
MICROSOFT® Access® 2019
PROGRAMMING BY EXAMPLE

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book (the “Work”), you agree that this license grants
permission to use the contents contained herein, but does not give you the right of
ownership to any of the textual content in the book or ownership to any of the in-
formation or products contained in it. Th is license does not permit uploading of the
Work onto the Internet or on a network (of any kind) without the written consent of
the Publisher. Duplication or dissemination of any text, code, simulations, images,
etc. contained herein is limited to and subject to licensing terms for the respective
products, and permission must be obtained from the Publisher or the owner of the
content, etc., in order to reproduce or network any portion of the textual material
(in any media) that is contained in the Work.

Mercury Learning And Information (“MLI” or “the Publisher”) and anyone
involved in the creation, writing, or production of the companion disc, accompa-
nying algorithms, code, or computer programs (“the soft ware”), and any accom-
panying Web site or soft ware of the Work, cannot and do not warrant the perfor-
mance or results that might be obtained by using the contents of the Work. Th e
author, developers, and the Publisher have used their best eff orts to insure the ac-
curacy and functionality of the textual material and/or programs contained in this
package; we, however, make no warranty of any kind, express or implied, regarding
the performance of these contents or programs. Th e Work is sold “as is” without
warranty (except for defective materials used in manufacturing the book or due to
faulty workmanship).

Th e author, developers, and the publisher of any accompanying content, and any-
one involved in the composition, production, and manufacturing of this work will
not be liable for damages of any kind arising out of the use of (or the inability
to use) the algorithms, source code, computer programs, or textual material con-
tained in this publication. Th is includes, but is not limited to, loss of revenue or
profi t, or other incidental, physical, or consequential damages arising out of the use
of this Work.

Th e companion fi les on the disc are also available for down load by writing to the
publisher at info@merclearning.com.

Th e sole remedy in the event of a claim of any kind is expressly limited to replace-
ment of the book, and only at the discretion of the Publisher. Th e use of “implied
warranty” and certain “exclusions” vary from state to state, and might not apply to
the purchaser of this product.

MICROSOFT® Access® 2019
PROGRAMMING BY EXAMPLE

with VBA, XML, and ASP

Julitta Korol

MERCURY LEARNING AND INFORMATION
Dulles, Virginia

Boston, Massachusetts
New Delhi

Copyright ©2019 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any
way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display
or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or
scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

Julitta Korol. Microsoft Access 2019 Programming by Example with VBA, XML, and ASP.
ISBN: 978-1-68392-403-6

 This book is printed on acid-free paper in the United States of America.

Th e publisher recognizes and respects all marks used by companies, manufacturers, and developers
as a means to distinguish their products. All brand names and product names mentioned in this
book are trademarks or service marks of their respective companies. Any omission or misuse (of any
kind) of service marks or trademarks, etc. is not an attempt to infringe on the property of others.

Library of Congress Control Number: 2019939377

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc. For
additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital vendors.
Companion fi les on the disc for this title are also available by contacting info@merclearning.com.

Th e sole obligation of Mercury Learning and Information to the purchaser is to replace
the disc, based on defective materials or faulty workmanship, but not based on the operation or
functionality of the product.

To a new generation of Microsoft Access programmers

CONTENTS

Acknowledgments ...xxv
Introduction ..xxvii

PART I ACCESS VBA PRIMER .. 1

Chapter 1 Getting Started with Access VBA......................................3
Understanding VBA Modules and Procedure Types4
Writing Procedures in a Standard Module ...7
Executing Your Procedures ... 10
Understanding Class Modules .. 12
Events, Event Properties, and Event Procedures .. 14

Why Use Events? ... 15
Walking Through an Event Procedure .. 15

Compiling Your Procedures .. 21
Placing a Database in a Trusted Location .. 22
Summary .. 25

Chapter 2 Getting to Know Visual Basic Editor (VBE)27

Understanding the Project Explorer Window .. 28
Understanding the Properties Window ... 30
Understanding the Code Window .. 32
Other Windows in the VBE ... 34
Assigning a Name to the VBA Project ... 35
Renaming the Module .. 36
Syntax and Programming Assistance ... 36

List Properties/Methods .. 36
Parameter Info .. 38
List Constants .. 39

viii CONTENTS

Quick Info .. 40
Complete Word ... 40
Indent/Outdent ... 41
Comment Block/Uncomment Block ... 42

Using the Object Browser .. 42
Using the VBA Object Library .. 45
Using the Immediate Window .. 46
Summary .. 49

Chapter 3 Access VBA Fundamentals ..51

Introduction to Data Types ... 51
Understanding and Using Variables .. 54

Declaring Variables... 54
Specifying the Data Type of a Variable .. 58

Using Type Declaration Characters...60
Assigning Values to Variables ... 61
Forcing Declaration of Variables .. 63
Understanding the Scope of Variables ... 65

Procedure-Level (Local) Variables ..66
Module-Level Variables ..66
Project-Level Variables ..69

Understanding the Lifetime of Variables ... 70
Using Temporary Variables ... 70

Creating a Temporary Variable with a TempVars
 Collection Object ..71
Retrieving Names and Values of TempVar Objects...72
Using Temporary Global Variables in Expressions ...73
Removing a Temporary Variable from a TempVars
 Collection Object ..73

Using Static Variables ... 74
Using Object Variables ... 75

Disposing of Object Variables ..78
Finding a Variable Definition ... 78
Determining the Data Type of a Variable .. 78

Using Constants in VBA Procedures ... 80
Intrinsic Constants ... 81

Summary .. 82

CONTENTS ix

Chapter 4 Access VBA Built-In and Custom Functions83

Writing Function Procedures .. 83
Various Methods of Running Function Procedures 84
Specifying the Data Type for a Function’s Result ... 86
Passing Arguments to by Reference and by Value 88
Using Optional Arguments.. 89
Using the IsMissing Function ... 91
Using VBA Built-In Functions for User Interaction 91

Using the MsgBox Function .. 92
Returning Values from the MsgBox Function .. 101

Using the InputBox Function ..102
Converting Data Types ...105
Summary ..107

Chapter 5 Adding Decisions to Your Access VBA Programs109

Relational and Logical Operators ..109
If…Then Statement ..110
Multiline If…Then Statement ...112
Decisions Based on More than One Condition ..114
If…Then…Else Statement ...116
If…Then…ElseIf Statement ..118
Nested If…Then Statements ..119
Select Case Statement ...123

Using is with the Case Clause ...125
Specifying a Range of Values in a Case Clause126
Specifying Multiple Expressions in a Case Clause128

Summary ..129

Chapter 6 Adding Repeating Actions to Your
Access VBA Programs ...131

Using the Do…While Statement ..132
Another Approach to the Do…While Statement134

Using the Do…Until Statement ..135
Another Approach to the Do…Until Statement136

Using the For…Next Statement ..137
Using the For Each…Next Statement ..140
Exiting Loops Early ...141

x CONTENTS

Nested Loops ..143
Summary ..144

Chapter 7 Keeping Track of Multiple Values Using Arrays145

Understanding Arrays ..146
Declaring Arrays ...148
Array Upper and Lower Bounds ..149
Initializing and Filling an Array ...150

Filling an Array Using Individual Assignment Statements 150
Filling an Array Using the Array Function ... 150
Filling an Array Using the For…Next Loop .. 151

Using a One-Dimensional Array ..152
Arrays and Looping Statements ..154
Using a Two-Dimensional Array ..158
Static and Dynamic Arrays ..159
Array Functions ...161

The Array Function ..162
The IsArray Function ...162
The Erase Function ..163
The LBound and UBound Functions ..164

Errors in Arrays ...166
Parameter Arrays...168
Passing Arrays to Function Procedures ...169
Sorting an Array ..170
Summary ..172

Chapter 8 Keeping Track of Multiple Values Using
Object Collections ...173

Working with Collections of Objects ...174
Declaring a Custom Collection ..176
Adding Objects to a Custom Collection ..176
Removing Objects from a Custom Collection ..178

Creating Custom Objects in Class Modules ..178
Creating a Class...179
Variable Declarations ...180
Defining the Properties for the Class ...181

Creating the Property Get Procedures ... 182

CONTENTS xi

Creating the Property Let Procedures ... 183
Creating the Class Methods ..185
Creating an Instance of a Class ...186
Event Procedures in the Class Module ..187

Creating the User Interface ..188
Running the Custom Application ...198
Watching the Execution of Your VBA Procedures199
Summary ..202

Chapter 9 Getting to Know Built-In Tools for
Testing and Debugging ...203

Stopping a Procedure ..205
Using Breakpoints ...206

Removing Breakpoints ...211
Using the Immediate Window in Break Mode ...212
Using the Stop Statement ...214
Using the Assert Statement ..214
Using the Add Watch Window ...216

Removing Watch Expressions ...220
Using Quick Watch ...220
Using the Locals Window ..221
Using the Call Stack Dialog Box ..223
Stepping Through VBA Procedures ...224

Stepping Over a Procedure ..225
Stepping Out of a Procedure ...226
Running a Procedure to Cursor ..227
Setting the Next Statement ..227
Showing the Next Statement ...227

Navigating with Bookmarks ..227
Stopping and Resetting VBA Procedures ..228
Trapping Errors ...229

Using the Err Object ...230
Procedure Testing ...234
Setting Error-Trapping Options ...236

Summary ..238

xii CONTENTS

PART II ACCESS VBA PROGRAMMING WITH
DAO AND ADO ...239

Chapter 10 Data Access Technologies in Microsoft Access241

Understanding Database Engines: Jet/ACE ..242
Understanding Access Versions and File Formats243
Understanding Library References ...246
Overview of Object Libraries in Microsoft Access248

The Visual Basic for Applications Object Library (VBA)248
The Microsoft Access 16.0 Object Library ..249
The Microsoft Office 16.0 Access Database Engine
 Object Library ...249
The Microsoft DAO 3.6 Object Library...249
The Microsoft ActiveX Data Objects 6.1 Library (ADO)250

Creating a Reference to the ADO Library ...252
Understanding Connection Strings ..254
Using ODBC Connection Strings ...255

Creating and Using ODBC DSN Connections255
Creating and Using DSN-Less ODBC Connections261

Using OLE DB Connection Strings ..262
Connection String via a Data Link File ..263
Opening Microsoft Access Databases ..267

Opening a Microsoft Jet Database in Read/Write
 Mode with DAO ...268
Opening a Microsoft Jet Database in Read/Write
 Mode with ADO ...270
Opening a Microsoft Access Database in
 Read-Only Mode with DAO ...273
Opening a Microsoft Jet Database in Read-Only
 Mode with ADO ...273
Opening a Microsoft Jet Database Secured with a Password274
Opening a Microsoft Jet Database with User-Level Security279

Connecting to the Current Access Database ...282
Opening Other Databases, Spreadsheets, and Text
 Files from Access ...283

Connecting to an SQL Server Database ..283
Opening a Microsoft Excel Workbook ..284

CONTENTS xiii

Opening a Text File Using ADO ...289
Creating a New Access Database ..291

Creating a Database with DAO ...291
Creating a Database with ADO ..292

Copying a Database...293
Copying a Database with DAO ...294
Copying a Database with FileSystemObject ...295

Database Errors ...296
Compacting a Database ..299
Summary ..302

Chapter 11 Creating and Accessing Database
Tables and Fields ...303

Creating a Microsoft Access Table and Setting
 Field Properties (DAO Method) ...304
Creating a Microsoft Access Table and Setting
 Field Properties (ADO Method) ...310
Copying a Table ...313
Deleting a Database Table ..314
Adding New Fields to an Existing Table ..316
Creating Calculated Fields ...318
Creating Multivalue Lookup Fields with DAO ...320
Creating Attachment Fields with DAO ...323
Creating Append Only Memo Fields with DAO ..325
Creating Rich Text Memo Fields with DAO ...332
Removing a Field from a Table ...334
Retrieving Table Properties ...336
Retrieving Field Properties ..338
Linking a Microsoft Access Table ...339
Linking a dBASE Table ...340
Linking a Microsoft Excel Worksheet ..340
Listing Database Tables ..343
Listing Tables and Fields ..344
Listing Data Types ...346
Changing the AutoNumber ...346
Summary ..348

xiv CONTENTS

Chapter 12 Setting Up Primary Keys, Indexes, and
Table Relationships ...349

Creating a Primary Key Index ...349
Creating Indexes Using ADO ..350
Creating Indexes Using DAO ..352
Creating a Single-Field Index Using ADO ..354
Adding a Multiple-Field Index to a Table Using DAO356
Listing Indexes in a Table...358
Deleting Table Indexes ...359
Creating Table Relationships Using ADO ...361
Summary ..364

Chapter 13 Finding and Reading Records365

Introduction to DAO Recordsets ..365
Opening Various Types of Recordsets ...367
Opening a Snapshot and Counting Records ...369
Retrieving the Contents of a Specific Field in a Table371
Moving between Records in a Table ...372
Finding Records in a Table-Type Recordset ...373
Finding Records in Dynasets or Snapshots ...375
Finding the nth Record in a Snapshot ...377

Introduction to ADO Recordsets ..378
Cursor Types ...380
Lock Types ...381
Cursor Location ..383
The Options Parameter ..384
Opening a Recordset ..388

Opening a Recordset Based on a Table or Query ... 389
Opening a Recordset Based on an SQL Statement 394
Opening a Recordset Based on Criteria .. 395
Opening a Recordset Directly ... 396

Moving Around in a Recordset...397
Finding the Record Position..398
Reading Data from a Field ...399
Returning a Recordset as a String ...400
Finding Records Using the Find Method ..402
Finding Records Using the Seek Method ..404
Finding a Record Based on Multiple Conditions406

CONTENTS xv

Using Bookmarks ...407
Using Bookmarks to Filter a Recordset ...410
Using the GetRows Method to Fill the Recordset411

Summary ..412

Chapter 14 Working with Records ...413

Adding a New Record with DAO ...413
Adding a New Record with ADO ...415
Adding Attachments ...417
Adding Values to Multivalue Lookup Fields ...420
Modifying a Record with DAO ...423
Modifying a Record with ADO ...426
Editing Multiple Records with ADO ..427
Deleting a Record with DAO ...429
Deleting a Record with ADO ...431
Deleting Attachments ...432
Copying Records to an Excel Worksheet ...433
Copying Records to a Word Document ..438
Copying Records to a Text File ...442
Filtering Records Using the SQL WHERE Clause......................................444
Filtering Records Using the Filter Property ..446
Sorting Records ...449
Summary ..451

Chapter 15 Creating and Running Queries
with DAO/ADO ...453

Creating a Select Query Manually ..453
Creating a Select Query with DAO ...458
Creating a Select Query with ADO ...460
Executing an Existing Select Query with ADO ...463
Modifying an Existing Query with ADO ...466
Creating and Running a Parameter Query with DAO468
Creating and Running a Parameter Query with ADO471
Creating and Running a Make-Table Query with DAO...........................474
Creating and Running an Update Query with DAO476
Executing an Update Query with ADO ...478
Running an Append Query with DAO/ADO ...480

xvi CONTENTS

Running a Delete Query with DAO ...483
Creating and Running a Pass-Through Query with DAO486
Creating and Executing a Pass-Through Query with ADO488
Performing Other Operations with Queries ...493

Retrieving Query Properties with DAO ..493
Listing All Queries in a Database with DAO/ADO494
Deleting a Query from a Database with DAO/ADO495
Determining If a Query Is Updatable ..497

Summary ..499

Chapter 16 Using Advanced ADO/DAO Features501

Fabricating a Recordset ..501
Disconnected Recordsets ...505
Saving a Recordset to Disk ...507
Cloning a Recordset ..523
Introduction to Data Shaping ..529

Writing a Simple SHAPE Statement ...530
Working with Data Shaping ..532
Writing a Complex SHAPE Statement ...537

Shaped Recordsets with Multiple Children ... 537
Shaped Recordsets with Grandchildren .. 541

Transaction Processing ..553
Creating a Transaction with ADO ...554
Creating a Transaction with DAO ..556

Summary ..560

Chapter 17 Implementing Database Security561

Two Types of Security in Microsoft Access ...562
Share-Level Security (in Access .accdb and .mdb File Formats)562
User-Level Security ...562

Understanding Workgroup Information Files ...563
Creating and Joining Workgroup Information Files566

Opening a Secured MDB Database...572
Creating and Managing Group and User Accounts575

Deleting User and Group Accounts ...579
Listing User and Group Accounts ..580
Listing Users in Groups ...582

CONTENTS xvii

Setting and Retrieving User and Group Permissions................................584
Determining the Object Owner ..584
Setting User Permissions for an Object ...587
Setting User Permissions for a Database ...590
Setting User Permissions for Containers ...592
Checking Permissions for Objects..595
Setting a Database Password Using the CompactDatabase Method ...598
Setting a Database Password Using the NewPassword Method599
Changing a User Password ..601

Encrypting a Secured MDB Database ..604
Summary ..606

PART III PROGRAMMING WITH THE JET DATA
DEFINITION LANGUAGE ...607

Chapter 18 Creating, Modifying, and Deleting
Tables and Fields ...609

Creating Tables ..612
Deleting Tables ..617
Modifying Tables with DDL ..618

Adding New Fields to a Table ...619
Changing the Data Type of a Table Column ...620
Changing the Size of a Text Column ..621
Deleting a Column from a Table ..622
Adding a Primary Key to a Table ..623
Adding a Multiple-Field Index to a Table ..624
Deleting an Indexed Column ..625
Deleting an Index ...626
Setting a Default Value for a Table Column ..627
Changing the Seed and Increment Values of
 AutoNumber Columns ..629

Summary ..631

Chapter 19 Enforcing Data Integrity and Relationships
between Tables ...633

Using CHECK Constraints ..634
Establishing Relationships between Tables ...640

xviii CONTENTS

Using the Data Definition Query Window ...643
Summary ..646

Chapter 20 Defining Indexes and Primary Keys647

Creating Tables with Indexes ..647
Adding an Index to an Existing Table ..649
Creating a Table with a Primary Key..651
Creating Indexes with Restrictions ...652
Deleting Indexes ..657
Summary ..658

Chapter 21 Database Security ...659

Setting the Database Password ..659
Removing the Database Password ..661
Creating a User Account ..662
Changing a User Password ..664
Creating A Group Account ..665
Adding Users to Groups ...666
Removing a User from a Group ..667
Deleting a User Account ..668
Granting Permissions for an Object ...669
Revoking Security Permissions ...671
Deleting a Group Account ...673
Summary ..673

Chapter 22 Views and Stored Procedures675

Creating a View ...675
Enumerating Views ...679
Deleting a View..680
Creating a Stored Procedure ..681
Creating a Parameterized Stored Procedure ...682
Examining the Contents of a Stored Procedure ..685
Executing a Parameterized Stored Procedure ...686
Deleting a Stored Procedure ..688
Changing Database Records with Stored Procedures689
Summary ..689

CONTENTS xix

PART IV ENHANCING THE USER EXPERIENCE691

Chapter 23 Enhancing Access Forms ..693

Creating Access Forms ...694
Grouping Controls Using Layouts ..696
Rich Text Support in Forms ..698
Using Built-In Formatting Tools ..699
Using Images in Access Forms ..699
Using the Attachments Control ..701
Summary ..706

Chapter 24 Using Form Events ..707

Data Events ..708
Current ...709
BeforeInsert ...711
AfterInsert ...712
BeforeUpdate ...712
AfterUpdate ...713
Dirty ...716
OnUndo ...716
Delete ..717
BeforeDelConfirm ..718
AfterDelConfirm ..719

Focus Events ..720
Activate ..720
Deactivate ..721
GotFocus ..722
LostFocus ...722

Mouse Events ...722
Click ..722
DblClick ...723
MouseDown ..723
MouseMove ...725
MouseUp ..725
MouseWheel ..725

Keyboard Events ..726
KeyDown ...726

xx CONTENTS

KeyPress ...728
KeyUp ...729

Error Events ...730
Error ...731

Filter Events ...732
Filter ...732
ApplyFilter ...733

Timing Events ..735
Timer ..736

Events Recognized by Form Sections ...737
DblClick (Form Section Event) ..737

Understanding and Using the OpenArgs Property738
Summary ..744

Chapter 25 Events Recognized by Controls745

Enter (Control) ..746
BeforeUpdate (Control) ...748
AfterUpdate (Control) ..749
NotInList (Control) ..751
Click (Control) ..752
DblClick (Control) ..758
Summary ..761

Chapter 26 Enhancing Access Reports and
Using Report Events ..763

Creating Access Reports ...764
Using Report Events ...764

Open ...764
Close ...767
Activate ..767
Deactivate ..768
NoData ...768
Page ...769
Error ...770

Events Recognized by Report Sections ...772
Format (Report Section Event) ...772
Print (Report Section Event) ...775

CONTENTS xxi

Retreat (Report Section Event) ...779
Using the Report View ...779
Sorting and Grouping Data ...781
Saving Reports in .pdf or .xps File Format ..782
Using the OpenArgs Property of the Report Object783
Summary ..786

Chapter 27 Advanced Event Programming787

Sinking Events in Standalone Class Modules ..788
Writing Event Procedure Code in Two Places ..798
Responding to Control Events in a Class ...799
Declaring and Raising Events ..803
Summary ..808

Chapter 28 Programming the User Interface809

The Initial Microsoft Access 2019 Window ..809
Customizing the Navigation Pane ..810
Using VBA to Customize the Navigation Pane ..814

Locking the Navigation Pane ..814
Controlling the Display of Database Objects ..815
Setting Displayed Categories ...817
Saving and Loading the Configuration of the Navigation Pane817

A Quick Overview of the Access 2019 Ribbon Interface820
Ribbon Programming with XML, VBA, and Macros823

Creating the Ribbon Customization XML Markup824
Loading Ribbon Customizations from an External
 XML Document ...828
Embedding Ribbon XML Markup in a VBA Procedure835
Storing Ribbon Customization XML Markup in a Table835
Assigning Ribbon Customizations to Forms and Reports841

Using Images in Ribbon Customizations ..845
Requesting Images via the loadImage Callback845
Requesting Images via the getImage Callback ..850
Understanding Attributes and Callbacks ..855

Using Various Controls in Ribbon Customizations856
Creating Toggle Buttons ..857
Creating Split Buttons, Menus, and Submenus.......................................858

xxii CONTENTS

Creating Checkboxes .. 859
Creating Edit Boxes .. 861
Creating Combo Boxes and Drop Downs ... 862
Creating a Dialog Box Launcher .. 864
Disabling a Control .. 865
Repurposing a Built-in Control .. 866
Refreshing the Ribbon ... 866

The CommandBars Object and the Ribbon .. 870
Tab Activation and Group Auto-Scaling ... 872
Customizing the Backstage View .. 873
Customizing the Quick Access Toolbar (QAT) .. 878
Summary .. 879

PART V VBA AND MACROS .. 881

Chapter 29 Macros and Templates ... 883

Macros or VBA? .. 884
Access 2019 Macro Security... 884
Using the AutoExec Macro .. 887

Understanding Macro Actions, Arguments, and Program Flow 889
Creating and Using Macros in Access 2019 .. 892

Creating Standalone Macros ... 892
Running Standalone Macros ..898

Creating and Using Submacros ... 900
Creating and Using Embedded Macros ... 902

Copying Embedded Macros ...903
Using Data Macros ... 909

Creating a Data Macro ..910
Creating a Named Data Macro ..918
Editing an Existing Named Macro ..920
Calling a Named Macro from Another Macro ..921
Using ReturnVars in Data Macros ...921
Tracing Data Macro Execution Errors ..923

Error Handling in Macros ... 925
Using Temporary Variables in Macros... 928
Converting Macros to VBA Code .. 930

Converting a Standalone Macro to VBA ..930
Converting Embedded Macros to VBA ..932

CONTENTS xxiii

Access Templates ..933
Creating a Custom Blank Database Template ...933
Understanding the .accdt File Format ...934

Summary ..938

PART VI TAKING YOUR VBA PROGRAMMING
SKILLS TO THE WEB .. 939

Chapter 30 Access and Active Server Pages941

Introduction to Classic ASP ...941
Creating an ASP Page ...944
The ASP Object Model ...949
Installing Internet Information Services (IIS) ...950
Creating a Virtual Directory ..954
Setting ASP Configuration Properties ..957
Turning off Friendly HTTP Error Messages ...958
Running Your First ASP Script ...960
Retrieving Records ..962

Breaking up a Recordset When Retrieving Records964
Retrieving Records with the GetRows Method973

Database Lookup Using Drop-Down Lists ..977
Database Lookup Using a Multiple-Selection Listbox981
Adding Data to a Table ...987
Modifying a Record ..992
Deleting a Record ..996
Creating a Summary Page .. 1001
Summary ... 1004

Chapter 31 XML Features in Access 20191005

What Is XML? ... 1005
What Is a Well-Formed XML Document? ... 1007

XML Support in Access 2019 ... 1008
Exporting XML Data ... 1008

Understanding the XML Data File .. 1011
Understanding the XML Schema File ... 1014
Understanding the XSL Transformation Files 1016

xxiv CONTENTS

Viewing XML Documents Formatted with Stylesheets...................... 1020
Advanced XML Export Options .. 1022

Data Export Options ..1022
Schema Export Options ...1023
Presentation Export Options ..1024

Applying XSLT Transforms to Exported Data .. 1026
Importing XML Data ... 1032
Programmatically Exporting to and Importing from XML 1039

Exporting to XML Using the ExportXML Method 1039
Transforming XML Data with the TransformXML Method 1048
Importing to XML Using the ImportXML Method 1057

Manipulating XML Documents Programmatically 1058
Loading and Retrieving the Contents of an XML File 1059
Working with XML Document Nodes ... 1061
Retrieving Information from Element Nodes...................................... 1063
Retrieving Specific Information from Element Nodes 1065
Retrieving the First Matching Node .. 1066

Using ActiveX Data Objects with XML .. 1067
Saving an ADO Recordset as XML to Disk .. 1067
Attribute-Centric and Element-Centric XML 1069
Changing the Type of an XML File ... 1070
Applying an XSL Stylesheet .. 1072
Transforming Attribute-Centric XML Data into
 an HTML Table ... 1074
Loading an XML Document in Excel ... 1078

Summary ... 1080

Index ..1083

ACKNOWLEDGMENTS

First, I’d like to express my gratitude to everyone at Mercury Learning and
Information. A sincere thank-you to my publisher, David Pallai, for offering
me the opportunity to update this book to the new 2019 version and tirelessly

keeping things on track during this long project.
A whole bunch of thanks go to the editorial team for working so hard to

bring this book to print. In particular, I would like to thank Jennifer Blaney, for
her production expertise. To the compositor, Swaradha Typesetters, for all the
composition efforts that gave this book the right look and feel.

