

MICROSOFT® EXCEL® 2019
PROGRAMMING BY EXAMPLE

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right of
ownership to any of the textual content in the book or ownership to any of the in-
formation or products contained in it. Th is license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material
(in any media) that is contained in the Work.

Mercury Learning And Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompa-
nying algorithms, code, or computer programs (“the soft ware”), and any accom-
panying Web site or soft ware of the Work, cannot and do not warrant the perfor-
mance or results that might be obtained by using the contents of the Work. Th e
author, developers, and the Publisher have used their best eff orts to insure the ac-
curacy and functionality of the textual material and/or programs contained in this
package; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. Th e Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

Th e author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will
not be liable for damages of any kind arising out of the use of (or the inability
to use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. Th is includes, but is not limited to, loss of revenue or
profi t, or other incidental, physical, or consequential damages arising out of the use
of this Work.

Th e companion fi les on the disc are also available for down load by writing to the
publisher at info@merclearning.com.

Th e sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book, and only at the discretion of the Publisher. Th e use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

MICROSOFT® EXCEL® 2019
PROGRAMMING BY EXAMPLE

with VBA, XML, and ASP

Julitta Korol

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2019 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

Julitta Korol. Microsoft Excel 2019 Programming by Example with VBA, XML, and ASP.
ISBN: 978-1-68392-400-5

192021321 This book is printed on acid-free paper in the United States of America.

Th e publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this
book are trademarks or service marks of their respective companies. Any omission or misuse (of any
kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2019939374

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at (800) 232-0223.

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion disc fi les for this title are available by contacting info@merclearning.com. Th e sole
obligation of MERCURY LEARNING AND INFORMATION to the purchaser is to replace the disc,
based on defective materials or faulty workmanship, but not based on the operation or functionality
of the product.

To my husband, Paul

CONTENTS

Acknowledgments ...xxv
Introduction ..xxvii

PART I EXCEL VBA PRIMER ... 1

Chapter 1 Excel Macros: A Quick Start in Excel
VBA Programming ...3

Macros and VBA ..4
Excel Macro-Enabled File Formats ...4
Macro Security Settings ..5

Enabling the Developer Tab in Excel ..7
Using the Built-In Macro Recorder .. 10

Planning a Macro .. 10
Recording a Macro ... 11

Using Relative or Absolute References in Macros ...14
Editing Recorded Macros .. 18
Macro Comments ... 24

Cleaning Up the Macro Code ..26
Running a Macro .. 27
Testing and Debugging a Macro ... 28
Saving and Renaming a Macro ... 29
Printing Macro Code ... 30

Improving Your Recorded Macros ... 30
Creating a Master Macro .. 32
Various Methods of Running Macros .. 33

Running the Macro Using a Keyboard Shortcut 33
Running the Macro from the Quick Access Toolbar35
Running the Macro from a Worksheet Button ..38

Summary .. 41

viii CONTENTS

Chapter 2 Excel Programming Environment: A Quick Overview of
its Tools and Features (VBE) ...43

Understanding the Project Explorer Window .. 44
Understanding the Properties Window ... 45
Understanding the Code Window .. 46
Setting the VBE Options .. 47
Syntax and Programming Assistance ... 48

List Properties/Methods .. 49
List Constants .. 50
Parameter Info .. 51
Quick Info .. 51
Complete Word ... 52
Indent/Outdent ... 52
Comment Block/Uncomment Block ... 53

Using the Object Browser .. 53
Locating Procedures with the Object Browser ... 59

Using the VBA Object Library .. 60
Using the Immediate Window .. 62

Obtaining Information in the Immediate Window 65
Working with Worksheet Cells and Ranges .. 67

Using the Range Property .. 67
Using the Cells Property .. 67
Using the Offset Property .. 69
Using the Resize Property.. 70
Using the End Property ... 72
Moving, Copying, and Deleting Cells .. 72

Working with Rows and Columns ... 73
Obtaining Information about the Worksheet ... 74

Entering Data and Formatting Cells ... 74
Returning Information Entered in a Worksheet 75
Finding Out about Cell Formatting ... 75

Working with Workbooks and Worksheets ... 76
Working with Windows ... 78
Working with the Excel Application .. 79
Summary .. 80

CONTENTS ix

Chapter 3 Excel VBA Fundamentals: A Quick Reference to
Writing VBA Code ...81

Excel Objects, Properties, and Methods ... 81
Microsoft Excel Object Model ... 83
Writing Simple and Complex VBA Statements .. 84

Breaking Up Long VBA Statements ... 88
Saving Results of VBA Statements .. 89
Introducing Data Types ... 89
Using Variables .. 92

How to Create Variables .. 93
How to Declare Variables .. 94
Specifying the Data Type of a Variable .. 97
Assigning Values to Variables ... 99
Forcing Declaration of Variables ..104
Understanding the Scope of Variables ...106

Procedure-Level (Local) Variables ... 106
Module-Level Variables ... 106
Project-Level Variables ... 109

Lifetime of Variables ...109
Finding a Variable Definition ...109
Determining a Data Type of a Variable ...109

Using Constants ..111
Built-In Constants ..112

Converting between Data Types ...114
Using Static Variables in VBA Procedures ..117
Using Object Variables in VBA Procedures ..118

Using Specific Object Variables ..120
Summary ..121

Chapter 4 Excel VBA Procedures: A Quick Guide to
Writing Function Procedures 123

Understanding Function Procedures ...124
Creating a Function Procedure ...124

Various Methods of Running Function Procedures127
Running a Function Procedure from a Worksheet127
Running a Function Procedure from Another VBA Procedure129

Ensuring Availability of Your Custom Functions129
Passing Arguments to Function Procedures ...130

x CONTENTS

Specifying Argument Types ..132
Passing Arguments by Reference and Value ...133
Using Optional Arguments ...135

Testing a Function Procedure ...137
Locating Built-In Functions ...137
Getting to Know the MsgBox Function ...138

Returning Values from the MsgBox Function ..146
Getting to Know the InputBox Function ...147

Determining and Converting Data Types ...150
Using the InputBox Method ..152
Summary ..157

Chapter 5 Adding Decisions to Excel VBA Programs: A Quick
Introduction to Conditional Statements159

Relational and Logical Operators ..159
Using If...Then Statement ..160
Using If...Then...Else Statement ..164
Using If...Then...ElseIf Statement ...167
Nested If…Then Statements ..169
Using the Select Case Statement ...170

Using Is with the Case Clause ...172
Specifying a Range of Values in a Case Clause173
Specifying Multiple Expressions in a Case Clause174

Writing a VBA Procedure with Multiple Conditions175
Using Conditional Logic in Function Procedures177
Summary ..178

Chapter 6 Adding Repeating Actions to Excel VBA Programs:
A Quick Introduction to Looping Statements181

Introducing Looping Statements ..181
Understanding Do...While and Do...Until Loops182
Avoiding Infinite Loops ...186
Executing a Procedure Line by Line ...187
Understanding While...Wend Loop ...188
Understanding For...Next Loop ..189
Understanding For...Each...Next Loop ..191
Exiting Loops Early ...193
Using a Do…While Statement ..194

CONTENTS xi

Using Loops and Conditionals ..195
Summary ..196

Chapter 7 Storing Multiple Values in Excel VBA Programs:
A Quick Introduction to Working with Arrays197

Understanding Arrays ..197
Declaring Arrays ...200
Array Upper and Lower Bounds ..201
Initializing and Filling an Array ...202

Filling an Array Using Individual Assignment Statements 202
Filling an Array Using the Array Function ... 202
Filling an Array Using For…Next Loop .. 203

Using a One-Dimensional Array ..203
Using a Two-Dimensional Array ..205
Using a Dynamic Array ..206
Using Array Functions ...209

The Array Function ..209
The IsArray Function ...209
The Erase Function ..210
The LBound and UBound Functions ..211

Troubleshooting Errors in Arrays ..212
Using the ParamArray Keyword ...213
Data Entry with an Array ...214
Sorting an Array with Excel ...215
Summary ..217

Chapter 8 Keeping Track of Multiple Values in Excel VBA
Programs: A Quick Introduction to Creating
and Using Collections ...219

Working with Collections of Objects ...220
Declaring and Using a Custom Collection ..222
Adding Objects to a Custom Collection ..222
Removing Objects from a Custom Collection ..224

Creating and Using Custom Objects ..228
Variable Declarations ...230
Defining the Properties for the Class ...230
Writing Property Procedures ..231

xii CONTENTS

Writing Class Methods ..234
Creating an Instance of a Class ...235

Summary ..243

Chapter 9 Excel Tools for Testing and Debugging: A Quick
Introduction to Testing VBA Programs245

Testing VBA Procedures ..245
Stopping a Procedure ..246
Using Breakpoints ...247

When to Use a Breakpoint ...252
Using the Immediate Window in Break Mode ...252
Using the Stop and Assert Statements ..253
Using the Watch Window ...255

Removing Watch Expressions ...259
Using Quick Watch ...259
Using the Locals Windows and the Call Stack Dialog Box260
Navigating with Bookmarks ..262
Trapping Errors ...263

Using the Err Object ...265
Setting Error Trapping Options in a VBA Project268

Stepping through VBA Procedures ..269
Stepping Over a Procedure and Running to Cursor271
Setting the Next Statement ..272
Showing the Next Statement ...273
Stopping and Resetting VBA Procedures ..273

Terminating a Procedure based on a Condition...273
Summary ..277

PART II MANIPULATING FILES AND FOLDERS WITH VBA279

Chapter 10 File and Folder Manipulation with VBA281

Manipulating Files and Folders ...282
Finding Out the Name of the Active Folder ..282

Changing the Name of a File or Folder .. 283
Checking the Existence of a File or Folder .. 284
Finding Out the Date and Time the File Was Modified 287
Finding Out the Size of a File (the FileLen Function) 288

CONTENTS xiii

Returning and Setting File Attributes (the GetAttr and
 SetAttr Functions) .. 288
Changing the Default Folder or Drive (the ChDir and
 ChDrive Statements) ... 290
Creating and Deleting Folders (the MkDir and RmDir Statements) 291
Copying Files (the FileCopy Statement) .. 292
Deleting Files (the Kill Statement) ... 294

Summary ..296

Chapter 11 File and Folder Manipulation with
Windows Script Host (WSH)297

Finding Information about Files with WSH ...300
Methods and Properties of FileSystemObject ...302
Properties of the File Object ...307
Properties of the Folder Object ...308
Properties of the Drive Object ..309

Creating a Text File Using WSH ...310
Performing Other Operations with WSH ...313

Running Other Applications ...313
Obtaining Information about Windows ..316

Retrieving Information about the User, Domain, or Computer 316
Creating Shortcuts ..317
Listing Shortcut Files ..319

Summary ..320

Chapter 12 Using Low- Level File Access321

File Access Types ...321
Working with Sequential Files ..322

Reading Data Stored in Sequential Files ..322
Reading a File Line by Line ...323
Reading Characters from Sequential Files ..325
Reading Delimited Text Files ..328
Writing Data to Sequential Files ...329

Using Write # and Print # Statements .. 331
Working with Random-Access Files ..333
Working with Binary Files ...340
Summary ..342

xiv CONTENTS

PART III CONTROLLING OTHER
APPLICATIONS WITH VBA ..343

Chapter 13 Using Excel VBA to Interact with
Other Applications ..345

Launching Applications ...345
Moving between Applications ...350
Controlling Another Application ...351
Other Methods of Controlling Applications ...355

Understanding Automation ..356
Understanding Linking and Embedding ...356
COM and Automation ...358
Understanding Binding ...358

Late Binding ..358
Early Binding ... 360

Establishing a Reference to a Type Library ...361
Creating Automation Objects ...362

Using the CreateObject Function ...363
Creating a New Word Document Using Automation363
Using the GetObject Function ..365
Opening an Existing Word Document ..366
Using the New Keyword ..368
Using Automation to Access Microsoft Outlook369

Summary ..371

Chapter 14 Using Excel with Microsoft Access373

Object Libraries ...374
Setting Up References to Object Libraries...379

Connecting to Access ..380
Opening an Access Database ...381

Using Automation to Connect to an Access Database381
Using DAO to Connect to an Access Database386
Using ADO to Connect to an Access Database388

Performing Access Tasks from Excel ...390
Creating a New Access Database with DAO ...390
Opening an Access Form ...392
Opening an Access Report ..394

CONTENTS xv

Creating a New Access Database with ADO...396
Running a Select Query ...397
Running a Parameter Query ...400
Calling an Access Function ...401

Retrieving Access Data into an Excel Worksheet402
Retrieving Data with the GetRows Method ..402
Retrieving Data with the CopyFromRecordset Method405
Retrieving Data with the TransferSpreadsheet Method407
Using the OpenDatabase Method ..409
Creating a Text File from Access Data ...412
Creating a Query Table from Access Data ..415
Creating an Embedded Chart from Access Data417

Transferring the Excel Worksheet to an Access Database420
Linking an Excel Worksheet to an Access Database421
Importing an Excel Worksheet to an Access Database423
Placing Excel Data in an Access Table ...423

Summary ..426

PART IV ENHANCING THE USER EXPERIENCE427

Chapter 15 Event-Driven Programming429

Introduction to Event Procedures ..430
Writing Your First Event Procedure ..432
Enabling and Disabling Events..435
Event Sequences ..436

Worksheet Events ...437
Worksheet_Activate() ..437
Worksheet_Deactivate() ..438
Worksheet_SelectionChange() ...439
Worksheet_Change() ...439
Worksheet_Calculate() ..440
Worksheet_BeforeDoubleClick (ByVal Target As Range,
 Cancel As Boolean) ...441
Worksheet_BeforeRightClick (ByVal Target As Range,
 Cancel As Boolean) ..441

Workbook Events ..443
Workbook_Activate()...444
Workbook_Deactivate() ..445

xvi CONTENTS

Workbook_Open() ...445
Workbook_BeforeSave(ByVal SaveAsUI As Boolean,
 Cancel As Boolean) ...446
Workbook_BeforePrint(Cancel As Boolean)..447
Workbook_BeforeClose(Cancel As Boolean) ...448
Workbook_NewSheet(ByVal Sh As Object) ...449
Workbook_WindowActivate(ByVal Wn As Window)449
Workbook_WindowDeactivate(ByVal Wn As Window)450
Workbook_WindowResize(ByVal Wn As Window)451

PivotTable Events ..452
Chart Events ...454

Writing Event Procedures for a Chart Located on a Chart Sheet456
Chart_Activate() ... 457
Chart_Deactivate() ... 457
Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long,
 ByVal Arg2 As Long) ... 457
Chart_Calculate() ... 458
Chart_BeforeRightClick() ... 458
Chart_MouseDown(ByVal Button As Long, ByVal Shift
 As Long, ByVal x As Long, ByVal y As Long) 458

Writing Event Procedures for Embedded Charts459
Events Recognized by the Application Object ..461
Query Table Events ...467
Other Excel Events ..472

OnTime Method ...472
OnKey Method ...473

Summary ..474

Chapter 16 Using Dialog Boxes ..475

Excel Dialog Boxes ..476
File Open and File Save As Dialog Boxes ...480
Filtering Files ...481
Selecting Files ...483
GetOpenFilename and GetSaveAsFilename Methods486

Using the GetOpenFilename Method ..486
Using the GetSaveAsFilename Method ...487

Summary ..489

CONTENTS xvii

Chapter 17 Creating Custom Forms ..491

Creating Forms ..491
Tools for Creating User Forms ..493
Placing Controls on a Form ..499

Setting Grid Options .. 499
Sample Application: Info Survey...500

Setting Up the Custom Form ..501
Inserting a New Form and Setting Up the Initial Properties501
Changing the Size of the Form ...502
Adding Buttons, Checkboxes, and Other Controls to a Form..............503
Changing Control Names and Properties ...506
Setting the Tab Order ...508
Preparing a Worksheet to Store Custom Form Data509
Displaying a Custom Form ..510
Understanding Form and Control Events ...511
Writing VBA Procedures to Respond to Form and Control Events514

Writing a Procedure to Initialize the Form ... 514
Writing a Procedure to Populate the Listbox Control 517
Writing a Procedure to Control Option Buttons .. 517
Writing Procedures to Synchronize the Text Box
 with the Spin Button .. 519
Writing a Procedure that Closes the User Form ... 520
Transferring Form Data to the Worksheet .. 520

Using the Info Survey Application ...522
UserForm: Modal versus Modeless ..522

Summary ..523

Chapter 18 Formatting Worksheets with VBA525

Performing Basic Formatting Tasks with VBA...526
Formatting Numbers ..526
Formatting Text...531
Formatting Dates ..533
Formatting Columns and Rows ..535
Formatting Headers and Footers ..536
Formatting Cell Appearance ...538
Removing Formatting from Cells and Ranges ..541

Performing Advanced Formatting Tasks with VBA541
Conditional Formatting Using VBA ..542

xviii CONTENTS

Conditional Formatting Rule Precedence ...546
Deleting Rules with VBA ...547
Using Data Bars...547
Using Color Scales ..549
Using Icon Sets ..549
Formatting with Themes ...554
Formatting with Shapes ...562
Formatting with Sparklines ...564

Understanding Sparkline Groups ... 566
Programming Sparklines with VBA ... 566

Formatting with Styles ...570
Summary ..574

Chapter 19 Context Menu Programming and
Ribbon Customizations ...575

Working with Context Menus...575
Modifying a Built-In Context Menu ..576
Removing a Custom Item from a Context Menu581
Disabling and Hiding Items on a Context Menu....................................582
Adding a Context Menu to a Command Button583
Finding a FaceID Value of an Image ..587

A Quick Overview of the Ribbon Interface ...590
Ribbon Programming with XML and VBA...592

Creating the Ribbon Customization XML Markup593
Loading Ribbon Customizations ..598
Errors on Loading Ribbon Customizations ..600
Using Images in Ribbon Customizations ..601
About Tabs, Groups, and Controls ...603
Using Various Controls in Ribbon Customizations603

Creating Toggle Buttons .. 603
Creating Split Buttons, Menus, and Submenus ... 604
Creating Checkboxes .. 606
Creating Edit Boxes .. 608
Creating Combo Boxes and Drop-Downs .. 609
Creating a Gallery Control .. 611
Creating a Dialog Box Launcher .. 614

Disabling a Control ..614

CONTENTS xix

Repurposing a Built-In Control ..616
Refreshing the Ribbon ...617
The CommandBar Object and the Ribbon ...619
Tab Activation and Group Auto-Scaling ...622

Customizing the Backstage View ..623
Customizing the Microsoft Office Button Menu in Excel 2019629
Customizing the Quick Access Toolbar (QAT) ..630
Modifying Context Menus Using Ribbon Customizations631
Summary ..635

Chapter 20 Printing and Sending Email from Excel637

Controlling the Page Setup ..638
Controlling the Settings on the Page Layout Tab639
Controlling the Settings on the Margins Tab ..640
Controlling the Settings on the Header/Footer Tab642
Controlling the Settings on the Sheet Tab ...644
Retrieving Current Values from the Page Setup Dialog Box647

Previewing a Worksheet ...649
Changing the Active Printer ..652
Printing a Worksheet with VBA ...653
Disabling Printing and Print Previewing ...655
Using Printing Events ...656
Sending Email from Excel ..660

Sending Email Using the SendMail Method ...662
Sending Email Using the MsoEnvelope Object665
Sending Bulk Email from Excel via Outlook ..666

Summary ..670

PART V EXCEL TOOLS FOR DATA ANALYSIS671

Chapter 21 Using and Programming Excel Tables 673

Understanding Excel Tables ..673
Creating a Table Using Built-in Commands ...675
Creating a Table Using VBA ...678
Understanding Column Headings in the Table ..681
Multiple Tables in a Worksheet ..683
Working with the Excel ListObject ...684

xx CONTENTS

Filtering Data in Excel Tables Using AutoFilter ..690
Filtering Data in Excel Tables Using Slicers ..691
Deleting Worksheet Tables ..694
Summary ..694

Chapter 22 Programming PivotTables and PivotCharts 695

Creating a PivotTable Report ..695
Removing PivotTable Detail Worksheets with VBA702
Creating a PivotTable Report Programmatically ..705
Creating a PivotTable Report from an Access Database708
Using the CreatePivotTable Method of the PivotCache Object711
Formatting, Grouping, and Sorting a PivotTable Report715
Hiding Items in a PivotTable ...718
Adding Calculated Fields and Items to a PivotTable719
Creating a PivotChart Report Using VBA ...728
Understanding and Using Slicers..733

Creating Slicers Manually ..733
Working with Slicers Using VBA ...737

Data Model Functionality and PivotTables ...742
Programmatic Access to the Data Model ..748
Summary ..753

Chapter 23 Getting and Transforming Data in Excel 2019755

Using the Get Data Button ...756
Understanding Power Queries ..759
Using the Advanced Editor ..780
Power Query vs Excel Formula Language and Excel VBA........................781
Learning about various M Language Functions ...781
Creating a Query from a Table ..784
The Get Data and VBA Support ...784
Additional Learning Resources for Using the Get Data Feature788
Summary ..789

CONTENTS xxi

PART VI TAKING CHARGE OF PROGRAMMING
ENVIRONMENT ...791

Chapter 24 Programming the Visual Basic Editor (VBE) 793

The Visual Basic Editor Object Model ...794
Understanding the VBE Objects ...795
Accessing the VBA Project ..797
Finding Information about a VBA Project ..799
VBA Project Protection ..800
Working with Modules ..801

Listing All Modules in a Workbook ...802
Adding a Module to a Workbook ...804
Removing a Module ...805
Deleting All Code from a Module ..805
Deleting Empty Modules ...806
Copying (Exporting/Importing) a Module ...808
Copying (Exporting/Importing) All Modules ..809

Working with Procedures ..812
Listing All Procedures in All Modules ...812
Adding a Procedure ..813
Deleting a Procedure ..814
Creating an Event Procedure ..816

Working with UserForms ..818
Creating and Manipulating UserForms ...819
Copying UserForms Programmatically ...825

Working with References ...826
Creating a List of References ...827
Adding a Reference ..829
Removing a Reference ..831
Checking for Broken References ..832

Working with Windows ...834
Working with VBE Menus and Toolbars ..835

Generating a Listing of VBE CommandBars and Controls836
Adding a CommandBar Button to the VBE ...837
Removing a CommandBar Button from the VBE841

Summary ..841

xxii CONTENTS

Chapter 25 Calling Windows API Functions from VBA843

Understanding the Windows API Library Files ...844
How to Declare a Windows API Function ..845

Passing Arguments to API Functions ..847
Understanding the API Data Types and Constants847
Using Constants with Windows API Functions850

64-Bit Office and Windows API ...853
Accessing Windows API Documentation ...857
Using Windows API Functions in Excel..857
Summary ..870

PART VII EXCEL AND WEB TECHNOLOGIES 871

Chapter 26 HTML Programming and Web Queries 873

Creating Hyperlinks Using VBA...874
Creating and Publishing HTML Files Using VBA877
Web Queries ..883

Creating and Running Web Queries with VBA886
Dynamic Web Queries ...892

Refreshing Data ...895
Summary ..896

Chapter 27 Excel and Active Server Pages 897

Introduction to Active Server Pages ...897
The ASP Object Model ...898
HTML and VBScript ...899
Creating an ASP Classic Page ..900
Installing Internet Information Services (IIS) ...905
Creating a Virtual Directory ..907
Setting ASP Configuration Properties ..910
Turning Off Friendly HTTP Error Messages ..912
Running Your First ASP Script ...913
Sending Data from an HTML Form to an Excel Workbook916
Sending Excel Data to the Internet Browser..933
Summary ..935

CONTENTS xxiii

Chapter 28 Using XML in Excel 2019 ...937

What Is XML? ..938
Well-Formed XML Documents ..940
Validating XML Documents..943
Editing and Viewing an XML Document ..944
Opening an XML Document in Excel ..946
Working with XML Maps ..950
Working with XML Tables ..956

Exporting an XML Table ...958
XML Export Precautions ...961

Validating XML Data..962
Programming XML Maps ..964

Adding an XML Map to a Workbook ..964
Deleting Existing XML Maps ..965
Exporting and Importing Data via an XML Map965
Binding an XML Map to an XML Data Source966
Refreshing XML Tables from an XML Data Source966

Viewing the XML Schema ...967
Creating XML Schema Files ..972
Using XML Events ..973
The XML Document Object Model ..976
Working with XML Document Nodes ...979
Retrieving Information from Element Nodes ...981
XML via ADO ..988

Saving an ADO Recordset to Disk as XML ...988
Loading an ADO Recordset ..992
Saving an ADO Recordset into the DOMDocument60 Object993

Understanding Namespaces ..996
Understanding Open XML Files ...997
Manipulating Open XML Files with VBA .. 1002
Summary ... 1014

Index ..1017

ACKNOWLEDGMENTS

First, I’d like to express my gratitude to everyone at Mercury Learning and
Information. A sincere thank-you to my publisher, David Pallai, for offering
me the opportunity to update this book to the new 2019 version and tirelessly

keeping things on track during this long project.
A whole bunch of thanks go to the editorial team for working so hard to bring

this book to print. In particular, I would like to thank the copyeditor, IBI Prepress,
for the thorough review of my writing. To Jennifer Blaney, for her production
expertise and keeping track of all the edits and file processing issues. To the
compositor, Swaradha Typesetting, for all the composition efforts that gave this
book the right look and feel.

Special thanks to my husband, Paul, for his patience during this long project and
for having to put up with frequent takeout dinners.

Finally, I’d like to acknowledge readers like you who cared enough to post
reviews of the previous edition of this book online. Your invaluable feedback has
helped me raise the quality of this work by including the material that matters to
you most. Please continue to inspire me with your ideas and suggestions.

xxv

 INTRODUCTION

If you ever wanted to open a new worksheet without using built-in commands
or create a custom, fully automated form to gather data and store the results in
a worksheet, you’ve picked up the right book. This book shows you what’s do-

able with Microsoft® Excel® 2019 beyond the standard user interface. This book’s
purpose is to teach you how to delegate many time-consuming and repetitive tasks
to Excel by using its built-in language, VBA (Visual Basic for Applications). By
executing special commands and statements and using several Excel’s built-in pro-
gramming tools, you can work smarter than you ever thought possible. I will show
you how.

When I first started programming in Excel (circa 1990), I was working in a
sales department and it was my job to calculate sales commissions and send the
monthly and quarterly statements to our sales representatives spread all over the
United States. As this was a very time-consuming and repetitive task, I became im-
mensely interested in automating the whole process. In those days it wasn’t easy to
get started in programming on your own. There weren’t as many books written on
the subject; all I had was the built-in documentation that was hard to read. Never-
theless, I succeeded; my first macro worked like magic. It automatically calculated
our salespeople’s commissions and printed out nicely formatted statements. And
while the computer was busy performing the same tasks repeatedly, I was free to
deal with other more interesting projects.

Many years have passed since that day, and Excel is still working like magic for
me and a great number of other people who took time to familiarize themselves
with its programming interface. If you’d like to join these people and have Excel do
magical things for you as well, this book provides an easy step-by-step introduc-
tion to VBA and other technologies that work nicely with Microsoft Excel. One
is known as classic ASP (short for Active Server Pages) and the other is XML (or

xxvii

xxviii INTRODUCTION

Extensible Markup Language). Besides this book, there is no extra cost to you; all
the tools you need are built into Excel. If you have not yet discovered them, Micro-
soft Excel 2019 Programming by Example with VBA, XML, and ASP will lead you
through the process of creating your first macros, VBA procedures, VBScripts, web
queries and power queries, ASP pages, and XML documents, from start to finish.
Along the way, there are detailed, practical “how-to” examples and plenty of illus-
trations. The book’s approach is to learn by doing. There’s no better way than step
by step. Simply turn on the computer, open this book, launch Microsoft Excel, and
do all the guided Hands-On exercises. But before you get started, allow me to give
you a short overview of the things you’ll be learning as you progress through this
book.

Microsoft Excel 2019 Programming by Example with VBA, XML, and ASP is di-
vided into 7 parts (28 chapters) that progressively introduce you to programming
Microsoft Excel 2019 as well as controlling other applications with Excel.

Part I introduces you to Visual Basic for Applications (VBA) - the programming
language for Microsoft Excel. In this part of the book, you acquire the fundamen-
tals of VBA that you will use over and over again in building real-life spreadsheet
applications. Part I Chapters are also the subject of a standalone book Microsoft
Excel 2019 Programming Pocket Primer available from Mercury Learning and
Information (ISBN: 978-1-68392-412-8). If you already worked through the pocket
primer book, you can skip chapters 1-9 and begin from Chapter 10.

PART I CONSISTS OF THE FOLLOWING NINE CHAPTERS:

Chapter 1 – Excel Macros: A Quick Start in Excel VBA Programming—In this chap-
ter you learn how you can introduce automation into your Excel worksheets by
simply using the built-in macro recorder. You learn about different phases of macro
design and execution. You also learn about macro security.

Chapter 2 – Excel Programming Environment : A Quick Overview of its Tools and
Features—In this chapter you learn almost everything you need to know about
working with the Visual Basic Editor window, commonly referred to as VBE. Some
of the programming tools that are not covered here are discussed and used in
Chapter 9.

Chapter 3 – Excel VBA Fundamentals : A Quick Reference to Writing VBA Code—In
this chapter you are introduced to the basic VBA concepts such as Microsoft Excel
object model and its objects, properties, and methods. You also learn concepts that
allow you to store various pieces of information for later use.

INTRODUCTION xxix

Chapter 4 – Excel VBA Procedures: A Quick Guide to Writing Function Procedures—
In this chapter you learn how to write and execute function procedures. You also
learn how to provide additional information to your procedures before they are
run. You are introduced to working with some useful built-in functions and meth-
ods that allow you to interact with you VBA procedure users.

Chapter 5 – Adding Decisions to Excel VBA Programs : A Quick Introduction to Con-
ditional Statements—In this chapter you learn how to control your program flow
with several different decision-making statements.

Chapter 6 – Adding Repeating Actions to Excel VBA Programs: A Quick Introduction
to Looping Statements—In this chapter you learn how you can repeat certain groups
of statements using procedure loops.

Chapter 7 – Storing Multiple Values in Excel VBA Programs: A Quick Introduction to
Working with Arrays—In this chapter you learn the concept of static and dynamic
arrays, which you can use for holding various values. You also learn about built-in
array functions.

Chapter 8 – Keeping Track of Multiple Values in Excel VBA Programs: A Quick Intro-
duction to Creating and Using Collections—In this chapter you learn how to create
and use your own VBA objects and collections of objects.

Chapter 9 – Excel Tools for Testing and Debugging: A Quick Introduction to Testing
VBA Programs—In this chapter you begin using built-in debugging tools to test
your programming code and trap errors.

The above nine chapters will give you the fundamental techniques and con-
cepts you will need in order to continue your Excel VBA learning path. The skills
obtained in Excel VBA Primer are very portable. They can be utilized in program-
ming other Microsoft Office applications that also use VBA as their native pro-
gramming language such as Access, Word, PowerPoint, Outlook, and so on.

While VBA offers numerous built-in functions and statements for working with
the file system, you can also perform file and folder manipulation tasks via objects
and methods included in the Windows Script Host installed by default on com-
puters running the Windows operating system. Additionally, you can open and
manipulate files directly via the low-level file I/O (input/output) functions. In Part
II of this book you discover various methods of working with files and folders, and
learn how to programmatically open, read, and write three types of files.

xxx INTRODUCTION

PART II CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 10 –File and Folder Manipulation with VBA—In this chapter you learn
about numerous VBA statements used in working with Windows files and folders.

Chapter 11 – File and Folder Manipulation with Windows Script Host (WSH)—In
this chapter you learn how the Windows Script Host works together with VBA and
allows you to get information about files and folders.

Chapter 12 – Using Low-Level File Access—In this chapter you learn how to get in
direct contact with your data by using the process known as low-level file I/O. You
also learn about various types of file access.

The VBA programming language goes beyond Excel. VBA is used by other Of-
fice applications such as Word, PowerPoint, Outlook, and Access. It is also sup-
ported by many non-Microsoft products. The VBA skills you acquire in Excel can
be used to program any application that supports this language. In Part III of the
book you learn how other applications expose their objects to VBA.

PART III CONSISTS OF THE FOLLOWING TWO CHAPTERS:

Chapter 13 – Using Excel VBA to Interact with Other Applications—In this chapter
you learn how you can launch and control other applications from within VBA
procedures written in Excel. You also learn how to establish a reference to a type
library and use and create Automation objects.

Chapter 14 – Using Excel with Microsoft Access—In this chapter you learn about ac-
cessing Microsoft Access data and running Access queries and functions from VBA
procedures. If you are interested in learning more about Access programming with
VBA using a step-by-step approach, I recommend my book Microsoft Access 2019
Programming by Example with VBA, XML, and ASP (Mercury Learning, 2019).

In recent years extensive changes have been made to the Excel user interface
(UI). In Part IV of this book you learn how to create desired interface elements for
your users via Ribbon customizations and the creation of dialog boxes and custom
forms. You will also learn how to format worksheets with VBA and control Excel
with event-driven programming.

PART IV CONSISTS OF THE FOLLOWING SIX CHAPTERS:

Chapter 15 – Event-Driven Programming—In this chapter you learn about the types
of events that can occur when you are running VBA procedures in Excel. You gain

INTRODUCTION xxxi

a working knowledge of writing event procedures and handling various types of
events.

Chapter 16 –Using Dialog Boxes—In this chapter you learn about working with
Excel built-in dialog boxes programmatically.

Chapter 17 – Creating Custom Forms—In this chapter you learn how to use various
controls for designing user-friendly forms. This chapter has two complete hands-
on applications you build from scratch.

Chapter 18 – Formatting Worksheets with VBA—In this chapter you learn how to
perform worksheet formatting tasks with VBA by applying visual features such as
data bars, color scales, and icon sets. You also learn how to produce consistent-
looking worksheets by using new document themes and styles.

Chapter 19 – Context Menu Programming and Ribbon Customizations—In this
chapter you learn how to add custom options to Excel built-in context (shortcut)
menus and how to work programmatically with the Ribbon interface and Back-
stage View.

Chapter 20 – Printing and Sending Email from Excel—In this chapter you learn how
to control printing and emailing your workbooks via VBA code.

Some Excel 2019 features are used more frequently than others; some are only
used by Excel power users and developers. In Part V of the book you work with
Excel tools for data analysis. You gain experience in programming advanced Excel
features such as Excel tables, PivotTables, PivotCharts, and get introduced to the
Power Query feature that allows you to create powerful queries that simplify data
import and transformation.

PART V CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 21 – Using and Programming Excel Tables—In this chapter you learn how
to work with Excel tables. You will learn how to retrieve information from an Ac-
cess database, convert it into a table, and enjoy database-like functionality in the
spreadsheet. You will also learn how tables are exposed through Excel’s object mod-
el and manipulated via VBA.

Chapter 22 – Programming PivotTables and PivotCharts—In this chapter you learn
how to work with two powerful Microsoft Excel objects that are used for data
analysis: PivotTable and PivotChart. You will learn how to use VBA to manipulate
these two objects to quickly produce reports that allow you or your users to easily

xxxii INTRODUCTION

examine large amounts of data pulled from an Excel worksheet range or from an
external data source such as an Access database.

Chapter 23 – Getting and Transforming Data in Excel 2019—In this chapter you are
introduced to data import, transformation and shaping features available in the Get
& Transform section of the Excel’s 2019 Data tab. You work with Query Editor and
Advanced Editor and learn formulas and functions written in the M expression
language while bringing together data from various sources.

While VBA provides a very comprehensive Object Model for automating work-
sheet tasks, some of the processes and operations that you may need to program
are the integral part of the Windows operating system and cannot be controlled
via VBA. In Part VI of the book you start by learning how to programmatically
work with VBA projects, modules and procedures. Next, you are introduced to the
Windows API library of functions that will come to your rescue when you need to
overcome the limitations of the native VBA library.

PART VI CONSISTS OF THE FOLLOWING TWO CHAPTERS:

Chapter 24 – Programming the Visual Basic Editor (VBE)—In this chapter you learn
how to use numerous objects, properties, and methods from the Microsoft Visual
Basic for Applications Extensibility Object Library to control the Visual Basic Edi-
tor to gain full control over Excel.

Chapter 25 – Calling Windows API functions from Excel VBA—In this chapter you
are introduced to the Windows API library, which provides a multitude of func-
tions that will come to your rescue when you need to overcome the limitations of
the native VBA library. After learning basic Windows API concepts, you are shown
how to declare and utilize API functions from VBA.

Thanks to the Internet and intranets, your spreadsheet data can be easily ac-
cessed and shared with others 24/7. Excel is capable of both capturing data from
the Web and publishing it to the Web. In Part VII of the book, you are introduced to
using Excel with Web technologies. You learn how to retrieve live data into work-
sheets with Web queries and use Excel VBA to create and publish HTML files. You
also learn how to retrieve and send information to Excel via Active Server Pages
(ASP) and use XML with Excel.

INTRODUCTION xxxiii

PART VII CONSISTS OF THE FOLLOWING THREE CHAPTERS:

Chapter 26 – HTML Programming and Web Queries—In this chapter you learn how
to create hyperlinks and publish HTML files using VBA. You also learn how to cre-
ate and run various types of web queries.

Chapter 27 – Excel and Active Server Pages—In this chapter you learn how to use
the Microsoft-developed Active Server Pages technology to send Excel data into
the Internet browser and how to get data entered in an HTML form into Excel.

Chapter 28 – Using XML in Excel 2019—In this chapter you learn how to use Ex-
tensible Markup Language with Excel. You learn about enhanced XML support in
Excel 2019 and many objects and technologies that are used to process XML docu-
ments.

INTENDED AUDIENCE

This book is designed for Excel users who want to expand their knowledge and
learn what can be accomplished with Excel beyond the provided user interface.

Consider this book as a sort of private course that you can attend in the comfort
of your office or home. Some courses have prerequisites, and this is no exception.
Microsoft Excel 2019 Programming by Example with VBA, XML, and ASP does not
explain how to select options from the Ribbon or use shortcut keys. The book as-
sumes that you can easily locate in Excel the options that are required to perform
any of the tasks already preprogrammed by the Microsoft team. With the basics
already mastered, this book will take you to the next learning level where your cus-
tom requirements and logic are rendered into the language that Excel can under-
stand. Let your worksheets perform magical things for you and let the fun begin.

THE COMPANION FILES

The example files for all the hands-on activities in this book are available on the
disc included with this book. These companion files may also be downloaded by
contacting the publisher at info@merclearning.com. Digital versions of this title are
available at academiccourseware.com and other digital vendors.

1

The Excel VBA Primer is divided into nine chapters that progressively intro-
duce you to programming Microsoft Excel whether you are using the 2019
standalone version of the product or Office 365. These chapters present the

fundamental techniques and concepts that you need to master before you can take
further steps in Excel programming.

Chapter 1 Excel Macros
 —A Quick Start in Excel VBA Programming
Chapter 2 Excel Programming Environment
 —A Quick Overview of its Tools and Features
Chapter 3 Excel VBA Fundamentals
 —A Quick Reference to Writing VBA Code
Chapter 4 Excel VBA Procedures
 —A Quick Guide to Writing Function Procedures
Chapter 5 Adding Decisions to Excel VBA Programs
 —A Quick Introduction to Conditional Statements
Chapter 6 Adding Repeating Actions to Excel VBA Programs
 —A Quick Introduction to Looping Statements
Chapter 7 Storing Multiple Values in Excel VBA Statements
 —A Quick Introduction to Working with Arrays
Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs
 —A Quick Introduction to Creating and Using Collections
Chapter 9 Excel Tools for Testing in Debugging
 —A Quick Introduction to Testing VBA Programs

Part

 I EXCEL VBA PRIMER

3

Visual Basic for Applications (VBA) is the programming language built
into all Microsoft® Office® applications, including Microsoft Excel®. By
learning some basic VBA commands, you can start automating many

of the mundane routine tasks that you perform in Excel. In this chapter, you
acquire the fundamentals of VBA by recording macros and using the Visual
Basic Editor to examine and edit the VBA code behind the recorded macro.

Chapter

 1 EXCEL MACROS

A QUICK START IN

EXCEL VBA

PROGRAMMING

4 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

MACROS AND VBA

Macros are programs that store a series of commands. When you create a macro,
you simply combine a sequence of keystrokes into a single command that you
can later “play back.” Because macros can reduce the number of steps required to
complete tasks, using macros can significantly decrease the time you spend cre-
ating, formatting, modifying, and printing your Excel worksheets. You can cre-
ate macros by using Microsoft Excel’s built-in recording tool (Macro Recorder),
or you can write them from scratch using Visual Basic Editor, a special devel-
opment environment built into Excel. You can combine recorded macros with
your own programming code to create unique VBA applications that meet your
everyday needs. Whether you write or record your programming code in Excel,
you’ll be utilizing the powerful programming language—Visual Basic for Appli-
cations—commonly known as VBA.

Microsoft Excel comes with dozens of built-in, time-saving features that al-
low you to work faster and smarter. Before you decide to automate a worksheet
task with a recorded macro or programming code written from scratch, make
sure there is not already a built-in feature that you can use to perform that task.
Consider writing your own VBA code or recording a macro when you find
yourself performing the same series of actions over and over again or when
Excel does not provide a built-in tool to do the job.

Just by learning how to handle Excel’s macro recorder and use basic VBA
statements and constructs to enhance your macros, you’ll be able to automate
any part of your worksheet. For example, you can automate data entry by re-
cording a macro that enters headings in a worksheet or replaces column titles
with new labels. Adding a little bit of conditional logic to your VBA code will al-
low you to automatically check for duplicate entries in a specified range of your
worksheet. With a macro, you can quickly apply formatting to several work-
sheets, as well as combine different formats, such as fonts, colors, borders, and
shading. Macros will save you keystrokes when it comes to setting print areas,
margins, headers and footers, and selecting special options for printouts.

Excel Macro-Enabled File Formats

When a workbook contains programming code, it should be saved in one of the
following macro-enabled file formats:

 ● Excel Macro-Enabled Workbook (.xlsm)
 ● Excel Binary Workbook (.xlsb)
 ● Excel Macro-Enabled Template (.xltm)

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 5

If you attempt to save the workbook in a file format that is incompatible with
the type of content it includes, Excel will warn you with a message as shown in
Figure 1.1.

FIGURE 1.1 When a workbook contains programming code, you must save it in a macro-enabled
file type instead of a regular .XLSX workbook file.

Macro Security Settings

Because macros can contain malicious code designed to put a virus on a user’s
computer, it is important to understand different security settings that are avail-
able in Excel. It is also critical that you run up-to-date antivirus software on
your computer. Antivirus software installed on your computer will scan the
workbook file you are attempting to open if the file contains macros. The default
macro security setting is to disable all macros with notification, as shown in
Figure 1.2.

FIGURE 1.2 The Macro Settings options in the Trust Center allow you to control how Excel should
deal with macros when they are present in an open workbook. To open Trust Center’s Macro Settings,
choose File | Options | Trust Center | Trust Center Settings and click the Macro Settings link.

6 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

If macros are present in a workbook you are trying to open, you will receive a
security warning message just under the Ribbon, as shown in Figure 1.3.

FIGURE 1.3 Upon opening a workbook with macros, Excel brings up a security warning message.

To use the disabled components, you should click the Enable Content button
on the message bar. This will add the workbook to the Trusted Documents list
in your registry. The next time you open this workbook you will not be alerted
to macros. If you need more information before enabling content, you can click
the message text displayed in the security message bar to activate the Backstage
View, where you will find an explanation of the active content that has been
disabled, as shown in Figure 1.4. Clicking the Enable Content button in the
Backstage View will reveal two options:

 ● Enable All Content
Th is option provides the same functionality as the Enable Content button
in the security message bar. Th is will enable all the content and make it a
trusted document.

 ● Advanced Options
Th is option brings up the Microsoft Offi ce Security Options dialog shown
in Figure 1.5. Th is dialog provides options for enabling content for the
current session only.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 7

FIGURE 1.4 The Backstage View in Excel.

FIGURE 1.5 Disabled macros can be enabled for the current session in the Microsoft Office Security
Options dialog.

ENABLING THE DEVELOPER TAB IN EXCEL

To make it easy to work with macro-enabled workbooks while working with
this book’s exercises, you will permanently trust your workbooks with recorded
macros or VBA code by placing them in a folder on your local drive that you

8 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

mark as trusted. Notice the Trust Center Settings hyperlink in the Backstage
View shown in Figure 1.4. This hyperlink will open the Trust Center dialog
where you can set up a trusted folder. You can also activate the Trust Center by
selecting File | Options.

Let’s take a few minutes now to set up your Excel application so you can run
macros on your computer without security prompts.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 1.1 Setting Up Excel for Macro Development

1. Create a folder on your hard drive named C:\VBAPrimerExcel_ByExample.
2. Launch Excel and open a blank workbook.
3. Choose File | Options.
4. In the Excel Options dialog, click Customize Ribbon. In the Main Tabs listing

on the right-hand side, select Developer as illustrated in Figure 1.6 and click
OK. The Developer tab should now be visible in the Ribbon.

FIGURE 1.6 To enable the Developer tab on the Ribbon, use the Excel Options dialog and select
Customize Ribbon.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 9

5. In the Code group of the Developer tab on the Ribbon, click the Macro
Security button, as shown in Figure 1.7. The Trust Center dialog appears as
depicted in Figure 1.2.

FIGURE 1.7 Use the Macro Security button in the Code group on the Developer tab to customize
the macro security settings.

6. In the left pane of the Trust Center dialog, click Trusted Locations.
Th e Trusted Locations dialog already shows several predefi ned trusted
locations that were created when you installed Excel. For the purpose of this
book, we will add a custom location to this list.

7. Click the Add new location button.
8. In the Path text box, type the name of the folder you created in Step 1 of this

Hands-On as shown in Figure 1.8.

FIGURE 1.8 Designating a Trusted Location folder for this book’s programming examples.

9. Click OK to close the Microsoft Office Trusted Location dialog.

10 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

10. Notice that the Trusted Locations list in the Trust Center now includes the
C:\VBAPrimerExcel_ByExample folder as a trusted location. Files placed in
a trusted location can be opened without being checked by the Trust Center
security feature. Click OK to close the Trust Center dialog box.

Your Excel application is now set up for easy macro development as well as open-
ing files containing macros. You should save all the files created in the book’s
Hands-On exercises into your trusted C:\VBAPrimerExcel_ByExample folder.

USING THE BUILT-IN MACRO RECORDER

In this section, we will go through the process of recording several short macros
that perform data entry and formatting tasks in an Excel worksheet. You will
learn how to plan your macros, record your keystrokes, edit and improve
your recorded macro code, run your macros, and learn basic troubleshooting
techniques that will get you back on track in case you encounter errors while
running your macros. You will also learn how to save your macros, rename
them, combine them, and print them.

Planning a Macro

Before you create a macro, take a few minutes to consider what you want to do.
The easiest way to plan your macro is to manually perform all the actions that
the macro needs to do. As you enter the keystrokes, write them down on a piece
of paper exactly as they occur. Don’t leave anything out. Like a voice recorder,
Excel’s macro recorder records every action you perform. If you do not plan
your macro prior to recording, you may end up with unnecessary actions that
will not only slow it down but also require more editing later to make it work as
intended. Although it’s easier to edit a macro than it is to erase unwanted pas-
sages from a voice recording, performing only the actions you want recorded
will save you editing time and trouble later.

FIGURE 1.9 A sample worksheet to be created and formatted with the help of the Excel built-in
macro recorder.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 11

Suppose you are asked to programmatically create the worksheet depicted
in Figure 1.9. No worries. Getting started is very easy with the macro recorder.
Let’s begin by identifying the tasks required to complete this worksheet.

Task 1 Insert a new sheet into a workbook and name it Employee Wages.
Task 2 Enter column headings into first row of the worksheet and apply required format-

ting (column size, font styles).
Task 3 Enter employee data (Full Name, Hourly Rate, Hours Worked).
Tasks 4
and 5

Enter formulas to fill in the employee First and Last Name columns.

Task 6 Enter formulas to calculate employee total wages.
Task 7 Apply formatting to the completed worksheet.

Instead of recording one macro to complete your assignment, you will create a
separate macro for each task. This approach will give you a chance to learn how
to combine code from several simpler macros and how to create a master macro.
Let’s get started.

 Hands-On 1.2 Getting Things Ready for Macro Recording

1. Open a new workbook and save it as Chap01_ExcelPrimer.xlsm in your
trusted VBAPrimerExcel_ByExample folder. You must save the file in the
macro-enabled file format (.xlsm) to allow for storing macros. Keep this file
open as you will use it to record all the macros in this chapter.

Recording a Macro

Before you record a macro, you need to decide whether you want to record the
positioning of the active cell. If you want the macro to always start in a specific
location on the worksheet, turn on the macro recorder first and then select the
cell you want to start in. If the location of the active cell does not matter, select a
single cell first and then turn on the macro recorder.

 Hands-On 1.3 Inserting and Naming a Worksheet (Macro Task 1)

1. Choose Developer | Record Macro.
2. In the Record Macro dialog box, enter the name Insert_NewSheet for the

macro, as shown in Figure 1.10. Do not dismiss this dialog box until you are
instructed to do so.

12 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Macro Names

If you forget to enter a name for the macro, Excel assigns a default name, such
as Macro1, Macro2, and so on. Macro names can contain letters, numbers, and
the underscore character, but the first character must be a letter. For example,
Report1 is a correct macro name, while 1Report is not. Spaces are not allowed.
If you want a space between the words, use the underscore.

3. Select This Workbook in the Store macro in list box.

FIGURE 1.10 When you record a new macro, you must name it. In the Record Macro dialog box,
you can also supply a shortcut key, the storage location, and a description for your macro.

Storing Macros

Excel allows you to store macros in three locations:
 ● Personal Macro Workbook—Macros stored in this location will be avail-

able each time you work with Excel. You can fi nd the Personal Macro
Workbook in the XLStart folder. If this workbook doesn’t already exist,
Excel creates it the fi rst time you select this option.

 ● New Workbook—Excel will place the macro in a new workbook.
 ● Th is Workbook—Th e macro will be stored in the workbook you are cur-

rently using.

4. In the Description box, enter the following text: Insert and rename a
worksheet.

SIDEBAR

SIDEBAR

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 13

5. Choose OK to close the Record Macro dialog box.
Th e Stop Recording button shown in Figure 1.11 appears in the status bar.
Do not click this button until you are instructed to do so. When this button
appears in the status bar, the workbook is in the recording mode.

FIGURE 1.11 The Stop Recording button in the status bar indicates that the macro recording mode
is active.

Th e Stop Recording button remains in the status bar while you record your
macro. Only the actions fi nalized by pressing Enter or clicking OK are recorded.
If you press the Esc key or click Cancel before completing the entry, the macro
recorder does not record that action.

6. Add a new sheet to the current workbook. You can do this by either right-
clicking the Sheet1 tab and choosing Insert | Worksheet | OK, or simply
clicking the plus button to the right of the Sheet1 tab.

7. Rename the new sheet Employee Wages.
8. Click the Stop Recording button in the status bar as shown in Figure 1.11 or

choose View | Macros | Stop Recording. When you stop the macro recorder,
the status bar displays a button that allows you to record another macro (see
Figure 1.12).

FIGURE 1.12 Excel status bar with the macro recording button turned off.

You have now recorded your first macro. Excel has written all the necessary
statements to execute the actions you performed. Let’s continue recording all
the remaining actions to complete the tasks that we defined earlier. After that
you will have a chance to review the recorded macro code and try out your
macros.

14 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 1.4 Inserting Column Headings and Applying Formatting
(Macro Task 2)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button located in the status bar).

2. Enter Insert_Headings as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
6. Select cell A1 and enter the first heading: Employee Name.
7. Move to cell B1 and enter: First Name.
8. Enter the remaining headings in cells C1: F1 (Last Name, Hourly Rate, Hours

Worked, Total Wages).
9. Select A1:F1 and apply the bold formatting to the selection by pressing the B

button in the Font group of the Ribbon’s Home tab.
10. With the range A1:F1 still selected, choose Home | Cells | Format | Autofit

Column Width.
11. Click the Stop Recording button in the status bar as shown in Figure 1.11 or

choose View | Macros | Stop Recording.
12. You have just recorded your second macro. The Employee Wages worksheet

should now have the required headings in Row 1.

Using Relative or Absolute References in Macros

Th e Excel macro recorder can record your actions using absolute or relative cell
references (see Figure 1.13).

 ● If you want your macro to execute the recorded action in a specifi c cell,
no matter what cell is selected during the execution of the macro, use
absolute cell addressing. Absolute cell references have the following form:
A1, C5, etc. By default, the Excel macro recorder uses absolute refer-
ences. Before you begin to record a new macro, make sure the Use Rela-
tive References option is not selected when you click the Macros button
as shown in Figure 1.13.

 ● If you want your macro to perform the action in any cell, be sure to select
the Use Relative References option before you choose the Record Macro
option. Relative cell references have the following form: A1, C5, etc. Th e
Excel macro recorder will continue to use relative cell references until you
exit Microsoft Excel or click the Use Relative References option again.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 15

 ● During the process of recording your macro, you may use both methods
of cell addressing. For example, you may select a specifi c cell (e.g., A4),
perform an action, and then choose another cell relative to the selected
cell (e.g., C9, which is located fi ve rows down and two columns to the
right of the currently active cell A4). Relative references automatically
adjust when you copy them and absolute references don’t.

FIGURE 1.13 Excel macro recorder can record your actions using absolute or relative cell
references. To make your selection, use the Macros drop-down on the Ribbon’s View tab.

 Hands-On 1.5 Entering Employee Data (Macro Task 3)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button located in the status bar).

2. Enter Insert_EmployeeData as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.

16 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
6. Enter employee data in columns A, D, and E as shown in Figure 1.9.
7. Leave the First Name, Last Name, and Total Wages columns blank as they will

be filled in later.
8. Click the Stop Recording button in the status bar as shown in Figure 1.11 or

choose View | Macros | Stop Recording.
9. You have just recorded the third macro. The static data entry has been

completed. We will now proceed to record macros that use formulas to fill the
remaining columns of the worksheet.

 Hands-On 1.6 Entering Formulas to Fill in Employee First Name
(Macro Task 4)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button, located in the status bar).

2. Enter Get_FirstName as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Enter the following formula in cell B2:
=LEFT(A2,FIND(" ", A2)-1)

6. Copy the formula down to cells B3:B7 by dragging the selection handle in the
bottom right corner of cell B2.
Excel fi lls in the fi rst names of all employees.

7. Click the Stop Recording button in the status bar as shown in Figure 1.11 or
choose View | Macros | Stop Recording.
You have just recorded a macro that makes use of a formula to retrieve
employee fi rst names from their full name. Th e next macro will populate the
last name column using another formula.

 Hands-On 1.7 Entering Formulas to Fill in Employee Last Name
(Macro Task 5)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button located in the status bar).

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 17

2. Enter Get_LastName as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Enter the following formula in cell C2:
=RIGHT(A2,LEN(A2)-FIND(" ", A2))

6. Copy the formula down to cells C3:C7 by dragging the selection handle in the
bottom right corner of cell C2.
Excel fi lls in the last names of all employees.

7. Click the Stop Recording button in the status bar as shown in Figure 1.11 or
choose View | Macros | Stop Recording.
You have just recorded a macro that makes use of a formula to retrieve
employee last names from their full name. We have one more column to fi ll in
before we can apply the fi nal formatting to this worksheet.

 Hands-On 1.8 Entering Formulas to Calculate Employee Total Wages
(Macro Task 6)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button located in the status bar).

2. Enter CalculateWages as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.
5. Excel turns on the macro recorder. All your Excel actions from now on are

being recorded.
Select cells F2:F7 and type the formula shown here. Press Ctrl+Enter to ensure
that formula is entered into the selected range F2:F7.

=D2*E2

6. Apply Currency format to cells F2:F7.
7. Click the Stop Recording button in the status bar as shown in Figure 1.11 or

choose View | Macros | Stop Recording.
In the next macro you will complete the worksheet by applying desired
formatting.

18 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 1.9 Applying Table Format (Macro Task 7)

1. Choose View | Macros | Record Macro (or you may click the Begin recording
button located in the status bar).

2. Enter FormatTable as the name for your macro.
3. Ensure that This Workbook is selected in the Store macro in list box.
4. Click OK.

Excel turns on the macro recorder. All your Excel actions from now on are
being recorded.

5. Select all data in the Employee Wages worksheet and choose Home | Styles
| Format as a Table. Select any of the predefined table styles from the drop-
down.

6. Select cell A1.
7. Click the Stop Recording button in the status bar as shown in Figure 1.11 or

choose View | Macros | Stop Recording.
You have now completed recording a set of macros that create and format a
worksheet. Now that Excel has given us some code to work with, let’s locate
and examine it.

Editing Recorded Macros

Before you can modify your macro, you must find the location where the macro
recorder placed its code. As you recall, when you turned on the macro recorder,
you selected ThisWorkbook for the location. To find the location of your mac-
ros, you will use the Macro dialog box as instructed in Hands-On 1.10.

 Hands-On 1.10 Examining the Macro Code

1. Choose View | Macros | View Macros.
You should see all seven macros you recorded earlier (see Figure 1.14).

2. Select the Insert_NewSheet macro name and click the Edit button.
Excel opens a special window called Visual Basic Editor (also known as VBE),
as shown in Figure 1.15. Th is window is your VBA programming environment.
Using the keyboard shortcut Alt+F11, you can quickly switch between the
Microsoft Excel application window and the Visual Basic Editor window. Now
take a moment and try switching between both windows. When you are done,
ensure that you are back in the VBE window.

3. Close the Visual Basic Editor window by using the key combination Alt+Q or
choosing File | Close and Return to Microsoft Excel.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 19

FIGURE 1.14 In the Macro dialog box, you can select a macro to run, debug (Step Into), edit, or
delete. You can also set macro options.

FIGURE 1.15 The Visual Basic Editor window is used for editing macros as well as writing new
procedures in the Visual Basic for Applications language.

Don’t worry if the Visual Basic Editor window seems a bit confusing right
now. As you work with the recorded macros and start writing your own VBA
procedures from scratch, you will become familiar with all the elements of this
screen.

20 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. In the Microsoft Excel application window, choose Developer | Visual Basic
to switch again to the programming environment.
Notice the menu bar and toolbar in the Visual Basic Editor window which look
diff erent than those in the Microsoft Excel window. As you can see, there is no
Ribbon interface. Th e Visual Basic Editor uses the old Excel style menu bar
and toolbar, which provide tools required for programming and testing your
recorded macros and VBA procedures. As you work through the individual
chapters of this book, you will feel very comfortable in using these tools.

The main part of the Visual Basic Editor window is a docking surface for vari-
ous windows that you will find extremely useful while creating and testing your
VBA procedures.

Figure 1.15 displays three windows that are docked in the Visual Basic Edi-
tor window: the Project Explorer window, the Properties window, and the Code
window.

The Project Explorer window shows an open Modules folder. Excel records
your macro actions in special worksheets called Module1, Module2, and so on,
and stores them in the Modules folder. Later in this book, you will also use
modules to write the code of your own procedures from scratch. A module re-
sembles a blank document in Microsoft Word.

The Properties window displays the properties of the object that is currently
selected in the Project Explorer window. In Figure 1.15, the Module1 object
is selected in the Project - VBAProject window, and therefore the Properties -
Module1 window displays the properties of Module1. Notice that the only avail-
able property for the module is the Name property. You can use this property to
change the name of Module1 to a more meaningful name.

Macro or Procedure?

A macro is a series of commands or functions recorded with the help of a built-
in macro recorder or entered manually in a Visual Basic module. The term
“macro” is often replaced with the broader term “procedure.” Although the
words can be used interchangeably, many programmers prefer “procedure.”
While macros allow you to mimic keyboard actions, true procedures can also
execute actions that cannot be performed using the mouse, keyboard, or menu
options. In other words, procedures are more complex macros that incorpo-
rate language structures found in the traditional programming languages.

The Module1 (Code) window displays the code of all macros you recorded ear-
lier. Note that the following code may not exactly match the code in your Code

SIDEBAR

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 21

window. Excel records all actions while the recorder is on, so you may see more
or fewer statements recorded.
Option Explicit

Sub Insert_NewSheet()
'
' Insert_NewSheet Macro
' Insert and rename a worksheet
'

'
 Sheets.Add After:=ActiveSheet
 Sheets("Sheet2").Select
 Sheets("Sheet2").Name = "Employee Wages"

End Sub

Sub Insert_Headings()
'
' Insert_Headings Macro
'

'
 Range("A1").Select
 ActiveCell.FormulaR1C1 = "Employee Name"
 Range("B1").Select
 ActiveCell.FormulaR1C1 = "First Name"
 Range("C1").Select
 ActiveCell.FormulaR1C1 = "Last Name"
 Range("D1").Select
 ActiveCell.FormulaR1C1 = "Hourly Rate"
 Range("E1").Select
 ActiveCell.FormulaR1C1 = "Hours Worked"
 Range("F1").Select
 ActiveCell.FormulaR1C1 = "Total Wages"
 Range("A1:F1").Select
 With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False

22 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .Underline = xlUnderlineStyleNone
 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone
 End With
 Selection.Columns.AutoFit
End Sub

Sub Insert_EmployeeData()
'
' Insert_EmployeeData Macro
' Insert employee data
'

'
 Range("A2").Select
 ActiveCell.FormulaR1C1 = "James Rogers"
 Range("D2").Select
 ActiveCell.FormulaR1C1 = "15"
 Range("E2").Select
 ActiveCell.FormulaR1C1 = "7"
 Range("A3").Select
 ActiveCell.FormulaR1C1 = "Martha Lambert"
 Range("D3").Select
 ActiveCell.FormulaR1C1 = "13.4"
 Range("E3").Select
 ActiveCell.FormulaR1C1 = "6"
 Range("A4").Select
 ActiveCell.FormulaR1C1 = "Eugene Zelnik"
 Range("D4").Select
 ActiveCell.FormulaR1C1 = "21.42"
 Range("E4").Select
 ActiveCell.FormulaR1C1 = "10"
 Range("A5").Select
 ActiveCell.FormulaR1C1 = "Enrique Martinez"
 Range("D5").Select
 ActiveCell.FormulaR1C1 = "16.5"
 Range("E5").Select
 ActiveCell.FormulaR1C1 = "11"
 Range("A6").Select
 ActiveCell.FormulaR1C1 = "Wanda Pasterniak"
 Range("D6").Select
 ActiveCell.FormulaR1C1 = "35"
 Range("E6").Select
 ActiveCell.FormulaR1C1 = "21"
 Range("A7").Select

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 23

 ActiveCell.FormulaR1C1 = "Bruce Smith"
 Range("D7").Select
 ActiveCell.FormulaR1C1 = "28.33"
 Range("E7").Select
 ActiveCell.FormulaR1C1 = "14"
 Range("A7").Select
End Sub

Sub Get_FirstName()
'
' Get_FirstName Macro
'

'
 Range("B2").Select
 ActiveCell.FormulaR1C1 = "=LEFT(RC[-1],
 FIND("" "",RC[-1])-1)"
 Range("B2").Select
 Selection.AutoFill Destination:=Range("B2:B7"), _
 Type:=xlFillDefault
 Range("B2:B2").Select
End Sub

Sub Get_LastName()
'
' Get_LastName Macro
'

'
 Range("C2").Select
 ActiveCell.FormulaR1C1 = "=RIGHT(RC[-2],
 LEN(RC[-2])-FIND("" "",RC[-2]))"
 Range("C2").Select
 Selection.AutoFill Destination:=Range("C2:C7"),
 Type:=xlFillDefault
 Range("C2:C2").Select
End Sub

Sub CalculateWages()
'
' CalculateWages Macro
'

'
 Range("F2:F7").Select

24 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Selection.FormulaR1C1 = "=RC[-2]*RC[-1]"
 Selection.Style = "Currency"
End Sub

Sub FormatTable()
'
' FormatTable Macro
'

 ActiveSheet.ListObjects.Add(xlSrcRange,
 Range("A1:F7"), ,xlYes).Name = _
 "Table3"
 Range("Table3[#All]").Select
 ActiveSheet.ListObjects("Table3").TableStyle =
 "TableStyleLight14"
 Range("Table3[[#Headers],[Employee Name]]").Select
End Sub

For now, let’s focus on finding answers to two questions:

 ● How do you read the macro code?
 ● How can you edit macros?

Notice that each macro code you recorded is located between the Sub and End
Sub. These words are known as keywords. You read the code line by line from
top to bottom. Editing macros boils down to deleting or modifying existing
code or typing new instructions in the Code window.

Macro Comments

Look at the recorded macro code. The lines that begin with a single quote
denote comments. By default, comments appear in green. When the macro
code is executed, Visual Basic ignores the comment lines. Comments are often
placed within the macro code to document the meaning of certain lines that
aren’t obvious. Comments can also be used to temporarily disable certain blocks
of code that you don’t want to execute. This is often done while testing and
troubleshooting your macros.

Let’s add some comments to the CalculateWages macro to make the code
easier to understand.

 Hands-On 1.11 Adding Comments to the Macro Code

1. Make sure that the Visual Basic Editor screen shows the Code window with the
CalculateWages macro.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 25

2. Click after the Range("F2:F7").Select and press Enter.
3. Move the pointer to the empty line you just created and type the following

comment. Be sure to start with a single quote.
' Multiply Hourly Rate by Hours Worked

4. Press Ctrl+S to save the changes in Chap01_ExcelPrimer.xlsm, or choose File
| Save Chap01_ExcelPrimer.xlsm.

All macro procedures begin with the keyword Sub and end with the keywords End
Sub. The Sub keyword is followed by the macro name and a set of parentheses.
Between the keywords Sub and End Sub are statements that Visual Basic executes
each time you run your macro. Visual Basic reads the lines from top to bottom,
ignoring the statements preceded with a single quote (see the information about
comments) and stops when it reaches the keywords End Sub. Notice that the
recorded macro contains many periods. The periods appear in almost every line
of code and are used to join various elements of the Visual Basic for Applications
language. How do you read the instructions written in this language? They are
read from the right side of the last period to the left. Here are a few statements
from the Insert_Headings macro and a description of what they mean:

Code Segment Description
Range("A1:F1").Select Select cells A1 to F1.
Selection.Columns.AutoFit Extend the column width so that all entries

fit.
ActiveCell.FormulaR1C1 = "Hourly
Rate"

Let the formula of the active cell be
“Hourly Rate.”

With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyle-
None
 .ThemeColor = xlThemeColor-
Light1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone
End With

This is a special block of code that is
interpreted as follows: Set the name of the
font to “Arial Narrow” for the currently
selected cells; set the Font Style to “Bold,”
etc. The block of code that starts with the
keywords With and ends with the key-
words End With speeds up the execution
of the macro code. Instead of repeating
the instruction “Selection.Font” for each
of the font settings, the macro recorder
uses a shortcut. It places the repeating text,
Selection.Font, to the right of the
keyword With and ends the block with the
keywords End With.

26 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Cleaning Up the Macro Code

As you review and analyze your macro code line by line, you may notice that
Excel recorded a lot of information that you didn’t intend to include. For exam-
ple, in the Insert_Headings macro, in addition to setting the font style to bold
and the font size to 10, Excel also recorded the current state of other options
on the Font tab—strikethrough, superscript, subscript, outline font, shadow,
underline, theme color, tint and shade, and theme font (take a look at the code
fragment in the last row in the foregoing table).

When you use dialog boxes, Excel always records all the settings. These ad-
ditional instructions make your macro code longer and more difficult to un-
derstand. Therefore, when you finish recording your macro, it is a good idea to
go over the recorded statements and delete the unnecessary lines. Let’s do some
code cleanup right now.

 Hands-On 1.12 Cleaning Up the Macro Code

1. In the Code window, locate the following block of code in the Insert_Headings
macro and delete the lines that are crossed out:
With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone
 .ThemeColor = xlThemeColorLight1
 .TintAndShade = 0
 .ThemeFont = xlThemeFontNone

 End With

Aft er the cleanup, only three statements should be left between the keywords
With and End With. Th ese statements are the settings that you selected in the
Format Cells dialog box when you recorded this macro:
With Selection.Font
 .Name = "Arial"
 .FontStyle = "Bold"
 .Size = 10
End With

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 27

2. Replace the first two statements in the Insert_Headings macro as follows:
Range("A1").FormulaR1C1 = "Employee Name"

3. Make a similar change for each of the other headings in this macro—for
example:
Range("B1").FormulaR1C1 = "First Name"

4. Press Ctrl+S to save the changes.
5. On your own, modify the statements in the Insert_EmployeeData macro.

Check your revisions against a companion file.

Running a Macro

You can run your macros from either the Microsoft Excel window or the Visual
Basic Editor window. When you execute a macro from the VBE screen, Visual
Basic executes the macro behind the scenes. You can’t see when Visual Basic
performed a specific action. To watch Visual Basic at work, you must run your
macro from the Macro dialog box or arrange your screen in such a way that the
Microsoft Excel and Visual Basic windows can be viewed at the same time. Two
monitors attached to your computer will help you greatly in the development
work when you need to observe actions performed by your code.

After you create a macro, you should run it at least once to make sure it
works correctly. Later in this chapter you will learn other ways to run macros,
but for now, let’s use the Macro dialog box.

 Hands-On 1.13 Running a Macro Using the Macro Dialog Box

1. Make sure that the Chap01_ExcelPrimer.xlsm workbook is open.
2. Delete the Employee Wages worksheet so we can start from scratch.
3. Choose View | Macros | View Macros.
4. In the Macro dialog box, click the Insert_NewSheet macro name.
5. Click Run to execute the macro.

Th e Insert_NewSheet macro inserts a blank worksheet and renames it Em-
ployee Wages.
Now, let’s proceed to run the remaining macros.

6. Choose View | Macros | View Macros.
7. In the Macro dialog box, click the Insert_Headings macro name.
8. Click Run to execute the macro.
9. Run the remaining macros: Insert_EmployeeData, Get_FirstName, Get_

LastName, CalculateWages, and FormatTable.

28 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

After running all macros, you should see the completed and formatted Employee
Wages worksheet.

Quite often, you will notice that your macro does not perform as expected
the first time you run it. Perhaps during the macro recording you selected the
wrong font or forgot to change the cell color or maybe you just realized it would
be better to include an additional step. Don’t panic. Excel makes it possible to
modify the macro without forcing you to go through the tedious process of re-
cording your keystrokes again.

Testing and Debugging a Macro

When you modify a recorded macro, it is quite possible that you will introduce
some errors. For example, you may delete an important line of code, or you may
inadvertently remove or omit a necessary period. To make sure that your macro
continues to work correctly after your modifications, you need to run it again.

 Hands-On 1.14 Running a Macro from the VBE Screen

1. Open a new Excel workbook (choose File | New | Blank Workbook). Keep the
original workbook open as you work with this Hands-On.

2. Choose Developer | Visual Basic.
3. In the Visual Basic Editor Code window, place the pointer in any line of the

Insert_NewSheet macro code, and choose Run | Run Sub/UserForm.
If you did not complete Step 1 in this Hands-On, you will see the error message
“Subscript out of range.” Visual Basic cannot fi nd Sheet2 that the macro
references. Before you run macros, you must make sure that your macro can
run in the worksheet that is currently selected. Click the End button, and make
sure that you select the correct worksheet before you try to run the macro
again.

4. To see the result of your macro, you must switch to the Microsoft Excel window.
To do this, press Alt+F11.
If you modifi ed the Insert_Headings macro and happen to omit the period in
With Selection.Font, Visual Basic will generate the “Run time error ‘424’
— Object required” message when running this line of code. Click the Debug
button in the message box, and you will be placed in the Code window. At this
time, Visual Basic will activate break mode and will use the yellow highlighter
to indicate the line that it had trouble executing. As soon as you correct your
error, Visual Basic may announce, “Th is action will reset your project, proceed
anyway?” Click OK to this message. Although you can edit code in break

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 29

mode, some edits prevent continuing execution. Aft er correcting the error, run
the macro again, as there may be more errors to be fi xed before the macro can
run smoothly.

5. Switch back to the Visual Basic Editor screen by pressing Alt+F11.

Saving and Renaming a Macro

The macros you recorded in this chapter are in a Microsoft Excel workbook. All
macros are saved when you save the workbook.

 Hands-On 1.15 Saving Macros and Running Macros from Another
Workbook

1. Save your Chap01_ExcelPrimer.xlsm workbook and then close it.
2. Open a brand-new workbook and press Alt+F8 to open the Macro dialog box.

Notice that there is no trace of your macros in the Macro dialog box. If you’d like
to run the macros you recorded earlier in this chapter in another workbook,
you need to open the fi le that stores these macros.

3. Save the open workbook file as Chap01_ExcelPrimer2.xlsx in your trusted
C:\VBAPrimerExcel_ByExample folder. You will not have any macros in this
workbook, so saving it in Excel’s default file format will work just fine.

4. Open the C:\VBAPrimerExcel_ByExample\Chap01_ExcelPrimer.xlsm work-
book file.

5. Activate Sheet1 in the Chap01_ExcelPrimer2.xlsx workbook.
6. Press Alt+F8 to activate the Macro dialog box. Notice that Excel displays

macros in all open workbooks.
7. Run each of the macros listed in this dialog box in the order you have recorded

them.
Your macros go to work again. You should end up with the Employee Wages
worksheet formatted to your liking.

8. Close the Chap01_ExcelPrimer2.xlsx workbook file. Do not save the changes.
Do not close the Chap01_ExcelPrimer.xlsm workbook file. We will need it in
the next section.

When you add additional actions to your macro, you may want to change the
macro name to better indicate its purpose. The name of the macro should com-
municate its function as clearly as possible. To change the macro name, you
don’t need to press a specific key. In the Code window, simply delete the old
macro name and enter the new name following the Sub keyword.

30 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Printing Macro Code

If you want to document your macro or perhaps study the macro code when
you are away from the computer, you can print your macros. You can print the
entire module sheet where your macro is stored or indicate a selection of lines to
print. Let’s print the entire module sheet that contains your macros.

 Hands-On 1.16 Printing Macro Code

1. Switch to the Visual Basic Editor window and double-click Module1 in the
Project Explorer window to activate the module containing your macros.

2. Choose File | Print.
3. In the Print - VBAProject dialog box, the Current Module option button

should be selected.
4. Click OK to print the entire module sheet.

If you’d like to print only a certain block of programming code, perform the
following steps:

1. In the module sheet, highlight the code you want to print.
2. Choose File | Print.
3. In the Print - VBAProject dialog box, the Selection option button should be

selected.
4. Click OK to print the highlighted code.

IMPROVING YOUR RECORDED MACROS

After you record your macro, you may realize that you’d like the macro to per-
form additional tasks. Adding new instructions to the macro code is not very
difficult if you are already familiar with the Visual Basic language. In most situ-
ations, however, you can do this more efficiently when you delegate the extra
tasks to the macro recorder. You may argue that Excel records more instructions
than are necessary. However, one thing is for sure—the macro recorder does
not make mistakes. If you want to add additional instructions to your macro
using the macro recorder, you must record a new macro, copy the sections you
want, and paste them into the correct location in your original macro. Note that
Microsoft Excel places the newly recorded macro in a new module sheet.

At times you may need to modify your macro code by removing some state-
ments. Before you start deleting unnecessary lines of code, think of how you can

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 31

use the comment feature that you’ve recently learned. You can comment out the
unwanted lines and run the macro with the commented code. If the Visual Basic
Editor does not generate errors, you can safely delete the commented lines. By
following this path, you will never find yourself recording the same keystrokes
more than once. And, if the macro does not perform correctly, you can remove
the comments from the lines that may be needed after all.

When you create macros with the macro recorder, you can quickly learn the
VBA equivalents for the Excel commands and dialog box settings. Then you can
look up the meaning and the usage of these Visual Basic commands in the on-
line help. It’s obvious that the more instructions Visual Basic needs to read, the
slower your macro will execute. Eliminating extraneous commands will speed
up your macro. Learning the right word or expression in any language takes
time. You’ll learn about Visual Basic objects, properties, and methods in Chap-
ter 3, “Excel VBA Fundamentals.”

Including Additional Instructions

To include additional instructions in the existing macro, add empty lines in the
required places of the macro code by pressing Enter, and type in the necessary
Visual Basic statements. If the additional instructions are keyboard actions or
menu commands, you may use the macro recorder to generate the necessary
code and then copy and paste these code lines into the original macro.

Want to add more improvements to your macro? How about a message to notify
you when Visual Basic has finished executing the last macro line? This sort of
action cannot be recorded, as Excel does not have a corresponding Ribbon com-
mand or shortcut menu option. However, using the Visual Basic for Applica-
tions language, you can add new instructions to your macro by hand. Let’s see
how this is done.

 Hands-On 1.17 Adding Visual Basic Statements to the Recorded
Macro Code

1. In the Code window containing the code of the FormatTable macro, click in
front of the End Sub keywords and press Enter.

2. Place your cursor on the empty line and type the following statement:
MsgBox "Your worksheet is ready."

When you run this macro next time around, you see a message box with your
programmed message text. You must click the OK button in the message box

SIDEBAR

32 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to discard this message. MsgBox is one of the most frequently used built-in
VBA functions. You will learn more about its usage in Chapter 4, “Excel VBA
Procedures.”

CREATING A MASTER MACRO

In this chapter, you recorded several macros that required that you execute them
in the order they were recorded. Instead of running your macros one by one, it
is more convenient to have one master macro that will perform all the required
tasks in the correct order. Let’s see how this is done in the next Hands-On.

 Hands-On 1.18 Creating a Master Macro Procedure

1. Switch to the Microsoft Visual Basic for Application window and select
VBAProject (Chap01_ExcelPrimer.xlsm) in the Project Explorer window.

2. Choose Insert | Module to add a new module to the selected VBA project.
3. In the Properties window select Module2 next to the (Name) property and

rename it MasterProcedure.
4. In the Code window on your right, enter the following procedure:

Sub CreateEmployeeWorksheet()
 Insert_NewSheet
 Insert_Headings
 Insert_EmployeeData
 Get_FirstName
 Get_LastName
 CalculateWages
 FormatTable
End Sub

5. Press Ctrl+S to save the changes in the workbook.
6. Choose File | Close and Return to Microsoft Excel.
7. In the Microsoft Excel window, choose File | New | Blank workbook.
8. Choose View | Macros | View Macros to display the Macro dialog box.
9. Select the CreateEmployeeWorksheet macro name and click Run.

Excel runs your code and displays a message box that you added in the previous
Hands-On.

10. Click OK to dismiss the message box.
11. Close the Excel workbook you just created without saving it.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 33

In this Hands-On you learned how easy it is to combine stand-alone macros
into a master macro. All you need to do is list the macro names on separate
lines between the Sub and End Sub keywords. You could also copy all the code
of the recorded macros into a new macro; however, this would make the macro
code more diffi cult to troubleshoot. It is much easier to understand and work
with shorter macros. In Chapter 9 of this book, you will learn several tech-
niques that will allow you to test your macros using Excel built-in tools.

VARIOUS METHODS OF RUNNING MACROS

So far in this chapter, you have learned a couple of methods of running macros.
You already know how to run a macro from the VBE screen or a Macro dialog
box in the Microsoft Excel application window. In the VBE screen you can run
the VBA code in one of the following ways:

 ● Press F5 on the keyboard
 ● Choose Run | Run Sub/UserForm
 ● Choose Tools | Macros
 ● Click the Run Sub/UserForm (F5) button on the Standard toolbar as

shown in Figure 1.16.

FIGURE 1.16 The Visual Basic code can also be run from the toolbar button.

In this section, you will learn three cool methods of macro execution that will
allow you to run your macros using a keyboard shortcut, toolbar button, or
worksheet button. Let’s get started.

Running the Macro Using a Keyboard Shortcut

A popular method to run a macro is by using an assigned keyboard shortcut.
It is much faster to press Ctrl+Shift+I than it is to activate the macro from the
Macro dialog box. Before you can use the keyboard shortcut, you must assign it
to your macro. Let’s learn how this is done.

34 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 1.19 Assigning a Macro to a Keyboard Shortcut

1. In the Excel application window, press Alt+F8 to open the Macro dialog box.
2. In the list of macros, click the CreateEmployeeWorksheet macro, and then

choose the Options button.
3. When the Macro Options dialog box appears, the cursor is in the Shortcut key

text box.
4. Hold down the Shift key and press the letter I on the keyboard. Excel records

the keyboard combination as Ctrl+Shift+I. The result is shown in Figure 1.17.

FIGURE 1.17 Using the Macro Options dialog box, you can assign a keyboard shortcut for running
a macro.

5. Click OK to close the Macro Options dialog box.
6. Click Cancel to close the Macro dialog box and return to the worksheet.
7. To run your macro using the newly assigned keyboard shortcut, open a new

workbook and press Ctrl+Shift+I.
Your macro goes to work, and your worksheet is ready to use.

Avoid Shortcut Confl icts

If you assign to your macro a keyboard shortcut that conflicts with a Microsoft
Excel built-in shortcut, Excel will run your macro if the workbook containing
the macro code is currently open.

SIDEBAR

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 35

Running the Macro from the Quick Access Toolbar

You can add your own buttons to the built-in Quick Access toolbar. Let’s see
how it is done to run a macro from Excel.

 Hands-On 1.20 Running a Macro from the Quick Access Toolbar

1. In the Microsoft Excel window, click the Customize Quick Access Toolbar
button (the downward-pointing arrow in the title bar) and choose More
Commands as shown in Figure 1.18.

FIGURE 1.18 Adding a new button to the Quick Access toolbar (Step 1).

Th e Excel Options dialog box appears with the page titled Customize the
Quick Access Toolbar.

2. In the Choose commands from drop-down list box, select Macros.
3. Select CreateEmployeeWorksheet in the list box on the left-hand side.
4. Click the Add button to move the CreateEmployeeWorksheet macro to the list

box on the right-hand side.
Th e current selections are shown in Figure 1.19.

5. To change the button image for your macro, click the Modify button.
6. In the button gallery, select any button you like and click OK.

36 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 1.19 Adding a new button to the Quick Access toolbar (Step 2).

7. After closing the gallery window, make sure that the image to the left of the
macro name has changed. Click OK to close the Excel Options dialog.
You should now see a new button on the Quick Access toolbar as shown in
Figure 1.20. Th is button will be available for any open workbook.

FIGURE 1.20 A custom button placed on the Quick Access toolbar will run the specified macro
(Step 3).

8. Click the macro button you’ve just added to run the macro assigned to it.
Again, your macro goes to work; however, this time it runs into a problem.
Recall that previously before you ran it you opened a new blank workbook. To
run this macro from any workbook, you need to modify it.

9. Click the End button in the error dialog box.
10. Switch to the Visual Basic Editor screen and modify the Insert_NewSheet

macro as shown in Figure 1.21.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 37

FIGURE 1.21 The recorded macro Insert_NewSheet was modified to correct issues encountered
during its execution.

To allow the user to name the sheet during the macro execution you can use
the Excel InputBox method discussed in detail in Chapter 4.

11. Save the workbook and return to the Microsoft Excel window.
12. Click the macro button on the Quick Access toolbar (see Figure 1.20).

Excel adds a new worksheet to the active workbook and prompts you for the
name of the worksheet.

13. Enter any name for the newly created worksheet and click OK.

NOTE

If you clicked the Cancel button instead of typing in the name
for the worksheet, Visual Basic will run into an issue and you
will see the Application-defined or object-defined run time
error 1004. Click End to close the error message and you will be
returned to the Microsoft Excel application window. Manually
delete the empty sheet that was added to the workbook and
execute the macro again this time entering the name for the
sheet when prompted. You will learn how to handle the Cancel
button in Chapter 9.

Aft er you supply the worksheet name, the Visual Basic continues to execute
the remaining macros in your master procedure. Th e execution fails again
when the program reaches the FormatTable procedure. What’s wrong with this
macro code? It worked perfectly well when you recorded it. Oft en issues with
recorded code arise with the named ranges. Th e fi rst line of the FormatTable
procedure assigns the name “Table3” to the table range. Because you are
running the master procedure inside the workbook where “Table3” name
already exists, the Visual Basic throws the error – “Select method of range
class failed.” Table names within the workbook must be unique. For your code
to run correctly you must revise the FormatTable procedure.

14. Click the Debug button in the error message dialog and Visual Basic will
highlight the line of code it cannot execute.

38 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

15. Exit the break mode by choosing Run | Reset.
16. Modify the FormatTable procedure as shown in Figure 1.22.

FIGURE 1.22 The recorded macro FormatTable macro was modified to correct issues encountered
during its execution.

Th e fi rst line of code in the revised procedure declares strTableName variable to
hold the name of the table supplied by the InputBox function on the next line.
You will learn about variables and their types, declarations and assignments
in Chapter 3. Th e third line creates a new list object and assigns it a name
stored in the strTableName variable. Every time you run the procedure and are
prompted for a table name you must enter a unique name.

Notice the space and underscore after the ListObjects.Add function. This is
how you tell Visual Basic to break long lines of code. You will learn about line
continuation rules also in Chapter 3. After adding and assigning a name to the
table object, the macro again refers to the strTableName variable to assign a
predefined formatting style to the table. The procedure then selects cell A1 in
the active worksheet and displays a message to the user.

17. After making changes to the FormatTable procedure save your code and
return to the Microsoft Excel application window.

18. Run the procedure again by clicking the button on the Quick Access toolbar.
19. The master procedure should now run as expected.

Running the Macro from a Worksheet Button

Sometimes it makes the most sense to place a macro button right on the work-
sheet, where it cannot be missed. Let’s go over the steps that will attach the
WhatsInACell macro to a worksheet button.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 39

 Hands-On 1.21 Running a Macro from a Button Placed on a
Worksheet

1. Open Chap01_Supplement.xlsm workbook located on the companion CD.
2. If prompted, click the button to enable content.
3. Save the workbook file in your trusted folder (See Hands-On 1.1)
4. Choose Developer | Insert. The Forms toolbar appears, as shown in

Figure 1.23.

FIGURE 1.23 Adding a button to a worksheet.

5. In the Form Controls area, click the first image, which represents a button.
6. Click anywhere in the empty area of the worksheet. When the Assign Macro

dialog box appears, choose the WhatsInACell macro and click OK.
7. Excel creates a button with the default label “Button 1.” To change the button’s

label, click inside the button, delete the default text and type Format Cells. If
the text does not fit, do not worry; you will resize the button in Step 7. When
the button is selected, it looks like the one shown in Figure 1.24. If the selection
handles are not displayed, right-click Button 1 on the worksheet and choose
Edit Text on the shortcut menu. Select the default text and enter the new label.

FIGURE 1.24 A button with an attached macro.

40 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

8. When you’re done renaming the button, click outside the button to exit the
edit mode.
Because the text you entered is longer than the default button text, let’s resize
the button so that the entire text is visible.

9. Right-click the button you’ve just renamed to select it, point to one of the tiny
circles that appear in the button’s right edge, and drag right to expand the
button until you see the complete entry, Format Cells.

NOTE
If you left click the button inadvertently, there is nothing you
can do to stop the macro from running. You can resize the
button after the macro has run.

10. When you’re done resizing the button, click outside the button to exit the
selection mode.

11. To run your macro, click the button you just created.
Your macro goes to work, and your worksheet is now formatted as shown in
Figure 1.25.
Let’s remove the formatting you just applied by running the RemoveFormats
macro.

FIGURE 1.25 The worksheet was formatted with a macro attached to the Format Cells button.

12. Press Alt+F8 to open the Macro dialog box. Select the RemoveFormats macro
and click the Run button.

13. On your own, create another button on this worksheet that will be used for
running the RemoveFormats macro.

14. Save your workbook with a different file name so that the original workbook
can be reused again in case you’d like to revisit the button creation process.

EXCEL MACROS: A QUICK START IN EXCEL VBA PROGRAMMING 41

NOTE

The code of WhatsInACell and RemoveFormat macros in this
practice workbook was written by the built-in macro recorder
while executing a series of commands via Excel menu / Ribbon
options.

You can also run macros from a hyperlink, or a button placed in the Ribbon.

SUMMARY

In this chapter, you have learned how to create macros by recording your selec-
tions in the Microsoft Excel application window. You also learned how to view,
read, and modify the recorded macros in the Visual Basic Editor window. In
addition, you tried various methods of running macros. This chapter has also
explained macro security issues that you should be aware of when opening
workbooks containing macro code.

The next chapter focuses on using the Visual Basic Editor interface window.

43

Now that you know how to record, run, and edit macros, let’s spend
some time in the Visual Basic Editor window (also known as VBE) and
become familiar with its features. With the tools located in the VBE

window, you can:

 ● Write your own VBA procedures.
 ● Create custom forms.
 ● View and modify object properties.
 ● Test VBA procedures and locate errors.

The Visual Basic Editor window can be accessed in the following ways:

 ● Choose Developer | Code | Visual Basic.
 ● Choose Developer | Controls | View Code.
 ● Press Alt+F11.

Chapter

 2 EXCEL
PROGRAMMING
ENVIRONMENT

A QUICK OVERVIEW OF ITS

TOOLS AND FEATURES (VBE)

44 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window displays a hierarchical list of currently open proj-
ects and their elements. A VBA project can contain the following elements:

 ● Worksheets
 ● Charts
 ● Th isWorkbook—Th e workbook where the project is stored
 ● Modules—Special sheets where programming code is stored
 ● Classes—Special modules that allow you to create your own objects
 ● Forms
 ● References to the other projects

With the Project Explorer you can manage your projects and easily move
between projects that are loaded into memory. You can activate the Project
Explorer window in one of three ways:

 ● From the View menu by selecting Project Explorer.
 ● From the keyboard by pressing Ctrl+R.
 ● From the Standard toolbar by clicking the Project Explorer button as

shown in Figure 2.1.

FIGURE 2.1 Buttons on the Standard toolbar provide a quick way to access many of the Visual Basic
Editor features.

The Project Explorer window contains three buttons as shown in Figure 2.2.
The first button from the left (View Code) displays the Code window for the
selected module. The middle button (View Object) displays either the selected

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 45

sheet in the Microsoft Excel Object folder or a form located in the Forms folder.
The button on the right (Toggle Folders) hides and/or activates the display of
folders in the Project Explorer window.

FIGURE 2.2 The Project Explorer window displays a list of currently open projects.
The Properties window displays the settings for the object currently selected in the Project Explorer.

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties of various
objects in your project. The name of the currently selected object is displayed in
the Object box located just below the Properties window’s title bar. For example,
Figure 2.2 displays the properties of the Sheet1 object. Properties of the object
can be viewed alphabetically or by category by clicking the appropriate tab.

 ● Alphabetic tab—Lists alphabetically all properties for the selected object.
You can change the property setting by selecting the property name and
typing or selecting the new setting.

46 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Categorized tab—Lists all properties for the selected object by category.
You can collapse the list so that you see the categories, or you can expand
a category to see the properties. Th e plus sign (+) icon to the left of the
category name indicates that the category list can be expanded. Th e mi-
nus sign (–) indicates that the category is currently expanded.

The Properties window can be accessed in three ways:

 ● From the View menu by selecting Properties Window.
 ● From the keyboard by pressing F4.
 ● From the toolbar by clicking the Properties Window button.

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as viewing and
modifying the code of recorded macros and existing VBA procedures. Each
module can be opened in a separate Code window. There are several ways to
activate the Code window:

 ● From the Project Explorer window, choose the appropriate UserForm or
module, and click the View Code button.

 ● From the menu bar, choose View | Code.
 ● From the keyboard, press F7.

In Figure 2.3, you will notice at the top of the Code window two drop-down
list boxes that allow you to move quickly within the Visual Basic code. In the
Object box on the left side of the Code window, you can select the object whose
code you want to view. The box on the right side of the Code window lets you
quickly choose a procedure or event procedure to view. When you open this
box, the names of all procedures located in a module are sorted alphabetically.
If you select a procedure in the Procedures/Events box, the cursor will jump to
the first line of this procedure.

By dragging the split bar shown in Figure 2.3 down to a selected position in
the Code window, you can divide the Code window into two panes. You can
then view different sections of a long procedure or a different procedure in each
pane. This two-pane display in the Code window is often used for copying or
cutting and pasting sections of code between procedures of the same module.

To return to the one-window display, simply drag the split bar all the way to
the top of the Code window.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 47

At the bottom left of the Code window, there are two icons. The Procedure View
icon displays one procedure at a time in the Code window. To select another
procedure, use the Procedures/Events box. The Full Module View icon displays
all the procedures in the selected module. Use the vertical scrollbar to scroll
through the module’s code.

The margin indicator bar is used by Visual Basic Editor to display helpful
indicators during editing and debugging. If you’d like to take a quick look at
some of these indicators, skim through Chapter 9, “Excel Tools for Testing and
Debugging.”

SETTING THE VBE OPTIONS

There are several other windows that are frequently used in the Visual Basic
environment.

Figure 2.4 displays the list of windows that can be docked in the Visual Basic
Editor window. You will learn how to use some of these windows in Chapter 3
(Object Browser, Immediate window) and Chapter 9 (Locals window, Watch
window).

FIGURE 2.3 The Visual Basic Code window has several elements that make it easy to locate
procedures and review the VBA code.

48 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 2.4 The Docking tab in the Tools | Options dialog box allows you to choose which windows
you want to be dockable in the Visual Basic Editor screen.

SYNTAX AND PROGRAMMING ASSISTANCE

Figure 2.5 shows the Edit toolbar in the VBE window that contains several but-
tons that let you enter correctly formatted VBA instructions with speed and
ease. If the Edit toolbar isn’t currently docked in the Visual Basic Editor window,
you can turn it on by choosing View | Toolbars | Edit.

FIGURE 2.5 Buttons located on the Edit toolbar make it easy to write and format VBA instructions.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 49

Writing procedures in Visual Basic requires that you use hundreds of built-
in instructions and functions. Because most people cannot memorize the cor-
rect syntax of all the instructions that are available in VBA, the IntelliSense®
technology provides you with syntax and programming assistance on demand
when entering instructions. You can have special windows pop up and guide
you through the process of creating correct VBA code.

List Properties/Methods

Each object can contain several properties and methods. When you enter the
name of the object and a period that separates the name of the object from its
property or method in the Code window, a pop-up menu may appear. This
menu lists the properties and methods available for the object that precedes the
period as shown in Figure 2.6. To turn on this automated feature, choose Tools |
Options. In the Options dialog box, click the Editor tab, and make sure the Auto
List Members check box is selected.

FIGURE 2.6 While you are entering the VBA instructions, Visual Basic suggests properties and
methods that can be used with the object.

To choose an item from the pop-up menu that appears, start typing the name
of the property or method that you want to select. When Excel highlights the
correct item name, press Enter to insert the item into your code and start a new
line. Or, if you want to continue writing instructions on the same line, press the
Tab key instead. You can also double-click the item to insert it in your code. To
close the pop-up menu without inserting an item, simply press Esc. When you
press Esc to remove the pop-up menu, Visual Basic will not display it again for
the same object. To display the Properties/Methods pop-up menu again, you can:

 ● Press Ctrl+J.
 ● Use the Backspace key to delete the period and type the period again.

50 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Right-click in the Code window and select List Properties/Methods from
the shortcut menu.

 ● Choose Edit | List Properties/Methods.
 ● Click the List Properties/Methods button on the Edit toolbar.

List Constants

A constant is a value that indicates a specific state or result. Excel has many
predefined, built-in constants. You will learn about constants, their types, and
usage in Chapter 3.

Suppose you want your program to turn on the Page Break Preview of your
worksheet. In the Microsoft Excel application window, the View tab lists four
types of workbook views:

 ● Th e Normal View is the default view for most tasks in Excel.
 ● Page Layout View allows you to view the document as it will appear on

the printed page.
 ● Page Break Preview allows you to see where pages will break when the

document is printed.
 ● Custom Views allows you to save the set of display and print settings as

a custom view.

The first three view options are represented by a built-in constant. Microsoft
Excel constant names begin with the characters “xl.” As soon as you enter in the
Code window the instruction:

ActiveWindow.View =

a pop-up menu will appear with the names of valid constants for the property,
as shown in Figure 2.7.

FIGURE 2.7 The List Constants pop-up menu displays a list of constants that are valid for the
property entered.

To work with the List Constants pop-up menu, use the same techniques as for
the List Properties/Methods pop-up menu outlined in the preceding section.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 51

The List Constants pop-up menu can be activated by pressing Ctrl+Shift+J
or clicking the List Constants button on the Edit toolbar.

Parameter Info

If you’ve had a chance to work with Excel worksheet functions, you already
know that many functions require one or more arguments (or parameters). For
example, here’s the syntax for the most common worksheet function:

SUM(number1,number2, ...)

where number1, number2, … are 1 to 30 arguments that you can add up.
Like functions, VBA methods may require one or more arguments. If a

method requires an argument, you can see the names of required and optional
arguments in a tooltip box that appears just below the cursor as soon as you type
the beginning parenthesis as illustrated in Figure 2.8. In the tooltip, the current
argument is displayed in bold. When you supply the first argument and enter
the comma, Visual Basic displays the next argument in bold. Optional argu-
ments are surrounded by square brackets [].

You can open the Parameter Info tooltip using the keyboard. To do this, en-
ter the method or function name, follow it with the left parenthesis, and press
Ctrl+Shift+I. You can also click the Parameter Info button on the Edit toolbar
or choose Edit | Parameter Info.

FIGURE 2.8 A tooltip displays a list of arguments utilized by a VBA method.

The Parameter Info feature makes it easy for you to supply correct arguments
to a VBA method. In addition, it reminds you of two other things that are very
important for the method to work correctly: the order of the arguments and
the required data type of each argument. You will learn about data types in
Chapter 3.

Quick Info

When you select an instruction, function, method, procedure name, or constant
in the Code window and then click the Quick Info button on the Edit toolbar (or
press Ctrl+I), Visual Basic displays the syntax of the highlighted item, as well as
the value of a constant, as depicted in Figure 2.9. The Quick Info feature can be
turned on or off using the Options dialog box. To use the feature, click the Edi-
tor tab and choose the Auto Quick Info option.

52 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 2.9 The Quick Info feature displays a list of arguments required by a selected method or
function, a value of a selected constant, or the type of the selected object or property.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code win-
dow is with the Complete Word feature. As you enter the first few letters of a
keyword and press Ctrl+Spacebar or click the Complete Word button on the
Edit toolbar, Visual Basic will fill in the remaining letters by completing the
keyword entry for you. For example, when you enter the first four letters of
the keyword Application (Appl) in the Code window and press Ctrl+Spacebar,
Visual Basic will complete the rest of the word, and in the place of “Appl,” you
will see the entire word “Application.”

Indent/Outdent

If the Auto Indent option is turned on, you can automatically indent the selected
lines of code by the number of characters specified in the Tab Width text box.
The default entry for Auto Indent is four characters. You can easily change this
setting via the Options dialog box (by selecting the Editor tab; see Figure 2.4).

Why would you want to use indentation in your code? When you indent
certain lines in your VBA procedures, you make them more readable and easier
to understand. Indenting is especially recommended for entering lines of code
that make decisions or repeat actions. You will learn how to create these kinds of
Visual Basic instructions in Chapters 5 and 6, “Adding Decisions to Excel VBA
Programs” and “Adding Repeating Actions to Excel VBA Programs.” Let’s spend
a few minutes learning how to apply the indent and outdent features to the lines
of code in the WhatsInACell macro that you worked with in Chapter 1.

 Hands-On 2.1 Indenting/Outdenting Visual Basic Code

1. Open the Chap01_Supplement.xlsm workbook that you worked with in
Chapter 1.

2. Press Alt+F11 to switch to the VBE window.
3. Choose View | Toolbars | Edit to gain access to the Editing toolbar. If the

toolbar pops up in the middle of the screen, double-click its title bar to get it
docked at the top of the VBE window.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 53

4. In the Project Explorer window, select the Chap01_Supplement.xlsmVBA
project and activate the Module1 that contains the code of the WhatsInACell
macro.

5. Select the block of code located between the keyword With and End With.
6. Click the Indent button (see Figure 2.5) on the Edit toolbar or press Tab on

the keyboard. The selected block of instructions will move four spaces to the
right if you are using the default setting in the Tab Width box in the Options
dialog box (Editor tab).

7. Click the Outdent button on the Edit toolbar or press Shift+Tab to return the
selected lines of code to the previous location in the Code window.

8. Close the Chap01_Supplement.xlsm workbook.
The Indent and Outdent options are also available from the Edit menu.

Comment Block/Uncomment Block

In Chapter 1, you learned that a single quote placed at the beginning of a line of
code denotes a comment. Not only do comments make it easier to understand
what the procedure does, but also, they are very useful in testing and trouble-
shooting VBA code.

For example, when you execute your code, it may not run as expected. In-
stead of deleting the lines that may be responsible for the problems you encoun-
ter, you may want to skip those lines of code for now and return to them later.
By placing a single quote at the beginning of the line you want to avoid, you can
continue checking the other parts of your procedure.

 ● To comment a few lines of code, simply select the lines and click the
Comment Block button on the Edit toolbar (see Figure 2.5).

 ● To turn the commented code back into VBA instructions, select the
lines and click the Uncomment Block button on the Edit toolbar (see
Figure 2.5).

If you don’t select text and click the Comment Block button, the single quote is
added only to the line of code where the cursor is currently located.

USING THE OBJECT BROWSER

You can move easily through the myriad of VBA elements and features by exam-
ining the capabilities of the Object Browser. To access the Object Browser, use
any of the following methods in the VBE window:

 ● Press F2.

54 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Choose View | Object Browser.
 ● Click the Object Browser button on the toolbar.

The Object Browser allows you to browse through the objects that are available
to your VBA procedures, as well as view their properties, methods, and events.
With the aid of the Object Browser, you can move quickly between procedures
in your own VBA projects, as well as search for objects and methods across
object type libraries.

The Object Browser window is divided into three sections as illustrated in
Figure 2.10. The top of the window displays the Project/Library drop-down list
box with the names of all libraries and projects that are available to the currently
active VBA project. A library is a special file that contains information about the
objects in an application. New libraries can be added via the References dialog
box (Tools | References). The entry for <All Libraries> lists the objects of all
libraries that are installed on your computer. When you select the library called
Excel, you will see only the names of the objects that are exclusive to Microsoft
Excel. In contrast to the Excel library, the VBA library lists the names of all the
objects in Visual Basic for Applications.

FIGURE 2.10 The Object Browser window allows you to browse through all the objects, properties,
and methods available to the current VBA project.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 55

Below the Project/Library drop-down list box is a Search text box that you’ll
use to quickly find information in a library. This field remembers the last four
items for which you searched. To find only whole words, you can right-click
anywhere in the Object Browser window and choose Find Whole Word Only
from the shortcut menu.

The Search Results section of the Object Browser displays the library, class,
and member elements that met the criteria entered in the Search text box as
shown in Figure 2.11.

When you type the search text and click the Search button (the binoculars
icon), Visual Basic expands the Object Browser dialog box to show the Search
Results area. You can hide or show the Search Results by clicking the button
located to the right of the Search button.

FIGURE 2.11 Searching for answers in the Object Browser.

The Classes list box displays the available object classes in the selected
library. If you select a VBA project, this list shows objects in the project. In
Figure 2.11, the Application object class is selected. When you highlight a class,
the list on the right-hand side (Members) shows the properties, methods, and

56 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

events available for that class. By default, members are listed alphabetically. You
can, however, organize the members list by group type (properties, methods, or
events) using the Group Members command from the Object Browser shortcut
menu.

If you select a VBA project in the Project/Library list box, the Members list
box will list all the procedures available in this project. To examine the code of
a procedure, simply double-click its name. If you select a VBA library, you will
see a listing of Visual Basic built-in functions and constants. If you need more
information on the selected class or a member, click the question mark button
at the top of the Object Browser window.

The bottom of the Object Browser window displays a code template area
with the definition of the selected member. If you click the green hyperlink text
in the code template, you can quickly jump to the selected member’s class or
library in the Object Browser window. Text displayed in the code template area
can be copied to the Windows clipboard and then pasted to a Code window. If
the Code window is visible while the Object Browser window is open, you can
save time by dragging the highlighted code template and dropping it into the
Code window.

You can easily adjust the size of the various sections of the Object Browser
window by dragging the dividing horizontal and vertical lines.

Now that you’ve discovered the Object Browser, you may wonder how you
can put it to use in VBA programming. Let’s assume that you placed a text box
in the middle of your worksheet. How can you make Excel move this text box
so that it is positioned at the top left-hand corner of the sheet? Hands-On 2.2
should provide the answer to this question.

 Hands-On 2.2 Writing a VBA Procedure to Move a Text Box on the
Worksheet

1. Open a new workbook.
2. Choose Insert | Text |Text Box.
3. Now draw a box in the middle of the sheet and enter any text as shown in

Figure 2.12.
4. Select any cell outside the text box area.
5. Press Alt+F11 to activate the Visual Basic Editor window.
6. Choose Insert | Module to add a new module sheet.
7. In the Properties window, enter the new name for this module: Manipulations.
8. Choose View | Object Browser or press F2.
9. In the Project/Library list box, click the drop-down arrow and select the Excel

library.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 57

10. Enter textbox as the search text in the Search box as shown in Figure 2.13, and
then click the Search button. Make sure you don’t enter a space in the search
string.

FIGURE 2.12 Excel displays the name of the inserted object in the Name box above the worksheet.

FIGURE 2.13 Using the Object Browser window, you can find the appropriate VBA instructions for
writing your own procedures.

58 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Visual Basic searches the Excel library and displays the search results. It ap-
pears that the Shapes object shown in Figure 2.13 is in control of our text box
operations. Looking at the members list, you can quickly determine that the
AddTextbox method is used for adding a new text box to a worksheet. The
code template at the bottom of the Object Browser shows the correct syntax for
using this method. If you select the AddTextbox method and press F1, you will
see the Help window with more details on how to use this method. The Help
window tells us that the Left and Top properties determine the position of the
text box in a worksheet.

11. Close the Object Browser window and the Help window if they are open.
Double-click the Manipulations module and enter the MoveTextBox
procedure, as shown here:
Sub MoveTextBox()
 With ActiveSheet.Shapes("TextBox 1")

 .Select
 .Left = 0
 .Top = 0
 End With

End Sub

Th e MoveTextBox procedure selects TextBox 1 in the collection of Shapes.
TextBox 1 is the default name of the fi rst object placed in the worksheet. Each
time you add a new object to your worksheet, Excel assigns a new number
(index) to it. Instead of using the object name, you can refer to the member of
a collection by its index. For example, instead of:
With ActiveSheet.Shapes("TextBox 1")

enter:
With ActiveSheet.Shapes(1)

12. Choose Run | Run Sub/UserForm to execute this procedure.
13. Press Alt+F11 to switch to the Microsoft Excel application window.

Th e text box should be positioned at the top left -hand corner of the worksheet.
14. Save the workbook file as Chap02_ExcelPrimer.xlsm. Keep this file open as

you will continue to work with it in Hands-On 2.3.
Let’s manipulate another object with Visual Basic.

 Hands-On 2.3 Writing a VBA Procedure to Move a Circle on the
Worksheet

1. Place a small circle in the same worksheet where you originally placed the text
box in Hands-On 2.2. Use the Oval shape in the Basic Shapes area of the Insert

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 59

| Illustrations | Shapes tool. Hold down the Shift key while drawing on the
worksheet to create a perfect circle.

2. Click outside the circle to deselect it.
3. Press Alt+F11 to activate the Visual Basic Editor screen.
4. In the Manipulations Module’s Code window, write a VBA procedure that will

place the circle inside the text box. Keep in mind that Excel numbers objects
consecutively. The first object is assigned a number 1, the second object a
number 2, and so on. The type of object—whether it is a text box, a circle, or a
rectangle—does not matter.

5. The MoveCircle procedure shown here demonstrates how to move a circle to
the top left-hand corner of the active worksheet:
Sub MoveCircle()
 With ActiveSheet.Shapes(2)
 .Select
 .Left = 0
 .Top = 0
 End With
End Sub

Moving a circle is like moving a text box or any other object placed in a
worksheet. Notice that instead of referring to the circle by its name, Oval 2, the
procedure uses the object’s index.

6. Run the MoveCircle procedure.
7. Press Alt+F11 to return to the Microsoft Excel window.
8. The circle should now appear on the top of the text box.

Locating Procedures with the Object Browser

In addition to locating objects, properties, and methods, the Object Browser
is a handy tool for locating and accessing procedures written in various VBA
projects. The Hands-On 2.4 exercise demonstrates how you can see, at a glance,
which procedures are stored in the selected project.

 Hands-On 2.4 Using Object Browser to Locate VBA Procedures

1. In the Object Browser, select VBAProject from the Project/Library drop-
down list as shown in Figure 2.14.
Th e left side of the Object Browser displays the names of objects that are
included in the selected project. Th e Members list box on the right shows the
names of all the available procedures.

60 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 2.14 The Object Browser lists all the procedures available in a VBA project.

2. In the Members list, double-click the MoveCircle procedure.
3. Excel locates the selected procedure in the Code window.

USING THE VBA OBJECT LIBRARY

In the previous examples, you used the properties of objects that are members
of the Shapes collection in the Excel object library. While the Excel library con-
tains objects specific to using Microsoft Excel, the VBA object library provides
access to many built-in VBA functions that are general in nature. They allow
you to manage files, set the date and time, interact with users, convert data
types, deal with text strings, or perform mathematical calculations. In the fol-
lowing Hands-On 2.5 exercise, you will use one of the built-in VBA functions to
create a new Windows subfolder without leaving Excel.

 Hands-On 2.5 Writing a VBA Procedure to Create a Folder in
Windows

1. Press Alt+F11 to return to the Manipulations module, where you entered the
MoveTextBox and MoveCircle procedures.

2. On a new line, type the name of the new procedure: Sub NewFolder().
3. Press Enter. Visual Basic will enter the ending keywords End Sub.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 61

4. Press F2 to activate the Object Browser.
5. Click the drop-down arrow in the Project/Library list box and select VBA.
6. Enter file as the search text in the Search box and press the Search button.
7. Scroll down in the Members list box and highlight the MkDir method as

shown in Figure 2.15.

FIGURE 2.15 When writing procedures from scratch, consult the Object Browser for names of the
built-in VBA functions.

8. Click the Copy button (the middle button in the top row) in the Object Browser
window to copy the selected method name to the Windows clipboard.

9. Return to the Manipulations Code window and paste the copied instruction
inside the procedure NewFolder.

10. Enter a space, followed by “C:\Study”. Be sure to enter the name of the entire
path in quotes. The NewFolder procedure should look like this:
Sub NewFolder()
 MkDir "C:\Study"
End Sub

62 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

11. Position the insertion point within the code of the NewFolder procedure and
choose Run | Run Sub/UserForm to execute the NewFolder procedure.
When you run the NewFolder procedure, Visual Basic creates a new folder on
drive C. To see the folder, activate Windows Explorer.
Aft er creating a new folder, you may realize that you don’t need it aft er all.
Although you could easily delete the folder while in Windows Explorer, how
about getting rid of it programmatically? Th e Object Browser displays many
other methods that are useful for working with folders and fi les. Th e RmDir
method is just as simple to use as the MkDir method.

12. To remove the Study folder from your hard drive, you could replace the MkDir
method with the RmDir method, and then rerun the NewFolder procedure.
However, let’s write a new procedure called RemoveFolder in the Manipulations
Code window, as shown here:
Sub RemoveFolder()
 RmDir "C:\Study"
End Sub

Th e RmDir method allows you to remove unwanted folders from your hard
disk.

13. Position the insertion point within the code of the RemoveFolder procedure
and choose Run | Run Sub/UserForm to execute the RemoveFolder procedure.
Check Windows Explorer to see that the Study folder is gone.

USING THE IMMEDIATE WINDOW

The Immediate window is used for trying out various instructions, functions,
and operators present in the Visual Basic language before using them in your
own VBA procedures. It is a great tool for experimenting with your new lan-
guage.

Th e Immediate window allows you to type VBA statements and test their
results immediately without having to write a procedure. Th e Immediate
window is like a scratch pad. Use it to try out your statements. If the statement
produces the expected result, you can copy the statement from the Immediate
window into your procedure (or you can drag it right onto the Code window
if it is visible).

The Immediate window can be moved anywhere on the Visual Basic Editor
screen or it can be docked so that it always appears in the same area of the

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 63

screen. The docking setting can be turned on and off on the Docking tab in the
Options dialog box (Tools | Options).

 ● To quickly access the Immediate window, simply press Ctrl+G while in
the Visual Basic Editor screen.

 ● To close the Immediate window, click the Close button in the top right-
hand corner of the window.

Before you start creating full-fledged VBA procedures (this awaits you in the
next chapter!), begin with some warm-up exercises to build up your VBA
vocabulary. How can you do this quickly and painlessly? How can you try out
some of the newly learned VBA statements? Here is a short, interactive language
exercise: Enter a simple VBA instruction and Excel will check it out and display
the result in the next line. Let’s begin by setting up your exercise screen.

 Hands-On 2.6 Entering and Executing VBA Statements in the
Immediate Window

1. In the Visual Basic Editor window, choose View | Immediate Window.
2. Arrange the screen so that both the Microsoft Excel window and the Visual

Basic window are placed side by side as presented in Figure 2.16 or use a setup
with two monitors displaying Excel windows on separate screens.

FIGURE 2.16 By positioning the Microsoft Excel and Visual Basic windows side by side you can
watch the execution of the instructions entered in the Immediate window.

3. In the VBE screen, press Ctrl+G to activate the Immediate window.
4. In the Immediate window, type the following instruction and press Enter:

Worksheets.Add

64 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When you press the Enter key, Visual Basic gets to work. If you entered the
foregoing VBA statement correctly, VBA adds a new sheet in the current
workbook. Th e Sheet2 tab at the bottom of the workbook should now be
highlighted.

5. In the Immediate window, type another VBA statement and be sure to press
Enter when you’re done:
Range("A1:A4").Select

As soon as you press Enter, Visual Basic highlights the cells A1, A2, A3, and A4
in the active worksheet.

6. Enter the following instruction in the Immediate window:
[A1:A4].Value = 55

When you press Enter, Visual Basic places the number 55 in every cell of the
specifi ed range, A1:A4. Th is statement is an abbreviated way of referring to the
Range object. Th e full syntax is more readable:

Range("A1:A4").Value = 55

7. Enter the following instruction in the Immediate window:
Selection.ClearContents

When you press Enter, VBA deletes the results of the previous statement from
the selected cells. Cells A1:A4 are now empty.

8. Enter the following instruction in the Immediate window:
ActiveCell.Select

When you press Enter, Visual Basic makes cell A1 active.
Figure 2.17 shows all the instructions entered in the Immediate window in this
exercise. Every time you pressed the Enter key, Excel executed the statement
on the line where the cursor was located. If you want to execute the same
instruction again, click anywhere in the line containing the instruction and
press Enter.

FIGURE 2.17 Instructions entered in the Immediate window are executed as soon as you press the
Enter key.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 65

For more practice you may want to rerun the statements shown in Figure 2.17.
Execute the instructions one by one by clicking in the appropriate line and
pressing the Enter key.

Obtaining Information in the Immediate Window

So far you have used the Immediate window to perform actions. These actions
could have been performed manually by clicking the mouse in various areas of
the worksheet and entering data.

Instead of simply performing actions, the Immediate window also allows
you to ask questions. Suppose you want to find out which cells are currently
selected, the value of the active cell, the name of the active sheet, or the number
of the current window. When working in the Immediate window, you can easily
get answers to these and other questions.

In the preceding exercise, you entered several instructions. Let’s return to the
Immediate window to ask some questions. Excel remembers the instructions
entered in the Immediate window even after you close this window. Note that
the contents of the Immediate window are automatically deleted when you exit
Microsoft Excel.

 Hands-On 2.7 Obtaining Information in the Immediate Window

1. Click the mouse in the second line of the Immediate window where you
previously entered the instruction Range("A1:A4").Select.

2. Press Enter to have Excel reselect cells A1:A4.
3. Click in the new line of the Immediate window, enter the following question,

and press Enter:
?Selection.Address

When you press Enter, Excel will not select anything in the worksheet. Instead,
it will display the result of the instruction on a separate line in the Immediate
window. In this case, Excel returns the absolute address of the cells that are
currently selected (A1:A4).
Th e question mark (?) tells Excel to display the result of the instruction in
the Immediate window. Instead of the question mark, you can use the Print
keyword, as shown in the next step.

4. In a new line in the Immediate window, enter the following statement and
press Enter:
Print ActiveWorkbook.Name

66 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Excel enters the name of the active workbook on a new line in the Immediate
window.
How about fi nding the name of the application?

5. In a new line in the Immediate window, enter the following statement and
press Enter:
?Application.Name

Excel will reveal its full name: Microsoft Excel.
Th e Immediate window can also be used for a quick calculation.

6. In a new line in the Immediate window, enter the following statement and
press Enter:
?12/3

Excel shows the result of the division on the next line. But what if you want to
know right away the result of 3+2 and 12*8?
Instead of entering these instructions on separate lines, you can enter them on
one line, as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you press the
Enter key, Excel displays the results 5, 96 on separate lines in the Immediate
window.
Th e following lists all the instructions you entered in the Immediate window,
including Excel’s answers to your questions:
Worksheets.Add
Range("A1:A4").Select
[A1:A4].Value = 55
Selection.ClearContents
ActiveCell.Select
?Selection.Address
A1:A4
Print ActiveWorkbook.Name
Book2
?Application.Name
Microsoft Excel
?12/3
 4
?3+2:?12*8
 5
 96

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 67

To delete the instructions from the Immediate window, make sure that the
selection point is in the Immediate window, press Ctrl+A to highlight all the
lines, and then press Delete.

WORKING WITH WORKSHEET CELLS AND RANGES

When you are ready to write your own VBA procedure to automate a spread-
sheet task, you will most likely begin searching for instructions that allow you
to manipulate worksheet cells. You will need to know how to select cells, how to
enter data in cells, how to assign range names, how to format cells, and how to
move, copy, and delete cells. Although these tasks can be easily performed with
the mouse or keyboard, mastering these techniques in Visual Basic for Applica-
tions requires a little practice. You must use the Range object to refer to a single
cell, a range of cells, a row, or a column. There are three properties that allow
you to access the Range object: the Range property, the Cells property, and the
Offset property.

Using the Range Property

The Range property returns a cell or a range of cells. The reference to the range
must be in an A1-style and in quotation marks (for example, “A1”). The refer-
ence can include the range operator, which is a colon (for example, “A1:B2”), or
the union operator, which is a comma (for example, “A5”, “B12”).

 Hands-On 2.8 Using the Range Property to Select Worksheet Cells

To render this into VBA: Enter this in the Immediate window:

Select a single cell (e.g., A5). Range("A5").Select

Select a range of cells (e.g., A6:A10). Range("A6:A10").Select

Select several nonadjacent cells
(e.g., A1, B6, C8).

Range("A1, B6, C8").Select

Select several nonadjacent cells and
cell ranges (e.g., A11:D11, C12, D3).

Range("A11:D11, C12, D3").Select

Using the Cells Property

You can use the Cells property to return a single cell. When selecting a single
cell, this property requires two arguments. The first argument indicates the row
number and the second one is the column number. Arguments are entered in

68 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

parentheses. When you omit arguments, Excel selects all the cells in the active
worksheet. Let’s try out a couple of statements in Hands-On 2.9.

 Hands-On 2.9 Using the Cells Property to Select Worksheet Cells
(Part I)

To render this into VBA: Enter this in the Immediate window:
Select a single cell (e.g., A5). Cells(5, 1).Select

Select a range of cells
(e.g., A6:A10).

Range(Cells(6, 1), Cells(10, 1)).Select

Select all cells in a worksheet. Cells.Select

Notice how you can combine the Range property and the Cells property:
Range(Cells(6, 1), Cells(10, 1)).Select

In this example, the first Cells property returns cell A6, while the second one
returns cell A10. The cells returned by the Cells properties are then used as a ref-
erence for the Range object. As a result, Excel will select the range of cells where
the top cell is specified by the result of the first Cells property and the bottom
cell is defined by the result of the second Cells property.

A worksheet is a collection of cells. You can also use the Cells property with a
single argument that identifies a cell’s position in the collection of a worksheet’s
cells. Excel numbers the cells in the following way: Cell A1 is the first cell in a
worksheet, cell B1 is the second one, cell C1 is the third one, and so on. Cell
16384 is the last cell in the first worksheet row. Now let’s write some practice
statements in Hands-On 2.10.

 Hands-On 2.10 Using the Cells Property to Select Worksheet Cells
(Part II)

To render this into VBA: Enter this in the Immediate window:
Select cell A1. Cells(1).Select

or
Cells.Item(1).Select

Select cell C1. Cells(3).Select
or
Cells.Item(3).Select

Select cell XFD. Cells(16384).Select
or
Cells.Item(16384).Select

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 69

Notice that the word Item is a property that returns a single member of a col-
lection. Because Item is the default member for a collection, you can refer to a
worksheet cell without explicitly using the Item property.

Now that you’ve discovered two ways to select cells (Range property and
Cells property), you may wonder why you should bother using the more com-
plicated Cells property. It’s obvious that the Range property is more readable;
after all, you used the Range references in Excel formulas and functions long
before you decided to learn about VBA. Using the Cells property is more con-
venient, however, when it comes to working with cells as a collection. Use this
property to access all the cells or a single cell from a collection.

Using the Offset Property

Another very flexible way to refer to a worksheet cell is with the Offset prop-
erty. Quite often when automating worksheet tasks, you may not know exactly
where a specific cell is located. How can you select a cell whose address you
don’t know? The answer: Have Excel select a cell based on an existing selection.

The Offset property calculates a new range by shifting the starting selection
down or up a specified number of rows. You can also shift the selection to the
right or left a specified number of columns. In calculating the position of a new
range, the Offset property uses two arguments. The first argument indicates the
row offset and the second one is the column offset. Let’s try out some examples
in Hands-On 2.11.

 Hands-On 2.11 Selecting Cells Using the Offset Property

To render this into VBA: Enter this in the Immediate window:
Select a cell located one row down and
three columns to the right of cell A1.

Range("A1").Offset(1, 3).Select

Select a cell located two rows above and
one column to the left of cell D15.

Range("D15").Offset(–2, –1).Select

Select a cell located one row above the
active cell. If the active cell is in the
first row, you will get an error message.

ActiveCell.Offset(–1, 0).Select

In the first example, Excel selects cell D2. As soon as you enter the second exam-
ple, Excel chooses cell C13.

If cells A1 and D15 are already selected, you can rewrite the first two state-
ments in the following way:
Selection.Offset(1, 3).Select
Selection.Offset(-2, -1).Select

70 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that the third example in the practice table displays zero (0) in the posi-
tion of the second argument. Zero entered as a first or second argument of the
Offset property indicates a current row or column. The instruction Active-
Cell.Offset(–1, 0).Select will cause an error if the active cell is located in
the first row.

Using the Resize Property

When working with the Offset property, you may occasionally need to change
the size of a selection of cells. Suppose that the starting selection is A5:A10.
How about shifting the selection two rows down and two columns to the right
and then changing the size of the new selection? Let’s say the new selection
should highlight cells C7:C8. The Offset property can take care of only the first
part of this task. The second part requires another property. Excel has a special
Resize property. You can combine the Offset property with the Resize property
to answer the foregoing question. Before you combine these two properties, let’s
proceed to Hands-On 2.12 to learn how you can use them separately.

 Hands-On 2.12 Writing a VBA Statement to Resize a
Selection of Cells

1. Arrange the screen so that the Microsoft Excel window and the Visual Basic
window are side by side.

2. Activate the Immediate window and enter the following instructions:
Range("A5:A10").Select
Selection.Offset(2, 2).Select
Selection.Resize(2, 4).Select

Th e fi rst instruction selects range A5:A10. Cell A5 is the active cell. Th e second
instruction shift s the current selection to cells C7:C12. Cell C7 is located two
rows below the active cell A5 and two columns to the right of A5. Now the
active cell is C7.
Th e last instruction resizes the current selection. Instead of range C7:C12, cells
C7:F8 are selected.
Like the Off set property, the Resize property takes two arguments. Th e fi rst
argument is the number of rows you intend to include in the selection, and
the second argument specifi es the number of columns. Hence, the instruction
Selection.Resize(2, 4).Select resizes the current selection to two rows
and four columns.

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 71

Th e last two instructions can be combined in the following way:

Selection.Offset(2, 2).Resize(2, 4).Select

In this statement, the Off set property calculates the beginning of a new range,
the Resize property determines the new size of the range, and the Select method
selects the specifi ed range of cells.

Recording a Selection of Cells

By default, the macro recorder selects cells using the Range property. If you
turn on the macro recorder and select cell A2, enter any text, and select cell
A5, you will see the following lines of code in the Visual Basic Editor window:
Range("A2").Select
ActiveCell.FormulaR1C1 = "text"
Range("A5").Select

You can have the macro recorder use the Offset property if you tell it to use
relative references. To do this, click View | Macros | Use Relative References,
and then choose Record Macro. The macro recorder produces the following
lines of code:
ActiveCell.Offset(-1, 0).Range("A1").Select
ActiveCell.FormulaR1C1 = "text"
ActiveCell.Offset(3, 0).Range("A1").Select

When you record a procedure using the relative references, the procedure will
always select a cell relative to the active cell. The first and third lines in this
set of instructions reference cell A1, even though nothing was said about cell
A1. As you remember from Chapter 1, the macro recorder has its own way of
getting things done. To make things simpler, you can delete the reference to
Range("A1"):
ActiveCell.Offset(-1, 0).Select
ActiveCell.FormulaR1C1 = "text"
ActiveCell.Offset(3, 0).Select

After recording a procedure using the relative reference, make sure Use Rela-
tive References is not selected if your next macro does not require the use of
relative addressing.

SIDEBAR

72 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Using the End Property

If you often must quickly access certain remote cells in your worksheet, you
may already be familiar with the following keyboard shortcuts: End+up arrow,
End+down arrow, End+left arrow, and End+right arrow. In VBA, you can use
the End property to quickly move to remote cells. Let’s move around the work-
sheet by writing statements listed in Hands-On 2.13.

 Hands-On 2.13 Selecting Cells Using the End Property

To render this into VBA: Enter this in the Immediate window:
Select the last cell in any row. ActiveCell.End(xlToRight).Select

Select the last cell in any column. ActiveCell.End(xlDown).Select

Select the first cell in any row. ActiveCell.End(xlToLeft).Select

Select the first cell in any column. ActiveCell.End(xlUp).Select

Notice that the End property requires an argument that indicates the direction
you want to move. Use the following Excel built-in Direction Enumeration con-
stants to jump in the specified direction: xlToRight, xlToLeft, xlUp, xlDown.

Moving, Copying, and Deleting Cells

In the process of developing a new worksheet model, you often find yourself
moving and copying cells and deleting cell contents. Visual Basic allows you to
automate these worksheet editing tasks with three simple-to-use methods: Cut,
Copy, and Clear. And now let’s do some hands-on exercises to get some practice
in the most frequently used worksheet operations.

 Hands-On 2.14 Moving, Copying, and Deleting Cells

To render this into VBA: Enter this in the Immediate window:
Move the contents of cell A5 to cell A4. Range("A5").Cut

Destination:=Range("A4")

Copy a formula from cell A3 to cells D5:F5. Range("A3").Copy
Destination:=Range("D5:F5")

Delete the contents of cell A4. Range("A4").Clear
or
Range("A4").Cut

Notice that the first two methods in the table require a special argument called
Destination. This argument specifies the address of a cell or a range of cells

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 73

where you want to place the cut or copied data. In the last example, the Cut
method is used without the Destination argument to remove data from the
specified cell.

The Clear method deletes everything from the specified cell or range, in-
cluding any applied formats and cell comments. If you want to be specific about
what you delete, use the following methods:

 ● ClearContents—Clears only data from a cell or range of cells
 ● ClearFormats—Clears only applied formats
 ● ClearComments—Clears all cell comments from the specifi ed range
 ● ClearNotes—Clears notes and sound notes from all the cells in the spec-

ifi ed range
 ● ClearHyperlinks—Removes all hyperlinks from the specifi ed range
 ● ClearOutline—Clears the outline for the specifi ed range

WORKING WITH ROWS AND COLUMNS

Excel uses the EntireRow and EntireColumn properties to select the entire row
or column. Let’s now write the statements in Hands-On 2.15 to quickly select
entire rows and columns.

 Hands-On 2.15 Selecting Entire Rows and Columns

To render this into VBA: Enter this in the Immediate window:
Select an entire row where the active cell is
located.

Selection.EntireRow.Select

Select an entire column where the active cell
is located.

Selection.EntireColumn.Select

When you select a range of cells you may want to find out how many rows or
columns are included in the selection. Let’s have Excel count rows and columns
in Range("A1:D15").

1. Type the following VBA statement in the Immediate window and press Enter:
Range("A1:D15").Select

If the Microsoft Excel window is visible, Visual Basic will highlight the range
A1:D15 when you press Enter.

74 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. To find out how many rows are in the selected range, enter the following
statement:
?Selection.Rows.Count

As soon as you press Enter, Visual Basic displays the answer on the next line.
Your selection includes 15 rows.

3. To find out the number of columns in the selected range, enter the following
statement:
?Selection.Columns.Count

As soon as you press Enter, Visual Basic tells you that the selected
Range("A1:D15") occupies the width of four columns.

4. In the Immediate window, position the cursor anywhere within the word Rows
or Columns and press F1 to find out more information about these useful
properties.

Obtaining Information about the Worksheet

How big is an Excel worksheet? How many columns and rows does it contain? If
you ever forget the details, use the Count property as shown in Hands-On 2.16.

 Hands-On 2.16 Counting Rows and Columns

To render this into VBA: Enter this in the Immediate window:
Find out the total number of rows in an Excel
worksheet.

?Rows.Count

Find out the total number of columns in an
Excel worksheet.

?Columns.Count

A Microsoft Excel worksheet has 1,048,576 rows and 16,384 columns.

ENTERING DATA AND FORMATTING CELLS

The information entered in a worksheet can be text, numbers, or formulas. To
enter data in a cell or range of cells, you can use either the Value property or the
Formula property of the Range object.

 ● Using the Value property:

ActiveSheet.Range("A1:C4").Value = "=4 * 25"

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 75

 ● Using the Formula property:

ActiveSheet.Range("A1:C4").Formula = "=4 * 25"

In both examples, cells A1:C4 display 100—the result of the multiplication 4 *
25. Let’s proceed to some practice in Hands-On 2.17.

 Hands-On 2.17 Using VBA Statements to Enter Data in a Worksheet

To render this into VBA: Enter this in the Immediate window:
Enter in cell A5 the following text:
Amount Due

Range("A5").Formula = "Amount Due"

Enter the number 123 in cell D21. Range("D21").Formula = 123
or
Range("D21").Value = 123

Enter in cell B4 the following
formula: = D21 * 3

Range("B4").Formula = "=D21 * 3"

Returning Information Entered in a Worksheet

In some Visual Basic procedures, you will undoubtedly need to return the
contents of a cell or a range of cells. Although you can use either the Value
or Formula property, this time the two Range object’s properties are not inter-
changeable.

 ● Th e Value property displays the result of a formula entered in a specifi ed
cell. If, for example, cell A1 contains a formula = 4 * 25, then the instruction

?Range("A1").Value

will return the value of 100.
 ● If you want to display the formula instead of its result, you must use the

Formula property:

?Range("A1").Formula

Excel will display the formula (= 4 * 25) instead of its result (100).

Finding Out about Cell Formatting

A frequent spreadsheet task is applying formatting to a selected cell or a range.
Your VBA procedure may need to find out the type of formatting applied to a
worksheet cell. To retrieve the cell formatting, use the NumberFormat property:
?Range("A1").NumberFormat

76 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Upon entering the foregoing statement in the Immediate window, Excel displays
the word “General,” which indicates that no special formatting was applied to
the selected cell. To change the format of a cell to dollars and cents using VBA,
enter the following instruction:
Range("A1").NumberFormat = "$#,##0.00"

If you enter 125 in cell A1 after it has been formatted using this code, cell A1 will
display $125.00. You can look up the available format codes in the Format Cells
dialog box in the Microsoft Excel application window as shown in Figure 2.18.

FIGURE 2.18 You can apply different formatting to selected cells and ranges using format codes, as
displayed in the Custom category in the Format Cells dialog box. To quickly bring up this dialog box,
press the Alt, H, F, and M keys one at a time.

WORKING WITH WORKBOOKS AND WORKSHEETS

Now that you’ve got your feet wet working with worksheet cells and ranges, it’s
time to move up one level and learn how you can control a single workbook, as
well as an entire collection of workbooks. You cannot prepare a new worksheet
if you don’t know how to open a new workbook. You cannot remove a workbook

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 77

from the screen if you don’t know how to close a workbook. You cannot work
with an existing workbook if you don’t know how to open it. These important
tasks are handled by the following VBA methods: Add, Open, and Close. The
next series of drills in Hands-On 2.18 and 2.19 will give you the language skills
necessary for dealing with workbooks and worksheets.

 Hands-On 2.18 Working with Workbooks

To render this into VBA: Enter this in the Immediate window:
Open a new workbook. Workbooks.Add

Find out the name of the first workbook. ?Workbooks(1).Name

Find out the number of open workbooks. ?Workbooks.Count

Activate the second open workbook. Workbooks(2).Activate

Close the Chap01_ExcelPrimer.xlsm work-
book and save the changes.

Workbooks("Chap01_ExcelPrimer.
xlsm").Close SaveChanges:=True

Open the Chap01_ExcelPrimer.xlsm work-
book. Type the correct path to the file loca-
tion on your computer.

Workbooks.Open "C:\VBAEx-
celPrimer_ByExample\
Chap01_ExcelPrimer.xlsm"

Activate the Chap01_ExcelPrimer.xlsm
workbook.

Workbooks("Chap01_ExcelPrimer.
xlsm").Activate

Save the active workbook as NewChap.xlsm. ActiveWorkbook.SaveAs File-
name:= "NewChap.xlsm"

Close the first workbook. Workbooks(1).Close

Close the active workbook without saving
recent changes to it.

ActiveWorkbook.Close
SaveChanges:=False

Close all open workbooks. Workbooks.Close

If you worked through the last example in Hands-On 2.18, all workbooks are
now closed. Before you experiment with worksheets, make sure you have opened
a new workbook.

When you deal with individual worksheets, you must know how to add a
new worksheet to a workbook, select a worksheet or a group of worksheets,
name a worksheet, and copy, move, and delete worksheets. In Visual Basic, each
of these tasks is handled by a special method or property.

78 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 2.19 Working with Worksheets

To render this into VBA: Enter this in the Immediate window:
Add a new worksheet. Worksheets.Add

Find out the name of the first worksheet. ?Worksheets(1).Name

Select a sheet named Sheet3. Worksheets(3).Select

Select sheets 1, 3, and 4. Worksheets(Array(1,3,4)).Se-
lect

Activate a sheet named Sheet1. Worksheets("Sheet1").Activate

Move Sheet2 before Sheet1. Worksheets("Sheet2").Move
Before:=Worksheets("Sheet1")

Rename worksheet Sheet2 to Expenses. Worksheets("Sheet2").Name =
"Expenses"

Find out the number of worksheets in the
active workbook.

?Worksheets.Count

Remove the worksheet named Expenses from
the active workbook.

Worksheets("Expenses").Delete

Notice the difference between the Select and Activate methods:

 ● Th e Select and Activate methods can be used interchangeably if only
one worksheet is selected.

 ● If you select a group of worksheets, the Activate method allows you to
decide which one of the selected worksheets is active. As you know, only
one worksheet can be active at a time.

Sheets Other than Worksheets

In addition to worksheets, the collection of workbooks contains chart sheets.
To add a new chart sheet to your workbook, use the Add method:
Charts.Add

To count the chart sheets, use:
?Charts.Count

WORKING WITH WINDOWS

When you work with several Excel workbooks and need to compare or con-
solidate data or you want to see different parts of the same worksheet, you are
bound to use the options available from the Microsoft Excel Window menu:

SIDEBAR

EXCEL PROGRAMMING ENVIRONMENT: A QUICK OVERVIEW 79

New Window and Arrange.
In Hands-On 2.20, you will learn how to work with Windows using VBA.

 Hands-On 2.20 Working with Windows

To render this into VBA: Enter this in the Immediate window:
Show the active workbook in a new window. ActiveWorkbook.NewWindow

Display on screen all open workbooks. Windows.Arrange

Activate the second window. Windows(2).Activate

Find out the title of the active window. ?ActiveWindow.Caption

Change the active window’s title to My
Window.

ActiveWindow.Caption = "My
Window"

When you display windows on screen, you can decide how to arrange them. The
Arrange method has many arguments, as shown in Table 2.1. The argument
that allows you to control the way the windows are positioned on your screen
is called ArrangeStyle. If you omit the ArrangeStyle argument, all windows
are tiled.

TABLE 2.1 Arguments of the Arrange method of the Windows object.

Constant Value Description
xlArrangeStyleTiled 1 Windows are tiled (the default value).
xlArrangeStyleCascade 7 Windows are cascaded.
xlArrangeStyleHorizontal 2 Windows are arranged horizontally.
xlArrangeStyleVertical 3 Windows are arranged vertically.

Instead of the names of constants, you can use the value equivalents shown in
Table 2.1.

To cascade all windows, use the following VBA instruction:
Windows.Arrange ArrangeStyle:=xlArrangeStyleCascade

Or simply:
Windows.Arrange ArrangeStyle:=7

WORKING WITH THE EXCEL APPLICATION

The Application object represents the Excel application itself. By controlling the
Application object, you can perform many tasks, such as saving the way your

80 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

screen looks at the end of a day’s work or quitting the application. As you know,
Excel allows you to save the screen settings by using the Save Workspace button
on the View tab. The task of saving the workspace can be easily performed with
VBA.
Application.SaveWorkspace "Project"

This instruction saves the screen settings in the workspace file named Project.
The next time you need to work with the same files and arrangement of win-
dows, simply open the Project.xlwx file so Excel will bring up the correct files
and restore your screen with those settings. And now let’s write some statements
that use the Application object.

 Hands-On 2.21 Working with the Excel Application

To render this into VBA: Enter this in the Immediate window:
Check the name of the active application. ?Application.Name

Change the title of the Excel application to
My Application.

Application.Caption =
"My Application"

Change the title of the Excel application back
to Microsoft Excel.

Application.Caption =
"Microsoft Excel"

Find out what operating system you are
using.

?Application.OperatingSystem

Find out the name of a person or firm to
whom the application is registered.

?Application.OrganizationName

Find out the name of the folder where the
Excel executable file (Excel.exe) resides.

?Application.Path

Quit working with Microsoft Excel. Application.Quit

SUMMARY

This chapter has given you an overview of the Visual Basic Editor window. You
learned many basic VBA terms and practiced them by executing single state-
ments in the Immediate window.

In the next chapter, you will learn how the data can be stored for later use in
variables. You will also explore data types and constants.

81

In programming, just as in life, certain things need to be done at once while
others can be put off until later. When you postpone a task, you may enter it
in your mental or paper “to-do” list and classify it by its type or importance.

When you delegate the task or finally get around to doing it yourself, you cross
it off the list. This chapter shows you how your VBA procedures can memorize
important pieces of information for use in later statements or calculations. You
will learn how a procedure can keep a “to-do” entry in a variable, how variables
are declared, and how they relate to data types and constants.

EXCEL OBJECTS, PROPERTIES, AND METHODS

You can create procedures that control many features of Microsoft Excel using
Visual Basic for Applications. You can also control many other applications.
The power of Visual Basic comes from its ability to control and manage various
objects. But what is an object?

An object is a thing you can control with VBA. Workbooks, a worksheet, a
range in a worksheet, a chart, and a toolbar are just a few examples of the objects
you may want to control while working in Excel. Excel contains a multitude of
objects that you can manipulate in different ways. All these objects are organized
in a hierarchy. Some objects may contain other objects. For example, Microsoft

Chapter

 3 EXCEL VBA
FUNDAMENTALS

A QUICK REFERENCE

TO WRITING VBA CODE

82 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Excel is an Application object. The Application object contains other objects,
such as workbooks or command bars. The Workbook object may contain other
objects, such as worksheets or charts. In this chapter, you will learn how to
control the following Excel objects: Range, Window, Worksheet, Workbook,
and Application. You begin by learning about the Range object. You can’t do
much work in spreadsheets unless you know how to manipulate ranges of cells.

Certain objects look alike. For example, if you open a new workbook and
examine its worksheets, you won’t see any differences. A group of like objects is
called a collection. A Worksheets collection includes all worksheets in a work-
book. Collections are also objects. In Microsoft Excel, the most frequently used
collections are:

 ● Workbooks collection—represents all currently open workbooks.
 ● Worksheets collection—represents all the Worksheet objects in the speci-

fi ed or active workbook. Each Worksheet object represents a worksheet.
 ● Sheets collection—represents all the sheets in the specifi ed or active

workbook. Th e Sheets collection can contain Chart or Worksheet objects.
 ● Windows collection—represents all the Window objects in Microsoft

Excel. Th e Windows collection for the Application object contains all
the windows in the application, whereas the Windows collection for the
Workbook object contains only the windows in the specifi ed workbook.

When you work with collections, you can perform the same action on all the
objects in the collection.

Each object has some characteristics that allow you to describe the object.
In Visual Basic, the object’s characteristics are called properties. For example, a
Workbook object has a Name property, and the Range object has such proper-
ties as Column, Font, Formula, Name, Row, Style, and Value. The object prop-
erties can be set. When you set an object’s property, you control its appearance
or its position. Object properties can take on only one specific value at any one
time. For example, the active workbook can’t be called two different names at
the same time.

The most difficult part of Visual Basic is to understand the fact that some
properties can also be objects. Let’s consider the Range object. You can change
the appearance of the selected range of cells by setting the Font property. But
the font can have a different name (Times New Roman, Arial, …), different size
(10, 12, 14, …), and different style (bold, italic, underline, …). These are font
properties. If the font has properties, then the font is also an object.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 83

Properties are great. They let you change the look of the object, but how can
you control the actions? Before you can make Excel carry out some tasks, you
need to know another term. Objects have methods. Each action you want the
object to perform is called a method. The most important Visual Basic method
is the Add method, which you can use to add a new workbook or worksheet. Ob-
jects can use various methods. For example, the Range object has special meth-
ods that allow you to clear the cell contents (ClearContents method), clear just
formats (ClearFormats method), and clear both contents and formats (Clear
method). Other methods allow objects to be selected, copied, or moved.

Methods can have optional parameters that specify how the method is to
be carried out. For example, the Workbook object has a method called Close.
You can close any open workbook using this method. If there are changes to the
workbook, Microsoft Excel will display a message prompting you to save the
changes. You can use the Close method with the SaveChanges parameter set to
False to close the workbook and discard any changes that have been made to it,
as in the following example:

Workbooks("Chap01_ExcelPrimer.xlsm").Close SaveChanges:=False

MICROSOFT EXCEL OBJECT MODEL

When you learn new things, theory can give you the necessary background,
but how do you really know what’s where? All the available Excel objects as well
as their properties and methods can be looked up in the online Excel Object
Model Reference that you can access by choosing Help | Microsoft Visual Basic
for Applications Help in the Visual Basic Editor window. Figure 3.1 illustrates
the Excel Object Model Reference in the online help. This page can be accessed
via the following link:

http://msdn.microsoft.com/en-us/library/ff194068.aspx

Objects are listed alphabetically for easy perusal, and when you click the object
you will see object subcategories that list the object’s properties, methods,
and events. Reading the object model reference is a great way to learn about
Excel objects and collections of objects. The time you spend here will pay big
dividends later when you need to write complex VBA procedures from scratch.
A good way to get started is to always look up objects that you come across
in Excel programming texts or example procedures. Now take a few minutes
to familiarize yourself with the main Excel object—Application. This object

84 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

allows you to specify application-level properties and execute application-level
methods. You saw several examples of working with the Application object in
Chapter 2.

FIGURE 3.1 In your VBA programming work, always refer to the Excel Object Model Reference that
contains documentation for all the objects, properties, methods, and events contained in the Excel
object model.

WRITING SIMPLE AND COMPLEX VBA STATEMENTS

Now that you know the basic elements of VBA (objects, properties, and meth-
ods), it’s time to start using them. But how do you combine objects, properties,
and methods into correct language structures? Every language has grammar
rules that people follow in order to make themselves understood. Whether you
communicate in English, Spanish, French, or another language, you apply cer-
tain rules to your writing and speech. In programming, we use the term syntax
to specify language rules. You can look up the syntax of each object, property, or
method in the online help or in the Object Browser window.

To make sure Excel always understands what you mean, just stick to the
following rules:

Rule #1: Referring to the property of an object
If the property does not have arguments, the syntax is as follows:

Object.Property

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 85

Object is a placeholder. It is where you should place the name of the actual
object that you are trying to access. Property is also a placeholder. Here you
place the name of the object’s characteristics. For example, to refer to the value
entered in cell A4 on your worksheet, you can write the following instruction:

Notice that there is a period between the name of the object and its property.
When you need to access the property of an object that is contained within

several other objects, you must include the names of all objects in turn, sepa-
rated by the dot operator, as shown here:

ActiveSheet.Shapes(2).Line.Weight

This example references the Weight property of the Line object and refers to the
second object in the collection of Shapes located in the active worksheet.

Some properties require one or more arguments. For example, when using
the Offset property, you can select a cell relative to the active cell. The Offset
property requires two arguments. The first argument indicates the row num-
ber (rowOffset), and the second one determines the column number (colum-
nOffset).

In this example, assuming the active cell is A1, Offset(3, 2) will reference the
cell located three rows down and two columns to the right of cell A1. In other
words, cell C4 is referenced. Because the arguments placed within parentheses
are often difficult to understand, it’s common practice to precede the value of
the argument with its name, as in the following example:

ActiveCell.Offset(rowOffset:=3, columnOffset:=2)

Notice that a colon and an equal sign always follow the named arguments.
When you use the named arguments, you can list them in any order. The fore-
going instruction can also be written as follows:

ActiveCell.Offset(columnOffset:=2, rowOffset:=3)

86 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The revised instruction does not change the meaning; you are still referenc-
ing cell C4 assuming that A1 is the active cell. However, if you transpose the
arguments in a statement that does not use named arguments, you will end up
referencing another cell. For example, the statement ActiveCell.Offset(2,
3) will reference cell D3 instead of C4.

Rule #2: Changing the property of an object
Object.Property = Value

Value is a new value that you want to assign to the property of the object. The
value can be:

 ● A number. Th e following instruction enters the number 25 in cell A4.

 ● Text entered in quotes. Th e following instruction changes the font of the
active cell to Times New Roman.

ActiveCell.Font.Name = "Times New Roman"

 ● A logical value (True or False). Th e following instruction applies bold
formatting to the active cell.

ActiveCell.Font.Bold = True

Rule #3: Returning the current value of the object property
Variable = Object.Property

Variable is the name of the storage location where Visual Basic is going to store
the property setting. You will learn about variables later in this chapter.

This instruction saves the current value of cell A4 in the variable named Cell-
Value.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 87

Rule #4: Referring to the object’s method
If the method does not have arguments, the syntax is as follows:

Object.Method

Object is a placeholder. It is where you should place the name of the actual
object that you are trying to access. Method is also a placeholder. Here you place
the name of the action you want to perform on the object. For example, to clear
the contents in cell A4, use the following instruction:

If the method requires arguments, the syntax is as follows:
Object.Method (argument1, argument2, ... argumentN)

For example, using the GoTo method, you can quickly select any range in a
workbook. The syntax of the GoTo method is shown here:

Object.GoTo(Reference, Scroll)

The Reference argument is the destination cell or range. The Scroll argument
can be set to True to scroll through the window or to False to not scroll through
the window. For example, the following VBA statement selects cell P100 in
Sheet1 and scrolls through the window:

Application.GoTo _
 Reference:=Worksheets("Sheet1").Range("P100"), _
 Scroll:=True

The foregoing instruction did not fit on one line, so it was broken into sections
using the special line continuation character (the underscore), described in the
next section.

Suppose you want to delete the contents of cell A4. To do this manually, you
would select cell A4 and press the Delete key on your keyboard. To perform the
same operation using Visual Basic, you first need to find out how to make Excel
select an appropriate cell. Cell A4, like any other worksheet cell, is represented
by the Range object. Visual Basic does not have a Delete method for deleting
contents of cells. Instead, you should use the ClearContents method, as in the
following example:

Range("A4").ClearContents

88 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice the dot operator between the name of the object and its method. This
instruction removes the contents of cell A4. However, how do you make Excel
delete the contents of cell A4 located in the first sheet of the Chap03_ExcelPrimer.
xlsm workbook? Let’s also assume that there are several workbooks open. If you
don’t want to end up deleting the contents of cell A4 from the wrong workbook
or worksheet, you must write a detailed instruction so that Visual Basic knows
where to locate the necessary cell:

Application.Workbooks("Chap03_ExcelPrimer.xlsm")
.Worksheets("Sheet1").Range("A4").ClearContents

The foregoing instruction should be written on one line and read from right to
left as follows: Clear the contents of cell A4, which is part of a range located in a
worksheet named Sheet1 contained in a workbook named Chap03_ExcelPrimer.
xlsm, which in turn is part of the Excel application. Be sure to include the letter
“s” at the end of the collection names: Workbooks and Worksheets. All refer-
ences to the names of workbooks, worksheets, and cells must be enclosed in
quotation marks.

Breaking Up Long VBA Statements

When you start writing complete VBA procedures from scratch, you will need
to know how to break up a long VBA statement into two or more lines to make
your procedure more readable. Visual Basic has a special line continuation char-
acter that can be used at the end of a line to indicate that the next line is a con-
tinuation of the previous one, as in the following example:
Selection.PasteSpecial _
 Paste:=xlValues, _
 Operation:=xlMultiply, _
 SkipBlanks: =False, _
 Transpose:=False

The line continuation character is the underscore (_). You must precede the
underscore with a space.

You can use the line continuation character in your code before or after:

 ● Operators; for example: &, +, Like, NOT, AND
 ● A comma
 ● An equal sign
 ● An assignment operator (:=)

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 89

You cannot use the line continuation character between a colon and an equal’s
sign. For example, the following use of the continuation character is not recog-
nized by Visual Basic:
Selection.PasteSpecial Paste: _
 =xlValues, Operation: _
 =xlMultiply, SkipBlanks: _
 =False, Transpose: _
 =False

Also, you may not use the line continuation character within text enclosed in
quotes. For example, the following usage of the underscore is invalid:
MsgBox "To continue the long instruction, use the _
 line continuation character."

Instead, break it up as follows:
MsgBox "To continue the long instruction, use the " & _
 "line continuation character."

SAVING RESULTS OF VBA STATEMENTS

In Chapter 2, while working in the Immediate window, you tried several Visual
Basic instructions that returned some information. For example, when you
entered ?Rows.Count, you found out that there are 1,048,576 rows in a work-
sheet. However, when you write Visual Basic procedures outside of the Imme-
diate window, you can’t use the question mark. If you want to know the result
after executing an instruction, you must tell Visual Basic to memorize it. In
programming, results returned by Visual Basic instructions can be written to
variables. Since variables can hold various types of data, the next section focuses
on introducing you to VBA data types. Once you understand the basics of data
types, it will be easy to tackle the variable part.

INTRODUCING DATA TYPES

When you create Visual Basic procedures, you have a purpose in mind: You
want to manipulate data. Because your procedures will handle different kinds
of information, you should understand how Visual Basic stores data. The data
type determines how the data is stored in the computer’s memory. For example,
data can be stored as a number, text, date, object, and so on. If you forget to tell

90 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Visual Basic the type of your data, it assigns the Variant data type. The Variant
type can figure out on its own what kind of data is being manipulated and then
take on that type.

The Visual Basic data types are shown in Table 3.1. In addition to the built-
in data types, you can define your own data types. Because data types take up
different amounts of space in the computer’s memory, some of them are more
expensive than others. Therefore, to conserve memory and make your proce-
dure run faster, you should select the data type that uses the least number of
bytes and, at the same time, can handle the data that your procedure has to
manipulate.

TABLE 3.1 VBA data types.

Data Type
(Name)

Size
(Bytes)

Description

Boolean 2 Stores a value of True (0) or False (–1).
Byte 1 A number in the range of 0 to 255.
Integer 2 A number in the range of –32,768 to 32,767.

The type declaration character for Integer is the percent
sign (%).

Long
(Long integer)

4 A number in the range of –2,147,483,648 to 2,147,483,647.
The type declaration character for Long is the ampersand
(&).

LongLong
(LongLong integer)

8 Stored as a signed 64-bit (8-byte) number ranging
in value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807. The type declaration character
for LongLong is the caret (^). LongLong is a valid declared
type only on 64-bit platforms.

LongPtr
(Long integer on
32-bit systems;
LongLong integer
on 64-bit systems)

4 on 32-bit
8 on 64-bit

Numbers ranging in value from –2,147,483,648
to 2,147,483,647 on 32-bit systems;
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
on 64-bit systems. Using LongPtr enables writing code that
can run in both 32-bit and 64-bit environments.

Single
(single-precision
floating-point)

4 Single-precision floating-point real number ranging in
value from –3.402823E38 to –1.401298E–45 for negative
values and from 1.401298E–45 to 3.402823E38 for positive
values. The type declaration character for Single is the
exclamation point (!).

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 91

Data Type
(Name)

Size
(Bytes)

Description

Double
(double-precision
floating-point)

8 Double-precision floating-point real number in the range
of –1.79769313486231E308 to –4.94065645841247E–324
for negative values and 4.94065645841247E–324 to
1.79769313486231E308 for positive values. The type
declaration character for Double is the number sign (#).

Currency
(scaled integer)

8 (scaled integer) Monetary values used in fixed-point
calculations:
–922,337,203,685,477.5808 to 922,337,203,685,477.5807.
The type declaration character for Currency is the at sign
(@).

Decimal 14 96-bit (12-byte) signed integer scaled by a variable power
of 10. The power of 10 scaling factor specifies the number
of digits to the right of the decimal point, and ranges from
0 to 28.
With no decimal point (scale of 0), the largest value is
+/–79,228,162,514,264,337,593,543,950,335.
With 28 decimal places, the largest value is
+/–7.9228162514264337593543950335. The smallest
nonzero value is +/–0.0000000000000000000000000001.
You cannot declare a variable to be of type Decimal. You
must use the Variant data type. Use the CDec function to
convert a value to a decimal number:

Dim numDecimal As Variant
numDecimal = CDec(0.02 * 15.75 * 0.0006)

Date 8 Date from January 1, 100, to December 31, 9999, and times
from 0:00:00 to 23:59:59. Date literals must be enclosed
within number signs (#)—for example:
#January 1, 2019#

String
(variable-length)

10 bytes +
string length

A variable-length string can contain up to approximately 2
billion characters. The type declaration character for String
is the dollar sign ($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approximately 65,400
characters.

Object 4 Object variable used to refer to any Excel object. Use the
Set statement to declare a variable as an Object.

Variant
(with numbers)

16 Any numeric value up to the size of a Double.

(Contd.)

92 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Data Type
(Name)

Size
(Bytes)

Description

Variant
(with characters)

22 bytes +
string length

Any valid nonnumeric data type in the same range as for a
variable-length string.

User-Defined
(using Type)

One or more
elements

A data type you define using the Type statement. User-
defined data types can contain one or more elements of a
data type, an array, or a previously defined user-defined
type—for example:

Type custInfo
 custFullName as String
 custTitle as String
 custBusinessName as String
 custFirstOrderDate as Date
End Type

NOTE
For more information about data types see the online help at: https://
docs.microsoft.com/en-us/office/vba/language/reference/user-
interface-help/data-type-summary.

USING VARIABLES

A variable is simply a name that is used to refer to an item of data. Each time
you want to remember a result of a VBA instruction, think of a name that will
represent it. For example, if the number 1,048,576 must remind you of the total
number of rows in a worksheet (a very important piece of information when
you want to bring external data into Excel), you can make up a name such as
AllRows, NumOfRows, or TotalRows, and so on. The names of variables can
contain characters, numbers, and some punctuation marks, except for the fol-
lowing:

, # $ % & @ !

The name of a variable cannot begin with a number or contain a space. If you
want the name of the variable to include more than one word, use the underscore
(_) as a separator. Although the name of a variable can contain as many as
254 characters, it’s best to use short and simple variable names. Using short
names will save you typing time when you need to refer to the variable in your
Visual Basic procedure. Visual Basic doesn’t care whether you use uppercase
or lowercase letters in variable names, but most programmers use lowercase

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 93

letters. For variable names that are made up of one or more words, you may
want to use title case, as in the names NumOfRows and First_Name.

Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name, except for the reserved
words that VBA uses. Visual Basic statements and certain other words that
have a special meaning in VBA cannot be used as names of variables. For ex-
ample, words such as Name, Len, Empty, Local, Currency, or Exit will generate
an error message if used as a variable name.

Meaningful Variable Names

Give variables names that can help you remember their roles. Some program-
mers use a prefix to identify the type of a variable. A variable name that begins
with “str” (for example, strName) can be quickly recognized within the code of
your procedure as the one holding the text string.

How to Create Variables

You can create a variable by declaring it with a special command or by just using
it in a statement. When you declare your variable, you make Visual Basic aware
of the variable’s name and data type. This is called explicit variable declaration.
There are several advantages to explicit variable declaration:

 ● Explicit variable declaration speeds up the execution of your procedure.
Because Visual Basic knows the data type, it reserves only as much mem-
ory as is necessary to store the data.

 ● Explicit variable declaration makes your code easier to read and under-
stand because all the variables are listed at the very beginning of the pro-
cedure.

 ● Explicit variable declaration helps prevent errors caused by misspelled
variable names. Visual Basic automatically corrects the variable name
based on the spelling used in the variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you are
implicitly telling VBA that you want to create this variable. Variables declared
implicitly are automatically assigned the Variant data type (see Table 3.1 in the
previous section). Although implicit variable declaration is convenient (it allows
you to create variables on the fly and assign values without knowing in advance

SIDEBAR

SIDEBAR

94 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the data type of the values being assigned), it can cause several problems, as
outlined here:

 ● If you misspell a variable name in your procedure, Visual Basic may dis-
play a runtime error or create a new variable. You are guaranteed to waste
some time troubleshooting problems that could have been easily avoided
had you declared your variable at the beginning of the procedure.

 ● Because Visual Basic does not know what type of data your variable will
store, it assigns it a Variant data type. Th is causes your procedure to run
slower because Visual Basic must check the data type every time it deals
with your variable. Because a Variant can store any type of data, Visual
Basic has to reserve more memory to store your data.

How to Declare Variables

You declare a variable with the Dim keyword. Dim stands for dimension. The Dim
keyword is followed by the name of the variable and then the variable type.

Suppose you want the procedure to display the age of an employee. Before
you can calculate the age, you must tell the procedure the employee’s date of
birth. To do this, you declare a variable called DateOfBirth, as follows:

 Dim DateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable (DateOf-
Birth). This name can be anything you choose, if it is not one of the VBA key-
words. Specify the data type the variable will hold by placing the As keyword
after its name, followed by one of the data types from Table 4.1. The Date data
type tells Visual Basic that the variable DateOfBirth will store a date. To store
the employee’s age, declare the age variable as follows:

 Dim age As Integer

The age variable will store the number of years between today’s date and the
employee’s date of birth. Because age is displayed as a whole number, this vari-
able has been assigned the Integer data type.

You may also want your procedure to keep track of the employee’s name, so
you declare another variable to hold the employee’s first and last name:

 Dim FullName As String

Because the word “Name” is on the VBA list of reserved words, using it in your
VBA procedure would guarantee an error. To hold the employee’s full name, call
the variable FullName and declare it as the String data type, because the data it
will hold is text.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 95

Declaring variables is regarded as a good programming practice because it
makes programs easier to read and helps prevent certain types of errors.

Informal Variables

Variables that are not explicitly declared with Dim statements are said to be im-
plicitly declared. These variables are automatically assigned a data type called
Variant. They can hold numbers, strings, and other types of information. You
can create a variable by simply assigning some value to a variable name any-
where in your VBA procedure. For example, you will implicitly declare a vari-
able in the following way:
DaysLeft = 100

Now that you know how to declare your variables, let’s look at a procedure that
uses them:
 Sub AgeCalc()
 ' variable declaration
 Dim FullName As String
 Dim DateOfBirth As Date
 Dim age As Integer

 ' assign values to variables
 FullName = "John Smith"
 DateOfBirth = #01/03/1981#

 ' calculate age
 age = Year(Now())-Year(DateOfBirth)

 ' print results to the Immediate window
 Debug.Print FullName & " is " & age & " years old."
 End Sub

The variables are declared at the beginning of the procedure in which they are
going to be used. In this procedure, the variables are declared on separate lines.
If you want, you can declare several variables on the same line, separating each
variable name with a comma, as shown here:

Dim FullName As String, DateOfBirth As Date, age As Integer

Notice that the Dim keyword appears only once at the beginning of the variable
declaration line.

When Visual Basic executes the variable declaration statements, it creates
the variables with the specified names and reserves memory space to store their
values. Then specific values are assigned to these variables.

SIDEBAR

96 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To assign a value to a variable, begin with a variable name followed by an
equal sign. The value entered to the right of the equals sign is the data you want
to store in the variable. The data you enter here must be of the type determined
by the variable declaration. Text data should be surrounded by quotation marks,
and dates by the # characters.

Using the data supplied by the DateOfBirth variable, Visual Basic calcu-
lates the age of an employee and stores the result of the calculation in the age
variable. Then the full name of the employee as well as the age is printed to
the Immediate window using the instruction Debug.Print. When the Visual
Basic procedure has executed, you must view the Immediate window to see the
results.

Let’s see what happens when you declare a variable with the incorrect data
type. The purpose of the following procedure is to calculate the total number of
rows in a worksheet and then display the results in a dialog box.
 Sub HowManyRows()
 Dim NumOfRows As Integer

 NumOfRows = Rows.Count

 MsgBox "The worksheet has " & NumOfRows & " rows."
 End Sub

A wrong data type can cause an error. In the foregoing procedure, when Visual
Basic attempts to write the result of the Rows.Count statement to the variable
NumOfRows, the procedure fails, and Excel displays the message “Run-time error
6—Overflow.” This error results from selecting an invalid data type for that vari-
able. The number of rows in a spreadsheet does not fit the Integer data range.
To correct the problem, you should choose a data type that can accommodate a
larger number:
 Sub HowManyRows2()
 Dim NumOfRows As Long

 NumOfRows = Rows.Count
 MsgBox "The worksheet has " & NumOfRows & " rows."
 End Sub

You can also correct the problem caused by the assignment of the wrong data
type in the first example by deleting the variable type (As Integer). When you
rerun the procedure, Visual Basic will assign to your variable the Variant data
type. Although Variants use up more memory than any other variable type and
slow down the speed at which your procedures run (because Visual Basic must

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 97

do extra work to check the Variant’s context), when it comes to short proce-
dures, the cost of using Variants is barely noticeable.

What Is the Variable Type?

You can quickly find out the type of a variable used in your procedure by right-
clicking the variable name and selecting Quick Info from the shortcut menu.

Concatenation

You can combine two or more strings to form a new string. The joining opera-
tion is called concatenation. You have seen examples of concatenated strings
in the foregoing AgeCalc and HowManyRows2 procedures. Concatenation is
represented by an ampersand character (&). For instance, "His name is "
& FirstName will produce the following string: His name is John. The name
of the person is determined by the contents of the FirstName variable. Notice
that there is an extra space between “is” and the ending quote: “His name is .”
Concatenation of strings also can be represented by a plus sign (+). However,
many programmers prefer to restrict the plus sign to operations on numbers
to eliminate ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up with
an untyped variable. Untyped variables in VBA are always Variant data types.
It’s highly recommended that you create typed variables. When you declare a
variable of a certain data type, your VBA procedure runs faster because Visual
Basic does not have to stop to analyze the Variant variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer vari-
ables can hold only whole numbers from –32,768 to 32,767. Other types of nu-
meric variables are Long, Single, Double, and Currency. Long variables can hold
whole numbers in the range –2,147,483,648 to 2,147,483,647. Unlike the Integer
and Long variables, the Single and Double variables can hold decimals. String
variables are used to refer to text. When you declare a variable of String data
type, you can tell Visual Basic how long the string should be—for instance:

Dim extension As String * 3

declares a fixed-length String variable named extension that is three characters
long. If you don’t assign a specific length, the String variable will be dynamic.

SIDEBAR

SIDEBAR

98 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

This means that Visual Basic will make enough space in computer memory to
handle whatever amount of text is assigned to it.

After you declare a variable, you can store only the type of information in
it that you determined in the declaration statement. Assigning string values to
numeric variables or numeric values to string variables results in the error mes-
sage “Type mismatch” or causes Visual Basic to modify the value. For example,
if your variable was declared to hold whole numbers and your data uses deci-
mals, Visual Basic will disregard the decimals and use only the whole part of
the number. When you run the MyNumber procedure shown here, Visual Basic
modifies the data to fit the variable’s data type (Integer), and instead of 23.11 the
variable ends up holding a value of 23.
 Sub MyNumber()

 Dim myNum As Integer
 myNum = 23.11
 MsgBox myNum
 End Sub

If you don’t declare a variable with a Dim statement, you can still designate a type
for it by using a special character at the end of the variable name. To declare the
FirstName variable as String, you can append the dollar sign to the variable
name:

Dim FirstName$

This declaration is the same as Dim FirstName As String. The type decla-
ration characters are shown in Table 3.2.

TABLE 3.2 Type declaration characters.

Data Type Character
Integer %
Long &
Single !
Double #
Currency @
String $

Notice that the type declaration characters can be used only with six data types.
To use the type declaration character, append the character to the end of the
variable name.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 99

In the AgeCalc2 procedure, here we use two type declaration characters
shown in Table 3.2.
 Sub AgeCalc2()
 ' variable declaration
 Dim FullName$
 Dim DateOfBirth As Date
 Dim age%

 ' assign values to variables
 FullName$ = "John Smith"
 DateOfBirth = #1/3/1981#

 ' calculate age
 age% = Year(Now()) - Year(DateOfBirth)

 ' print results to the Immediate window
 Debug.Print FullName$ & " is " & age% & " years old."
 End Sub

Declaring Typed Variables

The variable type can be indicated by the As keyword or a type symbol. If you
don’t add the type symbol or the As command, the variable will be the default
data type Variant.

Assigning Values to Variables

Now that you know how to name and declare variables and have seen examples
of using variables in complete procedures, let’s gain experience using them. In
Hands-On 3.1 we will begin by creating a variable and assigning it a specific
value.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 3.1 Writing a VBA Procedure with Variables

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap03_ExcelPrimer.xlsm.

2. Activate the Visual Basic Editor window.
3. In the Project Explorer window, select the new project VBAProject (Chap03_

ExcelPrimer.xlsm) and in the Properties window change its name to Chapter3.

SIDEBAR

100 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Choose Insert | Module to add a new module to the Chapter3 (Chap03_
ExcelPrimer.xlsm) VBA project.

5. While the Module1 is selected, use the Properties window to change its name
to Variables.

6. In the Code window, enter the CalcCost procedure shown here:
Sub CalcCost()
 slsPrice = 35
 slsTax = 0.085

 Range("A1").Formula = "The cost of calculator"
 Range("A4").Formula = "Price"
 Range("B4").Formula = slsPrice
 Range("A5").Formula = "Sales Tax"
 Range("A6").Formula = "Cost"
 Range("B5").Formula = slsPrice * slsTax
 cost = slsPrice + (slsPrice * slsTax)

 With Range("B6")
 .Formula = cost
 .NumberFormat = "0.00"
 End With

 strMsg = "The calculator total is $" & cost & "."
 Range("A8").Formula = strMsg
End Sub

The foregoing procedure calculates the cost of purchasing a calculator using the
following assumptions: The price of a calculator is $35 and the sales tax equals
8.5%.

The procedure uses four variables: slsPrice, slsTax, cost, and strMsg.
Because none of these variables have been explicitly declared, they all have the
same data type—Variant. The variables slsPrice and slsTax were created by
assigning some values to variable names at the beginning of the procedure. The
cost variable was assigned a value that is a result of a calculation: slsPrice +
(slsPrice * slsTax). The cost calculation uses the values supplied by the sl-
sPrice and slsTax variables. The strMsg variable puts together a text message
to the user. This message is then entered as a complete sentence in a worksheet
cell. When you assign values to variables, place an equal sign after the name of
the variable. After the equals sign, you should enter the value of the variable.
This can be a number, a formula, or text surrounded by quotation marks. While
the values assigned to the variables slsPrice, slsTax, and cost are easily
understood, the value stored in the strMsg variable is a little more involved.
Let’s examine the contents of the strMsg variable.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 101

 strMsg = "The calculator total is $ " & cost & "."

 ● Th e string "The calculator total is " is surrounded by quotation
marks. Notice that there is an extra space before the ending quotation
marks.

 ● Th e dollar sign inside the quotes is used to denote the Currency data type.
Because the dollar symbol is a character, it is surrounded by the quotes.

 ● Th e & character allows another string or the contents of a variable to be
appended to the string. Th e & character must be used every time you
want to append a new piece of information to the previous string.

 ● Th e cost variable is a placeholder. Th e actual cost of the calculator will be
displayed here when the procedure runs.

 ● Th e & character attaches yet another string.
 ● Th e period is surrounded by quotes. When you require a period at the

end of a sentence, you must attach it separately when it follows the name
of the variable.

Variable Initialization

When Visual Basic creates a new variable, it initializes the variable. Variables
assume their default value. Numerical variables are set to zero (0), Boolean
variables are initialized to False, String variables are set to the empty string
(“”), and Date variables are set to December 30, 1899.

Now let’s execute the CalcCost procedure.
7. Position the cursor anywhere within the CalcCost procedure and choose Run

| Run Sub/UserForm.
When you run this procedure, Visual Basic may display the following message:
“Compile error: Variable not defi ned.” If this happens, click OK to close the
message box. Visual Basic will select the slsPrice variable and highlight the
name of the CalcCost procedure. Th e title bar displays “Microsoft Visual Basic
– Chap03_ExcelPrimer.xlsm [break].” Th e Visual Basic break mode allows you
to correct the problem before you continue. Later in this book, you will learn
how to fi x problems in break mode. For now, exit this mode by choosing Run |
Reset. Now go to the top of the Code window and delete the statement Option
Explicit that appears on the fi rst line. Th e Option Explicit statement
means that all variables used within this module must be formally declared.
You will learn about this statement in the next section. When the Option
Explicit statement is removed from the Code window, choose Run | Run

SIDEBAR

102 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub/UserForm to rerun the procedure. Th is time, Visual Basic goes to work
with no objections.

8. After the procedure has finished executing, press Alt+F11 to switch to
Microsoft Excel.
Th e result of the procedure should match Figure 3.2.

FIGURE 3.2 The VBA procedure can enter data and calculate results in a worksheet.

Cell A8 displays the contents of the strMsg variable. Notice that the cost
entered in cell B6 has two decimal places, while the cost in strMsg displays
three decimals. To display the cost of a calculator with two decimal places in
cell A8, you must apply the required format not to the cell but to the cost vari-
able itself.
 VBA has special functions that allow you to change the format of data. To
change the format of the cost variable, you will now use the Format function.
Th is function has the following syntax:
Format(expression, format)

where expression is a value or variable that you want to format, and format
is the type of format you want to apply.

9. In the VBE window, select the entire code of the CalcCost procedure and copy
and paste it below the current procedure on the first empty line. Add some
spacing between the two procedures by pressing Enter two times after the first
procedure End Sub keywords.

10. Change the name of the copied procedure to CalcCost_Modified.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 103

11. Change the calculation of the cost variable in the CalcCost procedure:
cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

12. Replace the With…End With block of instructions with the following:
Range("B6").Formula = cost

13. Replace the statement Range("B5").Formula = slsPrice * slsTax with
the following instruction:
Range("B5").Formula = Format((slsPrice * slsTax), "0.00")

14. Rerun the modified procedure.
Aft er running the procedure, the text displayed in cell A8 shows the cost of the
calculator formatted with two decimal places.
 Aft er trying out the CalcCost procedure, you may wonder why you should
bother declaring variables if Visual Basic can handle undeclared variables so
well. Th e CalcCost procedure is very short, so you don’t need to worry about
how many bytes of memory will be consumed each time Visual Basic uses
the Variant variable. In short procedures, however, it is not the memory that
matters but the mistakes you are bound to make when typing variable names.
What will happen if the second time you use the cost variable you omit the
“o” and refer to it as cst?
Range("B6").Formula = cst

What will you end up with if instead of slsTax you use the word Tax in the
formula?
Cost = Format(slsPrice + (slsPrice * Tax), "0.00")

The result of the CalcCost procedure after introducing these two mistakes is
shown in Figure 3.3.

FIGURE 3.3 Misspelling variable names will produce incorrect results.

104 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that in Figure 3.3 cell B6 does not show a value because Visual Basic does
not find the assignment statement for the cst variable. Because Visual Basic
does not know the sales tax, it displays the price of the calculator (see cell A8) as
the total cost. Visual Basic does not guess. It simply does what you tell it to do.
This brings us to the next section, which explains how to make sure this kind of
error doesn’t occur.

NOTE

If you have made changes in the variable names as described
earlier, be sure to replace the names of the variables cst and tax
with cost and slsTax in the appropriate lines of the VBA code
before you continue.

Forcing Declaration of Variables

Visual Basic has the Option Explicit statement that automatically reminds
you to formally declare all your variables. This statement must be entered at the
top of each of your modules. The Option Explicit statement will cause Visual
Basic to generate an error message when you try to run a procedure that con-
tains undeclared variables as demonstrated in Hands-On 3.2.

 Hands-On 3.2 Writing a VBA Procedure with Explicitly Declared
Variables

This Hands-On requires prior completion of Hands-On 3.1.
1. Return to the Code window where you entered the CalcCost procedure.
2. At the top of the module window (in the first line), type Option Explicit and

press Enter. Excel will display the statement in blue.
3. Run the CalcCost procedure. Visual Basic displays the error message “Compile

error: Variable not defined.”
4. Click OK to exit the message box.

Visual Basic highlights the name of the variable slsPrice. Now you must
formally declare this variable. When you declare the slsPrice variable and
rerun your procedure, Visual Basic will generate the same error as soon as it
encounters another variable name that was not declared.

5. Choose Run | Reset to reset the VBA project.
6. Enter the following declarations at the beginning of the CalcCost procedure:

' declaration of variables
Dim slsPrice As Currency
Dim slsTax As Single
Dim cost As Currency
Dim strMsg As String

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 105

Th e revised CalcCost procedure is shown here:
 Sub CalcCost()
 ' declaration of variables
 Dim slsPrice As Currency
 Dim slsTax As Single
 Dim cost As Currency
 Dim strMsg As String

 slsPrice = 35
 slsTax = 0.085
 Range("A1").Formula = "The cost of calculator"
 Range("A4").Formula = "Price"
 Range("B4").Formula = slsPrice
 Range("A5").Formula = "Sales Tax"
 Range("A6").Formula = "Cost"
 Range("B5").Formula = Format((slsPrice * slsTax), "0.00")
 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

 Range("B6").Formula = cost
 strMsg = "The calculator total is $" & cost & "."
 Range("A8").Formula = strMsg
 End Sub

7. Rerun the procedure to ensure that Excel no longer displays the error.

Option Explicit in Every Module

To automatically include Option Explicit in every new module you create,
follow these steps:

 ● Choose Tools | Options.
 ● Make sure that the Require Variable Declaration check box is selected in

the Options dialog box (Editor tab).
 ● Choose OK to close the Options dialog box.

From now on, every new module will be added with the Option Explicit
statement in line 1. If you want to require variables to be explicitly declared in
a previously created module, you must enter the Option Explicit statement
manually by editing the module yourself.
 Option Explicit forces formal (explicit) declaration of all variables in a
module. One big advantage of using Option Explicit is that any mistyping
of the variable name will be detected at compile time (when Visual Basic at-
tempts to translate the source code to executable code). If included, the Option
Explicit statement must appear in a module before any procedures.

SIDEBAR

106 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. The term
scope defines the availability of a variable to the same procedure, other proce-
dures, and other VBA projects.

Variables can have the following three levels of scope in Visual Basic for Ap-
plications:

 ● Procedure-level scope
 ● Module-level scope
 ● Project-level scope

Procedure-Level (Local) Variables

From this chapter, you already know how to declare a variable by using the Dim
keyword. The position of the Dim keyword in the module sheet determines the
scope of a variable. Variables declared with the Dim keyword placed within a
VBA procedure have a procedure-level scope.

Procedure-level variables are frequently referred to as local variables. Local
variables can be used only in the procedure in which they were declared. Unde-
clared variables always have a procedure-level scope. A variable’s name must be
unique within its scope. This means that you cannot declare two variables with
the same name in the same procedure. However, you can use the same variable
name in different procedures. In other words, the CalcCost procedure can have
the slsTax variable, and the ExpenseRep procedure in the same module can
have its own variable called slsTax. Both variables are independent of each
other.

Module-Level Variables

Local variables help save computer memory. As soon as the procedure ends, the
variable dies and Visual Basic returns the memory space used by the variable
to the computer. In programming, however, you often want the variable to be
available to other VBA procedures after the procedure in which the variable was
declared has finished running. This situation requires that you change the scope
of a variable. Instead of a procedure-level variable, you want to declare a mod-
ule-level variable. To declare a module-level variable, you must place the Dim
keyword at the top of the module sheet before any procedures (just below the
Option Explicit keyword). For instance, to make the slsTax variable available

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 107

to any other procedure in the Variables module, declare the slsTax variable in
the following way:
Option Explicit
Dim slsTax As Single

Sub CalcCost()
...Instructions of the procedure...
End Sub

In the foregoing example, the Dim keyword is located at the top of the module,
below the Option Explicit statement. Before you can see how this works, you
need another procedure that uses the slsTax variable. In Hands-On 3.3, we will
write a new VBA procedure named ExpenseRep.

 Hands-On 3.3 Writing a VBA Procedure with a Module-Level Variable

1. In the Code window, cut the declaration line Dim slsTax As Single in the
Variables module from the CalcCost procedure and paste it at the top of the
module sheet below the Option Explicit statement.

2. In the same module where the CalcCost procedure is located, enter the code of
the ExpenseRep procedure as shown here:

 Sub ExpenseRep()
 Dim slsPrice As Currency
 Dim cost As Currency

 slsPrice = 55.99

 cost = slsPrice + (slsPrice * slsTax)
 MsgBox slsTax
 MsgBox cost
 End Sub

Th e ExpenseRep procedure declares two Currency type variables: slsPrice
and cost. Th e slsPrice variable is then assigned a value of 55.99. Th e
slsPrice variable is independent of the slsPrice variable that is declared
within the CalcCost procedure.
Th e ExpenseRep procedure calculates the cost of a purchase. Th e cost includes
the sales tax stored in the slsTax variable. Because the sales tax is the same as
the one used in the CalcCost procedure, the slsTax variable has been declared
at the module level.

108 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Run the ExpenseRep procedure.
Because you have not yet run the CalcCost procedure, Visual Basic does not
know the value of the slsTax variable, so it displays zero in the fi rst message
box.

4. Run the CalcCost procedure.
Aft er Visual Basic executes the CalcCost procedure that you revised in Hands-
On 3.2, the contents of the slsTax variable equals 0.085. If slsTax were a local
variable, the contents of this variable would be empty upon the termination of
the CalcCost procedure.
When you run the CalcCost procedure, Visual Basic erases the contents of all
the variables except for the slsTax variable, which was declared at a module
level.

5. Run the ExpenseRep procedure again.
As soon as you attempt to calculate the cost by running the ExpenseRep
procedure, Visual Basic retrieves the value of the slsTax variable and uses it
in the calculation.

Private Variables

When you declare variables at a module level, you can use the Private keyword
instead of the Dim keyword—for instance:

Private slsTax As Single

Private variables are available only to the procedures that are part of the mod-
ule where they were declared. Private variables are always declared at the top
of the module after the Option Explicit statement.

Keeping the Project-Level Variable Private

To prevent a project-level variable’s contents from being referenced outside its
project, you can use the Option Private Module statement at the top of the
module sheet, just below the Option Explicit statement and before the decla-
ration line—for example:
 Option Explicit
 Option Private Module
 Public slsTax As Single

 Sub CalcCost()
 ... procedure statements...
 End Sub

SIDEBAR

SIDEBAR

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 109

Project-Level Variables

Module-level variables that are declared with the Public keyword (instead of
Dim) have project-level scope. This means that they can be used in any Visual
Basic for Applications module. When you want to work with a variable in all the
procedures in all the open VBA projects, you must declare it with the Public
keyword—for instance:
 Option Explicit
 Public slsTax As Single

Sub CalcCost()
 ...procedure statements...
 End Sub

Notice that the slsTax variable declared at the top of the module with the Pub-
lic keyword will now be available to any other procedure in the VBA project.

Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable deter-
mines how long a variable retains its value. Module-level and project-level vari-
ables preserve their values as long as the project is open. Visual Basic, however,
can reinitialize these variables if required by the program’s logic. Local variables
declared with the Dim statement lose their values when a procedure has fin-
ished. Local variables have a lifetime as long as a procedure is running, and
they are reinitialized every time the program is run. Visual Basic allows you to
extend the lifetime of a local variable by changing the way it is declared.

Finding a Variable Definition

When you find an instruction in a VBA procedure that assigns a value to a
variable, you can quickly locate the definition of the variable by selecting the
variable name and pressing Shift+F2 or choosing View | Definition. Visual Basic
will jump to the variable declaration line. Press Ctrl+Shift+F2 or choose View |
Last Position to return your mouse pointer to its previous position.

Determining a Data Type of a Variable

You can find out the type of a variable by using one of the VBA built-in func-
tions. The VarType function returns an integer indicating the type of a variable.
Figure 3.4 displays the VarType function’s syntax and the values it returns. Let’s
try using the VarType function in the Immediate window.

