose value is 2. In 
programming languages such as C, only errors are sent to standard error, so 
keep in mind that the behavior of tf.print() differs from the convention 
regarding standard out and standard error. The following code snippets il-
lustrate this difference:

python3 file_with_print.py    1>print_output
python3 file_with_tf.print.py 2>tf.print_output

If your Python file contains both print() and tf.print() you can 
capture the output as follows:

python3 both_prints.py 1>print_output 2>tf.print_output
However, keep in mind that the preceding code snippet might also re-

direct real error messages to the file tf.print_output.

C.11 Working with @tf.function in TF 2

The preceding section explained how the output will differ depending 
on whether you use the Python print() function versus the tf.print() 
function in TF 2 code, where the latter function also sends output to stan-
dard error instead of standard output.

This section contains several examples of the @tf.function decora-
tor in TF 2 to show you some nuances in behavior that depend on where 
you define constants and whether you use the tf.print() function or the 
Python print() function. Also keep in mind the comments in the previous 
section regarding @tf.function, as well as the fact that you don’t need to 
use @tf.function in all your Python functions.

C.11.1 An Example without @tf.function
Listing C.7 displays the contents of tf2_simple_function.py that 

illustrates how to define a Python function with TF 2 code.

Listing C.7: tf2_simple_function.py

import tensorflow as tf

def func():
  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c



introduction to tf 2 • 313

print(func().numpy())

The code in Listing C.7 is straightforward: a Python function func() 
defines two TF 2 constants, computes their product, and returns that value.

Since TF 2 works in eager mode by default, the Python function func() 
is treated as a "normal" function. Launch the code and you will see the fol-
lowing output:

[[20. 30.]
 [22. 3.]]

C.11.2 An Example with @tf.function
Listing C.8 displays the contents of tf2_at_function.py that illus-

trates how to define a decorated Python function with TF code.

Listing C.8: tf2_at_function.py

import tensorflow as tf

@tf.function
def func():
  a = tf.constant([[10,10],[11.,1.]])
  b = tf.constant([[1.,0.],[0.,1.]])
  c = tf.matmul(a, b)
  return c

print(func().numpy())

Listing C.8 defines a decorated Python function: the rest of the code 
is identical to Listing C.7. However, because of the @tf.function an-
notation, the Python func() function is "wrapped" in a tensorflow.
python.eager.def_function.Function object. The Python func-
tion is assigned to the .python_function property of the object.

When func() is invoked, the graph construction begins. Only the Python 
code is executed, and the behavior of the function is traced so that TF 2 can 
collect the required data to construct the graph. The output is shown here:

[[20. 30.]
 [22.  3.]]

C.11.3 Overloading Functions with @tf.function
If you have worked with programming languages such as Java and C++, 

you are already familiar with the concept of “overloading” a function. If this 



314 • Python 3 for Machine Learning

term is new to you, the idea is simple: an overloaded function is a function 
that can be invoked with different data types. For example, you can define 
an overloaded “add” function that can add two numbers as well as “add” 
(i.e., concatenate) two strings. 

If you’re curious, overloaded functions in various programming lan-
guages are implemented via “name mangling,” which means that the sig-
nature (the parameters and their data types for the function) are appended 
to the function name in order to generate a unique function name. This 
happens “under the hood,” which means that you don’t need to worry about 
the implementation details.

Listing C.9 displays the contents of tf2_overload.py that illustrates 
how to define a decorated Python function that can be invoked with differ-
ent data types.

Listing C.9: tf2_overload.py

import tensorflow as tf

@tf.function
def add(a):
  return a + a 

print("Add 1:            ", add(1))
print("Add 2.3:          ", add(2.3))
print("Add string tensor:", add(tf.constant("abc")))

c = add.get_concrete_function(tf.TensorSpec(shape=None, 
dtype=tf.string))
c(a=tf.constant("a"))  

Listing C.9 defines a decorated Python function add() is preceded by 
a @tf.function decorator. This function can be invoked by passing an in-
teger, a decimal value, or a TF 2 tensor and the correct result is calculated. 
Launch the code and you will see the following output:

Add 1:             tf.Tensor(2, shape=(), dtype=int32)
Add 2.3:           tf.Tensor(4.6, shape=(), 
dtype=float32)
Add string tensor: tf.Tensor(b'abcabc', shape=(), 
dtype=string)
c: <tensorflow.python.eager.function.ConcreteFunction 
object at 0x1209576a0>



introduction to tf 2 • 315

C.11.4 What is AutoGraph in TF 2?
AutoGraph refers to the conversion from Python code to its graph rep-

resentation, which is a significant new feature in TF 2. In fact, AutoGraph is 
automatically applied to functions that are decorated with @tf.function; 
this decorator creates callable graphs from Python functions. 

AutoGraph transforms a subset of Python syntax into its portable, high-
performance and language agnostic graph representation, thereby bridging 
the gap between TF 1.x and TF 2.0. In fact, autograph allows you to inspect 
its auto-generated code with this code snippet. For example, if you define a 
Python function called my_product(), you can inspect its auto-generated 
code with this snippet:

print(tf.autograph.to_code(my_product))

In particular, the Python for/while construct in implemented in TF 2 
via tf.while_loop (break and continue are also supported). The Python 
if construct is implemented in TF 2 via tf.cond. The “for _ in data-
set” is implemented in TF 2 via dataset.reduce.

AutoGraph also has some rules for converting loops. A for loop is con-
verted if the iterable in the loop is a tensor, and a while loop is converted 
if the while condition depends on a tensor. If a loop is converted, it will be 
dynamically “unrolled” with tf.while_loop, as well as the special case of 
a for x in tf.data.Dataset (the latter is transformed into tf.data.
Dataset.reduce). If a loop is not converted, it will be statically unrolled.

AutoGraph supports control flow that is nested arbitrarily deep, so you 
can implement many types of ML programs. Check the online documenta-
tion for more information regarding AutoGraph.

C.12 Arithmetic Operations in TF 2

Listing C.10 displays the contents of tf2_arithmetic.py that illus-
trates how to perform arithmetic operations in a TF 2.

Listing C.10: tf2_arithmetic.py

import tensorflow as tf 

@tf.function # repłace print() with tf.print()
def compute_values():
  a = tf.add(4, 2)



316 • Python 3 for Machine Learning

  b = tf.subtract(8, 6)
  c = tf.multiply(a, 3)
  d = tf.math.divide(a, 6)

  print(a) # 6
  print(b) # 2
  print(c) # 18
  print(d) # 1

compute_values()

Listing C.10 defines the decorated Python function compute_val-
ues() with simple code for computing the sum, difference, product, 
and quotient of two numbers via the tf.add(), tf.subtract(), 
tf.multiply(), and the tf.math.divide() APIs, respectively. The 
four print() statements display the values of a, b, c, and d. The output 
from Listing C.10 is here:

tf.Tensor(6,   shape=(), dtype=int32)
tf.Tensor(2,   shape=(), dtype=int32)
tf.Tensor(18,  shape=(), dtype=int32)
tf.Tensor(1.0, shape=(), dtype=float64)

C.13 Caveats for Arithmetic Operations in TF 2

As you can probably surmise, you can also perform arithmetic opera-
tions involves TF 2 constants and variables. Listing C.11 displays the con-
tents of tf2_const_var.py that illustrates how to perform arithmetic 
operations involving a TF 2 constant and a variable.

Listing C.11: tf2_const_var.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff:",diff)

Listing C.11 computes the difference of the TF variable v1 and the TF 
constant c1, and the output is shown here:

diff: tf.Tensor([3. 2.], shape=(2,), dtype=float32)

However, if you update the value of v1 and then print the value of diff, 
it will not change. You must reset the value of diff, just as you would in 
other imperative programming languages. 



introduction to tf 2 • 317

Listing C.12 displays the contents of tf2_const_var2.py that illus-
trates how to perform arithmetic operations involving a TF 2 constant and 
a variable.

Listing C.12: tf2_const_var2.py

import tensorflow as tf 

v1 = tf.Variable([4.0, 4.0])
c1 = tf.constant([1.0, 2.0])

diff = tf.subtract(v1,c1)
print("diff1:",diff.numpy())

# diff is NOT updated:
v1.assign([10.0, 20.0])
print("diff2:",diff.numpy())

# diff is updated correctly:
diff = tf.subtract(v1,c1)
print("diff3:",diff.numpy())

Listing C.12 recomputes the value of diff in the final portion of Listing 
C.11, after which it has the correct value. The output is shown here:

diff1: [3. 2.]
diff2: [3. 2.]
diff3: [9. 18.]

C.13.1 TF 2 and Built-in Functions 
Listing C.13 displays the contents of tf2_math_ops.py that illustrates 

how to perform additional arithmetic operations in a TF graph.