Special thanks to my husband, Paul, for his patience during this long project.
Finally, I’d like to acknowledge readers like you who cared enough to post

reviews of the previous editions of this book online. Your invaluable feedback has
helped me raise the quality of this work by including the material that matters to
you most. Please continue to inspire me with your ideas and suggestions.

Julitta Korol
Brooklyn, New York

June 2019

xxv

 INTRODUCTION

Since its creation, Microsoft Access has allowed users to design and develop
Windows-based database applications, and has grown into the world’s most
popular database. This book is for people who have already mastered the use

of Microsoft Access databases and now are ready for the next step—programming.
Microsoft Access 2019 Programming by Example with VBA, XML, and ASP takes
nonprogrammers through detailed steps of creating Access databases from scratch
and shows them how to retrieve and manage their data programmatically using
various programming languages and techniques. With this book in hand, users
can quickly build the toolset required for developing their own database solutions.
With this book’s approach, programming an Access database from scratch and con-
trolling it via programming code is as easy as designing and maintaining databases
with the built-in tools of Access. This book gives a practical overview of many pro-
gramming languages and techniques necessary in programming, maintaining, and
retrieving data from today’s Access databases.

PREREQUISITES

You don’t need any programming experience to use Microsoft Access 2019 Program-
ming by Example with VBA, XML, and ASP. The only prerequisite is that you al-
ready know how to manually design an Access database and perform database tasks
by creating and running various types of queries. This book also assumes that you
know how to create more complex forms with embedded subforms, combo boxes,
and other built-in controls. If you don’t have these skills, there are countless books
on the market that can teach you step by step how to build simple databases. If you
do meet these criteria, this book will take you to the Access programming level by
example. You will gain working knowledge immediately by performing concrete

xxvii

xxviii INTRODUCTION

tasks and without having to read long descriptions of concepts. True learning by
example begins with the first step, followed by the next step, and the next one, and
so on. By the time you complete all of the steps in a hands-on exercise or a custom
project, you should be able to effectively apply the same technique again and again
in your own database projects.

HOW THIS BOOK IS ORGANIZED

This book is divided into six parts (a total of 31 chapters) that progressively intro-
duce you to programming Access databases.

Part I introduces you to Visual Basic for Applications (VBA)—the program-
ming language for Microsoft Access. In this part of the book, you acquire the fun-
damentals of VBA that you will use over and over again in building real-life Access
database applications. Part I chapters are also the subject of a standalone book,
Microsoft Access 2019 Programming Pocket Primer, available from Mercury Learn-
ing and Information (ISBN: 978-1-68392-409-8). If you already worked through
the pocket primer book, you can skip Chapters 1–9 and begin from Chapter 10.

PART I CONSISTS OF THE FOLLOWING NINE CHAPTERS:

Chapter 1—Getting Started with Access VBA—In this chapter you learn about the
types of Access procedures you can write and learn how and where they are written.

Chapter 2—Getting to Know Visual Basic Editor (VBE)—In this chapter you learn
almost everything you need to know about working with the Visual Basic Editor
window, commonly referred to as VBE. Some of the programming tools that are
not covered here are discussed and put to use in Chapter 9.

Chapter 3—Access VBA Fundamentals—This chapter introduces basic VBA con-
cepts that allow you to store various pieces of information for later use.

Chapter 4—Access VBA Built-In and Custom Functions—In this chapter you find
out how to provide additional information to your procedures and functions before
they are run.

Chapter 5—Adding Decisions to Your Access VBA Programs—In this chapter you
learn how to control your program flow with a number of different decision-mak-
ing statements.

INTRODUCTION xxix

Chapter 6—Adding Repeating Actions to Your Access VBA Programs—In this chap-
ter you learn how to repeat the same actions in your code by using looping struc-
tures.

Chapter 7—Keeping Track of Multiple Values Using Arrays—In this chapter you
learn about static and dynamic arrays and how to use them for holding various
values.

Chapter 8—Keeping Track of Multiple Values Using Object Collections—This chapter
teaches you how you can create and use your own objects and collections of objects.

Chapter 9— Getting to Know Built-In Tools for Testing and Debugging—In this chap-
ter you begin using built-in debugging tools to test your programming code. You
also learn how to add effective error-handling code to your procedures.

The above nine chapters will give you the fundamental techniques and con-
cepts you will need in order to continue your Access VBA learning path. The skills
obtained in Access VBA Primer are fairly portable. They can be utilized in pro-
gramming other Microsoft Office applications that also use VBA as their native
programming language such as Excel, Word, PowerPoint, Outlook, and so on.

Part II introduces you to two sets of programming objects known as Data Access
Objects (DAO) and ActiveX Data Objects (ADO) that enable Microsoft Access and
other client applications to access and manipulate data. In this part of the book, you
learn how to use DAO and ADO objects in your VBA code to connect to a data
source, as well as create, modify, and secure database objects.

PART II CONSISTS OF THE FOLLOWING EIGHT CHAPTERS:

Chapter 10—Data Access Technologies in Microsoft Access—In this chapter you get
acquainted with two database engines (Jet/ACE) that Access uses, as well as several
object libraries that provide objects, properties, and methods for your VBA proce-
dures.

Chapter 11—Creating and Accessing Database Tables and Fields—This chapter
demonstrates how to create, copy, link, and delete database tables programmati-
cally by using objects from the DAO and ADO object libraries. You also learn how
to write code to add and delete fields as well as create listings of existing tables in a
database and fields in a table.

xxx INTRODUCTION

Chapter 12—Setting Up Primary Keys, Indexes, and Table Relationships—In this
chapter you learn how to write VBA code to add primary keys and indexes to your
database tables using objects, properties, and methods from the DAO and ADO
object libraries. You also learn how to use objects from the ADOX library to create
relationships between your tables.

Chapter 13—Finding and Reading Records—Here you practice various methods of
using programming code to open a set of database records, commonly referred to
as a recordset. You learn how to move around in a recordset and find, filter, and sort
the required records, as well as read their contents. This chapter covers both DAO
and ADO recordsets.

Chapter 14—Working with Records—This chapter teaches you essential database
operations such as adding, updating, and deleting records. You also learn how to
render your database records in three popular formats (Excel, Word, and a text
file).

Chapter 15—Creating and Running Queries with DAO/ADO—In this chapter you
learn how to use VBA code instead of the Query Design view to create and run
various types of database queries.

Chapter 16—Using Advanced ADO/DAO Features—This chapter explains several
advanced ADO/DAO features such as how to disconnect a recordset from a da-
tabase, save it in a disk file, clone it, and shape it. You also learn about database
transactions.

Chapter 17—Implementing Database Security—In this chapter you learn about two
types of security in Microsoft Access databases: share-level security that applies to
both older (MDB) and new (ACCDB) Access databases, and user-level security
that can only be used with .mdb files.

You will find the skills obtained in Part II of this book essential for accessing, ma-
nipulating, and securing Access databases.

Part III introduces you to the Data Definition Language (DDL), an important
component of the Structured Query Language (SQL). Like ADO and DAO, which
were introduced in Part II, DDL is used for defining database objects (tables, views,
stored procedures, primary keys, indexes, and constraints) and managing database
security. In this part of the book, you learn how to use DDL statements with Jet/
ACE databases, ADO, and the Jet OLE DB Provider.

INTRODUCTION xxxi

PART III CONSISTS OF THE FOLLOWING FIVE CHAPTERS:

Chapter 18—Creating, Modifying, and Deleting Tables and Fields—In this chapter
you learn special Data Definition Language commands for creating a new Access
database, as well as creating, modifying, and deleting tables. You also learn com-
mands for adding, modifying, and deleting fields and indexes.

Chapter 19—Enforcing Data Integrity and Relationships between Tables—Here you
learn how to define rules regarding the values allowed in table fields to enforce data
integrity and relationships between tables.

Chapter 20—Defining Indexes and Primary Keys—Here you learn DDL commands
for creating indexes and primary keys.

Chapter 21—Database Security—In this chapter you learn how to use DDL com-
mands to manage security in the Microsoft Access database. You learn how to
quickly create, modify, and remove a database password, and how to manage user-
level accounts.

Chapter 22—Views and Stored Procedures—This chapter shows you how to work
with two powerful database objects known as views and stored procedures. You
learn how views are similar to SELECT queries, and how stored procedures can
perform various actions similar to Access Action queries and Select queries with
parameters.

The skills you learn in Part III of this book will allow you to create, manipulate, and
secure your Access databases using SQL DDL statements. Numerous Access SQL
DDL statements and concepts introduced here are important in laying the ground-
work for moving into the client/server environment (porting your Microsoft Ac-
cess database to SQL Server).

Part IV introduces you to responding to events that occur in Access forms and
reports. The behavior of Microsoft Access objects such as forms, reports, and con-
trols can be modified by writing programming code known as an event procedure
or an event handler. In this part of the book, you learn how you can make your
forms, reports, and controls perform useful actions by writing event procedures in
class modules. You also learn how to use VBA, macros, and XML to customize the
user interface in Access 2019.

xxxii INTRODUCTION

PART IV CONSISTS OF THE FOLLOWING SIX CHAPTERS:

Chapter 23—Enhancing Access Forms—This chapter presents a quick overview of
types of forms you can create with Access 2019 and types of formatting you can
apply to make your forms more attractive. You learn how you can group form con-
trols using the layouts, implement rich formatting in form controls, professionally
format your forms using built-in themes, and enhance forms with images.

Chapter 24—Using Form Events—In this chapter you learn the types of events that
can occur on a Microsoft Access form and write event procedures to handle various
form events.

Chapter 25—Events Recognized by Form Controls—In this chapter you work with
a custom application and learn how to write event procedures for various controls
that are placed on an Access form.

Chapter 26—Enhancing Access Reports and Using Report Events—In this chap-
ter you learn about many events that are triggered when an Access report is run.
You write your own event procedures to specify what happens when the report is
opened, activated/deactivated, or closed.

Chapter 27—Advanced Event Programming—This chapter teaches advanced con-
cepts in event programming. You learn how to respond to events in standalone
class modules to make your code more manageable and portable to other objects.
You also learn how to create and raise your own events.

Chapter 28—Programming the User Interface—This chapter provides an overview
of the programming elements available in the Ribbon and shows how you can cus-
tomize the user interface (UI) in your Access database applications. You learn how
to create XML Ribbon customization markup and load it in your database. You also
learn how Ribbon customizations can be assigned to forms or reports.

The skills acquired in Part IV of this book will allow you to enhance and alter the
way users interact with your database application.

Writing VBA code is not the only way to provide rich functionality to your Access
database users. Macros have long been used to enhance the user experience with-
out users having to write any VBA code. Access 2019 Macro Designer allows you to
include complex logic, business rules, and error handling in your macros. In Part
V of this book, you are introduced to three types of macros that you can create in
Access 2019. In addition, you learn how to convert macros to VBA and get started
with built-in templates that extensively use macros.

INTRODUCTION xxxiii

PART V CONTAINS THE FOLLOWING CHAPTER

Chapter 29—Macros and Templates—This chapter introduces you to using macros.
We take a detailed look at macro security, work with three types of macros (stand-
alone, embedded, and data macros), see examples of using variables in macros,
and examine error-handling actions in macros. We also discuss working with the
template format in Access 2019.

The skills acquired in Part V will allow you to utilize macros in your Access
forms and reports, as well as in automating Access Web Applications that are not
compatible with VBA.

Part VI introduces you to programming Microsoft Access databases for Internet
access. In this part of the book, you learn how Classic Active Server Pages (ASP)
and Extensible Markup Language (XML) are used with Access to develop database
solutions for the World Wide Web.

PART VI CONSISTS OF THE FOLLOWING TWO CHAPTERS

Chapter 30—Access and Active Server Pages—In this chapter you learn how to use
Microsoft’s Active Server Pages (ASP) technology to view, insert, delete, and modi-
fy records stored in a Microsoft Access database from a Web browser.

Chapter 31—XML Features in Access 2019—In this chapter you learn how to use the
Extensible Markup Language (XML) with Access. You learn how to manually and
programmatically export Access data to XML files, as well as import an XML file
to Access and display its data in a table. You also learn how to use stylesheets and
transformations to present Access data to users in a desired format.

The skills acquired in Part VI of this book will make your Access applications In-
ternet- and intranet-ready. You are now able to connect to, read from, and write
to Access databases from within a Web browser using two important Microsoft
technologies.

HOW TO WORK WITH THIS BOOK

This book has been designed as a tutorial and should be followed chapter by chapter.
As you read each chapter, perform the tasks that are described. Be an active

learner by getting involved in the book’s hands-on exercises and custom projects.
When you are completely involved, you learn things by doing rather than studying,
and you learn faster. Do not move on to new information until you’ve fully grasped

xxxiv INTRODUCTION

the current topic. Allow your brain to sort things out and put them in proper per-
spective before you move on. Take frequent breaks between your learning sessions,
as some chapters in this book cover lots of material. Do not try to do everything in
one sitting. It’s always better to divide the material into smaller units than attempt
to master all there is to learn at once. However, never stop in the middle of a hands-
on exercise; finish it before taking a break. After learning a particular technique or
command, try to think of ways to apply it to your own work. As you work with this
book, create small sample procedures for yourself based on what you’ve learned
up to a particular point. These procedures will come in handy when you need to
review the subject in the future or simply need to steal some ready-made code.

THE COMPANION FILES

The example files for all the hands-on activities in this book are available on the
CD-ROM disc included with this book. Replacement files may be downloaded by
contacting the publisher at info@merclearning.com. Digital versions of this title are
available at academiccourseware.com and other digital vendors.

The Access VBA Primer is divided into nine chapters that progressively intro-
duce you to programming Microsoft Access using the 2019 version of the
product. These chapters present the fundamental techniques and concepts

that you need to master before you can take further steps in Access programming.

Chapter 1 Getting Started with Access VBA
Chapter 2 Getting to Know Visual Basic Editor (VBE)
Chapter 3 Access VBA Fundamentals
Chapter 4 Access VBA Built-In and Custom Functions
Chapter 5 Adding Decisions to Your Access VBA Programs
Chapter 6 Adding Repeating Actions to Your Access VBA Programs
Chapter 7 Keeping Track of Multiple Values Using Arrays
Chapter 8 Keeping Track of Multiple Values Using Object Collections
Chapter 9 Getting to Know Built-in Tools for Testing and Debugging

Part

 I ACCESS VBA PRIMER

1

3

Visual Basic for Applications (VBA) is the programming language built into
all Microsoft® Office® applications, including Microsoft® Access®. In this
chapter you acquire the fundamentals of VBA that you will use over and

over again in building real-life Microsoft Access database applications.

Chapter

 1 GETTING STARTED
WITH ACCESS VBA

4 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING VBA MODULES AND PROCEDURE TYPES

Your job as a programmer (at least during the course of this book) will boil
down to writing various procedures. A procedure is a group of instructions that
allows you to accomplish specific tasks when your program runs. When you
place instructions (programming code) in a procedure, you can call this proce-
dure whenever you need to perform that particular task. Although many tasks
can be automated in Access by using macro actions, such as opening forms and
reports, finding records, and executing queries, you will need VBA skills to per-
form advanced customizations in your Access databases.

In VBA you can write four types of procedures: subroutine procedures, function
procedures, event procedures, and property procedures. Procedures are created
and stored in modules. A module resembles a blank document in Microsoft
Word. Each procedure in the same module must have a unique name; however,
procedures in different modules can have the same name. Let’s learn a bit about
each procedure type so that you can quickly recognize them when you see them
in books, magazine articles, or online.

1. Subroutine procedures (also called subroutines or subprocedures)
Subroutine procedures perform useful tasks but never return values. They be-
gin with the keyword Sub and end with the keywords End Sub. Keywords are
words that carry a special meaning in VBA. Let’s look at the simple subroutine
ShowMessage that displays a message to the user:
Sub ShowMessage()
 MsgBox "This is a message box in VBA."
End Sub

Notice a pair of empty parentheses after the procedure name. The instruc-
tion that the procedure needs to execute is placed on a separate line between
the Sub and End Sub keywords. You may place one or more instructions and
even complex control structures within a subroutine procedure. Instructions
are also called statements. The ShowMessage procedure will always display the
same message when executed. MsgBox is a built-in VBA function often used
for programming user interactions (see Chapter 4, “Access VBA Built-In and
Custom Functions,” for more information on this function).
 If you’d like to write a more universal procedure that can display a different
message each time the procedure is executed, you will need to write a sub-
routine that takes arguments. Arguments are values that are needed for a pro-
cedure to do something. Arguments are placed within the parentheses after

GETTING STARTED WITH ACCESS VBA 5

the procedure name. Let’s look at the following procedure that also displays a
message to the user; however, this time we can pass any text string to display:
Sub ShowMessage2(strMessage)
 MsgBox strMessage
End Sub

This subprocedure requires one text value before it can be run; strMessage is
the arbitrary argument name. It can represent any text you want. Therefore, if
you pass it the text “Today is Monday,” that is the text the user will see when
the procedure is executed. If you don’t pass the value to this procedure, VBA
will display an error.
 If your subprocedure requires more than one argument, list the arguments
within the parentheses and separate them with commas. For example, let’s im-
prove the preceding procedure by also passing it a text string containing a user
name:
Sub ShowMessage3(strMessage, strUserName)
 MsgBox strUserName & ", your message is: " & strMessage
End Sub

The ampersand (&) operator is used for concatenating text strings inside the
VBA procedure. If we pass to the above subroutine the text “Keep on learning.”
as the strMessage argument and “John” as the strUserName argument, the
procedure will display the following text in a message box:
John, your message is: Keep on learning.

2. Function procedures (functions)
Functions perform specific tasks and can return values. They begin with the
keyword Function and end with the keywords End Function. Let’s look at a
simple function that adds two numbers:
Function addTwoNumbers()
 Dim num1 As Integer
 Dim num2 As Integer

 num1 = 3
 num2 = 2
 addTwoNumbers = num1 + num2
End Function

The preceding function procedure always returns the same result, which is the
value 5. The Dim statements inside this function procedure are used to declare
variables that the function will use. A variable is a name that is used to refer

6 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to an item of data. Because we want the function to perform a calculation, we
specify that the variables will hold integer values. Variables and data types are
covered in detail in Chapter 3, “Access VBA Fundamentals.”
 The variable definitions (the lines with the Dim statements) are followed by
the variable assignment statements in which we assign specific numbers to
the variables num1 and num2. Finally, the calculation is performed by adding
together the values held in both variables: num1 + num2. To return the result
of our calculation, we set the function name to the value or the expression we
want to return:
addTwoNumbers = num1 + num2

Although this function example returns a value, not all functions have to re-
turn values. Functions, like subroutines, can perform actions without return-
ing any values.
 Like procedures, functions can accept arguments. For example, to make our
addTwoNumbers function more versatile, we can rewrite it as follows:
Function addTwoNumbers2(num1 As Integer, num2 As Integer)
 addTwoNumbers2 = num1 + num2
End Function

Now we can pass any two numbers to the preceding function to add them to-
gether. For example, we can write the following statement to display the result
of the function in a message box:
Sub DisplayResult()
 MsgBox("Total=" & addTwoNumbers2(34,80))
End Sub

3. Event procedures
Event procedures are automatically executed in response to an event initiated
by the user or program code or triggered by the system. Events, event proper-
ties, and event procedures are introduced later in this chapter. They are also
covered in Chapter 9, “Getting to Know Built-In Tools for Testing and Debug-
ging.”

4. Property procedures
Property procedures are used to get or set the values of custom properties for
forms, reports, and class modules. The three types of property procedures
(Property Get, Property Let, and Property Set) begin with the Property key-
word followed by the property type (Get, Let, or Set), the property name, and a
pair of empty parentheses, and end with the End Property keywords. Here’s an
example of a property procedure that retrieves the value of an author’s royalty:

GETTING STARTED WITH ACCESS VBA 7

Property Get Royalty()
 Royalty = (Sales * Percent) – Advance
End Property

Property procedures are covered in detail in Chapter 8, “Keeping Track of
Multiple Values Using Object Collections.”

WRITING PROCEDURES IN A STANDARD MODULE

As mentioned earlier, procedures are created and stored in modules. Access has
two types of modules: standard and class. Standard modules are used to hold
subprocedures and function procedures that can be run from anywhere in the
application because they are not associated with any particular form or report.

Because we already have a couple of procedures to try out, let’s do a quick
hands-on exercise to learn how to open standard modules, write procedures,
and execute them.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 1.1 Working in a Standard Module

1. Create a folder on your hard drive named C:\VBAPrimerAccess_ByExample.
2. Open Microsoft Access and click Blank database. Type Chap01 in the File

Name box and click the folder button to set the location for the database to the
C:\VBAPrimerAccess_ByExample folder. Finally, click the Create button to
create the specified database (see Figure 1.1). Access will create the database in
its default .ACCDB format.

FIGURE 1.1 Creating a blank desktop Access database.

8 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. To launch the programming environment, select the Database Tools tab and
click Visual Basic (see Figure 1.2). You can also press Alt+F11 to get to this
screen.

FIGURE 1.2 Activating a Visual Basic development environment.

4. Insert a standard module by choosing Module from the Insert menu (see
Figure 1.3).

FIGURE 1.3 Inserting a standard module.

Each module begins with a declaration section that lists various settings and
declarations that apply to every procedure in the module. Figure 1.4 shows the
default declaration. Option Compare Database specifies how string compari-
sons are evaluated in the module—whether the comparison is case-sensitive or
insensitive. This is a case-insensitive comparison that respects the sort order
of the database. This means that “a” is the same as “A.” If you delete the Op-
tion Compare Database statement, the default string comparison setting for
the module is Option Compare Binary (used for case-sensitive comparisons
where “a” is not the same as “A”).
 Another declaration (not shown here) called the Option Explicit state-
ment is often used to ensure that all variables used within this module are for-
mally declared. You will learn about this statement and variables in Chapter 4.
 Following the declaration section is the procedure section, which holds the
module’s procedures. You can begin writing your procedures at the cursor
position within the Module1 (Code) window.

GETTING STARTED WITH ACCESS VBA 9

FIGURE 1.4 Standard module.

5. In the Module1 (Code) window, enter the code of subroutines and function
procedures as shown in Figure 1.5.
Notice that Access inserts a horizontal line after each End Sub or End Function
keyword to make it easier to identify each procedure. The Procedure drop-
down box at the top-right corner of the Module1 (Code) window displays the
name of the procedure in which the insertion point is currently located.

FIGURE 1.5 Standard module with subprocedures and functions.

10 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

EXECUTING YOUR PROCEDURES

Now that you’ve filled the standard module with some procedures and func-
tions, let’s see how you can run them. There are many ways of running your
code. In the next hands-on exercise, you will execute your code in four different
ways using:

 ● Run menu (Run Sub/UserForm)
 ● Toolbar button (Run Sub/UserForm)
 ● Keyboard (F5)
 ● Immediate window

 Hands-On 1.2 Running Procedures and Functions

1. Place the insertion point anywhere within the ShowMessage procedure. The
Procedure box in the top-right corner of the Module1 (Code) window should
display ShowMessage. Choose Run Sub/UserForm from the Run menu.
Access runs the selected procedure and displays the message box with the text
“This is a message box in VBA.”

2. Click OK to close the message box. Try running this procedure again, this time
by pressing the F5 key on the keyboard. Click OK to close the message box. If
the Access window seems stuck and you can’t activate any menu option, this is
often an indication that there is a message box open in the background. Access
will not permit you to do any operation until you close the pop-up window.

3. Now, run this procedure for the third time by clicking the Run Sub/UserForm
button () on the toolbar. This button has the same tooltip as the Run Sub/
UserForm (F5) option on the Run menu.

NOTE

Procedures that require arguments cannot be executed directly
using the methods you just learned. You need to type some input
values for these procedures to run. A perfect place to do this is
the Immediate window, which is covered in detail in Chapter 2,
“Getting to Know Visual Basic Editor (VBE).” For now, let’s open
this window and see how you can use it to run VBA procedures.

4. Select Immediate Window from the View menu.
Access opens a small window and places it just below the Module1 (Code)
window. You can size and reposition this window as needed. Figure 1.6 shows
statements that you will run from the Immediate window in St eps 5–8.

GETTING STARTED WITH ACCESS VBA 11

5. Type the following in the Immediate window and press Enter to execute.
ShowMessage2 "I'm learning VBA."

Access executes the procedure and displays the message in a message box. Click
OK to close the message box. Notice that to execute the ShowMessage2 pro-
cedure, you need to type the procedure name, a space, and the text you want
to display. The text string must be surrounded by double quotation marks.
In a similar way you can execute the ShowMessage3 procedure by providing
two required text strings. For example, on a new line in the Immediate win-
dow, type the following statement and press Enter to execute:
ShowMessage3 "Keep on learning.", "John"

When you press the Enter key, Access executes the ShowMessage3 procedure
and displays the text “John, your message is: Keep on learning.” Click OK to
close this message box.

NOTE

You can also use the Call statement to run a procedure in the
Immediate window. When using this statement, you must place
the values of arguments within parentheses, as shown here:

Call ShowMessage3("Keep on learning.", "John")

Function procedures are executed using different methods. Step 6 demon-
strates how to call the addTwoNumbers function.