110 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 3.4 Using the Built-In VarType Function

1. In the Visual Basic Editor window, choose View | Immediate Window.
2. Type the following statements that assign values to variables:

age = 18
birthdate = #1/1/1981#
firstName = "John"

3. Now ask Visual Basic what type of data each of the variables holds:
?VarType(age)

When you press Enter, Visual Basic returns 2. As shown in Figure 3.4, the
number 2 represents the Integer data type. If you type:

FIGURE 3.4 With the built-in VarType function, you can learn the data type the variable holds.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 111

?VarType(birthdate)

Visual Basic returns 7 for Date. If you make a mistake in the variable name
(let’s say you type birthday, instead of birthdate), Visual Basic returns zero (0).
If you type:

?VarType(firstName)

Visual Basic tells you that the value stored in the variable firstName is a String
type (8).

USING CONSTANTS

The contents of a variable can change while your procedure is executing. If your
procedure needs to refer to unchanged values repeatedly, you should use con-
stants. A constant is like a named variable that always refers to the same value.
Visual Basic requires that you declare constants before you use them. Declare
constants by using the Const statement, as in the following examples:
 Const dialogName = "Enter Data" As String
 Const slsTax = 8.5
 Const ColorIdx = 3

A constant, like a variable, has a scope. To make a constant available within a
single procedure, declare it at the procedure level, just below the name of the
procedure—for instance:
 Sub WedAnniv()
 Const Age As Integer = 25
 MsgBox (Age)
 End Sub

If you want to use a constant in all the procedures of a module, use the Private
keyword in front of the Const statement—for instance:

Private Const driveLetter As String = "C:"

The Private constant has to be declared at the top of the module, just before
the first Sub statement. If you want to make a constant available to all modules
in the workbook, use the Public keyword in front of the Const statement—for
instance:

Public Const NumOfChars As Integer = 255

112 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Public constant has to be declared at the top of the module, just before
the first Sub statement. When declaring a constant, you can use any one of the
following data types: Boolean, Byte, Integer, Long, Currency, Single, Double,
Date, String, or Variant.

Like variables, several constants can be declared on one line if separated by
commas—for instance:
Const Age As Integer = 25, City As String = "Denver"

Using constants makes your VBA procedures more readable and easier to main-
tain. For example, if you refer to a certain value several times in your procedure,
use a constant instead of the value. This way, if the value changes (for example,
the sales tax goes up), you can simply change the value in the declaration of the
Const statement instead of tracking down every occurrence of that value.

Built-In Constants

Both Microsoft Excel and Visual Basic for Applications have a long list of pre-
defined constants that do not need to be declared. These built-in constants can
be looked up using the Object Browser window. Let’s proceed to Hands-On 3.5,
where we open the Object Browser to take a look at the list of Excel constants.

 Hands-On 3.5 Viewing Excel Constants in the Object Browser

1. In the Visual Basic Editor window, choose View | Object Browser.
2. In the Project/Library list box, click the drop-down arrow and select Excel.
3. Enter constants as the search text in the Search box and press Enter or click

the Search button. Visual Basic shows the result of the search in the Search
Results area.

4. Scroll down in the Classes list box to locate and then select Constants as shown
in Figure 3.5. The right side of the Object Browser window displays a list of
all built-in constants that are available in the Microsoft Excel object library.
Notice that the names of all the constants begin with the prefix “xl.”

5. To look up VBA constants, choose VBA in the Project/Library list box (see
Figure 3.6). Notice that the names of the VBA built-in constants begin with
the prefix “vb.”

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 113

FIGURE 3.5 Use the Object Browser to look up any built-in constant.

FIGURE 3.6 The names of VBA constants begin with the “vb” prefix.

114 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CONVERTING BETWEEN DATA TYPES

While VBA handles a lot of data type conversion automatically in the back-
ground, it also provides several data conversion functions (see Table 3.3) that
allow you to convert one data type to another. These functions should be used
in situations where you want to show the result of an operation as a specific
data type rather than the default data type. For example, instead of showing the
result of your calculation as an integer or single-precision or double-precision
number, you may want to use the CCur function to force currency arithmetic, as
in the following example procedure:
 Sub ShowMoney()
 'declare variables of two different types
 Dim myAmount As Single
 Dim myMoneyAmount As Currency

 myAmount = 345.34

 myMoneyAmount = CCur(myAmount)
 Debug.Print "Amount = $" & myMoneyAmount
 End Sub

When using the CCur function, currency options are recognized depending on
the locale setting of your computer. The same holds true for the CDate function.
By using this function, you can ensure that the date is formatted according to
the locale setting of your system. Use the IsDate function to determine whether
a return value can be converted to date or time.
 Sub ConvertToDate()
 'assume you have entered Jan 1 2019 in cell A1
 Dim myEntry As String
 Dim myRangeValue As Date

 myEntry = Sheet2.Range("A1").Value
 If IsDate(myEntry) Then
 myRangeValue = CDate(myEntry)
 End If
 Debug.Print myRangeValue
 End Sub

In cases where you need to round the value to the nearest even number, you will
find the CInt and Clng functions quite handy, as demonstrated in the following
procedure:
 Sub ShowInteger()
 'declare variables of two different types

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 115

 Dim myAmount As Single
 Dim myIntAmount As Integer

 myAmount = 345.64

 myIntAmount = CInt(myAmount)
 Debug.Print "Original Amount = " & myAmount
 Debug.Print "New Amount = " & myIntAmount
 End Sub

As you can see in the code of the foregoing procedures, the syntax for the VBA
conversion functions is as follows:

conversionFunctionName(variablename)

where variablename is the name of a variable, a constant, or an expression (like
x + y) that evaluates to a specific data type.

TABLE 3.3 VBA data type conversion functions.

Conversion Function Return Type Description
CBool Boolean Any valid string or numeric expression
CByte Byte 0 to 255
CCur Currency –922,337,203,685,477.5808 to

922,337,203,685,477.5807
CDate Date Any valid date expression
CDbl Double –1.79769313486231E308 to

–-4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

CDec Decimal +/–79,228,162,514,264,337,593,543,950,335
for zero-scaled numbers—that is, numbers
with no decimal places. For numbers
with 28 decimal places, the range is
+/–7.9228162514264337593543950335.
The smallest possible nonzero number is
0.0000000000000000000000000001.

CInt Integer –32,768 to 32,767; fractions are rounded.
CLng Long –2,147,483,648 to 2,147,483,647; fractions are

rounded.
CLngLng LongLong –9,223,372,036,854,775,808 to

9,223,372,036,854,775,807; fractions are rounded.
(Valid on 64-bit platforms only.)

116 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Conversion Function Return Type Description
CLngPtr LongPtr –2,147,483,648 to 2,147,483,647 on 32-bit

systems; –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807 on 64-bit systems.
Fractions are rounded for 32-bit and 64-bit
systems.

CSng Single –3.402823E38 to –1.401298E-45 for negative
values; 1.401298E-45 to 3.402823E38 for positive
values.

CStr String Returns for CStr depend on the expression
argument.

If Expression Is CStr returns
Boolean A string containing True

or False
Date A string containing a

date in the short date
format of your system

Null A runtime error
Empty A zero-length string (“”)
Error A string containing the

word “Error” followed
by the error number

Other numeric A string containing the
number

Cvar Variant Same range as Double for numerics. Same range
as String for nonnumeric.

 Hands-On 3.6 Using Data Type Conversion Functions in VBA

1. Select Insert | Module to insert a new module into the Chapter3 (Chap03_
ExcelPrimer.xslm) project.

2. Use the Properties window to rename the module to DataTypeConversion.
3. Enter the code of the procedures introduced in this section: ShowMoney,

ConvertToDate, and ShowInteger.
4. Insert a new worksheet into current workbook and enter Jan 1 2019 in cell A1.
5. Run each procedure and check the results in the Immediate window.

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 117

USING STATIC VARIABLES IN VBA PROCEDURES

A variable declared with the Static keyword is a special type of local vari-
able. Static variables are declared at the procedure level. Unlike local variables
declared with the Dim keyword, static variables do not lose their contents when
the program is not in their procedure. For example, when a VBA procedure
with a static variable calls another procedure, after Visual Basic executes the
statements of the called procedure and returns to the calling procedure, the
static variable still retains the original value. The CostOfPurchase procedure
shown in Hands-On 3.7 demonstrates the use of the static variable named all-
Purchase. Notice how this variable keeps track of the running total.

 Hands-On 3.7 Writing a VBA Procedure with a Static Variable

1. In the Code window of the Variables module, write the following procedure:
Sub CostOfPurchase()
 ' declare variables
 Static allPurchase
 Dim newPurchase As String
 Dim purchCost As Single

 newPurchase = InputBox("Enter the cost of a purchase:")
 purchCost = CSng(newPurchase)
 allPurchase = allPurchase + purchCost

 ' display results
 MsgBox "The cost of a new purchase is: " & newPurchase
 MsgBox "The running cost is: " & allPurchase
End Sub

Th e foregoing procedure begins with declaring a static variable named
allPurchase and two other local variables: newPurchase and purchCost. Th e
InputBox function used in this procedure displays a dialog box and waits for
the user to enter the value. As soon as you input the value and click OK, Visual
Basic assigns this value to the variable newPurchase.
 Th e InputBox function is discussed in detail in Chapter 4. Because the result
of the InputBox function is always a string, the newPurchase variable was
declared as the String data type. You can’t, however, use strings in mathematical
calculations. Th at’s why the next instruction uses a type conversion function
(CSng) to translate the text value into a numeric variable of the Single data type.
Th e CSng function requires one argument—the value you want to translate.

118 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To fi nd out more about the CSng function, position the insertion point
anywhere within the word CSng and press F1. Th e number obtained as the
result of the CSng function is then stored in the variable purchCost.
 Th e next instruction, allPurchase = allPurchase + purchCost, adds to
the current purchase value the new value supplied by the InputBox function.

2. Position the cursor anywhere within the CostOfPurchase procedure and
press F5. When the dialog box appears, enter a number. For example, enter
100 and click OK or press Enter. Visual Basic displays the message “The cost
of a new purchase is: 100.” Click OK in the message box. Visual Basic displays
the second message “The running cost is: 100.”

3. When you run this procedure for the first time, the content of the allPurchase
variable is the same as the content of the purchCost variable.

4. Rerun the same procedure. When the input dialog appears, enter another
number. For example, enter 50 and click OK or press Enter. Visual Basic
displays the message “The cost of a new purchase is: 50.” Click OK in the
message box. Visual Basic displays the second message “The running cost is:
150.”

5. When you run the procedure the second time, the value of the static variable
is increased by the new value supplied in the dialog box. You can run the
CostOfPurchase procedure as many times as you want. The allPurchase
variable will keep the running total for as long as the project is open.

USING OBJECT VARIABLES IN VBA PROCEDURES

The variables that you’ve learned in the preceding sections are used to store data.
Storing data is the main reason for using “normal” variables in your procedures.
In addition to the normal variables that store data, there are special variables
that refer to the Visual Basic objects. These variables are called object variables.
In Chapter 2, you worked with several objects in the Immediate window. Now
you will learn how you can represent an object with the object variable.

Object variables don’t store data; instead, they tell where the data is located.
For example, with the object variable you can tell Visual Basic that the data is in
cell E10 of a worksheet. Object variables make it easy to locate data. When writ-
ing Visual Basic procedures, you often need to write long instructions, such as:

Worksheets("Sheet2").Range(Cells(1, 1), Cells(10, 5).Select

Instead of using long references to the object, you can declare an object variable
that will tell Visual Basic where the data is located. Object variables are declared

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 119

similarly to the variables you already know. The only difference is that after the
As keyword, you enter the word Object as the data type—for instance:

Dim myRange As Object

The foregoing statement declares the object variable named myRange.
Well, it’s not enough to declare the object variable. You also must assign a

specific value to the object variable before you can use this variable in your pro-
cedure. Assign a value to the object variable by using the Set keyword. The Set
keyword must be followed by the equals sign and the value that the variable will
refer to—for example:

Set myRange = Worksheets("Sheet2").Range(Cells(1, 1), Cells(10, 5))

This statement assigns a value to the object variable myRange. This value refers
to cells A1:E10 in Sheet1. If you omit the word Set, Visual Basic will respond
with an error message—“Run-time error 91: Object variable or With block vari-
able not set.”

Again, it’s time to see a practical example.

 Hands-On 3.8 Writing a VBA Procedure with Object Variables

1. In the Code window of the Variables module, write the following procedure:
Sub UseObjVariable()
 Dim myRange As Object
 Sheets.Add
 Set myRange = Worksheets("Sheet2").Range(Cells(1, 1), _
 Cells(10, 5))
 myRange.BorderAround Weight:=xlMedium

 With myRange.Interior
 .ColorIndex = 6
 .Pattern = xlSolid
 End With

 Set myRange = Worksheets("Sheet2").Range(Cells(12, 5), _
 Cells(12, 10))
 myRange.Value = 54

 Debug.Print IsObject(myRange)
End Sub

Let’s examine the code of the UseObjVariable procedure line by line. Th e
procedure begins with the declaration of the object variable myRange. Th e
next statement sets the object variable myRange to the range A1:E10 on Sheet2.

120 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

From now on, every time you want to reference this range, instead of using the
entire object’s address, you’ll use the shortcut—the name of the object variable.
Th e purpose of this procedure is to create a border around the range A1:E10.
Instead of writing a long instruction:

Worksheets("Sheet2").Range(Cells(1, 1), _
 Cells(10, 5)).BorderAround Weight:=xlMedium

you can take a shortcut by using the name of the object variable:
myRange.BorderAround Weight:=xlMedium

Th e next series of statements changes the color of the selected range of cells
(A1:E10). Again, you don’t need to write the long instruction to reference the
object that you want to manipulate. Instead of the full object name, you can use
the myRange object variable. Th e next statement assigns a new reference to the
object variable myRange. Visual Basic forgets the old reference, and the next
time you use myRange, it refers to another range (E12:J12).
 Aft er the number 54 is entered in the new range (E12:J12), the procedure
shows you how you can make sure that a specifi c variable is of the Object
type. Th e instruction Debug.Print IsObject(myRange) will enter True in
the Immediate window if myRange is an object variable. IsObject is a VBA
function that indicates whether a specifi c value represents an object variable.

2. Position the cursor anywhere within the UseObjVariable procedure and press
F5.

Advantages of Using Object Variables

 ● Th ey can be used instead of the actual object.
 ● Th ey are shorter and easier to remember than the actual values to which

they point.
 ● You can change their meaning while your procedure is running.

Using Specific Object Variables

The object variable can refer to any type of object. Because Visual Basic has
many types of objects, it’s a good idea to create object variables that refer to a
specific object to make your programs more readable and faster. For instance, in
the UseObjVariable procedure (see the previous section), instead of the generic

SIDEBAR

EXCEL VBA FUNDAMENTALS: A QUICK REFERECE TO WRITING VBA CODE 121

object variable (Object), you can declare the myRange object variable as a Range
object:

Dim myRange As Range

If you want to refer to a specific worksheet, then you can declare the Worksheet
object:
 Dim mySheet As Worksheet
 Set mySheet = Worksheets("Marketing")

When the object variable is no longer needed, you can assign Nothing to it. This
frees up memory and system resources:

Set mySheet = Nothing

SUMMARY

This chapter introduced several new VBA concepts, such as data types, vari-
ables, and constants. You learned how to declare various types of variables and
define their types. You also saw the difference between a variable and a constant.
Now that you know what variables are and how to use them, you can create VBA
procedures that allow you to manipulate data in more meaningful ways than
you saw in previous chapters.

In the next chapter, you will expand your VBA knowledge by learning how
to write custom function procedures. In addition, you will learn about built-in
functions that will allow your VBA procedure to interact with users.

123

Earlier in this book you learned that a procedure is a group of instructions
that allows you to accomplish specific tasks when your program runs. In
this book you get acquainted with the following types of VBA procedures:

 ● Subroutine procedures (subroutines) perform some useful tasks but don’t
return any values. Th ey begin with the keyword Sub and end with the
keywords End Sub. Subroutines can be recorded with the macro recorder
or written from scratch in the Visual Basic Editor window. In Chapter 1,
you learned various ways to execute this type of procedure.

 ● Function procedures (functions) perform specifi c tasks that return val-
ues. Th ey begin with the keyword Function and end with the keywords
End Function. In this chapter, you will create your fi rst function proce-
dure. Function procedures can be executed from a subroutine or accessed
from a worksheet just like any Excel built-in function.

 ● Property procedures are used with custom objects. Use them to set and
get the value of an object’s property or set a reference to an object. You
will learn how to create custom objects and use property procedures in
Chapter 8.

In this chapter, you will learn how to create and execute custom functions. In
addition, you find out how variables are used in passing values to subroutines

Chapter

 4 EXCEL VBA
PROCEDURES
A QUICK GUIDE TO

WRITING FUNCTION

PROCEDURES

124 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

and functions. Later in the chapter, you will take a thorough look at the two
most useful VBA built-in functions: MsgBox and InputBox.

UNDERSTANDING FUNCTION PROCEDURES

With the hundreds of built-in Excel functions, you can perform a wide vari-
ety of calculations automatically. However, there will be times when you may
require a custom calculation. With VBA programming, you can quickly fulfill
this special need by creating a function procedure. You can build any functions
that are not supplied with Excel. Among the reasons for creating custom VBA
functions are the following:

 ● analyze data and perform calculations
 ● modify data and report information
 ● take a specifi c action based on supplied or calculated data

Creating a Function Procedure

Like Excel functions, function procedures perform calculations and return val-
ues. The best way to learn about functions is to create one, so let’s get started.
After setting up a new VBA project, you will create a simple function procedure
that sums two values.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 4.1 Writing a Simple Function Procedure

1. Open a new Excel workbook and save it as C:\ VBAPrimerExcel_ByExample\
Chap04_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor window and select VBAProject (Chap04_
ExcelPrimer.xlsm).

3. In the Properties window, change the name of the project name to
ProcAndFunctions.

4. Select the ProcAndFunctions (Chap04_ExcelPrimer.xlsm) project in the
Project Explorer window and choose Insert | Module.

5. In the Properties window, change the Module1 name to Sample1.
6. In the Project Explorer window, highlight Sample1 and click anywhere in the

Code window. Choose Insert | Procedure. The Add Procedure dialog box
appears.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 125

7. In the Add Procedure dialog box, make the entries shown in Figure 4.1:
Name: SumItUp
Type: Function
Scope: Public

FIGURE 4.1 When you use the Add Procedure dialog box, Visual Basic automatically creates the
procedure type you choose.

8. Click OK to close the Add Procedure dialog box. Visual Basic enters an empty
function procedure that looks like this:
Public Function SumItUp()

End Function

9. Modify the function declaration as follows:
Public Function SumItUp(m,n)

End Function

Th e purpose of this function is to add two values. Instead of passing the actual
values to the function, you can make the function more fl exible by providing
it with the arguments in the form of variables. By doing this, your custom
function will be able to add any two numbers that you specify. Each of the
passed-in variables (m, n) represents a value. You will supply the values for each
of these variables when you run this function.

126 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

10. Type the following statement between the Public Function and End
Function statements:
SumItUp = m + n

Th is statement instructs Visual Basic to add the value stored in the n variable to
the value stored in the m variable and return the result to the SumItUp function.
To specify the value that you want the function to return, type the function
name followed by the equals sign and the value you want it to return. In the
foregoing statement, set the name of the function equal to the total of m + n.
Th e completed custom function procedure is shown here:

Public Function SumItUp(m,n)
 SumItUp = m + n
End Function

Th e fi rst statement declares the name of the function procedure. Th e Public
keyword indicates that the function is accessible to all other procedures in all
other modules. Th e Public keyword is optional. Notice the keyword Function
followed by the name of the function (SumItUp) and a pair of parentheses. In
the parentheses, you will list the data items that the function will use in the
calculation. Every function procedure ends with the End Function statement.

About Function Names

Function names should suggest the role that the function performs and must
conform to the rules for naming variables (see Chapter 3).

Scoping VBA Procedures

In the previous chapter, you learned that the variable’s scope determines which
modules and procedures it can be used in. Like variables, VBA procedures
have scope. A procedure scope determines whether it can be called by proce-
dures in other modules. By default, all VBA procedures are public. This means
they can be called by other procedures in any module. Because procedures are
public by default, you can skip the Public keyword if you want. And if you
replace the Public keyword with the Private keyword, your procedure will
be available only to other procedures in the same module, not to procedures
in other modules.

SIDEBAR

SIDEBAR

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 127

VARIOUS METHODS OF RUNNING FUNCTION
PROCEDURES

Unlike a subroutine, a function procedure can be executed in just two ways: You
can use it in a worksheet formula, or you can call it from another procedure. In
the following sections, you will learn special techniques for executing functions.

Running a Function Procedure from a Worksheet

A custom function procedure is like an Excel built-in function. If you don’t know
the exact name of the function or its arguments, you can use the Formula palette
to help enter the required function in a worksheet as shown in Hands-On 4.2.

 Hands-On 4.2 Executing a Function Procedure from within an Excel
Worksheet

1. Switch to the Microsoft Excel window and select any cell.
2. Click the Insert Function (fx) button on the Formula bar. Excel displays the

Insert Function dialog box. The lower portion of the dialog box displays an
alphabetical listing of all the functions in the selected category.

3. In the category drop-down box, select User Defined. In the function name
box, locate and select the SumItUp function that was created in Hands-On
4.1. When you highlight the name of the function in the function name box
(Figure 4.2), the bottom part of the dialog box displays the function’s syntax:
SumItUp(m,n).

FIGURE 4.2 VBA custom function procedures are listed under the User Defined category in the
Insert Function dialog box. They also appear in the list of all Excel built-in functions when you select
All in the category drop-down.

128 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Click OK to begin writing a formula. The Function Arguments dialog box
appears, as shown in Figure 4.3. This dialog displays the name of the function
and each of its arguments: m and n.

FIGURE 4.3 The Formula palette feature is helpful in entering any worksheet function, whether
built-in or custom-made with VBA programming.

5. Enter the values for the arguments as shown in Figure 4.3 or enter your own
values. As you type the values in the argument text boxes, Excel displays
the values you entered and the current result of the function. Because both
arguments (m and n) are required, the function will return an error if you skip
either one of the arguments.

6. Click OK to exit the Function Arguments dialog.
Excel enters the SumItUp function in the selected cell and displays its result.

7. To edit the function, select the cell that displays the function’s result and click
the Insert Function (fx) button to access the Function Arguments dialog box.
Enter new values for the function’s m and n arguments and click OK.

NOTE

To edit the arguments’ values directly in the cell, double-click the cell
containing the function and make the necessary changes. You may
also set up the SumItUp function to perform calculations based on
the values entered in cells. To do this, in the Function Arguments
dialog box shown in Figure 4.3, simply enter cell references instead
of values. For example, enter C1 for the m argument and C2 for the
n argument. When you click OK, Excel will display zero (0) as the
result of the function. On the worksheet, enter the values in cells C1
and C2 and your custom function will recalculate the result just like
any other built-in Excel function.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 129

Running a Function Procedure from Another VBA Procedure

To execute a custom function, write a VBA subroutine and call the function
when you need it. The following procedure calls the SumItUp function and
prints the result of the calculation to the Immediate window.

 Hands-On 4.3 Executing a Function from a VBA Procedure

1. In the same module where you entered the code of the SumItUp function
procedure, enter the RunSumItUp procedure.
Sub RunSumItUp()

 Dim m As Single, n As Single
 m = 37
 n = 3459.77

 Debug.Print SumItUp(m,n)
 MsgBox "Open the Immediate Window to see the result."
End Sub

Notice how the foregoing subroutine uses one Dim statement to declare the m
and n variables. Th ese variables will be used to feed the data to the function.
Th e next two statements assign the values to those variables. Next, Visual Basic
calls the SumItUp function and passes the values stored in the m and n variables
to it. When the function procedure statement SumItUp = m + n is executed,
Visual Basic returns to the RunSumItUp subroutine and uses the Debug.Print
statement to print the function’s result to the Immediate window. Finally, the
MsgBox function informs the user where to look for the result. You can fi nd
more information about using the MsgBox function later in this chapter.

2. Place the mouse pointer anywhere within the RunSumItUp procedure and
press F5 to run it.

ENSURING AVAILABILITY OF YOUR CUSTOM FUNCTIONS

Your custom VBA function is available only while the workbook where the
function is stored is open. If you close the workbook, the function is no longer
available. To make sure that your custom VBA functions are available every
time you work with Microsoft Excel, you can do one of the following:

 ● Store your functions in the Personal macro workbook.
 ● Save the workbook with your custom VBA function in the XLStart folder.
 ● Set up a reference to the workbook containing your custom functions.

130 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

A Quick Test of a Function

After you write your custom function, you can quickly try it out in the Immedi-
ate window. To display the value of a function, open the Immediate window and
type a question mark (?) followed by the function name. Remember to enclose
the function’s arguments in parentheses.

For example, type:
 ? SumItUp(54, 367.24)

and press Enter. Your function procedure runs, using the values you passed for
the m and n arguments. The result of the function appears on a line below:
 421.24

PASSING ARGUMENTS TO FUNCTION PROCEDURES

Procedures (both subroutines and functions) often take arguments. Arguments
are one or more values needed for a procedure to do something. Arguments are
entered within parentheses. Multiple arguments are separated with commas.

Having used Excel for a while, you already know that Excel’s built-in func-
tions can produce different results based on the values you supply to them. For
example, if cells A4 and A5 contain the numbers 5 and 10, respectively, the Sum
function =SUM(A4:A5) will return 15, unless you change the values entered in
the specified cells. Just like you can pass any values to Excel’s built-in functions,
you can pass values to custom VBA procedures.

Let’s see how you can pass some values from a subroutine procedure to the
SumItUp function. We will write a procedure that collects the user’s first and last
names. Next, we will call the SumItUp function to get the sum of characters in a
person’s first and last names.

 Hands-On 4.4 Passing Arguments to Functions (Example 1)

1. Type the following NumOfCharacters subroutine in the same module
(Sample1) where you entered the SumItUp function:
Sub NumOfCharacters()
 Dim f As Integer
 Dim l As Integer

 f = Len(InputBox("Enter first name:"))

SIDEBAR

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 131

 l = Len(InputBox("Enter last name:"))
 MsgBox SumItUp(f,l)
End Sub

2. Place the mouse pointer within the code of the NumOfCharacters procedure
and press F5. Visual Basic displays the input box asking for the first name.
This box is generated by the following function: InputBox("Enter first

name:"). For more information on the use of this function, see the section
titled “Using the InputBox Function” later in this chapter.

3. Enter any name, and press Enter or click OK. Visual Basic takes the text you
entered and supplies it as an argument to the Len function. The Len function
calculates the number of characters in the supplied text string. Visual Basic
places the result of the Len function in the f variable for further reference.
After that, Visual Basic displays the next input box, this time asking for the
last name.

4. Enter any last name, and press Enter or click OK.
Visual Basic passes the last name to the Len function to get the number of
characters. Th en that number is stored in the l variable. What happens next?
Visual Basic encounters the MsgBox function. Th is function tells Visual Basic
to display the result of the SumItUp function. However, because the result is
not yet ready, Visual Basic jumps quickly to the SumItUp function to perform
the calculation using the values saved earlier in the f and l variables. Inside
the function procedure, Visual Basic substitutes the m argument with the value
of the f variable and the n argument with the value of the l variable. Once the
substitution is done, Visual Basic adds up the two numbers and returns the
result to the SumItUp function.
Th ere are no more tasks to perform inside the function procedure, so Visual
Basic returns to the subroutine and provides the SumItUp function’s result as
an argument to the MsgBox function. Now a message appears on the screen
displaying the total number of characters.

5. Click OK to exit the message box.
You can run the NumOfCharacters procedure as many times as you’d like, each
time supplying diff erent fi rst and last names.

To pass a specific value from a function to a subroutine, assign the value to the
name of the function. For example, the NumOfDays function shown here passes
the value of 7 to the subroutine DaysInAWeek.
 Function NumOfDays()
 NumOfDays = 7
 End Function

132 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Sub DaysInAWeek()
 MsgBox "There are " & NumOfDays & " days in a week."
 End Sub

Specifying Argument Types

In the preceding section, you learned that functions perform some calculations
based on data received through their arguments. When you declare a function
procedure, you list the names of arguments inside a set of parentheses. Argu-
ment names are like variables. Each argument name refers to whatever value
you provide at the time the function is called. When a subroutine calls a func-
tion procedure, it passes the required arguments as variables to it. Once the
function does something, the result is assigned to the function name. Notice
that the function procedure’s name is used as if it were a variable.

Like variables, functions can have types. The result of your function proce-
dure can be String, Integer, Long, and so on. To specify the data type for your
function’s result, add the keyword As and the name of the desired data type to
the end of the function declaration line—for example:

Function MultiplyIt(num1, num2) As Integer

Let’s look at an example of a function that returns an Integer number, although
the arguments passed to it are declared as Single data types in a calling subrou-
tine.

 Hands-On 4.5 Passing Arguments to Functions (Example 2)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample2.

2. Activate the Sample2 module and enter the HowMuch subroutine as shown
here:
Sub HowMuch()
 Dim num1 As Single
 Dim num2 As Single
 Dim result As Single

 num1 = 45.33
 num2 = 19.24

 result = MultiplyIt(num1, num2)
 MsgBox result
End Sub

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 133

3. Enter the MultiplyIt function procedure below the HowMuch subroutine:
Function MultiplyIt(num1, num2) As Integer
 MultiplyIt = num1 * num2
End Function

Because the values stored in the variables num1 and num2 are not whole numbers,
you may want to assign the Integer data type to the result of the function to
ensure that the result is a whole number. If you don’t assign the data type to the
MultiplyIt function’s result, the HowMuch procedure will display the result
in the data type specifi ed in the declaration line of the result variable. Instead
of 872, the result of the multiplication will be 872.1492.

4. Run the HowMuch procedure.
How about passing diff erent values each time you run the procedure? Instead
of hardcoding the values to be used in the multiplication, you can use the
InputBox function to ask the user for the values at runtime—for example:

num1 = InputBox("Enter a number:")

Th e InputBox function is discussed in detail in a later section of this chapter.

Passing Arguments by Reference and Value

In some procedures, when you pass arguments as variables, Visual Basic can
suddenly change the value of the variables. To ensure that the called function
procedure does not alter the value of the passed-in arguments, you should pre-
cede the name of the argument in the function’s declaration line with the key-
word ByVal. Let’s look at the following example.

 Hands-On 4.6 Passing Arguments to Functions (Example 3)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample3.

2. Activate the Sample3 module and type the procedures shown here:
Sub ThreeNumbers()
 Dim num1 As Integer, num2 As Integer, num3 As Integer
 num1 = 10
 num2 = 20
 num3 = 30

 MsgBox MyAverage(num1, num2, num3)
 MsgBox num1
 MsgBox num2

134 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox num3
End Sub

Function MyAverage(ByVal num1, ByVal num2, ByVal num3)
 num1 = num1 + 1

 MyAverage = (num1 + num2 + num3) / 3
End Function

To prevent the function from altering values of arguments, use the keyword
ByVal before the arguments’ names (see the “Know Your Keywords: ByRef and
ByVal” sidebar).

3. Run the ThreeNumbers procedure.

The ThreeNumbers procedure assigns values to three variables and then calls the
MyAverage function to calculate and return the average of the numbers stored in
these variables. The function’s arguments are the variables num1, num2, and num3.
Notice that all of the function arguments are preceded with the keyword ByVal.
Also, notice that prior to the calculation of the average, the MyAverage function
changes the value of the num1 variable. Inside the function procedure, the num1
variable equals 11 (10 + 1). Therefore, when the function passes the calculated
average to the ThreeNumbers procedure, the MsgBox function displays the result
as 20.3333333333333 and not 20, as expected. The next three MsgBox functions
show the contents of each of the variables. The values stored in these variables are
the same as the original values assigned to them—10, 20, and 30.

What will happen if you omit the keyword ByVal in front of the num1 argu-
ment in the MyAverage function’s declaration line? The function’s result will still
be the same, but the contents of the num1 variable displayed by MsgBox num1 is
now 11. The MyAverage function has not only returned an unexpected result
(20.3333333333333 instead of 20) but also modified the original data stored
in the num1 variable. To prevent Visual Basic from permanently changing the
values supplied to the function, use the ByVal keyword.

Know Your Keywords: ByRef and ByVal

Because any of the variables passed to a function procedure (or a subroutine)
can be changed by the receiving procedure, it is important to know how to
protect the original value of a variable. Visual Basic has two keywords that give
or deny permission to change the contents of a variable—ByRef and ByVal. By
default, Visual Basic passes information into a function procedure (or a sub-
routine) by reference (ByRef keyword), referring to the original data specified
in the function’s argument at the time the function is called. So, if the function

SIDEBAR

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 135

alters the value of the argument, the original value is changed. You will get
this result if you omit the ByVal keyword in front of the num1 argument in the
MyAverage function’s declaration line. If you want the function procedure to
change the original value, you don’t need to explicitly insert the ByRef key-
word, because passed variables default to ByRef. When you use the ByVal key-
word in front of an argument name, Visual Basic passes the argument by value.
This means that Visual Basic makes a copy of the original data and passes that
copy to a function. If the function changes the value of an argument passed by
value, the original data does not change—only the copy changes. That’s why
when the MyAverage function changed the value of the num1 argument, the
original value of the num1 variable remained the same.

Using Optional Arguments

At times you may want to supply an additional value to a function. Let’s say you
have a function that calculates the price of a meal per person. Sometimes, how-
ever, you’d like the function to perform the same calculation for a group of two
or more people. To indicate that a procedure argument is not always required,
precede the name of the argument with the Optional keyword. Arguments that
are optional come at the end of the argument list, following the names of all the
required arguments.

Optional arguments must always be the Variant data type. This means that
you can’t specify the optional argument’s type by using the As keyword. In the
preceding section, you created a function to calculate the average of three num-
bers. Suppose that sometimes you’d like to use this function to calculate the
average of two numbers. You could define the third argument of the MyAverage
function as optional.

To preserve the original MyAverage function, let’s create the Avg function to
calculate the average for two or three numbers.

 Hands-On 4.7 Writing Functions with Optional Arguments

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample4.

2. Activate the Sample4 module and enter the function procedure Avg shown
here:
Function Avg(num1, num2, Optional num3)
 Dim totalNums As Integer

 totalNums = 3

136 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If IsMissing(num3)Then
 num3 = 0
 totalNums = totalNums - 1
 End If

 Avg = (num1+num2+num3)/totalNums
End Function

Let’s take a few minutes to analyze the Avg function. Th is function can take up
to three arguments. Th e arguments num1 and num2 are required. Th e argument
num3 is optional. Notice that the name of the optional argument is preceded
with the Optional keyword. Th e optional argument is listed at the end of
the argument list. Because the type of the num1, num2, and num3 arguments
is not declared, Visual Basic treats all of these arguments as Variants. Inside
the function procedure, the totalNums variable is declared as an Integer and
then assigned a beginning value of 3. Because the function has to be capable
of calculating an average of two or three numbers, the handy built-in function
IsMissing checks for the number of supplied arguments. If the third (optional)
argument is not supplied, the IsMissing function puts in its place the value of
zero (0), and at the same time it deducts the value of 1 from the value stored in
the totalNums variable. Hence, if the optional argument is missing, totalNums
is 2. Th e next statement calculates the average based on the supplied data, and
the result is assigned to the name of the function.
 Th e IsMissing function allows you to determine whether the optional
argument was supplied. Th is function returns the logical value true if the third
argument is not supplied, and it returns false when the third argument is given.
Th e IsMissing function is used here with the decision-making statement If…
Then. (See Chapter 5 for a detailed description of decision-making statements
used in VBA.) If the num3 argument is missing (IsMissing), then (Then)
Visual Basic supplies a zero for the value of the third argument (num3 = 0)
and reduces the value stored in the argument totalNums by one (totalNums
= totalNums – 1).

3. Now call this function from the Immediate window like this:
?Avg(2,3)

As soon as you press Enter, Visual Basic displays the result: 2.5. If you enter
the following:

?Avg(2,3,5)

this time the result is 3.3333333333333.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 137

As you’ve seen, the Avg function allows you to calculate the average of two
or three numbers. You decide which values and how many values (two or three)
you want to average. When you start typing the values for the function’s argu-
ments in the Immediate window, Visual Basic displays the name of the optional
argument enclosed in square brackets.

How else can you run the Avg function? On your own, run this function from
a worksheet. Make sure you run it with two and then with three arguments.

TESTING A FUNCTION PROCEDURE

To test whether a custom function does what it was designed to do, write a
simple subroutine that will call the function and display its result. In addition,
the subroutine should show the original values of arguments. This way, you’ll
be able to quickly determine when the values of arguments were altered. If the
function procedure uses optional arguments, you’ll also need to check those
situations in which the optional arguments may be missing.

LOCATING BUILT-IN FUNCTIONS

VBA comes with numerous built-in functions. These functions can be looked
up in the Visual Basic online help:

http://msdn.microsoft.com/en-us/library/office/jj692811.aspx

Take, for example, the MsgBox or InputBox function. One of the features of a
good program is its interaction with the user. When you work with Microsoft
Excel, you interact with the application by using various dialog boxes. When
you make a mistake, a dialog box comes up and displays a message informing
you of the error. When you write your own procedures, you can also inform the
users about an unexpected error or the result of a specific calculation. You do
this with the help of the MsgBox function. So far you have seen a simple imple-
mentation of this function. In the next section, you will find out how to control
the way your message looks. You will also learn how to get information from the
user with the InputBox function.

138 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

GETTING TO KNOW THE MSGBOX FUNCTION

The MsgBox function that you have used thus far was limited to displaying a
message to the user in a simple one-button dialog box. You closed the message
box by clicking the OK button or pressing the Enter key. You create a simple
message box by following the MsgBox function name with the text enclosed in
quotation marks. In other words, to display the message “The procedure is com-
plete.” you write the following statement:
 MsgBox "The procedure is complete."

You can quickly try out the foregoing instruction by entering it in the Immedi-
ate window. When you type this instruction and press Enter, Visual Basic dis-
plays the message box shown in Figure 4.4.

FIGURE 4.4 To display a message to the user, place the text as the argument of the MsgBox
function.

The MsgBox function allows you to use other arguments that make it possible to
set the number of buttons that should be available in the message box or change
the title of the message box from the default, “Microsoft Excel.” You can also
assign your own help topic.

The syntax of the MsgBox function is as follows:
 MsgBox (prompt [, buttons] [, title], [, helpfile, context])

Notice that while the MsgBox function has five arguments, only the first one,
prompt, is required. The arguments listed in square brackets are optional. When
you enter a long text string for the prompt argument, Visual Basic decides how
to break the text so it fits the message box. Let’s do some exercises in the Imme-
diate window to learn various text formatting techniques.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 139

 Hands-On 4.8 Formatting Text for Display in the MsgBox Function

1. Enter the following instruction in the Immediate window. Be sure to enter the
entire text string on one line, and then press Enter.

MsgBox "All processes completed successfully. Now connect an
 external storage device to your computer. The following
 procedure will copy the workbook file to the attached device."

As soon as you press Enter, Visual Basic shows the resulting dialog box
(Figure 4.5).

FIGURE 4.5 This long message will look more appealing when you take the text formatting into
your own hands.

When you write a VBA procedure that requires long messages, you can
break your message text into several lines using the VBA Chr function. Th e
Chr function takes one argument (a number from 0 to 255), and it returns a
character represented by this number. For example, Chr(13) returns a carriage
return character (this is the same as pressing the Enter key), and Chr(10)
returns a linefeed character (useful for adding spacing between the text lines).

Sub LongTextMessage()
 MsgBox "All processes completed successfully. " & Chr(13) _
 & "Now connect an external storage device to " & Chr(13) _
 & "your computer. The following procedure " & Chr(13) _
 & "will copy the workbook file to the attached device."
End Sub

140 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Figure 4.6 depicts the message box after running the LongTextMessage
procedure.

FIGURE 4.6 You can break a long text string into several lines by using the Chr(13) function.

You must surround each text fragment with quotation marks. Th e Chr(13)
function indicates a place where you’d like to start a new line. Th e string
concatenation character (&) is used to add a carriage return character to a
concatenated string.
 Quoted text embedded in a text string requires an additional set of quotation
marks, as shown in the revised statement here:

Sub LongTextMessageRev()
 MsgBox "All processes completed successfully. " & _
 Chr(13) _
 & "Now connect an external storage device to " & _
 Chr(13) & "your computer. " & _
 "The following procedure ""TestProc()""" & _
 Chr(13) & "will copy the workbook file " & _
 "to the attached device."
End Sub

When you enter exceptionally long text messages on one line, it’s easy to make
a mistake. As you recall, Visual Basic has a special line continuation character
(an underscore _) that allows you to break a long VBA statement into several
lines. Unfortunately, the line continuation character cannot be used in the
Immediate window.

2. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample5.

3. Activate the Sample5 module and enter the LongTextMessage and
LongTextMessageRev subroutines as shown earlier. Be sure to precede each
line continuation character (_) with a space.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 141

4. Execute each procedure.
Notice that the text entered on several lines is more readable, and the code is
easier to maintain.
To improve the readability of your message, you may want to add more spacing
between the text lines by including blank lines. To do this, use two Chr(13) or
two Chr(10) functions, as shown in the following step.

5. Enter the following LongTextMessage2 procedure and run it:
Sub LongTextMessage2()
 MsgBox "All processes completed successfully. " & _
 Chr(10) & Chr(10) _
 & "Now connect an external storage device " & _
 Chr(13) & Chr(13) _
 & "to your computer. The following procedure " & _
 Chr(10) & Chr(10) _
 & "will copy the workbook file to the attached device."
End Sub

Figure 4.7 displays the message box generated by the LongTextMessage2
procedure.

FIGURE 4.7 You can increase the readability of your message by increasing spacing between the
selected text lines.

Now that you’ve mastered the text formatting techniques, let’s take a closer look
at the next argument of the MsgBox function. Although the buttons argument
is optional, it is frequently used. The buttons argument specifies how many and
what types of buttons you want to appear in the message box. This argument
can be a constant or a number, as shown in Table 4.1. If you omit this argument,
the resulting message box includes only the OK button, as you’ve seen in the
preceding examples.

142 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 4.1 Settings for the MsgBox buttons argument.

Constant Value Description
Button settings
vbOKOnly 0 Displays only an OK button. This is the

default.
vbOKCancel 1 OK and Cancel buttons.
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons.
vbYesNoCancel 3 Yes, No, and Cancel buttons.
vbYesNo 4 Yes and No buttons.
vbRetryCancel 5 Retry and Cancel buttons.
Icon settings
vbCritical 16 Displays the Critical Message icon.
vbQuestion 32 Displays the Question Message icon.
vbExclamation 48 Displays the Warning Message icon.
vbInformation 64 Displays the Information Message icon.
Default button settings
vbDefaultButton1 0 The first button is the default.
vbDefaultButton2 256 The second button is the default.
vbDefaultButton3 512 The third button is the default.
vbDefaultButton4 768 The fourth button is the default.
Message box modality
vbApplicationModal 0 The user must respond to the message

before continuing to work in the cur-
rent application.

vbSystemModal 4096 All applications are suspended until the
user responds to the message box.

Other MsgBox display settings
vbMsgBoxHelpButton 16384 Adds Help button to the message box.
vbMsgBoxSetForeground 65536 Specifies the message box window as

the foreground window.
vbMsgBoxRight 524288 Text is right aligned.
vbMsgBoxRtlReading 1048576 Text appears as right-to-left reading on

Hebrew and Arabic systems.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 143

When should you use the buttons argument? Suppose you want the user of
your procedure to respond to a question with Yes or No. Your message box may
then require two buttons. If a message box includes more than one button, one
of them is considered a default button. When the user presses Enter, the default
button is selected automatically. Because you can display various types of mes-
sages (critical, warning, information), you can visually indicate the importance
of the message by including in the buttons argument the graphical representa-
tion (icon) for the chosen message type.

In addition to the type of message, the buttons argument can include a set-
ting to determine whether the message box must be closed before a user switch-
es to another application. It’s quite possible that the user may want to switch to
another program or perform another task before responding to the question
posed in your message box. If the message box is application modal (vbAppli-
cation Modal), the user must close the message box before continuing to use
your application. On the other hand, if you want to suspend all the applications
until the user responds to the message box, you must include the vbSystemMo-
dal setting in the buttons argument.

The buttons argument settings are divided into five groups: button settings,
icon settings, default button settings, message box modality, and other MsgBox
display settings. Only one setting from each group can be included in the but-
tons argument. To create a buttons argument, you can add up the values for
each setting you want to include. For example, to display a message box with
two buttons (Yes and No), the question mark icon, and the No button as the
default button, look up the corresponding values in Table 4.1 and add them up.
You should arrive at 292 (4 + 32 + 256).

Let’s go back to the Immediate window for more testing of the capabilities of
the MsgBox function.

 Hands-On 4.9 Using the MsgBox Function with Arguments
(Example 1)

1. To quickly see the message box using the calculated message box argument,
enter the following statement in the Immediate window, and press Enter:
MsgBox "Do you want to proceed?", 292

144 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e resulting message box is shown in Figure 4.8.

FIGURE 4.8 You can specify the number of buttons to include in the message box by using the
optional buttons argument.

When you derive the buttons argument by adding up the constant values,
your procedure becomes less readable. Th ere’s no reference table where you can
check the hidden meaning of 292. To improve the readability of your MsgBox
function, it’s better to use the constants instead of their values.

2. Now enter the following revised statement on one line in the Immediate
window and press Enter.
MsgBox "Do you want to proceed?", vbYesNo + vbQuestion +

vbDefaultButton2

Th is statement (which must be entered on one line) produces the same result
shown in Figure 4.8 and is more readable.

The following example shows how to use the buttons argument inside the
Visual Basic procedure.

 Hands-On 4.10 Using the MsgBox Function with Arguments
(Example 2)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample6.

2. Activate the Sample6 module and enter the MsgYesNo subroutine shown
here, and then run it:
Sub MsgYesNo()
 Dim question As String
 Dim myButtons As Integer

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 145

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2

 MsgBox question, myButtons
End Sub

In the foregoing subroutine, the question variable stores the text of your mes-
sage. The settings for the buttons argument is placed in the myButtons vari-
able. Instead of using the names of constants, you can use their values, as in the
following:
 myButtons = 4 + 32 + 256

However, by specifying the names of the buttons argument’s constants, you
make your procedure easier to understand for yourself and others who may
work with this procedure in the future.
 The question and myButtons variables are used as arguments for the Ms-
gBox function. When you run the procedure, you see the result displayed, as
shown in Figure 4.8. Notice that the No button is selected. It’s the default but-
ton for this dialog box. If you press Enter, Excel removes the MsgBox from the
screen. Nothing happens because your procedure does not have any more in-
structions following the MsgBox function.
 To change the default button, use the vbDefaultButton1 setting instead.
 The third argument of the MsgBox function is title. While this is also an
optional argument, it’s very handy, as it allows you to create procedures that
don’t provide visual clues to the fact that you programmed them with Micro-
soft Excel. Using this argument, you can set the title bar of your message box
to any text you want.
 Suppose you want the MsgYesNo procedure to display in its title the text
“New workbook.” The following MsgYesNo2 procedure demonstrates the use
of the title argument:
 Sub MsgYesNo2()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New workbook"

 MsgBox question, myButtons, myTitle
 End Sub

146 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The text for the title argument is stored in the variable myTitle. If you don’t
specify the value for the title argument, Visual Basic displays the default text,
“Microsoft Excel.”
 Notice that the arguments are listed in the order determined by the MsgBox
function. If you would like to list the arguments in any order, you must precede
the value of each argument with its name:

MsgBox title:=myTitle, prompt:=question, buttons:=myButtons

The last two optional arguments—helpfile and context—are used by pro-
grammers who are experienced with using help files in the Windows environ-
ment.
 The helpfile argument indicates the name of a special help file that con-
tains additional information you may want to display to your VBA procedure
user. When you specify this argument, the Help button will be added to your
message box.

Returning Values from the MsgBox Function

When you display a simple message box dialog with one button, clicking the
OK button or pressing the Enter key removes the message box from the screen.
However, when the message box has more than one button, your procedure
should detect which button was pressed. To do this, you must save the result of
the message box in a variable. Table 4.2 shows values that the MsgBox function
returns.

TABLE 4.2 Values returned by the MsgBox function.

Button Selected Constant Value
OK vbOK 1
Cancel vbCancel 2
Abort vbAbort 3
Retry vbRetry 4
Ignore vbIgnore 5
Yes vbYes 6
No vbNo 7

Let’s revise the MsgYesNo2 procedure to show which button the user has chosen.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 147

 Hands-On 4.11 Using the MsgBox Function with Arguments
(Example 3)

1. Activate the Sample6 module and enter the MsgYesNo3 subroutine as shown
here:
Sub MsgYesNo3()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 Dim myChoice As Integer

 question = "Do you want to open a new workbook?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New workbook"
 myChoice = MsgBox(question, myButtons, myTitle)

 MsgBox myChoice
End Sub

In the foregoing procedure, we assigned the result of the MsgBox function to
the variable myChoice. Notice that the arguments of the MsgBox function are
now listed in parentheses:

 myChoice = MsgBox(question, myButtons, myTitle)

2. Run the MsgYesNo3 procedure.
When you run the MsgYesNo3 procedure, a two-button message box is
displayed. When you click on the Yes button, the statement MsgBox myChoice
displays the number 6. When you click the No button, the number 7 is displayed.

MsgBox Function with or without Parentheses?

Use parentheses around the MsgBox function’s argument list when you want
to use the result returned by the function. By listing the function’s arguments
without parentheses, you tell Visual Basic that you want to ignore the func-
tion’s result. Most likely, you will want to use the function’s result when the
MsgBox contains more than one button.

GETTING TO KNOW THE INPUTBOX FUNCTION

The InputBox function displays a dialog box with a message that prompts the
user to enter data. This dialog box has two buttons—OK and Cancel. When you

SIDEBAR

148 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

click OK, the InputBox function returns the information entered in the text
box. When you select Cancel, the function returns the empty string (“”). The
syntax of the InputBox function is as follows:
 InputBox(prompt [, title] [, default] [, xpos] [, ypos]
 [, helpfile, context])

The first argument, prompt, is the text message that you want to display in
the dialog box. Long text strings can be entered on several lines by using the
Chr(13) or Chr(10) functions (see examples of using the MsgBox function ear-
lier in this chapter). All of the remaining InputBox arguments are optional.

The second argument, title, allows you to change the default title of the
dialog box. The default value is “Microsoft Excel.”

The third argument of the InputBox function, default, allows the display
of a default value in the text box. If you omit this argument, the empty edit box
is displayed.

The following two arguments, xpos and ypos, let you specify the exact posi-
tion where the dialog box should appear on the screen. If you omit these argu-
ments, the box appears in the middle of the current window. The xpos argu-
ment determines the horizontal position of the dialog box from the left edge of
the screen. When omitted, the dialog box is centered horizontally. The ypos ar-
gument determines the vertical position from the top of the screen. If you omit
this argument, the dialog box is positioned vertically approximately one-third
of the way down the screen. Both xpos and ypos are measured in special units
called twips. One twip is equivalent to approximately 0.0007 inches.

The last two arguments, helpfile and context, are used in the same way
as the corresponding arguments of the MsgBox function discussed earlier in this
chapter.

Now that you know the meaning of the InputBox function’s arguments, let’s
look at some examples of using this function.

 Hands-On 4.12 Using the InputBox Function (Example 1)

1. Add a new module to the ProcAndFunctions (Chap04_ExcelPrimer.xlsm)
project and change the module’s name to Sample7.

2. Activate the Sample7 module and enter the Informant subroutine shown here:
Sub Informant()
 InputBox prompt:="Enter your place of birth:" & Chr(13) _
 & " (e.g., Boston, Great Falls, etc.) "
End Sub

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 149

Th is procedure displays a dialog box with two buttons, as shown in Figure 4.9.
Th e input prompt is displayed on two lines.

FIGURE 4.9 A dialog box generated by the Informant subroutine.

As with the MsgBox function, if you plan on using the data entered by the user
in the dialog box, you should store the result of the InputBox function in a
variable.

3. Type the Informant2 procedure shown here to assign the result of the InputBox
function to the variable town:
Sub Informant2()
 Dim myPrompt As String
 Dim town As String

 Const myTitle = "Enter data"

 myPrompt = "Enter your place of birth:" & Chr(13) _
 & "(e.g., Boston, Great Falls, etc.)"
 town = InputBox(myPrompt, myTitle)

 MsgBox "You were born in " & town & ".", , "Your response"
End Sub

Notice that this time the arguments of the InputBox function are listed
within parentheses. Parentheses are required if you want to use the result of
the InputBox function later in your procedure. Th e Informant2 subroutine
uses a constant to specify the text to appear in the title bar of the dialog box.
Because the constant value remains the same throughout the execution of
your procedure, you can declare the input box title as a constant. However, if
you’d rather use a variable, you still can. When you run a procedure using the
InputBox function, the dialog box generated by this function always appears in
the same area of the screen. To change the location of the dialog box, you must
supply the xpos and ypos arguments, as explained earlier.

150 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Run the Informant2 procedure.
5. To display the dialog box in the top left-hand corner of the screen, modify the

InputBox function in the Informant2 procedure as follows and then run it:
town = InputBox(myPrompt, myTitle, , 1, 200)

Notice that the argument myTitle is followed by two commas. Th e second
comma marks the position of the omitted default argument. Th e next two
arguments determine the horizontal and vertical position of the dialog box. If
you omit the second comma aft er the myTitle argument, Visual Basic will use
the number 1 as the value of the default argument. If you precede the values of
arguments by their names (for example, prompt:=myPrompt, title:=myTitle,
xpos:=1, ypos:=200), you won’t have to remember to place a comma in the
place of each omitted argument.

What will happen if you enter a number instead of the name of a town? Because
users often supply incorrect data in an input dialog box, your procedure must
verify that the supplied data can be used in further data manipulations. The
InputBox function itself does not provide a facility for data validation. To vali-
date user input, you must learn additional VBA instructions that are presented
in the next chapter.

Determining and Converting Data Types

The result of the InputBox function is always a string. If the user enters a num-
ber, the string value the user entered should be converted to a numeric value
before your procedure can use this number in mathematical computations.
Visual Basic is capable of converting values from one data type to another.

NOTE
Refer to Chapter 3 for more information about using the VarType
function to determine the data type of a variable and common data
type conversion functions.

Let’s try out a procedure that suggests what type of data the user should enter by
supplying a default value in the InputBox dialog.

 Hands-On 4.13 Using the InputBox Function (Example 2)

1. Activate the Sample7 module in the ProcAndFunctions (Chap04_
ExcelPrimer.xlsm) project and enter the following AddTwoNums procedure:
Sub AddTwoNums()
 Dim myPrompt As String

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 151

 Dim value1 As String
 Dim value2 As Integer
 Dim mySum As Single

 Const myTitle = "Enter data"

 myPrompt = "Enter a number:"
 value1 = InputBox(myPrompt, myTitle, 0)
 value2 = 2
 mySum = value1 + value2

 MsgBox "The result is " & mySum & _
 " (" & value1 & " + " & CStr(value2) + ")", _
 vbInformation, "Total"
End Sub

Th e AddTwoNums procedure displays the dialog box shown in Figure 4.10.
Notice that this dialog box has two special features that are obtained by using
the InputBox function’s optional title and default arguments. Instead of
the default title “Microsoft Excel,” the dialog box displays a text string defi ned
by the contents of the myTitle constant. Th e zero entered as the default value
in the edit box suggests that the user enter a number instead of text. Once the
user provides the data and clicks OK, the user’s input is assigned to the variable
value1.

value1 = InputBox(myPrompt, myTitle, 0)

2. Run the AddTwoNums procedure, supply any number when prompted, and
then click OK.

FIGURE 4.10 To suggest that the user enter a specific type of data, you may want to provide a
default value in the edit box.

Th e data type of the variable value1 is String.

152 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. You can check the data type easily if you follow the foregoing instruction in the
procedure code with this statement:
MsgBox VarType(value1)

When Visual Basic runs the foregoing line, it will display a message box with
the number 8. Recall from Chapter 4 that this number represents the String
data type.

The statement mySum = value1 + value2 adds the value stored in the
value2 variable to the user’s input and assigns the result of the calculation to
the variable mySum. Because the value1 variable’s data type is String, prior to
using this variable’s data in the computation, Visual Basic goes to work behind
the scenes to perform the data type conversion. Visual Basic understands the
need for conversion. Without it, the two incompatible data types (String and
Integer) would generate a Type mismatch error. The procedure ends with the
MsgBox function displaying the result of the calculation and showing the user
how the total was derived. Notice that the value2 variable has to be converted
from Integer to String data type using the CStr function in order to display it
in the message box:
MsgBox "The result is " & mySum & _

" (" & value1 & " + " & CStr(value2) + ")", _
vbInformation, "Total"

Defi ne a Constant

To ensure that all the title bars in a particular VBA procedure display the same
text, assign the title text to a constant. By doing this you will save time by not
having to type the title text more than once.

USING THE INPUTBOX METHOD

In addition to the built-in InputBox VBA function, there is also the Excel
InputBox method. If you activate the Object Browser window and type “input-
box” in the search box and press Enter, Visual Basic will display two occurrences
of InputBox—one in the Excel library and the other one in the VBA library, as
shown in Figure 4.11.

SIDEBAR

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 153

FIGURE 4.11 Don’t forget to use the Object Browser when researching Visual Basic functions and
methods.

The InputBox method available in the Microsoft Excel library has a slightly dif-
ferent syntax than the InputBox function that was covered earlier in this chap-
ter. Its syntax is:
expression.InputBox(prompt, [title], [default], [left], [top], _
 [helpfile], [helpcontextID], [type])

All bracketed arguments are optional. The prompt argument is the message to
be displayed in the dialog box, title is the title for the dialog box, and default
is a value that will appear in the text box when the dialog box is initially dis-
played.

The left and top arguments specify the position of the dialog box on the
screen. The values for these arguments are entered in points. Note that one-
point equals 1/72 inch. The arguments helpfile and helpcontextID identify
the name of the help file and the specific number of the help topic to be dis-
played when the user clicks the Help button.

The last argument of the InputBox method, type, specifies the return data
type. If you omit this argument, the InputBox method will return text. The val-
ues of the type argument are shown in Table 4.3.

154 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 4.3 Data types returned by the InputBox method.

Value Type of Data Returned
0 A formula
1 A number
2 A string (text)
4 A logical value (True or False)
8 A cell reference, as a Range object
16 An error value (for example, #N/A)
64 An array of values

You can allow the user to enter a number or text in the edit box if you use 3 for
the type argument. This value is obtained by adding up the values for a number
(1) and a string (2), as shown in Table 4.3. The InputBox method is quite useful
for VBA procedures that require a user to select a range of cells in a worksheet.

Let’s look at an example procedure that uses the Excel InputBox method.

 Hands-On 4.14 Using the Excel InputBox Method

1. Close the Object Browser window if you opened it before.
2. In the Sample7 module, enter the following WhatRange procedure:

Sub WhatRange()
 Dim newRange As Range
 Dim tellMe As String

 tellMe = "Use the mouse to select a range:"
 Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)
 newRange.NumberFormat = "0.00"
 newRange.Select
End Sub

Th e WhatRange procedure begins with a declaration of an object variable—
newRange. As you recall from Chapter 3, object variables point to the location
of the data. Th e range of cells that the user selects is assigned to the object
variable newRange. Notice the keyword Set before the name of the variable:

Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 155

Th e Type argument (Type:=8) enables the user to select any range of cells.
When the user highlights the cells, the next instruction:

newRange.NumberFormat = "0.00"

changes the format of the selected cells. Th e last instruction selects the range
of cells that the user highlighted.

3. Press Alt+F11 to activate the Microsoft Excel Application window, and then
press Alt+F8 and choose WhatRange procedure and run it.
Visual Basic displays a dialog box prompting the user to select a range of cells
in the worksheet.

4. Use the mouse to select any cells you want. Figure 4.12 shows how Visual Basic
enters the selected range reference in the edit box as you drag the mouse to
select the cells.

FIGURE 4.12 Using Excel’s InputBox method, you can get the range address from the user.

5. When you’re done selecting cells, click OK in the dialog box.
Th e selected range is now formatted. To check this out, enter a whole number
in any of the selected cells. Th e number should appear formatted with two
decimal places.

6. Rerun the procedure, and when the dialog box appears, click Cancel.
When you click the Cancel button or press Esc, Visual Basic displays an error
message—“Object Required.” When you click the Debug button in the error
dialog box, Visual Basic will highlight the line of code that caused the error.
Because you don’t want to select anything when you cancel the dialog box, you
must fi nd a way to ignore the error that Visual Basic displays. Using a special

156 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

statement, On Error GoTo labelname, you can take a detour when an error
occurs. Th is instruction has the following syntax:
On Error GoTo labelname

Th is instruction should be placed just below the variable declaration lines.
Labelname can be any word you want, except for a Visual Basic keyword. If an
error occurs, Visual Basic will jump to the specifi ed label, as shown in Step 8
ahead.

7. Choose Run | Reset to cancel the procedure you were running.
8. Modify the WhatRange procedure so it looks like the WhatRange2 procedure

shown here:
Sub WhatRange2()
 Dim newRange As Range
 Dim tellMe As String

 On Error GoTo VeryEnd

 tellMe = "Use the mouse to select a range:"
 Set newRange = Application.InputBox(prompt:=tellMe, _
 Title:="Range to format", _
 Type:=8)
 newRange.NumberFormat = "0.00"
 newRange.Select

 VeryEnd:
End Sub

9. Run the modified procedure and click Cancel as soon as the input box appears.
Notice that this time the procedure does not generate the error when you cancel
the dialog box. When Visual Basic encounters the error, it jumps to the VeryEnd
label placed at the end of the procedure. Th e statements placed between On
Error Goto VeryEnd and the VeryEnd labels are ignored. In Chapter 9, you
will fi nd other examples of trapping errors in your VBA procedures.

10. Subroutines and Functions: Which Should You Use?
Create a subroutine when… Create a function when…
You want to perform some actions. You want to perform a simple calculation

more than once.
You want to get input from the user. You must perform complex computations.
You want to display a message on the screen. You must call the same block of instructions

more than once.
You want to check if a certain expression is
True or False.

EXCEL VBA PROCEDURES: A QUICK GUIDE TO WRITING FUNCTION PROCEDURES 157

SUMMARY

In this chapter, you learned the difference between subroutine procedures that
perform actions and function procedures that return values. While you can cre-
ate subroutines by recording or typing code directly into the Visual Basic mod-
ule, function procedures cannot be recorded because they can take arguments.
You must write them manually. You learned how to pass arguments to functions
and determine the data type of a function’s result. You increased your repertoire
of VBA keywords with the ByVal, ByRef, and Optional keywords. You also
learned how, with the help of parameters, subprocedures can pass values back to
the calling procedures. After working through this chapter, you should be able
to create some custom functions of your own that are suited to your specific
needs. You should also be able to interact easily with your procedure users by
employing the MsgBox and InputBox functions as well as the Excel InputBox
method.

Chapter 5 will introduce you to decision making. You will learn how to
change the course of your VBA procedure based on the results of the conditions
that you supply.

159

Visual Basic for Applications, like other programming languages, offers
special statements that allow you to include decision points in your own
procedures. But what is decision making? Suppose someone approaches

you with the question, “Do you like the color red?” After giving this question
some thought, you’ll answer “yes” or “no.” If you’re undecided or simply don’t
care, you might answer “maybe” or “perhaps.” In programming, you must be de-
cisive. Only “yes” or “no” answers are allowed. In programming, all decisions are
based on supplied answers. If the answer is positive, the procedure executes a
specified block of instructions. If the answer is negative, the procedure executes
another block of instructions or simply doesn’t do anything. In this chapter,
you will learn how to use VBA conditional statements to alter the flow of your
program. Conditional statements are often referred to as “control structures,” as
they give you the ability to control the flow of your VBA procedure by skipping
over certain statements and “branching” to another part of the procedure.

RELATIONAL AND LOGICAL OPERATORS

You make decisions in your VBA procedures by using conditional expressions
inside the special control structures. A conditional expression is an expression
that uses one of the relational operators listed in Table 5.1, one of the logical

Chapter

 5 ADDING DECISIONS
TO EXCEL
VBA PROGRAMS

A QUICK INTRODUCTION TO

CONDITIONAL STATEMENTS

160 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

operators listed in Table 5.2, or a combination of both. When Visual Basic
encounters a conditional expression in your program, it evaluates the expres-
sion to determine whether it is true or false.

TABLE 5.1 Relational operators in VBA.

Operator Description
= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

TABLE 5.2 Logical operators in VBA.

Operator Description
AND All conditions must be true before an action can be taken.
OR At least one of the conditions must be true before an action can be taken.
NOT Used for negating a condition. If a condition is true, NOT makes it false.

If a condition is false, NOT makes it true.

USING IF...THEN STATEMENT

The simplest way to get some decision making into your VBA procedure is to
use the If…Then statement. Suppose you want to choose an action depending on
a condition. You can use the following structure:

If condition Then statement

For example, to delete a blank row from a worksheet, first check if the active cell
is blank. If the result of the test is true, go ahead and delete the entire row that
contains that cell:

If ActiveCell = "" Then Selection.EntireRow.Delete

If the active cell is not blank, Visual Basic will ignore the statement following
the Then keyword.

Sometimes you may want to perform several actions when the condition is
true. Although you could add other statements on the same line by separating

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 161

them with colons, your code will look clearer if you use the multiline version of
the If…Then statement, as shown here:
 If condition Then
 statement1
 statement2
 statementN
 End If

For example, to perform some actions when the value of the active cell is greater
than 50, you can write the following block of instructions:
 If ActiveCell.Value > 50 Then
 MsgBox "The exact value is " & ActiveCell.Value
 Debug.Print ActiveCell.Address & ": " & ActiveCell.Value
 End If

In this example, the statements between the Then and the End If keywords are
not executed if the value of the active cell is less than or equal to 50. Notice that
the block If…Then statement must end with the keywords End If.

How does Visual Basic make a decision? It evaluates the condition it finds
between the If…Then keywords. Let’s try to evaluate the following condition:

ActiveCell.Value > 50

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 5.1 Evaluating Conditions in the Immediate Window

1. Open a new Microsoft Excel workbook.
2. Select any cell in a blank worksheet and enter 50.
3. Switch to the Visual Basic Editor window.
4. Activate the Immediate window.
5. Enter the following statement, and press Enter when you’re done:

? ActiveCell.Value > 50

When you press Enter, Visual Basic writes the result of this test—false. When
the result of the test is false, Visual Basic will not bother to read the statement
following the Then keyword in your code. It will simply go on to read the next
line of your procedure, if there is one. If there are no more lines to read, the
procedure will end.

162 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Now change the operator to less than or equal to, and have Visual Basic evaluate
the following condition:
? ActiveCell.Value <= 50

This time, the test returns true, and Visual Basic will jump to whatever state-
ment or statements it finds after the Then keyword.

7. Close the Immediate window.

Now that you know how Visual Basic evaluates conditions, let’s try the If…Then
statement in a VBA procedure.

 Hands-On 5.2 Writing a VBA Procedure with a Simple If…Then
Statement

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap05_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor screen and rename the VBA project Decisions.
3. Insert a new module in the Decisions (Chap05_ExcelPrimer.xlsm) project

and rename this module IfThen.
4. In the IfThen module, enter the following procedure:

Sub SimpleIfThen()
 Dim weeks As String
 weeks = InputBox("How many weeks are in a year?", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again"
End Sub

Th e SimpleIfTh en procedure stores the user’s answer in the variable named
weeks. Th e variable’s value is then compared to the number 52. If the result of
the comparison is true (that is, if the value stored in the variable weeks is not
equal to 52), Visual Basic will display the message “Try Again.”

5. Run the SimpleIfThen procedure and enter a number other than 52.
6. Rerun the SimpleIfThen procedure and enter the number 52.

When you enter the correct number of weeks, Visual Basic does nothing. Th e
procedure simply ends. It would be nice to display a message when the user
guesses right.

7. Enter the following instruction on a separate line before the End Sub keywords:
If weeks = 52 Then MsgBox "Congratulations!"

8. Run the SimpleIfThen procedure again and enter 52.
When you enter the correct answer, Visual Basic does not execute the statement
MsgBox “Try Again.” When the procedure is executed, the statement to the

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 163

right of the Then keyword is ignored if the result from evaluating the supplied
condition is false. As you recall, a VBA procedure can call another procedure.
Let’s see whether it can also call itself.

9. Modify the first If statement in the SimpleIfThen procedure as follows:
If weeks <> 52 Then MsgBox "Try Again": SimpleIfThen

We added a colon and the name of the SimpleIfTh en procedure to the end
of the existing If…Then statement. If the user enters the incorrect answer, he
will see a message, and as soon as he clicks the OK button in the message box,
the input box will appear again, and he will get another chance to supply the
correct answer. Th e user will be able to keep on guessing for a long time. In fact,
he won’t be able to exit the procedure gracefully until he supplies the correct
answer. If he clicks Cancel, he will have to deal with the unfriendly error
message “Type mismatch.” You saw in the previous chapter how to use the On
Error GoTo labelname statement to go around the error, at least temporarily
until you learn more about error handling in Chapter 9. For now, you may want
to revise your SimpleIfTh en procedure as follows:

Sub SimpleIfThen()
 Dim weeks As String
 On Error GoTo VeryEnd
 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again": SimpleIfThen
 If weeks = 52 Then MsgBox "Congratulations!"
 VeryEnd:
End Sub

10. Run the SimpleIfThen procedure a few times by supplying incorrect answers.
The error trap that you added to your procedure allows the user to quit
guessing without having to deal with the ugly error message.

Two Formats for the If…Then Statement

The If…Then statement has two formats—single line and multiline. The sin-
gle-line format is good for short or simple statements like:

 If secretCode <> 01W01 Then MsgBox "Access denied"

Or
 If secretCode = 01W01 Then alpha = True : beta = False

Here, secretCode, alpha, and beta are the names of variables. In the first
example, Visual Basic displays the message “Access denied” if the value of se-

SIDEBAR

164 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

cretCode is not equal to 01W01. In the second example, Visual Basic sets the
value of alpha to true and beta to false when the secretCode variable is equal
to 01W01. Notice that the second statement to be executed is separated from
the first by a colon. The multiline If…Then statement is clearer when there are
more statements to be executed when the condition is true or when the state-
ment to be executed is extremely long, as in the following example:

 If ActiveSheet.Name = "Sheet1" Then
 ActiveSheet.Move after:= Sheets(Worksheets.Count)
 End If

Here, Visual Basic examines the active sheet name. If it is Sheet1, the condition
ActiveSheet.Name = "Sheet1" is true, and Visual Basic proceeds to execute
the line following the Then keyword. As a result, the active sheet is moved to
the last position in the workbook.

NOTE

If Block Instructions and Indenting
To make the If blocks easier to read and understand, use indenta-
tion. Compare the following:

If condition Then
 action
End If

If condition Then
 action
End If

In the If…Then block statement on the right, you can easily see where
the block begins and where it ends.

USING IF...THEN...ELSE STATEMENT

Now you know how to display a message or take an action when one or more
conditions are true or false. What should you do, however, if your procedure
needs to take one action when the condition is true and another action when the
condition is false? By adding the Else clause to the simple If…Then statement,
you can direct your procedure to the appropriate statement depending on the
result of the test.

The If…Then…Else statement has two formats—single line and multiline.
The single-line format is as follows:

If condition Then statement1 Else statement2

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 165

The statement following the Then keyword is executed if the condition is true,
and the statement following the Else clause is executed if the condition is
false—for example:
If Sales > 5000 Then Bonus = Sales * 0.05 Else MsgBox "No Bonus"

If the value stored in the variable Sales is greater than 5000, Visual Basic will
calculate the bonus using the following formula: Sales * 0.05. However, if the
variable Sales is not greater than 5000, Visual Basic will display the message
“No Bonus.”

The If…Then…Else statement should be used to decide which of the two ac-
tions to perform. When you need to execute more statements when the condi-
tion is true or false, it’s better to use the multiline format of the If…Then…Else
statement:
 If condition Then
 statements to be executed if condition is True
 Else
 statements to be executed if condition is False
 End If

Notice that the multiline (block) If…Then…Else statement ends with the End If
keywords. Use the indentation shown in the previous section to make this block
structure easier to read. Here’s a code example that uses the foregoing syntax:
 If ActiveSheet.Name = "Sheet1" Then
 ActiveSheet.Name = "My Sheet"
 MsgBox "This sheet has been renamed."
 Else
 MsgBox "This sheet name is not default."
 End If

If the condition (ActiveSheet.Name = "Sheet1") is true, Visual Basic will exe-
cute the statements between Then and Else and ignore the statement between
Else and End If. If the condition is false, Visual Basic will omit the statements
between Then and Else and execute the statement between Else and End If.
Let’s look at the complete procedure example.

 Hands-On 5.3 Writing a VBA Procedure with an If…Then…Else
Statement

1. Insert a new module into the Decisions (Chap05_ExcelPrimer.xlsm) project.
2. Change the module name to IfThenElse.

166 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Enter the following WhatTypeOfDay procedure and then run it:
 Sub WhatTypeOfDay()

 Dim response As String
 Dim question As String
 Dim strmsg1 As String, strmsg2 As String
 Dim myDate As Date

 question = "Enter any date in the format mm/dd/yyyy:" _
 & Chr(13)& " (e.g., 11/22/2019)"
 strmsg1 = "weekday"
 strmsg2 = "weekend"
 response = InputBox(question)
 myDate = Weekday(CDate(response))
 If myDate >= 2 And myDate <= 6 Then
 MsgBox strmsg1
 Else
 MsgBox strmsg2
 End If
End Sub

The foregoing procedure asks the user to enter any date. The user-supplied
string is then converted to the Date data type with the built-in CDate function.
Finally, the Weekday function converts the date into an integer that indicates
the day of the week. The day of the week constants are listed in Table 5.3. The
integer is stored in the variable myDate. The conditional test is performed to
check whether the value of the variable myDate is greater than or equal to 2
(>=2) and less than or equal to 6 (<=6). If the result of the test is true, the user
is told that the supplied date is a weekday; otherwise, the program announces
that it’s a weekend.

4. Run the procedure from the Visual Basic window. Run it a few times, each
time supplying a different date. Check the Visual Basic answers against your
desktop or wall calendar.
TABLE 5.3 Values returned by the built-in Weekday function.

Constant Value
vbSunday 1
vbMonday 2
vbTuesday 3
vbWednesday 4
vbThursday 5
vbFriday 6
vbSaturday 7

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 167

USING IF...THEN...ELSEIF STATEMENT

Quite often you will need to check the results of several different conditions. To
join a set of If conditions together, you can use the ElseIf clause. Using the
If…Then…ElseIf statement, you can supply more conditions to evaluate than is
possible with the If…Then…Else statement discussed earlier.

Here’s the syntax of the If…Then…Else statement:
 If condition1 Then
 statements to be executed if condition1 is True
 ElseIf condition2 Then
 statements to be executed if condition2 is True
 ElseIf condition3 Then
 statements to be executed if condition3 is True
 ElseIf conditionN Then
 statements to be executed if conditionN is True
 Else
 statements to be executed if all conditions are False
 End If

The Else clause is optional; you can omit it if there are no actions to be exe-
cuted when all conditions are false. Your procedure can include any number of
ElseIf statements and conditions. The ElseIf clause always comes before the
Else clause. The statements in the ElseIf clause are executed only if the condi-
tion in this clause is true.

Let’s look at the following code example:
 If ActiveCell.Value = 0 Then
 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End if

This example checks the value of the active cell and enters the appropriate label
(zero, positive, negative) in the adjoining column. Notice that the Else clause
is not used. If the result of the first condition (ActiveCell.Value = 0) is false,
Visual Basic jumps to the next ElseIf statement and evaluates its condition
(ActiveCell.Value > 0). If the value is not greater than zero, Visual Basic
skips to the next ElseIf and the condition ActiveCell.Value < 0 is evalu-
ated.

Let’s see how the If…Then…ElseIf statement works in a complete procedure.

168 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 5.4 Writing a VBA Procedure with an If…Then…ElseIf
Statement

1. Insert a new module into the current VBA project.
2. Rename the module IfThenElseIf.
3. Enter the following WhatValue procedure:

Sub WhatValue()
 Range("A1").Select
 If ActiveCell.Value = 0 Then
 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End If
End Sub

Because you need to run the WhatValue procedure several times to test each
condition, let’s have Visual Basic assign a temporary keyboard shortcut to this
procedure.

4. Open the Immediate window and type the following statement:
Application.OnKey "^+y", "WhatValue"

When you press Enter, Visual Basic runs the OnKey method that assigns
the WhatValue procedure to the key sequence Ctrl+Shift +Y. Th is keyboard
shortcut is only temporary—it will not work when you restart Microsoft Excel.
To assign the shortcut key to a procedure, use the Options button in the Macro
dialog box accessed from Developer | Macros in the Microsoft Excel window.

5. Now switch to the Microsoft Excel window and activate Sheet2.
6. Type 0 (zero) in cell A1 and press Enter. Then press Ctrl+Shift+Y.
7. Visual Basic calls the WhatValue procedure and enters “zero” in cell B1.
8. Enter any number greater than zero in cell A1 and press Ctrl+Shift+Y.

Visual Basic again calls the WhatValue procedure. Visual Basic evaluates the
fi rst condition, and because the result of this test is false, it jumps to the ElseIf
statement. Th e second condition is true, so Visual Basic executes the statement
following Then and skips over the next statements to the End If. Because there
are no more statements following the End If, the procedure ends. Cell B1 now
displays the word “positive.”

9. Enter any number less than zero in cell A1 and press Ctrl+Shift+Y.
Th is time, the fi rst two conditions return false, so Visual Basic goes to examine
the third condition. Because this test returns true, Visual Basic enters the word
“negative” in cell B1.

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 169

10. Enter any text in cell A1 and press Ctrl+Shift+Y.

Visual Basic’s response is “positive.” However, this is not a satisfactory answer.
You may want to differentiate between positive numbers and text by displaying
the word “text.” To make the WhatValue procedure smarter, you need to learn
how to make more complex decisions by using nested If…Then statements.

NESTED IF…THEN STATEMENTS

You can make more complex decisions in your VBA procedures by placing an
If…Then or If…Then…Else statement inside another If…Then or If…Then…Else
statement.

Structures in which an If statement is contained inside another If block are
referred to as nested If statements. The following TestConditions procedure is
a revised version of the WhatValue procedure created in the previous section.
The WhatValue procedure has been modified to illustrate how nested If…Then
statements work.
Sub TestConditions()
 Range("A1").Select
 If IsEmpty(ActiveCell) Then
 MsgBox "The cell is empty."
 Else
 If IsNumeric(ActiveCell.Value) Then
 If ActiveCell.Value = 0 Then
 ActiveCell.Offset(0, 1).Value = "zero"
 ElseIf ActiveCell.Value > 0 Then
 ActiveCell.Offset(0, 1).Value = "positive"
 ElseIf ActiveCell.Value < 0 Then
 ActiveCell.Offset(0, 1).Value = "negative"
 End If
 Else
 ActiveCell.Offset(0, 1).Value = "text"
 End If
 End If
End Sub

To make the TestConditions procedure easier to understand, each If…Then state-
ment is shown with different formatting. You can now clearly see that the pro-
cedure uses three If…Then blocks. The first If block (in bold) checks whether
the active cell is empty. If this is true, the message is displayed, and Visual Basic
skips over the Else part until it finds the matching End If. This statement is

170 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

located just before the End Sub keywords. If the active cell is not empty, the
IsEmpty(ActiveCell) condition returns false, and Visual Basic runs the single
underlined If block following the Else formatted in bold. This (underlined)
If…Then…Else statement is said to be nested inside the first If block (in bold).
This statement checks if the value of the active cell is a number. Notice that this
is done with the help of another built-in function—IsNumeric. If the value of
the active cell is not a number, the condition is false, so Visual Basic jumps to the
statement following the underlined Else and enters “text” in cell B1. However,
if the active cell contains a number, Visual Basic runs the double-underlined If
block, evaluating each condition and making the appropriate decision. The first
If block (in bold) is called the outer If statement. This outer statement contains
two inner If statements (single and double underlined).

USING THE SELECT CASE STATEMENT

To avoid complex nested If statements that are difficult to follow, you can use
the Select Case statement instead. The syntax of this statement is as follows:
Select Case testexpression

 Case expressionlist1
 statements if expressionlist1 matches testexpression
 Case expressionlist2
 statements if expressionlist2 matches testexpression
 Case expressionlistN
 statements if expressionlistN matches testexpression
 Case Else
 statements to be executed if no values match testexpression

End Select

You can place any number of Case clauses to test between the keywords Select
Case and End Select. The Case Else clause is optional. Use it when you
expect that there may be conditional expressions that return false. In the Select
Case statement, Visual Basic compares each expressionlist with the value of
testexpression.

Here’s the logic behind the Select Case statement. When Visual Basic en-
counters the Select Case clause, it makes note of the value of testexpres-
sion. Then it proceeds to test the expression following the first Case clause.
If the value of this expression (expressionlist1) matches the value stored
in testexpression, Visual Basic executes the statements until another Case
clause is encountered and then jumps to the End Select statement. If, however,

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 171

the expression tested in the first Case clause does not match testexpression,
Visual Basic checks the value of each Case clause until it finds a match. If none
of the Case clauses contain the expression that matches the value stored in tes-
texpression, Visual Basic jumps to the Case Else clause and executes the
statements until it encounters the End Select keywords. Notice that the Case
Else clause is optional. If your procedure does not use Case Else and none of
the Case clauses contain a value matching the value of testexpression, Visual
Basic jumps to the statements following End Select and continues executing
your procedure.

Let’s look at an example of a procedure that uses the Select Case statement.
In Chapter 4, you learned quite a few details about the MsgBox function, which
allows you to display a message with one or more buttons. You also learned that
the result of the MsgBox function can be assigned to a variable. Using the Select
Case statement, you can now decide which action to take based on the button
the user pressed in the message box.

 Hands-On 5.5 Writing a VBA Procedure with a Select Case Statement

1. Insert a new module into the current VBA project.
2. Rename the new module SelectCase.
3. Enter the following TestButtons procedure:

Sub TestButtons()
 Dim question As String
 Dim bts As Integer
 Dim myTitle As String
 Dim myButton As Integer

 question = "Do you want to open a new workbook?"
 bts = vbYesNoCancel + vbQuestion + vbDefaultButton1
 myTitle = "New Workbook"
 myButton = MsgBox(prompt:=question, _
 buttons:=bts, _
 title:=myTitle)
 Select Case myButton
 Case 6
 Workbooks.Add
 Case 7
 MsgBox "You can open a new book manually later."
 Case Else
 MsgBox "You pressed Cancel."
 End Select
End Sub

172 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e fi rst part of the TestButtons procedure displays a message with three
buttons: Yes, No, and Cancel. Th e value of the button selected by the user is
assigned to the variable myButton. If the user clicks Yes, the variable myButton
is assigned the vbYes constant or its corresponding value—6. If the user selects
No, the variable myButton is assigned the constant vbNo or its corresponding
value—7. Lastly, if Cancel is pressed, the contents of the variable myButton will
equal vbCancel, or 2. Th e Select Case statement checks the values supplied
aft er the Case clause against the value stored in the variable myButton. When
there is a match, the appropriate Case statement is executed.
 Th e TestButtons procedure will work the same if you use the constants
instead of button values:
Select Case myButton
 Case vbYes
 Workbooks.Add
 Case vbNo
 MsgBox "You can open a new book manually later."
 Case Else
 MsgBox "You pressed Cancel."
End Select

You can omit the Else clause. Simply revise the Select Case statement as
follows:

Select Case myButton
 Case vbYes
 Workbooks.Add
 Case vbNo
 MsgBox "You can open a new book manually later."
 Case vbCancel
 MsgBox "You pressed Cancel."
End Select

4. Run the TestButtons procedure three times, each time selecting a different
button.

Using Is with the Case Clause

Sometimes a decision is made based on a relational operator, listed in Table 5.1,
such as whether the test expression is greater than, less than, or equal to. The Is
keyword lets you use a conditional expression in a Case clause. The syntax for
the Select Case clause using the Is keyword is shown here:
 Select Case testexpression
 Case Is condition1

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 173

 statements if condition1 is True
 Case Is condition2
 statements if condition2 is True
 Case Is conditionN
 statements if conditionN is True
 End Select

Although using Case Else in the Select Case statement isn’t required, it’s
always a good idea to include one, just in case the variable you are testing has
an unexpected value. The Case Else statement is a good place to put an error
message. For example, let’s compare some numbers:
 Select Case myNumber
 Case Is <=10
 MsgBox "The number is less than or equal to 10."
 Case 11
 MsgBox "You entered eleven."
 Case Is >=100
 MsgBox "The number is greater than or equal to 100."
 Case Else
 MsgBox "The number is between 12 and 99."
 End Select

Assuming that the variable myNumber holds 120, the third Case clause is true,
and the only statement executed is the one between the Case Is >=100 and the
Case Else clause.

Specifying a Range of Values in a Case Clause

In the preceding example you saw a simple Select Case statement that uses
one expression in each Case clause. Many times, however, you may want to
specify a range of values in a Case clause. Do this by using the To keyword
between the values of expressions, as in the following example:
 Select Case unitsSold
 Case 1 To 100
 Discount = 0.05
 Case Is <= 500
 Discount = 0.1
 Case 501 To 1000
 Discount = 0.15
 Case Is > 1000
 Discount = 0.2
 End Select

174 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s analyze the foregoing Select Case block with the assumption that the
variable unitsSold currently holds the value 99. Visual Basic compares the
value of the variable unitsSold with the conditional expression in the Case
clauses. The first and third Case clauses illustrate how to use a range of values
in a conditional expression by using the To keyword. Because unitsSold equals
99, the condition in the first Case clause is true; thus, Visual Basic assigns the
value 0.05 to the variable Discount. How about the second Case clause, which is
also true? Although it’s obvious that 99 is less than or equal to 500, Visual Basic
does not execute the associated statement Discount = 0.1. The reason for this
is that once Visual Basic locates a Case clause with a true condition, it doesn’t
bother to look at the remaining Case clauses. It jumps over them and continues
to execute the procedure with the instructions that may be following the End
Select statement.

Specifying Multiple Expressions in a Case Clause

You may specify multiple conditions within a single Case clause by separating
each condition with a comma, as shown in the following code example:
 Select Case myMonth
 Case "January", "February", "March"
 Debug.Print myMonth & ": 1st Qtr."
 Case "April", "May", "June"
 Debug.Print myMonth & ": 2nd Qtr."
 Case "July", "August", "September"
 Debug.Print myMonth & ": 3rd Qtr."
 Case "October", "November", "December"
 Debug.Print myMonth & ": 4th Qtr."
 End Select

Multiple Conditions with the Case Clause

The commas used to separate conditions within a Case clause have the same
meaning as the OR operator used in the If statement. The Case clause is true
if at least one of the conditions is true.

 Nesting means placing one type of control structure inside another control
structure. You will see more nesting examples with the looping structures dis-
cussed in Chapter 7.

SIDEBAR

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 175

WRITING A VBA PROCEDURE WITH MULTIPLE
CONDITIONS

The SimpleIfThen procedure that you worked with earlier evaluated only a sin-
gle condition in the If…Then statement. This statement, however, can take more
than one condition. To specify multiple conditions in an If…Then statement, use
the logical operators AND and OR (listed in Table 5.2 at the beginning of this
chapter). Here’s the syntax with the AND operator:

If condition1 AND condition2 Then statement

In the foregoing syntax, both condition1 and condition2 must be true for
Visual Basic to execute the statement to the right of the Then keyword—for
example:

If sales = 10000 AND salary < 45000 Then SlsCom = Sales
 * 0.07

In this example:
 Condition1 sales = 10000
 Condition2 salary < 45000

When AND is used in the conditional expression, both conditions must be true
before Visual Basic can calculate the sales commission (SlsCom). If either of
these conditions is false, or both are false, Visual Basic ignores the statement
after Then.

When it’s good enough to meet only one of the conditions, you should use
the OR operator. Here’s the syntax:

If condition1 OR condition2 Then statement

The OR operator is more flexible. Only one of the conditions has to be true
before Visual Basic can execute the statement following the Then keyword.

Let’s look at this example:
If dept = "S" OR dept = "M" Then bonus = 500

In this example, if at least one condition is true, Visual Basic assigns 500 to the
bonus variable. If both conditions are false, Visual Basic ignores the rest of the
line.

Now let’s look at a complete procedure example. Suppose you can get a
10% discount if you purchase 50 units of a product, each priced at $7.00. The
IfThenAnd procedure demonstrates the use of the AND operator.

176 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 5.6 Writing a VBA Procedure with Multiple Conditions

1. Enter the following procedure in the IfThen module of the Decisions
(Chap05_ExcelPrimer.xlsm) project:
Sub IfThenAnd()
 Dim price As Single
 Dim units As Integer
 Dim rebate As Single

 Const strmsg1 = "To get a rebate you must buy an additional "
 Const strmsg2 = "Price must equal $7.00"

 units = Range("B1").Value
 price = Range("B2").Value

 If price = 7 AND units >= 50 Then
 rebate = (price * units) * 0.1
 Range("A4").Value = "The rebate is: $" & rebate
 End If

 If price = 7 AND units < 50 Then
 Range("A4").Value = strmsg1 & 50 - units & " unit(s)."
 End If

 If price <> 7 AND units >= 50 Then
 Range("A4").Value = strmsg2
 End If

 If price <> 7 AND units < 50 Then
 Range("A4").Value = "You didn't meet the criteria."
 End If
End Sub

Th e IfTh enAnd procedure just shown has four If…Then statements that are
used to evaluate the contents of two variables: price and units. Th e AND
operator between the keywords If…Then allows more than one condition
to be tested. With the AND operator, all conditions must be true for Visual
Basic to run the statements between the Then…End If keywords. Because the
IfTh enAnd procedure is based on the data entered in worksheet cells, it’s more
convenient to run it from the Microsoft Excel window.

2. Switch to the Microsoft Excel application window and choose Developer |
Macros.

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 177

3. In the Macro dialog box, select the IfThenAnd macro and click the
Options button.

4. While the cursor is blinking in the Shortcut key box, press Shift+I to
assign the shortcut key Ctrl+Shift+I to your macro, and then click OK to exit
the Macro Options dialog box.

5. Click Cancel to close the Macro dialog box.
6. Enter the sample data in a worksheet as shown in Figure 5.1.

FIGURE 5.1 Sample test data in a worksheet.

7. Press Ctrl+Shift+I to run the IfThenAnd procedure.
8. Change the values of cells B1 and B2 so that every time you run the procedure,

a different If…Then statement is true.

USING CONDITIONAL LOGIC IN FUNCTION PROCEDURES

To get more practice with the Select Case statement, let’s use it in a func-
tion procedure. As you recall from Chapter 4, function procedures allow you
to return a result to a subroutine. Suppose a subroutine must display a discount
based on the number of units sold. You can get the number of units from the
user and then run a function to figure out which discount applies.

 Hands-On 5.7 Writing a Function Procedure with a Select Case
Statement

1. Enter the following subroutine in the SelectCase module:
Sub DisplayDiscount()
 Dim unitsSold As Integer
 Dim myDiscount As Single
 unitsSold = InputBox("Enter the number of units sold:")
 myDiscount = GetDiscount(unitsSold)
 MsgBox myDiscount
End Sub

178 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Enter the following function procedure:
Function GetDiscount(unitsSold As Integer)
 Select Case unitsSold
 Case 1 To 200
 GetDiscount = 0.05
 Case Is <= 500
 GetDiscount = 0.1
 Case 501 To 1000
 GetDiscount = 0.15
 Case Is > 1000
 GetDiscount = 0.2
 End Select
End Function

3. Place the cursor anywhere within the code of the DisplayDiscount procedure
and press F5 to run it. Run the procedure several times, entering values to test
each Case statement.
 Th e DisplayDiscount procedure passes the value stored in the variable
unitsSold to the GetDiscount function. When Visual Basic encounters the
Select Case statement, it checks whether the value of the fi rst Case clause
expression matches the value stored in the unitsSold parameter. If there
is a match, Visual Basic assigns a 5% discount (0.05) to the function name,
and then jumps to the End Select keywords. Because there are no more
statements to execute inside the function procedure, Visual Basic returns to
the calling procedure—DisplayDiscount. Here it assigns the function’s result to
the variable myDiscount. Th e last statement displays the value of the retrieved
discount in a message box.

SUMMARY

Conditional statements, which were introduced in this chapter, let you control
the flow of your procedure. By testing the truth of a condition, you can decide
which statements should be run and which should be skipped over. In other
words, instead of running your procedure from top to bottom, line by line, you
can execute only certain lines. If you are wondering what kind of conditional
statement you should use in your VBA procedure, here are a few guidelines:

 ● If you want to supply only one condition, the simple If…Then statement
is the best choice.

ADDING DECISIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 179

 ● If you need to decide which of two actions to perform, use the If…Then…
Else statement.

 ● If your procedure requires two or more conditions, use the If…Then…
ElseIf or Select Case statements.

 ● If your procedure has a great number of conditions, use the Select Case
statement. Th is statement is more fl exible and easier to comprehend than
the If…Then…ElseIf statement.

Some decisions must be repeated. For example, you may want to repeat the
same actions for each cell in a worksheet or each sheet in a workbook. The next
chapter teaches you how to perform the same steps repeatedly.

181

Now that you’ve learned how conditional statements can give your VBA
procedures decision-making capabilities, it’s time to go a step further.
Not all decisions are easy. Sometimes you will need to perform several

statements multiple times to arrive at a certain condition. On other occasions,
however, after you’ve reached the decision, you may need to run the specified
statements as long as a condition is true or until a condition becomes true. In
programming, performing repetitive tasks is called looping. VBA has various
looping structures that allow you to repeat a sequence of statements several
times. In this chapter, you will learn how to loop through your code.

INTRODUCING LOOPING STATEMENTS

A loop is a programming structure that causes a section of program code to
execute repeatedly. VBA provides several structures to implement loops in your
procedures: Do…While, Do…Until, For…Next, For…Each, and While…Wend.

Chapter

 6 ADDING REPEATING
ACTIONS TO EXCEL
VBA PROGRAMS

A QUICK INTRODUCTION

TO LOOPING STATEMENTS

182 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING DO...WHILE AND DO...UNTIL LOOPS

Visual Basic has two types of Do loop statements that repeat a sequence of state-
ments either as long as or until a certain condition is true. The Do…While loop
lets you repeat an action as long as a condition is true. This loop has the follow-
ing syntax:
 Do While condition
 statement1
 statement2
 statementN
 Loop

When Visual Basic encounters this loop, it first checks the truth value of the
condition. If the condition is false, the statements inside the loop are not exe-
cuted. Visual Basic will continue to execute the program with the first statement
after the Loop keyword. If the condition is true, the statements inside the loop
are run one by one until the Loop statement is encountered. The Loop statement
tells Visual Basic to repeat the entire process again, as long as the testing of the
condition in the Do…While statement is true. Let’s now see how you can put the
Do…While loop to good use in Microsoft Excel.

In Chapter 5, you learned how to make a decision based on the contents of a
cell. Let’s take it a step further and see how you can repeat the same decision for
a number of cells. Our task is to apply bold formatting to any cell in a column,
as long as it’s not empty.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 6.1 Writing a VBA Procedure with a Do…While Statement

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap06_ExcelPrimer.xlsm.

2. Switch to the Visual Basic Editor screen and change the name of the new
project to Repetition.

3. Insert a new module into the Repetition project and change its name to
DoLoops.

4. Enter the following procedure in the DoLoops module:
Sub ApplyBold()

 Do While ActiveCell.Value <> ""
 ActiveCell.Font.Bold = True

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 183

 ActiveCell.Offset(1, 0).Select
 Loop
End Sub

5. Press Alt+F11 to switch to the Microsoft Excel application window, activate
Sheet1, and then enter any data (text or numbers) in cells A1:A7.

6. When finished with the data entry, select cell A1.
7. Choose Developer | Macros. In the Macro dialog box, double-click the

ApplyBold procedure (or highlight the procedure name and click Run).
When you run the ApplyBold procedure, Visual Basic fi rst evaluates the
condition in the Do While statement—ActiveCell.Value <>"". Th e condition
says: Perform the following statements as long as the value of the active cell is
not an empty string (“”). Because you have entered data in cell A1 and made
this cell active (see Steps 5 to 6), the fi rst test returns true. So Visual Basic
executes the statement ActiveCell.Font.Bold = True, which applies the
bold formatting to the active cell. Next, Visual Basic selects the cell in the next
row (the Off set property is discussed in Chapter 3). Because the statement that
follows is the Loop keyword, Visual Basic returns to the Do While statement
and again checks the condition. If the newly selected active cell is not empty,
Visual Basic repeats the statements inside the loop. Th is process continues until
the contents of cell A8 are examined. Because this cell is empty, the condition is
false, so Visual Basic skips the statements inside the loop. Because there are no
more statements to execute aft er the Loop keyword, the procedure ends. Let’s
look at another Do…While loop example.

The Do…While loop has an alternative syntax that lets you test the condition at
the bottom of the loop in the following way:
 Do
 statement1
 statement2
 statementN
 Loop While condition

When you test the condition at the bottom of the loop, the statements inside the
loop are executed at least once. Let’s take a look at an example:
 Sub SignIn()
 Dim secretCode As String
 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Then Exit Do
 Loop While secretCode <> "sp1045"
 End Sub

184 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that by the time the condition is evaluated, Visual Basic has already
executed the statements one time. In addition to placing the condition at the
end of the loop, the SignIn procedure shows how to exit the loop when a con-
dition is reached. When the Exit Do statement is encountered, the loop ends
immediately.

Another handy loop, Do…Until, allows you to repeat one or more statements
until a condition becomes true. In other words, Do…Until repeats a block of
code as long as something is false. Here’s the syntax:
 Do Until condition
 statement1
 statement2
 statementN
 Loop

Using the foregoing syntax, you can now rewrite the previous ApplyBold proce-
dure in the following way:
 Sub ApplyBold2()
 Do Until IsEmpty(ActiveCell)
 ActiveCell.Font.Bold = True
 ActiveCell.Offset(1, 0).Select
 Loop
 End Sub

The first line of this procedure says to perform the following statements until
the first empty cell is reached. As a result, if the active cell is not empty, Visual
Basic executes the two statements inside the loop. This process continues as long
as the condition IsEmpty(ActiveCell) evaluates to false. Because the Apply-
Bold2 procedure tests the condition at the beginning of the loop, the statements
inside the loop will not run if the first cell is empty. You will get the chance to
try out this procedure in the next section.

Like the Do…While loop, the Do…Until loop has a second syntax that lets you
test the condition at the bottom of the loop:
 Do
 statement1
 statement2
 statementN
 Loop Until condition

If you want the statements to execute at least once, place the condition on the
line with the Loop statement no matter what the value of the condition.

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 185

Let’s try out an example procedure that deletes empty sheets from a work-
book.

 Hands-On 6.2 Writing a VBA Procedure with a Do…Until Statement

1. Enter the DeleteBlankSheets procedure, as shown here, in the DoLoops
module that you created earlier.
Sub DeleteBlankSheets()
 Dim myRange As Range
 Dim shcount As Integer
 shcount = Worksheets.Count
 Do
 Worksheets(shcount).Select
 Set myRange = ActiveSheet.UsedRange
 If myRange.Address = "A1" And _
 Range("A1").Value = "" Then
 Application.DisplayAlerts = False
 Worksheets(shcount).Delete
 Application.DisplayAlerts = True
 End If
 shcount = shcount - 1
 Loop Until shcount = 1
End Sub

2. Press Alt+F11 to switch to the Microsoft Excel window and manually insert
three new worksheets into the current workbook. In one of the sheets, enter
text or number in cell A1. On another sheet, enter some data in cells B2 and
C10. Do not enter any data on the third inserted sheet.

3. Run the DeleteBlankSheets procedure.
When you run this procedure, Visual Basic deletes the selected sheet whenever
two conditions are true—the UsedRange property address returns cell A1 and
cell A1 is empty. Th e UsedRange property applies to the Worksheet object and
contains every nonempty cell on the worksheet, as well as all the empty cells
that are among them. For example, if you enter something in cells B2 and C10,
the used range is B2:C10. If you later enter data in cell A1, the UsedRange
will be A1:C10. Th e used range is bounded by the farthest upper-left and
farthest lower-right nonempty cell on a worksheet.

Because the workbook must contain at least one worksheet, the code is exe-
cuted until the variable shcount equals one. The statement shcount = shcount
– 1 makes sure that the shcount variable is reduced by one each time the state-

186 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ments in the loop are executed. The value of shcount is initialized at the begin-
ning of the procedure with the following statement:

Worksheets.Count

Notice also that when deleting sheets, Excel normally displays the confirmation
dialog box. If you’d rather not be prompted to confirm the deletion, use the fol-
lowing statement:

Application.DisplayAlerts = False

When you are finished, turn the system messages back on with the following
statement:

Application.DisplayAlerts = True

Counters

A counter is a numeric variable that keeps track of the number of items that
have been processed. The DeleteBlankSheets procedure just shown declares
the variable shcount to keep track of sheets that have been processed. A coun-
ter variable should be initialized (assigned a value) at the beginning of the
program. This ensures that you always know the exact value of the counter
before you begin using it. A counter can be incremented or decremented by a
specified value. See other examples of using counters with the For…Next loop
later in this chapter.

AVOIDING INFINITE LOOPS

If you don’t design your loop correctly, you get an infinite loop—a loop that
never ends. You will not be able to stop the procedure by using the Esc key. The
following procedure causes the loop to execute endlessly because the program-
mer forgot to include the test condition:
 Sub SayHello()
 Do
 MsgBox "Hello."
 Loop
 End Sub

To stop the execution of the infinite loop, you must press Ctrl+Break. When
Visual Basic displays the message box that says, “Code execution has been inter-
rupted,” click End to end the procedure.

SIDEBAR

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 187

EXECUTING A PROCEDURE LINE BY LINE

When you run procedures that use looping structures, it’s sometimes hard to
see whether the procedure works as expected. Occasionally, you’d like to watch
the procedure execute in slow motion so that you can check the logic of the
program. Let’s examine how Visual Basic allows you to execute a procedure line
by line.

 Hands-On 6.3 Executing a Procedure Line by Line

1. Insert a new sheet into the current workbook and enter any data in cells A1:A5.
2. Select cell A1 and choose Developer | Macros.
3. In the Macro dialog box, select the ApplyBold procedure and click the

Step Into button.
Th e VBE screen will appear with the name of the procedure highlighted in
yellow, as shown in Figure 6.1. Notice the yellow arrow in the margin indicator
bar of the Code window.

FIGURE 6.1 Watching the procedure code execute line by line.

4. Arrange the screens side by side as shown in Figure 6.1.
5. Make sure cell A1 is selected and that it contains data.
6. Click the title bar in the Visual Basic window to move the focus to this

window, and then press F8. The yellow highlight in the Code window jumps
to this line:
Do While ActiveCell.Value <> ""

7. Continue pressing F8 while watching both the Code window and the worksheet
window.

188 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE You will find more information related to stepping through VBA
procedures in Chapter 9.

UNDERSTANDING WHILE...WEND LOOP

The While…Wend loop is functionally equivalent to the Do…While loop. This
statement is a carryover from earlier versions of Microsoft Basic and is included
in VBA for backward compatibility. The loop begins with the keyword While
and ends with the keyword Wend. Here’s the syntax:
 While condition
 statement1
 statement2
 statementN
 Wend

The condition is tested at the top of the loop. The statements are executed as
long as the given condition is true. Once the condition is false, Visual Basic exits
the loop.

Let’s look at an example of a procedure that uses the While…Wend looping
structure. We will change the row height of all nonempty cells in a worksheet.

 Hands-On 6.4 Writing a VBA Procedure with a While…Wend
Statement

1. Insert a new module into the current VBA project. Rename the module
WhileLoop.

2. Enter the following procedure in the WhileLoop module.
Sub ChangeRHeight()
 While ActiveCell <> ""
 ActiveCell.RowHeight = 28
 ActiveCell.Offset(1, 0).Select
 Wend
End Sub

3. Switch to the Microsoft Excel window and enter some data in cells B1:B4 of
any worksheet.

4. Select cell B1 and choose Developer | Macros.
5. In the Macro dialog, select the ChangeRHeight procedure and click Run.

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 189

The ChangeRHeight procedure sets the row height to 28 when the active cell is
not empty. The next cell is selected by using the Offset property of the Range
object. The statement ActiveCell.Offset(1, 0).Select tells Visual Basic to
select the cell that is located one row below (1) the active cell and in the same
column (0).

UNDERSTANDING FOR...NEXT LOOP

The For…Next loop is used when you know how many times you want to repeat
a group of statements. The syntax of a For…Next loop looks like this:
 For counter = start To end [Step increment]
 statement1
 statement2
 statementN
 Next [counter]

The code in the brackets is optional. Counter is a numeric variable that stores
the number of iterations. Start is the number at which you want to begin count-
ing, and end indicates how many times the loop should be executed.

For example, if you want to repeat the statements inside the loop five times,
use the following For statement syntax:
 For counter = 1 To 5
 Your statements go here
 Next

When Visual Basic encounters the Next keyword, it will go back to the begin-
ning of the loop and execute the statements inside the loop again, as long as
counter hasn’t reached the value in end. As soon as the value of counter is
greater than the number entered after the To keyword, Visual Basic exits the
loop. Because the variable counter automatically changes after each execu-
tion of the loop, sooner or later the value stored in counter exceeds the value
specified. By default, every time Visual Basic executes the statements inside the
loop, the value of the variable counter is increased by one. You can change this
default setting by using the Step clause. For example, to increase the variable
counter by three, use the following statement:
 For counter = 1 To 5 Step 3
 Your statements go here
 Next counter

190 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When Visual Basic encounters the foregoing instruction, it executes the state-
ments inside the loop twice. The first time in the loop, counter equals 1. The
second time in the loop, counter equals 4 (3 + 1). After the second time inside
the loop, counter equals 7 (4 + 3). This causes Visual Basic to exit the loop. Note
that the Step increment is optional and isn’t specified unless it’s a value other
than 1. You can also place a negative number after Step. Visual Basic will then
decrement this value from counter each time it encounters the Next keyword.
The name of the variable (counter) after the Next keyword is also optional.
However, it’s good programming practice to make your Next keywords explicit
by including counter.

How can you use the For…Next loop in a Microsoft Excel spreadsheet? Sup-
pose in your sales report you’d like to include only products that were sold in a
particular month. When you imported data from a Microsoft Access table, you
also got rows with the sold amount equal to zero. How can you quickly eliminate
those “zero” rows? Although there are many ways to solve this problem, let’s see
how you can handle it with a For…Next loop.

 Hands-On 6.5 Writing a VBA Procedure with a For…Next Statement

1. In the Visual Basic window, insert a new module into the current project and
rename it ForNextLoop.

2. Enter the following procedure in the ForNextLoop module:
Sub DeleteZeroRows()
 Dim totalR As Integer
 Dim r As Integer

 Range("A1").CurrentRegion.Select
 totalR = Selection.Rows.Count
 Range("B2").Select

 For r = 1 To totalR - 1
 If ActiveCell = 0 Then
 Selection.EntireRow.Delete
 totalR = totalR - 1
 Else
 ActiveCell.Offset(1, 0).Select
 End If
 Next r
End Sub

Let’s examine the DeleteZeroRows procedure line by line. Th e fi rst two
statements calculate the total number of rows in the current range and store

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 191

this number in the variable totalR. Next, Visual Basic selects cell B2 and
encounters the For keyword. Because the fi rst row of the spreadsheet contains
the column headings, decrease the total number of rows by one (totalR – 1).
Visual Basic will need to execute the instructions inside the loop six times. Th e
conditional statement (If…Then…Else) nested inside the loop tells Visual Basic
to make a decision based on the value of the active cell. If the value is equal to
zero, Visual Basic deletes the current row and reduces the value of totalR by
one. Otherwise, the condition is false, so Visual Basic selects the next cell. Each
time Visual Basic completes the loop, it jumps to the For keyword to compare
the value of r with the value of totalR – 1.

3. Switch to the Microsoft Excel window and insert a new worksheet. Enter the
data shown here:

A B
1 Product Name Sales (in Pounds)
2 Apples 120
3 Pears 0
4 Bananas 100
5 Cherries 0
6 Blueberries 0
7 Strawberries 160

4. Choose Developer | Macros.
5. In the Macro dialog, select the DeleteZeroRows procedure and click Run.

When the procedure ends, the sales spreadsheet does not include products that
were not sold.

Paired Statements

For and Next must be paired. If one is missing, Visual Basic generates the fol-
lowing error message: “For without Next.”

UNDERSTANDING FOR...EACH...NEXT LOOP

When your procedure needs to loop through all of the objects of a collection or
all of the elements in an array (arrays are covered in Chapter 7), the For Each…
Next loop should be used. This loop does not require a counter variable. Visual
Basic can figure out on its own how many times the loop should execute.

SIDEBAR

192 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s take, for example, a collection of worksheets. To remove a worksheet
from a workbook, you must first select it and then choose Home | Cells | Delete
| Delete Sheet. To leave only one worksheet in a workbook, you need to use the
same command several times, depending on the total number of worksheets.
Because each worksheet is an object in a collection of worksheets, you can speed
up the process of deleting worksheets by using the For Each…Next loop. This
loop looks like the following:
 For Each element In Group
 statement1
 statement2
 statementN
 Next [element]

In the foregoing syntax, element is a variable to which all the elements of an
array or collection will be assigned. This variable must be of the Variant data
type for an array and an Object data type for a collection. Group is the name of
a collection or an array.

Let’s now see how to use the For Each…Next loop to remove some work-
sheets.

 Hands-On 6.6 Writing a VBA Procedure with a For Each…
Next Statement

1. Insert a new module into the current project and rename it ForEachNextLoop.
2. Type the following procedure in the ForEachNextLoop module:

Sub RemoveSheets()
 Dim mySheet As Worksheet

 Application.DisplayAlerts = False

 Workbooks.Add
 Sheets.Add After:=ActiveSheet, Count:=3

 For Each mySheet In Worksheets
 If mySheet.Name <> "Sheet1" Then
 ActiveWindow.SelectedSheets.Delete
 End If
 Next mySheet

 Application.DisplayAlerts = True
End Sub

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 193

Visual Basic will open a new workbook, add three new sheets aft er the default
Sheet1 (ActiveSheet), and proceed to delete all the sheets except for Sheet1.
Notice that the variable mySheet represents an object in a collection of
worksheets. Th erefore, this variable has been declared of the specifi c object
data type Worksheet. Th e fi rst instruction, Application.DisplayAlerts =
False, makes sure that Microsoft Excel does not display alerts and messages
while the procedure is running. Th e For Each…Next loop steps through each
worksheet and deletes it as long as it is not Sheet1. When the procedure ends,
the workbook has only one sheet—Sheet1.

3. Position the insertion point anywhere within the RemoveSheets procedure
code and press F5 to run it.

EXITING LOOPS EARLY

Sometimes you may not want to wait until the loop ends on its own. It’s possible
that a user has entered the wrong data, a procedure has encountered an error, or
perhaps the task has been completed and there’s no need to do additional loop-
ing. You can leave the loop early without reaching the condition that normally
terminates it. Visual Basic has two types of Exit statements:

 ● Th e Exit For statement is used to end either a For…Next or a For Each…
Next loop early.

 ● Th e Exit Do statement immediately exits any of the VBA Do loops.

The following procedure demonstrates how to use the Exit For statement to
leave the For Each…Next loop early.

 Hands-On 6.7 Writing a VBA Procedure with an Early Exit from a
For Each…Next Statement

1. Enter the following procedure in the ForEachNextLoop module:
Sub EarlyExit()
 Dim myCell As Variant
 Dim myRange As Range

 Set myRange = Range("A1:H10")
 For Each myCell In myRange
 If myCell.Value = "" Then
 myCell.Value = "empty"
 Else

194 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Exit For
 End If
 Next myCell
End Sub

Th e EarlyExit procedure examines the contents of each cell in the specifi ed
range—A1:H10. If the active cell is empty, Visual Basic enters the text “empty”
in the active cell. When Visual Basic encounters the fi rst nonempty cell, it exits
the loop.

2. Open a new workbook and enter a value in any cell within the specified
range—A1:H10.

3. Choose Developer | Macros.
4. In the Macro dialog, select the EarlyExit procedure and click Run.

USING A DO…WHILE STATEMENT

The next example procedure demonstrates how to display today’s date and time
in Microsoft Excel’s status bar for 10 seconds.

 Hands-On 6.8 Writing a VBA Procedure with a Do…While Statement

1. Enter the following procedure in the DoLoops module:
Sub TenSeconds()
 Dim stopme

 stopme = Now + TimeValue("00:00:10")

 Do While Now < stopme
 Application.DisplayStatusBar = True
 Application.StatusBar = Now
 Loop

 Application.StatusBar = False
End Sub

In the TenSeconds procedure, the statements inside the Do…While loop will
be executed as long as the time returned by the Now function is less than the
value of the variable called stopme. Th e variable stopme holds the current time
plus 10 seconds. (See the online help for other examples of using the built-in
TimeValue function.)

ADDING REPEATING ACTIONS TO EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 195

Th e statement Application.DisplayStatusBar tells Visual Basic to turn
on the status bar display. Th e next statement places the current date and time
in the status bar. While the time is displayed for 10 seconds, the user cannot
work with the system (the mouse pointer turns into the hourglass). Aft er the 10
seconds are over (that is, when the condition Now < stopme evaluates to true),
Visual Basic leaves the loop and executes the statement aft er the Loop keyword.
Th is statement returns the default status bar message “Ready.”

2. Press Alt+F11 to switch to the Microsoft Excel application window.
3. Choose Developer | Macros. In the Macro dialog box, double-click the

TenSeconds macro name (or highlight the macro name and click Run).
Observe the date and time display in the status bar. Th e status bar should return
to “Ready” aft er 10 seconds.

USING LOOPS AND CONDITIONALS

Let’s combine the looping statements and some conditional logic to write a pro-
cedure that checks whether a certain sheet is part of a workbook.

 Hands-On 6.9 Writing a VBA Procedure with Loops and Conditionals

1. Enter the following procedures in a new module:
 Sub IsSuchSheet(strSheetName As String)
 Dim mySheet As Worksheet
 Dim counter As Integer

 counter = 0

 Workbooks.Add
 Sheets.Add After:=ActiveSheet, Count:=3
 For Each mySheet In Worksheets
 If mySheet.Name = strSheetName Then
 counter = counter + 1
 Exit For
 End If
 Next mySheet

 If counter = 1 Then
 MsgBox strSheetName & " exists."
 Else
 MsgBox strSheetName & " was not found."

196 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
 End Sub

 Sub FindSheet()
 Call IsSuchSheet("Sheet4")
 End Sub

Th e IsSuchSheet procedure uses the Exit For statement to ensure that we exit
the loop as soon as the sheet name passed in the procedure argument is found
in the workbook. Th e FindSheet procedure is used to show you how to call one
procedure from another.

2. To execute the IsSuchSheet procedure, run the FindSheet procedure.

SUMMARY

In this chapter, you learned how to repeat certain groups of statements using
procedure loops. While working with several types of looping statements, you
saw how each loop performs repetitions in a slightly different way. As you gain
programming experience, you’ll find it easier to choose the appropriate flow
control structure for your task.

The next chapter will show you how arrays are used to work with larger sets
of data.

197

In previous chapters, you worked with many VBA procedures that used vari-
ables to hold specific information about an object, property, or value. For
each single value that you wanted your procedure to manipulate, you de-

clared a variable. But what if you have a series of values? If you had to write a
VBA procedure to deal with larger amounts of data, you would have to create
enough variables to handle all the data. Can you imagine the nightmare of stor-
ing in your program currency exchange rates for all the countries in the world?
To create a table to hold the necessary data, you’d need at least three variables for
each country: country name, currency name, and exchange rate. Fortunately,
Visual Basic has a way to get around this problem. By clustering the related
variables together, your VBA procedures can manage a large amount of data
with ease. In this chapter, you’ll learn how to manipulate lists and tables of data
with arrays.

UNDERSTANDING ARRAYS

An array is a special type of variable that represents a group of similar val-
ues that are of the same data type (String, Integer, Currency, Date, etc.). The
two most common types of arrays are one-dimensional arrays (lists) and two-
dimensional arrays (tables). A one-dimensional array is sometimes referred to

Chapter

 7 STORING MULTIPLE
VALUES IN EXCEL VBA
PROGRAMS

A QUICK INTRODUCTION TO

WORKING WITH ARRAYS

198 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

as a list. A shopping list, a list of the days of the week, and an employee list are
examples of one-dimensional arrays or, simply, numbered lists. Each element in
the list has an index value that allows accessing that element. For example, in the
following illustration we have a one-dimensional array of six elements indexed
from 0 to 5:

(0) (1) (2) (3) (4) (5)

You can access the third element of this array by specifying index (2). By default,
the first element of an array is indexed zero. You can change this behavior by
using the Option Base 1 statement or by explicitly coding the lower bound of
your array as explained further in this chapter.

All elements of the array must be of the same data type. In other words, one
array cannot store both strings and integers. Following are two examples of one-
dimensional arrays: a one-dimensional array called cities that is populated with
text (String data type—$) and a one-dimensional array called lotto that contains
six lottery numbers stored as integers (Integer data type—%).

A one-dimensional array: cities$ A one-dimensional array: lotto%
cities(0) Baltimore lotto(0) 25
cities(1) Atlanta lotto(1) 4
cities(2) Boston lotto(2) 31
cities(3) Washington lotto(3) 22
cities(4) New York lotto(4) 11
cities(5) Trenton lotto(5) 5

As you can see, the contents assigned to each array element match the Array
type. If you want to store values of different data types in the same array, you
must declare the array as Variant. You will learn how to declare arrays in the
next section.

A two-dimensional array may be thought of as a table or matrix. The posi-
tion of each element in a table is determined by its row and column numbers.
For example, an array that holds the yearly sales for each product your company
sells has two dimensions (the product name and the year). The following is a
diagram of an empty two-dimensional array.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)
(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)
(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 199

You can access the first element in the second row of this two-dimensional array
by specifying indexes (1, 0). Following are two examples of a two-dimensional
array: an array named yearlyProductSales@ that stores yearly product sales
using the Currency data type (@) and an array named exchange (of Variant
data type) that stores the name of the country, its currency, and the U.S. dollar
exchange rate.

A two-dimensional array: yearlyProductSales@
Walking Cane

(0,0)
$25,023

(0,1)
Pill Crusher

(1,0)
$64,085

(1,1)
Electric Wheelchair

(2,0)
$345,016

(2,1)
Folding Walker

(3,0)
$85,244

(3,1)

A two-dimensional array: exchange
Japan
(0,0)

Japanese Yen
(0,1)

108.83
(0,2)

Australia
(1,0)

Australian Dollar
(1,1)

1.28601
(1,2)

Canada
(2,0)

Canadian Dollar
(2,1)

1.235
(2,2)

Norway
(3,0)

Norwegian Krone
(3,1)

6.4471
(3,2)

Europe
(4,0)

Euro
(4,1)

0.816993
(4,2)

In these examples, the yearlyProductSales@ array can hold a maximum of 8 ele-
ments (4 rows * 2 columns = 8) and the exchange array will allow a maximum
of 15 elements (5 rows * 3 columns = 15).

Although VBA arrays can have up to 60 dimensions, most people find it
difficult to picture dimensions beyond 3-D. A three-dimensional array is an
array of two-dimensional arrays (tables) where each table has the same number
of rows and columns. A three-dimensional array is identified by three indexes:
table, row, and column. The first element of a three-dimensional array is in-
dexed (0, 0, 0).

200 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Declaring Arrays

Because an array is a variable, you must declare it in a similar way that you
declare other variables (by using the keywords Dim, Private, or Public). For
fixed-length arrays, the array bounds are listed in parentheses following the
variable name. If a variable-length, or dynamic, array is being declared, the vari-
able name is followed by an empty pair of parentheses.

The last part of the array declaration is the definition of the data type that the
array will hold. An array can hold any of the following data types: Integer, Long,
Single, Double, Variant, Currency, String, Boolean, Byte, or Date. Let’s look at
some examples:

Array Declaration (one-dimensional) Description
Dim cities(5) as String Declares a 6-element array, indexed 0 to 5
Dim lotto(1 to 6) as String Declares a 6-element array, indexed 1 to 6
Dim supplies(2 to 11) Declares a 10-element array, indexed 2 to 11
Dim myIntegers(-3 to 6) Declares a 10-element array, indexed −3 to 6

(the lower bound of an array can be 0, 1, or
negative)

Dim dynArray() as Integer Declares a variable-length array whose
bounds will be determined at runtime (see
examples later in this chapter)

Array Declaration (two-dimensional) Description
Dim exchange(4,2) as Variant Declares a two-dimensional array (five rows

by three columns)
Dim yearlyProductSales(3, 1)
as Currency

Declares a two-dimensional array (four rows
by two columns)

Dim my2Darray(1 to 3, 1 to7)
as Single

Declares a two-dimensional array (three rows
indexed 1 to 3 by seven columns indexed 1
to 7)

Array Declaration (three-dimensional) Description
Dim exchange(2, 1 to 6, 4) as
Variant

Declares a three-dimensional array (the first
dimension has three elements, the second di-
mension has six elements indexed 1 to 6, and
the third dimension has five elements)

When you declare an array, Visual Basic automatically reserves enough memory
space. The amount of the memory allocated depends on the array’s size and
data type. When you declare a one-dimensional array named lotto with six ele-
ments, Visual Basic sets aside 12 bytes—2 bytes for each element of the array

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 201

(recall that the size of the Integer data type is 2 bytes, and hence 2 * 6 = 12). The
larger the array, the more memory space is required to store the data. Because
arrays can eat up a lot of memory and impact your computer’s performance, it’s
recommended that you declare arrays with only as many elements as you think
you’ll use.

What Is an Array Variable?

An array is a group of variables that have a common name. While a typical
variable can hold only one value, an array variable can store many individual
values. You refer to a specific value in the array by using the array name and
an index number.

Subscripted Variables

The numbers inside the parentheses of the array variables are called subscripts,
and each individual variable is called a subscripted variable or element. For ex-
ample, cities(5) is the sixth subscripted variable (element) of the array cities().

Array Upper and Lower Bounds

By default, VBA assigns zero (0) to the first element of the array. Therefore,
number 1 represents the second element of the array, number 2 represents the
third, and so on. With numeric indexing starting at 0, the one-dimensional array
cities(5) contains six elements numbered from 0 to 5. If you’d rather start count-
ing your array’s elements at 1, you can explicitly specify a lower bound of the
array by using an Option Base 1 statement. This instruction must be placed in
the declaration section at the top of a VBA module before any Sub statements. If
you don’t specify Option Base 1 in a procedure that uses arrays, VBA assumes
that the statement Option Base 0 is to be used and begins indexing your array’s
elements at 0. If you’d rather not use the Option Base 1 statement and still have
the array indexing start at a number other than 0, you must specify the bounds
of an array when declaring the array variable. The bounds of an array are its
lowest and highest indices. Let’s look at the following example:

Dim cities(3 To 6) As Integer

The foregoing statement declares a one-dimensional array with four elements.
The numbers enclosed in parentheses after the array name specify the lower (3)
and upper (6) bounds of the array. The first element of this array is indexed 3,
the second 4, the third 5, and the fourth 6. Notice the keyword To between the
lower and the upper indexes.

SIDEBAR

SIDEBAR

202 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Initializing and Filling an Array

After you declare an array, you must assign values to its elements. This is often
referred to as “initializing an array,” “filling an array,” or “populating an array.”
The three methods you can use to load data into an array are discussed in this
section.

Filling an Array Using Individual Assignment Statements

Assume you want to store the names of your six favorite cities in a one-dimen-
sional array named cities. After declaring the array with the Dim statement:

Dim cities(5) as String

or
Dim cities$(5)

you can assign values to the array variable like this:
cities(0) = "Baltimore"
cities(1) = "Atlanta"
cities(2) = "Boston"
cities(3) = "San Diego"
cities(4) = "New York"
cities(5) = "Denver"

Filling an Array Using the Array Function

VBA’s built-in function Array returns an array of Variants. Because Variant is
the default data type, the As Variant clause is optional in the array variable
declaration:

Dim cities() as Variant

or
Dim cities()

Notice that you don’t specify the number of elements between the parentheses.
Next, use the Array function as shown here to assign values to your cities

array:
cities = Array("Baltimore", "Atlanta", "Boston", "San Diego",

 "New York", "Denver")

When using the Array function for array population, the lower bound of an
array is 0 or 1 and the upper bound is 5 or 6, depending on the setting of Option
Base (see the previous section titled “Array Upper and Lower Bounds”).

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 203

Filling an Array Using For…Next Loop

The easiest way to learn how to use loops to populate an array is by writing a
procedure that fills an array with a specific number of integer values. Let’s look
at the example procedure here:
 Sub LoadArrayWithIntegers()
 Dim myIntArray(1 To 10) As Integer
 Dim i As Integer

 'Initialize random number generator
 Randomize

 'Fill the array with 10 random numbers between 1 and 100
 For i = 1 To 10
 myIntArray(i) = Int((100 * Rnd) + 1)
 Next

 'Print array values to the Immediate window
 For i = 1 To 10
 Debug.Print myIntArray(i)
 Next
 End Sub

The foregoing procedure uses a For…Next loop to fill myIntArray with 10 ran-
dom numbers between 1 and 100. The second loop is used to print out the val-
ues from the array. Notice that the procedure uses the Rnd function to generate
a random number. This function returns a value less than 1 but greater than or
equal to 0. You can try it out in the Immediate window by entering:
 x=rnd
 ?x

Before calling the Rnd function, the LoadArrayWithIntegers procedure uses the
Randomize statement to initialize the random-number generator. To become
more familiar with the Randomize statement and Rnd function, be sure to follow
up with the Excel online help.

USING A ONE-DIMENSIONAL ARRAY

Having learned the basics of array variables, let’s write a couple of VBA procedures
to make arrays a part of your new skill set. The procedure in Hands-On 7.1
uses a one-dimensional array to programmatically display a list of six North
American cities.

204 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 7.1 Using a One-Dimensional Array

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap07_ExcelPrimer.xlsm.

2. Switch to the Microsoft Visual Basic Editor window and rename the VBA
project Arrays.

3. Insert a new module into the Arrays (Chap07_ExcelPrimer.xlsm) project
and rename this module StaticArrays.

4. In the StaticArrays module, enter the following FavoriteCities procedure:
' start indexing array elements at 1
Option Base 1

Sub FavoriteCities()
 'now declare the array
 Dim cities(6) As String

 'assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 'display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5) & Chr(13) & cities(6)
End Sub

Before the FavoriteCities procedure begins, the default indexing for an array
is changed. Notice that the position of the Option Base 1 statement is at the
top of the module window before the Sub statement. Th is statement tells Visual
Basic to assign the number 1 instead of the default 0 to the fi rst element of the
array. Th e array cities() of String data type is declared with six elements. Each
element of the array is then assigned a value. Th e last statement uses the MsgBox
function to display the list of cities. When you run this procedure in Step 5,
the city names will appear on separate lines in the message box, as shown in

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 205

Figure 7.1. You can change the order of the displayed data by switching the
index values.

FIGURE 7.1 You can display the elements of a one-dimensional array with the MsgBox function.

5. Position the insertion point anywhere within the procedure code and press F5
to run the FavoriteCities procedure.

6. On your own, modify the FavoriteCities procedure so that it displays the
names of the cities in the reverse order (from 6 to 1).

USING A TWO-DIMENSIONAL ARRAY

Now that you know how to programmatically produce a list (a one-dimensional
array), it’s time to take a closer look at how you can work with tables of data. The
following procedure creates a two-dimensional array that will hold the country
name, currency name, and exchange rate for three countries.

 Hands-On 7.2 Storing Data in a Two-Dimensional Array

1. In the StaticArrays module, enter the following procedure:
Sub Exchange()
 Dim t As String
 Dim r As String
 Dim Ex(3, 3) As Variant

 t = Chr(9) ' tab
 r = Chr(13) ' Enter

206 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Ex(1, 1) = "Japan"
 Ex(1, 2) = "Yen"
 Ex(1, 3) = 104.57
 Ex(2, 1) = "Mexico"
 Ex(2, 2) = "Peso"
 Ex(2, 3) = 11.2085
 Ex(3, 1) = "Canada"
 Ex(3, 2) = "Dollar"
 Ex(3, 3) = 1.2028
 MsgBox "Country " & t & t & "Currency" & t & "per US$" _
 & r & r _
 & Ex(1, 1) & t & t & Ex(1, 2) & t & Ex(1, 3) & r _
 & Ex(2, 1) & t & t & Ex(2, 2) & t & Ex(2, 3) & r _
 & Ex(3, 1) & t & t & Ex(3, 2) & t & Ex(3, 3) & r & r _
 & "* Sample Exchange Rates for Demonstration Only", , _
 "Exchange"
End Sub

2. Run the Exchange procedure.
When you run the Exchange procedure, you will see a message box with the
exchange information presented in three columns, as shown in Figure 7.2.

FIGURE 7.2 The text displayed in a message box can be custom formatted.

USING A DYNAMIC ARRAY

The arrays introduced thus far in this chapter were static. A static array is an
array of a specific size. Use a static array when you know in advance how big the
array should be. The size of the static array is specified in the array’s declaration

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 207

statement. For example, the statement Dim Fruits(9) As String declares a
static array called Fruits that is made up of 10 elements (assuming you have
not changed the default indexing to 1). But what if you’re not sure how many
elements your array will contain? If your procedure depends on user input, the
number of user-supplied elements might vary every time the procedure is exe-
cuted. How can you ensure that the array you declare is not wasting memory?
After you declare an array, VBA sets aside enough memory to accommodate the
array. If you declare an array to hold more elements than what you need, you’ll
end up wasting valuable computer resources. The solution to this problem is
making your arrays dynamic.

A dynamic array is an array whose size can change. You use a dynamic array
when the array size is determined each time the procedure is run. A dynamic
array is declared by placing empty parentheses after the array name:

Dim Fruits() As String

Before you use a dynamic array in your procedure, you must use the ReDim state-
ment to dynamically set the lower and upper bounds of the array. For example,
initially you may want to hold five fruits in the array:

Redim Fruits(1 To 5)

The ReDim statement redimensions arrays as the code of your procedure exe-
cutes and informs Visual Basic about the new size of the array. This statement
can be used several times in the same procedure.

The example procedure in Hands-On 7.3 will dynamically load data entered
in a worksheet into a one-dimensional array.

 Hands-On 7.3 Loading Worksheet Data into an Array

1. Insert a new module into the Arrays project and rename it DynamicArrays.
2. In the DynamicArrays module, enter the following procedure:

Sub LoadArrayFromWorksheet()
 Dim myDataRng As Range
 Dim myArray() As Variant
 Dim cnt As Integer
 Dim i As Integer
 Dim cell As Variant
 Dim r As Integer
 Dim last As Integer

 Set myDataRng = ActiveSheet.UsedRange

208 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 'get the count of nonempty cells (text and numbers only)
 last = myDataRng.SpecialCells(xlCellTypeConstants, 3).Count

 If IsEmpty(myDataRng) Then
 MsgBox "Sheet is empty."
 Exit Sub
 End If

 ReDim myArray(1 To last)

 i = 1

 'fill the array from worksheet data
 'reformat all numeric values
 For Each cell In myDataRng
 If cell.Value <> "" Then
 If IsNumeric(cell.Value) Then
 myArray(i) = Format(cell.Value, "$#,#00.00")
 Else
 myArray(i) = cell.Value
 End If
 i = i + 1
 End If
 Next

 'print array values to the Immediate window
 For i = 1 To last
 Debug.Print myArray(i)
 Next
 Debug.Print "Items in the array: " & UBound(myArray)
End Sub

3. Switch to the Microsoft Excel application window of the Chap07_ExcelPrimer.
xlsm workbook and enter some data in Sheet2. For example, enter your favorite
fruits in cells A1:B6 and numbers in cells D1:D9.

4. Choose Developer | Macros. In the Macro dialog box, choose
LoadArrayFromWorksheet, and click Run.
When the procedure completes, check the data in the Immediate window. You
should see the entries you typed in the worksheet. Th e numeric data should
appear formatted with the currency format.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 209

USING ARRAY FUNCTIONS

You can manipulate arrays with five built-in VBA functions: Array, IsArray,
Erase, LBound, and UBound. The following sections demonstrate the use of each
of these functions in VBA procedures.

The Array Function

The Array function allows you to create an array during code execution without
having to dimension it first. This function always returns an array of Variants.
Using the Array function, you can quickly place a series of values in a list.

The CarInfo procedure shown here creates a fixed-size, one-dimensional,
three-element array called auto.

 Hands-On 7.4 Using the Array Function

1. Insert a new module into the current project and rename it Array_Function.
2. Enter the following CarInfo procedure:

Option Base 1

Sub CarInfo()
 Dim auto As Variant
 auto = Array("Ford", "Black", "1999")
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
 auto(2) = "4-door"
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
End Sub

3. Run the CarInfo procedure.

The IsArray Function

Using the IsArray function, you can test whether a variable is an array. The
IsArray function returns either true, if the variable is an array, or false, if it’s not
an array. Here’s an example.

 Hands-On 7.5 Using the IsArray Function

1. Insert a new module into the current project and rename it IsArray_Function.
2. Enter the code of the IsThisArray procedure, as shown here:

Sub IsThisArray()
 ' declare a dynamic array
 Dim sheetNames() As String
 Dim totalSheets As Integer

210 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim counter As Integer

 ' count the sheets in the current workbook
 totalSheets = ActiveWorkbook.Sheets.Count

 ' specify the size of the array
 ReDim sheetNames(1 To totalSheets)

 ' enter and show the names of sheets
 For counter = 1 To totalSheets
 sheetNames(counter) = _
 ActiveWorkbook.Sheets(counter).Name
 MsgBox sheetNames(counter)
 Next counter

 ' check if this is indeed an array
 If IsArray(sheetNames) Then
 MsgBox "The sheetNames variable is an array."
 End If
End Sub

3. Run the IsThisArray procedure.

The Erase Function

When you want to remove the data from an array, you should use the Erase
function. This function deletes all the data held by static or dynamic arrays. In
addition, the Erase function reallocates all the memory assigned to a dynamic
array. If a procedure has to use the dynamic array again, you must use the ReDim
statement to specify the size of the array.

The following example shows how to erase the data from the array cities.

 Hands-On 7.6 Using the Erase Function

1. Insert a new module into the current project and rename it Erase_Function.
2. Enter the code of the FunCities procedure shown here:

' start indexing array elements at 1
Option Base 1

Sub FunCities()
' declare the array
Dim cities(1 To 5) As String

' assign the values to array elements

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 211

cities(1) = "Las Vegas"
cities(2) = "Orlando"
cities(3) = "Atlantic City"
cities(4) = "New York"
cities(5) = "San Francisco"

' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
Erase cities

' show all that were erased
MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
End Sub

Aft er the Erase function deletes the values from the array, the MsgBox function
displays an empty message box.

3. Run the FunCities procedure.

The LBound and UBound Functions

The LBound and UBound functions return whole numbers that indicate the lower
bound and upper bound of an array.

 Hands-On 7.7 Using the LBound and UBound Functions

1. Insert a new module into the current project and rename it L_and_UBound_
Function.

2. Enter the code of the FunCities2 procedure shown here:
Sub FunCities2()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

212 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities (5)
 ' display the array bounds
 MsgBox "The lower bound: " & LBound(cities) & Chr(13) _
 & "The upper bound: " & UBound(cities)
End Sub

3. Run the FunCities2 procedure.

TROUBLESHOOTING ERRORS IN ARRAYS

When working with arrays, it’s easy to make a mistake. If you try to assign more
values than there are elements in the declared array, VBA will display the error
message “Subscript out of range,” as shown in Figure 7.3.

FIGURE 7.3 This error was caused by an attempt to access a nonexistent array element.

Suppose you declare a one-dimensional array that consists of six elements and
you are trying to assign a value to the seventh element. When you run the pro-
cedure, Visual Basic can’t find the seventh element, so it displays the error mes-
sage. When you click the Debug button, Visual Basic will highlight the line of
code that caused the error.

To fix this type of error, you should begin by looking at the array’s declara-
tion statement. Once you know how many elements the array should hold, it’s
easy to figure out that the culprit is the index number that appears in the paren-
theses in the highlighted line of code. In the example shown in Figure 7.4, once
we replace the line of code cities(7) = "Denver" with cities(6) = "Tren-
ton" and press F5 to resume the procedure, the procedure will run as intended.

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 213

FIGURE 7.4 When you click the Debug button in the error message, Visual Basic highlights the
statement that triggered the error.

Another frequent error you may encounter while working with arrays is Type
mismatch. To avoid this error, keep in mind that each element of an array must
be of the same data type. If you attempt to assign to an element of an array a
value that conflicts with the data type of the array declared in the Dim statement,
you’ll obtain the Type mismatch error during code execution. To hold values of
different data types in an array, declare the array as Variant.

USING THE PARAMARRAY KEYWORD

Values can be passed between subroutines or functions as required or optional
arguments. If the passed argument is not absolutely required for the procedure
to execute, the argument’s name is preceded by the keyword Optional. Some-
times, however, you don’t know in advance how many arguments you want to
pass. A classic example is addition. You may want to add together two numbers.
Later, you may use 3, 10, or 15 numbers.

Using the keyword ParamArray, you can pass an array consisting of any
number of elements to your subroutines and function procedures.

The following AddMultipleArgs function will add up as many numbers as
you require. This function begins with the declaration of an array, myNumbers.
Notice the use of the ParamArray keyword. The array must be declared as an ar-
ray of type Variant, and it must be the last argument in the procedure definition.

214 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 7.8 Passing an Array to Procedures Using the
ParamArray Keyword

1. Insert a new module into the current project and rename it ParameterArrays.
2. In the ParameterArrays module, enter the following AddMultipleArgs func-

tion procedure:
Function AddMultipleArgs(ParamArray myNumbers() As Variant)
 Dim mySum As Single
 Dim myValue As Variant
 For Each myValue in myNumbers
 mySum=mySum+myValue
 Next
 AddMultipleArgs = mySum
End Function

3. To try out the AddMultipleArgs function, activate the Immediate window and
type the following instruction:
?AddMultipleArgs(1, 23.24, 3, 24, 8, 34)

When you press Enter, Visual Basic returns the total of all the numbers in the
parentheses: 93.24. You can supply an unlimited number of arguments. To add
more values, enter additional values inside the parentheses and press Enter.
Notice that each function argument must be separated by a comma.

DATA ENTRY WITH AN ARRAY

Earlier in this chapter you learned how to use various Array functions. The fol-
lowing procedure demonstrates how the simple Array function can speed up
data entry.

 Hands-On 7.9 Using the Array Function to Enter Headings in a
Worksheet

1. Insert a new module into the current project and rename it DataEntry_
withArray.

2. In the EnterData_Array module, enter the following ColumnHeads procedure:
Sub ColumnHeads()
 Dim heading As Variant
 Dim cell As Range
 Dim i As Integer

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 215

 i = 0
 heading = Array("First Name", "Last Name", _
 "Position", "Salary")
 Workbooks.Add

 For Each cell In Range("A1:D1")
 cell.Formula = heading(i)
 i = i + 1
 Next

 Columns("A:D").Select
 Selection.Columns.AutoFit
 Range("A1").Select
End Sub

3. Switch to Microsoft Excel window and run the ColumnHeads procedure.

SORTING AN ARRAY WITH EXCEL

We all find it easier to work with sorted data. Some operations on arrays, like
finding maximum and minimum values, require that the array is sorted. Once it
is sorted, you can find the maximum value by assigning the upper bound index
to the sorted array, as in the following:

y = myIntArray(UBound(myIntArray))

The minimum value can be obtained by reading the first value of the sorted
array:

x = myIntArray(1)

So, how can you sort an array? This section demonstrates how you can use Excel
to get your array data into the sorted order. An easy way to sort an array is copy-
ing your array values to a new worksheet, and then using the Excel built-in Sort
function. After completing the sort, you can load your sorted values back into
a VBA array. This technique is the simplest since you can use a macro recorder
to get your sort statement started for you. And, with a large array, it is also faster
than the classic bubble sort routine that is commonly used with arrays.

 Hands-On 7.10 Using Excel to Sort a VBA Array

1. Insert a new module into the current project and rename it SortArray_
withExcel.

216 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the SortArray_withExcel module, enter the following SortArrayWithExcel
procedure:
Sub SortArrayWithExcel()
 Dim myIntArray() As Integer
 Dim i As Integer
 Dim x As Integer
 Dim y As Integer
 Dim r As Integer
 Dim myDataRng As Range

 'initialize random number generator
 Randomize

 ReDim myIntArray(1 To 10)

 ' Fill the array with 10 random numbers between 1 and 100
 For i = 1 To 10
 myIntArray(i) = Int((100 * Rnd) + 1)
 Debug.Print "aValue" & i & ":" & vbTab & myIntArray(i)
 Next

 'write array to a worksheet
 Worksheets.Add

 r = 1 'row counter
 With ActiveSheet
 For i = 1 To 10
 Cells(r, 1).Value = myIntArray(i)
 r = r + 1
 Next i
 End With

 'Use Excel Sort to order values in the worksheet
 Set myDataRng = ActiveSheet.UsedRange

 With ActiveSheet.Sort
 .SortFields.Clear
 .SortFields.Add Key:=Range("A1"), _
 SortOn:=xlSortOnValues, Order:=xlAscending, _
 DataOption:=xlSortNormal
 .SetRange myDataRng
 .Header = xlNo
 .MatchCase = False
 .Apply
 End With

STORING MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 217

 'free the memory used by array by using Erase statement
 Erase myIntArray

 ReDim myIntArray(1 To 10)

 'load sorted values back into an array

 For i = 1 To 10
 myIntArray(i) = ActiveSheet.Cells(i, 1).Value
 Next

 'write out sorted array to the Immediate Window

 i = 1
 For i = 1 To 10
 Debug.Print "aValueSorted: " & myIntArray(i)
 Next

 'find minimum and maximum values stored in the array
 x = myIntArray(1)
 y = myIntArray(UBound(myIntArray))
 Debug.Print "Min value=" & x & vbTab; "Max value=" & y
End Sub

The SortArrayWithExcel procedure populates a dynamic array with 10 ran-
dom Integer values and prints out this array to an Immediate window and a
new worksheet. Next, the values entered in the worksheet are sorted in ascend-
ing order using the Excel Sort object. The sort statements have been gener-
ated by the macro recorder and then modified for this procedure’s needs. Once
sorted, the Erase statement is used to free the memory used by the dynamic
array. Before reloading the array with the sorted values, the procedure rede-
clares the array variable using the ReDim statement. The last statements in the
procedure demonstrate how to retrieve the minimum and maximum values
from the array variable.

3. Switch to Microsoft Excel window and run the SortArrayWithExcel procedure.

SUMMARY

In this chapter, you learned how you can use arrays in complex VBA proce-
dures that require many variables. You worked with examples of procedures that
demonstrated how to declare and use a one-dimensional array (list) and a two-
dimensional array (table). You saw the difference between static and dynamic

218 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

arrays and practiced using five built-in VBA functions that are frequently used
with arrays: Array, IsArray, Erase, LBound, and UBound. You also learned how
to use a new keyword—ParamArray—and perform sorting of an array with
Excel.

In the next chapter, you will learn how to use collections instead of arrays to
manipulate large amounts of data.

219

Microsoft Excel offers a large number of built-in objects that you can
access from your VBA procedures to automate many aspects of your
worksheets. You are not by any means limited to using these built-in

objects. VBA allows you to create your own objects and collections of objects,
complete with their own methods and properties.

While writing your own VBA procedures, you may come across a situation
where there’s no built-in collection to handle the task at hand. The solution is to
create a custom collection object. You already know from the previous chapter
how to work with multiple items of data by using dynamic and static arrays.
Because collections have built-in properties and methods that allow you to add,
remove, and count their elements, they are much easier to work with than ar-
rays. In this chapter, you will learn how to work with collections, including how
to declare a custom collection object. The usage of class modules to create user-
defined objects will also be discussed at the introductory level.

Chapter

 8 KEEPING TRACK OF
MULTIPLE VALUES
IN EXCEL VBA
PROGRAMS

A QUICK INTRODUCTION TO

CREATING AND USING

COLLECTIONS

220 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Before diving into the theory and hands-on examples in this chapter, you
should become familiar with several terms:

 ● Collection—an object that contains a set of related objects.
 ● Class—a defi nition of an object that includes its name, properties, meth-

ods, and events. Th e class acts as a sort of object template from which an
instance of an object is created at runtime.

 ● Instance—a specifi c object that belongs to a class is referred to as an in-
stance of the class. When you create an instance, you create a new object
that has the properties and methods defi ned by the class.

 ● Class module—a module that contains the defi nition of a class, including
its property and method defi nitions.

 ● Module—a module containing sub and function procedures that are
available to other VBA procedures and are not related to any object in
particular.

 ● Form module—a module that contains the VBA code for all event proce-
dures triggered by events occurring in a user form or its controls. A form
module is a type of class module.

 ● Event—an action recognized by an object, such as a mouse click or a key-
press, for which you can defi ne a response. Events can be caused by a user
action or a VBA statement or can be triggered by the system.

 ● Event procedure—a procedure that is automatically executed in re-
sponse to an event initiated by the user or program code or triggered by
the system.

WORKING WITH COLLECTIONS OF OBJECTS

A set of similar objects is known as a collection. In Microsoft Excel, for example,
all open workbooks belong to the collection of Workbooks, and all the sheets in
a workbook are members of the Worksheets collection. Collections are objects
that contain other objects. No matter what collection you want to work with,
you can do the following:

 ● Refer to a specifi c object in a collection by using an index value. For ex-
ample, to refer to the second object in the collection of Worksheets, use
either of the following statements:
Worksheets(2).Select
Worksheets("Sheet2").Select

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 221

 ● Determine the number of items in the collection by using the Count
property. For example, when you enter in the Immediate window the
statement:

?Worksheets.Count

VBA will return the total number of worksheets in the current workbook.
 ● Insert new items into the collection by using the Add method. For ex-

ample, when you enter in the Immediate window the statement:

Worksheets.Add

VBA will insert to the current workbook a new worksheet. Th e Worksheets
collection now contains one more item.

 ● Cycle through every object in the collection by using the For Each…

Next loop.
Suppose that you opened a workbook containing fi ve worksheets with
the following names: “Daily wages,” “Weekly wages,” “Monthly wages,”
“Yearly salary,” and “Bonuses.” To delete the worksheets that contain the
word “wages” in the name, you could write the following procedure:

Sub DeleteSheets()
 Dim ws As Worksheet
 Application.DisplayAlerts = False
 For Each ws In Worksheets

 If InStr(ws.Name, "wages") Then
 ws.Delete

 End If
 Next
 Application.DisplayAlerts = True
End Sub

Th e statement Application.DisplayAlerts = False is used to
suppress some prompts and messages that Excel displays while the code
is running. In this case, we want to suppress the confi rmation message
that Excel displays when worksheets are deleted. Th e InStr function
is very useful for string comparisons as it allows you to fi nd one string
within another. Th e statement InStr(ws.Name, "wages") tells Excel to
determine if the worksheet name (stored in ws object variable) contains
the string of characters “wages.”

222 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Declaring and Using a Custom Collection

To create a user-defined collection, you should begin by declaring an object
variable of the Collection type:

Dim collection_name as Collection
Set collection_name = New Collection

Or
Dim collection_name As New Collection

Adding Objects to a Custom Collection

After you’ve declared the Collection object with the Dim keyword, you can insert
new items into the collection by using the Add method. The Add method looks
like this:

object.Add item[, key, before, after]

You are required to specify only the object and the item. The object is the col-
lection name. This is the same name that was used in the declaration of the
Collection object. The item is the object that you want to add to the collection.

Although other arguments are optional, they are quite useful. It’s important
to understand that the items in a collection are automatically assigned numbers
starting with 1. However, they can also be assigned a unique key value. Instead
of accessing a specific item with an index (1, 2, 3, and so on), you can assign a
key for that object at the time an object is added to a collection. For instance, if
you are creating a collection of custom sheets, you could use a sheet name as a
key. To identify an individual in a collection of students or employees, you could
use their ID numbers as a key.

If you want to specify the position of the object in the collection, you should
use either a before or after argument (do not use both). The before argu-
ment is the object before which the new object is added. The after argument is
the object after which the new object is added.

The objects with which you populate your collection do not have to be of the
same data type.

The GetComments procedure in Hands-On 8.1 declares a custom collection
object named colNotes. We will use this collection to store comments that you
insert in a worksheet.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 223

 Hands-On 8.1 Using a Custom Collection Object

1. Open a new workbook and save it as C:\VBAPrimerExcel_ByExample\
Chap08_ExcelPrimer.xlsm.

2. Right-click any cell in Sheet1 and choose Insert Comment from the
shortcut menu. Type any text you want. Click outside the comment frame to
exit the comment edit mode. Add two new sheets to the workbook. Use the
same technique to enter two comments in Sheet2. Enter different text for each
comment. Add a comment in any cell on Sheet3. You should now have four
comments in three worksheets.

3. Click the File tab and choose Options. In the Excel Options window’s
General section, in the area named “Personalize your copy of Microsoft Office,”
you should see a text box with your name. Delete your name and enter Joan
Smith, and then click OK. Now, enter one comment anywhere on Sheet2 and
one comment anywhere on Sheet3. These comments should be automatically
stamped with Joan Smith’s name. When you’re done entering the comment
text, return to the Excel Options window and change the User name text box
entry back to the way it was (your name).

4. Switch to the Visual Basic Editor and rename the VBA project ObjColClass.
5. Add a new module to the current project and rename it MyCollection.
6. In the MyCollection module, enter the GetComments procedure, as shown

here:
Sub GetComments()
 Dim sht As Worksheet
 Dim colNotes As New Collection
 Dim myNote As Comment
 Dim i As Integer
 Dim t As Integer
 Dim strName As String

 strName = InputBox("Enter author's name:")
 For Each sht In ThisWorkbook.Worksheets
 sht.Select
 i = ActiveSheet.Comments.Count
 For Each myNote In ActiveSheet.Comments
 If myNote.Author = strName Then
 MsgBox myNote.Text
 If colNotes.Count = 0 Then
 colNotes.Add Item:=myNote, key:="first"
 Else
 colNotes.Add Item:=myNote, Before:=1
 End If

224 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
 Next
 t = t + i
 Next
 If colNotes.Count <> 0 Then MsgBox colNotes("first").Text
 MsgBox "Total comments in workbook: " & t & Chr(13) & _
 "Total comments in collection: " & colNotes.Count
 Debug.Print "Comments by " & strName
 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 Next
End Sub

Th e foregoing procedure begins by declaring the custom collection object
called colNotes. Next, the procedure prompts for an author’s name and then
loops through all the worksheets in the active workbook to locate this author’s
comments. Only comments entered by the specifi ed author are added to the
custom collection.
 Th e procedure assigns a key to the fi rst comment and then adds the
remaining comments to the collection by placing them before the comment
that was added last (notice the use of the before argument). If the collection
includes at least one comment, the procedure displays a message box with the
text of the comment that was identifi ed with the special key argument. Notice
how the key argument is used in referencing an item in a collection. Th e
procedure then prints the text of all the comments included in the collection
to the Immediate window.
 Text functions (Mid and Len) are used to get only the text of the comment
without the author’s name. Next, the total number of comments in a workbook
and the total number of comments in the custom collection are returned by
the Count property.

7. Run the GetComments procedure twice each time, supplying a different name
of the commenting author (your name and Joan Smith). Check the procedure
results in the Immediate window.

Removing Objects from a Custom Collection

Removing an item from a custom collection is as easy as adding an item. To
remove an object, use the Remove method in the following format:

object.Remove item

The object is the name of the custom collection that contains the object you
want to remove. The item is the object you want to remove from the collection.

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 225

To demonstrate the process of removing an item from a collection, let’s mod-
ify the GetComments procedure that you prepared in the preceding section. At
the end of this procedure, we’ll display the contents of the items that are cur-
rently in the colNotes collection one by one and ask the user whether the item
should be removed from the collection.

 Hands-On 8.2 Removing Items from a Custom Collection

1. Add the following lines to the declaration section of the GetComments
procedure:
Dim response as Integer
Dim myID As Integer

Th e fi rst statement declares the variable called response. You will use this
variable to store the result of the MsgBox function. Th e second statement
declares the variable myID to store the index number of the Collection object.

2. Locate the following statement in the GetComments procedure:
For Each myNote In colNotes

Precede the foregoing statement with the following line of code:

myID = 1

3. Locate the following statement in the GetComments procedure:
Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))

Enter the following block of instructions below that statement:
response = MsgBox("Remove this comment?" & Chr(13) _
& Chr(13) & myNote.Text, vbYesNo + vbQuestion)
If response = 6 Then
 colNotes.Remove Index:=myID
Else
 myId = myID + 1
End If

4. Enter the following statements at the end of the procedure before the End Sub
keywords:
Debug.Print "These comments remain in the collection:"
For Each myNote in colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
Next

226 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e revised GetComments procedure, named GetComments2, is shown here.
Note that this procedure removes the specifi ed comments from the custom
collection. It does not delete the comments from the worksheets.

Sub GetComments2()
 Dim sht As Worksheet
 Dim colNotes As New Collection
 Dim myNote As Comment
 Dim i As Integer
 Dim t As Integer
 Dim strName As String
 Dim response As Integer
 Dim myID As Integer

 strName = InputBox("Enter author's name:")
 For Each sht In ThisWorkbook.Worksheets
 sht.Select
 i = ActiveSheet.Comments.Count
 For Each myNote In ActiveSheet.Comments
 If myNote.Author = strName Then
 MsgBox myNote.Text
 If colNotes.Count = 0 Then
 colNotes.Add Item:=myNote, key:="first"
 Else
 colNotes.Add Item:=myNote, Before:=1
 End If
 End If
 Next
 t = t + i
 Next
 If colNotes.Count <> 0 Then MsgBox colNotes("first").Text

 MsgBox "Total comments in workbook: " & t & Chr(13) & _
 "Total comments in collection:" & colNotes.Count
 Debug.Print "Comments by " & strName

 myID = 1

 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 response = MsgBox("Remove this comment?" & Chr(13) _
 & Chr(13) & myNote.Text, vbYesNo + vbQuestion)
 If response = 6 Then
 colNotes.Remove index:=myID
 Else

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 227

 myID = myID + 1
 End If
 Next

 MsgBox "Total notes in workbook: " & t & Chr(13) & _
 "Total notes in collection: " & colNotes.Count
 Debug.Print "These comments remain in the collection:"

 For Each myNote In colNotes
 Debug.Print Mid(myNote.Text, Len(myNote.Author) + 2, _
 Len(myNote.Text))
 Next
End Sub

5. Run the GetComments2 procedure and remove one of the comments displayed
in the message box.
Keep in mind that this procedure manipulates only the custom collection of
comments and not the actual comments you entered in the workbook. Th erefore,
aft er deleting the comments via the foregoing code, the comments will still be
present in the workbook. To delete all comments from the workbook, run the
following code:

Sub DeleteWorkbookComments()
 Dim myComment As Comment
 Dim sht As Worksheet

 For Each sht In ThisWorkbook.Worksheets
 For Each myComment In sht.Comments
 myComment.Delete
 Next
 Next
End Sub

Reindexing Collections

Collections are reindexed automatically when an object is removed. Therefore,
to remove all objects from a custom collection, you can use 1 for the Index
argument, as in the following example:
Do While myCollection.Count > 0
 myCollection.Remove Index:=1
Loop

SIDEBAR

228 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING AND USING CUSTOM OBJECTS

Visual Basic Editor’s Insert menu has two Module options: Module and Class
Module. So far, you’ve used standard modules to create subroutine and func-
tion procedures. You’ll use the class module for the first time in this chapter to
create a custom class named CAsset and learn how to define its properties and
methods.

Before you can create custom objects, you need a basic understanding of
what a class is. If you refer to the beginning of this chapter, you will see that we
described a class as a sort of object template. A frequently used analogy is com-
paring an object class to a cookie cutter. Just as a cookie cutter defines what a
cookie will look like; the definition of the class determines how an object should
look and behave. Before you can use an object class, you must first create a new
instance of that class. Object instances are the cookies. Each object instance has
the characteristics (properties and methods) defined by its class. Just as you can
cut out many cookies using the same cookie cutter, you can create multiple in-
stances of a class. You can also change the properties of each instance of a class
independently of any other instance of the same class.

A class module lets you define your own custom classes, complete with cus-
tom properties and methods. Recall that a property is an attribute of an object
that defines one of its characteristics, such as shape, position, color, title, and
so on. You can create the properties for your custom objects by writing prop-
erty procedures in a class module. There are three types of property procedures
(Property Get, Property Let, and Property Set). You will learn how to work with
property procedures in Lab 8.1.

A method is an action that the object can perform. The object methods are
also created in a class module by writing subroutines or function procedures.
Working with class modules is an advanced topic and covered in this chapter at
the introductory level.

Lab 8.1 will introduce you to the process of creating a custom object named
CAsset. This object will contain information about a single computer hardware
asset. It will have four properties to hold the information about AssetType,
Manufacturer, Model, and Price. It will also have a method that will allow you to
modify the price. The asset information that you will use in this project is pro-
vided in a text file on the companion CD-ROM disc and depicted in Figure 8.1.

As you can see in Figure 8.1, the data file contains several lines (records).
The data between the quotes is treated as a single field. Fields are delimited by
a comma (,). This type of a text file is often called a comma-delimited file or a

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 229

sequential access file. To successfully complete this lab, you need to know that
in sequential access files the data is retrieved in the same order as it is stored.
Sequential access files can be opened in Input, Output, or Append mode. In this
project you will use the Input mode, which will allow you to read the data from
the file into your custom object’s properties. Because the file contains data on
several assets, you will also reinforce your understanding about collections by
reading the data from the text file into a collection of CAsset objects and then
manipulating these objects. So, let’s get started.

 Lab 8.1a Creating a Class Module

1. Select VBAProject (Chap08_ExcelPrimer.xlsm) in the Project Explorer
window and choose Insert | Class Module.

2. Highlight the Class 1 module in the Project Explorer window and use the
Properties window to rename the class module CAsset.

Naming a Class Module

Every time you create a new class module, give it a meaningful name. Set the
name of the class module to the name you want to use in your VBA procedures
that use the class. The name you choose for your class should be easily under-
stood and identify the “thing” the object class represents. As a rule, the object
class name is prefaced with an uppercase “C.”

SIDEBAR

FIGURE 8.1 This text file (AssetInfo.txt) provides the data for the custom CAsset object class.

230 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Variable Declarations

After adding and renaming the class module, the next step is to declare the vari-
ables that will hold the data you want to store in the object. Each item of data
you want to store in an object should be assigned a variable. Variables in a class
module are called data members and are declared with the Private keyword.
This keyword ensures that the variables will be available only within the class
module. Using the Private keyword instead of the familiar Dim statement hides
the data members and prevents other parts of the application from referencing
them. Only the procedures within the class module in which the variables were
defined can modify the value of these variables.

Because the name of a variable also serves as a property name, use meaning-
ful names for your object’s data members. It’s traditional to preface the variable
names with m_ to indicate that they are data members of a class.

Let’s continue with our project by declaring data members for our CAsset
class.

 Lab 8.1b Declaring Members of the CAsset Class

1. Type the following declaration lines at the top of the CAsset class module:
'declarations
Private m_AssetType As String
Private m_Manufacturer As String
Private m_Model As String
Private m_Price As Currency

Notice that the name of each data member variable begins with the prefi x m_.

Defining the Properties for the Class

Declaring the variables with the Private keyword guarantees that the variables
cannot be directly accessed from outside the object. This means that the VBA
procedures from outside the class module will not be able to set or read data
stored in those variables. To enable other parts of your VBA application to set or
retrieve the asset data, you must add special property procedures to the CAsset
class module.

There are three types of property procedures:

 ● Property Let allows other parts of the application to set the value of a
property.

 ● Property Get allows other parts of the application to get or read the value
of a property.

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 231

 ● Property Set is used instead of Property Let when setting the reference to
an object.

Property procedures are executed when an object property needs to be set or
retrieved. The Property Get procedure can have the same name as the Property
Let procedure.

You should create property procedures for each property of the object that
can be accessed by another part of your VBA application. The easiest of the
three types of property statements to understand is the Property Get procedure.
Let’s examine the syntax of the property procedures by taking a closer look at
the Property Get AssetType procedure. As a rule, the property procedures con-
tain the following parts:

 ● A procedure declaration line that specifi es the name of the property and
the data type:

Property Get AssetType() As String

AssetType is the name of the property and As String determines the
data type of the property’s return value.

 ● An assignment statement like the one used in a function procedure:

AssetType = m_AssetType

AssetType is the name of the property, and m_AssetType is the data
member variable that holds the value of the property you want to retrieve
or set. Th e m_AssetType variable should be defi ned with the Private
keyword at the top of the class module.

 ● Th e End Property keywords that specify the end of the property proce-
dure:

Property Get AssetType() As String
 AssetType = m_AssetType
End Property

Writing Property Procedures

The CAsset class has four properties (AssetType, Manufacturer, Model, and
Price) that need to be exposed to a VBA procedure that you will write later.
Because this procedure will need to read a data file and then write it into a col-
lection of CAsset objects, the next step requires writing the necessary Property
Get and Property Let procedures.

232 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Lab 8.1c Writing Property Procedures for the CAsset Class

1. Type the following Property Get and Let procedures in the CAsset class
module, just below the declaration section.
' Property procedures

Property Get AssetType() As String
 AssetType = m_AssetType
End Property

Property Let AssetType(ByVal aType As String)
 m_AssetType = aType
End Property

Property Get Manufacturer() As String
 Manufacturer = m_Manufacturer
End Property

Property Let Manufacturer(ByVal aMake As String)
 m_Manufacturer = aMake
End Property

Property Get Model() As String
 Model = m_Model
End Property

Property Let Model(ByVal aModel As String)
 m_Model = aModel
End Property

Property Get Price() As Currency
 Price = m_Price
End Property

Property Let Price(ByVal aPrice As Currency)
 m_Price = aPrice

End Property

Notice that each type of the needed asset information requires a separate
Property Get procedure. Each of the Property Get procedures returns the
current value of the property. Th e Property Get procedure is like a function
procedure. Like function procedures, the Property Get procedures contain an
assignment statement. As you recall from Chapter 4, to return a value from a
function procedure, you must assign it to the function’s name.

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 233

Immediate Exit from Property Procedures

Just like the Exit Sub and Exit Function keywords allow you to exit early
from a subroutine or a function procedure, the Exit Property keywords give
you a way to immediately exit from a property procedure. Program execution
will continue with the statements following the statement that called the Prop-
erty Get, Property Let, or Property Set procedure.

In addition to retrieving values stored in data members (private variables) with
Property Get procedures, you wrote corresponding Property Let procedures
to allow other parts of the application to change the values of these variables
as needed. You can make a property read-only by not writing a corresponding
Property Let procedure.
 Th e Property Let procedures require at least one parameter that specifi es the
value you want to assign to the property. Th is parameter can be passed by value
(see the ByVal keyword in the Property Let Price procedure shown earlier) or
by reference (ByRef is the default). If you need a refresher on the meaning of
these keywords, see the section titled “Passing Arguments by Reference and
Value” in Chapter 4.
 Th e data type of the parameter passed to the Property Let procedure must
have the same data type as the value returned from the Property Get procedure
with the same name. Notice that the Property Let procedures have the same
name as the Property Get procedures prepared in the preceding section.

Defi ning the Scope of Property Procedures

You can place the Public, Private, or Static keyword before the name of a
property procedure to define its scope. For example, to indicate that the Prop-
erty Get procedure is accessible to other procedures in all modules, use the
following statement format:
Public Property Get AssetType() As String

To make the Property Get procedure accessible only to other procedures in the
module where it is declared, use the following statement format:
Private Property Get Model() As String

To preserve the Property Get procedure’s local variables between procedure
calls, use the following statement format:
Static Property Get Manufacturer() As String

SIDEBAR

SIDEBAR

234 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

If not explicitly specified using either Public or Private, property procedures
are public by default. Also, if the Static keyword is not used, the values of lo-
cal variables are not preserved between the procedure calls.

Writing Class Methods

Apart from properties, objects usually have one or more methods. A method is
an action that the object can perform. Methods allow you to manipulate data
stored in a class object. Methods are created with the sub or function proce-
dures. To make a method available outside the class module, use the Public
keyword in front of the sub or function definition.

The CAsset class that you create in this lab has one method that allows you
to calculate the new price. Assume that the asset’s price can be decreased by a
specific percentage or amount. Let’s continue with our lab by writing a class
method that calculates the new price.

 Lab 8.1d. Writing a Method for the CAsset Class

1. Type the following NewPrice function procedure in the CAsset class module:
' function to calculate new price
Public Function NewPrice(discountType As Integer, _
 currentPrice As Currency, _
 amount As Long) As Currency

 If amount >= currentPrice Then
 NewPrice = currentPrice
 Exit Function
 End If
 Select Case discountType
 Case 1 ' by percent
 If amount > 50 Then
 amount = 50
 End If
 NewPrice = currentPrice - ((currentPrice * _
 amount) / 100)

 Case 2 ' by amount
 NewPrice = currentPrice - amount
 End Select
End Function

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 235

The NewPrice function defined with the Public keyword in a class module
serves as a method for the CAsset class. To calculate a new price, a VBA pro-
cedure from outside the class module must pass three arguments: discount-
Type, currentPrice, and amount. The discountType argument specifies the
type of the calculation. Suppose you want to decrease the asset price by 5% or
by $5. The first option will decrease the price by the specified percentage, and
the second option will subtract the specified amount from the current price.
The currentPrice argument is the current price figure for an asset, and amount
determines the value by which the price should be changed. The other assump-
tions in the new price calculation that you might want to include can be speci-
fied with the conditional statements.

Creating an Instance of a Class

You have now completed the definition of the CAsset class. Every time you
define a class you must do this in a class module. In VBA, you can define only
one class in a class module. The name of the class is the name of the module.
A class is a template from which you can create objects. The class specifies the
properties and methods that will be common for all objects created from that
class.

After defining the class, you can create objects based on that class. This pro-
cess takes place in a standard module. You start by declaring an object variable.
If the name of the class module is CAsset, declare a variable of type CAsset and
set that variable to a new instance of the class, like this:
 Dim asset As CAsset
 Set asset = New CAsset

It is also possible to combine the two statements into a single statement, like
this:

 Dim asset As New CAsset

The asset variable represents a reference to an object of the CAsset class. You
can name your object variable anything you want except you cannot use any
of the VBA reserved words. All the properties and methods defined in CAsset
class will now be available in the asset variable. When you declare the object
variable with the New keyword, VBA creates the object and allocates memory for
it; however, the object isn’t instanced until you refer to it in your procedure code
by assigning a value to its property or running one of its methods.

Let’s continue our hands-on lab project by writing the VBA procedure that
reads the data from the text file into a collection of CAsset objects.

236 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Lab 8.1e Writing Code

1. In the Visual Basic Editor screen, choose Insert | Module to add a standard
module to the current VBA project.

2. In the Properties window, rename the module AssetInfo.
3. In the Project Explorer window, double-click the AssetInfo module to

activate the Code window.
4. In the AssetInfo Code window, enter the Retrieve_AssetInfo procedure as

shown here:
Sub Retrieve_AssetInfo()
 ' declare two object variables
 ' one for the object and the other
 ' for the collection of objects
 Dim asset As CAsset
 Dim AssetsColl As Collection

 ' declare variables for reading the data file
 Dim strAssetType As String
 Dim strMake As String
 Dim strModel As String
 Dim itemPrice As String

 ' declare a variable to specify discount type
 ' in the calculation of new asset price
 Dim intDiscount As Integer

 ' declare variables used by the MsgBox function
 Dim strTitle As String
 Dim strPrompt As String

 ' declare variables to facilitate data
 ' entry in a worksheet and the Immediate window
 Dim strFilePath As String
 Dim strRecord As String
 Dim wRow As Integer

 ' declare variables used for collection purpose
 Dim counter As Integer
 Dim aKey As String

 ' declare variables for accessing an object
 ' in a collection via a key
 Dim assetKey As String
 'Dim m As Object

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 237

 ' if error occurs go to the next statement
 On Error Resume Next

 ' initialize various variables
 strFilePath = "C:\VBAPrimerExcel_ByExample\AssetInfo.txt"
 counter = 0

 wRow = 1

 strPrompt = "Enter 1 for the percent discount or "
 strPrompt = strPrompt + " 2 for the amount discount"

 strTitle = "Price Discount Type"

 ' create an instance of the collection object
 Set AssetsColl = New Collection

 ' open the text file for reading
 Open strFilePath For Input As #1

 'check is the file is available
 If Err.Number <> 0 Then
 MsgBox "File not found!", vbCritical, "File Error"
 Exit Sub
 End If

 ' ask the user the type of discount to apply
 intDiscount = CInt(InputBox(strPrompt, strTitle, 1))

 ' add a new empty worksheet
 ActiveWorkbook.Worksheets.Add

 ' -------------------------------------
 ' loop until end of file is encountered
 ' -------------------------------------
 Do While Not EOF(1)

 'read data from the text file into four variables
 Input #1, strAssetType, strMake, strModel, itemPrice

 If strAssetType = "AssetType" Then
 ' --
 ' enter column headings in the worksheet 1st row
 ' 5th column is for new price calculation
 ' --

238 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 With ActiveSheet
 .Cells(1, 1) = strAssetType
 .Cells(1, 2) = strMake
 .Cells(1, 3) = strModel
 .Cells(1, 4) = itemPrice
 .Cells(1, 5) = "New " & itemPrice
 End With
 ' skip lines of code following the if statement
 GoTo Label_SkipHeading
 End If

 '---------------------------------------
 ' create an instance of the CAsset class
 '---------------------------------------
 Set asset = New CAsset

 counter = counter + 1
 aKey = "record" & counter

 '-----------------------------------
 ' set properties of the asset object
 '-----------------------------------
 asset.AssetType = strAssetType
 asset.Manufacturer = strMake
 asset.Model = strModel
 asset.Price = itemPrice

 '--
 ' add asset object to the AssetsColl collection
 ' and assign a custom key for that object
 '--
 AssetsColl.Add asset, aKey

 Set asset = Nothing

Label_SkipHeading:
 Resume Next
 Loop

 'Close the text file
 Close #1

 ' display informational message
 MsgBox "Asset Collection contains " & _
 AssetsColl.Count & " items.", _
 vbInformation, "Total Items"

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 239

 '--
 ' iterate through the collection and access
 ' each instance of the CAsset class
 ' printing the data to the Immediate window
 '--
 For Each asset In AssetsColl
 Debug.Print asset.AssetType & vbTab & _
 asset.Manufacturer & vbTab & _
 asset.Model & vbTab & FormatNumber(asset.Price, 2)
 Next asset

 '--
 ' iterate through the collection to access
 ' each instance of the CAsset class
 ' this time entering data the active worksheet
 '--
 For Each asset In AssetsColl
 'set next row in the worksheet
 wRow = wRow + 1
 'write record to the worksheet
 With ActiveSheet
 .Cells(wRow, 1) = asset.AssetType
 .Cells(wRow, 2) = asset.Manufacturer
 .Cells(wRow, 3) = asset.Model
 .Cells(wRow, 4) = asset.Price
 ' calculate the discount
 .Cells(wRow, 5) = asset.NewPrice(intDiscount, _
 asset.Price, 100)
 End With
 Next asset
 Selection.CurrentRegion.Columns.AutoFit

 'retrieve the asset from a collection by a key
 assetKey = InputBox("Enter key", "Retrieval", "record1")

 Set asset = AssetsColl.Item(assetKey)
 strRecord = "Asset Type" & vbTab & asset.AssetType & _
 vbCrLf
 strRecord = strRecord & "Manufacturer" & vbTab & _
 asset.Manufacturer & vbCrLf
 strRecord = strRecord & "Model" & vbTab & vbTab & _
 asset.Model & vbCrLf
 strRecord = strRecord & "Price" & vbTab & vbTab & _
 Format(asset.Price, "Currency")

240 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox strRecord, vbInformation + vbOKOnly, _
 "Retrieving " & assetKey

End Sub

5. Run the Retrieve_AssetInfo procedure. Reply to all the procedure prompts by
accepting the default values.

6. After running the procedure, you should see the asset data entered in a
worksheet and in the Immediate window as shown in Figures 8.2 and 8.3.

FIGURE 8.2 The asset data in the provided text file (see Figure 8.1) is stored in a collection of
objects and written to the worksheet. The New Price column does not exist in the original file and
was added by the VBA procedure to demonstrate the use of class methods.

The Retrieval input box demonstrates how a key can be used for accessing
objects in a collection. The asset details for the specified record are displayed in
a message box above.

FIGURE 8.3 The asset data in the provided text file (see Figure 8.1) is written to the Immediate
window.

The Retrieve_AssetInfo procedure starts off by declaring and initializing a whole
bunch of variables that will be used by various sections of the code. Because you

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 241

are dealing with an external file, you want to make sure that if the file cannot be
found, a message is displayed and the procedure ends. The Number property of
the VBA Err object will return a number other than zero if some problem was
encountered while opening the file. To read the file, you must open it in Input
mode using the following statement:

Open strFilePath For Input As #1

Once the file is open, you want to read it sequentially from top to bottom. This
can be done using the Do While or Do Until loop that you learned in Chapter
6. Text files contain a special character known as an end-of-file marker that is
appended to the file by the operating system. When reading the file, you can
use the EOF function to detect that marker and thus know if the end of file was
reached. The statement

Do While Not EOF(1)

means that you want to keep executing the statements inside the loop until all
data in the file has been read. This statement is equivalent to Do Until EOF(1).
The number between the parentheses is a number corresponding to the file
number from which you want to read the data (the same number that was used
in the Open statement).
Each time in the loop, we use the Input # statement to read the data from the file
into four variables:

Input #1, strAssetType, strMake, strModel, itemPrice

Note that there are other ways of reading text files in VBA, but they are beyond
the scope of this primer book.
After writing out the column names into the worksheet, we create our asset
object and set its four properties (AssetType, Manufacturer, Model, and
Price), using the values stored in the variables:

asset.AssetType = strAssetType
asset.Manufacturer = strMake
asset.Model = strModel
asset.Price = itemPrice

Each of the foregoing assignment statements is actually a call to the appropriate
Let procedure in the CAsset class module. For example, to set the AssetType
property of the asset object, the following procedure is executed:
Property Let AssetType(ByVal aType As String)
 m_AssetType = aType
End Property

242 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can execute the procedure line by line (see the next chapter) to gain better
understanding of what’s going on when these statements are being executed.

At this point the asset object contains the first record data, which is the sec-
ond line in our text file. Before handling the next record’s data, we use the Add
method to add the asset object to the AssetsColl collection:

AssetsColl.Add asset, aKey

Each object in the collection is identified by a key that we create by concatenat-
ing a number and the word “record,” obtaining “record1,” “record2,” “record3,”
and so on.

After adding the asset object to the collection, we release the memory by set-
ting it to Nothing and we continue to the next record, executing the statements
within the loop, skipping only those that were used for the preparation of the
column headings. A new object is created, its properties are set, and the object
is added to the collection. The same process repeats until the EOF is reached.
When we are done looping, we close the file using the Close#1 statement. We
should now have 9 asset objects in the AssetsColl collection. The remaining
code in the procedure iterates through the collection of objects and prints the
data to the immediate window and to the worksheet. When we retrieve the ob-
jects from the collection, VBA goes on to execute the Property Get procedures
that you wrote in the CAsset class module. When writing the New Price to the
worksheet we call the NewPrice method. This method uses the intDiscount
variable whose value was obtained from the user earlier in the procedure. If
you accepted the default value in the input box, then the Price is reduced by the
specified percentage. The last parameter of the NewPrice method, which de-
notes amount, is hardcoded. Based on the entered amount, the IF statements in-
cluded in the NewPrice method will execute or will be skipped. When entering
prices, it is often necessary to appropriately format the data. The Retrieve_As-
setInfo procedure uses the FormatNumber function to format the Price data in
the Immediate window:

FormatNumber(asset.Price, 2)

The second argument of the FormatNumber function specifies how many places
to the right of the decimal are displayed. To format the number as Currency,
change the foregoing statement to:

FormatCurrency(asset.Price, 2)

KEEPING TRACK OF MULTIPLE VALUES IN EXCEL VBA PROGRAMS: A QUICK INTRODUCTION 243

SUMMARY

In this chapter, you learned how to create and use your own objects and collec-
tions in VBA procedures. You used a class module to create a custom object, and
you saw how to define your object’s properties using Property Get and Property
Let procedures. You also learned how to write a method for your custom object.
In the next chapter, you will learn how to troubleshoot your VBA procedures.

245

It does not take much for an error to creep into your VBA procedure. The truth
is that no matter how careful you are, it is rare that all your VBA procedures
will work correctly the first time. There are three types of errors in VBA: syn-

tax errors, logic errors, and runtime errors. This chapter introduces you to the Vi-
sual Basic Editor tools that are available for you to use in the process of analyzing
the code of your VBA procedures and locating the source of errors.

TESTING VBA PROCEDURES

Because most of the procedures we wrote earlier were quite short, finding errors
wasn’t very difficult. However, locating the source of errors in longer and more
complex procedures is more tedious and time-consuming. Fortunately, Visual
Basic Editor provides a set of handy tools that can make the process of tracking
down your VBA problems easier, faster, and less frustrating. Bugs are errors
in computer programs. Debugging is the process of locating and fixing those
errors by stepping through the code of your procedure or checking the values
of variables.

When testing your VBA procedure, use the following guidelines:

 ● To analyze your procedure, step through your code one line at a time by
pressing F8 or choose Debug | Step Into.

Chapter

 9 EXCEL TOOLS FOR
TESTING AND
DEBUGGING

A QUICK INTRODUCTION TO

TESTING VBA PROGRAMS

246 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● To locate an error in a specifi c place in your procedure, use a breakpoint.
 ● To monitor the value of a variable or expression used by your procedure,

add a watch expression.
 ● To get to sections of code that interest you, set up a bookmark to jump

quickly to the desired location.

Each of these guidelines is demonstrated in a hands-on scenario in this chapter.

STOPPING A PROCEDURE

While testing your VBA procedure you may want to halt its execution. This can
be done simply by pressing the Esc key, which causes Visual Basic to stop your
program and display the message shown in Figure 9.1. VBA also offers other
methods of stopping your procedure. When you stop your procedure, you enter
what is called a break mode.
To enter break mode, do one of the following:

 ● Press the Ctrl+Break key combination
 ● Set one or more breakpoints
 ● Insert the Stop statement into your procedure code
 ● Add a watch expression

A break occurs when the execution of your VBA procedure is suspended. Visual
Basic remembers the values of all variables and the statement from which the
execution of the procedure should resume when the user decides to continue by
clicking Run Sub/UserForm on the toolbar (or the Run menu option with the
same name), or by clicking the Continue button in the dialog box. The error
dialog box shown in Figure 9.1 informs you that the procedure was halted. The
buttons in this dialog are described in Table 9.1.

FIGURE 9.1 This message appears when you press Esc or Ctrl+Break while your VBA procedure is
running.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 247

TABLE 9.1 Error dialog buttons.

Continue Click this button to resume code execution. This button will be grayed out if an
error was encountered.

End Click this button if you do not want to troubleshoot the procedure at this time.
VBA will stop code execution.

Debug
Click this button to enter break mode. The Code window will appear, and VBA
will highlight the line at which the procedure execution was suspended. You
can examine, debug, reset, or step through the code.

Help Click this button to view the online help that explains the cause of this error
message.

You can prevent application users from halting your procedure by including the
following statement in the procedure code:

Application.EnableCancelKey = xlDisabled

When the user presses Esc or Ctrl+Break while the procedure is running,
nothing happens. The Application object’s EnableCancelKey property disables
these keys.

USING BREAKPOINTS

If you know more or less where you can expect a problem in the code of
your procedure, suspend code execution on a given line by pressing F9 to set
a breakpoint on that line. When VBA gets to that line while running your
procedure, it will immediately display the Code window. At this point, you can
step through the procedure code line by line by pressing F8 or choosing Debug
| Step Into. To see how this works, let’s look at the following scenario. Assume
that during the execution of the ChangeCode procedure in Hands-On 9.1, the
following line of code could get you in trouble:
ActiveCell.FormulaR1C1 "=VLOOKUP(RC[1],Codes.xlsx!R1C1:R6C2,2)"

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 9.1 Setting Breakpoints in a VBA Procedure

1. Copy the Chap09_ExcelPrimer.xlsm workbook from the companion disc to
your C:\VBAPrimerExcel_ByExample folder.

2. Copy the Codes.xlsx workbook from the companion disc to your C:\
VBAPrimerExcel_ByExample folder.

248 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Start Microsoft Excel and open both these files (Chap09_ExcelPrimer.xlsm,
Codes.xlsx) from the C:\VBAPrimerExcel_ByExample folder.

4. Examine the data in both workbooks. It should look like Figures 9.2 and 9.3.

FIGURE 9.2 The data entered in column D of this spreadsheet will be replaced by the ChangeCode
procedure with the data illustrated in Figure 9.3.

FIGURE 9.3 The ChangeCode procedure uses this code table for lookup purposes.