Listing C.13: tf2_math_ops.py

import tensorflow as tf 

PI = 3.141592

@tf.function # repłace print() with tf.print()
def math_values():
  print(tf.math.divide(12,8))
  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()



318 • Python 3 for Machine Learning

Listing C.13 contains a hard-coded approximation for PI, followed by 
the decorated Python function math_values() with five print() state-
ments that display various arithmetic results. Note in particular the third 
output value is a very small number (the correct value is zero). The output 
from Listing C.13 is here:

1.5
tf.Tensor(2.0,            shape=(), dtype=float32)
tf.Tensor(6.2783295e-07,  shape=(), dtype=float32)
tf.Tensor(-1.0,           shape=(), dtype=float32)
tf.Tensor(0.99999964,     shape=(), dtype=float32)

Listing C.14 displays the contents of tf2_math-ops_pi.py that illus-
trates how to perform arithmetic operations in TF 2.

Listing C.14: tf2_math_ops_pi.py

import tensorflow as tf 
import math as m

PI = tf.constant(m.pi)

@tf.function # repłace print() with tf.print()
def math_values():
  print(tf.math.divide(12,8))
  print(tf.math.floordiv(20.0,8.0))
  print(tf.sin(PI))
  print(tf.cos(PI))
  print(tf.math.divide(tf.sin(PI/4.), tf.cos(PI/4.)))

math_values()

Listing C.14 is almost identical to the code in Listing C.13: the 
only difference is that Listing C.14 specifies a hard-coded value for 
PI, whereas Listing C.14 assigns m.pi to the value of PI. As a result, 
the approximated value is one decimal place closer to the correct val-
ue of zero. The output from Listing C.14 is here, and notice how the 
output format differs from Listing C.13 due to the Python print()  
function:

1.5
tf.Tensor(2.0,           shape=(), dtype=float32)
tf.Tensor(-8.742278e-08, shape=(), dtype=float32)
tf.Tensor(-1.0,          shape=(), dtype=float32)
tf.Tensor(1.0,           shape=(), dtype=float32)



introduction to tf 2 • 319

C.14 Calculating Trigonometric Values in TF 2

Listing C.15 displays the contents of tf2_trig_values.py that il-
lustrates how to compute values involving trigonometric functions in TF 2.

Listing C.15: tf2_trig_values.py

import tensorflow as tf
import math as m

PI = tf.constant(m.pi)

a = tf.cos(PI/3.)
b = tf.sin(PI/3.)
c = 1.0/a # sec(60)
d = 1.0/tf.tan(PI/3.) # cot(60)

@tf.function # this decorator is okay
def math_values():
  print("a:",a)
  print("b:",b)
  print("c:",c)
  print("d:",d)

math_values()

Listing C.14 is straightforward: there are several of the same TF 2 
APIs that you saw in Listing C.13. In addition, Listing C.14 contains the 
tf.tan() API, which computes the tangent of a number (in radians). The 
output from Listing C.14 is here:

a: tf.Tensor(0.49999997, shape=(), dtype=float32)
b: tf.Tensor(0.86602545, shape=(), dtype=float32)
c: tf.Tensor(2.0000002,  shape=(), dtype=float32)
d: tf.Tensor(0.57735026, shape=(), dtype=float32)

C.15 Calculating Exponential Values in TF 2

Listing C.15 displays the contents of tf2_exp_values.py that illus-
trates how to compute values involving additional trigonometric functions 
in TF 2.

Listing C.15: tf2_exp_values.py

import tensorflow as tf



320 • Python 3 for Machine Learning

a  = tf.exp(1.0)
b  = tf.exp(-2.0)
s1 = tf.sigmoid(2.0)
s2 = 1.0/(1.0 + b)
t2 = tf.tanh(2.0)

@tf.function # this decorator is okay
def math_values():
  print('a: ', a)
  print('b: ', b)
  print('s1:', s1)
  print('s2:', s2)
  print('t2:', t2)

math_values()

Listing C.15 starts with the TF 2 APIs tf.exp(), tf.sigmoid(), and 
tf.tanh() that compute the exponential value of a number, the sigmoid 
value of a number, and the hyperbolic tangent of a number, respectively. 
The output from Listing C.15 is here:

a:  tf.Tensor(2.7182817,  shape=(), dtype=float32)
b:  tf.Tensor(0.13533528, shape=(), dtype=float32)
s1: tf.Tensor(0.880797,   shape=(), dtype=float32)
s2: tf.Tensor(0.880797,   shape=(), dtype=float32)
t2: tf.Tensor(0.9640276,  shape=(), dtype=float32)

C.16 Working with Strings in TF 2

Listing C.16 displays the contents of tf2_strings.py that illustrates 
how to work with strings in TF 2.

Listing C.16: tf2_strings.py

import tensorflow as tf

x1 = tf.constant("café")
print("x1:",x1)
tf.strings.length(x1)
print("")

len1 = tf.strings.length(x1, unit="UTF8_CHAR")
len2 = tf.strings.unicode_decode(x1, "UTF8")

print("len1:",len1.numpy())
print("len2:",len2.numpy())
print("")



introduction to tf 2 • 321

# String arrays
x2 = tf.constant(["Café", "Coffee", "caffè", "咖啡"])
print("x2:",x2)
print("")

len3 = tf.strings.length(x2, unit="UTF8_CHAR")
print("len2:",len3.numpy())
print("")

r = tf.strings.unicode_decode(x2, "UTF8")
print("r:",r)

Listing C.16 defines the TF 2 constant x1 as a string that contains an ac-
cent mark. The first print() statement displays the first three characters of 
x1, followed by a pair of hexadecimal values that represent the accented “e” 
character. The second and third print()  statements display the number of 
characters in x1, followed by the UTF8 sequence for the string x1.

The next portion of Listing C.16 defines the TF 2 constant x2 as a 1st 
order TF 2 tensor that contains four strings. The next print() statement 
displays the contents of x2, using UTF8 values for characters that contain 
accent marks.

The final portion of Listing C.16 defines r as the Unicode values for the 
characters in the string x2. The output from Listing C.14 is here:

x1: tf.Tensor(b'caf\xc3\xa9', shape=(), dtype=string)

len1: 4
len2: [ 99  97 102 233]

x2: tf.Tensor([b'Caf\xc3\xa9' b'Coffee' b'caff\xc3\xa8' 
b'\xe5\x92\x96\xe5\x95\xa1'], shape=(4,), dtype=string)

len2: [4 6 5 2]

r: <tf.RaggedTensor [[67, 97, 102, 233], [67, 111, 
102, 102, 101, 101], [99, 97, 102, 102, 232], [21654, 
21857]]>

Chapter 2 contains a complete code sample with more examples of a 
RaggedTensor in TF 2.

C.17 Working with Tensors and Operations in TF 2

Listing C.17 displays the contents of tf2_tensors_operations.py 
that illustrates how to use various operators with tensors in TF 2.



322 • Python 3 for Machine Learning

Listing C.17: tf2_tensors_operations.py

import tensorflow as tf

x = tf.constant([[1., 2., 3.], [4., 5., 6.]])

print("x:", x)
print("")
print("x.shape:", x.shape)
print("")
print("x.dtype:", x.dtype)
print("")
print("x[:, 1:]:", x[:, 1:])
print("")
print("x[..., 1, tf.newaxis]:", x[..., 1, tf.newaxis])
print("")
print("x + 10:", x + 10)
print("")
print("tf.square(x):", tf.square(x))
print("")
print("x @ tf.transpose(x):", x @ tf.transpose(x))

m1 = tf.constant([[1., 2., 4.], [3., 6., 12.]])
print("m1:              ", m1 + 50)
print("m1 + 50:         ", m1 + 50)
print("m1 * 2:          ", m1 * 2)
print("tf.square(m1):   ", tf.square(m1))

Listing C.17 defines the TF tensor x that contains a 2x3 array of real 
numbers. The bulk of the code in Listing C.17 illustrates how to display 
properties of x by invoking x.shape and x.dtype, as well as the TF func-
tion tf.square(x). The output from Listing C.17 is here:

x: tf.Tensor(
[[1. 2. 3.]
 [4. 5. 6.]], shape=(2, 3), dtype=float32)

x.shape: (2, 3)

x.dtype: <dtype: 'float32'>

x[:, 1:]: tf.Tensor(
[[2. 3.]
 [5. 6.]], shape=(2, 2), dtype=float32)

x[..., 1, tf.newaxis]: tf.Tensor(
[[2.]



introduction to tf 2 • 323

 [5.]], shape=(2, 1), dtype=float32)

x + 10: tf.Tensor(
[[11. 12. 13.]
 [14. 15. 16.]], shape=(2, 3), dtype=float32)

tf.square(x): tf.Tensor(
[[ 1.  4.  9.]
 [16. 25. 36.]], shape=(2, 3), dtype=float32)

x @ tf.transpose(x): tf.Tensor(
[[14. 32.]
 [32. 77.]], shape=(2, 2), dtype=float32)

m1:               tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 + 50:          tf.Tensor(
[[51. 52. 54.]
 [53. 56. 62.]], shape=(2, 3), dtype=float32)

m1 * 2:           tf.Tensor(
[[ 2.  4.  8.]
 [ 6. 12. 24.]], shape=(2, 3), dtype=float32)

tf.square(m1):    tf.Tensor(
[[  1.   4.  16.]
 [  9.  36. 144.]], shape=(2, 3), dtype=float32)

C.18 2nd Order Tensors in TF 2 (1)

Listing C.18 displays the contents of tf2_elem2.py that illustrates 
how to define a 2nd order TF tensor and access elements in that tensor.