6. On a new line in the Immediate window, type a question mark followed by the
name of the function procedure and press Enter:
?addTwoNumbers

Access should display the result of this function (the number 5) on the next
line in the Immediate window.

7. Now run the addTwoNumbers2 procedure. Type the following instruction in
the Immediate window and press Enter:
?addTwoNumbers2(56, 24)

Access displays the result of adding these two numbers on the next line.
8. If you’d rather see the function result in a message box, type the following

instruction in the Immediate window and press Enter:
MsgBox("Total=" & addTwoNumbers2(34,80))

Access displays a message box with the text “Total=114”.

NOTE See Chapter 2 for more information on running your procedures
and functions from the Immediate window.

12 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 1.6 Running procedures and functions in the Immediate window.

Now that you’ve familiarized yourself a bit with standard modules, let’s move on
to another type of module known as the class module.

UNDERSTANDING CLASS MODULES

Class modules come in three varieties: standalone class modules, form modules,
and report modules.

1. Standalone class modules—These modules are used to create your own custom
objects with their own properties and methods. You create a standalone class
module by choosing Insert | Class Module in the Microsoft Visual Basic for
Applications window. Access will create a default class module named Class1
and will list it in the Class modules folder in the Project Explorer window. You
will work with standalone class modules in Chapter 8.

2. and 3. Form modules and report modules—Each Access form can contain
a form module, and each report can contain a report module. Th ese modules
are special types of class modules that are saved automatically whenever you
save the form or report.

All newly created forms and reports are lightweight by design because they don’t
have modules associated with them when they’re first created. Therefore, they
load and display faster than forms and reports with modules. These lightweight
forms and reports have their Has Module property set to No (see Figure 1.7).
When you open a form or report in Design view and click the View Code but-
ton in the Tools section of the Design tab, Access creates a form or report mod-
ule. The Has Module property of a form or report is automatically set to Yes
to indicate that the form or report now has a module associated with it. Note
that this happens even if you have not written a single line of VBA code. Access

GETTING STARTED WITH ACCESS VBA 13

opens a module window and assigns a name to the module that consists of three
parts: the name of the object (e.g., form or report), an underscore character,
and the name of the form or report. For example, a newly created form that
has not been saved is named Form_Form1, a form module in the Customers
form is named Form_Customers, and a report module in the Customers report
is named Report_Customers (see Figure 1.8).

As with report modules, form modules store event procedures for events rec-
ognized by the form and its controls, as well as general function procedures and
subprocedures. You can also write Property Get, Property Let, and Property Set
procedures to create custom properties for the form or report. The procedures
stored in their class modules are available only while you are using that form or
report.

FIGURE 1.7 When you begin designing a new form in the Microsoft Access user interface, the
form does not have a module associated with it. Notice that the Has Module property on the form’s
property sheet is set to No.

FIGURE 1.8 Database modules are automatically organized in folders. Form and report modules
are listed in the Microsoft Access Class Objects folder. Standard modules can be found in the Modules
folder. The Class Modules folder organizes standalone class modules.

14 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

EVENTS, EVENT PROPERTIES, AND EVENT PROCEDURES

In order to customize your database applications or to deliver products that fit
your users’ specific needs, you’ll be doing quite a bit of event-driven program-
ming. Microsoft Access is an event-driven application. This means that what-
ever happens in an Access application is the result of an event that Access has
detected. Events are things that happen to objects and can be triggered by the
user or by the system, such as clicking a mouse button, pressing a key, select-
ing an item from a list, or changing a list of items available in a listbox. As a
programmer, you will often want to modify the application’s built-in response
to a particular event. Before the application processes the user’s mouseclicks
and keypresses in the usual way, you can tell the application how to react to the
activity. For example, if a user clicks a Delete button on your form, you can dis-
play a custom delete confirmation message to ensure that the user selected the
intended record for deletion.

For each event defined for a form, form control, or report, there is a corre-
sponding event property. If you open any Microsoft Access form in Design view
and choose Properties in the Tools section of the Design tab, and then click the
Event tab of the property sheet, you will see a long list of events your form can
respond to (see Figure 1.9).

FIGURE 1.9 Event properties for an Access form are listed on the Event tab in the property sheet.

GETTING STARTED WITH ACCESS VBA 15

Forms, reports, and the controls that appear on them have various event proper-
ties you can use to trigger desired actions. For example, you can open or close
a form when a user clicks a command button, or you can enable or disable con-
trols when the form loads.

To specify how a form, report, or control should respond to events, you can
write event procedures. In your programming code, you may need to describe
what should happen if a user clicks on a command button or makes a selection
from a combo box. For example, when you design a custom form, you should
anticipate and program events that can occur at runtime (while the form is be-
ing used). The most common event is the Click event. Every time a command
button is clicked, it triggers an event procedure to respond to the Click event for
that button.

When you assign your event procedure to an event property, you set an event
trap. Event trapping gives you considerable control in handling events because
you basically interrupt the default processing that Access would normally carry
out in response to the user’s keypress or mouseclick. If a user clicks a command
button to save a form, whatever code you’ve written in the Click event of that
command button will run. The event programming code is stored as a part of a
form, report, or control and is triggered only when user interaction with a form
or report generates a specific event; therefore, it cannot be used as a standalone
procedure.

Why Use Events?

Events allow you to make your applications dynamic and interactive. To handle
a specific event, you need to select the appropriate event property on the prop-
erty sheet and then write an event handling procedure. Access will provide its
own default response to those events you have not programmed. Events cannot
be defined for tables or queries.

Walking Through an Event Procedure

The following hands-on exercise demonstrates how to write event procedures.
Your task is to change the background color of a text box control on a form when
the text box is selected and then return the default background color when you
tab or click out of that text box.

 Hands-On 1.3 Writing an Event Procedure

1. Close the Chap01.accdb database file used in Hands-On 1.1 and save changes
to the file when prompted.

16 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Copy the AssetTracking.accdb database from the companion CD to your C:\
VBAPrimerAccess_ByExample folder. This file is a copy of the Asset tracking
database provided by Microsoft.

3. Open the database C:\VBAPrimerAccess_ByExample\AssetTracking.accdb.
Upon loading, when you see a Welcome screen, click the Get Started button.

4. Access opens the database and displays a security warning message (see Figure
1.10). In order to use the file, click the Enable Content button in the message
bar. Access will close the database and reopen it. If you see the Welcome screen,
click the Get Started button again.

NOTE
The last section of this chapter explains how you can use trusted
locations to keep Access from disabling the VBA code upon
opening a database.

FIGURE 1.10 Active content such as VBA Macros can contain viruses and other security hazards. By
default, Access displays a Security Warning message when you first load a database file that contains
active content. You should enable content only if you trust the contents of the file.

5. Open the Asset Details form in Design view. To do this, right-click the Asset
Details form and choose Design View from the shortcut menu.

NOTE
If the property sheet is not displayed next to the AssetDetails
form, click the Property Sheet button in the Tools group of the
Form Design Tools tab on the Ribbon.

6. Click the Manufacturer text box control on the Asset Details form, and then
click the Event tab in the property sheet. The property sheet will display
Manufacturer in the control drop-down box.
The list of event procedures available for the text box control appears, as shown
in Figure 1.11.

GETTING STARTED WITH ACCESS VBA 17

FIGURE 1.11 To create an event procedure for a form control, use the Build button, which is
displayed as an ellipsis (…). This button is not available unless an event is selected.

7. Click in the column next to the On Got Focus event name, and then click the
Build button (…), as shown in Figure 1.11 in the previous step. This will bring
up the Choose Builder dialog box (see Figure 1.12).

FIGURE 1.12 To write VBA programming code for your event procedure, choose Code Builder in
the Choose Builder dialog box.

18 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

8. Select Code Builder in the Choose Builder dialog box and click OK. This will
display a VBA code module in the Visual Basic Editor window (see Figure 1.13).
This window (often referred to as VBE) is discussed in detail in Chapter 2.
Look at Figure 1.13. Access creates a skeleton of the GotFocus event proce-
dure. The name of the event procedure consists of three parts: the object name
(Manufacturer), an underscore character (_), and the name of the event (Got-
Focus) occurring to that object. The word Private indicates that the event
procedure cannot be triggered by an event from another form. The word Sub
in the first line denotes the beginning of the event procedure. The words End
Sub in the last line denote the end of the event procedure. The statements to be
executed when the event occurs are written between these two lines.

FIGURE 1.13 Code Builder displays the event procedure Code window with a blank event
procedure for the selected object. Here you can enter the code for Access to run when the specified
GotFocus procedure is triggered.

Notice that each procedure name ends with a pair of empty parentheses ().
Words such as Sub, End, or Private have special meaning to Visual Basic and
are called keywords (reserved words). Visual Basic displays keywords in blue,
but you can change the color of your keywords from the Editor Format tab
in the Options dialog box (choose Tools | Options in the Visual Basic Editor
window). All VBA keywords are automatically capitalized.
 At the top of the Code window (see Figure 1.13), there are two drop-down
listboxes. The one on the left is called Object. This box displays the currently
selected control (Manufacturer). The box on the right is called Procedure.
If you position the mouse over one of these boxes, the tooltip indicates the

GETTING STARTED WITH ACCESS VBA 19

name of the box. Clicking on the down arrow at the right of the Procedure box
displays a list of all possible event procedures associated with the object type
selected in the Object box. You can close the drop-down listbox by clicking
anywhere in the unused portion of the Code window.

9. To change the background color of a text box control to green, enter the
following statement between the existing lines:
Me.Manufacturer.BackColor = RGB(0, 255, 0)

Notice that when you type each period, Visual Basic displays a list containing
possible item choices. This feature, called List Properties/Methods, is a part of
Visual Basic’s on-the-fly syntax and programming assistance, and is covered in
Chapter 2. When finished, your first event procedure should look as follows:
Private Sub Manufacturer_GotFocus()
 Me.Manufacturer.BackColor = RGB(0, 255, 0)
End Sub

The statement you just entered tells Visual Basic to change the background
color of the Manufacturer text box to green when the cursor is moved into that
control. The color is specified by using the RGB function.

10. In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Got Focus
event property in the property sheet for the selected Manufacturer text box
control (see Figure 1.14).

20 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 1.14 [Event Procedure] in the property sheet denotes that the text box’s On Got Focus
event has an event procedure associated with it.

11. To test your GotFocus event procedure, switch from the Design view of the
Asset Details form to Form view by clicking the View button on the Ribbon’s
Design tab.

12. While in the Form view, click in the Manufacturer text box and notice the
change in the background color.

13. Now, click on any other text box control on the Asset Details form.
Notice that the Manufacturer text box does not return to the original color. So
far, you’ve told Visual Basic only what to do when the specified control receives
the focus. If you want the background color to change when the focus moves to
another control, there is one more event procedure to write—On Lost Focus.

14. To create the LostFocus procedure, return your form to Design view and click
the Manufacturer control. In the property sheet for this control, select the
Event tab, and then click the Build button to the right of the On Lost Focus
event property. In the Choose Builder dialog box, select Code Builder.

15. To change the background color of a text box control to white, enter the
following statement inside the Manufacturer_LostFocus event procedure:
 Me.Manufacturer.BackColor = RGB(255,255,255)

GETTING STARTED WITH ACCESS VBA 21

The completed On Lost Focus procedure is shown in Figure 1.15.

FIGURE 1.15 The GotFocus and LostFocus event procedures will now control the behavior of the
Manufacturer control when the control is in focus and out of focus.

16. In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Lost Focus
event property in the property sheet for the selected Manufacturer text box
control.

17. Repeat Steps 11–12 to test both event procedures you have written.
18. When you are done, close the Asset Tracking database and click OK when

prompted to save the changes.

COMPILING YOUR PROCEDURES

The VBA code you write in the Visual Basic Editor Code window is automati-
cally compiled by Microsoft Access before you run it. The syntax of your VBA
statements is first thoroughly checked for errors, and then your procedures are
converted into executable format. If an error is discovered during the compila-
tion process, Access stops compiling and displays an error message. It also high-
lights the line of code that contains the error. The compiling process can take
from seconds to minutes or longer, depending on the number of procedures
written and the number of modules used.

To ensure that your procedures have been compiled, you can explicitly com-
pile them after you are done programming. You can do this by choosing Debug
| Compile in the Visual Basic Editor window.

Microsoft Access saves all the code in your database in its compiled form.
Compiled code runs more quickly the next time you open it. You should always
save your modules after you compile them. In Chapter 9, “Getting to Know
Built-In Tools for Testing and Debugging,” you will learn how to test and trou-
bleshoot your VBA procedures.

22 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

PLACING A DATABASE IN A TRUSTED LOCATION

By default, the security features built into Access disable the VBA code when
you open a database. To make it easy to work with Access databases in this
book, you will not want to bother with enabling content each time you open a
database. To trust your databases permanently, you can place them in a trusted
location—a folder on your local or network drive that you mark as trusted. You
can get more information about the Enable Content button and access the Trust
Center to set up a trusted folder by choosing File | Info (see Figure 1.16). This
screen can also be activated by clicking the text message in the Security Warning
message bar: “Some active content has been disabled. Click for more details.”
(See Figure 1.10 earlier.)

FIGURE 1.16 The Info tab with an explanation of the Security Warning message. Hands-On 1.4
will take you through the process of setting up a trusted folder for your Access databases by using the
Options button.

 Hands-On 1.4 Placing an Access Database in a Trusted Location

1. Open the Chap01.accdb database and click the Enable Content button in the
Security Warning message.

2. Choose File | Options.
3. In the left pane of the Access Options dialog box, click Trust Center, and then

click Trust Center Settings in the right pane, as shown in Figure 1.17.

GETTING STARTED WITH ACCESS VBA 23

FIGURE 1.17 Working with the Trust Center (Step 1).

4. In the left pane of the Trust Center dialog box, click Trusted Locations, as
shown in Figure 1.18.

FIGURE 1.18 Working with the Trust Center (Step 2).

5. Click the Add new location button, as shown in Figure 1.18.
6. In the Path text box, type the path and folder name of the location on your

local drive that you want to set up as a trusted source for opening files. Let’s
enter C:\VBAPrimerAccess_ByExample to designate this folder as a trusted
location for this book’s database programming exercises (see Figure 1.19).

24 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 1.19 Working with the Trust Center (Step 3).

7. Click OK to close the Microsoft Office Trusted Location dialog box.
8. The Trusted Locations list in the Trust Center dialog box now includes the

C:\VBAPrimerAccess_ByExample folder as a trusted source (see Figure 1.20).
Files put in a trusted location can be opened without being checked by the
Trust Center security feature. Click OK to close the Trust Center dialog box.

FIGURE 1.20 Working with the Trust Center (Step 4).

GETTING STARTED WITH ACCESS VBA 25

9. Click OK to close the Access Options dialog box and click OK when Access
displays informational message that the database needs to be closed for the
setting to take effect.

10. Close the open Access databases and exit Microsoft Access.
11. Open the Chap01.accdb database file from your C:\VBAPrimerAccess_By

Example folder and notice that Access no longer displays the Security Warning
message.

12. Close the Chap01.accdb database.

SUMMARY

In this chapter, you learned about subroutine procedures, function procedures,
property procedures, and event procedures. You also learned different ways of
executing subroutines and functions. The main hands-on exercise in this chap-
ter walked you through writing two event procedures in the Asset Details form’s
class module for a Manufacturer text control placed in the form. You finished
this chapter by designating a trusted location folder for your Access databases.

This chapter has given you a glimpse of the Microsoft Visual Basic program-
ming environment built into Access. The next chapter will take you deeper into
this interface, showing you various windows and shortcuts that you can use to
program faster and with fewer errors.

27

Now that you know how to write procedures and functions in standard
modules and event procedures in modules placed behind a form, we’ll
spend some time in the Visual Basic Editor window to become familiar

with the multitude of tools it offers to simplify your programming tasks. With
the tools located in the Visual Basic Editor window, you can:

 ● Write your own VBA procedures
 ● Create custom forms
 ● View and modify object properties
 ● Test and debug VBA procedures and locate errors

You can enter the VBA programming environment in either of the following
ways:

 ● By selecting the Database Tools tab, and then Visual Basic in the Macro
group

 ● From the keyboard, by pressing Alt+F11

Chapter

 2 GETTING TO KNOW
VISUAL BASIC
EDITOR (VBE)

28 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window, located on the left side of the Visual Basic Editor
window, provides access to modules behind forms and reports via the Microsoft
Access Class Objects folder (see Figure 2.1). The Modules folder lists only stan-
dard modules that are not behind a form or report.

In addition to the Microsoft Access Class Objects and Modules folders, the
VBA Project Explorer window can contain a Class Modules folder. Class mod-
ules are used for creating your own objects, as demonstrated in Chapter 8. Using
the Project Explorer window, you can easily move between modules currently
loaded into memory.

You can activate the Project Explorer window in one of three ways:

 ● From the View menu by selecting Project Explorer
 ● From the keyboard by pressing Ctrl-R
 ● From the Standard toolbar by clicking the Project Explorer button ()

as shown in Figure 2.2

FIGURE 2.1 The Project Explorer window provides easy access to your VBA procedure code.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 29

NOTE If the Project Explorer window is visible but not active, activate
it by clicking the Project Explorer title bar.

Buttons on the Standard toolbar (Figure 2.2) provide a quick way to access many
Visual Basic features.

FIGURE 2.2 Use the toolbar buttons to quickly access frequently used features in the VBE window.

The Project Explorer window (see Figure 2.3) contains three buttons:

 ● View Code—Displays the Code window for the selected module.
 ● View Object—Displays the selected form or report in the Microsoft Ac-

cess Class Objects folder. Th is button is disabled when an object in the
Modules or Class Modules folder is selected.

 ● Toggle Folders—Hides and unhides the display of folders in the Project
Explorer window.

FIGURE 2.3 The VBE Project Explorer window contains three buttons that allow you to view code or
objects and toggle folders.

30 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties for the currently
selected Access class or module. The name of the selected object is displayed in
the Object box located just below the Properties window title bar. The Proper-
ties window displays the current settings for the selected object. Object proper-
ties can be viewed alphabetically or by category by clicking on the appropriate
tab.

 ● Alphabetic tab—Lists all properties for the selected object alphabetically.
You can change the property setting by selecting the property name, and
then typing or selecting the new setting.

 ● Categorized tab—Lists all properties for the selected object by category.
You can collapse the list so that you see only the category names, or you
can expand a category to see the properties. Th e plus (+) icon to the left
of the category name indicates that the category list can be expanded. Th e
minus (–) indicates that the category is currently expanded.

The Properties window can be accessed in the following ways:

 ● From the View menu by selecting Properties Window
 ● From the keyboard by pressing F4
 ● From the Standard toolbar by clicking the Properties Window button

() located to the right of the Project Explorer button

Figure 2.4 displays the properties of the E-mail Address text box control located
in the Form_Order Details form in the Northwind 2007 sample Access data-
base. In order to access properties for a form control, you need to perform the
steps outlined in Hands-On 2.1.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 2.1 Using the Properties Window to View Control
Properties

1. Copy the Northwind 2007 sample database from the companion CD to your
C:\VBAPrimerAccess_ByExample folder.

2. Open and load the C:\VBAPrimerAccess_ByExample\Northwind 2007.
accdb file. Log in to the database as Andrew Cencini.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 31

3. When Northwind 2007 opens, press Alt+F11 to activate the Visual Basic
Editor window.

4. In the Project Explorer window, click the Toggle Folders button () and
select the Microsoft Access Class Objects folder. Highlight the Form_Order
Details form (Figure 2.4) and click the View Object button (). This will
open the selected form in Design view.

5. Press Alt+F11 to return to the Visual Basic Editor. The Properties window
will be filled with the properties for the Form_Order Details form. To view the
properties of the E-mail Address text box control on this form, as shown in
Figure 2.4, select E-mail Address from the drop-down list located below the
Properties window’s title bar.

FIGURE 2.4 You can edit object properties in the Properties window, or you can edit them in the
property sheet when a form or report is open in Design view.

32 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as for viewing
and modifying the code of existing Visual Basic procedures. Each VBA module
can be opened in a separate Code window.

There are several ways to activate the Code window:

 ● From the Project Explorer window, choose the appropriate module and
then click the View Code button ()

 ● From the Microsoft Visual Basic menu bar, choose View | Code
 ● From the keyboard, press F7

At the top of the Code window there are two drop-down list boxes that allow
you to move quickly within the Visual Basic code. In the Object box on the left
side of the Code window, you can select the object whose code you want to view,
as shown in Figure 2.5.

The box on the right side of the Code window lets you select a procedure to
view. When you click the down arrow at the right of this box, the names of all
procedures located in a module are listed alphabetically, as shown in Figure 2.6.
When you select a procedure in the Procedure box, the cursor will jump to the
first line of that procedure.

FIGURE 2.5 The Object drop-down box lists objects that are available in the module selected in the
Project Explorer window.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 33

FIGURE 2.6 The Procedure drop-down box lists events to which the object selected in the Object
drop-down box can respond. If the selected module contains events written for the highlighted object,
the names of these events appear in bold type.

By choosing Window | Split or dragging the split bar down to a selected position
in the Code window, you can divide the Code window into two panes, as shown
in Figure 2.7.

FIGURE 2.7 By splitting the Code window, you can view different sections of a long procedure or a
different procedure in each window pane.

34 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Setting up the Code window for the two-pane display is useful for copying,
cutting, and pasting sections of code between procedures in the same module.
To return to a one-window display, drag the split bar all the way to the top of the
Code window or choose Window | Split again.

There are two icons at the bottom of the Code window (see Figure 2.7). The
Procedure View icon changes the display to only one procedure at a time in the
Code window. To select another procedure, use the Procedure drop-down box.
The Full Module View icon changes the display to all the procedures in the se-
lected module. Use the vertical scrollbar in the Code window to scroll through
the module’s code. The Margin Indicator bar is used by the Visual Basic Editor
to display helpful indicators during editing and debugging.

OTHER WINDOWS IN THE VBE

In addition to the Code window, there are several other windows that are fre-
quently used in the Visual Basic environment, such as the Immediate, Locals,
Watch, Project Explorer, Properties, and Object Browser windows. The Dock-
ing tab in the Options dialog box, shown in Figure 2.8, displays a list of available
windows and allows you to choose which windows you want to be dockable. To
access this dialog box, select Tools | Options in the Visual Basic Editor window.

FIGURE 2.8 You can use the Docking tab in the Options dialog box to control which windows are
currently displayed in the Visual Basic programming environment.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 35

ASSIGNING A NAME TO THE VBA PROJECT

A VBA Project is a set of Microsoft Access objects, modules, forms, and refer-
ences.

When you create a Microsoft Access database and later switch to the VBE
window, you will see in the Project Explorer window that Access had automati-
cally assigned the database name to the VBA Project. For example, if your da-
tabase is named Chap01.accdb, the Project Properties window displays Chap01
(Chap01) where the first “Chap01” denotes the VBA Project name and the
“Chap01” in the parentheses is the name of the database. You can change the
name of the VBA Project in one of the following ways:

 ● Choose Tools | <database name> Properties, enter a new name in the
Project Name box of the Project Properties window (see Figure 2.9), and
click OK.

 ● In the Project Explorer window, right-click the name of the project and
select <database name> Properties. Enter a new name in the Project Name
box of the Project Properties window (see Figure 2.9) and click OK.

To avoid naming conflicts between projects, make sure that you give your proj-
ects unique names.

FIGURE 2.9 Use the Project Properties dialog box to rename the VBA Project.

36 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

RENAMING THE MODULE

When you insert a new module to your VBA Project, Access generates a default
name for the module—Module1, Module2, and so on. You can rename your
modules right after you insert them into the VBA project or when your project is
being saved for the first time. In the latter case, Access will iterate through all the
newly added (not saved) modules and will prompt you with the Save As dialog
box to accept or change the module name. You can change the module name at
any time via the Properties window. Simply select the module name (e.g., Mod-
ule1) in the Project Explorer window and double-click the Name property in
the Properties window. This action will highlight the default module name next
to the Name property. Type the new name for the module and press Enter. The
module name in the Project Explorer window should now reflect your change.

SYNTAX AND PROGRAMMING ASSISTANCE

Writing procedures in Visual Basic requires that you use hundreds of built-in
instructions and functions. Because most people cannot memorize the correct
syntax of all the instructions available in VBA, the IntelliSense® technology pro-
vides you with syntax and programming assistance on demand while you are
entering instructions. While working in the Code window, you can have special
tools pop up and guide you through the process of creating correct VBA code.
The Edit toolbar in the VBE window, shown in Figure 2.10, contains several
buttons that let you enter correctly formatted VBA instructions with speed and
ease. If the Edit toolbar isn’t currently docked in the Visual Basic Editor window,
you can turn it on by choosing View | Toolbars.

List Properties/Methods

Each object can contain one or more properties and methods. When you enter
the name of the object in the Code window followed by a period that separates
the name of the object from its property or method, a pop-up menu may appear.
This menu lists the properties and methods available for the object that pre-
cedes the period. To turn on this automated feature, choose Tools | Options. In
the Options dialog box, click the Editor tab, and make sure the Auto List Mem-
bers checkbox is selected. As you enter VBA instructions, Visual Basic suggests
properties and methods that can be used with the object, as demonstrated in
Figure 2.11.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 37

FIGURE 2.10 The Edit toolbar provides timesaving buttons while entering VBA code.

FIGURE 2.11 When Auto List Members is selected, Visual Basic suggests properties and methods
that can be used with the object as you are entering the VBA instructions.

To choose an item from the pop-up menu, start typing the name of the property
or method you want to use. When the correct item name is highlighted, press
Enter to insert the item into your code and start a new line or press the Tab key
to insert the item and continue writing instructions on the same line. You can

38 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

also double-click the item to insert it in your code. To close the pop-up menu
without inserting an item, press Esc. When you press Esc to remove the pop-up
menu, Visual Basic will not display the menu for the same object again.