5. Close the Codes.xlsx workbook. Leave the other file open.
6. With Chap09_ExcelPrimer.xlsm active, switch to the Visual Basic Editor

window.
7. In the Project Explorer, open the Modules folder in the Debugging (Chap09_

ExcelPrimer.xlsm) project and double-click the Breaks module.
Th e Breaks Module Code window lists the following ChangeCode procedure:

Sub ChangeCode()
 Workbooks.Open Filename:="C:\VBAPrimerExcel_ByExample\Codes.xlsx"
 Windows("Chap09_ExcelPrimer.xlsm").Activate
 Columns("D:D").Insert Shift:=xlToRight
 Range("D1").Formula = "Code"

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 249

 Columns("D:D").SpecialCells(xlBlanks).Select
 ActiveCell.FormulaR1C1 = "=VLookup(RC[1],Codes.xlsx!R1C1:R6C2,2)"
 Selection.FillDown
 With Columns("D:D")
 .EntireColumn.AutoFit
 .Select
 End With
 Selection.Copy
 Selection.PasteSpecial Paste:=xlValues
 Rows("1:1").Select
 With Selection
 .HorizontalAlignment = xlCenter
 .VerticalAlignment = xlBottom
 .Orientation = xlHorizontal
 End With
 Workbooks("Codes.xlsx").Close
End Sub

8. In the ChangeCode procedure, click anywhere on the line containing the
following statement:

ActiveCell.FormulaR1C1 = "=VLookup(RC[1],Codes.xlsx!R1C1:R6C2,2)"

9. Set a breakpoint by pressing F9 (or choosing Debug | Toggle Breakpoint or
clicking in the margin indicator to the left of the line).
When you set the breakpoint, Visual Basic displays a red circle in the margin.
At the same time, the line that has the breakpoint is indicated as white text on
a red background as in Figure 9.4. Th e color of the breakpoint can be changed
on the Editor Format tab in the Options dialog box (Tools menu).

10. Press F5 to run the ChangeCode procedure.
When you run the procedure, Visual Basic will execute all the statements
until it encounters the breakpoint. Figure 9.5 shows the yellow arrow in the
margin to the left of the statement at which the procedure was suspended, and
the statement inside a box with a yellow background. Th e arrow and the box
indicate the current statement or the statement that is about to be executed.
If the current statement also contains a breakpoint, the margin displays both
indicators overlapping one another (the circle and the arrow).

250 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 9.4 The line of code where the breakpoint is set is displayed in the color specified on the
Editor Format tab in the Options dialog box.

FIGURE 9.5 When Visual Basic encounters a breakpoint, it displays the Code window and indicates
the current statement.

While in break mode, you can change code, add new statements, execute
the procedure one line at a time, skip lines, set the next statement, use the

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 251

Immediate window, and more. When Visual Basic is in break mode, all the
options on the Debug menu are available. If you change certain code while you
work in break mode, VBA will prompt you to reset the project by displaying the
following error message: “Th is action will reset your project, proceed anyway?”
You can click OK to stop the program’s execution and proceed editing your
code or click Cancel to delete the new changes and continue running the code
from the point at which it was suspended.

11. Press F5 (or choose Run Sub/UserForm) to continue running the procedure.
Visual Basic leaves break mode and continues to run the procedure statements
until it reaches the end of the procedure. When the procedure fi nishes
executing, Visual Basic does not automatically remove the breakpoint. Notice
that the line of code with the VLookup function is still highlighted in red.
 In this example you have set only one breakpoint. Visual Basic allows you
to set any number of breakpoints in a procedure. This way, you can suspend
and continue the execution of your procedure as you please. You can analyze
the code of your procedure and check the values of variables while execution
is suspended. You can also perform various tests by typing statements in the
Immediate window.

12. Remove the breakpoint by choosing Debug | Clear All Breakpoints or by
pressing Ctrl+Shift+F9 or by clicking on the red circle in the margin area to
remove the breakpoint.
All the breakpoints are removed. If you had set several breakpoints in a given
procedure and would like to remove only one or some of them, click on the
line containing the breakpoint that you want to remove and press F9 (or choose
Debug | Clear Breakpoint or simply click the red dot in the margin). You
should clear the breakpoints when they are no longer needed. Th e breakpoints
are automatically removed when you close the fi le.

13. Switch to the Microsoft Excel application window and notice that a new
column with the looked-up codes, like the one in Figure 9.6, was added on
Sheet1 of the Chap09_ExcelPrimer.xlsm workbook.

FIGURE 9.6 This worksheet was modified by the ChangeCode procedure in Hands-On 9.1.

252 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When to Use a Breakpoint

Consider setting a breakpoint if you suspect that your procedure never executes
a certain block of code.

In break mode, you can quickly find out the contents of the variable at the
cursor in the Code window by holding the mouse pointer over it. For example,
in the VarValue procedure shown in Figure 9.7, the breakpoint has been set on
the Workbooks.Add statement. When Visual Basic encounters this statement,
the Code window (break mode) appears. Because Visual Basic has already ex-
ecuted the statement that stores the name of ActiveWorkbook in the variable
strName, you can quickly find out the value of this variable by resting the mouse
pointer over its name. The name of the variable and its current value appear in
a tooltip frame.

FIGURE 9.7 In break mode, you can find out the value of a variable by resting the mouse pointer on
that variable.

NOTE
To show the values of several variables used in a procedure at once,
you should use the Locals window, which is discussed later in this
chapter.

USING THE IMMEDIATE WINDOW IN BREAK MODE

Once the procedure execution is suspended and the Code window appears, you
can activate the Immediate window and type VBA instructions to find out, for
instance, which cell is currently active or the name of the active sheet. You can
also use the Immediate window to change the contents of variables in order to
correct values that may be causing errors.

Figure 9.8 shows the suspended ChangeCode procedure and the Immediate
window with the questions that were asked of Visual Basic while in break mode.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 253

FIGURE 9.8 When the code execution is suspended, you can find the values of your variables and
execute additional commands by entering appropriate statements in the Immediate window.

USING THE STOP AND ASSERT STATEMENTS

Sometimes you won’t be able to test your procedure right away. If you set up
your breakpoints and then close the file, Excel will remove your breakpoints,
and the next time you are ready to test your procedure, you’ll have to begin by
setting up breakpoints again. To postpone the task of testing your procedure
until you reopen the file, insert a Stop statement into your code wherever you
want to halt a procedure. Figure 9.9 shows a Stop statement before the For
Each…Next loop. Visual Basic will suspend the execution of the StopExample
procedure when it encounters the Stop statement. The screen will display the
Code window in break mode.

FIGURE 9.9 You can insert a Stop statement anywhere in the code of your VBA procedure. The
procedure will halt when it gets to the Stop statement, and the Code window will appear with the line
highlighted.

254 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Although the Stop statement has exactly the same effect as setting a break-
point, it has one disadvantage—all Stop statements stay in the procedure until
you remove them. When you no longer need to stop your procedure, you must
locate and remove all the Stop statements.

A very powerful and easy-to-apply debugging technique is utilizing Debug.
Assert statements. Assertions allow you to write code that checks itself while
running. By including assertions in your programming code, you can verify
that a particular condition or assumption is true. Assertions give you immedi-
ate feedback when an error occurs. They are great for detecting logic errors
early in the development phase instead of hearing about them later from your
end users. The fact that your procedure ran on your system without generating
an error does not mean that there are no bugs in that procedure. Don’t assume
anything—always test for validity of expressions and variables in your code. The
Debug.Assert statement takes any expression that evaluates to True or False
and activates the break mode when that expression evaluates to False. The syn-
tax for Debug.Assert is shown here:

Debug.Assert condition

where condition is a VBA code or expression that returns True or False. If
condition evaluates to False or 0 (zero), VBA will enter break mode. For exam-
ple, when running the following looping structure, the code will stop executing
when the variable i equals 50:
 Sub TestDebugAssert()
 Dim i As Integer

 For i = 1 To 100
 Debug.Assert i <> 50
 Next
 End Sub

Keep in mind that Debug.Assert does nothing if the condition is False or zero.
The execution simply stops on that line of code and the VBE screen opens with
the line containing the false statement highlighted so that you can start debug-
ging your code. You may need to write an error handler to handle the identified
error. Error-handling procedures are discussed later in this chapter.

While you can stop the code execution by using the Stop statement (see the
previous section), Debug.Assert differs from the Stop statement in its condi-
tional aspect; it will stop your code only under specific conditions. Conditional
breakpoints can also be set by using the Watch window (see the next section).

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 255

After you have debugged and tested your code, comment out or remove the
Debug.Assert statements from your final code. The easiest way to do this is to
use Edit | Replace in the VBE editor screen. To comment out the statements,
enter Debug.Assert in the Find What box. In the Replace With box, enter an
apostrophe followed by Debug.Assert.
To remove the Debug.Assert statements from your code, enter Debug.Assert
in the Find What box. Leave the Replace With box empty but be sure to mark
the Use Pattern Matching check box.

USING THE WATCH WINDOW

Many errors in procedures are caused by variables that assume unexpected val-
ues. If a procedure uses a variable whose value changes in various locations, you
may want to stop the procedure and check the current value of that variable.
Visual Basic offers a special Watch window that allows you to keep an eye on
variables or expressions while your procedure is running.
To add a watch expression to your procedure, perform the following:

 ● In the Code window, select the variable whose value you want to monitor.
 ● Choose Debug | Add Watch.

The screen will display the Add Watch dialog box, as shown in Figure 9.10. The
Add Watch dialog box contains three sections, which are described in Table 9.2.

FIGURE 9.10 The Add Watch dialog box allows you to define conditions that you want to monitor
while a VBA procedure is running.

256 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 9.2 Add Watch dialog options.

Expression

Displays the name of a variable that you have highlighted in your procedure.
If you opened the Add Watch dialog box without selecting a variable name,
type the name of the variable you want to monitor in the Expression text
box.

Context In this section you should indicate the name of the procedure that contains
the variable and the name of the module where this procedure is located.

Watch Type

Specifies how to monitor the variable. If you choose the Watch Expression
option button, you will be able to read the value of the variable in the Watch
window while in break mode. If you choose Break When Value Is True, Vi-
sual Basic will automatically stop the procedure when the variable evaluates
to true (nonzero). The last option button, Break When Value Changes, stops
the procedure each time the value of the variable or expression changes.

You can add a watch expression before running a procedure or after execution
of your procedure has been suspended. The difference between a breakpoint
and a watch expression is the breakpoint always stops a procedure in a specified
location and the watch stops the procedure only when the specified condition
(Break When Value Is True or Break When Value Changes) is met. Watches are
extremely useful when you are not sure where the variable is being changed.
Instead of stepping through many lines of code to find the location where the
variable assumes the specified value, you can simply put a watch expression on
the variable and run your procedure as normal. Let’s see how this works.

 Hands-On 9.2 Watching the Values of VBA Expressions

1. The Breaks Module Code window lists the following WhatDate procedure:
Sub WhatDate()
 Dim curDate As Date
 Dim newDate As Date
 Dim x As Integer

 curDate = Date
 For x = 1 To 365
 newDate = Date + x
 Next
End Sub

The WhatDate procedure uses the For…Next loop to calculate the date that is
x days in the future. If you run this procedure, you won’t get any result unless
you insert the following instruction in the code of the procedure:
MsgBox "In " & x & " days, it will be " & NewDate

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 257

In this example, however, you don’t care to display the individual dates, day
after day. What if all you want to do is to stop the program when the value of
the variable x reaches 211? In other words, what date will be 211 days from
now? To get the answer, you could insert the following statement into your
procedure:
If x = 211 Then MsgBox "In " & x & " days it will be " & NewDate

Introducing new statements into your procedure just to get an answer about the
value of a certain variable when a specifi c condition occurs will not always be
viable. Instead of adding MsgBox or other debug statements to your procedure
code that you will later need to delete, you can use the Watch window and
avoid extra code maintenance. If you add watch expressions to the procedure,
Visual Basic will stop the For…Next loop when the specifi ed condition is met,
and you’ll be able to check the values of the desired variables.

2. Choose Debug | Add Watch.
3. In the Expression text box, enter the following expression: x = 211. In the

Context section, choose WhatDate from the Procedure combo box and
Breaks from the Module combo box. In the Watch Type section, select the
Break When Value Is True option button.

4. Click OK to close the Add Watch dialog box. You have now added your first
watch expression.
Visual Basic opens the Watch window and places your expression x = 211 in
it. Now let’s add another expression to the Watch window that will allow us to
track the current date.

5. In the Code window, position the insertion point anywhere within the name
of the curDate variable.

6. Choose Debug | Add Watch and click OK to set up the default watch type with
Watch Expression.
Notice that curDate now appears in the Expression column of the Watch win-
dow.
 We will also want to keep track of the newDate variable.

7. In the Code window, position the insertion point anywhere within the name
of the newDate variable.

8. Choose Debug | Add Watch and click OK to set up the default watch type with
Watch Expression.
Notice that newDate now appears in the Expression column of the Watch win-
dow. After performing the foregoing steps, the WhatDate procedure contains
the following three watches:

258 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

x = 211—Break When Value is True
curDate—Watch Expression
newDate—Watch Expression

9. Position the insertion point anywhere inside the code of the WhatDate
procedure, and press F5.

Figure 9.11 shows the Watches window when Visual Basic stops the procedure
when x equals 211.

FIGURE 9.11 Using the Watches window.

Notice that the value of the variable x in the Watch window is the same as
the value that you specified in the Add Watch dialog. In addition, the Watch
window shows the value of both variables—curDate and newDate. The pro-
cedure is in break mode. You can press F5 to continue or you can ask another
question, such as “What date will be in 277 days?” The next step shows how
to do this.

10. Choose Debug | Edit Watch and enter the following expression: x = 277.
11. Click OK to close the Edit Watch dialog box.

Notice that the Watch window now displays a new value for the expression. x
is now False.

12. Press F5 to continue running the procedure.
The procedure stops again when the value of x equals 277. The value of cur-
Date is the same; however, the newDate variable now contains a new value—a
date that is 277 days from now. You can change the value of the expression
again or finish running the procedure.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 259

13. Press F5 to finish running the procedure.
When your procedure is running and a watch expression has a value, the
Watch window displays the value of the watch expression. If you open the
Watch window after the procedure has finished, you will see <out of context>
instead of the variable values. In other words, when the watch expression is out
of context, it does not have a value.

Removing Watch Expressions

To remove the watch expressions, click on the expression in the Watch window
that you want to remove, and press Delete. You may now remove all the watch
expressions you had defined in the preceding example.

USING QUICK WATCH

In break mode you can check the value of an expression for which you have not
defined a watch expression by using the Quick Watch dialog box displayed in
Figure 9.12.

FIGURE 9.12 The Quick Watch dialog box shows the value of the selected expression in a VBA
procedure.

The Quick Watch dialog box can be accessed in the following ways:

 ● While in break mode, position the insertion point anywhere inside the
name of a variable or expression you wish to watch.

 ● Choose Debug | Quick Watch.
 ● Press Shift +F9.

The Add button in the Quick Watch dialog box allows you to add the expression
to the Watch window. Let’s find out how to work with this dialog box.

260 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 9.3 Using the Quick Watch Dialog Box

1. Make sure that the WhatDate procedure you entered in the previous Hands-
On exercise does not contain any watch expressions. See the section called
“Removing Watch Expressions” for instructions on how to remove a watch
expression from the Watch window.

2. In the WhatDate procedure, position the insertion point on the name of the
variable x.

3. Choose Debug | Add Watch.
4. Enter the following expression: x = 50.
5. Choose the Break When Value Is True option button and click OK.
6. Run the WhatDate procedure.

Visual Basic will suspend procedure execution when x equals 50. Notice that
the Watch window does not contain the newDate or the curDate variables. To
check the values of these variables, you can position the mouse pointer over the
appropriate variable name in the Code window, or you can invoke the Quick
Watch dialog box.

7. In the Code window, position the mouse pointer inside the newDate variable
and press Shift+F9.

The Quick Watch dialog shows the name of the expression and its current value.
8. Click Cancel to return to the Code window.
9. In the Code window, position the mouse pointer inside the curDate variable

and press Shift+F9.
The Quick Watch dialog now shows the value of the variable curDate.

10. Click Cancel to return to the Code window.
11. Press F5 to continue running the procedure.
12. In the Watch window, highlight the line containing the expression x = 50 and

press Delete to remove it.
13. Close the Watch window.

USING THE LOCALS WINDOWS AND THE CALL
STACK DIALOG BOX

If during the execution of a VBA procedure you want to keep an eye on all the
declared variables and their current values, make sure you choose View | Locals
Window before you run the procedure. Figure 9.13 shows a list of variables and
their corresponding values in the Locals window displayed while Visual Basic
is in the break mode.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 261

The Locals window contains three columns. The Expression column dis-
plays the names of variables that are declared in the current procedure. The first
row displays the name of the module preceded by the plus sign. When you click
the plus sign, you can check if any variables have been declared at the module
level. For class modules, the system variable Me is defined. For standard mod-
ules, the first variable is the name of the current module. The global variables
and variables in other projects are not accessible from the Locals window.

FIGURE 9.13 The Locals window displays the current values of all the declared variables in the
current VBA procedure.

The second column shows the current values of variables. In this column, you
can change the value of a variable by clicking it and typing the new value. After
changing the value, press Enter to register the change. You can also press Tab,
Shift+Tab, or the up or down arrows, or click anywhere within the Locals win-
dow after you’ve changed the variable value. The third column displays the type
of each declared variable.

To observe the values of variables in the Locals window, perform the follow-
ing Hands-On exercise.

 Hands-On 9.4 Using the Locals and Call Stack Windows

1. Choose View | Locals Window.
2. Click anywhere inside the WhatDate procedure and press F8.

262 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

By pressing F8, you place the procedure in break mode. The Locals window
displays the name of the current module and the local variables and their begin-
ning values.

3. Press F8 a few more times while keeping an eye on the Locals window.
Th e Locals window also contains a button with three dots. Th is button opens
the Call Stack dialog box shown in Figure 9.14, which displays a list of all
active procedure calls. An active procedure call is a procedure that is started
but not completed. You can also activate the Call Stack dialog box by choosing
View | Call Stack. Th is option is available only in break mode.

FIGURE 9.14 The Call Stack dialog box displays a list of the procedures that are started but not
completed.

The Call Stack dialog box is especially helpful for tracing nested procedures.
Recall that a nested procedure is a procedure that is being called from within
another procedure. If a procedure calls another, the name of the called proce-
dure is automatically added to the Calls list in the Call Stack dialog box. When
Visual Basic has finished executing the statements of the called procedure, the
procedure name is automatically removed from the Call Stack dialog box. You
can use the Show button in the Call Stack dialog box to display the statement
that calls the next procedure listed in the dialog box.

4. Press F5 to continue running the WhatDate procedure.
5. Close the Locals window.

NAVIGATING WITH BOOKMARKS

In the process of analyzing or reviewing your VBA procedures, you will often
find yourself jumping to certain areas of code. Using the built-in bookmark
feature, you can easily mark the spots in your code that you want to navigate
between.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 263

To set up a bookmark:

 ● Click anywhere in the statement that you want to defi ne as a bookmark.
 ● Choose Edit | Bookmarks | Toggle Bookmark or click the Toggle Book-

mark button on the Edit toolbar as illustrated in Figure 9.15.
 ● Visual Basic will place a rounded blue rectangle in the left margin beside

the statement.

Once you’ve set up two or more bookmarks, you can jump between the marked
locations of your code by choosing Edit | Bookmarks | Next Bookmark or sim-
ply by clicking the Next Bookmark button on the Edit toolbar. You can remove
bookmarks at any time by choosing Edit | Bookmarks | Clear All Bookmarks
or by clicking the Clear All Bookmarks button on the Edit toolbar. To remove a
single bookmark, click anywhere in the bookmarked statement and choose Edit
| Bookmarks | Toggle Bookmark or click the Toggle Bookmark button on the
Edit toolbar.

FIGURE 9.15 Using bookmarks you can quickly jump between often-used sections of your
procedures.

TRAPPING ERRORS

No one writes bug-free programs the first time. When you create VBA proce-
dures, you have to determine how your program will respond to errors. Many
unexpected errors happen during runtime. For example, your procedure may

264 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

try to give a workbook the same name as an open workbook. Runtime errors are
often discovered by users who attempt to do something that the programmer
has not anticipated. If an error occurs when the procedure is running, Visual
Basic displays an error message and the procedure is stopped. Most often, the
error message that VBA displays is quite cryptic to the user. You can prevent
users from seeing many runtime errors by including error-handling code in
your VBA procedures. This way, when Visual Basic encounters an error, instead
of displaying a default error message, it will show a much friendlier and more
comprehensive error message.

In programming, mistakes and errors are not the same thing. A mistake,
such as a misspelled or missing statement, a misplaced quote or comma, or as-
signing a value of one type to a variable of a different (and incompatible) type,
can be removed from your program through proper testing and debugging. But
even though your code may be free of mistakes, this does not mean that errors
will not occur. An error is the result of an event or an operation that doesn’t
work as expected. For example, if your VBA procedure accesses a particular file
on disk and someone has deleted this file or moved it to another location, you’ll
get an error no matter what. An error prevents the procedure from carrying out
a specific task.

To implement error handling, place the On Error statement in your proce-
dure. This statement tells VBA what to do if an error occurs while your program
is running. VBA uses the On Error statement to activate an error-handling
procedure that will trap runtime errors. Depending on the type of procedure,
you can exit the error trap by using one of the following statements: Exit Sub,
Exit Function, Exit Property, End Sub, End Function, or End Property.
You should write an error-handling routine for each procedure. Table 9.3 shows
how the On Error statement can be used.

TABLE 9.3 On Error statement options.

On Error GoTo Label Specifies a label to jump to when an error occurs. This label
marks the beginning of the error-handling routine. An error
handler is a routine for trapping and responding to errors in
your application. The label must appear in the same procedure
as the On Error statement.

On Error Resume Next When a runtime error occurs, Visual Basic ignores the line that
caused the error, and does not display an error message but
continues the procedure with the next line.

On Error GoTo 0 Turns off error trapping in a procedure. When VBA runs
this statement, errors are detected but not trapped within the
procedure.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 265

Using the Err Object

Your error-handling code can utilize various properties and methods of the
Err object. For example, to check which error occurred, check the value of Err.
Number. The Number property of the Err object will tell you the value of the
last error that occurred, and the Description property will return a description
of the error. You can also find the name of the application that caused the error
by using the Source property of the Err object (this is very helpful when your
procedure launches other applications). After handling the error, use the Err.
Clear statement to reset Err.Number back to zero.
To test your error-handling code you can use the Raise method of the Err object.
For example, to raise the “Disk not ready” error, use the following statement:

Err.Raise 71

The OpenToRead procedure shown here demonstrates the use of the Resume
Next and Error statements, as well as the Err object.

 Hands-On 9.5 Writing a VBA Procedure with Error-Handling Code

1. Insert a new module into the Testing project and rename it Traps.
2. In the Traps module Code window, enter the Archive procedure as shown here:

Sub OpenToRead()
Dim myFile As String
Dim myChar As String
Dim myText As String
Dim FileExists As Boolean

FileExists = True

On Error GoTo ErrorHandler

myFile = InputBox("Enter the name of file to open:")
Open myFile For Input As #1
If FileExists Then
' loop until the end of file (EOF)
 Do While Not EOF(1)
 ' get one character
 myChar = Input(1, #1)
 ' store in the variable myText
 myText = myText + myChar
 Loop
 Debug.Print myText
 ' close the file
 Close #1
End If
Exit Sub

266 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ErrorHandler:
 FileExists = False
 Select Case Err.Number
 Case 76
 MsgBox "The path you entered cannot be found."
 Case 53
 MsgBox "This file can't be found on the " & _
 "specified drive."
 Case 75
 Exit Sub
 Case Else
 MsgBox "Error " & Err.Number & " :" & _
 Error(Err.Number)
 Exit Sub
 End Select
 Resume Next
End Sub

Th e purpose of the OpenToRead procedure is to read the contents of the user-
supplied text fi le character by character. When the user enters a fi lename,
various errors can occur. For example, the fi lename or the path may be wrong,
or the user may try to open a fi le that is already open. To trap these errors,
the error-handling routine at the end of the OpenToRead procedure uses the
Number property of the Err object.
 Th ere are several methods of reading a text fi le. In this example, to read data
from a text fi le, the procedure uses the Windows Low-Level File I/O (Input /
Output) method. Th erefore, to open the fi le for reading, we need to use the
Open statement, like this:

Open myFile For Input As #1

Here’s the general syntax of the Open statement, followed by an explanation of
each component:

Open pathname For mode[Access access][lock] As [#]filenumber

 [Len=reclength]

Th e Open statement has three required arguments: pathname, mode, and
filenumber. Pathname is the name of the fi le you want to open. Th e fi lename
may include the name of a drive and folder.

 ● Mode is a keyword that determines how the fi le was opened. Sequential
fi les can be opened in one of the following modes: Input, Output, or
Append. Use Input to read the fi le, Output to write to a fi le overwriting

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 267

any existing fi le and Append to write to a fi le by adding to any existing
information.

 ● Th e optional Access clause can be used to specify permissions for the fi le
(Read, Write, or Read Write).

 ● Th e optional Lock argument determines which fi le operations are al-
lowed for other processes. For example, if a fi le is open in a network envi-
ronment, lock determines how other people can access it. Th e following
lock keywords can be used: Shared, Lock Read, Lock Write, or Lock Read
Write.

 ● Filenumber is a number from 1 to 511. Th is number is used to refer to
the fi le in subsequent operations. You can obtain a unique fi le number
using the Visual Basic built-in FreeFile function.

 ● Th e last element of the Open statement, reclength, specifi es the buff er
size (total number of characters) for sequential (text) fi les, or the record
size for random-access fi les (text fi les where data is stored in records of
equal length and fi elds separated by commas).

If the specifi ed fi le exists, the procedure uses the Do…While loop to tell Visual
Basic to execute the statements inside the loop until the end of the fi le has been
reached. Th e end of the fi le is determined by the result of the EOF function. Th e
Input function is used to return the specifi ed number of characters:

myChar = Input(1, #1)

#1 is the fi le number that was used in the process of opening the fi le with the
Open statement.
Each character being read is stored in the myChar variable. Next, the myChar
variable is appended to the myText variable, like this:

myText = myText + myChar

Th e procedure then writes the contents of the myText variable to the Immediate
window using the Debug.Print statement. When the fi le has been read, we
must close it using the Close statement:

Close #1 ' close the file

Th e Err object contains information about runtime errors. If an error occurs
while the procedure is running, the statement Err.Number will return the
error number. If errors 76, 53, or 75 occur, Visual Basic will display user-
friendly messages stored inside the Select…Case block and then proceed to

268 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the Resume Next statement, which will send it to the line of code following
the one that caused the error. If another error occurs, Visual Basic will return
its error code (Err.Number) and error description (Error (Err.Number)). At
the beginning of the procedure, the variable FileExists is set to True. Th is
way, if the program doesn’t encounter an error, all the instructions inside the
If FileExists Then block will be executed. However, if VBA encounters
an error, the value of the FileExists variable will be set to False (see the fi rst
statement in the error-handling routine just below the ErrorHandler label).
Th is way, Visual Basic will not cause another error while trying to read a fi le
that caused the error on opening. Notice the Exit Sub statement before the
ErrorHandler label. Put the Exit Sub statement just above the error-handling
routine because you don’t want Visual Basic to carry out the error handling if
there are no errors.
To test the OpenToRead procedure and better understand error trapping, we
will need a text fi le (see Step 3).

3. Use Windows Notepad to prepare a text file. Enter any text you want in this
file. When done, save the file as C:\VBAPrimerExcel_ByExample\Vacation.
txt.

4. Run the OpenToRead procedure three times in step mode by using the F8 key,
each time supplying one of the following:

 ● Name of the C:\VBAPrimerExcel_ByExample\Vacation.txt fi le
 ● Filename that does not exist on drive C
 ● Path that does not exist on your computer (e.g., K:\Test)

Setting Error Trapping Options in a VBA Project

You can specify the error-handling settings for your current Visual Basic
project by choosing Tools | Options and selecting the General tab (shown in
Figure 9.16).

The Error Trapping area located on the General tab determines how errors
are handled in the Visual Basic environment. The following options are avail-
able:

 ● Break on All Errors
This setting will cause Visual Basic to enter the break mode on any error,
whether an error handler is active or whether the code is in a class mod-
ule (class modules were covered in Chapter 8).

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 269

 ● Break in Class Module
This setting will trap any unhandled error in a class module. Visual Basic
will activate a break mode when an error occurs and will highlight the
line of code in the class module that produced this error.

 ● Break on Unhandled Errors
This setting will trap errors for which you have not written an error han-
dler. The error will cause Visual Basic to activate a break mode. If the
error occurs in a class module, the error will cause Visual Basic to enter
break mode on the line of code that called the offending procedure of the
class.

STEPPING THROUGH VBA PROCEDURES

Stepping through the code means running one statement at a time. This allows
you to check every line in every procedure that is encountered. To start stepping
through a procedure from the beginning, place the insertion point anywhere
inside the code of your procedure and choose Debug | Step Into or press F8.
Figure 9.17 shows the Debug menu, which contains several options that allow

FIGURE 9.16 Setting the Error Trapping options in the Options dialog box will affect all
instances of Visual Basic started after you change the setting.

270 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

you to execute a procedure in step mode. When you run a procedure one state-
ment at a time, Visual Basic executes each statement until it encounters the End
Sub keywords. If you don’t want Visual Basic to step through every statement,
you can press F5 at any time to run the rest of the procedure without stepping
through it.

Let’s step through a procedure line by line.

FIGURE 9.17 The Debug menu offers many commands for stepping through VBA procedures.

 Hands-On 9.6 Stepping through a VBA Procedure

1. Place the insertion point anywhere inside the code of the procedure whose
execution you wish to trace. For example, try out the OpenToRead procedure
you prepared in Hands-On 9.5.

2. Press F8 or choose Debug | Step Into.
Visual Basic executes the current statement and automatically advances to the
next statement and suspends execution. While in break mode, you can activate
the Immediate window, Watch window, or Locals window to see the eff ect of
a particular statement on the values of variables and expressions. And if the
procedure you are stepping through calls other procedures, you can activate
the Call Stack window to see which procedures are currently active.

3. Press F8 again to execute the selected statement.
Aft er executing this statement, Visual Basic will select the next statement, and
the procedure execution will be halted again.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 271

4. Continue stepping through the procedure by pressing F8 or press F5 to
continue the code execution without stopping.
You can also choose Run | Reset to stop the procedure at the current statement
without executing the remaining statements.

Stepping Over a Procedure and Running to Cursor

When you step over procedures (Shift+F8), Visual Basic executes each proce-
dure as if it were a single statement. This option is particularly useful if a pro-
cedure contains calls to other procedures and you don’t want to step into these
procedures because they have already been tested and debugged, or you want to
concentrate only on the new code that has not yet been debugged.

Suppose that the current statement in MyProcedure (see Hands-On 9.7) calls
the SpecialMsg procedure. If you choose Debug | Step Over (Shift+F8) instead
of Debug | Step Into (F8), Visual Basic will quickly execute all the statements
inside the SpecialMsg procedure and select the next statement in the calling
procedure (MyProcedure). During the execution of the SpecialMsg procedure,
Visual Basic continues to display the Code window with the current procedure.

 Hands-On 9.7 Stepping over a Procedure

1. In the Breaks Module Code window, locate the following procedure:
Sub MyProcedure()
 Dim strName As String

 Workbooks.Add
 strName = ActiveWorkbook.Name
 ' choose Step Over to avoid stepping through the
 ' lines of code in the called procedure - SpecialMsg
 SpecialMsg strName
 Workbooks(strName).Close
End Sub

Sub SpecialMsg(n As String)
 If n = "Book2" Then
 MsgBox "You must change the name."
 End If
End Sub

2. Add a breakpoint at the following statement:
SpecialMsg strName

272 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Place the insertion point anywhere within the code of MyProcedure, and press
F5 to run it.
Visual Basic halts execution when it reaches the breakpoint.

4. Press Shift+F8 or choose Debug | Step Over.
Visual Basic quickly runs the SpecialMsg procedure and advances to the
statement immediately aft er the call to the SpecialMsg procedure.

5. Press F5 to finish running the procedure without stepping through its code.
6. Remove the breakpoint you set in Step 2.

Stepping over a procedure is particularly useful when you don’t want to analyze
individual statements inside the called procedure. Another command on the
Debug menu, Step Out (Ctrl+Shift +F8), is used when you step into a procedure
and then decide that you don’t want to step all the way through it. When you
choose this option, Visual Basic will execute the remaining statements in this
procedure in one step and proceed to activate the next statement in the calling
procedure. In the process of stepping through a procedure, you can switch
between the Step Into, Step Over, and Step Out options. Th e option you select
depends on which code fragment you wish to analyze at a given moment. Th e
Debug menu’s Run To Cursor (Ctrl+F8) command lets you run your procedure
until the line you have selected is encountered. Th is command is really useful
if you want to stop the execution before a large loop or you intend to step over
a called procedure. Now, let’s suppose you want to execute MyProcedure to the
line that calls the SpecialMsg procedure.

7. Click inside the statement SpecialMsg strName.
8. Choose Debug | Run To Cursor. Visual Basic will stop the execution of the

MyProcedure code when it reaches the specified line.
9. Press Shift+F8 to step over the SpecialMsg procedure.

10. Press F5 to execute the remaining statements in the procedure.

Setting the Next Statement

At times, you may want to rerun previous lines of code in the procedure or
skip over a section of code that is causing trouble. In each of these situations,
you can use the Set Next Statement option on the Debug menu. When you
halt execution of a procedure, you can resume the procedure from any state-
ment you want. Visual Basic will skip execution of the statements between the
selected statement and the statement where execution was suspended. Suppose
that in MyProcedure (see the code of this procedure in the preceding section)
you have set a breakpoint on the statement calling the SpecialMsg procedure.
To skip the execution of the SpecialMsg procedure, you can place the insertion

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 273

point inside the statement Workbooks (strName).Close and press Ctrl+F9 (or
choose Debug | Set Next Statement).

You can’t use the Set Next Statement option unless you have suspended the
execution of the procedure.

While skipping lines of code can be very useful in the process of debugging
your VBA procedures, it should be done with care. When you use the Next
Statement option, you tell Visual Basic that this is the line you want to execute
next. All lines in between are ignored. This means that certain things that you
may have expected to occur don’t happen, which can lead to unexpected errors.

Showing the Next Statement

If you are not sure from which statement the execution of the procedure will
resume, you can choose Debug | Show Next Statement and Visual Basic will
place the cursor on the line that will run next. This is particularly useful when
you have been looking at other procedures and are not sure where execution
will resume. The Show Next Statement option is available only in break mode.

Stopping and Resetting VBA Procedures

At any time while stepping through the code of a procedure in the Code win-
dow, you can:

 ● Press F5 to execute the remaining instructions without stepping through.
 ● Choose Run | Reset to fi nish the procedure without executing the re-

maining statements.

When you reset your procedure, all the variables lose their current values.
Numeric variables assume the initial value of zero, variable-length strings are
initialized to a zero-length string (“”), and fixed-length strings are filled with
the character represented by the ASCII character code 0 or Chr(0). Variant vari-
ables are initialized to Empty, and the value of object variables is set to Nothing.

TERMINATING A PROCEDURE BASED ON A CONDITION

You may recall, in Chapter 1 (see Hands-On 1.20) we ran into an error while
executing the Insert_NewSheet macro. We modified this macro to prompt the
user for the sheet name using the Excel InputBox method. However, to make
this macro error-proof, we need to ensure that the macro will not fail if the user
clicks Cancel or enters a space or several blank spaces for the worksheet name.

274 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s address this problem now that you have more Excel VBA knowledge under
your belt. Here is the Insert_NewSheet procedure as we modified it in Chapter 1.

Sub Insert_NewSheet()
'
' Insert_NewSheet Macro
' Insert and rename a worksheet
'

 Sheets.Add After:=ActiveSheet
 ActiveSheet.Name = Application.InputBox _
 ("Enter the name for your worksheet:", "Rename This Sheet")

End Sub

The InputBox method is a member of the Excel Application object and this
requires that you precede its name with the name of the object (Application).
Note that the code below uses the line continuation character (an underscore)
to break up the long statement that you may end up when supplying the argu-
ments to this method. You will find the list of arguments and their descriptions
in Chapter 4. One of the arguments which we absolutely must add to the Input-
Box method to get the expected results with the Cancel button is called “type”
and it specifies the return data type. When the user clicks Cancel the Applica-
tion.InputBox method returns False. Therefore, we need to introduce some
conditional logic to test for the return type. We also need to prevent the user
for feeding us blank spaces for the sheet name. By now you should be famil-
iar with writing VBA conditional statements. Conditional logic will allow you
to make many enhancements to your recorded macro code. Let’s look at the
revised Insert_NewSheet procedure.

Sub Insert_NewSheet()
'
' Insert_NewSheet Macro revised
' Insert and rename a worksheet
'
 Dim userInput As Variant

 userInput = Application.InputBox _
 ("Enter the name for your worksheet:", _
 "Rename This Sheet", , , , , , 2)

 If userInput = False Then
 MsgBox ("You pressed the Cancel button." & _
 "The procedure will terminate.")

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 275

 sFlag = True
 Exit Sub
 ElseIf userInput = "" Or Trim(userInput) = "" Then
 MsgBox "Please enter the sheet name or press Cancel to exit."
 Insert_NewSheet

 Else
 Sheets.Add After:=ActiveSheet
 ActiveSheet.Name = userInput
 End If
End Sub

Note that we will now store the user supplied sheet name in the userInput
variable. This variable is declared as Variant data type because the InputBox
method can return different types of data and we want Excel to handle it for us.
We begin by asking the user for the input. First, we must define the message
that the user will see. Next, we specify the text that appears in the title bar of the
dialog box. We don’t care about the five arguments that follow, so you will see
commas as their placeholders, or you can forgo commas when you specify the
names for your arguments as shown in Chapter 4 procedures. Recall that you
can use named arguments to make your methods easier to understand. What
we care about is the last argument. The value of 2 specifies that we expect to
get a string (text). Once the result of the user interaction with the InputBox
is in the userInput variable, it’s time for the if statements. If the contents of
the variable are False, then we want to display a message to the user and ter-
minate the procedure. You already know that you can exit early from a VBA
procedure by using the Exit Sub statement. Before terminating the procedure,
however, you may want to store some vital piece of information in additional
variables. In case of the Insert_NewSheet procedure, we need to remember that
we exited the procedure, so we don’t run other procedures that may depend on
this one. Recall that our Insert_NewSheet procedure is a part of a larger master
procedure which will also need to be terminated. The sFlag variable will hold
a Boolean value of True if the user clicked Cancel and False otherwise. You are
free to choose names for your variables. Notice that the sFlag variable is not
declared anywhere in the Insert_NewSheet procedure. Since we must use it also
in the CreateEmployeeWorksheet master procedure, we need a project-level
scope declaration. From Chapter 3, you already know that public variables can
be used in any module. Here is the perfect opportunity to utilize them. Figure
9.18 shows the revised CreateEmployeeWorksheet procedure from Chapter 1.
Notice the declaration of the sFlag variable at the top of the module. The first

276 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

line of code in the procedure makes sure that sFlag is set to False when we
start. When the Insert_NewSheet procedure has finished running, the sFlag
will be True if user clicked Cancel. Again, we can use the Exit Sub statement
to stop further code execution. And if sFlag is False we will continue with the
remaining statements.

FIGURE 9.18 The revised CreateEmployeeWorksheet procedure uses a public variable.

Note that the Insert_NewSheet procedure also checks in the Elseif clause
whether the user clicked OK without supplying any data or entered a space or
several spaces. The VBA Trim function removes the leading and trailing spaces
from a supplied text string. If the value of the userInput variable is an empty
string (“”), then we display a message to the user and call the procedure again.
This way the user has a chance to either enter the required data or click Cancel.
Finally, if everything looks good, then we execute the statements in the Else
clause. A new worksheet is inserted after the current sheet and is renamed with
the text stored in the userInput variable.

 H ands-On 9.8 Working with all the Debugging Tools

1. Modify the procedures discussed in this section and use it as a playing ground
for practicing all debugging techniques you were introduced to in this chapter.
Be sure to run the master procedure at least three times to check all the
conditions used in the Insert_NewSheet procedure.

EXCEL TOOLS FOR TESTING AND DEBUGGING: A QUICK INTRODUCTION 277

SUMMARY

In this chapter, you learned how to trap errors and test your VBA procedures
to make sure they perform as planned. You debugged your code by stepping
through it using breakpoints and watches. You learned how to work with the
Immediate window in break mode, and you found out how the Locals window
can help you monitor the values of variables and how the Call Stack dialog box
can be helpful in keeping track of where you are in a complex program.

By using the built-in debugging tools, you can quickly pinpoint the problem
spots in your procedures. Try to spend more time getting acquainted with the
Debug menu options and debugging tools discussed in this chapter. Mastering
the art of debugging can save you hours of trial and error.

While VBA offers a large number of built-in functions and statements for
working with the file system, you can also perform file and folder ma-
nipulation tasks via objects and methods included in the installations of

Windows. In addition, you can open and manipulate files directly via the low-level
file I/O functions.

In this part of the book, you discover various methods of working with files
and folders, and learn how to programmatically open, read, and write three types
of files.

Chapter 10 File and Folder Manipulation with VBA
Chapter 11 File and Folder Manipulation with Windows Script Host (WSH)
Chapter 12 Using Low-Level File Access

Part

 II MANIPULATING FILES
AND FOLDERS
WITH VBA

279

281

In the course of your work, you’ve surely accessed, created, renamed, copied,
and deleted hundreds of files and folders. However, you’ve probably never
performed these tasks programmatically. So, here’s your chance. This chap-

ter focuses on VBA functions and instructions that specifically deal with files
and folders. By using these functions, you’ll be able to:

 ● Find out the name of the current folder (CurDir function)
 ● Change the name of a fi le or folder (Name function)
 ● Check whether a fi le or folder exists on a disk (Dir function)
 ● Find out the date and time a fi le was last modifi ed (FileDateTime func-

tion)
 ● Get the size of a fi le (FileLen function)
 ● Check and change fi le attributes (GetAttr and SetAttr functions)
 ● Change the default folder or drive (ChDir and ChDrive statements)
 ● Create and delete a folder (MkDir and RmDir statements)
 ● Copy and delete a fi le or folder (FileCopy and Kill statements)

Chapter

 10 FILE AND FOLDER
MANIPULATION
WITH VBA

282 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

MANIPULATING FILES AND FOLDERS

This section discusses a set of VBA functions used to perform operations on
files and folders.

Finding Out the Name of the Active Folder

When you work with files, you often need to find out the name of the cur-
rent folder. You can get this information easily with the CurDir function, which
looks like this:

CurDir([drive])

Note that drive is an optional argument. If you omit drive, VBA uses the cur-
rent drive. The CurDir function returns a file path as Variant. To return the path
as String, use CurDir$ (where $ is the type declaration character for a string).
To see this function in action, let’s perform a couple of exercises in the Immedi-
ate window.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 10.1 Using the CurDir Function

NOTE

Create a new folder on your computer named VBAExcel2019_
ByExample and designate it as a trusted folder (see Chapter 1
for details). We will use this folder to store workbook files cre-
ated in Chapters 10–25.

1. Open a new workbook and save it as Chap10_VBAExcel2019 in your C:\
VBAExcel2019_ByExample folder.

2. Switch to Microsoft Visual Basic Editor and press Ctrl+G to activate the
Immediate window. Type the following statement, and press Enter:
?CurDir

When you press Enter, Visual Basic displays the name of the current folder. For
example:
C:\

FILE AND FOLDER MANIPULATION WITH VBA 283

3. If you have a second disk drive (or a CD-ROM drive), you can find out the
current folder on drive D, as follows:
?CurDir("D:\")

NOTE If you supply a letter for a drive that does not exist, Visual Basic
will display the following error message: “Device unavailable.”

4. To store the name of the current disk drive in a variable called myDrive, type
the following statement and press Enter:
myDrive = Left(CurDir$,1)

When you press Enter, Visual Basic stores the letter of the current drive in the
variable myDrive. Notice how the CurDir$ function is used as the first argu-
ment of the Left function. The Left function tells Visual Basic to extract the
leftmost character from the string returned by the CurDir$ function and store
it in the myDrive variable.

5. To check the contents of the variable myDrive, type the following statement
and press Enter:
?myDrive

6. To return the letter of the drive followed by the colon, type the following
instructions, pressing Enter after each line:
myDrive = Left(CurDir$,2)
?myDrive

Changing the Name of a File or Folder

To rename a file or folder, use the Name function, as follows:
Name old_pathname As new_pathname

Old_pathname is the current path and name of a file or folder that you want to
rename. New_pathname specifies the new path and name of the file or folder.
Using the Name function, you can move a file from one folder to another (you
can’t move a folder). Here are some precautions to consider while working with
the Name function:

 ● Th e fi lename in new_pathname cannot refer to an existing fi le.
Suppose you’d like to change the name of the system.txt file to test.txt.
This is easily done with the following statement:

Name "c:\system.txt" As "c:\test.txt"

284 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

However, if the file c:\test.txt already exists on drive C, Visual Basic will
display the following error message: “File already exists.” Similarly, the
“File not found” error message will appear if the file you want to rename
does not exist. Try the above statement in the Immediate window (replace
the example names with the actual names of your files and folders).

 ● If new_pathname already exists, and it’s diff erent from old_pathname, the
Name function moves the specifi ed fi le to a new folder and changes its
name, if necessary.

Name "c:\system.txt" As "d:\test.txt"

If the test.txt file doesn’t exist in the root directory on drive D, Visual
Basic moves the c:\system.txt file to the specified drive; however, it does
not rename the file.

 ● If new_pathname and old_pathname refer to diff erent directories and
both supplied fi lenames are the same, the Name function moves the speci-
fi ed fi le to a new location without changing the fi lename.

Name "d:\test.txt" As "c:\VBAExcel2019_ByExample\test.txt"

The above instruction moves the test.txt file to the DOS folder on drive C.

Renaming an Open File

You must close an open file before renaming it. Also note that the filename
cannot contain the wildcard characters (*) or (?).

Checking the Existence of a File or Folder

The Dir function, which returns the name of a file or folder, has the following
syntax:

Dir[(pathname[, attributes])]

Notice that both arguments of the Dir function are optional. Pathname is the
name of a file or folder. You can use one of the constants or values in Table 10.1
for the attributes argument:

SIDEBAR

FILE AND FOLDER MANIPULATION WITH VBA 285

TABLE 10.1 File attributes

Constant Value Attribute Name
vbNormal 0 Normal
vbHidden 2 Hidden
vbSystem 4 System
vbVolume 8 Volume Label
vbDirectory 16 Directory or Folder

The Dir function is often used to check whether a file or folder exists on a disk.
If a file or folder does not exist, the empty string (“”) is returned (see Step 3 in
Hands-On 10.2).
Let’s try out the Dir function in several exercises in the Immediate window.

 Hands-On 10.2 Using the Dir Function

1. In the Immediate window, type the following statement and press Enter:
?Dir("C:\", vbNormal)

As soon as you press Enter, Visual Basic returns the name of the fi rst fi le in
the specifi ed folder. A normal fi le (vbNormal) is any fi le that does not have a
Hidden, Volume Label, Directory, Folder, or System fi le attribute.

2. To return the names of other files in the current directory, type the Dir function
without an argument and press Enter:
?Dir

3. Enter the following instructions in the Immediate window and examine their
results as you press Enter:
myfile = Dir("C:\", vbHidden)
?myfile
myfile = Dir
?myfile

4. Type the following instruction on one line in the Immediate window and press
Enter:
If Dir("C:\stamp.bat") = "" Then Debug.Print "File not found."

Because the stamp.bat fi le doesn’t exist on drive C, Visual Basic prints the
message “File not found” in the Immediate window.
 The Dir function allows you to use the wildcards in the specified pathname—
an asterisk (*) for multiple characters and a question mark (?) for a single

286 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

character. For example, to find all Control Panel files in the WINDOWS\
System32 folder, you can look for all the MSC files, as shown below (the lines
in italics show what Visual Basic might return as you call the Dir function):

?Dir("C:\WINDOWS\System32*.msc", vbNormal)
azman.msc
?dir
certlm.msc
?dir
certmgr.msc

Now let’s try out a couple of complete procedures that use the Dir function.
How about writing the names of files in the specified directory to the Immedi-
ate window and a spreadsheet? We’ll make our output consistent by using the
LCase$ function, which causes the names of files to appear in lowercase.

 Hands-On 10.3 Using the Dir Function in a Procedure

1. Open the Visual Basic Editor window in the Chap10_VBAExcel2019
workbook.

2. Rename the VBA project FileMan_VBA.
3. Insert a new module into the FileMan_VBA (Chap10_VBAExcel2019) project,

and rename it DirFunction.
4. Enter the MyFiles procedure in the Code window as shown below:

Sub MyFiles()
 Dim myfile As String
 Dim mpath As String
 Dim myPrompt As String

 myPrompt = "Enter pathname, "
 myPrompt = myPrompt & "e.g. C:\VBAExcel2019_ByExample"
 mpath = InputBox(myPrompt)
 If Right(mpath, 1) <> "\" Then mpath = mpath & "\"

 myfile = Dir(mpath & "*.*")
 If myfile <> "" Then Debug.Print "Files in the " & _
 mpath & " folder:"
 Debug.Print LCase$(myfile)
 If myfile = "" Then
 MsgBox "No files found."
 Exit Sub
 End If
 Do While myfile <> ""

FILE AND FOLDER MANIPULATION WITH VBA 287

 myfile = Dir
 Debug.Print LCase$(myfile)
 Loop
End Sub

The MyFiles procedure shown above asks the user for the pathname. If the path
does not end with the backslash, the Right function appends the backslash to
the end of the pathname string. Next, Visual Basic looks for all the files (*) in
the specified path. If there are no files, a message is displayed. If files exist, the
filenames are written to the Immediate window.

5. Run the MyFiles procedure.
6. To output the filenames to a worksheet, enter the GetFiles procedure in the

same module where you entered the MyFiles procedure, and then run it:
Sub GetFiles()
 Dim myfile As String
 Dim nextRow As Integer

 nextRow = 1
 With Worksheets("Sheet1").Range("A1")
 myfile = Dir("C:\VBAExcel2019_ByExample*.*", vbNormal)
 .Value = myfile
 Do While myfile <> ""
 myfile = Dir
 .Offset(nextRow, 0).Value = myfile
 nextRow = nextRow + 1
 Loop
 End With
End Sub

The GetFiles procedure obtains the names of files located in the specified direc-
tory of drive C and writes each filename to a worksheet.

Finding Out the Date and Time the File Was Modified

If your procedure must check when a file was last modified, use the FileDate-
Time function in the following form:

FileDateTime(pathname)

Pathname is a string that specifies the file you want to work with. The pathname
may include the drive and folder where the file resides. The function returns the
date and timestamp for the specified file. The date and time format depends on
the regional settings selected in the Windows Control Panel. Let’s practice using
this function in the Immediate window.

288 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 10.4 Using the FileDateTime Function

1. Enter the following statement in the Immediate window:
?FileDateTime("C:\VBAExcel2019_ByExample\
 Chap10_VBAExcel2019.xlsm")

When you press Enter, Visual Basic returns the date and timestamp in the
following format:

1/20/2019 6:45:43 PM

To return the date and time separately, use the FileDateTime function as an
argument of the DateValue or TimeValue functions. For instance, enter the
following statements on one line in the Immediate Window:

?DateValue(FileDateTime("C:\VBAExcel2019_ByExample\
 Chap10_VBAExcel2019.xlsm"))
?TimeValue(FileDateTime("C:\VBAExcel2019_ByExample\Chap10_
VBAExcel2019"))

2. Enter the following statement on one line in the Immediate window:
If DateValue(FileDateTime("C:\VBAExcel2019_ByExample\
Chap10_VBAExcel2019.xlsm")) < Date then Debug.Print
 "This file was not modified today."

The Date function returns the current system date as it is set in the Date and
Time Properties dialog box accessed in the Windows Control Panel.

Finding Out the Size of a File (the FileLen Function)

To check the size of a file, use the FileLen function in the following form:
FileLen(pathname)

The FileLen function returns the size of a specified file in bytes. If the file is
open, Visual Basic returns the size of the file when it was last saved.

Returning and Setting File Attributes (the GetAttr and SetAttr Functions)

Files and folders can have attributes such as read-only, hidden, system, and
archive. To find out the attributes of a file or folder, use the GetAttr function,
which returns an integer that represents the sum of one or more of the constants
shown in Table 10.2. The only argument of this function is the name of the file
or folder you want to work with:

GetAttr(pathname)

FILE AND FOLDER MANIPULATION WITH VBA 289

TABLE 10.2 File and folder attributes.

Constant Value Attribute
vbNormal 0 Normal (other attributes are not set).
vbReadOnly 1 Read-only (file or folder can’t be modified).
vbHidden 2 Hidden (file or folder isn’t visible under normal setup).
vbSystem 4 System file.
vbDirectory 16 The object is a directory.
vbArchive 32 Archive (the file has been modified since it was last backed up).

To find out whether a file has any of the attributes shown in Table 10.2, use the
AND operator to compare the result of the GetAttr function with the value of the
constant. If the function returns a nonzero value, the file or folder specified in the
pathname has the attribute for which you are testing.

 Hands-On 10.5 Returning File Attributes with the GetAttr Function

1. Insert a new module into the project FileMan_VBA (Chap10_VBAExcel2019),
and rename it GetAttrFunction.

2. Enter the following GetAttributes procedure and run it.
Sub GetAttributes()
 Dim attr As Integer
 Dim msg As String
 Dim strFileName As String

 strFileName = InputBox("Enter the complete file name:", _
 "Drive\Folder\Filename")
 If strFileName = "" Then Exit Sub
 attr = GetAttr(strFileName)

 msg = ""

 If attr And vbReadOnly Then msg = msg & "Read-Only (R)"
 If attr And vbHidden Then msg = msg & Chr(10) & "Hidden (H)"
 If attr And vbSystem Then msg = msg & Chr(10) & "System (S)"
 If attr And vbArchive Then msg = msg & Chr(10) & "Archive (A)"
 MsgBox msg, , strFileName
End Sub

The opposite of the GetAttr function is the SetAttr function, which allows
you to set the attributes for files or folders that are closed. Its syntax is:

SetAttr pathname, attributes

290 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Pathname is a string that specifies the file or folder that you want to work with.
The second argument, attributes, is one or more constants that specify the attri-
butes you want to set. See Table 10.2 previously in this chapter for the list of
available constants.

Suppose you have a file called C:\stamps.txt and you want to set two attri-
butes: read-only and hidden.

 Hands-On 10.6 Setting File Attributes with the SetAttr Function

1. To set the file attributes, type the following instruction in the Immediate
window, and press Enter (replace C:\stamps.txt with the name of a file that
exists on your disk):
SetAttr "C:\stamps.txt", vbReadOnly + vbHidden

2. To find out what attributes were set in Step 1, type the following instruction
in the Immediate window and press Enter (check the returned value against
Table 10.2):
?GetAttr("C:\stamps.txt")

Changing the Default Folder or Drive (the ChDir and ChDrive Statements)

You can easily change the default folder by using the ChDir statement, as follows:
ChDir pathname

In the statement above, pathname is the name of the new default folder. Path-
name may include the name of the disk drive. If pathname doesn’t include a
drive designation, the default folder will be changed on the current drive. The
current drive will not be changed. Suppose the default folder is C:\WINDOWS.
The statement:
ChDir "D:\MyFiles"

changes the default folder to D:\MyFiles; however, the current drive is still drive
C.

To change the current drive, use the ChDrive statement in the following
format:
ChDrive drive

The drive argument specifies the letter of the new default drive.
For instance, to change the default drive to drive D or E, use the following

statements:

FILE AND FOLDER MANIPULATION WITH VBA 291

ChDrive "D"
ChDrive "E"

If you refer to a nonexistent drive, you will get the message “Device unavailable.”

Creating and Deleting Folders (the MkDir and RmDir Statements)

You can create a new folder using the following syntax of the MkDir statement:
MkDir pathname

Pathname specifies the new folder you want to create. If you don’t include the
name of the drive, Visual Basic will create the new folder on the current drive.
To delete a folder you no longer need, use the RmDir function. This function has
the following syntax:

RmDir pathname

Pathname specifies the folder you want to delete. Pathname may include the
drive name. If you omit the name of the drive, Visual Basic will delete the folder
on the current drive if a folder with the same name exists. Otherwise, Visual
Basic will display the error message “Path not found.”
Let’s run through some examples in the Immediate window.

 Hands-On 10.7 Creating and Deleting Folders with the MkDir and
RmDir Statements

1. Type the following instruction in the Immediate window and press Enter to
create a folder called Mail on drive C:
MkDir "C:\Mail"

2. To change the default folder to C:\Mail, enter the following statement and
press Enter:
ChDir "C:\Mail"

3. To find out the name of the active folder, enter the following statement and
press Enter:
?CurDir

4. To delete the C:\Mail folder that was created in Step 1, enter the following
statements and press Enter:
ChDir "C:\"
RmDir "C:\Mail"

292 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

RmDir Removes Empty Folders

You cannot delete a folder if it still contains files. You should first delete the
files with the Kill statement (discussed later in this chapter).

Copying Files (the FileCopy Statement)

To copy files between folders, use the FileCopy statement shown below:
FileCopy source, destination

The first parameter of this statement, source, specifies the name of the file that
you want to copy. The name may include the drive in which the file resides. The
second parameter, destination, is the name of the destination file and may
include the drive and folder designation. Both parameters are required.
Suppose you want to copy a file specified by a user to a folder called C:\Abort.
Hands-On 10.8 demonstrates how to do this.

 Hands-On 10.8 Copying Files with the FileCopy Statement

1. Insert a new module into the project FileMan_VBA (Chap10_VBAExcel2019),
and rename it FileCopyAndKill.

2. In the module’s Code window, enter the following CopyToAbortFolder
procedure:
Sub CopyToAbortFolder()
 Dim folder As String
 Dim source As String
 Dim dest As String
 Dim msg1 As String
 Dim msg2 As String
 Dim p As Integer
 Dim s As Integer
 Dim i As Long

 On Error GoTo ErrorHandler

 folder = "C:\Abort"
 msg1 = "The selected file is already in this folder."
 msg2 = "was copied to"
 p = 1
 i = 1
 ' get the name of the file from the user
 source = Application.GetOpenFilename

SIDEBAR

FILE AND FOLDER MANIPULATION WITH VBA 293

 ' don't do anything if cancelled
 If source = "False" Then Exit Sub
 ' get the total number of backslash characters "\" in the source
 ' variable's contents
 Do Until p = 0
 p = InStr(i, source, "\", 1)
 If p = 0 Then Exit Do
 s = p
 i = p + 1
 Loop
 ' create the destination filename
 dest = folder & Mid(source, s, Len(source))
 ' create a new folder with this name
 MkDir folder
 ' check if the specified file already exists in the
 ' destination folder
 If Dir(dest) <> "" Then
 MsgBox msg1
 Else
 ' copy the selected file to the C:\Abort folder
 FileCopy source, dest
 MsgBox source & " " & msg2 & " " & dest
 End If
 Exit Sub
 ErrorHandler:
 If Err = "75" Then
 Resume Next
 End If
 If Err = "70" Then
 MsgBox "You can't copy an open file."
 Exit Sub
 End If
End Sub

The procedure CopyToAbortFolder uses the Excel application method called
GetOpenFilename to get the name of the file from the user. This method causes
the built-in Open dialog box to pop up. Using this dialog box, you can choose
any file, in any directory, and on any disk drive. If the user cancels, Visual Basic
returns the value “False” and the procedure ends. If the user selects a file and
clicks Open, the selected file will be assigned to the variable source.
 For the purpose of copying, you’ll only need the filename (without the path),
so the Do…Until loop finds out the position of the last backslash (\) in the file
stored in the variable source, the first argument of the FileCopy statement.
Next, Visual Basic prepares a string of characters and assigns it to the variable

294 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

dest, the second argument of the FileCopy statement. This variable holds the
string obtained by concatenating the name of the destination folder (C:\Abort)
with the user-specified filename preceded by a backslash (\).
 The MkDir function creates a new folder called C:\Abort if it doesn’t exist on
drive C. If such a folder already exists, Visual Basic will need to deal with error
75. This error will be caught by the error-handler code included at the end of
the procedure. Notice that the error handler is a fragment of code that begins
with the label ErrorHandler followed by a colon.
 When Visual Basic encounters the Resume Next statement, it will continue
to execute the procedure from the instruction following the instruction that
caused the error. This means that the statement MkDir folder won’t be executed.
 Next, the procedure checks whether the selected file already exists in the
destination folder. If the file already exists there, the user will get the message
stored in the variable msg1. If the file does not exist in the destination folder
and the file is not currently open, Visual Basic will copy the file to the specified
folder and notify the user with the appropriate message. If the file is open, Vi-
sual Basic will encounter runtime error 70 and run the corresponding instruc-
tions in the ErrorHandler section of the procedure.

3. Run the CopyToAbortFolder procedure several times, each time selecting files
from different folders.

4. Try to copy a file that was copied before by this procedure to the C:\Abort
folder.

5. Try to copy an open file while using the CopyToAbortFolder procedure.
6. Run the procedure MyFiles prepared earlier in this chapter to write to the

Immediate window the contents of the Abort folder.

NOTE
Do not delete the C:\Abort folder and files that you have copied
to it. You’ll delete both the folder and the files in the next section
using a VBA procedure.

Deleting Files (the Kill Statement)

You already know from one of the earlier sections in this chapter that you can’t
delete a folder if it still contains files. To delete the files from any folder, use the
following Kill statement:

Kill pathname

Pathname specifies the names of one or more files that you want to delete.
Optionally, pathname may include the drive and folder name where the file

FILE AND FOLDER MANIPULATION WITH VBA 295

resides. To enable quick deletion of files, you can use the wildcard characters (*
or ?) in the pathname argument.

You can’t delete a file that is open. If you worked through the exercises in
the preceding section, your hard drive now contains the folder C:\Abort with
several files. Let’s write a VBA procedure to dispose of this folder and the files
contained in it.

 Hands-On 10.9 Deleting Files with the Kill Statement

1. Insert a new module into the project FileMan_VBA(Chap10_VBAExcel2019),
and rename it KillStatement.

2. Enter the code of the RemoveMe procedure, as shown below:
Sub RemoveMe()
 Dim folder As String
 Dim myFile As String

 ' assign the name of folder to the folder variable
 ' notice the ending backslash "\"
 folder = "C:\Abort\"
 myFile = Dir(folder, vbNormal)

 Do While myFile <> ""
 Kill folder & myFile
 myFile = Dir
 Loop
 RmDir folder
End Sub

3. Run the RemoveMe procedure. When the procedure ends, check Windows
Explorer to see that the Abort folder was removed.

Obtaining Information about Recent Files

Excel has a RecentFiles object
?Application.RecentFiles(1).Name
\VBAExcel2019_ByExample\Chap10_VBAExcel2019.xlsm
?Application.RecentFiles.Count
 25

SIDEBAR

296 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In the course of this chapter, you learned about and tried out VBA functions
and statements that allow you to work with the filesystem. You found out how
to manage files and folders by using built-in VBA functions, such as the Cur-
Dir function to get the name of the current folder. You learned how to use the
GetAttr and SetAttr functions to check and change file attributes. You also
learned about creating, copying, and deleting files and folders by using the state-
ments MkDir, FileCopy, and RmDir. Finally, you retrieved information about
the recent files using the properties and methods of the Excel RecentFiles
object.

In the next chapter, we will look at Windows Script Host (WSH), an invalu-
able ActiveX tool that lets you control and retrieve information from the Win-
dows operating system.

297

There is a hidden treasure in your computer called Windows Script Host
(WSH) that allows you to create little programs that control the Windows
operating system and its applications, as well as retrieve information

from the operating system. WSH is an ActiveX control found in the Wshom.ocx
file (see Figure 11.1). This file can be used to create scripts that perform simple
or complex operations that previously could only be performed by writing batch
files (.bat). WSH is a scripting language. A script is a set of commands that can
be run automatically. Scripts can be created and run directly from the command
prompt by using the Command Script Host (Cscript.exe) or from Windows by
using the Windows Script Host (Wscript.exe). In the following sections of this
chapter, you will learn how the Windows Script Host works together with VBA.

Chapter

 11 FILE AND FOLDER
MANIPULATION WITH
WINDOWS SCRIPT
HOST (WSH)

298 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 11.1 To check the version of the WSH file on your machine, locate the file in your Windows
directory and right-click it to access the properties window.

WSH has its own object hierarchy. Using the CreateObject function, you can
refer to WSH objects from your VBA procedure. Before you start writing VBA
procedures that utilize WSH objects, let’s look at some of the objects you will be
able to control.

Useful Things You Can Do with WSH

 ● Work with and manipulate Windows drives, folders, and fi les using the
FileSystemObject

 ● Retrieve information about Windows; access the Windows registry; read
and set environment variables; retrieve user, domain, and computer name

 ● Launch other applications
 ● Display dialog boxes and retrieve user input
 ● Create and manage shortcuts on your Windows desktop

SIDEBAR

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 299

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 11.1 Controlling Objects with Windows Script Host
(WSH)

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\
Chap11_VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor window and choose Tools | References. Click
the checkbox next to Microsoft Scripting Runtime, as in Figure 11.2, then
click OK to close the References dialog box.

FIGURE 11.2 Creating a reference to the Microsoft Scripting Runtime.

3. Press F2 to open the Object Browser.
4. In the <All Libraries> combo box, choose Scripting. You will see a list

of objects that are part of the Windows Script Host library, as shown in
Figure 11.3.

300 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 11.3 After establishing a reference to the Microsoft Scripting Runtime, the Object Browser
displays many objects that allow you to work with disks, folders, files, and their contents.

Windows Script Host allows you to quickly obtain answers to such questions
as “On which disk can I locate a particular fi le?” (GetDrive method), “What
is the extension of a fi lename?” (GetExtensionName method), “When was this
fi le last modifi ed?” (DateLastModifi ed property), and “Does this folder or fi le
exist on a given drive?” (FolderExists and FileExists methods).

5. Close the Object Browser.

FINDING INFORMATION ABOUT FILES WITH WSH

Windows Script Host exposes an object called FileSystemObject. This object has
several methods for working with the filesystem. Let’s see how you can obtain
some information about a specific file.

 Hands-On 11.2 Using WSH to Obtain File Information

1. In the Visual Basic Editor window, activate the Properties window and change
the name of VBAProject (Chap11_VBAExcel2019.xlsm) to FileMan_WSH.

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 301

2. Insert a new module into the FileMan_WSH project and rename it WSH.
3. In the WSH module’s Code window, enter the following FileInfo procedure

(you may need to change the path to the Windows folder to make it run on
your computer):
Sub FileInfo()
 Dim objFs As Object
 Dim objFile As Object
 Dim strMsg As String

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFile = objFs.GetFile("C:\WINDOWS\System.ini")
 strMsg = "File name: " & _
 objFile.Name & vbCrLf
 strMsg = strMsg & "Disk: " & _
 objFile.Drive & vbCrLf
 strMsg = strMsg & "Date Created: " & _
 objFile.DateCreated & vbCrLf
 strMsg = strMsg & "Date Modified: " & _
 objFile.DateLastModified & vbCrLf
 MsgBox strMsg, , "File Information"
End Sub

Th e FileInfo procedure shown above uses the CreateObject VBA function
to create an ActiveX object (FileSystemObject) that is a part of the Windows
Script Host library. Th is object provides access to a computer’s fi lesystem.

Dim objFs As Object
Set objFs = CreateObject("Scripting.FileSystemObject")

Th e above code declares an object variable named objFs. Next, it uses the
CreateObject function to create an ActiveX object and assigns the object to
an object variable. Th e statement

Set objFile = objFs.GetFile("C:\WINDOWS\System.ini")

creates and returns a reference to the File object for the System.ini fi le in the
C:\WINDOWS folder and assigns it to the objFile object variable. Th e File
object has many properties that you can read. For example, the statement
objFile.Name returns the full name of the fi le.
Th e statement objFile.Drive returns the drive name where the fi le is located.
Th e statements objFile.DateCreated and objFile.DateLastModified
return the date the fi le was created and when it was last modifi ed. Th is
procedure can be modifi ed easily so that it also returns the type of fi le, its
attributes, and the name of the parent folder. Try to modify this procedure on

302 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

your own by adding the following instructions to the code: objFile.Type,
objFile.Attributes, objFile.ParentFolder, and objFile.Size. Check
the Object Browser for other things you can learn about the fi le by referencing
the File object.

4. Run the FileInfo procedure.

Methods and Properties of FileSystemObject

You can access the computer’s filesystem using FileSystemObject. This object
offers a number of methods, some of which are shown below:

 ● FileExists—Returns True if the specifi ed fi le exists
Sub FileExists()
 Dim objFs As Object
 Dim strFile As String
 Set objFs = CreateObject("Scripting.FileSystemObject")
 strFile = InputBox("Enter the full name of the file: ")
 If objFs.FileExists(strFile) Then
 MsgBox strFile & " was found."
 Else
 MsgBox "File does not exist."
 End If
End Sub

 ● GetFile—Returns a File object

 ● GetFileName—Returns the fi lename and path

 ● GetFileVersion—Returns the fi le version

 ● CopyFile—Copies a fi le
Sub CopyFile()
 Dim objFs As Object
 Dim strFile As String
 Dim strNewFile As String

 strFile = "C:\Hello.doc"
 strNewFile = "C:\VBAExcel2019_ByExample\Hello.doc"

 Set objFs = CreateObject("Scripting.FileSystemObject")
 objFs.CopyFile strFile, strNewFile
 MsgBox "A copy of the specified file was created."
 Set objFs = Nothing
End Sub

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 303

 ● MoveFile—Moves a fi le

 ● DeleteFile—Deletes a fi le
Sub DeleteFile()
 ' This procedure requires that you set up
 ' a reference to Microsoft Scripting Runtime
 ' Object Library by choosing Tools | References
 ' in the VBE window
 Dim objFs As FileSystemObject
 Set objFs = New FileSystemObject

 objFs.DeleteFile "C:\VBAExcel2019_ByExample\Hello.doc"
 MsgBox "The requested file was deleted."
End Sub

 ● DriveExists—Returns True if the specifi ed drive exists
Function DriveExists(disk)
 Dim objFs As Object
 Dim strMsg As String
 Set objFs = CreateObject("Scripting.FileSystemObject")
 If objFs.DriveExists(disk) Then
 strMsg = "Drive " & UCase(disk) & " exists."
 Else
 strMsg = UCase(disk) & " was not found."
 End If
 DriveExists = strMsg
' run this function from the worksheet
' by entering the following in any cell : =DriveExists("E:\")
End Function

 ● GetDrive—Returns a Drive object
Sub DriveInfo()
 Dim objFs As Object
 Dim objDisk As Object
 Dim infoStr As String
 Dim strDiskName As String
 strDiskName = InputBox("Enter the drive letter:", _
 "Drive Name", "C:\")

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objDisk = objFs.GetDrive(objFs.
 GetDriveName(strDiskName))
 infoStr = "Drive: " & UCase(strDiskName) & vbCrLf
 infoStr = infoStr & "Drive letter: " & _
 UCase(objDisk.DriveLetter) & vbCrLf

304 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 infoStr = infoStr & "Drive Type: " & objDisk.DriveType &
 vbCrLf
 infoStr = infoStr & "Drive File System: " & _
 objDisk.FileSystem & vbCrLf
 infoStr = infoStr & "Drive SerialNumber: " & _
 objDisk.SerialNumber & vbCrLf
 infoStr = infoStr & "Total Size in Bytes: " & _
 FormatNumber(objDisk.TotalSize / 1024, 0) & " Kb" &
 vbCrLf
 infoStr = infoStr & "Free Space on Drive: " & _
 FormatNumber(objDisk.FreeSpace / 1024, 0) & " Kb" &
 vbCrLf
 MsgBox infoStr, vbInformation, "Drive Information"
End Sub

 ● GetDriveName—Returns a string containing the name of a drive or net-
work share
Function DriveName(disk) As String
 Dim objFs As Object
 Dim strDiskName As String

 Set objFs = CreateObject("Scripting.FileSystemObject")
 strDiskName = objFs.GetDriveName(disk)
 DriveName = strDiskName
' run this function from the Immediate window
' by entering ?DriveName("C:\")
End Function

 ● FolderExists—Returns True if the specifi ed folder exists
Sub DoesFolderExist()
 Dim objFs As Object
 Set objFs = CreateObject("Scripting.FileSystemObject")
 MsgBox objFs.FolderExists("C:\Program Files")
End Sub

 ● GetFolder—Returns a Folder object
Sub FilesInFolder()
 Dim objFs As Object
 Dim objFolder As Object
 Dim objFile As Object

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFs.GetFolder("C:\")

 Workbooks.Add

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 305

 For Each objFile In objFolder.Files
 With ActiveCell
 .Formula = objFile.Name
 .Offset(0, 1).Range("A1").Formula = objFile.Type
 .Offset(1, 0).Range("A1").Select
 End With
 Next
 Columns("A:B").AutoFit
End Sub

 ● GetSpecialFolder—Returns the path to the operating system folders:
0—Windows folder
1—System folder
2—Temp folder
Sub SpecialFolders()
 Dim objFs As Object
 Dim strWindowsFolder As String
 Dim strSystemFolder As String
 Dim strTempFolder As String

 Set objFs = CreateObject("Scripting.FileSystemObject")
 strWindowsFolder = objFs.GetSpecialFolder(0)
 strSystemFolder = objFs.GetSpecialFolder(1)
 strTempFolder = objFs.GetSpecialFolder(2)

 MsgBox strWindowsFolder & vbCrLf _
 & strSystemFolder & vbCrLf _
 & strTempFolder, vbInformation + vbOKOnly, _
 "Special Folders"
End Sub

 ● CreateFolder—Creates a folder
Sub MakeNewFolder()
 Dim objFs As Object
 Dim objFolder As Object
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFs.CreateFolder("C:\TestFolder")
 MsgBox "A new folder named " & _
 objFolder.Name & " was created."
End Sub

 ● CopyFolder—Creates a copy of a folder
Sub MakeFolderCopy()
 Dim objFs As FileSystemObject

306 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set objFs = New FileSystemObject
 If objFs.FolderExists("C:\TestFolder") Then
 objFs.CopyFolder "C:\TestFolder", "C:\FinalFolder"
 MsgBox "The folder was copied."
 End If
End Sub

 ● MoveFolder—Moves a folder

 ● DeleteFolder—Deletes a folder
Sub RemoveFolder()
 Dim objFs As Object
 Dim objFolder As Object
 Set objFs = CreateObject("Scripting.FileSystemObject")

 If objFs.FolderExists("C:\TestFolder") Then
 objFs.DeleteFolder "C:\TestFolder"
 MsgBox "The folder was deleted."
 End If
End Sub

 ● CreateTextFile—Creates a text fi le (see the example procedure later in
this chapter)

 ● OpenTextFile—Opens a text fi le
Sub ReadTextFile()
 Dim objFs As Object
 Dim objFile As Object
 Dim strContent As String
 Dim strFileName As String

 strFileName = "C:\VBAExcel2019_ByExample\Vacation.txt"
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFile = objFs.OpenTextFile(strFileName)
 Do While Not objFile.AtEndOfStream
 strContent = strContent & objFile.ReadLine & vbCrLf
 Loop

 objFile.Close
 Set objFile = Nothing
 ActiveWorkbook.Sheets(1).Select
 Range("A1").Formula = strContent
 Columns("A:A").Select
 With Selection
 .ColumnWidth = 62.43
 .Rows.AutoFit

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 307

 End With
End Sub

The FileSystemObject has only one property. The Drives property returns a ref-
erence to the collection of drives. Using this property you can create a list of
drives on a computer, as shown below:
Sub DrivesList()
 Dim objFs As Object
 Dim colDrives As Object
 Dim strDrive As String
 Dim Drive As Variant

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set colDrives = objFs.Drives

 For Each Drive In colDrives
 strDrive = "Drive " & Drive.DriveLetter & ": "
 Debug.Print strDrive
 Next
End Sub

Properties of the File Object

With File object you to access all the properties of a specified file. The following
lines of code create a reference to the File object:
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFile = objFs.GetFile("C:\My Documents\myFile.doc")

You will find an example of using the File object in the FileInfo procedure that
was created earlier in this chapter.
These are the properties of the File object:

 ● Attributes—Returns fi le attributes (compare this property to the GetAttr
VBA function explained in Chapter 10, “File and Folder Manipulation
with VBA”).

 ● DateCreated—File creation date.
 ● DateLastAccessed—File last-access date.
 ● DateLastModifi ed—File last-modifi ed date.
 ● Drive—Drive name followed by a colon.
 ● Name—Name of the fi le.
 ● ParentFolder—Parent folder of the fi le.
 ● Path—Full path of the fi le.

308 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Size—File size in bytes (compare this property to the FileLen VBA func-
tion introduced in Chapter 10).

 ● Type—File type. Th is is the text that appears in the Type column in Win-
dows Explorer, e.g., confi guration settings, application, and shortcut.

Properties of the Folder Object

The Folder object provides access to all of the properties of a specified folder.
The following lines of code create a reference to the Folder object:
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFs.GetFolder("C:\My Documents")

The Folder object has the following properties:

 ● Attributes—Folder attributes
 ● DateCreated—Folder creation date
 ● Drive—Returns the drive letter of the folder where the specifi ed folder

resides
 ● Files—Collection of fi les in the folder

Sub CountFilesInFolder()
 Dim objFs As Object
 Dim strFolder As String
 Dim objFolder As Object
 Dim objFiles As Object

 strFolder = InputBox("Enter the folder name:")
 If Not IsFolderEmpty(strFolder) Then
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFs.GetFolder(strFolder)
 Set objFiles = objFolder.Files
 MsgBox "The number of files in the folder " & _
 strFolder & " = " & objFiles.Count
 Else
 MsgBox "Folder " & strFolder & " has 0 files."
 End If
End Sub

The above procedure calls the IsFolderEmpty function (see the next code
example).

 ● IsRootFolder—Returns True if the folder is the root folder
 ● Name—Name of the folder

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 309

 ● ParentFolder—Parent folder of the specifi ed folder
 ● Path—Full path to the folder
 ● Size—Folder size in bytes
Function IsFolderEmpty(myFolder)
 Dim objFs As Object
 Dim objFolder As Object

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFolder = objFs.GetFolder(myFolder)
 IsFolderEmpty = (objFolder.Size = 0)
End Function

 ● SubFolders—Collection of subfolders in the folder
 ● Type—Folder type, e.g., fi le folder or Recycle Bin

Properties of the Drive Object

The Drive object provides access to the properties of the specified drive on a
computer or a server. The following lines of code create a reference to the Drive
object:
 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objDrive = objFs.GetDrive("C:\")

The Drive object has the following properties:

 ● AvailableSpace—Available space in bytes
 ● FreeSpace—Same as AvailableSpace
 ● DriveLetter—Drive letter (without the colon)
 ● DriveType—Type of drive:

0—Unknown
1—Removable
2—Fixed
3—Network
4—CD-ROM
5—RAM disk
Sub CDROM_DriveLetter()
 Dim objFs As Object
 Dim colDrives As Object
 Dim Drive As Object
 Dim counter As Integer
 Const CDROM = 4

310 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set colDrives = objFs.Drives
 counter = 0
 For Each Drive In colDrives
 If Drive.DriveType = CDROM Then
 counter = counter + 1
 Debug.Print "The CD-ROM Drive: " & Drive.DriveLetter
 End If
 Next
 MsgBox "There are " & counter & " CD-ROM drives."
End Sub

 ● FileSystem—Filesystem such as FAT, NTFS, or CDFS
 ● IsReady—Returns True if the appropriate media (CD-ROM) is inserted

and ready for access
Function IsCDROMReady(strDriveLetter)
 Dim objFs As Object
 Dim objDrive As Object

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objDrive = objFs.GetDrive(strDriveLetter)

 IsCDROMReady = (objDrive.DriveType = 4) And _
 objDrive.IsReady = True
 ' run this function from the Immediate window
 ' by entering: ?IsCDROMReady("D:")
End Function

 ● Path—Path of the root folder
 ● SerialNumber—Serial number of the drive
 ● TotalSize—Total drive size in bytes

CREATING A TEXT FILE USING WSH

Windows Script Host (WSH) offers three methods for creating text files: Cre-
ateTextFile, OpenTextFile, and OpenAsTextStream. The syntax of each of
these methods and example procedures are shown below.

 ● CreateTextFile object.CreateTextFile(filename[, overwrite[,
unicode]])

 ● Object is the name of the FileSystemObject or the Folder object.

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 311

 ● Filename is a string expression that specifies the file to create.
 ● Overwrite (optional) is a Boolean value that indicates whether you can

overwrite an existing file. The value is True if the file can be overwritten
and False if it can’t be overwritten. If omitted, existing files are not over-
written.

 ● Unicode (optional) is a Boolean value that indicates whether the file is
created as a Unicode or ASCII file. The value is True if the file is created
as a Unicode file and False if it’s created as an ASCII file. If omitted, an
ASCII file is assumed.
Sub CreateFile_Method1()
 Dim objFs As Object
 Dim objFile As Object

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFile = objFs.CreateTextFile("C:\Phones.txt", True)

 objFile.WriteLine ("Margaret Kubiak: 212-338-8778")
 objFile.WriteBlankLines (2)
 objFile.WriteLine ("Robert Prochot: 202-988-2331")
 objFile.Close
End Sub

The above procedure creates a text file to store the names and phone
numbers of two people. Because there is a Boolean value of True in the
position of the overwrite argument, the C:\Phones.txt file will be over-
written if it already exists in the specified folder.

 ● OpenTextFile object.OpenTextFile(filename[, iomode[, cre-
ate[, format]]])

 ● Object is the name of the FileSystemObject.
 ● Filename is a string expression that identifi es the fi le to open.
 ● Iomode (optional) is a Boolean value that indicates whether a new fi le can

be created if the specifi ed fi lename doesn’t exist. Th e value is True if a new
fi le is created and False if it isn’t created. If omitted, a new fi le isn’t created.
Th e Iomode argument can be one of the following constants:
ForReading (1)
ForWriting (2)
ForAppending (8)

312 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Create (optional) is a Boolean value that indicates whether a new fi le can
be created if the specifi ed fi lename doesn’t exist. Th e value is True if a new
fi le is created and False if it isn’t created. If omitted, a new fi le isn’t created.

 ● Format (optional) is one of three Tristate values used to indicate the for-
mat of the opened file. If omitted, the file is opened as ASCII.
TristateTrue—Open the file as ASCII.
TristateFalse—Open the file as Unicode.
TristateUseDefault—Open the file using the system default.
Sub CreateFile_Method2()
 Dim objFs As Object
 Dim objFile As Object

 Const ForWriting = 2

 Set objFs = CreateObject("Scripting.FileSystemObject")
 Set objFile = objFs.OpenTextFile("C:\Shopping.txt", _
 ForWriting, True)

 objFile.WriteLine ("Bread")
 objFile.WriteLine ("Milk")
 objFile.WriteLine ("Strawberries")
 objFile.Close
End Sub

 ● OpenAsTextStream object.OpenAsTextStream([iomode, [format]])

 ● Object is the name of the File object.
 ● Iomode (optional) indicates input/output mode. Th is can be one of three

constants:
ForReading (1)
ForWriting (2)
ForAppending (8)

 ● Format (optional) is one of three Tristate values used to indicate the for-
mat of the opened fi le. If omitted, the fi le is opened as ASCII.
TristateTrue—Open the file as ASCII.
TristateFalse—Open the file as Unicode.
TristateUseDefault—Open the file using the system default.
Sub CreateFile_Method3()
 Dim objFs As Object
 Dim objFile As Object

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 313

 Dim objText As Object
 Const ForWriting = 2
 Const ForReading = 1

 Set objFs = CreateObject("Scripting.FileSystemObject")
 objFs.CreateTextFile "New.txt"
 Set objFile = objFs.GetFile("New.txt")
 Set objText = objFile.OpenAsTextStream(ForWriting, _
 TristateUseDefault)

 objText.Write "Wedding Invitation"
 objText.Close
 Set objText = objFile.OpenAsTextStream(ForReading, _
 TristateUseDefault)
 MsgBox objText.ReadLine
 objText.Close
End Sub

PERFORMING OTHER OPERATIONS WITH WSH

WSH makes it possible to manipulate any Automation object installed on your
computer. In addition to accessing the filesystem through FileSystemObject,
WSH allows you to perform such tasks as handling WSH and ActiveX objects,
mapping and unmapping printers and remote drives, manipulating the regis-
try, creating Windows and Internet shortcuts, and accessing the Windows NT
Active Directory service.
The WSH object model is made of the following three main objects:

 ● WScript
 ● WshShell
 ● WshNetwork

The following sections demonstrate how you can take advantage of the Wsh-
Shell object to write procedures to start other applications and create shortcuts.

Running Other Applications

Suppose you want to start up Windows Notepad from your VBA procedure. The
procedure that follows shows you how easy it is to run an application using the
WshShell object that is a part of Windows Script Host. If you’d rather launch the
built-in calculator, just replace the name of the Notepad application with Calc.

314 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 11.3 Running Other Applications Using the WSH Object

1. Insert a new module into the project FileMan_WSH (Chap11_VBAExcel2019.
xlsm) and rename it WSH_Additional.

2. Enter the RunNotepad procedure in the WSH_Additional module’s Code
window, as shown below:
Sub RunNotepad()
 Dim WshShell As Object
 Set WshShell = CreateObject("WScript.Shell")
 WshShell.Run "Notepad"
 Set WshShell = Nothing
End Sub

Th e above procedure begins by declaring and creating a WshShell object:

Dim WshShell As Object
Set WshShell = CreateObject("WScript.Shell")

Th e next statement uses the Run method to run the required application:

WshShell.Run "Notepad"

Using the same concept, it is easy to run Windows utility applications such as
Calculator or Explorer:

WshShell.Run "Calc"
WshShell.Run "Explorer"

Th e last line in the procedure destroys the WshShell object because it is no
longer needed:

Set WshShell = Nothing

3. Execute the RunNotepad procedure.

Instead of launching an empty application window, you can start your applica-
tion with a specific document, as shown in the following procedure:
Sub OpenTxtFileInNotepad()
 Dim WshShell As Object
 Set WshShell = CreateObject("WScript.Shell")
 WshShell.Run "Notepad C:\VBAExcel2019_ByExample\Vacation.txt"
 Set WshShell = Nothing
End Sub

If the specified file cannot be found, Visual Basic will prompt you whether
you want to create the file. If the path contains spaces, the pathname must be

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 315

enclosed in double quotes, or the Run method will raise a runtime error. For
example, to open “C:\My Files\my text file.txt” file in Notepad, use the follow-
ing statement:

WshShell.Run "Notepad " & """C:\My Files\my text file.txt"""

or use the ANSI equivalent for double quote marks as shown below:
WshShell.Run "Notepad " & Chr(34) & _
 "C:\My Files\my text file.txt" & Chr(34)

The above statement uses the VBScript function Chr to convert an ANSI value
to its character equivalent. 34 is the ANSI value for double quotes.

To open a Web page, pass the Web page address to the Run method, as in the
following:
 WshShell.Run ("http://msn.com")

The following statement invokes a Control Panel:
 WshShell.Run "Control.exe"

The Control Panel has various property sheets. The following statement will
open the System property page with the Hardware tab selected:
 WshShell.Run "Control.exe Sysdm.cpl, ,2"

The parameters after the name of the Control Panel property page (identified by
the .cpl extension) specify which page is selected. To select the General tab on
this property page, replace 2 with 0 (zero).

Note that the Run method has two optional arguments that allow you to
specify the window style and whether the system should wait until the executed
process completes. For example, you can launch Notepad in the minimized view
as shown below:
 WshShell.Run "Notepad", vbMinimizedFocus

Because the second optional parameter is not specified, the Run method exe-
cutes the command (Notepad.exe) and immediately terminates the process. If
the second parameter is set to True, the Run method will create a new process,
execute the command, and wait until the process terminates:
 WshShell.Run "Notepad", vbMinimizedFocus, True

If you run the above statement with the second parameter set to True, you will
not be able to work with Excel until you close Notepad.

316 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Obtaining Information about Windows

Windows stores various kinds of information in environment variables. You can
use the Environment property of the WshShell object to access these variables.
Depending on which version of operating system you are using, the environ-
ment variables are grouped into System, User, Volatile, and Process categories.
You can use the name of the category as the index of the Environment prop-
erty. The following procedure demonstrates how to retrieve the values of several
environment variables from the Process category:
Sub ReadEnvVar()
 Dim WshShell As Object
 Dim objEnv As Object

 Set WshShell = CreateObject("WScript.Shell")
 Set objEnv = WshShell.Environment("Process")

 Debug.Print "Path=" & objEnv("PATH")
 Debug.Print "System Drive=" & objEnv("SYSTEMDRIVE")
 Debug.Print "System Root=" & objEnv("SYSTEMROOT")
 Debug.Print "Windows folder=" & objEnv("Windir")
 Debug.Print "Operating System=" & objEnv("OS")
 Set WshShell = Nothing
End Sub

Retrieving Information about the User, Domain, or Computer

You can use the properties of the WshNetwork object of WSH to retrieve the
user name, domain name, or the computer name, as shown in the procedure
below:
Sub GetUserDomainComputer()
 Dim WshNetwork As Object
 Dim myData As String

 Set WshNetwork = CreateObject("WScript.Network")
 myData = myData & "Computer Name: " _
 & WshNetwork.ComputerName & vbCrLf
 myData = myData & "Domain: " _
 & WshNetwork.UserDomain & vbCrLf
 myData = myData & "User Name: " _
 & WshNetwork.UserName & vbCrLf

 MsgBox myData
End Sub

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 317

Creating Shortcuts

When you start distributing your VBA applications, users will certainly request
that you automatically place a shortcut to your application on their desktop.
VBA does not provide a way to create Windows shortcuts. Luckily for you, you
now know how to work with WSH, and you can use its Shell object to create
shortcuts to applications or Web sites without any user intervention. The Wsh-
Shell object exposes the CreateShortcut method, which you can use in the
following way:

Set myShortcut = WshShell.CreateShortcut(pathname)

Pathname is a string indicating the full path to the shortcut file. All shortcut files
have the .lnk extension, which must be included in the pathname. The Create-
Shortcut method returns a shortcut object that exposes a number of properties
and one method:

 ● TargetPath—Th e TargetPath property is the path to the shortcut’s execut-
able.

WshShell.TargetPath = ActiveWorkbook.FullName

 ● WindowStyle—Th e WindowStyle property identifi es the window style
used by a shortcut.
1—Normal window
3—Maximized window
7—Minimized window
WshShell.WindowStyle = 1

 ● Hotkey—Th e Hotkey property is a keyboard shortcut. For example,
Alt+F, Shift +G, Ctrl-Shift +Z, etc.

WshShell.Hotkey = "Ctrl+Alt+W"

 ● IconLocation—Th e IconLocation property is the location of the short-
cut’s icon. Because icon fi les usually contain more than one icon, you
should provide the path to the icon fi le followed by the index number
of the desired icon in this fi le. If not specifi ed, Windows uses the default
icon for the fi le.

WshShell.IconLocation = "notepad.exe, 0"

318 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Description—Th e Description property contains a string value describ-
ing a shortcut.

WshShell.Description = "Mercury Learning Web Site"

 ● WorkingDirectory—Th e WorkingDirectory property identifi es the work-
ing directory used by a shortcut.

strWorkDir = WshShell.SpecialFolders("Desktop")
WshShell.WorkingDirectory = strWorkDir

 ● Save—Save is the only method of the Shortcut object. Aft er using the
CreateShortcut method to create a Shortcut object and set the Shortcut
object’s properties, the CreateShortcut method must be used to save the
Shortcut object to disk.

Creating a shortcut is a three-step process:
4. Create an instance of a WshShortcut object.
5. Initialize its properties (shown above).
6. Save it to disk with the Save method.

The following Hands-On creates a WshShell object and uses the CreateShort-
cut method to create two shortcuts: a Windows shortcut to the active Micro-
soft Excel workbook file and an Internet shortcut to the Mercury Learning and
Information Web site. Both shortcuts are placed on the user’s desktop.

 Hands-On 11.4 Creating Shortcuts Using the WshShell Object

1. In the WSH_Additional module created in the previous Hands-On exercise,
enter the CreateShortcut procedure as shown below:
Sub CreateShortcut()
 ' this script creates two desktop shortcuts
 Dim WshShell As Object
 Dim objShortcut As Object
 Dim strWebAddr As String

 strWebAddr = "http://www.merclearning.com"

 Set WshShell = CreateObject("WScript.Shell")

 ' create an Internet shortcut
 Set objShortcut = WshShell.CreateShortcut(WshShell. _
 SpecialFolders("Desktop") & "\Mercury Learning.url")
 With objShortcut
 .TargetPath = strWebAddr

FILE AND FOLDER MANIPULATION WITH WINDOWS SCRIPT HOST (WSH) 319

 .Save
 End With

 ' create a file shortcut
 ' you cannot create a shortcut to unsaved workbook file
 Set objShortcut = WshShell.CreateShortcut(WshShell. _
 SpecialFolders("Desktop") & "\" & _
 ActiveWorkbook.Name & ".lnk"
 With objShortcut
 .TargetPath = ActiveWorkbook.FullName
 .Description = "Discover Mercury Learning"
 .WindowStyle = 7
 .Save
 End With

 Set objShortcut = Nothing
 Set WshShell = Nothing
End Sub

Th e above procedure uses the SpecialFolders property of the WshShell
object to return the path to the Windows desktop.

2. Run the CreateShortcut procedure.
3. Switch to your desktop and click the Mercury Learning shortcut.
4. Close the active workbook file and test the shortcut to this file that you should

now have on your desktop.

Using the SpecialFolders Property

You can find out the location of a special folder on your machine using the
SpecialFolders property. The following special folders are available: AllUsers-
Desktop, AllUsersPrograms, AllUsersStartMenu, AllUsersStartup, Desktop,
Favorites, Fonts, MyDocuments, NetHood, PrintHood, Programs, Recent,
SendTo, StartMenu, Startup, and Templates. If the requested special folder is
not available, the SpecialFolders property returns an empty string.

Listing Shortcut Files

The following procedure prints to the Immediate window the list of all shortcut
files found on the desktop. You can easily modify this procedure to list other
special folders (StartMenu, Recent, and others as listed in the sidebar) or enu-
merate all folders by removing the conditional statement. Notice that the pro-
cedure uses the InStrRev function to check whether the file is a shortcut. This

SIDEBAR

320 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

function has the same syntax as the InStr function, except that it returns the
position of an occurrence of one string within another, from the end of string.
Sub ListShortcuts()
 Dim objFs As Object
 Dim objFolder As Object
 Dim wshShell As Object
 Dim strLinks As String
 Dim s As Variant
 Dim f As Variant

 Set wshShell = CreateObject("WScript.Shell")
 Set objFs = CreateObject("Scripting.FileSystemObject")
 strLinks = ""

 For Each s In wshShell.SpecialFolders
 Set objFolder = objFs.GetFolder(s)
 strLinks = strLinks & objFolder.Name _
 & " Shortcuts:" & vbCrLf

 If objFolder.Name = "Desktop" Then
 For Each f In objFolder.Files
 If InStrRev(UCase(f), ".LNK") Then
 strLinks = strLinks & f.Name & vbCrLf
 End If
 Next
 End If
 Exit For
 Next
 Debug.Print strLinks
End Sub

SUMMARY

In the course of this chapter, you learned how to use the Windows Script Host
(WSH) to access the FileSystemObject and perform other operations, such as
launching applications and creating Windows shortcuts with the WshShell
object.

In the next chapter, you will learn how to use VBA to work with three types
of files: sequential, random access, and binary.

321

In addition to opening files within a particular application, your VBA
procedures are capable of opening other types of files and working with
their contents. This chapter will put you in direct contact with your data by

introducing you to the process known as low-level file I/O (input/output).

FILE ACCESS TYPES

There are three types of files used by a computer:

 ● Sequential access fi les are fi les where data is retrieved in the same order
as it is stored, such as fi les stored in the CSV format (comma-delimited
text), TXT format (text separated by tabs), or PRN format (text separated
by spaces). Sequential access fi les are oft en used for writing text fi les such
as error logs, confi guration settings, and reports. Sequential access fi les
have the following modes: Input, Output, and Append. Th e mode speci-
fi es how you can work with a fi le aft er it has been opened.

 ● Random-access fi les are text fi les where data is stored in records of equal
length and fi elds separated by commas. Random-access fi les have only
one mode: Random.

 ● Binary access fi les are graphic fi les and other non-text fi les. Binary fi les
can only be accessed in a Binary mode.

Chapter

 12 USING
LOW-LEVEL
FILE ACCESS

322 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WORKING WITH SEQUENTIAL FILES

The hard drive of your computer contains hundreds of sequential files. Con-
figuration files, error logs, HTML files, and all sorts of plain text files are all
sequential files. These files are stored on disk as a sequence of characters.
The beginning of a new text line is indicated by two special characters: the car-
riage return and the linefeed. When you work with sequential files, start at the
beginning of the file and move forward character by character, line by line, until
you encounter the end of the file. Sequential access files can be easily opened
and manipulated by just about any text editor.

Reading Data Stored in Sequential Files

Let’s take one of the sequential files already present on your computer and read
its contents with VBA straight from the VBE window. You can read any other
text file you want. To read data from a file, open the file with the Open statement.
Here’s the general syntax of this statement, followed by an explanation of each
component:

Open pathname For mode[Access access][lock] As [#]filenumber
 [Len=reclength]

The Open statement has three required arguments: pathname, mode, and file-
number. Pathname is the name of the file you want to open. The filename may
include the name of a drive and folder.

 ● Mode is a keyword that determines how the fi le was opened. Sequential
fi les can be opened in one of the following modes: Input, Output, or Ap-
pend. Use Input to read the fi le, Output to write to a fi le overwriting any
existing fi le, and Append to write to a fi le by adding to any existing in-
formation.

 ● Th e optional Access clause can be used to specify permissions for the fi le
(Read, Write, or Read Write).

 ● Th e optional Lock argument determines which fi le operations are al-
lowed for other processes. For example, if a fi le is open in a network envi-
ronment, lock determines how other people can access it. Th e following
lock keywords can be used: Shared, Lock Read, Lock Write, or Lock Read
Write.

 ● Filenumber is a number from 1 to 511. Th is number is used to refer to
the fi le in subsequent operations. You can obtain a unique fi le number
using the Visual Basic built-in FreeFile function.

USING LOW-LEVEL FILE ACCESS 323

 ● Th e last element of the Open statement, reclength, specifi es the buff er
size (total number of characters) for sequential fi les, or the record size for
random-access fi les.

Taking the preceding into consideration, to open Vacation.txt or any other
sequential file in order to read its data, use the following instruction:
Open "C:\VBAPrimerExcel_ByExample\Vacation.txt" For Input As #1

If a file is opened for input, it can only be read from. After you open a sequential
file, you can read its contents with the Line Input # or Input # statements or
by using the Input function. When you use sequential access to open a file for
input, the file must already exist.

What Is a Sequential File?

A sequential file is one in which the records must be accessed in the order they
occur in the file. This means that before you can access the third record, you
must first access record number 1 and then record number 2.

Reading a File Line by Line

To read the contents of a sequential file line by line, use the following Line
Input # statement:

Line Input #filenumber, variableName

#filenumber is the file number that was used in the process of opening the file
with the Open statement. VariableName is a String or Variant variable that will
store the line being read. The statement Line Input # reads a single line in an
open sequential file and stores it in a variable. Bear in mind that the Line Input
statement reads the sequential file one character at a time, until it encounters
a carriage return (Chr(13)) or a carriage return-linefeed sequence (Chr(13) &
Chr(10)). These characters are omitted from the text retrieved in the reading
process.

The ReadMe procedure that follows demonstrates how you can use the Open
and Line Input # statements to read the contents of the Vacation.txt file line
by line. Apply the same method for reading other sequential files.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

SIDEBAR

324 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 12.1 Reading File Contents with the Open and Line Input
Statements

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap12_
VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor and use the Properties window to rename
VBAProject (Chap12_VBAExcel2019.xlsm) FileMan_IO.

3. Insert a new module in the FileMan_IO project and rename it SeqFiles.
4. In the SeqFiles module’s Code window, enter the ReadMe procedure shown

below:
Sub ReadMe(strFileName As String)
 Dim rLine As String
 Dim i As Integer

 ' line number

 i = 0

 On Error GoTo ExitHere
 Open strFileName For Input As #1

 ' stay inside the loop until the end of file is reached
 Do While Not EOF(1)
 i = i + 1
 Line Input #1, rLine
 MsgBox "Line " & i & " in " & strFileName & " reads: " _
 & Chr(13) & Chr(13) & rLine
 Loop
 MsgBox i & " lines were read."
 Close #1
 Exit Sub
ExitHere:
 MsgBox "File " & strFileName & " could not be found."
End Sub

The ReadMe procedure opens the specified text file in the Input mode as file
number 1 in order to read its contents. If the specified file cannot be opened
(because it may not exist), Visual Basic jumps to the label ExitHere and dis-
plays a message box.
 If the file is successfully opened, we can proceed to read its content. The Do…
While loop tells Visual Basic to execute the statements inside the loop until the
end of the file has been reached. The end of the file is determined by the result
of the EOF function. The EOF function returns a logical value of True if the next

USING LOW-LEVEL FILE ACCESS 325

character to be read is past the end of the file. Notice that the EOF function re-
quires one argument—the number of the open file you want to check. This is
the same number used in the Open statement. Use the EOF function to ensure
that Visual Basic doesn’t read past the end of the file.
 The Line Input # statement stores each line’s contents in the variable
rLine. Next, a message is displayed that shows the line number and its con-
tents. Visual Basic exits the Do…While loop when the result of the EOF function
is true. Before VBA ends the procedure, two more statements are executed. A
message is displayed with the total number of lines that have been read, and
the file is closed.

5. To run the procedure, open the Immediate window, type the following
statement, and press Enter to execute:
ReadMe "C:\VBAPrimerExcel_ByExample\Vacation.txt"

Reading Characters from Sequential Files

Suppose that your procedure needs to check how many commas appear a file.
Instead of reading entire lines, you can use the Input function to return the
specified number of characters. Next, the If statement can be used to compare
the obtained character against the one you are looking for. Before you write a
procedure that does this, let’s review the syntax of the Input function:

Input(number, [#]filenumber)

Both arguments of the Input function are required; number specifies the num-
ber of characters you want to read, and filenumber is the same number that
the Open statement used to open the file. The Input function returns all the
characters being read, including commas, carriage returns, end-of-file markers,
quotes, and leading spaces.

 Hands-On 12.2 Reading Characters from Sequential Files

1. Enter the CountChar procedure below in the SeqFiles module.
Sub CountChar(strFileName As String, srchChar As String)
 Dim counter As Integer
 Dim char As String

 counter = 0
 Open strFileName For Input As #1

 Do While Not EOF(1)
 char = Input(1, #1)

326 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If char = srchChar Then
 counter = counter + 1
 End If
 Loop
 If counter <> 0 Then
 MsgBox "Characters (" & srchChar & ") found: " & counter
 Else
 MsgBox "The specified character (" & srchChar & _
 ") has not been found."
 End If
 Close #1
End Sub

2. To run the procedure, open the Immediate window, type the following
statement, and press Enter to execute:
CountChar "C:\VBAPrimerExcel_ByExample\Vacation.txt", "."

As there are no commas in the Vacation.txt file, you should get a message that
the specified character was not found.

3. Run the procedure again after replacing the period character with any other
character you’d like to find.
The Input function allows you to return any character from the sequential file.
If you use the Visual Basic function LOF (length of file) as the first argument of
the Input function, you’ll be able to quickly read the contents of the sequential
file without having to loop through the entire file. The LOF function returns
the number of bytes in a file. Each byte corresponds to one character in a text
file. The following ReadAll procedure shows how to read the contents of a
sequential file to the Immediate window:
Sub ReadAll(strFileName As String)
 Dim all As String

 Open strFileName For Input As #1
 all = Input(LOF(1), #1)
 Debug.Print all
 Close #1
End Sub

4. To execute the above procedure, open the Immediate window, type the
following statement, and press Enter:
ReadAll "C:\VBAPrimerExcel_ByExample\Vacation.txt"

Instead of printing the file contents to the Immediate window, you can read it
into a text box placed in a worksheet, like the one in Figure 12.1. Let’s take a
few minutes to write this procedure.

USING LOW-LEVEL FILE ACCESS 327

 Hands-On 12.3 Printing File Contents to a Worksheet Text Box

1. Enter the WriteToTextBox procedure below in the SeqFiles module.
Sub WriteToTextBox(strFileName As String)
 Dim sh As Worksheet
 Set sh = ActiveSheet

 On Error GoTo CloseFile:

 Open strFileName For Input As #1
 sh.Shapes.AddTextbox(msoTextOrientationHorizontal, _
 10, 10, 300, 200).Select

 Selection.Characters.Text = Input(LOF(1), #1)
CloseFile:
 Close #1
End Sub

Notice that the statement On Error GoTo CloseFile activates error trapping.
If an error occurs during the execution of a line of the procedure, the program
will jump to the error-handling routine that follows the CloseFile label. The
statement Close #1 will be executed, whether or not the program encounters
an error. Before the file contents are placed in a worksheet, a text box is added
using the AddTextbox method of the Shapes object.

2. To execute the above procedure, open the Immediate window, type the
following statement, and press Enter:
WriteToTextBox "C:\VBAPrimerExcel_ByExample\Vacation.txt"

FIGURE 12.1 The contents of a text file are displayed in a text box placed in an Excel worksheet.

328 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Reading Delimited Text Files

In some text files (usually files saved in CSV, TXT, or PRN format), data entered
on each line of text is separated (or delimited) with a comma, tab, or space char-
acter. These types of files can be read faster with the Input # statement instead
of the Line Input # statement introduced earlier in this chapter. The Input #
statement allows you to read data from an open file into several variables. This
function looks like the following:

 Input #filenumber, variablelist

Filenumber is the same file number that was used in the Open statement. Vari-
ablelist is a comma-separated list of variables that you will want to use to
store the data being read. You can’t use arrays or object variables. You can, how-
ever, use a user-defined variable (explained later in this chapter). An example of
a sequential file with comma-delimited values is shown below:

 Smith,John,15
 Malloney,Joanne,28
 Ikatama,Robert,15

Note that in this example there are no spaces before or after the commas. To
read text formatted in this way, you must specify one variable for each item of
data: last name, first name, and age. Let’s try it out.

 Hands-On 12.4 Reading a Comma-Delimited (CSV) File with the
Input # Statement

1. Open a new workbook and enter the data shown in the worksheet in
Figure 12.2:

FIGURE 12.2 You can create a comma-delimited file from an Excel workbook.

2. Click the File tab on the Ribbon, then click Save As. Switch to the C:\
VBAExcel2019_ByExample folder. In the Save as type drop-down box, select
CSV (Comma delimited) (*.csv). Change the filename to Winners.csv and
click Save.

USING LOW-LEVEL FILE ACCESS 329

3. Excel will display a message that some features will be lost if you save the file
as CSV. Click Yes to use that format.

NOTE

The CSV file type does not support workbooks that contain
multiple sheets. If you added more sheets to the workbook and
try to save the workbook as a comma-delimited file (CSV), Ex-
cel will display a warning message.

4. Close the Winners.csv file. Click No when prompted to save changes.
5. Activate the Chap12_VBAExcel2019.xlsm workbook and switch to the Visual

Basic Editor.
6. In the Project Explorer window, double-click the SeqFiles module in the

FileMan_IO project and enter the Winners procedure as shown below:
Sub Winners()
 Dim lname As String
 Dim fname As String
 Dim age As Integer

 Open "C:\VBAExcel2019_ByExample\Winners.csv" For Input As #1
 Do While Not EOF(1)
 Input #1, lname, fname, age
 MsgBox lname & ", " & fname & ", " & age
 Loop
 Close #1
End Sub

The above procedure opens the Winners.csv file for input and sets up a Do…
While loop that runs through the entire file until the end of file is reached. The
Input #1 statement is used to write the contents of each line of text into three
variables: lname, fname, and age. Then a message box displays the contents of
these variables. The procedure ends by closing the Winners.csv file.

7. Run the Winners procedure.

Writing Data to Sequential Files

When you want to write data to a sequential file, you should open the file in
Append or Output mode. The differences between these modes are explained
below:

 ● Append mode—Use it to add data to the end of an existing text fi le. For
example, if you open the Readme.txt fi le in Append mode and add to this
fi le the text “Th ank you for reading this document,” Visual Basic won’t
delete or alter the text that is currently in the fi le but will add the new text
to the end of the fi le.

330 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Output mode—When you open a fi le in Output mode, Visual Basic will
delete the data that is currently in the fi le. If the fi le does not exist, a
brand-new fi le will be created. For example, if you open the Readme.txt
fi le in Output mode and attempt to write some text to it, the previous
text that was stored in this fi le will be removed. If you don’t back up the
fi le prior to writing the data, this mistake may be quite costly. You should
open an existing fi le in Output mode only if you want to replace its entire
contents with new data.

Here are some examples of when to open a file in Append mode or Output
mode:

 ● To create a brand-new text fi le called C:\VBAExcel2019_ByExample\Re-
adme.txt, open the fi le in Output mode as follows:

Open "C:\VBAExcel2019_ByExample\Readme.txt" For Output As #1

 ● To add new text to the end of C:\VBAExcel2019_ByExample\Readme.txt,
open the fi le in Append mode as follows:

Open "C:\VBAExcel2019_ByExample\Readme.txt" For Append As #1

 ● To replace the contents of an existing fi le C:\VBAExcel2019_ByExample\
Winners.csv with a list of new winners, fi rst prepare a backup copy of the
original fi le, then open the original fi le in Output mode:

FileCopy "C:\VBAExcel2019_ByExample\Winners.csv",
 "C:\VBAExcel2019_ByExample\Winners.old"
Open "C:\VBAExcel2019_ByExample\Winners.csv" For Output As #1

Can’t Read and Write at the Same Time

You cannot perform read and write operations simultaneously on an open se-
quential file. The file must be opened separately for each operation. For in-
stance, after data has been written to a file that has been opened for output, the
file must be closed before being opened for input.

Advantages and Disadvantages of Sequential Files

Although sequential files are easy to create and use, and don’t waste any space,
they have several disadvantages. For example, you can’t easily find one specific
item in the file without having to read through a large portion of the file. Also,
you must rewrite the entire file to change or delete an individual item in the
file. And as stated above, sequential files must be opened for reading and again
for writing.

SIDEBAR

SIDEBAR

USING LOW-LEVEL FILE ACCESS 331

Using Write # and Print # Statements

Now that you know both methods (Append and Output) for opening a text file
with the intention of writing to it, it’s time to learn the Write # and Print #
statements that will allow you to send data to the file.
When you read data from a sequential file with the Input # statement, you
usually write data to this file with the Write # statement. This statement looks
like this:

Write #filenumber, [outputlist]

Filenumber specifies the number of the file you’re working with. It is the only
required argument of the Write # statement. outputlist is the text you want
to write to the file and can be a single text string or a list of variables that con-
tain data that you want to write. If you specify only the filenumber argument,
Visual Basic will write a single empty line to the open file.
To illustrate how data is written to a file, let’s prepare a text file with the first
name, last name, birthdate, and the number of siblings for three people.

 Hands-On 12.5 Using the Write # Statement to Write Data to a File

1. In the SeqFiles module, enter the DataEntry procedure as shown below:
Sub DataEntry()
 Dim lname As String
 Dim fname As String
 Dim birthdate As Date
 Dim sib As Integer

 Open "C:\VBAExcel2019_ByExample\Friends.txt" For Output As #1
 lname = "Smith"
 fname = "Gregory"
 birthdate = #1/2/1963#
 sib = 3
 Write #1, lname, fname, birthdate, sib

 lname = "Conlin"
 fname = "Janice"
 birthdate = #5/12/1948#
 sib = 1
 Write #1, lname, fname, birthdate, sib

 lname = "Kaufman"
 fname = "Steven"
 birthdate = #4/7/1957#
 sib = 0

332 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Write #1, lname, fname, birthdate, sib

 Close #1
End Sub

The above procedure creates a brand-new file named C:\VBAExcel2019_ByEx-
ample\Friends.txt, opens it for output, then writes three records to the file.
 The data written to the file is stored in variables. Notice that the strings are
delimited with double quotes (“”) and the birthdate is surrounded by pound
signs (#).

2. Run the DataEntry procedure.
3. Locate the Friends.txt file created by the DataEntry procedure and open it

using Windows Notepad.
The Friends.txt file opened in Notepad looks as follows:
"Smith","Gregory",#1963-01-02#,3
"Conlin","Janice",#1948-05-12#,1
"Kaufman","Steven",#1957-04-07#,0

The Write # statement in the DataEntry procedure automatically inserted
commas between the individual data items in each record and placed the car-
riage return-linefeed sequence (Chr(13) & Chr(10)) at the end of each line of
text so that each new record starts in a new line. Each line of text shows one
record—each record begins with the last name and ends with the number of
siblings.
 To show the data separated by columns, instead of commas, write the data
with the Print # statement. For example, if you replace the Write # state-
ment in the DataEntry procedure with the Print # statement, Visual Basic
will write the data as follows:
Smith Gregory 1/2/63 3
Conlin Janice 5/12/48 1
Kaufman Steven 4/7/57 0

Although the Print # statement has the same syntax as the Write # statement,
Print # writes data to the sequential file in a format ready for printing. The
variables in the list may be separated with semicolons or spaces. To print out
several spaces, you should use the Spc(n) instruction, where n is the number
of spaces. Similarly, to enter a word in the fifth column, you should use the
instruction Tab(5). Let’s look at some formatting examples:

 ● To add an empty line to a fi le, use the Write # statement with a comma:
Write #,

USING LOW-LEVEL FILE ACCESS 333

 ● To enter the text “fruits” in the fi ft h column:

Write #1, Tab(5); "fruits"

 ● To separate the words “fruits” and “vegetables” with fi ve spaces:

Write #1, "fruits"; Spc(5); "vegetables"

WORKING WITH RANDOM-ACCESS FILES

When a file contains structured data, open the file in random-access mode. A
file opened for random access allows you to:

 ● Read and write data at the same time
 ● Quickly access a particular record

In random-access files, all records are of equal length, and each record has the
same number of fixed-size fields. The length of a record or field must be deter-
mined prior to writing data to the file. If the length of a string that is being writ-
ten to a field is less than the specified size of the field, Visual Basic automatically
enters spaces at the end of the string to fill in the entire size of the field. If the
text being written is longer than the size of the field, the text that does not fit
will be truncated.

What Is a Random-Access File?

A random-access file is one in which data is stored in records that can be ac-
cessed without having to read every record preceding it.

To find out how to work with random-access files, let’s create a small database
for use in a foreign language study. This database will contain records made up
of two fields: an English term and its foreign language equivalent.

 Hands-On 12.6 Creating a Random-Access Database with a User-
Defi ned Data Type

1. Insert a new module into the FileMan_IO project in Chap12_VBAExcel2019.
xls and rename it RandomFiles.

2. Enter the following statements just below the Option Explicit statement at
the top of the RandomFiles module:
' create a user-defined data type called Dictionary
Type Dictionary

SIDEBAR

334 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

en As String * 16 ' English word up to 16 characters
sp As String * 20 ' Spanish word up to 20 characters
End Type

In addition to the built-in data types introduced in Chapter 4 and listed in
Table 4.1, Visual Basic allows you to defi ne a nonstandard data type using a
Type…End Type statement placed at the top of the module. Th is nonstandard
data type is oft en referred to as a user-defi ned data type. Th e user-defi ned data
type can contain items of various data types (String, Integer, Date, and so on).
When you work with fi les opened for random access, you oft en create a user-
defi ned variable because such a variable provides you with easy access to the
individual fi elds of a record.
 Th e user-defi ned type called Dictionary that you just defi ned contains two
items declared as String with the specifi ed size. Th e en item can accept up to
16 characters. Th e size of the second item (sp) cannot exceed 20 characters.
By adding up the lengths of both items, you will get a record length of 36
characters (16 + 20).

Understanding the Type Statement

The Type command allows you to create a custom group of mixed variable
types called a “user-defined data type.” This statement is generally used with
random-access files to store data as fields within records of a fixed size. In-
stead of declaring a separate variable for each field, cluster the fields into a
user-defined variable using the Type statement. For example, define a record
containing three fields in the following way:
Type MyRecord
country As String * 20
city As String * 14
rank As Integer
End Type

Once the general type is defined, you must give a name to the variable that will
be of that type:
Dim myInfo As MyRecord

Access the interior variables (country, city, rank) by using the following for-
mat:
Variable_name.Interior_variable_name

For example, to specify the city, enter:
MyInfo.city = "Warsaw"

SIDEBAR

USING LOW-LEVEL FILE ACCESS 335

3. Enter the EnglishToSpanish procedure as shown below:
Sub EnglishToSpanish()
 Dim d As Dictionary
 Dim recNr As Long
 Dim choice As String
 Dim totalRec As Long

 recNr = 1
 ' open the file for random access
 Open "C:\VBAExcel2019_ByExample\Translate.txt" _
 For Random As #1 Len = Len(d)

 Do
 ' get the English word
 choice = InputBox("Enter an English word", "ENGLISH")
 d.en = choice
 ' exit the loop if cancelled
 If choice = "" Then Exit Do
 choice = InputBox("Enter the Spanish equivalent of " _
 & d.en, "SPANISH EQUIVALENT " & d.en)
 If choice = "" Then Exit Do
 d.sp = choice

 ' write to the record
 Put #1, recNr, d
 ' increase record counter
 recNr = recNr + 1
 'ask for words until Cancel
 Loop Until choice = ""

 totalRec = LOF(1) / Len(d)
 MsgBox "This file contains " & totalRec & " record(s)."
 ' close the file
 Close #1
End Sub

Th e EnglishToSpanish procedure begins with the declaration of four variables.
Th e variable d is declared as a user-defi ned type called Dictionary. Th is type
was declared earlier with the Type statement (see Step 2 above).
 Aft er the initial value is assigned to the variable RecNr, Visual Basic
opens the Translate.txt fi le for random access as fi le number 1. Th e Len(d)
instruction tells Visual Basic that the size of each record is 36 characters. (Th e
variable d contains two elements: sp is 20 characters and en is 16 characters.

336 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Consequently, the total size of a record is 36 characters.) Next, Visual Basic
executes the statements inside the Do…Until loop.
 Th e fi rst statement in the loop prompts you to enter an English word and
assigns it to the variable choice. Th e value of this item is then passed to the
fi rst element of the user-defi ned variable d (d.en). When you cancel or stop
entering data, Visual Basic exits the Do loop and executes the fi nal statements
in the procedure that calculate and display the total number of records in the
fi le. Th e last statement closes the fi le.
 When you enter an English word and click OK, you will be prompted to
supply a foreign language equivalent. If you do not enter a word, Visual Basic
will exit the loop and continue with the remaining statements. If you do enter
the foreign language equivalent, Visual Basic will assign it to the variable
choice and then pass it to the second element of the user-defi ned variable
d (d.sp). Next, Visual Basic will write the entire record to the fi le using the
following statement:

Put #1, recNr, d

Aft er writing the fi rst record, Visual Basic will increase the record counter by
one and repeat the statements inside the loop. Th e EnglishToSpanish procedure
allows you to enter any number of records into your dictionary. When you quit
supplying the words, the procedure uses the LOF and Len functions to calculate
the total number of records in the fi le, and displays the message:

"This file contains " & totalRec & " record(s)."

Aft er displaying the message, Visual Basic closes the text fi le (Translate.txt).
 Creating a random-access fi le is only the beginning. Next, we create the
VocabularyDrill procedure to illustrate how to work with records in a fi le
opened for random access. Here you will learn statements that allow you to
quickly fi nd the appropriate data in your fi le.

4. Run the EnglishToSpanish procedure. When prompted, enter data as shown
in Figure 12.3. For example, enter the word mother. When prompted for a
Spanish equivalent of mother, enter madre.

FIGURE 12.3 The contents of a random-access file opened in Notepad.

USING LOW-LEVEL FILE ACCESS 337

5. Below the EnglishToSpanish procedure, enter the VocabularyDrill procedure
as shown here:
Sub VocabularyDrill()
 Dim d As Dictionary
 Dim totalRec As Long
 Dim recNr As Long
 Dim randomNr As Long
 Dim question As String
 Dim answer As String

 ' open a random access file
 Open "C:\VBAExcel2019_ByExample\Translate.txt" _
 For Random As #1 Len = Len(d)

 ' print the total number of bytes in this file
 Debug.Print "There are " & LOF(1) & " bytes in this file."

 ' find and print the total number of records
 recNr = LOF(1) / Len(d)
 Debug.Print "Total number of records: " & recNr

 Do
 ' get a random record number
 randomNr = Int(recNr * Rnd) + 1
 Debug.Print randomNr

 ' find the random record
 Seek #1, randomNr

 ' read the record
 Get #1, randomNr, d
 Debug.Print Trim(d.en); " "; Trim(d.sp)

 ' assign answer to a variable
 answer = InputBox("What's the Spanish equivalent?", d.en)

 ' finish if cancelled
 If answer = "" Then Close #1: Exit Sub
 Debug.Print answer
 ' check if the answer is correct
 If answer = Trim(d.sp) Then
 MsgBox "Congratulations!"
 Else
 MsgBox "Invalid Answer!!!"
 End If

338 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

' keep on asking questions until Cancel is pressed
 Loop While answer <> ""

 ' close file
 Close #1
End Sub

Aft er declaring variables, the VocabularyDrill procedure opens a fi le for
random access and tells Visual Basic the length of each record: Len = Len(d).
Next, two statements print in the Immediate window the total number of
bytes and records in the open fi le. Th e number of bytes is returned by the
LOF(1) statement. Th e number of records is computed by dividing the entire
fi le (LOF) by the length of one record—Len(d). Next, Visual Basic executes
the statements inside the loop until the Esc key is pressed or Cancel is clicked.
 Th e fi rst statement in the loop assigns the result of the Rnd function to the
variable randomNr. Th e next statement writes this number to the Immediate
window. Th e instruction:

Seek #1, randomNr

moves the cursor in the open fi le to the record number specifi ed by the variable
randomNr. Th e next instruction reads the contents of the found record. To read
the data in a fi le opened for random access, you must use the Get statement.
Th e instruction:

Get #1, randomNr, d

tells Visual Basic the record number (randomNr) to read and the variable (d)
into which data is being read. Th e fi rst record in a random-access fi le is at
position 1, the second record at position 2, and so on. Omitting a record number
causes Visual Basic to read the next record. Th e values of both elements of the
user-defi ned type dictionary are then written to the Immediate window. Th e
Trim(d.en) and Trim(d.sp) functions print the values of the record being
read without the leading and trailing spaces that the user may have entered.
 Next, Visual Basic displays an input box with a prompt to supply the foreign
language equivalent of the word shown in the input box title. Th e word is
assigned to the variable answer. If you press the Esc key instead of clicking
OK, Visual Basic closes the fi le and ends the procedure. Otherwise, Visual
Basic prints your answer to the Immediate window and notifi es you whether
your answer is correct. You can press the Esc key or click the Cancel button in
the dialog box whenever you want to quit the vocabulary drill.

USING LOW-LEVEL FILE ACCESS 339

 If you decide to continue and click OK, a new random number will be
generated, and the program will retrieve the English word and ask you for the
Spanish equivalent.
 You can modify the VocabularyDrill procedure so that every incorrectly
translated word is written to a worksheet. Also, you may want to write all the
records from the Translate.txt file to a worksheet so that you always know the
contents of your dictionary.

6. Run the VocabularyDrill procedure. When prompted, type the Spanish
equivalent of the English word shown in the title bar of the input box. Press
Cancel to exit the vocabulary drill.

7. Press Alt+F11 to activate the Microsoft Excel application screen.
Steps 8 to 9 demonstrate the process of opening random-access fi les in Excel.

8. Click the File tab on the Ribbon, then click Open. Switch to the C:\
VBAExcel2019_ByExample folder. Select All Files (*.*) in the Files of type
drop-down box, and double-click the Translate.txt file. Excel displays the Text
Import Wizard shown in Figure 12.4.

FIGURE 12.4 The contents of a random-access file on attempt to open it with Microsoft Excel.
Notice that Excel correctly recognizes the original data type—the data in a random-access file is fixed
width.

9. Click Finish to load your translation data file into Excel.
10. Close the Translate.txt file.

340 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Advantages and Disadvantages of Random-Access Files

Unlike sequential files, data stored in random-access files can be accessed
very quickly. Also, these files don’t need to be closed before writing into them
and reading from them, and they don’t need to be read or written to in order.
Random-access files also have some disadvantages. For example, they often
store the data inefficiently. Because they have fixed-length fields and records,
the same number of bytes is used regardless of the number of characters be-
ing stored. So, if some fields are left blank or contain strings shorter than the
declared field size, you may waste a lot of space.

WORKING WITH BINARY FILES

Unlike random-access files that store data in records of fixed length, binary files
store records with variable lengths. For example, the first record may contain 10
bytes, the second record may have only 5 bytes, while the third record may have
15 bytes. This method of storing data saves a lot of disk space because Visual
Basic doesn’t need to add additional spaces to the stored string to ensure that all
the fields are of the same length.

Just like random-access files, binary files can be opened for simultaneous
read and write operations. However, because binary file records are of variable
length, it is more difficult to manipulate these files. In order to retrieve the data
correctly, you must store information about the size of each field and record.

To work with binary files, you will use the following four statements:

 ● Th e Get statement is used to read data. Th is statement has the following
syntax:
Get [#]filenumber, [recnumber], varname

The filenumber argument is the number used in the Open statement to
open a file. The optional recnumber argument is the record number in
random-access files, or the byte number in binary access files, at which
reading begins. If you omit recnumber, the next record or byte after the
last Get statement is read. You must include a comma for the skipped
recnumber argument. The required varname argument specifies the
name of the variable that will store this data.

 ● Th e Put statement allows you to enter new data into a binary fi le. Th is
statement has the following syntax:
Put [#]filenumber, [recnumber], varname

SIDEBAR

USING LOW-LEVEL FILE ACCESS 341

The filenumber argument is the number used in the Open statement to
open a file. The optional recnumber argument is the record number in
random-access files, or the byte number in binary access files, at which
writing begins. If you omit recnumber, the next record or byte after the
last Put statement is written. You must include a comma for the skipped
recnumber argument. The required varname argument specifies the
name of the variable containing data to be written to disk.

 ● Th e Loc statement returns the number of the last byte that was read. (In
random-access fi les, the Loc statement returns the number of the record
that was last read.)

 ● Th e Seek statement moves the cursor to the appropriate position inside
the fi le.

To quickly master the usage of the above statements, let’s try the procedure in
Hands-On 12.7.

 Hands-On 12.7 Mastering the Get and Put Statements

1. Add a new module to the current VBA project and name it BinaryFiles.
2. In the BinaryFiles module, enter the procedure located in the RandomData.

txt file on the companion CD-ROM.
3. Run the RandomData procedure.
4. Open the DataSample file created by the RandomData procedure and examine

its contents.
When entering data to a binary file, use the following guidelines:

 ● Before writing a string to a binary fi le, assign the length of the string to
an Integer type variable. Usually the following block of instructions can
be used:

string_length = Len(variable_name)
Put #1, , string_length
Put #1, , variable_name

 ● When reading data from binary fi les, fi rst read the string length and then
the string contents. To do this, use the Get statement and the String
function:

Get #1, , string_length
variable_name = String(string_length, " ")
Get #1, , variable_name

342 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Advantages and Disadvantages of Binary Access Files

In comparison with sequential and random-access files, binary files are the
smallest of all. Because they use variable-length records, they can conserve
disk space. Like files opened for random access, you can simultaneously read
and write to a file opened for binary access. One big disadvantage of binary
access files is that you must know precisely how the data is stored in the file to
retrieve or manipulate it correctly.

SUMMARY

This chapter has given you a working knowledge of writing to and retrieving
data from three types of files: sequential, random access, and binary.
The next chapter introduces you to more automating tasks. You will learn how
to use VBA to control other applications. You will also learn various methods of
starting applications and find out how to manipulate them directly from Micro-
soft Excel.

SIDEBAR

The VBA programming language goes beyond Excel. It is used by other Office
applications such as Word, PowerPoint, Outlook, and Access and is also sup-
ported by a number of non-Microsoft products. The VBA skills you acquire

in Excel can be used to program any application that supports this language.
In this part of the book, you learn how other applications expose their objects

to VBA.

Chapter 13 Using Excel VBA to Interact with Other Applications
Chapter 14 Using Excel with Microsoft Access

Part

 III CONTROLLING
OTHER
APPLICATIONS
WITH VBA

343

345

One of the nicest things about the VBA language is that you can use it
to launch and control other Office applications. For example, you can
create or open a Word document straight from your VBA procedure

without ever leaving Excel or seeing the Word user interface. You can also
start and manipulate a number of non-Office programs by using built-in VBA
functions. This chapter shows you various methods of launching other programs
and transferring data between them.

LAUNCHING APPLICATIONS

There are several ways you can manually start a program under the Windows
operating system. This section assumes that you are familiar with the manual
techniques of launching applications and that you are eager to experiment with
additional techniques to start applications by writing code.

Let’s begin with the simplest of all—the Shell function, which allows you to
start any program directly from a VBA procedure. Suppose that your procedure
must open the Windows Notepad application. To launch Notepad, all you need
is one statement between the keywords Sub and End Sub. Or better yet, you can

Chapter

 13 USING EXCEL VBA
TO INTERACT WITH
OTHER APPLICATIONS

346 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

type the following statement in the Immediate window and press Enter to see
the result immediately:

Shell "notepad.exe", vbMaximizedFocus

Here, notepad.exe is the name of the program you want to start. This name
should include the complete path (the drive and folder name) if you have any
concerns that the program may not be found. Notice that the program name is
in double quotes. The second argument of the Shell function is optional. This
argument specifies the window style. In this example, Notepad will appear in
a maximized window. If the window style is not specified, the program will be
minimized with focus. Table 13.1 lists the window style constants and appear-
ance options.

TABLE 13.1 Window styles used in the Shell function

Window Style Constant Value Window Appearance
vbHide 0 Hidden
vbNormalFocus 1 Normal size with focus
vbMinimizedFocus 2 Minimized with focus (this is the default setting)
vbMaximizedFocus 3 Maximized with focus
vbNormalNoFocus 4 Normal without focus
vbMinimizedNoFocus 6 Minimized without focus

If the Shell function is successful in launching the specified executable file,
it will return a number called a Task ID which uniquely identifies the applica-
tion that has been launched. If the Shell function cannot start the specified
program, Visual Basic generates an error. The Shell function works asynchro-
nously. That means that Visual Basic starts the program specified by the Shell
function, and immediately after launching, it returns to the procedure to con-
tinue with the execution of the remaining instructions without giving you a
chance to work with the application. If you want to work with the program
launched by the Shell function, do not enter any other statements in the proce-
dure after the Shell function.
Let’s see how to use the Shell function to launch the Control Panel.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

FILE AND FOLDER MANIPULATION WITH VBA 347

 Hands-On 13.1 Using the Shell Function to Activate the
Control Panel

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\
Chap13_VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor window and insert a new module in the
Chap13_VBAExcel2019.xlsm VBA project.

3. Rename the VBA project WorkWApplets, and change the module name
to Shell_Function.

4. In the Shell_Function Code window, enter the StartPanel procedure as
shown below:
Sub StartPanel()
 Shell "Control.exe", vbNormalFocus
End Sub

5. Run the above procedure.
When you run the StartPanel procedure, the Control Panel window is opened
automatically on top of any other windows. Th e Control Panel contains several
tools represented by individual icons. As you know, there is a program behind
every icon that is activated when the user double-clicks the icon or selects the
icon with the arrow keys and then presses Enter. As a rule, you can check what
fi lename is driven by a icon by looking at the icon’s properties. Unfortunately,
the icons in the Control Panel have the Properties option disabled. You can,
however, fi nd out the name of the Control Panel fi le by creating a shortcut. For
example, before you create a procedure that changes the regional settings in
your computer, let’s fi nd out the name of the fi le that activates this tool.

6. In the Control Panel window, click the Clock, Language, and Region icon
or link. Right-click the Region link and choose Create Shortcut from the
shortcut menu.

7. If asked, click Yes to place the shortcut on the desktop.
8. Close the Control Panel window.
9. Switch to your desktop and right-click the Region shortcut icon. Next,

choose Properties from the shortcut menu.
10. In the Properties window, click the Shortcut tab and then click the Change

Icon button to bring up the Change Icon window shown in Figure 13.1.

348 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 13.1 Each Control Panel tool icon file has a .cpl extension.

11. Write down the name of the CPL file (Control Panel Library) or DLL file
(Dynamic Link Library) listed at the top of the Change Icon window and close
all the windows that were opened in this exercise. Some of the files that activate
Control Panel tools are listed in Table 13.2.

TABLE 13.2 Sample files that activate Control Panel tools

Icon in the Control Panel CPL or DLL File
Accessibility Options access.cpl
Phone and Modem Options telephon.cpl or modem.cpl
Add/Remove Programs appwiz.cpl
Network and Dial-up Connections ncpa.cpl users
32-Bit ODBC odbccp32.cpl
System sysdm.cpl
Mail mlcfg32.cpl
User Accounts userpasswords, userpasswords2
Date/Time timedate.cpl
Regional Options intl.cpl
Internet Options inetcpl.cpl

FILE AND FOLDER MANIPULATION WITH VBA 349

Icon in the Control Panel CPL or DLL File
Sounds and Multimedia Properties mmsys.cpl
Display desk.cpl
Mouse main.cpl

12. In the ShellFunction Code window, enter the ChangeSettings procedure as
shown below:
Sub ChangeSettings()
 Dim nrTask
 nrTask = Shell("Control.exe intl.cpl", vbMinimizedFocus)
 Debug.Print nrTask
End Sub

Th e ChangeSettings procedure demonstrates how to launch the Control Panel’s
Regional Settings icon using the Shell function. Notice that the arguments of
the Shell function must appear in parentheses if you want to use the returned
value later in your procedure.
 To open the Control Panel window with the Languages tab activated, revise
the above procedure as follows:

nrTask = Shell("Control.exe intl.cpl 0,1", vbMinimizedFocus)

Th e fi rst tab in the window has an index of 0, the second an index of 1, and so
on.

13. Run the ChangeSettings procedure several times, each time supplying a
different CPL file according to the listing presented in Table 13.2. You may
want to modify the above procedure as follows:
Sub ChangeSettings2()
 Dim nrTask
 Dim iconFile As String
 iconFile = InputBox("Enter the name of the control " & _
 "icon CPL or DLL file:")
 nrTask = Shell("Control.exe " & iconFile, vbMinimizedFocus)
 Debug.Print nrTask
End Sub

If a program you want to launch is a Microsoft application, it’s more convenient
to use the Visual Basic ActivateMicrosoftApp method than the Shell func-
tion. This method is available from the Microsoft Excel Application object. For
example, to launch PowerPoint from the Immediate window, all you need to do
is type the following instruction and press Enter:

Application.ActivateMicrosoftApp xlMicrosoftPowerPoint

350 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that the ActivateMicrosoftApp method requires a constant to indicate
which program to start. The above statement starts Microsoft PowerPoint if it
is not already running. If the program is already open, this instruction does not
open a new occurrence of the program; it simply activates the already running
application. You can use the constants shown in Table 13.3 with the Activate-
MicrosoftApp method.

TABLE 13.3 ActivateMicrosoftApp method constants

Application Name Constant
Access xlMicrosoftAccess

FoxPro xlMicrosoftFoxPro

Mail xlMicrosoftMail

PowerPoint xlMicrosoftPowerPoint

Project xlMicrosoftProject

Schedule xlMicrosoftSchedulePlus

Word xlMicrosoftWord

MOVING BETWEEN APPLICATIONS

Because the user can work simultaneously with several applications in the Win-
dows environment, your VBA procedure must know how to switch between
the open programs. Suppose that in addition to Microsoft Excel, you have two
other applications open: Microsoft Word and Windows Explorer. To activate
an already open program, use the AppActivate statement using the following
syntax:

AppActivate title [, wait]

Only the title argument is required. This is the name of the application as it
appears in the title bar of the active application window or its task ID number as
returned by the Shell function.

The optional argument wait is a Boolean value (True/False) that specifies
when Visual Basic activates the application. The value of False in this position
immediately activates the specified application, even if the calling application
does not have the focus. If you place True in the position of the wait argument,
the calling application waits until it has the focus before it activates the specified
application.

FILE AND FOLDER MANIPULATION WITH VBA 351

For example, here’s how you can activate Microsoft Word:
AppActivate "Microsoft Word"

Notice that the name of the application is surrounded by double quotation
marks. You can also use the return value of the Shell function as the argument
of the AppActivate statement:

 ' run Microsoft Word
Sub RunWord()
 Dim ReturnValue As Variant
 ReturnValue = Shell("C:\Program Files (x86)\Microsoft Office\" & _
 "root\office16\WINWORD.EXE /w", 1)
 ' activate Microsoft Word
 AppActivate ReturnValue
End Sub

In the RunWord procedure, the “/w” startup switch after the “Winword.exe” will
start a new instance of Word with a blank document.
The AppActivate statement is used for moving between applications and
requires that the program is already running. This statement merely changes the
focus. The specified application becomes the active window. The AppActivate
statement will not start an application running.

CONTROLLING ANOTHER APPLICATION

Now that you know how to use VBA statements to start a program and switch
between applications, let’s see how one application can communicate with
another. The simplest way for an application to get control of another is by
means of the SendKeys statement. This statement allows you to send a series of
keystrokes to the active application window. You can send a key or a combina-
tion of keys and achieve the same result as if you worked directly in the active
application window using the keyboard. The SendKeys statement looks as fol-
lows:

SendKeys string [, wait]

The required argument, string, is the key or key combination that you want to
send to the active application. For example, to send a letter “f,” use the following
instruction:

SendKeys "f"

352 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To send the key combination Alt+f, use:
SendKeys "%f"

The percent sign (%) is the symbol used for the Alt key.
To send a combination of keys, such as Shift+Tab, use the following statement:

SendKeys "+{TAB}"

The plus sign (+) denotes the Shift key.
To send other keys and combinations of keys, see Table 13.4.
The SendKeys statement’s second argument, wait, is optional. Wait is a logical

value that is True or False. If False (default), Visual Basic returns to the procedure
immediately upon sending the keystrokes. If wait is True, Visual Basic returns to
the procedure only after the sent keystrokes have been executed.

To send characters that aren’t displayed when you press a key, use the codes
in Table 13.4. Remember to enclose these codes in quotes. For example:

SendKeys "{BACKSPACE}"

TABLE 13.4 Keycodes used with the SendKeys statement

Key Code
Backspace {BACKSPACE}{BS}{BKSP}
Break {BREAK}
Caps Lock {CAPSLOCK}
Del or Delete {DELETE}{DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER} or ~
Esc {ESC}
Help {HELP}
Home {HOME}
Ins or Insert {INSERT}{INS}
Left Arrow {LEFT}
Num Lock {NUMLOCK}
Page Down {PGDN}
Page Up {PGUP}
Print Screen {PRTSC}
Right Arrow {RIGHT}

FILE AND FOLDER MANIPULATION WITH VBA 353

Key Code
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}
F1 {F1}
F2 {F2}
F3 {F3}
F4 {F4}
F5 {F5}
F6 {F6}
F7 {F7}
F8 {F8}
F9 {F9}
F10 {F10}
F11 {F11}
F12 {F12}
F13 {F13}
F14 {F14}
F15 {F15}
F16 {F16}
Shift +
Ctrl ^
Alt %

You can only send keystrokes to applications that were designed for the Micro-
soft Windows operating system.

You can use the SendKeys statement to activate a Ribbon tab. For example,
to activate the Insert tab and select the Insert Picture command, use the follow-
ing keys:

SendKeys "%np"

To view the list of keys assigned to individual Ribbon tabs, press the Alt key.
You should see the Ribbon mappings as shown in Figure 13.2. After pressing the
key for the tab you’d like to activate, the Ribbon will now display the access keys
assigned to individual commands, as illustrated in Figure 13.3.

354 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 13.2 Each Ribbon tab has an access key that can be used with the SendKeys statement to
activate a particular tab.

FIGURE 13.3 Each icon/command in the Ribbon has an access key that can be used to activate a
particular command using the SendKeys statement.

SendKeys and Reserved Characters

Some characters have a special meaning when used with the SendKeys state-
ment. These keys are: plus sign (+), caret (^), tilde (~), and parentheses (). To
send these characters to another application, you must enclose them in braces
{}. To send braces, enter {{} and {}}.

Let’s create a VBA procedure that will SendKeys statements to locate all the files
with the .xlsm extension on your computer. The example procedure uses key-
strokes that work under Windows 8 and 10.

 Hands-On 13.2 Using the SendKeys Statement in a VBA Procedure

1. Insert a new module into the WorkWApplets (Chap13_VBAExcel2019.xlsm)
project and rename it SendKeysStatement.

2. Enter the FindCPLFiles_Win8 procedure, as shown below:
Sub FindXLSMFiles()
 ' The keystrokes are for Windows 8
 Shell "Explorer", vbMaximizedFocus

 ' delay the execution by 5 seconds
 Application.Wait (Now + TimeValue("0:00:05"))

 ' Activate the Search box
 SendKeys "{F3}", True

 ' delay the execution by 5 seconds

SIDEBAR

FILE AND FOLDER MANIPULATION WITH VBA 355

 Application.Wait (Now + TimeValue("0:00:05"))

 ' change the search location to search all folders
 ' on your computer C drive
 SendKeys "%js", True
 SendKeys "%c", True
 SendKeys "%js", True
 SendKeys "%a", True
 ' Activate the Search box
 SendKeys "{F3}", True

 ' type in the search string
 SendKeys "*.xlsm", True

 ' execute the Search
 SendKeys "{ENTER}", True

End Sub

3. Switch to the Microsoft Excel application window and run the FindXLSMFiles
procedure (use Alt+F8 to open the Macro dialog, highlight the name of the
procedure, and then click Run).

Observe what happens in the Search Results window as your VBA procedure
sends keystrokes that activate the Search function.

SendKeys Statement Is Case Sensitive

When you send keystrokes with the SendKeys statement, bear in mind that
you must distinguish between lower- and uppercase characters. Therefore, to
send the key combination Ctrl+d, you must use ^d, and to send Ctrl+Shift+d,
you should use the following string: ^+d.

OTHER METHODS OF CONTROLLING APPLICATIONS

Although you can pass commands to another program by using the SendKeys
statement, to gain full control of another application you must resort to other
methods. There are two standard ways in which applications can communi-
cate with one another. Using Automation, you can write VBA procedures that
control other applications by referencing another application’s objects, proper-
ties, and methods. There is also an older data-exchange technology called DDE
(Dynamic Data Exchange), however, it is a slow and difficult to work with. DDE
is a protocol that allows you to dynamically send data between two programs by

SIDEBAR

356 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

creating a special channel for sending and receiving information. It should be
used only to communicate with older applications that do not support Automa-
tion. DDE is not covered in this book.

Understanding Automation

When you communicate with another application, you may require more func-
tionality than simply activating it for sending keystrokes. For example, you may
want to create and manipulate objects within that application. You can embed
an entire Word document in a Microsoft Excel worksheet. Because both Excel
and Word support Automation, you can write a VBA procedure in Excel to
manipulate Word objects, such as documents or paragraphs. The applications
that support Automation are called Automation servers or Automation objects.
The applications that can manipulate a server’s objects are referred to as Auto-
mation controllers. Some applications can be only a server or a controller, and
others can act in both of these roles. Beginning with the Office 2000 release, all
Microsoft Office applications can act as Automation servers and controllers.
The Automation controllers can be all sorts of ActiveX objects installed on your
computer.

Understanding Linking and Embedding

Ob ject linking and embedding (OLE) allows you to create compound docu-
ments. A compound document contains objects created by other applications.
For example, if you embed a Word document in a Microsoft Excel worksheet,
Excel only needs to know the name of the application that was used to create this
object and the method of displaying the object on the screen. Compound docu-
ments are created by either linking or embedding objects. When you use the
manual method to embed an object, you first need to copy it in one application
and then paste it into another. The main difference between a linked object and
an embedded object is in the way the object is stored and updated. The embed-
ded object becomes a part of the destination file. Because the embedded object
is not connected with the original data, the information is static. When the data
changes in the source file, the embedded object is not updated. To change the
embedded data, you must double-click it. This will open the object for editing
in the source program. Of course, the source program must be installed on the
computer. When you embed objects, all the data is stored in the destination file.
This causes the file size to increase considerably. When you embed an object,
the Formula bar displays:

=EMBED("Word.Document.12","")

FILE AND FOLDER MANIPULATION WITH VBA 357

The number following Word.Document denotes the version of Word you are
using. Version 8 indicates that we are bringing an object from Word 2007 or
newer. If your source program is a Word version prior to 2007, the formula bar
displays:

=EMBED("Word.Document.8","")

When you double-click the linked object, the source application is launched.
Linking objects is a dynamic operation. This means that the linked data is
updated automatically when the data in the source file changes. Because the
destination document contains only information on how the object is linked
with the source document, object linking doesn’t increase the size of a destina-
tion file. The following formula is used to link an object in Microsoft Excel:
=Word.Document.12|'C:\VBAExcel2019_ByExample\LinkOrEmbed.docx'!'
!OLE_LINK26'

Th e InsertLetter procedure shown below demonstrates how to programmati-
cally embed a Word document in an Excel worksheet. You should replace the
reference to C:\Hello.docx with your own document name.

 Hands-On 13.3 Writing a Procedure to Embed a Word Document in
a Worksheet

1. Insert a new module into the WorkWApplets (Chap13_VBAExcel2019.xlsm)
VBA project and rename it OLE.

2. In the OLE module Code window, enter the InsertLetter procedure as shown
below:
Sub InsertLetter()
 Workbooks.Add
 ActiveSheet.Shapes.AddOLEObject _
 Filename:="C:\VBAExcel2019_ByExample\Hello.docx"
End Sub

Th e InsertLetter procedure uses the AddOLEObject method. Th is method
creates an OLE object and returns the Shape object that represents the new
OLE object. Additional arguments that the AddOLEObject method can use are
listed in the Visual Basic online documentation.

3. Run the InsertLetter procedure.
Th e procedure opens a new workbook and embeds the indicated Word
document in it. If you’d rather link a document, you must specify an additional
argument, Link, as shown below:

358 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ActiveSheet.Shapes.AddOLEObject
 FileName:="C:\VBAExcel2019_ByExample\Hello.docx", _
 Link:=True

Objects—Linking or Embedding

Use object embedding rather than linking if:

 ● You don’t mind if the size of a document increases, or you have enough
disk space and memory to handle large fi les.

 ● You will never need the source fi le or use source text in other compound
documents.

 ● You want to send the document to other people by email or on a disk, and
you want to make sure that they can read the data without any problems.

COM and Automation

The driving force behind Automation is the Component Object Model (COM),
which determines the rules for creating objects by the server application and
specifies the methods that both the server and the control application must apply
when using these objects. The COM standard contains a collection of functions
that are made available as Automation interfaces. When a server application
creates an object, it automatically makes available an interface that goes along
with it. This interface includes properties, methods, and events that can be rec-
ognized by the object. The controller application doesn’t need to know the inter-
nal structure of the object in order to control it; it only needs to know how to
manipulate the object interface that is made available by the server application.

Understanding Binding

For a controller application to communicate with the Automation object
(server), you must associate the object variable that your VBA procedure uses
with the actual Automation object on the server. This process is known as bind-
ing. There are two types of binding: late binding and early binding. Your choice
of binding will have a great impact on how well your application performs.

Late Binding

When you declare a variable As Object or As Variant, Visual Basic uses late
binding. Late binding is also known as runtime binding. Late binding simply
means that Visual Basic doesn’t associate your object variable with the Auto-
mation object at design time but waits until you actually run the procedure.

SIDEBAR

FILE AND FOLDER MANIPULATION WITH VBA 359

Because the declaration As Object or As Variant is very general in nature, Visual
Basic cannot determine at compile time that the object your variable refers to
has the properties and methods your VBA procedure is using.
The following declaration results in late binding of the specified object:

Dim mydoc As Object

The advantage of late binding is that all the Automation objects know how to use
it. The disadvantage is that there is no support for built-in constants. Because
Visual Basic does not know at design time the type library to which your object
is referring, you must define constants in your code by looking up the values in
the application’s documentation. Also, querying an application at runtime can
slow down the performance of your solution.

NOTE

The main difference between late binding and early binding is
how you declare your object variables. Late binding makes it
possible to access objects in a type library of another application
without first establishing a reference to the object library. Use
late binding if you are uncertain that your users will have the
referenced type libraries installed on their machines.

Let’s write a VBA procedure that uses late binding. The purpose of this proce-
dure is to print out a Word document. Be sure to modify the filename so that
you can actually print a Word document that exists on your hard disk.

 Hands-On 13.4 Printing a Word Document with VBA

1. Insert a new module into the WorkWApplets (Chap13_VBAExcel2019.xlsm)
VBA project and rename it Automation.

2. In the Automation module Code window, enter the PrintWordDoc procedure
as shown below:
Sub PrintWordDoc()
 Dim objWord As Object
 Set objWord = CreateObject("Word.Application")

 With objWord
 .Visible = True
 .Documents.Open "C:\VBAExcel2019_ByExample\LinkOrEmbed.docx"
 .Options.PrintBackground = False
 .ActiveDocument.PrintOut
 .Documents.Close
 .Quit
 End With

360 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set objWord = Nothing
End Sub

3. Run the PrintWordDoc procedure.

You should get a printout of your document.

Early Binding

When you declare object variables as specific object types, Visual Basic uses
early binding, also known as compile-time binding. This means that Visual Basic
associates your object variable with the Automation object while the procedure
source code is being translated into executable code. The general syntax looks
like this:

Dim objectVariable As Application.ObjectType

In the above syntax, Application is the name of the application as it appears
in the Object Browser’s Project/Library drop-down list (for example, Word and
Excel). ObjectType is the name of the object class type (for example, applica-
tion, document, workbook, and worksheet). The following declarations result
in early binding:

Dim mydoc As Word.Document
Dim mydoc As Excel.Worksheet

Early binding allows you to take full advantage of many of the debugging tools
that are available in the Visual Basic Editor window. For example, you can look
up external objects, properties, and methods with the Object Browser. Visual
Basic Auto Syntax Check, Auto List Members, and Auto Quick Info (all dis-
cussed in Chapter 2) can help you write your code faster and with fewer errors.
In addition, early binding allows you to use built-in constants as arguments for
methods and property settings. Because these constants are available in the type
library at design time, you do not need to define them. The handy built-in syn-
tax checking, IntelliSense features, or support for built-in constants aren’t avail-
able with late binding. Although VBA procedures that use early binding execute
faster, some very old Windows applications can only use late binding.

NOTE

In order to use early binding, you must first establish a reference
to the object library (see the following section). Use early binding
when you are certain that your users will have the referenced type
libraries installed on their machines.

FILE AND FOLDER MANIPULATION WITH VBA 361

Establishing a Reference to a Type Library

If you decide to use early binding to connect to another application via Automa-
tion, start by establishing a reference to the object library whose objects you are
planning to manipulate. Follow the steps outlined in Hands-On 13.5 to create a
reference to the Microsoft Word object library.

 Hands-On 13.5 Setting Up a Reference to a Type Library

1. Activate the Visual Basic Editor window.
2. Select the current project in the Project Explorer window, and choose Tools |

References.
3. In the References dialog box, choose the name of the application in the

Available References list box. For this example, click the checkbox next to
Microsoft Word 16.0 Object Library or its earlier release (see Figure 13.4).
Scroll down in the Available References list box to locate this object library.

FIGURE 13.4 Setting a reference to the required object library is one of the steps you need to
complete before attempting to manipulate objects of another application.

4. Click OK to close the References dialog box.
Th e References dialog box lists the names of the references that are available
to your VBA project. Th e references that are not used are listed alphabetically.
Th e references that are checked are listed by priority. For example, in Excel,
the Microsoft Excel 16.0 object library has a higher priority than the Microsoft
Word 16.0 object library. When a procedure references an object, Visual Basic

362 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

searches each referenced object library in the order in which the libraries are
displayed in the References dialog box. Aft er setting a reference to the required
object library, you can browse the object properties and methods by using the
Object Browser (see Figure 13.5).

FIGURE 13.5 All of the Microsoft Word objects, properties, and methods can be accessed from a
Microsoft Excel VBA project after adding a reference to the Microsoft Word 16.0 object library
(see Figure 13.4).

CREATING AUTOMATION OBJECTS

To create an Automation object in your VBA procedure, follow these steps:

 ● Declare an object variable using the Dim…As Object or Dim…As Appli-
cation.ObjectType clause (see the topics on using late and early bind-
ing in the preceding sections).

 ● If you are using early binding, use the References dialog box to establish
a reference to the Application object type library.

 ● If the Automation object doesn’t exist yet, use the CreateObject func-
tion. If the Automation object already exists, establish the reference to the
object by using the GetObject function.

 ● Assign the object returned by the CreateObject or GetObject function
to the object variable by using the Set keyword.

FILE AND FOLDER MANIPULATION WITH VBA 363

Using the CreateObject Function

To create a reference to the Automation object from a VBA procedure, use the
CreateObject function with the following syntax:

CreateObject(class)

The argument class is the name of the application you want to reference. This
name includes the object class type as discussed earlier (see the section on early
binding). The Automation object must be assigned to the object variable by
using the Set keyword, as shown below:

Set variable_name = CreateObject(class)

For example, to activate Word using the Automation object, include the follow-
ing declaration statements in your VBA procedure:
 ' early binding
 Dim wordAppl As Word.Document
 Set wordAppl = CreateObject("Word.Application")

Or
 ' late binding
 Dim wordAppl As Object
 Set wordAppl = CreateObject("Word.Application")

As a rule, use the CreateObject function when there is no current instance of
the object. If the instance of the object is already running, a new instance is cre-
ated. To use the current instance, use the GetObject function.

Creating a New Word Document Using Automation

Sometimes you may be required to open a Word document programmatically
and write some data to it straight from Excel. The following example uses early
binding.

 Hands-On 13.6 Creating a New Word Document with VBA

1. In the Visual Basic Editor screen, select the WorkWApplets (Chap13_
Excel2019.xlsm) VBA project and choose Tools | References.

2. If the Microsoft Word 16.0 object library or an earlier object library is not
selected in the Available References list box, locate this object library and click
the checkbox to select it. Click OK when done.

3. In the Automation module Code window, enter the WriteLetter procedure
as shown below:

364 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub WriteLetter()
 Dim wordAppl As Word.Application
 Dim strFolder As String
 Dim strFileName As String
 Dim flag As Boolean

 On Error GoTo ErrorHandler
 flag = True
 strFolder = "C:\VBAExcel2019_ByExample\"
 strFileName = "Invite.docx"

 Set wordAppl = CreateObject("Word.Application")

 With wordAppl
 .Visible = True
 .StatusBar = "Creating a new document..."
 .Documents.Add
 .ActiveDocument.Paragraphs(1).Range.InsertBefore
 "Invitation"
 .StatusBar = "Saving document..."
 .ActiveDocument.SaveAs2 _
 Filename:=strFolder & strFileName
 .StatusBar = "Exiting Word..."
 .Quit
 End With
ExitHere:
 If flag Then MsgBox "The Document file " & _
 strFileName & Chr(13) & "was saved in " & _
 Left(strFolder, Len(strFolder) - 1) & ".", _
 vbInformation, "Document Created and Saved"
 Set wordAppl = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number <> 0 Then
 MsgBox Err.Number & ":" & Err.Description
 flag = False
 End If
 Resume ExitHere
End Sub

Th e WriteLetter procedure begins with the declaration of the object variable of
the specifi c object type (Word.Application). Recall that this type of declaration
(early binding) requires that you establish a reference to the Microsoft Word
object library (discussed earlier in this chapter). Th e Automation object
returned by the CreateObject function is assigned to the object variable

FILE AND FOLDER MANIPULATION WITH VBA 365

called class. Because the applications launched by Automation don’t appear
on the screen, the statement:

wordAppl.Visible = True

will make the launched Word application visible so that you can watch VBA
at work.
Th e remaining statements of this procedure open a new Word document (the
Add method), enter text in the fi rst paragraph (the InsertBefore method),
save the document in a disk fi le (the SaveAs2 method), and close the Word
application (the Quit method). Each statement is preceded by an instruction
that changes the message displayed in the status bar at the bottom of the Word
application window. When the Word application is closed, the instruction:

Set wordAppl = Nothing

will clear the object variable to reclaim the memory used by the object.
4. To run the procedure, switch to the Microsoft Excel application window and

choose View | Macros | View Macros. Select the WriteLetter procedure in the
list of macros and click Run.

Using the GetObject Function

If you are certain that the Automation object already exists or is already open,
consider using the GetObject function. The function looks like this:

GetObject([pathname][, class])

The GetObject function has two arguments that are optional; however, one of
the arguments must be specified. If pathname is omitted, class is required. For
example:

Excel.Application
Excel.Sheet
Excel.Chart
Excel.Range
Word.Application
Word.Document
PowerPoint.Application

 ● To create an Excel object based on the Report.xls workbook and force the
object to be an Excel 97–2003 version worksheet, you could use the fol-
lowing declaration:
' late binding
Dim excelObj As Object

366 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Set excelObj = GetObject("C:\VBAExcel2019_ByExample\
 Report.xls",
"Excel.Sheet.8")

NOTE Use “Excel.Sheet.12” for Microsoft Office Excel 2007–2019
Worksheet.

 ● To set the object variable to a specifi c Word document, you would use:
' early binding
Dim wordObj As Word.Application
Set wordObj = GetObject("C:\VBAExcel2019_ByExample\
 Invite.docx")

 ● To access a running Offi ce application object, leave the fi rst argument out:
Dim excelObj As Object
Set excelObj = GetObject(, "Excel.Application")

When the GetObject function is called without the first argument, it returns a
reference to an instance of the application. If the application isn’t running, an
error will occur.

Opening an Existing Word Document

The CenterText procedure that follows demonstrates the use of the GetObject
function to access the Invite.doc file. As you recall, this file was created earlier in
this chapter by the WriteLetter procedure. The CenterText procedure will center
the first paragraph in the specified Word document.

 Hands-On 13.7 Opening and Modifying a Word Document with VBA

This Hands-On uses the Word document file (Invite.doc) created in Hands-
On 13.7.

1. In the Automation module Code window, enter the CenterText procedure as
shown below:
Sub CenterText()
 Dim wordDoc As Word.Document
 Dim wordAppl As Word.Application
 Dim strDoc As String
 Dim myAppl As String

 On Error GoTo ErrorHandler

 strDoc = "C:\VBAExcel2019_ByExample\Invite.docx"
 myAppl = "Word.Application"

FILE AND FOLDER MANIPULATION WITH VBA 367

 ' first find out whether the specified document exists
 If Not DocExists(strDoc) Then
 MsgBox strDoc & " does not exist." & Chr(13) & Chr(13) _
 & "Please run the WriteLetter procedure to create " & _
 strDoc & "."
 Exit Sub
 End If

 ' now check if Word is running
 If Not IsRunning(myAppl) Then
 MsgBox "Word is not running -> will create " & _
 "a new instance of Word. "
 Set wordAppl = CreateObject("Word.Application")
 Set wordDoc = wordAppl.Documents.Open(strDoc)
 Else
 MsgBox "Word is running -> will get the specified document. "
 ' bind the wordDoc variable to a specific Word document
 Set wordDoc = GetObject(strDoc)
 End If
 ' center the 1st paragraph horizontally on page
 With wordDoc.Paragraphs(1).Range
 .ParagraphFormat.Alignment = wdAlignParagraphCenter
 End With
 wordDoc.Application.Quit SaveChanges:=True
 Set wordDoc = Nothing
 Set wordAppl = Nothing
 MsgBox "The document " & strDoc & " was reformatted."
 Exit Sub
ErrorHandler:
 MsgBox Err.Description, vbCritical, "Error: " & Err.Number
End Sub

Th e CenterText procedure uses a custom function named DocExists (see code
in Step 2) to check for the existence of the specifi ed document. Another custom
function, IsRunning (see code in Step 3), checks whether a copy of Microsoft
Word is already running. Based on the fi ndings, either the CreateObject or
GetObject function is used. If an error occurs, the error number and error
description are displayed.

2. In the Automation module Code window, enter the DocExists function
procedure as shown below:
Function DocExists(ByVal mydoc As String) As Boolean
 On Error Resume Next
 If Dir(mydoc) <> "" Then
 DocExists = True

368 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Else
 DocExists = False
 End If
End Function

3. In the Automation module Code window, enter the IsRunning function
procedure as shown below:
Function IsRunning(ByVal myAppl As String) As Boolean
 Dim applRef As Object
 On Error Resume Next

 Set applRef = GetObject(, myAppl)
 If Err.Number = 429 Then
 IsRunning = False
 Else
 IsRunning = True
 End If
 ' clear the object variable
 Set applRef = Nothing
End Function

4. In the Visual Basic Editor window, position the pointer anywhere within the
code of the CenterText procedure, then choose Debug | Step Into.

5. When a yellow highlight appears on the Sub CenterText line, press F8.
Keep on pressing F8 to execute the procedure step by step. Notice how Visual
Basic jumps to the appropriate function procedure to find out whether the
specified Word document exists and whether the Word application is running.

Using the New Keyword

Instead of using the CreateObject function to assign a reference to another
application, you can use the New keyword. The New keyword tells Visual Basic to
create a new instance of an object, return a reference to that instance, and assign
the reference to the object variable being declared. For example, you can use the
New keyword in the following way:
 Dim objWord As Word.Application
 Set objWord = New Word.Application
 Dim objAccess As Access.Application
 Set objAccess = New Access.Application

Object variables declared with the New keyword are always early bound. Using
the New keyword is more efficient than using the CreateObject function.
Each time you use the New keyword, Visual Basic creates a new instance of the

FILE AND FOLDER MANIPULATION WITH VBA 369

application. The New keyword can also be used to create a new instance of the
object at the same time that you declare its object variable. For example:
Dim objWord As New Word.Application

Notice that when you declare the object variable with the New keyword in the
Dim statement, you do not need to use the Set statement. However, this method
of creating an object variable is not recommended because you lose control over
when the object variable is actually created. Using the New keyword in the dec-
laration statement causes the object variable to be created even if it isn’t used.
Therefore, if you want control over when the object is created, always declare
your object variables using the following syntax:
Dim objWord As Word.Application
 Set objWord = New Word.Application

The Set statement can be placed further in your code where you need to use
the object. The following section demonstrates how to use the New keyword to
create a new instance of Microsoft Outlook and write your contact addresses to
an Excel worksheet.

Using Automation to Access Microsoft Outlook

To access Outlook’s object model directly from Excel, begin by establishing a
reference to the Microsoft Outlook 16.0 or earlier object library. The example
procedure that follows will insert your Outlook contact information into an
Excel spreadsheet.

 Hands-On 13.9 Bringing Outlook Contacts to Excel

1. Establish a reference to the Microsoft Outlook 16.0 (or earlier) object library.
2. In the Automation module Code window, enter the GetContacts procedure as

shown below:
Sub GetContacts()
 Dim objOut As Outlook.Application
 Dim objNspc As Namespace
 Dim objItem As ContactItem
 Dim r As Integer ' row index
 Dim Headings As Variant
 Dim i As Integer ' array element
 Dim cell As Variant

 r = 2
 Set objOut = New Outlook.Application

370 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set objNspc = objOut.GetNamespace("MAPI")

 Headings = Array("Full Name", "Street", "City", _
 "State", "Zip Code", "E-Mail")
 Workbooks.Add
 Sheets(1).Activate
 For Each cell In Range("A1:F1")
 cell.FormulaR1C1 = Headings(i)
 i = i + 1
 Next

 For Each objItem In objNspc.GetDefaultFolder _
 (olFolderContacts).Items
 With ActiveSheet
 .Cells(r, 1).Value = objItem.FullName
 .Cells(r, 2).Value = objItem.BusinessAddress
 .Cells(r, 3).Value = objItem.BusinessAddressCity
 .Cells(r, 4).Value = objItem.BusinessAddressState
 .Cells(r, 5).Value = objItem.BusinessAddressPostalCode
 .Cells(r, 6).Value = objItem.Email1Address
 End With
 r = r + 1
 Next objItem

 Set objItem = Nothing
 Set objNspc = Nothing
 Set objOut = Nothing
 MsgBox "Your contacts have been dumped to Excel."
End Sub

Th e GetContacts procedure starts by declaring an object variable called
objOut to hold a reference to the Outlook application. Th is variable is defi ned
by a specifi c object type (Outlook.Application); therefore, VBA will use
early binding. Notice that in this procedure, we use the New keyword discussed
earlier to create a new instance of an Outlook Application object, return a
reference to that instance, and assign the reference to the objOut variable
being declared.
 In order to access contact items in Outlook, you also need to declare
object variables to reference the Outlook Namespace and Item objects. Th e
Namespace object represents the message store known as MAPI (Messaging
Application Programming Interface). Th e Namespace object contains folders
(Contacts, Journal, Tasks, etc.), which in turn contain items. An item is an
instance of Outlook data, such as an email message or a contact.

FILE AND FOLDER MANIPULATION WITH VBA 371

 Aft er writing column headings to the worksheet using the For Each…Next
loop, the procedure uses another For Each…Next loop to iterate through
the Items collection in the Contacts folder. Th e GetDefaultFolder method
returns an object variable for the Contacts folder. Th is method takes one
argument, the constant representing the folder you want to access. Aft er all the
contact items are written to an Excel spreadsheet, the procedure releases all
object variables by setting them to Nothing.

3. Run the GetContacts procedure.
When you run the GetContacts procedure, you may get a warning message
that the program is trying to access email addresses. Choose Allow access for
1 minute and click Yes to allow the operation. Upon the successful execution
of the procedure, click OK to the message and switch to the Microsoft Excel
application window to view your Outlook contacts in a new workbook fi le that
was created by the GetContacts procedure.

SUMMARY

In this chapter, you learned how to launch, activate, and control other applica-
tions from VBA procedures. You learned how to send keystrokes to another
application by using the SendKeys method and how to manually and program-
matically link and embed objects. Additionally, you used Automation to create
a new Word document from Excel and accessed this document later to change
some formatting. You also learned how to retrieve your contact addresses from
Microsoft Outlook and place them in an Excel worksheet. You expanded your
knowledge of VBA statements with two new functions—CreateObject and
GetObject—and learned how and when to use the New keyword.

In the next chapter, you will learn various methods of controlling Microsoft
Access from Excel.

373

In Chapter 13, you learned about controlling Microsoft Word and Outlook
from Excel via Automation. This chapter shows you how to programmati-
cally use Microsoft Access from Excel as well as how to retrieve Access data

into an Excel worksheet by using the following methods:

 ● Automation
 ● DAO (Data Access Objects)
 ● ADO (ActiveX Data Objects)

Before you learn how to use Excel VBA to perform various tasks in an Access
database, let’s briefly examine the data access methods that Microsoft Access
uses to gain programmatic access to its objects.

Chapter

 14 USING EXCEL WITH
MICROSOFT ACCESS

374 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

OBJECT LIBRARIES

A Microsoft Access database consists of various types of objects stored in differ-
ent object libraries. In this chapter, you will be accessing objects, properties, and
methods from several libraries that are listed below.

 ● Th e Microsoft Access 16.0 object library
This library, shown in Figure 14.1, provides objects that are used to dis-
play data and work with Microsoft Access. The library is stored in the
MSACC.OLB file and can be found in the C:\Program Files (x86)\Micro-
soft Office\root\office16 folder. After setting up a reference to this library
in the References dialog box (this is covered in the next section), you will
be able to look up this library’s objects, properties, and methods in the
Object Browser.

FIGURE 14.1 The Microsoft Access 16.0 object library.

USING EXCEL WITH MICROSOFT ACCESS 375

 ● Th e Microsoft DAO 3.6 object library
Data Access Objects (DAO) that are provided by this library allow you
to determine the structure of your database and manipulate data using
VBA. This library is stored in the DAO360.dll file and can be found in the
C:\Program Files\Common Files\Microsoft Shared\DAO folder. After
setting up a reference to this library in the References dialog box (this
is covered in the next section), you will be able to look up the library’s
objects, properties, and methods in the Object Browser (see Figure 14.2).

NOTE
Important Note: On 32-bit systems, look for files mentioned
in this section in Program Files instead of Program Files
(x86) folder.

FIGURE 14.2 The Microsoft DAO 3.6 object library.

376 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Th e Microsoft ActiveX Data Objects 6.1 library (ADODB)
ActiveX Data Objects (ADO) provided by this library let you access and
manipulate data using the OLE DB provider. ADO objects make it pos-
sible to establish a connection with a data source in order to read, insert,
modify, and delete data in an Access database. This library is stored in
MSADO15.dll and can be found in the C:\Program Files (x86)\Common
Files\System\ado folder. After setting up a reference to this library in the
References dialog, you will be able to access this library’s objects, proper-
ties, and methods in the Object Browser (see Figure 14.3).

FIGURE 14.3 The Microsoft ActiveX Data Objects 6.1 library (ADODB).

 ● Th e Microsoft ADO Ext. 6.0 for DDL and Security library (ADOX)
Objects that are stored in this library allow you to define the database
structure and security. For example, you can define tables, indexes, and

USING EXCEL WITH MICROSOFT ACCESS 377

relationships, as well as create and modify user and group accounts. This
library, shown in Figure 14.4, is stored in MSADOX.dll and can be found
in the C:\Program Files (x86)\Common Files\System\ado folder. After
setting up a reference to this library in the References dialog box, you will
be able to look up this library’s objects, properties, and methods in the
Object Browser.

FIGURE 14.4 The Microsoft ADO Ext. 6.0 for DDL and Security library (ADOX).

 ● Th e Microsoft Jet and Replication Objects 2.6 library (JRO)
Objects contained in this library, shown in Figure 14.5, are used in the
replication of a database. This library is stored in MSJRO.dll and can be
found in the C:\Program Files (x86)\Common Files\System\ado folder.
After setting up a reference to this library in the References dialog box,
you will be able to look up this library’s objects, properties, and methods

378 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

in the Object Browser. Please note that database replication is no longer
supported in Access 2013-2019.

FIGURE 14.5 The Microsoft Jet and Replication Objects 2.6 library (JRO).

 ● Th e Visual Basic for Applications object library (VBA)
Objects contained in this library allow you to access your computer’s file
system, work with date and time functions, perform mathematical and
financial computations, interact with users, convert data, and read text
files. This library is stored in the VBE7.dll file located in the C:\Program
Files (x86)\Common Files\Microsoft Shared\VBA\VBA7.1 folder. The
reference to this library is automatically set when you install Excel. This
library, shown in Figure 14.6, is shared between all Office 2019 applica-
tions.

USING EXCEL WITH MICROSOFT ACCESS 379

FIGURE 14.6 The Visual Basic for Applications object library (VBA).

Setting Up References to Object Libraries

To work with Microsoft Access 2019 objects, begin by creating a reference to the
Microsoft Access 16.0 object library.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 14.1 Establishing a Reference to the Access Object Library

1. Start Microsoft Excel and open a new workbook. Save the file as C:\
VBAExcel2019_ByExample\Chap14_VBAExcel2019.xlsm.

2. Activate the Visual Basic Editor window, and choose Tools | References
to open the References dialog box. This dialog displays a list of all the type

380 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

libraries that are available on your computer based on the applications you
have installed.

3. Locate Microsoft Access 16.0 Object Library in the list of entries and
select its checkbox.

4. Close the References dialog box.
Once you’ve created a reference to the Microsoft Access type library, you can
use the Object Browser to view a list of the application’s objects, properties, and
methods (see Figure 14.1 in the previous section).

5. Use the References dialog box to set up references to other object libraries that
will be accessed in this chapter’s exercises. You will find the list of libraries
at the beginning of this chapter. You can skip setting up the reference to the
Microsoft Jet and Replication Objects 2.6 library (JRO), as it will not be used
here. If you are interested in database replication, there are many older books
on Microsoft Access VBA programming that cover this subject, including
those of mine: Access 2010 Programming by Example with VBA, XML, and
ASP (ISBN: 978-1-936420-0-2-5) and Access 2007 Programming by Example
with VBA, XML, and ASP (ISBN 1-59822-042-X)

Advantages of Creating a Reference to a Microsoft Access Object Library

When you set a reference to the Microsoft Access object library, you gain the
following:

 ● You can look up Microsoft Access objects, properties, and methods in the
Object Browser.

 ● You can run Microsoft Access functions directly in your VBA procedures.
 ● You can declare the object variable of the Application type instead of the

generic Object type. Declaring the object variable as Dim objAccess As
Access.Application (early binding) is faster than declaring it as Dim
objAccess As Object (late binding).

 ● You can use Microsoft Access built-in constants in your VBA code.
 ● Your VBA procedure will run faster.

CONNECTING TO ACCESS

The example procedures in this chapter use various methods of connecting to
Microsoft Access. Each method is discussed in detail as it first appears in the
procedure (see the next section titled “Opening an Access Database”). You can

SIDEBAR

USING EXCEL WITH MICROSOFT ACCESS 381

establish a connection to Microsoft Access by using one of the following three
methods:

 ● Automation
 ● Data Access Objects (DAO)
 ● ActiveX Data Objects (ADO)

OPENING AN ACCESS DATABASE

In order to access data in a database, you need to open it. How you open a
database depends largely on which method you selected to establish a database
connection.

Using Automation to Connect to an Access Database

When working with Microsoft Access from Excel (or another application) using
Automation, you must take the following steps:

1. Set a reference to the Microsoft Access 16.0 object library. (Refer to the section
titled “Setting up References to Object Libraries” earlier in this chapter.)

2. Declare an object variable to represent the Microsoft Access Application object:
Dim objAccess As Access.Application

In the declaration line above, objAccess is the name of the object variable, and
Access.Application qualifi es the object variable with the name of the Visual
Basic object library that supplies the object.

3. Return the reference to the Application object and assign that reference
to the object variable. Return the reference to the Application object using
the CreateObject function, GetObject function, or the New keyword as
demonstrated below. Notice that you must assign the reference to the object
variable with the Set statement.

 ● Use the CreateObject function to return a reference to the Application
object when there is no current instance of the object. If Microsoft Access
is already running, a new instance is started, and the specifi ed object is
created.
Dim objAccess As Object
Set objAccess = CreateObject("Access.Application.16")

382 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Use the GetObject function to return a reference to the Application ob-
ject to use the current instance of Microsoft Access or to start Microsoft
Access and have it load a fi le.
Dim objAccess As Object
Set objAccess = GetObject(,"Access.Application.16")

or
Set objAccess = GetObject("C:\VBAExcel2019_ByExample\" & _
 "Northwind 2007.accdb")

 ● Use the New keyword to declare an object variable, return a reference to
the Application object, and assign the reference to the object variable, all
in one step.
Dim objAccess As New Access.Application

It is also possible to declare an object variable using the two-step method,
which gives more control over the object:
Dim objAccess As Access.Application
Set objAccess = New Access.Application

Arguments of the GetObject Function

The first argument of the GetObject function, pathname, is optional. It is used
when you want to work with an object in a specific file. The second argument,
class, specifies which application creates the object and what type of object it
is. When the first argument is optional and the second argument is required,
you must place a comma in the position of the first argument, as shown below:
Dim objAccess As Object
Set objAccess = GetObject(, "Access.Application.14")

Because the first argument (pathname) of the GetObject function is omitted,
a reference to an existing instance of the Microsoft Access application class is
returned.
Dim objAccess As Object
Set objAccess = GetObject("C:\VBAExcel2019_ByExample\" & _
 "Northwind 2007.accdb")

When the first argument of the GetObject function is the name of a database
file, a new instance of the Microsoft Access application is activated or created
with the specific database.

SIDEBAR

USING EXCEL WITH MICROSOFT ACCESS 383

Using the New Keyword

 ● When you declare the object variable with the New keyword, the Access
application does not start until you begin working with the object vari-
able in your VBA code.

 ● When you use the New keyword to declare the Application object variable,
a new instance of Microsoft Access is created automatically and you don’t
need to use the CreateObject function.

 ● Using the New keyword to create a new instance of the Application object
is faster than using the CreateObject function.

Because you may have more than one version of Microsoft Access installed,
include the version number in the argument of the GetObject or CreateOb-
ject function. The seven most recent versions of Microsoft Access are shown
below:

Microsoft Access 2016/2019 Access.Application.16
Microsoft Access 2013 Access.Application.15
Microsoft Access 2010 Access.Application.14
Microsoft Access 2007 Access.Application.12
Microsoft Access 2003 Access.Application.11
Microsoft Access 2002 Access.Application.10
Microsoft Access 2000 Access.Application.9
Microsoft Access 97 Access.Application.8
Microsoft Access 95 Access.Application.7

Once you’ve created a new instance of the Application class by using one of
the methods outlined in Step 3 above, you can open a database or create a new
database with the help of OpenCurrentDatabase. You can close the Microsoft
Access database that you opened through Automation by using the CloseCur-
rentDatabase method.

Now that you know how to create an object variable that represents the Ap-
plication object, let’s look at an example procedure that opens an Access data-
base straight from an Excel VBA procedure.

SIDEBAR

384 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 14.2 Opening an Access Database Using Automation

This Hands-On requires that you establish a reference to the Microsoft Access
16.0 object library (see Hands-On 14.1). Make sure you have a copy of the
Northwind 2007.accdb database in the VBAExcel2019_ByExample folder.

1. Switch to the Visual Basic Editor window and rename VBAProject (Chap14_
VBAExcel2019.xlsm) to AccessFromExcel.

2. Insert a new module into the AccessFromExcel project and rename it
Automation.

3. In the Automation module Code window, enter the AccessViaAutomation
procedure as shown below:
Sub AccessViaAutomation()
 Dim objAccess As Access.Application
 Dim strPath As String

 On Error Resume Next

 Set objAccess = GetObject(, " Access.Application.16")
 If objAccess Is Nothing Then
 ' Get a reference to the Access Application object
 Set objAccess = New Access.Application
 End If

 strPath = "C:\VBAExcel2019_ByExample\Northwind 2007.accdb"

 ' Open the Employees table in the Northwind database
 With objAccess
 .OpenCurrentDatabase strPath
 .DoCmd.OpenTable "Employees", acViewNormal, acReadOnly
 If MsgBox("Do you want to make the Access " & vbCrLf _
 & "Application visible?", vbYesNo, _
 "Display Access") = vbYes Then
 .Visible = True
 MsgBox "Notice the Access Application icon " _
 & "now appears on the Windows taskbar."
 End If
 ' Close the database and quit Access
 .CloseCurrentDatabase
 .Quit
 End With

 Set objAccess = Nothing
End Sub

USING EXCEL WITH MICROSOFT ACCESS 385

This procedure uses a current instance of Access if it is available. If Access isn’t
running, a runtime error will occur and the object variable will be set to Noth-
ing. By placing the On Error Resume Next statement inside this procedure,
you can trap this error. Therefore, if Access isn’t running, a new instance of
Access will be started. This particular example uses the New keyword to start a
new instance of Access.
 As mentioned earlier, instead of creating a new object instance with the New
keyword, you can use the CreateObject function to start a new instance of an
automation server, as illustrated below:
Set objAccess = GetObject(, "Access.Application.16")
If objAccess Is Nothing Then
 Set objAccess = CreateObject(, "Access.Application.16")
End If

Once Access is opened and the Northwind database is loaded with the Open-
CurrentDatabase method, we issue a command to open the Employees table in
read-only mode. The procedure then asks the user whether to make the Access
application window visible. If the user selects Yes to this prompt, the Visible
property of the Access Application object is set to True and the user is prompt-
ed to look for the Access icon on the taskbar. After selecting OK in response to
the message, the Northwind database is closed with the CloseCurrentDatabase
method and the Access Application object is closed with the Quit method. Af-
ter closing the object, the object variable is set to the Nothing keyword to free
the memory resources used by the variable. You can prevent an instance of Mi-
crosoft Access from closing by making an object variable a module-level vari-
able rather than declaring it at the procedure level. Under these circumstances,
the connection to the database will remain open until you close the Automa-
tion controller (Excel) or use the Quit method in your VBA code.

4. Run the above procedure by stepping through its code with the F8 key. Be
sure to check the Access interface before running the statement that closes
Access. At the top of the Access window just below the Ribbon you should see
a familiar security warning message. Access, like Excel, automatically disables
all potentially harmful database content. To let Microsoft Access know that you
trust the database, click the Options button and then select the Enable this
content option button. To permanently trust the Northwind 2007 database for
this chapter’s exercises, choose File | Options | Trust Center and then proceed
to designate the C:\VBAExcel2019_ByExample folder as a trusted location.
(See Chapter 1 for more information on trusted locations.)

386 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Opening a Secured Microsoft Access Database

If the Access database is secured with a password, the user will be prompted
to enter the correct password. You must use Data Access Objects (DAO) or
ActiveX Data Objects (ADO) to programmatically open a password-protected
Microsoft Access database. The following example uses the DBEngine prop-
erty of the Microsoft Access object to specify the password of the database. For
this procedure to work, you must set up a reference to the Microsoft DAO 3.6
object library, as explained in the beginning of this chapter. You should also
replace the name of the database file with your own Access database that you
have previously secured with password “test.”
Sub OpenSecuredDB()

 Static objAccess As Access.Application
 Dim db As DAO.Database
 Dim strDb As String

 strDb = "C:\VBAExcel2019_ByExample\Med.mdb"
 Set objAccess = New Access.Application
 Set db = objAccess.DBEngine.OpenDatabase(Name:=strDb, _
 Options:=False, _
 ReadOnly:=False, _
 Connect:=";PWD=test")
 With objAccess
 .Visible = True
 .OpenCurrentDatabase strDb
 End With
 db.Close
 Set db = Nothing
End Sub

Using DAO to Connect to an Access Database

To connect to a Microsoft Access database using Data Access Objects (DAO),
you must first set up a reference to the Microsoft DAO 3.6 object library in the
References dialog box (see the section titled “Setting up References to Object
Libraries” earlier in this chapter). The example procedure shown below uses the
OpenDatabase method of the DBEngine object to open the Northwind database
and then proceeds to read the names of its tables.

SIDEBAR

USING EXCEL WITH MICROSOFT ACCESS 387

 Hands-On 14.3 Opening an Access Database with DAO

1. Insert a new module into the AccessFromExcel VBA project and rename it
Examples_DAO.

2. In the Examples_DAO module Code window, enter the DAO_OpenDatabase
procedure as shown below:
Sub DAO_OpenDatabase(strDbPathName As String)
 Dim db As DAO.Database
 Dim tbl As Variant

 Set db = DBEngine.OpenDatabase(strDbPathName)

 MsgBox "There are " & db.TableDefs.Count & _
 " tables in " & strDbPathName & "." & vbCrLf & _
 " View the names in the Immediate window."