Listing C.18: tf2_elem2.py

import tensorflow as tf

arr2 = tf.constant([[1,2],[2,3]])

@tf.function
def compute_values():
  print('arr2: ',arr2)
  print('[0]:  ',arr2[0])
  print('[1]:  ',arr2[1])

compute_values()



324 • Python 3 for Machine Learning

Listing C.18 contains the TF constant arr1 that is initialized with the 
value [[1,2],[2,3]]. The three print() statements display the value of 
arr1, the value of the element whose index is 1, and the value of the ele-
ment whose index is [1,1]. The output from Listing C.18 is here:

arr2:   tf.Tensor(
[[1 2]
 [2 3]], shape=(2, 2), dtype=int32)
[0]:   tf.Tensor([1 2], shape=(2,), dtype=int32)
[1]:   tf.Tensor([2 3], shape=(2,), dtype=int32)

C.19 2nd Order Tensors in TF 2 (2)

Listing C.19 displays the contents of tf2_elem3.py that illustrates 
how to define a 2nd order TF 2 tensor and access elements in that tensor.

Listing C.19: tf2_elem3.py

import tensorflow as tf

arr3 = tf.constant([[[1,2],[2,3]],[[3,4],[5,6]]])

@tf.function # repłace print() with tf.print()

def compute_values():
  print('arr3:   ',arr3)
  print('[1]:    ',arr3[1])
  print('[1,1]:  ',arr3[1,1])
  print('[1,1,0]:',arr3[1,1,0])

compute_values()

Listing C.19 contains the TF constant arr3 that is initialized with 
the value [[[1,2],[2,3]],[[3,4],[5,6]]]. The four print() state-
ments display the value of arr3, the value of the element whose index 
is 1, the value of the element whose index is [1,1], and the value of the 
element whose index is [1,1,0]. The output from Listing C.19 (adjusted 
slightly for display purposes) is here:

arr3:    tf.Tensor(
[[[1 2]
  [2 3]]

 [[3 4]
  [5 6]]], shape=(2, 2, 2), dtype=int32)
[1]:     tf.Tensor(



introduction to tf 2 • 325

[[3 4]
 [5 6]], shape=(2, 2), dtype=int32)
[1,1]:   tf.Tensor([5 6], shape=(2,), dtype=int32)
[1,1,0]: tf.Tensor(5, shape=(), dtype=int32)

C.20 Multiplying Two 2nd Order Tensors in TF 

Listing C.20 displays the contents of tf2_mult.py that illustrates how 
to multiply 2nd order tensors in TF 2.

Listing C.20: tf2_mult.py

import tensorflow as tf

m1 = tf.constant([[3., 3.]])  # 1x2
m2 = tf.constant([[2.],[2.]]) # 2x1
p1 = tf.matmul(m1, m2)        # 1x1

@tf.function
def compute_values():
  print('m1:',m1)
  print('m2:',m2)
  print('p1:',p1)

compute_values()

Listing C.20 contains two TF constant m1 and m2 that are initialized 
with the value [[3., 3.]] and [[2.],[2.]]. Due to the nested square 
brackets, m1 has shape 1x2, whereas m2 has shape 2x1. Hence, the prod-
uct of m1 and m2 has shape (1,1).

The three print() statements display the value of m1, m2, and p1. The 
output from Listing C.20 is here:

m1: tf.Tensor([[3. 3.]], shape=(1, 2), dtype=float32)
m2: tf.Tensor(
[[2.]
 [2.]], shape=(2, 1), dtype=float32)
p1: tf.Tensor([[12.]], shape=(1, 1), dtype=float32)

C.21 Convert Python Arrays to TF Tensors

Listing C.21 displays the contents of tf2_convert_tensors.py that 
illustrates how to convert a Python array to a TF 2 tensor.



326 • Python 3 for Machine Learning

Listing C.21: tf2_convert_tensors.py

import tensorflow as tf
import numpy as np  

x1 = np.array([[1.,2.],[3.,4.]])
x2 = tf.convert_to_tensor(value=x1, dtype=tf.float32)

print ('x1:',x1)
print ('x2:',x2)

Listing C.21 is straightforward, starting with an import statement for 
TensorFlow and one for NumPy. Next, the x_data variable is a NumPy array, 
and x is a TF tensor that is the result of converting x_data to a TF tensor. 
The output from Listing C.21 is here:

x1: [[1. 2.]
 [3. 4.]]
x2: tf.Tensor(
[[1. 2.]
 [3. 4.]], shape=(2, 2), dtype=float32)

C.21.1 Conflicting Types in TF 2
Listing C.22 displays the contents of tf2_conflict_types.py that il-

lustrates what happens when you try to combine incompatible tensors in 
TF 2.

Listing C.22: tf2_conflict_types.py

import tensorflow as tf

try:
  tf.constant(1) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)

try:
  tf.constant(1.0, dtype=tf.float64) + tf.constant(1.0)
except tf.errors.InvalidArgumentError as ex:
  print(ex)

Listing C.22 contains two try/except blocks. The first block adds two 
constants 1 and 1.0, which are compatible. The second block attempts to 
add the value 1.0 that’s declared as a tf.float64 with 1.0, which are not 
compatible tensors. The output from Listing C.22 is here:



introduction to tf 2 • 327

cannot compute Add as input #1(zero-based) was expected 
to be a int32 tensor but is a float tensor [Op:Add] name: 
add/
cannot compute Add as input #1(zero-based) was expected 
to be a double tensor but is a float tensor [Op:Add] 
name: add/

C.22 Differentiation and tf.GradientTape in TF 2

Automatic differentiation (i.e., calculating derivatives) is useful for im-
plementing ML algorithms such as back propagation for training various 
types of neural networks (NNs). During eager execution, the TF 2 context 
manager tf.GradientTape traces operations for computing gradients. 
This context manager provides a watch() method for specifying a tensor 
that will be differentiated (in the mathematical sense of the word).

The tf.GradientTape context manager records all forward-
pass operations on a "tape." Next, it computes the gradient by “play-
ing” the tape backward, and then discards the tape after a single gradi-
ent computation. Thus, a tf.GradientTape can only compute one 
gradient: subsequent invocations throw a runtime error. Keep in mind 
that the tf.GradientTape context manager only exists in eager  
mode. 

Why do we need the tf.GradientTape context manager? Consider 
deferred execution mode, where we have a graph in which we know how 
nodes are connected. The gradient computation of a function is performed 
in two steps: (1) backtracking from the output to the input of the graph, and 
(2) computing the gradient to obtain the result. 

By contrast, in eager execution the only way to compute the gradi-
ent of a function using automatic differentiation is to construct a graph. 
After constructing the graph of the operations executed within the 
tf.GradientTape context manager on some “watchable” element (such 
as a variable), we can instruct the tape to compute the required gradient. If 
you want a more detailed explanation, the tf.GradientTape documenta-
tion page contains an example that explains how and why tapes are needed.

The default behavior for tf.GradientTape is to “play once and then 
discard.” However, it’s possible to specify a persistent tape, which means 
that the values are persisted and therefore the tape can be “played” multiple 



328 • Python 3 for Machine Learning

times. The next section contains several examples of tf.GradientTape, 
including an example of a persistent tape.

C.23 Examples of tf.GradientTape

Listing C.23 displays the contents of tf2_gradient_tape1.py that 
illustrates how to invoke tf.GradientTape in TF 2. This example is one 
of the simplest examples of using tf.GradientTape in TF 2.

Listing C.23: tf2_gradient_tape1.py

import tensorflow as tf

w = tf.Variable([[1.0]])

with tf.GradientTape() as tape:
  loss = w * w

grad = tape.gradient(loss, w)
print("grad:",grad)

Listing C.23 defines the variable w, followed by a with statement that 
initializes the variable loss with expression w*w. Next, the variable grad is 
initialized with the derivative that is returned by the tape, and then evalu-
ated with the current value of w.

As a reminder, if we define the function z = w*w, then the first deriva-
tive of z is the term 2*w , and when this term is evaluated with the value of 
1.0 for w, the result is 2.0. Launch the code in Listing C.23 and you will see 
the following output:

grad: tf.Tensor([[2.]], shape=(1, 1), dtype=float32)

C.23.1 Using the watch() Method of tf.GradientTape
Listing C.24 displays the contents of tf2_gradient_tape2.py that 

also illustrates the use of tf.GradientTape with the watch() method in 
TF 2.