To display the Properties/Methods pop-up menu again, you can:

 ● Press Ctrl-J
 ● Use the Backspace key to delete the period, and then type the period again
 ● Right-click in the Code window, and select List Properties/Methods from

the shortcut menu
 ● Choose Edit | List Properties/Methods
 ● Click the List Properties/Methods button () on the Edit toolbar

Parameter Info

Some VBA functions and methods can take one or more arguments (or param-
eters). If a Visual Basic function or method requires an argument, you can see
the names of required and optional arguments in a tip box that appears just
below the cursor as soon as you type the open parenthesis or enter a space. The
Parameter Info feature (see Figure 2.12) makes it easy for you to supply correct
arguments to a VBA function or method. In addition, it reminds you of two
other things that are very important for the function or method to work cor-
rectly: the order of the arguments and the required data type of each argument.
For example, if you enter in the Code window the instruction DoCmd.OpenForm
and type a space after the OpenForm method, a tip box appears just below the
cursor. Then as soon as you supply the first argument and enter the comma,
Visual Basic displays the next argument in bold. Optional arguments are sur-
rounded by square brackets []. To close the Parameter Info window, all you
need to do is press Esc.

FIGURE 2.12 A tip window displays a list of arguments used by a VBA function or method.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 39

To open the tip box using the keyboard, enter the instruction or function,
followed by the open parenthesis, and then press Ctrl-Shift-I. You can also click
the Parameter Info button () on the Edit toolbar or choose Edit | Parameter
Info from the menu bar.

You can also display the Parameter Info box when entering a VBA function.
To try this out quickly, choose View | Immediate Window, and then type the
following in the Immediate window:
Mkdir(

You should see the MkDir(Path As String) tip box just below the cursor. Now,
type "C:\NewFolder" followed by the ending parenthesis. When you press
Enter, Visual Basic will create a folder named NewFolder in the root directory
of your computer. Activate Explorer and check it out!

List Constants

If there is a check mark next to the Auto List Members setting in the Options
dialog box (Editor tab), Visual Basic displays a pop-up menu listing the con-
stants that are valid for the property or method. A constant is a value that indi-
cates a specific state or result. Access and other members of the Microsoft Office
suite have a number of predefined, built-in constants.

Suppose you want to open a form in Design view. In Microsoft Access, a
form can be viewed in Design view (acDesign), Datasheet view (acFormDS),
PivotChart view (acFormPivot Chart), PivotTable view (acFormPivotTable),
Form view (acNormal), and Print Preview (acPreview). Each of these options is
represented by a built-in constant. Microsoft Access constant names begin with
the letters “ac.” As soon as you enter a comma and a space following your in-
struction in the Code window (e.g., DoCmd.OpenForm "Products",), a pop-up
menu will appear with the names of valid constants for the OpenForm method,
as shown in Figure 2.13.

FIGURE 2.13 The List Constants pop-up menu displays a list of constants that are valid for the
property or method typed.

40 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The List Constants menu can be activated by pressing Ctrl+Shift+J or by
 clicking the List Constants button () on the Edit toolbar.

Quick Info

When you select an instruction, function, method, procedure name, or constant
in the Code window and then click the Quick Info button () on the Edit tool-
bar (or press Ctrl+I), Visual Basic will display the syntax of the highlighted item
as well as the value of its constant (see Figure 2.14). The Quick Info feature can
be turned on or off using the Options dialog box (Tools | Options). To use the
feature, click the Editor tab in the Options dialog box, and make sure there is a
check mark in the box next to Auto Quick Info.

FIGURE 2.14 The Quick Info feature provides a list of function parameters, as well as constant values
and VBA statement syntax.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code win-
dow is with the Complete Word feature. As you enter the first few letters of a
keyword and click the Complete Word button () on the Edit toolbar, Visual
Basic will complete the keyword entry for you. For example, if you enter the
first three letters of the keyword DoCmd (DoC) in the Code window, and then
click the Complete Word button on the Edit toolbar, Visual Basic will complete
the rest of the command. In the place of DoC you will see the entire instruction,
DoCmd.

If there are several VBA keywords that begin with the same letters, when you
click the Complete Word button on the Edit toolbar, Visual Basic will display a
pop-up menu listing all of them. To try this, enter only the first three letters of
the word Application (App), and then press the Complete Word button on the
toolbar. You can then select the appropriate word from the pop-up menu.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 41

Indent/Outdent

The Editor tab in the Options dialog box, shown in Figure 2.15, contains many
settings you can enable to make automated features available in the Code win-
dow.

FIGURE 2.15 The Options dialog box lists features you can turn on and off to fit the VBA
programming environment to your needs.

When the Auto Indent option is turned on, Visual Basic automatically in-
dents the selected lines of code using the Tab Width value. The default entry
for Auto Indent is four characters (see Figure 2.15). You can easily change the
tab width by typing a new value in the text box. Why would you want to use
indentation in your code? Indentation makes your VBA procedures more read-
able and easier to understand. Indenting is especially recommended for enter-
ing lines of code that make decisions or repeat actions.

Let’s see how you can indent and outdent lines of code using the Form_In-
ventoryList form in the Northwind database that you opened in the previous
hands-on exercise.

 Hands-On 2.2 Using the Indent/Outdent Feature

1. In the Project Explorer window in the Microsoft Access Class Objects folder,
double-click Form_Inventory List. The Code window should now show the
CmdPurchase_Click event procedure written for this form.

42 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the Code window, select the block of code beginning with the keyword If
and ending with the keywords End If.

3. Click the Indent button () on the Edit toolbar or press Tab on the keyboard.
The selected block of code will move four spaces to the right. You can adjust
the number of spaces to indent by choosing Tools | Options and entering the
appropriate value in the Tab Width box on the Editor tab.

4. Now, click the Outdent button () on the Edit toolbar or press Shift+Tab to
return the selected lines of code to the previous location in the Code window.
The Indent and Outdent options are also available from Visual Basic Editor’s
Edit menu.

Comment Block/Uncomment Block

The apostrophe placed at the beginning of a line of code denotes a comment.
Besides the fact that comments make it easier to understand what the procedure
does, comments are also very useful in testing and troubleshooting VBA proce-
dures. For example, when you execute a procedure, it may not run as expected.
Instead of deleting the lines of code that may be responsible for the problems
encountered, you may want to skip the lines for now and return to them later.
By placing an apostrophe at the beginning of the line you want to avoid, you can
continue checking the other parts of your procedure. While commenting one
line of code by typing an apostrophe works fine for most people, when it comes
to turning entire blocks of code into comments, you’ll find the Comment Block
and Uncomment Block buttons on the Edit toolbar very handy and easy to use.

To comment a few lines of code, select the lines and click the Comment
Block button (). To turn the commented code back into VBA instructions,
click the Uncomment Block button (). If you click the Comment Block but-
ton without selecting a block of text, the apostrophe is added only to the line of
code where the cursor is currently located.

USING THE OBJECT BROWSER

If you want to move easily through the myriad of VBA elements and features,
examine the capabilities of the Object Browser. This special built-in tool is avail-
able in the Visual Basic Editor window.

To access the Object Browser, use any of the following methods:

 ● Press F2

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 43

 ● Choose View | Object Browser
 ● Click the Object Browser button () on the toolbar

The Object Browser allows you to browse through the objects available to your
VBA procedures, as well as view their properties, methods, and events. With the
aid of the Object Browser, you can quickly move between procedures in your
database application and search for objects and methods across various type
libraries.

The Object Browser window, shown in Figure 2.16, is divided into several
sections. The top of the window displays the Project/Library drop-down listbox
with the names of all currently available libraries and projects.

A library is a special file that contains information about the objects in an
application. New libraries can be added via the References dialog box (select
Tools | References). The entry for <All Libraries> lists the objects of all libraries
installed on your computer. While the Access library contains objects specific
to using Microsoft Access, the VBA library provides access to three objects (De-
bug, Err, and Collection), as well as several built-in functions and constants
that give you flexibility in programming. You can send output to the Immediate
window, get information about runtime errors, work with the Collection object,
manage files, deal with text strings, convert data types, set date and time, and
perform mathematical operations.

Below the Project/Library drop-down listbox is a search box (Search Text)
that allows you to quickly find information in a library. This field remembers the
last four items you searched for. To find only whole words, right-click anywhere
in the Object Browser window, and then choose Find Whole Word Only from
the shortcut menu. The Search Results section of the Object Browser displays
the Library, Class, and Member elements that meet the criteria entered in the
Search Text box. When you type the search text and click the Search button, Vi-
sual Basic expands the Object Browser window to show the search results. You
can hide or show the Search Results section by clicking the button located to the
right of the binoculars. In the lower section of the Object Browser window, the
Classes listbox displays the available object classes in the selected library. If you
select the name of the open database (e.g., Northwind) in the Project/Library
listbox, the Classes list will display the objects as listed in the Explorer window.

In Figure 2.16, the Form_Inventory List object class is selected. When you
highlight a class, the list on the right side (Members) shows the properties,
methods, and events available for that class. By default, members are listed al-
phabetically. You can, however, organize the Members list by group type (prop-
erties, methods, or events) using the Group Members command from the Object

44 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Browser shortcut menu (right-click anywhere in the Object Browser window to
display this menu).

When you select the Northwind 2007 project in the Project/Library listbox,
the Members listbox will list all the procedures available in this project. To ex-
amine a procedure’s code, double-click its name. When you select a VBA library
in the Project/Library listbox, you will see the Visual Basic built-in functions
and constants. If you need more information on the selected class or member,
click the question mark button located at the top of the Object Browser window.

The bottom of the Object Browser window displays a code template area
with the definition of the selected member. Clicking the green hyperlink text in
the code template lets you jump to the selected member’s class or library in the
Object Browser window. Text displayed in the code template area can be copied
and pasted to a Code window. If the Code window is visible while the Object
Browser window is open, you can save time by dragging the highlighted code
template and dropping it into the Code window. You can easily adjust the size
of the various sections of the Object Browser window by dragging the dividing
horizontal and vertical lines.

FIGURE 2.16 The Object Browser window allows you to browse through all the objects, properties,
and methods available to the current VBA project.

Let’s put the Object Browser to use in VBA programming. Assume that you
want to write a VBA procedure to control a checkbox placed on a form and
would like to see the list of properties and methods that are available for work-
ing with checkboxes.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 45

 Hands-On 2.3 Using the Object Browser

1. In the Visual Basic Editor window, press F2 to display the Object Browser.
2. In the Project/Library listbox (see Figure 2.16), click the drop-down arrow and

select the Access library.
3. Type checkbox in the Search Text box and click the Search button (). Make

sure you don’t enter a space in the search string.

Visual Basic begins to search the Access library and displays the search results.
By analyzing the search results in the Object Browser window, you can find the
appropriate VBA instructions for writing your VBA procedures. For example,
looking at the Members list lets you quickly determine that you can enable or
disable a checkbox by setting the Enabled property. To get detailed information
on any item found in the Object Browser, select the item and press F1 to activate
online help.

USING THE VBA OBJECT LIBRARY

While programming in Microsoft Access you will need to rely on some func-
tions that are general in nature. Functions that are available in the VBA Objects
Library will allow you to manage files and folders, set the date and time, interact
with users, convert data types, deal with text strings, or perform mathematical
calculations. In the following exercise, you will see how to use one of these func-
tions to create a new subfolder without leaving Access.

 Hands-On 2.4 Using Built-In VBA Functions

1. In the Visual Basic Editor window with the Northwind 2007 database open,
choose Insert | Module to create a new standard module.

2. In the Properties Window, change the Name property of Module1 to
VBAPrimerAccess_Chap2.

4. In the Code window, enter Sub NewFolder() as the name of the procedure and
press Enter. Visual Basic will enter the ending keywords: End Sub.

5. Press F2 to display the Object Browser.
6. Click the drop-down arrow in the Project/Library listbox and select VBA.
7. Enter file in the Search Text box and press Enter.
8. Scroll down in the Members listbox and highlight the MkDir method.
9. Click the Copy button in the Object Browser window to copy the selected

method name to the Windows clipboard.

46 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

10. Close the Object Browser and return to the Code window. Paste the copied
instruction inside the NewFolder procedure.

11. Now, enter a space, followed by “C:\Study”. Be sure to enter the name of the
entire path and the quotation marks. Your NewFolder procedure should look
like the following:
Sub NewFolder()
 MkDir "C:\Study"
End Sub

12. Choose Run | Run Sub/UserForm to run the NewFolder procedure.
After you run the NewFolder procedure, Visual Basic creates a new folder
on drive C called Study. To see the folder, activate Windows Explorer. After
creating a new folder, you may realize that you don’t need it after all. Although
you could easily delete the folder while in Windows Explorer, how about
getting rid of it programmatically?
The Object Browser contains many other methods that are useful for working
with folders and files. The RmDir method is just as simple to use as the MkDir
method. To remove the Study folder from your hard drive, replace the MkDir
method with the RmDir method and rerun the NewFolder procedure. Or cre-
ate a new procedure called RemoveFolder, as shown here:
Sub RemoveFolder()
 RmDir "C:\Study"
End Sub

When writing procedures from scratch, it’s a good idea to consult the Object
Browser for names of the built-in VBA functions.

USING THE IMMEDIATE WINDOW

The Immediate window is a sort of VBA programmer’s scratch pad. Here you
can test VBA instructions before putting them to work in your VBA procedures.
It is a great tool for experimenting with your new language. Use it to try out
your statements. If the statement produces the expected result, you can copy the
statement from the Immediate window into your procedure (or you can drag it
right onto the Code window if the window is visible).

To activate the Immediate window, choose View | Immediate Window in the
Visual Basic Editor, or press Ctrl+G while in the Visual Basic Editor window.

The Immediate window can be moved anywhere on the Visual Basic Editor
window, or it can be docked so that it always appears in the same area of the

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 47

screen. The docking setting can be turned on and off from the Docking tab in
the Options dialog box (Tools | Options).

To close the Immediate window, click the Close button in the top-right cor-
ner of the window.

The following hands-on exercise demonstrates how to use the Immediate
window to check instructions and get answers.

 Hands-On 2.5 Experiments in the Immediate Window

1. If you are not in the VBE window, press Alt+F11 to activate it.
2. Press Ctrl+G to activate the Immediate window or choose View | Immediate

Window.
3. In the Immediate window, type the following instruction and press Enter:

DoCmd.OpenForm "Inventory List"

4. If you entered the preceding VBA statement correctly, Visual Basic opens the
Inventory List form, assuming the Northwind database is open.

5. Enter the following instruction in the Immediate window:
Debug.Print Forms![Inventory List].RecordSource

When you press Enter, Visual Basic indicates that Inventory is the Record-
Source for the Inventory List form. Every time you type an instruction in the
Immediate window and press Enter, Visual Basic executes the statement on
the line where the insertion point is located. If you want to execute the same
instruction again, click anywhere in the line containing the instruction and
press Enter. For more practice, rerun the statements shown in Figure 2.17.
Start from the instruction displayed in the first line of the Immediate window.
Execute the instructions one by one by clicking in the appropriate line and
pressing Enter.

FIGURE 2.17 Use the Immediate window to evaluate and try Visual Basic statements.

So far you have used the Immediate window to perform some actions. The
Immediate window also allows you to ask questions. Suppose you want to find
out the answers to “How many controls are in the Inventory List form?” or

48 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

“What’s the name of the current application?” When working in the Immediate
window, you can easily get answers to these and other questions.

In the preceding exercise, you entered two instructions. Let’s return to the
Immediate window to ask some questions. Access remembers the instructions
entered in the Immediate window even after you close this window. The con-
tents of the Immediate window are automatically deleted when you exit Micro-
soft Access.

 Hands-On 2.6 Asking Questions in the Immediate Window

1. Click in a new line of the Immediate window and enter the following statement
to find out the number of controls in the Inventory List form:
?Forms![Inventory List].Controls.Count

When you press Enter, Visual Basic enters the number of controls on a new
line in the Immediate window.

2. Click in a new line of the Immediate window, and enter the following statement:
?Application.Name

When you press Enter, Visual Basic enters the name of the active application
on a new line in the Immediate window.

3. In a new line in the Immediate window, enter the following instruction:
?12/3

When you press Enter, Visual Basic shows the result of the division on a new
line. But what if you want to know the result of 3 + 2 and 12 * 8 right away?
Instead of entering these instructions on separate lines, you can enter them on
one line as in the following example:
?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you press
the Enter key, Visual Basic displays the results 5 and 96 on separate lines in the
Immediate window.
Here are a couple of other statements you may want to try out on your own in
the Immediate window:
?Application.GetOption("Default Database Directory")
?Application.CodeProject.Name

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 49

Instead of using the question mark, you may precede the statement typed in
the Immediate window with the Print command, like this:
Print Application.CodeProject.Name

To delete the instructions from the Immediate window, highlight all the lines
and press Delete.

4. In the Visual Basic Editor window, choose File | Close and Return to Microsoft
Access.

5. Close the Northwind 2007.accdb database.

NOTE

Recall that in Chapter 1 you learned how to run subroutine
procedures and functions from the Immediate window. You will
find other examples of running procedures and functions from
this window in subsequent chapters.

SUMMARY

Programming in Access requires a working knowledge of objects and collec-
tions of objects. In this chapter, you explored features of the Visual Basic Edi-
tor window that can assist you in writing VBA code. Here are some important
points:

 ● When in doubt about objects, properties, or methods in an existing VBA
procedure, highlight the instruction in question and fi re up the online
help by pressing F1.

 ● When you need on-the-fl y programming assistance while typing your
VBA code, use the shortcut keys or buttons available on the Edit toolbar.

 ● If you need a quick listing of properties and methods for every available
object, or have trouble locating a hard-to-fi nd procedure, go with the Ob-
ject Browser.

 ● If you want to experiment with VBA and see the results of VBA com-
mands immediately, use the Immediate window.

In the next chapter, you will learn how you can remember values in your VBA
procedures by using various types of variables and constants.

51

In Chapter 2, you used the question mark to have Visual Basic return some
information in the Immediate window. Unfortunately, when you write Vi-
sual Basic procedures outside the Immediate window, you can’t use the

 question mark. So how do you obtain answers to your questions in VBA proce-
dures? To find out what a VBA instruction (statement) has returned, you must
tell Visual Basic to memorize it. This is done by using variables. This chapter
introduces you to many types of variables, data types, and constants that you
can and should use in your VBA procedures.

INTRODUCTION TO DATA TYPES

When you create Visual Basic procedures, you have a purpose in mind: You
want to manipulate data. Because your procedures will handle different kinds of
information, you should understand how Visual Basic stores data.

The data type determines how the data is stored in the computer’s memory.
For example, data can be stored as a number, text, date, object, etc. If you forget
to tell Visual Basic the data type, it is assigned the Variant data type. The Vari-
ant type can figure out on its own what kind of data is being manipulated and
then take on that type. The Visual Basic data types are shown in Table 3.1. In
addition to the built-in data types, you can define your own data types; these are

Chapter

 3 ACCESS VBA
FUNDAMENTALS

52 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

known as user-defined data types. Because data types take up different amounts
of space in the computer’s memory, some of them are more expensive than oth-
ers. Therefore, to conserve memory and make your procedure run faster, you
should select the data type that uses the fewest bytes but at the same time can
handle the data that your procedure has to manipulate.

TABLE 3.1 VBA data types.

Data Type Storage Size Range
Byte 1 byte A number in the range of 0 to 255.
Boolean 2 bytes Stores a value of True (0) or False (–1).
Integer 2 bytes A number in the range of –32,768 to 32,767.

The type declaration character for Integer is the percent sign
(%).

Long
(long integer)

4 bytes A number in the range of –2,147,483,648 to 2,147,483,647.
The type declaration character for
Long is the ampersand (&).

LongLong 8 bytes Stored as a signed 64-bit (8-byte) number rang-
ing in value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.
The type declaration character for LongLong is the caret (^).
LongLong is a valid declared type only on 64-bit platforms.

LongPtr
(Long integer on
32-bit systems;
LongLong integer
on 64-bit
systems)

4 bytes on
32-bit;
8 bytes on
64-bit

Numbers ranging in value from –2,147,483,648 to
2,147,483,647 on 32-bit systems; –9,223,372,036,854,775,808
to 9,223,372,036,854,775,807 on 64-bit systems. Using LongPtr
enables writing code that can run in both 32-bit and 64-bit
environments.

Single
(single-precision
floating-point)

4 bytes Single-precision floating-point real number ranging in value
from –3.402823E38 to –1.401298E–45 for negative values and
from 1.401298E–45 to 3.402823E38 for positive values.
The type declaration character for Single is the exclamation
point (!).

Double
(double-precision
floating-point)

8 bytes Double-precision floating-point real number in the range
of –1.79769313486231E308 to –4.94065645841247E–324
for negative values and 4.94065645841247E–324 to
1.79769313486231E308 for positive values.
The type declaration character for Double is the number sign
(#).

Currency
(scaled integer)

8 bytes Monetary values used in fixed-point calculations:
–922,337,203,685,477.5808 to 922,337,203,685,477.5807.
The type declaration character for Currency is the at sign (@).

ACCESS VBA FUNDAMENTALS 53

Data Type Storage Size Range
Decimal 14 bytes 96-bit (12-byte) signed integer scaled by a variable power

of 10. The power of 10 scaling factor specifies the num-
ber of digits to the right of the decimal point, and ranges
from 0 to 28. With no decimal point (scale of 0), the larg-
est value is +/–79,228,162,514,264,337,593,543,950,335.
With 28 decimal places, the largest value is +/–
7.9228162514264337593543950335. The smallest nonzero
value is +/–0.0000000000000000000000000001.
You cannot declare a variable to be of type Decimal. You must
use the Variant data type. Use the CDec function to convert a
value to a decimal number:
Dim numDecimal As Variant
numDecimal = CDec(0.02 * 15.75 * 0.0006)

Date 8 bytes Date from January 1, 100, to December 31, 9999, and times
from 0:00:00 to 23:59:59. Date literals must be enclosed within
number signs (#); for example: #January 1, 2011#

Object 4 bytes Any Object reference.
Use the Set statement to declare a variable as an Object.

String
(variable-length)

10 bytes +
string length

A variable-length string can contain up to approximately 2
billion characters.
The type declaration character for String is the dollar sign ($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approximately 65,400
characters.

Variant
(with numbers)

16 bytes Any numeric value up to the range of a Double.

Variant
(with characters)

22 bytes +
string length

Any valid nonnumeric data type in the same range as for a
variable-length string.

User-defined
(using Type)

One or more
elements

A data type you define using the Type statement. User-defined
data types can contain one or more elements of a data type, an
array, or a previously defined user-defined type. For example:

Type custInfo
 custFullName as String
 custTitle as String
 custBusinessName as String
 custFirstOrderDate as Date
End Type

54 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING AND USING VARIABLES

A variable is a name used to refer to an item of data. Each time you want to
remember the result of a VBA instruction, think of a name that will represent it.
For example, if you want to keep track of the number of controls on a form, you
can make up a name such as NumOfControls, TotalControls, or FormsControl-
Count.

The names of variables can contain characters, numbers, and punctuation
marks except for the following:
, # $ % & @ !

The name of a variable cannot begin with a number or contain a space. If you
want the name of the variable to include more than one word, use the underscore
(_) as a separator. Although a variable name can contain as many as 254 char-
acters, it’s best to use short and simple names. Using short names will save you
typing time when you need to reuse the variable in your Visual Basic procedure.
Visual Basic doesn’t care whether you use uppercase or lowercase letters in vari-
able names; however, most programmers use lowercase letters. When the vari-
able name is composed of more than one word, most programmers capitalize
the first letter of each word, as in the following: NumOfControls, First_Name.

Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name except for the reserved
words that VBA uses. Visual Basic function names and words that have a spe-
cial meaning in VBA cannot be used as variable names. For example, words
such as Name, Len, Empty, Local, Currency, or Exit will generate an error mes-
sage if used as a variable name.

Give your variables names that can help you remember their roles. Some
 programmers use a prefix to identify the variable’s type. A variable name pre-
ceded with “str,” such as strName, can be quickly recognized within the proce-
dure code as the variable holding the text string.

Declaring Variables

You can create a variable by declaring it with a special command or by just using
it in a statement. When you declare your variable, you make Visual Basic aware
of the variable’s name and data type. This is called explicit variable declaration.

SIDEBAR

ACCESS VBA FUNDAMENTALS 55

Advantages of Explicit Variable Declaration

Explicit variable declaration:
 ● Speeds up the execution of your procedure. Since Visual Basic knows the

data type, it reserves only as much memory as is necessary to store the
data.

 ● Makes your code easier to read and understand because all the variables
are listed at the very beginning of the procedure.

 ● Helps prevent errors caused by misspelling a variable name. Visual Basic
automatically corrects the variable name based on the spelling used in the
variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you are
implicitly telling VBA that you want to create this variable. Implicit variables are
automatically assigned the Variant data type (see Table 3.1 earlier in the chap-
ter). Although implicit variable declaration is convenient (it allows you to create
variables on the fly and assign values to them without knowing in advance the
data type of the values being assigned), it can cause several problems.

Disadvantages of Implicit Variable Declaration

 ● If you misspell a variable name in your procedure, Visual Basic may dis-
play a runtime error or create a new variable. You are guaranteed to waste
some time troubleshooting problems that could easily have been avoided
had you declared your variable at the beginning of the procedure.

 ● Since Visual Basic does not know what type of data your variable will
store, it assigns it a Variant data type. Th is causes your procedure to run
slower because Visual Basic must check the data type every time it deals
with your variable. And because Variant variables can store any type of
data, Visual Basic must reserve more memory to store your data.

You declare a variable with the Dim keyword. Dim stands for “dimension.” The
Dim keyword is followed by the variable’s name and type.