 For Each tbl In db.TableDefs
 Debug.Print tbl.Name
 Next

 db.Close
 Set db = Nothing
 MsgBox "The database has been closed."
End Sub

The DBEngine object allows you to initialize the standard Access database en-
gine known as Jet/ACE, and open a database file. You can open a file in the
.accdb or an older .mdb Microsoft Access file format. Once the database is open,
the DAO_OpenDatabase procedure retrieves the total number of tables from
the TableDefs collection. A TableDefs collection contains all stored TableDef
objects in a Microsoft Access database. Next, the procedure iterates through
the TableDefs collection, reading the names of tables and printing them out to
the Immediate window. All these operations occur behind the scenes; notice
that the Access application window is not visible to the user. Finally, the proce-
dure uses the Close method to close the database file.

3. To run the DAO_OpenDatabase procedure, type either of the following
statements in the Immediate window and press Enter:
DAO_OpenDatabase "C:\VBAExcel2019_ByExample\Northwind 2007.accdb"
DAO_OpenDatabase "C:\VBAExcel2019_ByExample\Northwind.mdb"

Notice that when the procedure finishes, the Immediate window contains the
list of all the database tables.

388 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Using ADO to Connect to an Access Database

Another method of establishing a connection with an Access database is using
ActiveX Data Objects (ADO). You must begin by setting up a reference to the
Microsoft ActiveX Data Objects 6.1 library or a lower version. The example
procedure ADO_OpenDatabase connects to the Northwind database using the
Connection object.

 Hands-On 14.4 Opening an Access Database with ADO

1. Insert a new module into the AccessFromExcel VBA project and rename it
Examples_ADO.

2. In the Examples_ADO module Code window, enter the ADO_OpenDatabase
procedure as shown below:
Sub ADO_OpenDatabase(strDbPathName)
 Dim con As New ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim fld As ADODB.Field
 Dim iCol As Integer
 Dim wks As Worksheet

 ' connect with the database
 If Right(strDbPathName, 3) = "mdb" Then
 con.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strDbPathName
 ElseIf Right(strDbPathName, 5) = "accdb" Then
 con.Open _
 "Provider = Microsoft.ACE.OLEDB.12.0;" _
 & "Data Source=" & strDbPathName
 Else
 MsgBox "Incorrect filename extension"
 Exit Sub
 End If

 ' open Recordset based on the SQL statement
 rst.Open "SELECT * FROM Employees " & _
 "WHERE City = 'Redmond'", con, _
 adOpenForwardOnly, adLockReadOnly

 ' enter data into an Excel worksheet in a new workbook
 Workbooks.Add
 Set wks = ActiveWorkbook.Sheets(1)
 wks.Activate

USING EXCEL WITH MICROSOFT ACCESS 389

 'write column names to the first worksheet row
 For iCol = 0 To rst.Fields.count - 1
 wks.Cells(1, iCol + 1).Value = rst.Fields(iCol).Name
 Next

 'copy records to the worksheet
 wks.Range("A2").CopyFromRecordset rst

 'autofit the columns to make the data fit
 wks.Columns.AutoFit

 'release object variables
 Set wks = Nothing

 ' close the Recordset and connection with Access
 rst.Close
 con.Close

 ' destroy object variables to reclaim the resources
 Set rst = Nothing
 Set con = Nothing
End Sub

In the above procedure we open the Access database via the Open method.
Th e Open method requires a connection string argument that contains the
name of the data provider. Microsoft .Jet.OLEDB.4.0 provider is used for
Access databases in the .mdb fi le format and Microsoft .ACE.OLEDB.12.0 for
databases in the Access .accdb fi le format. Th e data source name is the full
name of the database fi le you want to open.
 Aft er establishing a connection to the Northwind database, you can use the
Recordset object to access its data. Recordset objects are used to manipulate
data at the record level. Th e Recordset object is made up of records (rows) and
fi elds (columns). To obtain a set of records, you need to use the Open method
and specify information such as the source of records for the recordset. Th e
source of records can be the name of a database table, a query, or the SQL
statement that returns records. Aft er specifying the source of records, you
must indicate the connection with the database (con) and two constants, one
of which defi nes the type of cursor (adOpenForwardOnly) and the other the
lock type (adLockReadOnly). Th e adOpenForwardOnly constant tells VBA
to create the forward-only recordset, which scrolls forward in the returned
set of records. Th e second constant, adLockReadOnly, specifi es the type of
the lock placed on records during editing; the records are read-only, which
means that you cannot alter the data. Next, the procedure iterates through the

390 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

entire recordset and its Fields collection to print the contents of all the fi elds
to an Excel worksheet. Aft er obtaining the data, the Close method closes the
recordset and another Close method is used to close the connection with the
Access database.

3. To run the ADO_OpenDatabase procedure, type either of the following
statements in the Immediate window and press Enter:
ADO_OpenDatabase "C:\VBAExcel2019_ByExample\Northwind 2007.accdb"
ADO_OpenDatabase "C:\VBAExcel2019_ByExample\Northwind.mdb"

4. Activate the Microsoft Excel application window to view the worksheet with
the procedure results.

PERFORMING ACCESS TASKS FROM EXCEL

After connecting to Microsoft Access from Excel you can perform different
tasks within the Access application. This section demonstrates in particular
how to use VBA code to:

 ● Create a new Access database
 ● Open an existing database form
 ● Create a new database form
 ● Open a database report
 ● Run an Access function

Creating a New Access Database with DAO

If you want to programmatically transfer Excel data into a new Access database,
you may need to create a database from scratch by using VBA code. The fol-
lowing example procedure demonstrates how this is done using Data Access
Objects (DAO).

 Hands-On 14.5 Creating a New Access Database

1. In the Examples_DAO module Code window, enter the NewDB_DAO
procedure as shown below:
Sub NewDB_DAO()
 Dim db As DAO.Database
 Dim tbl As DAO.TableDef

USING EXCEL WITH MICROSOFT ACCESS 391

 Dim strDb As String
 Dim strTbl As String

 On Error GoTo Error_CreateDb_DAO
 strDb = "C:\VBAExcel2019_ByExample\ExcelDump.mdb"
 strTbl = "tblStates"
 ' Create a new database named ExcelDump
 Set db = CreateDatabase(strDb, dbLangGeneral)

 ' Create a new table named tblStates
 Set tbl = db.CreateTableDef(strTbl)

 ' Create fields and append them to the Fields collection
 With tbl
 .Fields.Append .CreateField("StateID", dbText, 2)
 .Fields.Append .CreateField("StateName", dbText, 25)
 .Fields.Append .CreateField("StateCapital", dbText, 25)
 End With

 ' Append the new tbl object to the TableDefs
 db.TableDefs.Append tbl
 ' Close the database
 db.Close
 Set db = Nothing
 MsgBox "There is a new database on your hard disk. " _
 & Chr(13) & "This database file contains a table " _
 & "named " & strTbl & "."
Exit_CreateDb_DAO:
 Exit Sub
Error_CreateDb_DAO:
 If Err.Number = 3204 Then
 ' Delete the database file if it
 ' already exists
 Kill strDb
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume Exit_CreateDb_DAO
 End If
End Sub

The CreateDatabase method is used to create a new database named Excel-
Dump.mdb. The CreateTableDef method of the Database object is then used
to create a table named tblStates.

392 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Before a table can be added to a database, the fields must be created and ap-
pended to the table. The procedure creates three text fields (dbText) that can
store 2, 25, and 25 characters each. As each field is created, it is appended to the
Fields collection of the TableDef object using the Append method.
 Once the fields have been created and appended to the table, the table itself
is added to the database with the Append method. Because the database file
may already exist in the specified location, the procedure includes the error-
handling routine that will delete the existing file so the database creation pro-
cess can go on. Because other errors could occur, the Else clause includes state-
ments that will display the error and its description and allow an exit from the
procedure.

2. Run the NewDB_DAO procedure.
3. Launch Microsoft Access and open the ExcelDump.mdb file. Next, open

the table named tblStates. The result of this procedure is shown in Figure 14.7.

FIGURE 14.7 This Microsoft Access database table was created by an Excel VBA procedure.

4. Close the Access application.

Opening an Access Form

You can open a Microsoft Access form from Microsoft Excel. You can also cre-
ate a new form. The following example uses Automation to connect to Access.

 Hands-On 14.6 Opening an Access Form from a VBA Procedure

1. Insert a new module into the AccessFromExcel VBA project and rename it
Database_Forms.

2. In the Database_Forms module Code window, enter the following module-
level declaration and the DisplayAccessForm procedure as shown below:
Dim objAccess As Access.Application

Sub DisplayAccessForm()
 Dim strDb As String
 Dim strFrm As String

USING EXCEL WITH MICROSOFT ACCESS 393

 strDb = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 strFrm = "Customers"

 Set objAccess = New Access.Application
 With objAccess
 .OpenCurrentDatabase strDb
 .DoCmd.OpenForm strFrm, acNormal
 .DoCmd.Restore
 .Visible = True
 End With
End Sub

In the above procedure, the OpenCurrentDatabase method is used to open the
sample Northwind database. Th e Customers form is opened in normal view
(acNormal) with the OpenForm method of the DoCmd object. To display the
form in design view, use the acDesign constant. Th e Restore method of the
DoCmd object ensures that the form is displayed on the screen in a window
and not minimized. Th e Visible property of the Access Application object
(objAccess) must be set to True for the form to become visible.
 Notice that the Access.Application object variable (objAccess) is declared at
the top of the module. For this procedure to work correctly, you must set up a
reference to the Microsoft Access object library.

3. Switch to the Microsoft Excel application window and press Alt+F8 to display
the Macro dialog box. Highlight the DisplayAccessForm macro name and
click Run. Figure 14.8 shows the Customers form after it’s been opened.

FIGURE 14.8 A Microsoft Access form can be opened using an Excel VBA procedure.

4. Close the Customer Details form and exit Microsoft Access.

394 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Opening an Access Report

The following procedure demonstrates how you can display an existing Access
report straight from Excel.

 Hands-On 14.7 Opening an Access Report

1. Insert a new module into the AccessFromExcel VBA project and rename it
Database_Reports.

2. In the Database_Reports module Code window, enter the module-level
declaration and the DisplayAccessReport procedure as shown below:
 Dim objAccess As Access.Application

Sub DisplayAccessReport()
 Dim strDb As String
 Dim strRpt As String
 strDb = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 strRpt = "Products by Category"

 Set objAccess = New Access.Application
 With objAccess
 .OpenCurrentDatabase (strDb)
 .DoCmd.OpenReport strRpt, acViewPreview
 .DoCmd.Maximize
 .Visible = True
 End With
End Sub

In this procedure, the OpenCurrentDatabase method is used to open the
sample Northwind database. Th e Products by Category report is opened in
print preview mode with the OpenReport method of the DoCmd object. Th e
Maximize method of the DoCmd object ensures that the form is displayed on
the screen in a full-size window.
Notice that the Access.Application object variable (objAccess) is declared at
the top of the module. For this procedure to work correctly, you must set up a
reference to the Microsoft Access object library.

3. Switch to the Microsoft Excel application window and press Alt+F8 to display
the Macro dialog box. Highlight the DisplayAccessReport macro name and
click Run. Figure 14.9 shows the Products by Category report after it’s been
opened and displayed in print preview mode.

USING EXCEL WITH MICROSOFT ACCESS 395

FIGURE 14.9 A Microsoft Access report can be opened using an Excel VBA procedure.

4. Close the Print Preview window and exit Microsoft Access.
Th e example procedure below is more versatile, as it allows you to display any
Access report in any Access database. Notice that this procedure takes two
string arguments: the name of the Access database and the name of the report.
Make sure that the following declaration is present at the top of the module:

Dim objAccess As Access.Application

Sub DisplayAccessReport2(strDb As String, strRpt As String)
 Set objAccess = New Access.Application

 With objAccess
 .OpenCurrentDatabase (strDb)
 .DoCmd.OpenReport strRpt, acViewPreview
 .DoCmd.Maximize
 .Visible = True
 End With
End Sub

396 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can run the DisplayAccessReport2 procedure from the Immediate window
or from a subroutine, as shown below:

 ● Running the DisplayAccessReport2 procedure from the Immediate win-
dow:
' type the following statement on one line
' in the Immediate window and press Enter

Call DisplayAccessReport2("C:\VBAExcel2019_ByExample\
 Northwind.mdb", "Invoice")

 ● Running the DisplayAccessReport2 procedure from a subroutine:
' Enter the following procedure in the Code window and run it

Sub ShowReport()
 Dim strDb As String
 Dim strRpt As String

 strDb = InputBox("Enter the name of " &_
 "the database (full path): ")
 strRpt = InputBox("Enter the name of " &_
 "the report:")
 Call DisplayAccessReport2(strDb, strRpt)
End Sub

Creating a New Access Database with ADO

In Hands-On 14.5 you created a new database called ExcelDump.mdb by using
Data Access Objects (DAO). Creating a new Access database from a VBA pro-
cedure is also possible and just as easy by using ActiveX Data Objects (ADO).
All you need is the Catalog object of the ADOX object library and its Create
method. The Catalog object represents the entire database. This object contains
such database elements as tables, fields, indexes, views, and stored procedures.
In the following Hands-On, we will create an Access database named Excel-
Dump2.accdb.

 Hands-On 14.8 Creating a New Access Database with ADO

1. In the Visual Basic Editor window, choose Tools | References and ensure that
the Microsoft ADO Ext. 6.0 for DDL and Security Library is selected.

2. Click OK to exit the References dialog box.

USING EXCEL WITH MICROSOFT ACCESS 397

3. In the Examples_ADO module’s Code window, enter the CreateDB_
ViaADO procedure as shown below:
Sub CreateDB_ViaADO()
 Dim cat As ADOX.Catalog
 Set cat = New ADOX.Catalog

 cat.Create "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=C:\VBAExcel2019_ByExample\ExcelDump2.accdb;"

 Set cat = Nothing
End Sub

Th e above procedure uses the ADOX Catalog object’s Create method to create
a new Access database. Notice that we created an Access 2019 database. To
create a database fi le in the .mdb format, make sure you change the Provider
string and the fi lename.

4. Run the CreateDB_ViaADO procedure and switch to Windows Explorer to
check out the database file that this procedure has created.

Running a Select Query

The most popular types of queries that are executed in the Access user interface
are select and parameter queries. You can run these queries easily from within
an Excel VBA procedure. To place the data returned by the query into an Excel
worksheet, use the CopyFromRecordset method of the Range object. Let’s work
with a procedure that executes an Access select query.

 Hands-On 14.9 Running an Access Select Query

1. Insert a new module into the AccessFromExcel VBA project and rename it
Database_Queries.

2. Choose Tools | References and ensure that the Microsoft ActiveX Data Objects
6.1 and Microsoft ADO Ext. 6.0 for DDL and Security libraries are selected.

3. Click OK to exit the References dialog box.
4. In the Database_Queries module Code window, enter the RunAccessQuery

procedure as shown below:
Sub RunAccessQuery(strQryName As String)
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim i As Integer
 Dim strPath As String

398 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

 Set cmd = cat.Views(strQryName).Command
 Set rst = cmd.Execute

 Sheets.Add

 For i = 0 To rst.Fields.count - 1
 Cells(1, i + 1).Value = rst.Fields(i).Name
 Next
 With ActiveSheet
 .Range("A2").CopyFromRecordset rst
 .Range(Cells(1, 1), _
 Cells(1, rst.Fields.count)).Font.Bold = True
 .Range("A1").Select
 End With

 Selection.CurrentRegion.Columns.AutoFit
 rst.Close

 Set cmd = Nothing
 Set cat = Nothing
End Sub

Th e example procedure RunAccessQuery begins by creating an object variable
that points to the Catalog object. Next the ActiveConnection property of
the Catalog object defi nes the method of establishing the connection to the
database:

Set cat = New ADOX.Catalog
cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

Th e Command object in the ADODB object library specifi es the command
that you want to execute in order to obtain data from the data source. Th is
procedure attempts to access a specifi c query in a database whose name will be
supplied at runtime.

Set cmd = cat.Views(strQryName).Command

USING EXCEL WITH MICROSOFT ACCESS 399

Th e Views collection, which is a part of the ADOX object library, contains all
View objects of a specifi c catalog. A view is a fi ltered set of records or a virtual
table created from other tables or views.
 Aft er gaining access to the required query in the database, you can run the
query in the following way:

Set rst = cmd.Execute

Th e Execute method of the Command object allows you to activate a specifi c
query, an SQL statement, or a stored procedure. Th e returned set of records
is then assigned to the object variable of the type Recordset using the Set
keyword. Aft er creating the set of records, these records are placed in an Excel
worksheet using the CopyFromRecordset method (this method is discussed in
more detail later in this chapter).

5. To run the above procedure, type the following statement in the Immediate
window and press Enter:
RunAccessQuery("Current Product List")

6. Switch to the Microsoft Excel application window to view the results obtained
by executing the RunAccessQuery procedure, as shown in Figure 14.10.

FIGURE 14.10 The results of running an Access query from an Excel VBA procedure are placed in a
worksheet.

400 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Running a Parameter Query

When you want to obtain a different set of data based on the provided criteria,
you will want to utilize parameter queries. This section demonstrates how you
can run a Microsoft Access parameter query and place the resulting data in a
Microsoft Excel worksheet. Let’s write a procedure to run the Employee Sales by
Country query and retrieve records for the period beginning 7/1/96 and ending
7/31/96.

 Hands-On 14.10 Running an Access Parameter Query

1. In the Database_Queries module Code window, enter the RunAccessParamQuery
procedure as shown below:
Sub RunAccessParamQuery()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim i As Integer
 Dim strPath As String
 Dim StartDate As String
 Dim EndDate As String

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 StartDate = "7/1/96"
 EndDate = "7/31/96"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath
 Set cmd = cat.Procedures("Employee Sales by Country").Command

 cmd.Parameters("[Beginning Date]") = StartDate
 cmd.Parameters("[Ending Date]") = EndDate

 Set rst = cmd.Execute

 Sheets.Add
 For i = 0 To rst.Fields.count - 1
 Cells(1, i + 1).Value = rst.Fields(i).Name
 Next
 With ActiveSheet
 .Range("A2").CopyFromRecordset rst
 .Range(Cells(1, 1), Cells(1, rst.Fields.count)) _

USING EXCEL WITH MICROSOFT ACCESS 401

 .Font.Bold = True
 .Range("A1").Select
 End With
 Selection.CurrentRegion.Columns.AutoFit

 rst.Close
 Set cmd = Nothing
 Set cat = Nothing
End Sub

To run parameter queries in the Microsoft Access database, you need to access
the Command object of the Procedures collection of the ADOX Catalog object:
Set cmd = cat.Procedures("Employee Sales by Country").Command

Because the Microsoft Access Employee Sales by Country query requires two
parameters that define the beginning and ending dates, you need to define
these parameters by using the Parameters collection of the Command object:
cmd.Parameters("[Beginning Date]") = StartDate
cmd.Parameters("[Ending Date]") = EndDate

After setting up the parameters, the query is executed using the following state-
ment:
Set rst = cmd.Execute

The set of records returned by this query is assigned to the object variable of
type Recordset and then copied to a worksheet using the CopyFromRecordset
method (this method is discussed in more detail later in this chapter).

2. Run the above procedure.
Because the parameter values are hardcoded in the procedure, you are not
prompted for input. On your own, modify the RunAccessParamQuery proce-
dure so that you can provide the parameter values at runtime.

3. Switch to the Excel application window to view the results obtained by
executing the RunAccessParamQuery procedure.

Calling an Access Function

You can run a built-in Microsoft Access function from Microsoft Excel through
Automation. The following example procedure calls the EuroConvert function
to convert 1,000 Spanish pesetas to Euro dollars. The EuroConvert function
uses fixed conversion rates established by the European Union.

402 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub RunAccessFunction()
 Dim objAccess As Object

 On Error Resume Next
 Set objAccess = GetObject(, "Access.Application")

 ' if no instance of Access is open, create a new one
 If objAccess Is Nothing Then
 Set objAccess = CreateObject("Access.Application")
 End If
 MsgBox "For 1000 Spanish pesetas you will get " & _
 objAccess.EuroConvert(1000, "ESP", "EUR") & _
 " euro dollars. "
 Set objAccess = Nothing
End Sub

RETRIEVING ACCESS DATA INTO AN EXCEL WORKSHEET

There are numerous ways of bringing external data into Excel. This section
shows you different techniques of putting Microsoft Access data into an Excel
worksheet. While you have worked with some of these methods earlier in this
book, the following sections discuss these methods in greater detail.

 ● Using the GetRows method
 ● Using the CopyFromRecordset method
 ● Using the TransferSpreadsheet method
 ● Using the OpenDatabase method
 ● Creating a text fi le
 ● Creating a query table
 ● Creating an embedded chart from Access data

Retrieving Data with the GetRows Method

To place Microsoft Access data into an Excel spreadsheet, you can use the Get-
Rows method. This method returns a two-dimensional array where the first
subscript is a number representing the field, and the second subscript is the
number representing the record. Record and field numbering begins with 0.
The following example demonstrates how to use the GetRows method in a
VBA procedure. We will run the Invoices query in the Northwind database and
return records to a worksheet.

USING EXCEL WITH MICROSOFT ACCESS 403

 Hands-On 14.11 Retrieving Access Data Using the GetRows Method

1. Insert a new module into the AccessFromExcel VBA project and rename it
Method_GetRows.

2. Choose Tools | References and ensure that Microsoft DAO 3.6 Object Library
is selected.

3. Click OK to exit the References dialog box.
4. In the Method_GetRows module Code window, enter the GetData_

withGetRows procedure as shown below:
Sub GetData_withGetRows()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim rst As DAO.Recordset
 Dim recArray As Variant
 Dim i As Integer
 Dim j As Integer
 Dim strPath As String
 Dim a As Variant
 Dim countR As Long
 Dim strShtName As String

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 strShtName = "Returned records"

 Set db = OpenDatabase(strPath)
 Set qdf = db.QueryDefs("Invoices")
 Set rst = qdf.OpenRecordset

 rst.MoveLast
 countR = rst.RecordCount
 a = InputBox("This recordset contains " & _
 countR & " records." & vbCrLf _
 & "Enter number of records to return: ", _
 "Get Number of Records")

 If a = "" Or a = 0 Then Exit Sub
 If a > countR Then
 a = countR
 MsgBox "The number you entered is too large." & vbCrLf _
 & "All records will be returned."
 End If

 Workbooks.Add

404 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ActiveWorkbook.Worksheets(1).Name = strShtName
 rst.MoveFirst
 With Worksheets(strShtName).Range("A1")
 .CurrentRegion.Clear
 recArray = rst.GetRows(a)
 For i = 0 To UBound(recArray, 2)
 For j = 0 To UBound(recArray, 1)
 .Offset(i + 1, j) = recArray(j, i)
 Next j
 Next i
 For j = 0 To rst.Fields.count - 1
 .Offset(0, j) = rst.Fields(j).Name
 .Offset(0, j).EntireColumn.AutoFit
 Next j
 End With
 db.Close
End Sub

After opening an Access database with the OpenDatabase method, the Get-
Data_withGetRows procedure illustrated above runs the Invoices query using
the following statement:
Set qdf = db.QueryDefs("Invoices")

In the Microsoft DAO 3.6 object library the QueryDefs object represents a se-
lect or action query. Select queries return data from one or more tables or que-
ries, while action queries allow you to add, modify, or delete records.
After executing the query, the procedure places the records returned by the
query in the object variable of type Recordset using the OpenRecordset
method, as shown below:
Set rst = qdf.OpenRecordset

Next, the record count is retrieved using the RecordCount method and placed
in the countR variable. Notice that to obtain the correct record count, the re-
cord pointer must first be moved to the last record in the recordset by using the
MoveLast method:
rst.MoveLast
countR = rst.RecordCount

The procedure then prompts the user to enter the number of records to return
to the worksheet. You can cancel at this point by clicking the Cancel button in
the input dialog box or you can type the number of records to retrieve. If you
enter a number that is greater than the record count, the procedure will retrieve
all the records.

USING EXCEL WITH MICROSOFT ACCESS 405

Before retrieving records, you must move the record pointer to the first record
by using the MoveFirst method. If you forget to do this, the record pointer will
remain on the last record and only one record will be retrieved.
The procedure then goes on to activate the Returned records worksheet and
clear the current region. The records are first returned to the Variant variable
containing a two-dimensional array by using the GetRows method of the Re-
cordset object. Next, the procedure loops through both dimensions of the ar-
ray to place the records in the worksheet starting at cell A2. When this is done,
another loop will fill in the first worksheet row with the names of fields and
autofit each column so that the data is displayed correctly.

5. Run the GetData_withGetRows procedure. When prompted for the number of
records, type 10 and click OK. Next, switch to the Microsoft Excel application
window to view the results.

The GetRows method can also be used with ActiveX Data Objects as demon-
strated in the GetData_withGetRows_ADO procedure included on the com-
panion disc. To try out this procedure, ensure that the References dialog box has
the Microsoft ActiveX Data Objects 6.1 and Microsoft ADO Ext. 6.0 for DDL
and Security libraries checked.

Retrieving Data with the CopyFromRecordset Method

To retrieve an entire recordset into a worksheet, use the CopyFromRecord-
set method of the Range object. This method can take up to three arguments:
Data, MaxRows, and MaxColumns. Only the first argument, Data, is required.
This argument can be the Recordset object. The optional arguments, MaxRows
and MaxColumns, allow you to specify the number of records (MaxRows) and the
number of fields (MaxColumns) that should be returned.

If you omit the MaxRows argument, all the returned records will be copied
to the worksheet. If you omit the MaxColumns argument, all the fields will be
retrieved.

The following procedure uses the ADO objects and the CopyFromRecordset
method to retrieve all the records from the Northwind database Products table.

 Hands-On 14.12 Retrieving Access Data Using the
CopyFromRecordset Method

1. Insert a new module into the AccessFromExcel VBA project and rename it
Method_CopyFromRecordset.

2. In the Method_CopyFromRecordset module Code window, enter the
GetProducts procedure as shown below.

406 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

For this procedure to work correctly, you must create a reference
to the Microsoft ActiveX Data Objects 6.1 library. (Refer to the
instructions on setting up a reference to object libraries earlier
in this chapter.)

Sub GetProducts()
 Dim conn As New ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strPath As String

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strPath & ";"
 conn.CursorLocation = adUseClient

 ' Create a Recordset from all the records
 ' in the Products table

 Set rst = conn.Execute(CommandText:="Products", _
 Options:=adCmdTable)

 rst.MoveFirst

 ' transfer the data to Excel
 ' get the names of fields first
 With Worksheets("Sheet3").Range("A1")
 .CurrentRegion.Clear
 For j = 0 To rst.Fields.Count - 1
 .Offset(0, j) = rst.Fields(j).Name
 Next j
 .Offset(1, 0).CopyFromRecordset rst
 .CurrentRegion.Columns.AutoFit
 End With
 rst.Close
 conn.Close

 Set rst = Nothing
 Set conn = Nothing
End Sub

Th e above procedure copies all the records from the Products table in the
Northwind database into an Excel worksheet. If you want to copy fewer
records, use the MaxRows argument as follows:

.Offset(1, 0).CopyFromRecordset rst, 5

USING EXCEL WITH MICROSOFT ACCESS 407

Th e above statement tells Visual Basic to copy only fi ve records. Th e Off set
method causes the records to be entered in a spreadsheet, starting with the
second spreadsheet row. To send all the records to the worksheet using the
data from only two table fi elds, use the following statement:

.Offset(1, 0).CopyFromRecordset rst, , 2

Th e above statement tells Visual Basic to copy all the data from the fi rst two
columns. Th e comma between the rst and the number 2 is a placeholder for the
omitted MaxRows argument.

3. Run the GetProducts procedure and switch to the Excel application window
to view the results.

Retrieving Data with the TransferSpreadsheet Method

It is possible to use the TransferSpreadsheet action of the Microsoft Access
DoCmd object to import or export data between the current Access database
(.mdb) or Access project (.adp) and a spreadsheet file. Using this method, you
can also link the data in an Excel spreadsheet to the current Access database.
With a linked spreadsheet, you can view and edit the spreadsheet data with
Access while still allowing complete access to the data from your Excel spread-
sheet application. The TransferSpreadsheet method carries out the Transfer-
Spreadsheet action in Visual Basic and has the following syntax:
 DoCmd.TransferSpreadsheet [transfertype][, spreadsheettype],
 tablename, filename [, hasfieldnames][, range]

The transfertype argument can be one of the following constants: acImport
(default setting), acExport, or acLink. These constants define whether data
has to be imported, exported, or linked to the database. The spreadsheettype
argument can be one of the constants shown in Table 14.1.

TABLE 14.1 Spreadsheettype argument constants

spreadsheettype Constant Name Value
acSpreadsheetTypeExcel3 (default setting) 0

acSpreadsheetTypeExcel4 6

acSpreadsheetTypeExcel5 5

acSpreadsheetTypeExcel7 5

acSpreadsheetTypeExcel8 8

acSpreadsheetTypeExcel9 8

(Contd.)

408 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

spreadsheettype Constant Name Value
acSpreadsheetTypeExcel12 9

acSpreadsheetTypeExcel12XML 10

acSpreadsheetTypeLotusWK1 2

acSpreadsheetTypeLotusWK3 3

acSpreadsheetTypeLotusWK4 7

It is not difficult to guess that the spreadsheettype argument specifies the
spreadsheet name and the version number.

The tablename argument is a string expression that specifies the name of the
Access table you want to import spreadsheet data into, export spreadsheet data
from, or link spreadsheet data to. Instead of the table name, you may also specify
the name of the select query whose results you want to export to a spreadsheet.

The filename argument is a string expression that specifies the filename and
path of the spreadsheet you want to import from, export to, or link to.

The hasfieldnames argument is a logical value of True (–1) or False (0).
True indicates that the first worksheet row contains the field names. False de-
notes that the first row contains normal data. The default setting is False (no
field names in the first row).

The range argument is a string expression that specifies the range of cells or
the name of the range in the worksheet. This argument applies only to import-
ing. If you omit the range argument, the entire spreadsheet will be imported.
Leave this argument blank if you want to export, unless you need to specify the
worksheet name.

The ExportData example procedure shown below exports data from the
Shippers table in the Northwind database to the Shippers.xls spreadsheet using
the TransferSpreadsheet method.

 Hands-On 14.13 Retrieving Access Data Using the
TransferSpreadsheet Method

1. Insert a new module into the AccessFromExcel VBA project and rename it
Method_TransferSpreadsheet.

2. In the Method_TransferSpreadsheet module Code window, enter the
ExportData procedure as shown below:
Sub ExportData()
 Dim objAccess As Access.Application
 Set objAccess = CreateObject("Access.Application")

 objAccess.OpenCurrentDatabase filepath:= _

USING EXCEL WITH MICROSOFT ACCESS 409

 "C:\VBAExcel2019_ByExample\Northwind.mdb"

 objAccess.DoCmd.TransferSpreadsheet _
 TransferType:=acExport, _
 SpreadsheetType:=acSpreadsheetTypeExcel12, _
 TableName:="Shippers", _
 Filename:="C:\VBAExcel2019_ByExample\Shippers.xls", _
 HasFieldNames:=True, _
 Range:="Sheet1"

 objAccess.Quit
 Set objAccess = Nothing
End Sub

The ExportData procedure uses Automation to establish a connection to Mi-
crosoft Access. The database is opened using the OpenCurrentDatabase meth-
od. The TransferSpreadsheet method of the DoCmd object is used to specify
that the data from the Shippers table should be exported into an Excel spread-
sheet named Shippers.xls and placed in Sheet1 of this workbook. The first row
of the worksheet is to be used by field headings. When data is retrieved, the
Access application is closed and the object variable pointing to the Access ap-
plication is destroyed.

3. Switch to the Excel application window and choose View | Macros | View
Macros. In the Macros dialog box, select the ExportData procedure and click
Run.

4. Open the Shippers.xls file created by the ExportData procedure to view the
retrieved data. When asked to verify that the file is not corrupted or is from a
trusted source, click OK.

Using the OpenDatabase Method

The OpenDatabase method is the easiest way to get database data into a Micro-
soft Excel spreadsheet. This method, which applies to the workbooks, requires
that you specify the name of a database file that you want to open.

The following example procedure demonstrates how to open the Northwind
database using the OpenDatabase method of the Workbooks collection.
Sub OpenAccessDatabase()
 On Error Resume Next

 Workbooks.OpenDatabase _
 Filename:="C:\VBAExcel2019_ByExample\Northwind.mdb"
 Exit Sub
End Sub

410 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When you run the above procedure, Excel will display a dialog box listing all
the tables and queries in the database (see Figure 14.11). After selecting from
the list, a new workbook is opened with the worksheet showing data from the
selected table or query.

The OpenDatabase method has four optional arguments, listed in Table
14.2, which you can use to further qualify the data that you want to retrieve.

TABLE 14.2 Optional arguments for the OpenDatabase method

Optional Argument Name Data Type Description
CommandText Variant The SQL query string. See Hands-On 14.14 for an

example of using this argument.
CommandType Variant The command type of the query. Specify one of the

following constants: xlCmdCube, xlCmdList,
xlCmdSql, xlCmdTable, or xlCmdDefault.

BackgroundQuery Variant Use True to have Excel perform queries for the
report asynchronously (in the back
ground). The default value is False.

ImportDataAs Variant Specifies the format of the query. Use xlQuery-
Table or xlPivotTableReport to generate a
query table or a PivotTable report from the retrieved
database data.

FIGURE 14.11 Database data stored in a table or query can be easily retrieved into an Excel
workbook using the OpenDatabase method.

Let’s write a procedure that creates a PivotTable report from the retrieved cus-
tomer records.

USING EXCEL WITH MICROSOFT ACCESS 411

 Hands-On 14.14 Retrieving Access Data into a PivotTable Using the
OpenDatabase Method

1. Insert a new module into the AccessFromExcel VBA project and rename it
Method_OpenDatabase.

2. In the Method_OpenDatabase module Code window, enter the
CountCustomersByCountry procedure as shown below:
Sub CountCustomersByCountry()
 On Error Resume Next

 Workbooks.OpenDatabase _
 Filename:="C:\VBAExcel2019_ByExample\Northwind.mdb", _
 CommandText:="Select * from Customers", _
 CommandType:=xlCmdSql, _
 BackgroundQuery:=True, _
 ImportDataAs:=xlPivotTableReport
 Exit Sub
End Sub

3. Switch to the Excel application window and choose View | Macros | View
Macros. Select the CountCustomersByCountry procedure and click Run.
When you run the procedure, Excel opens a new workbook and displays
a PivotTable Field List window listing the fields that are available in the
Customers table (see Figure 14.12).

FIGURE 14.12 Using the OpenDatabase method’s optional arguments, you can specify that
the database data be retrieved into a specific format, such as a PivotTable report or a query table.

4. Drag the Country and CustomerID fields from the PivotTable Fields and drop
them in the Row Labels area. Drag the CustomerID field and drop it in the
Values area. Figure 14.13 displays the completed PivotTable report.

412 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 14.13 A PivotTable report based on the data retrieved from the Northwind database’s
Customers table.

5. Close the workbook with the PivotTable report.

Creating a Text File from Access Data

You can create a comma- or tab-delimited text file from Access data by using a
VBA procedure in Excel. Text files are particularly useful for transferring large
amounts of data to a spreadsheet.

The example procedure below illustrates how to use ADO Recordset to cre-
ate a tab-delimited text file.

 Hands-On 14.15 Creating a Text File from Access Data

1. Insert a new module into the AccessFromExcel VBA project and rename it
TextFiles.

2. In the TextFiles module Code window, enter the CreateTextFile procedure as
shown below.

NOTE

For this procedure to work correctly, you must create a reference
to the Microsoft ActiveX Data Objects 6.1 library. (Refer to the
instructions on setting up a reference to object libraries earlier
in this chapter.)

Sub CreateTextFile()
 Dim strPath As String
 Dim conn As New ADODB.Connection
 Dim rst As ADODB.Recordset

USING EXCEL WITH MICROSOFT ACCESS 413

 Dim strData As String
 Dim strHeader As String
 Dim strSQL As String
 Dim fld As Variant

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strPath & ";"

 conn.CursorLocation = adUseClient

 strSQL = "SELECT * FROM Products WHERE UnitPrice > 50"
 Set rst = conn.Execute(CommandText:=strSQL, Options:=adCmdText)

 ' save the recordset as a tab-delimited file
 strData = rst.GetString(StringFormat:=adClipString, _
 ColumnDelimeter:=vbTab, RowDelimeter:=vbCr, _
 nullExpr:=vbNullString)

 For Each fld In rst.Fields
 strHeader = strHeader + fld.Name & vbTab
 Next

 Open "C:\VBAExcel2019_ByExample\ProductsOver50.txt"
 For Output As #1
 Print #1, strHeader
 Print #1, strData
 Close #1

 rst.Close
 conn.Close

 Set rst = Nothing
 Set conn = Nothing
End Sub

Before the text fi le can be created, we retrieve the necessary records from the
Access database using the GetString method of the Recordset object. Th is
method returns a set of records into a string and is faster than looping through
the recordset. Th e GetString method has the following syntax:

variant = recordset.GetString(StringFormat, NumRows, _
 ColumnDelimiter, RowDelimiter, NullExpr)

414 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e fi rst argument (StringFormat) determines the format for representing
the recordset as a string. Use the adClipString constant for this argument.
Th e second argument (NumRows) specifi es the number of recordset rows
to return. If blank, GetString will return all the rows. Th e third argument
(ColumnDelimiter) specifi es the delimiter for the columns within the row
(the default is a tab—vbTab). Th e fourth argument (RowDelimiter) specifi es
a row delimiter (the default is a carriage return—vbCr). Th e fi ft h argument
(NullExpr) specifi es an expression to represent NULL values (the default is an
empty string—vbNullString).
 Once we have all the data in a String variable, the procedure loops through
the fields in the recordset to retrieve the names of columns. The GetString
method can only handle the data requests, so if you need the data with the
headings you need to get this info separately. We store the names of fields in a
separate String variable.
 Next, the procedure creates a text file with the following statement:

Open "C:\VBAExcel2019_ByExample\ProductsOver50.txt"
 For Output As #1

You should already be familiar with this method of creating text fi les, as it was
discussed in detail in Chapter 12.
 Next, we use the Print statement to write both the heading and the data
string to the text fi le. Now that the fi le has the data, we can close it with the
Close statement.

3. Run the CreateTextFile procedure. The procedure creates the ProductsOver50.
txt file in the root directory of your C drive.

4. Now let’s open the ProductsOver50.txt file. In the Open dialog box, select All
Files (*.*) in the Files of type drop-down list. Next, select the ProductsOver50.
txt file and click Open. The Text Import Wizard (Step 1 of 3) dialog box will
open with the Delimited option button selected. Click Next to preview the
structure of this file. Click Finish to show the data in a worksheet.

In Chapter 11, “File and Folder Manipulation with Windows Script Host
(WSH),” you learned how to work with text files using the FileSystemObject.
The CreateTextFile2 procedure on the companion disc demonstrates how to use
this object to create a text file named ProductsOver20.txt.

USING EXCEL WITH MICROSOFT ACCESS 415

Creating a Query Table from Access Data

If you want to work in Excel with data that comes from external data sources
and you know that the data you’ll be working with often undergoes changes,
you may want to create a query table. A query table is a special table in an Excel
worksheet that is connected to an external data source, such as a Microsoft
Access database, SQL Server® database, Web page, or text file. To retrieve
the most up-to-date information, the user can easily refresh the query table.
Microsoft Excel offers a special option for obtaining data from external data
sources: Simply choose Data | Get Data | From Other Sources | From Microsoft
Query.

By querying an external database, you can bring in data that fits your re-
quirements exactly. For example, instead of bringing all product information
into your spreadsheet for review, you may want to specify criteria that the data
must meet prior to retrieval. Thus, instead of bringing in all the products from
an Access table, you can retrieve only products with a unit price greater than
$20.

In VBA, you can use the QueryTable object to access external data. Each Qu-
eryTable object represents a worksheet table built from data returned from an
external data source, such as an SQL Server or a Microsoft Access database. To
create a query programmatically, use the Add method of the QueryTables collec-
tion object. This method requires three arguments that are explained in the fol-
lowing Hands-On exercise that uses the QueryTable object programmatically.

 Hands-On 14.16 Creating a Query Table from Access Data

1. Insert a new module into the AccessFromExcel VBA project and rename it
QueryTable.

2. In the QueryTable module Code window, enter the CreateQueryTable
procedure as shown below:
Sub CreateQueryTable()
 Dim myQryTable As Object
 Dim myDb As String
 Dim strConn As String
 Dim Dest As Range
 Dim strSQL As String

 myDb = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 strConn = "OLEDB;Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & myDb & ";"

416 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Workbooks.Add
 Set Dest = Worksheets(1).Range("A1")
 Sheets(1).Select
 strSQL = "SELECT * FROM Products WHERE UnitPrice > 20"
 Set myQryTable = ActiveSheet.QueryTables.Add(strConn, _
 Dest, _
 strSQL)
 With myQryTable
 .RefreshStyle = xlInsertEntireRows
 .Refresh False
 End With
End Sub

Th e CreateQueryTable procedure uses the following statement to create a
query table on the active sheet:

Set myQryTable = ActiveSheet.QueryTables.Add(strConn, Dest,
strSQL)

strConn is a variable that provides a value for the fi rst argument of the
QueryTables method—Connection. Th is is a required argument of the
Variant data type that specifi es the data source for the query table.
 Dest is a variable that provides a value for the second argument—Destination.
Th is is a required argument of the Range data type that specifi es the cell where
the resulting query table will be placed.
 strSQL is a variable that provides a value for the third argument—SQL.
This is a required argument of the String data type that defines the data to be
returned by the query.
 When you create a query using the Add method, the query isn’t run
until you call the Refresh method. Th is method accepts one argument—
BackgroundQuery. Th is is an optional argument of the Variant data type that
allows you to determine whether control should be returned to the procedure
when a database connection has been established and the query has been
submitted (True) or aft er the query has been run and all the data has been
retrieved into the worksheet (False).
 Th e CreateQueryTable procedure only retrieves from the Northwind
database’s Products table those products whose UnitPrice fi eld is greater
than 20. Notice that the control is returned to the procedure only aft er all the
relevant records have been fetched. Th e RefreshStyle method determines
how data is inserted into the worksheet. Th e following constants can be used:

USING EXCEL WITH MICROSOFT ACCESS 417

 ● xlOverwriteCells—Existing cells are overwritten with the incoming
data.

 ● xlInsertDeleteCells—Cells are inserted or deleted to accommodate
the incoming data.

 ● xlInsertEntireRows—Entire rows are inserted to accommodate in-
coming data.

3. Run the CreateQueryTable procedure. When this procedure completes, you
should see a new workbook. The first sheet in this workbook will contain the
data you specified in the query (see Figure 14.14).

FIGURE 14.14 To modify the SQL statement for the query table, right-click anywhere within the
returned data and choose Edit Query.

Creating an Embedded Chart from Access Data

Using VBA, you can easily create a chart based on the data retrieved from a
Microsoft Access database. Charts are created by using the Add method of the
Charts collection.
Let’s spend some time now creating a procedure that fetches data from the
Northwind database and creates an embedded chart.

 Hands-On 14.17 Creating an Embedded Chart from Access Data

1. Insert a new module into the AccessFromExcel VBA project and rename it
ChartingData.

418 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the ChartingData module Code window, enter the ChartData_withADO
procedure as shown below:
Sub ChartData_withADO()
 Dim conn As New ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim mySheet As Worksheet
 Dim recArray As Variant
 Dim strQueryName As String
 Dim i As Integer
 Dim j As Integer

 strQueryName = "Category Sales for 1997"

 ' Connect with the database
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=C:\VBAExcel2019_ByExample\Northwind.mdb;"

 ' Open Recordset based on the SQL statement
 rst.Open "SELECT * FROM [" & strQueryName & "]", conn, _
 adOpenForwardOnly, adLockReadOnly

 Workbooks.Add
 Set mySheet = Worksheets("Sheet1")
 With mySheet.Range("A1")
 recArray = rst.GetRows()
 For i = 0 To UBound(recArray, 2)
 For j = 0 To UBound(recArray, 1)
 .Offset(i + 1, j) = recArray(j, i)
 Next j
 Next i
 For j = 0 To rst.Fields.count - 1
 .Offset(0, j) = rst.Fields(j).Name
 .Offset(0, j).EntireColumn.AutoFit
 Next j
 End With

 rst.Close
 conn.Close
 Set rst = Nothing
 Set conn = Nothing

 mySheet.Activate
 Charts.Add

USING EXCEL WITH MICROSOFT ACCESS 419

 ActiveChart.ChartType = xl3DColumnClustered
 ActiveChart.SetSourceData _
 Source:=mySheet.Cells(1, 1).CurrentRegion, _
 PlotBy:=xlRows
 ActiveChart.Location Where:=xlLocationAsObject, _
 Name:=mySheet.Name

 With ActiveChart
 .HasTitle = True
 .ChartTitle.Characters.Text = "Category Sales for 2018"
 .Axes(xlCategory).HasTitle = True
 .Axes(xlCategory).AxisTitle.Characters.Text = ""
 .Axes(xlValue).HasTitle = True
 .Axes(xlValue).AxisTitle. _
 Characters.Text = mySheet.Range("B1") & "($)"
 .Axes(xlValue).AxisTitle.Orientation = xlUpward
 End With
End Sub

Th e above procedure uses ActiveX Data Objects (ADO) to retrieve data from
an Access database query. Th e data rows are retrieved using the GetRows
method of the Recordset object. As you already know from earlier examples in
this chapter, the GetRows method retrieves data into a two-dimensional array.
Once the data is placed in an Excel worksheet, a chart is added with the Add
method. Th e SetSourceData method of the Chart object sets the source data
range for the chart, like this:

ActiveChart.SetSourceData Source:=mySheet.Cells(1, 1)
 .CurrentRegion, PlotBy:=xlRows

Source is the range that contains the source data that we have just placed on
the worksheet beginning at cell A1. PlotBy will cause the embedded chart to
plot data by rows.
 Next, the Location method of the Chart object specifi es where the
chart should be placed. Th is method takes two arguments: Where and
Name. Th e Where argument is required. You can use one of the following
constants for this argument: xlLocationAsNewSheet, xlLocationAsObject,
or xlLocationAutomatic. Th e Name argument is required if Where is set to
xlLocationAsObject. In this procedure, the Location method specifi es that the
chart should be embedded in the active worksheet:

ActiveChart.Location Where:=xlLocationAsObject,
 Name:=mySheet.Name

Next, a group of statements formats the chart by setting various properties.

420 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Run the ChartData_withADO procedure.
Th e resulting chart is shown in Figure 14.15.

FIGURE 14.15 You can create an embedded chart programmatically with VBA based on the data
retrieved from a Microsoft Access table, a query, or an SQL statement.

TRANSFERRING THE EXCEL WORKSHEET TO AN ACCESS
DATABASE

Many of the world’s biggest databases began as spreadsheets. When the time
comes to build a database application from your worksheet, you can resort to
a tedious manual method to have the data transferred, or you can use your
recently acquired VBA programming skills to automatically turn your work-
sheets into database tables. Once in a database format, your Excel data can be
used in advanced company-wide reports or as a standalone application (need-
less to say, the latter requires that you possess database application design skills).

The remaining sections of this chapter demonstrate how to link and import
Excel worksheets to an Access database. Prior to moving your Excel data to
Access, it is a good idea to clean up your data as much as possible so that the
transfer operation goes smoothly. Keep in mind that each worksheet row you’ll
be transferring will become a record in a table, and each column will function
as a table field. For this reason, the first row of the worksheet range that you
are planning to transfer to Access should contain field names. There should be
no gaps between the columns of data that you want to transfer. In other words,
your data should be contiguous. If the data you want to transfer represents a

USING EXCEL WITH MICROSOFT ACCESS 421

large number of columns, you should produce a printout of your data first and
examine it so that there are no surprises later. If the first column contains the
field names, it is recommended that you use the built-in Transpose feature to
reposition your data so that it goes down rather than from left to right. The key
to smooth data import is to make your spreadsheet look as close as possible to
a database table.

Linking an Excel Worksheet to an Access Database

You can link an Excel spreadsheet to a Microsoft Access database by using
the TransferSpreadsheet method. (Refer to the “Retrieving Data with the
TransferSpreadsheet Method” section earlier in this chapter for the details
on working with this method.) The example procedure shown below links the
worksheet shown in Figure 14.16 to the Northwind database.

 Hands-On 14.18 Linking an Excel Worksheet to an Access Database

1. Insert a new sheet into the Chap14_VBAExcel2019.xlsm workbook and
rename it mySheet.

2. Prepare the worksheet data as shown in Figure 14.16. The data can be copied
from the SampleData_ForLinkingInAccess.xlsx file on the companion disc.

FIGURE 14.16 The LinkExcel_ToAccess VBA procedure links this worksheet to the Northwind
database in Microsoft Access.

3. Switch to the Visual Basic Editor screen and insert a new module into the
AccessFromExcel VBA project. Rename this module ExcelToAccess.

4. In the ExcelToAccess module Code window, enter the LinkExcel_ToAccess
procedure as shown below:

422 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub LinkExcel_ToAccess()
 Dim objAccess As Access.Application
 Dim strTableName As String
 Dim strBookName As String
 Dim strPath As String

 On Error Resume Next

 strPath = ActiveWorkbook.Path
 strBookName = strPath & "\Chap14_VBAExcel2019.xlsm"
 strTableName = "Linked_ExcelSheet"

 Set objAccess = New Access.Application

 With objAccess
 .OpenCurrentDatabase "C:\VBAExcel2019_ByExample\" & _
 "Northwind 2007.accdb"
 .DoCmd.TransferSpreadsheet acLink, _
 acSpreadsheetTypeExcel12Xml, _
 strTableName, strBookName, True, "mySheet!A1:D7"
 .Visible = True
 End With
 Set objAccess = Nothing
End Sub

Aft er opening the Access database with the OpenCurrentDatabase method,
the procedure uses the TransferSpreadsheet method of the Microsoft
Access DoCmd object to create a linked table named Linked_ExcelSheet from
the specifi ed range of cells (A1:D7) located in the mySheet worksheet in the
Chap14_VBAExcel2019.xlsm fi le. Notice that the True argument in the DoCmd
statement indicates that the fi rst row of the spreadsheet contains column
headings.

NOTE

You cannot add, change, or delete the data in Access tables that
are linked to Excel workbooks in Access. If you need to perform
these operations, you should import the Excel data to Access,
make the required changes, and then export the data to Excel in
the .xls file format.

5. Run the LinkExcel_ToAccess procedure. When the procedure finishes
execution, open the Northwind 2007 database and take a look at the linked
table, shown in Figure 14.17.

USING EXCEL WITH MICROSOFT ACCESS 423

FIGURE 14.17 The Microsoft Excel spreadsheet is linked to a Microsoft Access database.

6. Close the Linked_ExcelSheet table in Access and exit the application.

Importing an Excel Worksheet to an Access Database

In the previous section, you learned how to link your Excel worksheet to an
Access database. Importing your worksheet data is just as easy. You can even use
the same VBA procedure you used for linking with only minor changes; simply
modify the name, replace the acLink constant with acImport, change the table
name, and you are done.

Placing Excel Data in an Access Table

What if, rather than linking or importing your Excel worksheet, you wanted to
create an Access table from scratch and load it with the data sitting in a work-
sheet? Using several programming techniques that you’ve already acquired in
this book, you can easily accomplish this task.
Let’s write a VBA procedure that dynamically creates an Access table based on
the Excel worksheet presented in Figure 14.16 (see “Linking an Excel Worksheet
to an Access Database”).

 Hands-On 14.19 Creating an Access Table and Populating It with the
Worksheet Data

This Hands-On requires the worksheet data prepared in Hands-On 14.18 (see
Figure 14.16).

1. In the ExcelToAccess module Code window, enter the AccessTbl_From_
ExcelData procedure as shown below:
Sub AccessTbl_From_ExcelData()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim myTbl As ADOX.Table

424 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim rstAccess As ADODB.Recordset
 Dim rowCount As Integer
 Dim i As Integer

 On Error GoTo ErrorHandler

 ' connect to Access using ADO
 Set conn = New ADODB.Connection
 conn.Open "Provider = Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source = C:\VBAExcel2019_ByExample\Northwind.mdb;"

 ' create an empty Access table
 Set cat = New Catalog
 cat.ActiveConnection = conn
 Set myTbl = New ADOX.Table
 myTbl.Name = "TableFromExcel"
 cat.Tables.Append myTbl

 ' add fields (columns) to the table
 With myTbl.Columns
 .Append "School No", adVarWChar, 7
 .Append "Equipment Type", adVarWChar, 15
 .Append "Serial Number", adVarWChar, 15
 .Append "Manufacturer", adVarWChar, 20
 End With
 Set cat = Nothing

 MsgBox "The table structure was created."

 ' open a recordset based on the newly created
 ' Access table

 Set rstAccess = New ADODB.Recordset
 With rstAccess
 .ActiveConnection = conn
 .CursorType = adOpenKeyset
 .LockType = adLockOptimistic
 .Open myTbl.Name
 End With

 ' now transfer data from Excel worksheet range

 With Worksheets("mySheet")
 rowCount = Range("A2:D7").Rows.count

USING EXCEL WITH MICROSOFT ACCESS 425

 For i = 2 To rowCount + 1
 With rstAccess
 .AddNew ' add a new record to an Access table
 .Fields("School No") = Cells(i, 1).Text
 .Fields("Equipment Type") = Cells(i, 2).Value
 .Fields("Serial Number") = Cells(i, 3).Value
 .Fields("Manufacturer") = Cells(i, 4).Value
 .Update ' update the table record
 End With
 Next i
 End With

MsgBox "Data from an Excel worksheet was" &_
 "loaded into the table."

 ' close the Recordset and Connection object and remove them
 ' from memory
 rstAccess.Close
 conn.Close
 Set rstAccess = Nothing
 Set conn = Nothing

 MsgBox "Open the Northwind database to view the table."
AccessTbl_From_ExcelDataExit:
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume AccessTbl_From_ExcelDataExit
End Sub

Notice that this procedure connects to the Access database using ActiveX Data
Objects (ADO). Aft er the connection is established, the procedure creates a
new Access table by using the Catalog and Table objects from the ADOX
object library. Next, the fi elds are added to the table based on the names of
the worksheet columns. Each text fi eld specifi es the maximum number of
characters that it can accept. If the worksheet cell’s length is larger than the
specifi ed fi eld size, the error-handling routine will display the Access built-
in message appropriate for this error and the procedure will end. Th e fi nal
task in the procedure is the data transfer operation. To perform this task, the
procedure opens a recordset based on the newly created table. Because we
need to add records to the table, the procedure uses an adOpenKeyset cursor
type. Th e For…Next loop is used to move through the Excel data rows, placing
information found in each worksheet cell into the corresponding table fi eld.

426 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that a new record is added to an Access table with the AddNew method
of the Recordset object. Aft er copying data from all cells in each row, the
procedure uses the Update method of the Recordset object to save the table
record.

2. Run the AccessTbl_From_ExcelData procedure.
3. Open the Northwind.mdb database file to view the procedure results.

SUMMARY

This chapter presented numerous examples of getting Excel data into a Micro-
soft Access database and retrieving data from Microsoft Access into a work-
sheet. You learned how to control an Access application from an Excel VBA
procedure, performing such tasks as opening Access forms and reports, creating
new forms, running select and parameter queries, and calling Access built-in
functions. In addition, this chapter has shown you techniques for creating text
files, query tables, and charts from the Access data. You also learned how to
place Excel data in an Access database by using linked, imported, and dynamic
Access tables.

In the next chapter, you will learn how event programming can help you
build spreadsheet applications that respond to or limit user actions.

The Ribbon interface in Excel enables you to create superb-looking work-
sheets.

In this part of the book, you learn how to create desired interface
elements for your users via Ribbon customizations and how to create dialog boxes
and custom forms. You will also learn how to format spreadsheets with VBA and
control Excel with event-driven programming.

Chapter 15 Event-Driven Programming
Chapter 16 Using Dialog Boxes
Chapter 17 Creating Custom Forms
Chapter 18 Formatting Worksheets with VBA
Chapter 19 Context Menu Programming and Ribbon Customizations
Chapter 20 Printing and Sending Email from Excel

Part

 IV ENHANCING THE
USER EXPERIENCE

427

429

How do you disable a built-in shortcut menu when a user clicks on a
worksheet cell? How do you display a custom message before a work-
book is opened or closed? How can you validate data entered in a cell

or range of cells?
To gain complete control over Microsoft Excel, you must learn how to re-

spond to events. Learning how to program events will allow you to implement
your own functionality in an Excel application. The first thing you need to know
about this subject is what an event is. An event is an action recognized by an
object. An event is something that happens to objects that are part of Microsoft
Excel. Once you learn about events in Excel, you will find it easier to understand
events that occur to objects in Word or any other Microsoft Office application.

Events can be triggered by an application user (such as you), another pro-
gram, or the system itself. So, how can you trigger an event? Suppose you right-
clicked a worksheet cell. This particular action would display a built-in shortcut
menu for a worksheet cell, allowing you to quickly access the most frequently
used commands related to worksheet cells. But what if this particular built-in
response isn’t appropriate under certain conditions? You may want to entirely
disallow right-clicking in a worksheet or perhaps ensure that a custom menu
appears on a cell shortcut menu when the user right-clicks any cell. The good

Chapter

 15 EVENT-DRIVEN
PROGRAMMING

430 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

news is you can use VBA to write code that can react to events as they occur.
The following Microsoft Excel objects can respond to events:

 ● Worksheet
 ● Chart sheet
 ● Query table
 ● Workbook
 ● Application

You can decide what should happen when a particular event occurs by writing
an event procedure.

INTRODUCTION TO EVENT PROCEDURES

A special type of VBA procedure, an event procedure, is used to react to specific
events. This procedure contains VBA code that handles a particular event. Some
events may require a single line of code, while others can be more complex.
Event procedures have names, which are created in the following way:

ObjectName_EventName()

In the parentheses after the name of the event, you can place parameters that
need to be sent to the procedure. The programmer cannot change the name of
the event procedure.

Before you can write an event procedure to react to an Excel event, you need
to know:

 ● Th e names of an object and event to which you want to respond.
Figure 15.1 illustrates how objects that respond to events display a list
of events in the Procedure drop-down list in the Code window. Also,
you can use the Object Browser to fi nd out event names, as shown in
Figure 15.2.

 ● Th e place where you should put the event code.
Some events are coded in a standard module; others must be entered in
a class module. While workbook, chart sheet, and worksheet events are
available for any open sheet or workbook, to create event procedures for
an embedded chart, query table, or the Application object, you must fi rst
create a new object using the With Events keywords in the class module.

EVENT-DRIVEN PROGRAMMING 431

FIGURE 15.1 You can find out the event names in the Code window.

FIGURE 15.2 You can also find out the event names in the Object Browser.

432 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WRITING YOUR FIRST EVENT PROCEDURE

At times you will want to trigger a certain operation when a user invokes an
Excel command. For example, when the user attempts to save a workbook you
may want to present him with the opportunity to copy the active worksheet to
another workbook. Your first event procedure in this chapter explores this sce-
nario. Once this event procedure is written, its code will run automatically when
a user attempts to save the workbook file in which the procedure is located.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 15.1 Writing an Event Procedure

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\
Chap15_VBAExcel2019.xlsm.

2. Change the name of Sheet1 in the Chap15_VBAExcel2019.xlsm workbook
to Test.

3. Type anything in cell A1 and press Enter.
4. Switch to the Visual Basic Editor screen.
5. In the Project Explorer, double-click ThisWorkbook in the Microsoft

Excel Objects folder under VBAProject (Chap15_VBAExcel2019.xlsm).
6. In the ThisWorkbook Code window, enter the following Workbook_

BeforeSave event procedure:
Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)
 If MsgBox("Would you like to copy " & vbCrLf _
 & "this worksheet to " & vbCrLf _
 & "a new workbook?", vbQuestion + vbYesNo) = vbYes Then
 Sheets(ActiveSheet.Name).Copy
 End If
End Sub

Th e above event procedure uses a MsgBox function to display a two-button
dialog box asking the user whether the current worksheet should be copied to
another workbook. If the user clicks the Yes button, Visual Basic will open a
new workbook and copy the active worksheet to it. Th e original workbook fi le
will not be saved. If, however, the user clicks No, the Excel built-in save event
will be triggered. If the workbook has never been saved before, you will be
presented with the Save As dialog box where you can specify the fi lename, the
fi le format, and its location.

EVENT-DRIVEN PROGRAMMING 433

7. Switch to the Microsoft Excel application window, click the File tab, and
choose Save.
Th e Workbook_BeforeSave event procedure that you wrote in Step 6 will be
triggered at this time. Click Yes to the message box. Excel will open a new
workbook with the copy of the current worksheet.

8. Close the workbook file created by Excel without saving any changes. Do not
close the Chap15_VBAExcel2019.xlsm workbook.

9. Click the File tab and choose Save to save Chap15_VBAExcel2019.xlsm.
Notice that again you are prompted with the dialog box. Click No to the
message. Notice that the workbook fi le is now being saved.
But what if you wanted to copy the worksheet fi le to another workbook and
also save the original workbook fi le? Let’s modify our Workbook_BeforeSave
procedure to make sure the workbook fi le is saved regardless of whether the
user answered Yes or No to the message.

10. Change the Workbook_BeforeSave procedure as follows:
Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)

 Dim wkb As Workbook
 Set wkb = ActiveWorkbook

 Cancel = False

 If MsgBox("Would you like to copy " & vbCrLf _
 & "this worksheet to " & vbCrLf _
 & "a new workbook?", vbQuestion + vbYesNo) = vbYes Then
 Sheets(ActiveSheet.Name).Copy
 wkb.Activate
 End If
End Sub

To continue with the saving process, you need to set the Cancel argument
to False. Th is will trigger the Excel built-in save event. Because copying will
move the focus to the new workbook that does not contain the customized
Workbook_BeforeSave procedure, you need to activate the original workbook
aft er performing the copy. We can get back pretty easily to the original
workbook by setting a reference to it at the beginning of the event procedure
and then issuing the wkb.Activate statement.

434 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

If you’d rather call your own saving procedure, set the Cancel
property to True and type the name of your custom save proce-
dure. Here’s a short event procedure example:
Private Sub Workbook_BeforeSave(ByVal SaveAsUI As
Boolean, _
 Cancel As Boolean)
 ' abort the built-in save event
 Cancel = True
 ' call your own saving procedure
 MyCustomSaveProcedure
End Sub

11. Type anything in the Test worksheet in the Chap15_VBAExcel2019.xlsm file,
then click the Save button on the Quick Access toolbar.
When you click Yes or No in response to the message box, Excel proceeds to
save the workbook fi le (you should see the fl ashing message in the status bar).
If you clicked Yes, Excel also copies the Test worksheet to another workbook.
Aft er all these tasks are completed, Excel activates the Chap15_VBAExcel2019.
xlsm workbook.

12. If you answered Yes in the previous step, close the workbook file created by
Excel without saving any changes. Do not close Chap15_VBAExcel2019.xlsm.
Now that you know how to use the Cancel argument, let’s look at the other
argument of the Workbook_BeforeSave event—SaveAsUI. Th is argument
allows you to handle the situation when the user chooses the Save As option.
Suppose that in our procedure example we want to prompt the user to copy the
current worksheet to another workbook only when the Save option is selected.
In cases when the fi le has not yet been saved or the user wants to save the
workbook with a diff erent fi lename, the default Save As dialog box will pop
up and the user will not be bothered with the copy prompt. Th e following step
takes this situation into consideration.

13. Modify the Workbook_BeforeSave event procedure as follows:
Private Sub Workbook_BeforeSave(ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)

 If SaveAsUI = True Then Exit Sub
 Dim wkb As Workbook
 Set wkb = ActiveWorkbook

 Cancel = False

EVENT-DRIVEN PROGRAMMING 435

 If MsgBox("Would you like to copy " & vbCrLf _
 & "this worksheet to " & vbCrLf _
 & "a new workbook?", vbQuestion + vbYesNo) = vbYes Then
 Sheets(ActiveSheet.Name).Copy
 wkb.Activate
 End If
End Sub

14. Switch to the Chap15_VBAExcel2019 application window, click the File tab,
and choose Save As | Excel Macro-Enabled Workbook.
Notice that you are not prompted to copy the current worksheet to another
workbook. Instead, Excel proceeds to run its own built-in Save As process.
When the Save As dialog box appears, click Cancel.

ENABLING AND DISABLING EVENTS

You can use the Application object’s EnableEvents property to enable or dis-
able events. If you are writing a VBA procedure and don’t want a particular
event to occur, set the EnableEvents property to False.

To demonstrate how you can prevent a custom event procedure from run-
ning, we will write a procedure in a standard module that will save the workbook
after making some changes in the active sheet. We will continue working with
the Chap15_VBAExcel2019 file because it already contains the Worksheet_Be-
foreSave event procedure we want to block in this demonstration.

 Hands-On 15.2 Disabling a Custom Event Procedure

This Hands-On requires prior completion of Hands-On 15.1.

1. Choose Insert | Module to add a standard module to VBAProject (Chap15_
VBAExcel2019.xlsm) and rename it StandardProcedures.

2. In the module’s Code window, enter the following EnterData procedure:
Sub EnterData()
 With ActiveSheet.Range("A1:B1")
 .Font.Color = vbRed
 .Value = 15
 End With
 Application.EnableEvents = False
 ActiveWorkbook.Save
 Application.EnableEvents = True
End Sub

436 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that prior to calling the Save method of the ActiveWorkbook property,
we have disabled events by setting the EnableEvents property to False. Th is
will prevent the Workbook_BeforeSave event procedure from running when
Visual Basic encounters the statement to save the workbook. We don’t want
the user to be prompted to copy the worksheet while running the EnterData
procedure. When Visual Basic has completed the saving process, we want the
system to respond to the events as we programmed them, so we enable the
events with the Application.EnableEvents statement set to True.

3. Switch to the Chap15_VBAExcel2019.xlsm application window and choose
View | Macros | View Macros. In the Macro dialog box, select EnterData and
click Run.
Notice that when you run the EnterData procedure, you are not prompted to
copy the worksheet before saving. Th is indicates that the code you entered in
the Hands-On 15.1 Workbook_BeforeSave event procedure is not running.

4. Close the Chap15_VBAExcel2019 workbook.

EVENT SEQUENCES

Events occur in response to specific actions. Events also occur in a predefined
sequence. Table 15.1 demonstrates the sequence of events that occur while
opening a new workbook, adding a new worksheet to a workbook, and closing
the workbook.

TABLE 15.1 Event sequences

Action Object Event Sequence
Opening a new workbook Workbook NewWorkbook

WindowDeactivate

WorkbookDeactivate

WorkbookActivate

WindowActivate

Inserting a new sheet into a
workbook

Workbook WorkbookNewSheet

SheetDeactivate

SheetActivate

EVENT-DRIVEN PROGRAMMING 437

Action Object Event Sequence
Closing a workbook Workbook WorkbookBeforeClose

WindowDeactivate

WorkbookDeactivate

WorkbookActivate

WindowActivate

Worksheet Events

A Worksheet object responds to such events as activating and deactivating a
worksheet, calculating data in a worksheet, making a change to a worksheet,
and double-clicking or right-clicking a worksheet. Table 15.2 lists some of the
events to which the Worksheet object can respond.

TABLE 15.2 Worksheet events (a partial listing)

Worksheet Event Name Event Description
Activate This event occurs upon activating a worksheet.
Deactivate This event occurs when the user activates a different sheet.
SelectionChange This event occurs when the user selects a worksheet cell.
Change This event occurs when the user changes a cell formula.
Calculate This event occurs when the user recalculates the worksheet.
BeforeDoubleClick This event occurs when the user double-clicks a worksheet cell.
BeforeRightClick This event occurs when the user right-clicks a worksheet cell.

Let’s try out these events to get the hang of them.

Worksheet_Activate()

This event occurs upon activating a worksheet.

 Hands-On 15.3 Writing the Worksheet_Activate() Event Procedure

1. Open a new workbook and save it as Chap15_WorksheetEvents.xlsm in your
VBAExcel2019_ByExample folder.

2. Insert a new worksheet to the current workbook.
3. Switch to the Visual Basic Editor window.

438 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. In the Project Explorer window, double-click Sheet2 under VBAProject
(Chap15_WorksheetEvents.xlsm) in the Microsoft Excel Objects folder.

5. In the Sheet2 Code window, enter the code shown below:
Dim shtName As String

Private Sub Worksheet_Activate()
 shtName = ActiveSheet.Name
 Range("B2").Select
End Sub

Th e example procedure selects cell B2 each time the sheet is activated. Notice
that the shtName variable is declared at the top of the module.

6. Switch to the Microsoft Excel application window and activate Sheet2.
7. Notice that when Sheet2 is activated, the selection is moved to cell B2.

Excel also stores the sheet name in the shtName variable that was declared at
the top of the module. We will need this value as we work with other event
procedures in this section.

Worksheet_Deactivate()

This event occurs when the user activates a different sheet in a workbook.

 Hands-On 15.4 Writing the Worksheet_Deactivate() Event Procedure

This Hands-On exercise uses the Chap15_WorksheetEvents workbook created
in Hands-On 15.3.

1. Switch to the Visual Basic Editor window. In the Sheet2 Code window, enter
the Worksheet_Deactivate procedure as shown below:
Private Sub Worksheet_Deactivate()
 MsgBox "You deactivated " & _
 shtName & "." & vbCrLf & _
 "You switched to " & _
 ActiveSheet.Name & "."
End Sub

Th e example procedure displays a message when Sheet2 is deactivated.
2. Switch to the Microsoft Excel application window and click the Sheet2 tab.

Th e Worksheet_Activate procedure that you created in Hands-On 15.3 will
run fi rst. Excel will select cell B2 and store the name of the worksheet in the
shtName global variable declared at the top of the Sheet2 code module.

EVENT-DRIVEN PROGRAMMING 439

3. Now click any other sheet in the active workbook.
Notice that Excel displays the name of the worksheet that you deactivated and
the name of the worksheet you switched to.

Worksheet_SelectionChange()

This event occurs when the user selects a worksheet cell.

 Hands-On 15.5 Writing the Worksheet_SelectionChange() Event
Procedure

1. In the current workbook, insert a new worksheet.
2. Switch to the Visual Basic Editor window. In the Project Explorer window,

double-click Sheet3 under VBAProject (Chap15_WorksheetEvents.xlsm) in
the Microsoft Excel Objects folder.

3. In the Sheet3 Code window, enter the Worksheet_SelectionChange
procedure as shown below:
Private Sub Worksheet_SelectionChange _
 (ByVal Target As Excel.Range)
 Dim myRange As Range

 On Error Resume Next
 Set myRange = Intersect(Range("A1:A10"), Target)
 If Not myRange Is Nothing Then
 MsgBox "Data entry or edits are not permitted."
 End If
End Sub

Th e example procedure displays a message if the user selects any cell in
myRange.

4. Switch to the Microsoft Excel application window and activate Sheet3. Click
on any cell within the specified range A1:A10.
Notice that Excel displays a message whenever you click a cell in the restricted
area.

Worksheet_Change()

This event occurs when the user changes a cell formula.

 Hands-On 15.6 Writing the Worksheet_Change() Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window
and double-click Sheet1 in the Microsoft Excel Objects folder of Chap15_

440 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WorksheetEvents.xlsm.
2. In the Sheet1 Code window, enter the Worksheet_Change event procedure as

shown below:
Private Sub Worksheet_Change(ByVal Target As Excel.Range)
 Application.EnableEvents = False
 Target = UCase(Target)
 Columns(Target.Column).AutoFit
 Application.EnableEvents = True
End Sub

Th e example procedure changes what you type in a cell to uppercase. Th e
column where the target cell is located is then auto sized.

3. Switch to the Microsoft Excel application window and activate Sheet1. Enter
any text in any cell.
Notice that as soon as you press the Enter key, Excel changes the text you typed
to uppercase and auto sizes the column.

Worksheet_Calculate()

This event occurs when the user recalculates the worksheet.

 Hands-On 15.7 Writing the Worksheet_Calculate() Event Procedure

1. Add a new sheet to the Chap15_WorksheetEvents workbook. In cell A2 of this
newly added sheet, enter 1, and in cell B2, enter 2. Enter the following formula
in cell C2: = A2+B2.

2. Switch to the Visual Basic Editor window, activate the Project Explorer window,
and double-click the sheet you added in Step 1.

3. In the Code window, enter the code of the Worksheet_Calculate procedure
as shown below:
Private Sub Worksheet_Calculate()
 MsgBox "The worksheet was recalculated."
End Sub

4. Switch to the Microsoft Excel application window and modify the entry in cell
B2 on the sheet you added in Step 1 by typing any number.
Notice that aft er leaving Edit mode, the Worksheet_Calculate event procedure
is triggered and you are presented with a custom message.

EVENT-DRIVEN PROGRAMMING 441

Worksheet_BeforeDoubleClick(ByVal Target As Range, Cancel As Boolean)

This event occurs when the user double-clicks a worksheet.

 Hands-On 15.8 Writing the Worksheet_BeforeDoubleClick()
Event Procedure

1. Enter any data in cell C9 on Sheet2 of the Chap15_WorksheetEvents workbook.
2. In the Visual Basic Editor window, activate the Project Explorer window and

open the Microsoft Excel Objects folder. Double-click Sheet2.
3. In the Sheet2 Code window, type the code of the procedure as shown

below:
Private Sub Worksheet_BeforeDoubleClick(ByVal _
 Target As Range, Cancel As Boolean)
 If Target.Address = "C9" Then
 MsgBox "No double-clicking, please."
 Cancel = True
 Else
 MsgBox "You may edit this cell."
 End If
End Sub

Th e example procedure disallows in-cell editing when cell C9 is double-clicked.
4. Switch to the Microsoft Excel application window and double-click cell C9 on

Sheet2.
Th e Worksheet_BeforeDoubleClick event procedure cancels the built-in Excel
behavior, and the user is not allowed to edit the data inside the cell. However,
the user can get around this restriction by clicking on the formula bar or
pressing F2. When writing event procedures that restrict access to certain
program features, write additional code that prevents any workaround.

Worksheet_BeforeRightClick(ByVal Target As Range, Cancel As Boolean)

This event occurs when the user right-clicks a worksheet cell.

 Hands-On 15.9 Writing the Worksheet_BeforeRightClick()
Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click Sheet2 in the Microsoft Excel Objects folder.

442 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the Sheet2 Code window, enter the code of the Worksheet_BeforeRightClick
procedure as shown below:
Private Sub Worksheet_BeforeRightClick(ByVal _
 Target As Range, Cancel As Boolean)

 With Application.CommandBars("Cell")
 .Reset
 If Target.Rows.Count > 1 Or _
 Target.Columns.Count > 1 Then
 With .Controls.Add(Type:=msoControlButton, _
 before:=1, temporary:=True)
 .Caption = "Print..."
 .OnAction = "PrintMe"
 End With
 End If
 End With
End Sub

Th e example procedure adds a Print option to the cell shortcut menu when the
user selects more than one cell on the worksheet.

3. Insert a new module into the current project and enter the PrintMe procedure
as shown below:
Sub PrintMe()
 Application.Dialogs(xlDialogPrint).Show arg12:=1
End Sub

Th e PrintMe procedure is called by the Worksheet_BeforeRightClick event
when the user selects the Print option from the shortcut menu. Notice that
the Show method of the Dialogs collection is followed by a named argument:
arg12:=1. Th is argument will display the Print dialog box with the preselected
option button “Selection” in the Print area of the dialog box. Excel dialog boxes
are covered in the next chapter.

4. Switch to the Microsoft Excel application window and right-click on any single
cell in Sheet2.
Notice that the shortcut menu appears with the default options.

5. Now select at least two cells in the Sheet2 worksheet and right-click the selected
area.
You should see the Print option as the fi rst menu entry. Click the Print option
and notice that instead of the default “Print active sheet,” the Print dialog
displays “Print Selection.”

EVENT-DRIVEN PROGRAMMING 443

6. Save and close the Chap15_WorksheetEvents.xlsm workbook file.

NOTE

The Worksheet_BeforeRightClick event procedure relies on the
CommandBar object to customize Excel’s built-in context menu.
Before Excel 2010, the CommandBar object was the only way
to create, modify, or disable context menus. Excel 2019 contin-
ues to support CommandBars for compatibility; however, you
should rely on the RibbonX model (as discussed in Chapter 19)
to add your own customizations to context menus.

WORKBOOK EVENTS

Workbook object events occur when the user performs such tasks as opening,
activating, deactivating, printing, saving, and closing a workbook. Workbook
events are not created in a standard VBA module. To write code that responds
to a particular workbook you can:

 ● Double-click the Th isWorkbook object in the Visual Basic Editor’s Proj-
ect Explorer.

 ● In the Code window that appears, open the Object drop-down list on the
left -hand side and select the Workbook object.

 ● In the Procedure drop-down list (the one on the right), select the event
you want. Th e selected event procedure stub will appear in the Code win-
dow as shown below:

Private Sub Workbook_Open()
 'place your event handling code here
End Sub

Table 15.3 lists some of the events to which the Workbook object can respond.

TABLE 15.3 Workbook events (a partial listing)

Workbook Event Name Event Description
Activate This event occurs when the user activates the workbook. This

event will not occur when the user activates the workbook by
switching from another application.

Deactivate This event occurs when the user activates a different workbook
within Excel. This event does not occur when the user switches to
a different application.

(Contd.)

444 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Workbook Event Name Event Description
Open This event occurs when the user opens a workbook.
BeforeSave This event occurs before the workbook is saved. The SaveAsUI

argument is read-only and refers to the Save As dialog box. If the
workbook has not been saved, the value of SaveAsUI is True;
otherwise, it is False.

BeforePrint This event occurs before the workbook is printed and before the
Print dialog appears. The example procedure places the full work-
book’s name in the document footer prior to printing if the user
clicks Yes in the message box.

BeforeClose This event occurs before the workbook is closed and before the
user is asked to save changes.

NewSheet This event occurs after the user creates a new sheet in a workbook.
WindowActivate This event occurs when the user shifts the focus to any window

showing the workbook.
WindowDeactivate This event occurs when the user shifts the focus away from any

window showing the workbook.
WindowResize This event occurs when the user opens, resizes, maximizes, or

minimizes any window showing the workbook.

Let’s try out the above events to get the hang of them.

Workbook_Activate()

This event occurs when the user activates the workbook. This event will not
occur when the user activates the workbook by switching from another applica-
tion.

 Hands-On 15.10 Writing the Workbook_Activate() Event Procedure

1. Open a new workbook and save it as Chap15_WorkbookEvents.xlsm in your
C:\VBAExcel2019__ByExample folder.

2. Switch to the Visual Basic Editor window. In the Project Explorer window,
double-click ThisWorkbook in the Microsoft Excel Objects folder.

3. In the ThisWorkbook Code window, type the Workbook_Activate procedure
as shown below:
Private Sub Workbook_Activate()
 MsgBox "This workbook contains " & _
 ThisWorkbook.Sheets.Count & " sheets."
End Sub

EVENT-DRIVEN PROGRAMMING 445

Th e example procedure displays the total number of worksheets when the user
activates the workbook containing the Workbook_Activate event procedure.

4. Switch to the Microsoft Excel application window and open a new workbook.
5. Activate the Chap15_WorkbookEvents workbook. Excel should display

the total number of sheets in this workbook.

Workbook_Deactivate()

This event occurs when the user activates a different workbook within Excel.
This event does not occur when the user switches to a different application.

 Hands-On 15.11 Writing the Workbook_Deactivate() Event
Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click ThisWorkbook in the Microsoft Excel Objects folder under
VBAProject (Chap15_WorkbookEvents.xlsm).

2. In the ThisWorkbook Code window, type the Workbook_Deactivate procedure
as shown below:
Private Sub Workbook_Deactivate()
 Dim cell As Range
 For Each cell In ActiveSheet.UsedRange
 If Not IsEmpty(cell) Then
 Debug.Print cell.Address & ":" & cell.Value
 End If
 Next
End Sub

Th e example procedure will print to the Immediate window the addresses
and values of cells containing entries in the current workbook when the user
activates a diff erent workbook.

3. Switch to the Microsoft Excel application window and make some entries on
the active sheet. Next, activate a different workbook.
Th is action will trigger the Workbook_Deactivate event procedure.

4. Switch to the Visual Basic Editor screen and open the Immediate window to
see what entries were reported.

Workbook_Open()

This event occurs when the user opens a workbook.

446 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 15.12 Writing the Workbook_Open() Event Procedure

1. Double-click the ThisWorkbook object in the Microsoft Excel Objects folder
under VBAProject (Chap15_WorkbookEvents.xlsm).

2. In the ThisWorkbook Code window, type the Workbook_Open procedure as
shown below:
Private Sub Workbook_Open()
 ActiveSheet.Range("A1").Value = Format(Now(), "mm/dd/yyyy")
 Columns("A").AutoFit
End Sub

Th e example procedure places the current date in cell A1 when the workbook
is opened.

3. Save and close Chap15_WorkbookEvents.xlsm and then reopen it.
When you open the workbook fi le again, the Workbook_Open event procedure
will be triggered, and the current date will be placed in cell A1 on the active
sheet.

Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)

This event occurs before the workbook is saved. The SaveAsUI argument is
read-only and refers to the Save As dialog box. If the workbook has not been
saved, the value of SaveAsUI is True; otherwise, it is False.

 Hands-On 15.13 Writing the Workbook_BeforeSave() Event
Procedure

1. In the Visual Basic Editor screen, activate the Project Explorer window
and open the Microsoft Excel Objects folder under VBAProject. (Chap15_
WorkbookEvents.xlsm). Double-click ThisWorkbook.

2. In the ThisWorkbook Code window, type the Workbook_BeforeSave proce-
dure as shown below:
Private Sub Workbook_BeforeSave(ByVal _
 SaveAsUI As Boolean, Cancel As Boolean)
 If SaveAsUI = True And _
 ThisWorkbook.Path = vbNullString Then
 MsgBox "This document has not yet " _
 & "been saved." & vbCrLf _
 & "The Save As dialog box will be displayed."
 ElseIf SaveAsUI = True Then
 MsgBox "You are not allowed to use " _

EVENT-DRIVEN PROGRAMMING 447

 & "the SaveAs option. "
 Cancel = True
 End If
End Sub

Th e example procedure displays the Save As dialog box if the workbook
hasn’t been saved before. Th e workbook’s pathname will be a null string
(vbNullString) if the fi le has not been saved before. Th e procedure will not
let the user save the workbook under a diff erent name—the SaveAs operation
will be aborted by setting the Cancel argument to True. Th e user will need to
choose the Save option to have the workbook saved.

3. Switch to the Microsoft Excel application window and activate any sheet in the
Chap15_WorkbookEvents.xlsm workbook.

4. Make an entry in any cell of this workbook, click the File tab, and choose
Save As | Excel Macro-Enabled Workbook.
Th e Workbook_BeforeSave event procedure will be activated, and the ElseIf
clause gets executed. Notice that you are not allowed to save the workbook by
using the SaveAs option.

Workbook_BeforePrint(Cancel As Boolean)

This event occurs before the workbook is printed and before the Print dialog
appears.

 Hands-On 15.14 Writing the Workbook_BeforePrint()
Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click the ThisWorkbook object in the Microsoft Excel Objects folder
under VBAProject (Chap15_WorkbookEvents.xlsm).

2. In the ThisWorkbook Code window, type the Workbook_BeforePrint event
procedure as shown below:
Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim response As Integer
 response = MsgBox("Do you want to " & vbCrLf & _
 "print the workbook's full name in the footer?", _
 vbYesNo)
 If response = vbYes Then
 ActiveSheet.PageSetup.LeftFooter = _
 ThisWorkbook.FullName
 Else
 ActiveSheet.PageSetup.LeftFooter = ""

448 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
End Sub

Th e example procedure places the workbook’s full name in the document
footer prior to printing if the user clicks Yes in the message box.

3. Switch to the Microsoft Excel application window and activate any sheet in the
Chap15_WorkbookEvents.xlsm workbook.

4. Enter anything you want in any worksheet cell.
5. Click the File | Print and click the Print button.

Excel will ask you if you want to place the workbook’s name and path in the
footer.

Workbook_BeforeClose(Cancel As Boolean)

This event occurs before the workbook is closed and before the user is asked to
save changes.

 Hands-On 15.15 Writing the Workbook_BeforeClose() Event
Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click ThisWorkbook in the Microsoft Excel Objects folder under
VBAProject (Chap15_WorkbookEvents.xlsm).

2. In the ThisWorkbook Code window, type the Workbook_BeforeClose event
procedure as shown below:
Private Sub Workbook_BeforeClose(Cancel As Boolean)
 If MsgBox("Do you want to change " & vbCrLf _
 & " workbook properties before closing?", _
 vbYesNo) = vbYes Then
 Application.Dialogs(xlDialogProperties).Show
 End If
End Sub

Th e example procedure displays the Properties dialog box if the user responds
Yes to the message box.

3. Switch to the Microsoft Excel application window and close the Chap15_
WorkbookEvents.xlsm workbook.
Upon closing, you should see a message box asking you to view the Properties
dialog box prior to closing. Aft er viewing or modifying the workbook
properties, the procedure closes the workbook. If there are any changes that
you have not yet saved, you are given the chance to save the workbook, cancel
the changes, or abort the closing operation altogether.

EVENT-DRIVEN PROGRAMMING 449

Workbook_NewSheet(ByVal Sh As Object)

This event occurs after the user creates a new sheet in a workbook.

 Hands-On 15.16 Writing the Workbook_NewSheet() Event
Procedure

1. Open a new workbook and save it as Chap15_WorkbookEvents2.xlsm in
your C:\VBAExcel2019__ByExample folder.

2. Switch to the Visual Basic Editor window, and in the Project Explorer window,
double-click ThisWorkbook in the Microsoft Excel Objects folder under
VBAProject (Chap15_WorkbookEvents2.xlsm).

3. In the ThisWorkbook Code window, type the Workbook_NewSheet event
procedure as shown below:
Private Sub Workbook_NewSheet(ByVal Sh As Object)
 If MsgBox("Do you want to place " & vbCrLf _
 & "the new sheet at the beginning " & vbCrLf _
 & "of the workbook?", vbYesNo) = vbYes Then
 Sh.Move before:=ThisWorkbook.Sheets(1)
 Else
 Sh.Move After:=ThisWorkbook.Sheets(_
 ThisWorkbook.Sheets.Count)
 MsgBox Sh.Name & _
 " is now the last sheet in the workbook."
 End If
End Sub

Th e example procedure places the new sheet at the beginning of the workbook
if the user responds Yes to the message box; otherwise, the new sheet is placed
at the end of the workbook.

4. Switch to the Microsoft Excel application window and click the New Sheet
Button (+) (at the bottom of the screen). Excel will ask where to place the new
sheet.

Let’s try out some of the events related to operations on workbook windows.

Workbook_WindowActivate(ByVal Wn As Window)

This event occurs when the user shifts the focus to any window showing the
workbook.

450 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 15.17 Writing the Workbook_WindowActivate()
Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click the ThisWorkbook object in the Microsoft Excel Objects folder
under VBAProject (Chap15_WorkbookEvents2.xlsm).

2. In the ThisWorkbook Code window, enter the Workbook_WindowActivate
event procedure as shown below:

Private Sub Workbook_WindowActivate(ByVal Wn As Window)
 Wn.GridlineColor = vbYellow
End Sub

Th e example procedure changes the color of the worksheet gridlines to yellow
when the user activates the workbook containing the code of the Workbook_
WindowActivate procedure.

3. Switch to the Microsoft Excel application window and open a new workbook.
4. Arrange Microsoft Excel workbooks vertically on the screen, by choosing

View | Arrange All to open the Arrange Windows dialog. Select the Vertical
option button and click OK. When you activate the worksheet of the workbook
in which you entered the code of the Workbook_WindowActivate event
procedure, the color of the gridlines should change to yellow.

Workbook_WindowDeactivate(ByVal Wn As Window)

This event occurs when the user shifts the focus away from any window show-
ing the workbook.

 Hands-On 15.18 Writing the Workbook_WindowDeactivate()
Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click the ThisWorkbook object in the Microsoft Excel Objects folder
under VBAProject (Chap15_WorkbookEvents2.xlsm).

2. In the ThisWorkbook Code window, enter the Workbook_WindowDeactivate
procedure as shown below:
Private Sub Workbook_WindowDeactivate(ByVal Wn As Window)
 MsgBox "You have just deactivated " & Wn.Caption
End Sub

Th e example procedure displays the name of the deactivated workbook when
the user switches to another workbook from the workbook containing the
code of the Workbook_WindowDeactivate procedure.

EVENT-DRIVEN PROGRAMMING 451

3. Switch to the Microsoft Excel application window and open a new workbook.
Excel displays the name of the deactivated workbook in a message box.

Workbook_WindowResize(ByVal Wn As Window)

This event occurs when the user opens, resizes, maximizes, or minimizes any
window showing the workbook.

 Hands-On 15.19 Writing the Workbook_WindowResize()
Event Procedure

1. In the Visual Basic Editor window, activate the Project Explorer window and
double-click the ThisWorkbook object in the Microsoft Excel Objects folder
under VBAProject (Chap15_WorkbookEvents2.xlsm).

2. In the ThisWorkbook Code window, enter the Workbook_WindowResize
procedure as shown below:
Private Sub Workbook_WindowResize(ByVal Wn As Window)
 If Wn.WindowState <> xlMaximized Then
 Wn.Left = 0
 Wn.Top = 0
 End If
End Sub

Th e example procedure moves the workbook window to the top left -hand
corner of the screen when the user resizes it.

3. Switch to the Microsoft Excel application and activate the Chap15_
WorkbookEvents2.xlsm workbook.

4. Click the Restore Window button to the right of the menu bar.
5. Move the Chap15_WorkbookEvents2.xlsm window to the middle of the

screen by dragging its title bar.
6. Change the size of the active window by dragging the window borders in

or out.
As you complete the sizing operation, the workbook window should
automatically jump to the top left -hand corner of the screen.

7. Click the Maximize button to restore the Chap15_WorkbookEvents2.xlsm
workbook window to its full size.

452 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

An Excel workbook can respond to a number of other events, as shown in
Table 15.4.

TABLE 15.4 Additional workbook events

Workbook Event Name Event Description
SheetActivate This event occurs when the user activates any sheet in

the workbook. The SheetActivate event occurs also at the
application level when any sheet in any open workbook is
activated.

SheetDeactivate This event occurs when the user activates a different sheet in
a workbook.

SheetSelectionChange This event occurs when the user changes the selection on a
worksheet. This event happens for each sheet in a workbook.

SheetChange This event occurs when the user changes a cell formula.
SheetCalculate This event occurs when the user recalculates a worksheet.
SheetBeforeDoubleClick This event occurs when the user double-clicks a cell on a

worksheet.
SheetBeforeRightClick This event occurs when the user right-clicks a cell on a

worksheet.
NewChart This event occurs when a new chart is created in the work-

book.
AfterSave This event occurs after the workbook is saved.
AddinInstall This event occurs after the workbook is installed as an add-

in.
AddinUninstall This event occurs when the workbook is uninstalled as an

add-in.
SheetFollowHyperlink This event occurs when you click any hyperlink in Microsoft

Excel.

PIVOTTABLE EVENTS

In Excel, PivotTable reports provide a powerful way of analyzing and comparing
large amounts of information stored in a database. By rotating rows and col-
umns of a PivotTable report, you can see different views of the source data or see
details of the data that interests you the most. When working with PivotTable
reports programmatically, you can determine when a PivotTable report opened
or closed the connection to its data source by using the PivotTableOpenCon-
nection and PivotTableCloseConnection workbook events and determine when

EVENT-DRIVEN PROGRAMMING 453

the PivotTable was updated via the SheetPivotTableUpdate event. Table 15.5
lists events related to PivotTable reports. If you haven’t worked with PivotTables
programmatically, Chapter 22, “Programming PivotTables and PivotCharts,”
will get you started writing VBA code for creating and manipulating PivotTables
and PivotCharts. You will find it easier to delve into the PivotTable event pro-
gramming after working through Chapter 22.

TABLE 15.5 Workbook events related to PivotTable reports

Workbook Event Name Event Description
PivotTableOpenConnection Occurs after a PivotTable report opens the connection

to its data source. This event requires that you declare
an object of type Application or Workbook using the
WithEvents keyword in a class module (see ex-
amples of using this keyword further in this chapter).

PivotTableCloseConnection Occurs after a PivotTable report closes the connection
to its data source. This event requires that you declare
an object of type Application or Workbook using the
WithEvents keyword in a class module (see ex-
amples of using this keyword further in this chapter).

SheetPivotTableUpdate

The SheetPivotTableUpdate
event procedure takes the following two
arguments:

Sh — the selected sheet
Target — the selected PivotTable
report

This event occurs after the sheet of the PivotTable
report has been updated. This event requires that you
declare an object of type Application or Workbook
using the WithEvents keyword in a class module
(see examples of using this keyword at the end of this
chapter).

Note: The example event procedure shown below,
along with other procedures related to the PivotTable
reports, can be found in the Chap15_PivotReport-
Events.xlsm downloadable file.

Private Sub pivTbl_SheetPivotTableUp-
date(_
 ByVal Sh As Object, _
 ByVal Target As PivotTable)
 MsgBox Target.Name & _
 " report has been updated." & vbCrLf _
 & "The PivotReport is located in
 cells " & _
 Target.DataBodyRange.Address

End Sub

454 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Workbook Event Name Event Description
SheetPivotTableChangeSync

This event takes the following two
arguments:

Sh — the worksheet that contains the
PivotTable

Target — the PivotTable that was
changed

This event occurs after changes to a PivotTable. For
example, after making changes to a PivotTable you can
write code to display a message:

Private Sub _
 Workbook_SheetPivotTableChangeSync(_
 ByVal Sh As Object, _
 ByVal Target As PivotTable)

 MsgBox "Thanks for working with " & _
 "PivotTable (" & Target.Name & _
 ") on " & Sh.Name & _
 " worksheet."
End Sub

Note: The example event procedure shown above
can be found in the Chap15_PivotReportEvents.xlsm
downloadable file.

SheetPivotTableAfter
ValueChange

This event occurs after a cell or range of cells (that
contain formulas) inside a PivotTable are edited or
recalculated. This event will not occur when a Pivot-
Table is refreshed, sorted, filtered, or dilled down on.

SheetPivotTableBefore
DiscardChanges

This event occurs immediately before changes to a
PivotTable are discarded. It is used with the PivotTa-
ble’s OLAP (online analytical processing) data source.

SheetPivotTableBefore
CommitChanges

This event occurs immediately before changes are
committed against the OLAP data source for a Pivot-
Table.

SheetPivotTableBefore
AllocateChanges

This event occurs immediately before changes are
applied to the PivotTable’s OLAP data source.

CHART EVENTS

As you know, you can create charts in Excel that are embedded in a worksheet
or located on a separate chart sheet. In this section, you will learn how to control
chart events no matter where you’ve decided to place your chart. Before you try
out selected chart events, perform the tasks in Hands-On 15.20.

EVENT-DRIVEN PROGRAMMING 455

 Hands-On 15.20 Creating Charts for Trying Out Chart Events

1. Open a new Excel workbook and save it as Chap15_ChartEvents.xlsm.
2. Enter sample data as shown in Figure 15.3.
3. Select cells A1:D5 and choose Insert | Charts | Insert Column Chart |

2-D | Clustered Column.

FIGURE 15.3 Column chart embedded in a worksheet.

4. Size the chart as shown in Figure 15.3.
5. Using the same data, create a line chart on a separate chart sheet, as shown

in Figure 15.5. To add a new chart sheet, right-click any sheet tab in the
workbook and choose Insert. In the Insert dialog box, select Chart and click
OK. On the Design tab in the Chart Tools group, click the Select Data button.
Excel will display the Select Data Source dialog box. At this point, click the
Sheet1 tab and select cells A1:D5. Excel will fill in the Chart data range box in
the dialog box as in Figure 15.4. Click OK to complete the chart. Now, change
the chart type to Line chart with Markers by choosing the Change Chart Type
button in the Chart Tools Design tab. In the Change Chart Type dialog box,
select Line chart in the left pane, and click the button representing the Line
chart with Markers. Click OK to close the dialog box.

456 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 15.4 Creating a chart in a chart sheet.

FIGURE 15.5 Line chart placed in a chart sheet.

6. Change the name of the chart sheet to Sales Analysis Chart.

Writing Event Procedures for a Chart Located on a Chart Sheet

Excel charts can respond to a number of events, as shown in Table 15.6.

EVENT-DRIVEN PROGRAMMING 457

TABLE 15.6 Chart events

Chart Event Name This event occurs when …
Activate The user activates the chart sheet.
Deactivate The user deactivates the chart sheet.
Select The user selects a chart element.
SeriesChange The user changes the value of a chart data point. The Chart object

should be declared in the class module using the WithEvents
keyword.

Calculate The user plots new or changed data on the chart.
Resize The user changes the size of the chart. The Chart object should be

declared in the class module using the WithEvents keyword.
BeforeDoubleClick An embedded chart is double-clicked, before the default double-

click action.
BeforeRightClick An embedded chart is right-clicked, before the default right-click

action.
MouseDown A mouse button is pressed while the pointer is over a chart.
MouseMove The position of a mouse pointer changes over a chart.
MouseUp A mouse button is released while the pointer is over a chart.

We will start by writing event procedures that control a chart placed on a sepa-
rate chart sheet as shown in Figure 15.5. Events for a chart embedded in a work-
sheet like the one in Figure 15.3 require using the WithEvents keyword and
are explained in the section titled “Writing Event Procedures for Embedded
Charts.”

Chart_Activate()

This event occurs when the user activates the chart sheet.

Chart_Deactivate()

This event occurs when the user deactivates the chart sheet.

Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)

This event occurs when the user selects a chart element.
ElementID returns a constant representing the type of the selected chart ele-

ment. Arguments Arg1 and Arg2 are used in relation to some chart elements.
For example, the chart axis (ElementID = 21) can be specified as Main Axis
(Arg1 = 0) or Secondary Axis (Arg1 = 1), while the axis type is specified by

458 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Arg2, which can be one of the following three values: 0 – Category Axis, 1 –
Value Axis, and 3 – Series Axis.

Chart_Calculate()

This event occurs when the user plots new or changed data on the chart.

Chart_BeforeRightClick()

This event occurs when the user right-clicks the chart.

Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal x As
Long, ByVal y As Long)

This event occurs when a mouse button is pressed while the pointer is over a
chart.

The Button argument determines which mouse button was pressed (Mouse-
Down event) or released (MouseUp event): 1 – left button, 2 – right button, and
4 – middle button. The Shift argument specifies the state of the Shift, Ctrl, and
Alt keys: 1 – Shift was selected, 2 – Ctrl was selected, 4 – Alt was selected. The x,
y arguments specify the mouse pointer coordinates.

 Hands-On 15.21 Writing Event Procedures for a Chart Sheet

1. In the Visual Basic Editor window, activate the Project Explorer window
and open the Microsoft Excel Objects folder under VBAProject (Chap15_
ChartEvents.xlsm).

2. Double-click the chart object Chart1 (Sales Analysis Chart).
3. In the Code window, enter the code of the following event procedures:

Private Sub Chart_Activate()
 MsgBox "You've activated the chart sheet."
End Sub

Private Sub Chart_Deactivate()
 MsgBox "It looks like you want to leave the " _
 & "chart sheet."
End Sub

Private Sub Chart_Select(ByVal ElementID As Long, _
 ByVal Arg1 As Long, ByVal Arg2 As Long)
 If Arg1 <> 0 And Arg2 <> 0 Then
 MsgBox ElementID & ", " & Arg1 & ", " & Arg2
 End If

EVENT-DRIVEN PROGRAMMING 459

 If ElementID = 4 Then
 MsgBox "You've selected the chart title."
 ElseIf ElementID = 24 Then
 MsgBox "You've selected the chart legend."
 ElseIf ElementID = 12 Then
 MsgBox "You've selected the legend key."
 ElseIf ElementID = 13 Then
 MsgBox "You've selected the legend entry."
 End If
End Sub

Private Sub Chart_Calculate()
 MsgBox "The data in your spreadsheet has " & vbCrLf _
 & "changed. Your chart has been updated."
End Sub

Private Sub Chart_BeforeRightClick(Cancel As Boolean)
 Cancel = True
End Sub

Private Sub Chart_MouseDown(ByVal Button As Long, _
 ByVal Shift As Long, ByVal x As Long, ByVal y As Long)
 If Button = 1 Then
 MsgBox "You pressed the left mouse button."
 ElseIf Button = 2 Then
 MsgBox "You pressed the right mouse button."
 Else
 MsgBox "You pressed the middle mouse button."
 End If
End Sub

4. Activate the chart sheet and perform the actions that will trigger the event
procedures that you’ve written. For example, click the chart legend and notice
that this action triggers two events: Chart_MouseDown and Chart_Select.

Writing Event Procedures for Embedded Charts

To capture events raised by a chart embedded in a worksheet, you must first cre-
ate a new object in the class module using the keyword WithEvents.

The WithEvents keyword allows you to specify an object variable that will
be used to respond to events triggered by an ActiveX object. This keyword can
only be used in class modules in the declaration section. In the following exam-
ple procedure, we will learn how to use the WithEvents keyword to capture the
Chart_Activate event for the embedded chart you created in Hands-On 15.20.

460 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 15.22 Writing the Chart_Activate() Event Procedure for
an Embedded Chart

1. Activate the Visual Basic Editor window. In the Project Explorer, select
VBAProject (Chap15_ChartEvents.xlsm).

2. Choose Insert | Class Module.
In the Class Modules folder, you will see a module named Class1.

3. In the Properties window, rename Class1 to clsChart.
4. In the clsChart class module Code window, type the following declaration:

Public WithEvents xlChart As Excel.Chart

Th e above statement declares an object variable that will represent the events
generated by the Chart object.
 Th e Public keyword will make the object variable xlChart available to all
modules in the current VBA project. Declaring an object variable using the
WithEvents keyword exposes all of the events defi ned for that particular object
type. Aft er typing the above declaration, the xlChart object variable is added
to the drop-down Object list in the upper-left corner of the Code window, and
the events associated with this object variable appear in the Procedure drop-
down listbox in the upper-right corner of the Code window.

5. Open the Object drop-down listbox and select the xlChart variable.
Th e Code window should now show the skeleton of the xlChart_Activate
event procedure:

Private Sub xlChart_Activate()

End Sub

6. Add your VBA code to the event procedure. In this example, we will add a
statement to display a message box. After adding this statement, your VBA
procedure should look like the following:
Private Sub xlChart_Activate()
 MsgBox "You've activated a chart embedded in " & _
 ActiveSheet.Name & "."
End Sub

Aft er entering the code of the event procedure, you need to inform Visual
Basic that you are planning on using it (see Step 7).

7. In the Project Explorer window, double-click the object named ThisWorkbook,
and enter in the first line of the ThisWorkbook Code window the statement to
create a new instance of the class named clsChart:
Dim myChart As New clsChart

EVENT-DRIVEN PROGRAMMING 461

Th is instruction declares an object variable named myChart. Th is variable
will refer to the xlChart object located in the class module clsChart. Th e New
keyword tells Visual Basic to create a new instance of the specifi ed object.
Before you can use the myChart object variable, you must write a VBA
procedure that initializes it (see Step 8).

8. Enter the following procedure in the ThisWorkbook Code window to initialize
the object variable myChart:
Sub InitializeChart()

' you must run this procedure before event procedures
' written in clsChart class module can be triggered for
' the chart embedded in Sheet1

' connect the class module with the Excel chart object
 Set myChart.xlChart = _
 Worksheets("Sheet1").ChartObjects(1).Chart
End Sub

9. Run the InitializeChart procedure.
Aft er running this procedure, the event procedures entered in the clsChart
class module will be triggered in response to an event. Recall that right now
the clsChart class module contains the Chart_Activate event procedure.
Later on you may want to write in the clsChart class module additional event
procedures to capture other events for your embedded chart.

10. Activate the Microsoft Excel application window and click the embedded
chart in Sheet1.
At this time, the xlChart_Activate event procedure that you entered in Step 6
above should be triggered.

11. Save and close the Chap15_ChartEvents.xlsm workbook file.

EVENTS RECOGNIZED BY THE APPLICATION OBJECT

If you want your event procedure to execute no matter which Excel workbook is
currently active, you must create the event procedure for the Application object.
Event procedures for the Application object have a global scope. This means
that the procedure code will be executed in response to a certain event as long
as the Microsoft Excel application remains open.

Events for the Application object are listed in Table 15.7. Similar to an em-
bedded chart, event procedures for the Application object require that you cre-
ate a new object using the WithEvents keyword in a class module.

462 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 15.7 Application events

Application Event Name Event Description
AfterCalculate This event occurs whenever all pending calcula-

tions and all of the resultant calculation activities
have been completed and there are no outstanding
queries.

NewWorkbook This event occurs when the user creates a new
workbook.

ProtectedViewWindowActivate This event occurs when a Protected View window
is activated.

ProtectedViewWindowBeforeClose This event occurs immediately before a Protected
View window or a workbook in a Protected View
window opens.

ProtectedViewWindowBeforeEdit This event occurs immediately before editing is
enabled on the workbook in the specified Pro-
tected View window.

ProtectedViewWindowDeactivate This event occurs when a Protected View window
is deactivated.

ProtectedViewWindowOpen This event occurs when a workbook is opened in a
Protected View.

ProtectedViewWindowResize This event occurs when any Protected View win-
dow is resized.

WorkbookOpen This event occurs when the user opens a work-
book.

WorkbookActivate This event occurs when the user shifts the focus to
an open workbook.

WorkbookDeactivate This event occurs when the user shifts the focus
away from an open workbook.

WorkbookNewSheet This event occurs when the user adds a new sheet
to an open workbook.

WorkbookNewChart This event occurs when a new chart is created in
any open workbook. If multiple charts are inserted
or pasted, the event will occur for each chart in
the insertion order. If a chart object or chart sheet
is moved from one location to another, the event
will not occur. However, the event will occur if the
chart is moved between a chart object and a chart
sheet.

WorkbookBeforeSave This event occurs before an open workbook is
saved.

EVENT-DRIVEN PROGRAMMING 463

Application Event Name Event Description
WorkbookBeforePrint This event occurs before an open workbook is

printed.
WorkbookBeforeClose This event occurs before an open workbook is

closed.
WorkbookAddInInstall This event occurs when the user installs a work-

book as an add-in.
WorkbookAddInUninstall This event occurs when the user uninstalls a work-

book as an add-in.
WorkbookAfterSave This event occurs after the workbook is saved.
WorkbookRowsetComplete This event occurs when the user either drills

through the recordset or invokes the rowset action
on an OLAP PivotTable.

SheetActivate This event occurs when the user activates a sheet
in an open workbook.

SheetDeactivate This event occurs when the user deactivates a
sheet in an open workbook.

SheetFollowHyperlink This event occurs when the user clicks any hyper-
link in Microsoft Excel.

SheetPivotTableAfterValueChanged This event occurs after a cell or range of cells that
contain formulas inside a PivotTable are edited or
recalculated.

SheetPivotTableBeforeAllocate-
Changes

This event occurs before changes are applied to a
PivotTable.

SheetPivotTableBeforeCommit-
Changes

This event occurs before changes are committed
against the OLAP data source for a PivotTable
(immediately before Excel executes a COMMIT
TRANSACTION).

SheetPivotTableBeforeDiscard-
Changes

This event occurs before changes to a PivotTable
are discarded.

SheetPivotTableUpdate This event occurs after the sheet of the PivotTable
report has been updated.

SheetSelectionChange This event occurs when the user changes the selec-
tion on a sheet in an open workbook.

SheetChange This event occurs when the user changes a cell
formula in an open workbook.

SheetCalculate This event occurs when the user recalculates a
worksheet in an open workbook.

(Contd.)

464 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Application Event Name Event Description
SheetBeforeDoubleClick This event occurs when the user double-clicks a

worksheet cell in an open workbook.
SheetBeforeRightClick This event occurs when the user right-clicks a

worksheet cell in an open workbook.
WindowActivate This event occurs when the user shifts the focus to

an open window.
WindowDeactivate This event occurs when the user shifts the focus

away from the open window.
WindowResize This event occurs when the user resizes an open

window.
WorkbookPivotTableCloseConnection This event occurs after a PivotTable report con-

nection has been closed.
WorkbookPivotTableOpenConnection This event occurs after a PivotTable report con-

nection has been opened.
WorkbookAfterXmlExport This event occurs after Microsoft Excel saves or

exports data from any open workbook to an XML
data file.

WorkbookAfterXmlImport This event occurs after an existing XML data con-
nection is refreshed or new XML data is imported
into any open Microsoft Excel workbook.

WorkbookBeforeXmlExport This event occurs before Microsoft Excel saves or
exports data from any open workbook to an XML
data file.

WorkbookBeforeXmlImport This event occurs before an existing XML data
connection is refreshed or new XML data is im-
ported into any open Microsoft Excel workbook.

WorkbookSync This event occurs when the local copy of a work-
book that is part of a document workspace is syn-
chronized with the copy on the server. This event
has been deprecated; it’s used only for backward
compatibility.

Let’s try a couple of event procedures for the Application object.

 Hands-On 15.23 Writing Event Procedures for the Application Object

1. Open a new workbook and save it as Chap15_ApplicationEvents.xlsm in C:\
VBAExcel2019__ByExample.

2. Switch to the Visual Basic Editor window, and in the Project Explorer window
select VBAProject (Chap15_ApplicationEvents.xlsm).

EVENT-DRIVEN PROGRAMMING 465

3. Choose Insert | Class Module.
4. In the Properties window, change the class module name to clsApplication.
5. In the clsApplication Code window, type the following declaration

statement:
Public WithEvents App As Application

Th is statement uses the WithEvents keyword to declare an Application object
variable.

6. Below the declaration statement, enter the event procedures as shown below:

Private Sub App_WorkbookOpen(ByVal Wb As Workbook)
 If Wb.FileFormat = xlCSV Then
 If MsgBox("Do you want to save this " & vbCrLf _
 & "file as an Excel workbook?", vbYesNo, _
 "Original file format: " _
 & "comma delimited file") = vbYes Then
 Wb.SaveAs FileFormat:=xlWorkbookNormal
 End If
 End If
End Sub

Private Sub App_WorkbookBeforeSave(ByVal _
 Wb As Workbook, ByVal SaveAsUI As Boolean, _
 Cancel As Boolean)
 If Wb.Path <> vbNullString Then
 ActiveWindow.Caption = Wb.FullName & _
 " [Last Saved: " & Time & "]"
 End If
End Sub

Private Sub App_WorkbookBeforePrint(ByVal _
 Wb As Workbook, Cancel As Boolean)
 Wb.PrintOut Copies:=2
End Sub

Private Sub App_WorkbookBeforeClose(ByVal _
 Wb As Workbook, Cancel As Boolean)
 Dim r As Integer
 Dim p As Variant

 Sheets.Add
 r = 1
 For Each p In Wb.BuiltinDocumentProperties
 On Error GoTo ErrorHandle
 Cells(r, 1).Value = p.Name & " = " & _

466 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ActiveWorkbook.BuiltinDocumentProperties _
 .Item(p.Name).Value
 r = r + 1
 Next
 Exit Sub
ErrorHandle:
 Cells(r, 1).Value = p.Name
 Resume Next
End Sub

Private Sub App_SheetSelectionChange(ByVal Sh _
 As Object, ByVal Target As Range)

 If Selection.Count > 1 Or _
 (Selection.Count < 2 And _
 IsEmpty(Target.Value)) Then
 Application.StatusBar = Target.Address
 Else
 Application.StatusBar = Target.Address & _
 "(" & Target.Value & ")"
 End If
End Sub

Private Sub App_WindowActivate(ByVal _
 Wb As Workbook, ByVal Wn As Window)
 Wn.DisplayFormulas = True
End Sub

7. After you’ve entered the code of the above event procedures in the class
module, choose Insert | Module to insert a standard module into your current
VBA project.

8. In the newly inserted standard module, create a new instance of the
clsApplication class and connect the object located in the class module
clsApplication with the object variable App representing the Application
object, as shown below:

Dim DoThis As New clsApplication

Public Sub InitializeAppEvents()
 Set DoThis.App = Application
End Sub

Recall that you declared the App object variable to point to the Application
object in Step 5 above.

9. Now place the mouse pointer within the InitializeAppEvents procedure and
press F5 to run it.

EVENT-DRIVEN PROGRAMMING 467

As a result of running the InitializeAppEvents procedure, the App object in
the class module will refer to the Excel application. From now on, when a
specifi c event occurs, the code of the event procedures you’ve entered in the
class module will be executed.
If you don’t want to respond to events generated by the Application object, you
can break the connection between the object and its object variable by entering
in a standard module (and then running) the following procedure:

Public Sub CancelAppEvents()
 Set DoThis.App = Nothing
End Sub

When you set the object variable to Nothing, you release the memory and
break the connection between the object variable and the object to which this
variable refers. When you run the CancelAppEvents procedure, the code of
the event procedures written in the class module will not be automatically
executed when a specifi c event occurs.
Now let’s proceed to try triggering the application events you coded in the class
module.

10. Switch to the Chap15_ApplicationEvents workbook in the Excel application
window. Click the File tab and choose New. Select Blank Workbook and click
Create.

11. Click the File tab and choose Save As. Save the workbook opened in Step
10 as TestBeforeSaveEvent.xlsx.

12. Type anything in Sheet1 of the TestBeforeSaveEvent.xlsx workbook and
save this workbook.
Notice that Excel writes the full name of the workbook fi le and the time
the workbook was last saved in the workbook’s title bar as coded in the
WorkbookBeforeSave event procedure (see Step 6). Every time you save this
workbook fi le, Excel will update the last saved time in the workbook’s title bar.

13. Look at the code in other event procedures you entered in Step 6 and perform
actions that will trigger these events.

14. Close the Chap15_ApplicationEvents.xlsm file and other workbooks if they
are currently open.

QUERY TABLE EVENTS

A query table is a table in an Excel worksheet that represents data returned from
an external data source, such as an SQL Server database, a Microsoft Access

468 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

database, a Web page, or a text file. Excel provides two events for the Query-
Table object: BeforeRefresh and AfterRefresh. These events are triggered before
or after the query table is refreshed. You can create a query table as a standalone
object or as a list object whose data source is a query table. The list object is dis-
cussed in detail in Chapter 21, “Using and Programming Excel Tables.”

When you retrieve data from an external data source such as Access or SQL
Server using the controls available on the Excel Ribbon’s Data tab, Excel creates
a query table that is associated with a list object. The resulting table is easier to
use thanks to a number of built-in data management features available on the
Ribbon. The next Hands-On demonstrates how to create a query table associ-
ated with a list object and enable the QueryTable object’s BeforeRefresh and
AfterRefresh events. You must have Microsoft Access and a sample Northwind
2007.accdb database installed on your computer.

 Hands-On 15.24 Writing Event Procedures for a Query Table

1. Open a new Microsoft Excel workbook and save it as Chap15_Query-
TableEvents.xlsm in your C:\VBAExcel2019__ByExample folder.

2. Choose the Data tab. In the Get & Transform Data group, click the Get Data
and select From Other Sources | From Microsoft Query.

3. In the Choose Data Source dialog box, select <New Data Source> and click
OK.

4. In Step 1 of the Create New Data Source dialog box, enter SampleDb as the
data source name, as shown in Figure 15.6.

FIGURE 15.6 Use the Create New Data Source dialog box to specify the data source that will
provide data for the query table.

EVENT-DRIVEN PROGRAMMING 469

5. In Step 2 of the Create New Data Source dialog box, select Microsoft Access
Driver (*.mdb, *.accdb) from the drop-down list.

6. In Step 3 of the Create New Data Source dialog box, click the Connect button.
7. In the ODBC Microsoft Access Setup dialog box, click the Select button.
8. In the Select Database dialog box, navigate to the C:\VBAExcel2019__

ByExample folder and select the Northwind 2007.accdb file, then click OK to
close the Select Database dialog box.

9. In Step 4 of the Create New Data Source dialog box, select the Inventory
on Order table in the drop-down listbox, as shown in Figure 15.7.

FIGURE 15.7 Use Step 4 of the Create New Data Source dialog to specify a default table for your
data source.

10. Click OK to close the Create New Data Source dialog box.
11. In the Choose Data Source dialog box, the SampleDb data source name

should now be highlighted. Click OK.
12. In the Query Wizard–Choose Columns dialog box, click the button with

the greater than sign (>) to move all the fields from the Inventory on Order
table to the Columns in your query box.

13. Click the Next button until you get to the Query Wizard–Finish dialog
box.

14. In the wizard’s Finish dialog box, make sure the Return Data to Microsoft
Excel option button is selected and click Finish.

15. In the Import Data dialog box, the current worksheet cell is selected. Click
cell A1 in the current worksheet to change the cell reference. Next, click the
Properties button. Excel will display the Connection Properties dialog box.

470 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Check Refresh the data when opening the file and click OK. Click OK to exit
the Import Data dialog box.
 Aft er completing the above steps, the data from the Inventory on Order
table in the Northwind 2007 database should be placed in the active worksheet.
 To write event procedures for a QueryTable object, you must create a class
module and declare a QueryTable object by using the WithEvents keyword.
Let’s continue.

16. Save the changes in the Chap15_QueryTableEvents.xlsm workbook.
17. Switch to the Visual Basic Editor window and insert a class module into

VBAProject (Chap15_QueryTableEvents.xlsm).
18. In the Properties window, rename the class module clsQryTbl.
19. In the clsQryTbl Code window, type the following declaration statement:

Public WithEvents qryTbl As QueryTable

Aft er you’ve declared the new object (qryTbl) by using the WithEvents
keyword, it appears in the Object drop-down listbox in the class module.

20. In the clsQryTbl Code window, enter the two event procedures shown below:
Private Sub qryTbl_BeforeRefresh(Cancel As Boolean)
 Dim Response As Integer

 Response = MsgBox("Are you sure you " _
 & " want to refresh now?", vbYesNoCancel)
 If Response = vbNo Then Cancel = True
End Sub

Private Sub qryTbl_AfterRefresh(ByVal Success As Boolean)
 If Success Then
 MsgBox "The data has been refreshed."
 Else
 MsgBox "The query failed."
 End If
End Sub

Th e BeforeRefresh event of the QueryTable object occurs before the query
table is refreshed. Th e Aft erRefresh event occurs aft er a query is completed or
canceled. Th e Success argument is True if the query was completed successfully.
Before you can trigger these event procedures, you must connect the object
that you declared in the class module (qryTbl) to the specifi ed QueryTable
object. Th is is done in a standard module as shown in Step 21.

EVENT-DRIVEN PROGRAMMING 471

21. Insert a standard module into VBAProject (Chap15_QueryTableEvents.
xlsm) and rename it QueryTableListObj.

22. In the QueryTableListObj Code window, enter the declaration line and
the procedure as shown below:
Dim sampleQry As New clsQryTbl

Public Sub Auto_Open()
 ' connect the class module and its objects with the Query object

 Set sampleQry.qryTbl = ActiveSheet.ListObjects(1).QueryTable
End Sub

Th is procedure creates a new instance of the QueryTable class (clsQryTbl) and
connects this instance with the fi rst list object on the active worksheet.

NOTE

A query table associated with a list object can only be accessed
through the ListObject.QueryTable property. This query table is
not a part of the Worksheet.QueryTables collection. To find out
whether a query table exists on a worksheet, be sure to check
both the QueryTables and ListObjects collections. This can be
done easily by entering in the Immediate window the following
statements:
?ActiveSheet.ListObjects.Count
?ActiveSheet.QueryTables.Count

23. Run the Auto_Open procedure.
Aft er you run this initialization procedure, the object that you declared in the
class module points to the specifi ed QueryTable object.

NOTE

In the future when you want to work with the QueryTable ob-
ject in this workbook file, you won’t need to run the Auto_Open
procedure. This procedure will run automatically upon opening
the workbook file.

24. Switch to the Microsoft Excel application window. In the worksheet where
you placed the Inventory on Order table from the Microsoft Access database,
choose Data | Refresh All. Excel will now trigger the qryTbl_BeforeRefresh
event procedure and you should see the custom message box. If you click
Yes, the data in the worksheet will be refreshed with the existing data in the
database. Excel will then trigger the qryTbl_AfterRefresh event procedure and
another custom message will be displayed.

472 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

25. Close the Chap15_QueryTableEvents.xlsm workbook file.

OTHER EXCEL EVENTS

There are two events in Excel that are not associated with a specific object: the
OnTime and OnKey events. These events are accessed using the methods of the
Application Object: OnTime and OnKey.

OnTime Method

The OnTime event uses the OnTime method of the Application object to trigger
an event at a specific time. The syntax is:
Application.OnTime(EarliestTime, Procedure, LatestTime, Schedule)

The Procedure parameter is the name of the VBA procedure to run. The Ear-
liestTime parameter is the time you would like the procedure to run. Use the
TimeValue function to specify time as shown in the examples below. Latest-
Time is an optional parameter that allows you to specify the latest time the pro-
cedure can be run. Again, you can use the TimeValue function to specify a time
for this parameter. The Schedule parameter allows you to clear a previously set
OnTime event. Set this parameter to False to cancel the event. The default value
for Schedule is True.

For example, you can have Excel run the specified procedure at 4:00 p.m. as
shown below:

Application.OnTime TimeValue("4:00PM"), "YourProcedureName"

To cancel the above event, run the following code:
Application.OnTime TimeValue("4:00PM"), _1
 "YourProcedureName", , False

To schedule the procedure five minutes after the current time, use the following
code:
Application.OnTime Now + TimeValue("00:05:00"), _
 "YourProcedureName"

The Now function returns the current time. Therefore, to schedule the procedure
to occur in the future (a certain amount from the current time), you need to set
the value of the EarliestTime parameter to:

Now + TimeValue(time)

EVENT-DRIVEN PROGRAMMING 473

To trigger your procedure on July 4, 2020, at 12:01 a.m., type the following
statement on one line in the Immediate window and press Enter:
 Application.OnTime DateSerial(2020, 7, 4) +
 TimeValue("00:00:01"), "YourProcedureName"

OnKey Method

You can use the Application object’s OnKey method to trigger a procedure when-
ever a particular key or key combination is pressed. The syntax of the OnKey
method is as follows:

Application.OnKey(Key, Procedure)

where Key is a string indicating the key to be pressed and Procedure is the
name of the procedure you want to execute. If you pass an empty string ("") as
the second parameter for the OnKey method, Excel will ignore the keystroke.

The key parameter can specify a single key or any key combined with Shift,
Alt, and/or Ctrl. For a letter, or any other character key, use that character. To
specify a key combination, use the plus sign (+) for Shift, percent sign (%) for
Alt, and caret (^) for Ctrl in front of the keycode.

For example, to run your procedure when you press Ctrl-a, you would write
the following statement:

Application.OnKey "^a", "YourProcedureName"

Special keys are entered using curly braces: {Enter}, {Down}, {Esc}, {Home},
{Backspace}, {F1} or {Right}. See the list of keycodes in Table 13.4 (Chapter 13).
For example, to run the procedure named “NewFolder” when the user presses
Alt-F10, use the following code:

Application.OnKey "%{F10}", "NewFolder"

To cancel an OnKey event and return the key to its normal function, call the
OnKey method without the Procedure parameter:

Application.OnKey "%{F10}"

The above code will return the key combination Alt+F10 to its default function
in Excel, which is to display the Selection and Visibility pane on the right side
of the Excel screen.

While using the OnKey method is a quick way to assign a shortcut to execute
a VBA procedure or macro, a better way is to use the Options button in the
Macro dialog to assign a Ctrl+key combination to a procedure.

474 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When using the OnKey events, keep in mind that reassigning frequently
used Excel shortcuts (such as Ctrl+P for Print) to perform other customized
processes may make you an unpopular developer among your users.

SUMMARY

In this chapter, you gained hands-on experience with events and event-driven
programming in Excel. These are invaluable skills, whether you are planning
to create spreadsheet applications for others to use or simply automating your
worksheet daily tasks. Excel provides many events to which you can respond. By
writing event procedures, you can change the way objects respond to events. Your
event procedures can be as simple as a single line of code displaying a custom
message, or more complex with code that includes decision-making statements
and other programming structures. When a certain event occurs, Visual Basic
will simply run an appropriate event procedure instead of responding in the
standard way. You’ve learned that some event procedures are written in a
standard module (workbook, worksheet, and standalone chart sheet) while
others (embedded chart, application, and query table) require that you create a
new object using the WithEvents keyword in a class module. You’ve also learned
that you can enable or disable events using the EnableEvents property. In the
final section of this chapter you worked with two Application object methods
to execute procedures at a specific time or in response to the user pressing a key
or a key combination.

The next chapter takes you through the process of accessing Excel dialog
boxes with VBA.

475

In Chapters 4 and 5, you learned how to use the built-in InputBox function
to collect single items of data from the user during the execution of your
VBA procedure. But what if your procedure requires more data at runtime?

The user may want to supply all the data at once or make appropriate selections
from a list of items. If your procedure must collect data, you can:

 ● Use the collection of built-in dialog boxes
 ● Create a custom form

This chapter teaches you how to display the built-in dialog boxes from your
VBA procedures. In Chapter 17, you will design your own custom forms from
scratch.

Chapter

 16 USING DIALOG
BOXES

476 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

EXCEL DIALOG BOXES

Before you start creating your own forms, you should spend some time learning
how to take advantage of dialog boxes that are built into Excel and are there-
fore ready for you to use. I’m not talking about your ability to manually select
appropriate options, but how to call these dialog boxes from your own VBA
procedures.

Microsoft Excel has a special collection of built-in dialog boxes that are rep-
resented by constants beginning with xlDialog, such as xlDialogClear, xl-
DialogFont, xlDialogDefineName, and xlDialogOptionsView. These built-
in dialog boxes, some of which are listed in Table 16.1, are Microsoft Excel
objects that belong to the built-in collection of dialog boxes. Each Dialog object
represents a built-in dialog box.

TABLE 16.1 Frequently used built-in dialog boxes

Dialog Box Name Constant
New xlDialogNew

Open xlDialogOpen

Save As xlDialogSaveAs

Page Setup xlDialogPageSetup

Print xlDialogPrint

Fonts xlDialogFont

To display a dialog box, use the Show method in the following format:
Application.Dialogs(constant).Show

For example, the following statement displays the Fonts dialog box:
Application.Dialogs(xlDialogFont).Show

Figure 16.1 shows a list of constants identifying Excel built-in dialog boxes,
which is available in the Object Browser window after selecting the Excel library
and searching for xlDialog.

USING DIALOG BOXES 477

FIGURE 16.1 Constants prefixed with “xlDialog” identify Excel built-in dialog boxes.

Let’s practice displaying some of the Excel dialog boxes straight from the Imme-
diate window.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 16.1 Using Excel Dialog Boxes from the Immediate
Window

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap16_
VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor window and open the Immediate window.
3. In the Immediate window, type the following statement and press Enter:

Application.Dialogs(xlDialogFont).Show

The above instruction displays the Fonts dialog box.
After displaying a built-in dialog box, you can select an appropriate option,
and Excel will format the selected cell or range, or the entire sheet. Although

478 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

you can’t modify the looks or behavior of a built-in dialog box, you can decide
which initial setting the built-in dialog box will display when you show it from
your VBA procedure. If you don’t change the initial settings, VBA will display
the dialog box with its default settings.

4. Press Cancel to exit the Fonts dialog box.
5. In the Immediate window, type the following statement and press Enter:

Application.Dialogs(xlDialogFontProperties).Show

The above instruction displays the Format Cells dialog box with the Font tab
active.

6. Press Cancel to exit the Format Cells dialog box.
7. In the Immediate window, type the following statement and press Enter:

Application.Dialogs(xlDialogDefineName).Show

The above statement displays the Define Name dialog box where you can de-
fine a name for a cell or a range of cells.

8. Press Close to exit the Define Name dialog box.
9. In the Immediate window, type the following statement and press Enter:

Application.Dialogs(xlDialogOptionsView).Show

The above instruction opens the Excel Options dialog box with the Advanced
options displayed, as shown in Figure 16.2.

FIGURE 16.2 The advanced settings available in the Excel Options dialog box are identified by the
xlDialogOptionsView constant.

USING DIALOG BOXES 479

10. Press Cancel to exit the Excel Options dialog box.
11. Type the following statement in the Immediate window and press Enter:

Application.Dialogs(xlDialogClear).Show

Excel shows the Clear dialog box with four option buttons: All, Formats, Con-
tents, and Comments. Normally, the Contents option button is selected when
Excel displays this dialog box. But what if you wanted to invoke this dialog
with a different option selected as the default? To do this, you can include a
list of arguments. Arguments are entered after the Show method. For example,
to display the Clear dialog box with the first option button (All) selected, you
would enter the following statement.
Application.Dialogs(xlDialogClear).Show 1

Excel often numbers the available options. Therefore, All = 1, Formats = 2,
Contents = 3, Comments = 4, and Hyperlinks = 5.
 The built-in dialog box argument lists are available at https://docs.microsoft.
com/en-us/office/vba/excel/Concepts/Controls-DialogBoxes-Forms/built-in-di-
alog-box-argument-lists (see Figure 16.3).

FIGURE 16.3 Microsoft Excel built-in dialog box arguments list.

12. Press Cancel to close the Clear dialog box.
13. To display the Fonts dialog box in which the Arial 14-point font is already

selected, type the following instruction in the Immediate window and press
Enter:
Application.Dialogs(xlDialogFont).Show "Arial", 14

480 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

14. Press Cancel to close the Fonts dialog box.
15. To specify only the font size, enter a comma in the position of the first

argument:
Application.Dialogs(xlDialogFont).Show , 8

16. Press Cancel to close the Fonts dialog box.
17. Type the following instruction in the Immediate window and press Enter:

Application.Dialogs(xlDialogDefineName).Show "John", "=A1"

The above statement displays the Define Name dialog box, enters “John” in the
Names in workbook text box, and places the reference to cell A1 in the Refers
to box. The Show method returns True if you click OK and False if you cancel.

18. Press Close to close the Define Name dialog box.

FILE OPEN AND FILE SAVE AS DIALOG BOXES

FileDialog is a very powerful dialog object. This object allows you to display the
File Open and File Save As dialog boxes from your VBA procedures. Because
the FileDialog object is a part of the Microsoft Office 16.0 object library, it is
available to all Office applications. You can also use two methods of the Applica-
tion object (GetOpenFilename and GetSaveAsFilename) to display File Open
and File Save As dialog boxes without actually opening or saving any files (this
is discussed later in this chapter). Let’s practice using the FileDialog object from
the Immediate window.

 Hands-On 16.2 Using the FileDialog Object from the Immediate
Window

1. To display the File Open dialog box, type the following statement in the
Immediate window and press Enter:
Application.FileDialog(msoFileDialogOpen).Show

2. Press Cancel to close the File Open dialog box.
3. To display the File Save As dialog box, type the following statement and

press Enter:
Application.FileDialog(msoFileDialogSaveAs).Show

4. Press Cancel to close the File Save dialog box.

USING DIALOG BOXES 481

In addition to File Open and File Save As dialog boxes, the FileDialog object is
capable of displaying a dialog box with a list of files or a list of files and folders.
Let’s take a quick look at these dialog boxes.

5. Type the following statement in the Immediate window and press Enter to
display the Browse dialog box.
Application.FileDialog(msoFileDialogFilePicker).Show

6. Press Cancel in the dialog box to return to the Immediate window.
7. Type the following statement in the Immediate window and press Enter:

Application.FileDialog(msoFileDialogFolderPicker).Show

Excel displays a dialog box with a list of directories.
8. Press Cancel in the dialog box to return to the Immediate window.

The constants that the FileDialog object uses are listed in Table 16.2. The “mso”
prefix denotes that the constant is a part of the Microsoft Office object model.

TABLE 16.2 FileDialog object’s constants

Constant Name Value
msoFileDialogOpen 1
msoFileDialogSaveAs 2
msoFileDialogFilePicker 3
msoFileDialogFolderPicker 4

FILTERING FILES

When you choose File | Open, Excel displays the Open dialog box listing all
Excel files. You can control the types of files that are displayed in this window
via the drop-down box located to the right of the File name drop-down box, or
you can do this programmatically by using the Filters property. If the filter you
need is not listed in the Open dialog, you can add it to the filters list. Filters are
stored in the FileDialogFilters collection for the FileDialog object.

In the following Hands-On, you will create a simple procedure that returns
the list of default file filters to an Excel worksheet.

 Hands-On 16.3 Writing a List of Default File Filters to an Excel
Worksheet

1. In the Project Explorer window, select VBAProject (Chap16_VBAExcel2019.
xlsm).

482 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the Properties window, rename the project VBA_Dialogs.
3. Insert a new module into the VBA_Dialogs (Chap16_VBAExcel2019.

xlsm) project and rename it DialogBoxes.
4. In the DialogBoxes Code window, enter the ListFilters procedure as shown

below:
Sub ListFilters()
 Dim fdf As FileDialogFilters
 Dim fltr As FileDialogFilter
 Dim c As Integer

 Set fdf = Application.FileDialog(msoFileDialogOpen).Filters

 Workbooks.Add
 Cells(1, 1).Select
 Selection.Formula = "List of Default filters"
 With fdf
 c = .Count
 For Each fltr In fdf
 Selection.Offset(1, 0).Formula = fltr.Description & _
 ": " & fltr.Extensions
 Selection.Offset(1, 0).Select
 Next
 MsgBox c & " filters were written to a worksheet."
 End With
End Sub

The above procedure declares two object variables. The fdf object variable
returns a reference to the FileDialogFilters collection of the FileDialog object,
and the fltr object variable stores a reference to the FileDialogFilter object.
The Count property of the FileDialogFilters collection returns the total num-
ber of filters.
 Next, the procedure iterates through the FileDialogFilters collection and re-
trieves the description and extension of each defined filter.

5. Run the ListFilters procedure.
When the procedure completes, you should see a list of preset filters in the
worksheet of a new workbook.

Using the Add method of the FileDialogFilters collection, you can easily add
your own filter to the default filters. The following modified ListFilters proce-
dure (ListFilters2) demonstrates how to add a filter to filter out temporary files
(*.tmp). The last statement in this procedure will open the File Open dialog box

USING DIALOG BOXES 483

so that you can check for yourself that the custom filter Temporary files (*.tmp)
has indeed been added to the list of filters in the drop-down list.
Sub ListFilters2()
 Dim fdf As FileDialogFilters
 Dim fltr As FileDialogFilter
 Dim c As Integer

 Set fdf = Application.FileDialog(msoFileDialogOpen).Filters

 Workbooks.Add
 Cells(1, 1).Select
 Selection.Formula = "List of Default filters"
 With fdf
 c = .Count
 For Each fltr In fdf
 Selection.Offset(1, 0).Formula = fltr.Description & _
 ": " & fltr.Extensions
 Selection.Offset(1, 0).Select
 Next
 MsgBox c & " filters were written to a worksheet."
 .Add "Temporary Files", "*.tmp", 1
 c = .Count
 MsgBox "There are now " & c & " filters." & vbCrLf _
 & "Check for yourself."
 Application.FileDialog(msoFileDialogOpen).Show
 End With
End Sub

You can remove all the preset filters using the Clear method of the FileDia-
logFilters collection. For example, you could modify the ListFilters2 procedure
to clear the built-in filters prior to adding the custom filter—Temporary files
(*.tmp).

SELECTING FILES

When you select a file in the Open File dialog box, the selected filename and
path is placed in the FileDialogSelectedItems collection. Use the SelectedItems
property to return the FileDialogSelectedItems collection. By setting the Allow-
MultiSelect property of the FileDialog object to True, a user can select one or
more files by holding down the Shift or Control keys while clicking filenames.

The following procedure demonstrates how to use the above-mentioned prop-
erties. This procedure will open a new workbook and insert a listbox control.

484 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The user will be allowed to select more than one file. The selected files will then be
loaded into the listbox control, and the first filename will be highlighted.

 Hands-On 16.4 Loading Files into a Worksheet Listbox Control

1. In the DialogBoxes module Code window, enter the ListSelectedFiles
procedure as shown below:
Sub ListSelectedFiles()
 Dim fd As FileDialog
 Dim myFile As Variant
 Dim lbox As Object

 Application.FileDialog(msoFileDialogOpen).Filters.Clear
 Set fd = Application.FileDialog(msoFileDialogOpen)
 With fd
 .AllowMultiSelect = True
 If .Show Then
 Workbooks.Add
 Set lbox = Worksheets(1).Shapes. _
 AddFormControl(xlListBox, _
 Left:=20, Top:=60, Height:=40, Width:=300)
 lbox.ControlFormat.MultiSelect = xlNone
 For Each myFile In .SelectedItems
 lbox.ControlFormat.AddItem myFile
 Next
 Range("B4").Formula = _
 "You've selected the following " & _
 lbox.ControlFormat.ListCount & " files:"
 lbox.ControlFormat.ListIndex = 1
 End If
 End With
End Sub

The above procedure uses the following statement to clear the list of filters in
the File Open dialog box to ensure that only the preset filters are listed:

Application.FileDialog(msoFileDialogOpen).Filters.Clear

Next, the reference to the FileDialog object is stored in the object variable fd:
Set fd = Application.FileDialog(msoFileDialogOpen)

Prior to displaying the File Open dialog box, we set the AllowMultiSelect
property to True so that users can select more than one file.

USING DIALOG BOXES 485

 Next, the Show method is used to display the File Open dialog box. This
method does not open the files selected by the user. When the user clicks the
Open button, the names of the files are retrieved from the SelectedItems col-
lection via the SelectedItems property and placed in a listbox on a worksheet.

2. Run the ListSelectedFiles procedure. When the File Open dialog box appears
on the screen, switch to the VBAExcel2019_ByExample folder, select a couple
of files (hold down the Shift or Ctrl key to choose contiguous or nonadjacent
files), and then click Open.
The selected files are not opened. The procedure simply loads the names of the
files you selected in a listbox control that has been added to a worksheet (see
Figure 16.4).

FIGURE 16.4 User-selected files are loaded into a listbox control placed in a worksheet by the
ListSelectedFiles procedure.

If you’d like to immediately carry out the File Open operation when the user
clicks the Open button, you must use the Execute method of the FileDialog
object. The OpenRightAway procedure shown below demonstrates how to open
the user-selected files right away.
Sub OpenRightAway()
 Dim fd As FileDialog
 Dim myFile As Variant

 Set fd = Application.FileDialog(msoFileDialogOpen)
 With fd
 .AllowMultiSelect = True
 If .Show Then
 For Each myFile In .SelectedItems
 .Execute
 Next
 End If
 End With
End Sub

486 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

GETOPENFILENAME AND GETSAVEASFILENAME METHODS

For many years now, Excel has offered its programmers two handy VBA meth-
ods for displaying the File Open and File Save As dialog boxes: GetOpenFile-
name and GetSaveAsFilename. These methods are available only in Excel and
can still be used in Excel if backward compatibility is required. The GetOpen-
Filename method displays the Open dialog box, where you can select the name
of a file to open. The GetSaveAsFilename method shows the Save As dialog
box. Let’s try out these methods from the Immediate window.

Using the GetOpenFilename Method

Let’s open a file using the GetOpenFilename method.

 Hands-On 16.5 Using the GetOpenFilename Method

1. Type the following statement in the Immediate window and press Enter:
Application.GetOpenFilename

The above statement displays the Open dialog box where you can select a file.
The GetOpenFilename method gets a filename from the user without opening
the specified file. This method has four optional arguments. The most often
used are the first and third arguments, shown in Table 16.3.

TABLE 16.3 Arguments of the GetOpenFilename method

Argument Name Description
FileFilter This argument determines what appears in the dialog box’s Save as

type field. For example, the filter excel files (*.xls), .xls displays the fol-
lowing text in the Save As drop-down list of files: excel files. The first
part of the filter, excel files (.xls), determines the text to be displayed.
The second part, .xls, specifies which files are displayed. The filter
parts are separated by a comma.

title This is the title of the dialog box. If omitted, the dialog box will appear
with the default title “Open.”

2. Click Cancel to close the dialog box opened in Step 1.
3. To see how arguments are used with the GetOpenFilename method, enter

the following statement in the Immediate window (be sure to enter it on one
line and press Enter):
Application.GetOpenFilename("excel macro-enabled files(*.xlsm),

 *.xlsm"),,"Highlight the File"

USING DIALOG BOXES 487

Notice that the Open dialog box now has the text “Highlight the File” in the
titlebar. Also, the Files of type drop-down listbox is filtered to display only the
specified file type.

4. Click Cancel to close the dialog box opened in Step 3.
The GetOpenFilename method returns the name of the selected or specified
file. This name can be used later by your VBA procedure to open the file. Let’s
see how this is done.

5. In the Immediate window, type the following statement and press Enter:
yourFile = Application.GetOpenFilename

This statement displays the Open dialog box. The file you select while this
dialog box is open will be stored in the yourFile variable.

6. Select an Excel file and click Open.
Notice that Excel did not open the selected file. All it did is remember its name
in the yourFile variable. Let’s check this out.

7. In the Immediate window, type the following statement and press Enter:
?yourFile

Excel prints the name of the selected file in the Immediate window. Now that
you have a filename, you can write a statement to actually open this file (see
the next step).

8. In the Immediate window, type the following statement and press Enter:
Workbooks.Open Filename:=yourFile

Notice that the file you picked is now opened in Excel.
9. Close the file you opened in Step 8.

Note:

NOTE The GetOpenFilename method returns False if you cancel the
dialog box by pressing the Esc key or clicking Cancel.

Using the GetSaveAsFilename Method

Now that you know how to open a file using the GetOpenFilename method,
let’s examine a similar method that allows you to save a file. We will continue to
work in the Immediate window.

488 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 16.6 Using the GetSaveAsFilename Method

1. Open a new workbook and switch to the Visual Basic Editor window.
2. In the Immediate window, type the following statement and press Enter.

yourFile = Application.GetSaveAsFilename

The above statement displays the Save As dialog box. The suggested filename
is automatically entered in the File name box at the bottom of this dialog box.
The GetSaveAsFilename method is convenient for obtaining the name of the
file the workbook should be saved as. The filename that the user enters in the
File name box will be stored in the yourFile variable.

3. Type Test1.xlsx in the File name box and click Save.
When you click the Save button, the GetSaveAsFilename method will store
the filename and its path in the yourFile variable. You can check out the value
of the yourFile variable in the Immediate window by entering the following
statement and pressing Enter:
 ?yourFile

To actually save the file you have to enter a different statement, as demon-
strated in the next step.

4. In the Immediate window, type the following statement and press Enter:
ActiveWorkbook.SaveAs yourFile

Now the workbook file opened in Step 1 has been saved as Test1.xlsx.
5. To close the Test1.xlsx file, type the following statement in the Immediate

window and press Enter:
Workbooks("Test1.xlsx").Close

NOTE
Because the file we are working with does not contain any VBA
code, we have saved it with the “xlsx” extension instead of using
the macro-enabled file format (xlsm).

When using the GetSaveAsFilename method, you can specify the filename,
file filter, and custom title for the dialog box:
yourFile = Application.GetSaveAsFilename("Test1.xlsx", "Excel
 files(*.xlsx), *.xlsx",,"Name of your file")

USING DIALOG BOXES 489

SUMMARY

In this chapter, you learned how to use VBA statements to display various built-
in dialog boxes. You also learned how to select files by using the FileDialog
object. You ended this chapter by familiarizing yourself with older methods of
displaying the File Open and File Save As dialog boxes that you will encounter
often in VBA procedures written in older versions of Excel.

In the next chapter, you will learn how to create and display your custom
dialog boxes with user forms.

491

Although ready to use and convenient, the built-in dialog boxes will not
meet all of your VBA application’s requirements. Apart from display-
ing a dialog box on the screen and specifying its initial settings, you

can’t control the dialog box’s appearance. You can’t decide which buttons to add,
which ones to remove, and which ones to move around. Also, you can’t change
the size of a built-in dialog box. Therefore, if you’re looking to provide a custom
interface, you need to create a user form.

CREATING FORMS

A user form is like a custom dialog box. You can add various controls to the
form, set properties for these controls, and write VBA procedures that respond
to form and control events. Forms are separate objects that you add to a VBA
project by choosing Insert | UserForm from the Visual Basic Editor. Forms can
be shared across applications. For example, you can reuse the form you designed
in Microsoft Excel in Microsoft Word or any other application that uses Visual
Basic Editor.

Chapter

 17 CREATING
CUSTOM FORMS

492 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To create a custom form, follow these steps:

1. Press Alt+F11 or select Developer | Visual Basic to switch to the Visual Basic
Editor window.

2. Choose Insert | UserForm.

A new folder called Forms appears in the Project Explorer window. This
folder contains a blank UserForm object. The work area automatically displays
the form and the Toolbox with the necessary tools for adding controls (see
Figure 17.1).

FIGURE 17.1 A new form can be added to the open VBA project by selecting UserForm from the
Insert menu.

The Properties window (see Figure 17.1) displays seven properties that you can
set: Appearance, Behavior, Font, Misc, Picture, Position, and Scrolling. To list
form properties by category, click the Categorized tab in the Properties window.
To find out information about a specific property, click the property name and
press F1. The online help will be launched with the property description topic.

After adding a new form to your VBA project, you should assign a unique
name to it by setting the Name property. You can also set the form’s title by using
the Caption property.

CREATING CUSTOM FORMS 493

All VBA applications that use the Visual Basic Editor share features for creat-
ing custom forms. You can share your forms by exporting and importing form
files or by dragging a form object to another project. To import or export a form
file, choose File | Import File or File | Export File. Before you export a form file,
be sure to select it in the Project Explorer window. Before dragging a form to
a different VBA application, arrange the VBE windows so that you can see the
Project Explorer window in both applications, then drop the form on the name
of another project in the Project Explorer.

Tools for Creating User Forms

When you design a form, you insert appropriate controls into it to make it use-
ful. The Toolbox (Figure 17.2) contains standard Visual Basic buttons for all
the controls that you can add to a form. It may also contain additional controls
that have been installed on your computer. Controls available in the Toolbox are
known as ActiveX controls. These controls can respond to specific user actions,
such as clicking a control or changing its value.

FIGURE 17.2 The Toolbox displays the controls that can be added to your custom form.

You will learn how to use the Toolbox controls throughout the remaining sec-
tions of this chapter. If you have other applications installed on your computer
that contain ActiveX controls that you’d like to use, you can also place them in
the Toolbox. Let’s take a few minutes and add a Date and Time Picker ActiveX
control to the Toolbox. This control is one of several controls included in the
Microsoft Windows Common Controls 6.0 located in the MSCOMCT2.OCX
file.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

494 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 17.1 Adding an ActiveX Date and Time Picker Control to
the Toolbox

1. Open a new workbook and save it as C:\VBAExcel2019ByExample\Chap17_
VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor window and select VBAProject (Chap17_
VBAExcel2019.xlsm) in the Project Explorer window. Use the Properties
window to rename the project VBA_Forms.

3. Choose Insert | UserForm to add a new form to the selected project.
A default user form named UserForm1 appears with the accompanying Tool-
box.

4. Right-click the Controls tab in the Toolbox and choose New Page from the
shortcut menu.
A New Page tab appears in the Toolbox.

5. Right-click the New Page tab in the Toolbox and choose Rename. If this option
is not available, make sure you are right-clicking the New Page tab.

6. In the Caption box, type Extra Controls as the new name.
7. In the Control Tip Text box, type the following description: Additional

ActiveX Controls.
8. Click OK to return to the Toolbox.
9. Right-click anywhere within the new page area and choose Additional

Controls from the shortcut menu. If this option is not available, make sure
you are right-clicking the page area in the Toolbox and not the Extra Controls
tab itself.

FIGURE 17.3 You can add to the Toolbox additional ActiveX controls that are installed on
your computer.

CREATING CUSTOM FORMS 495

10. When the Additional Controls dialog box appears, click the checkbox next to
Microsoft TreeView Control, Version 6.0 or any other control from the list of
choices (see Figure 17.3).

11. Click OK to close the Additional Controls dialog box.
Th e selected control now appears on the Extra Controls page in the Toolbox.

The standard Visual Basic controls are described below. You will use many of
these controls in this chapter’s Hands-On projects.

 Select Objects

Select Objects is the only item in the Toolbox that doesn’t draw a control. Use it
to resize or move a control that has already been drawn on a form.

 Label

The Label control is often used to add captions, titles, headings, and explana-
tions to your forms. You can use the label to assign a title to those controls that
don’t have the Caption property (for example, text boxes, listboxes, scrollbars,
and spin buttons). You can define an accelerator (shortcut) key for the label. For
example, by pressing Alt and a specified letter, you can activate the control that
was added to the form immediately after adding the Label control and setting its
Accelerator property. To add a title or a keyboard shortcut to an existing control,
add a Label control and type a letter from its caption in its Accelerator property
in the Properties window. Next, choose View | Tab Order, and make sure that
the name of the label appears before the name of the control that you want to
activate with the assigned keyboard shortcut. You will learn how to use the Tab
Order dialog box later in this chapter (see Figure 17.6).

 Text Box

Text boxes are the most popular form controls because they can be used to
either display or request data from the user. You can enter text, numbers, cell
references, or formulas in them. By changing the setting of the MultiLine prop-
erty, you can enter more than one line of text in a text box. The text lines can
automatically wrap when you set the WordWrap property. If you set the Enter-
KeyBehavior property to True when the MultiLine property is also set to True,
you’ll be able to start a new line in the text box by pressing Enter. Another prop-
erty, EnterFieldBehavior, determines whether the text is selected when the user
selects the text field. Setting this property to 0 (fmEnterFieldBehaviorSelectAll)
will select the text within the field. Setting this property to 1 (fmEnterFieldBe-

496 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

haviorRecallSelect) will only select the text that the user selected the last time
he activated this field. If you want to limit the number of characters the user can
enter in a text box, you can do this by specifying the exact number of characters
in the MaxLength property.

 Frame

Frames allow you to visually organize and logically group various controls
placed on the form. Later in this chapter, you will find an example of the Info
Survey form that uses two frames. One of them organizes Hardware and Soft-
ware option buttons into one logical group; the second frame groups the check-
boxes related to the computer type (see Figure 17.4).

 Command Button

A command button carries out a command when it is clicked. In this chapter,
you will learn how to execute VBA procedures from command buttons.

 Option Button

An option button lets you select one of a number of options. Option buttons
usually appear in groups of two or more buttons surrounded by a frame control.
Only one option button can be selected. When you select a new option button,
the previously selected option button is automatically deselected. To activate or
deactivate an option button, set its Value property to True or False. True means
that the option is activated; False indicates that the option is deactivated.

 Check Box

Checkboxes are used for turning specific options on and off. Unlike option but-
tons, you can select one or more checkboxes. If the checkbox is selected, its
Value property is set to True; if the checkbox is not selected, its Value property
is set to False.

 Toggle Button

A toggle button looks like a command button and works similarly to an option
button. When you click a toggle button, the button stays pressed. The next click
on the button returns it to the normal (unpressed) state. The pressed toggle but-
ton has its Value property set to True. The unpressed toggle button has its Value
property set to False.

CREATING CUSTOM FORMS 497

 Listbox

Instead of prompting the user to enter a specific value in a text box, sometimes
it’s better to present a list of available choices from which to select. The listbox
reduces the possibility of data entry errors. The listbox entries can be typed
in a worksheet, or they can be loaded directly from a VBA procedure using
the AddItem method. The RowSource property indicates the source of data dis-
played in the listbox. For example, the reference A1: B8 will display in the
listbox the contents of the specified range of cells.

The listbox can display one or more columns when you set the Column-
Count property. Another property, ColumnHeads, can be set to True to display
the column titles in the listbox.

The user may select more than one item in the listbox if the MultiSelect
property is set to True.

 Combo Box

The combo box is a control that combines a text box with a listbox. This control
is often used to save space on the form. When the user clicks the down arrow
located to the right of the combo box, the box will drop open to reveal a num-
ber of items from which to choose. The user may enter a new value if you set
the MatchRequired property to False. The ListRows property determines how
many items will appear when the user drops down the list. The Style property
determines the type of combo box. To let the user select an item from the list,
use 0 (fmStyleDropDownCombo). Set the Style property to 2 (fmStyleDrop-
DownList) to limit the user’s selection to the items available in the combo box.

 Scrollbar

This control allows you to place horizontal and vertical scrollbars on your form.
Although normally used to navigate windows, scrollbars can be used on your
form to enter values in a predefined range. The current value of the scrollbar
is set or returned by the Value property. The scrollbar’s Max property lets you
set its maximum value. The Min property determines the minimum value. The
LargeChange property determines by what value the Value property should
change when the user clicks inside the scrollbar. When programming the behav-
ior of the scrollbar, don’t forget to set the SmallChange property that determines
how the Value property changes when you click one of the scroll arrows.

498 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Spin Button

The spin button works similarly to a scrollbar. You can click an arrow to incre-
ment or decrement a value. The spin button is often used with a text box. The
user can then type the exact value in the text box or select a value by using the
arrows. The technique of using the spin button with a text box is discussed later
in this chapter.

 Image Control

The image control lets you display a graphical image on a form. This control
supports the following file formats: *.bmp, *.cur, *gif, *.ico, *.jpg, and *.wmf.
Like other controls in the Toolbox, the image control has a number of proper-
ties that you can set. For example, you can control the appearance of the picture
with the PictureSizeMode property. This property has three settings:

 ● 0 (fmPictureSizeModeClip) crops the part of a picture that does not fi t
within the picture frame.

 ● 1 (fmPictureSizeModeStretch) stretches the picture horizontally or verti-
cally until it fi lls the entire frame area.

 ● 3 (fmPictureSizeModeZoom) enlarges the picture without distorting its
proportions.

 MultiPage Control

The MultiPage control displays a series of tabs at the top of the form. Each tab
acts as a separate page. Using the MultiPage control, you can design forms that
contain two or more pages. You can place a different set of controls on each
form page to make the data more readable. It’s much easier to click a form tab
than move around in a long form using scrollbars. By default, each MultiPage
control appears on your form with two pages. New pages can be added by using
the shortcut menu or the Add method from within a VBA procedure.

 TabStrip Control

Although the TabStrip and MultiPage controls look almost alike, each has a dif-
ferent function. The TabStrip lets you use the same controls for displaying mul-
tiple sets of the same data. Suppose that the form shows students’ exams. Each
student has to pass an exam in the same subjects. Each subject can be placed
on a separate page (tab), and each tab will contain the same controls to collect
data, such as the grade received and the date of the exam. When you activate any
subject tab, you will see the same controls. Only the data in these controls will
change.

CREATING CUSTOM FORMS 499

 RefEdit Control

This control is specific to forms created in Microsoft Excel, as it allows you to
select a cell or a range of cells in a worksheet and pass it to your VBA procedure.
You can see how this control works by taking a look at some of the built-in dialog
boxes in Excel. For example, the Consolidate dialog box accessed from the Data
tab’s Data Tools group has a RefEdit control labeled Reference that lets you specify
the range of data that you want to consolidate. To temporarily hide the dialog box
while selecting a range of cells, click the button on the right of the RefEdit control.

Placing Controls on a Form

When you create a custom form, you place various controls that are available in
the Toolbox on an empty form. The type of control you select depends on the
type of data the control will have to store and the functionality of your form.
The Toolbox can be moved around on the screen.You can also change its size,
or close it when all controls are already on the form and all you want to do is
work with their properties. The Toolbox display can be toggled on and off by
choosing View | Toolbox. To add a new control to a form, first click the con-
trol image in the Toolbox and then click the form or draw a frame. Clicking
on a form (without drawing a frame) will place a control in its default size.
The standard settings of each control can be looked up in the Properties win-
dow. For example, the standard text box size is 18 x 72 points (see the Height
and Width properties of the text box). After placing a control on a form, the
Select Object button (represented by the arrow) becomes the active control in
the Toolbox. When you double-click a control in the Toolbox, you can draw as
many instances of that control as you want. For example, to quickly place three
text boxes on your form, double-click the text box control in the Toolbox and
then click three times on the form.

Setting Grid Options

When you drag a control on a form, Visual Basic adjusts the control so that
it aligns with the form’s grid. You can set the grid to your liking by using the
Options dialog box.

To access grid options:

1. Choose Tools | Options.
2. Click the General tab in the Options dialog box.

The Form Grid Settings area lets you turn off the grid, adjust the grid size, and
decide whether you want the controls aligned to the grid.

500 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SAMPLE APPLICATION: INFO SURVEY

As you already know, the best way to understand a complex feature is to apply
it in a real-life project. In this section, you will create a custom form for a
coworker who requested that you streamline the tedious process of entering
survey data into a spreadsheet. While working with this form (Figure 17.4), you
will have the chance to experiment with many controls and their properties.
Also, you will learn how to transfer data from your custom form to a worksheet
(Figure 17.5).

FIGURE 17.4 The Info Survey custom form allows the user to quickly enter data by making
appropriate selections from various controls placed on the form.

FIGURE 17.5 Each time the Info Survey form is used, the user’s selections are written to the
worksheet.

CREATING CUSTOM FORMS 501

Setting Up the Custom Form

Before you can begin programming, you need to perform several tasks. The
tasks listed below are described in Hands-On 17.1.

1. Step 1 (Hands-On 17.1a): Insert a new form into your VBA project and set up
this form’s initial properties like the Name and Caption properties that will
allow you to identify the form.

2. Step 2 (Hands-On 17.1b): Adjust the size of the form so that all controls
required by the application can be easily placed on the form and the form does
not look crowded.

3. Step 3 (Hands-On 17.1c): Place the required controls on the form.
4. Step 4 (Hands-On 17.1d): Adjust other properties of the form and its

controls.
5. Step 5 (Hands-On 17.1e): Set the tab order of the controls on the form.
6. Step 6 (Hands-On 17.1f): Prepare a worksheet to receive the data.
7. Step 7 (Hands-On 17.1g): Display the completed custom form.
8. Step 8 (Hands-On 17.1h): Write a procedure to initialize the form.
9. Step 9 (Hands-On 17.1i): Write a procedure that populates the listbox

control.
10. Step 10 (Hands-On 17.1j): Write procedures that control option buttons.
11. Step 11 (Hands-On 17.1k): Write a procedure that synchronizes text box

with the spin button control.
12. Step 12 (Hands-On 17.1l): Write a procedure that closes the form.
13. Step 13 (Hands-On 17.1m): Write a procedure that transfers data to a

worksheet.
14. Step 14 (Hands-On 17.1n): Start using the completed InfoSurvey

application.

Inserting a New Form and Setting Up the Initial Properties

Follow the step below to get started with the Info Survey application.

 Hands-On 17.1a Inserting a New Form (Step 1)

1. Choose Insert | UserForm to add a blank form to the VBA_Forms (Chap17_
VBAExcel2019.xlsm) project.

2. In the Properties window, double-click the Name property and type InfoSurvey
to change the default form name.
We will use this name later on to refer to this UserForm object in VBA proce-
dures.

502 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Double-click the Caption property and type the new title for the form: Info
Survey.
The name Info Survey will appear in your form’s titlebar.

4. Double-click the BackColor property, click the Palette tab, and select a color
for the form background.

Changing the Size of the Form

When a default form inserted in your project is too large or too small to fit all
the controls properly, you can change its size by using the mouse or by setting
the form properties in the Properties window.

To resize the form with the mouse, click on an empty part of the form. Notice
that several selection handles appear around the form. Place the mouse pointer
over any selection handle located in the middle of a side, drag the handle to the
position you want, and then release the mouse button.

You can also place the mouse pointer over the selection handle located at
the undocked corner and drag the handle to the position you want. Release the
mouse button.

To resize the form using the Properties window, you will need to enter new
values for the form’s Height and Width.

NOTE Each new form has a default size of 180 x 240. The form’s di-
mensions are in points. One point equals 1/72 inch.

Click in the form’s title bar. In the Properties window, double-click the Height
property and enter a new value. Do the same for the Width property if you need
to adjust the form’s width as well. To avoid extra work, figure out how much
space you really need and resize the form before adding the desired controls.

After setting the initial properties for our custom form Info Survey, we need
to adjust the size of the form so that all the controls that we need to place on this
form will fit nicely.

 Hands-On 17.1b Adjusting the Size of the Form (Step 2)

1. Click the form’s titlebar (where the words “Info Survey” appear).
2. In the Properties window, double-click the Height property and enter the

value 252.75.
3. In the Properties window, double-click the Width property and enter the

value 405.75.

CREATING CUSTOM FORMS 503

Adding Buttons, Checkboxes, and Other Controls to a Form

Now we are ready to proceed with placing the required controls on the Info
Survey form. We will model this form after Figure 17.4.

The UserForm toolbar contains a number of useful shortcuts for working
with forms, such as making controls the same size, centering a control horizon-
tally or vertically, aligning control edges, and grouping and ungrouping con-
trols. To display this toolbar, choose View | Toolbars | UserForm.

 Hands-On 17.1c Adding Buttons, Checkboxes, and Other Controls to
a Form (Step 3)

1. Click the Frame control in the Toolbox.
The mouse pointer changes to a cross accompanied by the symbol of the se-
lected control.

2. Point to the upper left-hand side of the form, then click and drag the mouse to
draw a small rectangle.
When you release the mouse button, you will see a small rectangle titled
Frame1. When the frame is selected, various selection handles will appear in
its sides, and the Properties window’s titlebar will display Properties-Frame1.

3. In the Properties window, double-click the Caption property and replace the
selected default caption, Frame1, with Main Interest.

4. Click the Option Button control in the Toolbox. Next, click inside the Main
Interest frame that you’ve just added to your form. Click and drag the mouse to
the right until you see a rectangle with the default label OptionButton1.

5. In the Properties window, change the option button’s Caption property to
Hardware.

6. Use the method presented in Step 4 to add another option button to the
Main Interest frame. Change the Caption property of this option button to
Software.
The option buttons are used whenever the user must select one choice from
a group of mutually exclusive choices. If the user can select more than one
choice, checkboxes are used.

7. Click the List Box control in the Toolbox.
The mouse pointer will change to a cross accompanied by the symbol of the
selected control.

8. Click below the Main Interest frame and drag the mouse down and to the right
to draw a listbox.
When you release the mouse button, you will see a white rectangle. Figure 17.4
shows the listbox populated with hardware entries.

504 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

9. Insert a frame below the listbox. Change the frame’s Caption property to
Gender. Add two option buttons inside this frame and change the first button’s
Caption property to Male and the second one to Female (see Figure 17.4).

10. Click the Frame control in the Toolbox and draw a rectangle to the right of
the frame labeled Main Interest.

11. Change the Caption property of the new frame to Computer Type.
12. Click the Check Box control in the Toolbox and click inside the empty

frame that you have just added. The CheckBox1 control should appear inside
the frame.

13. Change the Caption property of the CheckBox1 control to IBM/
Compatible.

14. Place two more checkboxes inside the frame labeled Computer Type.
Use the Caption property to assign the following titles to these checkboxes:
Notebook/Laptop and Macintosh. The result should match Figure 17.4.
Unlike option buttons, which are mutually exclusive, checkboxes allow the
user to activate one or more options simultaneously. The checkbox can be
checked, unchecked, or unavailable at a time. An unavailable checkbox has
its label grayed out and is therefore inactive (cannot be selected). The checked
box has an x in front of its caption. The checkbox that has the focus is indicated
by a dotted line around the caption.
Use option buttons when only one option can be selected at a given time. Use
checkboxes to have the user select any number of options that apply.

15. Click the Label control in the Toolbox.
16. Click the empty space below the frame labeled Computer Type. The Label1

control should appear.
17. Change the Caption property of Label1 to Used at.
18. Click the Combo Box control in the Toolbox.
19. Click the empty space below the Used at label and drag the mouse to draw

a rectangle. Release the mouse button.
The combo box displays a list of available choices only after you click the down
arrow placed at the right of this control. The combo box is sometimes referred
to as a drop-down list and is used to save valuable space on the screen. Al-
though the user can only see one element of the list at a given time, the current
selection can be quickly changed by clicking on the arrow button.

20. Click the Label control in the Toolbox.
21. Click on the empty part of the form just below the Used at combo box. A

label control will appear. Change the Caption property for this label to Percent
(%) Used.

CREATING CUSTOM FORMS 505

22. Click the Text Box control in the Toolbox.
23. Click to the right of the Percent (%) Used label control to place a default

size text box.
24. Click the Spin Button control in the Toolbox, and then click to the right

side of the text box control. A default size spin button will appear. The result is
shown in Figure 17.4.
The spin button has two arrows that are used to increment or decrement a
value in a given range. The maximum value is determined by the setting of the
Max property, and the minimum value is set with the Min property. The spin
button has the same properties as the scrollbar, with two differences. The spin
button does not have a scroll box, and it lacks the LargeChange property. A
text box is usually placed next to the spin button. This allows the user to enter
a value directly into the text box or use the spin buttons to determine the value.
If the spin button must work with the text box, your VBA procedure must en-
sure that the value of the text box and the spin button are synchronized. In this
example, you will use the spin button to indicate the percent of interest that the
user has in the selected hardware or software product.

25. Double-click the Command Button control in the Toolbox. Recall that by
double-clicking the control in the Toolbox, you indicate that you want to cre-
ate more than one control using the selected tool.

26. Click in the top right-hand corner of the form. This will cause CommandBut-
ton1 to appear.

27. Click below CommandButton1. CommandButton2 will appear.
28. Change the Caption property of CommandButton1 to OK and Command-

Button2 to Cancel.
Most custom forms have two command buttons, OK and Cancel, which enable
the user to accept the data entered on the form or dismiss the form. In this
example, the OK button will transfer the data entered on the form to a work-
sheet. The user will be able to click the Cancel button when he’s done inputting
the data. To make the buttons respond to user actions, you will write appropri-
ate VBA procedures later in this chapter.

29. Click the Image control in the Toolbox.
30. Click the mouse below the Cancel button and drag the mouse to draw a

rectangle. Release the mouse button. The result is shown in Figure 17.4.
The form will display a different picture depending on whether the Hardware
or Software option button is selected. The images will be loaded by a VBA
procedure.

31. Click the titlebar, or click on any empty area of the form to select it.

506 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

32. Press F5 or choose Run | Run Sub/UserForm to display the form as the
user will see it. Visual Basic switches to the active sheet in the Microsoft Excel
window and displays the custom form you designed.
If you forget to select the form, the Macro dialog box will appear. Close the
dialog box, and repeat Steps 31 and 32.

33. Click the Close button (x) in the top right-hand corner of the form to close the
form and return to the Visual Basic Editor.

Note that the OK and Cancel buttons placed on the form aren’t functional yet.
They require VBA procedures to make them work. After you’ve added controls
to the form, use the mouse or the Format menu commands to adjust the align-
ment and spacing of the controls.

The Info Survey form design is now completed. From now on you should
feel comfortable designing any form you want. When working with controls, it
is worthwhile to learn some shortcuts. For example, here’s how you can quickly
copy and move controls:

 ● To copy a control, click the Select Objects tool in the Toolbox and select
the control (a selected control will have handles at its sides), hold down
the Ctrl key, position the mouse pointer inside the control, and press the
left mouse button. Drag the pointer to the position you want and release
the mouse button. Th en change the control’s Caption property.

 ● To select an entire group of controls, click the Select Objects tool in the
Toolbox and start drawing a rectangle around the group of controls that
you want to move together. When you release the mouse button, all the
controls will be selected. (You can also select more than one control by
holding down the Ctrl key while clicking each of the controls you want to
select—don’t just read about it, try it now!)

 ● To move the selected group of controls to another position on the form,
click within the selected area and drag the mouse to the desired position.

Changing Control Names and Properties

After you have placed controls on your form but before you begin to write pro-
cedures to control the form, you should assign your own names to the controls.
Although Visual Basic automatically assigns a default name to each control
(OptionButton1, OptionButton2, and so on), these names are difficult to distin-
guish in a procedure that may reference objects of the same class that have almost
identical names. Assigning meaningful names to the controls placed on your
form makes VBA procedures referencing these controls much more readable.

CREATING CUSTOM FORMS 507

Before you change the Name property, make sure that the title bar of the
Properties window displays the correct type of the control. For example, to as-
sign a new name to the frame control, click the frame control on the form. When
the Properties window displays “Properties-Frame1,” double-click the Name
property and type the new name in place of the highlighted default name. Do
not confuse the name of the control with the control’s title (caption). For exam-
ple, on the Info Survey form, the default name of the frame control is Frame1,
but the title of this control is Main Interest. The control’s title can be changed
by setting the Caption property. While the control’s caption allows the user to
identify the purpose of the control and may suggest the type of data expected, it
is the name of the control that will be used in the code of your VBA procedures
to make things happen.

Let’s go back to our form to make adjustments to the controls’ properties.

 Hands-On 17.1d Naming Form Controls (Step 4)

1. Assign names to the controls placed on the Info Survey form as shown below.
To assign a new name to a control, perform these steps:

 ● Click the appropriate control on the form.
 ● Double-click the Name property in the Properties window.
 ● Type the corresponding name as shown in the Name Property column.

Object Type Name Property
First option button optHard
Second option button optSoft
Listbox lboxSystems
Third option button optMale
Fourth option button optFemale
First checkbox chkIBM
Second checkbox chkNote
Third checkbox chkMac
Combo box cboxWhereUsed
Text box txtPercent
Spin button spPercent
First command button cmdOK
Second command button cmdCancel
Image picImage

508 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The controls that you placed on the Info Survey form are objects. Each of these
objects has its own properties and methods. You’ve just changed the Name
property for all the objects that will be referenced later from within VBA pro-
cedures. The control properties can be set during the design phase of your
custom form or at runtime (that is, when your VBA procedure is executed).
Let’s now set some properties for selected controls.

2. Change the object properties as shown in the following table.
To set a property, click a control on the form, locate the desired property in
the Properties window, and type the new value in the space to the right of
the property name. For example, to set the ControlTipText property of the
lboxSystems control, click the listbox control on the Info Survey form and lo-
cate the ControlTipText property in the Properties window. In the right-hand
column of the Properties window, type the text you want to display when the
user positions the mouse pointer over the listbox control—in this case, Select
only one item.

Object Name Property Change to:
lboxSystems ControlTipText Select only one item.
spPercent Max 100
spPercent Min 0
cmdOK Accelerator O
cmdCancel Accelerator C
picImage PictureSizeMode 0-fmPictureSizeModeClip

The Accelerator property indicates which letter in the object name can be used
to activate the control with the keyboard shortcut combination. The specified
letter will appear underlined in the object’s caption (title). For example, after
displaying the form, you will be able to quickly select OK by pressing Alt+O.

The remaining properties of the Info Survey form objects will be set directly
from VBA procedures.

Setting the Tab Order

The user can move around a form by using the mouse or the Tab key. Because
many users prefer to navigate through the form using the keyboard, it is impor-
tant to determine the order in which each control on the form is activated. Fol-
low these steps to set the tab order in the Info Survey form.

CREATING CUSTOM FORMS 509

 Hands-On 17.1e Setting the Tab Order in a Form (Step 5)

1. In the Forms folder in the Project Explorer window, double-click the
InfoSurvey form.

2. Choose View | Tab Order.
The Tab Order dialog box appears. This box displays the names of all the con-
trols on the Info Survey form in the order that they were added. The right side
of the dialog box has buttons that allow you to move the selected control up or
down. To move a control, click its name and click the Move Up or Move Down
button until the control appears in the position you want.

3. Rearrange the order of controls of the Info Survey form as shown in Figure 17.6.

FIGURE 17.6 The Tab Order dialog box lets you organize the controls on the form in the order you
would like to access them.

4. Close the Tab Order dialog box by clicking OK.
5. Activate the Info Survey user form and tab through the controls. Press the

Tab key to move forward. Press Shift+Tab to move backward.
6. Close the Info Survey form.

If you’d like to change the order in which the controls are activated, reopen the
Tab Order dialog box and make the appropriate changes.

Preparing a Worksheet to Store Custom Form Data

After the user selects appropriate options on the custom form and clicks OK, the
selected data will be transferred to a worksheet. However, before this happens,
we need to prepare a worksheet to accept the data and give the user an easy
interface for launching your form. Follow the steps below to get your worksheet
ready.

510 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 17.1f Preparing a Worksheet to Store Custom Form Data
(Step 6)

1. Activate the Microsoft Excel window.
2. Double-click the Sheet1 tab in the Chap17_VBAExcel2019.xlsm workbook

and type the new name for this sheet: Info Survey.
3. Enter the column headings as shown in Figure 17.5 earlier in this chapter.
4. Select row 1 through column K and change the background of all cells to

your favorite color (use the Fill Color button in the Font section of the Home
tab). You may also want to change the background color of column K as shown
in Figure 17.5.
The easiest way to launch a custom form from a worksheet is by clicking a but-
ton. The remaining steps walk you through the process of adding the Survey
button to your Info Survey worksheet.

5. Choose Developer | Controls | Insert.
6. Click the Button control on the Form Controls toolbar. Click in cell K2 to

place a button. When the Assign Macro dialog box appears, type DoSurvey in
the Macro name box, and click OK. You will write this procedure later.

7. When you return to the worksheet, the button (Button1, if it is your first
button) to which you assigned the DoSurvey macro should still be selected.
Type the new name for this button: Survey. If the button is not selected, use
the right mouse button to select it. Choose Edit Text from the shortcut menu,
and type Survey for the button’s new name. To exit Edit mode, click outside
the button.

8. Save the changes you’ve made to Chap17_VBAExcel2019.xlsm.

Displaying a Custom Form

Each UserForm has a Show method that allows you to display the form to the
user. In the example below, you will prepare the DoSurvey procedure. Recall
that in the previous section you assigned the DoSurvey procedure to the Survey
button placed in the Info Survey worksheet.

 Hands-On 17.1g Displaying a Custom Form (Step 7)

1. In the Visual Basic Editor window, select the VBA_Forms (Chap17_
VBAExcel2019.xlsm) VBA project in the Project Explorer window and
choose Insert | Module.

2. In the Properties window, change the new module’s name to ShowSurvey.

CREATING CUSTOM FORMS 511

3. Enter the following procedure to display the custom form:
Sub DoSurvey()
 InfoSurvey.Show
End Sub

Notice that the Show method is preceded by the name of the form object as it
appears in the Forms folder (InfoSurvey).

4. Save the changes made to the Chap17_VBAExcel2019.xlsm workbook.
5. Switch to the Microsoft Excel window and click the Survey button. The

Info Survey form appears.

NOTE

If an error message appears after you click the Survey button, you
have not assigned the required macro to this button as instructed
in Step 6 (Hands-On 17.1f). To correct this problem, click OK
to the message, right-click the Survey button, and choose Assign
Macro from the shortcut menu. Click the DoSurvey macro
name in the listbox, and click OK. Now click the Survey button
to display the form.

6. Close the Info Survey form by clicking the Close button (x) in the top right-
hand corner of the form.

Before we can utilize this form we need to program in some events.

Understanding Form and Control Events

In addition to having properties and methods, each form and control has a pre-
defined set of events. An event is some type of action, such as clicking a mouse
button, pressing a key, selecting an item from a list, or changing a list of items
available in a listbox. Events can be triggered by the user or the system.

To specify how a form or control should respond to events, you write
event procedures. When you design a custom form, you should anticipate and
program events that can occur at runtime (while the form is being used). The
most popular event is the Click event. Every time a command button is clicked,
it triggers the appropriate event procedure to respond to the Click event for that
button. A form itself can respond to more than 20 separate events, including
Click, DblClick, Activate, Initialize, and Resize. Table 17.1 lists events that are
recognized by various form controls. If a control recognizes a specific event,
the table cell displays “Y”; otherwise, it is blank. Take a few minutes now to
familiarize yourself with the names of the events. For example, take a look at
the AddControl event in the table. You can see at a glance that this event is
only available for three objects: UserForm, Frame, and MultiPage control. Excel
events were covered in detail in Chapter 15, “Event-Driven Programming.”

512 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 17.1 Form and control events

Event Name

U
se

r F
or

m

La
be

l

Te
xt

 B
ox

C
om

bo
 B

ox

C
he

ck
bo

x

O
pt

io
n

Bu
tto

n

To
gg

le
 B

ut
to

n

Fr
am

e

C
om

m
an

d
Bu

tto
n

Ta
bS

tr
ip

 C
on

tr
ol

M
ul

tiP
ag

e C
on

tr
ol

Sc
ro

llB
ar

Sp
in

 B
ut

to
n

Im
ag

e

Re
fE

di
t

Activate Y
AddControl Y Y Y
AfterUpdate Y Y Y Y Y Y Y Y
BeforeDragOver Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
BeforeDropOrPaste Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
BeforeUpdate Y Y Y Y Y Y Y Y
Change Y Y Y Y Y Y Y Y Y Y
Click Y Y Y Y Y Y Y Y Y Y Y
DblClick Y Y Y Y Y Y Y Y Y Y Y Y Y
Deactivate Y
DropButtonClick Y Y Y
Enter Y Y Y Y Y Y Y Y Y Y Y Y
Error Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y
Exit Y Y Y Y Y Y Y Y Y Y Y Y
Initialize Y
KeyDown Y Y Y Y Y Y Y Y Y Y Y Y Y
KeyPress Y Y Y Y Y Y Y Y Y Y Y Y Y
KeyUp Y Y Y Y Y Y Y Y Y Y Y Y Y
Layout Y Y Y
MouseDown Y Y Y Y Y Y Y Y Y Y Y Y Y
MouseMove Y Y Y Y Y Y Y Y Y Y Y Y Y
MouseUp Y Y Y Y Y Y Y Y Y Y Y Y Y
QueryClose Y
RemoveControl Y Y
Resize Y Y
Scroll Y Y Y Y
SpinDown Y
SpinUp Y

CREATING CUSTOM FORMS 513

Event Name

U
se

r F
or

m

La
be

l

Te
xt

 B
ox

C
om

bo
 B

ox

C
he

ck
bo

x

O
pt

io
n

Bu
tto

n

To
gg

le
 B

ut
to

n

Fr
am

e

C
om

m
an

d
Bu

tto
n

Ta
bS

tr
ip

 C
on

tr
ol

M
ul

tiP
ag

e C
on

tr
ol

Sc
ro

llB
ar

Sp
in

 B
ut

to
n

Im
ag

e

Re
fE

di
t

Terminate Y
Zoom Y Y Y

Each form you create contains a form module for storing VBA event proce-
dures. To access the form module to write an event procedure or to find out the
events recognized by a specific control, you can:

 ● Double-click a control.
 ● Right-click the control and choose View Code from the shortcut menu.
 ● Click the View Code button in the Project Explorer window.
 ● Double-click any unused area of the UserForm.

When you execute any of the above actions, a Code window will open for the
form as shown in Figure 17.7. Notice the title in the Microsoft Visual Basic title
bar: Chap17_VBAExcel2019.xlsm-InfoSurvey(Code). A form module contains
a general section as well as individual sections for each control placed on the
form. The general section is used for declaration of form variables or constants.

FIGURE 17.7 The combo box above the Code window lists the available event procedures for the
UserForm.

514 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can access the desired section by clicking the down arrow to the right of
the combo box in the upper-right corner. This combo box, the Procedure box,
displays the event procedures that are recognized by the control selected in the
combo box on the left. Events that already have procedures written for them
appear in bold.

Writing VBA Procedures to Respond to Form and Control Events

Before the user can accomplish specific tasks with a custom form, you must
usually write several VBA procedures. As mentioned earlier, each form created
in the Visual Basic Editor has a module for storing procedures used by that
form. Before displaying a custom form, you may want to set initial values for
controls. To set the initial values, or default values, that the controls will have
every time the form is displayed, write an Initialize event procedure for a user
form. The Initialize event occurs when the form is loaded but before it’s shown
on the screen.

Writing a Procedure to Initialize the Form

Suppose that you want the Info Survey form to appear with the following initial
settings:

 ● Th e Hardware button is selected in the Main Interest frame.
 ● Th e listbox below contains the items that correspond to the selected

Hardware option button.
 ● None of the Computer Type checkboxes are selected.
 ● Th e combo box below the Used at label displays the fi rst available item,

and the user cannot add a new item to the combo box.
 ● Th e text box next to the spin button displays the initial value of zero (0).
 ● Th e image control displays a picture related to the selected Hardware op-

tion button.

 Hands-On 17.1h Writing a Procedure to Initialize the Form (Step 8)

1. In the Project Explorer window, double-click the InfoSurvey form.
2. Double-click the background of the form to open the Code window for the

active form.
When you double-click the form or a control, the Code window opens to
the form or control’s Click event. In the procedure definition, Visual Basic
automatically adds the keyword Private before the Sub keyword. Private

CREATING CUSTOM FORMS 515

procedures can be called only from the current form module. In other words,
a procedure that is in another module of the current project cannot call this
particular (Private) procedure.
There are two combo boxes above the Code window. The combo box on the
left displays the names of all form objects. The combo box on the right shows
the event procedures recognized by the selected form object.