Listing C.24: tf2_gradient_tape2.py

import tensorflow as tf

x = tf.constant(3.0)

with tf.GradientTape() as g:
  g.watch(x)



introduction to tf 2 • 329

  y = 4 * x * x

dy_dx = g.gradient(y, x)

Listing C.24 contains a similar with statement as Listing C.23, but this 
time a watch() method is also invoked to “watch” the tensor x. As you saw 
in the previous section, if we define the function y = 4*x*x, then the first 
derivative of y is the term 8*x; when the latter term is evaluated with the 
value 3.0, the result is 24.0.

Launch the code in Listing C.24 and you will see the following output:

dy_dx: tf.Tensor(24.0, shape=(), dtype=float32)

C.23.2 Using Nested Loops with tf.GradientTape
Listing C.25 displays the contents of tf2_gradient_tape3.py that 

also illustrates how to define nested loops with tf.GradientTape in order 
to calculate the first and the second derivative of a tensor in TF 2.

Listing C.25: tf2_gradient_tape3.py

import tensorflow as tf

x = tf.constant(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    t1.watch(x)
    t2.watch(x)
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

x = tf.Variable(4.0)
with tf.GradientTape() as t1:
  with tf.GradientTape() as t2:
    z = x * x * x
  dz_dx = t2.gradient(z, x)
d2z_dx2 = t1.gradient(dz_dx, x)

print("First  dz_dx:  ",dz_dx)
print("Second d2z_dx2:",d2z_dx2)

The first portion of Listing C.25 contains a nested loop, where the outer 
loop calculates the first derivative and the inner loop calculates the second 



330 • Python 3 for Machine Learning

derivative of the term x*x*x when x equals 4. The second portion of List-
ing C.25 contains another nested loop that produces the same output with 
slightly different syntax. 

In case you’re a bit rusty regarding derivatives, the next code block 
shows you a function z, its first derivative z', and its second derivative z'':

z   = x*x*x
z'  = 3*x*x
z'' = 6*x

When we evaluate z, z', and z'' with the value 4.0 for x, the result is 
64.0, 48.0, and 24.0, respectively. Launch the code in Listing C.25 and you 
will see the following output:

First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)
First  dz_dx:   tf.Tensor(48.0, shape=(), dtype=float32)
Second d2z_dx2: tf.Tensor(24.0, shape=(), dtype=float32)

C.23.3 Other Tensors with tf.GradientTape
Listing C.26 displays the contents of tf2_gradient_tape4.py that 

illustrates how to use tf.GradientTape in order to calculate the first de-
rivative of an expression that depends on a 2x2 tensor in TF 2.

Listing C.26: tf2_gradient_tape4.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape() as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)

In Listing C.26, y equals the sum of the elements in the 3x3 tensor x, 
which is 9.



introduction to tf 2 • 331

Next, z is assigned the term y*y and then multiplied again by y, so the 
final expression for z (and its derivative) is here:

z  = y*y*y
z' = 3*y*y

When z' is evaluated with the value 9 for y, the result is 3*9*9, which 
equals 243. Launch the code in Listing C.26 and you will see the following 
output (slightly reformatted for readability):

y: tf.Tensor(9.0,       shape=(), dtype=float32)
z: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(729.0,     shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)

C.23.4 A Persistent Gradient Tape
Listing C.27 displays the contents of tf2_gradient_tape5.py 

that illustrates how to define a persistent gradient tape in order to with 
tf.GradientTape in order to calculate the first derivative of a tensor in TF 2.

Listing C.27: tf2_gradient_tape5.py

import tensorflow as tf

x = tf.ones((3, 3))

with tf.GradientTape(persistent=True) as t:
  t.watch(x)
  y = tf.reduce_sum(x)
  print("y:",y)
  w = tf.multiply(y, y)

  print("w:",w)

  z = tf.multiply(y, y)
  print("z:",z)
  z = tf.multiply(z, y)
  print("z:",z)

# the derivative of z with respect to y
dz_dy = t.gradient(z, y)
print("dz_dy:",dz_dy)
dw_dy = t.gradient(w, y)
print("dw_dy:",dw_dy)

Listing C.27 is almost the same as Listing C.26: the new sections are dis-
played in bold. Note that w is the term y*y and therefore the first derivative 



332 • Python 3 for Machine Learning

w ' is 2*y. Hence, the values for w and w ' are 81 and 18, respectively, when 
they are evaluated with the value 9.0. Launch the code in Listing C.27 
and you will see the following output (slightly reformatted for readability), 
where the new output is shown in bold:

y: tf.Tensor(9.0,       shape=(), dtype=float32)
w: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(81.0,      shape=(), dtype=float32)
z: tf.Tensor(729.0,     shape=(), dtype=float32)
dz_dy: tf.Tensor(243.0, shape=(), dtype=float32)
dw_dy: tf.Tensor(18.0,  shape=(), dtype=float32)

C.24 Google Colaboratory

Depending on the hardware, GPU-based TF 2 code is typically at least 
15 times faster than CPU-based TF 2 code. However, the cost of a good 
GPU can be a significant factor. Although NVIDIA provides GPUs, those 
consumer-based GPUs are not optimized for multi-GPU support (which is 
supported by TF 2).

Fortunately Google Colaboratory is an affordable alternative that pro-
vides free GPU and TPU support, and also runs as a Jupyter notebook 
environment. In addition, Google Colaboratory executes your code in the 
cloud and involves zero configuration, and it’s available here:

https://colab.research.google.com/notebooks/welcome.ipynb

This Jupyter notebook is suitable for training simple models and test-
ing ideas quickly. Google Colaboratory makes it easy to upload local files, 
install software in Jupyter notebooks, and even connect Google Colabora-
tory to a Jupyter runtime on your local machine.

Some of the supported features of Colaboratory include TF 2 execution 
with GPUs, visualization using Matplotlib, and the ability to save a copy of 
your Google Colaboratory notebook to Github by using File > Save a 
copy to GitHub. 

Moreover, you can load any .ipynb on GitHub by just adding the path to 
the URL colab.research.google.com/github/ (see the Colaboratory 
website for details).

Google Colaboratory has support for other technologies such as HTML 
and SVG, enabling you o render SVG-based graphics in notebooks that are 



introduction to tf 2 • 333

in Google Colaboratory. One point to keep in mind: any software that you 
install in a Google Colaboratory notebook is only available on a per-session 
basis: if you log out and log in again, you need to perform the same instal-
lation steps that you performed during your earlier Google Colaboratory 
session.

As mentioned earlier, there is one other very nice feature of Google 
Colaboratory: you can execute code on a GPU for up to twelve hours per 
day for free. This free GPU support is extremely useful for people who 
don’t have a suitable GPU on their local machine (which is probably the 
majority of users), and now they launch TF 2 code to train neural networks 
in less than 20 or 30 minutes that would otherwise require multiple hours 
of CPU-based execution time.

In case you're interested, you can launch Tensorboard inside a Google 
Colaboratory notebook with the following command (replace the specified 
directory with your own location):

%tensorboard --logdir /logs/images
Keep in mind the following details about Google Colaboratory. First, 

whenever you connect to a server in Google Colaboratory, you start what’s 
known as a session. You can execute the code in a session with a GPU or 
a TPU, and you can execute your code without any time limit for your 
session. However, if you select the GPU option for your session, only the 
first 12 hours of GPU execution time are free. Any additional GPU time 
during that same session incurs a small charge (see the website for those 
details).

The other point to keep in mind is that any software that you install in 
a Jupyter notebook during a given session will not be saved when you exit 
that session. For example, the following code snippet installs TFLearn in a 
Jupyter notebook:

!pip install tflearn

When you exit the current session and at some point later you start a new 
session, you need to install TFLearn again, as well as any other software (such 
as Github repositories) that you also installed in any previous session.

Incidentally, you can also run TF 2 code and TensorBoard in Google 
Colaboratory, with support for CPUs and GPUs (and support for TPUs will 
be available later). Native to this link for more information:

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks

https://www.tensorflow.org/tensorboard/r2/tensorboard_in_notebooks


334 • Python 3 for Machine Learning

C.25 Other Cloud Platforms

GCP (Google Cloud Platform) is a cloud-based service that enables 
you to train TF 2 code in the cloud. GCP provides DL images (similar in 
concept to Amazon AMIs) that are available here:

https://cloud.google.com/deep-learning-vm/docs

The preceding link provides documentation, and also a link to DL im-
ages based on different technologies, including TF 2 and PyTorch, with 
GPU and CPU versions of those images. Along with support for multiple 
versions of Python, you can work in a browser session or from the command 
line.