Suppose you want the procedure to display the age of an employee. Before
you can calculate the age, you must feed the procedure the employee’s date of
birth. To do this, you declare a variable called dateOfBirth, as follows:
Dim dateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable (dateOf-
Birth). If you don’t like this name, you are free to replace it with another word,

SIDEBAR

SIDEBAR

56 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

as long as the word you are planning to use is not one of the VBA keywords. You
specify the data type the variable will hold by including the As keyword followed
by one of the data types from Table 3.1. The Date data type tells Visual Basic that
the variable dateOfBirth will store a date.

To store the employee’s age, you declare the variable as follows:
Dim intAge As Integer

The intAge variable will store the number of years between today’s date and the
employee’s date of birth. Because age is displayed as a whole number, the intAge
variable has been assigned the Integer data type. You may also want your pro-
cedure to keep track of the employee’s name, so you declare another variable to
hold the employee’s first and last name:
Dim strFullName As String

Because the word Name is on the VBA list of reserved words, using it in your
VBA procedure would guarantee an error. To hold the employee’s full name, we
used the variable strFullName and declared it as the String data type because
the data it will hold is text. Declaring variables is regarded as good program-
ming practice because it makes programs easier to read and helps prevent cer-
tain types of errors.

Informal (Implicit) Variables

Variables that are not explicitly declared with Dim statements are said to be im-
plicitly declared. These variables are automatically assigned a data type called
Variant. They can hold numbers, strings, and other types of information. You
can create an informal variable by assigning some value to a variable name
anywhere in your VBA procedure. For example, you implicitly declare a vari-
able in the following way: intDaysLeft = 100.

Now that you know how to declare your variables, let’s write a procedure that
uses them.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 3.1 Using Variables

1. Start Microsoft Access and create a new database named Chap03.accdb in
your C:\VBAPrimerAccess_ByExample folder.

SIDEBAR

ACCESS VBA FUNDAMENTALS 57

2. Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

3. Choose Insert | Module to add a new standard module, and notice Module1
under the Modules folder in the Project Explorer window.

4. In the Module1 (Code) window, enter the following AgeCalc procedure.
Sub AgeCalc()
 ' variable declaration
 Dim strFullName As String
 Dim dateOfBirth As Date
 Dim intAge As Integer

 ' assign values to variables
 strFullName = "John Smith"
 dateOfBirth = #1/3/1967#

 ' calculate age
 IntAge = Year(Now()) - Year(dateOfBirth)

 ' print results to the Immediate window
 Debug.Print strFullName & " is " & intAge & " years old."
End Sub

Notice that in the AgeCalc procedure the variables are declared on separate
lines at the beginning of the procedure. You can also declare several variables
on the same line, separating each variable name with a comma, as shown here
(be sure to enter this on one line):
Dim strFullName As String, dateOfBirth As Date, intAge As Integer

When you list all your variables on one line, the Dim keyword appears only
once at the beginning of the variable declaration line.

5. If the Immediate window is not open, press Ctrl+G or choose View | Immediate
Window. Because the example procedure writes the results to the Immediate
window, you should ensure that this window is open prior to executing Step 6.

6. To run the AgeCalc procedure, click any line between the Sub and End Sub
keywords and press F5.

What Is the Variable Type?

You can find out the type of a variable used in your procedure by right- clicking
the variable name and selecting Quick Info from the shortcut menu.

SIDEBAR

58 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When Visual Basic executes the variable declaration statements, it creates the
variables with the specified names and reserves memory space to store their
values. Then specific values are assigned to these variables. To assign a value to
a variable, you begin with a variable name followed by an equal sign. The value
entered to the right of the equal sign is the data you want to store in the variable.
The data you enter here must be of the type stated in the variable declaration.
Text data should be surrounded by quotation marks and dates by # characters.

Using the data supplied by the dateOfBirth variable, Visual Basic calculates
the age of an employee and stores the result of the calculation in the variable
called intAge. Then, the full name of the employee and the age are printed to
the Immediate window using the instruction Debug.Print.

Concatenation

You can combine two or more strings to form a new string. The joining opera-
tion is called concatenation. You saw an example of concatenated strings in the
AgeCalc procedure in Hands-On 3.1. Concatenation is represented by an am-
persand character (&). For instance, "His name is " & strFirstName will
produce a string like: His name is John or His name is Michael. The name of
the person is determined by the contents of the strFirstName variable. Notice
that there is an extra space between “is” and the ending quotation mark: "His
name is ". Concatenation of strings can also be represented by a plus sign
(+); however, many programmers prefer to restrict the plus sign to numerical
operations to eliminate ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up
with the untyped variable. Untyped variables in VBA are always assigned the
Variant data type. Variant data types can hold all the other data types (except for
user-defined data types). This feature makes Variant a very flexible and popu-
lar data type. Despite this flexibility, it is highly recommended that you create
typed variables. When you declare a variable of a certain data type, your VBA
procedure runs faster because Visual Basic does not have to stop to analyze the
variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer vari-
ables can hold only whole numbers from –32,768 to 32,767. Other types of nu-
meric variables are Long, Single, Double, and Currency. The Long variables can
hold whole numbers in the range –2,147,483,648 to 2,147,483,647. As opposed
to Integer and Long variables, Single and Double variables can hold decimals.

SIDEBAR

ACCESS VBA FUNDAMENTALS 59

String variables are used to refer to text. When you declare a variable of the
String data type, you can tell Visual Basic how long the string should be. For
instance, Dim strExtension As String * 3 declares the fixed-length String
variable named strExtension that is three characters long. If you don’t assign a
specific length, the String variable will be dynamic. This means that Visual Basic
will make enough space in computer memory to handle whatever text length is
assigned to it.

After a variable is declared, it can store only the type of information that you
stated in the declaration statement.

Assigning string values to numeric variables or numeric values to string
variables results in the error message “Type Mismatch” or causes Visual Basic
to modify the value. For example, if your variable was declared to hold whole
numbers and your data uses decimals, Visual Basic will disregard the decimals
and use only the whole part of the number.

Let’s use the MyNumber procedure in Hands-On 3.2 as an example of how
Visual Basic modifies the data according to the assigned data types.

 Hands-On 3.2 Understanding the Data Type of a Variable

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. Enter the following procedure code for MyNumber in the new module’s Code
window.
Sub MyNumber()
 Dim intNum As Integer

 intNum = 23.11
 MsgBox intNum
End Sub

3. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

When you run this procedure, Visual Basic displays the contents of the variable
intNum as 23, and not 23.11, because the intNum variable was declared as an
Integer data type.

60 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Using Type Declaration Characters

If you don’t declare a variable with a Dim statement, you can still designate a type
for it by using a special character at the end of the variable name. For example,
to declare the FirstName variable as String, you append the dollar sign to the
variable name:
Dim FirstName$

This is the same as Dim FirstName As String. Other type declaration char-
acters are shown in Table 3.2. Notice that the type declaration characters can be
used only with six data types. To use the type declaration character, append the
character to the end of the variable name.

TABLE 3.2 Type declaration characters.

Data Type Character
Integer %
Long &
Single !
Double #
Currency @
String $

Declaring Typed Variables

The variable type can be indicated by the As keyword or by attaching a type
symbol. If you don’t add the type symbol or the As command, VBA will default
the variable to the Variant data type.

 Hands-On 3.3 Using Type Declaration Characters in Variable Names

This hands-on exercise uses the Chap03.accdb database that you created in
Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the AgeCalc2 procedure code in the new module’s Code window.

Sub AgeCalc2()
 ' variable declaration
 Dim FullName$
 Dim DateOfBirth As Date
 Dim age%

SIDEBAR

ACCESS VBA FUNDAMENTALS 61

 ' assign values to variables
 FullName$ = "John Smith"
 DateOfBirth = #1/3/1967#

 ' calculate age
 age% = Year(Now()) - Year(DateOfBirth)

 ' print results to the Immediate window
 Debug.Print FullName$ & " is " & age% & " years old."
End Sub

3. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

Assigning Values to Variables

Now that you know how to correctly name and declare variables, it’s time to
learn how to initialize them.

 Hands-On 3.4 Assigning Values to Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the code of the CalcCost procedure in the new module’s Code window.

Sub CalcCost()
 slsPrice = 35
 slsTax = 0.085
 cost = slsPrice + (slsPrice * slsTax)
 strMsg = "The calculator total is $" & cost & "."
 MsgBox strMsg
End Sub

3. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

4. Change the calculation of the cost variable in the CalcCost procedure as
follows:
cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

5. To run the modified procedure, click any line between the Sub and End Sub
keywords and press F5 or choose Run | Run Sub/UserForm.

62 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The CalcCost procedure uses four variables: slsPrice, slsTax, cost, and
strMsg. Because none of these variables have been explicitly declared with the
Dim keyword and a specific data type, they all have the same data type—Vari-
ant. The variables slsPrice and slsTax were created by assigning some val-
ues to the variable names at the beginning of the procedure. The cost variable
was assigned the value resulting from the calculation slsPrice + (slsPrice *
slsTax). The cost calculation uses the values supplied by the slsPrice and
slsTax variables. The strMsg variable puts together a text message to the user.
This message is then displayed with the MsgBox function.

When you assign values to variables, you follow the name of the variable
with the equal sign. After the equal sign you enter the value of the variable. This
can be text surrounded by quotation marks, a number, or an expression. While
the values assigned to the variables slsPrice, slsTax, and cost are easily un-
derstood, the value stored in the strMsg variable is a little more involved.

Let’s examine the content of the strMsg variable:
strMsg = "The calculator total is $" & cost & "."

 ● Th e string "The calculator total is $" begins and ends with quota-
tion marks. Notice the extra space before the ending quotation mark.

 ● Th e & symbol allows one string to be appended to another string or to the
contents of a variable and must be used every time you want to append a
new piece of information to the previous string.

 ● Th e cost variable is a placeholder. Th e actual cost of the calculator will be
displayed here when the procedure runs.

 ● Th e & symbol attaches yet another string.
 ● Th e period (.) is a character and must be surrounded by quotation marks.

When you require a period at the end of the sentence, you must attach it
separately when it follows the name of a variable.

Variable Initialization

Visual Basic automatically initializes a new variable to its default value when it
is created. Numerical variables are set to zero (0), Boolean variables are initial-
ized to False, string variables are set to the empty string (“”), and Date variables
are set to December 30, 1899.

Notice that the cost displayed in the message box has three decimal places. To
display the cost of a calculator with two decimal places, you need to use a func-
tion. VBA has special functions that allow you to change the format of data. To

SIDEBAR

ACCESS VBA FUNDAMENTALS 63

change the format of the cost variable you should use the Format function. This
function has the following syntax:
Format(expression, format)

where expression is a value or variable you want to format, and format is the
type of format you want to apply.

After having tried the CalcCost procedure, you may wonder why you should
bother declaring variables if Visual Basic can handle undeclared variables so
well. The CalcCost procedure is very short, so you don’t need to worry about
how many bytes of memory will be consumed each time Visual Basic uses the
Variant variable. In short procedures, however, it is not the memory that matters
but the mistakes you are bound to make when typing variable names. What will
happen if the second time you use the cost variable you omit the “o” and refer
to it as cst?
strMsg = "The calculator total is " & "$" & cst & "."

And what will you end up with if, instead of slsTax, you use the word tax in
the formula?
cost = Format(slsPrice + (slsPrice * tax), "0.00")

When you run the procedure with the preceding errors introduced, Visual Basic
will not show the cost of the calculator because it does not find the assignment
statement for the cst variable. And because Visual Basic does not know the
sales tax, it displays the price of the calculator as the total cost. Visual Basic does
not guess—it simply does what you tell it to do. This brings us to the next sec-
tion, which explains how to make sure that errors of this sort don’t occur.

NOTE Before you continue with this chapter, be sure to replace the
names of the variables cst and tax with cost and slsTax.

Forcing Declaration of Variables

Visual Basic has an Option Explicit statement that you can use to automati-
cally remind yourself to formally declare all your variables. This statement must
be entered at the top of each of your modules. The Option Explicit statement
will cause Visual Basic to generate an error message when you try to run a pro-
cedure that contains undeclared variables.

64 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 3.5 Forcing Declaration of Variables

1. Return to the Code window where you entered the CalcCost procedure (see
Hands-On 3.4).

2. At the top of the module window (below the Option Compare Database
statement), enter
Option Explicit

and press Enter. Visual Basic will display the statement in blue.
3. Position the insertion point anywhere within the CalcCost procedure and

press F5 to run it. Visual Basic displays this error message: “Compile error:
Variable not defined.”

4. Click OK to exit the message box. Visual Basic selects the name of the
variable, slsPrice, and highlights in yellow the name of the procedure, Sub
CalcCost(). The titlebar displays “Microsoft Visual Basic for Applications—
Chap03 [break]—[Module4 (Code)].” The Visual Basic Break mode allows you
to correct the problem before you continue. Now you must formally declare
the slsPrice variable.

5. Enter the declaration statement
Dim slsPrice As Currency

on a new line just below Sub CalcCost() and press F5 to continue. When
you declare the slsPrice variable and rerun your procedure, Visual Basic
will generate the same compile error as soon as it encounters another variable
name that was not declared. To fix the remaining problems with the variable
declaration in this procedure, choose Run | Reset to exit the Break mode.

6. Enter the following declarations at the beginning of the CalcCost procedure:
' declaration of variables
Dim slsPrice As Currency
Dim slsTax As Single
Dim cost As Currency
Dim strMsg As String

7. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm. Your revised CalcCost
procedure looks like this:
' revised CalcCost procedure with variable declarations
Sub CalcCost()
 ' declaration of variables
 Dim slsPrice As Currency
 Dim slsTax As Single

ACCESS VBA FUNDAMENTALS 65

 Dim cost As Currency
 Dim strMsg As String

 slsPrice = 35
 slsTax = 0.085

 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")
 strMsg = "The calculator total is $" & cost & "."

 MsgBox strMsg
End Sub

The Option Explicit statement you entered at the top of the module Code
window (see Step 2) forced you to declare variables. Because you must include
the Option Explicit statement in each module where you want to require
variable declaration, you can have Visual Basic enter this statement for you each
time you insert a new module.

To automatically include Option Explicit in every new module you create,
follow these steps:

1. Choose Tools | Options.
2. Ensure that the Require Variable Declaration checkbox is selected in the

Options dialog box (Editor tab).
3. Choose OK to close the Options dialog box.

From now on, every new module will be added with the Option Explicit
statement. If you want to require variables to be explicitly declared in a module
you created prior to enabling Require Variable Declaration in the Options dia-
log box, you must enter the Option Explicit statement manually by editing
the module yourself.

More about Option Explicit

Option Explicit forces formal (explicit) declaration of all variables in a
module. One big advantage of using Option Explicit is that misspellings of
variable names will be detected at compile time (when Visual Basic attempts
to translate the source code to executable code). The Option Explicit state-
ment must appear in a module before any procedures.

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. Scope
defines the availability of a variable to the same procedure or other procedures.

SIDEBAR

66 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Variables can have the following three levels of scope in Visual Basic for Ap-
plications:

 ● Procedure-level scope
 ● Module-level scope
 ● Project-level scope

Procedure-Level (Local) Variables

From this chapter you already know how to declare a variable using the Dim
statement. The position of the Dim statement in the module determines the
scope of a variable. Variables declared with the Dim statement within a VBA
procedure have a procedure-level scope. Procedure- level variables can also be
declared by using the Static statement (see “Using Static Variables” later in
this chapter).

Procedure-level variables are frequently referred to as local variables, which
can be used only in the procedure where they were declared. Undeclared vari-
ables always have a procedure-level scope.

A variable’s name must be unique within its scope. This means that you can-
not declare two variables with the same name in the same procedure. However,
you can use the same variable name in different procedures. In other words, the
CalcCost procedure can have the slsTax variable, and the ExpenseRep proce-
dure in the same module can have its own variable called slsTax. Both variables
are independent of each other.

Local Variables: With Dim or Static?

When you declare a local variable with the Dim statement, the value of the vari-
able is preserved only while the procedure in which it is declared is running.
As soon as the procedure ends, the variable dies. The next time you execute the
procedure, the variable is reinitialized.
 When you declare a local variable with the Static statement, the value of the
variable is preserved after the procedure in which the variable was declared has
finished running. Static variables are reset when you quit the Microsoft Access
application or when a runtime error occurs while the procedure is running.

Module-Level Variables

Often you want the variable to be available to other VBA procedures in the mod-
ule after the procedure in which the variable was declared has finished running.
This situation requires that you change the variable’s scope to module-level.

SIDEBAR

ACCESS VBA FUNDAMENTALS 67

Module-level variables are declared at the top of the module (above the first
procedure definition) by using the Dim or Private statement. These variables
are available to all of the procedures in the module in which they were declared
but are not available to procedures in other modules.

For instance, to make the slsTax variable available to any other procedure in
the module, you could declare it by using the Dim or Private statement:
Option Explicit
Dim slsTax As Single ' module-level variable declared with
 ' Dim statement

Sub CalcCost()
...Instructions of the procedure...

End Sub

Notice that the slsTax variable is declared at the top of the module, just below
the Option Explicit statement and before the first procedure definition. You
could also declare the slsTax variable like this:
Option Explicit
Private slsTax As Single ' module-level variable declared with
 ' Private statement

Sub CalcCost()
 ...Instructions of the procedure...
End Sub

There is no difference between module-level variables declared with Dim or
Private statements.

Before you can see how module-level variables actually work, you need an-
other procedure that also uses the slsTax variable.

 Hands-On 3.6 Understanding Module-Level Variables

This hands-on exercise requires the prior completion of Hands-On 3.4 and 3.5.

1. In the Code window, in the same module where you entered the CalcCost
procedure, cut the declaration line Dim slsTax As Single and paste it at the top
of the module sheet, below the Option Explicit statement.

2. Enter the following code of the ExpenseRep procedure in the same module
where the CalcCost procedure is located (see Figure 3.1).
Sub ExpenseRep()
 Dim slsPrice As Currency
 Dim cost As Currency

68 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 slsPrice = 55.99
 cost = slsPrice + (slsPrice * slsTax)

 MsgBox slsTax
 MsgBox cost
End Sub

The ExpenseRep procedure declares two Currency type variables: slsPrice
and cost. The slsPrice variable is then assigned a value of 55.99. The
slsPrice variable is independent of the slsPrice variable declared within
the CalcCost procedure.
 The ExpenseRep procedure calculates the cost of a purchase. The cost
includes the sales tax. Because the sales tax is the same as the one used in
the CalcCost procedure, the slsTax variable has been declared at the module
level. After Visual Basic executes the CalcCost procedure, the contents of the
slsTax variable equals 0.085. If slsTax were a local variable, the contents of
this variable would be empty upon the termination of the CalcCost procedure.
The ExpenseRep procedure ends by displaying the value of the slsTax and
cost variables in two separate message boxes.

FIGURE 3.1 Using module-level variables.

ACCESS VBA FUNDAMENTALS 69

 After running the CalcCost procedure, Visual Basic erases the contents of
all the variables except for the slsTax variable, which was declared at a module
level. As soon as you attempt to calculate the cost by running the ExpenseRep
procedure, Visual Basic retrieves the value of the slsTax variable and uses it
in the calculation.

3. Click anywhere inside the revised CalcCost procedure and press F5 to run it.
4. As soon as the CalcCost procedure finishes executing, run the ExpenseRep

procedure.

Project-Level Variables

In the previous sections, you learned that declaring a variable with the Dim or
Private keyword at the top of the module makes it available to other proce-
dures in that module. Module-level variables that are declared with the Public
keyword (instead of Dim or Private) have project-level scope. This means that
they can be used in any Visual Basic for Applications module. When you want
to work with a variable in all the procedures in all the open VBA projects, you
must declare it with the Public keyword—for instance:
Option Explicit
Public gslsTax As Single

Sub CalcCost()
...Instructions of the procedure...

End Sub

Notice that the gslsTax variable declared at the top of the module with the
Public keyword will now be available to any VBA modules that your code ref-
erences.

A variable declared in the declaration section of a module using the Public
keyword is called a global variable. This variable can be seen by all procedures
in the database’s modules. It is customary to use the prefix “g” to indicate this
type of variable.

When using global variables, it’s important to keep in mind the following:

 ● Th e value of the global variable can be changed anywhere in your pro-
gram. An unexpected change in the value of a variable is a common cause
of problems. Be careful not to write a block of code that modifi es a global
variable. If you need to change the value of a variable within your applica-
tion, make sure you are using a local variable.

 ● Values of all global variables declared with the Public keyword are
cleared when Access encounters an error. Since the release of the Access

70 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2007 database format (ACCDB), you can use the TempVars collection for
your global variable needs (see “Using Temporary Variables” later in this
chapter).

 ● Don’t put your global variable declaration in a form class module. Vari-
ables in the code module behind the form are never global even if you
declare them as such. You must use a standard code module (Insert | Mod-
ule) to declare variables to be available in all modules and forms. Variables
declared in a standard module can be used in the code for any form.

 ● Use constants as much as possible whenever your application requires
global variables. Constants are much more reliable because their values
are static. Constants are covered later in this chapter.

Public Variables and the Option Private Module Statement

Variables declared using the Public keyword are available to all procedures in
all modules across all applications. To restrict a public module-level variable
to the current database, include the Option Private Module statement in
the declaration section of the standard or class module in which the variable
is declared.

Understanding the Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable deter-
mines how long a variable retains its value. Module-level and project-level vari-
ables preserve their values as long as the project is open. Visual Basic, however,
can reinitialize these variables if required by the program’s logic. Local variables
declared with the Dim statement lose their values when a procedure has finished.
Local variables have a lifetime as long as a procedure is running, and they are
reinitialized every time the program is run. Visual Basic allows you to extend
the lifetime of a local variable by changing the way it is declared.

Using Temporary Variables

In the previous section, you learned that you can declare a global variable with
the Public keyword and use it throughout your entire application. You also
learned that these variables can be quite problematic, especially when you or
another programmer accidentally changes the value of the variable or your
application encounters an error and the values of the variables you have initially
set for your application to use are completely wiped out. To avoid such problems,
many programmers resort to using separate global variables form to hold their

SIDEBAR

ACCESS VBA FUNDAMENTALS 71

global variables. And if they need certain values to be available the next time
the application starts, they create a separate database table to store these values.
A global variables form is simply a blank Access form where you can place both
bound and unbound controls. Bound controls are used to pull the data from the
table where global variables have been stored. You can use unbound controls
on a form to store values of global variables that are not stored in a separate
table. Simply set the ControlSource property of the unbound control by typ-
ing a value in it or use a VBA procedure to set the value of the ControlSource.
The form set up as a global variables form must be open while the application
is running for the values of the bound and unbound controls to be available to
other forms, reports, and queries in the database. A global variables form can be
hidden if the values of the global variables are pulled from a database table or set
using VBA procedures or macro actions.

If your database is in the ACCDB format, instead of using a database table
or global variables, you can use the TempVars collection to store the Variant
values you want to reuse. TempVars stands for temporary variables. Temporary
variables are global. You can refer to them in VBA modules, event procedures,
queries, expressions, add-ins, and in any referenced databases. Access .ACCDB
databases allow you to define up to 255 temporary variables at one time. These
variables remain in memory until you close the database (unless you remove
them when you are finished working with them). Unlike public variables, tem-
porary variable values are not cleared when an error occurs.

Creating a Temporary Variable with a TempVars Collection Object

Let’s look at some examples of using the TempVars collection first introduced in
Access 2007. Assume your application requires three variables named gtvUser-
Name, gtvUserFolder, and gtvEndDate.

To try this out, open the Immediate window and type the following state-
ments. The variable is created as soon as you press Enter after each statement.
TempVars("gtvUserName").Value = "John Smith"
TempVars("gtvUserFolder").Value = Environ("HOMEPATH")
TempVars("gtvEndDate").Value = Format(now(),"mm/dd/yyyy")

Notice that to create a temporary variable all you have to do is specify its value.
If the variable does not already exist, Access adds it to the TempVars collection.
If the variable exists, Access modifies its value.

You can explicitly add a global variable to the TempVars collection by using
the Add method, like this:
TempVars.Add "gtvCompleted", "true"

72 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Retrieving Names and Values of TempVar Objects

Each TempVar object in the TempVars collection has Name and Value properties
that you can use to access the variable and read its value from any procedure.
By default, the items in the collection are numbered from zero (0), with the first
item being zero, the second item being one, the third two, and so on. There-
fore, to find the value of the second variable in the TempVars you have entered
(gtvUserFolder), type the following statement in the Immediate window:
?TempVars(1).Value

When you press Enter, you will see the location of the user’s private folder on
the computer. In this case, it is your private folder. The folder information was
returned by passing the “HOMEPATH” parameter to the built-in Environ func-
tion. Functions and parameter passing are covered in Chapter 4.

You can also retrieve the value of the variable from the TempVars collection
by using its name, like this:
?TempVars("gtvUserFolder").Value

You can iterate through the TempVars collection to see the names and values
of all global variables that you have placed in it. To do this from the Immediate
window, you need to use the colon operator (:) to separate lines of code. Type
the following statement all on one line to try this out:
For Each gtv in TempVars : Debug.Print gtv.Name & ":"
& gtv.Value : Next

When you press Enter, the Debug.Print statement will write to the Immedi-
ate window a name and value for each variable that is currently stored in the
TempVars collection:
gtvUserName:John Smith
gtvUserFolder:\Documents and Settings\John
gtvEndDate:09/12/2015
gtvCompleted:true

The For Each…Next statement, a popular VBA programming construct, is cov-
ered in detail in Chapter 6. The “gtv” is an object variable used as an iterator. An
iterator allows you to traverse through all the elements of a collection. You can
use any variable name as an iterator as long as it is not a VBA keyword. Object
variables are discussed later in this chapter. For more information on working
with collections, see Chapter 8.