3. Click the down arrow in the Procedure box on the right and select the Initialize
event. Visual Basic displays the InfoSurveyUserForm_Initialize procedure in
the Code window:
Private Sub UserForm_Initialize()

End Sub

4. Type the form’s initial settings between the Private Sub and EndSub keywords.
The complete UserForm_Initialize procedure is shown below:
Private Sub UserForm_Initialize()
'select the Hardware option
 optHard.Value = True
'turn off the Software option and all the check boxes
 optSoft.Value = False
 chkIBM.Value = False
 chkNote.Value = False
 chkMac.Value = False
 'display a zero in the text box
 txtPercent.Value = 0
'call ListHardware procedure
 Call ListHardware
'populate the combo box
 With Me.cboxWhereUsed
 .AddItem "Home"
 .AddItem "Work"
 .AddItem "School"
 .AddItem "Work/home"
 .AddItem "Home/school"
 .AddItem "Work/home/school"
 End With
'select the first element in the list box
 Me.cboxWhereUsed.ListIndex = 0
'load a picture file for the Hardware option
 Me.picImage.Picture = LoadPicture
 ("C:\VBAExcel2019_ByExample\cd.bmp")
End Sub

516 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To simplify the event procedure code, you can use the Me keyword instead of
the actual form name. For example, instead of using the statement:
InfoSurvey.cboxWhereUsed.ListIndex = 0

you can save time typing by using the following statement:
Me.cboxWhereUsed.ListIndex = 0

This technique is especially useful when the form name is long. Notice also
that the first element of the listbox has the index number zero (0). Therefore,
if you’d like to select the second item in the list, you must set the ListIndex
property to 1.
 The UserForm_Initialize procedure calls the outside procedure (ListHard-
ware) to populate its listbox control with the hardware items. The code of this
procedure is shown in Step 5 below.
 Notice that the UserForm_Initialize procedure ends with loading a picture
into the image control. Make sure that the specified graphics file can be located
in the indicated folder. If you don’t have this file, enter the complete path of a
valid picture file that you want to display.

5. Double-click the ShowSurvey module in the Project Explorer window and
enter in the Code window the ListHardware procedure as shown below:
Sub ListHardware()
 With InfoSurvey.lboxSystems
 .AddItem "DVD Drive"
 .AddItem "Printer"
 .AddItem "Fax"
 .AddItem "Network"
 .AddItem "Joystick"
 .AddItem "Sound Card"
 .AddItem "Graphics Card"
 .AddItem "Modem"
 .AddItem "Monitor"
 .AddItem "Mouse"
 .AddItem "External Drive"
 .AddItem "Scanner"
 End With
End Sub

Now that you’ve prepared the UserForm_Initialize procedure and the ListHar-
dware procedure, you can run the form to see how it displays with the initial
settings.

6. Launch the form by clicking the Survey button in the Info Survey worksheet.

CREATING CUSTOM FORMS 517

After the form is displayed, the user can select appropriate options or click
the Cancel button. When the user clicks the Software option button, the list-
box should display different items. At the same time, the image control should
load a different picture. The next section explains how you can program these
events.

Writing a Procedure to Populate the Listbox Control

In the preceding section, you prepared the ListHardware procedure to populate
the lboxSystems listbox with the Hardware items. You can use the same method
to load the Software items into the listbox.

 Hands-On 17.1i Populating the Listbox Control (Step 9)

1. Activate the ShowSurvey module and enter the code of the ListSoftware
procedure, as shown below:
Sub ListSoftware()
 With InfoSurvey.lboxSystems
 .AddItem "Spreadsheets"
 .AddItem "Databases"
 .AddItem "CAD Systems"
 .AddItem "Word Processing"
 .AddItem "Finance Programs"
 .AddItem "Games"
 .AddItem "Accounting Programs"
 .AddItem "Desktop Publishing"
 .AddItem "Imaging Software"
 .AddItem "Personal Information Managers"
 End With
End Sub

Writing a Procedure to Control Option Buttons

When the user clicks the Software button in the Info Survey form, the hardware
items from the listbox should be replaced with the software items and vice versa.
Let’s write procedures that will control the Hardware and Software buttons in
the Main Interest frame.

 Hands-On 17.1j Controlling Option Buttons (Step 10)

1. Activate the InfoSurvey form and double-click the Software option button
located in the Main Interest frame.

518 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. When the Code window appears with the optSoft_Click procedure skeleton,
highlight the code and press Delete.

3. Click the down arrow in the upper right-hand combo box and select the
Change event procedure. Visual Basic will automatically enter the beginning
and end of the optSoft_Change procedure for you.

4. Enter the code of the optSoft_Change procedure as shown below:
Private Sub optSoft_Change()
 Me.lboxSystems.Clear
 Call ListSoftware
 Me.lboxSystems.ListIndex = 0
 Me.picImage.Picture = _
 LoadPicture("C:\VBAExcel2019_ByExample\books.bmp")
End Sub

The optSoft_Change procedure begins with a statement that uses the Clear
method to remove the current list of items from the lboxSystems listbox. The
next statement calls the ListSoftware procedure to populate the listbox with
software items. In other words, when the user clicks the Software button, the
procedure removes the hardware items from the listbox and adds the software
items. If you don’t clear the listbox prior to adding new items, the new items
will be appended to the current list. The statement Me.lboxSystems.ListIn-
dex = 0 selects the first item in the list. The final statement in this procedure
loads a picture file to the image control. Be sure to replace the reference to
this file with the complete path to a valid picture file that is in your computer.
Because the user may want to reselect the Hardware button after selecting the
Software button, you must create a similar Change event procedure for the
optHard option button.

5. Enter the following optHard_Change procedure, just below the optSoft_
Change procedure:
Private Sub optHard_Change()
 Me.lboxSystems.Clear
 Call ListHardware
 Me.lboxSystems.ListIndex = 0
 Me.picImage.Picture = _
 LoadPicture("C:\VBAExcel2019_ByExample\cd.bmp")
End Sub

6. Launch the form by clicking the Survey button in the Info Survey worksheet
and check the results.
When you click the Software option button, you should see the software items
display in the listbox below. At the same time, the image control should display

CREATING CUSTOM FORMS 519

the assigned picture. After clicking the Hardware option button, the listbox
should display the appropriate hardware items. At the same time, the image
control should display a different picture.

7. Close the form by clicking the Close button in the form’s upper-right corner.

Writing Procedures to Synchronize the Text Box with the Spin Button

The Info Survey form has a text box in front of the spin button control. To indi-
cate a percent of time that the selected Hardware or Software item is used, the
user can type a value in a text box or use the spin button. The initial value of the
text box is set to zero (0). Suppose the user entered 10 in the text box and now
wants to increase this value to 15 by using the spin button. To enable this action,
the text box and the spin button have to be synchronized. Each of these objects
requires a separate Change event procedure.

 Hands-On 17.1k Synchronizing the Text Box with the Spin Button
(Step 11)

1. Right-click the spin button and choose View Code from the shortcut menu.
2. Enter the spPercent_Change procedure as shown below:

Private Sub spPercent_Change()
 txtPercent.Value = spPercent.Value
End Sub

Using the spin buttons will cause the text box value to go up or down.
3. Working in the same Code window, enter the following txtPercent_Change

procedure:
Private Sub txtPercent_Change()
 Dim entry As String

 On Error Resume Next

 entry = Me.txtPercent.Value
 If entry > 100 Then
 entry = 0
 Me.txtPercent.Value = entry
 End If
 spPercent.Value = txtPercent.Value
End Sub

The txtPercent_Change procedure ensures that only values from 0 to 100 can
be entered into the text box. The procedure uses the On Error Resume Next

520 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

statement to ignore data entry errors. If the user enters a non-numeric value
in the text box (or a number greater than 100), Visual Basic will reset the text
box value to zero (0). Each time a spin button is pressed, a text box value is
incremented or decremented by one.

Writing a Procedure that Closes the User Form

After displaying the form, the user may want to cancel it by pressing the Esc key
or clicking the Cancel button. To remove the form from the screen, let’s prepare
a simple procedure that uses the Hide method.

 Hands-On 17.1l Writing a Procedure that Closes the Form (Step 12)

1. Double-click the Cancel button and enter the following cmdCancel_
Click procedure:
Private Sub cmdCancel_Click()
 Me.Hide
End Sub

The Hide method hides the object but does not remove it from memory. This
way, your VBA procedure can use the form’s objects and properties behind
the scenes when the form isn’t visible to the user. Use the Unload method to
remove the form both from the screen and from memory resources:
Unload Me

When the form is unloaded, all memory associated with it is reclaimed. The
user can’t interact with the form, and the form’s objects can’t be accessed by
your VBA procedure until the form is placed in memory again by using the
Load statement.

Transferring Form Data to the Worksheet

When the user clicks the OK button, the form’s selections should be written to
the worksheet. The user can quit using the form at any time by clicking the Can-
cel button. Let’s write a procedure that will copy the form’s data to the worksheet
when the OK button is clicked.

 Hands-On 17.1m Transferring Form Data to the Worksheet
(Step 13)

1. In the Visual Basic Editor window, double-click the InfoSurvey form in the
Project Explorer.

CREATING CUSTOM FORMS 521

2. Double-click the OK button on the Info Survey form and enter the cmdOK_
Click procedure shown below:
Private Sub cmdOK_Click()
 Dim r As Integer
 Me.Hide

 r = Application.CountA(Range("A:A"))
 Range("A1").Offset(r + 1, 0) = Me.lboxSystems.Value

 If Me.optHard.Value = True Then
 Range("A1").Offset(r + 1, 1) = "*"
 End If
 If Me.optSoft.Value = True Then
 Range("A1").Offset(r + 1, 2) = "*"
 End If
 If Me.chkIBM.Value = True Then
 Range("A1").Offset(r + 1, 3) = "*"
 End If
 If Me.chkNote.Value = True Then
 Range("A1").Offset(r + 1, 4) = "*"
 End If
 If Me.chkMac.Value = True Then
 Range("A1").Offset(r + 1, 5) = "*"
 End If
 Range("A1").Offset(r + 1, 6) = Me.cboxWhereUsed.Value
 Range("A1").Offset(r + 1, 7) = Me.txtPercent.Value

 If Me.optMale.Value = True Then
 Range("A1").Offset(r + 1, 8) = "*"
 End If
 If Me.optFemale.Value = True Then
 Range("A1").Offset(r + 1, 9) = "*"
 End If
 Unload Me
End Sub

The cmdOK_Click procedure begins by hiding the user form. The statement:
r = Application.CountA(Range("A:A"))

uses the Visual Basic CountA function to count the number of cells that con-
tain data in column A. The result of the function is assigned to the variable r.
The next statement:
Range("A1").Offset(r + 1, 0) = Me.lboxSystems.Value

522 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

enters the selected listbox item in a cell located one row below the last used cell
in column A (r + 1).
 Next, there are several conditional statements. The first one tells Visual Ba-
sic to place an asterisk in the appropriate cell in column B if the Hardware
option button is selected. Column B is located one column to the right of col-
umn A; hence there’s a 1 in the position of the second argument of the Off-
set method. The second If statement enters the asterisk in column C if the
user selected the Software option button. Similar instructions record the actual
checkbox values. In column G, the procedure will enter the item selected in the
Used at combo box. Column H will show the value entered in the Percent (%)
Used text box, and columns I and J will identify the gender of the person who
submitted the survey.

Using the Info Survey Application

Your application is now ready for the final test. Take off your programming hat
and enjoy the result of your work from the user’s standpoint. As you work with
the form, think of improvements you would like to make to enhance the user’s
experience.

 Hands-On 17.1n Using the Info Survey Application (Step 14)

1. Switch to the Microsoft Excel Info Survey worksheet and click the
Survey button.

2. When the form appears, select appropriate options and click OK.
3. Activate the form several times, each time selecting different options.
4. Save the changes made to the Chap17_Excel2019.xlsm workbook.

UserForm: Modal versus Modeless

By default, UserForm is modal which means that the user cannot interact with
the parent application while the form is visible. The Info Survey application that
you created in this chapter behaves exactly like that. Each time you click the
Survey button, the form pops up and you are not allowed to interact with any
other Excel screen until the form is dismissed. Sometimes, however, you may
want to provide access to other parts of the application while the form is visible.
For example, if you are creating a custom Search form, users may be required to
perform specific operations in Excel outside of your form interface. The mode-
less form will allow you to do just that. To make a UserForm modeless is quite
simple. Simply pass the vbModeless constant to the Show method:

CREATING CUSTOM FORMS 523

Sub DoSurvey()
 InfoSurvey.Show vbModeless
End Sub

5. Run the modified DoSurvey procedure to observe the modeless form behavior.
Notice that each time you click the OK button the form’s data is written to
the worksheet and the form is not dismissed. You have a full control over the
worksheet; you can even delete rows of data and go back to the form to create
new entries.

6. The vbModal constant passed to the Show method will make the form
modal, however, you can omit it as this is the default.

SUMMARY

This chapter has shown you how you can program custom user forms. Let’s
quickly summarize what you’ve learned in this chapter’s project:

 ● For custom VBA applications that require user input, you placed the de-
sired controls on a custom form. You made sure the user could move
around the form in a logical order by setting the tab order (see Hands-On
17.6).

 ● For the form to respond to user actions, you wrote VBA procedures in a
Form module. You set the initial values of controls by using the Proper-
ties window or writing the UserForm_Initialize procedure.

 ● To ensure that the data collected via the custom form is properly report-
ed in Excel, you wrote VBA procedures that transferred Form data to a
worksheet.

In the next chapter, you will learn how to format Excel worksheets with VBA.

525

Microsoft Excel has always provided users with a fairly comprehensive
selection of formatting features. By applying different fonts, colors,
borders, and patterns, or using conditional formatting and built-in

styles, you can easily transform any raw and unfriendly worksheet data into
a visually appealing and easy-to-understand document. Even if you don’t care
about cell appearance and your only desire is to provide a no-frills data dump,
chances are that before you share your worksheet with others you will spend
ample time formatting cell values. For your raw data to be understood, you will
definitely want to control the format of your numerical values, dates, and times.

To better highlight important information, you can apply conditional for-
matting with a number of visual features such as data bars, color scales, and icon
sets. The sparkline feature allows you to place tiny charts in a cell to visually
show trends alongside data. You can produce consistent-looking worksheets by
using document themes and styles. When you select a theme, Excel automati-
cally will make changes to text, charts, drawing objects, and graphics to reflect
the theme you selected. By using Shape objects and SmartArt graphics layouts,
you can bring different artistic effects to your worksheets.

This chapter assumes that you are already a master formatter and what really
interests you is how the basic and advanced formatting features can be applied
to your worksheets programmatically. So, let’s get to work.

Chapter

 18 FORMATTING
WORKSHEETS
WITH VBA

526 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

PERFORMING BASIC FORMATTING TASKS WITH VBA

This section focuses on cell value formatting that controls the relationship
between the values that you enter in a worksheet cell and the cell’s format. Cell
value formatting should always be attempted prior to cell appearance format-
ting. Always begin your formatting tasks by checking that Excel correctly inter-
prets the values you entered or copied over from an external data source, such
as a text file, an SQL Server, or a Microsoft Access database.

For example, when you copy data from an SQL Server and your data set con-
tains date and time values separated by a space, such as 5/16/2016 11:00:04 PM,
Excel displays the correct value in the formula bar, but displays 00:04.0 in the
cell. When you activate the Format Cells dialog box, you will notice that Excel
has applied the Custom format “mm:ss.0”, and if you take a look at the General
format in the same dialog box, you will notice that the value was also converted
to a serial number for date and time: 38853.95838. Or perhaps your data con-
tains five-digit invoice numbers and you want to retain the leading zeros, which
Excel suppresses by default.

When you enter data into a worksheet yourself, you are more likely to stop
right away when Excel incorrectly interprets the data. When the data comes
from an external source, it is much harder to pinpoint the cell formatting prob-
lems unless you run your custom VBA procedures that check for specific prob-
lems and automatically fix them when found. The meaning of your data largely
depends on how Excel interprets your cell entries; therefore, to avoid confusing
the end user you must take the cell formatting control into your own hands.

Formatting Numbers

Depending on how you have formatted the cell, the number that you actually
see in a worksheet can differ from the underlying value stored by Excel. As you
know, each new Excel worksheet will have its default cell format set to the built-
in number format named “General.” In this format, Excel removes the leading
and trailing zeros. For example, if you entered 08.40, Excel displays 8.4. In VBA,
you can write the following statement to have Excel retain both zeros:

ActiveCell.NumberFormat = "00.00"

The NumberFormat property of the CellFormat object is used to set or return
the format for a specific cell or cell range. The format code is the string displayed
in the Format Cells dialog box (see Figure 18.1) or your custom string.

FORMATTING WORKSHEETS WITH VBA 527

FIGURE 18.1 Format codes for your VBA procedures can be looked up in the Format Cells dialog box
(choose Home | Format | Format Cells, or press Alt+H+O+E). The Custom category displays a list of
ready-to-use number formats, and allows you to create a new format or edit the existing format code to
suit your particular needs, such as 00.00 shown above.

If the number you entered has decimal places, Excel will only display as many
decimal places as it can fit in the current column width. For example, if you
enter 9.34512344443 in a cell that is formatted with the General format, Excel
displays 9.345123 but keeps the full value you entered. When you widen the
column, it will adjust the number of displayed digits. While determining the
display of your number, Excel will also determine whether the last displayed
digit needs to be rounded.

You can use the NumberFormat property to determine the format that Excel
applied to cells. For example, to find out the format in the third column of your
worksheet, you can use the following statement in the Immediate window:

?Columns(3).NumberFormat

If all cells in the specified column have the same format, Excel displays the name
of the format, such as General, or the format code that has been applied, such

528 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

as $#,##0.00. If different formatting is found in different cells of the specified
column, Excel prints out Null in the Immediate window.

It is recommended that you apply the same number formatting for the en-
tire column. Whether you are doing this programmatically or manually via the
Excel user interface, the formatting can be applied before or after you enter the
numbers. Excel will only apply number formatting to cells containing numeric
values; therefore, you do not need to be concerned if the first cell in the selected
column contains text that defines the column heading.

Because the NumberFormat property sets the cell’s number format by as-
signing a string with a valid format from the Format Cells dialog box, you can
use the macro recorder to get the exact VBA statement for the format you would
like to apply. For example, the following statements were generated by the mac-
ro recorder to format the values entered in cells D1 and E1
Range("D1").Select
Selection.NumberFormat = "#,##0"

and display a large number with the thousands separator (a comma) and with
no decimal places.
Range("E1").Select
Selection.NumberFormat = "$#,##0.00"

displays a large number formatted as currency with the thousands separator and
two decimal places.

The Custom category in the Format Cells dialog box (see Figure 18.1 earlier)
lists many built-in custom formats that you can use in the NumberFormat
property to control how values are displayed in cells. Also, you can create your
own custom number format strings by using formatting codes as shown in
Table 18.1.

TABLE 18.1 Number formatting codes

Code Description

0 Digit placeholder. Use it to force a zero. For example, to display .5 as 0.50, use the
following VBA statement:

 Selection.NumberFormat = "0.00"

or enter 0.00 in the Type box in the Format Cells dialog box.

Digit placeholder. Use it to indicate the position where the number can be placed.
For example, the code #,### will display the number 2345 as 2,345.

. Decimal placeholder. In the United States, a period is used as the decimal separa-
tor. In Germany, it is a comma.

FORMATTING WORKSHEETS WITH VBA 529

Code Description

, Thousands separator (comma). In the United States, one thousand two hundred
five is displayed as 1,205. In other countries, the thousands separator can be a
period (e.g., Germany) or a space (e.g., Sweden).
 In the United States, placing a single comma after the number format indicates
that you want to display numbers in thousands. To make it clear to the user that
the number is in thousands, you may want to place the letter “K” after the comma:

 Selection.NumberFormat = "#, ##0, K"

Use two commas at the end to display the number in millions:

 Selection.NumberFormat = "#,##0.0,, "

To indicate that the number is in millions, add a backslash followed by “M”:

 Selection.NumberFormat = "#,##0.0,,\M"

Or surround the letter “M” with double quotes:

 Selection.NumberFormat = "#,##0.0,, ""M"""

This will cause the number 23093456 to appear as 23.1M.

/ Forward slash character. Used for formatting a number as a fraction. For example,
to format 1.25 as 1¼, use the following statement:

 Selection.NumberFormat = "# ?/?"

_ The underscore character is used for aligning formatting codes. For example, to
ensure that positive and negative numbers are aligned as shown below, apply the
format as follows:

 Selection.NumberFormat = "#,##0.00_);(#,##0.00)"

 234.23
(234.12)

* The asterisk in a number format allows you to fill in the cell with the character
that follows the asterisk. For example, the following VBA statement produces the
output shown below:

 Selection.NumberFormat = "*_0000"

_________1045
________23455

When working with cell formatting, keep in mind that number formats have
four parts separated by semicolons. The first part is applied to positive numbers,
the second to negative numbers, the third to zero, and the fourth to text. For
example, take a look at the following VBA statement:
 Range("A1:A4").NumberFormat = "#,##0;[red](#,#0);""zero"";@"

530 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

This statement tells Excel to format positive numbers with the thousands sepa-
rator, display negative numbers in red and in parentheses, display the text “zero”
whenever 0 is entered, and format any text entered in the cell as text. Make the
following entries in cells A1:A4:
 2870
 -3456
 0
 Test text

When you apply the above format to cells A1:A4, you will see the cells formatted
as shown below:
 2,870
 (3,456)
 Zero
 Test text

You can hide the content of any cell by using the following VBA statement:
Selection.NumberFormat = ";;;"

When the number format is set to three semicolons, Excel hides the display of
the cell entry on the worksheet and in printouts. You can only see the actual
value or text stored in the cell by taking a look at the Formula bar.

By using the number format codes, it is also possible to apply conditional
formats with one or two conditions. Consider the following VBA procedure:
Sub FormatUsedRange()
 ActiveSheet.UsedRange.Select
 Selection.SpecialCells(xlCellTypeConstants, 1).Select
 Selection.NumberFormat = "[<150][Red];[>250][Green];[Yellow]"

 End Sub

This procedure tells Excel to select all the values in the used range on the active
sheet and display them as follows: values less than 150 in red, values over 250 in
green, and all the other values in the range from 150 to 250 in yellow. Excel sup-
ports eight popular colors: [white], [black], [blue], [cyan], [green], [magenta],
[red], and [yellow], as well as 56 colors from the predefined color palette that
you can access by indicating a number between 1 and 56, such as [Color 11] or
[Color 32]. Be sure to use closed brackets to enclose conditions and colors.

Later in this chapter we will learn how to use VBA to perform more ad-
vanced conditional formatting.

In addition to the NumberFormat property, Excel VBA has a Format func-
tion that you can use to apply a specific format to a variable. For example, take

FORMATTING WORKSHEETS WITH VBA 531

a look at the following procedure that formats a number prior to entering it in
a worksheet cell:
 Sub FormatVariable()
 Dim myResult, frmResult
 myResult = "1435.60"
 frmResult = Format(myResult, "Currency")
 Debug.Print frmResult
 ActiveSheet.Range("G1").FormulaR1C1 = frmResult

 End Sub

When you run the FormatVariable procedure, cell G1 in the active worksheet
will contain the entry $1,435.60. The Format function specifies the expression to
format (in this case the expression is the name of the variable that stores a speci-
fied value) and the number format to apply to the expression. You can use one of
the predefined number formats such as: “General,” “Currency,” “Standard,” “Per-
cent,” and “Fixed,” or you can specify your custom format using the formatting
codes from Table 18.1. For example, the following statement will apply number
formatting to the value stored in the myResult variable and assign the result to
the frmResult variable:

frmResult = Format(myResult, "#.##0.00")

For more information about the Format function and the complete list of for-
matting codes, refer to the online help.

To check whether the cell value is a number, use the IsNumber function as
shown below:
MsgBox Application.WorksheetFunction.IsNumber(ActiveCell.Value)

If the active cell contains a number, Excel returns True; otherwise, it returns
False.

NOTE

To use an Excel function in VBA, you must prefix it with “Appli-
cation.WorksheetFunction.” The WorksheetFunction property
returns the WorksheetFunction object that contains functions
that can be called from VBA.

Formatting Text

To format a cell as a text string, use the following VBA statement:
Selection.NumberFormat = "@"

532 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To find out if a cell value is a text string, use the following statement:
MsgBox Application.WorksheetFunction.IsText(ActiveCell.Value)

Use the UCase function to convert a cell entry to uppercase:
Range("K3").value = UCase(ActiveCell.Value)

Use the LCase function to convert a cell entry to lowercase if the cell is not a
formula:

If not Range(ActiveWindow.Selection.Address).HasFormula then
 ActiveCell.Value = LCase(ActiveCell.Value)
End If

Use the Proper function to capitalize the first letter of each word in a text string:
ActiveCell.Value = Application.WorksheetFunction
 .Proper(ActiveCell.Value)

Use the Replace function to replace a specified character within text. For exam-
ple, the following statement replaces a space with an underscore (_) in the active
cell:

ActiveCell.Value = Replace(ActiveCell.Value, " ", "_")

To ensure that the text entries don’t have leading or trailing spaces, use the fol-
lowing VBA functions:

 ● LTrim—Removes the leading spaces
 ● RTrim—Removes the trailing spaces

 ● Trim—Removes both the leading and trailing spaces
For example, the following statement written in the Immediate window will
remove the trailing spaces from the text found in the active cell:

ActiveCell.value = RTrim(ActiveCell.value)

Use the Font property to format the text displayed in a cell. For example, the fol-
lowing statement changes the font of the selected range to Verdana:

Selection.Font.Name = "Verdana"

You can also format parts of the text in a cell by using the Characters collection.
For example, to display the first character of the text entry in red, use the fol-
lowing statement:

ActiveCell.Characters(1,1).Font.ColorIndex = 3

FORMATTING WORKSHEETS WITH VBA 533

Formatting Dates

Microsoft Excel stores dates as serial numbers. In the Windows operating sys-
tem, the serial number 1 represents January 1, 1900. If you enter the number 1
in a worksheet cell and then format this cell as Short Date using the Number
Format drop-down in the Number section of the Ribbon’s Home tab, Excel will
display the date formatted as 1/1/1900 and will store the value of 1 (you can
check this out by looking at the General category in the Format Number dialog
box). By storing dates as serial numbers, Excel can easily perform date calcula-
tions.

To apply a date format to a particular cell or range of cells using VBA, use the
NumberFormat property of the Range object, like this:

Range("A1").NumberFormat = "mm/dd/yyyy"

Formatting codes for dates and times are listed in Table 18.2.

TABLE 18.2 Date and time formatting codes

Code Description
D Day of the month. Single-digit number for days from 1 to 9.
Dd Day of the month (two-digit). Leading zeros appear for days from 1 to 9.
ddd A three-letter day of the week abbreviation (Mon, Tue, Wed, Thu, Fri, Sat, and Sun).
m Month number from 1 to 12. Zeros are not used for single-digit month numbers.
mm Two-digit month number.
mmm Three-letter month name abbreviation (e.g., Jan, Jun, Sep).
yy Two-digit year number (e.g., 13).
yyyy Four-digit year number (e.g., 2016).
h The hour from 0 to 23 (no leading zeros).
hh The hour from 0 to 23 (with leading zeros).
:m The minute from 0 to 59 (no leading zeros).
:mm The minute from 0 to 59 (with leading zeros)
:s
:s.0
:s.00

The second from 0 to 59 (no leading zeros).
To add tenths of a second, follow this with a period and a zero (.0), and to add hun-
dredths of a second, follow this code with a period and two zeros (.00).

:ss
:ss.0
:ss.00

The second from 0 to 59 (with leading zeros).
To add tenths of a second, follow this code with a period and a zero (.0), and to add
hundredths of a second, follow this code with a period and two zeros (.00).

(Contd.)

534 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Code Description
AM/PM
am/pm
A/P
a/p

Use for a 12-hour clock, with AM or PM.
Use for a 12-hour clock, with am or pm.
Use for a 12-hour clock, with A or P.
Use for a 12-hour clock, with a or p.

[] Bracket the time component (hour, minute, second) to prevent Excel from rolling
over hours, minutes, or seconds when they hit the 24-hour mark (hours become
days) or the 60 mark (minutes become hours, seconds become minutes). For
example, to display time as 25 hours, 59 minutes, and 12 seconds use the following
format code: [hh]:[mm]:ss.

The following VBA procedure applies a date format to the Inspection Date
column in Figure 18.2.
 Sub FormatDateFields()
 Dim wks As Worksheet
 Dim cell As Range

 Set wks = ActiveWorkbook.ActiveSheet

 For Each cell In wks.UsedRange
 If cell.NumberFormat = "mm:ss.0" Then
 cell.NumberFormat = "m/dd/yyyy h:mm:ss AM/PM"
 End If
 Next
 End Sub

FIGURE 18.2 A worksheet with an unformatted Inspection Date column.

FORMATTING WORKSHEETS WITH VBA 535

FIGURE 18.3 The Inspection Date column has been formatted with a VBA procedure.

Formatting Columns and Rows

To speed up your worksheet formatting tasks you can apply formatting to entire
rows and columns instead of single cells. The best way to find the required VBA
statement is by using the macro recorder. Keep in mind that Excel will record
more code than is necessary for your specific task and you’ll need to clean it up
before copying it to your VBA procedure. For example, here’s the recorded code
for setting the horizontal alignment of data in Row 7:
 Rows("7:7").Select
 Range("D7").Activate
 With Selection
 .HorizontalAlignment = xlRight
 .VerticalAlignment = xlBottom
 .WrapText = False
 .Orientation = 0
 .AddIndent = False
 .IndentLevel = 0
 .ShrinkToFit = False
 .ReadingOrder = xlContext
 .MergeCells = False
 End With

To set the horizontal alignment for Row 7, you can write a single VBA statement
like this:

Rows(7).HorizontalAlignment = xlRight

536 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can use the macro recorder to help you find out the names of properties
that should be used to turn on or off a specific formatting feature. Once you
know the property and the required setting, you can write your own short state-
ment to get the job done. Here are some VBA statements that can be used to
format columns and rows:

Formatting Columns
and Rows

VBA Statement

To format column D as a
date using the Number-
Format property:

Columns("D").NumberFormat = "mm/dd/yyyy"

To format column G as
currency:

Columns("G").NumberFormat = "$###,##0.00"

To format column G as
currency using the Style
property:

Columns("G").Style = "Currency"

To set column width or
row height:

Columns(2).ColumnWidth = 21.5
Rows(2).RowHeight = 55.55

To auto-fit column width
or row height:

Columns(2).AutoFit
Rows(2).Autofit

To apply bold font to the
first row:

Rows(1).Font.Bold = True

To right-align data in
row 1:

Rows(1).HorizontalAlignment = xlRight

To center data in column B: Columns("B").HorizontalAlignment = xlCenter

To set the background
of the column where the
active cell is located to
yellow:

Columns(ActiveCell.Column).interior.color = vbYellow

To check the width of a
column, use the Column-
Width method:

MsgBox Columns(ActiveCell.Column).ColumnWidth

To auto-fit all rows and
columns:

ActiveSheet.Cells.EntireRow.AutoFit
ActiveSheet.Cells.EntireColumn.AutoFit

Formatting Headers and Footers

Headers and footers are made of three sections each: LeftHeader, CenterHeader,
and RightHeader, and LeftFooter, CenterFooter, and RightFooter. Using the
special formatting codes shown in Table 18.3, you can customize your work-
sheet’s header or footer according to your needs.

FORMATTING WORKSHEETS WITH VBA 537

TABLE 18.3 Header and footer formatting codes

Format Code Description
&D Prints the current date
&T Prints the current time
&F Prints the name of the workbook
&A Prints the name of the sheet tab
&P Prints the page number
&P+number Prints the page number plus the specified number
&P–number Prints the page number minus the specified number
&N Prints the total number of pages in the workbook
&Z Prints the workbook’s path
&G Inserts an image
&& Prints a single ampersand
&nn Prints the characters that follow in the specified font size in points
&color Prints the characters in the specified color using the hexadecimal color value
&”fontname” Prints the characters that follow in the specified font
&L Left-aligns the characters that follow
&C Centers the characters that follow
&R Right-aligns the characters that follow
&B Turns bold printing on or off
&I Turns italic printing on or off
&U Turns underline printing on or off
&E Turns double-underline printing on or off
&S Turns strikethrough printing on or off
&X Turns superscript printing on or off
&Y Turns subscript printing on or off

Here are several VBA statements that demonstrate applying custom formatting
to a header or footer:

Formatting Headers
and Footers

VBA Statement (enter on one line)

To create a two-line header with
bold text in the first line and
italic text in the second line:

ActiveSheet.PageSetup.LeftHeader =
 "&BYour Company Name" & Chr(13) &
 "&IYour Company Department"

(Contd.)

538 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Formatting Headers
and Footers

VBA Statement (enter on one line)

To place the workbook creation
date in the footer:

ActiveSheet.PageSetup.RightFooter =
 "Created on: " &
ActiveWorkbook.BuiltinDocumentProperties
 ("Creation Date")

To place a cell’s contents in the
header:

ActiveSheet.PageSetup.CenterHeader =
ActiveSheet.Cells(2,2).value

To insert the filename and path
in the footer:

ActiveSheet.PageSetup.CenterFooter =
ActiveWorkbook.FullName

To place text in the header using
Arial Narrow font and italic
formatting, with the last word in
bold, italic, and red:

ActiveSheet.PageSetup.CenterHeader =
 "&""ArialNarrow""&IYour text goes here
 &I&B&KFF0000now."

To remove the formatting and
text entries from the center
header:

ActiveSheet.PageSetup.CenterHeader = ""

NOTE

If you need to use a different date format in your header or
footer than the date format shown in the Regional settings of the
Windows Control panel, use the Format function to specify the
date format string you want to use:
ActiveSheet.PageSetup.RightFooter =
 Format(Date, "mm-dd-yyyy")

The above statement inserts in the right footer a current system
date returned by the Date function. The date is formatted as
a two-digit month number followed by a dash, two-digit day
number followed by a dash, and four-digit year number (see
Table 18.2 for the explanation of date and time formatting codes).

Formatting Cell Appearance

As mentioned earlier, adding cosmetic touches to your worksheet such as fonts,
color, borders, shading, and alignment should be undertaken after applying the
required formatting to numbers, dates, and times. Formatting cell appearance
makes your worksheet easier to read and interpret. By applying borders to cells,
and with the clever use of font colors, background shading, and patterns, you
can draw the reader’s attention to particularly important information.

FORMATTING WORKSHEETS WITH VBA 539

Use the Font object to change the font format in VBA. You can easily apply
multiple format properties using the With…End With statement block shown
below:
 Sub ApplyCellFormat()
 With ActiveSheet.Range("A1").Font
 .Name = "Tahoma"
 .FontStyle = "italic"
 .Size = 14
 .Underline = xlUnderlineStyleDouble
 .ColorIndex = 3
 End With
 End Sub

The ColorIndex property refers to the 56 colors that are available in the color
palette. Number 3 represents red. The following procedure prints a color palette
to the active sheet:
 Sub ColorLoop()
 Dim r As Integer
 Dim c As Integer
 Dim k As Integer

 k = 0

 For r = 1 To 8
 For c = 1 To 7
 Cells(r, c).Select
 k = k + 1
 ActiveCell.Value = k
 With Selection.Interior
 .ColorIndex = k
 .Pattern = xlSolid
 End With
 Next c
 Next r
 End Sub

To change the background color of a single cell or a range of cells, use one of the
following VBA statements:
 Selection.Interior.Color = vbBlue
 Selection.Interior.ColorIndex = 5

To change the font color, use the following VBA statement:
Selection.Font.Color = vbMagenta

540 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The font can be made bold, italic, or underlined or a combination of the three
using the following With…End With block statement:
 With Selection.Font
 .Italic = True
 .Bold = True
 .Underline = xlUnderlineStyleSingle
 End With

To apply borders to your cells and ranges in VBA, use the following statement
examples:
 Selection.BorderAround Weight:=xlMedium, ColorIndex:=3
 Selection.BorderAround Weight:=xlThin, Color:=vbBlack

The BorderAround method of the Range object places a border around all edges
of the selected cells. The following xlBorderWeightEnumeration constants can
be used to specify the thickness weight of the border: xlHairline, xlMedium,
xlThick, and xlDash. When specifying border color, you can use either Col-
orIndex or Color but not both.

Instead of specifying the thickness of the border, you may want to use Lin-
eStyle as in the following example:

Selection.BorderAround LineStyle:=xlDashDotDot, Color:=vbBlack

You can use any of the following xlLineStyle enumeration constants:
 ● xlContinuous

 ● xlDash

 ● xlDashDot

 ● xlDashDotDot

 ● xlDot

 ● xlDouble

 ● xlLineStyleNone

 ● xlSlantDashDot

Use xlLineStyleNone to clear the border.
VBA has a Borders collection that contains the four borders of a Range or

Style object. To set just a bottom border of cells A1:C1, use the following state-
ment:

ActiveSheet.Range("A1:C1").Borders(xlEdgeBottom).Weight = xlThick

You may specify any of the following border types:
 ● xlDiagonalDown

 ● xlDiagonalUp

FORMATTING WORKSHEETS WITH VBA 541

 ● xlEdgeBottom

 ● xlEdgeLeft

 ● xlEdgeRight

 ● xlEdgeTop

 ● xlEdgeHorizontal

 ● xlEdgeVertical

You can change the appearance of cells by specifying the horizontal or vertical
alignment:
 Selection.HorizontalAlignment = xlCenter
 Selection.VerticalAlignment = xlTop

The value of the HorizontalAlignment property can be one of the following
constants:

 ● xlCenter

 ● xlDistributed

 ● xlJustify

 ● xlLeft

 ● xlRight

The VerticalAlignment property can be one of the following constants:
 ● xlBottom

 ● xlCenter

 ● xlDistributed

 ● xlJustify

 ● xlTop

Removing Formatting from Cells and Ranges

To remove cell formatting, use the ClearFormats method of the Range object.
This method restores the formatting to the original General format without
removing the cell’s content. To remove the content of the cell, use the Clear-
Contents method.

PERFORMING ADVANCED FORMATTING TASKS WITH VBA

Let’s focus on how you can use VBA with the enhanced formatting features that
are available in the Styles group on the Ribbon’s Home tab and in the Themes
group of the Page Layout tab. We will work with the FormatConditions col-
lection of the Range object and explore the conditional formatting tools: data

542 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

bars, color scales, and icon sets. Then we’ll look at how sparklines can be used
to enhance your worksheets. We will also take a look at document themes that
can be applied to a workbook and see how they affect another formatting fea-
ture—styles.

Conditional Formatting Using VBA

To help you automatically highlight important parts of your worksheet, Excel
provides a feature known as conditional formatting. This feature allows you
to set a condition (a formatting rule), and specify the type of formatting that
should be applied to cells and ranges when the condition is met. For example,
you can use conditional formatting to apply different background colors, fonts,
or borders to a cell based on its value. The Conditional Formatting feature pro-
vides users with various types of common rules and formatting tools such as
data bars, color scales, and icon sets that make it easy to highlight certain work-
sheet data. For example, you can highlight the top or bottom 10% of values,
locate duplicate or unique values, or indicate values above or below the average.

You can specify an unlimited number of conditional formats and refer to
ranges in other worksheets when using conditional formats. The Conditional
Formatting Rules Manager shown in Figure 18.4 simplifies the creation, modi-
fication, and removal of conditional rules. All conditional formatting features
that are available in the Excel application window can be accessed via VBA.

FIGURE 18.4 To activate the Conditional Formatting Rules Manager, choose Home | Conditional
Formatting | Manage Rules.

To create a new conditional formatting rule, click the New Rule button in the
Conditional Formatting Rules Manager dialog box. You will see the list of built-
in rules that you can select from.

FORMATTING WORKSHEETS WITH VBA 543

In VBA, use the Add method of the FormatConditions collection to create a
new rule. For example, to format cells containing “Qtr” in the text string, enter
the following procedure in a standard module and then run it:

 Sub FormatQtrText()
 With ActiveSheet.UsedRange
 .FormatConditions.Delete
 .FormatConditions.Add Type:=xlTextString, String:="Qtr", _
 TextOperator:=xlContains
 .FormatConditions(1).Interior.Color = RGB(123, 130, 0)
 End With
 End Sub

Notice that before creating and applying a new conditional format to a range of
cells, it’s a good idea to delete the existing format condition from the selection
using the Delete method. The Add method that is used to add a new condition
requires at least the Type argument that specifies whether the conditional format
is based on a cell value or an expression. Use the xlFormatConditionType enu-
meration constants listed in Table 18.4 to set the condition type. For example,
to format cells that contain dates, use the xlTimePeriod constant in the Type
argument, and specify the DateOperator using one of the following constants:
xlToday, xlYesterday, xlTomorrow, xlLastWeek, xlThisWeek, xlNextWeek,
xlLast7Days, xlLastMonth, xlThisMonth, or xlNextMonth:
 Selection.FormatConditions.Add Type:=xlTimePeriod,
 DateOperator:=xlLast7Days

TABLE 18.4 Conditional format Type settings (xlFormatConditionType enumeration)

Constant Description
xlAboveAverageCondition Above/below average condition:

With Selection
 .FormatConditions.Delete
 .FormatConditions.AddAboveAverage
 .FormatConditions(1).AboveBelow =
 xlAboveAverage
 .FormatConditions(1).Font.Bold = True
End With

xlBlanksCondition Format cells that contain blanks:

With Selection
 .FormatConditions.Add _
 Type:=xlBlanksCondition
End With

(Contd.)

544 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Constant Description
xlCellValue Format a cell value:

With Selection
 .FormatConditions.Add Type:=xlCellValue,
 Operator:=xlLess
 Formula1:="=2000"
 .FormatConditions(1).NumberFormat = "#, ##0"
End With

You can use the following constants in the Operator argument:
xlBetween, xlEqual, xlGreater, xlGreaterEqual, xl-
Less, xlLessEqual, xlNotBetween, or xlNotEqual.
 To specify the numeric value for the operator, use the Formula1
argument. The xlBetween and xlNotBetween operators
require that you also specify a second value in Formula2.

xlColorScale Format color scale:

If Selection.FormatConditions(1).Type = 3 Then
 MsgBox "Formatted with " & _
 "ColorScale conditional format."
End If

xlDataBar Format data bar:

If Selection.FormatConditions(1).Type = 4 Then
 MsgBox "Formatted with " & _
 "DataBar conditional format."
End If

xlErrorsCondition Format cells that contain errors:

Selection.FormatConditions.Add _
 Type:=xlErrorsCondition

xlExpression Expression to specify a custom formula that identifies the cells
that the conditional format applies to. For example, the following
procedure changes the background color of alternate rows in the
used range:

Sub HighlightAltRows()
 With ActiveSheet.UsedRange
 .FormatConditions.Add Type:=xlExpression, _
 Formula1:="=MOD(ROW(),2)=0"
 .FormatConditions(1).Interior.ColorIndex = 6
 End With
End Sub

To highlight every third row, use the formula:

= MOD(ROW(),3)= 0

FORMATTING WORKSHEETS WITH VBA 545

Constant Description
xlIconSet Format icon set:

If Selection.FormatConditions(1).Type = 6
Then
 MsgBox "Formatted with " & _
 "IconSet conditional format."
End If

xlNoBlanksCondition Format cells that do not contain blanks:

Sub HighlightNonEmptyCells()
 Range("A1:B12").Select
 Selection.FormatConditions.Add _
 Type:=xlNoBlanksCondition
 With Selection.FormatConditions(1).Interior
 .ThemeColor = xlThemeColorAccent4
 .TintAndShade = 0.399945066682943
 End With
End Sub

xlNoErrorsCondition Format cells that do not contain errors:

Sub HighlightCellsWithNoErrors()
 Range("F1:F7").Select
 Selection.FormatConditions.Add _
 Type:=xlNoErrorsCondition
 With Selection.FormatConditions(1).Interior
 .ThemeColor = xlThemeColorAccent4
 .TintAndShade = 0.399945066682943
 End With
End Sub

Before running the above procedure, enter any number in cell F1,
and enter zero (0) in cell F2. In cell F3 enter the following formula:
=F1/F2. Because there is no division by zero, Excel will display the
following error code: #DIV/0! When you run the procedure, all
cells in the selected range except for cell F2 will be shaded with the
specified color.

xlTextString Format cells that contain text:

With ActiveSheet.UsedRange
 .FormatConditions.Add Type:=xlTextString, _
 String:="es", TextOperator:=xlContains
 .FormatConditions(1).Font.Bold = True
End With

Other text operators you can use: xlBeginsWith, xlDoesNot-
Contain, and xlEndsWith.

(Contd.)

546 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Constant Description
xlTimePeriod Format cells that contain dates:

With ActiveSheet.UsedRange
 .FormatConditions.Add Type:=xlTimePeriod, _
 DateOperator:=xlLastMonth
 .FormatConditions(1).Interior.ColorIndex = 6
End With

Other date operators you can use: xlToday, xlYesterday,
xlTomorrow, xlLastWeekn, xlThisWeek, xlNextWeek,
xlLast7Days, xlThisMonth, and xlNextMonth.

xlTop10 Format 10 top values:

With Selection
 .FormatConditions.AddTop10
 .FormatConditions(1).TopBottom = xlTop10Top
 .FormatConditions(1).Value = 5
 .FormatConditions(1).Percent = False
 .FormatConditions(1).Interior.Color = _
 RGB(255,0,0)
End With

xlUniqueValue Format unique values:

With Selection
 .FormatConditions.AddUniqueValues
 .FormatConditions(1).DupeUnique = xlUnique
 Formula1:="=200"
End With

By replacing the xlUnique constant with xlDuplicate, you
can select duplicate values.

Conditional Formatting Rule Precedence

You can apply multiple conditional formats to a cell. For example, you can
apply a conditional format to make the cell bold, and then another one to make
a red border around the cell. Because these two formats do not conflict with
one another, they can both be applied to the same cell. However, if you create
another format that tells Excel to apply a blue border to the cell, this rule will not
be applied because it conflicts with the previous rule that told Excel to apply the
red border. In order to control multiple conditions applied to a range of cells,
Excel uses rule precedence. When rules conflict with one another, Excel applies
the rule that is higher in precedence. Rules are evaluated in order of precedence
by how they are listed in the Conditional Formatting Rules Manager dialog box.
In VBA, this is controlled by the Priority property of the FormatConditions

FORMATTING WORKSHEETS WITH VBA 547

object. For example, to assign a second priority to the first rule, use the follow-
ing statement:

Range("B2:B17").FormatConditions(1).Priority = 2

You can make the rule the lowest priority with the following statement:
Range("B2:B17").FormatConditions(1).SetLastPriority

NOTE

In cases where the same format is applied both manually and
via conditional formatting to a range of cells, the conditional
formatting rule takes precedence over the manual format.
Formats applied manually are not considered when determining
conditional formatting rule precedence and do not appear in the
Conditional Formatting Rules Manager dialog box.

Deleting Rules with VBA

You can use the following statement to delete all rules applied to a specific range
of cells:

Range("B2:B17").FormatConditions.Delete

To delete a particular rule, refer to its index number before calling the Delete
method of the FormatConditions collection:

Range("B2:B17").FormatConditions(2).Delete

Using Data Bars

The data visualization tool known as the data bar allows users to easily see how
data values relate to each other. Data bars can be added via conditional format-
ting using the New Formatting Rule dialog box (choose Home | Conditional
Formatting | Data Bars | More Rules) or by a VBA procedure.

Excel draws data bars proportionally according to their values. Thanks to
this feature, data bars can be used to compare values. When you select the low-
est value in the Type drop-down the data bar will not be drawn. When you
select maximum value, Excel will draw a bar that covers the entire cell.

You can easily format the bar appearance with additional formatting options
such as solid fills and borders. Thanks to this feature, you can see which cell
has the highest value. However, keep in mind that applying a solid fill to a data
bar may make some portions of the text harder to read, especially when using
darker colors.

548 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In VBA, you can create a data bar formatting rule by using the AddDatabar
or Add method of the FormatConditions collection, as shown below:

Sub FormatWithDataBars()
 With Range("B2:E6").FormatConditions
 .AddDatabar
 .Add Type:=xlDatabar, _
 Operator:=xlGreaterEqual, Formula1:="200"
 End With
End Sub

This procedure will place a blue bar in the worksheet cells, as illustrated in Fig-
ure 18.5. Notice that the length of the data bar corresponds to the cell’s value.
If you change or recalculate the worksheet data, the data bar is automatically
reapplied to the specified range. Instead of using the Lowest and Highest values
to specify the Shortest and Longest bars, you can specify that the bar be based
on numbers, percentages, formulas, or percentiles. For example, you can use the
following statements to change the color, type, and threshold parameters of the
data bar:
set mBar = Selection.FormatConditions.AddDatabar
mBar.MinPoint.Modify _
 NewType:=xlConditionValuePercentile, NewValue:=20
mBar.MaxPoint.Modify _
 NewType:=xlConditionValuePercentile, NewValue:=80
mBar.BarColor.ColorIndex = 7

In the previous statements, the MinPoint and MaxPoint properties of the
DataBar object are used to set the values of the shortest and longest bars of a
range of data, and the BarColor property is used to modify the color of the bars
in the data bar conditional format.

FIGURE 18.5 A worksheet shown with the new data bar formatting.

FORMATTING WORKSHEETS WITH VBA 549

Using Color Scales

You can create special visual effects in your worksheet by selecting a range
of values and applying a color scale. Color scales use cell shading to help you
understand variation in your data. When you apply a color scale conditional
format via the user interface (Home | Conditional Formatting | Color Scales |
More Rules) or from your VBA procedure, Excel uses the lowest, highest, and
midpoint values in the range to determine the color gradients. You can apply a
two-color or a three-color scale to your data, as shown in Figure 18.4.

To create a color scale conditional formatting rule in VBA, use the AddCol-
orScale or Add method of the FormatConditions collection:
 set cScale = Selection.FormatConditions.AddColorScale
 (ColorScaleType:=2)

The previous statement creates a two-color ColorScale object in the selected
worksheet cells.

To change the minimum threshold to green and the maximum threshold to
blue, use the following statements:
 cScale.ColorScaleCriteria(1).FormatColor.Color = RGB(0, 255, 0)
 cScale.ColorScaleCriteria(2).FormatColor.Color = RGB(0, 0, 255)

For darker color scales, it makes sense to change the font color to white:
Selection.Font.ColorIndex = 2

As with a data bar, you can change the type of threshold value for a color scale
to a number, percent, formula, or percentile.

To create striking visual effects, try applying both data bar and color scale
conditional formatting to the same range of data.

Using Icon Sets

Icon sets are another visualization feature. By using icon sets, you can place
icons in cells to make your data more comprehensive and visually appealing.
Icon sets allow users to easily see the relationship between data values as well as
recognize trends in the data.

To view the available icon choices, choose Home | Conditional Formatting
| Icon Sets.

Each icon in an icon set represents a range of values. For example, in the
three-icon set “3 Symbols (Circled)” shown in Figure 18.6, Excel uses the check
mark symbol in a green circle for values that are greater than or equal to 67%,

550 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

an exclamation point in an orange circle for values that are less than 67% and
greater than or equal to 33%, and an X symbol in a red circle for values that are
less than 33%.

Icon sets have become a very effective highlighting tool, thanks to the ability
to apply icons only to specific cells instead of the entire range of cells. You can
hide the icon for cells that meet the specified criteria by selecting No Cell Icon
from the icon drop-down.

FIGURE 18.6 You can display each icon according to the rules set in the New Formatting
Rule dialog box.

The Icon Style drop-down also allows you to select four- and five-icon sets.
These sets display each icon according to which quartile or quintile the value
falls into. You may change the default threshold value and its type (number, per-
cent, formula, or percentile) for each icon in an icon set by editing the format-
ting rule or with a VBA procedure as demonstrated in Hands-On 18.1.

NOTE Icons can be made larger or smaller by increasing or decreasing
the font size.

In VBA, the IconSet object in the IconSets collection represents a single set of
icons. To create a conditional formatting rule that uses icon sets, use the Icon-
SetCondition object. You can add criteria for an icon set conditional formatting

FORMATTING WORKSHEETS WITH VBA 551

rule with the IconCriteria collection. The following VBA procedure applies an
icon set conditional formatting rule to a range of cells. The result of this proce-
dure is depicted in Figure 18.7.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 18.1 Using Icon Sets Programmatically

1. Copy the Chap18_VBAExcel2019.xlsm file from the companion CD to your
VBAExcel2019_ByExample folder.

2. Open the C:\VBAExcel2019_ByExample\Chap18_VBAExcel2019.xlsm
workbook and select Sheet3.

3. Switch to the Visual Basic Editor screen and insert a new module into
VBAProject (Chap18_VBAExcel2019.xlsm).

4. In the module’s Code window, enter the following IconSetRules procedure:
Sub IconSetRules()
 Dim iSC As IconSetCondition

 Columns("C:C").Select
 With Selection
 .SpecialCells(xlCellTypeConstants, 23).Select
 .FormatConditions.Delete
 .NumberFormat = "$#,##0.00"
 Set iSC = Selection.FormatConditions.AddIconSetCondition
 iSC.IconSet = ActiveWorkbook.IconSets(xl3Symbols)
 End With
End Sub

This procedure applies the currency format to the cell values in column C
and clears the selected range from the conditional format that may have been
applied earlier. Next, the AddIconSetCondition method is used to create an
icon set conditional format for the selected range of cells.
 In Step 5, when you run the procedure in step mode by pressing the F8 key,
you will notice colored circles being applied to the cells. The next statement
changes the default icon set to xl3Symbols as shown in Figure 18.7.

5. Place the insertion point anywhere inside the code of the IconSetRules
procedure and press F8 after each statement to execute the code in step
mode.

552 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 18.7 A column of data with an icon set used in the conditional format.

As mentioned earlier, you can modify the icon set conditions using the dialog
box or with VBA. Let’s say that instead of using the default percentage distribu-
tion with the threshold of >=67, >=33, and <33, you want to use the following
criteria: >=80000, >=50000, and <50000.

Let’s take a look at the revised procedure that modifies the formatting rule
and applies a filter by cell icon criteria:
 Sub IconSetRulesRevised()
 Dim iSC As IconSetCondition

 Columns("C:C").Select
 Selection.SpecialCells(xlCellTypeConstants, 23).Select
 With Selection
 .FormatConditions.Delete
 .AutoFilter
 .NumberFormat = "$#,##0.00"
 Set iSC = Selection.FormatConditions.AddIconSetCondition
 iSC.IconSet = ActiveWorkbook.IconSets(xl3Symbols)
 With iSC.IconCriteria(2)
 .Type = xlConditionValueNumber
 .Value = 50000
 .Operator = xlGreaterEqual
 End With

 With iSC.IconCriteria(3)
 .Type = xlConditionValueNumber
 .Value = 80000
 .Operator = xlGreaterEqual
 End With

FORMATTING WORKSHEETS WITH VBA 553

 .AutoFilter Field:=1, Criteria1:=iSC.IconSet.Item(3), _
 Operator:=xlFilterIcon
 End With
 End Sub

Note that when changing the criteria for the icon set conditional format you do
not need to specify the type, value, and operator for IconCriteria(1). This prop-
erty is read-only. Excel determines on its own the threshold value of IconCrite-
ria(1), and if you try to set it in your code as shown in the example procedure
available in online help, you will get a runtime error. The Sort and Filter com-
mands allow you to sort or filter data based on cell icon. The previous procedure
demonstrates how you can apply the filter programmatically using an icon in
the specified icon set. The results of this procedure are shown in Figure 18.8.

FIGURE 18.8 After running the IconSetRulesRevised procedure, a filter is applied to the Invoice
Amount column to display only the cells with invoice values >=80000.

Let’s say that you only want to highlight cells with values less than 50000. The
following procedure creates a formatting rule that produces the output shown
in Figure 18.9.
 Sub IconSetHideIcons()
 Dim iSC As IconSetCondition

 Columns("C:C").Select
 Selection.SpecialCells(xlCellTypeConstants, 23).Select
 With Selection
 .FormatConditions.Delete
 .NumberFormat = "$#,##0.00"
 Set iSC = Selection.FormatConditions. _
 AddIconSetCondition
 iSC.IconSet = ActiveWorkbook.IconSets(xl3Symbols)
 .FormatConditions(1).IconCriteria(1). _
 Icon = xlIconRedCrossSymbol

 With iSC.IconCriteria(2)
 .Type = xlConditionValueNumber
 .Value = 50000

554 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .Operator = xlGreaterEqual
 .Icon = xlIconNoCellIcon
 End With

 With iSC.IconCriteria(3)
 .Type = xlConditionValueNumber
 .Value = 80000
 .Operator = xlGreaterEqual
 .Icon = xlIconNoCellIcon
 End With

 End With
 End Sub

FIGURE 18.9 In this scenario, we use the icon set to draw attention to cells with invoice amounts less
than 50000. Notice that by not applying icons to other cells you can easily highlight the problem areas.

Formatting with Themes

If you need to change the look of the entire workbook, you ought to spend some
time familiarizing yourself with document themes. A document theme consists
of a predefined set of fonts, colors, and effects, such as lines and fills, that you
can apply to the workbook and also share between other Office documents. It
is important to note that a theme applies to the entire workbook, not just the
active worksheet. There are numerous document themes available in the user
interface (choose Page Layout | Themes) and you can also create custom themes
by mixing and matching different theme elements using the three drop-down
controls found in the Themes group on the Page Layout tab (Colors, Fonts,
and Effects). Additional themes can also be downloaded from Office Online.

FORMATTING WORKSHEETS WITH VBA 555

When you change the theme, the font and color pickers on the Home tab, and
other galleries such as Cell Styles or Table Styles, are automatically updated to
reflect the new theme. Therefore, if you are looking to apply a cell background
with a particular color, and that color is not listed in the color picker, apply a
predefined theme that contains that color, or create your own custom color by
choosing the More Colors option in the Font Color drop-down menu.

On the Page Layout tab, the Colors drop-down displays the color groups
for each theme and gives you an option to create new theme colors. The Fonts
drop-down shows a list of fonts for the theme. Theme fonts contain a heading
font and a body text font, which can be changed using the Create New Theme
Fonts option in the drop-down. The Effects drop-down displays the line and fill
effects for each of the built-in themes and does not give you an option to create
your own set of theme effects.

A theme color scheme consists of 12 base colors, as illustrated in
Figure 18.10. When applying a color to a cell, the color is selected from the Fill
Color drop-down as shown in Figure 18.11.

FIGURE 18.10 The theme colors consist of four text/ background colors, six accent colors, and two
hyperlink colors. To display this dialog box, choose Page Layout | Colors | Customize Colors.

556 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 18.11 The Fill Color control is used to color the background of selected cells.

On the Home Tab in the Font area of the Ribbon there is a convenient Fill Color
button that makes it easy to view the available theme colors (see Figure 18.11).
When you click the drop-down arrow next to the Fill Color button, you will see
a color palette. The top row in the palette displays 10 base colors in the current
color theme (the two hyperlink colors shown in the Create New Theme Colors
dialog box are not included). The five rows below show variations of the base
color. A color can be lighter or darker. The color name is shown in the tooltip.

If you record a macro while applying the “Blue, Accent 1, Lighter 40%” color
to the cell background, you will get the following VBA code:
 Sub Macro1()
 '
 ' Macro1 Macro
 '

 '
 Range("F4").Select
 With Selection.Interior
 .Pattern = xlSolid
 .PatternColorIndex = xlAutomatic
 .ThemeColor = xlThemeColorAccent1
 .TintAndShade = 0.399975585192419
 .PatternTintAndShade = 0
 End With
 End Sub

The pattern properties refer to the cell patterns that can be set via the Format
Cells dialog box (Home | Format | Format Cells | Fill). These properties can be

FORMATTING WORKSHEETS WITH VBA 557

ignored if all that’s required is setting the cell background color. The above code
can be modified as follows:
 Sub Macro1()
 '
 ' Macro1 Macro
 '

 '
 Range("F4").Select
 With Selection.Interior
 .ThemeColor = xlThemeColorAccent1
 .TintAndShade = 0.399975585192419
 End With
 End Sub

The ThemeColor properties listed in Figure 18.12 specify the theme color
to be used.

The TintAndShade property is used to modify the selected color. A tint (light-
ness) and a shade (darkness) is a value from –1 to 1. If you want a pure color,
set the TintAndShade property to 0. The value of –1 will result in black, and the
value of 1 will produce white. Negative values will produce darker colors, and
positive values lighter colors. The TintAndShade value of 0.399975585192419
means a 40% tint (or 40% lighter than the base color). If you change this number
to –0.399975585192419, you will get a 40% darker color.

FIGURE 18.12 Theme color constants and values as shown in the Object Browser.

558 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The following procedure loops through the colors in themes 4 through 10
and writes the color index and color variations to the range of cells shown in
Figure 18.13.
Sub Themes4Thru10()
 Dim tintshade As Variant
 Dim heading As Variant
 Dim cell As Range
 Dim themeC As Integer
 Dim r As Integer
 Dim c As Integer
 Dim i As Integer

 heading = Array("ThemeColorIndex", "Neutral", "Lighter 80%", _
 "Lighter 60%", "Lighter 40%", "Darker 25%", "Darker 50%")
 tintshade = Array(0, 0.8, 0.6, 0.4, -0.25, -0.5)

 i = 0
 For Each cell In Range("A1:G1")
 cell.Formula = heading(i)
 i = i + 1
 Next

 For r = 2 To 8
 themeC = r + 2
 For c = 1 To 7
 If c = 1 Then
 Cells(r, c).Formula = themeC
 Else
 With Cells(r, c)
 With .Interior
 .ThemeColor = themeC
 .TintAndShade = tintshade(c - 2)
 End With
 End With
 End If
 Next c
 Next r
 ActiveSheet.Columns("A:G").AutoFit
End Sub

FORMATTING WORKSHEETS WITH VBA 559

FIGURE 18.13 This worksheet was generated by a VBA procedure. When you apply a different
document theme, the colors will be replaced by those from the new theme.

The following procedure applies the current theme colors to a range of cells in
an active worksheet.
 Sub GetThemeColors()
 Dim tColorScheme As ThemeColorScheme
 Dim colorArray(10) As Variant
 Dim i As Long
 Dim r As Long

 Set tColorScheme = ActiveWorkbook.Theme.ThemeColorScheme
 For i = 1 To 10
 colorArray(i) = tColorScheme.Colors(i).RGB
 ActiveSheet.Cells(i, 1).Value = colorArray(i)
 Next i
 i = 0
 For r = 1 To 10
 ActiveSheet.Cells(r, 2).Interior.Color = colorArray(i + 1)
 i = i + 1
 Next r
 End Sub

In the above procedure, the ThemeColorScheme object represents the color
scheme of a Microsoft Office theme. In the first For Next loop, the Colors
method and the RGB property are used to return a specific color. The color value
is then stored in the colorArray array variable and entered in the specified row
of the first worksheet column. The second For Next loop applies background
color to cells based on the color values stored in the colorArray variable.

The following procedure does more color work in the active sheet, this time
using the Interior.ThemeColor property:
 Sub ApplyThemeColors()
 Dim i As Integer

560 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 For i = 1 To 10
 ActiveSheet.Cells(i, 3).Interior.ThemeColor = i
 ActiveSheet.Cells(i, 4).Value = i
 Next i
 End Sub

In this procedure, we use the Interior.ThemeColor property to set the back-
ground color of cells in the third worksheet column using colors available in
the current color scheme. The color scheme value is then written in the cor-
responding cell in the fourth column. The resulting worksheet (after run-
ning the GetThemeColors and ApplyThemeColors procedures) is shown in
Figure 18.14.

FIGURE 18.14 The background color of the cells was applied with VBA. When you select a different
color theme, the background color of these cells (C1:C10) will automatically adjust.

Each new workbook is created with a default theme named Office. The theme
information is stored in a separate theme file with the extension .thmx. When
you change the theme in the workbook, the workbook’s theme file is automati-
cally updated with the new settings. When you create a custom theme by select-
ing a new set of fonts, colors, or effects, save the theme in a file so that it can be
used in any document in any Office application or shared with other users. You
will find your custom theme file in the following location:

\Users\<user name>\AppData\Roaming\Microsoft\Templates\Document Themes

By default the Application Data (AppData) folder is hidden. To access this folder,
you will need to modify the folder and search options in Windows Explorer.

FORMATTING WORKSHEETS WITH VBA 561

To create a test theme named “MyTheme.thmx,” choose Page Layout |
Themes | Save Current Theme, change the name to MyTheme.thmx, and press
Save.

Now that you’ve created a custom theme, you can apply it programmatically
to the workbook using the ApplyTheme method of the Workbook object. Try
it out now by entering the following statement on one line in the Immediate
window (revise the path as necessary to match the location of the theme file on
your computer):
ActiveWorkbook.ApplyTheme "C:\Users\<username>\AppData\Roaming\
Microsoft\Templates\Document Themes\MyTheme.thmx"

After you apply a custom theme to a workbook, the theme name should appear
in the Custom group of the Themes control, as shown in Figure 18.15.

FIGURE 18.15 After applying a custom theme to a workbook, the theme name appears in the
Custom group of the Themes control.

562 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To programmatically load a color theme or font theme from a file, the following
VBA statements can be used:
ActiveWorkbook.Theme.ThemeColorScheme.Load ("C:\Program Files
(x86)\Microsoft Office\root\Document Themes 16\Theme Colors\
Paper.xml")

ActiveWorkbook.Theme.ThemeFontScheme.Load " C:\Program Files
(x86)\Microsoft Office\root\Document Themes 16\Theme Fonts\
Calibri.xml")

In order to customize some theme components, you need to know how to work
with document parts in the Office Open XML file format. You will find infor-
mation on how to open, read, and modify data in Office XML files in Chapter
28, “Using XML in Excel 2019.”

Formatting with Shapes

You can make your worksheets more interesting by adding various types of
shapes, such as the cylinder in Figure 18.16. When formatting shapes, you can
use document theme colors as shown in the following procedure:
 Sub AddCanShape()
 Dim oShape As Shape

 Set oShape = ActiveSheet.Shapes.AddShape(_
 msoShapeCan, 54, 0, 54, 110)
 With oShape
 .Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent4
 .Fill.Transparency = 0.5
 .Line.Visible = msoFalse
 End With
 Set oShape = Nothing
 End Sub

In the above procedure, we declare an object variable of type Shape and then use
the AddShape method of the ActiveSheet Shapes collection to add a new Shape
object. This method has five required arguments. The first one specifies the type
of the Shape object that you want to create. This can be one of the constants in
the msoAutoShapeType enumeration (check out the online help). Excel offers a
large number of shapes. The next two arguments tell Excel how far the object
should be placed from the left and top corners of the worksheet. The last two
arguments specify the width and height of the shape (in points). To specify the
theme color of the Shape object, set the ObjectThemeColor property of the

FORMATTING WORKSHEETS WITH VBA 563

ColorFormat object to the required theme. To return the ColorFormat object,
you must use the ForeColor property of the FillFormat object. The FillFormat
object is returned by the Fill property of the Shape object:

oShape.Fill.ForeColor.ObjectThemeColor = msoThemeColorAccent4

Next, set the degree of transparency to make sure that the shape does not
obstruct the data. The last line removes the border from the shape.

The previous procedure places a Shape object over the data in column B.

FIGURE 18.16 A Shape object placed on the worksheet uses the theme color scheme.

The following procedure can be run to programmatically remove shapes from
the worksheet:
Sub RemoveShapes()
 Dim oShape As Shape
 Dim strShapeName As String
 With ActiveSheet
 For Each oShape In .Shapes
 strShapeName = oShape.Name
 oShape.Delete
 Debug.Print "The Shape Object named " _
 & strShapeName & " was deleted."
 Next oShape
 End With
End Sub

Working with Shapes in VBA

While you can look up the properties and methods of the Shape object in the
online help, don’t forget Excel’s most useful programming tool—the macro
recorder. Use Shape object recording to get a quick start in writing VBA code
that inserts, positions, formats, and deletes shapes.

SIDEBAR

564 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Formatting with Sparklines

Sparklines are tiny charts that can be inserted into a single cell to highlight
important data trends and increase readers’ comprehension. There are three
types of sparklines in Excel: Line, Column, and Win/Loss. They can be inserted
via the corresponding button in the Sparklines group on the Ribbon’s Insert tab
(Figure 18.17).

FIGURE 18.17 The Sparkline group on the Insert tab offers three buttons for inserting tiny
charts into a cell.

To manually insert a sparkline graphic, click in the cell where you want the
sparkline to appear and choose Insert. In the Sparklines group, click the type of
sparkline you want to insert. At this point, Excel will pop up the Create Spar-
klines dialog box (Figure 18.18) where you can choose or enter the data range
you want to include as the data source for the sparklines and the location range
where you want them to be placed.

FIGURE 18.18 Selecting the location and data range for sparklines.

FORMATTING WORKSHEETS WITH VBA 565

In Figure 18.18, we’d like to compare the performance of users during each
quarter of fiscal year 2018. After making selections in the Create Sparklines
dialog box and clicking OK, Excel activates the Sparkline Tools–Design con-
text tab, where you can format the sparkline by showing points and markers,
changing sparkline or marker colors, switching between the types of sparklines,
and more. Figure 18.19 displays the result of inserting and applying data point
formatting to the sparklines.

FIGURE 18.19 Sparklines in column G make it easy to spot the trends in users’ performance.

Handling Hidden Data and Empty Cells by Sparklines

If you hide rows or columns that are used in a sparkline, the hidden data will
not appear in the sparkline. You can specify how empty cells should be han-
dled in the Hidden and Empty Cells Settings dialog box (choose Sparkline
Tools | Design | Sparkline | Edit Data | Hidden and Empty Cells).

Sparklines are dynamic. They will automatically adjust whenever the data in the
cells they are based on changes. Sparklines can be copied, cut, and pasted just
like formulas. For bigger or wider sparklines, simply increase the width of the
row or column. To get rid of the sparklines, use the Clear option in the Design
context menu, and select Clear Selected Sparklines or Clear Selected Sparkline
Groups. Because a sparkline is a part of a cell’s background, you can display text
or formulas in cells containing sparklines, as shown in Figure 18.20.

FIGURE 18.20 Sparklines can share a cell with text or formulas.

SIDEBAR

566 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sparklines and Backward Compatibility

When you open a workbook containing sparklines in older versions of Excel
(2007/2003), you will see blank cells. When you edit a file with sparklines in
Excel 2007 the sparklines will not be visible, but they will appear again if the
file is loaded in more recent versions of Excel, provided that the cells with
sparklines were not deleted.

Understanding Sparkline Groups

In Figure 18.18, we created multiple sparklines at once by choosing one data
range (B2:E6). This caused the sparklines to be automatically grouped. When
you click a grouped sparkline, you should see a thin blue line around the group.
Each sparkline group contains the same formatting settings. You can format
each sparkline separately by breaking the group. Simply select the sparkline
you want to format differently, and choose Sparkline Tools | Design | Group
and click Ungroup. The selected cell will be ungrouped from the group. Now
you can format that sparkline as desired without affecting other sparklines. For
example, in Figure 18.21 the sparkline in Row 4 was ungrouped and the type of
sparkline was then changed to column type. To break the entire group, select all
the cells containing sparklines and click Ungroup.

FIGURE 18.21 Ungrouping sparklines lets you format them independently of other sparklines.

Programming Sparklines with VBA

The Excel object model contains objects, properties, and methods that allow
developers to use VBA to create and modify sparklines in their worksheets.
To get an idea of how sparklines fit into the object model, take a look at
Figure 18.22.

SIDEBAR

FORMATTING WORKSHEETS WITH VBA 567

FIGURE 18.22 Choose the Object Browser from the VBE View menu (or press F2) to quickly locate
objects, methods, and properties that can be used to program sparklines with VBA. Next, select the
name of the object, property, or method that interests you, and click the question mark button at the
top of the Object Browser to pop up the help topic.

Each sparkline is represented by a Sparkline object, which is a member of a
SparklineGroup object. A SparklineGroup object can contain one or more
Sparkline objects. You can have multiple SparklineGroup objects (collections of
sparkline groups) in a worksheet. The Range object’s SparklineGroup property
returns a SparklineGroups object that represents an existing group of sparklines
from the specified range.

Hands-On 18.2 demonstrates how to use VBA to read the information about
sparklines contained in a worksheet.

568 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 18.2 Retrieving Information about Sparklines

1. Working with the C:\VBAExcel2019_ByExample\Chap18_VBAExcel2019.
xlsm workbook, switch to the Visual Basic Editor screen and insert a new
module into VBAProject (Chap18_VBAExcel2019.xlsm).

2. In the module’s Code window, enter the following GetSparklineInfo procedure:
Sub GetSparklineInfo()
 Dim spGrp As SparklineGroup
 Dim spCount As Long
 Dim i As Long

 spCount = Cells.SparklineGroups.count
 If spCount <> 0 Then
 For i = 1 To spCount
 Set spGrp = Cells.SparklineGroups(i)
 Debug.Print "Sparkline Group:" & i
 Select Case spGrp.Type
 Case 1
 Debug.Print "Type:Line"
 Case 2
 Debug.Print "Type:Column"
 Case 3
 Debug.Print "Type:Win/Loss"
 End Select
 Debug.Print "Location:" & spGrp.Location.Address
 Debug.Print "Data Source: " & spGrp.SourceData
 Next i
 Else
 MsgBox "There are no sparklines in the active sheet."
 End If
End Sub

3. Activate the worksheet that contains sparklines and run the above procedure.
Assuming you ran the procedure while the sheet displayed in Figure 18.21 was
active, the following information was retrieved into the Immediate window.
Sparkline Group:1

Type:Column
Location:G4
Data Source: B4:E4
Sparkline Group:2
Type:Line
Location:G2,G3,G5,G6

Data Source: B2:E2,B3:E3,B5:E5,B6:E6

FORMATTING WORKSHEETS WITH VBA 569

The next Hands-On you will create a sparkline Win/Loss report from scratch
using VBA. The Win/Loss sparkline bar chart type is used to display Profit ver-
sus Loss or Positive versus Negative comparison.

 Hands-On 18.3 Using VBA to Create Sparklines

1. In the C:\VBAExcel2019_ByExample\Chap18_VBAExcel2019.xlsm work-
book, switch to the Visual Basic Editor screen and add the following proce-
dures just below the GetSparklineInfo procedure that you created in the previ-
ous Hands-On:
Sub CreateSparklineReport()
 Dim spGrp As SparklineGroup
 Dim sht As Worksheet
 Dim cell As Range
 Dim spLocation As Range

 Workbooks.Add
 Set sht = ActiveSheet

 EnterData sht, 3, "Month", "Sales Quota", "Sales $",
 "Difference"
 EnterData sht, 4, "January", "234000", "250000", "=C4-B4"
 EnterData sht, 5, "February", "211000", "180000", "=C5-B5"
 EnterData sht, 6, "March", "304000", "370000", "=C6-B6"
 Range("B4:D6").Style = "Currency"

 Columns("A:D").AutoFit

 Range("A1").Value = "Win/Loss"
 Set spLocation = sht.Range("B1")
 Set spGrp = spLocation.SparklineGroups _
 .Add(xlSparkColumnStacked100, "D4:D6")
 spGrp.SeriesColor.ThemeColor = 2
 spLocation.SparklineGroups.Item(1) _
 .Axes.Horizontal.Axis.Visible = True
End Sub

Sub EnterData(sht As Worksheet, rowNum As Integer, _
 ParamArray myValues() As Variant)

 Dim j As Integer
 Dim count As Integer

570 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 count = UBound(myValues()) + 1
 j = 1
 For j = j To count
 sht.Range(Cells(rowNum, 1), Cells(rowNum, count)) =
myValues()
 Next
End Sub

2. Run the CreateSparklineReport procedure.
Aft er running the procedure, you should see the Win/Loss report in a new
workbook as depicted in Figure 18.23. Notice that the Win/Loss sparkline
in cell B1 compares sales data during the fi rst three months of the year with
the sales quota for each month. Th e source range for the sparkline is located
in column D, which contains the diff erence between monthly sales and the
monthly quota. A quick glance at cell B1 reveals that the sales quota was not
met in February.

FIGURE 18.23 This worksheet, including its Win/Loss sparkline in cell B1, was created
programmatically in Hands-On 18.3.

Formatting with Styles

Most people use the Format Painter tool on the Ribbon’s Home tab (the paint-
brush icon) to quickly copy formatting to other cells of the same worksheet or
from one worksheet to another. However, when you create complex worksheets
with different types of formatting, it is a good idea to save all your formatting
settings in a file so you can reuse them whenever you need them. This can be
done via the Styles feature. Cell styles can contain format options such as Num-
ber, Alignment, Font, Border, Fill, and Protection. If you change the style after
you have applied it to your worksheet, Excel will automatically update the cells
that have been formatted using that style. Styles are easier to find and apply,

FORMATTING WORKSHEETS WITH VBA 571

thanks to the existence of galleries like those illustrated in Figure 18.24. To apply
a style to a cell, simply select the cells you want to format with the style, and click
on the appropriate style in the gallery (available by clicking Cell Styles). Styles
are based on the current theme. You can also apply them to Excel tables, Pivot-
Tables, charts, and shapes. Excel offers a large number of built-in styles. You can
modify, duplicate, or delete the existing styles and add your own—simply right-
click the style in the gallery and select the option you need.

FIGURE 18.24 You can see the preview of how the style will look before you apply the style. If the
built-in style does not suit your needs, you can create your own custom style.

To find out the number of styles in the active workbook, use the following state-
ment:

MsgBox "Number of styles=" & ActiveWorkbook.Styles.Count

Excel tells us that there are 49 styles defined for a 2019 workbook. Use the Styles
collection and the Style object to control the styles in a workbook. To get a list
of style names, let’s iterate through the Styles collection:
Sub GetStyleNames()
 Dim i As Integer

 For i = 1 To ActiveWorkbook.Styles.Count
 Debug.Print "Style " & i & ":" & _
 ActiveWorkbook.Styles(i).Name
 Next i
End Sub

The above procedure prints the names of all workbook styles into the Immedi-
ate window. The style names are listed alphabetically.

572 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To add a style, use the Add method, as shown in the following example pro-
cedure:
Sub AddAStyle()
 Dim newStyleName As String
 Dim curStyle As Variant
 Dim i As Integer

 newStyleName = "SimpleFormat"
 i = 0

 For Each curStyle In ActiveWorkbook.Styles
 i = i + 1
 If curStyle.Name = newStyleName Then
 MsgBox "This style " & "(" & newStyleName & _
 ") already exists. " & Chr(13) & _
 "It's the " & i & " style in the Styles collection."
 Exit Sub
 End If
 Next

 With ActiveWorkbook.Styles.Add(newStyleName)
 .Font.Name = "Arial Narrow"
 .Font.Size = "12"
 .Borders.LineStyle = xlThin
 .NumberFormat = "$#,##0_);[Red]($#,##0)"
 .IncludeAlignment = False
 End With
End Sub

The above procedure adds a specified style to the workbook’s Styles collec-
tion provided that the style name is unique. The procedure begins by checking
whether the style name has already been defined. If the workbook has a style
with the specified name, the procedure ends after displaying a message to the
user. If the style name does not exist, then the procedure creates the style with
the specified formatting. Notice that if you do not wish to include a specific
formatting feature in the style, you can set the following properties to False:
IncludeAlignment, IncludeFont, IncludeBorder, IncludeNumber, IncludePat-
terns, and IncludeProtection. For example, a setting of False omits the Horizon-
talAlignment, VerticalAlignment, WrapText, and Orientation properties in the
style. The default setting for these properties is True.

The custom style is added to the Styles collection. To find out the index num-
ber of the newly added style, simply rerun this procedure.

FORMATTING WORKSHEETS WITH VBA 573

To programmatically apply your custom style to a selected range, run the
following code in the Immediate window:

Selection.Style = "SimpleFormat"

To check out the settings the specific style includes, select the formatted range
of cells and choose Home | Cell Styles to display the gallery of styles. Right-click
the name of the selected style and choose Modify. Excel displays the dialog box
shown in Figure 18.25.

FIGURE 18.25 This dialog box displays the formatting settings of the SimpleFormat style that was
created earlier by a VBA procedure.

The following code removes formatting applied to the selected range:
Selection.ClearFormats

The previous statement returns selection formats to the original state but does
not remove the style from the Styles collection. To delete a style from a work-
book, use the following statement:

ActiveWorkbook.Styles("SimpleFormat").Delete

If you have already applied formats to a cell, you can create a new style based on
the active cell:
 Sub AddSelectionStyle()
 Dim newStyleName As String

574 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 newStyleName = "InvoiceAmount"
 ActiveWorkbook.Styles.Add Name:=newStyleName, _
 BasedOn:=ActiveCell
 End Sub

By default Excel creates a new style based on the Normal style. However, if
you have already applied formatting to a specific cell and would like to save the
settings in a style, use the optional BasedOn argument of the Styles collection
Add method to specify a cell on which to base the new style.

The custom styles you create can be reused in other workbooks. To do this
you need to copy the style information from one workbook to another. In VBA,
this can be done by using the Merge method of the Workbook object Styles col-
lection:

ActiveWorkbook.Styles.Merge "Report2019.xlsx"

Assuming that you have defined some cool styles in the Report2019.xlsx work-
book, the above statement copies the styles found in the specified workbook to
the active workbook.

SUMMARY

In this chapter, you learned how to use VBA to apply basic formatting features
to your worksheets to make your data easier to read and interpret. You also
learned advanced formatting features such as conditional formatting and the
utilization of tools such as data bars, icon sets, color scales, shapes, and spar-
klines, as well as themes and cell styles.

The next chapter focuses on the customization of the Ribbon interface and
context menus in Excel.

575

Users have come to expect easy ways to select commands and options
in any Windows application. Therefore, after you have written VBA
procedures that provide solutions to specific worksheet automation di-

lemmas, you should spend additional time adding features that will make your
application quick and easy to use. The most desired features of the user interface
(UI) in Excel are customizations of the context menus and the Ribbon. While
it is easy for users to get quick access to a specific command by placing it in the
Quick Access toolbar located to the right of the Microsoft Office Menu button,
your application’s tools will need to appear either on the Ribbon or in a context
menu. This chapter teaches you how to work with the context menus and the
Fluent Ribbon interface programmatically.

WORKING WITH CONTEXT MENUS

A context (also referred to as shortcut) menu appears when you right-click on an
object in the Microsoft Excel application window. You can customize built-in
context menus by using the CommandBar object or by applying Ribbon cus-
tomizations as demonstrated later in this chapter. This section focuses on using
the CommandBar object’s properties and method to create, modify, or disable
context menus depending on your application’s needs.

Chapter

 19 CONTEXT MENU
PROGRAMMING AND
RIBBON
CUSTOMIZATIONS

576 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Each object in the CommandBars collection is called CommandBar. The
term CommandBar is used to refer to a context menu only. This object comes
with a special Type property that can be used to return the specific type of the
command bar (see Table 19.1).

TABLE 19.1 Types of CommandBar objects in the CommandBars collection

Type of Object Index Constant
Toolbar 0 msoBarTypeNormal
Menu Bar 1 msoBarTypeMenuBar
Context/Shortcut Menu 2 msoBarTypePopup

NOTE

In versions of Excel prior to 2007, the CommandBar object was
used to programmatically work with menu bars and toolbars.
Since the introduction of the Ribbon interface, the Command-
Bar object can only be used with context menus. Later on in
this chapter you will learn how to programmatically customize
the RibbonX (Ribbon extensibility) model, which replaced the
menus and toolbars found in Excel 2003 and earlier.

Modifying a Built-In Context Menu

Microsoft Excel offers 67 context menus with different sets of frequently used
menu options. Let’s write a VBA procedure that prints the names of the context
menus to the Immediate window.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 19.1 Enumerating Context Menus

1. Create a new workbook and save it as C:\VBAExcel2019_ByExample\
Chap19_VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor screen and insert a new module into
VBAProject (Chap19_VBAExcel2019.xlsm).

3. Use the Properties window to rename the module ContextMenus.
4. In the ContextMenus Code window, enter the ContextMenus procedure as

shown below:
Sub ContextMenus()
 Dim myBar As CommandBar

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 577

 Dim counter As Integer

 For Each myBar In CommandBars
 If myBar.Type = msoBarTypePopup Then
 counter = counter + 1
 Debug.Print counter & ": " & myBar.Name
 End If
 Next
End Sub

Notice the use of the msoBarTypePopup constant to identify the context menu
in the collection of CommandBars.

5. Run the ContextMenus procedure.
The result of this procedure is a list of context menus printed to the Immediate
window.

Now that you know the exact names of Excel’s context menus, you can easily
add other frequently used commands to any of these menus. Let’s find out how
to add the Insert Picture command to the context menu activated when you
right-click a worksheet cell.

 Hands-On 19.2 Adding a New Item to a Context Menu

1. In the ContextMenus Code window that you created in the previous Hands-
On, enter the following procedures:
Sub AddToCellMenu()
 With Application.CommandBars("Cell")
 .Reset
 .Controls.Add(Type:=msoControlButton, _
 Before:=2).Caption = "Insert Picture..."
 .Controls("Insert Picture...").OnAction = "InsertPicture"
 End With
End Sub

Sub InsertPicture()
 CommandBars.ExecuteMso ("PictureInsertFromFile")
End Sub

Th e Reset method of the CommandBar object used in the AddToCellMenu
procedure prevents placing the same option in the context menu again when
you run the procedure more than once.

578 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To add a built-in or custom control to a context menu, use the Add method
with the following syntax:
CommandBar.Controls.Add(Type, Id, Parameter, Before, Temporary)

CommandBar is the object to which you want to add a control. Type is a con-
stant that determines the type of custom control you want to add. You may
select one of the following types:

msoControlButton 1
msoControlPopup 10
msoControlEdit 2
msoControlDropDown 3
msoControlComboBox 4

Id is an integer that specifies the number of the built-in control you want to
add. Parameter is used to send information to a Visual Basic procedure or to
store information about the control.
 The Before argument is the index number of the control before which the
new control will be added. If omitted, Visual Basic adds the control at the end
of the specified command bar.
 The Temporary argument is a logical value (True or False) that determines
when the control will be deleted. When you set this argument to True, the con-
trol will be automatically deleted when the Excel application is closed.
 CommandBar controls have a number of properties that help you specify
the appearance and functionality of a control. For example, the Caption prop-
erty specifies the text displayed for the control. In the above procedure, you
will see the “Insert Picture…” entry in the cell context menu. Note that it is
customary to add an ellipsis (…) at the end of the menu option’s text to in-
dicate that the option will trigger a dialog box in which the user will need to
make more selections. The OnAction property specifies the name of a VBA
procedure that will execute when the menu option is selected. In this example,
upon selecting the Insert Picture… option, the InsertPicture procedure will
be called. This procedure uses the ExecuteMso method of the CommandBar
object to execute the Ribbon’s PictureInsertFromFile command.

2. Run the AddToCellMenu procedure.
3. Switch to the Microsoft Excel application window, right-click any cell in a

worksheet, and select the Insert Picture… command (see Figure 19.1).

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 579

FIGURE 19.1 The built-in cell context menu displays a new item (Insert Picture…) that was added
by a VBA procedure.

Excel displays the Insert Picture dialog box from which you can insert a pic-
ture from a file. The same dialog box is displayed when you click the Pictures
button on the Ribbon’s Insert tab.

NOTE

Custom menu items added to Excel context menus are available
in all open workbooks. It does not matter which workbook was
used to add a custom item. For this reason, it’s a good idea to
ensure that the custom menu item is removed when the work-
book is closed. (See the next section titled “Removing a Custom
Item from a Context Menu.”)

Notice that some options in the context menu are preceded with a small graph-
ic image. Let’s write another version of the AddToCellMenu procedure to in-
clude an image next to the Insert Picture… command.

580 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Enter the following procedure in the ContextMenus Code window:
Sub AddToCellMenu2()
 Dim ct As CommandBarButton

 With Application.CommandBars("Cell")
 .Reset
 Set ct = .Controls.Add(Type:=msoControlButton, _
 Before:=11, Temporary:=True)
 End With
 With ct
 .Caption = "Insert Picture..."
 .OnAction = "InsertPicture"
 .Picture = Application.CommandBars. _
 GetImageMso("PictureInsertFromFile", 16, 16)
 .Style = msoButtonIconAndCaption

 End With
End Sub

In this procedure code, we tell Visual Basic to add our custom menu item in
the 11th position on the cell context menu. We also specify that this custom
menu option is removed automatically when we exit Excel. This is accom-
plished by setting the value of the Temporary parameter to True. Next, we
use the With…End With statement block to set a couple of properties for the
newly created control object (ct). In addition to setting two standard proper-
ties (Caption and OnAction), we assign the imageMso image to the Picture
property of our new control. To return the image, you must use the Command-
Bars.GetImageMso method and specify the name of the image and its size
(width and height). The size of the image is specified as 16 x 16 pixels. The
Style property is used here to specify that the control button should display
both the icon and its caption.

5. Run the AddToCellMenu2 procedure.
6. Switch to the Microsoft Excel application window, right-click any cell in a

worksheet, and look for the Insert Picture… command (see Figure 19.2).
Notice that built-in context menu commands have a special hot key indicated
by the underlined letter. To invoke a menu option, you simply press the under-
lined letter after opening the menu.

7. Add a hot key to your custom menu option by modifying the Caption property
in the above procedure like this:
.Caption = "Insert Pict&ure..."

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 581

The “&” symbol in front of the letter “u” indicates that the lowercase “u” will
serve as the hot key. Remember that hot keys are unique; you cannot use a let-
ter that is already used by another menu item.

8. After rerunning the modified procedure, switch to the Microsoft Excel
application window, right-click any cell in a worksheet, and then press the
lowercase u. You should see the Insert Picture dialog box.

Removing a Custom Item from a Context Menu

When you modify context menus, your customizations will not go away when
you close the workbook. Restarting Excel will remove your custom changes
to the context menu only if you set the value of the Temporary parameter to

FIGURE 19.2 A custom Insert Picture… menu item is now identified by an icon and positioned just
above the built-in Filter command.

582 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

True when adding your custom menu item. To ensure that the custom item is
removed from the menu, consider writing a delete procedure similar to the one
shown below:
 Sub DeleteInsertPicture()
 Dim c As CommandBarControl
 On Error Resume Next
 Set c = CommandBars("Cell").Controls("Insert Pict&ure...")
 c.Delete
 End Sub

For automatic cleanup, call the previous procedure from the Workbook_Before-
Close event procedure like this:
 Private Sub Workbook_BeforeClose(Cancel As Boolean)
 Call DeleteInsertPicture
 End Sub

The previous event procedure must be entered in the ThisWorkbook code
module. The Workbook_BeforeClose procedure will be executed just before the
workbook is closed.

To ensure that your custom menu option is in place when you open the
workbook, call the procedure that adds a custom menu item from the Work-
book_Open event procedure entered in the ThisWorkbook Code window:
 Private Sub Workbook_Open()
 Call AddToCellMenu2
 End Sub

Disabling and Hiding Items on a Context Menu

To disallow using a particular context menu item, you may want to disable it or
hide it.

When a context menu item is disabled, its caption appears dimmed. When a
menu item is hidden, it simply does not appear on the menu.

To disable a menu item, set the Enabled property of the control to False. For
example, the following statement will disable the Insert Picture command that
you’ve added earlier to the Cell context menu:
Application.CommandBars("Cell"). _
 Controls("Insert Pict&ure...").Enabled = False

To enable a disabled menu item, simply set the Enabled property of the desired
control to True.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 583

To hide a menu item, set the Visible property of the control to False:
 Application.CommandBars("Cell"). _
 Controls("Insert Pict&ure...").Visible = False

And to unhide the hidden menu item set the Visible property of the control to
True:
 Application.CommandBars("Cell"). _
 Controls("Insert Pict&ure...").Visible = True

A good place to use the previous commands is in the Worksheet_Activate and
Worksheet_Deactivate event procedures. For example, to disable the specific
context menu item only when Sheet1 is active, write the following event proce-
dures in the Sheet1 code module:

Private Sub Worksheet_Activate()
 Application.CommandBars("Cell").Controls("Sort").Enabled = False
End Sub

Private Sub Worksheet_Deactivate()
 Application.CommandBars("Cell").Controls("Sort").Enabled = True
End Sub

NOTE

When writing code to control Excel context menus with the
CommandBar object’s properties and methods, you may find
out that certain VBA statements will work in some but not all
circumstances.Unless you need to write an application for Excel
2007 or earlier, you should move toward programming the Rib-
bonX interface, which allows you to control commands in the
context menus (see the section titled “Modifying Context Menus
Using Ribbon Customizations” later in this chapter).

Adding a Context Menu to a Command Button

When you design custom forms, you may want to add context menus to various
controls placed on the form. The following set of VBA procedures demonstrates
how right-clicking a command button can offer users a choice of options to
select from.

584 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 19.3 Using Context Menus on User Forms

1. In the ContextMenus Code window, enter the Create_ContextMenu procedure
as shown below:
Sub Create_ContextMenu()
Dim sm As Object
Set sm = Application.CommandBars.Add _
 ("MyComputer", msoBarPopup)
 With sm
 .Controls.Add(Type:=msoControlButton). _
 Caption = "Operating System"
 With .Controls("Operating System")
 .FaceId = 1954
 .OnAction = "OpSystem"
 End With
 .Controls.Add(Type:=msoControlButton). _
 Caption = "Active Printer"
 With .Controls("Active Printer")
 .FaceId = 4
 .OnAction = "ActivePrinter"
 End With
 .Controls.Add(Type:=msoControlButton). _
 Caption = "Active Workbook"
 With .Controls("Active Workbook")
 .FaceId = 247
 .OnAction = "ActiveWorkbook"
 End With
 .Controls.Add(Type:=msoControlButton). _
 Caption = "Active Sheet"
 With .Controls("Active Sheet")
 .FaceId = 18
 .OnAction = "ActiveSheet"
 End With
 End With
End Sub

Th is procedure creates a custom context menu named MyComputer and adds
four commands to it. Notice that each command is assigned an icon. When
you select a command from this context menu, one of the procedures shown
in Step 2 will run.

2. In the ContextMenus Code window, enter the following procedures that are
called by the Create_ContextMenu procedure:

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 585

Sub OpSystem()
 MsgBox Application.OperatingSystem, , "Operating System"
End Sub

Sub ActivePrinter()
 MsgBox Application.ActivePrinter
End Sub

Sub ActiveWorkbook()
 MsgBox Application.ActiveWorkbook.Name
End Sub

Sub ActiveSheet()
 MsgBox Application.ActiveSheet.Name
End Sub

3. Run the Create_ContextMenu procedure.
To test the custom context menu you just created, use the ShowPopup method,
as shown in Step 4.

4. Type the following statement in the Immediate window and press Enter:
CommandBars("MyComputer").ShowPopup 0, 0

The ShowPopup method for the CommandBar object accepts two optional ar-
guments (x, y) that determine the location of the context menu on the screen.
In the above example, the MyComputer context menu that was added by run-
ning the Create_ContextMenu procedure will appear at the top left-hand cor-
ner of the screen.
 Let’s make our context menu friendlier by attaching it to a command button
placed on a user form.

5. In the Visual Basic Editor screen, choose Insert | UserForm to add a new form
to the current VBA project.

6. Using the CommandButton control in the Toolbox, place a button anywhere
on the empty user form. Use the Properties window to change the Caption
property of the command button to System Information. You may need to
resize the button on the form to fit this text.

7. Switch to the Code window for the form by clicking the View Code button in
the Project Explorer window or double-clicking the form background.

8. Enter the following procedure in the UserForm1 Code window:
Private Sub CommandButton1_MouseDown(ByVal Button _
 As Integer, _
 ByVal Shift As Integer, _
 ByVal X As Single, _
 ByVal Y As Single)

586 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Button = 2 Then
 Call Show_ShortMenu
 Else
 MsgBox "You must right-click this button."
 End If
End Sub

Th is procedure calls the Show_ShortMenu procedure (see Step 9) when the
user right-clicks the command button placed on the form. Visual Basic has
two event procedures that are executed in response to clicking a mouse button.
When you click a mouse button, Visual Basic executes the MouseDown event
procedure. When you release the mouse button, the MouseUp event occurs.
Th e MouseDown and MouseUp event procedures require the following
arguments:

 ● Th e object argument specifi es the object. In this example, it’s the name
of the command button placed on the form.

 ● Th e Button argument is the Integer value that specifi es which mouse but-
ton was pressed.

Value of Button Argument Description
1 Left mouse button
2 Right mouse button
3 Middle mouse button

 ● Th e Shift argument determines whether the user was pressing the Shift ,
Ctrl, or Alt key when the event occurred.

Value of Shift Argument Description
1 Shift key
2 Ctrl key
3 Shift and Ctrl keys
4 Alt key
5 Alt and Shift keys
6 Alt and Ctrl keys
7 Alt, Shift, and Ctrl keys

9. In the ContextMenus Code window, enter the code of the Show_ShortMenu
procedure:
Sub Show_ShortMenu()
 Dim shortMenu As Object

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 587

 Set shortMenu = Application.CommandBars("MyComputer")
 With shortMenu
 .ShowPopup
 End With
End Sub.

10. In the Project Explorer window, double-click UserForm1 and press F5 to run
the form. Right-click the System Information button and select one of the
options from the context menu.
Notice that the ShowPopup method used in this procedure does not include
the optional arguments that determine the location of the context menu on
the screen. Therefore, the menu appears where the mouse was clicked (see
Figure 19.3).

FIGURE 19.3 A custom context menu appears when you right-click an object.

11. To delete the context menu named MyComputer, enter and then run the
following Delete_ShortMenu procedure in the ContextMenus Code window:
Sub Delete_ShortMenu()
 Application.CommandBars("MyComputer").Delete
End Sub

Finding a FaceID Value of an Image

When modifying context menus, you will most likely want to include an image
next to the displayed text, as we did in Hands-On 19.3 (see Figure 19.3). The
good news is that the CommandBars collection has hundreds of images that

588 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

you can use. Each command bar control button has a FaceID that determines
the look of a control. But how do you know which ID belongs to which control
button? The FaceID property returns or sets the ID number of the icon on the
control button’s face. In most cases, the icon ID number (FaceID) is the same as
the control’s ID property. The icon image can be copied to the Windows clip-
board using the CopyFace method. The Images procedure demonstrated below
iterates through the CommandBars collection and writes to a new workbook a
list of control buttons that have a FaceID number. If you’d like to see this proce-
dure in action, enter the code shown below in the ContextMenus Code window
in the Chap19_Excel2019.xlsm workbook and then run it.
 Sub Images()
 Dim i As Integer
 Dim j As Integer
 Dim total As Integer
 Dim buttonId As Integer
 Dim buttonName As String
 Dim myControl As CommandBarControl
 Dim bar As CommandBar

 On Error GoTo ErrorHandler

 Workbooks.Add
 Range("A1").Select
 With ActiveCell
 .Value = "Image"
 .Offset(0, 1) = "Index"
 .Offset(0, 2) = "Name"
 .Offset(0, 3) = "FaceID"
 .Offset(0, 4) = "CommandBar Name (Index)"
 End With

 For j = 1 To Application.CommandBars.Count

 Set bar = CommandBars(j)
 total = bar.Controls.Count

 With bar
 For i = 1 To total
 buttonName = .Controls(i).Caption
 buttonId = .Controls(i).ID

 Set myControl = CommandBars.FindControl(ID:=buttonId)
 myControl.CopyFace ' error could occur here

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 589

 ActiveCell.Offset(1, 0).Select
 Sheets(1).Paste

 With ActiveCell
 .Offset(0, 1).Value = buttonId
 .Offset(0, 2).Value = buttonName
 .Offset(0, 3).Value = myControl.FaceID
 .Offset(0, 4).Value = bar.Name & " (" & j & ")"
 End With
 StartNext:
 Next i
 End With
 Next j

 Columns("A:E").EntireColumn.AutoFit
 Exit Sub
 ErrorHandler:
 Resume StartNext
 End Sub

Because you cannot copy the image of an icon that is currently disabled, Visual
Basic encounters an error when it attempts to copy the button’s face to the clip-
board. The procedure traps this error with the On Error GoTo ErrorHandler
statement. This way, when Visual Basic encounters the error, it will jump to the
ErrorHandler label and execute the instructions below this label. This will ensure
that the problem control button is skipped and the procedure can continue with-
out interruption. A partial result of the procedure is shown in Figure 19.4.

FIGURE 19.4 A list of icon images and their corresponding FaceID values generated by the VBA
procedure.

590 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

A QUICK OVERVIEW OF THE RIBBON INTERFACE

The Ribbon contains the titlebar, the Quick Access toolbar, and the tabs. Each
tab on the Ribbon provides access to features and commands related to a par-
ticular task. For example, you can use the Insert tab to quickly insert tables,
illustrations, charts, links, or text (see Figure 19.5). Related commands within a
tab are organized into groups. This type of organization makes it easy to locate
a particular command.

FIGURE 19.5 The rectangular area at the top of the Microsoft Excel window is called the Ribbon.
Each tab on the Ribbon contains groups of related commands.

Various program commands are displayed as large or small buttons. A large
button denotes a frequently used command, while a small button shows
a specific feature of the main command that you may want to work with.
Some large and small command buttons include drop-down lists of other
specialized commands. For example, the small More Functions button drop-
down in the Function Library group on the Formulas tab contains additional
types of functions you can insert: Statistical, Engineering, Cube, Information,
Compatibility, and Web.

Some controls that you find on the Ribbon do not display commands. In-
stead, they provide a visual clue of the output you might expect when a specific
option is selected. These types of controls are known as galleries. The gallery
control is often used to present various formatting options, such as the margin
settings shown in Figure 19.6.

As mentioned earlier, the commands on the Ribbon tabs are organized into
groups for easy browsing. Some tab groups have dialog box launchers in the
bottom right-hand corner that display a dialog box where you can set several
advanced options at once.

In addition to main Ribbon tabs, there are also contextual tabs that contain
commands that apply to what you are doing. When a particular object is se-
lected, the Ribbon displays a contextual tab that provides commands for work-
ing with that object. For example, when you select an image in a worksheet, the
Ribbon displays a contextual tab called Picture Tools, as shown in Figure 19.7.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 591

Clicking on the Picture Tools tab activates the Format tab that has com-
mands for dealing with a Picture object. The contextual tab disappears when
you cancel the selection of the object. In other words, if you select a different cell
in a worksheet, the Picture Tools tab will be gone.

The tooltips of the controls display the name of the command, the control
keyboard context (where available), and a description of what the command
does (see Figure 19.8).

All Ribbon commands and the Quick Access toolbar can be easily accessed
via the keyboard. Simply press the Alt key on the keyboard to display small box-
es with key tips. Every command has its own access key. For example, to access

FIGURE 19.6 The margin layouts are displayed in a gallery control.

FIGURE 19.7 Contextual tabs will appear when you work with a particular object such as a picture,
PivotTable, or chart.

592 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the File tab, press Alt and then F. Within the menus you will see other key tips
for every command. To view key tips for the commands on a particular tab, first
select the access key for that tab. To remove the key tips, press the Alt key again.
When you are working in command mode (after pressing the Alt key), you can
also use the Tab key and arrow keys to move around the Ribbon.

Now that you’ve reviewed the main features of the Ribbon interface, let’s
look at how you can extend it with your own tabs and controls. The next section
introduces you to Ribbon programming with XML and VBA.

Ribbon Customizations via the User Interface

In addition to customizing the Quick Access Toolbar (QAT), you can create
custom Ribbon tabs and groups by choosing File | Options | Customize Rib-
bon. You can also rename and change the order of the built-in tabs and groups.

RIBBON PROGRAMMING WITH XML AND VBA

The components of the Ribbon user interface can be manipulated program-
matically using Extensible Markup Language (XML) or other programming
languages. All Office applications that use this interface rely on the program-
ming model known as Ribbon extensibility, or RibbonX.

This section introduces you to customizing the Microsoft 2019 Office Flu-
ent user interface (UI) by using XML markup (refer to Chapter 28 for detailed
information on using XML with Excel). While no special tools are required to
perform Ribbon customizations, it is much quicker and easier to work with the

SIDEBAR

FIGURE 19.8 The enhanced tooltips, known as Super ToolTips, provide more information about the
selected command.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 593

Custom UI Editor. Therefore, in the examples that follow, we’ll be using this free
tool to create Ribbon customizations.

Please take a few minutes right now to download and install the Office Cus-
tom UI Editor from: http://openxmldeveloper.org/blog/b/openxmldeveloper/ar-
chive/2006/05/26/customuieditor.aspx

NOTE

Look for the file named OfficeCustomUIEditorSetup.zip. When
you unzip this archive you should get the Windows Installer
Package named OfficeCustomUIEditorSetup.msi. Run this
installation file to get your computer ready for working with
Ribbon customizations in this chapter.

You can find out the names of the Ribbon controls by downloading the
Office Fluent User Interface Control Identifiers from:

http://www.microsoft.com/en-us/download/details.aspx?id=50745

NOTE
The identifier names can also be accessed in the QAT customiza-
tion dialog box. Simply hover over control that interests you and
look at Screen Tip of the control.

Creating the Ribbon Customization XML Markup

To make custom changes to the Ribbon user interface you need to prepare an
XML markup file that specifies all your customizations. The contents of the
XML markup file that we will use in Hands-On 19.4 is shown in Figure 19.9,
and the resulting output appears in Figure 19.10.

FIGURE 19.9 This XML file defines a new tab with two groups for the existing Excel 2019 Ribbon.
This file produces the output shown in Figure 19.10.

594 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 19.10 The custom Favorite tab is based on the custom XML markup file
shown in Figure 19.9.

 Hands-On 19.4 Creating an XML Document with Ribbon
Customizations

This Hands-On and all the remaining Hands-On exercises in this chapter rely
on the Custom UI Editor for Microsoft Office. See the instructions on how to
get and install this free tool in the previous section.

1. Launch Microsoft Office Excel 2019 and create a new workbook. Save this
workbook as Chap19_ModifyRibbon.xlsm in your VBAExcel2019_ByEx-
ample folder. Be sure to save the workbook as Excel-Macro Enabled work-
book (*.xlsm).

2. Close the workbook and exit Excel.
3. Launch the Custom UI Editor for Microsoft Office.
4. Choose File | Open.
5. Select the C:\VBAExcel2019_ByExample\Chap19_ModifyRibbon.xlsm

workbook file you created in Step 1 above and click Open.
6. Choose Insert | Office 2010 Custom UI Part as shown in Figure 19.11. This

creates a CustomUI14.xml file in the workbook.

FIGURE 19.11 Use the Custom UI Editor for Microsoft Office to insert an Office 2010 Custom
UI Part into an Excel 2019 workbook you want to customize. This option works for Ribbon
customizations in Excel 2010–2019. To customize the Ribbon in Excel 2007, you would choose the
Office 2007 Custom UI Part instead.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 595

7. In the right panel, enter the XML Ribbon customization markup as shown
below (see also Figure 19.9 earlier). If you prefer, you can copy the code from
the companion CD. Look for the file named CustomUI14_ver01.txt.
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">
 <ribbon startFromScratch="false">
 <tabs>
 <tab idMso="TabHome">
 <group idMso="GroupStyles" visible="false" />
 </tab>
 <tab id="TabJK1" label="Favorite">
 <group id="GroupJK1" label="SmallApps">
 <button id="btnNotes" label="Notepad" image="Note1"
 size="large"
 onAction="OpenNotepad" screentip="Open Windows
 Notepad"
 supertip="It is recommended that you save your
 notes about this
 worksheet in a simple text file."/>
 <button id="btnCharMap" label="CharMap"
 imageMso="SymbolInsert" size="large"
 onAction="OpenCharmap" />
 </group>
 <group id="GroupJK2" label="Print/Email" >
 <button idMso="FilePrintQuick" size="normal" />
 <button idMso="FileSendAsAttachment" size="normal" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

XML is case sensitive, so make sure you enter the statements exactly as shown
above.

8. Click the Validate button () on the Custom UI Editor Toolbar to verify that
your XML does not contain errors. You should see the message “Custom UI
XML is well formed.” If there are errors, you must correct them to ensure that
the XML is well formed.
At this point, you should have a well-formed CustomUI.xml document
containing Ribbon customizations.
 Let’s go over the XML document content. As you will learn in Chapter 28,
every XML document consists of a number of elements, called nodes. In any
XML document, there must be a root node, or a top-level element. In the

596 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Ribbon customization file, the root tag is <customUI>. The root’s purpose is
to specify the Office RibbonX XML namespace:
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">

Namespaces are used to uniquely identify elements in the XML documents
and avoid name collisions when elements with the same name are combined
in the same document.
If you were to customize the Office 2007 Ribbon, you would use the following
namespace instead:
<customUI xmlns="http://schemas.microsoft.com/office/2006/01/
customui">

The xmlns attribute of the <customUI> tag holds the name of the default
namespace to be used in the Ribbon customization. Notice that the root el-
ement encloses all other elements of this XML document: ribbon, tabs, tab,
group, and button. Each element consists of a beginning and ending tag. For
example, <customUI> is the name of the beginning tag and </customUI> is
the ending tag. The actual Ribbon definition is contained within the <ribbon>
tag:
<ribbon startFromScratch="false">
 [Include xml tags to specify the required ribbon customization]
</ribbon>

The startFromScratch attribute of the <ribbon> tag defines whether you
want to replace the built-in Ribbon with your own (true) or add a new tab to
the existing Ribbon (false).

Hiding the Elements of the Excel User Interface

Setting startFromScratch="true" in the <ribbon> tag will hide the default
Ribbon as well as the contents of the Quick Access toolbar. The File menu will
be left with only three commands: New, Open, and Save.

To create a new tab in the Ribbon, use the <tabs> tag. Each tab element is de-
fined with the <tab> tag. The label attribute of the tab element specifies the
name of your custom tab. The name in the id attribute is used to identify your
custom tab:
<tabs>
<tab id="TabJK1" label="Favorite">

SIDEBAR

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 597

Ribbon tabs contain controls organized in groups. You can define a group for
the controls on your tab with the <group> tag. The example XML markup file
defines the following two groups for the Favorite tab:
<group id="GroupJK1" label="SmallApps">
<group id="GroupJK2" label="Print/Email">

Like the tab node, the group nodes of the XML document also contain the
id and label attributes. Placing controls in groups is easy. The group labeled
SmallApps has two custom button controls, identified by the <button> ele-
ments. The group labeled Print/Email also contains two buttons; however, un-
like the SmallApps group, the buttons placed here are built-in Office system
controls rather than custom controls. You can quickly determine this by look-
ing at the id attribute for the control. Any attribute that ends with “Mso” refers
to a built-in Office item:
<button idMso="FilePrintQuick" size="normal" />

Buttons placed on the Ribbon can be large or small. You can define the size of
the button with the size attribute set to “large” or “normal.” Buttons can have
additional attributes:
<button id="btnNotes" label="Notepad"
image="Note1"
size="large" onAction="OpenNotepad"
screentip="Open Windows Notepad"
supertip="

It is recommended that you save your notes about this worksheet in a simple
text file.
<button id="btnCharMap" label="CharMap"
imageMso="SymbolInsert"
size="large" onAction="OpenCharmap" />

The screentip and supertip attributes allow you to specify the short and
longer text that should appear when the mouse pointer is positioned over the
button.
 The imageMso attribute denotes the name of the existing Office icon. You
can use images provided by any Office application. To provide your own im-
age, use the image attribute as shown in this Hands-On, or use the getImage
attribute in the XML markup (see more information in the section “Creating a
Gallery Control,” later in this chapter).
 The controls that you specify in the XML markup perform their designated
actions via callback procedures. For example, the onAction attribute of a button

598 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

control contains the name of the callback procedure that is executed when the
button is clicked. When that procedure completes, it calls back the Ribbon to
provide the status or modify the Ribbon. You will write the callback proce-
dures for the onAction attribute in Hands-On 19.5.
 Buttons borrowed from the Office system do not require the onAction at-
tribute. When clicked, these buttons will perform their default built-in action.
Before finishing off the XML Ribbon customization document, always make
sure that you have included all the ending tags:
 </tab>
 </tabs>
 </ribbon>
</customUI>

Because our first Ribbon customization calls upon a custom image, let’s add it
to the file.

9. Copy the Images folder from the companion CD to your VBAExcel2019_
ByExample folder.

10. In the Custom UI Editor for Microsoft Office, select CustomUI14.xml in
the left pane and choose Insert | Icons….

11. Change the file filter to show all files in the C:\VBAExcel2019_ByExample\
Images folder, then select Note.gif and click Open.

12. In the left pane of the Custom UI Editor window, click the plus sign next to
the CustomUI.xml file. You should see the Note image. Right-click the image
and choose Change ID. Rename the image to Note1 to match the name of the
image attribute in the XML markup:
<button id="btnNotes" label="Notepad" image="Note1" size="large"
 onAction="OpenNotepad" screentip="Open Windows Notepad"
 supertip="It is recommended that you save your notes about this
 worksheet in a simple text file."/>

13. Choose File | Save and then exit Custom UI Editor.

The first part of the Ribbon customization is now completed. In the next part
you will load the workbook file into Excel and view the custom tab you have just
created. You will also write callback procedures that perform specific actions.

Loading Ribbon Customizations

Hands-On 19.5 walks you through the remaining steps that are necessary in
order to integrate Ribbon customizations into your workbook.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 599

 Hands-On 19.5 Adding VBA Code for Use by the Ribbon
Customizations

1. Open the C:\VBAExcel2019_ByExample\Chap19_ModifyRibbon.xlsm work-
book in Excel 2019. Notice the Favorite tab at the end of the Ribbon (see
Figure 19.10 earlier).

2. Switch to the Visual Basic Editor window and activate VBAProject (Chap19_
ModifyRibbon.xlsm) in the Project Explorer window. Next, choose Insert |
Module to add a new module to the selected project.

3. In the module’s Code window, enter the following procedures:
Public Sub OpenNotepad(ctl As IRibbonControl)
 Shell "Notepad.exe", vbNormalFocus
End Sub

Public Sub OpenCharmap(ctl As IRibbonControl)
 Shell "Charmap.exe", vbNormalFocus
End Sub

OpenNotepad and OpenCharmap are the names of the callback procedures
that were specified in the onAction attribute of the button (see Hands-On
19.4). As mentioned earlier, a callback procedure executes some action and
then notifies the Ribbon that the task has been completed. The onAction call-
back is handled by a VBA procedure. The callback includes the IRibbonCon-
trol parameter, which is the control that was clicked. This control is passed to
your VBA code by the Ribbon.
Sub OpenNotepad(ctl as IRibbonControl)
Sub OpenCharmap(ctl as IRibbonControl)

For VBA to recognize this parameter, you must make sure that the References
dialog box (Tools | References) has a reference to the Microsoft Office 16.0
object library.
 The OpenNotepad and OpenCharmap procedures tell Excel to use the
Shell function to open Windows Notepad or the Charmap application. No-
tice that the program’s executable filename is in double quotes. The second ar-
gument of the Shell function is optional. This argument specifies the window
style, that is, how the program will appear once it is launched. The vbNormal-
Focus constant will open the application in a normal size window with focus.
If the window style is not specified, the program will be minimized with focus
(vbMinimizedFocus).

600 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The IRibbonControl Properties

You can view the properties (Context, Id, and Tag) of the IRibbonControl ob-
ject in the Object Browser. The Context property returns the active window
that contains the Ribbon interface, in this case Microsoft Excel. The Id prop-
erty contains the ID of the control that was clicked. The Tag property can be
used to store additional information with the control. To use this property, you
need to add a tag attribute to the Ribbon customization XML document. By
using the Tag property, you can write a more generic procedure to handle the
callbacks.

4. Switch to the Excel application window and test the Notepad and Charmap
buttons on the Ribbon. These buttons should invoke the built-in Windows
applications.

5. Save and close the Chap19_ModifyRibbon.xlsm workbook. Keep the Excel
application window open. Proceed to Step 6 to make sure that Excel is set up
to display the RibbonX errors.

6. Click File | Options. In the Excel Options dialog box, click the Advanced tab
and scroll down to the General section. Make sure that the Show Add-in User
Interface Errors checkbox is selected and click OK.
When you enable Show Add-in User Interface Errors, Excel will display errors
in your Ribbon customization when you load a workbook that contains errors
in the custom RibbonX code. This is very helpful in the process of debugging.
If you want to successfully use your customized Ribbon interface, you must
make sure that Excel does not find any errors when loading your workbook.

7. Exit Microsoft Excel.

Errors on Loading Ribbon Customizations

If Excel finds any errors in the Ribbon customization markup, it displays an
error message. For example, if the file is missing a matching opening or clos-
ing tag or you typed the name of an attribute in uppercase when lowercase was
expected, you will see a message indicating a line and a column number, and
the name of the attribute where the problem is located (see Figure 19.12). You
should open the workbook file in the Custom UI Editor for Microsoft Office,
find and correct the error, and then try again to open the workbook in Excel.
The error messages will continue to pop up until the entire file is debugged.

Some problems found within the file may cause Excel to generate an error
message about unreadable content and ask you if you want to recover the con-
tents of the workbook. When you click Yes, Excel will try to repair the file and

SIDEBAR

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 601

let you know whether it has succeeded. Sometimes the correction will be made
for you, and other times you will have to locate and fix the problem yourself.

Using Images in Ribbon Customizations

So far in this chapter you have learned how to use built-in and custom images
in your Ribbon customizations. You already know that to reuse an Office icon
you must use the imageMso attribute of a control. You also know that to call your
own BMP, GIF, and JPEG image files you should use the image attribute. Images
can be added to the workbook file by using the Custom UI Editor (see Hands-
On 19.4). You can also load the images at runtime when you open a workbook.
To implement this particular scenario, use the loadImage callback procedure in
the loadImage attribute for the customUI element.
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui" loadImage="OnLoadImage">

The loadImage attribute specifies the following OnLoadImage callback proce-
dure, which needs to be entered in a VBA code module of your Chap19_Modi-
fyRibbon.xlsm workbook:
Public Sub OnLoadImage(imgName As String, ByRef image)
 Dim strImgFileName As String
 strImgFileName = "C:\VBAExcel2019_ByExample\Images\" & imgName
 Set image = LoadPicture(strImgFileName)
End Sub

You can load a picture from a file using the LoadPicture function. This func-
tion is a member of the stdole.StdFunctions library. The library file, which is
called stdole2.tlb, is installed on your computer and is available to your VBA
procedures without setting additional references. The LoadPicture function
returns an object of type IPictureDisp that represents the image. You can view

FIGURE 19.12 Excel displays an error message when it finds an error in the Custom UI XML code of
the workbook file you are attempting to open.

602 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

objects, methods, and properties available in the stdole library by using the
Object Browser in the Visual Basic Editor window.

The following new button control in the CustomUI.xml document has an
image control that specifies the name of the image file:
<button id="btnCalc" label="Calculator"
 image="DownArrow.gif" onAction="OpenCalculator" />

This button, pictured in Figure 19.10 earlier, uses the following callback proce-
dure entered in a VBA code module (Chap19_ModifyRibbon.xlsm):
Public Sub OpenCalculator(ctl As IRibbonControl)
 Shell "Calc.exe", vbNormalFocus
End Sub

The example XML markup can be found the CustomUI14_ver02.txt file on the
companion CD.

NOTE

To update your Chap19_ModifyRibbon.xlsm file, perform the
following steps:

 ● Open the Chap19_ModifyRibbon.xlsm workbook fi le in the
Custom UI Editor (make sure the fi le is not open in Excel
prior to loading it into the Editor application).

 ● Replace the XML markup in the CustomUI.xml part by en-
tering or pasting the existing XML in the right pane with the
new XML markup. Th e new code should replace the code
from the previous example.

 ● Use the Validate icon in the Editor’s toolbar to make sure
that the revised XML is well formed.

 ● Save the fi le and exit the Custom UI Editor.
 ● Open the Chap19_ModifyRibbon.xlsm fi le in Excel to view

Ribbon customizations. You may encounter errors due to
the missing callbacks.

 ● Continue with the explanations in the section below and en-
ter any necessary callback procedures in the VBA module.
Be sure to save the changes in the workbook.

 ● Follow the same steps as you progress through the rest of the
chapter. Whenever you see a revised Ribbon customization
markup, you should enter it in the Custom UI Editor and
then do the callbacks in Excel.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 603

About Tabs, Groups, and Controls

Built-in tabs and groups can be made invisible by setting the visible property
of the <tab> or <group> elements to “false.” A built-in tab can contain a cus-
tom group. Built-in groups can also be added to other built-in or custom tabs.
Some Ribbon tabs, called contextual tabs, appear only when certain objects are
in focus. For example, inserting a table will bring up the Table Tools contextual
tab that contains table-related options. You can add your custom groups to the
built-in contextual tabs using the <tabSet> element within the <contextualT-
abs> element, like this:
 <contextualTabs>
 <tabSet idMso="TabSetTableTools">
 <tab idMso="TabTableToolsDesign">
 <group id="CustomTools">
 <button id="btnID1"/>
 </group>
 </tab>
 </tabSet>
 </contextualTabs>

Using Various Controls in Ribbon Customizations

Now that you know how to go about creating the XML markup for your Ribbon
customizations and applying the custom Ribbon to a workbook, let’s look at
other types of controls you can show in the Ribbon.

Creating Toggle Buttons

A toggle button is a button that alternates between two states. Many formatting
features such as Bold, Italic, or Format Painter are implemented as toggle but-
tons. When you click a toggle button, the button will stay down until you click
it again. To create a toggle button, use the <toggleButton> XML tag as shown
below:
<group id="GroupJK3" label="Various Controls">
 <toggleButton id="tglR1C1" label="Reference Style" size="normal"
 getPressed="onGetPressed" onAction="SwitchRefStyle" />
</group>

You will find the above Ribbon customization in the CustomUI14_ver03.txt
file on the companion CD. You can add a built-in image to the toggle button
with the imageMso attribute or use a custom image as discussed earlier in this
chapter. To find out whether or not the toggle button is pressed, include the

604 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

getPressed attribute in your XML markup. The getPressed callback procedure
provides two arguments: the control that was clicked and the pressed state of
the toggle button.
 Sub onGetPressed(control As IRibbonControl, ByRef pressed)
 If control.ID = "tglR1C1" Then
 pressed = False
 End If
 End Sub

The previous callback procedure entered in a VBA code module of the Chap19_
ModifyRibbon.xlsm workbook will ensure that the specified toggle button is
not pressed when the Ribbon is loaded.

To perform an action when the toggle button is clicked, set the onAction
attribute to the name of your custom callback procedure. This callback also pro-
vides two arguments: the control that was clicked and the state of the toggle but-
ton. The code below should be added to the VBA code module of the Chap19_
ModifyRibbon.xlsm workbook:
Sub SwitchRefStyle(control As IRibbonControl, _
 pressed As Boolean)
 If pressed Then
 Application.ReferenceStyle = xlR1C1
 Else
 Application.ReferenceStyle = xlA1
 End If
End Sub

If the toggle button is pressed, the value of the pressed argument will be True;
otherwise, it will be False. Figure 19.13 in the next section shows a custom tog-
gle button named Reference Style. When you click this button, the worksheet
headings change to display letters or numbers. For more information on using
R1C1 style references instead of A1 style, see the online help.

Creating Split Buttons, Menus, and Submenus

A split button is a combination of a button or toggle button and a menu. Click-
ing the button performs one default action, and clicking the drop-down arrow
opens a menu with a list of related options to select from. To create the split but-
ton, use the <splitButton> tag. Within this tag, you need to define a <button>
or a <toggleButton> control and the <menu> control, as shown in the following
XML markup:

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 605

<splitButton id="btnSplit1" size="large">
 <button id="btnGoTo" label="Navigate To..." imageMso="GoTo" />
 <menu id="mnuGoTo" label="Spreadsheet Navigation"
 itemSize="normal">
 <menuSeparator id="mnuDiv1" title="Formulas and Constants" />
 <button id="btnFormulas" label="Select Formulas"
 onAction="GoToSpecial" />
 <button id="btnNumbers" label="Select Numbers Only"
 onAction="GoToSpecial" />
 <button id="btnText" label="Select Text Only"
 onAction="GoToSpecial" />
 <menuSeparator id="mnuDiv2" title="Special Cells" />
 <button id="btnBlanks" label="Select blank cells"
 onAction="GoToSpecial" />
 <button id="btnLast" label="Select last cell"
 onAction="GoToSpecial" />
 </menu>
</splitButton>

You will find the above Ribbon customization in the CustomUI14_ver04.txt file
on the companion CD. You can specify the size of the items in the menu with
the itemSize attribute. The <menuSeparator> tag can be used inside the menu
node to break the menu into sections. Each menu segment can then be titled
using the title attribute, as shown in the previous example. You can add the
onAction attribute to each menu button to specify the callback procedure or
macro to execute when the menu item is clicked. The above XML markup uses
the following callback procedure entered in a VBA code module of the Chap19_
ModifyRibbon.xlsm workbook:

 Sub GoToSpecial(control As IRibbonControl)
 On Error Resume Next
 Range("A1").Select

 If control.id = "btnFormulas" Then
 Selection.SpecialCells(xlCellTypeFormulas, 23).Select
 ElseIf control.id = "btnNumbers" Then
 Selection.SpecialCells(xlCellTypeConstants, 1).Select
 ElseIf control.id = "btnText" Then
 Selection.SpecialCells(xlCellTypeConstants, 2).Select
 ElseIf control.id = "btnBlanks" Then
 Selection.SpecialCells(xlCellTypeBlanks).Select
 ElseIf control.id = "btnLast" Then
 Selection.SpecialCells(xlCellTypeLastCell).Select
 End If
 End Sub

606 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In addition to button controls, menus can contain toggle buttons, checkboxes,
gallery controls, split buttons, and other menus.

FIGURE 19.13 A toggle button (Reference Style) and a custom split button control (Navigate To)
with a menu.

Creating Checkboxes

The checkbox control is used to show the state—either true (on) or false (off). It
can be included inside a menu control or used as a separate control on the Ribbon.
To create a checkbox, use the <checkBox> tag, as shown in the following XML:
<separator id="OtherControlsDiv1" />
<labelControl id="TitleForBox1"
label="Show or Hide Screen Elements" />
<box id="boxLayout1">
<checkBox id="chkGridlines"
label="Gridlines" visible="true"
getPressed="onGetPressed"
onAction="DoSomething" />
<checkBox id="chkFormulaBar"
label="Formula Bar" visible="true"
getPressed="onGetPressed"
onAction="DoSomething" />
</box>

You will find the previous Ribbon customization in the CustomUI14_ver05.
txt file on the companion CD. In the above XML markup, the <separator> tag
will produce the vertical bar that visually separates controls within the same
Ribbon group (see Figure 19.14). The <labelControl> tag can be used to display
static text anywhere in the Ribbon. In this example, we use it to place a header
over a set of controls. To control the layout of various controls (to display them
horizontally instead of vertically), use the <box> tag. You can define whether a
checkbox should be visible or hidden by setting the visible attribute to true or
false. To disable a checkbox, set the enabled attribute to false; this will cause the
checkbox to appear grayed out.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 607

To get the checked state for a checkbox, add a callback procedure in the VBA
Code window of the Chap19_ModifyRibbon.xlsm workbook. You can modify
the onGetPressed procedure that we used earlier with the toggle button:
 Sub onGetPressed(control As IRibbonControl, ByRef pressed)
 If control.id = "tglR1C1" Then
 pressed = False
 End If

 If control.id = "chkGridlines" And _
 ActiveWindow.DisplayGridlines = True Then
 pressed = True
 ElseIf control.id = "chkGridlines" And _
 ActiveWindow.DisplayGridlines = False Then
 pressed = False
 End If

 If control.id = "chkFormulaBar" And _
 Application.DisplayFormulaBar = True Then
 pressed = True
 ElseIf control.id = "chkFormulaBar" And _
 Application.DisplayFormulaBar = False Then
 pressed = False
 End If
 End Sub

The action of the checkbox control is handled by the callback procedure in the
onAction attribute. To make this checkbox example work, you need to enter the
following procedure in a VBA code module of the Chap19_ModifyRibbon.xlsm
workbook:
 Sub DoSomething(ctl As IRibbonControl, pressed As Boolean)
 If ctl.id = "chkGridlines" And pressed Then
 ActiveWindow.DisplayGridlines = True
 ElseIf ctl.id = "chkGridlines" And Not pressed Then
 ActiveWindow.DisplayGridlines = False
 ElseIf ctl.id = "chkFormulaBar" And pressed Then
 Application.DisplayFormulaBar = True
 ElseIf ctl.id = "chkFormulaBar" And Not pressed Then
 Application.DisplayFormulaBar = False
 End If
 End Sub

Similar to other controls, labels for checkboxes can contain static text in the
label attribute as shown in the above XML, or they can be assigned dynami-
cally using the callback procedure in the getLabel attribute.

608 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE
Callback procedures don’t need to be named the same as the at-
tribute they are used with. Also, you may change the callback’s
argument names as desired.

FIGURE 19.14 The checkbox controls (Gridlines and Formula Bar) are laid out horizontally.

Creating Edit Boxes

Use the <editBox> tag to provide an area on the Ribbon where users can type
text or numbers:
<editBox id="txtFullName" label="First and Last Name:"
 sizeString="AAAAAAAAAAAAAAAA" maxLength="25"
 onChange="onFullNameChange" />

You will find the above Ribbon customization in the CustomUI14_ver06.txt file
on the companion CD. The sizeString attribute specifies the width of the edit
box. Set it to a string that will give you the width you want. The maxLength
attribute allows you to limit the number of characters and/or digits that can
be typed in the edit box. If the text entered exceeds the specified number of
characters (25 in this case), Excel automatically displays a balloon message on
the Ribbon: “The entry may contain no more than 25 characters.” When the
entry is updated in an edit box control, the callback procedure specified in the
onChange attribute is called:
Public Sub onFullNameChange(ctl As IRibbonControl, _
 text As String)
 If text <> "" Then
 MsgBox "You've entered '" & text & _
 "' in the edit box."
 End If
End Sub

Enter the above procedure in the VBA code module of the Chap19_ModifyRib-
bon.xlsm workbook. When the user enters text in the edit box, the procedure
will display a message box. The edit box control is shown in Figure 19.15.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 609

FIGURE 19.15 An edit box control allows data entry directly on the Ribbon.

Creating Combo Boxes and Drop-Downs

There are three types of drop-down controls that can be placed on the Ribbon:
combo box, drop-down, and gallery.

These controls can be dynamically populated at runtime by writing callbacks
for their getItemCount, getItemID, getItemLabel, getItemImage, getItem-
Screentip, or getItemSupertip attributes. The combo box and drop-down
controls can also be made static by defining their drop-down content using the
<item> tag, as shown below:
<separator id="OtherControlsDiv2" />
 <comboBox id="cboDepartment" label="Departments"
 supertip="Select Department" onChange="onChangeDept">
 <item id="Marketing" label="Marketing" />
 <item id="Sales" label="Sales" />
 <item id="Personnel" label="Personnel" />
 <item id="ResearchAndDevelopment" label="Research and
 Development" />
 </comboBox>

You will find the combo box Ribbon customization in the CustomUI14_ver07.
txt file on the companion CD. To separate the combo box control from other
controls in the same Ribbon group, the previous example uses the <separator>
tag. Notice that each <item> tag specifies a new drop-down row.

NOTE

A combo box is a combination of a drop-down list and a single-
line edit box, allowing the user to either type a value directly into
the control or choose from the list of predefined options. Use the
sizeString attribute to define the width of the edit box.

610 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The combo box control does not have the onAction attribute. It uses the
onChange attribute that specifies the callback to execute when the item selection
changes:

 Public Sub onChangeDept(ctl As IRibbonControl, text As String)
 MsgBox "You selected " & text & " department."
 End Sub

Notice that the onChange callback provides only the text of the selected item; it
does not give you access to the selected index. If you need the index of the selec-
tion, use the drop-down control instead, as shown below:
 <dropDown id="drpBoro" label="City Borough"
 supertip="Select City Borough"
 onAction="onActionBoro">
 <item id="M" label="Manhattan" />
 <item id="B" label="Brooklyn" />
 <item id="Q" label="Queens" />
 <item id="I" label="Staten Island" />
 <item id="X" label="Bronx" />
 </dropDown>

You will also find the dropDown Ribbon customization in the CustomUI14_
ver8.txt file on the companion CD.

The onAction callback of the drop-down control will give you both the se-
lected item’s ID and its index:
 Public Sub onActionBoro(ctl As IRibbonControl, _
 ByRef SelectedID As String, _
 ByRef SelectedIndex As Integer)
 MsgBox "Index=" & SelectedIndex & " ID=" & SelectedID
 End Sub

Be sure to enter the above callback procedures in the VBA code module of the
Chap19_ModifyRibbon.xlsm workbook. The combo box and a drop-down
control are shown in Figures 19.16 and 19.17.

FIGURE 19.16 A combo box with a list of departments.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 611

FIGURE 19.17 The City Borough combo box on the Ribbon lists the New York City boroughs.

Creating a Gallery Control

A gallery control is a drop-down control that can display a grid of images with
or without a label. Built-in galleries cannot be customized, but you can build
your own using the <gallery> tag. The following XML markup dynamically
populates a custom gallery control at runtime:
<gallery id="glHolidays" label="Holidays" columns="3" rows="4"
 getImage="onGetImage" getItemCount="onGetItemCount"
 getItemLabel="onGetItemLabel" getItemImage="onGetItemImage"
 getItemID="onGetItemID" onAction="onSelectedItem" />

You will find the Holidays gallery Ribbon customization in the CustomUI14_
ver09.txt file on the companion CD. In the above XML markup, the gallery
control will perform the action specified in the onSelectedItem callback pro-
cedure. Notice that the gallery control has many attributes that contain static
text or define callbacks. We will discuss them later. Right now, let’s focus on the
image loading process. The gallery control uses the getImage attribute with
the OnGetImage callback procedure. This procedure entered in the VBA code
module of the Chap19_ModifyRibbon.xlsm workbook will tell Excel to load the
appropriate image to the Ribbon:
 Public Sub onGetImage(ctl As IRibbonControl, ByRef image)
 Select Case ctl.ID
 Case "glHolidays"
 Set image = LoadPicture(_
 "C:\VBAExcel2019_ByExample\Images\Square0.gif")
 End Select
 End Sub

Notice that the decision as to which image should be loaded is based on the ID
of the control in the Select Case statement. The gallery control also uses the
OnGetItemImage callback procedure (defined in the getItemImage attribute)
to load custom images for its drop-down selection list (see Figure 19.18). Use
the columns and rows attributes to specify the number of columns and rows

612 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

in the gallery when it is opened. If you need to define the height and width of
images in the gallery, use the itemHeight and itemWidth attributes (not used
in this example due to the simplicity of the utilized images). The getItemCount
and getItemLabel attributes contain callback procedures that provide infor-
mation to the Ribbon on how many items should appear in the drop-down list
and the names of those items. The getItemImage attribute contains a callback
procedure that specifies the images to be displayed next to each gallery item.
The getItemID attribute specifies the onGetItemID callback procedure that will
provide a unique ID for each of the gallery items.

Now let’s go over other VBA callbacks that are used by the gallery control. All
the VBA procedures in this section need to be added to the VBA module for the
previous XML markup to work:

 Public Sub onGetItemCount(ctl As IRibbonControl, ByRef count)
 count = 12
 End Sub

In the previous procedure, we use the count parameter to return to the Ribbon
the number of items we want to have in the gallery control.

 Public Sub onGetItemLabel(ctl As IRibbonControl, _
 index As Integer, ByRef label)
 label = MonthName(index + 1)
 End Sub

The above procedure will label each of the gallery items. The VBA MonthName
function is used to retrieve the name of the month based on the value of the
index. The initial value of the index is zero (0). Therefore, index + 1 will return
January. To display an abbreviated form of the month’s name (Jan, Feb, etc.),
specify True as the second parameter to this function:

label = MonthName(index + 1, True)

If you are using a localized version of Microsoft Office (French, Spanish, etc.),
the MonthName function will return the name of the month in the specified
interface language.

The next callback procedure shows how to load images for each gallery item:
 Public Sub onGetItemImage(ctl As IRibbonControl, _
 index As Integer, ByRef image)
 Dim imgPath As String

 imgPath = "C:\VBAExcel2019_ByExample\Images\square"
 Set image = LoadPicture(imgPath & index + 1 & ".gif")
 End Sub

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 613

Each item in the gallery must have a unique ID, so the onGetItemID callback
uses the MonthName function to use the month name as the ID:
 Public Sub onGetItemID(ctl As IRibbonControl, _
 index As Integer, ByRef id)
 id = MonthName(index + 1)
 End Sub

The last procedure you need to write for the Holidays gallery control should
define the actions to be performed when an item in the gallery is clicked. This is
done via the following onSelectedItem callback that was specified in the onAc-
tion attribute of the XML markup:
Public Sub onSelectedItem _
 (ctl As IRibbonControl, _
 selectedId As String, _
 selectedIndex As Integer)

 Select Case selectedIndex
 Case 6
 MsgBox "Holiday 1: " & _
 "Independence Day, July 4th", _
 vbInformation + vbOKOnly, _
 selectedId & " Holidays"
 Case 11
 MsgBox "Holiday 1: " & _
 "Christmas Day, December 25th", _
 vbInformation + vbOKOnly, _
 selectedId & " Holidays"
 Case Else
 MsgBox "Please program " & _
 "holidays for " & _
 selectedId & ".", _
 vbInformation + vbOKOnly, _
 " Under Construction"
 End Select
End Sub

In the previous callback procedure, the selectedId parameter returns the
name that was assigned to the label, while the selectedIndex parameter is the
position of the item in the list. The first item in the list (January) is indexed with
zero (0), the second one with 1, and so forth. In the previous procedure we have
just coded two holidays: one for the month of July (selectedIndex=6) and one
for December (selectedIndex=11). The Case Else clause in the Select Case
statement provides a message when other months are selected.

614 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 19.18 Customized Ribbon with the gallery control.

Creating a Dialog Box Launcher

On some Ribbon tabs you can see a small dialog box launcher button at the
bottom-right corner of a group. You can use this button to open a special form
that allows the user to set up many options at once, or you can display a form
that contains specific information. To add a custom dialog box launcher button
to the Ribbon, use the <dialogBoxLauncher> tag, as shown below:
<dialogBoxLauncher>
 <button id="Launch1" screentip="Show Auto Correct Dialog"
 onAction="onActionLaunch" />
</dialogBoxLauncher>

You will find the dialogBoxLauncher Ribbon customization in the Cus-
tomUI14_ver10.txt file on the companion CD. The dialog box launcher control
must contain a button. The onAction attribute for the button contains the call-
back procedure that will execute when the button is clicked:
 Public Sub onActionLaunch(ctl As IRibbonControl)
 Application.Dialogs(xlDialogAutoCorrect).Show
 End Sub

The dialog box launcher control must appear as the last element within the con-
taining group element.

FIGURE 19.19 A dialog box launcher control on the Ribbon.

Disabling a Control

You can disable a built-in or custom Ribbon control by using the enabled or
getEnabled attribute. The following XML markup uses the enabled attribute
to disable our custom checkbox control that we created earlier:

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 615

 <checkBox id="chkGridlines" label="Gridlines" visible="true"
 getPressed="onGetPressed" enabled="false"
 onAction="DoSomething" />

You can use the getEnabled attribute to disable a control based on some condi-
tions. For example, the following XML markup uses the getEnabled attribute
to disable the custom checkbox control named Formula Bar when Sheet3 is acti-
vated:
<checkBox id="chkFormulaBar" label="Formula Bar" visible="true"
 getPressed="onGetPressed" getEnabled="onGetEnabled"
 onAction="DoSomething" />

You will find the previous Ribbon customizations for checkboxes in the Cus-
tomUI14_ver11.txt file on the companion CD.

The checkbox customization requires the following variable declaration at
the top of the VBA module and a callback procedure in the module body:
Public blnEnabled As Boolean
Public Sub onGetEnabled _
(ctl As IRibbonControl, ByRef returnedVal)
 returnedVal = blnEnabled
End Sub

In addition to the previous procedure, you will need to implement the proce-
dures and markup as explained in the “Refreshing the Ribbon” section later in
this chapter.

The Sheet3 Code window of the Chap19_Ribbon.xlsm workbook should
contain the following two event procedures and the declaration at the top of
the VBA module (You may need to add the necessary sheets to the workbook):
' enter the declaration at the top of
' the Module1 code window
Public objRibbon As IRibbonUI

' enter these two procedures in Sheet3 code window
 Private Sub Worksheet_Activate()
 blnEnabled = False
 objRibbon.Invalidate
 MsgBox "Formula bar checkmark is disabled in this sheet
only."
 End Sub

 Private Sub Worksheet_Deactivate()
 blnEnabled = True
 objRibbon.Invalidate
 End Sub

616 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can use a callback procedure to display a “not authorized” message when a
Ribbon control is selected. The following XML code shows how to disable the
built-in Name Manager button on the Ribbon’s Formulas tab:
<!-- Built-in commands section -->
<commands>
 <command idMso="NameManager" onAction="DisableNameManager" />
</commands>

You will also find the NameManager command Ribbon customization in the
CustomUI14_ver12.txt file on the companion CD.

To make your XML code more readable, you can include comments between
the <!-- and --> characters. The <command> tag can be used to refer to any
built-in command. This tag must appear in the <commands> section of the
XML code. To see how this works, simply add the above code fragment to the
XML code shown in the previous section just before the line:
<ribbon startFromScratch="false">

The onAction attribute contains the following callback procedure that will dis-
play a message when the Name Manager button is clicked:
Sub DisableNameManager _
(ctl As IRibbonControl, ByRef cancelDefault)
 MsgBox "You are not authorized to " & _
 "use this function."
 cancelDefault = True
End Sub

You can add more code to the above procedure if you need to cancel the control’s
default behavior only when certain conditions have been satisfied. To ensure
that the Ribbon customization introduced in this section works, be sure to enter
all of the procedures in the VBA code module of the Chap19_ModifyRibbon.
xlsm workbook.

Repurposing a Built-In Control

It is possible to change the purpose of a built-in Ribbon button. For example,
when the user clicks the Picture button on the Insert tab when Sheet1 is active,
you could display a Copy Picture dialog box instead of the default Insert Picture
dialog box. To try this out, you need to add the following XML markup to your
xml document (CustomUI14.xml):
<command idMso="PictureInsertFromFile" onAction="CopyPicture" />

You will find the previous Ribbon customization in the CustomUI14_ver13.txt
file on the companion CD.

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 617

The onAction attribute requires the following callback procedure in a VBA
code module of the Chap19_ModifyRibbon.xlsm workbook:
 Public Sub CopyPicture(ctl As IRibbonControl, _
 ByRef cancelDefault)
 If ActiveSheet.Name = "Sheet1" Then
 ' display the CopyPicture dialog box instead
 Application.Dialogs(xlDialogCopyPicture).Show
 Else
 cancelDefault = False
 End If
 End Sub

Only simple controls that perform an action when clicked can be repurposed.
You cannot repurpose advanced controls such as combo boxes, drop-downs, or
galleries.

Refreshing the Ribbon

So far in this chapter you’ve seen how to use callback procedures to specify the
values of control attributes at runtime. But what if you need to update your
custom Ribbon or the controls placed in the Ribbon based on what the user is
doing in your application? The good news is that you can change the attribute
values at any time by using the InvalidateControl method of the IRibbonUI
object. To use this object, start by adding the onLoad attribute to the customUI
element in your Ribbon customization XML:
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
 customui"
 loadImage="OnLoadImage" onLoad="RefreshMe">

You will find the above Ribbon customization in the CustomUI14_ver14.txt file
on the companion CD.

NOTE

When you open the Chap19_ModifyRibbon.xlsm workbook with
the previous customization in Excel, you will get errors because of
the missing procedures. Simply click OK to the error messages and
then switch to the VBA window and enter the code as explained
further in this section.

The onLoad attribute points to the callback procedure that will give you a copy
of the Ribbon that you can use to refresh anytime you want. In this example, the
onLoad callback procedure name is RefreshMe. Let’s say that upon entry you
want the text of the edit box to appear in uppercase. Implementing the onLoad

618 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

callback requires the Public module-level variable of type IRibbonUI declared
earlier at the top of the VBA code module of the Chap19_ModifyRibbon.xlsm
workbook:

Public objRibbon As IRibbonUI

To keep track of the state of the edit box control, declare a Private module-level
variable:

Private strUserTxt As String

Next, enter the callback procedure that will store a copy of the Ribbon in the
objRibbon variable:
 'callback for the onLoad attribute of customUI
 Public Sub RefreshMe(ribbon As IRibbonUI)
 Set objRibbon = ribbon
 End Sub

When the Ribbon loads, you will have a copy of the IRibbonUI object saved for
later use. Now let’s take a look at the XML markup used in this scenario:
<editBox id="txtFullName" label="First and Last Name:"
 sizeString="AAAAAAAAAAAAAAAAAA" maxLength="25"
 getText="getEditBoxText" onChange="onFullNameChangeToUcase" />

You will find the editBox Ribbon customization in the CustomUI14_ver15.txt
file on the companion CD.

This edit box control was introduced earlier in this chapter (see Figure
19.17). You need to modify the original XML markup for the edit box by adding
the getText attribute, which points to the following callback:
Public Sub getEditBoxText(control As IRibbonControl, ByRef text)
 text = UCase(strUserTxt)
End Sub

The above callback uses the VBA built-in UCase function to change the text that
the user entered in the edit box to uppercase letters. When text is updated in the
edit box, the procedure in the onChange attribute is called (be sure to change the
procedure name in your original XML markup):
Public Sub onFullNameChangeToUcase _
 (ByVal control As IRibbonControl, _
 text As String)
 If text <> "" Then
 strUserTxt = text

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 619

 objRibbon.InvalidateControl "txtFullName"
 End If
End Sub

The above callback begins by checking the value of the text parameter provided
by the Ribbon. If this parameter contains a value other than an empty string (“”),
the text the user entered is stored in the strUserTxt variable. Before a change
can occur in the Ribbon control, you need to mark the control as invalid. This is
done by calling the InvalidateControl method of the IRibbonUI object that
we have stored in the objRibbon variable:

 objRibbon.InvalidateControl "txtFullName"

The above statement will tell the txtFullName control to refresh itself the next
time it is displayed. When the control is invalidated, it will automatically call its
callback functions. The onFullNameChangeToUcase callback procedure in the
onChange attribute will execute, causing the text entered in the txtFullName edit
box control to appear in uppercase letters.

NOTE

The IRibbonUI object has only two methods: InvalidateCon-
trol and Invalidate. Use the InvalidateControl method to
refresh an individual control. Use the Invalidate method to re-
fresh all controls in the Ribbon.

NOTE

If you find that some controls on the Favorite tab don’t behave as
programmed, make sure that the top of the VBA module contains
the following three module-level variables and the RefreshMe
procedure:

 Public objRibbon As IRibbonUI
 Private strUserTxt As String
 Public blnEnabled As Boolean

 'callback for the onLoad attribute of customUI
 Public Sub RefreshMe(ribbon As IRibbonUI)
 Set objRibbon = ribbon
 End Sub

Reload the Chap19_ModifyRibbon.xlsm workbook and check if
the problem was resolved.

The CommandBar Object and the Ribbon

You can make your custom Ribbon button match any built-in button by using the
CommandBar object. This object has been extended with several get methods

620 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

that expose the state information for the built-in controls: GetEnabledMso,
GetImageMso, GetLabelMso, GetPressedMso, GetScreentipMso, GetSuper-
tipMso, and GetVisibleMso. Use these methods in your callbacks to check the
built-in control’s properties. For example, the following statement will return
False if the Ribbon’s built-in Cut button is currently disabled (grayed out) or
True if it is enabled (ready to use):

MsgBox Application.CommandBars.GetEnabledMso("Cut")

Notice that the GetEnabledMso method requires that you provide the name of
the built-in control. To see the result of the above statement, simply type it in the
Immediate window and press Enter.

The GetImageMso method is very useful if you’d like to reuse any of the built-
in button images in your own controls. This method allows you to get the bit-
map for any imageMso tag. For example, to retrieve the bitmap associated with
the Cut button on the Ribbon, enter the following statement in the Immediate
window:

MsgBox Application.CommandBars.GetImageMso("Cut", 16, 16)

The previous GetImageMso method uses three arguments: the name of the built-
in control, and the width and height of the bitmap image in pixels. Because this
method returns the IPictureDisp object, it is very easy to place the retrieved
bitmap onto your own custom Ribbon control by writing a simple VBA callback
for your control’s getImage attribute.

In addition to the methods that provide information about the properties of
the built-in controls, the CommandBar object also includes a handy ExecuteM-
so method that can be used to trigger the built-in control’s default action. This
method is quite useful when you want to perform a click operation for the user
from within a VBA procedure or want to conditionally run a built-in feature.

Let’s take a look at the example implementation of the GetImageMso and
ExecuteMso methods. Here’s the XML definition for a custom Ribbon button:
<button id="btnWordWizard" label="Use Thesaurus" size="normal"
 getImage="onGetBitmap" onAction="DoDefaultPlus" />

You will find the above Ribbon customization in the CustomUI14_ver16.txt file
on the companion CD. This XML code can be added to the custom Ribbon defi-
nition you’ve worked with in this chapter. Now let’s look at the VBA part. You
want the button to use the same image as the built-in button labeled Research-
Pane. When the button is clicked, you’d like to display the built-in Research
pane set to Thesaurus only when a certain condition is true. Here is the code
you need to add to your VBA module:

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 621

Sub onGetBitmap(ctl As IRibbonControl, ByRef image)
 Set image = Application.CommandBars.
 GetImageMso("ResearchPane", 16, 16)
End Sub

When the Ribbon is loaded, the onGetBitmap callback automatically retrieves
the image bitmap from the ResearchPane button’s imageMso attribute and
assigns it to the getImage attribute of your button. When your button is clicked
and the active cell contains a text entry, the Thesaurus opens up in the Research
pane; if the active cell is empty or it contains a number, the user will see a mes-
sage box:
Sub DoDefaultPlus(ctl As IRibbonControl)
 If Not IsNumeric(ActiveCell.Value) Then
 Application.CommandBars.ExecuteMso "Thesaurus"
 Else
 MsgBox "To use Thesaurus, select a cell " & _
 "containing text.", vbOKOnly + vbInformation,
 "Action Required"
 End If
End Sub

Be sure to enter the above procedures in the VBA code module of the Chap19_
ModifyRibbon.xlsm workbook. Figure 19.20 shows the Thesaurus button in the
Various Controls group of the Favorite tab.

FIGURE 19.20 A custom button can conditionally trigger a built-in control’s action.

622 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Tab Activation and Group Auto-Scaling

Tab activation makes it possible to activate a specific tab in response to some
event.

To activate a custom tab on the Excel Ribbon, use the ActivateTab method
of the IRibbonUI object passing to it the ID of the custom string. For example,
to activate the Favorite tab you created in this chapter, use the following state-
ment:

objRibbon.ActivateTab "TabJK1"

Recall that objRibbon is the module-level Public variable we declared earlier for
accessing the IRibbonUI object.

To activate a built-in tab, use the ActivateTabMso method. For example, the
following statement activates the Data tab:

objRibbon.ActivateTabMso "TabData"

Finally, there is also a special ActivateTabQ method used to activate a tab
shared between multiple add-ins. In addition to the tabID, this method requires
that you specify the namespace of the add-in. The syntax is shown below:

expression.ActivateTabQ(tabID As String, namespace as String
where expression returns an IRibbonUI object.

Keep in mind that tab activation applies only to tabs that are visible.
Group auto-scaling enables custom Ribbon groups to change their layout

when the user resizes the window (see Figure 19.21).

FIGURE 19.21 The commands in the Various Controls group are compressed to a single button
when the Excel application window is made smaller. To change the icon that appears when the group is
compressed, assign an image to the group itself.

You can enable auto-scaling by setting the autoScale attribute of the <group>
tab to true as in the following:

<group id="GroupJK3" label="Various Controls" autoScale="true">

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 623

You will find the above Ribbon customization in the CustomUI14_ver17.txt
file on the companion CD. Notice that the value of the autoScale attribute is
entered in lowercase. Auto-scaling is set on a per-group basis.

The completed workbook file with all Ribbon customizations that have been
added up to this point can be found in the Chap19_RibbonCustomization1.
xlsm workbook in your VBAExcel2019_ByExample folder.

CUSTOMIZING THE BACKSTAGE VIEW

The File tab provides an entry point to the Office UI known as Backstage View.
This view is specifically designed for working with workbooks. It contains com-
mands known as Fast commands that provide quick access to common func-
tionality such as saving, opening, or closing workbooks. Here you also find the
Exit command for exiting Microsoft Excel and the Options command for cus-
tomizing numerous Excel features. In addition to Fast commands, the naviga-
tion bar on the left-hand side of the Backstage View includes several tabs that
group related tasks. For example, clicking the Print tab in the navigation bar
displays all the information related to the installed printers and allows you to
easily access and change many of the print settings. A large area in the Print
Backstage is used for the presentation of the workbook’s Print Preview. The Info
tab organizes tasks related to workbook permissions, versions, file sharing, and
numerous other workbook properties.

As an Excel developer already familiar with Ribbon UI customization, you
will feel very comfortable customizing the Backstage View. Like the Ribbon, the
Backstage View uses XML markup that you can add to the workbook file by us-
ing the Custom UI Editor.

The Backstage View is a perfect place to include custom solutions that pres-
ent summaries of business processes or workflows (see the sidebar with links to
Microsoft documents that will walk you through the process of customizing the
Office 2019 Backstage View). In this section you’ll do a couple of simple things
in the Backstage View to get your feet wet so that you can later move on to more
advanced customizations with the downloads recommended in the sidebar.

Backstage View Development

For an advanced introduction to the Backstage View, you may want to down-
load the following Microsoft papers (note that 2010 versions of these docs are
still applicable to the current 2019 version):

SIDEBAR

624 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Customizing the Office 2010 Backstage View for Developers from
http://msdn.microsoft.com/en-us/library/ee815851(printer).aspx
Dynamically Changing the Visibility of Groups and Controls in the Office
2010 Backstage View
http://msdn.microsoft.com/en-us/library/ff645396(printer).aspx

The Backstage View XML markup should be entered between <backstage></
backstage> elements within the <customui></customui> tags and below any
Ribbon customization markup. The following XML markup adds a custom but-
ton named Synchronize and a custom tab named Endless Possibilities to the
Backstage View:

<backstage>
 <button id="btnSync" label="Synchronize" imageMso="SyncNow"
 isDefinitive="true"
 insertBeforeMso="FileClose" onAction="onActionCopyToArchive" />
 <tab id="mySpecialTab" label="Endless Possibilities"
 insertAfterMso="TabRecent">
 <firstColumn>
 <group id="grp01" label="Home Group" helperText="This is
 group 1 help text">
 <topItems>
 <button id="myButton1" label="My button" />
 </topItems>
 </group>
 <group id="gr02" label="Cheat Sheet">
 <topItems>
 <button id="myButton2" label="Cheat Ideas" />
 </topItems>
 <bottomItems>
 <layoutContainer id="set1"
 layoutChildren="horizontal" >
 <editBox id="item1" label="Cheat Item 1" />
 <editBox id="item2" label="Cheat Item 2" />
 </layoutContainer>
 </bottomItems>
 </group>
 </firstColumn>
 <secondColumn>
 <group id="grpHyperlinks" label="Frequently Accessed
 Websites" visible="true">
 <primaryItem>
 <button id="top1" label="Primary Button"
 imageMso="HyperlinkProperties" />

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 625

 </primaryItem>
 <topItems>
 <button id="msft" label="Microsoft"
 onAction="onActionExecHyperlink" />
 <layoutContainer id="set2" layoutChildren="vertical" >
 <hyperlink id="YouTube" label="http://www.YouTube.com"
 onAction="onActionExecHyperlink" />
 <hyperlink id="amazon" label="http://www.amazon.com"
 onAction="onActionExecHyperlink" />
 <hyperlink id="merc" label="http:
 //www.merclearning.com"
 onAction="onActionExecHyperlink" />
 </layoutContainer>
 </topItems>
 </group>
 </secondColumn>
 </tab>
</backstage>

You will find the previous Backstage View customization in the CustomUI14_
ver18.txt file on the companion CD. The resulting Backstage customization is
shown in Figure 19.22.

FIGURE 19.22 The Backstage View is highly customizable. The Synchronize button and the Endless
Possibilities tab were created by adding some XML markup into the Ribbon customization file.

In the previous example XML markup, the <button> element is used to incor-
porate into the Backstage View navigation bar a custom command labeled Syn-
chronize:

626 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

<button id="btnSync" label="Synchronize" imageMso="SyncNow"
 isDefinitive="true"

 insertBeforeMso="FileClose" onAction="onActionCopyToArchive" />

The <button> element contains the isDefinitive attribute. When this attribute
is set to true, clicking the button will trigger the callback procedure defined in
the onAction attribute and then automatically close the Backstage View and
return to the worksheet.

The onAction callback for the custom Synchronize button follows. Notice
that the callback calls the CopyToArchive procedure. This procedure allows you
to make a copy of the current workbook file in a folder of your choice. Be sure to
enter the procedure code in the VBA code module of the Chap19_ModifyRib-
bon.xlsm workbook.

 Sub onActionCopyToArchive(ctl As IRibbonControl)
 Archive
 End Sub

 Sub Archive()
 Dim folderName As String
 Dim MyDrive As String
 Dim BackupName As String

 Application.DisplayAlerts = False

 On Error GoTo ErrorHandler

 folderName = ActiveWorkbook.Path

 If folderName = "" Then
 MsgBox "You can't copy this file. " & Chr(13) _
 & "This file has not been saved.", _
 vbInformation, "File Archive"
 Else
 With ActiveWorkbook
 If Not .Saved Then .Save
 MyDrive = InputBox("Enter the Pathname:" & _
 Chr(13) & "(for example: D:\, " & _
 "E:\MyFolder\, etc.)", _
 "Archive Location?", "D:\")
 If MyDrive <> "" Then
 If Right(MyDrive, 1) <> "\" Then
 MyDrive = MyDrive & "\"
 End If
 BackupName = MyDrive & .Name

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 627

 .SaveCopyAs Filename:=BackupName
 MsgBox .Name & " was copied to: " _
 & MyDrive, , "End of Archiving"
 End If
 End With
 End If
 GoTo ProcEnd
 ErrorHandler:
 MsgBox "Visual Basic cannot find the " & _
 "specified path (" & MyDrive & ")" & Chr(13) & _
 "for the archive. Please try again.", _
 vbInformation + vbOKOnly, "Disk Drive or " & _
 "Folder does not exist"
 ProcEnd:
 Application.DisplayAlerts = True
 End Sub

The Backstage View XML markup also adds to the Backstage View navigation
bar a custom tab labeled Endless Possibilities. Each <tab> element can have one
or more columns. Our example contains two columns. Each tab can contain
multiple <group> elements. Here we have two groups in the first column and
one group in the second column. The Backstage group can contain different
types of controls. You can group the controls into three types of sections listed
as follows:

<primary item> This element is used to specify the most important item in the group. The
primary item control can be a button or a menu with buttons, toggle but-
tons, checkboxes, or another menu.

<topItems> This element defines controls that will appear at the top of the group.
<bottomItems> This element defines the controls that will appear at the bottom of the

group.

The layout of controls in the Backstage View is defined using the <layoutCon-
tainer> element. This element’s layoutChildren attribute can define the layout
of controls as horizontal or vertical. The second column of our example XML
markup uses the following callback procedure for the button labeled Microsoft
and the three hyperlinks. Enter the following procedure in the VBA code mod-
ule of the Chap19_ModifyRibbon.xlsm workbook.
Sub onActionExecHyperlink(ctl As IRibbonControl)
 Select Case ctl.id
 Case "YouTube"
 ThisWorkbook.FollowHyperlink Address:=
 "http://www.YouTube.com", _ NewWindow:=True

628 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Case "amazon"
 ThisWorkbook.FollowHyperlink Address:=
 "http://www.amazon.com", _ NewWindow:=True
 Case "merc"
 ThisWorkbook.FollowHyperlink Address:=
 "http://www.merclearning.com", _ NewWindow:=True
 Case "msft"
 ThisWorkbook.FollowHyperlink Address:=
 "http://www.Microsoft.com", _ NewWindow:=True
 Case Else
 MsgBox "You clicked control id " & ctl.id & _
 " that has not been programmed!"
 End Select
End Sub

Hiding Backstage Buttons and Tabs

The following XML will hide the Save button in the Backstage View navi-
gation bar:

 <button idMso="FileSave" visible="false" />

The Backstage View uses the following button IDs: FileSave, FileSaveAs,
FileOpen, FileClose, ApplicationOptionsDialog, and FileExit.

To hide the Info tab in the Backstage, use this markup:

 <tab idMso="TabInfo" visible="false" />

The Backstage View tab IDs are as follows: TabInfo, TabRecent, TabNew, Tab-
Print, TabShare, and TabHelp.

Things to Remember while Customizing the Backstage View

 ● Th e maximum number of allowed tabs is 255.
 ● You cannot reorder built-in tabs.
 ● You can add your custom tab before or aft er the built-in tab.
 ● You cannot modify the column layout of any built-in tab.
 ● You cannot reorder built-in groups; however, you can specify the order of

groups you create.

SIDEBAR

SIDEBAR

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 629

CUSTOMIZING THE MICROSOFT OFFICE BUTTON MENU IN
EXCEL 2019

If the Excel workbook with the customized Ribbon will be opened both in Excel
2019 and Excel 2007, it is a good idea to include the Office 2007 Custom UI Part
using the Custom UI Editor for Microsoft Office. This will create the customUI.
xlm file for Excel 2007. The sample XML markup for the Office Button menu
is shown below (it is also available in the CustomUI_Office2007.txt file on the
companion CD):
<customUI xmlns="http://schemas.microsoft.com/office/2006/01/
 customui">
<ribbon startFromScratch="false">
 <!-- Office Button Menu section -->
 <officeMenu>
 <control idMso="MenuPublish" visible="false" />
 <menu idMso="FileSaveAsMenu">
 <button idMso="FileSaveAsWebPage" />
 </menu>
 <button id="btnNotes1" label="Open Notepad"
 image="Note1" insertBeforeMso="FileSave"
 onAction="OpenNotepad" />
 </officeMenu>
 <!--Other Ribbon Customization section -->
</ribbon>
</customUI>

The Office 2007 menu customization must appear between the <officeMenu>
and </officeMenu> tags, just below the <ribbon startFromScratch=“false”> ele-
ment.

In the previous XML, we hide one default command in the Microsoft Office
Button menu by setting the value of its visible attribute to false. We also add
a new option to the FileSaveAs command:
<menu idMso="FileSaveAsMenu">
 <button idMso="FileSaveAsWebPage" />
</menu>

Similar to the Backstage View in Excel 2019, you can include your own custom
buttons as commands in the Microsoft Office Button menu in Excel 2007:
<button id="btnNotes1" label="Open Notepad"
image="Note1" insertBeforeMso="FileSave" onAction="OpenNotepad" />

630 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CUSTOMIZING THE QUICK ACCESS TOOLBAR (QAT)

The Quick Access toolbar that appears just above the File tab gives application
users quick access to tools they use most frequently. These tools can be easily
added to the toolbar by selecting More Commands from the Customize Quick
Access Toolbar drop-down menu. The QAT can only be customized in the start
from scratch mode by setting the startFromScratch attribute to true in the
Ribbon XML customization file:

<ribbon startFromScratch="true">

When you load a workbook that contains this setting, Excel hides all built-in
tabs. You must add your own custom tabs as demonstrated earlier in this chap-
ter. QAT modifications are specified using the <qat> element. Within this ele-
ment you should use the <sharedControls> element to include controls that are
shared by all open workbooks, and the <documentControls> element to specify
the controls that should appear in the Quick Access toolbar when the workbook
has the focus. The following XML markup creates the custom Quick Access
toolbar shown in Figure 19.23. You will find this code in the CustomUI_QAT.
txt file located on the companion CD.
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui">
<ribbon startFromScratch="true">
<qat>
<sharedControls>
<button idMso="FilePrintQuick" />
</sharedControls>
<documentControls>
<button id="btnCalc2" label="Calculator"
imageMso="SadFace" onAction="OpenCalculator" />
</documentControls>
</qat>
</ribbon>
</customUI>

FIGURE 19.23 Customized Quick Access toolbar.

The button labeled Calculator that is represented by the SadFace image calls the
OpenCalcuator procedure as shown below:
Public Sub OpenCalculator(ctl As IRibbonControl)
 Shell "Calc.exe", vbNormalFocus
End Sub

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 631

The above procedure can be found in the Chap19_ModifyQAT.xlsm file on the
companion CD.

MODIFYING CONTEXT MENUS USING RIBBON
CUSTOMIZATIONS

You can modify context menus using the same XML markup and callbacks that
you used earlier in this chapter to customize the Ribbon UI. By using the Ribbon
extensibility you can add built-in and custom controls to menus and submenus
as well as hide controls in built-in menus. When creating custom submenus,
you can dynamically populate them with controls by using the dynamicMenu
control. The following example XML markup will help you get acquainted with
context menu extensibility.

 Hands-On 19.6 Customizing a Context Menu

1. Launch Microsoft Excel and create a new workbook. Save this workbook as
Chap19_ContextMenu.xlsm in your VBAExcel2019_ByExample folder. Be
sure to save the workbook as Excel Macro Enabled workbook (*.xlsm).

2. Close the workbook and exit Excel.
3. Launch the Custom UI Editor for Microsoft Office that you installed and

worked with earlier in this chapter.
4. Choose File | Open.
5. Select the C:\VBAExcel2019_ByExample\Chap19_ContextMenu.xlsm

workbook file you created in Step 1 above and click Open.
6. Choose Insert | Office 2010 Custom UI Part. This creates a CustomUI14.

xml file in the workbook.
7. In the right pane, enter the context menu XML markup as shown in

Figure 19.24. If you prefer, you can copy the code from CustomUI14_
ContextMenu.txt on the companion CD.

632 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 19.24 XML markup for customizing context menus.

8. Click the Validate button on the Custom UI Editor Toolbar to verify that your
XML does not contain errors. You should see the message “Custom UI XML
is well formed.” If there are errors, you must correct them to ensure that the
XML is well formed.

9. Save the file and close the Custom UI Editor.
10. Open the Chap19_ContextMenu.xlsm workbook in Excel and switch to

the Visual Basic Editor window.
11. Choose Insert | Module.
12. In the Code window enter the callback procedures discussed below.
13. Switch to the Excel application window and right-click on any cell to view the

custom commands added to the worksheet cell menu. Test each newly added
command to ensure that it behaves as expected.

Notice that the context menu customization markup appears between the <con-
textMenus> </contextMenus> tags. The previous XML markup adds three new
button controls and a menu control to the context menu that appears when you
click on any worksheet cell. These controls are shown in Figure 19.25.

The first control added by the previous markup is a built-in Excel command
with the idMso set to FileSaveAsWebPage. This command appears at the top
of the context menu and is labeled Single Web Page (*.mht). Recall from earlier
sections of this chapter that built-in commands use the idMso attribute while
the custom commands use the id attribute. When clicked, this command will
execute Excel’s built-in action that will allow you to save the worksheet as a
Web page. The second command in the previous markup adds a custom button

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 633

labeled Open Recent File. When clicked, this command will run the following
onActionBuiltInCmd callback procedure:
 Sub onActionBuiltInCmd(ctl As IRibbonControl)
 CommandBars.ExecuteMso "FileOpenRecentFile"
 End Sub

The onActionBuiltInCmd procedure uses the ExecuteMso method of the Com-
mandBars object to run the built-in action assigned in Excel to the FileOpen-
RecentFile command.

The third button in the XML markup adds the custom control labeled Text
Cells to Uppercase and designates the letter “U” as the keyboard accelerator.
This command when clicked will convert any text cell found within the selec-
tion of cells to uppercase letters by running the following callback procedure:
 Sub onActionUppercase(ctl As IRibbonControl)
 Dim cell As Variant
 For Each cell In Selection
 If WorksheetFunction.IsText(cell) Then
 cell.Value = UCase(cell.Value)

FIGURE 19.25 Standard worksheet cell context menu and the same context menu after applying the
customization shown in Figure 19.24.

634 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
 Next
 End Sub

The last command in the XML markup is a custom menu command labeled
Select Special. This command when clicked displays a menu of options. When
you select a menu option, the following callback procedure is executed:
Sub onActionSelSpec(ctl As IRibbonControl)
 Select Case ctl.ID
 Case "text"
 Selection.SpecialCells(xlCellTypeConstants, 2).Select
 Case "num"
 Selection.SpecialCells(xlCellTypeConstants, 1).Select
 Case "blank"
 Selection.SpecialCells(xlCellTypeBlanks).Select
 Case "zero"
 Dim cell As Variant
 Dim myRange As Range
 Dim foundFirst As Boolean

 foundFirst = True

 Selection.SpecialCells(xlCellTypeConstants, 1).Select
 For Each cell In Selection
 If cell.Value = 0 Then
 If foundFirst Then
 Set myRange = cell
 foundFirst = False
 End If
 Set myRange = Application.Union(myRange, cell)
 End If
 Next
 myRange.Select
 Case Else
 MsgBox "Missing Case statement for control id=" & ctl.ID, _
 vbOKOnly + vbExclamation, "Check your VBA Procedure"
 End Select
End Sub

CONTEXT MENU PROGRAMMING AND RIBBON CUSTOMIZATIONS 635

SUMMARY

In this chapter, you learned how to use VBA to work with built-in context menus
and customize the Ribbon interface as well as the Backstage View using a com-
bination of XML and VBA. While working with context menus, you learned
about various properties and methods of the CommandBar object. Next, you
learned how to use the Custom UI Editor for Microsoft Office to create XML
Ribbon customization markup. You familiarized yourself with various controls
that can be added to the Ribbon. You wrote VBA callback procedures in order
to set your controls’ attributes at runtime. You also learned how to modify
the Backstage View and the Quick Access toolbar. Finally, you learned how to
manipulate the context menus via XML and VBA callbacks.

The knowledge and experience you gained in this chapter can be used to
make similar customizations in all of the Microsoft Office 2019 applications
that use the Ribbon interface.

In the next chapter, we focus on writing VBA code that handles printing and
sending emails.

637

After you set up your worksheet, you will want people to see it. Excel
provides easy-to-use commands and buttons for printing and emailing
your workbooks. In addition, programmers can control these tasks with

VBA code. Excel provides easy access to all print features. From the user stand-
point, all printing options can be accessed in the Backstage View by selecting
File | Print. When the Print command is selected, the left side of the Backstage
View shows all available options for printing as well as the Print button to ex-
ecute printing. You automatically see the print preview of your worksheet in the
right column of this window.

In this chapter, you will work with printing features as a developer. You will
learn about methods of accessing and setting printing options and displaying
print preview using VBA statements. These statements will allow you also to
display the Print dialog box and Print Preview window as they were present in
Excel 2007. You will use these statements to automatically set printers and print-
ing options in your VBA programs. Similar to the Ribbon, the printing features
displayed in the Backstage View cannot be modified with VBA. (See Chapter 19
for more information on Ribbon and Backstage View customizations.)

In addition to printing, this chapter also demonstrates how you can auto-
mate Excel’s emailing features (including sending bulk emails) with VBA. To
get the most out of this chapter, you should have a network or local printer con-
nected to your computer.

Chapter

 20 PRINTING AND
SENDING EMAIL
FROM EXCEL

638 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CONTROLLING THE PAGE SETUP

You can control the look of your printed worksheet pages via the Page Layout
tab on the Ribbon. The Page Layout tab, shown in Figure 20.1, is divided into
groups that include settings related to page setup (margins, orientation, and
size), scaling, and sheet options.

FIGURE 20.1 The Page Layout tab allows you to specify the page margins, orientation, paper size,
and scaling and sheet options along with other settings.

You may programmatically access these settings via the Page Setup dialog box,
using the properties of the PageSetup object. To display the Page Setup dialog
box, type the following statement in the Immediate window and press Enter:

Application.Dialogs(xlDialogPageSetup).Show

The previous statement uses the Show method of the Dialogs object to display
the built-in Page Setup dialog box. You can include a list of arguments after the
Show method. To set initial values in the Page Setup dialog box, use the argu-
ments in Table 20.1.

TABLE 20.1 Show method arguments for the Dialogs object

Argument Number Argument Name
Arg1 Head
Arg2 Foot
Arg3 Left
Arg4 Right
Arg5 Top
Arg6 Bot
Arg7 Hdng
Arg8 Grid
Arg9 h_cntr
Arg10 v_cntr
Arg11 Orient
Arg12 paper_size
Arg13 Scale

PRINTING AND SENDING EMAIL FROM EXCEL 639

Argument Number Argument Name
Arg14 pg_num
Arg15 pg_order
Arg16 bw_cells
Arg17 Quality
Arg18 head_margin
Arg19 foot_margin
Arg20 Notes
Arg21 Draft

If you don’t specify the initial settings, the Page Setup dialog box appears with
its default settings. But how should you use the above arguments? If you want
to display the Page Setup dialog box with the page orientation set to landscape,
use the following statement:

Application.Dialogs(xlDialogPageSetup).Show Arg11:=2

Excel uses 1 for portrait and 2 for landscape orientation.
The following statement displays the Page Setup dialog box in which the

Center on page Horizontally setting is selected on the Margins tab (Arg9:=1),
and the Page tab has the Orientation option set to Portrait (Arg11:=1):

Application.Dialogs(xlDialogPageSetup).Show Arg9:=1, Arg11:=1

You can also set the initial values in the Page Setup dialog box by using the
PageSetup object with its appropriate properties. For example, to set the page
orientation as landscape, type the following statements on one line in the Imme-
diate window and press Enter:

ActiveSheet.PageSetup.Orientation = 2 :
 Application.Dialogs(xlDialogPageSetup).Show

These two statements are executed one after another. The colon indicates the
end of the first statement and the beginning of another. This is a handy shortcut
that can be used in the Immediate window to run a block of code.

The following sections describe various page settings (and the correspond-
ing properties of the PageSetup object) you may want to specify prior to print-
ing your worksheets.

Controlling the Settings on the Page Layout Tab

The settings on the Page Layout tab in Figure 20.1 are grouped into five main
areas: Themes, Page Setup, Scale to Fit, Sheet Options, and Arrange. The

640 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Orientation settings in the Page Setup group indicate whether the page will be
printed in portrait or landscape view (Orientation property). The Size setting
lets you select one of the common paper sizes such as Letter, Legal, Executive,
A4, and so on (PaperSize property). The options in the Scale to Fit group make
it possible to adjust the printout according to your needs. You can reduce or
enlarge the worksheet by using the Scale setting in the Scale to Fit group of
the Page Layout tab. Excel can automatically scale a printout to fit a specified
number of pages with the Width and Height settings.

To render this into
VBA:

Use this statement:

Set Sheet1 to
be printed
in landscape
orientation.

Worksheets("Sheet1").PageSetup.Orientation
 = xlLandscape

Scale Sheet1 for
printing by 200%.

Worksheets("Sheet1").PageSetup.Zoom = 200

Scale the work-
sheet so it prints
exactly one page
tall and wide.

With Worksheets("Sheet1").PageSetup
 .FitToPagesTall = 1
 .FitToPagesWide = 1
End With

SSet the paper size
to legal for Sheet1.

Worksheets("Sheet1").PageSetup.PaperSize
 = xlPaperLegal

Return current
setting for the
horizontal and
vertical print
quality.

Debug.Print "Horizontal Print Quality = " &
 Worksheets("Sheet1").PageSetup.PrintQuality(1)
Debug.Print "Vertical Print Quality = " &
 Worksheets("Sheet1").PageSetup.PrintQuality(2)

Controlling the Settings on the Margins Tab

The settings available on the Margins tab of the Page Setup dialog box shown
in Figure 20.2 allow you to specify the width of the top, bottom, left, and right
margins (TopMargin, BottomMargin, LeftMargin, and RightMargin proper-
ties). The Header and Footer settings allow you to determine how far you’d like
the header or footer to be printed from the top or bottom of the page (Head-
erMargin and FooterMargin properties). The print area can be centered on
the page horizontally and vertically (CenterHorizontally and CenterVerti-
cally properties).

PRINTING AND SENDING EMAIL FROM EXCEL 641

FIGURE 20.2 The settings on the Margins tab of the Page Setup dialog box determine the margins
around the print area and the manner in which the print area should be centered on the printed page.

To render this into
VBA:

Use this statement:

Set all page mar-
gins (left, right,
top, and bottom) to
1.5 inches.

With Worksheets("Sheet1").PageSetup
 .LeftMargin = Application.InchesToPoints(1.5)
 .RightMargin = Application.InchesToPoints(1.5)
 .TopMargin = Application.InchesToPoints(1.5)
 .BottomMargin = Application.InchesToPoints(1.5)
End With

Set header and
footer margin to
0.5 inch.

With Worksheets("Sheet1").PageSetup
 .HeaderMargin = Application.InchesToPoints(0.5)
 .FooterMargin = Application.InchesToPoints(0.5)
End With

Center Sheet1
horizontally when
it’s printed.

With Worksheets("Sheet1").PageSetup
 .CenterHorizontally = True
 .CenterVertically = False
End With

642 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Controlling the Settings on the Header/Footer Tab

Figure 20.3 shows the settings on the Header/Footer tab that allow you to add
built-in or custom headers and footers to your printed worksheets. You can use
the Custom Header and Custom Footer buttons to design your own format for
headers and footers.

FIGURE 20.3 The Header/Footer tab of the Page Setup dialog box allows you to select one of the
built-in headers or footers or create your own custom header and footer formats.

The PageSetup object has the following properties for setting up and control-
ling the creation of headers and footers: RightHeader, LeftHeader, RightFooter,
LeftFooter, CenterHeader, CenterFooter, RightHeaderPicture, RightFooterPic-
ture, LeftHeaderPicture, LeftFooterPicture, CenterHeaderPicture, and Center-
FooterPicture.

The following settings are available on the Header/Footer tab of the Page
Setup dialog box:

 ● Diff erent odd and even pages—Use the PageSetup.OddAndEvenPages-
HeaderFooter property. Th is property returns True if the specifi ed
PageSetup object has diff erent headers and footers for odd-numbered
and even-numbered pages.

PRINTING AND SENDING EMAIL FROM EXCEL 643

 ● Diff erent fi rst page—Use the PageSetup.DifferentFirstPageHeader-
Footer property. Th is property returns True if a diff erent header or footer
is used on the fi rst page.

 ● Scale with document—Use the PageSetup.ScaleWithDocHeaderFooter
property. Th is property returns True if the header and footer should use
the same font size and scaling as the worksheet.

 ● Align with page margins—Use the PageSetup.AlignMarginsHeader-
Footer property. Th is property returns True for Excel to align the header
and the footer with the margins set in the page setup options.

Special formatting codes can be used in the header and footer text, as shown in
Table 20.2.

TABLE 20.2 Formatting codes for headers and footers

Format Code Description
&L Left-aligns the characters that follow.
&C Centers the characters that follow.
&R Right-aligns the characters that follow.
&E Turns double-underline printing on or off.
&X Turns superscript printing on or off.
&Y Turns subscript printing on or off.
&B Turns bold printing on or off.
&I Turns italic printing on or off.
&U Turns underline printing on or off.
&S Turns strikethrough printing on or off.
&D Prints the current date.
&T Prints the current time.
&F Prints the name of the document.
&A Prints the name of the workbook tab.
&P Prints the page number.
&P+number Prints the page number plus the specified number.
&P-number Prints the page number minus the specified number.
&& Prints a single ampersand.
& "fontname" Prints the characters that follow in the specified font. Be sure to

include the double quotation marks.

(Contd.)

644 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Format Code Description
&nn Prints the characters that follow in the specified font size. Use a two-

digit number to specify a size in points.
&N Prints the total number of pages in the document.
&G Enables the image to show up in the header or footer.

To get some practice using the above codes, try the following statements:
1. Print the full path of the workbook in the upper-right corner of every page

when Sheet1 is printed:
Worksheets("Sheet1").PageSetup.RightHeader =
 ActiveWorkbook.FullName

2. Print the date, page number, and total number of pages on the left at the bottom
of each page when Sheet1 is printed:
Worksheets("Sheet1").PageSetup.LeftFooter = "&D Page &P of &N"

3. Display a watermark in the center section of the header on Sheet1:
 Sub ShowWaterMark()
 With Worksheets("Sheet1").PageSetup.CenterHeaderPicture
 .Filename = "C:\VBAExcel2019_ByExample\cd.bmp"
 .Height = 75
 .Width = 75
 .Brightness = 0.25
 .ColorType = msoPictureWatermark
 .Contrast = 0.45
 End With

 ' Display the picture in the center header.
 ActiveSheet.PageSetup.CenterHeader = "&G"
 End Sub

Controlling the Settings on the Sheet Tab

The settings available on the Sheet tab of the Page Setup dialog box (shown
in Figure 20.4) determine what types of data you would like to include in the
printout and the order in which Excel should proceed to print data ranges if the
printout will span multiple pages.

PRINTING AND SENDING EMAIL FROM EXCEL 645

FIGURE 20.4 The Sheet tab of the Page Setup dialog box allows you to specify headings and ranges
of data to appear on your printout and adjust the appearance of each page.

The print area is a special range that defines the cells you want to print. You
can decide how much of the worksheet data you’d like to print. Excel prints the
entire worksheet by default. You can print only what you actually want by defin-
ing a print area. You can specify the range address to print in the Print Area set-
ting. If you do not specify a print area, Excel will print all the data in the current
worksheet. If you specify the range of cells to print in the Print Area setting and
then choose the Selection option in the Print dialog box, Excel will print the
current selection of cells in the worksheet instead of the range of cells specified
in the Print Area setting of the Print Setup dialog box. Use the PrintArea prop-
erty of the PageSetup object to programmatically return or set the range of cells
to be printed. Setting the PrintArea property to False or to an empty string (“”)
will set the print area to the entire sheet.

The Print titles area on the Sheet tab allows you to specify workbook rows
that should be printed at the top of every page or workbook columns that should
be printed on the left side of every page. These settings are especially useful for
printing very large worksheets. By default, Excel prints your row and column

646 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

titles only on the first page, making it very difficult to understand data on sub-
sequent pages. To fix this problem, you can tell Excel to print the specified row
and column headings on every page. Specify the rows that contain the cells to be
repeated at the top of each page in the Rows to repeat at top setting (PrintTi-
tleRows property), and specify the columns that contain cells to be repeated on
the left side of each page in the Columns to repeat at left setting (PrintTitle-
Columns property). You should specify both of these settings for extremely large
worksheets. To turn off the title rows or title columns, you may want to set the
corresponding property (PrintTitleRows or PrintTitleColumns) to False or
to an empty string (“”).