C.25.1 GCP SDK
Install GCloud SDK on a Mac-based laptop by downloading the soft-

ware at this link: https://cloud.google.com/sdk/docs/quickstart-macos

You will also receive USD 300 dollars worth of credit (over one year) if 
you have never used Google cloud.

C.26 Summary

This chapter introduced you to TF 2, a very brief view of its architec-
ture, and some of the tools that are part of the TF 2 “family.” Then you 
learned how to write basic Python scripts containing TF 2 code with TF 
constants and variables. You also learned how to perform arithmetic opera-
tions and also some built-in TF functions.

Next, you learned how to calculate trigonometric values, how to use for 
loops, and how to calculate exponential values. You also saw how to perform 
various operations on 2nd order TF 2 tensors. In addition, you saw code 
samples that illustrate how to use some of the new features of TF 2, such as 
the @tf.function decorator and tf.GradientTape. 

Then you got an introduction to Google Colaboratory, which is a cloud-
based environment for machine learning and deep learning. This environ-
ment is based on Jupyter notebooks, with support for Python and various 
other languages. Google Colaboratory also provides up to 12 hours of free 
GPU use on a daily basis, which is a very nice feature.



A
Activation functions

exponential linear unit (ELU) 197, 
199–200

hardmax function 201–202
Keras activation functions 198–199
matrix consolidation 195
in neural network 195, 196
nonlinear activation function 196
in Python 198
rectified linear unit (ReLU) activation 

function 197, 199–200
scaled exponential linear unit  

(SELU) 198
sigmoid activation function 197
sigmoid function 201
softmax activation function 200
softplus activation function 201
tanh activation function 197, 201

Anaconda Python distribution 2
append1.py 104–105
append2.py 105–106
Arrays

and append() function 76–77
and exponents 107–108
math operations and 108–109
and vector operations 111

Artificial neural networks (ANNs) 268

B
Bag of words (BoW) 216
Bayesian classifier 192–193
Bayesian inference 190–192
Bellman equations 230–231
Bias 154
Bidirectional() class 268
Bidirectional encoder representations from 
transformers (BERT) 220–221

BreakContinuePass.py 50–51
BubbleSort.py 75

C
CharTypes.py 23–24
chr() function 15–16
Classifiers, for machine learning

activation functions  
(see Activation functions)

Bayesian classifier 192–193
Bayesian inference 190–192
binary vs. multiclass classification 182
decision trees 184–188
evaluating classifiers 194
Keras, logistic regression, and iris dataset 

203–206
k nearest neighbor (kNN) algorithm 

183–184
linear classifiers 183
logistic regression 202–203
multilabel classification 182–183
random forests 189
support vector machines 189–190
training classifiers 193

Compare.py 21
Compare2.py 43–44
CompareStrings1.py 47–48
Compilation flags 258–259
concat_frames.py 126–127
Confusion matrix 155
Context-free grammars (CFGs) 211
Conv2D() class 268
CountDigitsAndChars.py 260
Counter1.py 76–77
CountWord2.py 79
Covariance matrix 151–152
Cross-validation 152–153
csv.reader() function 130

INDEX



336 • index

D
Data cleaning 147
Dataframes

Boolean operations 122–124
combining 125–127
and CSV files 130–133
and data cleaning tasks 119–120
data manipulation with 127–130
definition 119
and Excel spreadsheets 133–134
labeled Pandas dataframe 120–121
numeric dataframes 121–122
and random numbers 124–125
and scatterplots 135–136
select, add, and delete columns in  

134–135
and simple statistics 136–137

datetime2.out 28–29
Datetime2.py 28
Decision trees 184–188
Deduplication 88
Deep reinforcement learning (DRL)  
233–234

DefaultValues.py 59–60
Dictionaries

checking for keys 90–91
creating 89–90
definition 89
deleting keys from 91
display the contents of 90
formatting 92–93
functions and methods 92
interpolating data 92
iterating through 91–92
ordered dictionaries 93–94

Dimensionality reduction 144, 150
dir() functions 11–12
Distributional hypothesis 211
Divisors.py 56–57
Divisors2.py 57
Divisors3.py 57–58
double_list1.py 106–107

E
easy_install and pip 3
Embeddings from language models  
(ELMo) 219

Epsilon-Greedy algorithm 229–230
eval() function 14
Exception1.py 30–31
Exponential linear unit (ELU) 197, 200

F
Factorial.py 62
Factorial2.py 63
fashion_mnist dataset 269
Feature engineering 149
Feature extraction 150
Feature selection 149
Fibonacci numbers 63–64
fib.py 63–64
findAll() method 248–249
FindCapitalized.py 249–250
FindPos1.py 24
First In First Out (FIFO) 82
FixedColumnCount.py 44–45
FixedColumnWidth1.py 45–47
float() function 14
format() function 15
fraction() function 17–18
F1 score 157

G
gcd.py 64
GPT-2 220
Greatest common divisor (GCD)

of two positive integers 64
Grouping1.py 251–252
group() method 250

H
“Hadamard” product 114–115
Hello.py 34–35
help() function 11–12



index • 337

Holdout method 193
housing.csv 177–178
housing_stats.py 137
Hyperplane 159

I
insert() functions 82
int() function 14
Inverse document frequency (idf) 217
IPython 3–4

J
join() function 26, 48–49
Jupyter 139

K
Keras 142

CNNs and cifar10 278–281
definition 266
and early stopping (1) 282–284
and early stopping (2) 284–287
keras-based model 271–273
keras.tf.datasets namespace 269
and linear regression 273–275
logistic regression and iris dataset 203–206
and metrics 287–288
MLPs and MNIST 275–278
namespaces in TF 2 266–267
other tf.keras namespaces 270
resizing images in 281–282
saving and restoring models 288–291
tf.keras.activations namespace 268–269
tf.keras.experimental namespace 269
tf.keras.layers namespace 267–268
tf 2 keras vs. “standalone” keras 270–271

keras_cnn_cifar10.py 278–281
keras_linear_regression.py 174–177
keras_mlp_mnist.py 275–278
keras_pasta.py 274–275
keras_resize_image.py 281–282
k-fold cross-validation technique 193
k-Means algorithm 146
k nearest neighbor (kNN) algorithm 183–184

L
Lambda1.py 61
Last In First Out (LIFO) 82
lcm.py 65–66
Linear regression

vs. curve-fitting 158–159
and Keras 174_178, 273–275
multivariate analysis 159–160
solutions exact values 159

Lists
and arithmetic operations 71–72
arrays and append() function 76–77
and basic operations 68–70
bubble sort 75–76
concatenate text strings 74–75
counting words 79
dictionaries (see Dictionaries)
and filter-related operations 72–73
list-related operations 80–82
matrices 84–85
mutable and immutable types in 95–96
and NumPy array

doubling the elements 106–107
and exponents 107
multiply lists and arrays 106

pair of lists 79–80
Python range() function 76–77
queues 86–87
reversing and sorting 70–71
sequence types in 94–95
sets 88–89
sort of numbers and strings 73–74
and split() function 78–79
stack and queue 82–83
tuples 87–88
type() function 96–97
vectors 83–84

Logistic regression
assumptions 203
linearly separable data 203
threshold value 202–203

Long short term memory (LSTMs) 180
Loops



338 • index

for loop 76
Python for 39–41
split() function 43
while loops 49–50

Lowest common multiple (LCM)
of two positive integers 65–66

M
Machine learning

accuracy vs. precision vs. recall 155–156
bias-variance tradeoff 154
classification 145–146
classifiers (see Classifiers, for machine 

learning)
clustering 146
confusion matrix 155
definition 143
dimensionality reduction 150–152
feature engineering 149
feature extraction 150
feature selection techniques 149
F1 score 157
learning tasks 146–148
linear data with np.linspace() 171–172
linear regression 157–161
lines in Euclidean plane 161–164
manual MSE calculation 169–171
MSE formula 168–169
NumPy and Matplotlib, scatter plots with 

164–168
p-value 157
regression 145
regularization 153–154
ROC Curve 156
R-squared values 155
semisupervised learning 144–145
supervised learning 143–144
training data vs. test data 152–153
unsupervised learning 144

main() function 35
Markov Chains 227
MatchGroup1.py 244–245
MatchGroup2.py 245–246
MatchGroup3.py 246–247
MatchLines1.py 257–258

match() method 250
MatchMixedCase1.py 259
MatchPatterns1.py 253–254
MatLab 101
Matplotlib

and NumPy 164–168
Matrices 84–86

My2DMatrix.py 85
NumPy library 85–86

Maximum a posteriori (MAP) hypothesis 192
MaxPooling2D() class 268
Mean squared error (MSE) 142

calculating manually 169–171
formula 168–169

mnist dataset 269
Multilabel classification 182–183
MultipleValues.py 60
My2DMatrix.py 85
MyVectors.py 83–84