ACCESS VBA FUNDAMENTALS 73

Using Temporary Global Variables in Expressions

You can use temporary global variables anywhere expressions can be used. For
example, you can set the value of the unbound text box control on a form to dis-
play the value of your global variable by activating the property sheet and typing
the following in the ControlSource property of the text box:
=[TempVars]![gtvCompleted]

You can also use a temporary variable to pass selection criteria to queries:
SELECT * FROM Orders WHERE Order_Date = TempVars!gtvEndDate

Removing a Temporary Variable from a TempVars Collection Object

When you are done using a variable, you can remove it from the TempVars col-
lection with the Remove method, like this:
TempVars.Remove "gtvUserFolder"

To check the number of the TempVar objects in the TempVars collection, use the
Count property in the Immediate window:
?TempVars.Count

Finally, to quickly remove all global variables (TempVar objects) from the
TempVars collection, simply use the RemoveAll method, like this:
TempVars.RemoveAll

The TempVars Collection Is Exposed to Macros

The following three macros allow macro users to set and remove TempVar
objects:

 ● SetTempVar—Sets a TempVar to a given value. You must specify the name
of the temporary variable and the expression that will be used to set the
value of this variable. Expressions must be entered without an equal sign
(=).

 ● RemoveTempVar—Removes the TempVar from the TempVars collection.
You must specify the name of the temporary variable you want to remove.

 ● RemoveAllTempVars—Clears the TempVars collection.

The values of TempVar objects can be used in the arguments and in the condi-
tion columns of macros.

SIDEBAR

74 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Using Static Variables

A variable declared with the Static keyword is a special type of local variable.
Static variables are declared at the procedure level. Unlike the local variables
declared with the Dim keyword, static variables remain in existence and retain
their values when the procedure in which they were declared ends.

The CostOfPurchase procedure (see Hands-On 3.7) demonstrates the use of
the static variable allPurchase. The purpose of this variable is to keep track of
the running total.

 Hands-On 3.7 Using Static Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the following CostOfPurchase procedure code in the new module’s

Code window.
Sub CostOfPurchase()
 ' declare variables
 Static allPurchase
 Dim newPurchase As String
 Dim purchCost As Single

 newPurchase = InputBox("Enter the cost of a purchase:")
 purchCost = CSng(newPurchase)
 allPurchase = allPurchase + purchCost

 ' display results
 MsgBox "The cost of a new purchase is: " & newPurchase
 MsgBox "The running cost is: " & allPurchase
End Sub

This procedure begins with declaring a static variable named allPurchase
and two local variables named newPurchase and purchCost. The InputBox
function is used to get a user’s input while the procedure is running. As soon
as the user inputs the value and clicks OK, Visual Basic assigns the value to the
newPurchase variable. Because the result of the InputBox function is always
a string, the newPurchase variable was declared as the String data type. You
cannot use strings in mathematical calculations, so the next instruction uses
a type conversion function (CSng) to translate the text value into a numeric
value, which is stored as a Single data type in the variable purchCost. The
CSng function requires only one argument: the value you want to translate.

ACCESS VBA FUNDAMENTALS 75

Refer to Chapter 4 for more information about converting data types.
The next instruction, allPurchase = allPurchase + purchCost, adds the
new value supplied by the InputBox function to the current purchase value.
When you run this procedure for the first time, the value of the allPurchase
variable is the same as the value of the purchCost variable. During the second
run, the value of the static variable is increased by the new value entered in
the dialog box. You can run the CostOfPur chase procedure as many times as
you want. The allPurch variable will keep the running total for as long as the
project is open.

3. To run the procedure, position the insertion point anywhere within the
CostOfPurchase procedure and press F5.

4. When the dialog box appears, enter a number. For example, type 100 and press
Enter. Visual Basic displays the message “The cost of a new purchase is: 100.”

5. Click OK in the message box. Visual Basic displays the second message “The
running cost is: 100.”

6. Rerun the same procedure.
7. When the input box appears, enter another number. For example, type 50 and

press Enter. Visual Basic displays the message “The cost of a new purchase is:
50.”

8. Click OK in the message box. Visual Basic displays the second message “The
running cost is: 150.”

9. Run the procedure a couple of times to see how Visual Basic keeps track of the
running total.

Type Conversion Functions

To learn more about the CSng function, position the insertion point anywhere
within the word CSng and press F1.

Using Object Variables

The variables you’ve learned about so far are used to store data, which is the
main reason for using “normal” variables in your procedures. There are also
special variables that refer to the Visual Basic objects. These variables are called
object variables. Object variables don’t store data; they store the location of the
data. You can use them to reference databases, forms, and controls as well as
objects created in other applications. Object variables are declared in a similar
way as the variables you’ve already seen. The only difference is that after the As
keyword, you enter the type of object your variable will point to—for instance:

SIDEBAR

76 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dim myControl As Control

This statement declares the object variable called myControl of type Control.
Dim frm As Form

This statement declares the object variable called frm of type Form.
You can use object variables to refer to objects of a generic type, such as Ap-

plication, Control, Form, or Report, or you can point your object variable to spe-
cific object types, such as TextBox, ToggleButton, CheckBox, CommandButton,
ListBox, OptionButton, Subform or Subreport, Label, BoundObjectFrame or
UnboundObjectFrame, and so on. When you declare an object variable, you
also have to assign it a specific value before you can use it in your procedure.
You assign a value to the object variable by using the Set keyword followed by
the equal sign and the value that the variable refers to—for example:
Set myControl = Me!CompanyName

The preceding statement assigns a value to the object variable called myCon-
trol. This object variable will now point to the CompanyName control on the
active form. If you omit the word Set, Visual Basic will display the error mes-
sage “Runtime error 91: Object variable or With block variable not set.”

Again, it’s time to see a practical example. The HideControl procedure in
Hands-On 3.8 demonstrates the use of the object variables frm and myControl.

 Hands-On 3.8 Working with Object Variables

1. Close the currently open Access database Chap03.accdb. When prompted to
save changes in the modules, click OK. Save the modules with the suggested
default names Module1, Module2, and so on.

2. Copy the HandsOn_03_8.accdb database from the companion CD to your
C:\VBAPrimerAccess_ByExample folder. This database contains a Customer
table and a simple Customer form imported from the Northwind.mdb sample
database that shipped with an earlier version of Microsoft Access.

3. Open Access and load the C:\VBAPrimerAccess_ByExample\HandsOn_03_8.
accdb database file.

4. Open the Customers form in Form view.
5. Press Alt+F11 to switch to the Visual Basic Editor window.
6. Choose Insert | Module to add a new module.
7. Enter the following HideControl procedure code in the new module’s Code

window.

ACCESS VBA FUNDAMENTALS 77

Sub HideControl()
 ' this procedure is run against the open Customers form
 Dim frm As Form
 Dim myControl As Control

 Set frm = Forms!Customers
 Set myControl = frm.CompanyName
 myControl.Visible = False
End Sub

8. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.
The procedure begins with the declaration of two object variables called frm
and myControl. The object variable frm is set to reference the Customers
form. For the procedure to work, the referenced form must be open. Next, the
myControl object variable is set to point to the CompanyName control located
on the Customers form.
 Instead of using the object’s entire address, you can use the shortcut—the
name of the object variable. For example, the statement
Set myControl = frm.CompanyName

is the same as
Set myControl = Forms!Customers.CompanyName

The purpose of this procedure is to hide the control referenced by the object
variable myControl. After running the HideControl procedure, switch to
the Microsoft Access window containing the open Customers form. The
CompanyName control should not be visible on the form.

NOTE
To make the CompanyName text box visible again, modify the
last line of this procedure by setting the Visible property of my-
Control to True and rerun the procedure.

Advantages of Using Object Variables

The advantages of object variables are:

 ● Th ey can be used instead of the actual object.
 ● Th ey are shorter and easier to remember than the actual values they point

to.
 ● You can change their meaning while your procedure is running.

SIDEBAR

78 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Disposing of Object Variables

When the object variable is no longer needed, you should assign Nothing to it.
This frees up memory and system resources:
Set frm = Nothing
Set myControl = Nothing

Finding a Variable Definition

When you find an instruction that assigns a value to a variable in a VBA proce-
dure, you can quickly locate the definition of the variable by selecting the vari-
able name and pressing Shift+F2. Alternately, you can choose View | Definition.
Visual Basic will jump to the variable declaration line. To return your mouse
pointer to its previous position, press Ctrl+Shift+F2 or choose View | Last Posi-
tion. Let’s try it out.

 Hands-On 3.9 Finding a Variable Defi nition

This hands-on exercise requires prior completion of Hands-On 3.8.

1. Locate the code of the procedure HideControl you created in Hands-On 3.8.
2. Locate the statement myControl.Visible = .
3. Right-click the myControl variable name and choose Definition from the

shortcut menu.
4. Press Ctrl+Shift+F2 to return to the previous location in the procedure code

(myControl.Visible =).

Determining the Data Type of a Variable

Visual Basic has a built-in VarType function that returns an integer indicating
the variable’s type. Let’s see how you can use this function in the Immediate
window.

 Hands-On 3.10 Asking Questions about the Variable Type

1. Open the Immediate window (View | Immediate Window) and type the
following statements that assign values to variables:
age = 28
birthdate = #1/1/1981#
firstName = "John"

ACCESS VBA FUNDAMENTALS 79

2. Now, ask Visual Basic what type of data each variable holds:
?varType(age)

When you press Enter, Visual Basic returns 2. The number 2 represents the
Integer data type, as shown in Table 3.3.
?varType(birthdate)

Now Visual Basic returns 7 for Date. If you make a mistake in the variable
name (let’s say you type birthday instead of birthdate), Visual Basic returns
zero (0).
?varType(firstName)

Visual Basic tells you that the value stored in the firstName variable is a String
(8).

TABLE 3.3 Values returned by the VarType function.

Constant Value Description
vbEmpty 0 Empty (uninitialized)
vbNull 1 Null (no valid data)
vbInteger 2 Integer
vbLong 3 Long integer
vbSingle 4 Single-precision floating-point number
vbDouble 5 Double-precision floating-point number
vbCurrency 6 Currency value
vbDate 7 Date value
vbString 8 String
vbObject 9 Object
vbError 10 Error value
vbBoolean 11 Boolean value
vbVariant 12 Variant (used only with arrays of variants)
vbDataObject 13 Data access object
vbDecimal 14 Decimal value
vbByte 17 Byte value
vbLongLong 20 Long Long integer (on 64-bit platform only)
vbUserDefinedType 36 Variants that contain user-defined types
vbArray 8192 Array

80 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING CONSTANTS IN VBA PROCEDURES

The value of a variable can change while your procedure is executing. If your
procedure needs to refer to unchanged values repeatedly, you should use con-
stants. A constant is like a named variable that always refers to the same value.
Visual Basic requires that you declare constants before you use them.

You declare constants by using the Const statement, as in the following ex-
amples:
Const dialogName = "Enter Data" As String
Const slsTax = 8.5
Const Discount = 0.5
Const ColorIdx = 3

A constant, like a variable, has a scope. To make a constant available within a
single procedure, you declare it at the procedure level, just below the name of
the procedure—for instance:
Sub WedAnniv()
 Const Age As Integer = 25
 ...instructions...
End Sub

If you want to use a constant in all the procedures of a module, use the Private
keyword in front of the Const statement—for instance:
Private Const dsk = "B: " As String

The Private constant must be declared at the top of the module, just before the
first Sub statement.

If you want to make a constant available to all modules in your application,
use the Public keyword in front of the Const statement—for instance:
Public Const NumOfChar As Integer = 255

The Public constant must be declared at the top of the module, just before the
first Sub statement.

When declaring a constant, you can use any one of the following data types:
Boolean, Byte, Integer, Long, Currency, Single, Double, Date, String, or Variant.

Like variables, constants can be declared on one line if separated by com-
mas—for instance:
Const Age As Integer = 25, PayCheck As Currency = 350

Using constants makes your VBA procedures more readable and easier to main-
tain. For example, if you need to refer to a certain value several times in your
procedure, use a constant instead of using a value. This way, if the value changes

ACCESS VBA FUNDAMENTALS 81

(e.g., the sales tax rate goes up), you can simply change the value in the declaration
of the Const statement instead of tracking down every occurrence of the value.

Intrinsic Constants

Both Microsoft Access and Visual Basic for Applications have a long list of pre-
defined (intrinsic) constants that do not need to be declared. These built-in con-
stants can be looked up using the Object Browser window, which was discussed
in detail in Chapter 2.

Let’s open the Object Browser to look at the list of constants in Access.

 Hands-On 3.11 Exploring Access’s Constants

1. In the Visual Basic Editor window, choose View | Object Browser.
2. In the Project/Library list box, click the drop-down arrow and select the Access

library.
3. Enter constants as the search text in the Search Text box and either press Enter

or click the Search button. Visual Basic shows the results of the search in the
Search Results area. The right side of the Object Browser window displays a list
of all built-in constants available in the Microsoft Access Object Library (see
Figure 3.2). Notice that the names of all the constants begin with the prefix “ac.”

FIGURE 3.2 Use the Object Browser to look up any intrinsic constant.

4. To look up VBA constants, choose VBA in the Project/Library list box. Notice
that the names of the VBA built-in constants begin with the prefix “vb.”

82 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Hands-On 3.12 illustrates how to use the intrinsic constants acFilterByForm
and acFilterAdvanced to disable execution of filtering on a form.

 Hands-On 3.12 Using Intrinsic Constants in a VBA Procedure

This hands-on exercise uses the HandsOn_03_8.accdb database file used in
Hands-On 3.8.

1. Open the Customers form in Design view.
2. If the property sheet is not visible, activate it by pressing Alt+Enter.
3. In the property sheet, click the Event tab. Make sure that Form is selected in

the drop-down box on the top of the property sheet.
4. Click to the right of the On Filter property and select the Build button (…).
5. In the Choose Builder dialog box, select Code Builder and click OK.
6. In the Code window, enter the following Form_Filter event procedure code.

Private Sub Form_Filter(Cancel As Integer, FilterType As Integer)
 If FilterType = acFilterByForm Or _
 FilterType = acFilterAdvanced Then
 MsgBox "You need authorization to filter records."
 Cancel = True
 End If
End Sub

7. Press Alt+F11 to switch back to Design view in the Customers form.
8. Right-click the Customers form tab and choose Form View. You can also use

the Views section of the Design tab to activate the Form view.
9. Choose Home | Sort & Filter | Advanced Filter Options | Filter By Form.

Access displays the message “You need authorization to filter records.” The
same message appears when you choose Advanced Filter/Sort from the
Advanced Filter Options.

SUMMARY

This chapter has introduced you to several important VBA concepts such as
data types, variables, and constants. You learned how to declare various types of
variables and define their types. You also saw the difference between a variable
and a constant.

In the next chapter, you will expand your knowledge of Visual Basic for
Applications by writing procedures and functions with arguments. In addition,
you will learn about built-in functions that allow your VBA procedures to
interact with users.

83

As you already know from Chapter 1, VBA subroutines and function
procedures often require arguments to perform certain tasks. In this
chapter, you learn various methods of passing arguments to procedures

and functions.

WRITING FUNCTION PROCEDURES

Function procedures can perform calculations based on data received through
arguments. When you declare a function procedure, you list the names of argu-
ments inside a set of parentheses, as shown in Hands-On 4.1.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 4.1 Writing a Function Procedure with Arguments

1. Start Microsoft Access and create a new database named Chap04.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual Basic
Editor window.

Chapter

 4 ACCESS VBA
BUILT-IN AND
CUSTOM FUNCTIONS

84 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Insert | Module to add a new standard module and notice that
Module1 appears under the Modules folder in the Project Explorer window.

4. In the Module1 (Code) window, enter the code of the JoinText function
procedure as shown here.
Function JoinText(k, o)
 JoinText = k + " " + o
End Function

Note that there is a space character in quotation marks concatenated between
the two arguments of the JoinText function’s result: JoinText = k + " " + o.
 A better way of adding a space is by using one of the following built-in
functions:
JoinText = k + Space(1) + o

or:
JoinText = k + Chr(32) + o

The Space function returns a string of spaces as indicated by the number in
the parentheses. The Chr function returns a string containing the character
associated with the specified character code.
 Other control characters you may need to use when writing your VBA
 procedures include:

Tab Chr(9)

Linefeed Chr(10)

Carriage Return Chr(13)

VARIOUS METHODS OF RUNNING FUNCTION PROCEDURES

You can execute a function procedure from the Immediate window, or you can
write a subroutine to call the function. See Hands-On 4.2 and 4.3 for instruc-
tions on how to run the JoinText function procedure using these two methods.

 Hands-On 4.2 Executing a Function Procedure from the Immediate
Window

This hands-on exercise requires prior completion of Hands-On 4.1.

1. Choose View | Immediate Window or press Ctrl+G, and enter the following
statement:
?JoinText("function", " procedure")

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 85

Notice that as soon as you type the opening parenthesis, Visual Basic displays
the arguments that the function expects. Type the value of the first argument,
enter the comma, and supply the value of the second argument. Fin ish by
entering the closing parenthesis.

2. Press Enter to execute this statement from the Immediate window. When you
press Enter, the string “function procedure” appears in the Immediate window.

 Hands-On 4.3 Executing a Function Procedure from a Subroutine

This hands-on exercise requires prior completion of Hands-On 4.1.

1. In the same module where you entered the JoinText function procedure, enter
the following EnterText subroutine:
Sub EnterText()
 Dim strFirst As String, strLast As String, strFull As String
 strFirst = InputBox("Enter your first name:")
 strLast = InputBox("Enter your last name:")
 strFull = JoinText(strFirst, strLast)

 MsgBox strFull
End Sub

2. Place the cursor anywhere inside the code of the EnterText procedure and
press F5 to run it.

As Visual Basic executes the statements of the EnterText procedure, it uses the
InputBox function to collect the data from the user, and then stores the data (the
values of the first and last names) in the variables strFirst and strLast. Then
these values are passed to the JoinText function. Visual Basic substitutes the vari-
ables’ contents for the arguments of the JoinText function and assigns the result
to the name of the function (JoinText). When Visual Basic returns to the Enter-
Text procedure, it stores the function’s value in the strFull variable. The MsgBox
function then displays the contents of the strFull variable in a message box.
The result is the full name of the user (first and last name sepa rated by a space).

More about Arguments

Argument names are like variables. Each argument name refers to whatever
value you provide at the time the function is called. You write a subroutine to
call a func tion procedure. When a subroutine calls a function procedure, the
required arguments are passed to the procedure as variables. Once the func-
tion does something, the result is assigned to the function name. Notice that
the function procedure’s name is used as if it were a variable.

SIDEBAR

86 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SPECIFYING THE DATA TYPE FOR A FUNCTION’S RESULT

Like variables, functions can have types. The data type of your function’s result
can be a String, Integer, Long, and so forth. To specify the data type for your
function’s result, add the As keyword and the name of the desired data type to
the end of the function declaration line—for example:
Function MultiplyIt(num1, num2) As Integer

If you don’t specify the data type, Visual Basic assigns the default type (Variant)
to your function’s result. When you specify the data type for your function’s
result, you get the same advantages as when you specify the data type for your
variables—your procedure uses memory more efficiently, and therefore runs
faster.

Let’s look at an example of a function that returns an integer, even though the
arguments passed to it are declared as Single in a calling subroutine.

 Hands-On 4.4 Calling a Function from a Procedure

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. Enter the following HowMuch subroutine in the Code window:
Sub HowMuch()
 Dim num1 As Single
 Dim num2 As Single
 Dim result As Single

 num1 = 45.33
 num2 = 19.24
 result = MultiplyIt(num1, num2)

 MsgBox result
End Sub

3. Enter the following MultiplyIt function procedure in the Code window below
the HowMuch subroutine:
Function MultiplyIt(num1, num2) As Integer

 MultiplyIt = num1 * num2
End Function

4. Click anywhere within the HowMuch procedure and press F5 to run it.
Because the values stored in the variables num1 and num2 are not whole

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 87

numbers, you may want to assign the Integer type to the result of the function
to ensure that the result of the multiplication is a whole number. If you
don’t assign the data type to the MultiplyIt function’s result, the HowMuch
procedure will display the result in the data type specified in the declaration
line of the result variable. Instead of 872, the result of the multiplication will
be 872.1492.
 To make the MultiplyIt function more useful, instead of hard-coding the
values to be used in the multiplication, you can pass different values each time
you run the procedure by using the InputBox function.

5. Take a few minutes to modify the HowMuch procedure on your own,
following the example of the EnterText subrou tine that was created in Hands-
On 4.3.

6. To pass a specific value from a function to a subroutine, assign the value to
the function name. For example, the NumOfDays function shown here passes
the value of 7 to the subroutine DaysInAWeek.
Function NumOfDays()
 NumOfDays = 7
End Function

Sub DaysInAWeek()
 MsgBox "There are " & NumOfDays & " days in a week."
End Sub

Subroutines or Functions: Which Should You Use?

Create a subroutine when you:

 ● Want to perform some actions
 ● Want to get input from the user
 ● Want to display a message on the screen

Create a function when you:

 ● Want to perform a simple calculation more than once
 ● Must perform complex computations
 ● Must call the same block of instructions more than once
 ● Want to check whether a certain expression is true or false

SIDEBAR

88 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

PASSING ARGUMENTS TO BY REFERENCE AND BY VALUE

In some procedures, when you pass arguments as variables, Visual Basic can
suddenly change the value of the variables. To ensure that the called function
procedure does not alter the value of the passed arguments, you should precede
the name of the argument in the function’s declaration line with the ByVal key-
word. Let’s practice this in the following example.

 Hands-On 4.5 Passing Arguments to Subroutines and Functions

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, type the following ThreeNumbers subroutine and the
MyAverage function procedure:
Sub ThreeNumbers()
 Dim num1 As Integer, num2 As Integer, num3 As Integer
 num1 = 10
 num2 = 20
 num3 = 30

 MsgBox MyAverage(num1, num2, num3)
 MsgBox num1
 MsgBox num2
 MsgBox num3
End Sub

Function MyAverage(ByVal num1, ByVal num2, ByVal num3)
 num1 = num1 + 1
 MyAverage = (num1 + num2 + num3) / 3
End Function

3. Click anywhere within the ThreeNumbers procedure and press F5 to run it.
The ThreeNumbers procedure assigns values to three variables, and then calls
the MyAverage function to calculate and return the average of the numbers
stored in these variables. The function’s arguments are the names of the
variables: num1, num2, and num3. Notice that all variable names are preceded
with the ByVal keyword. Also, notice that prior to the calculation of the
average, the MyAverage function changes the value of the num1 variable. Inside
the function procedure, the num1 variable equals 11 (10 + 1). Therefore, when
the function passes the calculated average to the ThreeNumbers procedure,
the MsgBox function displays the result as 20.3333333333333 and not 20, as
expected. The next three functions show the con tents of each of the variables.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 89

The values stored in these variables are the same as the original values assigned
to them: 10, 20, and 30.
 What will happen if you omit the ByVal keyword in front of the num11
argument in the MyAverage function’s declaration line? The function’s result
will still be the same, but the content of the num1 variable displayed by the
MsgBox num1 is now 11. The MyAverage function has not only returned an
unexpected result (20.3333333333333 instead of 20), but also modified
the original data stored in the num1 variable. To prevent Visual Basic from
permanently changing the values supplied to the function, use the ByVal
keyword.

Know Your Keywords: ByRef and ByVal

Because any of the variables passed to a function procedure (or a subroutine)
can be changed by the receiving procedure, it is important to know how to
protect the original value of a variable. Visual Basic has two keywords that give
or deny the permission to change the contents of a variable: ByRef and ByVal.
 By default, Visual Basic passes information to a function procedure (or a
subroutine) by reference (ByRef keyword), referring to the original data speci-
fied in the function’s argument at the time the function is called. So, if the
function alters the value of the argument, the original value is changed. You
will get this result if you omit the ByVal keyword in front of the num1 argument
in the MyAverage function’s declaration line. If you want the function proce-
dure to change the original value, you don’t need to explicitly insert the ByRef
keyword because passed variables default to ByRef.
 When you use the ByVal keyword in front of an argument name, Visual
Basic passes the argument by value, which means that Visual Basic makes a
copy of the original data. This copy is then passed to a function. If the func-
tion changes the value of an argument passed by value, the original data does
not change—only the copy changes. That’s why when the MyAverage function
changed the value of the num1 argument, the original value of the num1 variable
remained the same.

USING OPTIONAL ARGUMENTS

At times, you may want to supply an additional value to a function. Let’s say you
have a function that calculates the price of a meal per person. Sometimes, how-
ever, you’d like the function to perform the same calculation for a group of two

SIDEBAR

90 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

or more people. To indicate that a procedure argument isn’t always required,
precede the name of the argument with the Optional keyword. Arguments that
are optional come at the end of the argument list, following the names of all the
required arguments. Optional arguments must always be the Variant data type.
This means that you can’t specify the optional argument’s type by using the As
keyword.

In the preceding section, you created a function to calculate the average of
three numbers. Suppose that sometimes you would like to use this function to
calculate the average of two numbers. You could define the third argument of the
MyAverage function as optional. To preserve the original MyAverage function,
let’s create the Avg function to calculate the average for two or three numbers.

 Hands-On 4.6 Using Optional Arguments

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. Type the following Avg function procedure in the Code window:
Function Avg(num1, num2, Optional num3)
 Dim totalNums As Integer

 totalNums = 3
 If IsMissing(num3) Then
 num3 = 0
 totalNums = totalNums - 1
 End If
 Avg = (num1 + num2 + num3) / totalNums
End Function

3. Call this function from the Immediate window by entering the following
instruction and pressing Enter:
?Avg(2, 3)

As soon as you press Enter, Visual Basic displays the result: 2.5.
4. Now, type the following instruction and press Enter:

?Avg(2, 3, 5)

This time the result is: 3.3333333333333.

As you’ve seen, the Avg function is used to calculate the average of two or three
numbers. You decide what values and how many values (two or three) you want
to average. When you start typing the values for the function’s arguments in the

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 91

Immediate window, Visual Basic displays the name of the optional argument
enclosed in square brackets.