The Print settings control the look of your printed pages. To print the work-
sheet with gridlines, check the Gridlines box (PrintGridlines property). To
print colors as shades of gray, select the Black and white box (BlackandWhite
property). Draft quality printing will be faster since Excel does not print gridlines
and suppresses some graphics in this mode. To show row and column headings
on the printed pages, check the Row and column headings box (PrintHeadings
property). Excel will identify the rows with numbers and worksheet columns
with letters or numbers, depending on the style setting in the Excel Options
dialog box (choose File | Excel Options | Formulas, and see the R1C1 Reference
style box). If your worksheet contains comments, you can indicate the position
on the printed page where you would like to have them printed by choosing an
option from the Comments drop-down box (PrintComments property). If the
worksheet contains errors, you can suppress the display of error values when
printing a worksheet by making a selection from the Cell errors as drop-down
box (PrintErrors property). When using the PrintErrors property, specify
how you would like errors to be displayed with one of the following constants:

 ● xlPrintErrorsBlank

 ● xlPrintErrorsDash

 ● xlPrintErrorsDisplayed
 ● xlPrintErrorsNA

The settings in the Page order area of the Sheet tab allow you to specify how
Excel should print and number pages when printing large spreadsheets. The
default printing order is from top to bottom. You may request this order to be
changed to left to right, which is a convenient way to print wide tables. Use
the OrderProperty of the PageSetup object to set or return the print order.
The page order can be one of the following constants: xlDownThenOver or
xlOverThenDown.

PRINTING AND SENDING EMAIL FROM EXCEL 647

Again, here are some examples of actual statements:

1. Set the print area as cells A2:D10 on Sheet1:
 Worksheets("Sheet1").PageSetup.PrintArea = "A2:D10"

2. Specify row 1 as the title row and columns A and B as title columns:
 ActiveSheet.PageSetup.PrintTitleRows =
 ActiveSheet.Rows(1).Address
 ActiveSheet.PageSetup.PrintTitleColumns = _
 ActiveSheet.Columns("A:B").Address

3. Print gridlines and column headings on Sheet1:
 With Worksheets("Sheet1").PageSetup
 .PrintHeadings = True
 .PrintGridlines = True
 End With

4. Number and print the worksheet starting from the first page to the pages to the
right, and then move down and continue printing across the sheet:
 Worksheets("Sheet1").PageSetup.Order = xlOverThenDown

Retrieving Current Values from the Page Setup Dialog Box

Now that you are familiar with the many settings available in the Page Setup
dialog box and know the names of the corresponding properties that can be
used in VBA to write code that sets up your worksheets for printing, it’s time for
a complete procedure. The following procedure prints some page setup settings
to the Immediate window.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 20.1 Printing Page Setup Settings to the Immediate
Window

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap20_
VBAExcel2019.xlsm.

2. On Sheet1 of Chap20_Excel20.xlsm, enter the data shown in Figure 20.5. The
bonus values are calculated using the following formula: Months Employed *
3. Enter =C2*3 in cell D2, =C3*3 in cell D3, and so on.

648 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.5 Sample worksheet data.

3. Press Alt+F11 to switch to the Visual Basic Editor. Select VBAProject
(Chap20_VBAExcel2019.xlsm) in the Project Explorer window and choose
Insert | Module.

4. In the Module1 Code window, enter the ShowPageSettings procedure as
shown below.
Sub ShowPageSettings()
 With ActiveSheet.PageSetup
 Debug.Print "Orientation = "; .Orientation
 Debug.Print "Paper Size = "; .PaperSize
 Debug.Print "Print Gridlines = "; .PrintGridlines
 Debug.Print "Horizontal Print Quality = "; .PrintQuality(1)
 Debug.Print "Print Area = "; .PrintArea
 End With
End Sub

5. Run the ShowPageSettings procedure.
The results of the procedure are printed to the Immediate window. Because we
have not changed any settings in the Page Setup dialog box, the values you see
after the equal signs are the default values.

6. Modify the ShowPageSettings procedure as follows:
Sub ShowPageSettings2()
 With ActiveSheet.PageSetup
 Debug.Print "Orientation = "; .Orientation
 Debug.Print "Paper Size = "; .PaperSize
 Debug.Print "Print Gridlines = "; .PrintGridlines
 Debug.Print "Horizontal Print Quality = "; .PrintQuality(1)
 Cells(1, 1).Select
 .PrintArea = ActiveCell.CurrentRegion.Address
 Debug.Print "Print Area = "; .PrintArea;
 .CenterHeader = Chr(10) & "Bonus Information Sheet"

PRINTING AND SENDING EMAIL FROM EXCEL 649

 End With
 Application.Dialogs(xlDialogPrintPreview).Show

 End Sub

7. Run the modified ShowPageSettings2 procedure.
Now, in addition to writing selected settings to the Immediate window, the test
worksheet is formatted and displayed in the Print Preview window.

When printing worksheets that contain a large number of rows, it is a good idea
to separately set the print titles and print area so that each page is printed with
the column titles. The following procedure demonstrates this particular sce-
nario. Notice how the CurrentRegion property of the Range collection is used
together with the Offset and Resize properties to resize the print area so that it
does not include the header row (Row 1). The procedure sets the header row
using the PrintTitleRows property of the PageSetup object.
 Sub FormatSheet()
 Dim curReg As Range
 Set curReg = ActiveCell.CurrentRegion

 With ActiveSheet.PageSetup
 .PrintTitleRows = "$1:$1"
 Cells(1, 1).Select

 .PrintArea = curReg.Offset(1, 0).Resize _
 (curReg.Rows.Count - 1, curReg.Columns.Count).Address

 Debug.Print "Print Area = "; .PrintArea;
 .CenterHeader = Chr(10) & "Bonus Information Sheet"
 .PrintGridlines = True
 End With
 Application.Dialogs(xlDialogPrintPreview).Show
End Sub

PREVIEWING A WORKSHEET

As you can see in Figure 20.6, the Page Layout view (View | Page Layout) makes
it easy to see how the worksheet will print, and add headers and footers.

To add a header, simply click the top area of the worksheet and type your text
or click the appropriate buttons in the Design tab of the Header & Footer Tools
on the Ribbon. For example, to add today’s date, click the Current Date button.
To add the footer, click the Go to Footer button in the Navigation group of the
Header & Footer Tools Design tab.

650 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Use the following VBA statement to activate the Page Layout view:
ActiveWindow.View =xlPageLayoutView

You can also display your worksheet in the Print Preview window by typing
either one of the following statements in the Immediate window or in your VBA
procedure:

Application.Dialogs(xlDialogPrintPreview).Show

or
Worksheets("Sheet1").PrintPreview

The above statements will not work if the worksheet has no data.
As you can see in Figure 20.7, there are buttons at the top of the Print Pre-

view window that allow you to move between individual pages of your printout,
make adjustments to the page setup and margins, get a closer look at the data or
any part of the printout (Zoom button), and print your worksheet. If the work-
sheet has more than one page, you can display other pages in the Print Preview
by clicking on the Next and Previous buttons or by using the keyboard (down
arrow, up arrow, End, and Home keys).

You can use the Zoom button in the Print Preview window to change the
Print Preview magnification, and you can adjust your page margins and col-
umn widths visually by using the mouse (to do this, select the Show Margins
checkbox on the Preview area of the Ribbon). You can also print using the Print
button and can easily access the Page Setup dialog box to make changes in the
desired layout of your printout.

FIGURE 20.6 To view the worksheet as it would look when printed, choose View | Page Layout.

PRINTING AND SENDING EMAIL FROM EXCEL 651

FIGURE 20.7 This Print Preview window displays a scaled-down version of the worksheet pages.
Notice that this is an entirely different window from the one opened via the File | Print command or the
Print Preview and Print button, which is available in the Quick Access Toolbar.

Sometimes you may want to prevent users from modifying the page setup or
printing from the Print Preview window. This can be accomplished program-
matically. You can disable the Show Margins and Page Setup buttons in the Print
Preview window in one of the following ways:

Application.Dialogs(xlDialogPrintPreview).Show False

or
Worksheets("Sheet1").PrintPreview EnableChanges:=False

or
Worksheets("Sheet1").PrintPreview False

Figure 20.8 shows the Print Preview window with the Show Margins option and
Page Setup button disabled.

652 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.8 The Print Preview window with the disabled Page Setup and Show Margins options.

CHANGING THE ACTIVE PRINTER

Before printing, you may want to display a list of printers for the users to select
from or force a print job to go to a specific printer. The Printer Setup dialog box
is shown in Figure 20.9. This dialog box can be displayed with this statement:

Application.Dialogs(xlDialogPrinterSetup).Show

To find out the name of the active printer, use the ActivePrinter property of the
Application object:

MsgBox Application.ActivePrinter

To change the active printer, use the following statement, replacing the printer
name and port with your own:
Application.ActivePrinter = "Brother HL-5370DW series Printer
 on Ne04:"

You can tell Excel to set your default printer on opening a specific workbook by
writing a simple Auto_Open macro.

PRINTING AND SENDING EMAIL FROM EXCEL 653

FIGURE 20.9 The Printer Setup dialog box.

 Hands-On 20.2 Setting a Default Printer When Opening a
Specifi c Workbook

1. In the Chap20_VBAExcel2019.xlsm workbook, switch to the Visual Basic
Editor screen and choose Insert | Module.

2. In the module Code window, enter the Auto_Open procedure as shown below,
replacing the printer name with the name of your own printer:

Sub Auto_Open()
 Application.ActivePrinter = _
 "Brother HL-5370DW Series " & _
 "Printer on Ne04:"
 MsgBox Application.ActivePrinter
End Sub

NOTE The printer needs to be connected for this code to execute.

3. Save the Chap20_VBAExcel2019.xlsm workbook and close it. Do not exit
Excel.

4. Reopen the Chap20_VBAExcel2019.xlsm workbook.
Excel will run the Auto_Open macro and display the active printer name in
the message box.

PRINTING A WORKSHEET WITH VBA

Prior to printing a worksheet you may want to set print options such as print
ranges, collation, or the number of copies to print. This is easily done by setting
appropriate options in the Print dialog box (Figure 20.10).

654 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.10 The Print dialog box allows you to specify various print options.

To display the Print dialog box programmatically, use the following statement:
Application.Dialogs(xlDialogPrint).Show

You can include a list of arguments after the Show method. To set initial values
in the Print dialog box, use the arguments shown in Table 20.3.

TABLE 20.3 Show method arguments for the Print dialog

Argument Number Argument Description
Arg1 range_num
Arg2 From
Arg3 To
Arg4 Copies
Arg5 Draft
Arg6 Preview
Arg7 print_what
Arg8 Color
Arg9 Feed
Arg10 Quality
Arg11 y_resolution
Arg12 Selection
Arg13 printer_text
Arg14 print_to_file
Arg15 Collate

PRINTING AND SENDING EMAIL FROM EXCEL 655

For example, the following statement will print pages 1 to 2 of the active work-
sheet (assuming that the worksheet consists of two or more pages):
Application.Dialogs(xlDialogPrint).Show Arg1:=2, Arg2:=1, Arg3:=2

The first argument specifies the Page(s) option button in the Print range area of
the Print dialog box. To select the All option button in the Print range area, set
Arg1 to 1.

The second and third arguments specify the pages you want to print (the
beginning page number and the last page number to print should be specified).

To send your worksheet directly to the printer (without going through the
Print dialog box), use the following statement:
ActiveSheet.PrintOut

The PrintOut method can take the following arguments:

TABLE 20.4 PrintOut method arguments

Argument Name Argument Description
From The number of the first page to print. If omitted, printing will start from

the first page.
To The number of the last page to print. If omitted, printing will end with

the last page.
Copies The number of copies to print. If omitted, one copy will be printed.
Preview If set to True, Excel will display the Print Preview window before

printing. If omitted or set to False, printing will begin immediately.
ActivePrinter Sets the name of the active printer.
PrintToFile If True, the worksheet is printed to a file. This is convenient when

you want to print a worksheet on an offsite printer such as a PostScript
printer. You should supply the filename in the PrToFileName
argument.

Collate Set this argument to True to collate multiple copies.
PrToFileName Specifies the name of the file you want to print to if the PrintToFile

argument is set to True.

DISABLING PRINTING AND PRINT PREVIEWING

At times you may not want to allow printing or print previewing the work-
sheet. You can remove these features by customizing the File tab. To disable the
Print Preview window, write the Workbook_BeforePrint event procedure (see
Figure 20.11 in the next section).

656 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING PRINTING EVENTS

Before the workbook is printed (and before the Print dialog box appears), Excel
triggers the Workbook_BeforePrint event. You can use this event to perform
certain formatting or calculating tasks prior to printing or to cancel printing
and print previewing entirely when these features are requested. The code for
the Workbook_BeforePrint event procedure must be placed in the ThisWork-
book Code window (Figure 20.11).

FIGURE 20.11 Writing the Workbook_BeforePrint event procedure in the ThisWorkbook Code
window.

The ThisWorkbook Code window can be accessed by double-clicking the
appropriate workbook name in the Project Explorer window of the Visual Basic
Editor screen and double-clicking the ThisWorkbook object. Next, at the top of
the ThisWorkbook Code window, select Workbook from the Object drop-down
list on the left. The Procedure drop-down list on the right will display the names
of the events that the Workbook object can respond to. Select the BeforePrint
event name; Excel will place the skeleton of this procedure in the Code window.
Type your VBA code between the Sub and End Sub lines. The next time you
print, Excel will run your code first and then proceed to print the worksheet.
The Workbook_BeforePrint event code is triggered whether you have requested
printing via Excel’s built-in tools or have written your own VBA procedure to
control printing.

PRINTING AND SENDING EMAIL FROM EXCEL 657

The following tasks can be performed via the VBA code placed in the Work-
book_BeforePrint event procedure:

 ● Disabling printing and print previewing
Private Sub Workbook_BeforePrint(Cancel As Boolean)
 If Weekday(Date, vbSunday) = 7 Then Cancel = True
End Sub

When you set the Cancel argument to True, the worksheet isn’t printed
when the procedure ends. The above procedure disallows printing on
Saturdays (the seventh day of the week). The Weekday function specifies
that Sunday is the first day of the week.

 ● Placing the full workbook’s name in the page footer
 ● Changing worksheet formatting prior to printing
 ● Validating data upon printing
Private Sub Workbook_BeforePrint _
 (Cancel As Boolean)
 If Worksheets("Sheet1"). _
 Range("A1") <> "Monthly Report" Then
 MsgBox "Please enter correct data " & _
 "in cell A1."
 Cancel = True
 End If
End Sub

 ● Calculating all worksheets in the active workbook
Private Sub Workbook_BeforePrint(Cancel As Boolean)
 Dim sh as Variant
 For Each sh in Worksheets
 sh.Calculate
 Next
End Sub

If you need to perform certain formatting tasks for all your workbooks prior to
printing, you need to create the WorkbookBeforePrint event procedure for the
Application object. You’ve already worked with Excel’s application-level events in
Chapter 15. The following example demonstrates how to have Excel automatically
print in the footer the full path and filename of all existing and new workbooks.

 H ands-On 20.3 Automatically Adding a Footer to Each Workbook

You will begin this Hands-On by creating the Personal.xlsb file. Macros and
VBA procedures stored in this file are available each time you work with Excel.

658 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Personal Macro Workbook (Personal.xlsb) is stored in the XLStart folder. If this
workbook does not already exist, Excel creates it when you record a macro and
select the option to store it in the Personal Macro Workbook.

1. In the Excel Application window, choose Developer | Record Macro.
2. In the Record Macro dialog box, choose Personal Macro Workbook in the

Store macro in drop-down list.
Th e Personal macro workbook loads automatically in the background each
time you start Excel.

3. Click OK to start recording.
In this HandsOn you will not record anything.

4. Click the Stop Recording button to stop the Macro Recorder.
5. Switch to the Visual Basic Editor screen. In the Project Explorer window,

select VBAProject (Personal.xlsb).
6. With the project selected, using the Properties window, rename the VBAPro-

ject Personal.
7. Double-click the Personal (Personal.xlsb) workbook.
8. In the Modules folder, right-click the Module1 and choose Remove

Module1. Click No when asked to export the module.
9. Choose Insert | Class Module.

Excel inserts a module named Class1 in the Class Modules folder in the Per-
sonal (Personal.xlsb) workbook.

10. In the Properties window, rename Class1 clsFooter.
11. Enter the following declaration line and event procedure code in the

clsFooter Code window:
Public WithEvents objApp As Application

Private Sub objApp_WorkbookBeforePrint(ByVal Wb As Workbook, _
 Cancel As Boolean)
 With Wb.ActiveSheet
 .PageSetup.RightFooter = Wb.FullName
 End With
End Sub

Recall from Chapter 15 that the WithEvents keyword is used in a class module
to declare an object variable that points to the Application object. In this
procedure, objApp is the variable name for the Application object. Th e Public
statement before the WithEvents keyword allows the objApp variable to be
accessed by all modules in the VBA project.

PRINTING AND SENDING EMAIL FROM EXCEL 659

 Once you’ve declared the object variable, you can select objApp in the
Object drop-down list in the clsFooter module’s Code window and select the
WorkbookBeforePrint event in the Procedure drop-down list in the top-right
corner of the Code window. When you start writing your event procedures
using this technique (by choosing options from the Object and Procedure
drop-down lists), Excel always inserts the procedure skeleton (the start and
end of the procedure) in the Code window. Th is way you can be sure that
you always start with the correct procedure structure and the defi nition of
the parameters that the particular event can utilize. All that’s left to do is
write some VBA code to specify tasks that should be performed. Th e above
procedure simply tells Excel to place the full path and fi lename in the right
footer of the workbook’s active sheet.
 After writing the event procedure code in the class module, we need to write
some code in the ThisWorkbook class module.

12. In the Project Explorer window, double-click the ThisWorkbook object
located in the Microsoft Excel Objects folder under the Personal (Personal.
xlsb) project.

13. Type the following declaration and event code in the ThisWorkbook Code
window:
Dim clsFullPath As New clsFooter

Private Sub Workbook_Open()
 Set clsFullPath.objApp = Application
End Sub

The first line above declares a variable named clsFullPath, which points to
the object (objApp) in the clsFooter class module. The New keyword indicates
that a new instance of the object should be created the first time the object is
referenced. We do this in the Workbook_Open event procedure by using the
Set keyword. This statement connects the object located in the clsFooter class
module with the object variable objApp representing the Application object.
 The code placed in the Workbook_Open event procedure is run whenever
a workbook is opened. Therefore, when a workbook (an existing one or a new
one) is opened, Excel will know that it must listen to the Application events; in
particular, it must track events for the objApp object and execute the code of
the WorkbookBeforePrint event procedure when a request for print or print
preview is made through the Excel user interface or via the VBA code that is
placed inside a custom printing procedure.

660 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Before Excel can perform the programmed tasks, you must save the changes
to the Personal.xlsb file and exit Excel.

14. Choose Debug | Compile Personal to ensure that Excel will be able to execute
the VBA code you’ve added to the Personal.xlsb workbook. If Excel finds any
errors, it will highlight the statement that you need to examine. Make any
appropriate corrections and repeat the Debug | Compile Personal command.
When there are no errors in the Personal.xlsb project, the Compile Personal
command on the Debug menu is grayed out.

15. Close the Chap20_VBAExcel2019.xlsm workbook file and any other
workbooks that you may have opened.

16. Exit Microsoft Excel. When Excel asks whether you’d like to save changes
to the Personal.xlsb file, click Yes.

17. Restart Microsoft Excel. Open a new workbook and type anything in any
cell on any sheet of this new workbook, then save the file as TestFooter.xlsx.

18. Click File | Print, select your printer, and click the Print button. When
you click the Print button, Excel will execute the WorkbookBeforePrint event
procedure and your printout should include the file path in the right footer.

19. Close the TestFooter.xlsx workbook.
20. Open any existing workbook that did not have footers set up. Choose File

| Print. When you print out the file, the hardcopy now includes a complete
filename in the right footer.

21. Close the workbook you have opened.

NOTE
You can modify the WorkbookBeforePrint event procedure to au-
tomatically perform other tasks as needed prior to printing. Save
yourself time by delegating as many tasks as possible to Excel.

SENDING EMAIL FROM EXCEL

You can share your Excel workbooks with others by emailing them. To send
email from Excel, you need one of the following programs:

 ● Microsoft Outlook
 ● Microsoft Live Mail
 ● Microsoft Exchange Client
 ● Any MAPI-compatible email program (MAPI stands for Messaging

Application Programming Interface)

PRINTING AND SENDING EMAIL FROM EXCEL 661

Excel workbooks can be sent as attachments in PDF/XPS format or as faxes; or
you can send a link to the file stored in a shared location. When you send an
email with a workbook attachment, the file is larger but the recipient can open
and edit the workbook in Excel. To share a file via email, choose File | Share, and
select, as shown in Figure 20.12.

FIGURE 20.12 Share options allow you to send emails from Excel.

When you select to attach a copy of Excel Workbook, Excel displays an email
message window as shown in Figure 20.13.

NOTE
You may be notified that you need to create a Microsoft Outlook
profile. Follow the instructions in the message to add a profile to
Outlook.

662 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.13 Sending a workbook as an email attachment from Excel.

You can invoke the email message window programmatically with the following
statement:

Application.Dialogs(xlDialogSendMail).Show

You can include the arguments shown in Table 20.5 after the Show method.

TABLE 20.5 Show method arguments for the email message window

Argument Number Argument Description
Arg1 Recipients
Arg2 Subject
Arg3 return_receipt

For example, the following statement displays the email message window with
the recipient’s email address filled in and the specified text in the subject line:
 Application.Dialogs(xlDialogSendMail).Show
 Arg1:="SendToName@SendToProvider.com",
 Arg2:="New workbook file"

To check out the above statement, you can type the text on one line in the Imme-
diate window and press Enter, or you can place it inside a VBA procedure.

Sending Email Using the SendMail Method

Before you begin sending emails from your VBA procedures, it’s a good idea
to determine what email system is installed on your computer. You can do this
with the MailSystem property of the Application object. This is a read-only
property that uses the xlMAPI, xlPowerTalk, and xlNoMailSystem constants

PRINTING AND SENDING EMAIL FROM EXCEL 663

to determine the installed mail system. MAPI is used for interfacing with email
systems. PowerTalk is a Macintosh email system.

The following Discover_EmailSystem procedure demonstrates how to use
the MailSystem property.
 Sub Discover_EmailSystem()
 Select Case Application.MailSystem
 Case xlMAPI
 MsgBox "You have Microsoft Mail installed."
 Case xlNoMailSystem
 MsgBox "No mail system installed on this computer."
 Case xlPowerTalk
 MsgBox "Your mail system is PowerTalk"
 End Select
 End Sub

The easiest way to send an email from Excel is by using the SendMail method of
the Application object. This method allows you to specify the email address of
the recipient, the subject of your email, and whether you’d like a return receipt.
Let’s create an email and send it to ourselves.

 Hands-On 20.4 Using the SendMail Method to Send Email

This Hands-On requires that you have a Microsoft Outlook account set up on
your computer.

1. Open the Chap20_VBAExcel2019.xlsm workbook, switch to the Visual
Basic Editor screen, and insert a new module in VBAProject (Chap20_
VBAExcel2019.xlsm).

2. In the module’s Code window, enter the following procedure:
Sub SendMailNow()
 Dim strEAddress As String

 On Error GoTo ErrorHandler

 strEAddress = InputBox("Enter e-mail address", _
 "Recipient's E-mail Address ")

 If IsNull(Application.MailSession) Then
 Application.MailLogon
 End If

 ActiveWorkbook.SendMail Recipients:=strEAddress, _
 Subject:="Test Mail"

664 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Application.MailLogoff
 Exit Sub

ErrorHandler:
 MsgBox "Some error occurred while sending e-mail."
End Sub

If Microsoft Mail isn’t already running, you must use the MailSession property
of the Application object to establish a mail session in Excel before sending
emails. Th e MailSession property returns the MAPI mail session number as a
hexadecimal string or Null if the mail session hasn’t been established yet. Th e
MailSession property isn’t used on PowerTalk mail systems. To establish a mail
session, use the MailLogon method of the Application object. To close a MAPI
email session established by Microsoft Excel, use the MailLogoff method.

3. Run the SendMailNow procedure to email the active workbook. Type your
email address when prompted and click OK.
When you see the message shown in Figure 20.14, click the Allow button to
allow sending the email.

FIGURE 20.14 You will get a warning message when you try to send email from Excel.

4. Open your email program and check the received email.

When the recipient receives an email with an attached workbook, he or she will
need Excel to open the file.

PRINTING AND SENDING EMAIL FROM EXCEL 665

Sending Email Using the MsoEnvelope Object

You can send emails directly from Microsoft Excel and other Microsoft Office
applications via the MsoEnvelope object, which is included with the Microsoft
Office 16.0 object library. To return an MsoEnvelope object, use the MailEn-
velope property of the Worksheet object. You also need to set up a reference
to the MailItem object in the Microsoft Outlook 16.0 object library to access
its properties and methods that format the email message. The following pro-
cedure demonstrates sending email from Excel using the MsoEnvelope object.
Instead of attaching the entire workbook, we will embed the data shown in
Sheet1 (Figure 20.5 earlier in this chapter).

 Hands-On 20.5 Sending Email Using the MsoEnvelope Object

1. Activate Sheet1 in the Chap20_VBAExcel2019.xlsm workbook file.
2. Press Alt+F11 to switch to the Visual Basic Editor screen.
3. Set up a reference to the Microsoft Outlook 16.0 and Microsoft Office 16.0

object libraries using the Tools | References dialog box.
4. In the Visual Basic Editor screen, insert a new module in VBAProject

(Chap20_VBAExcel2019.xlsm).
5. In the module’s Code window, enter the following procedure:

Sub SendMsoMail(ByVal strRecipient As String)
' use MailEnvelope property of the Worksheet
' to return the msoEnvelope object

 ActiveWorkbook.EnvelopeVisible = True

 With ActiveSheet.MailEnvelope

 .Introduction = "Please see the list of " & _
 "employees who are to receive a bonus."
 With .Item
 ' Make sure the e-mail format is HTML
 .BodyFormat = olFormatHTML
 ' Add the recipient name
 .Recipients.Add strRecipient
 ' Add the subject
 .Subject = "Employee Bonuses"
 ' Send Mail
 .Send
 End With
 End With
End Sub

666 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Run the SendMsoMail procedure by typing the following statement in the
Immediate window (be sure to replace the email address with your own):
SendMsoMail("YourName@YourProvider.com")

When you press Enter, Excel calls the SendMsoMail procedure, passing to it
the recipient’s email address. The embedded worksheet is shown in Outlook
in Figure 20.15.

FIGURE 20.15 An email with an embedded worksheet generated by the VBA procedure in
Hands-On 20.5.

Sending Bulk Email from Excel via Outlook

At times you may need to send individualized email messages to people whose
email addresses and the information you want to send have been entered in a
worksheet. The following procedure demonstrates how to process this kind of
request from Excel via objects, properties, and methods provided by the Micro-
soft Outlook 16.0 Object Library.

 H ands-On 20.6 Sending Bulk Email from Excel

1. Prepare the worksheet shown in Figure 20.16. Enter the valid email addresses
of your own contacts in Column D. Type the names of your contacts in the
Employee Name column.

PRINTING AND SENDING EMAIL FROM EXCEL 667

FIGURE 20.16 Sample worksheet for bulk emailing demo.

2. Switch to the Visual Basic Editor screen and choose Tools | References. Ensure
that there is a check mark next to Microsoft Outlook 16.0 Object Library. If
the library is not yet selected, click the box next to its name. Click OK to close
the References dialog box.

3. Choose Insert | Module to add a new module to VBAProject (Chap20_
VBAExcel2019.xlsm).

4. In the module Code window, enter the code of the SendBulkMail procedure
as shown below:
Sub SendBulkMail(EmailCol, BeginRow, EndRow, SubjCol, _
 NameCol, AmountCol)
 Dim objOut As Outlook.Application
 Dim objMail As Outlook.MailItem
 Dim strEmail As String
 Dim strSubject As String
 Dim strBody As String
 Dim r As Integer

 On Error Resume Next

 Application.DisplayAlerts = False

 Set objOut = New Outlook.Application

 For r = BeginRow To EndRow
 Set objMail = objOut.CreateItem(olMailItem)
 strEmail = Cells(r, EmailCol)
 strSubject = Cells(r, SubjCol) & " reimbursement"

 strBody = "Dear " & Cells(r, NameCol).Text & ":" & _
 vbCrLf & vbCrLf
 strBody = strBody & "We have approved your request for " & _
 LCase(strSubject)
 strBody = strBody & " in the amount of " & Cells(r, _
 AmountCol).Text & "."

668 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strBody = strBody & vbCrLf & "Please allow 3 business " & _
 "days for this"
 strBody = strBody & " amount to appear on your bank
 statement."
 strBody = strBody & vbCrLf & vbCrLf & " Employee Services"

 With objMail
 .To = strEmail
 .Body = strBody
 .Subject = strSubject
 .Send
 End With

 Next
 Set objOut = Nothing
 Application.DisplayAlerts = True
End Sub

The above procedure requires the following parameters: EmailCol, BeginRow,
EndRow, SubjCol, NameCol, and AmountCol. The EmailCol parameter is the
number of the column on the worksheet where the email address has been
entered. In this example, it’s the fourth column. The BeginRow and EndRow pa-
rameters specify the first and last rows of your data range. In this example, the
first row we want to process is 2 and the last row is 5. SubjCol is the column
number where the email subject is entered. In this example, it’s the second
column (Expense Type). NameCol contains the employee name and is the first
column here. AmountCol is the column number where the expense amount
has been entered. In this example, it’s the third column.
The statement Application.DisplayAlerts = False will cause Excel to
stop displaying alert messages; however, this will not prevent Outlook’s mes-
sages from appearing. Prior to specifying the details of the email, we must set
up a reference to the Outlook application with the following statement:
 Set objOut = New Outlook.Application

Next, we need to get data for each person to whom we need to send email. The
procedure uses the For…Next loop to iterate through the worksheet data start-
ing at row 2 and ending at row 5. Each time in the loop we set a reference to an
Outlook MailItem and place the data we need for our email message in various
variables. Once the procedure knows where the data is in the worksheet, we
can go ahead and set the required properties of Microsoft Outlook:
With objMail
 .To = strEmail
 .Body = strBody
 .Subject = strSubject

PRINTING AND SENDING EMAIL FROM EXCEL 669

 .Send
End With

The To property returns or sets a semicolon-delimited string list of display
names for the To recipients for the Outlook item. In this example, we use one
recipient for each email we send. The Body property returns or sets a string
representing the text message we want to send in the email. The Subject prop-
erty is used to specify the email subject. Finally, the Send method sends the
email message. If you’d rather not send the email, you can view it by replacing
the Send method with the Display method:
With objMail
 .To = strEmail
 .Body = strBody
 .Subject = strSubject
 .Display
End With

5. Enter Call_SendBulkMail in the same module where you entered the code of
the SendBulkMail procedure:
Sub Call_SendBulkMail()
 SendBulkMail EmailCol:=4, _
 BeginRow:=2, _
 EndRow:=5, _
 SubjCol:=2, _
 NameCol:=1, _
 AmountCol:=3
End Sub

The above procedure calls the SendBulkMail procedure and passes it the pa-
rameters indicating the column number of the recipient’s address (4), the be-
ginning and ending rows of the data (2, 5), the column where the email subject
is located (2), the column containing the employee name (1), and the column
number with the amount of reimbursement (3).

6. Run the Call_SendBulkMail procedure.
Excel begins to execute the specified procedure. The first recipient listed in the
worksheet should receive an email like the one shown in Figure 20.17.

670 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.17 Sample email message viewed in Microsoft Outlook and sent by a VBA procedure in
Hands-On 20.6.

SUMMARY

This chapter has shown you how to print and use various emailing techniques
for the presentation and distribution of Excel workbooks. You learned how to
programmatically set page and print options, set up printers, and use printing
events to perform formatting or data calculation tasks prior to printing. You
also practiced various methods of sending your workbooks through electronic
email as attachments or embedded as the body of a message.

The next chapter focuses on using and programming Excel tables.

Microsoft Excel offers users powerful tools for organizing and presenting
information from various sources. In this part of the book, you will learn
how to work with various types of Excel tables and how to analyze data

from multiple perspectives using PivotTables and PivotCharts. In addition, you
learn how to use the new Get & Transform feature to load, clean and shape your
data.

Chapter 21 Using and Programming Excel Tables
Chapter 22 Programming PivotTables and PivotCharts
Chapter 23 Getting and Transforming Data in Excel 2019

Part

 V EXCEL TOOLS FOR
DATA ANALYSIS

671

673

Over the years people have used spreadsheets for storing and extracting
data from databases. Currently a Microsoft Excel worksheet allows us-
ers to store as many as 1,048,576 rows by 16,384 columns. Furthermore,

the data can be easily sorted, filtered, summarized, and validated. If you need
to create any kind of a table and store it in a spreadsheet, this chapter’s tour of
Excel table management will be helpful. We will look at the user interface for the
table ranges and learn how to access and work with the table feature program-
matically.

UNDERSTANDING EXCEL TABLES

Tables are groups of cells that store related data and are managed separately
from data in other cells on the worksheet. Tables aren’t a new feature in Excel
2019; however, they were known as lists when they were first introduced in
Excel 2003. You can have many tables in a worksheet, but a table cannot overlap
another table. Each table is treated as a single entity and can be sorted, filtered,

Chapter

 21 USING AND
PROGRAMMING
EXCEL TABLES

674 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

or shared. Tables can be easily recognized in worksheets as Excel automatically
enables the filtering in the header row for each column, which you can see in
Figure 21.1. You can use this feature to sort data in ascending or descending
order or to create a custom view of your data.

When you create a table from a cell range and don’t specify that your table
contains column headers, Excel automatically adds column headers (Column1,
Column2, etc.) to the range.

FIGURE 21.1 A table in an Excel worksheet.

To subtotal data in the table, take the following steps:

1. Convert an Excel table into a standard worksheet range. To do this, click the
Design tab and select Convert to Range in the Tools group. Click Yes in the
dialog box that appears.

2. Sort the data according to your needs. Select any cell in the column you want
to sort by and click Sort & Filter in the Editing group on the Home tab. Select
the desired option from the Sort & Filter menu.

3. Now to add a subtotal, click anywhere within the range, and then click
Subtotal in the Outline group on the Data tab. You will see the Subtotal dialog
box, as shown in Figure 21.2.

USING AND PROGRAMMING EXCEL TABLES 675

FIGURE 21.2 Use the Subtotal dialog box to subtotal Excel tables.

4. In the Subtotal dialog box, make appropriate selections:

 ● In the At each change in drop-down box, choose the column by which
you want to subtotal.

 ● In the Use function drop-down, select a function that is appropriate for
the type of summary you want to produce.

 ● In the Add subtotal to drop-down, check the appropriate column.

5. Click OK to finish adding subtotals.

Excel cells belonging in the table can be formatted using the formatting options
you are already familiar with (applying bold, underline, font color, pattern,
shading, conditional formatting, and so on). Data in the table may be validated
via the Data Validation button in the Data Tools group on the Data tab.

CREATING A TABLE USING BUILT-IN COMMANDS

To create a table in Excel, select a range of cells containing the data you want
to include in the table and then choose Insert | Table. Excel displays the Create
Table dialog box shown in Figure 21.3, where you can accept the current selec-
tion of cells for the table or change the range of data for the table. To see how this

676 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

is actually done, we will start by writing a VBA procedure that gets data from the
Microsoft Access Northwind database (Northwind.mdb).

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 H ands-On 21.1 Obtaining Table Data from a Microsoft Access
Database

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap21_
VBAExcel2019.xlsm.

2. Press Alt+F11 to switch to the Visual Basic Editor window, highlight
VBAProject (Chap21_VBAExcel2019.xlsm) in the Project Explorer window,
and choose Insert | Module.

3. Use the Properties window to change the Name property of Module1 to
Tables.

4. Choose Tools | References and in the list of available references, select the
checkbox next to Microsoft ActiveX Data Objects Library (6.1 or an earlier
version). Next, click OK to exit the References dialog box.

5. In the Tables module Code window, enter the GetOrders procedure as
shown below:
Sub GetOrders()
 Dim conn As New ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strPath As String
 Dim wks As Worksheet
 Dim j As Integer

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 Worksheets.Add
 Set wks = ThisWorkbook.ActiveSheet

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strPath & ";"

 ' Create a Recordset from data in the Categories table

 Set rst = conn.Execute(CommandText:="Select OrderID," & _
 "CustomerID, Freight from Orders", _
 Options:=adCmdText)

USING AND PROGRAMMING EXCEL TABLES 677

 rst.MoveFirst

 ' transfer the data to Excel
 ' get the names of fields first

 With wks.Range("A1")
 .CurrentRegion.Clear
 For j = 0 To rst.Fields.Count - 1
 .Offset(0, j) = rst.Fields(j).Name
 Next j
 .Offset(1, 0).CopyFromRecordset rst
 .CurrentRegion.Columns.AutoFit
 .Cells(1, 1).Select
 End With
 rst.Close
 conn.Close

 Set rst = Nothing
 Set conn = Nothing

End Sub

Switch to the Microsoft Excel application window and select Sheet1.
6. Press Alt+F8 to display the Macro dialog box. Highlight the GetOrders

procedure and click Run.
The data is retrieved from the Orders table and placed in a new sheet.

7. Choose Insert | Table.
Microsoft Excel displays the Create Table dialog box and highlights the range
of cells identified as a table, as shown in Figure 21.3. You may change the range
by making your own range selection in the worksheet.

FIGURE 21.3 Converting a range of cells into an Excel table.

678 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

8. Click OK to exit the Create Table dialog box.
Your table is now ready to use or share with others (see Figure 21.1 earlier in
this chapter).

CREATING A TABLE USING VBA

To programmatically create an Excel table, use the ListObject object, which rep-
resents a list object in a worksheet. The ListObject object is a member of the Lis-
tObjects collection. This collection contains all the list objects on the worksheet.
As mentioned earlier, you can have one or more tables in a single worksheet.

In the previous section, you learned how to use VBA to retrieve data from
Access and how to manually convert it into an Excel table using the built-in
Ribbon commands. In this section, we will modify the GetOrders procedure
you created in Hands-On 21.1 so that it automatically creates a table for us out
of the Access data.

 Hands-On 21.2 Creating a Table Using VBA

1. In the Tables module Code window, modify the GetOrders procedure as
follows:

 ● Add the following declaration to the procedure declaration section:

Dim rng As Range

 ● Type the following statements just before the End Sub keywords:

'create a table in Excel

Set rng = wks.Range(Range("A1").CurrentRegion.Address)
wks.ListObjects.Add xlSrcRange, rng

The first statement that follows the comment will set the object variable (rng)
to point to the range of cells that we want to convert into a table. The second
statement uses the Add method of the ListObjects collection to create a table
out of a specified range of cells. The xlSrcRange constant specifies that the
source of the table is an Excel range, while the rng object variable indicates a
Range object representing the data source.
 The revised GetOrders procedure is shown below:
Sub GetOrders_2()
 Dim conn As New ADODB.Connection

USING AND PROGRAMMING EXCEL TABLES 679

 Dim rst As ADODB.Recordset
 Dim strPath As String
 Dim wks As Worksheet
 Dim j As Integer
 Dim rng As Range

 strPath = "C:\VBAExcel2019_ByExample\Northwind.mdb"
 Worksheets.Add
 Set wks = ThisWorkbook.ActiveSheet

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strPath & ";"

 ' Create a Recordset from data in the Categories table

 Set rst = conn.Execute(CommandText:="Select OrderID," & _
 "CustomerID, Freight from Orders", _
 Options:=adCmdText)

 rst.MoveFirst

 ' transfer the data to Excel
 ' get the names of fields first
 With wks.Range("A1")
 .CurrentRegion.Clear
 For j = 0 To rst.Fields.Count - 1
 .Offset(0, j) = rst.Fields(j).Name
 Next j
 .Offset(1, 0).CopyFromRecordset rst
 .CurrentRegion.Columns.AutoFit
 .Cells(1, 1).Select
 End With
 rst.Close
 conn.Close

 Set rst = Nothing
 Set conn = Nothing

 'create a table in Excel

 Set rng = wks.Range(Range("A1").CurrentRegion.Address)
 wks.ListObjects.Add xlSrcRange, rng

End Sub

680 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Switch to the Microsoft Excel application window.
3. Press Alt+F8 to display the Macro dialog box. Highlight the GetOrders_2

procedure and click Run.
The data is retrieved from the Orders table and placed in a new sheet as an
Excel table. When you use the Add method of the ListObjects collection to
create an Excel table, you may specify the arguments as shown in Table 21.1.

TABLE 21.1 Arguments used with the Add method of the ListObjects collection

Argument Name Description
SourceType
(optional)

Indicates the type of data for the list. You can use
one of the following source types:

External data (xlSrcExternal)
Excel range (xlSrcRange)
XML data (xlSrcXML)

If omitted, SourceType will default to xlSrcRange.
Source
(optional when SourceType = xlSrcRange)
(required when SourceType = xlSrcExternal)

This argument can be one of the following:
An array of String values specifying a connection
to the source:

Use 0 to indicate the SharePoint URL.
Use 1 to indicate the name of the list.
Use 2 to indicate the ViewGUID (identifies the
view for a list on SharePoint site).

A Range object representing the data source.
If this argument is omitted, Source is the range
returned by list range detection code.

LinkSource
(optional)

Indicates whether an external data source is to be
linked to the ListObject object.

The SourceType argument must be set to xlSrcEx-
ternal.

HasHeaders
(optional)

Indicates whether the data to be used for the list
has column labels. You can use one of the follow-
ing constants for this argument: xlGuess, xlNo, or
xlYes.
If Source does not have column headings, Excel
automatically generates headers as Column1,
Column2, etc.

USING AND PROGRAMMING EXCEL TABLES 681

Argument Name Description
Destination
(required when SourceType = xlSrcExternal)
(ignored when SourceType = xlSrcRange)

Indicates the top-left corner of the new list object.
Use a Range object with a single-cell reference.
You cannot reference more than one cell. If the
destination range is not empty, new columns will
be added to fit the new list (existing data will not
be overwritten).

Notice that the arguments of the ListObject object’s Add method are optional.
If you omit the arguments, Excel will use its own logic to identify the range of
cells for the table and will determine whether the table contains column head-
ings. Contiguous cells containing data are always assumed to be a part of a table.
If the first row of the identified data range contains text, Excel assumes that this
is a header row.

UNDERSTANDING COLUMN HEADINGS IN THE TABLE

When creating a table, Excel automatically adds column headings to the table.
Depending on the type of data found in the first row of the data range, the
first row may be designated as column headings or a new row may need to be
inserted, causing other rows of data to shift down. Because you will not know
exactly what Excel will do in a particular situation given a particular set of data,
it is a good idea to supply the value for the HasHeaders argument in your VBA
code, as shown in Table 21.1. Let’s look at how we can control the location of the
column headings in the Excel table.

 Hands-On 21.3 Adding Headings to a Table

1. Insert a new sheet in the Chap21_VBAExcel2019.xlsm workbook and type the
sample data shown in Figure 21.4.

FIGURE 21.4 Data in a spreadsheet prior to conversion into a table.

682 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Switch to the Visual Basic Editor screen and enter the following procedure in
the Tables module:
Sub List_Headers()
 Dim rng As Range
 Dim wks As Worksheet

 Set wks = ActiveSheet
 Set rng = wks.Range("A2:B5")

 wks.ListObjects.Add SourceType:=xlSrcRange, Source:=rng, _
 XlListObjectHasHeaders:=xlNo
End Sub

Because the data in Figure 21.4 does not have column headings, we have speci-
fied xlNo for the HasHeaders argument. When Excel executes this procedure,
it will add default headers (Column1, Column2) in row 2 and will shift the
range down one row, as illustrated in Figure 21.5.

3. Position the insertion point anywhere within the List_Headers procedure and
press F5 to run it.

4. Switch to the Microsoft Excel application window to view the result of
running the procedure.

FIGURE 21.5 A range of data after conversion to an Excel table. Notice that Excel has added
default column headings in row 2 and shifted the data range one row down.

Sometimes you may not want Excel to shift data down when your table does
not include column headings. To prevent this, it is recommended that you
specify for your table a range of data in which the first row is blank. For ex-
ample, to prevent Excel from shifting the data down one row, specify A1:B5 as
the range and use xlYes for the HasHeaders parameter. Before trying this out,
let’s convert the Excel table we have just created back to a normal range.

USING AND PROGRAMMING EXCEL TABLES 683

5. Select any cell within the table on the worksheet and choose Design | Convert
to Range. Click Yes when Excel displays a confirmation message.
Notice that after Excel creates a normal range out of a table, the default column
headings are preserved.

6. Delete the headings row from this worksheet and save your changes.
7. Switch back to the Visual Basic Editor screen and, in the Tables module,

enter the following List_Headers2 procedure:
Sub List_Headers2()
 Dim rng As Range
 Dim wks As Worksheet

 Set wks = ActiveSheet
 Set rng = wks.Range("A1:B5")

 wks.ListObjects.Add SourceType:=xlSrcRange, _
 Source:=rng, XlListObjectHasHeaders:=xlYes
End Sub

8. Run the List_Headers2 procedure and view its results on Sheet3, shown in
Figure 21.6.

FIGURE 21.6 A range of data after conversion to an Excel table. Notice that Excel has added
default column headings in row 1, which was empty when we specified the range of data for the table.

MULTIPLE TABLES IN A WORKSHEET

You have seen in the previous section how Excel shifts the cells down when the
data range specified for your table does not have column headings. Because you
may have more than one table in a worksheet, this behavior may cause problems
when another table is placed right below the first table. Also, when you add new

684 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

rows to the table, the table expands, so a conflict may occur if another table is
placed in the rows below. Therefore, it is a good idea to avoid placing any data
in the rows below a table.

When you have more than one table in a worksheet and want to manipu-
late these tables programmatically, it’s a good practice to assign names to your
tables so you can easily refer to them in your code. While you can always refer
to a table by using its index number, names are more meaningful and easier to
understand. By default Excel assigns the names Table1, Table2, Table3, etc., to
the tables in a worksheet. To name a table or retrieve the name of an existing
table, use the Name property of the ListObject object. For example, the follow-
ing statement entered in the Immediate window returns the name of the table
in the active sheet:
 ?ActiveSheet.ListObjects(1).Name
 Table1

To rename Table1, we can simply type the following statement in the Immediate
window and press Enter:

ActiveSheet.ListObjects(1).Name = "Student Scores"

Now you can refer to the first table in the active sheet as Student Scores.
The DefineTableName procedure shown below uses the ListObjects prop-

erty to get a reference to the first table on Sheet3. Next, the Name property is
used to assign a name to the referenced table.
 Sub DefineTableName()
 Dim wks As Worksheet
 Dim lst As ListObject

 Set wks = ActiveWorkbook.Worksheets("Sheet3")

 Set lst = wks.ListObjects(1)
 lst.Name = "1st Qtr. 2019 Student Scores"
 End Sub

WORKING WITH THE EXCEL LISTOBJECT

The ListObject object represents a table on a worksheet. You can manipulate
the table via the properties and methods of the ListColumns and ListRows
collections.

USING AND PROGRAMMING EXCEL TABLES 685

 ● Th e ListColumns collection contains all the ListColumn objects in the
specifi ed ListObject object. Each ListColumn object is a column in the
table.

 ● Th e ListRows collection contains all the ListRow objects in the specifi ed
ListObject object. Each ListRow object is a row in the table.

You can perform various operations on Excel tables using properties and meth-
ods of the ListObject object as shown in Tables 21.2 and 21.3.

TABLE 21.2 Properties of the ListObject object

Property Name Description
Active Indicates whether a list in a worksheet is currently active.

Returns True or False. For example:

IsTblActive = ActiveSheet.ListObjects(1).active
Debug.Print IsTblActive

NOTE

There is no Activate method for the ListObject
object. To activate a table, you must activate a cell
range within a table. For example:
ActiveSheet.ListObjects(1).Range.
Activate
The above statement selects the entire range for the
list.

DataBodyRange Returns a Range object that represents the range of cells without the
header row in a table. For example:
ActiveSheet.ListObjects(1).DataBodyRange.Select
or
dataRng = ActiveSheet.ListObjects(1). _ Data-
BodyRange.Address
Debug.Print dataRng

HeaderRowRange Returns a Range object that represents the range of the header row for a
table. For example, use the following statement to select the header row in
the table:
ActiveSheet.ListObjects(1).HeaderRowRange.Select

InsertRowRange In Excel 2003, this property returns a Range object representing the insert
row. This property is not supported in Excel 2007/ 2019:
ActiveSheet.ListObjects(1).InsertRowRange.Activate

686 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Property Name Description
ListColumns Returns a ListColumns collection that represents all the columns in a

ListObject object. For example, the following procedure deletes the last
column from the table:
Sub DeleteLastCol()
 Dim myList As ListObject
 Dim lastCol As Integer

 Set myList = ActiveSheet.ListObjects(1)
 lastCol = myList.ListColumns.Count
 myList.ListColumns(lastCol).Delete
End Sub

ListRows Returns a ListRows object that represents all the rows of data in the ListO-
bject object. For example, the following procedure prints to the Immediate
window the total number of rows in the table:
Sub CountListRows()
 Dim objRows As ListRows
 Set objRows = ActiveSheet.ListObjects(1)
 .ListRows
 Debug.Print objRows.Count
End Sub

Name Returns or sets the name of the ListObject object. For example, use the
following statement to assign a name to the first table in the active work-
sheet:
ActiveSheet.ListObjects(1).Name = "Student
Scores"

QueryTable Returns the QueryTable object that provides a link for the ListObject
object to the SharePoint site server.

Range Returns a Range object that represents the range to which the specified list
object applies. For example, the following statement prints to the Immedi-
ate window the range address of the entire list:
Debug.Print ActiveSheet.ListObjects(1).Range.
 Address

SharePointURL Returns a String representing the URL of the SharePoint list. Use it to find
the address of the shared list after it has been published:
listURL = ActiveSheet.ListObjects(1)
 .SharePointURL
 Debug.Print listURL

ShowAutoFilter Indicates whether the AutoFilter will be displayed in the header row (True
or False). Use the following statement to turn off the AutoFilter mode for
a given table:
ActiveSheet.ListObjects(1).ShowAutoFilter = False

USING AND PROGRAMMING EXCEL TABLES 687

Property Name Description
ShowTotals Indicates whether the Total row is visible (True) or hidden (False). The

following statement turns on the display of the Total row:
ActiveSheet.ListObjects(1).ShowTotals = True

SourceType Returns one of the XlListObjectSourceType constants indicating the cur-
rent source of the table (xlSrcRange, xlSrcExternal, or xlSrcXML). Please
see Table 21.1.

TotalsRowRange Returns a range representing the Total row for the specified ListObject
object:

 Debug.Print ActiveSheet.ListObjects(1). _
TotalsRowRange.Address

XmlMap Returns an XmlMap object that represents the schema map used for the
specified table. See Chapter 28 for more information.

TABLE 21.3 Methods of the ListObject object

Method Name Description
Delete Deletes the ListObject object and clears the cell data from the worksheet.

If the list is linked to a SharePoint site, deleting it does not remove data on
the server that is running Windows SharePoint Services. Any uncommit-
ted changes not sent to the SharePoint list are lost when the list is deleted
in Excel.

Publish Publishes the ListObject object to a server that is running Microsoft
Windows SharePoint Services. Returns a String indicating the URL of the
published list on the SharePoint site.
The Publish method requires two arguments:
Target—This is a three-element string array that specifies the address of
the SharePoint server (element 0), the name of the list (element 1), and an
optional description of the list (element 2).
LinkSource—A boolean value (True or False)
If the ListObject object is not currently linked to a list on a SharePoint site:
LinkSource = True (creates a new list on the specified SharePoint site)
LinkSource = False (leaves the list object unlinked)
If the ListObject object is currently linked to a SharePoint site:
LinkSource = True (replaces the existing link—only one link to the list is
allowed on the SharePoint site)
LinkSource = False (keeps the ListObject object linked to the current
SharePoint site)

(Contd.)

688 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Method Name Description
Refresh This method can be used only with tables that are linked to a SharePoint

site. Retrieves the current data and schema for the table from the Share-
Point server.

Resize Allows a ListObject object to be resized over a new range. You must pro-
vide the range address as the argument to the Resize method. Assuming
that the current table range is A1:B6, we can specify the new range for the
table as:

ActiveSheet.ListObjects(1)
 .Resize Range("A1:B3")

Unlink Removes the link to a SharePoint Services site from a list.
For example:

ActiveSheet.ListObjects(1).Unlink

Unlist Converts an Excel table to a regular range of data. For example, the table
on the active sheet is turned into a normal range like this:

ActiveSheet.ListObjects(1).Unlist

UpdateChanges Updates the list on a Microsoft Windows SharePoint Services site with the
changes made to a table in the worksheet. You can specify how list/table
conflicts should be resolved by using one of the xlListConflict resolution
constants:

 xlListConflictDialog (default)
 xlListConflictRetryAllConflicts
 xlListConflictDiscardAllConflicts
 xlListConflictError

For example:
ActiveSheet.ListObjects(1)
 .UpdateChanges xlListConflictDialog

The following Hands-On demonstrates how to use selected properties from
Table 21.2.

 Hands-On 21.4 Defi ning Table Names

1. Enter the following procedure in the Tables module of VBAProject (Chap21_
VBAExcel2019.xlsm):
Sub DefineTableName2()
 Dim wks As Worksheet
 Dim lst As ListObject

USING AND PROGRAMMING EXCEL TABLES 689

 Dim col As ListColumn
 Dim c As Variant

 Set wks = ActiveWorkbook.Worksheets("Sheet3")

 Set lst = wks.ListObjects(1)
 With lst
 .Name = "1st Qtr. 2019 Student Scores"
 .ListColumns(1).Name = "Student Name"
 .ListColumns(2).Name = "Score"
 Set col = .ListColumns.Add
 col.Name = "Previous Score"
 Debug.Print "Header Address = " & .HeaderRowRange.Address
 Debug.Print "Data Range = " & .Range.Address
 Debug.Print "Data Body Range = " & .DataBodyRange.Address

 For Each c In wks.Range(.HeaderRowRange.Address)
 Debug.Print c
 Next
 End With
End Sub

2. Activate Sheet3 of the Chap21_VBAExcel2019.xlsm workbook.
3. Press Alt+F8 to display the Macro dialog box. Highlight the

DefineTableName2 procedure and click Run.
4. Check the Immediate window for the following procedure results:

Header Address = A1:C1
Data Range = A1:C6
Data Body Range = A2:C5
Student Name
Score
Previous Score

690 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FILTERING DATA IN EXCEL TABLES USING AUTOFILTER

AutoFilter drop-down box has a great search capability (see Figure 21.7), making
it easy to find data in large tables.

FIGURE 21.7 You can quickly navigate to specific data in the table by entering the required search
criteria in the AutoFilter drop-down search box.

To find out how to use the AutoFilter feature programmatically, all you have
to do is turn on the Macro Recorder and work with the AutoFilter drop-down.
The following macro was recorded while searching for the record of Barbara
O’Connor in the data table located in Sheet3 of the Chap21_VBAExcel2019
workbook. To remove the filter, simply comment out the first statement in the
macro code below, and uncomment the second statement.

Sub Macro1()
'
' Macro1 Macro
'
 ActiveSheet.ListObjects("1st Qtr. 2019 Student Scores"). _
 Range.AutoFilter Field:=1, Criteria1:="Barbara O'Connor"
 ' ActiveSheet.ListObjects("1st Qtr. 2019 Student Scores"). _

USING AND PROGRAMMING EXCEL TABLES 691

 Range.AutoFilter Field:=1
End Sub

To make the recorded macro more dynamic, modify it to pass a variable to
the AutoFilter Criteria like this:
Sub Macro2()
 '
 ' Macro1 Macro
 '
 Dim strInput As String

 strInput = InputBox("Enter the search string:", "Find What")

 ActiveSheet.ListObjects("1st Qtr. 2019 Student Scores"). _
 Range.AutoFilter Field:=1, Criteria1:="=*" & strInput & "*"

End Sub

FILTERING DATA IN EXCEL TABLES USING SLICERS

Slicers can be used on any Excel table. This makes filtering a table as simple as
it can be. Because slicers are floating controls, they can be placed anywhere on
the worksheet. The look and feel of your worksheets can be much improved by
turning off the filter buttons on table headers and using colorful slicers instead
to filter the data. With slicers used as your filtering controls, you can even hide
columns you don’t need and still be able to filter the data in the table.

To use slicers, simply select any cell in the table and click the Insert Slicers
button on the Design tab of the Table Tools (Figure 21.8).

FIGURE 21.8 Inserting a slicer on a worksheet containing a table.

692 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Excel displays the Insert Slicers dialog (Figure 21.9) where you can choose the
columns you want to create slicers for. Each slicer is used to filter one column.

FIGURE 21.9 Choosing columns for slicers.

When you make selections in the Insert Slicers dialog and click OK, the slicers
are created and dropped on the worksheet (Figure 21.10). You can drag them
anywhere you want.

FIGURE 21.10 CategoryName Slicers used to filter an Excel table. You can select multiple buttons by
holding the Shift or Ctrl key and clicking the button.

To clear the filtering from the table, click the Clear Filter icon on the top right
of the slicer. This will return the table to the full view. You can change the Slicer
header by typing new text in the Slicer Caption box on the Options tab. Slicer
formatting styles are also controlled via buttons available on the Options tab.

You can easily control slicers with VBA. Here’s an example macro created
with the Excel macro recorder:
Sub Macro3()
'
' Macro3 Macro
'

USING AND PROGRAMMING EXCEL TABLES 693

'
 ActiveSheet.Shapes.Range(Array("CategoryName")).Select
 ActiveSheet.Shapes("CategoryName").IncrementLeft 0.75
 ActiveSheet.Shapes("CategoryName").IncrementTop 41.25
 With ActiveWorkbook.SlicerCaches("Slicer_CategoryName")
 .SlicerItems("Dairy Products").Selected = True
 .SlicerItems("Beverages").Selected = False
 .SlicerItems("Condiments").Selected = False
 .SlicerItems("Confections").Selected = False
 .SlicerItems("Grains/Cereals").Selected = False
 .SlicerItems("Meat/Poultry").Selected = False
 .SlicerItems("Produce").Selected = False
 .SlicerItems("Seafood").Selected = False
 End With
 ActiveWorkbook.SlicerCaches("Slicer_CategoryName")
 .ClearManualFilter
 With ActiveWorkbook.SlicerCaches("Slicer_CategoryName")
 .SlicerItems("Condiments").Selected = True
 .SlicerItems("Beverages").Selected = False
 .SlicerItems("Confections").Selected = False
 .SlicerItems("Dairy Products").Selected = False
 .SlicerItems("Grains/Cereals").Selected = False
 .SlicerItems("Meat/Poultry").Selected = False
 .SlicerItems("Produce").Selected = False
 .SlicerItems("Seafood").Selected = False
 End With
 With ActiveWorkbook.SlicerCaches("Slicer_CategoryName")
 .SlicerItems("Condiments").Selected = True
 .SlicerItems("Dairy Products").Selected = True
 .SlicerItems("Beverages").Selected = False
 .SlicerItems("Confections").Selected = False
 .SlicerItems("Grains/Cereals").Selected = False
 .SlicerItems("Meat/Poultry").Selected = False
 .SlicerItems("Produce").Selected = False
 .SlicerItems("Seafood").Selected = False
 End With
 ActiveSheet.Shapes("CategoryName").IncrementTop -23.25
End Sub

694 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

DELETING WORKSHEET TABLES

You can delete an Excel table using one of the following methods:

User Interface

 ● Select the table on the worksheet and choose Home | Cells | Delete | De-
lete Cells.

 ● If you don’t need the sheet with the table, delete the entire worksheet.

VBA Code

 ● Use the Delete method to delete the worksheet table and its data.
 ● Use the Unlist method to convert the worksheet table to a normal data

range.
 ● Use the Unlink method to remove the link between the worksheet table

and the list on the SharePoint site. An unlinked list cannot be relinked.
Th e SharePoint lists can only be deleted on the SharePoint site or by using
the Lists Web service provided by SharePoint Services.

SUMMARY

This chapter introduced you to Excel tables. You have learned how to retrieve
information from a Microsoft Access database, convert it into a table, and enjoy
database-like functionality in the spreadsheet. You’ve also learned how tables
are exposed through Excel’s object model and manipulated via VBA.

In the next chapter, you will learn how to program two Microsoft Excel
objects that are used for data analysis: the PivotTable and PivotChart.

695

PivotTables serve millions of Microsoft Office applications users as power-
ful tools for organizing and presenting information from various sources.
If you are not familiar with this feature, now is the time to get your feet

wet. Using PivotTables and PivotCharts, you can analyze your data from mul-
tiple perspectives. PivotTables make it possible to drag headings around a table
to rearrange them so that your data is displayed dynamically any way you (or
your users) want it. Similar to PivotTables, PivotCharts are interactive and al-
low you to view data in different ways by changing the position or detail of the
PivotChart fields. Both PivotTables and PivotCharts allow you to focus on un-
derstanding your data rather than on organizing it.

CREATING A PIVOTTABLE REPORT

Before you can create a PivotTable, you need to prepare the data. You can get the
data from one of the following sources:

 ● A range on an Excel worksheet (you can type in your data or paste it from
other sources)

 ● An external data source (you can connect to a Microsoft Access fi le or an
SQL Server database and get data directly)

Chapter

 22 PROGRAMMING
PIVOTTABLES AND
PIVOTCHARTS

696 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Figure 22.1 displays the data that was dumped into a Microsoft Excel work-
sheet from an SQL Server database. The downloadable workbook file is named
EquipmentList.xlsx. This file contains over 1,400 rows of data that would be dif-
ficult to summarize if it weren’t for the built-in Excel PivotTable feature.

FIGURE 22.1 Source data for the PivotTable.

Let’s start our encounter with PivotTables by using built-in Ribbon commands.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 22.1 Creating a PivotTable

1. Copy the EquipmentList.xlsx workbook from the companion CD to your
VBAExcel2019_ByExample folder, and then open the copied file in Microsoft
Excel.
Select any cell anywhere in the data range. For example, select cell A2 in the
Source Data worksheet.

2. Choose Insert PivotTable.
The Create PivotTable dialog box appears, as shown in Figure 22.2.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 697

FIGURE 22.2 Create PivotTable dialog box.

Notice that there are two sections in the Create PivotTable dialog box. In the
top section, you need to choose the data source for your report. This can be
a table or range within a Microsoft Excel worksheet or data accessed from an
external data source or the current workbook’s Data Model. The middle sec-
tion of the Create PivotTable dialog box lets you choose between placing the
PivotTable report in a new worksheet or in the existing worksheet. The bottom
section allows you to create a data model based on multiple tables. This topic
is discussed in the last section of this chapter.

3. Make sure the Select a table or range and New Worksheet option buttons are
selected.
Ensure that the range displayed in the Table/Range box incorporates all the
data on which you want to report. The range will appear automatically if the
active cell is within the data range. If the currently selected cell is outside of the
data range, you will need to make your own selection.

4. Click OK.
A blank PivotTable report is inserted in a new sheet and the PivotTable Field
List pane is displayed, as shown in Figure 22.3.
 Notice that all the fields are listed in the PivotTable Field List pane to the right
of the worksheet. Each field has a checkbox so you can easily indicate which
fields to include in the report. The report is built as you make field selections.
For example, when you check the box next to Vendor, you will notice that the
Vendor field is automatically added to the Row Labels box at the bottom of the
PivotTable Field List pane and the PivotTable updates to show your selection.

698 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

By default, text fields are placed in the Row Labels list, and numeric fields
appear in the Values list, as shown in Figure 22.4. You can specify the type of
calculation you want to use to summarize data by clicking on the down arrow
next to the field name in the Values area and selecting Value Field Settings. The
default for the Values area is the Sum function. Figure 22.4 displays the pivot
table using the Count function. You can easily adjust the position of the fields
by dragging them between areas in the PivotTable Field List pane.

FIGURE 22.3 The PivotTable report waits for you to make field selections.

FIGURE 22.4 Adding fields to the PivotTable report.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 699

Figure 22.5 shows the views made available in the PivotTable Field List pane by
clicking on the button at the top of the pane.

FIGURE 22.5 You can easily change the layout of the sections that are available in the PivotTable
Field List pane on the right.

At the bottom of the PivotTable Field List pane, there are four areas where you
can place the fields:

 ● Th e Row Labels area should contain the fi elds that you want to display
your data “by.” For example, if you want to produce the report by vendor,
drag the Vendor fi eld onto the Row Labels area. Th e Row Labels area can
contain more than one fi eld. In the example report that you will create,
we also want to see the report by equipment type, so the Equipment Type
fi eld will be placed in the Row Labels area as well. If you position the
Equipment Type fi eld below the Vendor fi eld in the Row Labels area, the
data will be grouped fi rst by vendor and then by equipment type within
those vendors. Fields listed in the Row Labels area can be moved into
desired position by dragging.

 ● Th e Column Labels area should contain fi elds that answer the question
“what.” For example: What type of information do you want to display
for each of the fi elds in the Row Labels area? Our example PivotTable will
report on the Warranty Type. Because we want to see all types of warran-
ties for each vendor and equipment type, we will place the Warranty Type
fi eld in the Column Labels area. However, if you want to view your data

700 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

from a diff erent perspective, you can place the fi elds from the Row Labels
area in the Column Labels area and vice versa. It is up to you.

 ● Th e Values area displays the data that you want to analyze. In our ex-
ample, we want to fi nd out the total number of units (equipment type)
covered by each of the warranty types. Th e Values area must contain a
fi eld that has numeric data. Once we place the fi eld containing numeric
data in the Values area, we can choose what calculation (sum, count, aver-
age, and so on) we want to perform on the data.

 ● Th e Report Filter area is optional. Filter fi elds add a third dimension to
your data analysis. Later on in this chapter (see “Formatting, Grouping,
and Sorting a PivotTable Report”), when you generate a PivotTable pro-
grammatically, you will add a fi eld to the Report Filter area so you can
experiment with the data.

Note that you do not have to place all the fields from your data source in the
PivotTable. Place only those fields that you need; you can easily add other
fields later.

5. Make the selections as shown in Figure 22.6.

FIGURE 22.6 The completed PivotTable report.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 701

While the PivotTable is selected, the PivotTable Field List pane is visible on
the right-hand side so that you can easily modify the PivotTable by adding or
removing fields. You can temporarily remove the PivotTable Field List pane by
clicking outside the PivotTable selection in the worksheet. For example, if you
click any cell in row 1 or 2, the pane will disappear. Click again anywhere in the
area containing the pivot data and the pane reappears.
PivotTables are used for data analysis and presentation only. This means that
you are not permitted to enter data directly into a PivotTable. You must make
any changes or additions to the data in the underlying source data and then
use the Refresh button on the PivotTable Tools Options tab (see Figure 22.6)
to update the PivotTable. If you added new rows to the source data, you must
use the Change Data Source button in the Data group of the Options tab to
expand the data range.

6. To see the data from a different point of view, reposition the selected fields in
the PivotTable Field List as shown in Figure 22.7.

FIGURE 22.7 The PivotTable report—another view of the source data.

You can examine the contributing data by double-clicking any cell in the
Grand Total column.

7. Double-click cell J13.
Excel will add a new worksheet to the active workbook showing all the records
that contributed to the selected total value (Figure 22.8).

702 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.8 You can view the breakdown of the data by double-clicking on a data field in the
PivotTable.

8. Save the changes in the EquipmentList.xlsx workbook. Do not close this file as
it will be used in the next Hands-On.

Drilling down on the data is a nice feature except for the fact that if you do a
lot of double-clicking you will end up with many additional and most likely
unwanted worksheets in your workbook. You may want to delete the drill-down
worksheet after examining the detail data. You can do this manually, or you
can perform the cleanup programmatically by writing VBA event procedures as
described in the next section.

REMOVING PIVOTTABLE DETAIL WORKSHEETS WITH VBA

In the previous Hands-On, Excel added to the EquipmentList.xlsx workbook a
new worksheet that displays the detailed data included in the selected total. The
following example demonstrates two event procedures that allow you to specify
whether you want to keep the detailed worksheet or delete it automatically after
you’ve examined the data. This exercise requires completion of the steps out-
lined in Hands-On 22.1.

 Hands-On 22.2 Writing VBA Procedures to Remove a PivotTable
Detail Worksheet

1. In the EquipmentList.xlsx workbook, rename the sheet with your PivotTable
PivotReport.

2. Save the workbook in the Excel macro-enabled format as C:\VBAExcel2019_
ByExample\EquipmentListPivot.xlsm.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 703

Press Alt+F11 to switch to the Visual Basic Editor screen.
3. In the Project Explorer window, double-click the ThisWorkbook object in the

Microsoft Excel object folder under VBAProject (EquipmentListPivot.xlsm).
4. In the EquipmentListPivot.xlsm – ThisWorkbook Code window, enter the

global variable declaration and two event procedures as shown below:

' Global variables
Dim flag As Boolean ' Boolean variable to indicate whether
 ' to delete a drill-down worksheet
Dim strPivSheet As String ' String to hold the name of the sheet
 ' containing the PivotTable
Dim strDrillSheet As String ' String to hold the name of the
 ' drill-down sheet
Dim strPivSource As String ' String to hold the name of the
 ' worksheet with the PivotTable
 ' source data

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 If strPivSheet = "" Then Exit Sub
 If Sh.Name <> strPivSheet Then
 If InStr(1, strPivSource, Sh.Name) = 0 Then
 If MsgBox("Do you want to Delete " & Sh.Name & _
 " from the workbook" & vbCrLf _
 & "upon returning to PivotTable report?", _
 vbYesNo + vbQuestion, _
 "Sheet: Delete or Keep") = vbYes Then
 flag = True
 strDrillSheet = Sh.Name
 Else
 flag = False
 Exit Sub
 End If
 End If
 End If
 If ActiveSheet.Name = strPivSheet And flag = True Then
 Application.DisplayAlerts = False
 Worksheets(strDrillSheet).Delete
 Application.DisplayAlerts = True
 flag = False
 End If
End Sub

Private Sub Workbook_SheetBeforeDoubleClick(ByVal Sh As Object, _
 ByVal Target As Range, Cancel As Boolean)

704 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 With ActiveSheet
 If .PivotTables.Count > 0 Then
 strPivSource = ActiveSheet.PivotTables(1).SourceData
 If ActiveCell.PivotField.Name <> "" And _
 IsEmpty(Target) Then
 MsgBox "Selected cell has no data " & _
 "- cannot drill down."
 Cancel = True
 Exit Sub
 End If
 strPivSheet = ActiveSheet.Name
 End If
 End With
End Sub

The Workbook_SheetActivate event procedure will ask the user whether the
drill-down worksheet should be deleted when the user returns to the work-
sheet containing the PivotTable report. If the user answers “Yes” in the mes-
sage box, the Boolean variable flag will be set to True. Because by default
Excel displays a confirmation message whenever the worksheet is about to be
deleted, the procedure code turns off the application messages so the deletion
can be performed without further user intervention. After the deletion, don’t
forget to turn the alerts back on.
The Workbook_SheetBeforeDoubleClick event procedure will disable the
drill-down if the user clicks on a PivotTable cell that is empty. If the double-
clicked cell is not empty, the name of the worksheet containing the PivotTable
will be written to the global variable strPivSheet. Also, because we do not
want to delete the worksheet containing the PivotTable source data, we will
use the SourceData property of the PivotTables collection to store the name of
the source data worksheet and the underlying data range in the global variable
strPivSource.
To find out exactly how these two event procedures work together, use some of
the debugging skills that you acquired in Chapter 9.

5. Press Ctrl+S to save changes you made in the Visual Basic Editor window.
6. Return to the Microsoft Excel application window, select the PivotReport

worksheet and double-click cell J9.
Excel will execute the code inside the Workbook_SheetBeforeDoubleClick
event procedure and proceed to execute the code inside the Workbook_
SheetActivate procedure. Because cell J9 is not empty, Excel will ask you
whether you want to delete the drill-down worksheet upon returning to the
PivotTable worksheet.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 705

7. Click the Yes button in the message box.
Nothing happens at this point. Excel simply has set the flag to delete this drill-
down worksheet when you are done viewing it.

8. Click the PivotReport worksheet tab.
At this point, Excel deletes the drill-down worksheet and activates the Pivot-
Report worksheet.

9. Double click cell B14 in the PivotReport worksheet.
Excel displays the message that the drill-down is not allowed because there is
no data in this cell. Recall that this message was coded inside the Workbook_
SheetBeforeDoubleClick event procedure.

10. Save the EquipmentListPivot.xlsm workbook and then close it.

CREATING A PIVOTTABLE REPORT PROGRAMMATICALLY

Although the creation process of PivotTables has undergone many improve-
ments in Excel, some users may still find the process of creating PivotTable
reports confusing. For those users you may want to generate PivotTables via
VBA code. Also with VBA, you can make many formatting changes to the exist-
ing PivotTables. This section demonstrates how you can work with PivotTables
programmatically. We will start by creating the PivotTable report shown earlier
in Figure 22.6 using the data source presented in Figure 22.1.

 Hands-On 22.3 Creating a PivotTable Report with VBA

1. Open the C:\VBAExcel2019_ByExample\EquipmentList.xlsx workbook.
Right-click the Source Data sheet tab in the EquipmentList.xlsx workbook
and choose the Move or Copy option from the pop-up menu.

2. In the Move or Copy dialog box, choose the (new book) entry from the To
book drop-down list. Indicate that you want to make a copy of the selected
sheet by clicking the checkbox next to Create a copy label. Click OK to
proceed with the copy operation.
Excel creates a new workbook with one sheet named Source Data. This sheet
has been copied from the EquipmentList.xlsx file.

3. Save this new workbook in the Excel macro-enabled format as C:\
VBAExcel2019_ByExample\Chap22_VBAExcel2019.xlsm.

4. Insert three new sheets into the Chap22_VBAExcel2019.xlsm file and save
the changes made to the workbook.

706 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

5. Close the EquipmentList.xlsx workbook. Leave the Chap22_
VBAExcel2019.xlsm file open.

6. Press Alt+F11 to switch to the Visual Basic Editor screen.
7. In the Project Explorer window, highlight VBAProject (Chap22_

VBAExcel2019.xlsm) and choose Insert | Module.
8. In the Chap22_VBAExcel2019.xlsm – Module1 Code window, enter the

CreateNewPivot procedure as shown below:
 Sub CreateNewPivot()
 Dim wksData As Worksheet
 Dim rngData As Range
 Dim wksDest As Worksheet
 Dim pvtTable As PivotTable

 ' Set up object variables
 Set wksData = ThisWorkbook.Worksheets("Source Data")
 Set rngData = wksData.UsedRange
 Set wksDest = ThisWorkbook.Worksheets("Sheet2")

 ' Create a skeleton of a PivotTable

 Set pvtTable = wksData.PivotTableWizard(SourceType:=xlDatabase, _
 SourceData:=rngData, TableDestination:=wksDest.Range("B5"))

 ' Close the PivotTable Field List that appears automatically
 ActiveWorkbook.ShowPivotTableFieldList = False

 ' Add fields to the PivotTable
 With pvtTable
 .PivotFields("Vendor").Orientation = xlRowField
 .PivotFields("Equipment Type").Orientation = xlRowField
 .PivotFields("Warranty Type").Orientation = xlColumnField
 With .PivotFields("Equipment Id")
 .Orientation = xlDataField
 .Function = xlCount
 End With
 .PivotFields("Equipment Id").Orientation = xlPageField
 End With

 ' Autofit columns so all headings are visible
 wksDest.UsedRange.Columns.AutoFit
 End Sub

The CreateNewPivot procedure shown above creates a new PivotTable report
using the PivotTableWizard method of a Worksheet object. This method

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 707

takes a few arguments that specify the type of the data source, its location,
and the location where the PivotTable reports should be placed. All of these
arguments are optional; however, it is a good idea to use them as we did in
our example code. Because you can create a PivotTable from various sources
of data by using the xlDatabase constant in the SourceType argument, the
code specifically says that the data comes from an Excel range. If you want
to create a PivotTable report from another PivotTable, use xlPivotTable for
this argument. If your data is to be pulled from an external database (as shown
in a later example), specify xlExternal as the SourceType. The SourceData
argument in the above example procedure is a reference to the used range on
the worksheet containing the source data. The TableDestination argument
has a reference to cell B5 on Sheet2 in the current workbook. This is where the
upper-left corner of the report will be placed.
 The code assumes that Sheet2 exists in the workbook. If you don’t have
Sheet2, it’s easy enough to add one via the VBA code prior to setting the refer-
ence. It is important to understand that when you call the PivotTableWiz-
ard method, you create a blank PivotTable report. All the fields from the data
source are hidden. To make the fields visible, you need to add them to appro-
priate areas of the PivotTable Field List pane. As you recall, there are four such
areas: Row Labels, Column Labels, Values, and Report Filter. While creating
the PivotTable report, the PivotTable Field List pane appears automatically on
the right-hand side of the worksheet. However, because you are creating a Piv-
otTable programmatically, there is no need to display that list on the screen. By
setting the ShowPivotTableFieldList property to False, the PivotTable Field
List pane will not be displayed.
 For each field that you want to display in the PivotTable report, set the Ori-
entation property of the PivotField object. Use the following constants for the
Orientation property: xlRowField, xlColumnField, xlDataField, and xl-
PageField. Note that for the Total Units field placed in the Values area, the
procedure sets the Function property of the PivotField object to xlSum.

9. When you are creating a PivotTable report via code, you may need to check
whether a PivotTable already exists in the destination worksheet. You can
place the following code just below the code that sets up object variables (see
the previous CreateNewPivot procedure):
 ' Check if PivotTable already exists
 If wksDest.PivotTables.Count > 0 Then
 MsgBox "Worksheet " & wksDest.Name & _
 " already contains a pivot table."
 Exit Sub
 End If

708 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

10. Run the CreateNewPivot procedure.
When you switch to the Microsoft Excel application window, Sheet2 should
contain the PivotTable report shown in Figure 22.9.

FIGURE 22.9 A PivotTable report created with VBA code.

CREATING A PIVOTTABLE REPORT FROM AN
ACCESS DATABASE

You can use the same PivotTableWizard method of the Worksheet object
(demonstrated in Hands-On 22.3) to create a PivotTable report from an exter-
nal data source. Let’s start by creating a PivotTable report from a Microsoft
Access sample database. We will use a Microsoft Access driver to connect to
the Northwind database (Northwind.mdb) and then call the PivotTableWiz-
ard method of the Worksheet object to create an empty PivotTable. We will
populate the PivotTable report with the data by setting the Orientation property
of the PivotField objects.

 Hands-On 22.4 Creating a PivotTable Report from Access with VBA

1. Add a new module to VBAProject (Chap22_VBAExcel2019.xlsm) and enter
the PivotTable_External1 procedure as shown below:

 Sub PivotTable_External1()
 Dim strConn As String
 Dim strQuery_1 As String
 Dim strQuery_2 As String
 Dim myArray As Variant
 Dim destRange As Range

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 709

 Dim strPivot As String

 strConn = "Driver={Microsoft Access Driver (*.mdb)};" & _
 "DBQ=" & "C:\VBAExcel2019_ByExample\Northwind.mdb;"

 strQuery_1 = "SELECT Customers.CustomerID, " & _
 "Customers.CompanyName," & _
 "Orders.OrderDate, Products.ProductName, Sum([Order " & _
 "Details].[UnitPrice]*[Quantity]*(1-[Discount])) " & _
 "AS Total " & _
 "FROM Products INNER JOIN ((Customers INNER JOIN Orders " & _
 "ON Customers.CustomerID = "

 strQuery_2 = "Orders.CustomerID) INNER JOIN [Order Details] " & _
 "ON Orders.OrderID = [Order Details].OrderID) ON " & _
 "Products.ProductID = [Order Details].ProductID " & _
 "GROUP BY Customers.CustomerID, Customers.CompanyName, " & _
 "Orders.OrderDate, Products.ProductName;"

 myArray = Array(strConn, strQuery_1, strQuery_2)
 Worksheets.Add

 Set destRange = ActiveSheet.Range("B5")
 strPivot = "PivotFromAccess"

 ActiveSheet.PivotTableWizard _
 SourceType:=xlExternal, _
 SourceData:=myArray, _
 TableDestination:=destRange, _
 TableName:=strPivot, _
 SaveData:=False, _
 BackgroundQuery:=False

 ' Close the PivotTable Field List that appears automatically
 ActiveWorkbook.ShowPivotTableFieldList = False

 ' Add fields to the PivotTable
 With ActiveSheet.PivotTables(strPivot)
 .PivotFields("ProductName").Orientation = xlRowField
 .PivotFields("CompanyName").Orientation = xlRowField
 With .PivotFields("Total")
 .Orientation = xlDataField
 .Function = xlSum
 .NumberFormat = "$#,##0.00"
 End With

710 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .PivotFields("CustomerID").Orientation = xlPageField
 .PivotFields("OrderDate").Orientation = xlPageField
 End With
 ' Autofit columns so all headings are visible
 ActiveSheet.UsedRange.Columns.AutoFit
 End Sub

When using the PivotTableWizard method of the Worksheet object to cre-
ate a PivotTable report from an external data source, you need to specify at a
minimum the following arguments:

Name Description
SourceType Use the xlExternal constant to indicate that the data for the

PivotTable comes from an external data source.
SourceData Specify an array containing two or more elements. The first element

of the array must be a connection string to the database. The second
argument is the SQL statement for querying an external database. If
the SQL statement is longer than 255 characters, break up the state-
ment into several strings and pass each string as a separate element
of the array.
 In the example procedure above, the SQL statement necessary for
obtaining the required data from an external database is longer than
255 characters; therefore, the SQL string is broken into two strings:
strQuery_1 and strQuery_2. Next, the connection string and the
SQL statement are placed in an array like this:
myArray = Array(strConn, strQuery_1, strQu-
ery_2)
myArray is then used as the SourceData argument of the Piv-
otTableWizard method.

TableDestination Specify a worksheet range where the PivotTable should be placed.
TableName Specify the name of the PivotTable that you want to create.

In addition to the above arguments, the PivotTable_External1 example proce-
dure uses the optional SaveData and BackgroundQuery arguments.

SaveData This argument tells Visual Basic whether to save the PivotTable when
the workbook file is saved. By setting the SaveData argument to
False, the PivotTable will not be saved. This setting allows you to
save space on disk.

BackgroundQuery When set to False, this argument tells Visual Basic to refrain from
executing other operations in Excel in the background until the
query is complete.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 711

After creating a PivotTable, the procedure specifies where the fields returned
by the SQL statement should be placed in the PivotTable report.

2. Run the PivotTable_External1 procedure to generate the PivotTable.
The resulting PivotTable report is illustrated in Figure 22.10.

FIGURE 22.10 A PivotTable report can be created programmatically from an external data source
such as a Microsoft Access database.

USING THE CREATEPIVOTTABLE METHOD OF
THE PIVOTCACHE OBJECT

When you use the macro recorder to generate the code for creating a PivotTable
programmatically, Excel uses the Add method of the PivotCaches collection to
create a new PivotCache. A PivotCache object represents the data behind a Piv-
otTable. It is an area in memory where data is stored and accessed as required
from a data source. Use the PivotCache when you need to generate multiple
PivotTables from the same data source. By using a PivotCache, you can gain a
high level of control over your external data source. The PivotCache object can
also be used to change and refresh data stored in the cache.

The example procedure in Hands-On 22.5 connects to the Microsoft Access
Northwind 2007 database (Northwind 2007.accdb) using the Microsoft.ACE.
OLEDB.12.0 provider. To use this type of connection, you must set up a refer-
ence to the Microsoft ActiveX Data Objects (ADO) in the References dialog
box located in the Tools menu of the Microsoft Excel Visual Basic Editor screen.

712 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 22.5 Creating a PivotTable Report Using the
PivotCache Object

1. In the Visual Basic Editor screen, choose Tools | References. In the Available
References listbox, select the Microsoft ActiveX Data Objects 6.1 Library
and click OK.

2. Add a new module to VBAProject (Chap22_VBAExcel2019.xlsm) and enter
in the Code window the Pivot_External2 procedure as shown below:

 Sub Pivot_External2()
 Dim objPivotCache As PivotCache
 Dim conn As New ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim dbPath As String
 Dim strSQL As String

 dbPath = "C:\VBAExcel2019_ByExample\Northwind 2007.accdb"

 conn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" _
 & "Data Source=" & dbPath & _
 "; Persist Security Info=False;"

 strSQL = "SELECT Products.[Product Name], " & _
 "Orders.[Order Date], " & _
 "Sum([Unit Price]*[Quantity]) AS Amount " & _
 "FROM Orders INNER JOIN (Products INNER JOIN " & _
 "[Order Details] ON Products.ID = " & _
 "[Order Details].[Product ID]) ON " & _
 "Orders.[Order ID] = [Order Details].[Order ID] " & _
 "GROUP BY Products.[Product Name], " & _
 "Orders.[Order Date], Products.[Product Name]" & _
 "ORDER BY Sum([Unit Price]*[Quantity]) DESC , " & _
 "Products.[Product Name];"

 Set rst = conn.Execute(strSQL)

 ' Create a PivotTable cache and report
 Set objPivotCache = ActiveWorkbook.PivotCaches.Add(_
 SourceType:=xlExternal)
 Set objPivotCache.Recordset = rst

 Worksheets.Add
 With objPivotCache
 .CreatePivotTable TableDestination:=Range("B6"), _
 TableName:="Invoices"
 End With

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 713

 ' Add fields to the PivotTable
 With ActiveSheet.PivotTables("Invoices")
 .SmallGrid = False
 With .PivotFields("Product Name")
 .Orientation = xlRowField
 .Position = 1
 End With
 With .PivotFields("Order Date")
 .Orientation = xlRowField
 .Position = 2
 .Name = "Date"
 End With
 With .PivotFields("Amount")
 .Orientation = xlDataField
 .Position = 1
 .NumberFormat = "$#,##0.00"
 End With
 End With

 ' Autofit columns so all headings are visible
 ActiveSheet.UsedRange.Columns.AutoFit

 ' Clean up
 rst.Close
 conn.Close
 Set rst = Nothing
 Set conn = Nothing

 ' Obtain information about PivotCache
 With ActiveSheet.PivotTables("Invoices").PivotCache
 Debug.Print "Information about the PivotCache"
 Debug.Print "Number of Records: " & .RecordCount
 Debug.Print "Data was last refreshed on: " & .RefreshDate
 Debug.Print "Data was last refreshed by: " & .RefreshName
 Debug.Print "Memory used by PivotCache: " & .MemoryUsed & _
 " (bytes)"
 End With
 End Sub

After establishing a connection with a database and executing the SQL state-
ment to obtain the data, the procedure creates a PivotCache using the follow-
ing line of code:
Set objPivotCache = ActiveWorkbook.PivotCaches.Add(_
 SourceType:=xlExternal)

714 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The code then places the data from the external data source in the PivotCache
by assigning a Recordset object to the PivotCache object, like this:
Set objPivotCache.Recordset = rst

Next, the code uses the CreatePivotTable method of the PivotCache object
to create an empty PivotTable:
 With objPivotCache
 .CreatePivotTable TableDestination:=Range("B6"), _
 TableName:="Invoices"
 End With

Once the skeleton of the PivotTable is created, the code adds appropriate fields
to the PivotTable. The last several lines of the example procedure demonstrate
how to find out information about the PivotCache.
To force the PivotCache to refresh automatically when a workbook containing
the PivotTable is opened, set the RefreshOnFileOpen property to True. To do
this, you may want to add the following statement at the end of the Pivot_Ex-
ternal2 procedure:
 ActiveSheet.PivotTables("Invoices").PivotCache. _
 RefreshOnFileOpen = True

3. Run the Pivot_External2 procedure to generate the PivotTable.
The resulting PivotTable report is illustrated in Figure 22.11.

FIGURE 22.11 A PivotTable report created using the CreatePivotTable method of the

PivotCache object.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 715

FORMATTING, GROUPING, AND SORTING A PIVOTTABLE
REPORT

You can modify the display and format of a PivotTable programmatically by
using a number of different properties of the PivotTable object. For example,
you may want to reposition the fields within the PivotTable report, sort the
data by a specific field, or group your data by years, quarters, months, and so
on. The example procedure below reformats the PivotTable report shown in
Figure 22.10 to look like the one shown in Figure 22.12.

 Hands-On 22.6 Formatting a PivotTable Report

1. Add a new module to VBAProject (Chap22_VBAExcel2019.xlsm) and enter
the FormatPivotTable procedure as shown below:
Sub FormatPivotTable()
 Dim pvtTable As PivotTable
 Dim strPiv As String

 If ActiveSheet.PivotTables.Count > 0 Then
 strPiv = ActiveSheet.PivotTables(1).Name
 Set pvtTable = ActiveSheet.PivotTables(strPiv)
 Else
 Exit Sub
 End If

 With pvtTable
 .PivotFields("OrderDate").Orientation = xlRows
 .PivotFields("CompanyName").Orientation = xlHidden
 ' use this statement to group OrderDate by year
 .PivotFields("OrderDate").DataRange.Cells(1).Group _
 Start:=True, End:=True, _
 periods:=Array(False, False, False, False, False, _
 False, True)

 ' use this statement to group OrderDate both by quarter
 ' and year
 ' .PivotFields("OrderDate").DataRange.Cells(1).Group _
 Start:=True, End:=True, _
 periods:=Array(False, False, False, False, _
 False, True, True)

 .PivotFields("OrderDate").Orientation = xlColumns
 .TableRange1.AutoFormat Format:=xlRangeAutoFormatColor2

716 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .PivotFields("ProductName").DataRange.Select

 ' sort the Product Name field in descending order based
 ' on the
 ' Sum of Total
 .PivotFields("ProductName").AutoSort xlDescending, _
 "Sum of Total """
 Selection.IndentLevel = 2
 With Selection.Font
 .Name = "Times New Roman"
 .FontStyle = "Bold"
 .Size = 10
 End With
 With Selection.Borders(xlInsideHorizontal)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With
 End With
End Sub

By studying the code of the procedure presented above, you can easily con-
clude that:

 ● To change the layout of a PivotTable, you should set the Orientation prop-
erty of the required fi eld to a diff erent constant. Th e previous example
code moves the OrderDate fi eld from the Report Filter area to the Row
Labels area of the PivotTable.

 ● To display a PivotTable without a particular fi eld, you need to set the Ori-
entation property of the required fi eld to xlHidden.

 ● To group the OrderDate fi eld by year, you should use the Group method
of the Range object. For example, the code uses the following statement
to group the data in the OrderDate fi eld by year:

PivotFields("OrderDate").DataRange. _
 Cells(1).Group Start:=True, _
 End:=True, periods:=Array(False, False, _
 False, False, False, False, True)

 ● Th e Start and End arguments specify the start and end date to be in-
cluded in the grouping. By setting these arguments to True, all dates are
included. Th e periods argument is an array of Boolean values that speci-
fi es the period for the group, as shown in the following table:

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 717

Array Element Period
1 Seconds
2 Minutes
3 Hours
4 Days
5 Months
6 Quarters
7 Years

NOTE
The following statement will ungroup the dates:
ActiveSheet.PivotTables(1).
PivotFields("OrderDate").LabelRange.Ungroup

 ● You can apply automatic formatting to the entire PivotTable report by us-
ing the AutoFormat property of the Range object. Th e TableRange1 prop-
erty returns a Range object that represents the range containing the entire
PivotTable report without the page fi elds:

.TableRange1.AutoFormat Format:=xlRangeAutoFormatColor2

 ● You can select the data items in a particular fi eld by using the DataRange
property and the Select method, like this:

.PivotFields("ProductName").DataRange.Select

 ● You can sort a particular fi eld in descending or ascending order. Th e ex-
ample procedure uses the following statement to sort the ProductName
fi eld in descending order based on the Sum of Total:

.PivotFields("ProductName"). _
 AutoSort xlDescending, "Sum of Total"

 ● You can change the text indentation, font name, size, and style, as well as
the borders of the selected range, as demonstrated in the last statements
of the example procedure shown above.

2. Switch to the Microsoft Excel application window and activate the sheet
containing the PivotTable report shown in Figure 22.10 earlier in this chapter.

3. Press Alt+F8 to open the Macro dialog box. Highlight the FormatPivotTable
procedure and click Run.

The resulting reformatted PivotTable report is illustrated in Figure 22.12.

718 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.12 A PivotTable report was reformatted to view data from a different perspective.

HIDING ITEMS IN A PIVOTTABLE

In the previous example procedure, you grouped the data in the PivotTable by
year based on the OrderDate field. To hide some of the grouped data, you can
set the Visible property of the PivotItem object to False. For instance, the fol-
lowing procedure demonstrates how to hide the 1996 column of data in the
PivotTable report presented in Figure 22.12.
Sub Hide1996Data()
Dim myPivot As PivotTable
Dim myItem As PivotItem
Dim strFieldLabel As String

strFieldLabel = "1996"
Set myPivot = ActiveSheet.PivotTables(1)
 For Each myItem In myPivot.PivotFields _
 ("OrderDate").PivotItems
 If myItem.Name <> strFieldLabel Then
 myItem.Visible = True
 Else
 myItem.Visible = False
 End If
 Next
End Sub

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 719

ADDING CALCULATED FIELDS AND ITEMS
TO A PIVOTTABLE

You can customize a PivotTable report by defining calculated fields and items.
Using the contents of other numeric fields in a PivotTable, you can create a
calculated field that performs the required calculation. For example, let’s create
a procedure with two calculated fields named Change: 2010/2009 and Change:
2009/2008 to calculate the difference in number of products sold from year to
year.

 Hands-On 22.7 Creating a PivotTable Report with Calculated Fields

1. Save and close the Chap22_VBAExcel2019.xlsm workbook.
2. Copy the Chap22b_VBAExcel2019.xlsm workbook from the companion CD

to your C:\VBAExcel2019_ByExample folder.
3. Open the C:\VBAExcel2019_ByExample\Chap22b_VBAExcel2019.xlsm work-

book (see Figure 22.13).

FIGURE 22.13 Sample data for the PivotTable report.

4. Switch to the Visual Basic Editor screen and highlight VBAProject (Chap22b_
VBAExcel2019.xlsm) in the Project Explorer.

5. Choose Insert | Module to add a new module and enter the PivotWithCal-
cFields procedure as shown below:
Sub PivotWithCalcFields()
 ActiveWorkbook.PivotCaches.Add(_
 SourceType:=xlDatabase, _
 SourceData:="Sheet1!R1C1:R4C4").CreatePivotTable _
 TableDestination:="'[Chap22b_VBAExcel2019.xlsm]
 Sheet1'!R4C7", _
 TableName:="Piv1", _
 DefaultVersion:=xlPivotTableVersion10

 With ActiveSheet.PivotTables("Piv1").PivotFields("Product")
 .Orientation = xlRowField

720 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .Position = 1
 End With

 ActiveSheet.PivotTables("Piv1").AddDataField _
 ActiveSheet.PivotTables("Piv1").PivotFields("2018"), _
 "Sum of 2018", xlSum
 ActiveSheet.PivotTables("Piv1").AddDataField _
 ActiveSheet.PivotTables("Piv1").PivotFields("2017"), _
 "Sum of 2017", xlSum
 ActiveSheet.PivotTables("Piv1").AddDataField _
 ActiveSheet.PivotTables("Piv1").PivotFields("2016"), _
 "Sum of 2016", xlSum
 ActiveSheet.PivotTables("Piv1").CalculatedFields.Add _
 "Change: 2018/2017", "='2018' - '2017'", True
 ActiveSheet.PivotTables("Piv1").CalculatedFields.Add _
 "Change: 2017/2016", "='2017' - '2016'", True
 ActiveSheet.PivotTables("Piv1"). _
 PivotFields("Change: 2018/2017"). _
 Orientation = xlDataField
 ActiveSheet.PivotTables("Piv1"). _
 PivotFields("Change: 2017/2016"). _
 Orientation = xlDataField

End Sub

Notice that calculated fields are defined by using the Add method of the Cal-
culatedFields object and supplying the name for the new field and a formula:
 ActiveSheet.PivotTables("Piv1").CalculatedFields.Add _
 "Change: 2018/2017", "='2018' - '2017'", True
 ActiveSheet.PivotTables("Piv1").CalculatedFields.Add _
 "Change: 2017/2016", "='2017' - '2016'", True

The third (optional) argument set to True indicates that the strings in field
names will be interpreted as having been formatted in standard U.S. English
instead of using local settings. The default setting is False.
 A calculated field uses a formula that refers to other pivot fields that contain
numeric data. This can be a simple formula, such as addition (+), subtraction
(–), multiplication (*), or division (/), or an Excel function. In the procedure
example above, we created the two calculated fields shown below:

Calculated Field Name Formula Used
Change: 2018/2017 =’2018’ - ‘2017’
Change: 2017/2016 =’2017’ - ‘2016’

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 721

“2018,” “2017,” and “2016” are the names of the fields placed in the Data area of
the PivotTable. Figure 22.14 shows a new pivot field named Data, which Excel
creates when you use multiple pivot fields in the Values area. The labels for the
multiple pivot fields in the Data area can be displayed going down the rows
or across the columns. You can specify the orientation of the labels by setting
the Orientation property of the Data field to xlRowField or xlColumnField.
Once you define a calculated field, the field is added to the PivotTable Field
List and maintained in the PivotTable cache.

NOTE

You can add a calculated field manually by using the PivotTa-
ble Tools’ Calculations tab on the context Ribbon. Click Fields,
Items, & Sets. Then click Calculated Field to open the Insert
Calculated Field dialog box.

6. Run the PivotWithCalcFields procedure.
The resulting PivotTable report is shown in Figure 22.14.

FIGURE 22.14 You can add additional calculations to a PivotTable by defining additional fields,
such as Change: 2018/2017 and Change: 2017/2016 depicted here.

By adding the following statement at the end of the PivotWithCalcFields proce-
dure, deleting columns G:I in Sheet1, and rerunning the procedure, the Pivot-
Table depicted in Figure 22.14 will look like the one shown in Figure 22.15.
ActiveSheet.PivotTables("Piv1"). _
 PivotFields("Data").Orientation = xlColumnField

722 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.15 Changing the orientation of the PivotTable data.

7. Save and close the Chap22b_VBAExcel2019.xlsm workbook.

You must not confuse a calculated item with a calculated field. A calculated item
is a custom item you define in a PivotTable field to perform calculations using
the contents of other fields and items in the PivotTable.

Let’s say you have created a report showing the total product sales for each
of your salespeople by country. Then you want to look at the data different-
ly and show the sales made by each salesperson on three continents. You will
need three new (calculated) items under the Country field. These items will
be named North America, South America, and Europe. After you create these
items, you can change the name of the Country field to Continent, as in Figure
22.16, to make your data easier to read. The following procedure retrieves the
data for this demonstration example from the Microsoft Access sample North-
wind database. The code of this procedure was generated by a macro recorder.

 Hands-On 22.8 Creating a PivotTable Report with Calculated Items

1. Open a new workbook file and save it as C:\VBAExcel2019_ByExample\
Chap22c_VBAExcel2019.xlsm.
Switch to the Visual Basic Editor screen and select VBAProject (Chap22c_
VBAExcel2019.xlsm) in the Project Explorer.

2. Choose Insert | Module to add a new module and enter the PivotWithCalcItems
procedure as shown below:
Sub PivotWithCalcItems()
 Dim strConn As String
 Dim strSQL As String
 Dim myArray As Variant
 Dim destRng As Range
 Dim strPivot As String

 strConn = "Driver={Microsoft Access Driver (*.mdb)};" & _
 "DBQ=" & "C:\VBAExcel2019_ByExample\" & _
 "Northwind.mdb;"

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 723

 strSQL = "SELECT Invoices.Customers.CompanyName, " & _
 "Invoices.Country, Invoices.Salesperson, " & _
 "Invoices.ProductName, Invoices.ExtendedPrice " & _
 "FROM Invoices ORDER BY Invoices.Country"

 myArray = Array(strConn, strSQL)
 Worksheets.Add

 Set destRng = ActiveSheet.Range("B5")
 strPivot = "PivotTable1"

 ActiveSheet.PivotTableWizard _
 SourceType:=xlExternal, _
 SourceData:=myArray, _
 TableDestination:=destRng, _
 TableName:=strPivot, _
 SaveData:=False, _
 BackgroundQuery:=False

 With ActiveSheet.PivotTables(strPivot).
 PivotFields("CompanyName")
 .Orientation = xlPageField
 .Position = 1
 End With

 With ActiveSheet.PivotTables(strPivot).PivotFields("Country")
 .Orientation = xlRowField
 .Position = 1
 End With

 ActiveSheet.PivotTables(strPivot).AddDataField _
 ActiveSheet.PivotTables(strPivot).
 PivotFields("ExtendedPrice"), _
 "Sum of ExtendedPrice", xlSum

 With ActiveSheet.PivotTables(strPivot).
 PivotFields("Salesperson")
 .Orientation = xlRowField
 .Position = 1
 End With

 With ActiveSheet.PivotTables(strPivot).
 PivotFields("Salesperson")
 .Orientation = xlPageField
 .Position = 1
 End With

724 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 With ActiveSheet.PivotTables(strPivot).
 PivotFields("Salesperson")
 .Orientation = xlColumnField
 .Position = 1
 End With

 ActiveSheet.PivotTables(strPivot).PivotFields("Country"). _
 CalculatedItems.Add "North America", "=USA+Canada", True
 ActiveSheet.PivotTables(strPivot).PivotFields("Country"). _
 CalculatedItems.Add "South America", _
 "=Argentina+Brazil+Venezuela ", True
 ActiveSheet.PivotTables(strPivot).PivotFields("Country"). _
 CalculatedItems("North America").StandardFormula = _
 "=USA+Canada+Mexico"
 ActiveSheet.PivotTables(strPivot).PivotFields("Country"). _
 CalculatedItems.Add "Europe", _
 "=Austria+Belgium+Denmark+Finland+" & _
 "France+Germany+Ireland+Italy+Norway+Poland+" & _
 "Portugal+Spain+Sweden+Switzerland+UK", True

 With ActiveSheet.PivotTables(strPivot).PivotFields("Country")
 .PivotItems("Argentina").Visible = False
 .PivotItems("Austria").Visible = False
 .PivotItems("Belgium").Visible = False
 .PivotItems("Brazil").Visible = False
 .PivotItems("Canada").Visible = False
 .PivotItems("Denmark").Visible = False
 .PivotItems("Finland").Visible = False
 .PivotItems("France").Visible = False
 .PivotItems("Germany").Visible = False
 .PivotItems("Ireland").Visible = False
 .PivotItems("Italy").Visible = False
 .PivotItems("Mexico").Visible = False
 .PivotItems("Norway").Visible = False
 .PivotItems("Poland").Visible = False
 .PivotItems("Portugal").Visible = False
 .PivotItems("Spain").Visible = False
 .PivotItems("Sweden").Visible = False
 .PivotItems("Switzerland").Visible = False
 .PivotItems("UK").Visible = False
 .PivotItems("USA").Visible = False
 .PivotItems("Venezuela").Visible = False
 End With

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 725

 ActiveSheet.PivotTables(strPivot). _
 PivotFields("Country").Caption = "Continent"

 With ActiveSheet.PivotTables(strPivot). _
 PivotFields("Sum of ExtendedPrice"). _
 NumberFormat = "$#,##0.00"
 End With

 With ActiveSheet.PivotTables(strPivot).
 PivotFields("ProductName")
 .Orientation = xlRowField
 .Position = 2
 End With

 ActiveSheet.PivotTables(strPivot). _
 PivotFields("ProductName").Orientation = xlHidden
End Sub

A calculated item uses a formula that refers to other items in the specified Piv-
otTable field. For example, a PivotTable that contains a Country field listing a
number of different country items (Austria, UK, Brazil, Argentina, etc.) could
have a calculated item named “South America” defined as the sum of countries
located on the South American continent:

Calculated Item Formula
South America =Argentina+Brazil+Venezuela

All of the calculated items in the specified PivotTable are members of the Cal-
culatedItems collection. Calculated items are defined by using the Add method
of the CalculatedItems object and supplying two arguments—the name for the
new item and a formula as shown below:
ActiveSheet.PivotTables(strPivot).PivotFields("Country"). _
 CalculatedItems.Add "South America", _
 "=Argentina+Brazil+Venezuela", True

The third (optional) argument set to True indicates that the strings in field
names will be interpreted as having been formatted in standard U.S. English
instead of using local settings. The default setting is False.

3. Run the PivotWithCalcItems procedure.
The resulting PivotTable report is shown in Figure 22.16.

726 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.16 By defining new items in a PivotTable report, you can present information
summaries according to specific needs. Here the Country field has been renamed Continent to
present information summarized by continent. North America, South America, and Europe are
calculated items in this PivotTable report.

You can modify the PivotWithCalcItems procedure by defi ning new calculated
items in the Salesperson PivotTable fi eld to generate the output. For example,
if you add the following code aft er the lines

ActiveSheet.PivotTables(strPivot). _
PivotFields("Country").Caption = "Continent"

in the PivotWithCalcItems procedure, you should see the modifi ed table
shown in Figure 22.17:

 ActiveSheet.PivotTables(strPivot).PivotFields("Salesperson"). _
 CalculatedItems.Add "Male", _
 "=Michael Suyama+Andrew Fuller+Robert King+" & _
 "Steven Buchanan", True

 ActiveSheet.PivotTables(strPivot).PivotFields("Salesperson"). _
 CalculatedItems.Add "Female", _
 "=Anne Dodsworth+Laura Callahan+Janet Leverling+" & _
 "Margaret Peacock+Nancy Davolio", True

 With ActiveSheet.PivotTables("PivotTable1"). _
 PivotFields("Salesperson")
 .PivotItems("Andrew Fuller").Visible = False
 .PivotItems("Anne Dodsworth").Visible = False
 .PivotItems("Janet Leverling").Visible = False
 .PivotItems("Laura Callahan").Visible = False
 .PivotItems("Margaret Peacock").Visible = False
 .PivotItems("Michael Suyama").Visible = False
 .PivotItems("Nancy Davolio").Visible = False
 .PivotItems("Robert King").Visible = False
 .PivotItems("Steven Buchanan").Visible = False
 End With

You can fi nd out if the PivotField or PivotItem is calculated by using the

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 727

IsCalculated property of the PivotField or PivotItem object. Th e procedure
below prints a list of fi elds and items in the PivotTable to the Immediate
window, indicating whether the fi eld or item is calculated. In addition, this
procedure prints the names of all calculated items and their formulas to Sheet2
of the current workbook.

FIGURE 22.17 By defining new calculated items in a PivotTable report, you can present information
summaries according to specific needs. Here the Northwind employees are grouped by gender.

4. To try it out, enter the ListCalcFieldsItems procedure code in the current
module and then run it.
Sub ListCalcFieldsItems()
 Dim pivTable As PivotTable
 Dim fld As PivotField ' field enumerator
 Dim itm As PivotItem ' item enumerator
 Dim r As Integer ' row number

 Set pivTable = Worksheets(1).PivotTables(1)

 On Error Resume Next

 ' print to the Immediate window the names of fields
 ' and calculated items
 For Each fld In pivTable.PivotFields
 If fld.IsCalculated Then
 Debug.Print fld.Name & ":" & _
 fld.Name & vbTab & "-->Calculated field"
 Else
 Debug.Print fld.Name
 End If
 For Each itm In pivTable. _

728 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 PivotFields(fld.Name).CalculatedItems
 Debug.Print fld.Name & ":" & _
 itm.Name & vbTab & "--> Calculated item"
 ' enter information about Calculated items
 ' in a worksheet
 r = r + 1
 With Worksheets("Sheet2")
 .Cells(r, 1).Value = itm.Name
 .Cells(r, 2).Value = Chr(39) & itm.Formula
 End With
 Next
 Next
End Sub

CREATING A PIVOTCHART REPORT USING VBA

A PivotChart represents the data in a PivotTable report. Using VBA code you
can create a PivotChart based on an existing PivotTable report, and you can
change the layout and data displayed in a PivotChart just as easily as you can
reformat a PivotTable report.

A PivotChart report is linked to a PivotTable report. This means that when
you rearrange the data in a PivotTable report, the PivotChart report displays the
same view of the data, and vice versa. The default chart type for a PivotChart is
a stacked column chart. This type of chart is useful for comparing the contri-
bution of each value to a total across categories. You can generate any type of
PivotChart report except XY (Scatter), Stock, or Bubble.

You can create a PivotChart manually by choosing Insert | PivotChart. Cre-
ating a PivotChart report programmatically boils down to using the SetData-
Source method of the PivotChart object and specifying a reference to the Pivot-
Table range. The PivotTable object has the following two properties that return
ranges representing part or all of the PivotTable report:

 ● TableRange1—Returns a range representing the PivotTable report with-
out page fi elds

 ● TableRange2—Returns a range representing the entire PivotTable report

The procedures in Hands-On 22.9 generate a PivotTable report from the Mi-
crosoft Access sample Northwind database (Northwind.mdb). Another proce-
dure in this Hands-On will set up a PivotChart based on the PivotTable’s data.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 729

 Hands-On 22.9 Creating a PivotTable and PivotChart Reports

1. Save and close the Chap22c_VBAExcel2019.xlsm workbook file you created in
the previous Hands-On.

2. Create a new workbook file and save it as C:\VBAExcel2019_ByExample\
Chap22d_VBAExcel2019.xlsm.

3. Switch to the Visual Basic Editor screen and select VBAProject (Chap22d_
VBAExcel2019.xlsm) in the Project Explorer.

4. Choose Insert | Module to add a new module and enter the GeneratePivotRe-
port procedure as shown below:

 Sub GeneratePivotReport()
 Dim strConn As String
 Dim strSQL As String
 Dim myArray As Variant
 Dim destRng As Range
 Dim strPivot As String

 strConn = "Driver={Microsoft Access Driver (*.mdb)};" & _
 "DBQ=" & "C:\VBAExcel2019_ByExample\Northwind.mdb;"

 strSQL = "SELECT Invoices.Customers.CompanyName, " & _
 "Invoices.Country, Invoices.Salesperson, " & _
 "Invoices.ProductName, Invoices.ExtendedPrice " & _
 "FROM Invoices ORDER BY Invoices.Country"

 myArray = Array(strConn, strSQL)
 Worksheets.Add

 Set destRng = ActiveSheet.Range("B5")
 strPivot = "PivotTable1"

 ActiveSheet.PivotTableWizard _
 SourceType:=xlExternal, _
 SourceData:=myArray, _
 TableDestination:=destRng, _
 TableName:=strPivot, _
 SaveData:=False, _
 BackgroundQuery:=False

 With ActiveSheet.PivotTables(strPivot).PivotFields("ProductName")
 .Orientation = xlPageField
 .Position = 1
 End With

730 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 With ActiveSheet.PivotTables(strPivot).PivotFields("Country")
 .Orientation = xlRowField
 .Position = 1
 End With

 With ActiveSheet.PivotTables(strPivot).PivotFields("Salesperson")
 .Orientation = xlColumnField
 .Position = 1
 End With

 ActiveSheet.PivotTables(strPivot).AddDataField _
 ActiveSheet.PivotTables(strPivot).PivotFields("ExtendedPrice"), _
 "Sum of ExtendedPrice", xlSum

 With ActiveSheet.PivotTables(strPivot). _
 PivotFields("Sum of ExtendedPrice").NumberFormat = "$#,##0.00"
 End With
 End Sub

5. Run the GeneratePivotReport procedure.
Excel adds a new worksheet with a PivotTable to the current workbook, as
shown in Figure 22.18.

FIGURE 22.18 This PivotTable report is used to graph data in the PivotChart report.

6. In the same code module where you entered the GeneratePivotReport
procedure, enter the code of the CreatePivotChart procedure as shown below:
Sub CreatePivotChart()
 Dim shp As Shape
 Dim rngSource As Range
 Dim pvtTable As PivotTable

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 731

 Dim r As Integer

 Set pvtTable = Worksheets("Sheet2").PivotTables(1)

 ' set the current page for the PivotTable report to the
 ' page named "Tofu"
 pvtTable.PivotFields("ProductName").CurrentPage = "Tofu"

 Set rngSource = pvtTable.TableRange2
 Set shp = ActiveSheet.Shapes.AddChart

 shp.Chart.SetSourceData Source:=rngSource
 shp.Chart.SetElement (msoElementChartTitleAboveChart)
 shp.Chart.ChartTitle.Caption = _
 pvtTable.PivotFields("ProductName").CurrentPage

 r = ActiveSheet.UsedRange.Rows.Count + 3

 With Range("B" & r & ":E" & r + 15)
 shp.Width = .Width
 shp.Height = .Height
 shp.Left = .Left
 shp.Top = .Top
 End With
End Sub

The CreatePivotChart procedure changes the current page for the PivotTable
report to display information about the product named Tofu. The AddChart
method of the Shapes collection is used to create a Chart object. The Set-
SourceData method of the Chart object is then used to specify the PivotTable
range as the chart’s data source. It’s always a good idea to add a chart title, so
the next two lines of code make sure that the title is positioned above the chart
area and its text is set to the current product name in the PivotTable:

shp.Chart.SetElement (msoElementChartTitleAboveChart)
shp.Chart.ChartTitle.Caption = _

 pvtTable.PivotFields("ProductName").CurrentPage

To ensure that the chart appears just below the PivotTable report, we calculate
the used range on the active worksheet and add to it three rows. The Top, Left,
Width, and Height properties are used to position the chart over the specified
range:

r = ActiveSheet.UsedRange.Rows.Count + 3

732 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 With Range("B" & r & ":E" & r + 15)
 shp.Width = .Width
 shp.Height = .Height
 shp.Left = .Left
 shp.Top = .Top
 End With

7. Run the CreatePivotChart procedure.
The resulting PivotChart report is shown in Figure 22.19.

FIGURE 22.19 The PivotChart report is generated from the PivotTable report data embedded in
the same worksheet.

To ensure that the chart title changes when you select a different product in
the Product Name field of the PivotTable report, you must create the Work-
sheet_PivotTableUpdate event procedure in the Sheet2 module.

8. In the Project Explorer window, double-click Sheet2 under VBAProject
(Chap22d_VBAExcel2019.xlsm) and enter the following event procedure in
the Code window:
Private Sub Worksheet_PivotTableUpdate(ByVal Target As PivotTable)
 Dim strPivotPage As String
 Dim r As Integer

 strPivotPage = Target.PivotFields("ProductName"). _
 CurrentPage.Value

 If ActiveSheet.ChartObjects.Count > 0 Then
 ActiveSheet.ChartObjects(1).Activate
 ActiveChart.ChartTitle.Text = strPivotPage

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 733

 r = ActiveSheet.UsedRange.Rows.Count + 3

 With Range("B" & r)
 ActiveSheet.ChartObjects(1).Top = .Top
 End With
 End If
End Sub

The above event procedure will be triggered automatically each time you up-
date the PivotTable report.

9. In Sheet2, select another product name from the PivotTable ProductName
field.
Notice that as you select a different product, the chart data and the chart title
adjust to reflect your selection.

10. Save and close the Chap22d_VBAExcel2019.xlsm workbook.

UNDERSTANDING AND USING SLICERS

A slicer is a visual filter that allows you to easily interact with data. To see a dif-
ferent view of the data in your PivotTable or PivotChart report, you select values
from the slicers and Excel automatically adjusts the pivot table or chart for you.
Before you can start working with slicers, you need to create a PivotTable or
PivotChart associated with a data source. Slicers are based on the row labels in
your PivotTable. Depending on what sort of analysis you want to perform on
your data, you can work with one or more slicers.

Creating Slicers Manually

In the next Hands-On, you will learn how slicers are applied to PivotTables
using the Insert Slicer button available on the Ribbon’s PivotTable Tools tab. We
will reuse the EquipmentList.xlsx workbook that you worked with in Hands-On
22.1. This file already contains a PivotTable that’s ready to go and is associated
with the data stored in the Source Data sheet.

 Hands-On 22.10 Creating a Slicer Using the Ribbon

1. Open the EquipmentList.xlsx workbook file and save it as EquipmentList-
Slicers.xlsm in the VBAExcel2019_ByExample folder.

2. Select Row Labels in the PivotTable report located on Sheet1 and then click
PivotTable Tools | Analyze | Insert Slicer button in the Ribbon’s Filter group
as shown in Figure 22.20.

734 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.20 Inserting a slicer using the Insert Slicer button.

The Insert Slicers dialog box appears (Figure 22.21) with the list of all the fields
that are available in the PivotTable associated with the data source in the Source
Data sheet.

3. Select the labels as shown in Figure 22.21 (Vendor, Equipment Type, and
Warranty Type) and click OK.
Excel creates a slicer for each label you selected (Figure 22.22).

FIGURE 22.21 Selecting labels for slicers.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 735

FIGURE 22.22 Each field label selected in the Insert Slicers dialog box (Figure 22.21) gets one slicer
with a relevant list of values found in the data source.

4. Rearrange the slicers on the screen so you can easily view their content.
Suppose you want to analyze which equipment is covered by a full warranty.
Now is the time to see how slicers work together to give you immediate feed-
back on the data.

5. In the Warranty Type slicer, select Full Warranty. Notice that not only does
the PivotTable adjust automatically, but the other slicers (Equipment Type and
Vendor) automatically disable values that don’t meet the selected criteria. In
this case, the Equipment Type slicer tells us that we no longer have laptops,
printers, and tablet PCs covered by a full warranty (see Figure 22.23).

FIGURE 22.23 Using slicers to filter and analyze data.

736 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can continue drilling down on your data by clicking on different values
shown in the slicers or remove the filters by clicking the filter icon in the top-
right corner of each slicer. You can select nonconsecutive items in the slicer
by holding down the Ctrl key or select a series of sequential items by holding
down the Shift key.
 You can also explore different options that are available in the Slicer Tools
Options tab on the Ribbon. Because slicers are shape objects, it’s easy to move,
resize, or delete them. You can change the look of slicers by applying different
styles to each one. The items in the slicer can be laid out in one or more col-
umns. Simply select the slicer you want to change and look for the Columns
box in the Buttons group of the Options tab. You can control one or more Piv-
otTables using the same set of slicers. You can also manage which PivotTables
the slicer is connected to by clicking the Report Connections button in the
Options tab of the Slicer Tools context Ribbon (Figure 22.24).

6. Save the changes you made in the EquipmentListSlicers workbook and keep
the file open for the next Hands-On.

FIGURE 22.24 Working with the Slicer options on the Ribbon.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 737

Working with Slicers Using VBA

To successfully program slicers with VBA, it’s a good idea to take a look at the
Object Browser for the types of objects that support this feature (Figure 22.25).

In the previous Hands-On, you manually added three slicers to visually filter
the PivotTable report. Each of the added slicers is represented by a Slicer object.
Each Slicer object belongs to a workbook’s Slicers object collection. Recall that
before you were able to add slicers to your worksheet you had to have an existing
PivotTable report associated with a data source.

FIGURE 22.25 You can find the objects, properties, and methods for programming slicers with VBA
in the Object Browser in the VBE window.

In VBA, before you can add a slicer, you must first define a slicer cache at the
workbook level. Use the Add method of the SlicerCaches object collection to
define a slicer cache. To do this, you need to specify the name of the PivotTable
from which the slicer will be created and the name of the column header of the
field the slicer will be based on as in the following code snippet:
Dim oSlicerCache As SlicerCache
Set oSlicerCache = ActiveWorkbook.SlicerCaches.
 Add(Source:=ActiveSheet. _
 PivotTables(1), SourceField:="WarrYears")

738 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

A slicer cache can have multiple slicers. Once you have defined a slicer cache,
you are ready to add the slicer. Use the Add method of the Slicers object like this:
 Dim oSlicer as Slicer
 Set oSlicer = oSlicerCache.Slicers.Add(_
 SlicerDestination:=ActiveSheet, _
 Name:="Warranty Years", Caption:="Warranty Years", _
 Top:=14.6551181102362, Left:=481.034409448819)

The first argument of the Slicers.Add method specifies the sheet where the
slicer should be placed. All the other arguments listed in the above statement are
optional. The Name argument specifies the name of the slicer. If this argument
is omitted, Excel will automatically generate a name for the slicer. The name
must be unique across all slicers within a workbook. The Caption argument is
the name that appears in the header of the slicer. The Top argument (in points)
specifies the initial vertical position of the slicer relative to the upper-left corner
of cell A1 on the worksheet. The Left argument (in points) specifies the initial
horizontal position of the slicer relative to the upper-left corner of cell A1 on
the worksheet. You can also specify the initial width and height of the slicer
by including the optional Width and Height arguments. To best position your
slicer on the worksheet, record a macro to get the required settings for your
statement.

By default, slicers are created with one column. However, you can easily
change the number of columns like this:
 oSlicer.NumberOfColumns = 3
 oSlicer.Height = 50

When creating a slicer, you may want to specify which button in the slicer should
be activated. To do this, you’ll need to access the SlicerItem object. To access the
SlicerItems collection that represents all the items in a slicer for a PivotTable,
use the SlicerItems property of the SlicerCache object that is associated with the
Slicer object. For example, the following code ensures that only items with the
value of 3 are selected:
 Dim oItem As SlicerItem

 With ActiveWorkbook.SlicerCaches("Slicer_WarrYears")
 For Each oItem In .SlicerItems
 If oItem.Value = "3" Then
 oItem.Selected = True
 Else
 oItem.Selected = False

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 739

 End If
 Next
 End With

To remove the filter from the Slicer object, use the following code:
ActiveWorkbook.SlicerCaches("Slicer_WarrYears").
ClearManualFilter

Now let’s put the above code snippets into a procedure that will add a fourth
slicer to the PivotReport worksheet in the open EquipmentListSlicers work-
book.

 Hands-On 22.11 Creating a Slicer Using VBA

1. Switch to the VBE window and insert a new module into VBAProject
(EquipmentListSlicers.xlsm).

2. In the Code window, enter the AddSlicer procedure as shown in the following:
Sub AddSlicer()
 Dim oSlicerCache As SlicerCache
 Dim oSlicer As Slicer
 Dim oItem As SlicerItem

 Set oSlicerCache = ActiveWorkbook.SlicerCaches.Add(_
 Source:=ActiveSheet.PivotTables(1), _
 SourceField:="WarrYears")

 Set oSlicer = oSlicerCache.Slicers.Add(_
 SlicerDestination:=ActiveSheet, _
 Name:="Warranty Years", Caption:="Warranty Years", _
 Top:=14.6551181102362, Left:=481.034409448819)

 oSlicer.NumberOfColumns = 3
 oSlicer.Height = 50

 With ActiveWorkbook.SlicerCaches("Slicer_WarrYears")
 For Each oItem In .SlicerItems
 If oItem.Value = "3" Then
 oItem.Selected = True
 Else
 oItem.Selected = False
 End If
 Next
 End With
 End Sub

740 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Run the AddSlicer procedure and then switch to the Excel application
window to view the result (see Figure 22.26).

FIGURE 22.26 The Warranty Years slicer was added to this worksheet via a VBA procedure.

Let’s proceed to Hands-On 22.12, which demonstrates a procedure that retrieves
information about slicers.

 Hands-On 22.12 Retrieving Information about Slicers

1. Switch to the VBE window and insert a new module into VBAProject
(EquipmentListSlicers.xlsm).

2. In the Code window, enter the ListSlicers procedure as shown below:
 Sub ListSlicers()
 Dim oSlicerCache As SlicerCache
 Dim oSlicerCaches As SlicerCaches
 Dim oSlicer As Slicer
 Dim cnt As Integer

 Set oSlicerCaches = ActiveWorkbook.SlicerCaches
 cnt = oSlicerCaches.Count

 If cnt > 0 Then
 For Each oSlicerCache In oSlicerCaches
 Debug.Print "Slicer Cache Index|Name:" & _
 oSlicerCache.Index & "|" & oSlicerCache.Name
 Debug.Print "Source Type: " & oSlicerCache.SourceType
 For Each oSlicer In oSlicerCache.Slicers

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 741

 Debug.Print vbTab & "Name:" & oSlicer.Name
 Debug.Print vbTab & "Caption:" & oSlicer.Caption
 Debug.Print vbTab & "Cols:" & oSlicer.NumberOfColumns
 Debug.Print vbTab & "Col Width:" & oSlicer.ColumnWidth
 Debug.Print vbTab & "Height:" & oSlicer.Height
 Debug.Print vbTab & "Top:" & oSlicer.Top
 Debug.Print vbTab & "Left:" & oSlicer.Left
 Debug.Print vbTab & "Style:" & oSlicer.Style
 Debug.Print vbTab & "Cache level:" & _
 oSlicer.SlicerCache.CrossFilterType
 Next
 Next
 End If
 End Sub

3. Run the ListSlicers procedure.
Check the procedure output in the Immediate window.
 It’s quite simple to delete a slicer you no longer need. For example, to re-
move the Warranty Years slicer that was added by the AddSlicer procedure in
Hands-On 22.11, you would run the following code (try this out in the Im-
mediate window):
ActiveWorkbook.SlicerCaches("Slicer_WarrYears").Delete

You can also delete the slicer by accessing the Shapes collection like this:
ActiveSheet.Shapes.Range(Array("Warranty Years")).Delete

You can move slicers to a different sheet altogether (see Step 4 below).
4. In the current module, enter the following procedure after the last procedure

code:
 Sub MoveSlicers()
 ActiveSheet.Shapes.Range(Array("Vendor", _
 "Equipment Type", "Warranty Type")).Select
 Selection.Cut
 Sheets.Add
 Range("b3").Select
 With ActiveSheet
 .Name = "Slicers"
 .Paste
 End With

 'arrange windows
 With ActiveWindow
 .DisplayGridlines = False

742 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .DisplayHeadings = False
 .NewWindow
 End With
 Sheets("Sheet1").Select
 ActiveWorkbook.Windows.Arrange ArrangeStyle:=xlVertical
 End Sub

Th e MoveSlicers procedure removes the remaining three slicers from Sheet1
and places them on another sheet of the current worksheet. Next, the procedure
renames the newly inserted sheet and arranges the workbook sheets vertically
so that it is possible to view the changes in the PivotTable when slicing the data.

5. Run the MoveSlicers procedure.
Aft er you run this procedure, slicers are no longer present in Sheet1. Th ey can
be found on the Slicers sheet added by the procedure.

6. Save and close the EquipmentListSlicers.xlsm workbook.

DATA MODEL FUNCTIONALITY AND PIVOTTABLES

An Excel feature called Data Model makes it possible to work with disparate data
sources simultaneously in the same PivotTable and PivotChart reports. With the
data model built directly into Excel, you can manage various data connections,
import millions of rows from multiple data sources, and create relationships
between multiple tables. When you use the built-in data model, the data is not
only processed very fast, but it is highly compressed, so you don’t need to worry
about handling a large-size workbook file.

Hands-On 22.13 walks you through the steps required to create a data model.
In this example, you will relate three tables from the Northwind 2007 database
(Products, Orders, and Order Details) to analyze product sales by City.

 Hands-On 22.13 Creating a Data Model and Exposing its Data
through a Pivot Table

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap22_
DataModel.xlsm.

2. Choose Insert | PivotTable.
The Create PivotTable dialog box appears, as shown in Figure 22.2.

3. In the top section of the Create PivotTable dialog, choose Use the external
data source option button and click the Choose Connection… button.

4. In the Existing Connections dialog box, click the Browse for More… button.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 743

5. In the Select Data Source dialog box, choose C:\VBAExcel2019_ByExample\
Northwind 2007.accdb from the File name drop down and click Open (see
Figure 22.27).

FIGURE 22.27 Specifying a Microsoft Access database as the Data Source.

Excel displays the Select Table dialog box listing all tables that are available in
the selected database.

6. Click the Enable selection of multiple tables check box. Place a check next to
Order Details, Orders, and Products tables and click OK (see Figure 22.28).
When you click OK, you are returned to the Create PivotTable dialog box.
Notice that Excel has placed the connection name Northwind 2007 below the
Choose Connection button and the setting Add this data to the Data Model
is now checked (Figure 22.29).

7. Click OK to create a PivotTable.
Excel displays the message Loading data model and retrieving data in the work-
book’s status bar. You should see a blank pivot table. You can start building
your PivotTable based on the data model you have just created.

744 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.28 Selecting multiple tables in the Data Source.

FIGURE 22.29 When you choose multiple tables or views in the Select Table dialog box (Figure
22.28) Excel adds the selected data to the Data Model. If you already have a data source connection
with the same name, Excel adds a number to the end of the name to make it unique.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 745

If Excel can detect the relationships between the selected tables, it automati-
cally recreates these relationships in the data model when you import all the
tables in a single operation.
 If Excel fails to determine how your tables are related, you will need to ex-
plicitly define table relationships before Excel can handle the data in the data
model. This is done via the Manage Relationships dialog box available by se-
lecting Relationships in Ribbon’s Data tab or by clicking the Relationships but-
ton in the Calculation Tools of the Analyze tab (PivotTableTools). Let’s create
relationships between tables in the data model.

8. Click Relationships button on the Ribbon.
9. In the Manage Relationships dialog, click the New button.

10. In the Create Relationship dialog, make selections as shown in Figure 22.30 to
define the relationship between the Order Details and Products tables.

FIGURE 22.30 Defining a relationship between Order Details and Products tables.

11. Click OK.
Excel lists the relationship to the Manage Relationships dialog.

12. Click the New button again to create another relationship between the Orders
and Order Details table.

13. In the Create Relationship dialog, make selections as shown in Figure 22.31 to
define the relationship between the Orders and Order Details tables.

FIGURE 22.31 Defining a relationship between Orders and Order Details tables.

746 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

14. Click OK.
Excel adds the relationship to the Manage Relationships dialog as shown in
Figure 22.32.

15. Click Close to exit the Manage Relationship dialog.

FIGURE 22.32 The relationships between tables in the data model are listed in the Manage
Relationships dialog.

NOTE

At any time, you can quickly add additional database tables
to the data model by choosing Analyze | Change Data Source
| Connection Properties and modifying Command text on the
Definition tab in the Connection Properties dialog. You can also
add data stored in Excel workbooks, however, you must first
convert your data ranges to named Excel tables (see Chapter
21). If Excel is unaware of the relationships between the tables
and you try to add fields from those tables to the pivot table, a
yellow warning message, Relationships between tables may be
needed, will appear in the PivotTable Fields panel. To fix this
problem, simply click the Create button under this warning to go
to the Manage Relationships dialog (see Figure 22.32).

Finally, with the defined table relationships, you can proceed to build a pivot
table. Let’s choose fields from the PivotTable Field list.

16. In the PivotTable Fields panel, expand the Products table and drag the Product
Name to the Rows area.

17. Expand the Orders table and drag the Ship City to the Columns area.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 747

18. Expand the Order Details table and drag the Quantity to the Values area.
19. Make the formatting adjustments to your liking by using the buttons on the

Design tab of the PivotTableTools. The completed pivot table is shown in
Figure 22.33.

FIGURE 22.33 This pivot table summarizes product sales by City.

Deferring PivotTable Layout Updates

If you take a close look at Figure 22.33 you will notice at the very bottom of the
PivotTable Fields panel the Defer Layout Update checkbox. By placing a check
in this box, you can prevent Excel from making real-time updates to your pivot
table as you work with its fields. When you are ready to update your pivot table
layout, click the Update button. When you are done building your pivot table,
remove the check from the Defer Layout Update setting. You can also control
this setting using VBA. Simply set the ManualUpdate property of the Pivot-
Table object to true or false. For example, try out the following procedure:
Sub DeferLayoutUpdate()
 With Sheet1.PivotTables(1)
 .ManualUpdate = True
 With .CubeFields("[Products].[Category]")
 .Orientation = xlRowField
 .Position = 1
 End With
 .ManualUpdate = False
 End With
End Sub

SIDEBAR

748 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You have now explored the basic data model built into Excel. If you require
more advanced features that will allow you to enhance your data model, you will
need to resort to the Power Pivot, which is available in Professional and ProPlus
and Office 365 versions of Excel 2019. By using the Power Pivot, you can use a
feature called Power View and combine it with the internal data model to create
eye-catching interactive dashboards to display nicely formatted tables, charts,
maps, and slicers in one window.

Adding Calculated Fields to the Tables in the Data Model

While Excel allows you to add calculated fields to pivot tables, this feature is
not available when you link your pivot table to multiple tables in a data model.
You will need to use the Power Pivot to create calculated fields. Power Pivot
can be accessed in professional and Office 365 versions of Excel via the Add-
ins feature on the Ribbon. To use it you must add Add-ins to the Ribbon via
File | Options | Customize Ribbon. The Developer tab will then list COM Add-
ins. When you click on the COM Add-ins button, you should be able to choose
Microsoft Power Pivot for Excel from the list of available add-ins. The Power
Pivot will then become a new tab on the Excel’s Ribbon. Power Pivot which
allows you to create advanced data models is not covered in this book. What
is covered is the Power Query which is used with data discovery, shaping and
import. You will work with Power Query in the next chapter.

PROGRAMMATIC ACCESS TO THE DATA MODEL

In addition to the existing Visual Basic for Application object model, Excel has
a Data Model object model (OM) that can be used to programmatically load
and refresh data sources and work with the data model. You can find many new
objects in the Object Browser by searching for ‘model’ as shown in Figure 22.34.

A large number of objects have been added to Excel to support program-
matic access to the data model. The following VBA procedure shows how to use
the Model property of the Workbook object to get some information about the
data model you created in the previous section.

 Sub GetDataModel_Info()
 Dim wkb As Workbook
 Dim tbl As Variant

 Set wkb = ActiveWorkbook

SIDEBAR

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 749

 Debug.Print "Model Name: " & wkb.Model.Name
 Debug.Print "Relationships: " & wkb.Model
 .ModelRelationships.Count
 Debug.Print "Number of Tables: " & wkb.Model.ModelTables.Count
 Debug.Print "--TABLE NAMES--"
 For Each tbl In wkb.Model.ModelTables
 Debug.Print tbl.Name
 Next
 End Sub

FIGURE 22.34 Using the Object Browser to locate new objects that support the new data model.

When you run this procedure, the Immediate Window displays the following
information:

Model Name: ThisWorkbookDataModel
Relationships: 2
Number of Tables: 3
--TABLE NAMES--

750 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Order Details
Orders
Products

In Hands-On 22.14, you will work with the ModelChanges object that con-
tains information about which changes were made to the data model when the
Workbook_ModelChange event occurs. While various changes can be made to
the data model, this exercise focuses on detecting whether any new tables were
added to the existing data model.

 Hands-On 22.14 Creating a Data Model and Exposing its Data
through a Pivot Table

You must complete Hands-On 22.13 prior to working with this Hands-On.

1. In the Visual Basic Editor window, select VBAProject (Chap22_DataModel.
xlsm) and choose Insert | Module.

2. In the Module code window, enter the following procedure:
Sub DataModel_TableChanges()
 Dim strCmdTxt_1 As String
 Dim strCmdTxt_2 As String

 strCmdTxt_1 = """Order Details"",""Orders"",""Products"""
 strCmdTxt_2 = strCmdTxt_1 & ",""Customers"",""Employees"""

 With ActiveWorkbook.Connections("Northwind 2007") _
 .OLEDBConnection
 .CommandText = strCmdTxt_2
 .Refresh
 End With
End Sub

Th is procedure modifi es the CommandText property of the OLEDBConnection
object to include two additional tables (Customers, Employees) in the data
model. Th e Refresh method tells Excel to update the data model with the
new data. Aft er running this procedure the Customers and Employees tables
should appear in the PivotTable Fields panel in the worksheet. To detect the
change to the data model you will need to write the Workbook_ModelChange
event procedure as instructed below.

3. In the Project Explorer double-click ThisWorkbook object of the VBAProject
(Chap22_DataModel.xlsm).

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 751

4. In ThisWorkbook code window, enter the following event procedure:
Private Sub Workbook_ModelChange(_
 ByVal Changes As ModelChanges)

 Dim colTblNames As ModelTableNames
 Dim tblCount As Long
 Dim i As Integer

 Set colTblNames = Changes.TablesAdded
 tblCount = colTblNames.Count
 If tblCount > 0 Then
 Debug.Print tblCount & " tables were added."
 Else
 Debug.Print "There are no new tables in the data model."
 End If
 For i = 1 To tblCount
 Debug.Print colTblNames.Item(i)
 Next i
End Sub

Th is event procedure is triggered when Excel detects that changes were made
to the data model. Th e Changes variable represents the ModelChanges object
and denotes the type of change that was made. Changes can be such as:

 ● adding, changing, deleting columns (ColumnsAdded, ColumnsChanged,
and ColumnsDeleted properties),

 ● adding, changing, deleting, renaming, and refreshing (recalculating)
tables (TablesAdded, TablesChanged, TablesDeleted, TableName-
sChanged, and TablesModified properties),

 ● changing one or more relationships in the model (RelationshipChange
property),

 ● adding measures (MeasuresAdded property),
 ● making an unknown change (UnknownChange property)

When tables are added to the model as part of the model operation, we use
Changes.TablesAdded property to fi nd out the names of the tables that were
added. Th is property returns a ModelTableNames Object (Excel) collection of
table names as strings representing all tables which were added to the model
as part of a model operation:

Set colTblNames = Changes.TablesAdded

752 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can count how many objects are in the colTblNames collection using the
Count property of the ModelTableNames object:

tblCount = colTblNames.Count

We use the following code to obtain the names of tables that were added to the
data model:

For i = 1 To tblCount
 Debug.Print colTblNames.Item(i)
Next i

5. Run the DataModel_TableChanges procedure.
Th is procedure will automatically trigger the Workbook_ModelChange
procedure you wrote in the previous step. You should see the following output
in the Immediate window when the procedure completes:

2 tables were added.
Customers
Employees

You should also see the Customers and Employees tables in the PivotTable
Fields panel in the workbook on aft er activating the All tab (see Figure 22.35).

FIGURE 22.35 PivotTable Fields panel listing additional tables.

PROGRAMMING PIVOTTABLES AND PIVOTCHARTS 753

6. Modify the CommandText property in the DataModel_TableChanges
procedure by inserting the following line of code:
.CommandText = strCmdTxt_1

7. Run the procedure again.
This will remove the Customers and Employees tables from the data model. You
should see only the original three tables in the PivotTable Fields panel and the
following text in the Immediate window:
There are no new tables in the data model.

SUMMARY

In this chapter, you have worked with two powerful Microsoft Excel objects that
are used for data analysis: PivotTable and PivotChart. You have learned how to
use VBA to manipulate these two objects to quickly produce reports that allow
you or your users to easily examine large amounts of data pulled from an Excel
worksheet range or from an external data source such as a Microsoft Access
database. This chapter has also introduced you to the slicer feature that makes it
possible to visually filter PivotTable data. In the last two sections of this chapter,
you learned how to use the Excel data model to load data from multiple tables,
create relationships between tables, expose the data through a pivot table, and
use several new VBA objects and properties to obtain information about the
data model and specific changes that were made to it.

The next chapter features the data gathering, shaping, and modelling capa-
bilities available in Excel.

755

If you need to deal with the data on a regular basis and need to automate
transforming, cleaning and loading of the data, there is a powerful feature in
Excel that will assist you in this task.
The data import and transformation features that were known as Power

Query Add-In in Excel 2010-2013 are now natively built into Excel 2016-2019.
You can access these features under the Get & Transform section of the Rib-

bon’s Data Tab (see Figure 23.1). With the Power Query technology integrated
into Excel 2019 you can create powerful queries that will simplify the process
of getting the data into Excel from both external and internal sources, as well as
combining and transforming it.

Chapter

 23 GETTING AND
TRANSFORMING
DATA IN EXCEL 2019

756 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

This chapter provides a quick Hands-On introduction to the data analysis
and transformation process with the Power Query.

FIGURE 23.1 The Get Data button in the Get & Transform Data section of the Excel 2019 Ribbon is
used for loading, shaping and refining data. More frequently used data transformation options such as
From Text/CSV, From Web, and From Table/Range are also listed as separate buttons.

USING THE GET DATA BUTTON

When you click the Get Data button, Excel lists the types of data sources you can
use for creating a query (see Figure 23.2).

NOTE
Not all data sources shown in Figures 23.2-23.6 are available in
all versions of Excel. Hands-On exercises in this chapter rely on
sources that are available with the Standard Office 365 license.

 ● Th e From File category (see Figure 23.2) allows you to import data from
a fi le such as Microsoft Excel workbook, text, csv, and xml and JSON. In
addition, you can import data into a single consolidated fi le from a folder
containing multiple fi les of the same type. Th e latter is very convenient
when you need to create a report based on data spread over numerous
fi les.

 ● Th e From Database category (see Figure 23.3) allows you to import data
from a database such as SQL Server, Microsoft Access, Analysis Services,
Oracle, MySQL, and so on.

 ● Th e From Azure category allows you to import data from Microsoft
Azure data services such as SQL Server Azure database, Azure Market-
place, Azure HDInsight, Azure Blob, and Table Storage. Th e Azure data
source is not available if you have a Standard license.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 757

FIGURE 23.2 You can get data from various types of files including files of the same type located in a
particular folder.

FIGURE 23.3 You can access data from various types of databases depending on the type of your
Excel license.

758 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Th e From Online Services category allows to import data from online
services such as Facebook.

 ● Th e From Other Sources category (see Figure 23.4) lists all the other
sources that can provide data for your query. You can even start with a
clean slate by creating a blank query.

FIGURE 23.4 A query can be based on various other data sources depending on the type of Excel
license you have purchased.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 759

The Combine Queries category (see Figure 23.5) has options for merging and
appending queries which allow you to create complex queries.

FIGURE 23.5 Queries can be combined by merging or appending.

At the bottom of the Get Data drop-down (see Figure 23.5) you will find options
that will allow you to launch Power Query, manage settings for your data sources,
and view Query Options.

UNDERSTANDING POWER QUERIES

To create a query you begin by selecting a data source using the Get Data but-
ton (see Figure 23.2 earlier). The data can be a local file on your computer, or
it can sit in the cloud, or it can be fetched via a web service. Your data source
selection is recorded as a first step by the built-in Query Editor. Your query will
most likely contain more than one step. After making a connection to your data
you will be put in the Query Editor where you can shape your data to meet your
needs. The Query Editor Ribbon consists of the following tabs:

760 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Home tab – shows buttons for common query tasks, such as managing
columns and rows, sorting, accessing the Advanced Editor and query proper-
ties, refreshing the preview, combining, transforming, and loading data as well
as creating a new query.
The Transform tab– provides access to common data transformation tasks,
such as working with various types of columns (any column, text column, num-
ber columns, and date & time columns), splitting a column using a delimiter,
extracting, parsing, and cleaning data. Here you will also find options for mov-
ing columns, pivoting and unpivoting columns, and working with tables. The
unpivot functionality is very useful if you need to get your data in a tabular
form, instead of a matrix.
The Add Column tab – provides buttons for adding custom columns, format-
ting column data, merging and duplicating columns.
The View tab– enables turning on and off the display of various features in the
Query Editor.

Using the Query Editor Ribbon buttons, you can remove columns and rows,
add new columns, change the data type, change and format values, perform
calculations, merge and append data.

Query Editor will record each step you perform via its menu selections while
keeping your original data unchanged. Each data transformation you perform
is automatically labeled so it is easy to see at a glance what each step attempts
to do (see Figure 23.6). You can also rename the steps to make then even more
meaningful.

You can delete or modify a step, change the order of steps, and you can add
new steps. A Query is simply a collection of steps arranged in a specific order, with
the last step returning the final output to a worksheet or the Excel Data Model.

FIGURE 23.6 All Query Steps are listed in the Applied Steps section of the Query Settings Pane.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 761

Power Query steps are written in the M expression language. You can view
the scripting code of your query prepared in the M language in the Advanced
Editor (see Figure 23.7) and in the Query Editor Formula Bar. You can edit the
code manually to add transformations to your query that are not available via
the menus. You can also create queries from scratch using the Advanced Editor.

Once the query result is output to a worksheet, the query is saved automati-
cally when you save the workbook. A workbook can contain multiple queries (see
Figure 23.8). You can view all the queries in the workbook by selecting Show Que-
ries from the Get & Transform Data section of the Ribbon’s Data tab.

FIGURE 23.7 The query script code can be edited or written from scratch in the Advanced Editor.

FIGURE 23.8 A workbook with multiple queries.

762 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

If you have Office Professional or Professional Plus license, you can share your
queries with anyone in your organization. Instead of emailing workbooks to
your colleagues and dealing with a versioning nightmare, you can save a query
to the Data Catalog.

Queries are very flexible. They can be easily duplicated if you need to change
some of the transformations without changing the original query. You can also
merge two queries together similar to joining two tables with an SQL statement,
or you can append one query onto the end of another. The last two queries
shown in Figure 23.8 have been created using the Merge option. Queries can
also serve as data sources for other queries thus allowing you to build more
complex data transformations.

Let’s get some hands-on experience with the Power Query user interface. In
Custom Project 23.1, you are going to bring together data from the following:

 ● an Excel workbook (.XLSX) containing two worksheets
 ● a comma-separated value text fi le (.CSV)

These files hold information about post offices in Tri-State area (NY, NJ, and
CT). The data was manually copied from the United States Postal Service web
resource at: http://webpmt.usps.gov/pmt010.cfm

The goal of this project is to combine and clean the data so that you can
produce a summary of active and discontinued post offices by state. While this
project can be easily performed by using the all mighty Copy & Paste opera-
tion, Excel formulas and built-in tools on the Excel Ribbon, the query option
presented here is more powerful. Because queries are collections of steps, you
will never have to perform the same tasks again if the data changes. Simply do
the Refresh, and the data will be reprocessed without further work on your part.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Custom Project 23.1 Creating a Query from Multiple Sources

1. Copy the GetTransform folder from the companion CD to your VBAEx-
cel2019_ByExample folder.

2. Launch Excel 2019 and choose New | Blank workbook.
3. Save the empty workbook as PostOffice_Queries.xlsx.

Step 1: Get Data from an Excel Workbook

4. Choose Get Data | From File | From Workbook.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 763

5. Select the PostOffice_NY_NJ.xlsx workbook file from the GetTransform
folder and click Import.

6. In the Navigator window, click the checkbox next to Select Multiple Items and
select the checkboxes for NY and NJ as shown in Figure 23.9).

FIGURE 23.9 The Navigator Window is showing data that is available in the requested data source.

Notice that the right pane displays the contents of the selected item.
7. Click the drop-down arrow next to Load and choose LoadTo (Figure 23.9).
8. In the Import Data window click the radio button next to Table, choose New

worksheet, and check the Add this data to the Data Model (Figure 23.10).

FIGURE 23.10 In the Load To dialog you can specify how you want to view the data and where it
should be loaded.

764 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

9. Click the OK button in the Import Data dialog.
Excel creates two tables based on the two worksheets that you selected. Th e
right pane displays the Workbook Queries pane with a listing of queries (Figure
23.11). Th is list can be turned on and off using the Queries & Connections
button on the Data tab.
 To see the information about each query, click on the query name to view
the preview screen.
 In the footer of the preview screen you can fi nd options that allow you to
view the data in worksheet, delete the query from the workbook or edit the
query. Notice that Excel displays the number of rows that were successfully
loaded. If upon loading errors are encountered, the error count will be shown
as hyperlink, so you can get more information about the error.

FIGURE 23.11 The Workbook with two Queries.

Looking at the initial data load (see Figure 23.11), notice that the data has been
converted to an Excel table for each worksheet found in the source fi le. Th e
Ribbon shows the Table Tools Design tab. At this point you could reformat
your table or create a PivotTable, but we have more important tasks to perform.
Currently there is no way to identify the data as belonging to NY or NJ other
than looking at the query names. We need a State column in each table.

Step 2: Adding, Renaming, and Moving a New Column

10. In the Workbook Queries pane, right-click NJ query and choose Edit.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 765

Th e NJ - Query Editor window appears showing you the four transformation
steps in the Applied Steps pane that Excel automatically created when you
loaded the data (Figure 23.12).

FIGURE 23.12 The NJ Query Editor Window displays the applied data transformation steps to NJ
table.

A step can be deleted by clicking the button (x) in front of the step name. Keep
in mind that there is no undo option. A deleted step must be recreated if you
want it back. Some steps will show a Gears icon next to them (see Figures
23.12 and 23.13). Th ese steps can be edited using the same dialog that was used
to create it. Simply click this icon or right-click it and choose Edit settings.
Th e Gears icon will disappear if you happen to make an invalid change in the
formula for the step. Figure 23.13 shows the dialog used to edit the Source step.

FIGURE 23.13 The Excel dialog provides a way to edit the source of the data.

766 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

11. Click the Promoted Headers step and choose View | Formula Bar
(Figure 23.14).
You can use Formula bar to check or edit the M expression that was used to
perform the selected data transformation step. You can also use the formula
bar to create a new step by clicking on the fx icon. You can expand the formula
bar to see its entire contents by clicking the drop down. Figure 23.12 earlier
shows the expanded formula bar.

FIGURE 23.14 Examining the formula for the selected step.

12. Select the Changed Type step and notice that the formula references the
previous step (Promoted Headers). See Figure 23.15.

FIGURE 23.15 The Expanded Formula Bar

GETTING AND TRANSFORMING DATA IN EXCEL 2019 767

Referring to the Query Steps

Steps or queries that have a space in the name must be referenced as #“query
name”.

The Changed Type step automatically applies a data type to each of the columns.

Data Types

Each column in the Power query has a specific data type. You do not need to
declare data type of any value as the M language automatically determines this
when you create a query. However, if you get an error because of an incorrect
data type, there are commands on the Ribbon available for correcting this. The
following data types can be used:

Data Type Description
Binary Used for storing images and the contents of files
Currency Used for storing monetary values
Date Used for storing dates between January 1, 0001 CE and Decem-

ber 31, 9999 CE in the Gregorian calendars.
Date/Time Used for storing both date and time
Date/Time/Timezone Used for storing date, time and time zone
Duration Used for storing the difference between two times, date/times or

date/time/time zones.
Logical Used for storing False or True values
Number Used for storing numeric values (integers and fractionals)
Text Used for storing Unicode text. Text is case sensitive.
Time Used for storing time of day values
Any
(not available as a selec-
tion from the data type
drop-down box)

Used for storing any type of value. Oftentimes selected automati-
cally when you import the data. It is better to replace it with Text
or Number so you can take advantage of the functionality which
these types provide when replacing or filtering values.

M language is strongly typed. Th is means that errors will be generated if
the arguments passed to functions (or the values you attempt to combine in
expressions) do not closely match the expected type. For example, combining
text with a number such as:
"This is example " & 1

by using the & operator will throw an error because text cannot be combined
with a number without a conversion. To avoid the error, the function Number.
ToText can be used to cast a number to text:
"This is example " & Number.ToText(1)

SIDEBAR

SIDEBAR

768 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

13. To add a new column to the current table, choose Add Column | Add Custom
Column.

14. Enter the data as shown in Figure 23.16 and click OK.
Th e Add Custom Column dialog specifi es that you want to add a new column
named State and fi ll it with the string NJ.

FIGURE 23.16 Adding a New Custom Column.

Excel adds a new State column and now we have a way to identify each zip
code with the state of New Jersey (Figure 23.17).

FIGURE 23.17 The State column appears as a new transformation named Added Custom.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 769

NOTE
Figure 23.17 shows four-digit zip codes which is incorrect. You
can easily fix this by adding by Choosing Transform | Format
|Add Prefix and entering zero (0) in the dialog box.

15. Right-click the Added Custom step in the Applied Steps pane and choose
Rename. Type the new name for this step: Added State Column.

16. Right-click the State column in the data pane and choose Move | To Beginning.
Th e State column should appear before the ZIP Code column.
Now you need to perform Steps 13-16 in the NY query.

17. Click the Queries Navigation Pane on the very left of the Query Editor window
to expand the Navigation pane (Figure 23.17).

18. Select NY query to open it in the Query Editor.
Notice that NY query contains the same steps as the NJ query in the Applied
Steps pane except for the custom State column (Figure 23.18).

FIGURE 23.18 Loading the NY query into the Query Editor

19. On your own add a State column to the NY query, rename the Query step and
move the State column to the beginning (see Steps 13-16 above).

Adding New Steps to the Query

The Query Editor allows you to add new steps at the end of the query or in
between the existing steps. An inserted step may impact another step in the
query. When you remove a step from the Applied Steps, subsequent steps may
suddenly display errors. When you add a new step to the query pay attention
to which step is currently selected. The Query Editor will warn you that adding
a step could cause the query to break.

SIDEBAR

770 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

20. Choose Home | Close & Load to save the changes to the queries, close the
Editor window and load the data in the default location.
Excel updates the tables to include the State Column (Figure 23.19).

FIGURE 23.19 Excel table now contains the State column.

21. Save the PostOffice_NY_NJ.xlsx file but keep it open.
When you save the fi le, Excel also saves the queries you created. Make sure to
save oft en while working with the queries as Excel may crash suddenly and you
will lose your work.
 Let’s not forget that we still need to pull the Connecticut data from another
data source – a comma-separated value (CSV) fi le.

Step 3: Loading Data from a Text File

22. Choose Data | From Text / CSV.
23. Select the PostOffice_CT.csv file in the GetTransform folder and click Import.

Excel displays the preview of the fi le as shown in Figure 23.20.

FIGURE 23.20 Excel displays the preview screen when loading data from text / csv files.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 771

24. Click the drop-down arrow next to Load and choose Load to.
25. In the Import Data dialog, choose Table, New worksheet and Add this data to

the Data Model, and click OK.
Excel loads the data into a new worksheet and adds the query into the Que-

ries & Connections pane (Figure 23.21).

FIGURE 23.21 You can modify the query by clicking the Edit button.

26. Highlight the PostOffice_CT query and click the Edit button in the preview
window as shown in Figure 23.21 above.
Excel loads the fi le into the Query Editor. It looks like the data is split correctly
into four columns that we need. All that’s missing is the custom column that
will hold the state name.

27. On your own add a State column to the PostOffice_CT query as instructed in
Steps 13-16 above.

28. In the Query Settings Properties Name box enter CT as the new name for your
query. Click Rename button in the popup box to confirm.
Figure 23.22 shows the Query Editor aft er changes made in Steps 27-28.

772 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 23.22 The CT query after modification.

29. Choose File | Close & Load.
Th e PostOffi ce_Queries.xlsx workbook now contains three queries that we
need for further data manipulation.

30. Press Ctrl+S to save the workbook file with the queries.

Step 4: Combining Data with the Append Query

31. To combine the data for all three states, right-click NJ query name and choose
Append.
An Append dialog appears with two drop-down lists. Th e Primary table is
already specifi ed as NJ.

32. Click the Three or more tables radio button.
Excel displays the Append dialog where you can select the tables you need to
combine.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 773

33. Enter the data as shown in Figure 23.23 and click OK to close the Append
dialog.

FIGURE 23.23 Appending Multiple Tables.

Excel opens the Query Editor. You can see the result of the Append operation
with one step in the Applied Steps section and a query named Append1. If the
Query Settings pane is not visible, you can turn it back on by choosing View |
Query Settings.

34. Change the query name to Tri-State Data as shown in Figure 23.24.

FIGURE 23.24 The Query Editor displays the result of the Append operation.

Notice that the formula bar shows the statement that combines three data sets:

= Table.Combine({CT, NJ, NY})

You could edit the Table.Combine formula to include more items if needed
without having to open the Append dialog. Th is is quite straightforward to do.

774 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

35. Choose File | Close & Load.
Th e Tri-State Data query now appears in the Workbook Queries pane and the
active sheet displays Excel table with combined data for post offi ces in all three
states.

36. Press Ctr+S to save the workbook.
Now that we have the data in one place, let’s proceed with the cleanup of this
data.
 We will start by removing duplicate records.

Step 5: Data Cleanup

37. Double-click the Tri-State Data query to open it in the Query Editor.
38. Select the Post Office column and click Home | Remove Rows | Remove

Duplicates.
Th ere are many blank entries in the Date Discontinued column. For consistency
sake, let’s replace all blanks with null values.

Important Note: Empty cells are shown as null in queries.
39. Select the Date Discontinued column and choose Home | Replace Values.

Excel displays the Replace Values dialog.
40. Leave the Value to Find text box empty and enter null in the Replace with text

box and click OK.
A Replaced Value step is added to the Applied Steps pane as shown in
Figure 23.25.

FIGURE 23.25 The Query Editor with a Replaced Value Step.

Before we can shape the data into its fi nal output, we need to include a bit
of logic into our query. To display the count of active and discontinued post
offi ces, let’s add a custom column to hold the category we need.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 775

41. Choose Add Column | Add Custom Column and complete the dialog as
shown in Figure 23.26. Press OK when done.

FIGURE 23.26 Entering a logical expression in a custom column formula.

Th e Query Editor now shows the Category column with Active and Discontin-
ued values (Figure 23.27).

FIGURE 23.27 The Category Column data obtained via the logical expression

Conditional Logic

To add decisions in the M language, use the if…then…else expression. If the
expression in the if clause returns true then the result of the expression in the
then clause is returned, otherwise the result of the expression in the else clause
is returned (see Figure 23.27 above).
 M language does not have the Case statement. If you need decisions based
on multiple conditions, you should use nested if…then…else expressions.

SIDEBAR

776 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

42. Rename the step Added Custom to Added Category Column.

Step 6: Shaping Data into Final Output

To produce the final report, we will need only two columns: State and Cat-
egory. There are various ways to remove columns from a table. You can choose
the Remove Columns option to remove the selected columns or the Remove
Other Columns options to remove all but the selected columns. There is also
a way to remove columns using the Choose Columns button on the Home tab
of the Query Editor toolbar.

43. Select Home | Choose Columns, select State and Category and click OK
(Figure 23.28).

FIGURE 23.28 Choosing the columns to keep.

Our table is now reduced to two columns. Let’s shape the data into the final
output by using the Group By option.

GETTING AND TRANSFORMING DATA IN EXCEL 2019 777

44. Choose Transform | Group By and complete the Group By dialog as shown in
Figure 23.29. Click OK when done.

FIGURE 23.29 Specifying the Grouping Criteria.

The Query Editor displays the grouping output as shown in Figure 23.30.

FIGURE 23.30 The Group By Output for this project.

778 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Aggregating Data

To aggregate and group data in the Query Editor, select the column you want
to group by and click the Group By button in the Home tab. In the Group
By window (Figure 23.29), you can group by multiple columns using the Ad-
vanced radio button. The Operation drop-down lets you choose from various
aggregate functions such as Count Rows, Average, Min, Max, Sum, etc. If you
require more than one grouping, click the Add grouping button. And if you
need to remove a group, point to the group name and notice the three-dot but-
ton to the right of the name. Click this button to reveal menu options: Delete,
Move Up, and Move Down.

Let’s add a final touch to the obtained summary of data by applying an ascend-
ing sort order to the State and Category columns.

45. Click the drop-down arrow in the State column and choose Sort ascending.
46. Click the drop-down arrow in the Category column and choose Sort

ascending.
The Query Editor displays the rearranged data (Figure 23.31).

FIGURE 23.31 Query Editor showing the final output from the data manipulations performed in
this Chapter’s project.

47. Choose File | Close & Load to close the Query Editor and load the data into
a worksheet.

Figure 23.32 shows all the queries that you created and their output.

SIDEBAR

GETTING AND TRANSFORMING DATA IN EXCEL 2019 779

48. Save the workbook file.

FIGURE 23.32 An Excel workbook showing the final output of data loading and transformation
using the Power Query feature.

Repeatable Refresh and Undo Support

The Refresh button on the Data Ribbon allows you to repeat the import and
transformation of the data to the workbook. Refresh and Edit Query Proper-
ties operations performed in the Workbook Queries task pane can be undone
by clicking the drop-down arrow in the Undo button in the Quick Access tool-
bar and selecting the appropriate action as shown in Figure 23.33.

FIGURE 23.33 Undoing Refresh and Edit Query operations.

SIDEBAR

780 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING THE ADVANCED EDITOR

Now that you’ve created your first Power queries, let’s look at the M code that
the Query Editor created for you. You can get a full view of the code by access-
ing the Advanced Editor. Simply double-click the Tri-State Data query in your
workbook and choose Advanced Editor on the Power Query Editor’s View tab.
Figure 23.34 shows the M code for your query.

FIGURE 23.34 Reviewing the M code for the Tri-State Data query in the Advanced Editor.

Reusing an Output of one Query in Another

A query can serve as a source for another query. If you right-click a query in
the Workbook Queries pane and select Reference, a new query will be created
and will produce the same output as the original query. For example, if Query1
already contains the data you need, you can reference this query. Query2 will be
automatically created for you with the following M code:
let
 Source = Query1
in
 Source

Notice that the Query2 is using the name of Query1 in the source definition.
You can then add specific steps to Query2 to transform the data obtained from
Query1.

SIDEBAR

GETTING AND TRANSFORMING DATA IN EXCEL 2019 781

POWER QUERY VS EXCEL FORMULA
LANGUAGE AND EXCEL VBA

Unfortunately, the “M” language used in Power Query formulas does not bear any
resemblance to Excel formulas or VBA language. If you plan on building complex
data solutions using the Get Data (Power Query) interface in Excel, you will need
to invest time in becoming competent with it. The following link provides refer-
ence to the Power Query Formula language (informally known as “M”):

https://msdn.microsoft.com/en-us/library/mt211003.aspx

Table 23.1 shows some of the M language formulas.

TABLE 23.1 Examples of M language Functions

Description Functions
Create a new custom column in Excel = Excel.Workbook([Content)]

Create a new custom column in a CSV
file

= Csv.Document([Content])

Create a new column by concatenating
values from two existing columns

= [Column1Name] & " " & [Column2Name]

Remove two first characters from the
column entry

= Text.Range([ColumnName], 2)

Place a value in a column based on a
condition

= if[ColumnName]= "V" then "Vacation"
else "Other"

Rename the column to Employee = Table.RenameColumns(Source,
{{"oldColumnName", "Employee"}})

Get a list of Headers in your table = Table.ColumnNames(Source)

Get the name of the second column
Note: Lists in query are 0 based. 1 will
get the second column.

= Table.ColumnNames(Source){1}

LEARNING ABOUT VARIOUS M LANGUAGE FUNCTIONS

You can learn about various M language functions in the Power Query Editor.
Simply type a function in the Formula Bar and press Enter to see the syntax and
examples of the function usage. For example, to find out how to use Table.
Combine, type =Table.Combine in the Formula Bar. After pressing Enter you
should see the output shown in Figure 23.35.

782 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Important Note: The M language is case sensitive, therefore, to avoid errors
caused by case sensitivity pay attention to lowercase and uppercase letters in the
expressions.

FIGURE 23.35 Looking up information about M language functions by using the Formula Bar in the
Power Query Editor.

Let’s take a couple of minutes now to look up information about some functions
shown in Table 23.1. While you can use the Formula Bar in any query, in Hands-
On 23.1 you will use a blank query for this purpose.

 H ands-On 23.1 Using a Blank Query for trying out M functions

1. In the Excel Ribbon, choose Data | Get Data | From Other Sources | Blank
query.
Th e Power Query Editor appears with the insertion point in the Formula Bar
ready for your input. Th e Applied Steps displays one step named Source which
is currently empty as there is no formula for this step. If you open the Advanced
Editor (View | Advanced Editor) at this time you will see the following script:

let
 Source = ""
in
 Source

GETTING AND TRANSFORMING DATA IN EXCEL 2019 783

2. In the Query Editor’s Formula Bar, type = Text.Range and press Enter.
Th e Data pane displays the information about the requested function. Th ere is
also an Invoke button below the function example that allows you to try it out
for yourself.

3. Provide the parameters for this function and click the Invoke button. You can
use the “Hello World” text string and extract the word starting at index 6 as
shown in the function description or use your own text.
Th e Power Query Editor now shows the result of running this function. Th e
result is shown in Figure 23.36. Notice that the Properties text box in the Query
Settings pane lists a property named Invoked Function and the Formula Bar
displays the following code:

= Query1("Hello World", 6, null)

 When activated, the Advanced Editor displays the following:

let
 Source = Query1("Hello World", 6, null)
in
 Source

FIGURE 23.36 The result of invoking a function in the Power Query Editor.

You can continue testing other functions in the Formula Bar and invoking
them to view the result. Th e blank query can be used as a scratch pad like the
Immediate Window in Visual Basic Editor (VBE).

4. Select the blank query name (query1) in the Queries pane to the left of the
Formula bar and then change the Name property of your query in the Query
Settings pane to TestFunctions.

5. Use the Close & Load button to save your changes. Excel creates TestFunctions
connection as shown in Figure 23.37.

784 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 23.37 The blank query that you created has no data, so Excel created just a connection
reference. This way the query will be saved with your workbook and you can edit it anytime. Also, you
can reference the query from other queries.

CREATING A QUERY FROM A TABLE

In addition to creating queries from external data sources, you can use the Get
Data button to work with a table of data in the currently open workbook. Simply
choose Data | Get Data | From Other Sources | From Table / Range command to
create a query linked to a selected Excel table. If a selected range is not part of a
table, it will be converted into a table.

THE GET DATA AND VBA SUPPORT

To support the Get Data feature in the Get & Transform Data section of the
Ribbon’s Data tab, the VBA Object Model exposes the Queries and Workbook-
Query objects with their properties and methods (Figures 23.38 and 23.39). You
can try out some of these properties in the Immediate window as shown below.
Make sure that your workbook with the Post Office queries is active.

?ThisWorkbook.Queries.Count
 5
?ThisWorkbook.Queries.Parent.Name
PostOffice_Queries.xlsx

?ThisWorkbook.Queries.Item(1).Name
NJ

GETTING AND TRANSFORMING DATA IN EXCEL 2019 785

FIGURE 23.38 WorkbookQuery Object’s properties and methods.

FIGURE 23.39 Queries Object’s properties and methods.

786 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In addition to Object Model support for the Get Data feature, you can also
utilize the Macro Recording feature to automate the process of creating and
refreshing your queries. However, you cannot record the actions performed in
the Query Editor.

Hands-On 23.2 walks you through the process of recording three queries
obtained from a web data source.

 Hands-On 23.2 Automating the Creation of Queries

1. Choose File | New | Blank workbook.
2. Choose Developer | Record Macro.
3. In the Record Macro dialog, type CreateQuery as the Macro Name and choose

ThisWorkbook in the Store macro in dropdown, and then click OK.
4. Choose Get Data | From Web.
5. Enter the following URL: http://livingwage.mit.edu/states/06 and click OK.
6. In the Navigator, choose Select multiple items and choose all the tables as

shown in Figure 23.40.
7. Select Load | Load To.
8. In the Import Data dialog, choose Table and uncheck Add this data to the

Data Model, then click Load.
All three tables are loaded into the workbook as shown in Figure 23.41.

9. Choose Developer | Stop Recording to end the macro recording session.
10. Save the workbook as RecordedQueries.xlsm.

FIGURE 23.40 Selecting the data for a query (Macro Recording)

GETTING AND TRANSFORMING DATA IN EXCEL 2019 787

FIGURE 23.41 Three queries were generated after the selection process shown in Figure 23.40.

Let’s open the VBE code window and examine the code that was recorded (see
Figure 23.42).

FIGURE 23.42 Adding queries to the workbook was automated by using Excel macro recorder.

Notice that the Queries.Add method is used to add a new WorkbookQuery
object to the Queries collection. This method requires that you provide the
name of the query and the M formula for the query. You can also provide the
description of the query but this is optional. The Web.Contents function is used

788 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

for downloading data from the web. This function expects the URL of the web-
site as text string. The Web.Page function returns the contents of the HTML
webpage as a table. The Table.TransformColumnTypes function transforms
column types from a table using a specific data type.

The OLE DB Query connection uses the Microsoft.Mashup.OleDb.1 Pro-
vider. In addition to the Provider name, the connection string includes $Work-
book as the Data Source attribute and the name of the query in the Location
attribute. The QueryTable.Refresh method updates the QueryTable. The op-
tional argument BackgroundQuery specifies whether the query should be up-
dated in the background. The False setting returns the control to the procedure
only after all data has been fetched to the worksheet. With the True setting, the
control is returned to the procedure as soon as a database connection is made,
and the query is submitted.

By recording queries using different options you can discover other func-
tions helpful in automating queries in Excel 2019.

ADDITIONAL LEARNING RESOURCES FOR USING THE
GET DATA FEATURE

This chapter demonstrated only some of the simple capabilities of getting and
transforming data in Excel. The advanced options need a separate book. If you’d
like more Hands-On experience with building data mashup queries, be sure to
check out the following tutorials:

 ● Power Query 101
This tutorial will teach you how to connect to a Web data source, se-
lect tables for import, replace and filter values, and load the query into a
worksheet.

https://support.office.com/en-us/article/Power-Query-101-008B3F46-
5B14-4F8B-9A07-D3DA689091B5

 ● Combine Data from Multiple Data Sources
This tutorial will teach you how to combine a local Excel file with an
OData feed, perform aggregations to produce a Total Sales per Product
and Year report.

https://support.office.com/en-us/article/Combine-data-from-multiple-da-
ta-sources-Power-Query-70cfe661-5a2a-4d9d-a4fe-586cc7878c7d

GETTING AND TRANSFORMING DATA IN EXCEL 2019 789

SUMMARY

This chapter provided a brief introduction to data import and shaping features
of Excel 2019 known as Power Query. This feature was introduced in Excel
2016 as Get & Transform.

After importing and combing data from an Excel workbook and a CSV text
file, you learned how to transform the raw data via a series of steps to produce a
final aggregated Excel table. You learned how to use Power Query Editor to edit
the query steps which were dynamically generated by various command but-
tons on the Power Query Editor’s Ribbon. You saw how Power Query Editor’s
Formula Bar can be used to get information about and test M code expressions
and functions, and how Advanced Editor shows and allows you to edit the entire
query script. You discovered some M language features such as case sensitivity,
data types, and logical expressions. Finally, you learned how macro recording
and Excel Object Model can help you write VBA procedures that automate the
process of creation and refreshing of queries.

The next chapter focuses on programming Visual Basic Editor.

While VBA provides a very comprehensive Object Model for automating
worksheet tasks, some of the processes and operations that you may
need to program are the integral part of the Windows operating system

and cannot be controlled via VBA. In this part of the book we start by learning how
to programmatically work with VBA projects, modules, and procedures. Next, you
are introduced to the Windows API library of functions that will come to your res-
cue when you need to overcome the limitations of the native VBA library.

Chapter 24 Programming the Visual Basic Editor (VBE)
Chapter 25 Calling Windows API functions from VBA

Part

 VI TAKING CHARGE OF
PROGRAMMING
ENVIRONMENT

791

793

Having worked through previous chapters of this book, you have already
acquired a working knowledge of many tools available in the Visual
Basic Editor (VBE) to create, modify, and troubleshoot Visual Basic

for Applications (VBA) procedures. VBA also allows you to program its own
development environment known as the Visual Basic Integrated Design Envi-
ronment (VBIDE). For instance, you can:

 ■ Control Visual Basic projects
 ● Get or set project properties
 ● Add or remove individual components

 ■ Control Visual Basic code
 ● Add, delete, and modify code
 ● Save code to a fi le or insert code from a fi le
 ● Search for specifi c information in the code

 ■ Control UserForms
 ● Programmatically design a UserForm
 ● Dynamically add or remove controls from a form

 ■ Work with references
 ● Add a reference to an external object library
 ● Check for broken references

Chapter

 24 PROGRAMMING THE
VISUAL BASIC
EDITOR (VBE)

794 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ■ Control the VBIDE user interface
 ● Control various windows
 ● Add or change menus and toolbars

This chapter introduces you to objects, methods, and properties that you can
use to automate the VBE.

THE VISUAL BASIC EDITOR OBJECT MODEL

To program and manipulate the VBE in code, you need to access objects con-
tained in the Microsoft Visual Basic for Applications Extensibility 5.3 library.
To ensure that you can run the procedures in this chapter, perform the steps as
outlined below.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 24.1 Trusting Access to the VBA Project Object Model

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap24_
VBAExcel2019.xlsm.

2. To trust the Visual Basic project, click the Developer tab and then choose
Macro Security. Excel displays the Trust Center dialog box with various macro
settings (see Figure 24.1). Select the Trust access to the VBA project object
model checkbox and click OK.

FIGURE 24.1 You must set access to the VBA project object model to allow for programming the
Visual Basic Editor.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 795

NOTE

If access to the VBA project object model is not enabled, an
attempt to run a VBA procedure that accesses objects from the
Microsoft Visual Basic for Applications Extensibility 5.3 library
results in the following runtime error message: “Programmatic
access to Visual Basic Project is not trusted.”

3. Choose the Visual Basic button on the Developer tab to activate the Visual
Basic Editor window. In the Properties window, rename the VBA project to
Chap24SourceCode.

4. To create a reference to the Microsoft Visual Basic for Applications Extensibility
5.3 library, choose Tools | References. Check the Microsoft Visual Basic for
Applications Extensibility 5.3 reference, as shown in Figure 24.2, and click
OK.

FIGURE 24.2 Setting a reference to the Microsoft Visual Basic for Applications Extensibility 5.3
library.

UNDERSTANDING THE VBE OBJECTS

In the Object Browser, the Microsoft Visual Basic for Applications Extensibility
5.3 library is referred to as VBIDE. You will use this name when referencing this
library in code.

796 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The top-level object in the VBE object model is the VBE object, which rep-
resents the Visual Basic Editor itself.

FIGURE 24.3 The VBE object model contains five collections of objects.

The VBE object model contains five collections of objects as follows:

 ● VBProjects collection—Contains each VBProject object that is currently
open in the development environment. Use the VBProject object to set
properties for the project. Th e VBProject object also allows you to access
the VBComponents collection and the References collection.

 Use the VBComponents collection to access, add, or remove compo-
nents in a project. A component can be a form, a standard module, or
a class module contained in a project.

 Use the References collection to add or remove references in the VBA
project. Each VBA project can reference one or more libraries or proj-
ects. Use the Reference object to fi nd out what references are currently
selected in the References dialog box for the specifi c VBA project.

 ● AddIns collection—Use this collection to access the AddIn objects. Add-
ins are programs that add extended capabilities and features to Microsoft
Excel or other Microsoft Offi ce products.

 ● Windows collection—Use this collection to access window objects such
as the Project Explorer window, Properties window, or currently open
Code windows.

 ● CodePanes collection—Use this collection to access the open code panes
in a project. A Code window can contain one or more code panes. A code
pane contained in a Code window is used for entering and editing code.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 797

 ● CommandBars collection—Contains all of the command bars in a proj-
ect, including command bars that support shortcut menus.

ACCESSING THE VBA PROJECT

The only way to determine the current setting for Trust access to the VBA
project object model in the Trust Center (see Figure 24.1) is via error trapping.
The following procedure displays a message if access to the VBA project is not
trusted. Instructions on how to change the security settings are then displayed
in a text box placed in a new workbook.

 Hands-On 24.2 Checking Access to the VBA Project Using VBA

NOTE All VBA code presented in this chapter will fail unless you followed
the steps in Hands-On 24.1.

1. Switch to the Visual Basic Editor window and insert a new module into
Chap24SourceCode(Chap24_VBAExcel2019.xlsm).

2. In the Code window, enter the AccessToVBProj procedure as shown below:
 Sub AccessToVBProj()
 Dim objVBProject As VBProject
 Dim strMsg1 As String
 Dim strMsg2 As String
 Dim response As Integer

 On Error Resume Next

 If Application.Version >= "16.0" Then
 Set objVBProject = ActiveWorkbook.VBProject

 strMsg2 = "The access to the VBA "
 strMsg2 = strMsg2 + " project must be trusted for this "
 strMsg2 = strMsg2 + "procedure to work."
 strMsg2 = strMsg2 + vbCrLf + vbCrLf
 strMsg2 = strMsg2 + " Click 'OK' to view instructions,"
 strMsg2 = strMsg2 + " or click 'Cancel' to exit."

 If Err.Number <> 0 Then
 strMsg1 = "Please change the security settings to "
 strMsg1 = strMsg1 & "allow access to the VBA project:"
 strMsg1 = strMsg1 & Chr(10) & "1. "

798 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strMsg1 = strMsg1 & "Choose Developer | Macro
 Security."
 strMsg1 = strMsg1 & Chr(10) & "2. "
 strMsg1 = strMsg1 & "Check the 'Trust access " _
 & " to the project object model'. "
 strMsg1 = strMsg1 & Chr(10) & "3. Click OK."

 response = MsgBox(strMsg2, vbCritical + vbOKCancel, _
 "Access to VB Project is not trusted")

 If response = 1 Then
 Workbooks.Add
 With ActiveSheet
 .Shapes.AddTextbox _
 (msoTextOrientationHorizontal, _
 Left:=0, Top:=0, Width:=300, _
 Height:=100).Select
 Selection.Characters.Text = strMsg1
 .Shapes(1).Fill.PresetTextured _
 PresetTexture:=msoTextureBlueTissuePaper
 .Shapes(1).Shadow.Type = msoShadow6
 End With
 End If
 Exit Sub
 End If

 MsgBox "There are " & objVBProject.References.Count & _
 " project references in " & objVBProject.Name & "."
 End If
 End Sub

Th e procedure begins by checking the application version currently in use.
If the Trust access to the VBA project object model setting is turned off in
the Trust Center dialog box’s Developer Macro Settings area, the attempt to
set the object variable objVBProject will cause an error. Th e procedure traps
this error with the On Error Resume Next statement. If the error occurs, the
Err object will return a nonzero value. At this point we can tell the user that
security settings must be adjusted for the procedure to run. Instead of simply
displaying the instructions in the message box, we print them to a worksheet
so users can follow them easily while accessing the necessary options. Th ey can
also print them out if they want to make this change later (see Figure 24.4).

3. Run the above procedure.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 799

If the Trust access to the VBA project object model setting is turned on, the
procedure displays the number of references that are set for the active work-
book’s VB project; otherwise, you get a message prompting you to click OK to
view instructions on how to make the change.

FIGURE 24.4 Instructions for allowing access to the VBA project object model are generated by the
example procedure.

FINDING INFORMATION ABOUT A VBA PROJECT

As you already know, each new workbook in the Microsoft Excel user inter-
face has a corresponding workbook project named VBAProject. You can change
the project name to a more meaningful name by supplying a new value for the
Name property in the Properties window or by accessing the VBAProject prop-
erties dialog box via the Tools menu in the Visual Basic Editor screen. You can
also perform this change programmatically. If the project you want to edit is
currently highlighted in the Project Explorer window, simply type the following
statement in the Immediate window to replace the default VBA project name
with your own:
Application.VBE.ActiveVBProject.Name = "Chap24SourceCode"

If the VBA project you want to change is not active, the following statement can
be used:
Workbooks("Chap24_VBAExcel2019.xlsm").VBProject.Name =
 "Chap24SourceCode"

To change the description of the VBProject object, type the following statement
on one line in the Immediate window:
Workbooks("Chap24_VBAExcel2019.xlsm").VBProject.Description =
 "Programming Visual Basic Editor"

800 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can find out if the project has been saved by using the Saved property of the
VBProject object:

MsgBox Application.VBE.ActiveVBProject.Saved

Visual Basic returns False if the changes to the project have not been saved.
To find out how many component objects are contained within a specific

VBA project, use this code:
 MsgBox Workbooks("Chap24_VBAExcel2019.xlsm").VBProject
 .VBComponents.Count

And to find out the name of the currently selected VBComponent object, type
the following lines of code in the Immediate window, pressing Enter after each
statement:
 Set objVBComp = Application.VBE.SelectedVBComponent
 MsgBox objVBComp.Name

You can also quickly find out the number of references defined in the Refer-
ences dialog box by typing the following statement in the Immediate window:

?Application.VBE.ActiveVBProject.References.Count

VBA PROJECT PROTECTION

To prevent users from viewing code, you can lock each VBA project. To lock a
VBA project, you will need to perform the following tasks:

1. In the Project Explorer, right-click the project you want to protect, and then
click [ProjectName] Properties on the shortcut menu.

2. In the Project Properties dialog box, click the Protection tab and select the
Lock project for viewing checkbox. Enter and confirm the password, and
then click OK.

The next time you open the workbook file you will be prompted to enter the
password when attempting to view code in the project. There is no way to pro-
grammatically specify a password for a locked VBA project. You should check
whether the project is protected before you attempt to edit the project or run
code that accesses information about the project’s components. To determine if
a VBA project is locked, check the Protection property of the VBProject object.
The following function procedure demonstrates how to check the Protection
property of the VBA project in an Excel workbook.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 801

 Hands-On 24.3 Using VBA to Determine whether the VBA Project Is
Protected

1. In the same module where you entered the procedure from Hands-On 24.2,
enter the IsProjProtected function procedure as shown below:
Function IsProjProtected() As Boolean
 Dim objVBProj As VBProject

 Set objVBProj = ActiveWorkbook.VBProject

 If objVBProj.Protection = vbext_pp_locked Then
 IsProjProtected = True
 Else
 IsProjProtected = False
 End If
End Function

2. To test the above function, type MsgBox IsProjProtected() in the Immediate
window and press Enter.
The MsgBox function displays False for a project that is not protected and True
if protection is turned on.

NOTE

If a project is protected and you attempt to run a procedure
that needs to access information in this project without first
checking whether the protection is turned on, runtime error
50289 appears with the following description: “Can’t perform
operation since the project is protected.”

WORKING WITH MODULES

All standard modules, class modules, code modules located behind worksheets
and workbooks, as well as UserForms are members of the VBComponents col-
lection of a VBProject object. To determine the type of the component object,
use the Type property of the VBComponent object as shown in Figure 24.5. The
code of each VBComponent is stored in a CodeModule. The UserForm compo-
nent has a graphical development interface called ActiveX Designer.

802 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 24.5 Type property settings for the VBComponent object as shown in the online help.

The following sections demonstrate several procedures that access the VBCom-
ponents collection to perform the following tasks:

 ● Listing all modules in a workbook
 ● Adding a module
 ● Removing a module
 ● Removing all code from a module
 ● Removing empty modules
 ● Copying (exporting and importing) modules

Listing All Modules in a Workbook

The procedure below generates a list of all modules contained in the Chap24_
VBAExcel2019.xlsm workbook. The name of each module and the description
of the module type are placed in a two-dimensional array and then written to
a worksheet. Because the Type property of the VBComponent object returns a
constant or a numeric value containing the type of object (see Figure 24.5), the
procedure uses a function to show the corresponding description of the object.