N
Natural language processing (NLP) 268

bag of words 216
cases for 210
data preprocessing tasks in 214
and deep learning 213–214, 222
ELMo, ULMFit, OpenAI, BERT, and 

ERNIE 2.0 219–221
inverse document frequency (idf) 217–218
n-gram 215
vs. NLG 222–223
NLP techniques 211
reformer architecture 213
skip-gram 215–216
term frequency 217
transformer architecture and 211–212
transformer-XL architecture 213
translatotron 221–222
word embeddings 218–219

negative integers 15
n-gram 215
nparray1.py 103
np.linspace()method 117
np_linspace1.py 171–172



index • 339

np_plot2.py 166–167
np_plot_quadratic.py 167–168
Nth_exponent.py 41–42
Null hypothesis 157
NumPy

appending elements to arrays (1) 104–105
appending elements to arrays (2) 105–106
arrays 102–103
arrays and exponents 107–108
arrays and vector operations 111
definition 101
and dot products (1) 112
and dot products (2) 112–113
doubling the elements in list 106–107
features 101–102
library 85–86
lists and exponents 107
loop1.py, contents of 103–104
math operations and arrays 108–109
mean and standard deviation 116–118
multiply lists and arrays 106
“norm” of vectors 113–114
np.arange() method 110
np.empty() method 110
np.linspace() method 110, 111
np.mean() method 110, 111
np.ones() method 110
np.reshape() method 110, 111
np.shape() method 110
np.std() method 110, 111
np.zeros() method 110
and other operations 114–115
quadratic scatterplot with 167–168
reshape() method 115–116
scatter plots with 164–167
“-1” subranges with arrays 109–110
“-1” subranges with vectors 109

NumPy percentile() function 118

O
One-versus-all (OvA) 182
One-versus-one (OvO) 182
Ordered dictionaries

Python multidictionaries 94
sorting dictionaries 93

P
Pandas

dataframes (see Dataframes)
definition 118–119
one-line commands in 138–139

pandas_combine_df.py 125–126
pandas_quarterly_df1.py 127–128
pandas_quarterly_df2.py 128–129
pandas_random_df.py 124–125
pandas_scatter_df.py 135–136
partial_wine.csv 187
pasta.csv 274
PATH environment variable 5
people.csv 131–132
people_pandas.py 132–133
people_xslx.py 133–134
Perturbation technique 164
plain_linreg1.py 172–174
pop() functions 82
Precedence rules, for operators in Python 38–39
Precision-recall (PR) curve 194
Principal components 151
push() functions 82
p-value 157
Python

Anaconda Python distribution 2
and, or, and not Boolean Operators 52
arguments and parameters 56
arithmetic operations

chr() function 15–16
eval() function 14
float() function 14
format() function 15
formatting numbers in 16–17
integers 13, 14
int() function 14
negative integers 15
round() function 16
variables 14

break/continue/pass statements 50–51
capitalized words in string 249–250
character classes in 241–242
character sets in 240–241



340 • index

command-line arguments 33–35
compile time and runtime code checking 

12–13
conditional logic in 50
data types in 13
date-related functions 27–29
default values in function 59–60
digits and alphabetic characters 23–24
easy_install and pip 3
exception handling in 29–31
fraction() function 17–18
help() and dir() Functions 11–12
identifier 6–7
in/not in/is/is not Comparison  

Operators 51
installation 4–5
interactive interpreter 5–6
IPython 3–4
join() function 48–49
Lambda expressions 61
leading and trailing characters, removal of 

25–26
lines, indentation, and multiline 7–8
list structures in (see Lists)
local and global variables 52–53
for loops 39–40
metacharacters in 237–240
module 9–10
multidictionaries 94
mutable and immutable types in 95–96
nested loops 42–43
numeric exponents 41–42
Pandas (see Pandas)
pass by reference versus value 55–56
PATH environment variable 5
precedence of operators in 38–39
quotation and comments in 8–9
recursion 62–66
re module 254
reserved words 39
re.split() method 254–255
scope of variables 53–55
sequence types in 94–95
split() function to compare text strings 

47–48

split() function to print fixed width text 
45–47

split() function to print justified text 44–45
standard library module 10–11
strings

Compare.py 21
formatting 21–22
lower() and upper() methods 21
“+” operator 19
search and replace 24–25
slicing strings 22–23

text alignment 27
Unicode

special characters 18
Unicode1.py 19
and UTF-8 18

uninitialized variables and value none 22
user-defined functions 58–59
user input 31–33
variable number of arguments 60–61
virtualenv tool 3
while loops 49–50, 56–58
white space and newline character 26–27

Q
Queues 86–87

R
Random forests 189
Receiver operating characteristics (ROC) 
curve 156, 194

Rectified linear unit (ReLU) activation  
function 197

advantages and disadvantages of 199–200
Recurrent neural networks (RNNs) 180
Recursion

factorial values 62–63
Fibonacci numbers 63–64
greatest common divisor (GCD) of two 

positive integers 64
lowest common multiple (LCM) of two 

positive integers 65–66
Reformer architecture 213
RegEx1.py 248–249



index • 341

RegEx3.py 256–257
RegEx4.py 261–262
Regression 145
Regular expressions 237

character classes
grouping with 251–252
matching strings with multiple  

consecutive digits 252–253
with re module 242–243
reversing words in strings 253–254

compilation flags 258–259
and grouping 260–261
re.match() method (see re.match() 

method)
Regularization

data normalization vs. standardization 
153–154

ML and feature scaling 153
Reinforcement learning (RL)

applications 224
Bellman equations 230–231
deep RL (DRL) 233–234
Epsilon-Greedy algorithm 229–230
Markov Chains 227
MDPs 228
and NLP 225
nondeterministic finite automata 226–227
toolkits and frameworks 232–233
values, policies, and models 225–226

re.match() method
MatchGroup1.py 244–245
MatchGroup2.py 245–246
MatchGroup3.py 246–247
matching character classes with 247–248
options for 247

RemoveMetaChars1.py 239–240
Re-move1.py 25–26
Replace1.py 24–25
Reserved words 39
reshape() method 115–116
reversed() function 40
RNN() class 268
round() function 16
R-squared value 154–155

S
Scaled exponential linear unit (SELU) 198
SearchFunction1.py 250–251
search() method 250
Semi supervised learning 144–145
Sets 88–89
Sigmoid function 201
skip-gram 215–216
sklearn_tree2.py 185–186
sklearn_tree3.py 186–187
Softmax activation function 200
Softplus activation function 201
Sorting dictionaries 93
SplitCharClass1.py 254
split() function 77, 78–79
str() function 26
String2Date.py 29
StringToNums.py 40–41
Supervised learning 143
Support vector machines (SVM) 189–190
sys.argv. 33

T
Tanh activation function 197, 201
TensorBoard 299–300
TensorFlow 198
TensorFlow 2!

arithmetic operations in 315–318
arithmetic operations on tensors 297
autograph in 315
cloud-based service 334
constants in 302–304
convert Python arrays 325–327
data types 301–302
definition 295
differentiation and tf.GradientTape in 

327–332
duplicate functionality 296
eager execution 300–301
exponential values in 319–320
features and technologies 296–297
Google colaboratory 332–333
installation 298–299



342 • index

2nd order tensors in 323–325
and operations in 321–323
primitive types 302
and Python REPL 299
strings in 320–321
@tf.function in 309–314
tf 2 keras vs. “standalone” keras 270–271
tf.rank() API 305–306
tf.shape() API 306–307
toolkits 299–300
trigonometric values in 319
use cases 297
variables in 304–305, 307–309

TensorFlow Lite 300
TensorFlow Serving 300
TensorFlow 1.x 294
Term frequency 217
test.py 33–34
Text strings

beginning and end of 256–258
counting character types in 260
digits and delimiters 255
re.split() method 254–255
re.sub() Method 255–256
simple string matches 261–262

tf2_arithmetic.py 315–316
tf2_at_function.py 313
tf2_conflict_types.py 326–327
tf2_constants1.py 303
tf2_constants2.py 303–304
tf2_const_var.py 316–317
tf2_const_var2.py 317
tf2_convert_tensors.py 326
tf2_elem2.py 323–324
tf2_elem3.py 324–325
tf2_exp_values.py 319–320
tf2_gradient_tape1.py 328
tf2_gradient_tape2.py 328–329
tf2_gradient_tape3.py 329–330
tf2_gradient_tape4.py 330–331
tf2_gradient_tape5.py 331–332
tf2_keras_callback.py 282–284
tf2_keras_callback2.py 284–287

tf2_keras_save_model.py 288–291
tf2_math_ops.py 317–318
tf2_mult.py 325
tf2_overload.py 314
tf2_rank.py 305–306
tf2_shapes.py 306–307
tf2_simple_function.py 312–313
tf2_strings.py 320–321
tf2_tensors_operations.py 322–323
tf2_trig_values.py 319
tf2_variables.py 304–305
Titanic dataset 143
Training data vs. test data 152–153
Transformer 212
Transformer-XL 213
tree_classifier.py 187–188
Triangular1.py 42–43
True negative rate (TNR) 156
Tuples 87–88
2D linear regression 159
type() function 96–97