Let’s take a few minutes to analyze the Avg function. This function can take
up to three arguments. Arguments num1 and num2 are required. Argument num3
is optional. Notice that the name of the optional argument is preceded by the
Optional keyword. The optional argument is listed at the end of the argument
list. Because the types of the num1, num2, and num3 arguments are not declared,
Visual Basic treats all three arguments as Variants.

Inside the function procedure, the totalNums variable is declared as an In-
teger and then assigned a beginning value of 3. Because the function has to be
capable of calculating an average of two or three numbers, the handy built-in
function IsMissing checks for the number of supplied arguments. If the third
(optional) argument is not supplied, the IsMissing function puts the value of
zero (0) in its place and deducts the value of 1 from the value stored in the to-
talNums variable. Hence, if the optional argument is missing, totalNums is 2.
The next statement calculates the average based on the supplied data, and the
result is assigned to the name of the function.

USING THE ISMISSING FUNCTION

The IsMissing function called from within Hands-On 4.6 allows you to deter-
mine whether the optional argument was supplied. This function returns the
logical value of True if the third argument is not supplied and returns False
when the third argument is given. The IsMissing function is used here with the
decision-making statement If…Then (discussed in Chapter 5). If the num3 argu-
ment is missing (IsMissing), then Visual Basic supplies a zero (0) for the value
of the third argument (num3 = 0), and reduces the value stored in the argument
totalNums by 1 (totalNums = totalNums – 1).

USING VBA BUILT-IN FUNCTIONS FOR USER INTERACTION

VBA comes with numerous built-in functions that can be looked up in the Visual
Basic online help. To access an alphabetical listing of all VBA functions, choose
Help | Microsoft Visual Basic for Applications Help in the Visual Basic Editor
window. In the Table of Contents, choose Visual Basic for Applications Lan-
guage Reference | Visual Basic Language Reference | Functions. Each function

92 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

is described in detail and is often illustrated with a code fragment or a complete
function procedure that shows how to use it in a specific context. After complet-
ing this chapter, be sure to launch the VBA help, and browse through the built-
in functions to familiarize yourself with their names and usage. You can also
search for the function name in your favorite browser to get more information.

NOTE

If you are working with Access via the Office 365 subscription ser-
vice, you will need an active Internet connection to access the Visual
Basic for Applications language reference for Microsoft Office 2013
and later. You will find the list of all VBA functions under this link:

http://msdn.microsoft.com/en-us/library/office/jj692811.aspx
The following link will bring up the Office VBA language reference:
http://msdn.microsoft.com/en-us/library/office/gg264383.aspx

One of the features of a good program is its interaction with the user. When you
work with Microsoft Access, you interact with the application by using various
dialog boxes, such as message boxes and input boxes. When you write your
own procedures, you can use the MsgBox function to inform users about an
unexpected error or the result of a specific calculation. So far you have seen a
simple implementation of this function. In the next section, you will find out
how to control the appearance of your message. Then you will learn how to get
information from the user with the InputBox function.

Using the MsgBox Function

The MsgBox function you have used thus far was limited to displaying a message
to the user in a simple, one-button dialog box. You closed the message box by
clicking the OK button or pressing the Enter key. You can create a simple mes-
sage box by following the MsgBox function name with the text of the message
enclosed in quotation marks. In other words, to display the message “The pro-
cedure is complete.” you use the following statement:
MsgBox "The procedure is complete."

You can try this instruction by entering it in the Immediate window. When
you type this instruction and press Enter, Visual Basic displays the message box
shown in Figure 4.1.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 93

FIGURE 4.1 To display a message to the user, place the text as the argument of the MsgBox function.

The MsgBox function allows you to use other arguments that make it possible to
determine the number of buttons that should be available in the message box or
to change the title of the message box from the default. You can also assign your
own help topic. The syntax of the MsgBox function is shown here.
MsgBox (prompt [, buttons] [, title], [, helpfile, context])

Notice that while the MsgBox function has five arguments, only the first one,
prompt, is required. The arguments listed in square brackets are optional.

When you enter a long text string for the prompt argument, Visual Basic
decides how to break the text so it fits the message box. Let’s do some exercises
in the Immediate window to learn various text formatting techniques.

 Hands-On 4.7 Formatting the Message Box

1. In the Visual Basic Editor window, activate the Immediate window and enter
the following instruction. Be sure to enter the entire text string on one line,
and then press Enter.
MsgBox "All done. Now open ""Test.doc"" and place an empty CD
or DVD in your computer’s CD/DVD drive. The following procedure
will copy this file to the disc."

As soon as you press Enter, Visual Basic shows the resulting dialog box (see
Figure 4.2). If you get a compile error, click OK. Then make sure that the name
of the file is surrounded by double quotation marks (""Test.doc"").

94 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 4.2 This long message will look more appealing to the user when you take the text
formatting into your own hands.

When the text of your message is particularly long, you can break it into
several lines using the VBA Chr function. The Chr function’s argument is a
number from 0 to 255, which returns a character represented by this number.
For example, Chr(13) returns a carriage return character (this is the same as
pressing the Enter key), and Chr(10) returns a linefeed character (this is useful
for adding spacing between the text lines).

2. Modify the instruction entered in the previous step in the following way and
make sure it stays on the same line in the Immediate window:
MsgBox "All done." & Chr(13) & "Now open ""Test.doc"" and place
an empty" & Chr(13) & "CD or DVD in your computer’s CD/DVD
drive." & Chr(13) & "The following procedure will copy this
file to the disc."

Your result should look like Figure 4.3.

FIGURE 4.3 You can break a long text string into several lines by using the Chr(13) function.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 95

You must surround each text fragment with quotation marks. Quoted text
embedded in a text string requires an additional set of quotation marks, as in
""Test.doc"". The Chr(13) function indicates a place where you’d like to
start a new line. The concatenate character (&) is used to combine the strings.
When you enter exceptionally long text messages on one line, it’s easy to make
a mistake. An underscore (_) is a special line continuation character in VBA
that allows you to break a long VBA statement into several lines. Unfortunately,
the line continuation character cannot be used in the Immediate window. A
better place to try out various formatting of your long strings for the MsgBox
function is within a VBA procedure.

3. Add a new module by choosing Insert | Module.
4. In the Code window, enter the following MyMessage subroutine. Be sure

to precede each line continuation character (_) with a space.
Sub MyMessage()
 MsgBox "All done." & Chr(13) _
 & "Now open ""Test.doc"" and place an empty" & Chr(13) _
 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _
 & "The following procedure will copy this file to the disc."
End Sub

5. Position the insertion point within the code of the MyMessage procedure and
press F5 to run it.
When you run the MyMessage procedure, Visual Basic displays the same
message as the one illustrated earlier in Figure 4.3.
 As you can see, the text entered on several lines is more readable, and the
code is easier to maintain. To improve the readability of your message, you
may want to add more spacing between the text lines by including blank lines.
To do this, use two Chr(13) functions, as shown in the following step.

6. Enter the following MyMessage2 procedure:
Sub MyMessage2()
 MsgBox "All done." & Chr(13) & Chr(13) _
 & "Now open ""Test.doc"" and place an empty" & Chr(13) _
 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _
 & Chr(13) & "The following procedure will copy this " & _
 "file to the disc."
End Sub

7. Position the insertion point within the code of the MyMessage2 procedure and
press F5 to run it. The result should look like Figure 4.4.

96 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 4.4 You can increase the readability of your message by increasing spacing between
selected text lines.

Now that you have mastered the text formatting techniques, let’s take a closer
look at the next argument of the MsgBox function. Although the buttons argu-
ment is optional, it is frequently used. The buttons argument specifies how
many and what types of buttons you want to appear in the message box. This
argument can be a constant or a number (see Table 4.1). If you omit this argu-
ment, the resulting message box contains only the OK button, as you’ve seen in
the preceding examples.

TABLE 4.1 The MsgBox buttons argument settings.

Constant Value Description
Button settings
vbOKOnly 0 Displays only an OK button. This is the default.
vbOKCancel 1 OK and Cancel buttons
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Yes, No, and Cancel buttons
vbYesNo 4 Yes and No buttons
vbRetryCancel 5 Retry and Cancel buttons
Icon settings
vbCritical 16 Displays the Critical Message icon
vbQuestion 32 Displays the Question Message icon
vbExclamation 48 Displays the Warning Message icon
vbInformation 64 Displays the Information Message icon

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 97

Constant Value Description
Default button settings
vbDefaultButton1 0 The first button is default.
vbDefaultButton2 256 The second button is default.
vbDefaultButton3 512 The third button is default.
vbDefaultButton4 768 The fourth button is default.
Message box modality
vbApplicationModal 0 The user must respond to the message before

continuing to work in the current application.
vbSystemModal 4096 On Win16 systems, this constant is used to

prevent the user from interacting with any other
window until he or she dismisses the message
box. On Win32 systems, this constant works
like the vbApplicationModal constant with the
following exception: The message box always
remains on top of any other programs you may
have running.

Other MsgBox display settings
vbMsgBoxHelpButton 16384 Adds the Help button to the message box
vbMsgBoxSetForeground 65536 Specifies the message box window as the fore-

ground window
vbMsgBoxRight 524288 Text is right-aligned.
vbMsgBoxRtlReading 1048576 Text appears as right-to-left reading on Hebrew

and Arabic systems.

When should you use the buttons argument? Suppose you want the user of
your procedure to respond to a question with Yes or No. Your message box will
then require two buttons. If a message box includes more than one button, one
of them is considered a default button. When the user presses Enter, the default
button is selected automatically.

Because you can display various types of messages (critical, warning, infor-
mation), you can visually indicate the importance of the message by including
the graphical representation (icon). In addition to the type of message, the but-
tons argument can include a setting to determine whether the message box
must be closed before the user switches to another application. It’s quite possible
that the user may want to switch to another program or perform another task
before he responds to the question posed in your message box. If the message
box is application modal (vbApplicationModal), then the user must close the
message box before continuing to use your application.

98 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

For example, consider the following message box:
MsgBox "How are you?", vbOKOnly + vbApplicationModal, " Close Me"

If you type the preceding statement in the Immediate window and press En-
ter, a message box will pop up and you won’t be able to work with your currently
open Microsoft Access application until you respond to the message box.

On the other hand, if you want to keep the message box visible while the user
works with other open applications, you must include the vbSystemModal set-
ting in the buttons argument, like this:
MsgBox "How are you?", vbOKOnly + vbSystemModal, "System Modal"

NOTE
Use the vbSystemModal constant when you want to ensure that
your message box is always visible (not hidden behind other
windows).

The buttons argument settings are divided into five groups: button settings,
icon settings, default button settings, message box modality, and other Msg-
Box display settings (see Table 4.1). Only one setting from each group can be
included in the buttons argument. To create a buttons argument, you can add
up the values for each setting you want to include. For example, to display a
message box with two buttons (Yes and No), the question mark icon, and the No
button as the default button, look up the corresponding values in Table 4.1, and
add them up. You should arrive at 292 (4 + 32 + 256).

To see the message box using the calculated message box argument, enter the
following statement in the Immediate window:
MsgBox "Do you want to proceed?", 292

The resulting message box is shown in Figure 4.5.

FIGURE 4.5 You can specify the number of buttons to include, their text, and an icon in the message
box by using the optional buttons argument.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 99

When you derive the buttons argument by adding up the constant values,
your procedure becomes less readable. There’s no reference table where you can
check the hidden meaning of 292. To improve the readability of your MsgBox
function, it’s better to use the constants instead of their values. For example,
enter the following revised statement in the Immediate window:
MsgBox "Do you want to proceed?",
 vbYesNo + vbQuestion + vbDefaultButton2

The preceding statement produces the result shown in Figure 4.5. The following
example shows how to use the buttons argument inside a Visual Basic proce-
dure.

 Hands-On 4.8 Using the MsgBox Function with Arguments

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the MsgYesNo subroutine shown here:
Sub MsgYesNo()
 Dim question As String
 Dim myButtons As Integer

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 MsgBox question, myButtons
End Sub

3. Run the MsgYesNo procedure by pressing F5.
In this subroutine, the question variable stores the text of your message.
Th e settings for the buttons argument are placed in the myButtons variable.
Instead of using the names of constants, you can use their values, as in the
following:

myButtons = 4 + 32 + 256

The question and myButtons variables are used as arguments for the MsgBox
function. When you run the procedure, you see a result similar to the one shown
in Figure 4.5. Note that the No button is selected, indicating that it’s the default
button for this dialog box. If you press Enter, Visual Basic removes the message
box from the screen. Nothing happens because your procedure does not have
any instructions following the MsgBox function. To change the default button,
use the vbDefaultButton1 setting instead.

100 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The third argument of the MsgBox function is title. While this is also an
optional argument, it’s very handy because it allows you to create procedures
that don’t provide visual clues to the fact that you programmed them with Mi-
crosoft Access. Using this argument, you can set the titlebar of your message
box to any text you want.

Suppose you want the MsgYesNo procedure to display the text “New report”
in its title. The following MsgYesNo2 procedure demonstrates the use of the
title argument.
Sub MsgYesNo2()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New report"
 MsgBox question, myButtons, myTitle
End Sub

The text for the title argument is stored in the myTitle variable. If you don’t
specify the value for the title argument, Visual Basic displays the default text
“Microsoft Access.” Notice that the arguments are listed in the order determined
by the MsgBox function.

If you would like to list the arguments in any order, you must precede the
value of each argument with its name, as shown here:
MsgBox title:=myTitle, prompt:=question, buttons:=myButtons

The last two MsgBox arguments, helpfile and context, are used by more
advanced programmers who are experienced with using help files in the Win-
dows environment. The helpfile argument indicates the name of a special
help file that contains additional information you may want to display to your
VBA application user. When you specify this argument, the Help button will be
added to your message box. When you use the helpfile argument, you must
also use the context argument. This argument indicates which help subject in
the specified help file you want to display. Suppose HelpX.hlp is the help file you
created and 55 is the context topic you want to use. To include this information
in your MsgBox function, you would use the following instruction:
MsgBox title:=myTitle, _
 prompt:=question, _

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 101

 buttons:=myButtons, _
 helpfile:= "HelpX.hlp", _
 context:=55

The preceding is a single VBA statement broken down into several lines using
the line continuation character.

Returning Values from the MsgBox Function

When you display a simple message box dialog with one button, clicking the
OK button or pressing the Enter key removes the message box from the screen.
However, when the message box has more than one button, your procedure
should detect which button was pressed. To do this, you must save the result
of the message box in a variable. Table 4.2 lists values that the MsgBox function
returns.

TABLE 4.2 Values returned by the MsgBox function.

Button Selected Constant Value
OK vbOK 1
Cancel vbCancel 2
Abort vbAbort 3
Retry vbRetry 4
Ignore vbIgnore 5
Yes vbYes 6
No vbNo 7

The MsgYesNo3 procedure in Hands-On 4.9 is a revised version of MsgYesNo2.
It demonstrates how to store the user’s response in a variable.

 Hands-On 4.9 Returning Values from the MsgBox Function

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the following code of the MsgYesNo3 procedure:
Sub MsgYesNo3()
 Dim question As String
 Dim myButtons As Integer
 Dim myTitle As String
 Dim myChoice As Integer

102 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 question = "Do you want to open a new report?"
 myButtons = vbYesNo + vbQuestion + vbDefaultButton2
 myTitle = "New report"
 myChoice = MsgBox(question, myButtons, myTitle)
 MsgBox myChoice
End Sub

3. Position the insertion point within the MsgYesNo3 procedure and press F5 to
run it.
In this procedure, you assigned the result of the MsgBox function to the variable
myChoice. Notice that the arguments of the MsgBox function are now listed in
parentheses:
myChoice = MsgBox(question, myButtons, myTitle)

When you run the MsgYesNo3 procedure, a two-button message box is
displayed. By clicking on the Yes button, the statement MsgBox myChoice
displays the number 6. When you click the No button, the number 7 is
displayed.

MsgBox Function—With or without Parentheses?

Use parentheses around the MsgBox function argument list when you want
to use the result returned by the function. By listing the function’s arguments
without parentheses, you tell Visual Basic that you want to ignore the func-
tion’s result. Most likely, you will want to use the function’s result when the
message box contains more than one button.

Using the InputBox Function

The InputBox function displays a dialog box with a message that prompts the
user to enter data. This dialog box has two buttons: OK and Cancel. When you
click OK, the InputBox function returns the information entered in the text
box. When you select Cancel, the function returns the empty string (“”). The
syntax of the InputBox function is as follows:
InputBox(prompt [, title] [, default] [, xpos] [, ypos]
 [, helpfile, context])

The first argument, prompt, is the text message you want to display in the dialog
box. Long text strings can be entered on several lines by using the Chr(13) or
Chr(10) functions. (See examples of using the MsgBox function earlier in this
chapter.) All the remaining InputBox arguments are optional.

SIDEBAR

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 103

The second argument, title, allows you to change the default title of the
dialog box. The default value is “Microsoft Access.”

The third argument of the InputBox function, default, allows the display
of a default value in the text box. If you omit this argument, the empty text box
is displayed.

The following two arguments, xpos and ypos, let you specify the exact posi-
tion where the dialog box should appear on the screen. If you omit these argu-
ments, the input box appears in the middle of the current window. The xpos ar-
gument determines the horizontal position of the dialog box from the left edge
of the screen. When omitted, the dialog box is centered horizontally. The ypos
argument determines the vertical position from the top of the screen. If you
omit this argument, the dialog box is positioned vertically approximately one-
third of the way down the screen. Both xpos and ypos are measured in special
units called twips. One twip is the equivalent of approximately 0.0007 inches.

The last two arguments, helpfile and context, are used in the same way
as the corresponding arguments of the MsgBox function discussed earlier in this
chapter.

Now that you know the meaning of the InputBox arguments, let’s see some
examples of using this function.

 Hands-On 4.10 Using the InputBox Function

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, type the following Informant subroutine:
Sub Informant()
 InputBox prompt:="Enter your place of birth:" & Chr(13) _
 & " (e.g., Boston, Great Falls, etc.) "
End Sub

3. Position the insertion point within the Informant procedure and press F5 to
run it.
This procedure displays a dialog box with two buttons. The input prompt is
displayed on two lines (see Figure 4.6). Similar to using the MsgBox function
you may want to store the result of the InputBox function in a variable.

104 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 4.6 A dialog box generated by the Informant procedure.

4. Now, in the same module, enter the following code of the Informant2
procedure:
Sub Informant2()
 Dim myPrompt As String
 Dim town As String

 Const myTitle = "Enter data"
 myPrompt = "Enter your place of birth:" & Chr(13) _
 & "(e.g., Boston, Great Falls, etc.)"
 town = InputBox(myPrompt, myTitle)

 MsgBox "You were born in " & town & ".", , "Your response"
End Sub

5. Position the insertion point within the Informant2 procedure and press F5 to
run it.
Notice that the Informant2 procedure assigns the result of the InputBox
function to the town variable.
 This time, the arguments of the InputBox function are listed in parentheses.
Parentheses are required if you want to use the result of the InputBox function
later in your procedure. The Informant2 subroutine uses a constant to specify
the text to appear in the titlebar of the dialog box. Because the constant value
remains the same throughout the execution of your procedure, you can declare
the input box title as a constant. However, if you’d rather use a variable, you
still can.
 When you run a procedure using the InputBox function, the dialog box
generated by this function always appears in the same area of the screen. To
change the location of the dialog box, you must supply the xpos and ypos
arguments, which were explained earlier.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 105

6. To display the dialog box in the top left-hand corner of the screen, modify
the InputBox function in the Informant2 procedure as follows:
town = InputBox(myPrompt, myTitle, , 1, 200)

Notice that the argument myTitle is followed by two commas. The second
comma marks the position of the omitted default argument. The next two
arguments determine the horizontal and vertical position of the dialog box. If
you omit the second comma after the myTitle argument, Visual Basic will use
the number 1 as the value of the default argument. If you precede the values
of arguments by their names (e.g., prompt:=myPrompt, title:=myTitle,

xpos:=1, ypos:=200), you won’t have to remember to insert a comma in the
place of each omitted argument.

What will happen if, instead of the name of a town, you enter a number? Because
users often supply incorrect data in the input box, your procedure must verify
that the data the user entered can be used in further data manipulations. The
InputBox function itself does not provide a facility for data validation. To vali-
date user input, you must use other VBA instructions, which are discussed in
Chapter 5, “Adding Decisions to Your Access VBA Programs.”

CONVERTING DATA TYPES

The result of the InputBox function is always a string. So, if a user enters a num-
ber, its string value must be converted to a numeric value before your procedure
can use the number in mathematical computations. Visual Basic can automati-
cally convert many values from one data type to another.

 Hands-On 4.11 Converting Data Types

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the following AddTwoNums procedure:
Sub AddTwoNums()
 Dim myPrompt As String
 Dim value1 As String
 Dim mySum As Single

 Const myTitle = "Enter data"

106 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 myPrompt = "Enter a number:"
 value1 = InputBox(myPrompt, myTitle, 0)
 mySum = value1 + 2

 MsgBox mySum & " (" & value1 & " + 2)"
End Sub

3. Place the cursor anywhere inside the code of the AddTwoNums procedure and
press F5 to run it.
This procedure displays the dialog box shown in Figure 4.7. Notice that this
dialog box has two special features that are obtained by using the InputBox
function’s optional arguments: title and default. Instead of the default
title “Microsoft Access,” the dialog box displays a text string as defined by the
contents of the myTitle constant. The zero (0) entered as the default value in
the edit box suggests that the user enter a number instead of text. Once the user
provides the data and clicks OK, the input is assigned to the variable value1.
value1 = InputBox(myPrompt, myTitle, 0)

FIGURE 4.7 To suggest that the user enter a specific type of data, you may want to provide a default
value in the edit box.

Th e data type of the variable value1 is String. You can check the data type
easily if you follow the preceding instruction with this statement:

MsgBox varType(value1)

When Visual Basic runs this line, it will display a message box with the number
8. Recall that this number represents the String data type. Th e next line,

mySum = value1 + 2

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 107

adds 2 to the user’s input and assigns the result of the calculation to the
variable mySum. Because the value1 variable’s data type is String, Visual Basic
goes to work behind the scenes to perform the data type conversion. Visual
Basic has the brains to understand the need for conversion. Without it, the two
incompatible data types (text and number) would generate a Type Mismatch
error.

The procedure ends with the MsgBox function displaying the result of the
calculation and showing the user how the total was derived.

Defi ne a Constant

To ensure that all the titlebars in a VBA procedure display the same text, assign
the title text to a constant. By doing so, you will save yourself the time of typing
the title text in more than one place.

SUMMARY

In this chapter, you learned the difference between subroutine procedures that
perform actions and function procedures that return values. You saw exam-
ples of function procedures called from another Visual Basic procedure. You
learned how to pass arguments to functions and how to determine the data type
of a function’s result. You increased your repertoire of VBA keywords with the
ByVal, ByRef, and Optional keywords.

After working through this chapter, you should be able to create some cus-
tom functions of your own that are suited to your specific needs. You should
also be able to interact easily with your users by employing the MsgBox and In-
putBox functions.

In the next chapter, you learn how to make decisions in your VBA programs.

SIDEBAR

109

Visual Basic for Applications offers special statements called conditional
statements, or “control structures,” which allow you to include decision
points in your procedures. In a conditional expression, a relational op-

erator (see Table 5.1), a logical operator (see Table 5.2), or a combination of both
evaluates the expression to determine whether it is true or false. If the answer
is true, the procedure executes a specified block of instructions. If the answer is
false, the procedure either executes a different block of instructions or simply
doesn’t do anything. In this chapter, you will learn how to use these VBA condi-
tional statements to alter the flow of your program.

RELATIONAL AND LOGICAL OPERATORS

You can make decisions in your VBA procedures by using conditional expres-
sions inside the special control structures. A conditional expression is an expres-
sion that uses a relational operator (see Table 5.1), a logical operator (see Table
5.2), or a combination of both. When Visual Basic encounters a conditional
expression in your program, it evaluates the expression to determine whether it
is true or false.

Chapter

 5 ADDING DECISIONS
TO YOUR ACCESS
VBA PROGRAMS

110 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 5.1 Relational operators in VBA.

Operator Description
= Equal to
<> Not equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

TABLE 5.2 Logical operators in VBA.

Operator Description
AND All conditions must be true before an action can be taken.
OR At least one of the conditions must be true before an action can be taken.
NOT If a condition is true, NOT makes it false. If a condition is false, NOT

makes it true.

Boolean Expressions

Conditional expressions and logical operators are also known as Boolean.
George Boole was a nineteenth-century British mathematician who made sig-
nificant contributions to the evolution of computer programming. Boolean
expressions can be evaluated as true or false.

For example,
One meter equals 10 inches. False
Two is less than three. True

IF…THEN STATEMENT

The simplest way to get some decision making into your VBA procedure is by
using the If…Then statement. Suppose you want to choose an action depending
on a condition. You can use the following structure:
If condition Then statement

For example, a quiz procedure might ask the user to guess the number of weeks
in a year. If the user’s response is other than 52, the procedure should display the
message “Try Again.”

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 111

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 5.1 Using the If…Then Statement

1. Start Microsoft Access and create a new database named Chap05.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
In the Module1 Code window, enter the following SimpleIfTh en procedure:

Sub SimpleIfThen()
 Dim weeks As String

 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks<>52 Then MsgBox "Try Again"
End Sub

The SimpleIfThen procedure stores the user’s answer in the weeks variable.
The variable’s value is then compared with the number 52. If the result of the
comparison is true (i.e., if the value stored in the variable weeks is not equal to
52), Visual Basic will display the message “Try Again.”

4. Run the SimpleIfThen procedure and enter a number other than 52.
5. Rerun the SimpleIfThen procedure and enter the number 52. When you

enter the correct number of weeks, Visual Basic does nothing. The procedure
ends. It would be nice to also display a message when the user guesses right.