 Hands-On 24.4 Listing All Workbook Modules

1. Insert a new module into the current VBA project in the Chap24_
VBAExcel2019.xlsm workbook.

2. In the Code window, enter the following procedure and function:
Sub ModuleList()
 Dim objVBComp As VBComponent
 Dim listArray()
 Dim i As Integer

 If ThisWorkbook.VBProject.Protection = vbext_pp_locked Then
 MsgBox "Please unprotect the project to run this " & _
 "procedure."

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 803

 Exit Sub
 End If

 i = 2

 For Each objVBComp In ThisWorkbook.VBProject.VBComponents
 ReDim Preserve listArray(1 To 2, 1 To i - 1)
 listArray(1, i - 1) = objVBComp.Name
 listArray(2, i - 1) = GetModuleType(objVBComp)
 i = i + 1
 Next

 With ActiveSheet
 .Cells(1, 1).Resize(1, 2).Value = Array("Module Name", _
 "Module Type")
 .Cells(2, 1).Resize(UBound(listArray, 2),
 UBound(listArray, _
 1)).Value = Application.Transpose(listArray)
 .Columns("A:B").AutoFit
 End With

 Set objVBComp = Nothing
End Sub

Function GetModuleType(comp As VBComponent)
 Select Case comp.Type
 Case vbext_ct_StdModule
 GetModuleType = "Standard module"
 Case vbext_ct_ClassModule
 GetModuleType = "Class module"
 Case vbext_ct_MSForm
 GetModuleType = "Microsoft Form"
 Case vbext_ct_ActiveXDesigner
 GetModuleType = "ActiveX Designer"
 Case vbext_ct_Document
 GetModuleType = "Document module"
 Case Else
 GetModuleType = "Unknown"
 End Select
End Function

3. Run the ModuleList procedure and then switch to the Microsoft Excel
application window to view the results.
If the VBA project is protected when you execute this procedure, you will see
a warning message.

804 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Adding a Module to a Workbook

Use the Add method of the VBComponents collection to add a new module to
ThisWorkbook. The CreateModule procedure shown below prompts the user
for the module name and the type of module. When this information has been
provided, the AddModule procedure is called.

 Hands-On 24.5 Adding a Module to a Workbook

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedures:
Sub CreateModule()
 Dim modType As Integer
 Dim strName As String
 Dim strPrompt As String

 strPrompt = "Enter a number representing the type of module:"
 strPrompt = strPrompt & vbCr & "1 (Standard Module)"
 strPrompt = strPrompt & vbCr & "2 (Class Module)"
 modType = Val(InputBox(prompt:=strPrompt, _
 Title:="Insert Module"))
 If modType = 0 Then Exit Sub
 strName = InputBox("Enter the name you want to assign to " & _
 "new module", "Module Name")
 If strName = "" Then Exit Sub
 AddModule modType, strName
End Sub

Sub AddModule(modType As Integer, strName As String)
 Dim objVBProj As VBProject
 Dim objVBComp As VBComponent

 If InStr(1, "1, 2", modType) = 0 Then Exit Sub

 Set objVBProj = ThisWorkbook.VBProject
 Set objVBComp = objVBProj.VBComponents.Add(modType)
 objVBComp.Name = strName

 Application.Visible = True

 Set objVBComp = Nothing
 Set objVBProj = Nothing
End Sub

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 805

3. Run the CreateModule procedure. Enter 1 for a standard module when
prompted and click OK. Enter TestModule as the module name and click OK.
When the procedure finishes executing, you should see a new module named
TestModule in the Project Explorer window. Do not delete this module, as you
will need it for the next Hands-On.

Removing a Module

Use the following procedure to delete the module you added in the previous
section.

 Hands-On 24.6 Removing a Module from the Workbook

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub DeleteModule(strName As String)
 Dim objVBProj As VBProject
 Dim objVBComp As VBComponent

 Set objVBProj = ThisWorkbook.VBProject

 Set objVBComp = objVBProj.VBComponents(strName)

 objVBProj.VBComponents.Remove objVBComp

 Set objVBComp = Nothing
 Set objVBProj = Nothing
End Sub

3. Run the DeleteModule procedure by typing the following statement in the
Immediate window and pressing Enter to execute:
DeleteModule "TestModule"

At this point, Chap24SourceCode (Chap24_VBAExcel2019.xlsm) should con-
tain four standard modules with the VBA procedures entered so far in this
chapter.

Deleting All Code from a Module

Use the CountOfLines property of the CodeModule object to return the number
of lines of code in a code module. Use the DeleteLines method of the Code-
Module object to delete a single line or a specified number of lines. The Delete-
Lines method can use two arguments. The first argument, which specifies the

806 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

first line you want to delete, is required. The second argument is optional and
specifies the total number of lines you want to delete. If you don’t specify how
many lines you want to delete, only one line will be deleted. The following pro-
cedure deletes all code from the specified module.

 Hands-On 24.7 Deleting a Module’s Code

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub DeleteModuleCode(strName As String)
 Dim objVBProj As VBProject
 Dim objVBCode As CodeModule
 Dim firstLn As Long
 Dim totLn As Long

 Set objVBProj = ThisWorkbook.VBProject
 Set objVBCode = objVBProj.VBComponents(strName).CodeModule
 With objVBCode
 firstLn = 1
 totLn = .CountOfLines
 .DeleteLines firstLn, totLn
 End With

 Set objVBProj = Nothing
 Set objVBCode = Nothing
End Sub

3. Insert a new module in the current VBA project and rename it DeleteTest.
4. Copy the first procedure you created in this chapter (in Hands-On 24.2) into

the DeleteTest module.
5. In the Immediate window, enter the following statement:

DeleteModuleCode "DeleteTest"

When you press Enter, all the code in the DeleteTest module is removed. Do
not delete the empty DeleteTest module. You will remove it programmatically
in the next example.

Deleting Empty Modules

In the course of writing your VBA procedures you may have inserted a number
of new modules in your VBA project. While most of these modules contain
valid code, there are probably a couple of empty modules that were left behind.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 807

You can remove all the unwanted empty modules in one sweep with a VBA
procedure. To remove a module, use the Remove method of the VBComponents
collection. This method requires that you specify the type of component you
want to remove. Use the enumerated constants shown in Figure 24.5 earlier in
this chapter to indicate the type of component. The following procedure iterates
through the VBComponents collection and checks whether the retrieved com-
ponent is a standard module or a class module. If the module contains less than
three lines, we assume that the module is empty and okay to delete. We write the
information about the deleted modules into the Immediate window.

 Hands-On 24.8 Deleting an Empty Module

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub DeleteEmptyModules()
 Dim objVBComp As VBComponent

 Const vbext_ct_StdModule As Long = 1
 Const vbext_ct_ClassModule As Long = 2

 For Each objVBComp In ActiveWorkbook.VBProject.VBComponents
 Select Case objVBComp.Type
 Case vbext_ct_StdModule, vbext_ct_ClassModule
 If objVBComp.CodeModule.CountOfLines < 3 Then
 Debug.Print "(deleted) " & objVBComp.Name & vbTab & _
 "declarations: " & objVBComp.CodeModule. _
 CountOfDeclarationLines & vbTab & _
 "Total code Lines: " & _
 objVBComp.CodeModule.CountOfLines
 ActiveWorkbook.VBProject.VBComponents. _
 Remove objVBComp
 End If
 End Select
 Next
 Set objVBComp = Nothing
End Sub

3. Run the DeleteEmptyModules procedure.
The DeleteTest module that we created in Hands-On 24.7 should now be re-
moved from the current VBA project. Check the Immediate window for infor-
mation about the deleted module.

808 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Copying (Exporting/Importing) a Module

Sometimes you may want to copy modules between VBA projects. There is no
single method to perform this task. To copy a module you must perform the
following two steps:

1. Export a module to an external text file.
The Export method of the VBComponent object saves the component as a
separate text file. You must specify the name of the file to which you want to
export the component. The filename must be unique, or an error will occur.

2. Import a module from an external text file.
The Import method of the VBComponent object adds the component to a
project from a file. You must specify the path and filename of the file from
which you want to import the component. The workbook file that will receive
the imported component must be open.

Let’s assume that you want to copy Module1 from the Chap24_VBAExcel2019.
xlsm workbook to another workbook file named Chap24b_VBAExcel2019.
xlsm. The procedure that follows requires three arguments for the copy opera-
tion: the name of the workbook containing the module you want to copy, the
name of the workbook that will receive the copied module, and the name of the
module you will be copying.

 Hands-On 24.9 Exporting/Importing a Module

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub CopyAModule(wkbFrom As String, wkbTo As String, _
 strFromMod As String)
 Dim wkb As Workbook
 Dim strFile As String

 Set wkb = Workbooks(wkbFrom)

 strFile = wkb.Path & "\vbCode.bas"
 wkb.VBProject.VBComponents(strFromMod).Export strFile

 On Error Resume Next
 Set wkb = Workbooks(wkbTo)
 If Err.Number <> 0 Then
 Workbooks.Open wkbTo
 Set wkb = Workbooks(wkbTo)

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 809

 End If

 wkb.VBProject.VBComponents.Import strFile
 wkb.Save

 Set wkb = Nothing
End Sub

3. Create a new workbook and save it as Chap24b_VBAExcel2019.xlsm in
your VBAExcel2019_ByExample folder. You will use this workbook in the
CopyAModule procedure.

4. In the Immediate window, type on one line the following statement and press
Enter to run the procedure:
CopyAModule "Chap24_VBAExcel2019.xlsm",
 "Chap24b_VBAExcel2019.xlsm", "Module1"

When you execute the above statement, the CopyAModule procedure exports
Module1 from Chap24_VBAExcel2019.xlsm to a fi le named vbCode.bas.
Next, the vbCode.bas fi le is imported into the Chap24b_VBAExcel2019.xlsm
workbook and the workbook is saved. You may want to add an additional
statement to this procedure to remove the vbCode.bas fi le from your computer
(use the Kill statement you learned earlier in this book).

5. Activate VBAProject (Chap24b_VBAExcel2019.xlsm) and notice Module1
in the Modules folder. Module1 should contain the same procedure as Module1
in the Chap24_VBAExcel2019.xlsm workbook.

NOTE

When you copy a module to another workbook you may also
need to add the necessary references to the VBA project so
ensure that the code can be compiled and then run without
errors. Please refer to Hands-On 24.18 and 24.19 to learn how
you can add a reference programmatically.

Copying (Exporting/Importing) All Modules

Sometimes you may want to transfer all your VBA code from one project to
another. The procedure shown below exports all the modules in the specified
workbook file to an external text file and then imports them into another work-
book. An error occurs if the receiving workbook cannot be activated. The proce-
dure traps this error by executing the code that opens the required workbook. If
the text file with the same name already exists in the same folder, the procedure
ensures that the file is deleted before the specified project modules are exported.

810 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 24.10 Exporting/Importing All Modules

This Hands-On assumes that the Chap24b_VBAExcel2019.xlsm workbook cre-
ated in the previous Hands-On is open.

1. Insert a new module into the current VBA project in the Chap24_VBAEx-
cel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub CopyAllModules(wkbFrom As String, _ wkbTo As String)

 Dim objVBComp As VBComponent
 Dim wkb As Workbook
 Dim strFile As String

 Set wkb = Workbooks(wkbFrom)

 On Error Resume Next
 Workbooks(wkbTo).Activate
 If Err.Number <> 0 Then Workbooks.Open wkbTo

 strFile = wkb.Path & "\vbCode.bas"
 If Dir(strFile) <> "" Then Kill strFile

 For Each objVBComp In wkb.VBProject.VBComponents
 If objVBComp.Type <> vbext_ct_Document Then
 objVBComp.Export strFile
 Workbooks(wkbTo).VBProject.VBComponents.Import strFile
 End If
 Next

 Set objVBComp = Nothing
 Set wkb = Nothing
End Sub

3. In the Immediate window, type the following statement and press Enter to run
the procedure:
CopyAllModules "Chap24_VBAExcel2019.xlsm",
 "Chap24b_VBAExcel2019.xlsm"

When you execute the above statement, the CopyModules procedure will
copy all the modules from the Chap24_VBAExcel2019.xlsm workbook to the
Chap24b_VBAExcel2019.xlsm workbook that was created in Hands-On 24.9.
Because a module with the same name may already exist in the receiving work-

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 811

book, you may want to modify this procedure to only copy modules that do not
have conflicting names. See the following CopyAllModulesRevised procedure.

NOTE
When you copy a module whose name is the same as the name
of a module in the receiving workbook, Excel assigns a new name
to the inserted module following its default naming conventions.

Sub CopyAllModulesRevised(wkbFrom As String, _ wkbTo As String)

 Dim objVBComp As VBComponent
 Dim wkb As Workbook
 Dim strFile As String

 Set wkb = Workbooks(wkbFrom)

 On Error Resume Next
 Workbooks(wkbTo).Activate
 If Err.Number <> 0 Then Workbooks.Open wkbTo

 strFile = wkb.Path & "\vbCode.bas"
 If Dir(strFile) <> "" Then Kill strFile

 For Each objVBComp In wkb.VBProject.VBComponents
 If objVBComp.Type <> vbext_ct_Document Then
 objVBComp.Export strFile

 With Workbooks(wkbTo)
 If Len(.VBProject.VBComponents(_
 objVBComp.Name).Name) = 0 Then
 Workbooks(wkbTo).VBProject. _
 VBComponents.Import strFile
 End If
 End With
 End If
 Next

 Set objVBComp = Nothing
 Set wkb = Nothing
End Sub

812 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WORKING WITH PROCEDURES

Code modules contain procedures, and at times you may want to:

 ● List all the procedures contained in a module or in all modules
 ● Programmatically add or remove a procedure from a module
 ● Programmatically create an event procedure

The following sections demonstrate how to perform the above tasks.

Listing All Procedures in All Modules

Code modules contain declaration lines and code lines. You can obtain the
number of lines in the declaration section of a module with the CountOfDecla-
rationLines property of the CodeModule object. Use the CountOfLines prop-
erty of the CodeModule object to get the number of code lines in a module.
Each code line belongs to a specific procedure. Use the ProcOfLine property of
the CodeModule object to return the name of the procedure in which the speci-
fied line is located. This property requires two arguments: the line number you
want to check and the constant that specifies the type of procedure to locate. All
subprocedures and function procedures use the vbext_pk_Proc constant. The
following procedure prints to the Immediate window a list of all modules and all
procedures within each module in the current VBA project.

 Hands-On 24.11 Listing Procedures in Modules

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub ListAllProc()
 Dim objVBProj As VBProject
 Dim objVBComp As VBComponent
 Dim objVBCode As CodeModule
 Dim strCurrent As String
 Dim strPrevious As String

 Dim x As Integer

 Set objVBProj = ThisWorkbook.VBProject

 For Each objVBComp In objVBProj.VBComponents
 If InStr(1, "1, 2", objVBComp.Type) Then
 Set objVBCode = objVBComp.CodeModule

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 813

 Debug.Print objVBComp.Name

 For x = objVBCode.CountOfDeclarationLines + 1 To _
 objVBCode.CountOfLines
 strCurrent = objVBCode.ProcOfLine(x, vbext_pk_Proc)

 If strCurrent <> strPrevious Then
 Debug.Print vbTab & objVBCode.ProcOfLine(_
 x, vbext_pk_Proc)
 strPrevious = strCurrent
 End If
 Next
 End If
 Next

 Set objVBCode = Nothing

 Set objVBComp = Nothing
 Set objVBProj = Nothing
End Sub

3. Run the ListAllProc procedure.

When this procedure finishes executing, the list can be seen in the Immediate
window.

Adding a Procedure

It is fairly easy to write procedure code into a module. Use the InsertLines
method of the CodeModule object to insert a line or lines of code at a specified
location in a block of code. The InsertLines method requires two arguments:
the line number at which you want to insert the code and the string containing
the code you want to insert. The following example writes a simple procedure
that opens a new workbook and renames it Sheet1. The procedure is inserted at
the end of the specified module code.

 Hands-On 24.12 Adding a Procedure to a Module Using VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub AddNewProc(strModName As String)
 Dim objVBCode As CodeModule
 Dim objVBProj As VBProject
 Dim strProc As String

814 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set objVBProj = ThisWorkbook.VBProject

 Set objVBCode = objVBProj.VBComponents(_
 strModName).CodeModule

 strProc = "Sub CreateWorkBook()" & Chr(13)
 strProc = strProc & Chr(9) & "Workbooks.Add" & Chr(13)
 strProc = strProc & Chr(9) & _
 "ActiveSheet.Name = ""Test""" & Chr (13)
 strProc = strProc & "End Sub"

 Debug.Print strProc

 With objVBCode
 .InsertLines .CountOfLines + 1, strProc
 End With

 Set objVBCode = Nothing
 Set objVBProj = Nothing
End Sub

3. In the Immediate window, enter the following statement to run the above
procedure and press Enter:
AddNewProc "Module6"

When the procedure fi nishes executing, Module6 will contain a new procedure
named CreateWorkBook. Th e Immediate window will display the procedure
code.

Deleting a Procedure

Use the DeleteLines method of the CodeModule object to delete a single line
or a specified number of lines. The DeleteLines method has two arguments;
one is required and the other is optional. You must specify the first line you want
to delete. Specifying the total number of lines you want to delete is optional.
Before deleting an entire procedure, you need to locate the line at which the
specified procedure begins. This is done with the ProcStartLine property of the
CodeModule object. This property requires two arguments: a string containing
the name of the procedure and the kind of procedure to delete. Use the vbext_
pk_Proc constant to delete a subprocedure or a function procedure.

The following procedure deletes a specified procedure from a specified
module.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 815

 Hands-On 24.13 Deleting a Procedure from a Module Using VBA

1. Insert a new module into the current VBAProject in the Chap24_
VBAExcel2019.xlsm workbook.

2. In the Code window, enter the following procedure:
Sub DeleteProc(strModName As String, strProcName As String)
 Dim objVBProj As VBProject
 Dim objVBCode As CodeModule
 Dim firstLn As Long
 Dim totLn As Long

 Set objVBProj = ThisWorkbook.VBProject
 Set objVBCode = objVBProj.VBComponents(strModName).CodeModule
 With objVBCode
 firstLn = .ProcStartLine(strProcName, vbext_pk_Proc)
 totLn = .ProcCountLines(strProcName, vbext_pk_Proc)
 .DeleteLines firstLn, totLn
 End With

 Set objVBProj = Nothing
 Set objVBCode = Nothing
End Sub

3. In the Immediate window, enter the following statement to run the above
procedure and press Enter:
DeleteProc "Module6", "CreateWorkBook"

When the procedure fi nishes executing, Module6 will no longer contain the
CreateWorkBook procedure that was created in the previous Hands-On.
Before attempting to delete a procedure from a specified module, it is rec-
ommended that you check whether the module and the procedure with the
specified name exist. Consider creating two separate functions that return this
information. You can call these functions whenever you need to test for the
existence of a module or a procedure.

4. Enter the following function procedure in the Module6 Code window:
Function ModuleExists(strModName As String) As Boolean
 Dim objVBProj As VBProject

 Set objVBProj = ThisWorkbook.VBProject

 On Error Resume Next

 ModuleExists = Len(objVBProj.VBComponents(strModName).Name)

816 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

<> 0
End Function

The above function will return True if the length of the module name is a num-
ber other than zero (0); otherwise, it will return False.

5. Enter the following function procedure in the Module6 Code window:
Function ProcExists(strModName As String, _
 strProcName As String) As Boolean

 Dim objVBProj As VBProject

 Set objVBProj = ThisWorkbook.VBProject

 On Error Resume Next

 ' first find out if the specified module exists
 If ModuleExists(strModName) = True Then
 ProcExists = objVBProj.VBComponents(strModName) _
 .CodeModule.ProcStartLine(strProcName,
 vbext_pk_Proc) <> 0
 End If
End Function

6. On your own, modify the DeleteProc procedure in Step 2 so that it checks
the existence of the procedure prior to its deletion. Include the call to the
ProcExists function.

Creating an Event Procedure

While you could create an event procedure programmatically by using the
InsertLines method of the CodeModule object as you’ve done earlier in the
“Adding a Procedure” section, there is an easier way. Because event procedures
have a specific structure and usually require a number of parameters, Visual
Basic offers a special method to handle this task. The CreateEventProc method
of the CodeModule object creates an event procedure with the required proce-
dure declaration and parameters. All you need to do is specify the name of the
event you want to add and the name of the object that is a source of the event.
The CreateEventProc method returns the line at which the body of the event
procedure starts. Use the InsertLines method of the CodeModule object to
insert the code in the body of the event procedure.

The following procedure adds a new worksheet to the current workbook and
writes the Worksheet_SelectionChange event procedure to its code module.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 817

 Hands-On 24.14 Creating an Event Procedure with VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub CreateWorkSelChangeEvent()
 Dim objVBCode As CodeModule
 Dim wks As Worksheet
 Dim firstLine As Long

 ' Add a new worksheet
 Set wks = ActiveWorkbook.Worksheets.Add

 ' create a reference to the code module of
 ' the inserted sheet
 Set objVBCode = wks.Parent.VBProject.VBComponents(_
 wks.Name).CodeModule

 ' create an event procedure and return the line at
 ' which the body of the event procedure begins

 firstLine = objVBCode.CreateEventProc(_
 "SelectionChange", "Worksheet")

 Debug.Print "Procedure first line: " & firstLine

 ' proceed to add code to the body of the event procedure
 objVBCode.InsertLines firstLine + 1, Chr(9) & _
 "Dim myRange As Range"
 objVBCode.InsertLines firstLine + 2, Chr(9) & _
 "On Error Resume Next"
 objVBCode.InsertLines firstLine + 3, Chr(9) & _
 "Set myRange = Intersect(Range(""A1:A10""),Target)"
 objVBCode.InsertLines firstLine + 4, _
 Chr(9) & "If Not myRange Is Nothing Then"
 objVBCode.InsertLines firstLine + 5, _
 Chr(9) & Chr(9) & _
 "MsgBox ""Data entry or edits are not permitted."""
 objVBCode.InsertLines firstLine + 6, _
 Chr(9) & "End If"

 Set objVBCode = Nothing
 Set wks = Nothing
End Sub

818 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Run the CreateWorkSelChangeEvent procedure.
As soon as the procedure finishes executing, the newly inserted sheet module
is activated and displays the following event procedure code:
Private Sub Worksheet_SelectionChange(ByVal Target As Range)
 Dim myRange As Range
 On Error Resume Next
 Set myRange = Intersect(Range("A1:A10"), Target)
 If Not myRange Is Nothing Then
 MsgBox "Data entry or edits are not permitted."
 End If
End Sub

4. To test the newly inserted event procedure, switch to the sheet where the above
procedure is located and click on any cell in the A1:A10 range. The event
procedure will cause a message to appear.

WORKING WITH USERFORMS

Earlier in this book you learned how to create and work with UserForms. Creat-
ing UserForms is done most easily by utilizing the manual method; however, at
times you may find it necessary to use VBA to create a quick form on the fly and
display it correctly on the user’s screen.

To programmatically add a UserForm to the active project, use the Add
method of the VBComponents collection and specify vbext_ct_MSForm for the
type of component to add:
 Dim objVBComp As VBComponent
 Set objVBComp = Application.VBE.ActiveVBProject. _
 VBComponents.Add(vbext_ct_MSForm)

To change the name of the UserForm, use the Name property of the VBCom-
ponent object. To change other properties of the UserForm, use the VBCompo-
nent’s Properties collection. For example, to change the Name and Caption of
the UserForm, use the following statement block:
 With objVBComp
 .Name = "ReportGenerator"
 .Properties("Caption") = "My Report Form"
 End With

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 819

Here’s a complete procedure:
 Sub ReportGeneratorForm()
 Dim objVBComp As VBComponent

 Set objVBComp = Application.VBE.ActiveVBProject. _
 VBComponents.Add(vbext_ct_MSForm)
 With objVBComp
 .Name = "ReportGenerator"
 .Properties("Caption") = "My Report Form"
 End With
 Set objVBComp = Nothing
 End Sub

To delete the UserForm from the project, use the Remove method of the VBCom-
ponents collection:

 Set objVBComp = Application.VBE.ActiveVBProject. _
 VBComponents("ReportGenerator")
 Application.VBE.ActiveVBProject.VBComponents.Remove objVBComp

Creating and Manipulating UserForms

The procedure in Hands-On 24.15 creates a simple UserForm as shown in
Figure 24.6 and writes procedures for each of the form’s controls.

FIGURE 24.6 The UserForm, as well as all the controls and procedures used by this form, were
created programmatically (see Hands-On 24.15).

820 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 24.15 Creating a Custom UserForm with VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub AddUserForm()
Dim objVBProj As VBProject
Dim objVBComp As VBComponent
Dim objVBFrm As UserForm
Dim objChkBox As Object
Dim x As Integer
Dim sVBA As String

Set objVBProj = Application.VBE.ActiveVBProject
Set objVBComp = objVBProj.VBComponents.Add(vbext_ct_MSForm)

With objVBComp
' read form's name and other properties
 Debug.Print "Default Name " & .Name
 Debug.Print "Caption: " & .DesignerWindow.Caption
 Debug.Print "Form is open in the Designer window: " & _
 .HasOpenDesigner
 Debug.Print "Form Name " & .Name
 Debug.Print "Default Width " & .Properties("Width")
 Debug.Print "Default Height " & .Properties("Height")

' set form's name, caption and size
 .Name = "ReportSelector"
 .Properties("Caption") = "Request Report"
 .Properties("Width") = 250
 .Properties("Height") = 250
End With

Set objVBFrm = objVBComp.Designer
With objVBFrm
 With .Controls.Add("Forms.Label.1", "lbName")
 .Caption = "Department:"
 .AutoSize = True
 .Width = 48
 .Top = 30
 .Left = 20
 End With

 With .Controls.Add("Forms.Combobox.1", "cboDept")

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 821

 .Width = 110
 .Top = 30
 .Left = 70
 End With

 ' add frame control
 With .Controls.Add("Forms.Frame.1", "frReports")
 .Caption = "Choose Report Type"
 .Top = 60
 .Left = 18
 .Height = 96
 End With

 ' add three check boxes
 Set objChkBox = .frReports.Controls.Add("Forms.CheckBox.1")
 With objChkBox
 .Name = "chk1"
 .Caption = "Last Month's Performance Report"
 .WordWrap = False
 .Left = 12
 .Top = 12
 .Height = 20
 .Width = 186
 End With

 Set objChkBox = .frReports.Controls.Add("Forms.CheckBox.1")
 With objChkBox
 .Name = "chk2"
 .Caption = "Last Qtr. Performance Report"
 .WordWrap = False
 .Left = 12
 .Top = 32
 .Height = 20
 .Width = 186
 End With

 Set objChkBox = .frReports.Controls.Add("Forms.CheckBox.1")
 With objChkBox
 .Name = "chk3"
 .Caption = Year(Now) - 1 & " Performance Report"
 .WordWrap = False
 .Left = 12
 .Top = 54
 .Height = 20
 .Width = 186
 End With

822 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' Add and position OK and Cancel buttons
 With .Controls.Add("Forms.CommandButton.1", "cmdOK")
 .Caption = "OK"
 .Default = "True"
 .Height = 20
 .Width = 60
 .Top = objVBFrm.InsideHeight - .Height - 20
 .Left = objVBFrm.InsideWidth - .Width - 10
 End With

 With .Controls.Add("Forms.CommandButton.1", "cmdCancel")
 .Caption = "Cancel"
 .Height = 20
 .Width = 60
 .Top = objVBFrm.InsideHeight - .Height - 20
 .Left = objVBFrm.InsideWidth - .Width - 80
 End With
End With

'populate the combo box
With objVBComp.CodeModule
 x = .CountOfLines
 .InsertLines x + 1, "Sub UserForm_Initialize()"
 .InsertLines x + 2, vbTab & "With Me.cboDept"
 .InsertLines x + 3, vbTab & vbTab & ".addItem ""Marketing"""
 .InsertLines x + 4, vbTab & vbTab & ".addItem ""Sales"""
 .InsertLines x + 5, vbTab & vbTab & ".addItem ""Finance"""
 .InsertLines x + 6, vbTab & vbTab & _
 ".addItem ""Research & Development"""
 .InsertLines x + 7, vbTab & vbTab & _
 ".addItem ""Human Resources"""
 .InsertLines x + 8, vbTab & "End With"
 .InsertLines x + 9, "End Sub"

 ' write a procedure to handle the Cancel button

 Dim firstLine As Long
 With objVBComp.CodeModule
 firstLine = .CreateEventProc("Click", "cmdCancel")
 .InsertLines firstLine + 1, " Unload Me"
 End With

 ' write a procedure to handle OK button
 sVBA = "Private Sub cmdOK_Click()" & vbCrLf
 sVBA = sVBA & " Dim ctrl As Control" & vbCrLf
 sVBA = sVBA & " Dim chkflag As Integer" & vbCrLf

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 823

 sVBA = sVBA & " Dim strMsg As String" & vbCrLf
 sVBA = sVBA & " If Me.cboDept.Value = """" Then " & vbCrLf
 sVBA = sVBA & " MsgBox ""Select the Department.""" & _
 vbCrLf
 sVBA = sVBA & " Me.cboDept.SetFocus " & vbCrLf
 sVBA = sVBA & " Exit Sub" & vbCrLf
 sVBA = sVBA & " End If" & vbCrLf
 sVBA = sVBA & " For Each ctrl In Me.Controls " & vbCrLf
 sVBA = sVBA & " Select Case ctrl.Name" & vbCrLf
 sVBA = sVBA & " Case ""chk1"", ""chk2"", ""chk3""" _
 & vbCrLf
 sVBA = sVBA & " If ctrl.Value = True Then" & vbCrLf
 sVBA = sVBA & " strMsg = strMsg & vbCrLf & ctrl
 .Caption " _
 & Chr(13) & vbCrLf
 sVBA = sVBA & " chkflag = 1" & vbCrLf
 sVBA = sVBA & " End If" & vbCrLf
 sVBA = sVBA & " End Select" & vbCrLf
 sVBA = sVBA & " Next" & vbCrLf
 sVBA = sVBA & " If chkflag = 1 Then" & vbCrLf
 sVBA = sVBA & " MsgBox ""Run the Report(s) for "" "
 & vbCrLf
 sVBA = sVBA & " Me.cboDept.Value & "":"""
 sVBA = sVBA & " & Chr(13) & Chr(13) & strMsg" & vbCrLf

 sVBA = sVBA & " Else" & vbCrLf
 sVBA = sVBA & " MsgBox ""Please select Report type.""" _
 & vbCrLf
 sVBA = sVBA & " End If" & vbCrLf
 sVBA = sVBA & "End Sub"

 .AddFromString sVBA
End With
Set objVBComp = Nothing
End Sub

 In the above procedure, the following statement creates a blank UserForm:

Set objVBComp = objVBProj.VBComponents.Add(vbext_ct_MSForm)

Next, the form’s default name and other properties (Caption, Width, and
Height) are written to the Immediate window and then reset with new values.
Before we can access the content of the UserForm, we need a reference to the
VBComponent’s Designer object, like this:
 Set objVBFrm = objVBComp.Designer

824 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Several With…End With statement blocks are used to add controls (label, com-
bo box, frame, checkboxes, and command buttons) to the blank UserForm and
position them within the form by using the Top and Left properties. The In-
sideHeight and InsideWidth properties are used to move the OK and Cancel
buttons to the bottom of the UserForm. These properties return the height and
width, in points, of the space that’s available inside the form.
 The remaining code in the procedure creates various event procedures for
the UserForm and its controls. The first one is the UserForm_Initialize()
procedure that will populate the combo box control with department names
before the form is displayed on a user’s screen. Next, the event procedures for
command buttons (OK and Cancel) are created. The cmdCancel_Click()
event procedure unloads the form, and the cmdOK_Click() procedure dis-
plays a message box with information about the types of reports selected via
the checkboxes. Code for the event procedure can be added with several tech-
niques. One technique is using the InsertLines statement of the CodeMod-
ule. Another is creating a string to hold the code and adding this string to the
code module with the AddFromString method. The code added by the Add-
FromString method is inserted on the line preceding the first procedure in the
module. The AddFromFile method can be used for adding code that is stored
in a text file.

NOTE

The CreateEventProc method automatically adds the Private
Sub and the End Sub statements and a space between these lines.
All you need to do is add the actual code using the InsertLines
statements. The CreateEventProc method returns the number
of the line in the module where the Private Sub statement was
added.

3. Run the AddUserForm procedure.
When the procedure finishes its execution, the Visual Basic Editor screen will
display the form shown in Figure 24.6.

4. Choose View | Code or press F7 and review the procedures that were pro-
grammatically created for the form by the AddUserForm procedure.

5. Choose Run | Run Sub/UserForm or press F5 to display and work with the
form.

If you’d like to display your custom UserForm in a specific location on the screen,
consider adding the following event procedure to the AddUserForm procedure.
You must code this procedure by using one of the techniques described earlier.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 825

 Private Sub UserForm_Activate()
 With ReportSelector
 .Top = 100
 .Left = 25
 End With
 End Sub

Copying UserForms Programmatically

If you need to add an existing UserForm to another workbook, you can simply
export the form to disk by choosing File | Export File in the Visual Basic Edi-
tor screen. Excel will create a form file (identified with a .frm extension) that
you can then import to another VBA project by choosing the File | Import File
command.

You can also automate the export/import process of UserForms by writing
VBA code. The following example procedure exports the form created in the
previous section. After the form is imported, a procedure is written to a stan-
dard module of the Chap24b_VBAExcel2019.xlsm file (created earlier in this
chapter) to display the form.

 Hands-On 24.16 Copying a UserForm with VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub UserFormCopy(strFileName As String)
 Dim objVBComp As VBComponent
 Dim wkb As Workbook

 On Error Resume Next
 Set wkb = Workbooks(strFileName)
 If Err.Number <> 0 Then
 Workbooks.Open ActiveWorkbook.Path & "\" & strFileName
 Set wkb = Workbooks(strFileName)
 End If

 For Each objVBComp In ThisWorkbook.VBProject.VBComponents
 If objVBComp.Type = 3 Then ' this is a UserForm
 ' export the UserForm to disk
 objVBComp.Export Filename:=objVBComp.Name
 ' import the UserForm to a specific workbook
 wkb.VBProject.VBComponents.Import _
 Filename:=objVBComp.Name

826 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' delete two form files created by the Export method
 Kill objVBComp.Name
 Kill objVBComp.Name & ".frx"
 End If
 Next

 ' add a standard module to the workbook
 ' and write code to show the UserForm
 Set objVBComp = wkb.VBProject.VBComponents. _
 Add(vbext_ct_StdModule)

 objVBComp.CodeModule.AddFromString _
 "Sub ShowReportSelector()" & vbCrLf & _
 " ReportSelector.Show" & vbCrLf & _
 "End Sub" & vbCrLf

 ' close the Code pane
 objVBComp.CodeModule.CodePane.Window.Close

 ' run the ShowReportSelector procedure to display the form
 Application.Run wkb.Name & "!ShowReportSelector"

 Set objVBComp = Nothing
 Set wkb = Nothing
End Sub

3. Run the UserFormCopy procedure by entering the following statement in the
Immediate window and pressing Enter:
UserFormCopy "Chap24b_VBAExcel2019.xlsm"

Recall that the Chap24b_VBAExcel2019.xlsm workbook was created earlier in
this chapter. When you execute the above statement, the UserForm is imported
into this workbook and displayed on the user’s screen.

WORKING WITH REFERENCES

When you write VBA procedures you often need to access objects that are
stored in external object libraries. For example, in this chapter you have used
objects defined in the Microsoft Visual Basic for Applications Extensibility 5.3
library. In other chapters of this book, you have worked with objects exposed by
the Microsoft Word 16.0 object library or Microsoft Outlook 16.0 object library,
Microsoft Access 16.0 object library, Microsoft ActiveX Data Objects 6.1 library,
and so on.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 827

There are two ways to expose an object model to your Excel application:
early binding and late binding. You use early binding when you expose the ob-
ject model at design time. This is done by choosing Tools | References in the
Visual Basic Editor screen. The References dialog box lists files with which you
can bind. Binding means exposing the client object model to the host applica-
tion, in this case Microsoft Excel. To manipulate a specific application in your
Excel VBA project, you must select the checkbox next to the name of the library
you want to use.

You perform late binding when you bind the object library in code at run-
time. Instead of using the References dialog box, you use the GetObject or Cre-
ateObject functions.

By adding a reference to the external object library via the Tools | References
dialog box (early binding), you are able to get on-the-fly programming assis-
tance for the objects you need to include in your VBA code, consequently avoid-
ing many syntax errors. You can also view the application’s object model via the
Object Browser and have access to the application’s built-in constants. In addi-
tion, your code runs faster because the references to the external libraries are
checked and compiled at design time. Problems arise, however, when you move
your code to other computers that do not have the external libraries installed.
The procedures that ran perfectly well on your computer suddenly begin to dis-
play compile-time errors that cannot be trapped using standard error-handling
techniques. To ensure that the end users have the required references and object
libraries, you must write code that checks not only whether these libraries are
present but also that they are the correct version. This section shows how to:

 ● List references to the external object libraries that have been selected in
the References dialog box

 ● Add a reference to a specifi c library on the fl y
 ● Remove missing library references
 ● Check for broken references

Creating a List of References

The Reference object in the References collection represents a reference to a
type library or a VBA project. You can use various properties of the Reference
object to:

 ● Find out whether the reference is built in or added by a developer (Buil-
tIn property)

828 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Determine if the reference is broken (IsBroken property)
 ● Find out the reference version number (Major and Minor properties)
 ● Get the description of the reference as it appears in the Object Browser

(Description property)
 ● Return the full path to the workbook, DLL, OCX, TLD, or OLB fi le that is

a source of the reference (FullPath property)
 ● Return the globally unique identifi er for the reference (Guid property)
 ● Determine the reference type (Type property)

The following procedure prints to the Immediate window the names of all VBA
projects, the names and full paths of selected references for each VBA project,
and the names of each project’s components.

 Hands-On 24.17 Listing VBA Project References and Components
Using VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub ListPrjCompRef()
 Dim objVBPrj As VBIDE.VBProject
 Dim objVBCom As VBIDE.VBComponent
 Dim vbRef As VBIDE.Reference

 ' list VBA projects as well as references and
 ' component names they contain
 For Each objVBPrj In Application.VBE.VBProjects
 Debug.Print objVBPrj.Name
 Debug.Print vbTab & "References"
 For Each vbRef In objVBPrj.References
 With vbRef
 Debug.Print vbTab & vbTab & .Name & "---" &
 .FullPath
 End With
 Next
 Debug.Print vbTab & "Components"
 For Each objVBCom In objVBPrj.VBComponents
 Debug.Print vbTab & vbTab & objVBCom.Name
 Next
 Next
 Set vbRef = Nothing

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 829

 Set objVBCom = Nothing
 Set objVBPrj = Nothing
End Sub

3. Run the ListPrjCompRef procedure.
When the procedure finishes executing, the Immediate window displays infor-
mation about all the VBA projects that are currently open in Excel.

4. On your own, modify the ListPrjCompRef procedure to list procedures in each
module. Refer to the “Listing All Procedures in All Modules” section earlier in
this chapter for related code examples.

Adding a Reference

The AddFromFile method of the References collection is used to add a reference
to a project from a file. You must specify the project library filename, including
its path. The following procedure adds a reference to the Microsoft Scripting
Runtime library, which is stored in the scrrun.dll (dynamic link library) file.

 Hands-On 24.18 Adding a Project Reference with VBA

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub AddRef()
 Dim objVBProj As VBProject

 Set objVBProj = ThisWorkbook.VBProject

 On Error GoTo ErrorHandle
 objVBProj.References.AddFromFile _
 "C:\Windows\System32\scrrun.dll"
 MsgBox "The reference to the Microsoft Scripting " _
 & "Runtime was set."
 Application.SendKeys "%tr"

ExitHere:
 Set objVBProj = Nothing
 Exit Sub
ErrorHandle:
 MsgBox "The reference to the Microsoft Scripting " & _
 " Runtime already exists."
 GoTo ExitHere
End Sub

830 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Run the AddRef procedure. When a message box appears, click OK.
If the reference to the Microsoft Scripting Runtime was set during the
procedure execution, the References dialog box will appear with a check mark
next to Microsoft Scripting Runtime.

4. Close the References dialog box if it is open.

Every type library has an associated Globally Unique Identifier (GUID) that
is stored in the Windows registry. If you know the GUID of the reference, you
can add a reference by using the AddFromGuid method. This method requires
three arguments: a string expression representing the GUID of the reference,
the major version number of the reference, and the minor version number of
the reference. The AddFromGuid method searches the registry to find the refer-
ence you want to add.

The following procedure prints to the Immediate window the names,
GUIDs, and version numbers of the libraries that are already installed in the
active workbook’s VBA project. The procedure also adds a reference to the Mi-
crosoft DAO 3.6 object library if this library has not yet been added.

 Hands-On 24.19 Obtaining Information about Installed VBA
Libraries from the Registry

1. In the Code window where you entered the previous procedure, enter the
AddRef_FromGuid procedure as shown below:
Sub AddRef_FromGuid()
 Dim objVBProj As VBProject
 Dim i As Integer
 Dim strName As String
 Dim strGuid As String
 Dim strMajor As Long
 Dim strMinor As Long

 Set objVBProj = ActiveWorkbook.VBProject

 ' Find out what libraries are already installed
 For i = 1 To objVBProj.References.Count
 strName = objVBProj.References(i).Name
 strGuid = objVBProj.References(i).GUID
 strMajor = objVBProj.References(i).Major
 strMinor = objVBProj.References(i).Minor
 Debug.Print strName & " - " & strGuid & _
 ", " & strMajor & ", " & strMinor
 Next i

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 831

 ' add a reference to the Microsoft DAO 3.6 Object library
 On Error Resume Next
 ThisWorkbook.VBProject.References.AddFromGuid _
 "{00025E01-0000-0000-C000-000000000046}", 5, 0
End Sub

2. Run the AddRef_FromGuid procedure.
The procedure produces the following list of references in the Immediate win-
dow:
VBA - {000204EF-0000-0000-C000-000000000046}, 4, 2
Excel - {00020813-0000-0000-C000-000000000046}, 1, 8
stdole - {00020430-0000-0000-C000-000000000046}, 2, 0
Office - {2DF8D04C-5BFA-101B-BDE5-00AA0044DE52}, 2, 7
VBIDE - {0002E157-0000-0000-C000-000000000046}, 5, 3
MSForms - {0D452EE1-E08F-101A-852E-02608C4D0BB4}, 2, 0
Scripting - {420B2830-E718-11CF-893D-00A0C9054228}, 1, 0

Notice that the reference to the Microsoft DAO 3.6 Object library is not listed
because it was added after we already ran the For…Next loop.

Removing a Reference

To remove an unwanted reference from the VBA project, use the Remove method
of the References collection. The following procedure removes the reference to
the Microsoft DAO 3.6 object library that was added by the AddRef_FromGuid
procedure in the previous section.

 Hands-On 24.20 Removing a Reference Using VBA

1. In the Code window where you entered the previous procedure, enter the
RemoveRef procedure as shown below:
Sub RemoveRef()
 Dim objVBProj As VBProject
 Dim objRef As Reference
 Dim sRefFile As String

 Set objVBProj = ActiveWorkbook.VBProject

 ' Loop through the references and delete
 ' the reference to DAO library
 For Each objRef In objVBProj.References
 If InStr(1, objRef.Description, "DAO 3.6") > 0 Then
 objVBProj.References.Remove objRef

832 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Exit For
 End If
 Next objRef
End Sub

2. Run the RemoveRef procedure. When the procedure finishes executing, open
the References dialog box to verify that the reference to the Microsoft DAO 3.6
object library is no longer selected. Make sure that the Chap24_VBAExcel2019.
xlsm workbook is active prior to running the procedure.

In addition to removing references to external object libraries, you can remove
any existing references to other VBA projects. This is done by checking the
BuiltIn property of the Reference object and removing the reference when the
BuiltIn property is not True:
For Each objRef in objVBProjReferences
 If Not objRef.BuiltIn Then objVBProj.References.Remove objRef
Next objRef

The BuiltIn property of the Reference object returns False if the particular
reference isn’t a default reference. When a reference is not built in, it can be
removed. Default references cannot be removed.

Checking for Broken References

If the required object libraries are not installed on a user’s computer or aren’t the
correct version, the culprit references are marked as “missing” in the References
dialog box. You can use the IsBroken property to find these invalid references.
The IsBroken property returns a Boolean value True if the Reference object no
longer points to a valid reference in the registry. If the reference is valid, False is
returned. The code to check for broken references should be included or called
from the Workbook_Open event procedure before attempting to add any new
references via code.

The following example procedure checks for broken references.

 Hands-On 24.21 Checking for Broken References in a VBA Project

1. In the ThisWorkbook module of Chap24SourceCode (Chap24_VBAExcel2019.
xlsm), enter the following Workbook_Open event procedure:
Private Sub Workbook_Open()
 Dim objVBProj As VBProject
 Dim objRef As Reference
 Dim refBroken As Boolean

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 833

 Set objVBProj = ThisWorkbook.VBProject

 ' Loop through the selected references in
 ' the References dialog box
 For Each objRef In objVBProj.References
 ' If the reference is broken, get its name and its GUID
 If objRef.IsBroken Then
 Debug.Print objRef.Name
 Debug.Print objRef.GUID
 refBroken = True
 End If
 Next
 If refBroken = False Then
 Debug.Print "All references are valid."
 End If
End Sub

2. Save and close the Chap24_VBAExcel2019.xlsm workbook. Do not exit Mi-
crosoft Excel.

3. Reopen the Chap24_VBAExcel2019.xlsm workbook.
When the workbook opens, Excel executes the code in the Workbook_Open
event procedure.

4. Switch to the Visual Basic Editor window and activate the Immediate window.
If broken references are found in the active project, you will see the reference
name and its GUID; otherwise, a message is displayed that all references are
valid.

If you’d like to test whether a specific reference is valid, insert a new module into
the active VBA project and write a function procedure like this:

 Function IsBrokenRef(strRef As String) As Boolean
 Dim objVBProj As VBProject
 Dim objRef As Reference

 Set objVBProj = ThisWorkbook.VBProject

 For Each objRef In objVBProj.References

 If strRef = objRef.Name And objRef.IsBroken Then
 IsBrokenRef = True
 Exit Function
 End If
 Next

 IsBrokenRef = False
 End Function

834 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To test the above function, you could enter the following statements in the
Immediate window:

 ref = IsBrokenRef("OLE Automation")
 ?ref

If True, the reference is invalid; if False, it is valid.

WORKING WITH WINDOWS

As you know, the VBE screen contains numerous windows. Each window (VBE
main window, Project Explorer, Properties window, Immediate and Watch win-
dows, open Code window, Designer windows, and so on) is represented by the
Window object. Each Window object is a member of the VBIDE.Windows col-
lection. Use the Type property of the Window object to determine the window
type. Available window types are listed in Table 24.1.

TABLE 24.1 Window types available in the VBA project

Window Description Constant Value
Code window vbext_wt_CodeWindow 0

Designer vbext_wt_Designer 1

Object Browser vbext_wt_Browser 2

Watch window vbext_wt_Watch 3

Locals window vbext_wt_Locals 4

Immediate window vbext_wt_Immediate 5

Project Explorer window vbext_wt_ProjectWindow 6

Properties window vbext_wt_PropertyWindow 7

Find dialog box vbext_wt_Find 8

Search and Replace dialog box vbext_wt_FindReplace 9

Toolbox vbext_wt_Toolbox 10

Linked window frame vbext_wt_LinkedWindowFrame 11

Main window vbext_wt_MainWindow 12

Tool window vbext_wt_ToolWindow 15

The following procedure loops through all the open windows in the VBE,
closes the Immediate window, and displays a dialog box with the names of open
windows.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 835

 Hands-On 24.22 Closing the Immediate Window and Listing All
Open Windows in the VBE Screen

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub Close_ImmediateWin()
 Dim objWin As VBIDE.Window
 Dim strOpenWindows As String

 strOpenWindows = "The following windows are open:" & _
 vbCrLf & vbCrLf

 For Each objWin In Application.VBE.Windows
 Select Case objWin.Type
 Case vbext_wt_Immediate
 MsgBox objWin.Caption & " window was closed."
 objWin.Close
 Case Else
 strOpenWindows = strOpenWindows & _
 objWin.Caption & vbCrLf
 End Select
 Next
 MsgBox strOpenWindows
 Set objWin = Nothing
End Sub

3. Run the Close_ImmediateWin procedure.

WORKING WITH VBE MENUS AND TOOLBARS

In Chapter 19, you learned how to write VBA code to create or modify shortcut
menus. Using the same CommandBar object that you are already familiar with,
you can now customize menus and toolbars in the Visual Basic Editor. To work
with the CommandBars collection, you need to ensure that a reference to the
Microsoft Office 16.0 object library is set in the References dialog box. If the ref-
erence to this library is not set, Excel displays a “User-defined type not defined”
error message when the code attempts to access the CommandBars collection.

836 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Generating a Listing of VBE CommandBars and Controls

The following procedure lists all the CommandBars that can be found in the
Visual Basic Editor. Each command bar is defined as a menu bar, toolbar, or
pop-up menu via the Type property of the CommandBar object. Each Command-
Bar object has a number of controls assigned to it. The procedure lists all these
controls for each CommandBar, including the control IDs.

 Hands-On 24.23 Listing VBE CommandBars and Controls

1. Insert a new module into the VBA project in the Chap24_VBAExcel2019.xlsm
workbook.

2. In the Code window, enter the following procedure:
Sub ListVBECmdBars()
 Dim objCmdBar As CommandBar
 Dim strCmdType As String
 Dim c As Variant

 Workbooks.Add
 Range("A1").Select

 With ActiveCell
 .Offset(0, 0) = "CommandBar Name"
 .Offset(0, 1) = "Control Caption"
 .Offset(0, 2) = "Control ID"
 End With

 For Each objCmdBar In Application.VBE.CommandBars
 Select Case objCmdBar.Type
 Case 0
 strCmdType = "toolbar"
 Case 1
 strCmdType = "menu bar"
 Case 2
 strCmdType = "popup menu"
 End Select

 ActiveCell.Offset(1, 0) = objCmdBar.Name & _
 " (" & strCmdType & ")"

 For Each c In objCmdBar.Controls
 ActiveCell.Offset(1, 0).Select
 With ActiveCell
 .Offset(0, 1) = c.Caption

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 837

 .Offset(0, 2) = c.ID
 End With
 Next
 Next

 Columns("A:C").AutoFit

 Set objCmdBar = Nothing
End Sub

3. Run the ListVBECmdBars procedure.
The procedure creates a new workbook and writes to it the information about
all the CommandBars and controls found in the Visual Basic Editor (see the
partial listing in Figure 24.7).

FIGURE 24.7 You can list all the CommandBars available in the Visual Basic Editor by running the
custom ListVBECmdBars procedure as demonstrated in this section.

Adding a CommandBar Button to the VBE

The following procedure adds a new command button to the end of the Tools
menu in the Visual Basic Editor.

838 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 24.24 Modifying the VBE Tools Menu

1. In the same module where you entered the ListVBECmdBars procedure (see
the previous section), type the following procedure:
Sub AddCmdButton_ToVBE()
 Dim objCmdBar As CommandBar
 Dim objCmdBtn As CommandBarButton

 ' get the reference to the Tools menu in the VBE
 Set objCmdBar = Application.VBE.CommandBars.FindControl _
 (ID:=30007).CommandBar

 ' add a button to the Tools menu
 Set objCmdBtn = objCmdBar.Controls.Add(msoControlButton)

 ' set the new button's properties
 With objCmdBtn
 .Caption = "List VBE menus and toolbars"
 .onAction = "ListVBECmdBars"
 End With
End Sub

Please do not run this procedure yet, as it is not complete. To run a custom
procedure assigned to any VBE menu item, you need to raise the Click event
of the CommandBarButton. Use the CommandBarEvents object to trigger the
Click event when a control on the CommandBar is clicked. This is done in a
class module.

2. Choose Insert | Class Module.
3. In the Properties window, change the name of the Class1 module to

clsCmdBarEvents.
4. In the clsCmdBarEvents module Code window, enter the following code:

Public WithEvents cmdBtnEvents As CommandBarButton

Private Sub cmdBtnEvents_Click(_
 ByVal Ctrl As Office.CommandBarButton, _
 CancelDefault As Boolean)
 On Error Resume Next
 MsgBox "inside class module"
 ' run the procedure specified in the onAction property
 Application.Run Ctrl.OnAction

 ' specify that we already handled this event
 CancelDefault = True
End Sub

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 839

Notice that the first statement in the class module uses the WithEvents key-
word to declare an object called cmdBtnEvents of the type CommandBarBut-
ton whose events we want to handle. Next, we specify that this object (cmd-
BtnEvents) is to receive the Click event when the menu item is selected. The
first statement in the cmdBtnEvents_Click event procedure will prevent an
error message from appearing in case the procedure specified in the onAc-
tion property doesn’t exist. The next statement will run the procedure speci-
fied in the control’s onAction property. Because the onAction property of
the controls located on the VBE CommandBars does not cause the specified
procedure code to execute, you must call the required procedure with the Run
method of the Application object.
 Now that you’ve told Visual Basic that you’d like it to handle the Click event
for the menu item, you need to connect the class module with the standard
module containing the code of the AddCmdButton_ToVBE procedure that
you created in Step 1.

5. Enter the following declaration line at the very top of the module that contains
the AddCmdBtn_ToVBE procedure:
Dim myClickEvent As clsCmdBarEvents

In the previous declaration statement, the myClickEvent is a module-level vari-
able defined by the class clsCmdBarEvents. This variable will serve as a link
between the menu item and the clsCmdBarEvents class module.
 The final step requires that you add additional code to the AddCmdBut-
ton_ToVBE procedure so that Visual Basic knows that it needs to handle the
Click event for the menu item.

6. Enter the following code at the very end of the AddCmdButton_ToVBE
procedure:
 ' create an instance of the clsCmdEvents class
 Set myClickEvent = New clsCmdBarEvents

 ' hook up the class instance to the newly added button
 Set myClickEvent.cmdBtnEvents = objCmdBtn

 Set objCmdBtn = Nothing
 Set objCmdBar = Nothing

The modified AddCmdButton_ToVBE procedure should look as follows:
Sub AddCmdButton_ToVBE()
 Dim objCmdBar As CommandBar
 Dim objCmdBtn As CommandBarButton

840 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' get the reference to the Tools menu in the VBE
 Set objCmdBar = Application.VBE.CommandBars.FindControl _
 (ID:=30007).CommandBar

 ' add a button to the Tools menu
 Set objCmdBtn = objCmdBar.Controls.Add(msoControlButton)

 ' set the new button's properties
 With objCmdBtn
 .Caption = "List VBE menus and toolbars"
 .onAction = "ListVBECmdBars"
 End With

 ' create an instance of the clsCmdEvents class
 Set myClickEvent = New clsCmdBarEvents

 ' hook up the class instance to the newly added button
 Set myClickEvent.cmdBtnEvents = objCmdBtn

 Set objCmdBtn = Nothing
 Set objCmdBar = Nothing
End Sub

7. Run the AddCmdButton_ToVBE procedure.
The procedure places a new menu item on the Tools menu (see Figure 24.8)
and connects this item with the event handler located in the class module.

8. Choose Tools | List VBE menus and toolbars.
Visual Basic triggers the Click event of the selected menu item and runs the
procedure code specified in the onAction property. When you switch to the
Microsoft Excel application window, you should see a new workbook with a
complete listing of the VBE CommandBars and their controls.

FIGURE 24.8 A custom menu option was added to the Visual Basic Editor’s Tools menu by a VBA
procedure.

PROGRAMMING THE VISUAL BASIC EDITOR (VBE) 841

Removing a CommandBar Button from the VBE

The following procedure removes the custom menu item that was added to the
Tools menu by the procedure in the previous section.

 Hands-On 24.25 Removing a Custom Option from the VBE Menu

1. In the same module where you entered the AddCmdButton_ToVBE procedure
(see the previous section), type the following procedure:

 Sub RemoveCmdButton_FromVBE()
 Dim objCmdBar As CommandBar
 Dim objCmdBarCtrl As CommandBarControl

 ' get the reference to the Tools menu in the VBE
 Set objCmdBar = Application.VBE.CommandBars("Tools")

 ' loop through the Tools menu controls
 ' and delete the control with the matching caption
 For Each objCmdBarCtrl In objCmdBar.Controls
 If objCmdBarCtrl.Caption = "List VBE menus and toolbars" Then
 objCmdBarCtrl.Delete
 End If
 Next

 Set objCmdBarCtrl = Nothing
 Set objCmdBar = Nothing
 End Sub

2. Run the RemoveCmdButton_FromVBE procedure.
Upon the procedure’s completion, the Tools menu in the VBE screen no longer
displays our custom item “List VBE menus and toolbars.”

SUMMARY

In this chapter, you have used numerous objects, properties, and methods from
the Microsoft Visual Basic for Applications Extensibility 5.3 Object Library to
control the Visual Basic Editor (VBE).

In the next chapter, you learn how you can take advantage of the Windows
API functions when programming VBA.

843

While programming your Excel VBA applications, you may encounter
a situation where VBA does not offer a method or property for per-
forming a specific programming task, such as obtaining the user’s

screen resolution setting or changing the appearance of the UserForm. This is
hardly a reason to give up. To ensure that all your program’s specifications are
implemented, look no further than the Windows Operating System itself. A
feature that is not directly supported by VBA might be supported by one of the
thousands of functions that are exposed by the Windows Application Program-
ming Interface (API). Therefore, overcoming many limitations of VBA boils
down to learning how to locate the required Windows API function and then
utilize it in your VBA procedure. This chapter shows you how functions found
within the Windows API can help you extend your VBA procedures in areas
where VBA does not provide desired functionality.

Chapter

 25 CALLING
WINDOWS API
FUNCTIONS
FROM VBA

844 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING THE WINDOWS API LIBRARY FILES

The Windows API is a collection of subroutines and functions located in files
called dynamic link libraries (DLLs). Library files have a file extension of .dll and
are located in the Windows System32 or SysWOW64 folder on every PC run-
ning the Windows Operating System. The most popular dynamic link libraries
are listed in Table 25.1.

TABLE 25.1. Windows API library files. The first three files are known as the main (core) dll’s. The
remaining files are known as extension dll’s

API Library File Description
USER32.DLL This library file contains numerous functions that can be called

upon whenever your VBA program needs to manage the Win-
dows environment. For example, here you can find functions that
relate to the use of windows such as setting or returning a window
position, size, and state, or determining whether the window is
active, or whether it’s a parent window or a child window. Func-
tions found in this library will also allow you to handle messages
between various windows and dialog boxes, as well as manage
menus, cursors, the keyboard, and the clipboard.

KERNEL32.DLL This library contains functions that manage the low-level operat-
ing system functions such as memory management, resource
management, computer drives, and file and folder management,
as well as reading and writing to the Windows registry.

GDI32.DLL This library has functions that will allow you to manage output
to the screen. For example, you can manipulate fonts, drawings,
graphics, bitmap images, and various display functions.

COMCTL32.DLL Provides common GUI controls such as TreeView or ToolBar
controls.

MAPI32.DLL Includes functions for working with electronic mail.
NETAPI32. DLL Provides functions for accessing and controlling networks.
ODBC32.DLL Provides functions that allow applications to work with databases

that are compliant with the Open Database Connectivity (ODBC).
TAPI32.DLL Provides telephony functions used in managing voice mail and

automated attendant phone systems.
WINMM.DLL Allows access to multimedia capabilities.

The Windows API functions are written in the C language and can be accessed
from Visual Basic for Applications by utilizing the Declare statement as dis-
cussed in the next section.

CALLING WINDOWS API FUNCTIONS FROM VBA 845

NOTE
The following link provides a list of Windows API functions
organized by category:
http://msdn.microsoft.com/en-us/library/Aa383686

HOW TO DECLARE A WINDOWS API FUNCTION

As mentioned earlier, Windows API functions are stored in dynamic link
library (dll) files and can be accessed from VBA through the use of the Declare
statement. The Declare statement is used to let your program know where
the function is located. The Declare statement must be added to the general
declaration section of a standard module or a UserForm module. If you add
the Declare statement to the standard module, the function can then be called
from anywhere within your VBA application. If you add the Declare statement
in the General Declaration section of the UserForm, the function will have a
local scope, available only to the procedures of that form. To indicate that the
function is local to the form, you must precede the Declare statement with the
Private keyword. The syntax of the Declare statement depends on whether or
not the procedure returns a value.

If the procedure returns a value, it must be declared as a function, as shown
in the syntax below:
 [Public | Private] Declare Function name Lib "libname"
 [Alias "aliasname"] [[ByVal | ByRef] argument [As Type]
 [,[ByVal | ByRef] argument [As Type]…] [As Type]

If the procedure does not return a value, you must declare it as a subroutine, as
shown in the syntax below:
 [Public | Private] Declare Sub name Lib "libname"
 [Alias "aliasname"] [[ByVal | ByRef] argument [As Type]
 [,[ByVal | ByRef]argument [As Type]…]

 ● Th e Public and Private keywords defi ne the scope of the function or
subroutine. Recall that a scope of Private will not allow the procedure to
be used outside of the module in which it is declared.

 ● Th e Declare statement must be followed by the Function or Sub key-
word, depending on whether or not the procedure returns a value.

 ● Th e name of the function or subroutine is followed by the name of the
DLL library in which the function or subroutine is located.

846 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Some functions and subroutines have an alias that indicates that the
function has another name in the library. Aliases make it possible to call
the function or subroutine by any name you want, while providing a ref-
erence to the actual name of the function. An alias is particularly useful
for those API functions that use characters that are illegal in VBA. For
example, many Windows API functions have names that begin with the
underscore character (_). Consider the Win API function _lopen, which
opens an existing fi le. To have Excel VBA recognize this function’s name
as legal, use the alias keyword like this:

Declare Function lopen Lib "kernel32" Alias _
 "_lopen" (ByVal lpPathName As String, _
 ByVal iReadWrite As Long) As Long

 ● You should also alias the DLL function when its name confl icts with the
VBA function of the same name. For example, use the following decla-
ration when calling the GetObject function to let Excel know that you
want to use the Win API GetObject function and not the Excel version
of this function:

Public Declare Function GetObjectAPI Lib "gdi32" _
 Alias "GetObject" (ByVal hObject As Long, _
 ByVal nCount As Long, lpObject As Any) As Long

 ● Sometimes arguments need to be passed to functions and subroutines.
Arguments can be passed by reference (default) or by value as explained
in the next section.

 ● When declaring functions, you will need to defi ne the type of value that
is returned by including the As Type construct. Most functions return a
long integer that can be indicated by appending As Long at the end of the
function declaration. Or you can use a shortcut by specifying the func-
tion return type in the name of the function. For example, if the function
returns a long integer, append the ampersand (&) to the function name
as in the following:

 Public Declare Function GetObjectAPI& Lib "gdi32" _
 Alias "GetObject" (ByVal hObject As Long, _
 ByVal nCount As Long, lpObject As Any)

 ● Th e GetObjectAPI& function indicates that the GetObject function
which is located in the gdi32 library fi le (dll) returns a long integer.

CALLING WINDOWS API FUNCTIONS FROM VBA 847

The Declare statements that we’ve just discussed are for 32-bit systems, but
they can easily be converted to 64-bit as covered later in this chapter.

Passing Arguments to API Functions

When calling API functions you must know what type of arguments a function
expects to receive. The functions in the Windows API library expect the argu-
ments to be passed by reference or by value. Passing an argument by reference
means that the function is passing a 32-bit pointer to the memory address where
the value of the argument is stored. When the argument is passed by reference,
it is possible for the function to change the value of the argument because it is
working with the actual memory address where the argument is stored. You
can use the ByRef keyword when passing arguments by reference or omit this
keyword entirely from the Declare statement as passing arguments to function
procedures by reference is the default in VBA.

When passing arguments by value, only a copy of the argument is sent to the
function; therefore, the function cannot change the original value of the argu-
ment. If the API function expects to receive an argument by value and instead it
receives the argument by reference, the function will not work properly. Strings
are always passed by value (ByVal) to API functions. Always use the ByVal key-
word when passing arguments by value.

Understanding the API Data Types and Constants

As mentioned earlier, the Windows API functions are written in C. Because
there are differences between the data types used in the C language and the
data types used in VBA, before you begin calling API functions from Excel
you should familiarize yourself with the data types the different API functions
expect and how you should declare them in VBA. The main data types that you
will encounter when calling API functions are listed below.

Integer

The Integer data type (used for 16-bit numeric arguments) corresponds to the
C data types known as short, unsigned short, and WORD. If the API function
expects the Integer data type, you should pass it by value using the following
syntax:

ByVal argumentname As Integer

The above Integer type declaration can also be written as:
ByVal argumentname%

848 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Long

The Long data type (used for 32-bit numeric arguments) corresponds to the
C data types known as int, unsigned int, unsigned long, BOOL, DWORD, and
LONG. This is the most common data type in the Windows API functions. If
the API function expects the Long data type, you should pass it by value using
the following syntax:

ByVal argumentname As Long

The above Long type declaration can also be written as:
ByVal argumentname&

String

The Windows API functions expect string arguments to be passed in the LPSTR
format. In the C language, the LPSTR data type is a memory pointer to an array
of characters. Because VBA stores strings in a different way than the API func-
tions expect, in order to handle textual data your VBA procedure will need to
create a string buffer (a string filled with spaces or null characters) before calling
the API function. In addition, because C uses 0-terminated strings and VBA
does not, you will need to strip the 0-terminator from the end of the string
returned by the API function (see Hands-On 25.1 later in this chapter). Strings
are always passed to API functions by value (ByVal) even when the API func-
tion updates the string. Use the following syntax when declaring arguments
with the String data type:

ByVal argumentname As String

The above String type declaration can also be written as:
ByVal argumentname$

Structure

The Structure data type in the C language represents multiple variables and is
an equivalent of a user-defined data type (UDT) in VBA. Before declaring and
calling a Windows API function that uses a Structure argument, you must first
define the structure using a Type…End Type construct. For example, the fol-
lowing API function called GetCursorPos, which retrieves the mouse cursor’s
position in screen coordinates, requires the lpPoint variable in the form of the
POINTAPI structure:

CALLING WINDOWS API FUNCTIONS FROM VBA 849

 Public Declare Function GetCursorPos Lib _
 "user32" (lpPoint As POINTAPI) As Long

Or (for the 64-bit systems)
 Public Declare PtrSafe Function GetCursorPos Lib _
 "user32" (lpPoint As POINTAPI) As Long

Use the Type…End Type construct to declare the POINTAPI structure as shown
below:

Private Type POINTAPI
 x as Long
 y as Long

End Type

By convention, the user-defined data type name is written in uppercase. The x
and y are the coordinates of the cursor (relative to the screen).

Once the structure is declared as a user-defined data type in VBA, you must
declare a variable of that type to use when you call the Windows API function:

Dim cPos As POINTAPI

You can give the variable any name you choose as long as the name does not
conflict with any VBA reserved keywords. Next, to retrieve the coordinates of
the mouse, all you need to do is write a VBA procedure that calls the GetCur-
sorPos API function:

Sub getMouseCoordinates()
 Dim cPos As POINTAPI

 GetCursorPos cPos
 Debug.Print "x coordinate:" & cPos.x
 Debug.Print "y coordinate:" & cPos.y
 End Sub

UDT arguments are passed to Windows API functions by reference (ByRef), as
shown in Figure 25.1.

Any

The Any data type argument is used for those API functions that can accept
more than one data type for the same argument. The Any data type is passed by
reference (ByRef) and its syntax is:

argumentname As Any

850 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 25.1 Passing the user-defined data type to a Windows API function.

Using Constants with Windows API Functions

Most of the Windows API functions rely on a number of predefined constants
that have to be passed to them in specific arguments. Some functions can work
with more than a dozen constants depending on what type of information you
want to retrieve. For example, the following GetSystemMetrics function expects
the nIndex argument that specifies the type of metric you want to return:
Public Declare Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long

Or (for the 64-bit systems)
Public Declare PtrSafe Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long

The nIndex argument must be passed to the GetSystemMetrics function as
one of the number of predefined constants whose name begins with the letters
SM followed by the underscore (_). For example, to return in pixels the width
and height of the screen of the primary display monitor, you need to pass to
the function the SM_CXSCREEN and SM_CYSCREEN constants as the nIndex argu-
ment. To do this, start by entering in the standard module the following con-
stant declaration:
Public Const SM_CXSCREEN = 0 'defines the screen width
Public Const SM_CYSCREEN = 1 'defines the screen height

CALLING WINDOWS API FUNCTIONS FROM VBA 851

Next, enter the Declare statement to tell Excel that the external function is
available:
 Public Declare Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long

Or (for the 64-bit systems)
Public Declare PtrSafe Function GetSystemMetrics Lib "user32" _
 (ByVal nIndex As Long) As Long

Next, write a VBA procedure that calls the above function to retrieve the screen’s
dimensions:
 Sub GetScreenResolution()
 Dim xSM As Long
 Dim ySM As Long

 xSM = GetSystemMetrics(SM_CXSCREEN)
 ySM = GetSystemMetrics(SM_CYSCREEN)

 Debug.Print "Your screen resolution is: " & _
 xSM & " x " & ySM
 End Sub

Save the workbook file. You may also want to choose Debug | CompileVBAPro-
ject to ensure that there are no errors in the code you’ve entered.

Next, run the GetScreenResolution procedure. Assuming there were no run-
time errors during the execution of your code, you should see your screen’s reso-
lution information in the Immediate window. The data retrieved should match
the current setting of your screen resolution as displayed in the Control Panel.
Figure 25.2 displays the code as entered in the Visual Basic standard module. The
Immediate window shows the current screen resolution of the primary monitor.

FIGURE 25.2 Retrieving information about screen resolution from a Windows API function using
predefined constants.

852 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When your application includes numerous calls to API functions and a great
number of constants need to be declared in support of these functions, it is often
difficult to know which constants are used with which function. To keep track
of your constants and to make your code easier to write and comprehend, after
declaring your constants with the Const keyword you can wrap them using an
enumeration. An enumeration provides a listing of all its elements. For example,
to keep the screen resolution constants together, use the Enum statement like
this:
 Enum SysMetConst
 x_screenWidth = SM_CXSCREEN
 y_screenHeight = SM_CYSCREEN
 End Enum

The Enum statement declares a type for an enumeration. The Enum type is used
to hold a collection of constants and make it easier to work with programs. The
Enum statement can appear only at a module level. You can use any name for the
Enum as long as it does not conflict with any of the VBA reserved keywords.

Next, write a VBA wrapper function that will pass the required constants
to the Windows API function using the Enum type. The main purpose of a
wrapper function is to use the functionality of another function, in this case the
Windows API function, and pass to that function the required parameters via
the Enum type like this:
Public Function ScreenRes(ByVal eIndex As SysMetConst) As Long
 ScreenRes = GetSystemMetrics(eIndex)
End Function

Next, you should write a VBA procedure that will display the result of the func-
tion to the user:
Sub WhatIsMyScreenResolution()
 MsgBox ScreenRes(x_screenWidth) & " x " & _
 ScreenRes(y_screenHeight)
End Sub

While encapsulating constants in an enumeration and writing wrapper func-
tions may seem at first like much more coding to do, using this method will save
you time in the long run. Also, the constants that are encapsulated in the Enum
statement will be available in the IntelliSense drop-down box, saving you from
typing them manually and possibly introducing errors into your code.

CALLING WINDOWS API FUNCTIONS FROM VBA 853

64-BIT OFFICE AND WINDOWS API

Microsoft Office 2019 is available in both 32-bit and 64-bit versions. To use
the API functions with the 64-bit version, you will need to change the Declare
statements to differentiate between 32-bit and 64-bit calls. To help avoid system
crashes, truncation, and overflow errors when using API calls in 64-bit systems,
Microsoft has introduced the PtrSafe keyword and two special data types:
LongLong and LongPtr.

 ● Th e PtrSafe keyword indicates that the Declare statement is compatible
with 64-bit systems. Th is keyword is mandatory on 64-bit systems.

 ● Th e LongLong data type is an 8-byte data type that is only available in 64-
bit versions of Offi ce 2019.

 ● Th e LongPtr is a variable data type that is a 4-byte data type on 32-bit
systems and an 8-byte data type on 64-bit versions of Offi ce.

 ● When making a call to an API function, you’ll need to include the PtrSafe
keyword in the Declare statement and also use LongPtr where the Long
data type was used to return a handle or pointer (see the sidebar).

Understanding Pointers and Handles

 ● A pointer is a reference to a specifi c location in physical memory where
the application stores data or programming instructions. Versions of
VBA prior to 2013 did not have a pointer data type (LongPtr). Pointers
and handles were stored using 32-bit variables declared as Long data type.
Th e Long data type cannot be used for pointers and handles on 64-bit
systems because it is not large enough to store the 64-bit values returned
by API functions.

 ● A handle is a unique identifi er that Windows assigns to each window,
dialog box, and control so that it can reference them. In 32-bit systems,
handles were declared as Long data type. In 64-bit systems, they must be
declared using the LongPtr data type.

To locate a window on a 64-bit system, declare the API FindWindow function as
shown below:
 Declare PtrSafe Function FindWindow Lib "user32" Alias _
 "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As LongPtr

SIDEBAR

854 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that the Declare statement is followed by the PtrSafe keyword and
the function’s result is of the LongPtr data type. The Microsoft documentation
states that Declare statements without the PtrSafe keyword are assumed not
to be compatible with the 64-bit version of Office 2019. Another important note
specifies that the data types in the Declare statement will have to be updated to
use LongPtr if they refer to handles and pointers. The above FindWindow API
function returns a handle to the window; therefore its return value is declared
As LongPtr.

If the function requires a parameter that represents a handle or a pointer, this
parameter data type will also need to be replaced with the LongPtr data type.
For example, the following API function is used to retrieve a window’s dimen-
sions:
 Declare PtrSafe Function GetWindowRect Lib "user32" _
 (ByVal hwnd As LongPtr, lpRect As RECT) As Long

In the above function, the first parameter is a handle and is therefore declared
using the LongPtr data type.

The FindWindow function on a 32-bit system is declared like this:
 Declare Function FindWindow Lib "user32" Alias _
 "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

The GetWindowRect function has the following syntax on a 32-bit system:
 Declare Function GetWindowRect Lib "user32" _
 (ByVal hwnd As Long, lpRect As RECT) As Long

Similar changes need to be made to the Structure data type (UDT) if any mem-
ber variable refers to a pointer or a handle. For example, the following API func-
tion allows the user to select a folder:
Declare PtrSafe Function SHBrowseForFolder Lib "shell32" _
 Alias "SHBrowseForFolderA" (lpBrowseInfo As BROWSEINFO) _
 As Long

The above function requires that you pass it a structure (user-defined data type)
named BROWSEINFO, declared as follows:
 Public Type BROWSEINFO
 hwndOwner As LongPtr
 pIDLRoot As Long
 pszDisplayName As Long
 lpszTitle As Long
 ulFlags As Long

CALLING WINDOWS API FUNCTIONS FROM VBA 855

 lpfn As LongPtr
 lParam As LongPtr
 iImage As Long
 End Type

Notice in the above user-defined data type declaration that some member vari-
ables reference handles or pointers and therefore are represented by the Long-
Ptr data type.

The above UDT has the following format on 32-bit systems:
 Type BROWSEINFO
 hwndOwner As Long
 pIDLRoot As Long
 pszDisplayName As Long
 lpszTitle As Long
 ulFlags As Long
 lpfn As Long
 lParam As Long
 iImage As Long
 End Type

If your VBA application that has direct calls to Windows API functions will be
run both in Excel 2019 or earlier, you should use the VBA7 conditional compila-
tion constant. Using the VBA7 compilation constant will allow you to determine
the version of VBA being used and run the appropriate code for that version.
For example:
#if VBA7 Then

‘ declare API function using the Declare statement with the PtrSafe keyword

#else

‘ declare API function without the PtrSafe keyword

#end if

Use the Win64 compilation constant when you need to provide code for the
32-bit version of Office 2019 as well as for the 64-bit version:
#if Win64 Then

‘ declare API function using the Declare statement with the PtrSafe keyword

#else

856 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

‘ declare API function without the PtrSafe keyword

#end if

NOTE

For more information on compatibility between the 32-bit and
64-bit versions of Microsoft Office, please refer to Microsoft
documentation at:
http://msdn.microsoft.com/en-us/library/ee691831.aspx

Using Conditional Compilation

When you run a procedure for the first time, Visual Basic converts the VBA
statements you used into the machine code understood by the computer. This
process is called compiling. You can also perform the compilation of your
entire VBA project manually before you run your procedure. To do this, sim-
ply choose Debug | Compile (your VBA project name) in the Visual Basic
Editor window. You can tell Visual Basic to include or ignore certain blocks of
code when compiling and running by using so-called conditional compilation.
 To enable conditional compilation, use special expressions called directives.
Use the #Const directive to declare a Boolean (True, False) constant. Next,
check this constant inside the #If…Then…#Else directive. The portion of code
that you want to compile conditionally must be surrounded by these direc-
tives. Notice that the If and Else keywords are preceded by a number sign (#).
If a portion of code is to be run, the value of the conditional constant has to
be set to True (–1). Otherwise, the value of this constant should be set to False
(0). Declare the conditional constant in the declaration section of the module
like this:

#Const User = True

This declares the conditional constant named User. Conditional compilation
can be used to compile an application that will be run on different platforms
(Windows or Macintosh, Win32-bit, Win64-bit). It is also useful in localizing
an application for different languages or excluding certain debugging state-
ments before the VBA application is sent off for distribution. The program
code excluded during the conditional compilation is omitted from the final
file; thus it has no effect on the size or performance of the program.

SIDEBAR

CALLING WINDOWS API FUNCTIONS FROM VBA 857

ACCESSING WINDOWS API DOCUMENTATION

Most of the Windows API Declare statements are pretty long and require many
parameters. Therefore, to save keystrokes and to avoid errors, many Visual
Basic programmers prefer to resort to cutting and pasting the declares from the
Win32API.txt file or use the Windows API viewer that provides a better inter-
face for finding and copying the required code into a VBA module.

NOTE

When Microsoft shipped Visual Basic® 6 and Visual Studio® 6, it also
provided the API Viewer application that enabled programmers
to browse through the declares, constants, and types provided in
the Win32API.txt file and easily copy the code to the clipboard
and then paste it into the code module. The Viewer program is
no longer available unless you have a copy of these or other older
paid programs such as Microsoft Office 2000 Developer available
for your perusal.

You can find the Declare statements in the Win32API.txt file, which you can
download from Microsoft at:

http://download.microsoft.com/download/E/A/A/EAAF9632-4137-464F-8706-
974D823F80C3/win32api.exe

After downloading the Win32api.exe file to your computer, double-click the
filename so the Win32api.txt file can be decompressed and copied to the correct
folder. The Win32API.txt file contains declarations for many of the Windows
API procedures commonly used in Visual Basic. To use this file, open it in Note-
pad and copy the required Declare statement to the VBA code module. Be sure
to search the name of the function in your web browser so you can verify that
the Declare statement is correct. It has been acknowledged that entries in the
Win32API file might not be completely accurate.

You can find the API Reference online at the following link:

http://msdn.microsoft.com/en-us/library/aa383749(VS.85).aspx

USING WINDOWS API FUNCTIONS IN EXCEL

Now that we’ve discussed the steps involved in writing API functions and looked
at the data types and parameters these functions expect, let’s leave the theory
behind and do some practical programming. The procedures in Hands-On 25.1

858 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

will teach you how you can make calls to API functions from a VBA code mod-
ule. This particular example will introduce four API functions that you can use
to return the following information:

 ● Th e current version number of Windows and information about the op-
erating system platform (GetVersionEx)

 ● Th e path of your Windows directory (GetWindowsDirectory)
 ● Th e name of the user currently logged on (GetUserName)
 ● Th e user’s computer name (GetComputerName)

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 25.1 Retrieving Information about the Computer/User

NOTE

This Hands-On uses API function calls for the 32-bit Office
installation. If you are working with a 64-bit system, please refer to
the earlier section titled “64-bit Office and Windows API” to find out
how to modify the Declare statements to avoid issues while running
the example code.

1. Open a new workbook in Excel and save it in a macro-enabled file format as
C:\VBAExcel2019_ByExample\Chap25_VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor window and insert a new module.
3. In the module’s Code window, enter the following four declarations of API

functions:
Public Declare Function GetVersionEx Lib "kernel32" Alias _
 "GetVersionExA" (lpVersionInformation As OSVERSIONINFO) _
 As Long

Public Declare Function GetWindowsDirectory _
 Lib "kernel32" Alias "GetWindowsDirectoryA" _
 (ByVal lpBuffer As String, ByVal nSize As Long) _
 As Long

Public Declare Function GetUserName _
 Lib "advapi32.dll" Alias "GetUserNameA" _
 (ByVal lpBuffer As String, nSize As Long) As Long

Public Declare Function GetComputerName _

CALLING WINDOWS API FUNCTIONS FROM VBA 859

 Lib "kernel32" Alias "GetComputerNameA" _
 (ByVal lpBuffer As String, ByVal nSize As Long) _
 As Long

4. Below the last Declare statement, enter the following user-defined type
definition:
Type OSVERSIONINFO
 dwOSVersionInfoSize As Long
 dwMajorVersion As Long
 dwMinorVersion As Long
 dwBuildNumber As Long
 dwPlatformId As Long
 szCSDVersion As String * 128
End Type

Th e OSVERSIONINFO data structure contains operating system version
information. As mentioned earlier in this chapter, Structure data types are
handled in VBA by user-defi ned data types.
 Th e fi rst member variable, dwOSVersionInfoSize, specifi es the size, in bytes,
of the data structure. Before calling the GetVersionEx function, it is necessary
to set the size of dwOSVersionInfoSize to the size of the OSVERSIONINFO
structure by using the Len function (see the procedure code in Step 5 below).
 The dwMajorVersion and dwMinorVersion variables identify the major and
minor version number of the operating system. The dwBuildNumber variable
identifies the build number of the operating system. The szCSDVersion
variable contains a null-terminated string that can provide additional
information about the operating system such as the version of the service pack.

5. Enter the following OpSysInfo procedure that calls the GetVersionEx API
function to retrieve information about the Windows platform:
Sub OpSysInfo()
 Dim os As OSVERSIONINFO
 Dim osVer As String

 os.dwOSVersionInfoSize = Len(os)
 GetVersionEx os
 osVer = os.dwMajorVersion & "." & os.dwMinorVersion
 Debug.Print "Windows Version = " & osVer
 Debug.Print "Windows Build Number = " & os.dwBuildNumber
 Debug.Print "Windows Platform ID = " & os.dwPlatformId
 Debug.Print "Additional info = " & os.szCSDVersion
End Sub

860 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Save the changes to the Chap25_VBAExcel2019.xlsm workbook and then
run the OpSysInfo procedure you entered in Step 5 above. After executing
the above procedure on the machine running the Windows 10 Pro operating
system, the following information appears in the Immediate window:
Windows Version = 10.0
Windows Build Number = 17134
Windows Platform ID = 2
Additional info =

Procedure output on Windows 7 Home Premium:
Windows Version = 6.1
Windows Build Number = 7601
Windows Platform ID = 2
Additional info = Service Pack 1

7. Enter the PathToWinDir procedure in the code window just below the
OpSysInfo procedure:
Sub PathToWinDir()
 Dim strWinDir As String
 Dim lngLen As Long

 strWinDir = String(255, 0)
 lngLen = GetWindowsDirectory(strWinDir, Len(strWinDir))
 strWinDir = Left(strWinDir, lngLen)
 MsgBox "Windows folder: " & strWinDir
End Sub

In the above procedure, we need to obtain textual data from the API function.
This requires that you first create a string filled with spaces or null characters
and then pass it to the function:
strWinDir = String(255, 0)

The VBA String function is used to return a string containing a repeating
character string of the specified length. In this example, the string will be filled
with null characters. You could also use the Space function to fill the string
with 255 spaces like this:
strWinDir = Space(255)

In the next statement, we call the API function named GetWindowsDirectory,
passing to it the required two arguments: the receiving string buffer (strWin-
Dir) that we previously defined and the buffer’s length (Len(strWinDir)). If

CALLING WINDOWS API FUNCTIONS FROM VBA 861

the API function succeeds, it will return the length of the string copied to the
buffer. If the function fails, the return value will be zero. Once we have the
length of the returned string, we use the VBA Left function to extract the
specified number of characters from the beginning of the buffer:
strWinDir = Left(strWinDir, lngLen)

8. Save the changes to the Chap25_VBAExcel2019.xlsm workbook and then
run the PathToWinDir procedure in step mode by pressing F8. By stepping
through the code, you can investigate the values of the individual variables that
are passed to the API function to obtain the Windows path.

9. Enter the LoggedOnUserName function procedure in the Code window
just below the PathToWinDir procedure:
Function LoggedOnUserName() As String
 Dim strBuffer As String * 255
 Dim strLen As Long

 strLen = Len(strBuffer)
 GetUserName strBuffer, strLen

 If strLen > 0 Then
 LoggedOnUserName = Left$(strBuffer, strLen - 1)
 End If

 MsgBox LoggedOnUserName
End Function

The above function procedure begins by declaring a strBuffer variable of
fixed size (255 characters). This variable will be filled by the API function with
the name of the logged-on user. The procedure also defines the strLen vari-
able to hold the length of the buffer. The length of the buffer is set to the length
of the strBuffer variable, which is initially 255 characters long. Next, to get
the logged-on user name, the procedure calls the API function GetUserName,
passing it two arguments as required by the function’s Declare statement lo-
cated at the top of the code module. If the length of the returned string is great-
er than zero (0), the function succeeded and the strBuffer variable should
contain the name of the logged on user. However, before we return the user
name to the VBA function, we need to extract the specified number of char-
acters from the beginning of the strBuffer and strip off the terminating null
character, which is also returned by the API function:
LoggedOnUserName = Left$(strBuffer, strLen - 1)

862 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

As mentioned earlier, the C language uses 0-terminated strings
that are not recognized by VBA. Therefore, when calling a
Windows API function that returns a string value, you must
strip the 0-terminator from the end of the C string so VBA can
recognize it correctly.

10. Save the changes to the Chap25_VBAExcel2019.xlsm workbook and run the
LoggedOnUserName function by typing its name in the Immediate window
and then pressing Enter.
When the function completes, you should see a message box with the name
you used to log onto your computer.

11. Enter the GetUserComputerName procedure below the last procedure code:
Sub GetUserComputerName()
 Dim strCompName As String
 Dim retval As Long

 strCompName = Space(255)
 retval = GetComputerName(strCompName, 255)
 strCompName = Left(strCompName, _
 InStr(strCompName, vbNullChar) - 1)
 Debug.Print "Your computer name is: " _
 & strCompName
End Sub

12. Save the changes to the Chap25_VBAExcel2019.xlsm workbook and run the
GetUserComputerName procedure.

Warnings and Precautions to Follow When Writing Procedures that Call the
Windows API Functions:

 ● Be sure to check the variable types, constants, and values that are re-
quired by the API function by checking the function documentation in
the MSDN library.

 ● It is always better to specify the type of the variable explicitly rather than
relying on the Any variable type.

 ● Be sure to pass strings to API functions by using the ByVal keyword.
 ● Before running the VBA procedure that calls the Windows API function,

always save any changes made to the code module. Unexpected errors
in the code may crash your system, and you will lose any unsaved work.

CALLING WINDOWS API FUNCTIONS FROM VBA 863

In the next Hands-On, you will work with the Excel VBA UserForm and learn
how API functions can be used to change the appearance of the default User-
Form. In particular, you will add an icon to the title bar, as well as include the
missing maximize and minimize buttons. Next, you will make the form resiz-
able and transparent. Finally, you will add the UserForm to the Windows task
list. Figure 25.3 displays how the UserForm will look after you’ve completed
Hands-On 25.2.

FIGURE 25.3 The Microsoft Excel UserForm can be customized by calling Windows API functions.

 Hands-On 25.2 Enhancing a VBA UserForm by Calling Windows API
Functions

NOTE

This Hands-On uses API function calls for the 32-bit Office
installation. If you are working with a 64-bit system, please refer
to the earlier section titled “64-bit Office and Windows API” to
find out how to modify the Declare statements to avoid issues
while running the example code.

1. Create a new workbook and save it in a macro-enabled file format as C:\
VBAExcel2019_ByExample\Chap25b_VBAExcel2019.xlsm.

2. In the Visual Basic Editor window, insert a new module into the VBAProject
(Chap25b_VBAExcel2019.xlsm) workbook.

864 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the module’s Code window, enter the following API function, variable,
and constant declarations:

' API FUNCTIONS DECLARATIONS

Declare Function FindWindow Lib "user32" Alias _
 "FindWindowA" (ByVal lpClassName As String, _
 ByVal lpWindowName As String) As Long

Declare Function SendMessageA Lib "user32" _
 (ByVal hWnd As Long, ByVal wMsg As Long, _
 ByVal wParam As Integer, ByVal lParam As Long) As Long

Declare Function ExtractIconA Lib "shell32.dll" _
 (ByVal hInst As Long, ByVal lpszExeFileName As String, _
 ByVal nIconIndex As Long) As Long

Declare Function GetActiveWindow Lib "user32.dll" () As Long

Declare Function SetWindowPos Lib "user32" _
 (ByVal hWnd As Long, _
 ByVal hWndInsertAfter As Long, _
 ByVal x As Long, _
 ByVal Y As Long, _
 ByVal cx As Long, _
 ByVal cy As Long, _
 ByVal wFlags As Long) As Long

Declare Function GetWindowLong Lib "user32" Alias _
 "GetWindowLongA" (ByVal hWnd As Long, _
 ByVal nIndex As Long) As Long

Declare Function SetWindowLong Lib "user32" Alias _
 "SetWindowLongA" (ByVal hWnd As Long, _
 ByVal nIndex As Long, _
 ByVal dwNewLong As Long) As Long

Declare Function SetLayeredWindowAttributes Lib "user32" _
 (ByVal hWnd As Long, ByVal crey As Byte, _
 ByVal bAlpha As Byte, ByVal dwFlags As Long) As Long

Declare Function FlashWindow Lib "user32.dll" _
 (ByVal hwnd As Long, ByVal bInvert As Long) As Long

Declare Sub Sleep Lib "kernel32.dll" (ByVal dwMilliseconds As Long)

CALLING WINDOWS API FUNCTIONS FROM VBA 865

' variable declarations
Public hwnd As Long ' handle to the active window

' Constant declarations
Public Const GWL_EXSTYLE = (-20)
Public Const GWL_STYLE = (-16)
Public Const WS_EX_LAYERED = &H80000
Public Const WS_EX_APPWINDOW = &H40000
Public Const WS_MINIMIZEBOX = &H20000
Public Const WS_MAXIMIZEBOX = &H10000
Public Const WS_THICKFRAME = &H40000
Public Const SWP_NOMOVE = &H2
Public Const SWP_NOSIZE = &H1
Public Const SWP_NOACTIVATE = &H10
Public Const SWP_HIDEWINDOW = &H80
Public Const SWP_SHOWWINDOW = &H40
Public Const SW_SHOW = 5
Public Const HWND_TOP = 0
Public Const LWA_ALPHA = &H2&
Public Const WM_SETICON = &H80

4. Choose Insert | UserForm to add a new form to the VBAProject.
5. Right-click the UserForm and choose View Code.
6. In the UserForm1 Code window, enter the following three procedures:

Private Sub UserForm_Initialize()
 With Me
 .Caption = "Customized Form"
 .BackColor = RGB(255, 255, 51)
 End With
End Sub

Private Sub AddIcon_OnTitleBar(strIconBmpFile As String)
 Dim fLen As Long

 If Len(Dir(strIconBmpFile)) <> 0 Then
 fLen = ExtractIconA(0, strIconBmpFile, 0)
 SendMessageA FindWindow(vbNullString, Me.Caption), _
 WM_SETICON, False, fLen
 Else
 Exit Sub
 End If
End Sub

Private Sub UserForm_Activate()
 CustomizeForm
End Sub

866 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Private Sub CustomizeForm()
 Dim wStyle As Long
 Dim xStyle As Long
 Dim bOpacity As Byte

 'get the handle of the active window
 hWnd = GetActiveWindow

 ' get user attention by flashing the window
 Call FlashThisWindow(hWnd)

 ' begin customization process
 AddIcon_OnTitleBar "C:\VBAExcel2019_ByExample\Images\arrow.bmp"

 bOpacity = 150 ' set opacity

 'retrieve the active window's styles
 wStyle = GetWindowLong(hWnd, GWL_STYLE)

 ' modify the window style settings
 wStyle = wStyle Or WS_MINIMIZEBOX 'add the minimize button
 wStyle = wStyle Or WS_MAXIMIZEBOX 'add the maximize button
 wStyle = wStyle Or WS_THICKFRAME 'add a sizing border

 'apply the revised style
 Call SetWindowLong(hWnd, GWL_STYLE, wStyle)

 'retrieve the active window's extended styles
 xStyle = GetWindowLong(hWnd, GWL_EXSTYLE)

 ' modify the window extended style settings
 xStyle = xStyle Or WS_EX_LAYERED ' change opacity
 xStyle = xStyle Or WS_EX_APPWINDOW ' add window to the task
 ' bar

 'apply the revised extended style
 Call SetWindowLong(hWnd, GWL_EXSTYLE, xStyle)

 Call SetLayeredWindowAttributes(hWnd, 0, bOpacity, LWA_ALPHA)

 Call SetWindowPos(hWnd, HWND_TOP, 0, 0, 0, 0, _
 SWP_NOMOVE Or _
 SWP_NOSIZE Or _
 SWP_NOACTIVATE Or _
 SWP_HIDEWINDOW)

CALLING WINDOWS API FUNCTIONS FROM VBA 867

 Call SetWindowPos(hWnd, HWND_TOP, 0, 0, 0, 0, _
 SWP_NOMOVE Or _
 SWP_NOSIZE Or _
 SWP_NOACTIVATE Or _
 SWP_SHOWWINDOW)

End Sub

Sub FlashThisWindow(myForm As Long)
 Dim counter As Integer
 ' declare return value used for flashing the window
 Dim retval As Long

 For counter = 1 To 10
 ' toggle the look of the window
 retval = FlashWindow(myForm, 1)
 Sleep 500 ' wait for 5 seconds
 Next counter
 retval = FlashWindow(myForm, 0)
 UserForm1.Caption = "Customized Form"
End Sub

When you run the Sub/UserForm, Excel will look for the UserForm_Initialize
procedure and will execute the code found therein. This code will tell Excel to
replace the default caption with the specified text and change the form back-
ground color to a shade of yellow represented by the RGB(255, 255, 51)
function. Next, the UserForm_Activate event will be triggered. Here we make
a call to the CustomizeForm VBA procedure. The CustomizeForm procedure
begins by obtaining a handle to the active window via the call to the GetAc-
tiveWindow API function. You’ll need this handle for all the API functions
used in this solution, hence the hwnd variable it is declared with the Public
keyword in the standard module. After obtaining a window reference we want
to get user’s attention by flashing the form. This is done within the code of the
FlashThisWindow VBA procedure which makes a direct call to the following
Windows API functions:
Declare Function FlashWindow Lib "user32.dll" _
(ByVal hwnd As Long, ByVal bInvert As Long) As Long

Declare Sub Sleep Lib "kernel32.dll" _
(ByVal dwMilliseconds As Long)

The FlashWindow function returns 0 if the window’s look was inactive before
flashing, or 1 if its look was active. The hwnd parameter is the handle to the

868 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

window. The bInvert parameter specifies how to flash. Non-zero will switch
the title bar from active to inactive or vice versa. Zero will restore window to
its normal look.
 The Sleep procedure pauses program execution for a specified amount of
time. Sleep does not return any value. It requires that you specify the number
of milliseconds to hold program execution for (see the dwMilliseconds pa-
rameter).
 After flashing the UserForm1 window on and off, we again change the form’s
title using the Caption property and go on to perform form customizations.
To put an icon on the form’s title bar, we call the AddIcon_OnTitleBar proce-
dure and pass to it the name and location of the bitmap image we want to use.
 Before you can do anything with the image, you must ensure that it is in-
deed found in the specified pathname. Therefore, the AddIcon_OnTitleBar
procedure begins by checking if the specified file exists, and if it does, we call
upon three API functions that will allow us to extract the icon from the file
(ExtractIconA) and then display it on the form’s titlebar (SendMessageA and
FindWindow). To find the UserForm1, you can use the FindWindow API func-
tion like this:
FindWindow(vbNullString, Me.Caption)

The FindWindow function finds a window handle based on the exact window
title. A window handle is a unique identifier that Windows assigns to each
window, dialog box, or control. Once you have a window handle, you can pass
it to the API functions for all operations involving windows. In the above code
snipet, the VBA statement Me.Caption will provide the title of our UserForm1
by using the Caption property of the form so that the FindWindow function
will be able to locate the UserForm1 window and return the handle, which is
a Long (4-byte) value.

NOTE

If you want to find the handle of Microsoft Excel, keep in mind
that VBA provides a special built-in property named hWnd for
the Excel Application object; thus, it is not necessary to call the
API function to retrieve the handle.

The result of the FindWindow function (in this case the handle to the User-
Form) is then fed along with other arguments to the SendMessageA function.
This function tells Windows to perform the requested action, which is placing
the icon image on the found form’s titlebar. If the icon image is not found, the
procedure does not do anything; you will end up with a UserForm that does
not have the icon.

CALLING WINDOWS API FUNCTIONS FROM VBA 869

Before you can make modifications to the UserForm’s titlebar, it is necessary
to get the current style information of the active window. This is done by ac-
cessing the window’s configuration memory by calling the GetWindowLong
API function and passing it the GWL_STYLE constant that you defined in the
standard code module. Once you have the GWL_STYLE setting in the wStyle
variable, you can modify the setting by using the bitwise OR operator as shown
below:
wStyle = wStyle Or WS_MINIMIZEBOX 'add the minimize button
wStyle = wStyle Or WS_MAXIMIZEBOX 'add the maximize button
wStyle = wStyle Or WS_THICKFRAME 'add a sizing border

To have Windows actually apply the new settings, the procedure goes on to call
the SetWindowLong API function:
Call SetWindowLong(hWnd, GWL_STYLE, wStyle)

The parameters passed to the SetWindowLong API function inform Windows
which window should be modified (hWnd), what settings need to be changed
(GWL_STYLE), and what the replacement settings (wStyle) are.
 You can follow the same logic to make modifications to the extended win-
dows styles in order to make your form transparent and visible on the task bar:
'retrieve the active window's extended styles
xStyle = GetWindowLong(hWnd, GWL_EXSTYLE)

' modify the window extended style settings
xStyle = xStyle Or WS_EX_LAYERED ' change opacity
xStyle = xStyle Or WS_EX_APPWINDOW ' add window to the task bar

'apply the revised extended style
Call SetWindowLong(hWnd, GWL_EXSTYLE, xStyle)

Next you need to tell Windows the amount of transparency you want to apply
to the form. This is done by calling the following function:
Call SetLayeredWindowAttributes(hWnd, 0, bOpacity, LWA_ALPHA)

The second argument in the above function, 0, is the transparent color of the
window; this argument is not used. The third argument is the amount of trans-
parency you want. Zero (0) will make the form completely transparent and 255
will make it completely opaque. The procedure uses the setting of 150 stored
in the bOpacity variable. The last parameter, LWA_ALPHA, tells the window that
the form should be transparent.

870 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 The last two API function calls in the CustomizeForm procedure ensure
that the name of the UserForm1 window appears in the top position on the
window’s task bar and the entry is removed when the form is closed.

7. Run the UserForm1 to examine the result of the applied customizations (see
Figure 25.3 earlier in this chapter). Notice the presence of the icon on the title
bar as well as Minimize and Maximize buttons to the left of the default Close
(X) button. When you click on the icon in the upper-left corner, you should
see a menu with options allowing you to move, size, minimize, maximize, and
close the form. Try to resize the form by dragging its borders. Also, notice that
you can activate the form directly from the task bar.

SUMMARY

While VBA offers programmers a huge library of objects, properties, and meth-
ods, there are certain interface features supported by the Windows operating
system that cannot be accessed by calling the native VBA library. The good
news is that some of the VBA limitations can be directly dealt with by having
your VBA procedure call a function from the Windows Application Program-
ming Interface (API). This chapter introduced you to the basic Windows API
concepts and showed you how you can utilize API functions from VBA. It also
pointed you to resources you can use to find and research functions that should
help you in extending your VBA programs by providing more functionality via
Windows API.

In the next chapter, we will switch our focus to using Excel with Internet
technologies. You will learn the basics of HTML programming and web queries.

Thanks to the Internet and intranets, your spreadsheet data can be easily ac-
cessed and shared with others 24/7. Excel is capable of both capturing data
from the Web and publishing it to the Web.

In this part of the book, you are introduced to using Excel with Web technolo-
gies. You learn how to retrieve live data into worksheets with Web queries and use
Excel VBA to create and publish HTML files. You also learn how to retrieve and
send information to Excel via Active Server Pages (ASP) and use XML with Excel.

Chapter 26 HTML Programming and Web Queries
Chapter 27 Excel and Active Server Pages
Chapter 28 Using XML in Excel 2019

Part

 VII EXCEL AND WEB
TECHNOLOGIES

871

873

The dramatic growth of the Internet has made it possible to gain access
to enormous knowledge archives scattered all over the world. Thanks
to the Internet, we now have at our fingertips databases covering vari-

ous industries and fields of knowledge, dictionaries and encyclopedias, stock
quotes, maps, weather forecasts, and a great deal of other types of information
stored on millions of Web servers. Often, the information retrieved from Web
pages becomes a subject of further analysis by computer programs. Thanks to
its file structure (rows and columns), Microsoft Excel is a preferred tool for
working with table data found on the Internet. From Chapter 23 you already
know how to use the Power Query feature in Excel to get data from the Web.
This chapter demonstrates other built-in tools available in Excel 2019 for re-
trieving data from the Web and publishing Excel spreadsheets on the Web. You
will find many Visual Basic statements here that will allow you to obtain and
publish data using custom Visual Basic procedures. To maximize your benefit
from this chapter, you should have a connection to the Internet.

Chapter

 26 HTML
PROGRAMMING AND
WEB QUERIES

874 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING HYPERLINKS USING VBA

Excel, like other applications in Microsoft Office, allows you to create hyper-
links in your spreadsheets. After clicking on a cell that contains a hyperlink, you
can open a document located on a network server, an intranet, or the Internet.
Hyperlinks can be created manually via the Insert Hyperlink dialog (choose
Insert | Link | Insert Link) as shown in Figure 26.1 or programmatically using
VBA.

FIGURE 26.1 The Insert Hyperlink dialog box is used to insert a hyperlink in a Microsoft Excel
spreadsheet.

In VBA, each hyperlink is represented by a Hyperlink object. To create a hyper-
link to a Web page, use the Add method of the Hyperlinks collection. This
method is shown below:
 Expression.Hyperlinks.Add(Anchor, Address, [SubAddress],
 [ScreenTip], [TextToDisplay])

The arguments in square brackets are optional. Expression denotes a work-
sheet or range of cells where you want to place the hyperlink. Anchor is an object
to be clicked. This can be either a Range or Shape object. Address points to a
local network or a Web page. SubAddress is the name of a range in the Excel
file. ScreenTip allows the display of a screen label. TextToDisplay is the name
that you’d like to display in a spreadsheet cell for a specific hyperlink.

Let’s see how to programmatically place a hyperlink in a worksheet cell.
The hyperlink you are going to create should take you to the Yahoo!® site when
clicked.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

HTML PROGRAMMING AND WEB QUERIES 875

 Hands-On 26.1 Using VBA to Place a Hyperlink in a Worksheet Cell

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\Chap26_
VBAExcel2019.xlsm.

2. Switch to the Visual Basic Editor screen and insert a new module into
VBAProject (Chap26_VBAExcel2019.xlsm).

3. In the Code window, enter the code of the FollowMe procedure shown below:
Sub FollowMe()
 Dim myRange As Range
 Set myRange = Sheets(1).Range("A1")

 myRange.Hyperlinks.Add Anchor:=myRange, _
 Address:="http://search.yahoo.com/", _
 ScreenTip:="Search Yahoo", _
 TextToDisplay:="Click here"
End Sub

4. Run the FollowMe procedure.
When you run the FollowMe procedure, cell A1 in the first worksheet will con-
tain a hyperlink titled “Click here” with the screen tip “Search Yahoo” (see Fig-
ure 26.2). If you are now connected to the Internet, clicking on this hyperlink
will activate your browser and load the Yahoo! search engine.

FIGURE 26.2 This hyperlink was placed in a worksheet by a VBA procedure.

If you’d rather not place hyperlinks in a worksheet but want to make it possible
for a user to reach the required Internet pages directly from an Excel worksheet,
you can use the FollowHyperlink method. This method allows you to open the
required Web page without the need to place a hyperlink object in a worksheet.
The FollowHyperlink method looks like this:
 Expression.FollowHyperlink(Address, [SubAddress], [NewWindow],
 [AddHistory], [ExtraInfo], [Method], [HeaderInfo])

Again, the arguments in square brackets are optional. Expression returns a
Workbook object. Address is the address of the Web page that you want to

876 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

activate. SubAddress is a fragment of the object to which the hyperlink address
points. This can be a range of cells in an Excel worksheet. NewWindow indicates
whether you want to display the document or page in a new window; the default
setting is False. The next argument, AddHistory, is not currently used and
is reserved for future use. ExtraInfo gives additional information that allows
jumping to the specific location in a document or on a Web page. For example,
here you can specify the text for which you want to search. Method specifies the
method in which the additional information (ExtraInfo) is attached. This can
be one of the following constants: msoMethodGet or msoMethodPost. When you
use msoMethodGet, ExtraInfo is a string that’s appended to the URL address.
When using msoMethodPost, ExtraInfo is posted as a string or byte array. The
last optional argument, HeaderInfo, is a string that specifies header informa-
tion for the HTTP request. The default value is an empty string.

Let’s use the FollowHyperlink method in a VBA procedure. The purpose of
this procedure is to use the Bing search engine to find pages containing the text
entered in a worksheet cell.

 Hands-On 26.2 Using a Search Engine to Find Text Entered in a
Worksheet Cell

1. Insert a new sheet into the current workbook.
2. Switch to the Visual Basic Editor window and double-click the Sheet2 (Sheet2)

object in the Microsoft Excel Objects folder located in VBAProject (Chap26_
VBAExcel2019.xlsm).

3. In the Sheet2 Code window, enter the Worksheet_BeforeDoubleClick
event procedure shown below (you may want to review Chapter 15 on creating
and using event procedures in Excel):
Private Sub Worksheet_BeforeDoubleClick(ByVal Target As Range, _
 Cancel As Boolean)
 Dim strSearch As String

 strSearch = Sheets(2).Range("C3").Formula
 If Target = Range("C3") Then
 Cancel = True
 ActiveWorkbook.FollowHyperlink _
 Address:="http://www.bing.com/search", _
 ExtraInfo:="q=" & strSearch, _
 Method:=msoMethodGet
 End If
End Sub

HTML PROGRAMMING AND WEB QUERIES 877

4. Switch to the Microsoft Excel application window. In cell C3 on Sheet2, enter
any word or term about which you want to find information (see Figure 26.3).

FIGURE 26.3 A Microsoft Excel worksheet can be used to send search parameters to any search
engine on the Internet.

5. Make sure that you are connected to the Internet. Double-click cell C3. This
will cause the text entered in cell C3 to be sent to the Bing search engine. The
screen should show the index to found topics with the specified criteria (see
Figure 26.4).

FIGURE 26.4 A Web page opened from a Microsoft Excel worksheet lists topics that were found
based on the criteria entered in a worksheet cell (see Figure 26.4).

CREATING AND PUBLISHING HTML FILES USING VBA

Excel 2019 allows you to save files in the Hypertext Markup Language (HTML)
format using .htm or .html file extensions. When you save an Excel file in the
HTML format, you can view your worksheets using an Internet browser such as
Edge, Internet Explorer®, Firefox®, Chrome, or Safari®. When you save a work-
book or a portion of a workbook as HTML, the user will be able to view the file
either in the browser or inside the Microsoft Excel application window.

878 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can save your HTML files directly to the Web server, a network server,
or a local computer. To do this, click File | Save As. Select the folder for the file
location, and in the Save as type drop-down box, choose Web Page. Working
with nothing other than the user interface (see Figures 26.5 and 26.6), you can
place an entire workbook or selected sheets on the Web page. Detailed instruc-
tions on how to go about placing an entire workbook or any worksheet (or its
elements, such as charts or PivotTables) on a Web page can be found in the Excel
online help. Because this book is about programming, we will focus only on the
way these tasks are performed via VBA code.

FIGURE 26.5 The Save As dialog box allows users to save their workbook as a Web page.

FIGURE 26.6 The Publish as Web Page dialog box appears after clicking the Publish button on the
Save As dialog box (see Figure 26.5).

HTML PROGRAMMING AND WEB QUERIES 879

The VBA object library offers objects for publishing worksheets on Web pag-
es. To programmatically create and publish Excel files in the HTML format, you
should become familiar with the PublishObject object and the PublishObjects
collection.

PublishObject represents a worksheet element that was saved on a Web page,
while PublishObjects is a collection of all PublishObject objects of a specific
workbook. To add a worksheet element to the PublishObjects collection, use
its Add method. This method will create an object representing a specific work-
sheet element that was saved as a Web page. The format of the Add method looks
like this:

 Expression.Add(SourceType, Filename, Sheet, Source, HtmlType,
 [DivID], [Title])

The arguments in square brackets are optional. Expression returns an object
that belongs to the PublishObjects collection. SourceType specifies the source
object using one of the following constants:

SourceType Constants Value Description
xlSourceAutoFilter 3 An AutoFilter range
xlSourceChart 5 A chart
xlSourcePivotTable 6 A PivotTable report
xlSourcePrintArea 2 A range of cells selected for printing
xlSourceQuery 7 A query table (an external data range)
xlSourceRange 4 A range of cells
xlSourceSheet 1 An entire worksheet
xlSourceWorkbook 0 A workbook

Filename is a string specifying the location where the source object (SourceType)
was saved. This can be a Uniform Resource Locator (URL) or the path to a local
or network file. Sheet is the name of the worksheet that was saved as a Web page.
Source is a unique name that identifies a source object. This argument depends
on the SourceType argument. Source is a range of cells or a name applied to a
range of cells when the SourceType argument is the xlSourceRange constant.
If the SourceType argument is a constant such as xlSourceChart, xlSource-
PivotTable, or xlSourceQuery, Source specifies the name of a chart, Pivot-
Table report, or query table. HtmlType specifies whether the selected worksheet
element is saved as static (non-interactive) HTML or an interactive Microsoft
Office Web Component (this feature was depreciated in Excel 2007 and is used

880 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

only for backward compatibility. See the side note for more information.). Html-
Type constants are listed below:

HtmlType Constants Description
xlHTMLCalc
(depreciated)

Use the Spreadsheet component. This component makes it possible
to view, analyze, and calculate spreadsheet data directly in an Internet
browser. This component also has options that allow you to change
the formatting of fonts, cells, rows, and columns.

xlHTMLChart
(depreciated)

Use the Chart component. This component allows you to create inter-
active charts in the browser.

xlHTMLList
(depreciated)

Use the PivotTable component. This component allows you to rear-
range, filter, and summarize information in a browser. This compo-
nent is also able to display data from a spreadsheet or a database (for
instance, Microsoft Access, SQL Server, or OLAP servers).

XlHTMLStatic
(default)

(default value) Use static (non-interactive) HTML for viewing only.
The data published in an HTML document does not change.

NOTE

The Office Web Components (OWC) are ActiveX controls that provide
four components: Spreadsheet, Chart, PivotTable, and Data Source
Control (DSC). In the Office releases prior to 2007 (XP/2003/2000),
these components made it possible to use Excel analytical options in
an Internet browser. The Office Web Components were discontinued
in Office 2007. If you need OWC to support older applications, you
will need to reinstall these components or allow users to download
and install them on the fly when the document that requires their use
is opened in a browser.

DivID is a unique identifier used in the HTML DIV tag to identify the item on
the Web page. Title is the title of the Web page.

Before we look at how you can use the Add method from a VBA procedure,
you also need to learn how to use the Publish method of the PublishObject
object. This method allows publishing an element or a collection of elements in
a particular document on the Web page. This method is quite simple and looks
like this:

Expression.Publish([Create])

Expression is an expression that returns a PublishObject object or PublishOb-
jects collection. The optional argument, Create, is used only with a PublishOb-
ject object. If the HTML file already exists, setting this argument to True will
overwrite the file. Setting this argument to False inserts the item or items at the
end of the file. If the file does not yet exist, a new HTML file is created, regard-
less of the value of the Create argument.

HTML PROGRAMMING AND WEB QUERIES 881

Now that you’ve been introduced to VBA objects and methods used for cre-
ating and publishing an Excel workbook in HTML format, let’s get back to pro-
gramming. In the following Hands-On, you will create an Excel worksheet with
an embedded chart and publish it as static HTML.

 Hands-On 26.3 Creating and Publishing an Excel Worksheet with an
Embedded Chart

1. Create a new workbook and save it as C:\VBAExcel2019_ByExample\
PublishExample.xlsm.

2. Right-click Sheet1 and choose Rename. Type Help Desk, and press Enter.
3. In the Help Desk worksheet, enter data as shown in Figure 26.7. To create the

chart, select cells A1:B10 and choose the Insert tab. In the Charts group, click
the Column drop-down and select 2-D Column. Add Data labels to columns
in the plot area and set other chart elements as depicted in Figure 26.7.

FIGURE 26.7 A worksheet like this one with an embedded chart can be placed on a Web page by
using Save As and choosing Web Page as the file format or via a VBA procedure.

4. Activate the Visual Basic Editor window and insert a new module into
VBAProject (PublishExample.xlsm).

5. In the Code window, enter the two procedures shown below:
' The procedure below will publish a worksheet
' with an embedded chart as static HTML

882 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub PublishOnWeb(strSheetName As String, _
 strFileName As String)

 Dim objPub As Excel.PublishObject
 Set objPub = ThisWorkbook.PublishObjects.Add(_
 SourceType:=xlSourceSheet, _
 Filename:=strFileName, Sheet:=strSheetName, _
 HtmlType:=xlHtmlStatic, Title:="Calls Analysis")
 objPub.Publish True
End Sub

Sub CreateHTMLFile()
 Call PublishOnWeb("Help Desk", _
 "C:\VBAExcel2019_ByExample\WorksheetWithChart.htm")
End Sub

Th e fi rst procedure above, PublishOnWeb, publishes a Web page with a
worksheet containing an embedded chart as static HTML. Th e second
procedure, CreateHTMLFile, calls the PublishOnWeb procedure and feeds
it the two required arguments: the name of the worksheet that you want to
publish and the name of the HTML fi le where the data should be saved.

6. Run the CreateHTMLFile procedure.
When this procedure finishes, a new file called C:\VBAExcel2019_ByExample\
WorksheetWithChart.htm is created on your hard drive. Also, there will be a
folder named WorksheetWithChart_files for storing supplemental files.

7. Locate the C:\VBAExcel2019_ByExample\WorksheetWithChart.htm file
and open it in your Internet browser (see Figure 26.8).

FIGURE 26.8 An Excel worksheet published as a static (non-interactive) Web page.

HTML PROGRAMMING AND WEB QUERIES 883

WEB QUERIES

Over a decade ago Microsoft introduced in Excel a feature known as Web Query.
This feature allowed users to retrieve data from a Web page for use and analy-
sis in Excel. While Web Query is still present in the 2019 version as one of the
many Legacy Wizards, the Web page layouts have undergone so many changes
in recent years that there are fewer and fewer pages that can be accessed using
the Web Query. In this section, we will look at a simple web query so that you
are familiar with this concept.

To pull data from the Web via Web queries you must have an active Internet
connection. You also need to know the address (URL) of the Web page that
contains some data in tabular format.

To enable the Web Query in Excel 2019, choose File | Options | Data, check
the box next to From Web (Legacy) and click OK as shown in Figure 26.9.

FIGURE 26.9 Data import features that were available in Excel 2016 in the Ribbon’s Get External
Data section of the Data tab, are now disabled by default. You can enable them by checking
appropriate boxes in the Show legacy import wizards’ section as displayed here.

After activating the From Web Legacy Wizard, you will notice that the Get Data
button on the Ribbon’s Data tab now includes the Legacy Wizard command
with the command that you activated (see Figure 26.10).

884 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 26.10 Older data import commands are shown in Excel 2019 under the Legacy Wizards
command and you need to enable them via the Options dialog (see Figure 26.9).

When you select From Web (Legacy) command, Excel will display the New Web
Query dialog box. By default, Excel will try to read data from your home page.
To load a specific Web page, simply type its URL in the Address bar, as shown
in Figure 26.11.

FIGURE 26.11 The New Web Query dialog box provides special user interface for obtaining data
from Web pages.

HTML PROGRAMMING AND WEB QUERIES 885

Web queries allow you to retrieve data from the Web directly into Microsoft
Excel without having to know anything about programming. After placing
data in a worksheet, you can use Excel tools to perform data analysis. A single
table, several tables, or all the text that a Web site contains can be retrieved into
a worksheet. Simply click the arrow next to the table you want to select and
click Import (see Figure 26.11). You can get the data with or without format-
ting by choosing the Options button in Figure 26.11. Figure 26.12 shows the
Excel worksheet after the retrieval of data (see the highlighted area in Figure
26.11). You can save the underlying Web query using the Save button in the
New Web Query dialog. This button is located immediately before the Options
button. Web queries are stored in text files with the .iqy extension. The content
of the .iqy file can be viewed by opening the file in any text editor (for example,
Windows Notepad), as shown in Figure 26.13. Web queries can be also created
manually by entering the required commands in a text file and saving the file
with the .iqy extension.

FIGURE 26.12 Web data retrieved into a Microsoft Excel worksheet using the New Web Query dialog
box (see Figure 26.11).

FIGURE 26.13 This Web query file was created by clicking the Save button in the New Web Query
dialog (see Figure 26.11).

886 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The .iqy files contain the following parts:

Section
Name

Description / Example

Query
Type
(Optional
section)

Set to WEB when you use Version Section: WEB

Query
Version
(optional
section)

Allows you to set the version number of a Web query. For example: 1

URL
(required)

The URL of the Web page where you will get your data. For example:

http://www.lsjunction.com/facts/missions.htm

You can send parameters by attaching them to the URL address using the question
mark, as shown below:

https://www.x-rates.com/historical/?from=USD&amount=1&date=2019-03-23

from, amount and date are parameter names. The values USD, 1 and 2019-03-23
that follow the equal signs are parameter settings you want to retrieve from the
specified URL. Parameters are separated from one another with the ampersand
symbol (&).

If a parameter requires multiple values, you must separate them with a plus sign (+).
You can send parameters to the Web server using the POST or GET method.

Web queries can be static or dynamic. Static queries always return the same
data, while dynamic queries allow the user to specify different parameters to
narrow down the data returned from the Web page.

Creating and Running Web Queries with VBA

In the previous section, you learned that a Web query can be created by using
the From Web Legacy or typing special instructions in a text editor such as
Notepad. The third method of creating a Web query is through a VBA state-
ment.

To programmatically create a Web query, use the Add method of the Query-
Tables collection. This collection belongs to the Worksheet object and contains
all the QueryTable objects for a specific worksheet. The Add method returns the
QueryTable object that represents a new query. The format of this method is
shown below:

HTML PROGRAMMING AND WEB QUERIES 887

Expression.Add(Connection, Destination,[Sql])

Expression is an expression that returns the QueryTable object. Connection
specifies the data source for the query table. The data source can be one of the
following:

 ● A string containing the address of the Web page in the form “URL; <url>”.
For example:

"URL;http://www.usa.gov/"

See Hands-On 26.6 for a procedure example that uses the URL connection.

 ● A string indicating the path to the existing Web query fi le (.iqy) using the
form “FINDER; <data fi nder fi le path>”. For instance:

"FINDER;C:\VBAExcel2019_ByExample\www.x-rates.iqy"

 ● A string containing an OLEDB or ODBC connection string. Th e ODBC
connection string has the form “ODBC; <connection string>”. For in-
stance:

"ODBC;DSN=MyNorthwind;UID=;PWD=;" & _
 "Database=Northwind 2007"

Here’s how this could be used to retrieve data from the Northwind 2007.
accdb fi le:

Sub GetAccessData()
 Dim strSQL As String
 Dim strConn As String

 strSQL = "Select * from Shippers"
 strConn = "ODBC;DSN=MyNorthwind;UID=;PWD=;" & _
 "Database=Northwind 2007"
 Sheets.Add
 With ActiveSheet.QueryTables.Add(Connection:=strConn, _
 Destination:=Range("B1"), Sql:=strSQL)
 .Refresh
 End With
End Sub

To try out this procedure, start by creating the MyNorthwind data source
name. You can do this via the ODBC Data Sources link (Control Panel\
System and Security \Administrative Tools). In the ODBC Data Source
Administrator dialog (the User DSN tab), click the Add button. Next,

888 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

select the Microsoft Access Driver (*.mdb, *.accdb) and click the Finish
button. Enter MyNorthwind in the Data Source Name text box, then
click the Select button, and choose the C:\VBAExcel2019_ByExample\
Northwind 2007.accdb fi le. Click OK to confi rm your selection. Next,
click OK to exit the ODBC Microsoft Access setup dialog. MyNorthwind
should appear in the list of the User Data Sources. Click OK to close
the ODBC Data Source Administrator dialog. Enter the procedure in a
standard module of any workbook and then run it.

 ● An ADO or DAO Recordset object. Microsoft Excel retains the Recordset
until the query table is deleted or the connection is changed. Th e result-
ing query table cannot be edited.

 ● A string indicating the path to a text fi le in the form “TEXT; <text fi le
path and name>”. For instance:

"TEXT;C:\VBAExcel2019_ByExample\NorthEmployees.csv"

Th e following example procedure opens the comma-separated fi le in
Excel:
Sub GetDelimitedText()
 Dim qtblOutput As QueryTable

 Sheets.Add
 Set qtblOutput = ActiveSheet.QueryTables.Add(_
 Connection:="TEXT;C:\VBAExcel2019_ByExample
 \NorthEmployees.csv", _
 Destination:=ActiveSheet.Cells(1, 1))
 With qtblOutput
 .TextFileParseType = xlDelimited
 .TextFileCommaDelimiter = True
 '.TextFileOtherDelimiter = "Tab"
 .Refresh
 End With
End Sub

Destination is the cell in the upper-left corner of the query table destination
range (this is where the resulting query table will be placed). This cell must be
in the worksheet containing the QueryTable object used in the expression. The
optional argument, Sql, is not used when a QueryTable object is used as the
data source.

HTML PROGRAMMING AND WEB QUERIES 889

NOTE
Be careful not to include spaces in the connection strings as this
will cause runtime error 1004 during the execution of a VBA pro-
cedure.

The following example procedure creates a new Web query in the active work-
book. The data retrieved from a Web page is placed in a worksheet as static text.

 Hands-On 26.4 Creating a Web Query in an Active Workbook

1. Open a new workbook and save it as C:\VBAExcel2019_ByExample\MyWe-
bQueries.xlsm.

2. Switch to the Visual Basic Editor window and insert a new module in
VBAProject (MyWebQueries.xlsm).

3. In the Code window, enter the GetTrendingTickers procedure, which retrieves
to Excel trending stocks from the Yahoo investing site.
Sub GetTrendingTickers()
' create a web query in the current worksheet
' connect to the web, retrieve data, and paste it
' in the worksheet as static text

Sheets.Add
 With ActiveSheet.QueryTables.Add _
 (Connection:= _
 "URL;http://finance.yahoo.com/trending tickers", _
 Destination:=Range("A2"))
 .Name = "yfin-list"
 .BackgroundQuery = True
 .WebFormatting = xlWebFormattingNone
 .Refresh BackgroundQuery:=False
 .SaveData = True
 End With
End Sub

4. Switch to the Microsoft Excel application window and choose Developer |
Macros.

5. In the Macros dialog box, highlight the GetTrendingTickers procedure and
click Run.
While the procedure executes, the following tasks occur: (a) a connection is
established with the specified Web page, (b) data from a Web page is retrieved,
and (c) data is placed in a worksheet. When the procedure finishes executing,
the active worksheet displays data as shown in Figure 26.14.

890 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 26.14 This data was retrieved from a Web page using the Web query in a VBA procedure.

Notice that this worksheet does not contain any hyperlinks because we set the
WebFormatting property of the query table to xlWebFormattingNone in the
procedure code. This property determines how much formatting from a Web
page, if any, is applied when you import the page into a query table. You can use
one of the following constants: xlWebFormattingAll, xlWebFormattingNone
(this is the default setting), or xlWebFormattingRTF.
 Setting the BackgroundQuery property of the QueryTable object to True
allows you to perform other operations in the worksheet while the data is be-
ing retrieved from the Web page. After retrieving data from the Web page, you
must use the Refresh method of the QueryTable object in order to display the
data in a worksheet. If you omit this method in your procedure code, the data
retrieved from the Web page will be invisible. By setting the SaveData property
to True, the table retrieved from the Web page will be saved with the workbook.

6. Right-click anywhere within the data placed by the Web query in the worksheet.
Choose Edit Query from the shortcut menu.
You will see the Edit Web Query window (Figure 26.15). You may need to click
No multiple times to dismiss the Script Error window. Microsoft has aban-
doned the Legacy Web Query so there is no chance this error will ever get fixed.

7. Click the Options button located on the Edit Web Query window’s toolbar to
access the Web Query Options dialog box, as shown in Figure 26.15.
Notice that the option button None is selected in the Formatting area. This op-

HTML PROGRAMMING AND WEB QUERIES 891

tion button represents the xlWebFormattingNone setting of the WebFormat-
ting property in the procedure code.

8. Press Cancel to close the Web Query Options dialog box and then click Cancel
to exit the Edit Web Query window.

FIGURE 26.15 The Web Query Options dialog box.

Which Table Should You Import?

Web pages may contain many tables. Tables allow you to organize the content
of the page. When viewing the HTML source code (while in the browser, press
F12 on the keyboard to activate the Developer Tools), you can easily recognize
tables by the following tags: <table> (beginning of table) and </table> (end of
table). The <td> tag indicates table data. This data will be placed in a work-
sheet cell when retrieved by Excel. Every new table row begins with the <tr>
tag and ends with the </tr> tag. Many times, one table is placed inside another
table (referred to as table nesting). Finding the correct table name or number
containing the data you want to place in the worksheet usually requires experi-
mentation. The New Web Query dialog box provides a visual clue to which
tables a particular Web page contains (see Figure 26.10 earlier in this chapter).
By clicking on the arrow pointing to the table, you can mark a particular table
for selection. You can then click the Save Query button to save the query to a

SIDEBAR

892 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

file. When you open the prepared .iqy file in Notepad, you will see the number
or a name assigned to the selected table (as shown below) which you can use
in your VBA procedure.
WEB
1
https://www.x-rates.com/historical/?from=USD&amount=1&da
te=2019-03-23

Selection=1
Formatting=None
PreFormattedTextToColumns=True
ConsecutiveDelimitersAsOne=True
SingleBlockTextImport=False
DisableDateRecognition=False
DisableRedirections=False

The above code can be found in the historical_rate.iqy file on the companion
CD-ROM.

NOTE

Web pages undergo frequent modifications. It’s not uncommon
to find out that a Web query you prepared a while ago suddenly
stops working because the Web page address or parameters re-
quired to process the data have changed. If you plan on using Web
queries in your applications, you must watch for any changes
introduced on Web sites that supply you with critical informa-
tion. Particularly watch for table references. A reference to table
“4” from a while ago could now be a totally different number or
name, causing your Web query to retrieve data that you don’t
care about or no data at all.

Dynamic Web Queries

Instead of hardcoding the parameter values in the code of your VBA procedures,
you can create a dynamic query that will prompt the user for the parameter set-
tings when the query is run. The Portfolio2 procedure shown below uses the
GET method for sending dynamic parameters. This procedure displays a dialog
box prompting the user to enter stock symbols separated by spaces.

HTML PROGRAMMING AND WEB QUERIES 893

 H ands-On 26.7 Using the GET Method for Sending Dynamic
Parameters

1. In the Code window of VBAProject (MyWebQueries.xlsm), enter the following
Hist_Exchange_OnDate procedure below the code of the Portfolio procedure:
Sub Hist_Exchange_OnDate()
 Dim sht As Worksheet
 Dim qryTbl As QueryTable
' insert a new worksheet in the current workbook
 Set sht = ThisWorkbook.Worksheets.Add
 ' create a new web query in a worksheet
 Set qryTbl = sht.QueryTables.Add _
 (Connection:= _
 "URL;https://www.x-rates.com/historical/?" & _
 "from=USD&Amount=1&Date=[""Enter the " & _
 "date in the format YYYY-MM-DD""]", _
 Destination:=sht.Range("A1"))
 ' retrieve data from web page
 ' and specify formatting
 ' paste data in a worksheet
 With qryTbl
 .BackgroundQuery = True
 .WebSelectionType = xlSpecifiedTables
 .WebTables = "1, 2"
 .WebFormatting = xlWebFormattingAll
 .Refresh BackgroundQuery:=False
 .SaveData = True
 End With
End Sub

2. Switch to the Microsoft Excel application window and choose Developer |
Macros.

3. In the Macro dialog box, highlight the Hist_Exchange_OnDate procedure
and click Run.
When the Web query is activated, the Enter Parameter Value dialog box ap-
pears.

4. Enter the date in the dialog box as shown in Figure 26.16 and click OK.
The data is retrieved from the specified Web page and placed in a worksheet.

894 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 26.16 Dynamic Web queries request parameter values from the user.

You can revise the above procedure to save the date entered by the user in
a variable so that you can enter the date in the worksheet when the data is
retrieved (see the code example below).

Sub Hist_Exchange_OnDate2()
 Dim sht As Worksheet
 Dim qryTbl As QueryTable
 Dim strDate As String

 strDate = Application.InputBox("Enter the date in the format
YYYY-MM-DD")
 ' insert a new worksheet in the current workbook
 Set sht = ThisWorkbook.Worksheets.Add
 ' create a new web query in a worksheet
 Set qryTbl = sht.QueryTables.Add _
 (Connection:="URL;https://www.x-rates.com/historical/?" & _
 "from=USD&Amount=1&Date=" & strDate, _
 Destination:=sht.Range("A2"))

 sht.Range("A1").Formula = "US Dollar Rates on " & strDate
 ' retrieve data from web page and specify formatting
 ' paste data in a worksheet
 With qryTbl
 .BackgroundQuery = True
 .WebSelectionType = xlSpecifiedTables
 .WebTables = "1, 2"
 .WebFormatting = xlWebFormattingAll
 .Refresh BackgroundQuery:=False
 .SaveData = True
 End With

End Sub

HTML PROGRAMMING AND WEB QUERIES 895

REFRESHING DATA

You can refresh data retrieved from a Web page by using the Refresh option on
the shortcut menu. To access this menu, right-click any cell in the range where
the data is located.

The Refresh option is also available from the Ribbon’s Data tab. Data can
be refreshed in the background while you are performing other tasks in the
worksheet, when the file is being opened, or at specified time intervals. You
can specify when the data should be refreshed in the External Data Range
Properties dialog box; right-click anywhere in the data range and choose Data
Range Properties from the shortcut menu to bring up the dialog box shown in
Figure 26.17.

FIGURE 26.17 After retrieving data from a particular Web page using the Web query, you can use the
External Data Range Properties dialog box to control when data is refreshed and how it is formatted.

896 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this chapter, you were introduced to using Excel with the Internet. Let’s
quickly summarize the information we’ve covered here:

 ● Hyperlinks allow you to activate a specifi ed Web page from a worksheet
cell.

 ● HTML fi les can be created and published from Excel by selecting the Web
Page (*.htm; *.html) format type in the Save As dialog box or via VBA
procedures.

 ● Web queries allow you to retrieve “live” data from a Web page into a
worksheet. Th ese queries can be created using the Legacy From Web
command or programmatically with VBA. Web queries let you retrieve
an entire Web page or specifi c tables that a Web page contains. Th e re-
trieved data can be refreshed as oft en as required. Th ere are two types of
Web queries: static and dynamic.

The next chapter demonstrates how you can retrieve or send information to
Excel via Active Server Pages.

897

You have already learned various methods of retrieving data from a Mi-
crosoft Access database and placing this data in an Excel worksheet.
This chapter explores another technology, known as Active Server Pages

(ASP), that you can use for accessing and displaying data stored in databases.
Complete coverage of the ASP is beyond the scope of this book. This chapter’s
objective is to demonstrate how your VBA skills can be used with other Internet
technologies (HTML, VBScript, and ASP Classic) to programmatically access
worksheet data in an Internet browser or place Web data in Excel.

INTRODUCTION TO ACTIVE SERVER PAGES

Active Server Pages (ASP)—also referred to as “classic” ASP (this version of ASP
preceded a newer technology known as ASP.NET)—is a Microsoft Web devel-
opment technology that enables you to combine HTML, scripts, and reusable
ActiveX server components to create dynamic Web applications.

ASP is platform independent. This means that you can view ASP pages in
any browser (Edge, Internet Explorer, Chrome, Firefox, Safari®, Opera, and oth-
ers). While HTML, which is used for creating Web pages, contains text and

Chapter

 27 EXCEL AND
ACTIVE SERVER PAGES

898 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

formatting tags, ASP pages are a collection of HTML standard formatting ele-
ments, text, and embedded scripting statements. You can easily recognize an
ASP page in a browser by its .asp extension in the URL address:

http://w3schools.com/asp/default.asp

Simply put, ASP pages are text files with the .asp extension. ASP code is pro-
cessed entirely by the Web server and sent to the user browser as pure HTML
code. Users cannot view the script commands that created the page they are
viewing. All they can see is the HTML source code for the page. However, if you
have access to the original ASP file, and open this file in any text editor, you will
be able to view the ASP code. Because the default scripting language for ASP is
VBScript, a subset of Visual Basic for Applications, you should find it easy to
create ASP pages that address your specific needs.

NOTE

ASP.NET (pronounced ASP dot net) is a newer, more advanced,
and feature-rich Web development technology from Microsoft that
requires the Microsoft .NET Framework to be installed on users’
computers. Unlike classic ASP, which is limited to scripting languages,
.NET technology provides cross-language support (you can write and
share code in many different .NET languages such as Visual Basic
.NET, C#, Managed C++, JScript.NET, and J#). The names of ASP
files prepared in .NET end in .aspx, .ascx, or .asmx. ASP.NET is not
an upgrade to the classic ASP; it is an entirely new infrastructure for
Web development that requires learning new concepts behind building
Web applications and “unlearning” the concepts learned and utilized
in programming classic ASP applications. Because programming in
.NET languages is quite different from writing programs in Visual
Basic for Applications, it is not covered here. Instead, this chapter
concentrates on ASP classic programming, which is more related to
Visual Basic for Applications via its subset, VBScript.

THE ASP OBJECT MODEL

ASP has its own object model consisting of the objects shown in Table 27.1 that
provide functionality to the Web pages.

EXCEL AND ACTIVE SERVER PAGES 899

TABLE 27.1 The ASP object model

ASP Object Name Object Description
Request Obtains information from a user
Response Sends the information to the client browser
Application Shares information for all the users of an application
Server Creates server components and server settings
Session Stores information pertaining to a particular visitor

The ASP objects have methods, properties, and events that can be called to
manipulate various features. For example, the Response object’s Write method
allows you to send the output to the client browser. The CreateObject method
of the Server object is used to create a link between a Web page and other appli-
cations such as Microsoft Excel or Access. You will become familiar with some
of the ASP objects and their properties and methods as you create the example
ASP pages in this chapter.

HTML AND VBSCRIPT

HTML is a simple, text-based language that uses special commands known as
tags to create a document that can be viewed in a browser. HTML tags begin
with a less-than sign (<) and end with a greater-than sign (>). For example, to
indicate that the text should be displayed in bold letters, you simply type your
text between the begin bold and end bold tags (and) like this:

 This text will appear in bold letters.

Using plain HTML, you can produce static Web pages with text, images, and
hyperlinks to other Web pages. A good place to start learning HTML is the
Internet. For easy, step-by-step tutorials and lessons, check out the following
Web link:

http://www.w3schools.com/html/

To create an ASP file, all you need is a simple text editor such as Windows Note-
pad. However, if you are planning to create professional Internet applications
using classic ASP, consider using Visual Studio Code, a free and lightweight
source code editor that runs on Windows, MacOS, and Linux. Table 27.2 lists
some of the script delimiters and HTML tags used to create ASP files.

900 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 27.2 Script delimiters and HTML tags used in the first example procedure

Delimiters/Tags Description
<% and %> Beginning and end of the ASP script fragment. The script code

between the <% and %> delimiters will be executed on the
server before the page is delivered to the user browser.

<html> and </html> You should place the <html> tag at the beginning of each Web
page. To indicate the end of a Web page, use the closing tag: </
html>.

<body> and </body> The text you want to display on the Web page should be placed
between these tags.

<table> and </table> Indicate the beginning and end of a table.
<table border = "1"> The border parameter specifies the width of the table border.
<th> and </th> Place table headings between these tags.
<tr> and </tr> The <tr> tag begins a new row in a table. Each table row ends

with the </tr> tag.
<td> and </td> Table data starts with the <td> tag and ends with the </td> tag.

CREATING AN ASP CLASSIC PAGE

In this section, you will create your first ASP page using HTML and Microsoft
Visual Basic Scripting Edition (VBScript). Suppose that you want to retrieve
some data from a Microsoft Access database and make it available to users as
an Excel worksheet. The following procedure creates an ASP page that retrieves
data from the Shippers table.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 27.1 Creating an ASP Page that Retrieves Data from a
Database Table into an Excel Worksheet

1. Open Notepad and enter the following ASP script:
<% @Language = VBScript %>
<%

' Send the output to Excel

Response.ContentType = "Application/vnd.ms-excel"
Response.AddHeader "Content-Disposition", _
 "attachment;filename = Shippers.xls"

EXCEL AND ACTIVE SERVER PAGES 901

' declare variables
Dim accessDB
Dim conn
Dim rst
Dim sql

' name of the database
accessDB = "Northwind 2007.accdb"

' prepare connection string
conn = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & Server.MapPath(accessDB) & _
 "; Persist Security Info = False;"

' Create a Recordset
Set rst = Server.CreateObject("ADODB.Recordset")

' select records from Shippers table
sql = "SELECT ID, Company, Address, City FROM Shippers"

' Open Recordset (and execute SQL statement above)
' using the open connection

rst.Open sql, conn

%>

<html>
<body>
<Table Border = "1">

 <%
 For Each fld in rst.Fields
 Response.Write("<th>") & fld.Name
 Next
 rst.MoveFirst
 Do While Not rst.EOF
 Response.Write("<tr>")
 For Each fld in rst.Fields
 Response.Write("<td>") & fld.Value & "</td>"
 Next
 Response.Write("</tr>")
 rst.MoveNext
 Loop

902 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 %>
</table>
</body>
</html>

<%
' close the Recordset
rst.Close
Set rst = Nothing
%>

2. Save the file as C:\Excel2019_ByExample\AccessTbl.asp.
3. Close Notepad.

The AccessTbl.asp file shown above begins by specifying a scripting language
for the page with the Active Server Page directive <% @Language = VB-
Script %>. The script contained between the <% and %> delimiters is Visual
Basic script code that is executed on the Web server. Like VBA procedures,
the first step in scripting is the declaration of variables. Because in VBScript
all variables are of the Variant type, you don’t need to use the As keyword to
specify the type of variable. To declare a variable, simply precede its name with
the Dim keyword:
Dim accessDB
Dim conn
Dim rst
Dim sql

You can declare all your variables on one line, like this:
Dim accessDB, conn, rst, sql

To tell the browser that the code that follows should be formatted for display in
Excel, we need to use the following directive:
Response.ContentType = "Application/vnd.ms-excel"

The ContentType property of the ASP Response object specifies which format
should be used for displaying data obtained from a Web server. If you don’t set
this property, the data will be presented in the browser in text/HTML format.
 To ensure that the workbook file is created with the specific filename, use
the following directive entered on one line:
Response.AddHeader "Content-Disposition","attachment;filename =
 Shippers.xls"

EXCEL AND ACTIVE SERVER PAGES 903

NOTE

 In the above directive, notice the use of the old Excel file
extension (.xls). If you use the new file extension (.xlsx), Excel
2019 will generate the following error message when you
attempt to open the file: “Excel cannot open the file “Shippers.
xlsx” because the file format or extension is not valid. Verify
that the file has not been corrupted and that the file extension
matches the format of the file.” The current version of Excel does
not recognize the HTML format the way versions prior to Excel
2010 did. By saving the file as .xls, you will be able to view the
file in Excel 2019/2010. (For additional information, please
refer to “Suppressing Error Messages when Opening XLS Files in
Office 2019” later in this chapter.)

To connect with the Access database, we specify a connection string like this:
 conn = "Provider Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & Server.MapPath(accessDB) & _
 "; Persist Security Info=False;"

The exact path will be supplied by the MapPath method of the Server object:
Server.MapPath(accessDB)

You can also connect to your Access database by using the OLE DB data pro-
vider as follows:

 conn = "DRIVER={Microsoft Access Driver (*.mdb, *.accdb)};"
 conn = conn & "DBQ=" & Server.MapPath(accessDB)

The DRIVER parameter specifies the name of the driver that you are planning
to use for this connection (Microsoft Access Driver (*.mdb, *.accdb)). The DBQ
parameter indicates the database path. Similar to the previous example, the
exact path will be supplied by the MapPath method of the Server object.
To connect to an SQL Server database, use the following format:

 Set conn = Server.CreateObject("OLEDB.Connection")
 conn.Open "Provider="SQLOLEDB;" & _
 "Data Source=YourServerName;" & _
 "Initial Catalog=accessDB;" & _
 "UID=yourId; Password=yourPassword;"

To gain access to database records, we create the Recordset object using the
CreateObject method of the Server object:

Set rst = Server.CreateObject("ADODB.Recordset")

904 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

After creating the recordset, we open it using the Open method, like this:
rst.Open sql, conn

The above statement opens a set of records. The sql variable is set to select four
columns from the Shippers table. The conn variable indicates how you will con-
nect with the database.

The next part of the ASP page contains HTML formatting tags that prepare a
table. These tags are summarized in Table 27.2 earlier in this chapter. The table
headings are read from the Fields collection of the Recordset object using the
For Each…Next loop. Notice that all instructions that need to be executed on
the server are enclosed by the <% and %> delimiters. To enter the data returned
by the server in the appropriate worksheet cells, use the Write method of the
ASP Response object:

Response.Write fld.Name

The above statement will return the name of a table field. Because this instruc-
tion appears between the <th> and </th> HTML formatting tags, the names of
the table fields will be written in the first worksheet row in table heading type.

After reading the headings, the next loop reads the values of the fields in
each record:

Response.Write fld.Value

Because the above statement is located between the <td> and </td> formatting
tags, the values retrieved from each field in a particular record will be written
to table cells.

The script ends by closing the Recordset and releasing the memory used by
it:

 rst.Close
 Set rst = Nothing

Because the Web server reads and processes the instructions in the ASP page
every time your browser requests the page, the information you receive is highly
dynamic. ASP allows the page to be built or customized on the fly before the
page is returned to the browser.

We are not ready yet to view the data. Before you can run this script, you
must perform the following tasks:

1. Install Microsoft Internet Information Services (IIS). The installation
instructions are presented in the next section.

2. Create a virtual folder (see the section following the IIS installation
instructions).

EXCEL AND ACTIVE SERVER PAGES 905

INSTALLING INTERNET INFORMATION SERVICES (IIS)

Internet Information Services (IIS) is a Web server application created by
Microsoft for use with the Microsoft Windows operating system. The following
versions of IIS are currently in use:

 ● IIS 10 – Windows 10 / Windows Server 2016
 ● IIS 8.5 – Windows 8.1 / Widows Server 2012 R2
 ● IIS 8 – Windows 8 / Windows Server 2012
 ● IIS 7.5 – Windows 7 / Windows Server 2008 R2

The classic version of ASP is not installed by default on IIS 7.5 and later. There-
fore, before running the examples in this chapter, you need to enable this fea-
ture. Hands-On 27.2 walks you through the process of getting the Classic ASP
to be recognized by your computer.

 Hands-On 27.2 Enabling Classic ASP in Windows

1. Open the Control Panel.
2. Click on the Programs link as shown in Figure 27.1.
3. Under Programs and Features, click Turn Windows features on or off as

shown in Figure 27.2.

FIGURE 27.1 Enabling classic ASP (Step 1).

906 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 27.2 Enabling classic ASP in Windows (Step 2).

If you are prompted with permission to continue, click Continue in the User
Account Control (UAC) window to give Windows your permission to proceed.
Wait while Windows retrieves all the features.

4. Expand the Internet Information Services tree node and make sure your
selections under various IIS nodes match those shown in Figures 27.3a
(Windows 7) or 27.3b (Windows 10). Make sure ASP is checked under the
Application Development Features.

FIGURE 27.3A Enabling classic ASP in
Windows 7.

FIGURE 27.3B Enabling classic ASP in
Windows 10.

EXCEL AND ACTIVE SERVER PAGES 907

5. After making selections in the Windows Features dialog, click OK and wait
for Windows to make appropriate changes. This might take several minutes.

6. Once the required Windows features are configured close all open Control
Panel windows.

7. After completing the above configuration steps, you should see the folder
named inetpub on your computer’s system drive as shown in Figure 27.4.

FIGURE 27.4 After you’ve enabled classic ASP, a new folder named inetpub appears on your
computer’s system drive.

NOTE
After you have installed IIS, it is important that you run Win-
dows Update to ensure that your system has the most recent
security patches and bug fixes.

CREATING A VIRTUAL DIRECTORY

The default home directory for the World Wide Web (WWW) service is \Inet-
pub\wwwroot. Files located in the home directory and its subdirectories are
automatically available to visitors to your site. If you have Web pages in other
folders on your computer and you’d like to make them available for viewing, you
can create virtual directories. A virtual directory appears to client browsers as if
it were physically contained in the home directory.

NOTE
For the purposes of this chapter, you will create a directory called
VBAExcel2019_ASP_Classic on your computer and designate it
as a virtual directory.

908 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 27.3 Creating a Virtual Directory

1. On your C drive, create a new folder named VBAExcel2019_ASP_Classic.
2. Open the Control Panel, change the view to show all icons, and then click on

Administrative Tools.
3. Double-click Internet Information Services (IIS) Manager as shown in

Figure 27.5.

FIGURE 27.5 To set up a virtual directory on your computer, you must first activate Internet
Information Services (IIS) Manager in the Administrative Tools of the Windows Control Panel.

4. Click Continue in the User Account Control (UAC) window if Windows asks
you for permission to continue.

5. Expand the tree nodes in the Connections pane on the left, right-click on
Default Web Site, and select Add Virtual Directory as shown in Figure 27.6.
A virtual directory has an alias, or name that client browsers use to access that
directory. An alias is often used to shorten a long directory name. In addition,
an alias provides increased security. Because users do not know where your
files are physically located on the server, they cannot modify them.

EXCEL AND ACTIVE SERVER PAGES 909

FIGURE 27.6 You can add a virtual directory by right-clicking Default Web Site in the Connections
pane of the Internet Information Services (IIS) Manager window.

6. Type TASP in the Alias box as shown in Figure 27.7. Set the Physical path to
point to the C:\VBAExcel2019_ASP_Classic folder that you created in Step 1.

FIGURE 27.7 The Add Virtual Directory dialog box is used to specify the name and path to your
Web site folder. The physical folder named VBAExcel2019_ASP_Classic will be shared over the Web
as TASP.

910 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. Click OK to save the changes.
Notice the virtual directory named TASP now appears under Default Web Site
in the Connections pane (Figure 27.8). The middle section of the Internet In-
formation Services (IIS) Manager displays the TASP Home.

FIGURE 27.8 After creating a virtual directory, you should see it listed under Default Web Site in
the Connections pane of the Internet Information Services (IIS) Manager window.

8. Do not close the IIS Manager window, as you will continue with it in the next
section.

SETTING ASP CONFIGURATION PROPERTIES

To make it easy to debug your code and to ensure that you can use relative paths
in your code, you should change a couple of default configuration properties in
the IIS Manager. The following Hands-On walks you through the steps required
to make the necessary modifications.

 Hands-On 27.4 Confi guring ASP Properties

1. In the Connections Pane, select Default Web Site, and then in the middle
section under IIS, double-click ASP.

2. Expand the Debugging Properties tree node and set the Send Errors To
Browser property to True, as shown in Figure 27.9.

EXCEL AND ACTIVE SERVER PAGES 911

FIGURE 27.9 By setting the Send Errors To Browser property to True, you can easily troubleshoot
errors when your Active Server Page encounters an error.

NOTE

By default, when ASP script errors are encountered, Windows
displays the following message:
“An error occurred on the Server when processing the URL.
Please contact the System Administrator.”
To prevent this error, be sure to select True next to the Send Er-
rors To Browser property as shown in Figure 27.9.

3. In the Behavior section, set Enable Parent Paths to True as shown in
Figure 27.9.
Parent paths allow you to use relative addresses that contain “..” in the paths of
fi les and folders. For example, the following line will cause an error if parent
paths are disabled:

Response.Write Server.MapPath("../login.asp")

In earlier versions of IIS, parent paths were enabled by default. In IIS 7 and
above, you need to remember to enable parent paths in order to prevent errors
when relative paths are used.

4. In the Actions area on the right, click Apply to save the changes. When changes
have been successfully saved, you should see a message in the Alerts area in the
right pane of the IIS Manager window that the changes have been successfully
saved.

912 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

5. Close the Internet Information Services (IIS) Manager window and any
Control Panel windows that are still open.

TURNING OFF FRIENDLY HTTP ERROR MESSAGES

Friendly HTTP error messages don’t provide enough information for program-
mers to troubleshoot ASP script errors. Use the following steps to uncheck the
Show friendly HTTP error messages option in your browser so you will get
more meaningful error messages that can help you solve your script problems.

 Hands-On 27.5 Turning Off Friendly HTTP Error Messages

1. Open Control Panel and search for Internet Options.
2. In the Internet Options window, click the Advanced tab.
3. Locate the Browsing settings and uncheck Show friendly HTTP error

messages as shown in Figure 27.10.

FIGURE 27.10 Turn off the Show friendly HTTP error messages option so you can see the actual
Windows messages when troubleshooting your Active Server Pages.

4. Click OK to save your changes and exit the Internet Options window.

EXCEL AND ACTIVE SERVER PAGES 913

NOTE
Your IIS is now configured to run classic ASP scripts on a Win-
dows 7 / 10 machine (32-bit systems). If you are working with the
64-bit system, you will need to take additional steps as follows:

a. Open the Control Panel, change the view to show all icons, and then click
on Administrative Tools.

b. Double-click Internet Information Services (IIS) Manager as shown in
Figure 27.5.

c. Expand the tree node in the Connections pane on the left , right-click the
Application Pools and choose Add Application Pool.

d. In the name box, enter MyClassicASP. For the .NET Framework version
choose No Managed Code. In the Managed Pipeline Mode drop-down,
choose Classic. Aft er making these selections, click OK.

e. Th e MyClassicASP entry should now appear in the Application Pool list in
the middle section of the IIS Manager window. Right-click this entry and
choose Advanced Settings.

f. In the (General) section of the Advanced Settings dialog, specify True for
Enable 32-bit Applications.

g. Click OK to close the Advanced Settings dialog.
h. In the Connections pane on the left , right-click Default Web Site, and

choose Manage Web Site | Advanced Settings.
i. In the Advanced Settings window, change the Application Pool to

MyClassicASP and click OK.
j. Close the IIS Manager window.

For more information, see the following link:
http://www.iis.net/learn/application-frameworks/running-classic-asp-applica-
tions-on-iis-7-and-iis-8

RUNNING YOUR FIRST ASP SCRIPT

Now that you’ve prepared the ASP file and set up the virtual directory including
the necessary permissions, it’s time to see the result of your efforts.

914 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 27.6 Running Your First ASP Script

1. To ensure that all the components you need for this chapter’s examples can be
quickly accessed, copy the sample Northwind 2007.accdb database file from
the C:\VBAExcel2019_ByExample folder to your Excel2019_ASP_Classic
folder.

2. Copy the AccessTbl.asp file that you created earlier in this chapter (see
HandsOn 27.1) to the C:\VBAExcel2019_ASP_Classic folder.

3. Open your Internet browser.
4. Type the address htt p://localhost/TASP/AccessTbl.asp and press Enter to

execute the script in the .asp file.
Localhost is the name of the Web server installed on your computer, and
TASP is the name of the virtual folder where the ASP script file named Ac-
cessTbl.asp is stored.

NOTE

If you are working on a brand-new computer, you may encounter
an error “800A0E7A – Provider cannot be found. It may not be
properly installed.” To fix this issue, download the 2007 Office
System Driver Data Connectivity Components:

http://www.microsoft.com/download/en/confirmation.
aspx?id=23734

After installing the above driver, execute the Step 4 in this exer-
cise.

5. When you get a message that Shippers.xls has downloaded (Figure 27.11),
click the Open button.

FIGURE 27.11 When you request an ASP page in the browser you are prompted to
Open or Save the file.

EXCEL AND ACTIVE SERVER PAGES 915

When you click the Open button, you may see the following error message:

Windows 7:
The file you are trying to open, “Shippers.xls”, is in a different format than speci-
fied by the file extension. Verify that the file is not corrupted and is from a trusted
source before opening the file. Do you want to open the file now?

Windows 8 / 10:
The file format and extension of “Shippers.xls” don’t match. The file could be cor-
rupted or unsafe. Unless you trust its source, don’t open it. Do you want to open
it anyway?

NOTE

This error occurs because you are trying to open an Excel work-
book in the old XLS file format with Excel 2019. You can suppress
this message by inserting a key in the Registry Editor (see the side-
bar at the end of this Hands-On exercise).

6. Click Yes in the message box to open the XLS file.
The data from the Microsoft Access Northwind 2007 database’s Shippers table
appears in a Microsoft Excel workbook (Figure 27.12).

FIGURE 27.12 The Excel application window opened by the ASP script displays a table of data
retrieved from an Access database.

7. Save the workbook file as C:\VBAExcel2019_ByExample\Shippers.xlsx.
Close the Shippers workbook and exit Excel.

916 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Suppressing Error Messages when Opening .XLS Files in Offi ce 2019

To disable the message that appears when you click the Open button in the File
Download dialog box, you will need to insert a new key in the Registry Editor.
Editing the Windows registry is a serious matter, so make sure you know what
you are doing before performing the following steps:

1. Choose Start | Run, type regedit, and click OK.
2. Click Yes in the User Account Control dialog box to give the program

permission to make changes to the computer.
3. When the Registry Editor opens, navigate to HKEY_CURRENT USER\

Software\ Microsoft\Office\16.0\Excel\Security.
4. Choose Edit | New and select DWORD (32-bit) Value.
5. Type ExtensionHardening to specify the key name.
6. Choose File | Exit to exit the Registry Editor.

SENDING DATA FROM AN HTML FORM TO AN EXCEL
WORKBOOK

An ASP script can contain a form that is used for collecting data. Assume that
you need to gather information about patients visiting an urgent care center in
your town. It’s been requested that your data entry/display screen have a Web
interface. Normally, when you collect data on a Web page, the information is
saved into some sort of a database, like SQL Server or Microsoft Access. How-
ever, your client particularly requested that the data from your Web form’s input
fields be saved directly to an existing Excel workbook file. To meet this require-
ment, we will take the following steps:

 ● Create an Excel workbook fi le for data collection purposes.
 ● Create an ASP page for collecting and processing user input.

 Hands-On 27.7 Sending Data from an HTML Form to an Excel
Workbook

1. Start Microsoft Excel and open a new workbook.
2. In cell A1, enter Patient. In cell B1, enter Phone.

These labels will serve as headings for your two-field Excel database.
3. Select columns A:B. With the columns A and B highlighted, choose Formulas.

SIDEBAR

EXCEL AND ACTIVE SERVER PAGES 917

In the Defined Names group, choose Create from Selection. When the Create
Names from Selection dialog box appears with the Top row checkbox selected,
click OK.
 These tasks result in creating two named ranges in your workbook: Patient
and Phone.

4. Choose Formulas | Name Manager to open the Name Manager dialog box.
Notice in Figure 27.13 that the Patient range refers to cells =Sheet1!A2:
A1048576, and the Phone range references cells =Sheet1!B2:B1048576.

FIGURE 27.13 Viewing named ranges in an Excel workbook.

5. Close the Name Manager dialog box.
6. Save this workbook file as C:\VBAExcel2019_ASP_Classic\ExcelDb.xlsx.
7. Close the file and exit Microsoft Excel.

Now that we have a workbook file for data collection purposes, let’s proceed to
create a Web user interface for data input and processing.

918 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 27.8 Creating a Web Based Form for Data Collection

1. Open Notepad and enter the ASP script code as shown below:
<% @Language = "VBScript"%>

<%

' Variable Declarations
'----------------------------------
Dim adoConn ' The ADODB connection object
Dim rst ' The ADODB recordset object
Dim strConn ' Connection string to Excel workbook
Dim strSQL1 ' SQL query string (Select...Where)
Dim strSQL2 ' SQL query string (Insert Into...)
Dim strSQL3 ' SQL query string (Select count(*) ...)
Dim strName ' Patient's name
Dim strPhone ' Patient's phone number
Dim strFile ' Name of Excel Workbook (holds Patient list)

' assign values to string variables
'----------------------------------
strFile = "ExcelDb.xlsx"
strName = Trim(Request.Form("Patient_Name"))
strPhone = Trim(Request.Form("Patient_Phone"))

' define connection string
'----------------------------------
strConn = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source="
strConn = strConn & server.MapPath(strFile) & ";"
strConn = strConn & "Extended Properties=Excel 12.0"

' define common error handling subroutine
'--------------------------------------
Sub ErrorHandler()
 If err.number <> 0 then
 If err.number = 3709 or err.number = -2147467259 then
 Response.Write("")
 Response.Write("Attention: The Excel file is in use.</br>")
 Response.Write("Please close the " & strFile & " workbook ")
 Response.Write("and refresh the Browser.")
 Response.Write("</br>")
 Elseif err.number = -2147217865 then
 Response.Write "Excel Workbook File " & _
 strFile & " cannot be found."
 Else
 Response.Write err.number & ":" & err.Description
 End if
 Err.Clear

EXCEL AND ACTIVE SERVER PAGES 919

 Response.End
 End if
End Sub

'Enable error handling
'---
On Error Resume Next

If not isEmpty(Request.Form("cmdSubmit")) then

 ' prepare name and phone number for entry into Excel
 ' this will prevent errors in SQL statements
 '-------------------------
 Dim strNameFormat
 strNameFormat = Replace(strName, "'", "''")

 Dim strPhoneFormat
 strPhoneFormat = "(" & Left(strPhone, 3) & ")" & _
 Mid(strPhone, 4,3) & "-" & _
 Right(strPhone, 4)

 ' validate data entry fields prior to insert
 '---
 Dim isValid
 isValid = true

 For Each key In Request.Form
 If key = "Patient_Name" or key = "Patient_Phone" then
 If Request.Form(key) = "" Then
 Response.Write("")
 Response.Write("Please enter the " & key & ".")
 Response.Write("
")
 isValid = false
 Exit For
 End If
 If key = "Patient_Phone" then
 If len(strPhone) <> 10 or not isNumeric(strPhone) then
 Response.Write("")
 Response.Write("Enter the 10-digit phone number.")
 Response.Write("
")
 isValid = false
 Exit For
 End if
 End if
 End if
 Next

 'if passed validation check if data already exists in Excel

920 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 '--
 If isValid then

 strSQL1 = "Select count(*) from [Sheet1$] Where Patient = '"
 strSQL1 = strSQL1 & strNameFormat & "'" & " AND phone = '"
 strSQL1 = strSQL1 & strPhoneFormat & "'"

 Set adoConn = Server.CreateObject("ADODB.Connection")
 With adoConn
 .Open strConn
 set rst1 = .Execute(strSQL1)
 End with

 Call ErrorHandler()

 Dim recCount
 recCount = rst1(0).value

 Dim insertFlag
 insertFlag = True

 If recCount <> 0 then
 Response.Write("
<u>This record cannot be inserted.")
 Response.Write(" It already exists in Excel!</u>")
 insertFlag = false
 End if

 ' close the Recordset and cleanup
 '----------------------------------
 rst1.Close
 set rst1 = Nothing
 End if

 If isValid = true and insertFlag = true then

 ' define SQL Insert statement
 '----------------------------------
 strSQL2 = "INSERT INTO [Sheet1$] (Patient, Phone)"
 strSQL2 = strSQL2 & " VALUES ('" & strNameFormat & "'"
 strSQL2 = strSQL2 & ",'" & strPhoneFormat & "')"

 Response.Write strSQL2 & "
"

 'insert data into Excel
 '----------------------------------
 Set adoConn = Server.CreateObject("ADODB.Connection")
 'On Error Resume Next
 With adoConn

EXCEL AND ACTIVE SERVER PAGES 921

 .Open strConn
 .Execute(strSQL2)
 End with

 Call ErrorHandler()

 Response.Write("<i>")
 Response.Write("The following Data was inserted:")
 Response.Write("</i><hr style=""width:50%;
 text-align: left"" />")
 Response.Write("Patient Name: " & strName & "
")
 Response.Write("Phone Number: " & strPhoneFormat & "")
 Response.Write("<p/>")

 ' clear /reset form fields
 '---
 document.form1.Patient_Name.value = ""
 document.form1.Patient_Phone.value = ""
 strPhone = ""
 strName = ""
 End if
End if

'connect to Excel to retrieve data
'--
strSQL3 = "Select Patient, Phone From [Sheet1$]"

On Error Resume Next
Set adoConn = Server.CreateObject("ADODB.Connection")
adoConn.Open strConn

set rst2 = Server.CreateObject("ADODB.Recordset")
set rst2.ActiveConnection = adoConn
rst2.Open strSQL3

Call ErrorHandler()

%>
<!-- display the data entry form -->
<html>
<head>
 <title>Patient Data Entry Page</title>
</head>

<body>
 <form name="form1" action="ExcelEntry.asp" method="POST">
 </p>
 <table style="background-color: orange; border: 1;">

922 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 <tr>
 <td>
 <table style="border:0">
 <tr>
 <td colspan="2" style="background-color: yellow;
 text-align:center">
 Patient Data Entry Form

 </td>
 </tr>
 <tr><td> </td></tr>
 <tr>
 <td>Patient Name:
 <input type="text" name="Patient_Name"
 size="30" value="<%=strName%>">
 Phone:
 <input type="text" name="Patient_Phone"
 value="<%=strPhone%>" >
 </td>
 </tr>
 <tr><td> </td></tr>
 <tr>
 <td style="text-align: center">
 <input type="submit" name="cmdSubmit"
 value="Submit to Excel">
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </form>
 <hr style="width: 50%; text-align: left" />
<%

'write out Excel data to the Web page
'----------------------------------
If Not rst2.EOF And Not rst2.BOF Then
 Dim cCode 'color code

 cOne = "#fffacd" 'yellow chiffon
 cTwo = "#E0E0E0" 'light gray
 cCode = cOne
 Response.Write("<table style=""width: 300;
 text-align: left; border: 0"">")
 Response.Write("<tr><td colspan='2'
 style=""text-align: center"">")
 Response.Write("<h3>Patient List in Excel</h3>
")

EXCEL AND ACTIVE SERVER PAGES 923

 Response.Write("</td></tr>")

 '---- print out column headings -------------------
 Response.Write("<tr>")
 For Each fld in rst2.Fields
 Response.Write("<td NoWrap
 style=""text-align: center"">")
 Response.Write fld.name
 Response.Write("</td>")
 Next
 Response.Write("</tr>")

 '---- print out data rows -------------------
 Do While not rst2.EOF
 Response.Write("<tr>")
 For each fld in rst2.Fields
 Response.Write("<td nowrap style=""text-align: center""
 bgcolor='" & cCode & "'>")
 Response.Write fld.value & ("
</td>")
 Next
 If cCode = cOne then
 cCode = cTwo
 Else
 cCode = cOne
 End if
 Response.Write("</tr>")
 rst2.MoveNext
 Loop
 Response.Write("</table>")
else
 '---no Patient records were found in the Excel workbook --------
 Response.Write("<table style:""border: 1; width: 50%"" >")
 Response.Write("<tr style=""valign: top"">")
 Response.Write("<td style=""text-align: left"">")
 Response.Write("")
 Response.Write("There are no records in the Excel workbook.
")
 Response.Write("Use the Form above to add data.")
 Response.Write("</td></tr>")
 Response.Write("</table>")
End if

rst2.Close
set rst2 = nothing
adoConn.Close
set adoConn = Nothing

%>
</body>
</html>

924 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Save the previous ASP script code in the C:\Excel2019_ASP_Classic folder as
ExcelEntry.asp.
The Active Server Page we have just written uses several constructs that you’ve
learned earlier in this book. You have here multiple decision-making state-
ments, looping structures, and error handling code. You also have statements
that handle string manipulation and database access.
 When writing Active Server Pages, you will need to check for errors to en-
sure that they are handled correctly. If you want to continue processing your
page even if an error occurs, you need to write code to handle the error in
some way. While VBA has many built-in tools to aid you in debugging, classic
ASP is quite primitive in this regard. To handle errors in VBScript you gener-
ally include the following line in your .asp file:

<% On Error Resume Next %>

The above statement tells the ASP Processor to continue processing your page
if an error is encountered. If you don’t include this statement in your code,
the processing of your VBScript will stop when an error occurs, and an error
message will be returned to the browser. In the ExcelEntry.asp page when the
error occurs, instead of ignoring it, we want to handle it gracefully by calling
the ErrorHandler subroutine:
Sub ErrorHandler()
 If Err.Number <> 0 Then
 If Err.Number = 3709 Or _
 Err.Number = -2147467259 Then
 Response.Write ("")
 Response.Write ("Attention: The Excel " & _
 "file is in use.</br>")
 Response.Write ("Please close the " & _
 strFile & " workbook ")
 Response.Write ("and refresh the Browser.")
 Response.Write ("</br>")
 ElseIf Err.Number = -2147217865 Then
 Response.Write "" & _
 "Excel Workbook File " & _
 strFile & " cannot be found."
 Else
 Response.Write Err.Number & ":" & _
 Err.Description
 End If
 Err.Clear
 Response.End
 End If
End Sub

EXCEL AND ACTIVE SERVER PAGES 925

Use the Response.End statement to end the processing of the page when an
error occurs.
 By placing the error handling code in a procedure, you can call it whenever
you need to handle errors. Frequently errors occur when you attempt to ac-
cess the data source for reading, inserting, and updating data. Because the
ExcelEntry page is used with an Excel workbook, you can assume that you will
get an error when you try to access Excel data or write to Excel when the Excel
file is open or does not exist in the specified folder. This is pretty easy to test by
having the Excel file open while attempting to submit form data or renaming
the Excel file before invoking the page. Figure 27.14 shows the page the user
will see if the Excel workbook is open while user accesses the ASP page.

FIGURE 27.14 A user-friendly message informs the user about the problem and provides
information on how to fix it.

While testing your ASP application, you should take note of error numbers
that pop up, so you can write user-friendly error messages in your error han-
dling code. Since you cannot cover all errors that might occur while running
your page, you should include a statement that generates a standard error mes-
sage:
Response.Write err.number & ":" & err.Description

To call your error handling subroutine, use the Call statement like this:
Call ErrorHandler()

Notice that in the ExcelEntry.asp file, we call the ErrorHandler subroutine ev-
ery time we attempt to access the Excel workbook for reading or writing.
When you run the ExcelEntry.asp page (http://localhost/tasp/ExcelEntry.asp)
for the first time and there are no issues with the Excel workbook that the
ExcelEntry page relies on, you will see the page output shown in Figure 27.15.

926 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 27.15 A Data entry page generated by the ExcelEntry.asp file.

Because forms are used to gather information from users, you will often want
to place the information from the form’s fields into variables. Instead of con-
stantly calling Request.Form (variablename) to get the content of each
variable, you can use an iterator (dummy variable) in a For Each loop. The
ExcelEntry.asp VBScript shown previously uses the following code to validate
user input:

 ' validate data entry fields prior to insert
 '---
 Dim isValid
 isValid = true

 For Each key In Request.Form
 If key = "Patient_Name" or key = "Patient_Phone" then
 If Request.Form(key) = "" Then
 Response.Write("")
 Response.Write("Please enter the " & key & ".")
 Response.Write("
")
 isValid = false
 Exit For
 End If
 If key = "Patient_Phone" then
 If len(strPhone) <> 10 or not isNumeric(strPhone) then
 Response.Write("")
 Response.Write("Enter the 10-digit phone number.")
 Response.Write("
")
 isValid = false
 Exit For
 End if
 End if
 End if
 Next

EXCEL AND ACTIVE SERVER PAGES 927

In order to keep the example simple, only some basic data entry validation is
implemented. The above code fragment first checks for any blanks in the two
form fields that the user needs to fill in. The code also separately checks the
Patient_Phone field to ensure that the data entered is a 10-digit number. To
keep track of the data validation process, the code uses the isValid variable and
sets its value to false when the validation fails. Notice that the default value for
this variable is true.
 If the isValid variable is true, the first thing you’ll want to do is check wheth-
er the data supplied by the user already exists in Excel. Obviously, the reason
for this check is that you don’t want to create duplicates in your Excel work-
sheet. The strSQL1 variable holds the SQL Select statement that will return the
number of records with the specified patient name and phone number:
strSQL1 = "Select count(*) from [Sheet1$] Where Patient = '"
strSQL1 = strSQL1 & strNameFormat & "'" & " AND phone = '"
strSQL1 = strSQL1 & strPhoneFormat & "'"

The above code uses two variables in the Where clause: strNameFormat and
strPhoneFormat. These variables have been defined earlier in the following
statements:
 ' prepare name and phone number for entry into Excel
 ' this will prevent errors in SQL statements
 '-------------------------
 Dim strNameFormat
 strNameFormat = Replace(strName, "'", "''")

 Dim strPhoneFormat
 strPhoneFormat = "(" & Left(strPhone, 3) & ")" & _
 Mid(strPhone, 4,3) & "-" & _
 Right(strPhone, 4)

In the previous code, the first statement assigns a value to the strNameFormat
variable. The strNameFormat variable content will be the same as the strName
variable except when the strName variable contains an apostrophe mark.
When entering names, you have to watch for names that contain an apostro-
phe, such as O’Brian or O’Connor. Because an SQL statement text is enclosed
by an apostrophe at the start and an apostrophe at the end, an extra apostrophe
in the passed in string will cause the SQL statement to fail. So, what can you do
to allow an apostrophe to be inserted into a database? The trick is to use two
apostrophe marks. The SQL will treat two apostrophes as a single apostrophe.
You should use the Replace function to replace one apostrophe mark with two
apostrophe marks. So, if you entered O’Connor, you will see O’’Connor in the

928 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SQL statement. However, the data entered in Excel will appear as O’Connor as
shown in Figure 27.16.

FIGURE 27.16 When inserting data containing an apostrophe mark you must double-up all
occurrences of the apostrophe mark.

Let’s now look at what happens with the phone number. In the data entry form
the user is prompted to enter a 10-digit phone number. Th is makes the phone
number entry very quick because the user is not required to enter a formatted
string. However, when entering the phone number into an Excel worksheet,
we want to format the phone number as (999)999-9999. To get the phone
number into the desired format, use the concatenation and the following
string functions: Left, Mid, and Right. Th e Left function allows you to extract
the specifi ed number of characters from the left side of the strPhone variable.
To get the area code, use the Left(strPhone, 3)function. To extract the next
three numbers from the strPhone variable, use the Mid(strPhone, 4, 3)
function where the number 4 denotes the starting position, and the number
3 is the number of characters to extract. To retrieve the last 4 numbers from
the strPhone variable, use the Right(strPhone, 4) function. Finally, join the
results of these functions with the parentheses and the dash character using
the ampersand (&) concatenation operator. Th e reformatted strPhone string is
then saved into the strPhoneFormat variable and used in the SQL statements.
 If the user-entered data already exist in the Excel worksheet, you should get
a message that the data cannot be entered, as shown in Figure 27.17.

EXCEL AND ACTIVE SERVER PAGES 929

FIGURE 27.17 When collecting data for inserting into a database via the HTML form, always check
the uniqueness of the data.

Notice that the VBScript code uses the Microsoft Jet database engine to access
data in other database fi le formats, such as Excel workbooks. To connect
to a Microsoft Excel fi le (ExcelDb.xlsx) that serves as the database for the
ExcelEntry.asp page, you need to specify the database type in the extended
properties for the connection:

' define connection string
'----------------------------------
strConn = "Provider=Microsoft.ACE.OLEDB.12.0;Data Source="
strConn = strConn & server.MapPath(strFile) & ";"
strConn = strConn & "Extended Properties=Excel 12.0"

NOTE
When you use Excel as a database, the first row is considered
the header unless you specify HDR=No in the extended proper-
ties in your connection string.

When inserting data into an Excel worksheet, use the sheet name followed by
a dollar sign (Sheet1$):
' define SQL Insert statement
'----------------------------------
 strSQL2 = "INSERT INTO [Sheet1$] (Patient, Phone)"
 strSQL2 = strSQL2 & " VALUES ('" & strNameFormat & "'"
 strSQL2 = strSQL2 & ",'" & strPhoneFormat & "')"

It is also possible to reference data in a range with a defined name or a specific
address. For example, if your worksheet contains the Patient list in cells A1:B15,

930 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

you can use the following statement to select data based on what the user has
entered in the Web form’s text boxes:
rst.Open "Select * from [Sheet1$A1:B15] Where Patient = '" & _
 strNameFormat & "'" & " AND strPhoneFormat = '" & Phone & "'",
 con, _
 adOpenKeyset, adLockPessimistic

Or, if you assign the name PatientList to cells A1:B15, you can refer to the
named range as follows:
rst.Open "Select * from PatientList Where Patient = '" & _
 strNameFormat & "'" & " AND Phone = '" & strPhoneFormat & "'",
 con, _
 adOpenKeyset, adLockPessimistic

Every time the user clicks the Submit to Excel button, you’ll want to keep him
posted about the data currently contained in the Excel workbook by building
a table on the fly:

set rst = Server.CreateObject("ADODB.Recordset")

'connect to Excel to retrieve data
'--
strSQL3 = "Select Patient, Phone From [Sheet1$]"

On Error Resume Next
Set adoConn = Server.CreateObject("ADODB.Connection")
adoConn.Open strConn

set rst2 = Server.CreateObject("ADODB.Recordset")
set rst2.ActiveConnection = adoConn
rst2.Open strSQL3

Call ErrorHandler()

'write out Excel data to the Web page
'----------------------------------
If Not rst2.EOF And Not rst2.BOF Then
 Dim cCode 'color code

 cOne = "#fffacd" 'yellow chiffon
 cTwo = "#E0E0E0" 'light gray
 cCode = cOne
 Response.Write("<table style=""width: 300;
 text-align: left; border: 0"">")
 Response.Write("<tr><td colspan='2'

EXCEL AND ACTIVE SERVER PAGES 931

 style=""text-align: center"">")
 Response.Write("<h3>Patient List in Excel</h3>
")
 Response.Write("</td></tr>")

 '---- print out column headings -------------------
 Response.Write("<tr>")
 For Each fld in rst2.Fields
 Response.Write("<td NoWrap style=""text-align: center"">")
 Response.Write fld.name
 Response.Write("</td>")
 Next
 Response.Write("</tr>")

 '---- print out data rows -------------------
 Do While not rst2.EOF
 Response.Write("<tr>")
 For each fld in rst2.Fields
 Response.Write("<td nowrap style=""text-align: center""
 bgcolor='" & cCode & "'>")
 Response.Write fld.value & ("
</td>")
 Next
 If cCode = cOne then
 cCode = cTwo
 Else
 cCode = cOne
 End if
 Response.Write("</tr>")
 rst2.MoveNext
 Loop
 Response.Write("</table>")
else
 '---no Patient records were found in the Excel workbook --------
 Response.Write("<table style:""border: 1; width: 50%"" >")
 Response.Write("<tr style=""valign: top"">")
 Response.Write("<td style=""text-align: left"">")
 Response.Write("")
 Response.Write("There are no records in the Excel workbook.
")
 Response.Write("Use the Form above to add data.")
 Response.Write("</td></tr>")
 Response.Write("</table>")
End if

rst2.Close
set rst2 = nothing
adoConn.Close
set adoConn = Nothing

932 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The above code fragment writes the data contained in an Excel worksheet to
an HTML table. Notice that the first For Each…Next loop iterates through the
Recordset object’s Fields collection to write out the names of column headings.
The second For Each…Next loop places the actual data in table cells. Notice
that to enhance the data table appearance, you can style the table by specifying
the background-color:
<table style="background-color: orange; border: 1;">

3. Close Notepad.
4. Open your Internet browser and enter the following address in the address

bar:
http://localhost/tasp/ExcelEntry.asp
When you press Enter or click the Go button, you should see the data entry
form shown earlier in Figure 27.15.

5. Enter some information in the provided text boxes and press the Submit to
Excel button.
Your screen should resemble Figure 27.18.

FIGURE 27.18 Entering data into Excel via an HTML form. When you click the Submit to Excel
button, the area above the form displays the syntax of the SQL Insert statement followed by the data
that was inserted. The table below the form displays data that was retrieved from an Excel worksheet.

6. Add data for another patient.
7. Try to enter the data that already exist in Excel.
8. Close your Internet browser.

EXCEL AND ACTIVE SERVER PAGES 933

SENDING EXCEL DATA TO THE INTERNET BROWSER

Use the Recordset object’s GetString method to display data contained in an
Excel spreadsheet in the Internet browser. This method returns a set of records
to a string and is faster than looping through the recordset. The GetString
method has the following syntax:
 variant = recordset.GetString(StringFormat, NumRows, _
 ColumnDelimiter, RowDelimiter, NullExpr)

 ● StringFormat determines the format for representing the recordset as a
string.

 ● NumRows specifi es the number of recordset rows to return. If blank, Get-
String will return all the rows.

 ● ColumnDelimiter specifi es the delimiter for the columns within the row
(the default is a tab character).

 ● RowDelimiter specifi es a row delimiter (the default is a carriage return).
 ● NullExpr specifi es an expression to represent NULL values (the default

is an empty string).

The next example demonstrates using the GetString method to retrieve data
from the ExcelDb.xlsx file created in an earlier example. You can also use a work-
book file of your own, provided it contains data on the first sheet and the sheet
name is Sheet1. Or modify the code to point it to the exact location of your data.

 Hands-On 27.9 Using the GetString Method to Retrieve Data from
an Excel File

1. Open Notepad and enter the ASP script code as shown below:
<% @Language=VBSCRIPT %>
<%
dim myConn
dim myExcel
dim strCon
dim mySQL

' Create the connection object
 set myConn = Server.CreateObject("ADODB.Connection")

' Specify the connection string

 strCon="Provider=Microsoft.ACE.OLEDB.12.0;Data Source="

934 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strCon=strCon & server.MapPath("ExcelDb.xlsx") & ";"
 strCon=strCon & "Extended Properties=Excel 12.0"

' Open the connection
 myConn.Open strCon

' Create the Recordset
 set myExcel=Server.CreateObject("ADODB.Recordset")
 mySQL="Select * from [Sheet1$]"

' Open the Recordset
 myExcel.Open mySQL, myConn

' Show data in a table
 Response.Write("<table border=""1""><tr><td>")

' Get the column names
 For Each fld in myExcel.Fields
 Response.Write fld.Name & ("<td>")
 Next
 Response.Write("</tr><tr><td>")

' Get the actual data
' Get the actual data
 Response.Write "<tr><td>" & myExcel.GetString(_
 ,,"</td><td>","</td></tr><tr><td>"," ")
 Response.Write("</table>")
Response.Write("</table>")

' Close the Recordset and release the object
 myExcel.Close
 set myExcel = Nothing

' Close the connection
 myConn.Close
 set myConn = Nothing
%>

2. Save the above ASP script code in the C:\Excel2019_ASP_Classic folder as
GetExcel.asp.
The above ASP script connects to the specified Excel workbook file and re-
trieves the data located in Sheet1. After reading the column names from the
recordset’s Fields collection, the code uses the GetString method to pull the
data:

EXCEL AND ACTIVE SERVER PAGES 935

Response.Write "<tr><td>" & myExcel.GetString(_
 ,,"</td><td>","</td></tr><tr><td>"," ")

Notice that –1 indicates that all rows should be read, the </tr><td> tags are
used for delimiting columns, and the </td></tr><tr><td> tags specify the row
delimiter. If the cell does not contain any data, a nonbreaking space will be
entered () so that there are no gaps in the table structure.

3. Close Notepad.
4. Open your Internet browser and enter the following address in the address

bar: http://localhost/tasp/GetExcel.asp.
When you press Enter or click the Go button, you should see the HTML table
of data retrieved from Sheet1 of the specified workbook (Figure 27.19).

5. Close the browser window.

FIGURE 27.19 Data from an Excel worksheet as displayed in an Internet browser.

SUMMARY

In this chapter, you were introduced to using Excel 2019 with Classic Active
Server Pages. Let’s quickly summarize the information that we’ve covered here:

 ● Active Server Pages (ASP) is a technology from Microsoft enabled by the
Internet Information Services (IIS).

 ● ASP allows you to create dynamic Web pages that are automatically up-
dated when your data changes.

 ● You learned how to write ASP pages that open worksheets in the Micro-
soft Excel application, and how to get data entered in your browser into
Excel.

In the next chapter, you will explore another Internet technology known as
XML and learn how it is integrated with Microsoft Excel.

937

In previous chapters, you mastered several techniques of using Excel with
the Internet. You’ve used HTML, ASP, and VBScript to put Excel worksheets
on the Web and retrieved data via Web queries for further manipulation in

Excel. This chapter expands your knowledge of Internet technologies by intro-
ducing you to Extensible Markup Language (XML). The XML functionality is
not new; it was added to Excel in version 2000 and has been much improved
since. We will look at this file format in detail later on in this chapter after we’ve
learned what XML is and how it is used in Excel.