U
Universal language model fine-tuning  
(ULMFit) 219

Unsupervised learning 144
UserInput1.py 32
UserInput2.py 32
UserInput3.py 32–33

V
VariableSum1.py 61
Variance 154

W
weather_data.py 131
while loops 49–50, 56–58
Word embeddings 218–219
write() function 26

Z
Zero probability problem 193


	Python 3 for Machine Learning
	Contents
	Preface
	Chapter 1Introduction to Python 3
	1.1 Tools for Python
	1.1.1 easy_install and pip
	1.1.2 virtualenv
	1.1.3 IPython

	1.2 Python Installation
	1.3 Setting the PATH Environment Variable (Windows Only)
	1.4 Launching Python on Your Machine
	1.4.1 The Python Interactive Interpreter

	1.5 Python Identifiers
	1.6 Lines, Indentation, and Multilines
	1.7 Quotation and Comments in Python
	1.8 Saving Your Code in a Module
	1.9 Some Standard Modules in Python
	1.10 The help() and dir() Functions
	1.11 Compile Time and Runtime Code Checking
	1.12 Simple Data Types in Python
	1.13 Working with Numbers
	1.13.1 Working with Other Bases
	1.13.2 The chr() Function
	1.13.3 The round() Function in Python
	1.13.4 Formatting Numbers in Python

	1.14 Working with Fractions
	1.15 Unicode and UTF-8
	1.16 Working with Unicode
	1.17 Working with Strings
	1.17.1 Comparing Strings
	1.17.2 Formatting Strings in Python

	1.18 Uninitialized Variables and the Value None in Python
	1.19 Slicing Strings
	1.19.1 Testing for Digits and Alphabetic Characters

	1.20 Search and Replace a String in Other Strings
	1.21 Remove Leading and Trailing Characters
	1.22 Printing Text without NewLine Characters
	1.23 Text Alignment
	1.24 Working with Dates
	1.24.1 Converting Strings to Dates

	1.25 Exception Handling in Python
	1.26 Handling User Input
	1.27 Command-Line Arguments
	1.28 Summary

	Chapter 2Conditional Logic, Loops, and Functions
	2.1 Precedence of Operators in Python
	2.2 Python Reserved Words
	2.3 Working with Loops in Python
	2.3.1 Python for Loops
	2.3.2 A for Loop with try/except in Python
	2.3.3 Numeric Exponents in Python

	2.4 Nested Loops
	2.5 The split() Function with for Loops
	2.6 Using the split() Function to Compare Words
	2.7 Using the split() Function to Print Justified Text
	2.8 Using the split() Function to Print Fixed Width Text
	2.9 Using the split() Function to Compare Text Strings
	2.10  Using a Basic for Loop to DisplayCharacters in a Stri
	2.11 The join() Function 
	2.12 Python while Loops
	2.13 Conditional Logic in Python
	2.14 The break/continue/pass Statements
	2.15 Comparison and Boolean Operators
	2.15.1 The in/not in/is/is not Comparison Operators
	2.15.2 The and, or, and not Boolean Operators

	2.16 Local and Global Variables
	2.17 Scope of Variables
	2.18 Pass by Reference versus Value
	2.19 Arguments and Parameters
	2.20 Using a while loop to Find the Divisors of a Number
	2.20.1 Using a while loop to Find Prime Numbers

	2.21 User-Defined Functions in Python
	2.22 Specifying Default Values in a Function
	2.22.1 Returning Multiple Values from a Function

	2.23 Functions with a Variable Number of Arguments
	2.24 Lambda Expressions
	2.25 Recursion
	2.25.1 Calculating Factorial Values
	2.25.2 Calculating Fibonacci Numbers
	2.25.3 Calculating the GCD of Two Numbers
	2.25.4 Calculating the LCM of Two Numbers

	2.26 Summary

	Chapter 3Python Collections
	3.1 Working with Lists 
	3.1.1 Lists and Basic Operations
	3.1.2 Reversing and Sorting a List
	3.1.3 Lists and Arithmetic Operations
	3.1.4 Lists and Filter-Related Operations

	3.2 Sorting Lists of Numbers and Strings
	3.3 Expressions in Lists
	3.4 Concatenating a List of Words
	3.5 The BubbleSort in Python
	3.6 The Python range() Function
	3.6.1 Counting Digits, Uppercase, and Lowercase Letters

	3.7 Arrays and the append() Function
	3.8 Working with Lists and the split()Function
	3.9 Counting Words in a List
	3.10 Iterating through Pairs of Lists
	3.11 Other List-Related Functions
	3.12 Using a List as a Stack and a Queue
	3.13 Working with Vectors
	3.14 Working with Matrices
	3.15 The NumPy Library for Matrices
	3.16 Queues
	3.17 Tuples (Immutable Lists)
	3.18 Sets
	3.19 Dictionaries
	3.19.1 Creating a Dictionary
	3.19.2 Displaying the Contents of a Dictionary
	3.19.3 Checking for Keys in a Dictionary
	3.19.4 Deleting Keys from a Dictionary
	3.19.5 Iterating through a Dictionary
	3.19.6 Interpolating Data from a Dictionary

	3.20 Dictionary Functions and Methods
	3.21 Dictionary Formatting
	3.22 Ordered Dictionaries
	3.22.1 Sorting Dictionaries
	3.22.2 Python Multidictionaries

	3.23 Other Sequence Types in Python
	3.24 Mutable and Immutable Types in Python
	3.25 The type() Function
	3.26 Summary

	Chapter 4Introduction to NumPy and Pandas
	4.1 What is NumPy? 
	4.1.1 Useful NumPy Features

	4.2 What are NumPy Arrays?
	4.3 Working with Loops
	4.4 Appending Elements to Arrays (1)
	4.5 Appending Elements to Arrays (2)
	4.6 Multiply Lists and Arrays
	4.7 Doubling the Elements in a List
	4.8 Lists and Exponents
	4.9 Arrays and Exponents
	4.10 Math Operations and Arrays
	4.11 Working with “-1” Subranges with Vectors
	4.12 Working with “-1” Subranges with Arrays
	4.13 Other Useful NumPy Methods
	4.14 Arrays and Vector Operations
	4.15 NumPy and Dot Products (1)
	4.16 NumPy and Dot Products (2)
	4.17 NumPy and the “Norm” of Vectors
	4.18 NumPy and Other Operations
	4.19 NumPy and the reshape() Method
	4.20 Calculating the Mean and Standard Deviation
	4.21 Calculating Mean and Standard Deviation: Another Example
	4.22 What is Pandas? 
	4.22.1 Pandas Dataframes
	4.22.2  Dataframes and Data Cleaning Tasks

	4.23 A Labeled Pandas Dataframe 
	4.24 Pandas Numeric DataFrames
	4.25 Pandas Boolean DataFrames
	4.25.1 Transposing a Pandas Dataframe

	4.26 Pandas Dataframes and Random Numbers 
	4.27 Combining Pandas DataFrames (1)
	4.28 Combining Pandas DataFrames (2)
	4.29 Data Manipulation with Pandas Dataframes (1)
	4.30 Data Manipulation with Pandas DataFrames (2)
	4.31 Data Manipulation with Pandas Dataframes (3)
	4.32 Pandas DataFrames and CSV Files
	4.33 Pandas DataFrames and Excel Spreadsheets (1)
	4.34 Select, Add, and Delete Columns in DataFrames
	4.35 Pandas DataFrames and Scatterplots
	4.36 Pandas DataFrames and Simple Statistics
	4.37 Useful One_line Commands in Pandas 
	4.38 Summary

	Chapter 5Introduction toMachine Learning
	5.1 What is Machine Learning?
	5.1.1 Types of Machine Learning

	5.2 Types of Machine Learning Algorithms
	5.2.1 Machine Learning Tasks

	5.3 Feature Engineering, Selection, and Extraction
	5.4 Dimensionality Reduction
	5.4.1 PCA
	5.4.2 Covariance Matrix

	5.5 Working with Datasets
	5.5.1 Training Data versus Test Data
	5.5.2 What is Cross-validation?

	5.6 What is Regularization?
	5.6.1 ML and Feature Scaling
	5.6.2 Data Normalization versus Standardization

	5.7 The Bias-Variance Tradeoff
	5.8 Metrics for Measuring Models
	5.8.1 Limitations of R-Squared
	5.8.2 Confusion Matrix
	5.8.3 Accuracy versus Precision versus Recall
	5.8.4 The ROC Curve

	5.9 Other Useful Statistical Terms
	5.9.1 What Is an F1 score?
	5.9.2 What Is a p-value?

	5.10 What is Linear Regression?
	5.10.1 Linear Regression versus Curve-Fitting
	5.10.2 When Are Solutions Exact Values?
	5.10.3 What is Multivariate Analysis?

	5.11 Other Types of Regression
	5.12 Working with Lines in the Plane (optional)
	5.13 Scatter Plots with NumPy and Matplotlib (1)
	5.13.1 Why the “Perturbation Technique” is Useful 

	5.14 Scatter Plots with NumPy and Matplotlib (2)
	5.15 A Quadratic Scatterplot with NumPy and matplotlib
	5.16 The MSE Formula
	5.16.1 A List of Error Types
	5.16.2 Nonlinear Least Squares 

	5.17 Calculating the MSE Manually
	5.18 Approximating Linear Data with np.linspace() 
	5.19 Calculating MSE with np.linspace() API
	5.20 Linear Regression with Keras
	5.21 Summary

	Chapter 6Classifiers in Machine Learning
	6.1 What is Classification?
	6.1.1 What Are Classifiers?
	6.1.2 Common Classifiers
	6.1.3 Binary versus Multiclass Classification
	6.1.4 Multilabel Classification

	6.2 What are Linear Classifiers?
	6.3 What is kNN?
	6.3.1 How to Handle a Tie in kNN

	6.4 What are Decision Trees?
	6.5 What are Random Forests?
	6.6 What are SVMs?
	6.6.1 Tradeoffs of SVMs

	6.7 What is Bayesian Inference?
	6.7.1 Bayes Theorem
	6.7.2 Some Bayesian Terminology
	6.7.3 What Is MAP?
	6.7.4 Why Use Bayes Theorem?

	6.8 What is a Bayesian Classifier?
	6.8.1 Types of Naïve Bayes Classifiers

	6.9 Training Classifiers
	6.10 Evaluating Classifiers
	6.11 What are Activation Functions?
	6.11.1  Why Do We Need Activation Functions?
	6.11.2 How Do Activation Functions Work?

	6.12 Common Activation Functions
	6.12.1 Activation Functions in Python
	6.12.2 Keras Activation Functions

	6.13 The ReLU and ELU Activation Functions
	6.13.1  The Advantages and Disadvantages of ReLU
	6.13.2 ELU

	6.14 Sigmoid, Softmax, and Hardmax Similarities
	6.14.1 Softmax
	6.14.2 Softplus
	6.14.3 Tanh

	6.15 Sigmoid, Softmax, and HardMax Differences
	6.16 What is Logistic Regression?
	6.16.1 Setting a Threshold Value
	6.16.2 Logistic Regression: Important Assumptions
	6.16.3 Linearly Separable Data

	6.17 Keras, Logistic Regression, and Iris Dataset
	6.18 Summary

	Chapter 7Natural Language Processing and Reinforcement Learning
	7.1 Working with NLP
	7.1.1 NLP Techniques
	7.1.2 The Transformer Architecture and NLP
	7.1.3 Transformer-XL Architecture
	7.1.4 Reformer Architecture
	7.1.5 NLP and Deep Learning
	7.1.6 Data Preprocessing Tasks in NLP

	7.2 Popular NLP Algorithms
	7.2.1 What is an n-gram?
	7.2.2 What is a skip-gram?
	7.2.3 What is BoW?
	7.2.4 What is Term Frequency?
	7.2.5 What is Inverse Document Frequency (idf)?
	7.2.6 What is tf-idf?

	7.3 What are Word Embeddings?
	7.4 ELMo, ULMFit, OpenAI, BERT, and ERNIE 2.0
	7.5 What is Translatotron?
	7.6 Deep Learning and NLP
	7.7 NLU versus NLG
	7.8 What is Reinforcement Learning (RL)?
	7.8.1 RL Applications
	7.8.2 NLP and RL
	7.8.3 Values, Policies, and Models in RL

	7.9 From NFAs to MDPs
	7.9.1 What Are NFAs?
	7.9.2 What Are Markov Chains?
	7.9.3 MDPs

	7.10 The Epsilon-Greedy Algorithm
	7.11 The Bellman Equation
	7.11.1 Other Important Concepts in RL

	7.12 RL Toolkits and Frameworks
	7.12.1 TF-Agents

	7.13 What is Deep RL (DRL)?
	7.14 Summary

	Appendix A Introduction to Regular Expressions
	A.1	What Are Regular Expressions?
	A.2	Metacharacters in Python
	A.3	Character Sets in Python
	A.4	Character Classes in Python
	A.5	Matching Character Classes with the re Module
	A.6	Using the re.match() Method
	A.7	Options for the re.match() Method 
	A.8Matching Character Classes with the re.search() Method
	A.9	Matching Character Classes with the findAll() Method
	A.9.1	Finding Capitalized Words in a String

	A.10	Additional Matching Function for Regular Expressions 
	A.11	Grouping with Character Classes in Regular Expressions 
	A.12	Using Character Classes in Regular Expressions 
	A.12.1	Matching Strings with Multiple Consecutive Digits
	A.12.2	Reversing Words in Strings

	A.13	Modifying Text Strings with the re Module
	A.14	Splitting Text Strings with the re.split() Method
	A.15	Splitting Text Strings Using Digits and Delimiters
	A.16	Substituting Text Strings with the re.sub() Method
	A.17	Matching the Beginning and the End of Text Strings
	A.18	Compilation Flags
	A.19	Compound Regular Expressions
	A.20	Counting Character Types in a String
	A.21	Regular Expressions and Grouping
	A.22	Simple String Matches
	A.23	Additional Topics for Regular Expressions
	A.24	Summary
	A.25	Exercises

	Appendix BIntroduction to Keras
	B.1	What is Keras? 
	B.1.1	Working with Keras Namespaces in TF 2
	B.1.2	Working with the tf.keras.layers Namespace
	B.1.3	Working with the tf.keras.activations Namespace
	B.1.4	Working with the keras.tf.datasets Namespace
	B.1.5	Working with the tf.keras.experimental Namespace
	B.1.6	Working with Other tf.keras Namespaces
	B.1.7	TF 2 Keras versus “Standalone” Keras

	B.2	Creating a Keras-based Model
	B.3	Keras and Linear Regression
	B.4	Keras, MLPs, and MNIST
	B.5	Keras, CNNs, and cifar10
	B.6	Resizing Images in Keras
	B.7	Keras and Early Stopping (1)
	B.8	Keras and Early Stopping (2)
	B.9	Keras and Metrics
	B.10	Saving and Restoring Keras Models
	B.11	Summary

	Appendix CIntroduction to TF 2
	C.1	What is TF 2? 
	C.1.1	TF 2 Use Cases
	C.1.2	TF 2 Architecture: The Short Version
	C.1.3	TF 2 Installation
	C.1.4	TF 2 and the Python REPL

	C.2	Other TF 2-based Toolkits
	C.3	TF 2 Eager Execution
	C.4	TF 2 Tensors, Data Types, and Primitive Types
	C4.1TF 2 Data Types
	C.4.2TF 2 Primitive Types

	C.5	Constants in TF 2
	C.6	Variables in TF 2
	C.7	The tf.rank() API
	C.8	The tf.shape() API
	C.9	Variables in TF 2 (Revisited)
	C.9.1	TF 2 Variables versus Tensors 

	C.10	What is @tf.function in TF 2?
	C.10.1	How Does @tf.function Work?
	C.10.2	A Caveat about @tf.function in TF 2
	C.10.3	The tf.print() Function and Standard Error

	C.11	Working with @tf.function in TF 2
	C.11.1	An Example without @tf.function
	C.11.2	An Example with @tf.function
	C.11.3	Overloading Functions with @tf.function
	C.11.4	What is AutoGraph in TF 2?

	C.12 Arithmetic Operations in TF 2
	C.13	Caveats for Arithmetic Operations in TF 2
	C.13.1	TF 2 and Built-in Functions 

	C.14	Calculating Trigonometric Values in TF 2
	C.15	Calculating Exponential Values in TF 2
	C.16	Working with Strings in TF 2
	C.17	Working with Tensors and Operations in TF 2
	C.18	2nd Order Tensors in TF 2 (1)
	C.19	2nd Order Tensors in TF 2 (2)
	C.20	Multiplying Two 2nd Order Tensors in TF 
	C.21	Convert Python Arrays to TF Tensors
	C.21.1	Conflicting Types in TF 2

	C.22	Differentiation and tf.GradientTape in TF 2
	C.23	Examples of tf.GradientTape
	C.23.1	Using the watch() Method of tf.GradientTape
	C.23.2	Using Nested Loops with tf.GradientTape
	C.23.3	Other Tensors with tf.GradientTape
	C.23.4	A Persistent Gradient Tape

	C.24	Google Colaboratory
	C.25	Other Cloud Platforms
	C.25.1	GCP SDK

	C.26	Summary

	Index