Chapter

 28 USING XML IN
EXCEL 2019

938 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WHAT IS XML?

XML is a standard that provides a mechanism for designing your own custom
markup language and using that language for describing the data in your own
documents. Although XML was designed specifically for delivering informa-
tion over the World Wide Web, it is being utilized in other areas, such as storing,
sharing, and exchanging data. Like HTML, XML is a markup language; how-
ever, HTML and XML serve different functions. HTML describes Web page lay-
out by using a set of fixed non-customizable tags, while XML lets you describe
data content using custom tags.

The main goal of XML is the separation of content from presentation. Be-
cause XML documents are text files, XML is independent of operating system
platform, software vendor, and natural or programming language. XML makes
it easy to describe any data (structured or unstructured) and send it anywhere
across the Web using common protocols, such as HTTP or FTP. As long as any
two organizations can agree on the XML tag set to be used to represent the data
being exchanged, the data can be interpreted and easily exchanged no matter
what back-end systems these organizations run or databases they use. Although
anyone can describe the data by creating a set of custom tags, the representatives
of many industry groups have defined and published XML schemas that dictate
how XML documents are formatted to represent data for their industry. XML
schemas define the structure and data types that are allowed within an XML
document and enforce the document’s conformity to the rules.

Let’s take a look at the following XML document (Courses1.xml) that was
created using Windows Notepad:
<?xml version = "1.0"?>
<Courses>
 <Course ID = "VBA1EX">
 <Title>Beginning VBA in Excel</Title>
 <Startdate>3/4/2018</Startdate>
 <Sessions>6</Sessions>
 </Course>
 <Course ID = "VBA2EX">
 <Title>Intermediate VBA in Excel</Title>
 <Startdate>4/13/2018</Startdate>
 <Sessions>8</Sessions>
 </Course>
 <Course ID = "VBA3EX">
 <Title>Advanced VBA in Excel</Title>
 <Startdate>9/7/2018</Startdate>
 <Sessions>12</Sessions>

USING XML IN EXCEL 2019 939

 </Course>
</Courses>

The first line of an XML document is called the XML declaration:
<?xml version = "1.0"?>

The above instruction identifies the file as an XML file. Recent versions of Excel
can easily open the structured data file even if you omit this instruction. The
declaration line is also known as a processing instruction. This instruction
begins and ends with a question mark (?) and contains the name of the appli-
cation (in this example “xml”) to which the instruction is directed, as well as
additional information that needs to be passed to the XML processor, such as
the version number and optional encoding and standalone attributes:
<?xml version = "1.0" encoding = "UTF-8" standalone = "Yes"?>

The encoding attribute specifies the character style to be applied. When the
standalone attribute is set to Yes, it tells the XML processor that the document
does not reference an external file.

You can include other processing instructions in the XML file if you need
the processing application to take a specific action. For example, you can specify
that the file be opened by Excel by adding the following instruction to the above
XML markup:
<?mso-application progid = "Excel.Sheet"?>

Notice the simple structure of XML. Similar to HTML, XML uses tags for data
markup. However, unlike HTML, XML tags are not predefined. You can change
the name of the tag to anything you want. For example, <Courses> and </
Courses> can become <Classes> and </Classes>. You can create custom tags
that best describe data in your document. To do this right, you’ll need to follow
some simple XML rules so that your document is well-formed. This is explained
in the next section of this chapter.

An XML document contains one or more elements, data attributes, and text.
The top element, in this example the element marked with the <Courses> tag, is
called a root node. Every XML file must have a start root node and an end root
node. There can be only one root node in the file. The start tag is represented
by left and right angle brackets (< >), and the end tag has a left angle bracket,
forward slash, and a right angle bracket (< / >). The names of the tags are case-
sensitive. The name of the start tag and the name of the corresponding end tag
must match exactly.

940 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Elements may contain text and other elements. For example, the <Courses>
element is defined to contain one or more <Course> elements. Notice that in
the previous example, the data for the <Course> element is provided by the ID
attribute:

<Course ID = "VBA1EX">

The values of attributes must be surrounded by double or single quotation
marks.

Notice that the <Course> element has three other elements: <Title>, <Start-
date>, and <Sessions>. The second and third <Course> elements have exactly
the same structure. The structure of the XML document is very logical and easy
to follow. You can quickly add more data to the file by following the same pattern.

Character Encodings in XML

When you type an XML document into Notepad and save it, you can choose
from one of several supported character encodings, including ANSI, Unicode
(UTF-16), Unicode (Big Endian), or UTF-8. The encoding declaration in the
XML document identifies which encoding is used to represent the characters
in the document. UTF-8 encoding allows the use of non-ASCII characters, re-
gardless of the language of the user’s operating system and browser or the lan-
guage version of Office. When you use UTF-8 or UTF-16 character encoding,
an encoding declaration is optional. XML parsers can determine automatically
if a document uses UTF-8 or UTF-16 Unicode encoding.

WELL-FORMED XML DOCUMENTS

When you create or modify an XML document, you must make sure that your
XML file is well-formed. Here’s what makes a document well-formed:

 ● An XML document must have one root element. In HTML the root ele-
ment is always <HTML>, but in the XML document you can name your
root element anything you want. Element names must begin with a let-
ter or underscore character. Th e root element must enclose all other ele-
ments. Elements must be properly nested. Th e XML data must be hierar-
chical; the beginning and ending tags cannot overlap.

<Employee>
 <Employee ID>090909</Employee ID>
</Employee>

SIDEBAR

USING XML IN EXCEL 2019 941

 ● All element tags must be closed. A begin tag must be followed by an end
tag:

<Sessions>5</Sessions>

 ● You can use shortcuts, such as a single slash (/), to end the tag so you don’t
have to type the full tag name. For example, if the current <Sessions> ele-
ment is empty (does not have a value), you could use the following tag:

<Sessions />

 ● Tag names are case sensitive. Th e tags <Title> and </Title> aren’t equiva-
lent to <TITLE> and </TITLE>. For example, the following line:

<Title>Beginning VBA Programming</Title>

is not the same as:
<TITLE>Beginning VBA Programming</TITLE>

 ● All attributes must be in quotation marks:

<Course Id = "VBAEX1"/>

 ● You cannot have more than one attribute with the same name within the
same element.
If the <Course> element has two ID attributes, they must be written sepa-
rately, as shown below:
<Course ID = "VBAEX1"/>
<Course ID = "VBAEX2"/>

Checking that an XML document is well-formed is similar to syntax checking
in VBA. When you try to open an XML file in Excel that is not well-formed, you
will receive an error message similar to the one in Figure 28.1. You can force this
error by removing the ending “s” from the tag <Courses> in the Courses1.xml
file while it is open in Notepad. When you do this, the beginning <Course> tag
will not match the ending </Courses> tag; thus, an error will occur when you
try to open the file with Excel. Notice that the error message specifies the type of
error that was found and the name of the source file. To help you troubleshoot
the error, the XML Import Error dialog box includes the Details button.

942 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 28.1 When the XML document is not well-formed, Excel displays an XML Import Error
dialog box when you try to open the file.

To investigate the error, select the error in the XML Import Error dialog box
(Figure 28.1) and click the Details button. This brings up a dialog box that
details the error, as shown in Figure 28.2. You must fix all the errors before you
can successfully open the file in Excel.

FIGURE 28.2 XML Error dialog box with error details.

You do not need to wait for Excel to discover errors in XML files. To verify that
the document is well-formed, it’s a good idea to open it in the browser before
attempting this task with Excel. Double-click the XML filename, and it should
open up in your default browser (Figure 28.3).

USING XML IN EXCEL 2019 943

FIGURE 28.3 A quick way to check whether an XML document is well-formed is to open it in
a browser. The Edge browser depicted here displays the error in the Console tab after activating
Developer Tools by pressing the F12 key.

What Is a Parser?

If you want to read, update, create, or manipulate any XML document, you
will need an XML parser. A parser is a software engine, usually a dynamic link
library (DLL), that can read and extract data from XML. Microsoft Internet
Explorer and Edge browsers has a built-in XML parser (MSXML*.DLL) that
can read and detect all non-well-formed documents. MSXML has its own ob-
ject model, known as DOM (Document Object Model), that you can use from
VBA to quickly and easily extract information from an XML document (see
“The XML Document Object Model” later in this chapter).

VALIDATING XML DOCUMENTS

There are two types of validation in XML. One is checking whether the docu-
ment is well-formed (see the previous section). The other type of validation
requires that you create a Document Type Definition (DTD) or a set of rules
known as a schema to determine the type of elements and attributes an XML
document should contain, how these elements and attributes should be named,
and how the elements should be related.

Creating DTD or schema for an XML document is optional. Create either
one only if you are planning to validate data. In XML, data validation is accom-
plished by comparing the document with the DTD or schema. When you open
the XML document in a parser, the parser compares the DTD to the data and
raises an error if the data is invalid. This book does not explore the creation and

SIDEBAR

944 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

use of DTDs or schemas. These topics alone would require a separate chapter.
What you should remember from this section is that a valid XML document is
not the same as a well-formed XML document. A valid XML document con-
forms to a structure outlined in the DTD or schema, while well-formed docu-
ments follow the basic formatting rules mentioned in the previous section titled
“Well-Formed XML Documents.”

EDITING AND VIEWING AN XML DOCUMENT

To make changes in an XML document, you should open it in a text editor
such as Notepad or an XML editor. There are many XML editors that you can
purchase or download free from the Internet. Figure 28.4 shows a file open in
Microsoft XML Notepad. You can download it from:

http://www.microsoft.com/en-us/download/details.aspx?id=7973

The advantage of using XML editors is that they come with special features that
organize your XML data into an easy-to-read tree and allow you to create well-
formed documents.

FIGURE 28.4 The example Courses1.xml file opened in Microsoft XML Notepad.

USING XML IN EXCEL 2019 945

You can make your XML documents legible and clear by using comments. The
XML processor ignores all commented text. A comment begins with the <! --
characters and ends with the --> characters. Within your comment you can use
any characters except for a double hyphen (--). A comment can be placed any-
where within an XML document provided that it’s outside (not within) other
markup tags. Let’s add a comment to the Courses1.xml document that we dis-
cussed earlier.

 Please note files for the “Hands-On” project may be found on the companion
CD-ROM.

 Hands-On 28.1 Adding a Comment to an XML Document

1. In Windows Explorer, create a new folder named VBAExcel2019_XML.
2. Copy the Courses0.xml file from the companion CD-ROM to your VBAEx-

cel2019_XML folder.
3. Right-click the Courses0.xml file, choose Open with and then select Note-

pad. If Notepad is not listed, select Choose Program and then locate and se-
lect Notepad in the list.

4. Type the following comment between the <Courses> and <Course ID =
“VBA1EX”> tags:
<!-- You can add more courses to this list -->

The beginning of the file should now look like this:
<Courses>
<!-- You can add more courses to this list -->
 <Course ID = "VBA1EX">

5. Save the file as Courses1.xml file and exit Notepad.

Comments can also be used to disable a particular processing instruction or an
XML node. For example, you could prevent the display of the information about
a specific course by commenting out the section of XML markup like this:
 <!--
 <Course ID = "VBA2EX">
 <Title>Intermediate VBA in Excel</Title>
 <Startdate>4/13/2018</Startdate>
 <Sessions>8</Sessions>
 </Course>
 -->

946 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Now that you’ve edited the file, let’s open it in the browser to ensure that you
have a well-formed XML document.

 Hands-On 28.2 Viewing an XML Document in the Internet Browser

1. Open the Courses1.xml file in your browser.
2. Figure 28.5 shows what the file looks like when it is opened in an internet

browser. Here you can see the hierarchical layout of an XML document very
clearly. The Edge and Internet Explorer automatically places a plus sign (+)
to the left of each element so you can expand the XML data layout. Once
expanded, the plus changes to a minus (–) and you can click it to collapse the
XML data layout.

FIGURE 28.5 An XML data file opened in Microsoft Edge browser.

3. Close the browser.

OPENING AN XML DOCUMENT IN EXCEL

Once you’ve checked that you have a well-formed XML document by opening
it with your browser, let’s open it in Excel by following the steps outlined in
Hands-On 28.3.

USING XML IN EXCEL 2019 947

 Hands-On 28.3 Opening an XML Document in Excel

1. Start Excel and open the C:\VBAExcel2019_XML\Courses1.xml file.
Excel displays the Open XML dialog box like the one shown in Figure 28.6.

2. In the Open XML dialog box, select the As an XML table option button and
click OK.
When you select the first option button, Excel tells you that it could not find
the schema for the XML document (see Figure 28.7). A schema will be auto-
matically created for you when you click OK.

FIGURE 28.6 Excel displays the Open XML dialog box when you open an XML document that does
not have a stylesheet associated with it.

FIGURE 28.7 A schema file provides the rules for the XML document. If it is missing, Excel will infer
the schema from the XML data file.

NOTE

If you are trying to open a very complex XML document, a
schema file created by Excel may be incorrect or insufficient
for your needs. If this is the case, you will need to create your
own XML Schema Description file (XSD) or have someone else
create it for you.

3. Click OK to have Excel create a schema and open the file.

948 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Excel imports the contents of the XML document into an XML table. The cells
in the worksheets are mapped to the XML elements in the source file and can
be refreshed at any time by clicking the Refresh button on the Design tab (Fig-
ure 28.8).

FIGURE 28.8 An XML document opened in Excel.

When Excel creates a schema based on the contents of your XML document,
your XML source file becomes read-only. This means that you cannot make
changes to the file by editing the XML table in Excel. Excel refers to the schema
files it creates as XML maps. Only by creating your own XML map can you
write back to your XML document from Excel. The next section of this chapter
demonstrates how to work with XML maps.

4. Leave Excel open with the data as shown in Figure 28.8, and open the Courses1.
xml in Notepad.

5. Modify the file by adding the following information about another course
to the end of the file just before the end </Courses> tag:

<Course ID = "VBA1Outlook">
 <Title>Beginning VBA in Outlook</Title>
 <Startdate>10/10/2018</Startdate>
 <Sessions>6</Sessions>
</Course>

6. Save the file and close Notepad.
7. In Excel, click the Refresh button on the Design tab.

Notice that Excel adds a new row of data to the XML table listing the VBA3Ac-
cess course you added in Step 5.

8. Save the workbook as C:\VBAExcel2019_ByExample\Chap28_
VBAExcel2019.xlsm in the macro-enabled format, and then close it.

USING XML IN EXCEL 2019 949

XSL Stylesheets

Earlier in this chapter you saw how the XML data is displayed in a browser.
While it was very easy to identify the XML elements, the data appeared in the
raw format, which is quite unattractive to the end user. The XML formatting
problem can be addressed via the Extensible Stylesheet Language (XSL). Using
XSL you define a stylesheet that describes the way the XML data should be for-
matted and displayed. The XSL document is just another XML document that
contains HTML instructions for formatting the elements in your XML docu-
ment. This chapter does not cover XSL; however, if you’d like to see an example
of an XSL document, it is available on the companion CD-ROM. The file is
called Courses.xsl. Copy the Courses.xsl file to your C:\VBAExcel2019_XML
folder, and then open the C:\VBAExcel2019_XML\Courses1.xml file in Note-
pad. Next, enter the following instruction below the XML declaration line:

 <?xml-stylesheet type = "text/xsl" href = "Courses.xsl"?>

The above line will tell the XML processor to format the data with the speci-
fied XSL stylesheet. When you open the Courses1.xml file in your browser, it
should appear formatted as shown in Figure 28.9.

FIGURE 28.9 The XML document formatted with a custom stylesheet.

SIDEBAR

950 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

WORKING WITH XML MAPS

XML schemas in Excel are called XML maps. You can associate one or more
schemas with a workbook and then map all or some of the schema elements to
various cells or ranges on a worksheet. Using XML mapping makes it relatively
easy to import and export data into and out of Excel. In the following Hands-
On, you will learn how to:

 ● Work with the XML Source task pane
 ● Add a schema to your workbook
 ● Map cells to elements in an XML map
 ● Populate the XML map with XML data

 Hands-On 28.4 Mapping Schema Elements to Worksheet Cells

1. Copy the Employees.xml and Employees.xsd files from the companion CD-
ROM into your VBAExcel2019_XML folder.

2. Open a new workbook in Microsoft Excel.
3. Click the Source button in the XML group on the Developer tab.

Excel displays the XML Source task pane, as shown in Figure 28.10.

FIGURE 28.10 The XML Source task pane.

The XML Source task pane is used for displaying XML maps found in the
XML data or schema documents, and mapping XML elements to cells or
ranges on a worksheet. If the current worksheet doesn’t have any XML maps

USING XML IN EXCEL 2019 951

associated with it, the XML Source task pane is blank. The XML Source task
pane includes two buttons (Options and XML Maps) and one hyperlink (Verify
Map for Export).

4. In the XML Source task pane, click the XML Maps button.
Excel displays the XML Maps dialog box shown in Figure 28.11.

FIGURE 28.11 Use the XML Maps dialog box to add, delete, or rename an XML map associated
with the workbook.

5. Click the Add button in the XML Maps dialog box.
6. In the Select XML Source dialog box, switch to the VBAExcel2019_XML

folder, select the Employees.xsd schema file, and click Open.
Excel displays the Multiple Roots dialog box shown in Figure 28.12.

FIGURE 28.12 If the XML data or schema file contains more than one root node, you must indicate
which root node should be used.

952 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. In the Multiple Roots dialog box, select dataroot and click OK.
Excel displays the XML map name in the XML Maps dialog box shown in
Figure 28.13. The name of the map consists of the schema’s root element fol-
lowed by an underscore and the word “Map.” You can change the map name by
clicking the Rename button.
You cannot update an existing XML map. Excel only allows you to create new
maps or delete existing ones using the XML Maps dialog box. Because of this,
you must recreate the XML table created from an XML map any time the
source XML schema changes.

FIGURE 28.13 The XML Maps dialog box now displays the XML map (dataroot_Map) that was
added to the workbook.

8. Click OK to close the XML Maps dialog box and return to Excel.
The XML Source task pane now displays the structure of the XML map, as
shown in Figure 28.14.
Notice that the name of the XML map appears in the listbox at the top of the
XML Source task pane. If the workbook contains more than one XML map,
you will use this listbox to select the map you want to work with. Excel obtains
the map information from the schema that the XML file references; when the
schema is not available, the map is generated based on the content of the XML
data file, as you have seen earlier in this chapter while opening the Courses1.
xml document.
 The XML map is displayed as a tree and can be expanded or collapsed by
clicking the plus and minus buttons to the left of the element names. Elements
in the tree are represented by different icons. For example, in Figure 28.14, the
folder icon with a red asterisk in front of the dataroot element represents a
required parent element. An icon that looks like a sheet of paper with a corner
folded down in front of the element name indicates a child element. The child
element labeled “generated” stores the date the schema was generated. The

USING XML IN EXCEL 2019 953

folder icon in front of the Employees element tells us that this is the repeating
parent element with children. The elements below the Employees element are
child and required child elements. Required elements have a red asterisk in the
icon image. To get the list and images of all the icons that can appear in the
XML map, click on Tips for mapping XML at the bottom of the XML Source
task pane.
 Now that you’ve got the XML map, you can use it to map XML elements
to your worksheet. Mapping is done by selecting the elements or entire nodes
in the XML map and then dragging them onto a worksheet. You can drag
mapped cells anywhere on the worksheet in any order you require. You can
only map one schema element to one location in a workbook at a time.

XML Mapping Follow This Procedure...
Single element Drag the desired element from the XML Source task pane and drop

it in the desired location on a worksheet.
Multiple elements Select the first desired element in the XML Source task pane and

hold down the Ctrl key while selecting other elements. Next, drag
the selection to the desired location on a worksheet.

Entire node Click on the parent node. All the child items will be highlighted.
Drag the selection to the desired location on a worksheet.

FIGURE 28.14 The XML Source task pane displays the XML map generated from the XML schema
file (Employees.xsd).

954 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

9. In the XML Source task pane, select the Employees folder and drag it to cell
A1 on the worksheet.
Excel maps XML elements to a range of cells, as you can see in Figure 28.15.
Notice that the XML elements are laid out in the order they appear in the XML
Source task pane. Excel generates a structure called an XML table when you
drag the repeating elements from the XML Source task pane to a worksheet.
At this point, the generated table contains a header row with the AutoFilter op-
tion enabled. You can adjust the size of the table by dragging the resize handle
found at the bottom-right corner of the table border.

FIGURE 28.15 Mapping XML elements to cells in a worksheet.

In this example we have placed all of the XML elements on the worksheet by
dragging them from the XML Source task pane and dropping them at a spe-
cific cell. When you don’t require all the elements, simply drag those you need
and leave out those you do not need. Mapped elements appear in bold type in
the XML Source task pane.

NOTE Recall that you’ve already been introduced to the table feature in
Chapter 24. XML tables are described in the next section.

10. To populate the table with data, right-click anywhere within the table and
choose XML | Import (or click the Import button on the Developer tab).

11. In the Import XML dialog box, select Employees.xml and click Import.
12. The table on the worksheet is now populated with the data from the selected

XML document, as shown in Figure 28.16.

USING XML IN EXCEL 2019 955

FIGURE 28.16 A table populated with the data from the XML document.

13. Save the workbook in the macro-enabled format as C:\VBAExcel2019_XML\
Employees.xlsm.

Understanding the XML Schemas

Schema files describe XML data using the XML Schema Definition (XSD)
language and allow the XML parser to validate the XML document. An XML
document that conforms to the structure of the schema is said to be valid. The
Employees.xsd schema file that we worked with in Hands-On 28.4 was gener-
ated in Microsoft Access using built-in menu options. Here are some examples
of types of information that can be found in an XML schema file:

 ● Elements that are allowed in a given XML document
 ● Data types of allowed elements
 ● Number of occurrences of a given element that are allowed
 ● Attributes that can be associated with a given element
 ● Default values for attributes
 ● Elements that are child elements of other elements
 ● Sequence and number of child elements

If you open the Employees.xsd file in Notepad, you will notice a number of
declarations and commands that begin with the <xsd> tag followed by a colon
and the name of the command. You will also notice the names of the elements
and attributes that are allowed in the Employees.xml file as well as the data
types for each element. The names of the data types are preceded with the “od”
prefix followed by a colon. For example:

SIDEBAR

956 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

od:jetType =”text” Defines the Jet data type for an element.
od:sqlSType =”nvarchar” Defines the Microsoft SQL Server data type for an element.
od:autounique = “yes” Defines a Boolean data type for an auto-incremented identity

column.
od:nonNullable =”yes” Indicates whether or not a column can contain a null value.

The schema file also specifies the number of times an element can be used
in a document based on the schema. This is done via the minOccurs and
maxOccurs attributes.

WORKING WITH XML TABLES

An XML table is a table in Excel that has been mapped to one or more XML
elements. In other words, each column in the XML table represents an element
in your XML document. In this chapter, you’ve already created two XML tables
based on the Courses1.xml and Employees.xml documents (see Hands-On 28.3
and 28.4).

After placing your XML data in an XML table in a workbook, you can work
with this data just like any other Excel workbook file. This means you can add
new columns and rows to your data, include formulas and functions, create
charts, and perform various formatting tasks. You can even change the column
headings that were automatically created from the XML element names. It is
important to keep in mind that even when you change the column headings
in the worksheet, the original XML element names will be used to export data
from the mapped cells.

The changes you make to the data in the XML table will not affect the XML
data that is stored in the original XML data file. Once you are done working
with the XML table, you can save it as a standard Excel workbook (.xlsx) or in
any other file format that is available in the Save As dialog box. You can also
export the contents of mapped cells. The XML export feature is explained in the
next section.

If the original XML data file has changed, you can easily update the data in
your XML table by clicking the Refresh Data button on the Developer tab.

When you use the Refresh command, the data is read from the original XML
document into the mapped locations on the worksheet. If you have another
XML file that uses the same mapping, you can import the data from that file
into your XML table by clicking the Import button on the Developer tab. Sim-
ply said, refreshing updates the XML table with the most current data from the

USING XML IN EXCEL 2019 957

original XML file, while importing gets the data from another XML file that
follows the same schema.

When refreshing or importing data you can:

 ● Overwrite existing data with new data
 ● Append new data to an existing XML table

These options can be specified via the XML Map Properties dialog box, shown
in Figure 28.17.

The XML Map Properties dialog box allows you to set certain properties that
relate to working with XML maps. This dialog can be accessed using any of the
techniques listed below:

 ● Click the Map Properties button on the Developer tab.
 ● Right-click anywhere in the XML table and choose XML | XML Map

Properties.

FIGURE 28.17 The XML Map Properties dialog box.

958 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Each XML table in a workbook can be independently manipulated via the XML
Map Properties dialog. The following properties can be set:

XML Property Description
Name The name of the active XML map.
Validate data against schema for import
and export

Excel will validate XML data against its schema
while importing and exporting.

Save data source definition in workbook Specifies whether your table is dynamic or static. If
selected, the XML data is linked to the XML file and
can be refreshed. If not selected, the data is static
and cannot be refreshed.

Adjust column width Excel will automatically adjust the width of table
columns to fit the data.

Preserve column filter Excel will preserve the selected column sorting,
filtering, and layout.

Preserve number formatting If selected, Excel will preserve the specified format-
ting of numbers in the table.

Overwrite existing data with new data New data from the XML file will replace old data
during a refresh or import.

Append new data to existing XML tables New data from the XML file will be added at the
bottom of the XML table during a refresh or import.

Exporting an XML Table

You can preserve the data in your XML table in two ways:

 ● Save your data to an XML data fi le.
To do this, click the File tab. In the File name box, type a name for the
XML data file. In the Save As type list, select XML Data (*.xml) and click
OK. Before proceeding with the save operation, Excel will display the
message shown in Figure 28.18.

FIGURE 28.18 Excel displays a message about the loss of certain worksheet features prior to
saving data in an XML data file.

To save the data as an XML document, click Continue. If you keep work-
ing with this file and make any data and formatting changes, only the data
will be saved during subsequent save operations.

USING XML IN EXCEL 2019 959

 ● Save your data by exporting it through the XML map.
We will see how this feature is used in the following Hands-On. You
should be working with the XML table that was created in Figure 28.16
earlier in this chapter.

 Hands-On 28.5 Exporting XML Data in Mapped Worksheet Cells

1. Make sure that the Employees.xlsm file you created in Hands-On 28.4 is
currently open in the Microsoft Excel application window. The XML Source
task pane should be visible on the right side of the worksheet. If it is missing,
click the Source button on the Developer tab.

2. Click the Verify Map for Export hyperlink at the bottom of the XML Source
task pane.
If the map is valid for export, Excel displays the message that the map is ex-
portable. If the map is invalid for export, a message is displayed with informa-
tion about why the map isn’t exportable. A map is invalid for export when:

 ● It contains more than one level of data. Although Excel can import data
using multilevel maps, only single-level maps can be exported, such as the
dataroot_Map in Figure 28.14 that you’ve worked with in prior sections.

 ● It is denormalized. A map becomes denormalized when nonrepeating
items from an XML map are included in the XML table on the worksheet.
Denormalized elements appear multiple times on the worksheet. If the
user changes a nonrepeating item in one row, that item will become in-
consistent with other rows that should be showing the same data. Because
Excel does not know how to reconcile the diff erences, the table can’t be
exported. To avoid denormalization of data, always create separate XML
tables for nonrepeating and repeating nodes.

3. Click OK when Excel displays the message that the dataroot_Map is exportable.
4. Click the Export button in the XML section on the Developer tab.

If the workbook contains more than one XML map, you will be prompted to
select the map to use. You can export data using only one XML map at a time.
Excel proceeds to display the Export XML dialog box.

5. In the Export XML dialog box, specify the name for your XML file and the
folder where it should be saved. Select your VBAExcel2019_XML folder and
enter Northwind_Employees.xml in the File name box. Click the Export
button to complete the export operation.

960 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. You can view the contents of the Northwind_Employees.xml document by
opening it in Notepad. The structure of this file is shown below.

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes"?>
<dataroot>
 <Employees>
 <EmployeeID>1</EmployeeID>
 <LastName>Davolio</LastName>
 <FirstName>Nancy</FirstName>
 <Title>Sales Representative</Title>
 <TitleOfCourtesy>Ms.</TitleOfCourtesy>
 <BirthDate>1968-12-08T00:00:00.000</BirthDate>
 <HireDate>1992-05-01T00:00:00.000</HireDate>
 <Address>507 - 20th Ave. E. Apt. 2A</Address>
 <City>Seattle</City>
 <Region>WA</Region>
 <PostalCode>98122</PostalCode>
 <Country>USA</Country>
 <HomePhone>(206) 555-9857</HomePhone>
 <Extension>5467</Extension>
 <Photo>EmpID1.bmp</Photo>
 <Notes>Education includes a BA in psychology from Colorado
 State University. She also completed "The Art of the Cold
 Call." Nancy is a member of Toastmasters
 International.</Notes>
 <ReportsTo>2</ReportsTo>
 </Employees>
 <Employees>
 <EmployeeID>2</EmployeeID>
 <LastName>Fuller</LastName>
 <FirstName>Andrew</FirstName>
 <Title>Vice President, Sales</Title>
 <TitleOfCourtesy>Dr.</TitleOfCourtesy>
 <BirthDate>1952-02-19T00:00:00.000</BirthDate>
 <HireDate>1992-08-14T00:00:00.000</HireDate>
 <Address>908 W. Capital Way</Address>
 <City>Tacoma</City>
 <Region>WA</Region>
 <PostalCode>98401</PostalCode>
 <Country>USA</Country>
 <HomePhone>(206) 555-9482</HomePhone>
 <Extension>3457</Extension>
 <Photo>EmpID2.bmp</Photo>
 <Notes>Andrew received his BTS commercial and a Ph.D. in
 international marketing from the University of Dallas. He
 is fluent in French and Italian and reads German. He joined

USING XML IN EXCEL 2019 961

 the company as a sales representative, was promoted to
 sales manager and was then named vice president
 of sales. Andrew is a member of the Sales Management
 Roundtable, the Seattle Chamber of Commerce, and the
 Pacific Rim Importers Association.</Notes>
 </Employees>
 <Employees>
 ...
 ...
 </Employees>
</dataroot>

7. Close Notepad.

NOTE

After exporting XML data in mapped cells to an XML data file,
the name of your active workbook does not change. You can con-
tinue working with the data in this workbook. However, if you
make changes to existing data or add new rows of data, you
should re-export the data to the Northwind_Employees.xml file.

XML Export Precautions

When exporting data, be aware of the fact that only the data included in the XML
table will be saved; XML elements that were not mapped will not be exported. If
you don’t want to lose any content during export, always place all the elements
from the XML map on the worksheet.

If the XML table contains a formula, the result of the formula (and not the
formula itself) will be exported with the other data in the XML table. Formulas
that you place in an XML table column must reference XML data elements that
contain either a number, time, or date value.

If you add a new column to your XML table and then export the data, the
data from this new unmapped column will not be saved. The reason for this is
that Excel exports a table as XML using the schema stored in the workbook.
The generated XML file must match the XML source file from which the XML
table was created. Because the added column is not in the XML source file, Excel
cannot save it. Therefore, if you need to add data to the existing XML table, do
the following:

 ● Open the appropriate schema fi le in Notepad and add a new element with
the name for your new column.

 ● Save the modifi ed schema fi le and close Notepad.

962 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Because the XML schema has changed, and Excel does not allow you to
modify an existing XML map, you will need to create a new XML map
and drag the required XML elements to your worksheet. You are already
familiar with this process, as it was a part of the Hands-On in the section
titled “Working with XML Maps” earlier in this chapter. Aft er mapping
your XML elements to cells in a worksheet, simply refresh your XML
table. Th ere will be no data in the optional column that you’ve added to
the schema fi le. You can now proceed to enter the data or formula you
need in this empty column. Formulas can be copied as required. When
you export your data to the XML fi le, the data in the new column will be
exported together with the other data in your XML table.

VALIDATING XML DATA

To have Excel validate XML data upon import or export, you need to follow
these steps:

1. Select any cell within your XML table on the worksheet and click the Map
Properties button on the Developer tab.
Excel displays the XML Map Properties dialog box shown earlier in Figure
28.17.

2. Select Validate data against schema for import and export.
3. Click OK to close the dialog box.

If you enter an invalid value in any column of your XML table, Excel will not
automatically validate your entry. However, all of the entries will be validated
when you click the Export button on the Developer tab to export the data. If any
data is found to be invalid, Excel displays an error message similar to the one
shown in Figure 28.19.

Notice that the error in validating the data does not prevent Excel from sav-
ing or exporting. The Details section in the error message dialog box will give
you a hint why data is invalid, so that you can correct the data and re-export it.
You may want to define your own data validation rules that comply with the
XML schema by using the Data Validation button on the Data tab. Then Excel
will validate your data as you work in the worksheet. An example of such a vali-
dation technique is presented in Figure 28.20.

USING XML IN EXCEL 2019 963

FIGURE 28.19 Excel displays a message when data is found to be invalid according to its schema
during the export or refresh operation.

FIGURE 28.20 You can define custom validation rules that follow the XML schema by using the
built-in Validation command on the Data tab. Once the validation rules have been specified for desired
cells in your XML table, Excel will display your custom-designed hints to simplify data entry and display
a custom-designed error message on an attempt to enter invalid data. For this presentation, only five
columns in the XML table are shown.

964 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

PROGRAMMING XML MAPS

Earlier in this chapter you learned that a workbook can contain more than one
XML map. These maps can be from the same schema or different schemas.
When mapping XML elements to cells and ranges on the worksheet, keep in
mind that mapped cell ranges cannot overlap.

In this section, we will add another XML map to the current workbook, but
instead of using a manual method we’ll perform this task programmatically.
Excel provides specific objects to deal with programming its XML features such
as the XmlMap object in the XmlMaps collection and the XmlNamespace object in
the XmlNamespaces collection.

The XmlMaps collection contains the XmlMap object, which can be used to
perform the programming tasks described in the following subsections. You
can try out the example code in the Immediate window. Be sure that you have
the Employees.xlsm workbook open and your active worksheet contains the
XML table displaying Northwind employees. This table was created earlier in
this chapter from the dataroot_Map based on the Employees.xsd schema (see
Hands-On 28.4).

Adding an XML Map to a Workbook

You can add an XML map to a workbook using the Add method of the Xml-
Maps collection. This method requires that you specify the location of an XML
schema file. If the schema file is not available, you can specify the XML source
data file and Excel will create a schema based on that source data.

Earlier in this chapter you worked with the Courses1.xml document. To cre-
ate an XML map using this file, press Alt+F11 to switch to the Visual Basic Edi-
tor screen. Type the following statement in the Immediate window:
ActiveWorkbook.XmlMaps.Add("C:\VBAExcel2019_XML\Courses1.xml")

When you press Enter, Excel will display the message shown earlier in this chap-
ter in Figure 28.7. Click OK to the message. When you switch back to the Excel
application window, you will notice that the Courses_Map is added to the XML
maps in the drop-down list at the top of the XML Source task pane. When Excel
creates a new map, it uses the name of the root node for its name, followed by
an underscore and the word “Map.” Sometimes a newly added map may have
the same root node name as an existing map. To differentiate one map from
another, Excel will add a number following the word “Map.” So, if you already
have a dataroot_Map in the workbook and you are adding another map whose

USING XML IN EXCEL 2019 965

root node is also named dataroot, Excel will assign the name “dataroot_Map2”
to the new map.

Deleting Existing XML Maps

To delete an existing XML map from the workbook, use the Delete method of
the XmlMap object. The Delete method requires that you specify the name of
the map to delete. Let’s delete the Courses_Map that you added in the previous
section. Type the following statement in the Immediate window:

 ActiveWorkbook.XmlMaps("Courses_Map").Delete

When you press Enter, Excel deletes the specified map. This map’s name no
longer appears in the XML Source task pane’s drop-down list.

NOTE

When you delete the map using the Delete button in the XML
Maps dialog box, shown in Figure 28.13 earlier, Excel displays
a message informing you “If you delete the specified XML map,
you will no longer be able to import or export XML data using
this XML map.” You do not get this warning message when you
delete the XML map programmatically.

Exporting and Importing Data via an XML Map

Use the XmlMap object to export and import XML data. Use the XmlMap object’s
Export method for exporting and the Import method for importing. For exam-
ple, to export the XML table data through the dataroot_Map that the North-
wind employees XML table is mapped to, type the following statement on one
line in the Immediate window:
 ActiveWorkbook.XmlMaps("dataroot_Map").Export
 "C:\VBAExcel2019_XML\InternalContacts.xml"

When you press Enter, Excel creates the specified XML document in your VBA-
Excel2019_XML folder. Excel also offers the ExportXML method for those situ-
ations when you’d rather export your XML data to a String variable instead of
to a file as is done with the simple Export method. The following procedure
demonstrates this:
 Sub ExportToString()
 Dim strEmpData As String

 ActiveWorkbook.XmlMaps("dataroot_Map").ExportXml _
 Data: = strEmpData

966 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Debug.Print strEmpData
 End Sub

To import new XML data into an XML map, copy the Davolio.xml document
from the companion CD-ROM to your VBAExcel2019_XML folder, and then
in the Immediate window, enter the following statement on one line:
ActiveWorkbook.XmlMaps("dataroot_Map").Import
 URL: = "C:\VBAExcel2019_XML\Davolio.xml", Overwrite: = True

The Overwrite parameter specifies whether or not the newly imported data
should overwrite existing data. The Davolio.xml file holds data for only one
Northwind employee named Nancy Davolio. After running the above state-
ment, the XML table in the Employees.xlsm workbook will contain only one
record.

Binding an XML Map to an XML Data Source

Each XML map is bound to an XML data source. Use the DataBinding property
of the XMLMap object to find out the name of the data source that is used in the
XML map. For example, when you type the following statement in the Immedi-
ate window:
Debug.Print ActiveWorkbook.XmlMaps("dataroot_Map").DataBinding

Excel returns the following data source: C:\VBAExcel2019_XML\Davolio.xml.
If you haven’t run the statement in the previous section, you should see C:\VBA-
Excel2019_XML\ Employees.xml as the data source.
It is possible to change the data source used by the XML map with the LoadSet-
tings method of the DataBinding property as shown below. Be sure to enter
this on one line in the Immediate window.
ActiveWorkbook.XmlMaps("dataroot_Map").DataBinding.LoadSettings
 ("C:\VBAExcel2019_XML\Employees.xml")

After changing the data source used by the XML map, you should refresh the
data in your XML table (Employees.xlsm workbook) either via the user inter-
face by clicking the Refresh Data button on the Developer tab or from code
using the Refresh method (as shown in the next section).

Refreshing XML Tables from an XML Data Source

Use the Refresh method of the DataBinding property of the XmlMap object to
refresh the XML table in your worksheet. The following statement can be used:

ActiveWorkbook.XmlMaps("dataroot_Map").DataBinding.Refresh

USING XML IN EXCEL 2019 967

After running the above statement, the XML table in the worksheet should dis-
play all of the Northwind employee records.

VIEWING THE XML SCHEMA

To see the schema that is used by an XML map, use the Schemas collection of
the XmlMap object. The Schemas property of the XmlMap object is used to return
the XmlSchemas collection. The XmlSchemas collection contains XmlSchema
objects. By using the XML property of the XmlSchema object, it is possible to
return the string representing the content of the specified schema. Try out this
code in the Immediate window:
 Set objMap = ActiveWorkbook.XmlMaps(1)
 Debug.Print objMap.Name
 Debug.Print objMap.Schemas(1).Xml

If you’d like to use the above code fragment inside a VBA procedure, don’t forget
to declare the objMap variable with the following statement:

Dim objMap As XmlMap

NOTE

By saving the text of the generated schema in a file, you can cre-
ate a schema file for future use. To do this, open Notepad and
paste the data returned by the Debug.Print objMap.Sche-
mas(1).Xml statement. Next, save the Notepad file using any
name you wish, but be sure to use the .xsd file extension.

Now that you’ve acquired a useful vocabulary for programming tasks related to
XML maps, let’s write a full-fledged VBA procedure that will add an XML map
to the current workbook, perform the mapping, and refresh the data. You can
work with the current workbook that already has the dataroot_Map, or you can
create a new workbook file for this example.

 Hands-On 28.6 Using VBA to Program XML Maps

1. In the Visual Basic Editor screen, insert a new module in VBAProject
(Employees.xlsm).

2. In the module’s Code window, enter the AddNew_XMLMap procedure as
shown below:
Sub AddNew_XMLMap()
 Dim lstCourses As ListObject

968 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim lstCol As ListColumn
 Dim objMap As XmlMap
 Dim mapName As String
 Dim strXPath As String

 On Error GoTo ErrorHandler

 ' Create a new XML map
 ActiveWorkbook.XmlMaps.Add _
 ("C:\VBAExcel2019_XML\Courses1.xml ", _
 "Courses").Name = "Courses_Map"

 'location for the new XML table
 Set objMap = ActiveWorkbook.XmlMaps("Courses_Map")
 Range("B20").Select

 ' Create a new List object
 Set lstCourses = ActiveSheet.ListObjects.Add

 ' Bind the first XML element to the first table column
 strXPath = "/Courses/Course/@ID"
 With lstCourses.ListColumns(1)
 .XPath.SetValue objMap, strXPath
 .Name = "ID"
 End With

 ' Add a column to the table
 ' and bind it to an XML node
 Set lstCol = lstCourses.ListColumns.Add
 strXPath = "/Courses/Course/Title"
 With lstCol
 .XPath.SetValue objMap, strXPath
 .Name = "Title"
 End With

 ' Add a column to the table
 ' and bind it to an XML node
 Set lstCol = lstCourses.ListColumns.Add

 strXPath = "/Courses/Course/Startdate"
 With lstCol
 .XPath.SetValue objMap, strXPath
 .Name = "Start Date"
 End With

USING XML IN EXCEL 2019 969

 ' Add a column to the table
 ' and bind it to an XML node
 Set lstCol = lstCourses.ListColumns.Add

 strXPath = "/Courses/Course/Sessions"
 With lstCol
 .XPath.SetValue objMap, strXPath
 .Name = "Sessions"
 End With

 ' Set some XML properties
 With ActiveWorkbook.XmlMaps("Courses_Map")
 .ShowImportExportValidationErrors = False
 .AdjustColumnWidth = True
 .PreserveColumnFilter = True
 .PreserveNumberFormatting = True
 .AppendOnImport = False
 End With

 ' Refresh the XML table in the worksheet
 ActiveWorkbook.XmlMaps("Courses_Map").DataBinding.Refresh
Exit Sub

ErrorHandler:
 MsgBox "The following error has occurred: " & vbCrLf _
 & Err.Description
End Sub

The above code begins by creating the XML map named “Courses_Map” using
the Courses1.xml data file. Next, a new XML table is created in a worksheet. At
this time, the table will contain just one column with the default name “Col-
umn1.” We bind this column with the first item in the XML map—ID. The
XPath object’s SetValue method is used to bind data from an XML map to a
table column. This method has two required arguments, Map and XPath. Map
is the XML map that has been added to the workbook. In this example, it’s the
object variable named objMap. XPath is the XPath statement in the form of a
String variable (strXPath) that specifies the XML map data you want to bind
to the specified table column. Because the ID is an attribute, you must precede
it with the “@” character. Once the ID is mapped to the table column, we re-
place the default column name with our own (ID), using the Name property of
the ListColumn object:
strXPath = "/Courses/Course/@ID"
With lstCourses.ListColumns(1)

970 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .XPath.SetValue objMap, strXPath
 .Name = "ID"
End With

Next, we proceed to add another column to the table using the Add method of
the ListColumns collection:
Set lstCol = lstCourses.ListColumns.Add

This column is then bound to the next item in the XML map—Title. Again, we
use the SetValue method of the XPath object to do the binding:
strXPath = "/Courses/Course/Title"
With lstCol
 .XPath.SetValue objMap, strXPath
 .Name = "Title"
End With

In the same manner, we add two more columns to our table and bind each col-
umn to the remaining elements in the XML map. Next, we set some XML map
properties and proceed to refresh the list. The empty table is now populated
with the data from the source XML file (Courses1.xml).

3. Switch to the Microsoft Excel application window and choose Developer |
Macros to open the Macro dialog box.

4. In the Macro dialog box, select AddNew_XMLMap and click the Run
button.
Excel displays a message informing you that the specifi ed XML source
document does not have a schema and Excel will create one on the fl y using
the XML source data, as in Figure 28.7 earlier in this chapter.

5. Click OK to the message.
Excel adds the specifi ed columns and performs the required data mappings;
however, it stops and displays the message about incompatible formatting
shown in Figure 28.21 when it gets to the mapping of the <Sessions> element.

FIGURE 28.21 This warning message appears when the data type of the data being mapped is not
compatible with the cell formatting.

When Excel determines that the cell formatting is not compatible with the data
type specified in the XSD for the requested data element, you receive a warn-

USING XML IN EXCEL 2019 971

ing message as shown in Figure 28.21. This dialog box contains the following
buttons:

Use existing formatting Click this button to ignore the data type in the XSD file.
Match element data type Click this button to change the cell formatting to the ap-

propriate type.
Cancel Click this button to cancel mapping of this data element.

6. Click the Match element data type button to proceed with the data mapping.
The resulting XML table and XML map are shown in Figure 28.22.

FIGURE 28.22 The Excel worksheet with two XML tables. The upper table was created via the user
interface; the one at the bottom was generated programmatically. The XML Source task pane displays
the Courses_Map with mapped data elements.

What Is XPath?

XML Path Language (XPath) is a query language used to create expressions
for finding data in the XML file. These expressions can manipulate strings,
numbers, and Boolean values (true, false). They can also be used to navigate
an XML tree structure and process its elements with XSL Transformations
(XSLT) instructions. With XPath expressions, you can easily identify and ex-
tract from the XML document specific elements (nodes) based on their type,
name, values, or the relationship of a node to other nodes (this is covered later
in this chapter).

SIDEBAR

972 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING XML SCHEMA FILES

When you request that Excel create an XML map based on the specified XML
data file, Excel informs you that the specified XML source data does not refer
to a schema and therefore Excel will create a schema based on the XML source
data. To obtain the schema information that Excel has generated during the
XML mapping process, do the following:

1. Open the Immediate window and type the following statement:
? ThisWorkbook.XMLMaps(1).Schemas(1).xml

When you press Enter, the content of the schema appears in the Immediate
window in the form of a very long string.

2. Highlight the retrieved schema text in the Immediate window, and press
Ctrl+C to copy it to the clipboard.

3. Open Windows Notepad and press Ctrl+V to paste the data from the clip-
board. You may want to format the data as shown in Figure 28.23 to make it
easier to understand.

4. Save the file using any name, but be sure to specify the .xsd file extension.
5. Close Notepad.

FIGURE 28.23 This XML schema was generated by Excel during the XML mapping of the
XML data file.

USING XML IN EXCEL 2019 973

USING XML EVENTS

Chapter 15 of this book focused on event-driven programming. This section
expands your knowledge of Excel events by introducing you to events that occur
before and after data is exported, imported, or refreshed via the XML map.

The Workbook object provides the following events: AfterXMLExport, Af-
terXMLImport, BeforeXMLExport, and BeforeXMLImport. By writing code for
these events in the ThisWorkbook code module, you can fully control what hap-
pens before and after import, export, and refresh operations.

Event Name AfterXMLExport
Event Description Example 1
This event applies to the Workbook
object. It occurs after Microsoft Excel
saves or exports XML data from the
specified workbook.
The following parameters are required:
Map—The schema map that was used
to save or export data.
Url—The location of the XML file that
was exported.
Result—A constant indicating the
result of the save or export operation.
Use one of the following xlXmlEx-
portResult constants:
• xlXmlExportSuccess—Speci-

fies that the XML data file was suc-
cessfully exported.

• xlXmlExportValidation-
Failed—Specifies that the content
of the XML data file does not match
the specified schema map.

Private Sub Workbook_AfterXMLExport _
 ByVal Map As XmlMap, _
 ByVal Url As String, _
 ByVal Result As XlXmlExportResult)
 If Result = xlXmlExportSuccess Then
 MsgBox ("XML export succeeded.")
 Else
 MsgBox ("XML export failed.")
 End If
End Sub

974 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Event Name AfterXMLImport
Event Description Example 2
This event applies to the Workbook
object. It occurs after an existing XML
data connection is refreshed or after
new XML data is imported into the
specified Microsoft Excel workbook.
The following parameters are required:
Map—The XML map that will be used
to import data.
IsRefresh—A Boolean value (True/
False). True if the event was triggered
by refreshing an existing connection
to XML data; False if the event was
triggered by importing from a different
data source.
Result—A constant indicating the re-
sult of the refresh or import operation.
Use one of the following xlXmlIm-
portResult constants:
xlXmlImportElementsTrun-
cated—Specifies that the content of
the specified XML data file has been
truncated because the XML data file is
too large for the worksheet.
xlXmlImportSuccess—Specifies
that the XML data file was successfully
imported.
xlXmlImportValidation-
Failed—Specifies that the content of
the XML data file does not match the
specified schema map.

Private Sub Workbook_AfterXMLImport _
 (ByVal Map As XmlMap, _
 ByVal IsRefresh As Boolean, _
 ByVal Result As XlXmlImportResult)
 If Result = xlXmlImportSuccess Then
 MsgBox ("XML import succeeded.")
 ActiveSheet.ListObjects(1).Range.
 Select
 Selection.Interior.ColorIndex = 35
 ActiveCell.Select
 Else
 MsgBox ("XML import failed.")
 End If
End Sub

USING XML IN EXCEL 2019 975

Event Name BeforeXMLExport
Event Description Example 3
This event applies to the Workbook
object. It occurs before Microsoft Excel
saves or exports XML data from the
specified workbook. This event occurs
only when saving to an XML data file
format; it does not occur when you
are saving to the XML spreadsheet file
format.
The following parameters are required:
Map—The XML map that will be used
to save or export data.
Url—The location where you want to
export the resulting XML file.
Cancel—A Boolean value (True/False).
Set to True to cancel the save or export
operation.

Private Sub Workbook_BeforeXMLExport _
 (ByVal Map As XmlMap, _
 ByVal Url As String, _
 Cancel As Boolean)

 If (Map.IsExportable) Then
 If MsgBox("Excel is about" & _
 " to export XML from the" & _
 Map.Name & "." & vbCrLf & _

 "Do" & _
 " you want to continue?", _
 vbYesNo + vbQuestion, _
 "XML Export Process") = 7 Then
 Cancel = True
 End If
 End If
End Sub

Event Name BeforeXMLImport
Event Description Example 4
This event applies to the Workbook
object. It occurs before an existing
XML data connection is refreshed or
before new XML data is imported into a
Microsoft Excel workbook.
The following parameters are required:
Map—The XML map that will be used
to import data.
Url—The location of the XML file to be
imported.
IsRefresh—A Boolean value (True/
False). True if the event was triggered
by refreshing an existing connection
to XML data; False if the event was
triggered by importing from a different
data source.
Cancel—A Boolean value (True/False).
Set to True to cancel the import or
refresh operation.

Private Sub Workbook_BeforeXMLImport _
 (ByVal Map As XmlMap, _
 ByVal Url As String, _
 ByVal IsRefresh As Boolean, _
 Cancel As Boolean)

 If MsgBox("Excel is about " & _
 " to import XML into the" & _
 " workbook. Continue with" & _
 " importing?", _
 vbYesNo + vbQuestion, _
 "XML Import Process") = 7 Then
 Cancel = True
 End If
End Sub

976 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The XML events are also available for the Application object. These events are
listed below. Recall from Chapter 15 that event procedures for the Application
object require that you create a new object using the WithEvents keyword in a
class module.

 ● WorkbookBeforeXmlExport—Occurs before Microsoft Excel saves or
exports XML data from the specifi ed workbook. Use this event if you
want to capture XML data that is being exported or saved from a particu-
lar workbook.

 ● WorkbookAft erXmlExport—Occurs aft er Microsoft Excel saves or ex-
ports XML data from the specifi ed workbook. Use this event if you want
to perform an operation aft er XML data has been exported from a par-
ticular workbook.

 ● WorkbookBeforeXmlImport—Occurs before an existing XML data
connection is refreshed or new XML data is imported into any open Mi-
crosoft Excel workbook. Use this event if you want to capture XML data
that is being imported or refreshed to a particular workbook.

 ● WorkbookAft erXmlImport—Occurs aft er an existing XML data con-
nection is refreshed or new XML data is imported into any open Micro-
soft Excel workbook. Use this event if you want to perform an operation
aft er XML data has been imported into a particular workbook.

THE XML DOCUMENT OBJECT MODEL

You can create, access, and manipulate XML documents programmatically
via the XML Document Object Model (DOM). The DOM has properties and
methods for interacting with XML documents. The XML DOM is supplied free
with the browser. To use the XML DOM from your VBA procedures, you need
to set up a reference to the MSXML object library.

 Hands-On 28.7 Setting up a Reference to DOM

1. In the Visual Basic Editor window of VBAProject (Empoyees.xlsm), choose
Tools | References.

2. In the References dialog box, locate and select Microsoft XML 6.0 as shown
in Figure 28.24.

USING XML IN EXCEL 2019 977

FIGURE 28.24 To work with XML documents programmatically, you need to establish a reference
to the Microsoft XML type library.

3. Click OK to close the References dialog box.
4. Now that you have the reference set, open the Object Browser and examine

the XML DOM’s objects, methods, and properties, shown in Figure 28.25.

FIGURE 28.25 To see objects, properties, and methods exposed by the DOM, open the Object
Browser after setting up a reference to the Microsoft XML type library as shown in Figure 28.24.

5. Close the Object Browser.

978 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The DOMDocument60 object is the top level of the XML DOM hierarchy. This
object represents a tree structure composed of nodes. You can navigate through
this tree structure and manipulate the data contained in the nodes by using
various methods and properties. The DOMDocument60 object is the parent for
all other elements in the DOM hierarchy. Because every XML object is created
and accessed from the document, the DOMDocument60 object must be created
first.

To work with an XML document, you need to create an instance of the
DOMDocument60 object, as in the following example:
 Dim myXMLDoc As MSXM2.DOMDocument60
 Set myXMLDoc = New MSXML2.DOMDocument60

To make the instantiated DOMDocument60 object useful, you should load it
with some data. The following Hands-On demonstrates how to get started with
the XML DOM. You will perform the following tasks:

 ● Create an instance of the DOMDocument60.
 ● Load XML information from a fi le using the Load method.
 ● Use the DOMDocument60 object’s XML property to retrieve the raw

data.
 ● Use the DOMDocument60 object’s Text property to retrieve the text

stored in nodes.

 Hands-On 28.8 Reading an XML Document with DOM

1. Enter the following Load_ReadXMLDoc procedure in a new module of VBA
Project (Employees.xlsm):
Sub Load_ReadXMLDoc()
 Dim xmldoc As MSXML2.DOMDocument60

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60

 ' Disable asynchronous loading
 xmldoc.async = False

 ' Load XML information from a file
 If xmldoc.Load("C:\VBAExcel2019_XML\Courses1.xml") Then
 ' Use the DOMDocument60 object's XML property to
 ' retrieve the raw data

USING XML IN EXCEL 2019 979

 Debug.Print xmldoc.XML
 ' Use the DOMDocument60 object's Text property to
 ' retrieve the actual text stored in nodes
 Sheets.Add
 ActiveSheet.Range("A1").Value = xmldoc.Text
 End If
End Sub

The XML DOM has two methods for loading XML information: Load and
LoadXML. Use the Load method to load XML information from a text file. Use
the LoadXML method when loading from a string in memory.
 MSXML uses an asynchronous loading mechanism by default for working
with documents. Asynchronous loading allows you to perform other tasks
during long database operations, such as providing feedback to the user as
MSXML parses the XML file or giving the user the chance to cancel the op-
eration. Before calling the Load method, however, it’s a good idea to set the
Async property of the DOMDocument60 object to False to ensure that when
the load returns, the entire document has finished loading. The Load method
returns True if it successfully loaded the data and False otherwise.
 Having loaded the data into a DOMDocument60 object, you can use the
XML property to retrieve the raw data or use the Text property to obtain the
text stored in document nodes.

2. Run the Load_ReadXMLDoc procedure and examine its results in the
Immediate window and in Sheet2 of the Employees.xlsm workbook. Cell A1
in Sheet2 should contain the entire string of data.

WORKING WITH XML DOCUMENT NODES

As you already know, the XML DOM represents a tree-based hierarchy of
nodes. An XML document can contain nodes of different types. Some nodes
represent comments and processing instructions in the XML document, and
others hold the text content of a tag. To determine the type of node, use the
nodeType property of the IXMLDOMNode object. Node types are identified by
either a text string or a constant. For example, the node representing an element
can be referred to as NODE_ELEMENT or 1, while the node representing the
comment is named NODE_COMMENT or 8. See the MSXML2 library in the
Object Browser shown in Figure 28.25 in the previous section for the names of
other node types.

980 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In addition to node types, nodes can have parent, child, and sibling nodes.
The hasChildNodes method lets you determine if a DOMDocument60 object has
child nodes. There’s also a childNodes property for retrieving a collection of
child nodes. Before you start looping through the collection of child nodes, it’s
a good idea to use the Length property of the IXMLDOMNode to determine how
many elements the collection contains.

The LearnAboutNodes procedure shown below will get you working with
nodes programmatically in no time. The following example demonstrates how
to experiment with XML document nodes.

 Hands-On 28.9 Working with XML Document Nodes

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the LearnAboutNodes procedure, as shown below:
Sub LearnAboutNodes()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlNode As MSXML2.IXMLDOMNode

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60

 xmldoc.async = False

 ' Load XML information from a file
 xmldoc.Load ("C:\VBAExcel2019_XML\Courses1.xml")

 ' find out the number of child nodes in the document
 If xmldoc.hasChildNodes Then
 Debug.Print "Number of Child Nodes: " & _
 xmldoc.childNodes.Length

 ' iterate through the child nodes to gather information
 For Each xmlNode In xmldoc.childNodes
 Debug.Print "Node Name: " & xmlNode.nodeName
 Debug.Print vbTab & "Type: " & _
 xmlNode.nodeTypeString & _
 "(" & xmlNode.nodeType & ")"
 Debug.Print vbTab & "Text: " & xmlNode.Text
 Next xmlNode
 End If
End Sub

USING XML IN EXCEL 2019 981

2. Run the LearnAboutNodes procedure in step mode by pressing F8.
The LearnAboutNodes procedure prints to the Immediate window the infor-
mation about child nodes found in the Courses1.xml document. Notice that
the Text property of a node returns all the text from all the node’s children in
one string (see the text for the Courses node below).
Number of Child Nodes: 3

Node Name: xml
 Type: processinginstruction(7)
 Text: version="1.0"
Node Name: xml-stylesheet
 Type: processinginstruction(7)
 Text: type = "text/xsl" href = "Courses.xsl"
Node Name: Courses
 Type: element(1)
 Text: Beginning VBA in Excel 3/4/2018 6 Intermediate VBA in
Excel 4/13/2018 8 Advanced VBA in Excel 9/7/2018 12 Advanced
VBA in Word 10/9/2018 12 Advanced VBA in Access 11/13/2018 12
Beginning VBA in Outlook 10/10/2018 6

RETRIEVING INFORMATION FROM ELEMENT NODES

Let’s assume that you want to read only the information from the text element
nodes and place it in an Excel worksheet. Use the getElementsByTagName
method of the DOMDocument60 object to retrieve an IXMLDOMNodeList
object containing all the element nodes.

The getElementsByTagName method takes one argument specifying the tag
name to search for. You should use “*” as the tag to search for all the element
nodes as illustrated in Hands-On 28.10. The following example demonstrates
how to obtain data from an XML document’s element nodes.

 Hands-On 28.10 Obtaining Data from Element Nodes

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the IterateThruElements procedure, as shown below:
Sub IterateThruElements()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlNodeList As MSXML2.IXMLDOMNodeList
 Dim xmlNode As MSXML2.IXMLDOMNode
 Dim myNode As MSXML2.IXMLDOMNode

982 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.async = False

 ' Load XML information from a file
 xmldoc.Load ("C:\VBAExcel2019_XML\Courses1.xml")

 ' Find out the number of child nodes in the document
 Set xmlNodeList = xmldoc.getElementsByTagName("*")

 ' Open a new workbook and paste the data
 Workbooks.Add
 Range("A1:B1").Formula = Array("Element Name", "Text")
 For Each xmlNode In xmlNodeList
 For Each myNode In xmlNode.ChildNodes
 If myNode.nodeType = NODE_TEXT Then
 ActiveCell.Offset(0, 0).Formula = xmlNode.nodeName
 ActiveCell.Offset(0, 1).Formula = xmlNode.Text
 End If
 Next myNode
 ActiveCell.Offset(1, 0).Select
 Next xmlNode
 Columns("A:B").AutoFit
End Sub

2. Run the above procedure in step mode by pressing F8.
The IterateThruElements procedure fills in two worksheet columns with the
XML element name and the corresponding text for all the text elements in
the Courses1.xml document. The procedure result is shown in Figure 28.26.
Notice that this procedure uses two For Each…Next loops. The first one (outer
For Each…Next loop) iterates through the entire collection of element nodes.
The second one (inner For Each…Next loop) uses the nodeType property to
find only those element nodes that contain a single text node.

To list all the nodes that match a specified criterion, use the selectNodes
method. In the next example you will see how you can return to the Immediate
window the text found in all Title nodes in the Courses1.xml file.

USING XML IN EXCEL 2019 983

FIGURE 28.26 You can programmatically retrieve information about element nodes from the XML
document. The IterateThruElements procedure was used to create this worksheet.

 Hands-On 28.11 Obtaining Data from an Element Node Based
on a Condition

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the SelectNodes_SpecifyCriterion procedure, as shown
below:
Sub SelectNodes_SpecifyCriterion()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlNodeList As MSXML2.IXMLDOMNodeList
 Dim myNode As Variant

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.async = False

984 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' Load XML information from a file
 xmldoc.Load ("C:\VBAExcel2019_XML\Courses1.xml")

 ' Retrieve all the nodes that match the specified criterion
 Set xmlNodeList = xmldoc.selectNodes("//Title")
 If Not (xmlNodeList Is Nothing) Then
 For Each myNode In xmlNodeList
 Debug.Print myNode.Text
 Next myNode
 End If
End Sub

In the SelectNodes_SpecifyCriterion procedure, the "//Title" criterion of
the selectNodes method looks for the element named “Title” at any level
within the tree structure of the nodes.

2. Run the above procedure in step mode by pressing F8.
Excel prints to the Immediate window only the names of the courses:
Beginning VBA in Excel
Intermediate VBA in Excel
Advanced VBA in Excel
Advanced VBA in Word
Advanced VBA in Access
Beginning VBA in Outlook

The criterion in the selectNodes method can be more complex. Let’s assume
that you are only interested in the title for the Course element with an ID of
“VBA2EX.” To retrieve this information, use the following statement:
Set xmlNodeList = xmldoc.selectNodes("//Course[@ID =
 'VBA2EX']//Title")

The above statement tells the XML processor to search for an element named
“Course” at any level within the tree structure of nodes, find only the course el-
ement whose ID attribute contains the value of “VBA2EX,” and return the Title
element. If all you want to do is retrieve the first node that meets the specified
criterion, use the selectSingleNode method of the XML document. As the
argument of this method, specify the string representing the node that you’d
like to find. In the next example you will find the first node that matches the
criterion "//Title" in the Courses1.xml document.

USING XML IN EXCEL 2019 985

 Hands-On 28.12 Finding a Specifi c Node

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the Select_SingleNode procedure, as shown below:
Sub Select_SingleNode()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlSingleN As MSXML2.IXMLDOMNode

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.async = False

 ' Load XML information from a file
 xmldoc.Load ("C:\VBAExcel2019_XML\Courses1.xml")

 ' Retrieve the reference to a particular node
 Set xmlSingleN = xmldoc.selectSingleNode("//Title")
 Debug.Print xmlSingleN.Text
End Sub

2. Run the above procedure in step mode by pressing F8.
The result of this procedure is the text “Beginning VBA in Excel” written to the
Immediate window.
The following statements will retrieve the first Course node with the ID at-
tribute:
Set xmlSingleN = xmldoc.selectSingleNode("//Course//@ID")
Debug.Print xmlSingleN.Text

If you replace the last two lines in the Select_SingleNode procedure with
the above statements and run the procedure again, you should see the text
“VBA1EX” in the Immediate window.
Once you find the correct node to work with, you can easily modify its value.
For example, to change the text of the first Course element with the ID attri-
bute, use the following lines of code:
Set xmlSingleN = xmldoc.selectSingleNode("//Course//@ID")
xmlSingleN.Text = "VBA1EX2010"
xmldoc.Save "C:\VBAExcel2019_XML\Courses1.xml"

Notice that to make a permanent change in the XML document, you must save
it using the Save method.

986 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When using the selectSingleNode method, you should use the Is Nothing
conditional expression to determine whether a matching element was found in
the loaded XML document, as demonstrated in the next example.

 Hands-On 28.13 Using a Conditional Expression with an
Element Node

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the Select_SingleNode_2 procedure, as shown below:
Sub Select_SingleNode_2()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlSingleN As MSXML2.IXMLDOMNode

 ' Create an instance of the DOMDocument60
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.async = False

 ' Load XML information from a file
 xmldoc.Load ("C:\VBAExcel2019_XML\Courses1.xml")

 ' Retrieve the reference to a particular node
 Set xmlSingleN = xmldoc.SelectSingleNode("//Course//@ID")
 If xmlSingleN Is Nothing Then
 Debug.Print "No nodes selected."
 Else
 Debug.Print xmlSingleN.Text
 xmlSingleN.Text = "VBA1EX2018"
 Debug.Print xmlSingleN.Text
 xmldoc.Save "C:\VBAExcel2019_XML\Courses1.xml"
 End If
End Sub

2. Run the procedure in step mode by pressing F8.
Excel prints to the Immediate window the text of the node before and aft er
modifi cation.

3. Replace the XPath expression "//Course//@ID" with “//Cours//@ID” and
run the procedure again.
You should see the text “No nodes selected” in the Immediate window.

USING XML IN EXCEL 2019 987

Using the built-in FilterXML Function to Retrieve Data from XML

If you are planning to work a lot with XML, you will be thrilled to find out that
Excel offers a powerful function called FilterXML. This function returns spe-
cific data from XML content by using the specified XPath expression:

FilterXML(xml, xpath)

Xml is a string in valid XML format. If xml is not valid, FilterXML will return
#VALUE! error. Xpath is a string in standard XPath format.

The FilterXML function can be entered directly in a worksheet or it can be
called from VBA using the WorksheetFunction property of the Application
object. To quickly learn how this function works, insert a new module in the
Employees.xlsm workbook and enter the following VBA procedure:
Sub Load_ReadXMLDoc_FilterXML()
 Dim xmlDoc As MSXML2.DOMDocument60
 Dim retval As String

 ' Create an instance of the DOMDocument60
 Set xmlDoc = New MSXML2.DOMDocument60

 ' Disable asynchronous loading
 xmlDoc.async = False

 ' Load XML information from a file
 If xmlDoc.Load("C:\VBAExcel2019_XML\Courses1.xml") Then
 ' Use the DOMDocument60 object's XML property to
 ' retrieve the raw data to the worksheet
 Sheets.Add
 ActiveSheet.Range("A1").Value = xmlDoc.XML
 Columns("A:A").ColumnWidth = 65
 ' Use the built-in function FilterXML to
 ' retrieve data stored in a specific node
 ActiveSheet.Range("A4").Value = _
 WorksheetFunction.FilterXML(_
 Range("A1").Value, "//Course[@ID='VBA2EX']//Title")
 End If
End Sub

When you run this procedure, Excel loads the Courses1.xml file and adds a
new worksheet to the Employees.xlsm workbook. The entire XML string is then
placed in cell A1. Next, the specific data is retrieved from xml using the Fil-
terXML function. Notice that the first argument of this function points to cell
A1 containing the xml data and the second argument specifies that we want

SIDEBAR

988 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to retrieve the title element with the Course ID set to VBA2Ex. Cell A4 in the
added worksheet should now contain the text Intermediate VBA in Excel.

NOTE

Excel currently limits the number of characters per cell to 32,767
characters. While that seems like a lot, some XML files you may
need to work with will exceed this limit and you will see the
#Value! error value when you attempt to retrieve the data. You
can overcome this limitation by writing additional procedures
or functions to clean unnecessary characters from the XML to
avoid exceeding the 32K character limit.

NOTE

XML DOM provides a number of other methods that make it
possible to programmatically add or delete elements. Covering
all of the details of the XML DOM is beyond the scope of this
chapter. When you are ready for more information on this
subject, visit the following Web sites:

http://www.w3.org/DOM/

http://www.w3.org/XML/

XML VIA ADO

Earlier in this book you learned how to retrieve external data using the ActiveX
Data Objects (ADO). This section will show you what you can do with XML
and ADO. You can save all types of recordsets as XML to a file on your com-
puter. You can also save any type of ADO recordset to XML in memory using
the ADO Stream object; however, that is not covered here.

Saving an ADO Recordset to Disk as XML

To save an ADO recordset as XML to a file, use the Save method of the Record-
set object with the adPersistXML constant. The following example procedure
demonstrates how to create XML files from ADO recordsets.

 Hands-On 28.14 Saving an ADO Recordset as an XML Document

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module.

USING XML IN EXCEL 2019 989

2. Choose Tools | References. In the References dialog box, find and select the
reference to the Microsoft ActiveX Data Objects 6.1 Library or earlier.

3. Click OK to close the References dialog box.
4. In the Code window of the new module you added in Step 1, enter the

SaveRst_ADO procedure, as shown below:
Sub SaveRst_ADO()
 Dim rst As ADODB.Recordset
 Dim conn As New ADODB.Connection
 Const strConn = "Provider = Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source = C:\VBAExcel2019_ByExample\Northwind.mdb"

 ' Open a connection to the database
 conn.Open strConn

 ' Execute a select SQL statement against the database
 Set rst = conn.Execute("SELECT * FROM Products")

 ' Delete the file if it exists
 On Error Resume Next
 Kill "C:\VBAExcel2019_XML\Products.xml"

 ' Save the recordset as an XML file
 rst.Save "C:\VBAExcel2019_XML\Products.xml", adPersistXML

 rst.Close
 conn.Close
End Sub

The previous procedure establishes a connection to the sample Northwind.
mdb database using the ADO Connection object. Next, it executes a select
SQL statement against the database to retrieve all of the records from the
Products table. Once the records are placed in a recordset, the Save method is
called to store the recordset to a disk file. If the disk file already exists, the pro-
cedure deletes the existing file using the VBA Kill statement. The On Error
Resume Next statement allows bypassing the Kill statement if the file that you
are going to create does not yet exist.

5. Run the SaveRst_ADO procedure.
6. Use Notepad to open the C:\VBAExcel2019_XML\Products.xml file

created by the SaveRst_ADO procedure.
The file content is depicted in Figure 28.27. XML files can be element-based
or attribute-based. The XML files produced by ADO 2.5 or higher are all at-
tribute-based.

990 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

XML files generated by ADO are self-describing objects that contain data and
metadata (information about the data). If you take a look at the Products.xml
file in Figure 28.27, you will notice that below the XML document’s root tag
there are two children nodes: <s:Schema> and <rs:data>. The schema node de-
scribes the structure of the recordset, while the data node holds the actual data.

FIGURE 28.27 Saving a recordset to an XML file with the ADO produces an
attribute-based XML file.

Between the <s:Schema id =“RowsetSchema”> and </s:Schema> tags, ADO
places information about each column, including field name, position, data
type and length, nullability, and whether the column is writable. Take a look at
the following code fragment:
<s:Schema id="RowsetSchema">
 <s:ElementType name="row" content="eltOnly">
 <s:AttributeType name="ProductID" rs:number="1"
 rs:maydefer="true"
 rs:writeunknown="true">
 <s:datatype dt:type="int" dt:maxLength="4" rs:precision="10"
 rs:fixedlength="true"/>
 </s:AttributeType>
 <s:AttributeType name="ProductName" rs:number="2"
 rs:nullable="true"rs:maydefer="true" rs:writeunknown="true">
 <s:datatype dt:type="string" dt:maxLength="40"/>

USING XML IN EXCEL 2019 991

 </s:AttributeType>
 <s:AttributeType name="SupplierID" rs:number="3"
 rs:nullable="true"
 rs:maydefer="true" rs:writeunknown="true">
 <s:datatype dt:type="int" dt:maxLength="4" rs:precision="10"
 rs:fixedlength="true"/>
 </s:AttributeType>
 <s:AttributeType name="CategoryID" rs:number="4"
 rs:nullable="true"
 rs:maydefer="true" rs:writeunknown="true">
 <s:datatype dt:type="int" dt:maxLength="4" rs:precision="10"
 rs:fixedlength="true"/>
 </s:AttributeType>
 <s:extends type="rs:rowbase"/>
 </s:ElementType>
</s:Schema>

Notice that each field is represented by the <s:AttributeType> element. The
value of the name attribute is the field name. The <s:AttributeType> element
also has a child element, <s:datatype>, which holds information about its data
type (integer, number, string, etc.) and the maximum field length.
 Below the schema definition, you will find the actual data. The ADO sche-
ma represents each record using the <z:row> tag. The fields in a record are ex-
pressed as attributes of the <z:row> element. Every XML attribute is assigned
a value that is enclosed in a pair of single or double quotation marks; however,
if the value of a field in a record is NULL, the attribute on the <z:row> is not
created. Notice that each record is written out in the following format:

<z:row ProductID='1' ProductName='Chai' SupplierID='1' CategoryID='1'
QuantityPerUnit='10 boxes x 20 bags' UnitPrice='18' UnitsInStock='39'
UnitsOnOrder='0' ReorderLevel='10' Discontinued='False'/>

The above code fragment is an attribute-based XML document. However, you
may want to have each record written out as follows:
 <Product>
 <ProductID>1</ProductID>
 <ProductName>Chai</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>1</CategoryID>
 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
 <UnitPrice>18</UnitPrice>
 <UnitsInStock>39</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>10</ReorderLevel>

992 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 <Discontinued>False</Discontinued>
 </Product>

The above code fragment represents an element-based XML. Each record is
wrapped in a <Product> tag, and each field is an element under the <Prod-
uct> tag. You can write a stylesheet to transform attribute-based XML into
element-based XML. Writing stylesheets and using XSL transformations are
not covered in this book.

7. Close the Products.xml file and exit Notepad.

Loading an ADO Recordset

After saving an ADO recordset to an XML file, you can load it back and read it
as if it were a database. To gain access to the records saved in the XML file, use
the Open method of the Recordset object and specify the filename including its
path and the persisted recordset service provider as "Provider=MSPersist".
Let’s look at an example that demonstrates opening a persisted recordset.

 H ands-On 28.15 Opening a Persisted Recordset with XML Data

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the procedure OpenAdoFile, as shown below:
Sub OpenAdoFile()
 Dim rst As ADODB.Recordset
 Dim StartRange As Range
 Dim h As Integer

 ' Create a recordset and fill it with
 ' the data from the XML file
 Set rst = New ADODB.Recordset
 rst.Open "C:\VBAExcel2019_XML\Products.xml", _
 "Provider=MSPersist"

 ' Display the number of records
 MsgBox rst.RecordCount

 ' Open a new workbook
 Workbooks.Add

 ' Copy field names as headings to the first row
 ' of the worksheet
 For h = 1 To rst.fields.Count
 ActiveSheet.Cells(1, h).Value = rst.fields(h - 1).Name
 Next

USING XML IN EXCEL 2019 993

 ' Specify the cell range to receive the data (A2)
 Set StartRange = ActiveSheet.Cells(2, 1)

 ' Copy the records from the recordset
 ' beginning in cell A2
 StartRange.CopyFromRecordset rst

 ' Autofit the columns to make the data fit
 Range("A1").CurrentRegion.Select
 Columns.AutoFit

 ' Close the workbook and save the file
 ActiveWorkbook.Close SaveChanges:=True, _
 Filename:="C:\VBAExcel2019_ByExample\Products.xlsx"
End Sub

The example procedure shown above creates a Recordset object and fills it with
the data from the Products.xml file. After displaying the number of records in
the file, the procedure opens a new workbook and fills the first worksheet row
with field names. Next, the CopyFromRecordset method is used to retrieve all
the records into the worksheet. After adjusting the size of the columns to fit
the data, the workbook is saved using the default Excel 2019 file format (.xlsx).

2. Run the OpenAdoFile procedure.
3. Open the Products.xlsx file that was created by the OpenAdoFile procedure

in your VBAExcel2019_ByExample folder.
You should see all of the records from the Products.xml document nicely
arranged in rows and columns and therefore easy to analyze and make changes
to.

4. Close the Products.xlsx file. Do not close the Employees.xlsm workbook as we
will continue to use it in the next section.

Saving an ADO Recordset into the DOMDocument60 Object

You can save an ADO recordset directly into an XML DOMDocument object
using the following code:
 Set xmlDoc = New MSXML2.DOMDocument60
 rst.Save xmlDoc, adPersistXML

The next Hands-On exercise demonstrates how to use DOM to modify XML
data in the recordset generated by the ADO Save method.

994 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 H ands-On 28.16 Modifying a Recordset Saved into the XML
DOMDocument Object

1. In the Visual Basic Editor window of VBAProject (Employees.xlsm), insert a
new module and enter the SaveToDOM procedure, as shown below:
Sub SaveToDOM()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim xmlDoc As MSXML2.DOMDocument60
 Dim myNode As IXMLDOMNode
 Dim strCurValue As String

 ' Declare constant used as database connection string
 Const strConn = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=C:\VBAExcel2019_ByExample\Northwind.mdb"

 ' Open a connection to the database
 Set conn = New ADODB.Connection
 conn.Open strConn

 ' Open the Shippers table
 Set rst = New ADODB.Recordset
 rst.Open "Shippers", conn, adOpenStatic, adLockOptimistic

 ' Create a new XML DOMDocument60 object
 Set xmlDoc = New MSXML2.DOMDocument60

 ' Add the default namespace declaration
 ' to the Namespace names of the DOMDocument60 object
 ' using the setProperty method of the DOMDocument60 object

 xmlDoc.setProperty "SelectionNamespaces", _
 "xmlns:rs='urn:schemas-microsoft-com:rowset'" & _
 " xmlns:z='#RowsetSchema'"

 ' Save the recordset directly into
 ' the XML DOMDocument60 object
 rst.Save xmlDoc, adPersistXML
 Debug.Print xmlDoc.XML

 ' Modify shipper's phone
 Set myNode = xmlDoc.selectSingleNode(_
 "//z:row[@CompanyName='Speedy Express']/@Phone")

USING XML IN EXCEL 2019 995

 strCurValue = myNode.Text
 Debug.Print strCurValue
 myNode.Text = "(508)" & Right(strCurValue, 9)
 Debug.Print myNode.Text

 xmlDoc.Save "C:\VBAExcel2019_XML\Shippers_Modified.xml"

 ' Cleanup
 Set xmlDoc = Nothing
 Set conn = Nothing
 Set rst = Nothing
 Set myNode = Nothing
End Sub

After saving the recordset into the XML DOMDocument60 object, the proce-
dure locates a node matching a specified search string by using the selectS-
ingleNode method. Notice that the XPath expression used as an argument of
this method searches for the Phone attribute in the z:row element nodes that
have a CompanyName attribute set to "Speedy Express":
Set myNode = xmlDoc.selectSingleNode(_
 "//z:row[@CompanyName='Speedy Express']/@Phone")

Once the required phone number is located, the procedure modifies the area
code, as follows:
strCurValue = myNode.Text
myNode.Text = "(508)" & Right(strCurValue, 9)

If you’d rather remove the Phone entry completely, you could use the following
code:
Set myNode = xmlDoc.selectSingleNode(_
 "//z:row[@CompanyName='Speedy Express']")
myNode.Attributes.removeNamedItem "Phone"

The removeNamedItem method removes an attribute from the attributes of a
given node. This method requires one parameter: a string specifying the name
of the attribute to remove from the collection.

2. Run the procedure in step mode by pressing F8. Make sure the Immediate
window is open so you can see at once the results of various Debug.Print
statements that the example procedure contains.

3. Use Notepad to open the C:\VBAExcel2019_XML\Shippers_Modified.
xml file created by the SaveToDOM procedure.
Notice the modified phone number for the Speedy Express record.

996 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Close the Shippers_Modified.xml file and exit Notepad.
5. Close the Employees.xlsm workbook, saving changes when prompted.

UNDERSTANDING NAMESPACES

As mentioned earlier, XML is a markup language that uses custom tags. Because
XML allows you to invent your own tag names to describe your data, how can
you ensure that your tags will not conflict with someone else’s tags when two or
more XML documents are combined? The <TABLE> tag will certainly have a
different meaning and content in an Excel XML document than the <TABLE>
element used to describe different types of tables listed in a catalog for a furni-
ture store. Fortunately, there is a way to differentiate elements and attributes that
have the same name. The XML Namespaces specification ensures that element
names do not conflict with one another and are unique within a particular set
of names (a namespace).

A namespace is a collection of names in which all names are unique. The
namespace is identified by a Uniform Resource Identifier (URI)—either a Uni-
form Resource Locator (URL) or a Uniform Resource Name (URN). Usually
the namespace declaration is placed at the beginning of the XML document.
There is no requirement for the specified URI to be valid or for it to conform to
any sort of specification. Most namespaces use URIs for the namespace names
because URIs are guaranteed to be unique.

Take a look at the following lines in the Shippers_Modified.xml file that was
created in Hands-On 28.16:
<xml xmlns:s="uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882"
xmlns:dt="uuid:C2F41010-65B3-11d1-A29F-00AA00C14882"
xmlns:rs="urn:schemas-microsoft-com:rowset"
xmlns:z="#RowsetSchema">

Namespaces can be declared in any element by using the xmlns attribute. A
namespace whose xmlns attribute is not followed by a prefix is referred to as
a default namespace. Therefore, elements or attributes with no prefix will be
assumed to be part of the default namespace. In the above example, there are
four namespaces, each of which is associated with a particular prefix (“s”, “dt”,
“rs”, and “z”). In the XML document, these prefixes are used in front of element
and attribute names to indicate which namespace they are referencing. In other
words, anything with an “s” in front of it applies to the uuid:BDC6E3F0-6DA3-
11d1-A2A3-00AA00C14882 namespace, and anything marked with the “z” pre-
fix references the RowsetSchema namespace.

USING XML IN EXCEL 2019 997

What you should remember from this section is that namespaces don’t re-
ally exist. They are arbitrary names that allow you to distinguish between tags
with the same names that need to be processed differently. Namespaces prevent
naming conflicts that might arise in XML documents.

UNDERSTANDING OPEN XML FILES

Since the release of Excel 2007, all workbook files are saved in an XML file for-
mat by default. This file format known as Open XML uses four-letter file exten-
sions (.xlsx, .xlsm, .xltx, .xltm, and .xlam).

The first two letters of the file extension refer to the application, in this case,
xl=Excel. The third letter (s/t/a) indicates the specific file type: s=spreadsheet;
t=template; and a=add-in. The last letter (x/m) specifies whether the file format
supports macros: x=macro-free file; m=macro-enabled file.

The Open XML file is actually a compressed zip file. A zip file contains one
or more files that have been compressed to reduce their file size. By changing
the Excel file extension to .zip, you can take a look inside the zip container us-
ing WinZip or another zip-aware tool, or use the built-in compressed folders
feature in Windows.

The Open XML file format gives developers the ability to directly edit the
workbook without the need to open Excel. This means that you can work with
the file content without having an Excel application installed on your comput-
er. The same applies to Word and PowerPoint documents that follow the same
Open Packaging Conventions (OPC) specification. You can easily insert new
data, edit existing data, modify document properties, and add or remove spe-
cific XML parts.

This section takes a detailed look inside the compressed file, known as a
package. Figure 28.28 shows the contents of the Chap28_VBAExcel2019.xlsm
workbook file you created in this chapter.

FIGURE 28.28 A sample Excel 2019 workbook is shown here after renaming the file with a .zip
extension and opening it with Compressed folders in Windows Explorer.

998 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The package file contains a number of documents called “parts” grouped
into various folders. Every part has a defined content type that describes wheth-
er it’s a worksheet, image, sound, or other binary object. Some types of parts are
shared across all Office applications; others are unique to the application. For
example, a worksheet part can only be found in an Excel file. While most parts
are XML documents, some parts such as images, VBA projects, or embedded
OLE objects are stored in their native format as binary files. Every part within
a container package is connected to at least one other part using a special part
referred to as a relationship. A relationship file is an XML document with a .rels
extension.

At the root level in Figure 28.28, you will notice three folders named _rels,
docProps, and xl, and an XML file called [Content_Types].xml.

 ● Th e [Content_Types].xml fi le—Th is XML fi le lists the types of fi les that
are included in the package. Th e example Excel fi le package contains the
following content types:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Types
 xmlns="http://schemas.openxmlformats.org/package/2006/content-
 types"><Default Extension="rels"
 ContentType="application/vnd.openxmlformats-
 package.relationships+xml"/><Default Extension="xml"
 ContentType="application/xml"/><Override
 PartName="/xl/workbook.xml" ContentType="application/vnd.
 ms-excel.sheet.macroEnabled.main+xml"/><Override
 PartName="/xl/worksheets/sheet1.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.spreadsheetml.worksheet+xml"/><Override
 PartName="/xl/theme/theme1.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.theme+xml"/><Override
 PartName="/xl/connections.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.spreadsheetml.connections+xml"/><Override
 PartName="/xl/styles.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.spreadsheetml.styles+xml"/><Override
 PartName="/xl/sharedStrings.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.spreadsheetml.sharedStrings+xml"/><Override
 PartName="/xl/tables/table1.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.spreadsheetml.table+xml"/><Override

USING XML IN EXCEL 2019 999

 PartName="/docProps/core.xml"
 ContentType="application/vnd.openxmlformats-package.core-
 properties+xml"/><Override PartName="/docProps/app.xml"
 ContentType="application/vnd.openxmlformats-
 officedocument.extended-properties+xml"/></Types>

 ● Th e _rels folder—Th e parts listed in the Excel package are linked together
via relationships. Th e .rels fi le in the _rels folder defi nes the package re-
lationships. You will see here relationships between document properties
fi les, docProps/app.xml and docProps/core.xml, and the xl/workbook.
xml fi le. Parts that are related to other parts contain a _rels subfolder.
Within this subfolder you will fi nd a .rels fi le that describes the relation-
ships. Th e name of the relationship consists of the fi lename of the original
part and the .rels extension. For example, for the Workbook.xml fi le in
the xl folder there is a relationship fi le named Workbook.xml.rels in the
xl_rels folder.

 ● Th e docProps folder—Th is folder contains two document properties fi les
that were referenced in the .rels fi le: app.xml and core.xml. Th ese prop-
erties fi les store information that you enter in Excel when you click the
File tab and choose Info and then Properties. Th e core.xml part consists
of properties such as the document title, subject, and author. Th e app.
xml part stores application-specifi c properties such as the name and the
version of the application, company name, and others, as shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<Properties
xmlns="http://schemas.openxmlformats.org/officeDocument/2006/
extended-properties"
xmlns:vt="http://schemas.openxmlformats.org/officeDocument/2006/
docPropsVTypes"><Application>Microsoft
Excel</Application><DocSecurity>0</DocSecurity><ScaleCrop>false
</ScaleCrop><HeadingPairs><vt:vector size="2" baseType="variant">
<vt:variant><vt:lpstr>Worksheets</vt:lpstr></vt:variant>
<vt:variant><vt:i4>1</vt:i4></vt:variant></vt:vector>
</HeadingPairs><TitlesOfParts><vt:vector size="1"
baseType="lpstr">
<vt:lpstr>Sheet1</vt:lpstr></vt:vector></TitlesOfParts>
<LinksUpToDate>false</LinksUpToDate><SharedDoc>false</SharedDoc>
<HyperlinksChanged>false</HyperlinksChanged><AppVersion>16.0300
</AppVersion></Properties>

 ● Th e xl folder—Th is is the application folder for the program that was used
to create the fi le; in this case, Excel. Th is folder contains application-specifi c

1000 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

document fi les organized in various subfolders. Figure 28.29 shows the
root level of the xl folder containing the workbook part, sharedStrings
part, vbaProject part, and the styles part. Th e sharedStrings.xml part
stores all of the strings used in the entire workbook. If you change a string
in this fi le, the change will be applied to every occurrence of the string in
your workbook.

FIGURE 28.29 The contents of the xl folder.

The worksheets folder within the xl folder contains a separate XML part for
every worksheet; in this case, sheet1.xml (Figure 28.30).

FIGURE 28.30 The contents of the worksheets folder.

Figure 28.31 shows the contents of the sheet1.xml part. Notice that all the sheet
data is contained within the <sheetData> element. Each data row has its own
<row> element and an index (r attribute). Rows use a span attribute to indi-
cate the number of cells occupied. Other attributes may be used to indicate
row style or custom formatting. Cell values are stored in the c element. The
r attribute holds the cell address using the A1 reference style notation (e.g.,
“A2”, “B2”); the s attribute indicates which style was used. The numbers used
in the style attribute are described in the xl/styles.xml part. The t attribute
indicates a data type (String, Number, or Boolean). For example, t=“s” denotes
that the underlying value is a string, not a number. String values are not stored
in cells unless they are the result of a calculation. They are stored in the shared-

USING XML IN EXCEL 2019 1001

Strings.xml part. Each unique text value found within a workbook is listed
only once in this part. This prevents duplication of information, saves space,
and speeds up loading and saving workbooks. If the cell value is textual, then
the numeric value inside the v element is an index to a particular string in the
sharedStrings.xml document.

FIGURE 28.31 The contents of the sheet1.xml file in the Chap28_VBAExcel2019.xlsm workbook.

You can easily replace the sharedStrings file in the package with a file contain-
ing strings from another language, thus providing multiple language support for
your spreadsheet users.

After this short overview of the internals of the Open XML file format, let’s
spend some time putting this newfound knowledge to practical use. Now that
you know how to navigate the package, you can easily alter, replace, or add parts

1002 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to the Excel container. The next section will introduce you to working with
XML document parts programmatically.

MANIPULATING OPEN XML FILES WITH VBA

Earlier in this chapter you learned how to work with XML document nodes
using the XML DOM. In this section, you will learn how to use the DOM
objects, properties, and functions, and XPath expressions to augment some of
the XML parts found in the Excel workbook. Working with the XML document
parts requires that you first learn how to programmatically zip and unzip Excel
workbook files.

 Hands-On 28.17 Unzipping an Excel Workbook with VBA

1. Copy the SupportedEquipment.xlsx workbook from the companion CD-
ROM to your VBAExcel2019_ByExample folder.

2. Open a new Microsoft Excel workbook and save it in a macro-enabled format
as C:\VBAExcel2019_ByExample\ManipulateXMLParts.xlsm.

3. Press Alt+F11 to activate the Visual Basic Editor, and select VBAProject
(ManipulateXMLParts.xlsm) in the Project Explorer window.

4. Choose Insert | Module.
5. Choose Tools | References. In the Available References listbox, select

Microsoft XML, v6.0 or earlier object library, and click OK to exit the
References dialog box.

6. In the Code window of VBAProject (ManipulateXMLParts.xlsm), enter the
variable declaration and the UnzipExcelFile procedure code that follows:
' Declare a module-level variable
Public blnIsFileSelected As Boolean

Sub UnzipExcelFile()
 Dim objShell As Object
 Dim strZipFile, strZipFolder, strSourceFile, objFile
 Dim strStartDir As String

 strStartDir = "C:\VBAExcel2019_ByExample"
 'change folder
 If ActiveWorkbook.Path <> strStartDir Then
 ChDir strStartDir
 End If

USING XML IN EXCEL 2019 1003

 ' get Excel file to unzip
 strSourceFile = Application.GetOpenFilename _
 (FileFilter:="Excel Files (*.xlsx; " & _
 "*.xlsm), *.xlsx; *.xlsm", _
 Title:="Select Excel file you want to unzip")

 'exit if file was not selected
 If strSourceFile = False Then
 blnIsFileSelected = False
 Exit Sub
 End If

 blnIsFileSelected = True
 strZipFile = strSourceFile & ".zip"

 'create the zip file
 FileCopy strSourceFile, strZipFile

 'Create new folder to store unzipped files
 strZipFolder = "C:\VBAExcel2019_ByExample\ZipPackage"
 On Error Resume Next
 MkDir strZipFolder

 'Copy package files to the ZipPackage folder
 Set objShell = CreateObject("Shell.Application")

 For Each objFile In objShell.Namespace(strZipFile).items
 objShell.Namespace(strZipFolder).CopyHere (objFile)
 Next objFile

 'Activate Windows Explorer
 Shell "Explorer.exe /e," & strZipFolder, vbNormalFocus

 'remove the zip file and release resources
 Kill strZipFile
 Set objShell = Nothing
End Sub

The above example procedure asks the user for an Excel file to unzip using the
GetOpenFilename method of the Application object. After the file is selected,
the FileCopy statement copies this file to another file with a .zip extension.
This way, you can work with the temporary zip file without changing the origi-
nal file. Next, the procedure uses the MkDir statement to create a destination
folder named ZipPackage for the zip archive. A Shell.Application object is then

1004 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

created and used for accessing the Windows filesystem. Its CopyHere method
copies files to the zip folder returned by the Namespace method. Once all the
files have been copied, the procedure activates the Windows Explorer. The
“/e” parameter of the Shell function is used to display the files in the list
view. The procedure ends by deleting the temporary zip file using the VBA
Kill statement.

7. Run the UnzipExcelFile procedure. When prompted to select the file to
unzip, choose the SupportedEquipment.xlsx workbook from your C:\
VBAExcel2019_ByExample folder. The Explorer window will pop up
automatically when the unzip process is complete.

After making changes to the XML parts (as shown in subsequent Hands-On
exercises), you will need to zip the files back into the Excel container before you
can open the modified file in Excel.

The next Hands-On demonstrates how you can perform the zip operation
with VBA.

 Hands-On 28.18 Zipping Files to Create an Excel 2019 Package
Container

1. In the same module where you entered the UnzipExcelFile procedure in the
previous Hands-On, enter the following two procedures: CreateEmptyZipFile
and ZipToExcel:
Sub CreateEmptyZipFile(strFileName As String)
 Dim strHeader As String
 Dim fso As Object

 strHeader = Chr$(80) & Chr$(75) & Chr$(5) & Chr$(6) & _
 String(18, 0)

 ' delete the file if it already exists
 If Len(Dir(strFileName)) > 0 Then
 Kill strFileName
 End If

 ' add a required header
 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CreateTextFile(strFileName).Write strHeader
End Sub

The above procedure uses the CreateTextFile method of the Scripting.File-
SystemObject to create an empty zip container. The Write method is used to

USING XML IN EXCEL 2019 1005

add a required header to the file so Windows can recognize the file as a zip
archive. The following procedure (ZipToExcel) will fill the file with the files
found in the specified folder.
Sub ZipToExcel()
 Dim objShell As Object
 Dim strZipFile, strZipFolder, objFile
 Dim strStartDir As String
 Dim strExcelFile As String
 Dim mFlag As Boolean

 strZipFolder = "C:\VBAExcel2019_ByExample\ZipPackage"
 strZipFile = "C:\VBAExcel2019_ByExample\PackageModified.zip"
 mFlag = False

 'check if folder is empty
 If Len(Dir(strZipFolder & "*.*")) < 1 Then
 MsgBox "There are no files to zip."
 Exit Sub
 End If

 ' check if a VBA project exists
 If Len(Dir(strZipFolder & "\xl\vbaProject.bin")) > 0 Then
 mFlag = True
 End If

 'Create an empty zip file
 CreateEmptyZipFile (strZipFile)

 'Copy files from strZipFolder to the strZipFile
 On Error Resume Next
 Set objShell = CreateObject("Shell.Application")

 For Each objFile In objShell.Namespace(strZipFolder).items
 objShell.Namespace(strZipFile).CopyHere (objFile)
 Application.Wait (Now + TimeValue("0:00:10"))
 Next objFile

 'Create Excel file name
 If mFlag Then
 strExcelFile = Replace(strZipFile, ".zip", ".xlsm")
 Else
 strExcelFile = Replace(strZipFile, ".zip", ".xlsx")
 End If

1006 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 'Rename the strZipFile
 Name strZipFile As strExcelFile

 Set objShell = Nothing
 Set objFile = Nothing

 MsgBox "Zipping files completed."
End Sub

The above procedure starts by designating ZipPackage as the zip folder name
and PackageModified.zip as the target zip file. Before we go ahead with the
copy operation, we perform two checks. First, we want to exit the procedure
if there are no files in the zip folder. Second, we check for the existence of
the vbaProject.bin file in the xl folder of the zip folder. Based on this test we
will assign a macro-free or macro-enabled Excel format to the destination file
later in the procedure when we rename the zip archive. If there are files in the
zip folder, we call the CreateEmptyZipFile procedure to create an empty zip
container. Next, we use the CopyHere method of the Shell.Application object
(discussed in Hands-On 28.17) to copy files into the zip archive. Copying and
compressing files can take some time, so we use the Application.Wait state-
ment to wait 10 seconds between each copy operation. If the procedure ends
before the files are copied, you may end up with a corrupt file when you try
to open it in Excel. When the files have been copied into a zip container, we
rename the file with the .xlsx or .xlsm extension.

2. Run the ZipToExcel procedure.
When the procedure has executed, you should see the PackageModified.xlsx
workbook file in your VBAExcel2019_ByExample folder. Because we have not
yet made any changes to the XML parts contained in the SupportedEquip-
ment.xlsx file that was unzipped in Hands-On 28.17, the PackageModified.
xlsx file should contain the same content as this file.

3. Open PackageModified.xlsx in Microsoft Excel to ensure that the file is not
corrupted. If you get a message saying the file is corrupted, you will need to
pause the ZipToExcel procedure for a couple of seconds longer to allow each
file to be completely compressed and saved.

4. Close the PackageModified.xlsx workbook.
5. Delete the PackageModified.xlsx workbook from your VBAExcel2019_

ByExample folder.

In the next three Hands-On examples, we will utilize both the zip and unzip
procedures from Hands-On 28.17 and 28.18 to modify some XML parts in
the Excel zip archive. The procedure in Hands-On 28.19 demonstrates how to

USING XML IN EXCEL 2019 1007

retrieve to a worksheet the unique text values that are stored in the shared-
Strings.xml part shown in Figure 28.32.

FIGURE 28.32 Partial content of the sharedStrings.xml part in the SupportedEquipment.xlsx
workbook.

 Hands-On 28.19 Retrieving Unique Text Values from the
sharedStrings XML File

1. Insert a new module in VBAProject (ManipulateXMLParts.xlsm), and in the
Code window, enter the following ListUniqueValues procedure:
Sub ListUniqueValues()
 Dim xmlDoc As MSXML2.DOMDocument60
 Dim myNodeList As MSXML2.IXMLDOMNodeList
 Dim i As Integer
 Dim strFile As String
 Dim strFolder As String
 Dim xNode As Variant
 Dim cNode As Variant

1008 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 i = 1
 strFolder = "C:\VBAExcel2019_ByExample\ZipPackage\xl\"
 strFile = "sharedStrings.xml"

 Set xmlDoc = New MSXML2.DOMDocument60
 xmlDoc.async = False
 xmlDoc.Load strFolder & strFile
 Set myNodeList = xmlDoc.ChildNodes

 Worksheets(1).Activate
 'Iterate over the elements and print their Text property
 For Each xNode In xmlDoc.ChildNodes
 ' only look at type=NODE_ELEMENT
 If xNode.NodeType = 1 Then
 For Each cNode In xNode.ChildNodes
 ActiveSheet.Cells(i, 1).Value = cNode.Text
 i = i + 1
 Next
 End If
 Next
 Columns("A").AutoFit
 Set myNodeList = Nothing
 Set xmlDoc = Nothing
End Sub

The above procedure uses the Load method of the DOMDocument60 object
to open the sharedStrings.xml file. For this procedure to run, you must set a
reference to the Microsoft XML object library as you already did in Hands-On
29-17. The procedure retrieves the text property of all the child nodes and
writes them into a worksheet.
 Ensure that the VBAExcel2019_ByExample folder contains the folder
named ZipPackage with XML parts. If this folder is missing, run the procedure
in Hands-On 28.17.

2. Run the ListUniqueValues procedure.
The result of the procedure is the list of unique text values that were originally
entered in the SupportedEquipment.xlsx workbook and stored in the shared-
Strings.xml part shown in Figure 28.33.

USING XML IN EXCEL 2019 1009

FIGURE 28.33 Partial content of the sharedStrings.xml part for the SupportedEquipment.xlsx
workbook.

Now that you know how to read text values stored in the sharedStrings.xml part,
let’s try editing this file. In the next Hands-On we will replace the worksheet’s
text entry “Monitor” with “Flat Panel Monitor” without opening the Excel appli-
cation.

 Hands-On 28.20 Modifying the sharedString XML File

1. Insert a new module in VBAProject (ManipulateXMLParts.xlsm), and in the
Code window, enter the following Text_Replace procedure:
Sub Text_Replace()
 Dim xmlDoc As MSXML2.DOMDocument60
 Dim myNode As MSXML2.IXMLDOMNode
 Dim srchStr As String
 Dim newStr As String
 Dim strFile As String
 Dim strFolder As String
 Dim strFileToEdit As String

 strFolder = "C:\VBAExcel2019_ByExample\ZipPackage\xl\"
 strFile = "sharedStrings.xml"

 strFileToEdit = strFolder & strFile

 Call UnzipExcelFile

1010 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If blnIsFileSelected = False Then Exit Sub

Set xmlDoc = New DOMDocument60
xmlDoc.async = False
xmlDoc.validateOnParse = False
xmlDoc.SetProperty "SelectionNamespaces", _
"xmlns:a='http://schemas." & _
"openxmlformats.org/spreadsheetml/2006/main'"
xmlDoc.SetProperty "SelectionLanguage", "XPath"
xmlDoc.Load (strFileToEdit)

 srchStr = InputBox("Please enter the string to find:", _
 "Search for String")

 If srchStr <> "" Then
 ' find the text that needs to be replaced
 Set myNode = xmlDoc.SelectSingleNode("//a:t[text()='" + _
 srchStr + "']")

 If myNode Is Nothing Then GoTo ExitHere
 Else
 GoTo ExitHere
 End If

 ' replace text
newStr = InputBox("Please enter the " & _
"replacement string for " _
& srchStr, "Replace with String")

 If newStr <> "" Then
 myNode.Text = newStr
 xmlDoc.Save strFileToEdit
 Else
 Exit Sub
 End If

ExitHere:
 ' zip the files in the package
 Call ZipToExcel
 Set xmlDoc = Nothing
 Set myNode = Nothing
End Sub

In the above procedure, we use the InputBox function to prompt the user to
enter the string to search for. If text was specified, then we use the following
statement to find the node with the specified text entry:

USING XML IN EXCEL 2019 1011

Set myNode = xmlDoc.SelectSingleNode("//a:t[text()='" + _
 srchStr + "']")

In the above statement, we use the XPath text() function to retrieve the text
value of a node. The XPath expression tells the XML parser to look at the single
element node and select the t node, shown earlier in Figure 28.32, where the
text content is equal to the value of the srchStr variable. Instead of using the
XPath text() function, you can examine the t node using the dot operator,
like this:
Set myNode = xmlDoc.SelectSingleNode _
("//a:t[.='" + srchStr + "']")

Note that the “a:” string before the node name is the alias that was assigned to
the namespace using the SetProperty property of the XMLDocument object.
If the node with the text entry was not found, we go to the Exit Here label and
perform the final tasks before exiting the procedure. If the node was found,
we prompt the user for the replacement text. When we get the new string, we
write it to the node and save the file:
myNode.Text = newStr
xmlDoc.Save strFileToEdit

Next, we need to zip the files back into an Excel container, so we call the Zip-
ToExcel procedure that we created earlier.

2. In Windows Explorer, delete the ZipPackage folder that was created in Hands-
On 28.17.

3. Run the Text_Replace procedure. When prompted for the filename to
unzip, select SupportedEquipment.xlsx. When prompted for the string to
find, enter Monitor and click OK. When prompted for the new text, enter Flat
Panel Monitor and click OK.

4. When the procedure completes, open the PackageModified.xlsx file in
Excel. Each cell entry that previously had “Monitor” as the underlying text
value should now show “Flat Panel Monitor.”

5. Close the PackageModified.xlsx workbook.
6. Delete the PackageModified.xlsx workbook.

The next Hands-On demonstrates how to change the size of the left margin and
remove the entire pageSetup node from the sheet1.xml part.

1012 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 28.21 Changing and Removing Elements in an XML Part

1. Insert a new module in VBAProject (ManipulateXMLParts.xlsm), and in the
Code window, enter the following ChangeLeftMargin_RemovePageSetup pro-
cedure:
Sub ChangeLeftMargin_RemovePageSetup()
 Dim xmlDoc As DOMDocument60
 Dim myNode As MSXML2.IXMLDOMNode
 Dim strSrchNode As String

 Set xmlDoc = New DOMDocument60
 xmlDoc.async = False
 xmlDoc.validateOnParse = False

 xmlDoc.Load ("C:\VBAExcel2019_ByExample\ZipPackage\xl\" _
 & "worksheets\Sheet1.XML")

 xmlDoc.SetProperty "SelectionNamespaces", _
 "xmlns:x14ac='http://schemas.openxmlformats.org/" & _
 "spreadsheetml/2006/main'"

 strSrchNode = "/x14ac:worksheet/x14ac:pageMargins/@left"

 Set myNode = xmlDoc.SelectSingleNode(strSrchNode)

 Debug.Print "previous left margin = " & myNode.Text

 myNode.Text = "0.50"

 Set myNode = xmlDoc.SelectSingleNode("//x14ac:pageSetup")

 On Error Resume Next
 myNode.ParentNode.RemoveChild myNode
 xmlDoc.Save ("C:\VBAExcel2019_ByExample\ZipPackage\xl\" _
 & "worksheets\Sheet1.XML ")

 Set myNode = Nothing
 Set xmlDoc = Nothing
End Sub

In the above procedure, we begin by loading the sheet1.xml part into the
DOMDocument60 object.
 To change the left margin, we need to read the value of the left attribute
of the <pageMargins> element, which is a child of the <worksheet> element.

USING XML IN EXCEL 2019 1013

However, before we can write the correct XPath expression we also have to
consider whether our XML elements are under any namespaces. If you open
the Sheet1.xml document you will notice that the root element <worksheet>
has four namespace declarations as shown in Figure 28.34.
 Because the elements we want to access are not in “no namespace” but rath-
er in the namespace http://schemas.microsoft.com/office/spreadsheetml/2009/9/
ac, in order to select them with XPath, we will need to bind a prefix (x14ac)
to the namespace URI and use that prefix in our XPath expression. This can
easily be achieved in MSXML by using the setProperty property of the XML-
Document60 object:
xmlDoc.setProperty "SelectionNamespaces", _
 "xmlns:x14ac='http://schemas.openxmlformats.org/" & _
 "spreadsheetml/2006/main'"

FIGURE 28.34 Examining Namespaces in an XML document.

Having specified the namespace prefix, we can now use it in the XPath expres-
sion and successfully access the required node:
strSrchNode = "/x14ac:worksheet/x14ac:pageMargins/@left"
Set myNode = xmlDoc.selectSingleNode(strSrchNode)

Once we have located the node with the specified attribute, we set the node’s
text to the new value:
myNode.Text = "0.50"

The remaining part of the procedure locates the <pageSetup> element inside
the sheet1.xml part and uses the RemoveChild method to remove this node:
Set myNode = xmlDoc.SelectSingleNode("//x14ac:pageSetup")
On Error Resume Next
myNode.ParentNode.RemoveChild myNode

In case the node is not found (for example, you may have mistyped the ele-
ment name in the XPath expression), On Error Resume Next will skip over
the node removal statement. The last statement will save the changes in the
sheet1.xml part.

1014 MICROSOFT EXCEL 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE
You may want to add to this procedure statements that call
the zipping and unzipping procedures that you created in this
chapter.

2. Run the ChangeLeftMargin_RemovePageSetup procedure.
3. After running the procedure, open the C:\VBAExcel2019_ByExample\Zip-

Package\xl\worksheets\sheet1.xml file in your browser and verify that the
left margin is now set to 0.50 and the file no longer contains the <pageSetup>
element.

4. Close the sheet1.xml file.
5. Delete the ZipPackage folder from the VBAExcel2019_ByExample folder.

Now that you know how to write procedures that manipulate XML parts, you
probably will come up with many uses for this newfound knowledge. You will
definitely need to pick up a good book on writing XPath expressions, or use free
online resources to get a better understanding of this subject matter.

SUMMARY

This chapter has only scratched the surface of what’s possible with XML. You
learned here what XML is and how it is structured. While HTML consists of
markup tags that define how the information should be formatted for display
in a Web browser, XML allows you to invent your own tags in order to define
and describe data stored in a wide range of documents. XML supplies you with
numerous ways to accomplish a specific task. Because XML is stored in plain
text files, it can be read by many types of applications, independent of the oper-
ating system or hardware.

This chapter has shown you how to perform many tasks using XML and Ex-
cel together. You learned how to view and edit XML documents and open them
in Excel. You also used XML maps and XML tables and learned how to program
these features with VBA. You were introduced to working with the Document
Object Model in your VBA procedures and wrote procedures that saved XML
data in an ADO recordset. Finally, this chapter has shown you how you can read
and manipulate Open XML files with VBA.

It’s understandable that the methods and techniques that you’ve tried here
will need time to sink in. XML is not like VBA. It is not very independent, need-
ing many supporting technologies to assist it in its work. So don’t give up if you
don’t understand something right away. Learning XML requires learning many

USING XML IN EXCEL 2019 1015

other new concepts (like XSLT, XPath, schemas, etc.) at the same time. Take
XML step by step by experimenting with it. The time that you invest in study-
ing this technology will not be in vain. XML is here to stay. Here are four main
reasons why you should really consider XML:

 ● XML separates content from presentation. Th is means that if you are
planning to design Web pages, you no longer need to make changes to
your HTML fi les when the data changes. Because the data is kept in sepa-
rate fi les, it’s easy to make modifi cations.

 ● XML is perfect for sharing and exchanging data. Th is means that you no
longer have to worry if your data needs to be processed by a system that’s
not compatible with yours. Because all systems can work with text fi les
(and XML documents are simply text fi les), you can share and exchange
your data painlessly.

 ● XML can be used as a database. Th is means that you no longer need a
separate database application.

 ● XML is the default fi le format for Excel since version 2007.

A

Absolute cell references, 14–15
Access clause, 267
Access data into Excel worksheet, 402–420

CopyFromRecordset method, 405–407
creating query table, 415–417
creating text file, 412–414
creating embedded chart from Access data,

417–420
GetRows method, 402–405
OpenDatabase method, 409–412
TransferSpreadsheet method, 407–409

Access database, 381–390
transferring Excel worksheet to, 420–426

importing Excel worksheet to, 423
linking Excel worksheet to, 421–423
placing Excel data in Access table,

423–426
using ADO to connect, 388–390
using automation to connect to, 381–382

arguments of GetObject function, 382
opening secured Microsoft Access

database, 386
using New keyword, 383

using DAO to connect to, 388–390
Acexport, 407
AcImport, 407
AcLink, 407
Activate method, 78
ActivateMicrosoftApp method, 350

constants, 350
ActiveCell, 64
Active Server Pages (ASP), 897–935

ASP.NET, 897
ASP object model, 898–899
creating page, 900–904
HTML and VBScript, 899–900
introduction to, 897–898
running your first ASP script, 913–916
setting configuration properties, 910–912

ActiveWindow, 50
ActiveWorkbook, 65
ActiveX controls, 493
ActiveX Data Objects (ADO), 373, 376, 381,

386, 388, 396, 405, 412, 419, 425, 676,
711, 826, 988

AddDatabar method, 548
AddIconSetCondition method, 551
AddIns collection, 796
Add method, 78, 83, 221–222, 242, 365, 415–419
AddShape method, 562
Add Watch dialog box, 255–257
AddOLEObject method, 357
Address property, 185
AddTextbox method, 58, 327
ADO. See ActiveX Data Objects (ADO)
Advanced Options, 6, 478, 590, 708
ALT+F11,18, 43
Alt+F8, 29
AND operator, 62, 175–176, 289
Antivirus soft ware, 5
AppActivate statement, 350
Append mode, 229, 329–330
Application events, 461–467
Application object, 55, 79, 84
Arguments, 51, 67, 69

optional, 135–136
passing arguments by reference and value,

133–134
types, specifying, 132

Arrange method, 79
ArrangeStyle argument, 79
Array(s), 197–198

data entry with, 214–215
declaring, 200–201
Debug button, 212–213
dimensioning,
dynamic, 206–208
functions of, 209–212

Array function, 209
Erase function, 210–211
IsArray function, 209–210
LBound function, 211–212
UBound function, 211–212

initializing anf filling, 202
For…Next loop, using, 189–190
individual assignment statements,

using, 202
Array function, using, 202

one-dimensional array, 203–205
Option Base 1 statement, 198, 201
ParamArray keyword, 213–214
sorting with Excel, 215–217

INDEX

1018 INDEX

static, 205–207
subscripted variables, 201
three-dimensional array, 199, 200
troubleshooting errors, 212–213
two-dimensional array, 205–206
upper and lower bounds, 201
using ParamArray keyword, 213–214
using in VBA procedures, 209–210
variable, 201

ASCII, 273, 311, 940
ASP.NET, 897
Assert statement, 253–255
AssetType property, 230–231
Assignment operator (:=), 88
As Variant clause, 202
Attached macro with button, 39
Auto Indent option, 52
Automation, 355–356, 380

opening access database, 381–390
Automation controllers, 356
Automation objects, 359

accessing Microsoft Outlook, 369–371
creating new Word document using,

363–365
New keyword, 368–369
opening existing Word document, 366–368
steps, 362–363
using CreateObject function, 363
using GetObject function, 365–386

Automation servers, 356
Auto Quick Info option, 51
Avg function, 135–137

B

BackgroundQuery, 416, 788, 890
Backstage View, 6, 8
Before argument, 222, 224, 578
Binary file(s), 340–342,

advantages and disadvantages of, 342
Get statement, 338, 340–341
Loc statement, 341
Put statement, 340–341
Seek statement, 341

Binding, 358–359. See also early binding; late
binding

Bookmarks, navigating with, 262–263
Boolean (data type), 90
BorderAround method, 540
Break mode, 101, 246, 250–253
Breaking up long VBA statements, 88–89
Breakpoints, 247–252
Browse dialog box, 481
Bugs, 245, 254
Built-in constants, 50, 112–113
Built-in functions, 56, 109, 121, 124, 130, 137

avoiding Type mismatch error, 152, 213
defining constant, 141
determining and converting data types,

150–152
returning values from msgbox function,

146–147
msgbox function, 147
subordinates and functions, 156
using Inputbox function, 147–152
using Inputbox method, 152–156
using msgbox function, 138–147

Buttons argument, 141–145
ByRef keyword, 134–135, 847
Byte (data type), 90
ByVal keyword, 134–135, 233

C

Call Stack dialog box, 260–262
Cancel argument, 433
Carriage return character, 139–140
Case clauses, 170–171, 174
Case Else clause, 170, 171, 173
Catalog object, 396, 397, 398, 408
CBool function, 115
CByte function, 115
CCur function, 115
CDate function, 115
CDbl function, 115
CDec function, 115
Cell formatting, 75–76
Cell recording, 71

cell using End Property, 72
Cells property, 67–68
Chart events, 454–461

Chart_Activate(), 457

INDEX 1019

Chart_BeforeRightClick(), 458
Chart_Calculate(), 458
Chart_Deactivate(), 457
Chart_MouseDown(), 458
Chart_Select(), 457–458
creating charts, 455–456
writing event procedures for chart sheet,

466–457
writing event procedures for embedded

charts, 459–460
ChDir statement, 290
ChDrive statement, 281, 290
Choice variable, 336
Chr function, 139
Chr(10) function, 141
Chr(13) function, 141
CInt function, 115
Class, 220, 232–235, 360, 363, 365

creating instance of, –
creating Property Get Procedures, 231–233
creating Property Let Procedures, 231–233
defining properties of class, 230–21
variable declarations, 230
writing class methods,
writing property procedures for CAsset class,

228, 232
“Classic” ASP, 897
Class module, 219, 220, 228–229
creating, 228
naming, 229

Clear method, 73, 83, 483
ClearComments method, 73
ClearContents method, 73, 83
ClearFormats method, 73, 83, 541
ClearHyperlinks method, 73
ClearNotes method, 73
ClearOutline method, 73
Clng function, 114
CLngLng function, 115
CLngPtr function, 116
CloseCurrentDatabase method, 383, 385
Close method, 77, 83
clsChart, 460
CodePanes collection, 796
Code window, 20, 24, 46–47, 49, 53, 56, 101,

187, 247, 252,

Collection(s), 82, 220. See also Specifi c
collections

custom. See custom collection
definition of, ,222–223,
reindexing, 224
working with, 220–221

adding objects to custom collection, 222
creating custom objects, 228–230
declaring custom collection, 222
removing objects from custom collection,

224–225
Color scale conditional formatting, 549
columnoff set, 85
Comma-delimited fi le, 228, 329
CommandBar, 619–620
CommandBars collection, 797
CommandBars.GetImageMso method, 620
Command object, 398, 399
Comment Block button, 53
Compile-time binding, 360
Compiling, 856
Complete Word button, 52
Component Object Model (COM), 358
Compound document, 356
Concatenation, 97
Conditional compilation, 856
Conditional expressions, 159, 170

function procedures, conditional logic in,
177–178

If…Then…Else statement, 164–166
If…Then…ElseIf statement, 167–169
If…Then statement, 160–164

formats for, 163–164
Nested If…Then statements, 169–170
relational and logical operators, 159–160
Select Case statement, 170–172

multiple conditions with Case clause, 174
specifying range of values in Case clause,

173–174
specifying multiple expressions in Case

clause, 174
using Is with Case clause, 172–173
writing VBA procedure with multiple

conditions, 175–177
Conditional formatting, 545
Conditional format Type settings, 543–546

1020 INDEX

Conditional statements, 159, 181, 235
Connecting to Microsoft Access, 380–381
Const statement, 111
Constant, 50, 111–113,

built-in, 112
names of, 113
pop-up menu, 49–51
Private constant, 111

Context, 138, 146, 256
Context menu, 575–589

adding context menu to command button,
583–587

CommandBar, 576
disabling and hiding items on context menu,

582–583
finding FaceID value of image, 587–589
modifying built-in context menu, 576
removing custom item from context menu,

581–582
Continuation character, 87–89, 140
Continue button, 246
Conversion functions, 114–115
Cookie cutter, 228
CopyFace method, 588
CopyFromRecordset method, 397, 399, 401, 402,

405–407
Counter, 186
Count property, 221
CountR variable, 404
CreateDatabase method, 391
CreateObject function, 298, 301, 362, 363, 364,

368, 381, 383
CreateShortcut method, 317–318
CreateTableDef method, 391
Cscript.exe, 297
CSng function, 117, 118
CStr function, 152
CurDir function, 281, 282
CurDir$ function, 283
Currency (data type), 91
Custom collection, 219

adding objects to, 222–224
class methods, writing, 234–235
creating and using, 228
declaring and using, 222

defining properties for class, 230–231
instance of class, creating, 235–242
property procedures, writing, 231–234
reindexing collections, 227
removing objects, 224–227
variable declarations, 230

Custom form(s), 491–523
placing controls on form, 499–500

setting grid options,
sample application : Info survey, 500–523
steps to create, 492–493
tools for creating user forms, 493–499

check box, 496
combo box, 497
command button, 496
frame, 496
image control, 498
label, 495
listbox, 497
MultiPage control, 498
option button, 496
RefEdit control, 409
scrollbar, 497
select objects, 495
spin button, 498
TabStrip control, 498
text box, 495–496
toggle button, 496

Customize Quick Access Toolbar, 35, 630–631
Customize Ribbon, 8
Custom VBA function, 124
Custom Views, 50
Cut method, 73
CVar function, 116

D

DAO. See Data Access Objects (DAO)
Data Access Objects (DAO), 373, 375, 381, 386,

390, 396
Data argument, 405
Data bars, 547–548
Data Model, 697
Date function, 288
Data entry with array, 214–215
Data members, 230

INDEX 1021

Date (data type), 91
Data type, 89–91

converting between, 114–116
determining, of variable, 109–110
determining and converting, 150–152
returned, 154
specifying, of variables, 97–99

Date and time formatting codes, 533–535
DDE (Dynamic Data Exchange), 355
d (d.en) variable, 336
Debug button, 28, 212–231
Debugging, 245
Debug menu, 251, 269–270
Debug.Assert statement, 254–255
Decimal (data type), 91
Declaration characters, 98–99
Default namespace, 596, 996
Delete method, 87, 543
Dest, 416
Destination arguments, 72, 73, 87, 292
Developer tab, enabling, 7–10,
Dim…As Application.ObjectType clause, 362
Dim…As Object, 362
Dim keyword, 94, 106, 107, 117, 222
Dir function, 281, 282–283
Disabled macros, 7
DisplayAlerts property, 185
DisplayStatusBar property, 194
DocExists function, 368
Docking tab, 48, 63
Document Object Model (DOM), 943
Document theme, 525, 542, 554, 562
Document Type Defi nition (DTD), 943
Do loop statements, 182
Double (data type), 91
Do…Until loop, 182–185, 336
Do…Until statement, 185
Do…While loop statements, 182–185
Do…While statement, 194–195
d variable, 336
Dynamic array, 206–208
Dynamic link libraries (DLLs), 844

E

Early binding, 360. See also Compile-time

binding establishing reference to type
library, 361–362

Edit button, 18
Edit Text, 39
Edit toolbar, 48, 50–54, 263
Editing recorded macros, 18–20
Enable All Content option, 6
EnableCancelKey property, 247
Enable Content button, 6, 39
EnableEvents property, 435, 474
End button, 28, 36, 247
End property, using, 72–73
End Property keywords, 231
End Select statement, 170, 174
End Sub keyword, 31–33, 102, 162, 170, 678
End Function keyword, 123
End With keyword, 26
Entering data and formatting cells, 74–76

finding cell format, 75–76
Formula property, 74
returning information entered, 75
Value property, 74

EntireColumn property, 73
EntireRow property, 73, 160
EOF function, 241, 267, 324
Erase function, 210–211,
Err object, 265–268
Err.Clear statement, 265
Err.Number statement, 265
Error dialog buttons, 247
ErrorHandler label, 268
Errors, trapping, 263–269
Error statement, 264
Error 424

Object required, 28
EuroConvert function, 401
Event(s), 220

chart, 454–461
Chart_Activate(), 457
Chart_BeforeRightClick(), 458
Chart_Calculate(), 458
Chart_Deactivate(), 457
Chart_MouseDown(), 458
Chart_Select(), 457–458
creating charts, 455–456

1022 INDEX

writing event procedures for chart sheet,
456–457

writing event procedures for embedded,
459–460

enabling and disabling events, 435–436
event names, 430
events recognized by application object,

461–467
application events, 462–464
event procedures for Application object,

466–467
event sequences, 436
introduction to procedure, 430
other Excel, 472–474

OnKey method, 473–474
OnTime method, 472–473

PivotTable, 452–453
workbook events related to, 453–454

procedure, 216
Query table, 467–472

Create New Data Source dialog box, 468
writing event procedure for, 468–472

Workbook events, 443–452
Workbook_Activate(), 444
Workbook_BeforeClose(), 448
Workbook_BeforePrint(), 447–448
Workbook_BeforeSave(), 446–447
Workbook_Deactivate(), 445
Workbook_NewSheet(), 449
Workbook_Open(), 445–446
Workbook_WindowActivate(), 449–450
Workbook_WindowDeactivate(),

450–451
Workbook_WindowResize(), 451–452

Worksheet events, 437– 441
Worksheet_Activate(), 437–438
Worksheet_BeforeDoubleClick(), 441
Worksheet_BeforeRightClick(), 441–442
Worksheet_Calculate(), 440
Worksheet_Change(), 439–440
Worksheet_Deactivate(), 438–439
Worksheet_SelectionChange(), 439

writing first procedure, 432–435
Event procedure, defi nition of, 220
Event sequences, 436

Excel 2019
Backstage View in, 6
customizing MS Office button menu in, 629
getting and transforming data in, 755–789
modifying context menus, 631–635
setting up for macro development, 8–10
using XML in, 937–1015

Excel application, working with, 79–80
Excel dialog boxes, 476–480

Advanced options, 478
Browse dialog box, 481
built-in, 476, 479, 483
built-in dialog box argument lists, 479
constants prefixed with xlDialog, 477
file open and save as, 480–481
filtering files, 481–483
GetOpenFilename, 486–489
GetSaveAsFilename, 486–489
from Immediate window, 477–480
selecting files, 483–485
using FileDialog object, 480–481

Excel library, 54
Excel object model, 83–84
Execute method, 485
Excel Tables, 673

column headings in, 681–683
creating table using built-in commands,

675–678
creating table using VBA, 678–681
deleting worksheet tables, 694
filtering data in Excel tables using AutoFilter,

690–691
filtering data in Excel tables using slicers,

691–693
multiple tables in worksheet, 683–684
working with Excel ListObject, 684–689

Exit Do statement, 184, 193
Exit For statement, 193, 196
Exit Function keywords, 233
Exit Property keywords, 264
Exit statements, 193
Explicit variable declaration, 93
Expression, 254
Extensible Markup Language (XML), 937–1015

character coding in, 940

INDEX 1023

creating XML schema files, 972
editing and viewing XML document,

940–943
manipulating open XML files with VBA,

1002–1014
namespaces, 996–997
opening XML document in Excel, 946–948

XSL Stylesheets, 949
open XML files, 997–1002
programming XML maps, 964– 967

adding XML map to workbook, 984–985
binding XML map to XML data

source, 966
deleting existing XML maps, 965
exporting and importing data via XML

map, 965–966
refreshing XML tables fromXML data

source, 966–967
retrieving information from element nodes,

981–986
built-in FilterXML function to retrieve

data from XML, 987–988
using XML events, 973–976
validating XML data, 962– 963
validating XML documents, 943–944
viewing schema, 967–971
well formed XML documents, 940–943
working with XML document nodes,

979–981
working with XML maps, 950–956

XML schemas, 955–956
working with XML tables, 956–958

exporting XML table, 958–961
XML export precautions, 961–962

XML via ADO, 988–996
Loading ADO recordset, 992–993
saving ADO recordset as XML, 988–992
saving ADO recordset into

DOMDocument object, 993–996
Extensible Stylesheet Language (XSL)

stylesheets, 949

F

F5, 33
F8, 187

F9, 247
Fast commands, 623
fdf object variable, 482
File access, 321–342

binary file(s), 340–342
advantages and disadvantages of, 342
Get statement, 338, 340–341
Loc statement, 341
Put statement, 340–341
Seek statement, 341

random file(s), 321, 333–340
advantages and disadvantages of, 340
contents of, 341
creating database with user-defi ned data

type, 333–334
Type statement, 334

sequential file(s), 321, 322
advantages and disadvantages of, 330
printing fi le contents, 327
read and write operations,
reading fi le line by line, 323–325
reading characters from, 325–326
reading data stored in, 322–323
reading delimited text fi les, 328–329
writing data to, 329–330

types of, 316
using Write # and Print # statements, 331

File and folder attributes, 289,
FileCopy statement, 281, 292–294
FileDateTime function, 273, 288–289
FileDialog, 480–481
FileDialog object’s constants, 481
File formats, macro-enabled, 4–5
FileLen function, 281,288
Filename argument, 408
Filenumber, 267, 322
Filenumber argument, 331
File open and save as dialog boxes, 480–481
FileSystemObject, 298, 300, 301

methods and properties of, 302–303
Filling array, 202
Filtering fi les, 481–483
Fixed-length string, 273
fltr object variable, 482
Font property, 82
For Each…Next loop, 191–193, 221, 253,

1024 INDEX

For keyword, 191
Formatting worksheets, 525–574

advanced formatting with VBA, –
conditional formatting, 542–543
conditional formatting rule precedence,

546–547
deleting rules with VBA, 547
formatting with shapes, 562–563
formatting with sparklines, 564–565
formatting with styles, 570–571
formatting with themes, 554–562
handling hidden data and empty cells by

sparklines, 565
programming sparklines, 566–567
sparklines and backward

compatibility, 566
sparkline groups, –
using color scales, 549
using data bars, 547–548
using icon sets, 549–554
working with shapes, 563

with VBA, 526–541
formatting cell appearance, 538–541
formatting columns and rows, 535–536
formatting dates, 533–535
formatting headers and footers, 536–538
formatting numbers, 526–527
formatting text, 531–532
removing formatting from cells and

ranges, 541
Format Cells dialog box, 76
Format function, 530
FormatNumber function, 242
Form module, defi nition of, 220
Formula palette feature, 128
Formula property, 74
FormulaR1C1 property, 71
For…Next loop, 189–191, 425
FreeFile function, 267
Function keyword, 123
Function, quick test, 130
Function procedure, 123, 124–126

Add Procedure dialog box, 125
conditional logic in, 177–178
creating, 124–126

function names, 126
methods of running, 127–129

running from another VBA
procedure, 129

running from worksheet, 127–128
passing arguments to, 130–131
quick test of, 130
scoping VBA, 126
with Select Case statement, 170–172
specifying argument types, 132–133
testing, 137

Function procedures (functions), 124
Functions, 123

built-in functions, locating, 137
ensuring availability of custom functions,

129–130
InputBox function, 117, 147–150

data types, determining and converting,
150–152

InputBox method, –
MsgBox function, 138–147

returning values from MsgBox Function,
146–147

passing arguments to function procedures,
130–131

passing arguments by reference and
value, 133–134

specifying argument types, 132–133
using optional arguments, 135–137

running function procedure
from another VBA procedure,
from worksheet, 129

testing, 137
understanding procedures, 124–126

G

Galleries, 611
Get & Transform feature

advanced editor, 780
aggregating data, 778
conditional logic, 775
creating query from table, 784
data types, 767
vs Excel formula language VBA, 781
learning resources, 788

INDEX 1025

M language functions, 781–784
refresh and undo button, 779
reusing output of one query in another, 780
understanding queries, 759

Add Column tab, 760
Home tab, 760
Show Queries, 761
Transform tab, 760
View tab, 760

using New Query button on Ribbon,
760–761

From Azure category, 756
From Database category, 756
From File category, 756
From Other Sources category, 758

VBA support and, 784–786
Get statement, 338, 340–341
GetAttr function, 281, 288–289
GetDefaultFolder method, 371
GetObject function, 362, 365–366, 371
GetOpenFilename, 293, 480
GetOpenFilename method, 486–488

arguments of, 486
GetRows method, 402–405
GetSaveAsFilename method, 480, 486–488
GoTo method, 87

H

Handle, 4, 77, 89, 90, 98, 103, 190, 197, 219,
254, 268, 275, 294, 358, 414, 430, 434,
502, 599, 635, 745, 816, 839, 848, 853,
867, 924, 925

Hasfieldnames argument, 408
Header and footer formatting codes, 537
Help button, 142, 146, 247
Helpfile argument, 146
Hide method, 520
Hyperlinks, 874

creating with VBA, 874–877
Hypertext Markup Language (HTML)

creating and publishing HTML files using
VBA, 877–882

sending data from HTML form to Excel
workbook, 916–932

HTTP, 912

friendly HTTP error messages, 912–913

I

Icon sets, 549–554
If statements, 167–168, 325
If…Then statement, 169–170 , – ,
If…Then…Else statement, 160–164, 169–170
If…Then…ElseIf statement, 167–169
Immediate window, 62–67,

in break window, 252–253
obtaining information, 65–66

Indent button, 53
Infi nite loops, avoiding, 186
Informal variables, 95
Initializing array, 202
InputBox function, 117, 131, 133, 137,

147–150, 475
data types, determining and converting,

150–152
InputBox method, 152–157

data types returned, 154
Input function, 267, 323, 325–326

Input # statement, 323, 331
InsertBefore method, 365
Insert Function dialog box, 127
Instance, 220
Instance of class, creating, 235–243
InStr function, 319
InStrRev function, 319
Integer (data type), 90
IntelliSense® technology, 49
Internet Information Services (IIS), 905–907

versions of, 905
IsArray function, 209–210
IsDate function, 114
IsEmpty (ActiveCell) condition, 170, 184
Is keyword, 172

with Case clause, 172–173
IsNumber function,
IsRunning function, 368
Item property, 69

K

Key argument, 224

1026 INDEX

Keyboard shortcut, running macro using, 33–34
Kill statement, 281, 292, 294–295

L

Late binding, 358–359. See also Runtime
binding

advantages and disadvantages of, 359
printing Word document using, 359
vs. early binding, 360

LBound function, 211
LCase function, 532
LCase$ function, 286
Len function, 131, 336
Lifetime of variables, 109
Like operator, 88
Linefeed character, 139
Line Input # statement, 323–324
Linking and embedding objects, 356–358. See

also Object linking and embedding
(OLE)

List Constants button, 50–51
List Properties/Methods option, 49–50
Load statement, 520
Local variables. See procedure-level (local)

variables
Locals window, 260–262
Lock argument, 267, 322
Loc statement, 341
LOF function, 326,
Logical operators, 159–160
Long (data type), 90
Long VBA statements, breaking up, 88–89
LongLong (data type), 90
LongPtr (data type), 90
Loop(s), 181–196

avoiding infinite, 186
counter, 186
Do…Until, 182–186
Do…While, 182–186
exiting early, 193–194
For Each…Next, 191–193
For…Next, 189–191
paired statements, 191
While…Wend, 188–189

Looping statements, 181, 195

avoiding infinite loops, 186
Do…Until loop statements, 182–186
Do…While loop statements,182–186
For Each…Next loop, 191–193
exiting loops early, 193–194
For…Next loop, 189–191
loops and conditionals, 195–196
While…Wend loop, –

Loop keyword, 182, 183
Loops and conditionals, 195–196
Low-level file I/O (input/output), 266, 279, 321

M

Macro(s), 4
absolute or relative cell references, 14–18
assigning to keyboard shortcut, 33
attached with button, 39
cleaning up macro code, 26–27
comments, 24
development, setting up, 8–9
dialog box, 18–19, 33–34
editing, 17–20
Excel macro-enabled file formats, 4–5, 11
names, 11–12
planning, 10–11
printing macro code, 30
recorded macros, improving, 30–31
recording, 11
running, 27–28,

avoiding shortcut confl icts, 34
from quick access toolbar, 35–38
using keyboard shortcut, 33–34
from worksheet button, 38–39

saving and renaming, 29
security settings, 5–7
stop recording button, 13
storing locations, 12
testing and debugging, 28

Macro code
adding comments, 24–25
cleaning up, 26–27
examining, 18–20

Macro-Enabled Template, 4
Macro-Enabled Workbook, 4
Macro recorder, 4, 10–11

INDEX 1027

editing recorded macros, 18–19
improving recorded macros, 30–31
planning, 10–11
printing macro code, 30
recording, 11
running, 27–28
saving and renaming, 29
testing and debugging, 28–29

Macro Security button, 9
Macro security settings, 5–7

advanced options, 6
disabled macros,
enable all content, 6
trust center options, 8

Manipulating fi les and folders, 279–296
changing default folder or drive (ChDir and

ChDrive Statements), 290–291
changing name of file or folder, 283–284
checking existence of file or folder, 284–285
copying files (FileCopy Statement), 292
creating and deleting folders (MkDir and

RmDir Statements), 291–292
deleting files (Kill Statement), 294–295
finding date and time of modifiedfile,

287–288
finding name of active folder, 282
finding size of file (FileLen Function), 288
obtaining information about recent files, 295
renaming open file, 284
returning and setting file attributes, 288–289

Manipulations module, 58
MAPI (Messaging Application Programming

Interface), 370
Margin indicator bar, 47
Master macro, creation, 32–33
MaxColumns argument, 405
MaxRows argument, 405
Method, 81–83. See also Specifi c methods
Methods of controlling Offi ce applications, 355

automation,
COM and automation, 358
dynamic data exchange (DDE), 355
establishing reference to type library,

361–362
late and early binding, 358–360
linking and embedding, 356–357

embedding Word document in
worksheet, 356

experiments with, 345–346
with VBA, 356–358

Object Browser, 360
Methods of running macros, 33

Quick Access toolbar, 35–38
using keyboard shortcut, 33–34
from worksheet button, 38–39

Microsoft Access from Excel
access database, opening, 381–390

arguments of GetObject function, 382
using ADO to connect, 388–390
using automation to connect to, 381–385
using DAO to connect to, 386–387
using New keyword, 383

connecting to, 380–381
object libraries, 374–375

advantages of creating reference to
Microsoft Access, 380

Microsoft Access 16.0, 380
Microsoft ActiveX Data Objects 6.1

library (ADODB), 376
Microsoft ADO Ext. 6.0 for DDL and

Security library (ADOX),
376–377,

Microsoft DAO 3.6, 375
Microsoft Jet and Replication Objects 2.6

library (JRO), 377–378
setting up references to, 379–380
Visual Basic for Applications (VBA), 378

performing Access tasks, 390–402
calling Access function, 401
creating new Access database, 396–397,
opening Access form, 382–383
opening Access report, 394–396
running parameter query, 400–401
running select query, 397–398

retrieving Access data, 402–420
creating embedded chart from Access

data, 417–420
creating query table, 415–417
creating text fi le, 412–414
using CopyFromRecordset method,

405–407
using GetRows method, 402–405

1028 INDEX

using OpenDatabase method, 409–412
using TransferSpreadsheet method,

407–409
transferring Excel worksheet to Access

database, 420–426
importing Excel worksheet to Access

database, 424
linking Excel worksheet to Access

database, 421–423
placing Excel data in Access table, 423

Microsoft Access 16.0 object library, 374
Microsoft Access data, retrieving
Microsoft Access database, transferring Excel

worksheet to, 420–426
Microsoft Access tasks
Microsoft ActiveX Data Objects 6.1 library

(ADODB), 376
Microsoft ADO Ext. 6.0 for DDL and Security

library (ADOX), 376–377
Microsoft DAO 3.6 object library, 375
Microsoft Excel application window, 50
Microsoft Excel Object folder, 45
Microsoft Excel object model, 83–84
Microsoft Excel workbook, 29
Microsoft Jet and Replication Objects 2.6 library

(JRO), 377–378
Microsoft Offi ce Security Options dialog, 7
MkDir method, 61, 62
MkDir statement, 291
Mode keyword, 266, 322
Modify button, 35
Module(s), 44, 220, 228

form, 220
working with, 801–811

adding module, 804–805
copying (exporting and importing)

module, 808–809
copying (exporting and importing) all

modules, 809–811
deleting all code from module, 804–805
deleting empty modules, 806–807
listing all modules in workbook, 802–803
removing module, 805

Module 1 (Code) window, 20
Module-level variables, 106–107

Modules folder, 20
MoveFirst method, 405
moving, copying, and deleting cells, 72–73
MsgBox buttons argument, 142
MsgBox function, 129, 131, 134, 137, 138– 147,

171, 432
with arguments, 143–144
parentheses, 147
returning values from, 146–147

Multiple conditions, writing VBA procedure
with, 175–177

myChart, 461
myDrive variable, 283

N

Name function, 281, 283
Name property, 82
Namespace(s), 996–997

default, 996
nested if…then statements, 169–170
New keyword, 368–369, 381, 383,
Next keyword, 189
Normal View, 50
Nothing keyword, 385
NOT operator, 88, 160
Now function, 472
Number formatting codes, 528
NumberFormat property, 75

O

Object, 67, 74, 79, 80, 81
Object (data type), 91
Object Browser window, 53–60, 112, 152, 476

built-in constant, 112
code template area, 56
locating procedures, 59–60
Project/Library drop-down, 54
search, 55
VBA instructions, 53–57
viewing Excel constants in, 112–113

Object collections, 219
custom collection

adding objects to, 222–223
creating and using, 228–242

INDEX 1029

declaring and using, 222
removing objects from, 224–225

working with, 220–227
Object libraries, 374–381

advantages of creating reference to Microsoft
Access, 380

Microsoft Access 16.0, 374
Microsoft ActiveX Data Objects 6.1 library

(ADODB), 376
Microsoft ADO Ext. 6.0 for DDL and

Security library (ADOX), 376–377
Microsoft DAO 3.6, 375
Microsoft Jet and Replication Objects 2.6

library (JRO), 377–379
setting up references to, 379–380
Visual Basic for Applications

(VBA), 378–379
Object linking and embedding (OLE), 356
Object property. See property of object
Object variables in VBA procedures, 118–121

advantages, 120
objOut, 370
Offi ce application(s)

controlling another, 351–355
keycodes used with sendkeys

statement, 351
sendkeys and reserved characters, 354
sendkeys statement, 352–353
sendkeys statement, case sensitive, 355

creating automation objects, 362–371
to access Microsoft Outlook, 369–371
CreateObject function, 363
creating new Word document using,

363–365
GetObject function, 365–366
New keyword, 368–369
opening existing Word document,

366–368
steps to create, 362

launching, 345–350
ActivateMicrosoftApp method, 349
Shell function, 345–349
Shell function to activate control

panel, 348
window style constants and appearance

options, 346

methods of controlling, 355–362
automation, 356
COM and automation, 358
dynamic data exchange (DDE), 355
establishing reference to type library,

361–362
late and early binding, 358–360
linking and embedding, 356–358
Output mode, 322, 329

moving between, 350–351
AppActivate statement, 350

Offset method, 522
Offset property, 69–70, 85

selecting cells using, 69
One-dimensional array, 197–198, 200–202
On Error GoTo 0, 264
On Error GoTo CloseFile statement, 327
On Error GoTo ErrorHadler statement, 589
On Error GoTo Label, 156, 163, 264
On Error Resume Next, 264,
OnKey method, 168, 472–474
OnTime method, 473–474
Open method, 77
Open statement, 266, 267, 322–328
OpenCurrentDatabase method, 383, 393, 394,

409, 422
OpenDatabase method, 386, 387, 404, 409–412

optional arguments, 410
OpenRecordset method, 404
Open XML files, 997–1002
OperatingSystem property, 80
Operators, 159–160
Option Base 0 statement, 201
Option Base 1 statement, 198, 201, 204
Option Explicit statement, 101, 105, 333
Option Private Module statement, 108
Optional arguments, 135–137
OR operator, 174, 869
OrganizationName property, 80
Outdent button, 53

P

Page Break Preview, 50
Page Layout View, 50
ParamArray keyword, 213–214

1030 INDEX

Parameter, 578, 599
Parameter Info button, 51
Parser, 943
Passing arguments, 130–137

ByRef and ByVal, 134–135
optional arguments, 135–136
by reference and value, 133–134
specifying argument types, 132–133
testing function procedure, 137

Pathname, 317
Path property, 77
Performing Access task from Excel, 390–402

calling Access function, 401–402
create new Access database with DAO,

390–391
create new database form with ADO, 396
opening Access form, 392–393
opening Access report, 394–396
running parameter query, 400–401
running select query, 397–399

Personal macro workbook, 12, 129, 658
PivotChart(s), creating, 728–733
PivotTable(s), 695–753

adding calculated fields and items to,
719–728

CreatePivotTable method of PivotCache
object, 711–714

creating report, 695–702
creating report from Access database,

708–711
creating report programmatically, 705–708
creating report using VBA, 728–733
data model functionality and, 742–747

deferring PivotTable layout updates, 747
formatting, grouping and sorting report,

715–718
hiding items in, 718
programmatic access to data model, 748–753
removing detail worksheet

with VBA, 702–705
PivotTable events, 452–454
PivotTableCloseConnection

workbook event, 453
PivotTableOpenConnection

workbook event, 453

Plus (+), 97
Pointer(s), 853
Populating array, 202
Power Query Add-In, 755
Printing and sending email from Excel, 637–670

changing active printer, 652–653
controlling page setup, 638–649

dialog box, 647–649
header/footer tab, 642–643
margins tab, 640–641
page lay out tab, 639–640
retrieving current values from dialog box,

647–648
sheet tab, 644–647

disabling printing and print previewing, 655
previewing worksheet, 649–652
printing worksheet with VBA, 653–655
sending email from Excel, 660–670

Excel via Outlook, 666–670
MsoEnvelope object, 665–666
SendMail method, 662–664

using printing events, 656–660
Printing macro code, 30
Private keyword, 108, 230–231
Private variables, 106
Procedure (s), 71. See also Macro(s)

function, 123
property, 123

defi ning scope, 230
types of, 228

subroutine, 123
working with, 812– 826

adding procedure, 813–814
creating event procedure, 816–818
deleting procedure, 814–816
listing all procedures in all modules,

812–813
Procedure-level (local) variables, 105
Procedure, stopping, 246–247
Programs, adding repeating actions to, 181–196

avoiding infinite loops, 186
Do…Until loop, 182–186
Do…While loop, 182–186
Do…While statement, 194–195
executing procedure line by line, 187–188

INDEX 1031

exiting loops early, 193–194
For Each…Next loop, 191–193
For…Next loop, 191–193
looping statements, 181
using loops and conditionals, 195–196
While…Wend loop, 188–189

Project Explorer window, 20, 44–45
activate, 44
standard toolbar, 44

Project-level variables, 108
Project/Library drop-down, 54
Properties, 81–83
Properties/Methods pop-up menu, 49–50
Properties window, 20, 45
Property of object

changing, 86
object’s method, referring to, 87–88
referring to, 84–85
returning current value of, 86–87

Property Get procedure, 231, 232, 233,
Property Let procedures, 231, 233
Property procedures, 123

for CAsset class, 230
defining scope, 233
immediate exit from, 233
Property Set procedure, 233,
writing, 231–232

Public constant, 112
Public keyword, 109, 111, 126, 234
Put statement, 340, 341–342

Q

Query table, 415, 467–468
Query table events, 467–471

Create New Data Source dialog box, 468
writing event procedures, 468–470

QueryTable object, 415
Question mark (?), 65
Quick Access toolbar (QAT), 35–38, 630

adding new button to, 35, 36
customize, 632
running macro from, 28–29

Quick Info button, 51
Quick Watch dialog box, 259–260
Quit method, 365

R

Raise method, 265,
Random file(s), 321, 333–340

advantages and disadvantages of, 340
contents of, 338
creating database with user-defined data

type, 334
Type statement, 334–340

Randomize statement, 203
RandomNr variable, 338
Range argument, 408
Range object, 74, 75, 82, 83, 87, 120, 121
Range property, 67–68
RecentFiles object, 295–296
Reclength, 267, 323
RecNr variable, 335
Recnumber argument, 340–341
RecordCount method, 404
Record Macro dialog box, 11
Recorded macros, improving, 301–31
Recordset, 389, 390, 399, 401, 404
ReDim statement, 207, 210, 217
Reference argument, 87
References, 826–834

adding, 829–830
checking for broken, 832–834
creating list of, 827–828
removing, 831–832

References collection, 796, 827, 830, 831
Refreshing data, 895
RefreshStyle method, 416
Reindexing collections, 227
Relational operators, 159
Relative cell references, 14–15
Remove method, 224
RemoveFormats macro, 40
Removing Watch Expressions, 259
Resetting, of VBA procedures, 273
Resize property, 70
Resume Next statement, 268
Ribbon extensibility (RibbonX), 576
Ribbon interface, 575–635

about tabs, groups and controls, 603
controls in, 603

checkboxes, 606–608

1032 INDEX

combo boxes and drop-downs, 609–611
dialog box launcher, 614
edit boxes, 608–609
gallery control, 611–614
split buttons, menus, and submenus,

604–606
toggle buttons, 603–604

customizations via user interface, 592
customizing back stage view, 623–628

backstage view development, 623–624
hiding backstage buttons and tabs, 628

hiding elements of Excel user interface, 596
modifying context menus using ribbon

customizations, 631–634
programming with XML and VBA, 592–623

commandbar object and ribbon, 619–621
creating ribbon customization XML

markup, 593–596
disabling control, 614–616
errors on loading ribbon customizations,

600–601
hiding elements of excel user interface,

596–598
loading ribbon customizations, 598–599
refreshing ribbon, 617–619
repurposing built-in control, 616–617
tab activation and group auto-scaling,

622–623
using images in ribbon customizations,

601–602
using various controls in ribbon

customizations, 603
IRibbonControl properties, 600

Right function, 287
RmDir method, 62
RmDir statement, 281, 291
Rows and columns, working with, 73

counting, 74
obtaining information about worksheet, 74

RowOffset, 85
Run method, 314, 315
Run Sub/UserForm, 246, 506
Runtime binding, 358
Runtime errors, 245

S

SaveAs method, 75
SaveAs2 method, 365
SaveAsUI argument, 446
SaveChanges parameter set, 83
SaveData, 710
Saving results of VBA statements, 89
Save Workspace button, 80
Schema, 938
Scope of variables, 106–108

module-level variables, 106–107
procedure-level (local) variables, 106
project level, 109

Script, 296
Scroll argument, 87
SecretCode variable, 164
Security warning message, 6
Seek statement, 341
Select Case statement, 170–174

specifying range of values in Case clause,
173–174

specifying multiple expressions in Case
clause, 174

using Is with Case clause, 172–173
Selection, 64, 65, 67
Select method, 78
Sending Excel data to Internet browser, 933–935
SendKeys statement, 351, 352, 353, 354, 355

case sensitive, 355
keycodes used, 352–353
Ribbon tab, 353
in VBA procedure, 354

Sequential fi le(s), 322–333
advantages and disadvantages of, 330
printing file contents, 327
read and write operations, 330
reading file line by line, 323–325
reading characters from, 325–328
reading data stored in, –
reading delimited text files, 328–329
using Write # and Print # statements,

331–333
writing data to, 329–330

Set keyword, 362, 363, 399
Set Next Statement option, 272

INDEX 1033

Set statement, 369, 381
SetAttr function, 281, 288–289
Shapes collection, 60
SheetPivotTableAfterValueChange, 463
SheetPivotTableBeforeAllocateChanges, 463
SheetPivotTableBeforeCommitChanges, 463
SheetPivotTableBeforeDiscardChanges, 463
SheetPivotTableChangeSync, 463
SheetPivotTableUpdate event, 453
Sheets collection, 82
Shell function, 345–349

to activate control panel, 348–349
Shift +F8, 271
Shortcut confl icts, 34
Shortcut menu, 576
Show method, 442,
Show Next Statement option, 273
ShowPopup method, 585, 587
ShtName variable, 438
Simple and complex VBA statements, 84–89

breaking up long statements, 88–89
changing property of object, 86
referring to object’s method, 87–88
referring to property of object, 86
returning current value of object

property, 86–87
saving results, 89

Single (data type), 90
Slicer(s), 733–742

creating manually, 733–736
using VBA, 737–742

Sort function, 215
sourceData, 710
sourceType, 710
source variable, 293
Sparkline groups, 566
Sparklines

and backward compatibility, 566
handling hidden data and empty cells, 565
programming with VBA, 566

Split bar, 46
Split button, 604
Spreadsheettype argument, 407
Spreadsheettype argument constants, 407–408
Static array, 206

Static keyword, 117
Static variables in VBA procedures, 117–118
Stepping through VBA procedures, 269–273

and running to cursor, 271–272
setting Next statement, 272–273
showing Next statement, 273
stopping and resetting VBA procedures, 273

Stop recording button, 13
Stop statement, 253
StrConn, 416
String (data type), – 91
StrSQL, 416
Sub keyword, 25, 29, 31, 33, 102, 162, 170, 225,

270, 514
Subroutine procedures (subroutines), 123, 157
Subscripted variable, 201
Subscript out of range, 28, 212
Sum function, 130, 698
Syntax, 84

T

Table Destination, 888
Table object, 425
Tablename, 408, 710
Tables, 673

column headings in, 681–683
creating table using built-in commands,

675–678
creating table using VBA, 678–681
deleting worksheet tables, 694
filtering data in Excel tables using

AutoFilter, 691–693
filtering data in Excel tables using slicers, –
multiple tables in worksheet, 683–684
working with Excel ListObject, 684–689

Temporary argument, 578
Testing VBA procedures, 245–246

Err object, using, 265–268
guidelines for, 245
Locals windows and Cal Stack dialog box,

using, 260–261
navigating with bookmarks, 262–263
stepping through VBA procedure, 269– 273
stopping procedure, 246–247
traping errors, 263–269

1034 INDEX

using breakpoints, 247–252
using assert statement, 253–255
using immediate window in break mode, 252
using quick watch, 259–260
using stop statement, 253–255
using watch window, 255–256
XML Document Object Model (DOM),

976–979
Th eme colors, 555, 559, 562
Th ree-dimensional array, 199, 200,
TimeValue function, 228, 472
Title argument, 145
Toggle button, 496
TransferSpreadsheet method, 407–409
Transfertype argument, 407
Trapping errors, 263–269,
Troubleshooting errors in arrays, 212–213
Trust Center options, 6. See also macro security

settings
Trust Center Settings hyperlink, 8
Trusted Documents list, 6
Trusted Locations, 9
Two-dimensional array, 198, 205–206
Type argument, 543, 849
Type command, 334
Type mismatch error, 213
Type statement, 92, 334–339
Type…End Type statement, 334, 848

U

UBound function, 211
UCase function, 532
Uncomment Block, 53
Underscore (_), 88, 92, 140
Union operator, 67
Unload method, 520
UsedRange property, 185
User-defi ned (data type), 92, 328, 859
Use Relative References option, 14
User form, 491
UserForms, 818–819

copying programmatically, 825–826
creating and manipulating, 819–820

V

Value property, 74, 196
Values of VBA Expressions, 256–259
Variant (data type), 91
Variablelist, 328
VariableName, 323
Variables, 92–121

advantages of using object variables, 120
using specifi c object variables, 120

assigning values to, 99–101
concatenation, 97
converting between data types, 114–117
creating, 99
data type, 97–99
declaration characters, 98
declaring, 94–95
declaring typed, 99

assigning values to variables, 99–101
determining data type of, 109
explicit variable declaration, 93
finding variable definition, 109
forcing declaration, 104–105
informal variables, 95–97
initialization, 101–104
lifetime of, 109
meaningful variable names, 93

creating variables, 93–94
declaring variables, 93–94

module-level, 106
option explicit in every module, 105

scope of variables, 106
private variables, 108
procedure-level (local), 106
project-level, 109
reserved words, using, 93
scope of, 106
type, 97
VBA procedure with, 107–108

Variant data type, 90, 93, 94, 96, 97
Varname argument, 340–341
VarType function, 109, 110
VBA. See Visual Basic for Applications (VBA)
VBAProject, 20, 799

INDEX 1035

VBA programs, adding repeating actions,
181–196

avoiding infinite loops, 186
Do…Until loop, 182–186
Do…While loop statements, 182–186, 194–195
executing procedure line by line, 187–188
exiting loops early, 193–194
For Each…Next loop, 191–193
For…Next loop, 191–193
looping statements, 181
using loops and conditionals, 195–196
While…Wend loop, 188–189

VBA statements, simple and complex, 84–89
breaking up long statements, 88–89
changing property of object, 86
referring to object’s method, 87–88
referring to property of object, 84–85
returning current value of object

property, 86
saving results, 89

vbHide, 346
vbMaximizedFocus, 346
vbMinimizedFocus, 346
vbMinimizedNoFocus, 346
vbNormalFocus, 346
vbNormalNoFocus, 346
VBComponents collection, 818, 819
VBProjects collection, 796
vbSystemModal setting, 142
vbYes constant, 142, 172
View Macros, 27, 32, 365
Virtual directory, 907

creating, 907–910
Visual Basic Code window. See Code window
Visual Basic data types, 90
Visual basic editor (VBE), 3, 4, 18–20, 24,

27–30, 43, 47, 62, 71, 80, 83, 123, 228,
245, 360

accessing VBA project, 797–799
code window, 44 –46
data types, 89–90
entering data and formatting cells, 74–76

fi nding out about cell formatting, 75–76
returning information entered in

worksheet, 75

Excel application, working with, 79–80
finding information about VBA project,

799–800
Immediate window, 62–67

obtaining information in, 65–67
menus and toolbars, 835–841

adding CommandBar button to, 837–840
listing of VBE CommandBars and controls,

836–837
Object Browser, 53–60

locating procedures with, 59–60
object model, 794–795
objects, 795–797
Project Explorer window, 44–45
Properties window, 45
rows and columns, working with, 73–74

obtaining information about
worksheet, 74

saving results of statements, 89
setting opions, 47–48
stepping through procedures, 269–273

setting next statement, 272–273
showing next statement, 273
stepping over procedure and running to

cursor, 271–272
stopping and resetting, 273

syntax and programming assistance, 48–53
Comment Block button, 53
Complete Word button, 52
Indent button, 52
List Constants button, 50–51
List Properties/Methods option, 49–50
Outdent button, 52
Parameter Info button, 51
Quick Info button, 51–52
Uncomment Block button, 53

understanding project explorer
window, 44–45

elements, 44–45
understanding properties windows, 45–46

ways to access properties windows, 45
using constants in procedures, 111–113

built-in-constants, 112
understanding VBE objects, 795–797

fi ve collections, 796

1036 INDEX

VBA object library, using, 60–62
VBA project protection, 800–801
Windows, working with, 78–79
workbooks, working with, 76–78
worksheet cells and ranges, working

with, 67–73
Cells property, using, 67–68
End property, using, 72
moving, copying, and deleting

cells, 72–73
Offset property, using, 69–70
Range property, using, 67
Resize property, using, 70

worksheets, working with, 76–78
Visual Basic for Applications (VBA), 4

breaking up long statements, 88– 89
to create folder in windows, 60–62
data type conversion functions, 115–116
data types, 89–90
Insert Function dialog box, 127
library lists, 54
and macros, 4–5
object library, 60–62
object properties and methods, 45
object variables, 118–121
procedure with multiple conditions, 175–177
Select Case statement, 170–174
simple and complex statements, 84–89
static variables in, 117–118
stopping and resetting, 273
testing, 245–246

Visual Basic for Applications object library
(VBA), 378

Visual Basic Integrated Design Environment
(VBIDE), 793

VLookup function, 251

W

Wait argument, 350
Watch expressions, removing, 259
Watch Type, 256
Watch Window, using, 255–259
Web queries, 883–894

creating and running queries with VBA,
886–894

dynamic, 892–894
importing table, 891–892
New Web Query dialog box, 885
static and dynamic parameters, 896
with parameters, 894–896

Weekday function, 166
Weight property, 85
While…Wend loop, 188–189
Windows, 834–835

types in VBA project, 834
Windows Application Programming Interface

(API), 843–870
64-bit Office and Windows API, 853–857

PtrSafe keyword, LongLong and
LongPtr data, 853

accessing Windows API documentation, 857
data types and constants, 847

integer, 847
long, 848
string, 848
structure, 848–849
any, 849

declaring Windows API function, 845–847
library fi les, 844–845
passing arguments to API Functions, 847
using constants with Windows API

Functions, 850–852
using functions in Excel, 857–870
writing procedures, 862

Windows collection, 82, 796
Windows Script Host (WSH), 297–320

checking version of file, 298
controlling objects with, 299–300
CreateObject function, 298
creating shortcuts using WshShell object,

318–319
creating text file using, 310–313

CreateTextFile, 310
OpenAsTextStream, 310
OpenTextFile, – 310
finding information about files

with, 300–310
methods and properties of

FileSystemObject, 303–307
properties of drive object, 309–310

INDEX 1037

properties of fi le object, 307–308
properties of folder object, 309–310

main objects of WSH object model, 313
performing other operations with, 313–320

creating shortcuts, 317–319
listing shortcut fi les, 319–320
obtaining information about

windows, 316
retrieving information about user,

domain, or computer, 316
running other applications, 313–315

Window style constants, 346
Windows, working with, 78–79
With…End With statement, 539, 580, 824
WithEvents keyword, 453, 457, 459, 460, 461,

465, 470, 474, 658, 839, 976,
With keyword, 25
Workbook

collection, 82
working with, 76–78

WorkbookAft erXmlExport, 464
WorkbookAft erXmlImport, 464
WorkbookBeforeXmlExport, 464
WorkbookBeforeXmlImport, 464
Workbook events, 443–452

Workbook_Activate(), 444–445
Workbook_BeforeClose(), 448
Workbook_BeforePrint(), 447–448
Workbook_BeforeSave(), 446–447
Workbook_Deactivate(), 445
Workbook_NewSheet(), 449
Workbook_Open(), 445–446
Workbook_WindowActivate(), 449–450
Workbook_WindowDeactivate(), 450–451
Workbook_WindowResize(), 451–452

Worksheet, 67
collection, 80
running function procedure from, 127–129
working with, 73–74

Worksheet button, running macro from, 38–39
Worksheet cells and ranges, working, 67–73

Cells property, using, 67–69
End property, using, 72
moving, copying, and deleting cells, 72–73

Offset property, using, 69–70
Range property, using, 67
Resize property, using, 70–71

Worksheet events
Worksheet_Activate(), 437–438
Worksheet_BeforeDoubleClick(), 441
Worksheet_BeforeRightClick(), 441–442
Worksheet_Calculate(), 440
Worksheet_Change(), 439–440
Worksheet_Deactivate(), 438–439
Worksheet_SelectionChange(), 439
ThisWorkbook, 18

WScript object, of WSH, 313
Wscript.exe, 297
WSH. See Windows Script Host (WSH)
WshNetwork object, of WSH, 316

retrieving information about user, domain,
or computer name, 316

Wshom.ocx fi le, 297
WshShell object, of WSH, 314–315

creating shortcuts using, 317–319

X

xlBorderWeightEnumeration, 540
xlChart variable, 460
xlDash, 540
xlDialog, 476
xlDialogClear, 476
xlDialogDefineName, 476
xlDialogFont, 476
xlDialogOptionsView, 476
xlFormatConditionType, 543
xlHairline, 540
xlInsertDeleteCells, 417
xlInsertEntireRows, 417
xlLineStyle, 540
xlLineStyleNone, 540
xlMedium, 540
xlOverwriteCells, 417
xlThick, 540
xlTimePeriod, 543
.xlsb, 4
XLStart folder, 12, 129
.xlsm, 4

1038 INDEX

.xltm, 4

.xlwx, 80
XML Document Object Model (DOM), 976
XML Path Language (XPath), 971
XML schemas, 938, 955–956
XSL Stylesheets, 949
XSL transformations, 971, 992

Z

Zero-length string (“”), 116, 273

	Cover
	Title
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Part I Excel VBA Primer
	Chapter 1 Excel Macros: A Quick Start in Excel VBA Programming
	Macros and VBA
	Excel Macro-Enabled File Formats
	Macro Security Settings

	Enabling the Developer Tab in Excel
	Using the Built-In Macro Recorder
	Planning a Macro
	Recording a Macro
	Using Relative or Absolute References in Macros

	Editing Recorded Macros
	Macro Comments
	Cleaning Up the Macro Code

	Running a Macro
	Testing and Debugging a Macro
	Saving and Renaming a Macro
	Printing Macro Code

	Improving Your Recorded Macros
	Creating a Master Macro
	Various Methods of Running Macros
	Running the Macro Using a Keyboard Shortcut
	Running the Macro from the Quick Access Toolbar
	Running the Macro from a Worksheet Button

	Summary

	Chapter 2 Excel Programming Environment: A Quick Overview of its Tools and Features (VBE)
	Understanding the Project Explorer Window
	Understanding the Properties Window
	Understanding the Code Window
	Setting the VBE Options
	Syntax and Programming Assistance
	List Properties/Methods
	List Constants
	Parameter Info
	Quick Info
	Complete Word
	Indent/Outdent
	Comment Block/Uncomment Block

	Using the Object Browser
	Locating Procedures with the Object Browser

	Using the VBA Object Library
	Using the Immediate Window
	Obtaining Information in the Immediate Window

	Working with Worksheet Cells and Ranges
	Using the Range Property
	Using the Cells Property
	Using the Offset Property
	Using the Resize Property
	Using the End Property
	Moving, Copying, and Deleting Cells

	Working with Rows and Columns
	Obtaining Information about the Worksheet

	Entering Data and Formatting Cells
	Returning Information Entered in a Worksheet
	Finding Out about Cell Formatting

	Working with Workbooks and Worksheets
	Working with Windows
	Working with the Excel Application
	Summary

	Chapter 3 Excel VBA Fundamentals: A Quick Reference to Writing VBA Code
	Excel Objects, Properties, and Methods
	Microsoft Excel Object Model
	Writing Simple and Complex VBA Statements
	Breaking Up Long VBA Statements

	Saving Results of VBA Statements
	Introducing Data Types
	Using Variables
	How to Create Variables
	How to Declare Variables
	Specifying the Data Type of a Variabl
	Assigning Values to Variables
	Forcing Declaration of Variables
	Understanding the Scope of Variables
	Procedure-Level (Local) Variables
	Module-Level Variables
	Project-Level Variables

	Lifetime of Variables
	Finding a Variable Definition
	Determining a Data Type of a Variable

	Using Constants
	Built-In Constants

	Converting between Data Types
	Using Static Variables in VBA Procedures
	Using Object Variables in VBA Procedures
	Using Specific Object Variables

	Summary

	Chapter 4 Excel VBA Procedures: A Quick Guide to Writing Function Procedures
	Understanding Function Procedures
	Creating a Function Procedure

	Various Methods of Running Function ProceduresVarious Methods of Running Function Procedures
	Running a Function Procedure from a Worksheet
	Running a Function Procedure from Another VBA Procedure

	Ensuring Availability of Your Custom Functions
	Passing Arguments to Function Procedures
	Specifying Argument Types
	Passing Arguments by Reference and Value
	Using Optional Arguments

	Testing a Function Procedure
	Locating Built-In Functions
	Getting to Know the MsgBox Function
	Returning Values from the MsgBox Function

	Getting to Know the InputBox Function
	Determining and Converting Data Types

	Using the InputBox Method
	Summary

	Chapter 5 Adding Decisions to Excel VBA Programs: A Quick Introduction to Conditional Statements
	Relational and Logical Operators
	Using If...Then Statement
	Using If...Then...Else Statement
	Using If...Then...ElseIf Statement
	Nested If…Then Statements
	Using the Select Case Statement
	Using Is with the Case Clause
	Specifying a Range of Values in a Case Clause
	Specifying Multiple Expressions in a Case Clause

	Writing a VBA Procedure with Multiple Condition
	Using Conditional Logic in Function Procedures
	Summary

	Chapter 6 Adding Repeating Actions to Excel VBA Programs: A Quick Introduction to Looping Statements
	Introducing Looping Statements
	Understanding Do...While and Do...Until Loops
	Avoiding Infinite Loops
	Executing a Procedure Line by Line
	Understanding While...Wend Loop
	Understanding For...Next Loop
	Understanding For...Each...Next Loop
	Exiting Loops Early
	Using a Do…While Statement
	Using Loops and Conditionals
	Summary

	Chapter 7 Storing Multiple Values in Excel VBA Programs: A Quick Introduction to Working with Arrays
	Understanding Arrays
	Declaring Arrays
	Array Upper and Lower Bounds
	Initializing and Filling an Array
	Filling an Array Using Individual Assignment Statements
	Filling an Array Using the Array Function
	Filling an Array Using For…Next Loop

	Using a One-Dimensional Array
	Using a Two-Dimensional Array
	Using a Dynamic Array
	Using Array Functions
	The Array Function
	The IsArray Function
	The Erase Function
	The LBound and UBound Functions

	Troubleshooting Errors in Arrays
	Using the ParamArray Keyword
	Data Entry with an Array
	Sorting an Array with Excel
	Summary

	Chapter 8 Keeping Track of Multiple Values in Excel VBA Programs: A Quick Introduction to Creating and Using Collections
	Working with Collections of Objects
	Declaring and Using a Custom Collection
	Adding Objects to a Custom Collection
	Removing Objects from a Custom Collection

	Creating and Using Custom Objects
	Variable Declarations
	Defining the Properties for the Class
	Writing Property Procedures
	Writing Class Methods
	Creating an Instance of a Class

	Summary

	Chapter 9 Excel Tools for Testing and Debugging: A Quick Introduction to Testing VBA Programs
	Testing VBA Procedures
	Stopping a Procedure
	Using Breakpoints
	When to Use a Breakpoint

	Using the Immediate Window in Break Mode
	Using the Stop and Assert Statements
	Using the Watch Window
	Removing Watch Expressions

	Using Quick Watch
	Using the Locals Windows and the Call Stack Dialog Box
	Navigating with Bookmarks
	Trapping Errors
	Using the Err Object
	Setting Error Trapping Options in a VBA Project

	Stepping through VBA Procedures
	Stepping Over a Procedure and Running to Cursor
	Setting the Next Statement
	Showing the Next Statement
	Stopping and Resetting VBA Procedures

	Terminating a Procedure based on a Condition
	Summary

	Part II Manipulating Files and Folders with VBA
	Chapter 10File and Folder Manipulation with VBA
	Manipulating Files and Folders
	Finding Out the Name of the Active Folde
	Changing the Name of a File or Folder
	Checking the Existence of a File or Folder
	Finding Out the Date and Time the File Was Modified
	Finding Out the Size of a File (the FileLen Function)

	Returning and Setting File Attributes (the GetAttr and SetAttr Functions)
	Changing the Default Folder or Drive (the ChDir and ChDrive Statements)
	Creating and Deleting Folders (the MkDir and RmDir Statements)
	Copying Files (the FileCopy Statement)
	Deleting Files (the Kill Statement)
	Summary

	Chapter 11 File and Folder Manipulation with Windows Script Host (WSH)
	Finding Information about Files with WSH
	Methods and Properties of FileSystemObject
	Properties of the File Object
	Properties of the Folder Object
	Properties of the Drive Object

	Creating a Text File Using WSH
	Performing Other Operations with WSH
	Running Other Applications
	Obtaining Information about Windows
	Retrieving Information about the User, Domain, or Computer

	Creating Shortcuts
	Listing Shortcut Files

	Summary

	Chapter 12 Using Low- Level File Access
	File Access Types
	Working with Sequential Files
	Reading Data Stored in Sequential File
	Reading a File Line by Line
	Reading Characters from Sequential Files
	Reading Delimited Text Files
	Writing Data to Sequential Files
	Using Write # and Print # Statements

	Working with Random-Access Files
	Working with Binary Files
	Summary

	Part III Controlling Other Applications with VBA
	Chapter 13 Using Excel VBA to Interact with Other Applications
	Launching Applications
	Moving between Applications
	Controlling Another Application
	Other Methods of Controlling Applications
	Understanding Automation
	Understanding Linking and Embedding
	COM and Automation
	Understanding Binding
	Late Binding
	Early Binding

	Establishing a Reference to a Type Library
	Creating Automation Objects
	Using the CreateObject Function
	Creating a New Word Document Using Automation
	Using the GetObject Function
	Opening an Existing Word Document
	Using the New Keyword
	Using Automation to Access Microsoft Outlook

	Summary

	Chapter 14 Using Excel with Microsoft Access
	Object Libraries
	Setting Up References to Object Libraries

	Connecting to Access
	Opening an Access Database
	Using Automation to Connect to an Access Database
	Using DAO to Connect to an Access Database
	Using ADO to Connect to an Access Database

	Performing Access Tasks from Excel
	Creating a New Access Database with DAO
	Opening an Access Form
	Opening an Access Report
	Creating a New Access Database with ADO
	Running a Select Query
	Running a Parameter Query
	Calling an Access Function

	Retrieving Access Data into an Excel Worksheet
	Retrieving Data with the GetRows Method
	Retrieving Data with the CopyFromRecordset Method
	Retrieving Data with the TransferSpreadsheet Method
	Using the OpenDatabase Method
	Creating a Text File from Access Data
	Creating a Query Table from Access Data

	Creating an Embedded Chart from Access Data
	Transferring the Excel Worksheet to an Access Database
	Linking an Excel Worksheet to an Access Database
	Importing an Excel Worksheet to an Access Database
	Placing Excel Data in an Access Table

	Summary

	Part IV Enhancing the User Experience
	Chapter 15 Event-Driven Programming
	Introduction to Event Procedures
	Writing Your First Event Procedure
	Enabling and Disabling Events
	Event Sequences
	Worksheet Events
	Worksheet_Activate()
	Worksheet_Deactivate()
	Worksheet_SelectionChange()
	Worksheet_Change()
	Worksheet_Calculate()
	Worksheet_BeforeDoubleClick (ByVal Target As Range, Cancel As Boolean)
	Worksheet_BeforeRightClick (ByVal Target As Range, Cancel As Boolean)

	Workbook Events
	Workbook_Activate()
	Workbook_Deactivate()
	Workbook_Open()
	Workbook_BeforeSave(ByVal SaveAsUI As Boolean, Cancel As Boolean)
	Workbook_BeforePrint(Cancel As Boolean)
	Workbook_BeforeClose(Cancel As Boolean)
	Workbook_NewSheet(ByVal Sh As Object)
	Workbook_WindowActivate(ByVal Wn As Window)
	Workbook_WindowDeactivate(ByVal Wn As Window)

	Workbook_WindowResize(ByVal Wn As Window)
	Pivottable Events
	Chart Events
	Writing Event Procedures for a Chart Located on a Chart Sheet
	Chart_Activate()
	Chart_Deactivate()
	Chart_Select(ByVal ElementID As Long, ByVal Arg1 As Long, ByVal Arg2 As Long)
	Chart_Calculate()
	Chart_BeforeRightClick()
	Chart_MouseDown(ByVal Button As Long, ByVal Shift As Long, ByVal x As Long, ByVal y As Long)

	Writing Event Procedures for Embedded Charts

	Events Recognized by the Application Object
	Query Table Events
	Other Excel Events
	OnTime Method
	OnKey Method

	Summary

	Chapter 16 Using Dialog Boxes
	Excel Dialog Boxes
	File Open and File Save As Dialog Boxes
	Filtering Files
	Selecting Files
	GetOpenFilename and GetSaveAsFilename Methods
	Using the GetOpenFilename Method
	Using the GetSaveAsFilename Method

	Summary

	Chapter 17 Creating Custom Forms
	Creating Forms
	Tools for Creating User Forms
	Placing Controls on a Form
	Setting Grid Options

	Sample Application: Info Survey
	Setting Up the Custom Form
	Inserting a New Form and Setting Up the Initial Properties
	Changing the Size of the Form
	Adding Buttons, Checkboxes, and Other Controls to a Form
	Changing Control Names and Properties
	Setting the Tab Order
	Preparing a Worksheet to Store Custom Form Data
	Displaying a Custom Form
	Understanding Form and Control Events
	Writing VBA Procedures to Respond to Form and Control Events
	Writing a Procedure to Initialize the Form
	Writing a Procedure to Populate the Listbox Control
	Writing a Procedure to Control Option Buttons
	Writing Procedures to Synchronize the Text Box with the Spin Button
	Writing a Procedure that Closes the User Form
	Transferring Form Data to the Worksheet

	Using the Info Survey Application
	UserForm: Modal versus Modeless

	Summary

	Chapter 18 Formatting Worksheets with VBA
	Performing Basic Formatting Tasks with VBA
	Formatting Numbers
	Formatting Text
	Formatting Dates
	Formatting Columns and Rows
	Formatting Headers and Footers
	Formatting Cell Appearance
	Removing Formatting from Cells and Ranges

	Performing Advanced Formatting Tasks with VBA
	Conditional Formatting Using VBA

	Conditional Formatting Rule Precedence
	Deleting Rules with VBA
	Using Data Bars
	Using Color Scales
	Using Icon Sets
	Formatting with Themes
	Formatting with Shapes
	Formatting with Sparklines
	Understanding Sparkline Groups
	Programming Sparklines with VBA

	Formatting with Styles
	Summary

	Chapter 19 Context Menu Programming and Ribbon Customizations
	Working with Context Menus
	Modifying a Built-In Context Menu
	Removing a Custom Item from a Context Menu
	Disabling and Hiding Items on a Context Menu
	Adding a Context Menu to a Command Button
	Finding a FaceID Value of an Image

	A Quick Overview of the Ribbon Interface
	Ribbon Programming with XML and VBA
	Creating the Ribbon Customization XML Markup
	Loading Ribbon Customizations
	Errors on Loading Ribbon Customizations
	Using Images in Ribbon Customizations
	About Tabs, Groups, and Controls
	Using Various Controls in Ribbon Customizations
	Creating Toggle Buttons
	Creating Split Buttons, Menus, and Submenus
	Creating Checkboxes
	Creating Edit Boxes
	Creating Combo Boxes and Drop-Downs
	Creating a Gallery Control
	Creating a Dialog Box Launcher

	Disabling a Control
	Repurposing a Built-In Control
	Refreshing the Ribbon
	The CommandBar Object and the Ribbon
	Tab Activation and Group Auto-Scaling

	Customizing the Backstage View
	Customizing the Microsoft Office Button Menu in Excel 2019
	Customizing the Quick Access Toolbar (QAT)
	Modifying Context Menus Using Ribbon Customizations
	Summary

	Chapter 20 Printing and Sending Email from Excel
	Controlling the Page Setup
	Controlling the Settings on the Page Layout Tab
	Controlling the Settings on the Margins Tab
	Controlling the Settings on the Header/Footer Tab
	Controlling the Settings on the Sheet Tab
	Retrieving Current Values from the Page Setup Dialog Box

	Previewing a Worksheet
	Changing the Active Printer
	Printing a Worksheet with VBA
	Disabling Printing and Print Previewing
	Using Printing Events
	Sending Email from Excel
	Sending Email Using the SendMail Method
	Sending Email Using the MsoEnvelope Object
	Sending Bulk Email from Excel via Outlook

	Summary

	Part V Excel Tools for Data Analysis
	Chapter 21 Using and Programming Excel Tables
	Understanding Excel Tables
	Creating a Table Using Built-in Commands
	Creating a Table Using VBA
	Understanding Column Headings in the Table
	Multiple Tables in a Worksheet
	Working with the Excel ListObject
	Filtering Data in Excel Tables Using AutoFilter
	Filtering Data in Excel Tables Using Slicers
	Deleting Worksheet Tables
	Summary

	Chapter 22 Programming PivotTables and PivotCharts
	Creating a PivotTable Report
	Removing PivotTable Detail Worksheets with VBA
	Creating a PivotTable Report Programmatically
	Creating a PivotTable Report from an Access Database
	Using the CreatePivotTable Method of the PivotCache Object
	Formatting, Grouping, and Sorting a PivotTable Report
	Hiding Items in a PivotTable
	Adding Calculated Fields and Items to a PivotTable
	Creating a PivotChart Report Using VBA
	Understanding and Using Slicers
	Creating Slicers Manually
	Working with Slicers Using VBA

	Data Model Functionality and PivotTables
	Programmatic Access to the Data Model
	Summary

	Chapter 23 Getting and Transforming Data in Excel 2019
	Using the Get Data Button
	Understanding Power Queries
	Using the Advanced Editor
	Power Query vs Excel Formula Language and Excel VBA
	Learning about various M Language Functions
	Creating a Query from a Table
	The Get Data and VBA Support
	Additional Learning Resources for Using the Get Data Feature
	Summary

	Part VI Taking Charge of Programming Environment
	Chapter 24 Programming the Visual Basic Editor (VBE)
	The Visual Basic Editor Object Model
	Understanding the VBE Objects
	Accessing the VBA Project
	Finding Information about a VBA Project
	VBA Project Protection
	Working with Modules
	Listing All Modules in a Workbook
	Adding a Module to a Workbook
	Removing a Module
	Deleting All Code from a Module
	Deleting Empty Modules
	Copying (Exporting/Importing) a Module
	Copying (Exporting/Importing) All Modules

	Working with Procedures
	Listing All Procedures in All Modules
	Adding a Procedure
	Deleting a Procedure
	Creating an Event Procedure

	Working with UserForms
	Creating and Manipulating UserForms
	Copying UserForms Programmatically

	Working with References
	Creating a List of References
	Adding a Reference
	Removing a Reference
	Checking for Broken References

	Working with Windows
	Working with VBE Menus and Toolbars
	Generating a Listing of VBE CommandBars and Controls
	Adding a CommandBar Button to the VBE
	Removing a CommandBar Button from the VBE

	Summary

	Chapter 25 Calling Windows API Functions from VBA
	Understanding the Windows API Library Files
	How to Declare a Windows API Function
	Passing Arguments to API Functions
	Understanding the API Data Types and Constants
	Using Constants with Windows API Functions

	64-Bit Office and Windows API
	Accessing Windows API Documentation
	Using Windows API Functions in Excel
	Summary

	Part VII Excel and Web Technologies
	Chapter 26 HTML Programming and Web Queries
	Creating Hyperlinks Using VBA
	Creating and Publishing HTML Files Using VBA
	Web Queries
	Creating and Running Web Queries with VBA
	Dynamic Web Queries

	Refreshing Data
	Summary

	Chapter 27 Excel and Active Server Pages
	Introduction to Active Server Pages
	The ASP Object Model
	HTML and VBScript
	Creating an ASP Classic Page
	Installing Internet Information Services (IIS)
	Creating a Virtual Directory
	Setting ASP Configuration Properties
	Turning Off Friendly HTTP Error Messages
	Running Your First ASP Script
	Sending Data from an HTML Form to an Excel Workbook
	Sending Excel Data to the Internet Browser
	Summary

	Chapter 28 Using XML in Excel 2019
	What Is XML?
	Well-Formed XML Documents
	Validating XML Documents
	Editing and Viewing an XML Document
	Opening an XML Document in Excel
	Working with XML Maps
	Working with XML Tables
	Exporting an XML Table
	XML Export Precautions

	Validating XML Data
	Programming XML Maps
	Adding an XML Map to a Workbook
	Deleting Existing XML Maps
	Exporting and Importing Data via an XML Map
	Binding an XML Map to an XML Data Source
	Refreshing XML Tables from an XML Data Source

	Viewing the XML Schema
	Creating XML Schema Files
	Using XML Events
	The XML Document Object Model
	Working with XML Document Nodes
	Retrieving Information from Element Nodes
	XML via ADO
	Saving an ADO Recordset to Disk as XML
	Loading an ADO Recordset
	Saving an ADO Recordset into the DOMDocument60 Object

	Understanding Namespaces
	Understanding Open XML Files
	Manipulating Open XML Files with VBA
	Summary

	Index