6. Enter the following instruction on a separate line before the End Sub
keywords:
If weeks = 52 Then MsgBox "Congratulations!"

7. Run the SimpleIfThen procedure again and enter the number 52. When
you enter the correct answer, Visual Basic does not execute the “Try Again”
statement. When the procedure is executed, the statement to the right of the
Then keyword is ignored if the result from evaluating the supplied condition
is false. As you recall, a VBA procedure can call another procedure. Let’s see if
it can also call itself.

8. Modify the first If statement in the SimpleIfThen procedure as follows:
If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen

112 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

We added a colon and the name of the SimpleIfThen procedure to the end of
the existing If…Then statement. If you enter the incorrect answer, you’ll see a
message. After clicking the OK button in the message box, you’ll get another
chance to supply the correct answer. You’ll be able to keep on guessing for a
long time. In fact, you won’t be able to exit the procedure gracefully until you’ve
supplied the correct answer. After clicking Cancel, you’ll have to deal with the
unfriendly “Type Mismatch” error message. For now (until you learn other
ways of handling errors in VBA), let’s revise your SimpleIfThen procedure as
follows:
Sub SimpleIfThen()
 Dim weeks As String

 On Error GoTo VeryEnd

 weeks = InputBox("How many weeks are in a year:", "Quiz")
 If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen
 If weeks = 52 Then MsgBox "Congratulations!"

 VeryEnd:
End Sub

If Visual Basic encounters an error, it will jump to the VeryEnd label placed
at the end of the procedure. The statements placed between On Error GoTo
VeryEnd and the VeryEnd labels are ignored. Later in this chapter you will find
other examples of trapping errors in your VBA procedures.

9. Run your revised SimpleIfThen procedure a few times by supplying incorrect
answers. The error trap that you added to your procedure will allow you to quit
guessing without having to deal with the ugly error message.

MULTILINE IF…THEN STATEMENT

Sometimes you may want to perform several actions when the condition is true.
Although you could add other statements on the same line by separating them
with colons, your code will look clearer if you use the multiline version of the
If…Then statement, as shown here:
If condition Then
 statement1
 statement2
 statementN
End If

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 113

For example, let’s modify the SimpleIfThen procedure to include additional
statements.

 Hands-On 5.2 Using the Multiline If…Then Statement

1. Insert a new module and enter the following SimpleIfThen2 procedure:
Sub SimpleIfThen2()
 Dim weeks As String
 Dim response As String

 On Error GoTo VeryEnd
 weeks = InputBox("How many weeks are in a year?", "Quiz")
 If weeks <> 52 Then
 response = MsgBox("This is incorrect. Would you like " _
 & " to try again?", vbYesNo + vbInformation _
 + vbDefaultButton1, _
 "Continue Quiz?")
 If response = vbYes Then
 Call SimpleIfThen2
 End If
 End If

 VeryEnd:
End Sub

2. Run the SimpleIfThen2 procedure and enter any number other than 52.
In this example, the statements between the first Then and the first End If
keywords don’t get executed if the variable weeks is equal to 52. Notice that the
multiline If…Then statement must end with the keywords End If. How does
Visual Basic decides? Simply put, it evaluates the condition it finds between
the If…Then keywords.

Two Formats of the If…Then Statement

The If…Then statement has two formats: a single-line format and a multiline
format. The short format is good for statements that fit on one line, like:
If secretCode <> "01W01" Then MsgBox "Access denied"

Or
If secretCode = "01W01" Then alpha = True : beta = False

In these examples, secretCode, alpha, and beta are the names of variables. In
the first example, Visual Basic displays the message “Access denied” if the value

SIDEBAR

114 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

of the secretCode variable is not equal to 01W01. In the second example, Vi-
sual Basic will set the value of the variable alpha to True and the value of the
variable beta to False when the secretCode value is equal to 01W01. Notice
that the second statement to be executed is separated from the first one by a
colon. The multiline If…Then statement is clearer when there are more state-
ments to be executed when the condition is true, or when the statement to be
executed is extremely long.

DECISIONS BASED ON MORE THAN ONE CONDITION

The SimpleIfThen procedure you worked with earlier evaluated only a single
condition in the If…Then statement. This statement, however, can take more
than one condition. To specify multiple conditions in an If…Then statement,
you use the logical operators AND and OR (see Table 5.2 at the beginning of the
chapter). Here is the syntax of the If…Then statement with the AND operator:
If condition1 AND condition2 Then statement

In this syntax, both condition1 and condition2 must be true for Visual Basic
to execute the statement to the right of the Then keyword—for example:
If sales = 10000 AND salary < 45000 Then SlsCom = sales * 0.07

In this example, condition1 is sales = 10000, and condition2 is salary < 45000.
When AND is used in the conditional expression, both conditions must be

true before Visual Basic can calculate the sales commission (SlsCom). If any of
these conditions is false or both are false, Visual Basic ignores the statement af-
ter Then. When it’s good enough to meet only one of the conditions, you should
use the OR operator. Here is the syntax:
If condition1 OR condition2 Then statement

The OR operator is more flexible. Only one of the conditions must be true
before Visual Basic can execute the statement following the Then keyword. Let’s
look at this example:
If dept = "S" OR dept = "M" Then bonus = 500

In this example, if at least one condition is true, Visual Basic assigns 500 to the
bonus variable. If both conditions are false, Visual Basic ignores the rest of the
line.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 115

Now, let’s look at a complete procedure example. Suppose you can get a 10%
discount if you purchase 50 units of a product priced at $7.00. The IfThenAnd
procedure demonstrates the use of the AND operator.

 Hands-On 5.3 Using the If…Then…AND Statement

1. Insert a new module and enter the following IfThenAnd procedure in the
module’s Code window:
Sub IfThenAnd()
 Dim price As Single
 Dim units As Integer
 Dim rebate As Single

 Const strMsg1 = "To get a rebate, buy an additional "
 Const strMsg2 = "Price must equal $7.00"

 units = 234
 price = 7

 If price = 7 And units >= 50 Then
 rebate = (price * units) * 0.1
 MsgBox "The rebate is: $" & rebate
 End If

 If price = 7 And units < 50 Then
 MsgBox strMsg1 & "50 - units."
 End If

 If price <> 7 And units >= 50 Then
 MsgBox strMsg2
 End If

 If price <> 7 And units < 50 Then
 MsgBox "You didn’t meet the criteria."
 End If
End Sub

2. Run the IfThenAnd procedure.
The IfThenAnd procedure has four If…Then statements that are used to evalu-
ate the contents of two variables: price and units. The AND operator be-
tween the keywords If…Then allows more than one condition to be tested.
With the AND operator, all conditions must be true for Visual Basic to run the
statements between the Then…End If keywords.

116 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Indenting If Block Instructions

To make the If blocks easier to read and understand, use indentation. Com-
pare the following:

If condition Then
action
End If

If condition Then
 action
End If

Looking at the block statement on the right side, you can easily see where the
block begins and where it ends.

IF…THEN…ELSE STATEMENT

Now you know how to display a message or take an action when one or more
conditions are true or false. What should you do, however, if your procedure
needs to take one action when the condition is true and another action when the
condition is false? By adding the Else clause to the simple If…Then statement,
you can direct your procedure to the appropriate statement depending on the
result of the test.

The If…Then…Else statement has two formats: single-line and multiline.
The single-line format is as follows:
If condition Then statement1 Else statement2

The statement following the Then keyword is executed if the condition is true,
and the statement following the Else clause is executed if the condition is
false—for example:
If sales > 5000 Then Bonus = sales * 0.05 Else MsgBox "No Bonus"

If the value stored in the variable sales is greater than 5000, Visual Basic will
calculate the bonus using the following formula: sales * 0.05. However, if the
variable sales is not greater than 5000, Visual Basic will display the message
“No Bonus.”

The If…Then…Else statement should be used to decide which of two actions
to perform. When you need to execute more statements when the condition is
true or false, it’s better to use the multiline format of the If…Then…Else statement:
If condition Then

statements to be executed if condition is True

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 117

Else
statements to be executed if condition is False

End If

Notice that the multiline (block) If…Then…Else statement ends with the End
If keywords. Use the indentation as shown to make this block structure easier
to read.
If Me.Dirty Then
 Me!btnUndo.Enabled = True
Else
 Me!btnUndo.Enabled = False
End If

In this example, if the condition (Me.Dirty) is true, Visual Basic will execute
the statements between Then and Else, and will ignore the statement between
Else and End If. If the condition is false, Visual Basic will omit the statements
between Then and Else and will execute the statement between Else and End
If. The purpose of this procedure fragment is to enable the Undo button when
the data on the form has changed and keep the Undo button disabled if the data
has not changed. Let’s look at a procedure example.

 Hands-On 5.4 Using the If…Then…Else Statement

1. Insert a new module and enter the following WhatTypeOf Day procedure in
the module’s Code window:
Sub WhatTypeOfDay()
 Dim response As String
 Dim question As String
 Dim strMsg1 As String, strMsg2 As String
 Dim myDate As Date

 question = "Enter any date in the format mm/dd/yyyy:" _
 & Chr(13) & " (e.g., 07/06/2015)"
 strMsg1 = "weekday"
 strMsg2 = "weekend"
 response = InputBox(question)
 myDate = Weekday(CDate(response))

 If myDate >= 2 And myDate <= 6 Then
 MsgBox strMsg1
 Else
 MsgBox strMsg2

118 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
End Sub

2. Run the WhatTypeOfDay procedure.
This procedure asks the user to enter any date. The user-supplied string is
then converted to the Date data type with the built-in CDate function. Finally,
the Weekday function converts the date into an integer that indicates the day
of the week (see Table 5.3). The integer is stored in the variable myDate. The
conditional test is performed to check whether the value of the variable myDate
is greater than or equal to 2 (>=2) and less than or equal to 6 (<=6). If the result
of the test is true, the user is told that the supplied date is a weekday; otherwise,
the program announces that it’s a weekend.

3. Run the procedure a few more times, each time supplying a different date.
Check the Visual Basic answers against your desktop or wall calendar.

TABLE 5.3 The Weekday function values.

Constant Value
vbSunday 1
vbMonday 2
vbTuesday 3
vbWednesday 4
vbThursday 5
vbFriday 6
vbSaturday 7

IF…THEN…ELSEIF STATEMENT

Quite often you will need to check the results of several different conditions. To
join a set of If conditions together, you can use the ElseIf clause. Using the
If…Then…ElseIf statement, you can evaluate more conditions than is possible
with the If…Then…Else statement that was the subject of the preceding section.
Here is the syntax of the If…Then…ElseIf statement:
If condition1 Then
 statements to be executed if condition1 is True
ElseIf condition2 Then
 statements to be executed if condition2 is True
ElseIf condition3 Then
 statements to be executed if condition3 is True

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 119

ElseIf conditionN Then
 statements to be executed if conditionN is True
Else
 statements to be executed if all conditions are False
End If

The Else clause is optional; you can omit it if there are no actions to be executed
when all conditions are false.

ElseIf Clause

Your procedure can include any number of ElseIf statements and conditions.
The ElseIf clause always comes before the Else clause. The statements in the
ElseIf clause are executed only if the condition in this clause is true.

Let’s look at the following procedure fragment:
If myNumber = 0 Then
 MsgBox "You entered zero."
ElseIf myNumber > 0 Then
 MsgBox "You entered a positive number."
ElseIf myNumber < 0 Then
 MsgBox "You entered a negative number."
End If

This example checks the value of the number entered by the user and stored
in the variable myNumber. Depending on the number entered, an appropriate
message (zero, positive, negative) is displayed. Notice that the Else clause is not
used. If the result of the first condition (myNumber = 0) is false, Visual Basic
jumps to the next ElseIf statement and evaluates its condition (myNumber >
0). If the value is not greater than zero, Visual Basic skips to the next ElseIf and
the condition myNumber < 0 is evaluated.

NESTED IF…THEN STATEMENTS

You can make more complex decisions in your VBA procedures by placing an
If…Then or If…Then…Else statement inside another If…Then or If…Then…Else
statement. Structures in which an If statement is contained inside another If
block are referred to as nested If statements. To understand how nested If…
Then statements work, it’s time for another hands-on exercise.

SIDEBAR

120 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 5.5 Using Nested If…Then Statements

1. In the database Chap05.accdb, create a blank form by choosing Blank form
in the Forms section of the Create tab (Microsoft Access 2019 window). When
Access opens the new form in Layout view, switch to Design view.

2. Use the text box control in the Controls section of the Design tab to add two
text boxes to the form (see Figure 5.1).

FIGURE 5.1 Placing text box controls on an Access form for Hands-On 5.5.

3. Click the Property Sheet button in the Tools section of the Design tab.
4. In the property sheet, change the Caption property for the label in front of

the first text box to User and the Caption property for the label in front of the
second text box to Password.

5. Click the Unbound text box to the right of the User label. In the proper-
ty sheet on the Other tab, set the Name property of this control to txtUser.
Click the Unbound text box to the right of the Password label. In the property
sheet on the Other tab, set the Name property of this text box to txtPwd (see
Figure 5.2).

6. In the property sheet on the Data tab, type Password next to the Input Mask
property of the txtPwd text box control.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 121

FIGURE 5.2 Setting the Name property of the text box control for Hands-On 5.5.

7. Click the Button (Form Control) in the Controls section of the Design tab
and add a button to the form. When the Command Button Wizard dialog box
appears, click Cancel. With the Command button selected, set the Caption and
Name properties of this button by typing the following values in the property
sheet next to the shown property name (see Figure 5.3):
Name property: cmdOK
Caption property: OK

FIGURE 5.3 Setting the Command button properties for Hands-On 5.5.

8. Right-click the OK button and choose Build Event from the shortcut
menu. In the Choose Builder dialog box, select Code Builder and click OK.

9. Enter the following code for the cmdOK_Click event procedure. To make
the procedure easier to understand, the conditional statements are shown with
different formatting (bold and underlined).
Private Sub cmdOK_Click()
 If txtPwd = “FOX” Then
 MsgBox "You’re not authorized to run this report."
 ElseIf txtPwd = “DOG” Then

122 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If txtUser = "John" Then
 MsgBox "You’re logged on with restricted privileges."
 ElseIf txtUser = "Mark" Then
 MsgBox "Contact the Admin now."
 ElseIf txtUser = "Anne" Then
 MsgBox "Go home."
 Else
 MsgBox "Incorrect user name."
 End If
 Else
 MsgBox "Incorrect password or user name"
 End If
 Me.txtUser.SetFocus
End Sub

10. Choose File | Close and Return to Microsoft Access. Save your form as
frmTestNesting. When prompted to save standard modules you created in
earlier exercises, save these objects with default names.

11. Switch to Form view. Enter any data in the User and Password text boxes,
and then click OK.
 The procedure first checks if the txtPwd text box on the form holds the text
string “FOX.” If this is true, the message is displayed, and Visual Basic skips
over the ElseIf and Else clauses until it finds the matching End If (see the
bolded conditional statement).
 If the txtPwd text box holds the string “DOG,” we use a nested If…Then…
Else statement (underlined) to check if the content of the txtUser text box
is set to John, Mark, or Anne, and then display the appropriate message. If the
user name is not one of the specified names, then the condition is false, and we
jump to the underlined Else to display a message stating that the user entered
an incorrect user name.
 The first If block (in bold) is called the outer If statement. This outer
statement contains one inner If statement (underlined).

Nesting Statements

Nesting means placing one type of control structure inside another control
structure. You will see more nesting examples with the looping structures
discussed in Chapter 6, “Adding Repeating Actions to Your Access VBA Pro-
grams.”

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 123

SELECT CASE STATEMENT

To avoid complex nested If statements that are difficult to follow, you can use
the Select Case statement instead. The syntax of this statement is as follows:
Select Case testExpression
 Case expressionList1
 statements to be executed
 if expressionList1 matches testExpression
 Case expressionList2
 statements to be executed
 if expressionList2 matches testExpression
 Case expressionListN
 statements to be executed
 if expressionListN matches testExpression
 Case Else
 statements to be executed
 if no values match testExpression
End Select

You can place any number of cases to test between the keywords Select Case
and End Select. The Case Else clause is optional. Use it when you expect
that there may be conditional expressions that return False. In the Select Case
statement, Visual Basic compares each expressionList with the value of tes-
tExpression.

Here’s the logic behind the Select Case statement. When Visual Basic en-
counters the Select Case clause, it makes note of the value of testExpres-
sion. Then it proceeds to test the expression following the first Case clause.
If the value of this expression (expressionList1) matches the value stored
in testExpression, Visual Basic executes the statements until another Case
clause is encountered, and then jumps to the End Select statement. If, however,
the expression tested in the first Case clause does not match testExpression,
Visual Basic checks the value of each Case clause until it finds a match. If none
of the Case clauses contain the expression that matches the value stored in tes-
tExpression, Visual Basic jumps to the Case Else clause and executes the
statements until it encounters the End Select keywords. Notice that the Case
Else clause is optional. If your procedure does not use Case Else, and none of
the Case clauses contain a value matching the value of testExpression, Visual
Basic jumps to the statements following End Select and continues executing
your procedure.

124 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s look at an example of a procedure that uses the Select Case statement.
As you already know, the MsgBox function allows you to display a message with
one or more buttons. You also know that the result of the MsgBox function can
be assigned to a variable. Using the Select Case statement, you can decide
which action to take based on the button the user pressed in the message box.

 Hands-On 5.6 Using the Select Case Statement

1. Press Alt+F11 to switch from the Microsoft Access application window to the
Visual Basic Editor window.

2. Insert a new module and enter the following TestButtons procedure in the
module’s Code window:
Sub TestButtons()
 Dim question As String
 Dim bts As Integer
 Dim myTitle As String
 Dim myButton As Integer

 question = "Do you want to preview the report now?"
 bts = vbYesNoCancel + vbQuestion + vbDefaultButton1
 myTitle = "Report"
 myButton = MsgBox(prompt:=question, buttons:=bts, _
 Title:=myTitle)

 Select Case myButton
 Case 6
 DoCmd.OpenReport "Sales by Year", acPreview
 Case 7
 MsgBox "You can review the report later."
 Case Else
 MsgBox "You pressed Cancel."
 End Select
End Sub

3. Run the TestButtons procedure three times, each time selecting a different
button. (Because there is no Sales by Year report in the current database, an
error message will pop up when you select Yes. Click End to exit the error
message.)
The first part of the TestButtons procedure displays a message with three
buttons: Yes, No, and Cancel. The value of the button selected by the user is
assigned to the variable myButton.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 125

 If the user clicks Yes, the variable myButton is assigned the vbYes constant
or its corresponding value 6. If the user selects No, the variable myButton is
assigned the constant vbNo or its corresponding value 7. Lastly, if Cancel is
pressed, the content of the variable myButton equals vbCancel, or 2.
 The Select Case statement checks the values supplied after the Case clause
against the value stored in the variable myButton. When there is a match, the
appropriate Case statement is executed.
 The TestButtons procedure will work the same if you use constants instead
of button values:
Select Case myButton
 Case vbYes
 DoCmd.OpenReport "Sales by Year", acPreview
 Case vbNo
 MsgBox "You can review the report later."
 Case Else
 MsgBox "You pressed Cancel."
End Select

You can omit the Else clause. Simply revise the Select Case statement as
follows:
Select Case myButton

 Case vbYes
 DoCmd.OpenReport "Sales by Year", acPreview
 Case vbNo
 MsgBox "You can review the report later."
 Case vbCancel
 MsgBox "You pressed Cancel."
End Select

Capture Errors with Case Else

Although using Case Else in the Select Case statement isn’t required, it’s
always a good idea to include one just in case the variable you are testing has
an unexpected value. The Case Else clause is a good place to put an error
message.

Using Is with the Case Clause

Sometimes a decision is made based on whether the test expression uses the
greater than, less than, equal to, or some other relational operator (see Table

SIDEBAR

126 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

5.1). The Is keyword lets you use a conditional expression in a Case clause. The
syntax for the Select Case clause using the Is keyword is as follows:
Select Case testExpression
 Case Is condition1
 statements if condition1 is true
 Case Is condition2
 statements if condition2 is true
 Case Is conditionN
 statements if conditionN is true
End Select

Let’s look at an example:
Select Case myNumber
 Case Is <= 10
 MsgBox "The number is less than or equal to 10."
 Case 11
 MsgBox "You entered 11."
 Case Is >= 100
 MsgBox "The number is greater than or equal to 100."
 Case Else
 MsgBox "The number is between 12 and 99."
End Select

If the variable myNumber holds 120, the third Case clause is true, and the only
statement executed is the one between Case Is >= 100 and the Case Else
clause.

Specifying a Range of Values in a Case Clause

In the preceding example, you saw a simple Select Case statement that uses
one expression in each Case clause. Many times, however, you may want to
specify a range of values in a Case clause. You do this by using the To keyword
between the values of expressions, as in the following example:
Select Case unitsSold
 Case 1 To 100
 Discount = 0.05
 Case Is <= 500
 Discount = 0.1
 Case 501 To 1000
 Discount = 0.15
 Case Is >1000
 Discount = 0.2
End Select

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 127

Let’s analyze this Select Case block with the assumption that the variable
unitsSold currently has a value of 99. Visual Basic compares the value of the
variable unitsSold with the conditional expression in the Case clauses. The
first and third Case clauses illustrate how to use a range of values in a condi-
tional expression by using the To keyword.

Because unitsSold equals 99, the condition in the first Case clause is true;
thus, Visual Basic assigns the value 0.05 to the variable Discount. Well, how
about the second Case clause, which is also true? Although it’s obvious that 99 is
less than or equal to 500, Visual Basic does not execute the associated statement
Discount = 0.1. The reason for this is that once Visual Basic locates a Case
clause with a true condition, it doesn’t bother to look at the remaining Case
clauses. It jumps over them and continues to execute the procedure with the
instructions that may follow the End Select statement.

For more practice with the Select Case statement, let’s use it in a function
procedure. As you recall from Chapter 4, function procedures allow you to
return a result to a subroutine. Suppose a subroutine must display a discount
based on the number of units sold. You can get the number of units from the
user and then run a function to figure out which discount applies.

 Hands-On 5.7 Using the Select Case Statement in a Function

1. Insert a new module and enter the following DisplayDiscount procedure in
the Code window:
Sub DisplayDiscount()
 Dim unitsSold As Integer
 Dim myDiscount As Single

 unitsSold = InputBox("Units Sold:")
 myDiscount = GetDiscount(unitsSold)
 MsgBox myDiscount
End Sub

2. In the same module, enter the following GetDiscount function procedure:
Function GetDiscount(unitsSold As Integer)

 Select Case unitsSold
 Case 1 To 200
 GetDiscount = 0.05
 Case 201 To 500
 GetDiscount = 0.1
 Case 501 To 1000
 GetDiscount = 0.15
 Case Is > 1000

128 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 GetDiscount = 0.2
 End Select
End Function

3. Place the insertion point anywhere within the code of the DisplayDiscount
procedure and press F5 to run it.
The DisplayDiscount procedure passes the value stored in the variable
unitsSold to the GetDiscount function. When Visual Basic encounters the
Select Case statement, it checks whether the value of the first Case clause
expression matches the value stored in the unitsSold parameter. If there is
a match, Visual Basic assigns a 5% discount (0.05) to the function name, and
then jumps to the End Select keywords. Because there are no more statements
to execute inside the function procedure, Visual Basic returns to the calling
procedure, DisplayDiscount. Here it assigns the function’s result to the variable
myDiscount. The last statement displays the value of the retrieved discount in
a message box.

4. Choose File | Save Chap05 and click OK when prompted to save the
changes to the modules you created during the hands-on exercises.

5. Choose File | Close and Return to Microsoft Access.
6. Close the Chap05.accdb database and exit Microsoft Access.

Specifying Multiple Expressions in a Case Clause

You may specify multiple conditions within a single Case clause by separating
each condition with a comma:
Select Case myMonth
 Case "January", "February", "March"
 Debug.Print myMonth & ": 1st Qtr."
 Case "April", "May", "June"
 Debug.Print myMonth & ": 2nd Qtr."
 Case "July", "August", "September"
 Debug.Print myMonth & ": 3rd Qtr."
 Case "October", "November", "December"
 Debug.Print myMonth & ": 4th Qtr."
End Select

NOTE

Multiple Conditions within a Case Clause
The commas used to separate conditions within a Case clause
have the same meaning as the OR operator used in the If
statement. The Case clause is true if at least one of the conditions
is true.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 129

SUMMARY

Conditional statements, introduced in this chapter, let you control the flow of
your VBA procedure. By testing the truth of a condition, you can decide which
statements should be run and which should be skipped over. In other words,
instead of running your procedure from top to bottom, line by line, you can exe-
cute only certain lines. Here are a few guidelines to help you determine which
conditional statement you should use:

 ● If you want to supply only one condition, the simple If…Then statement
is the best choice.

 ● If you need to decide which of two actions to perform, use the If…Then…
Else statement.

 ● If your procedure requires two or more conditions, use the If…Then…
ElseIf or Select Case statements.

 ● If your procedure has many conditions, use the Select Case statement.
Th is statement is more fl exible and easier to comprehend than the If…
Then…ElseIf statement.

Sometimes decisions must be repeated. The next chapter teaches you how your
procedures can perform the same actions repeatedly.

131

Now that you’ve learned how conditional statements can give your VBA
procedures decision-making capabilities, it’s time to get more involved.
Not all decisions are easy. Sometimes you will need to perform a num-

ber of statements several times to arrive at a certain condition. On other oc-
casions, however, after you’ve reached the decision, you may need to run the
specified statements as long as a condition is true or until a condition becomes
true. In programming, performing repetitive tasks is called looping. VBA has
various looping structures that allow you to repeat a sequence of statements
several times. In this chapter, you learn how to loop through your code.

What Is a Loop?

A loop is a programming structure that causes a section of program code to ex-
ecute repeatedly. VBA provides several structures to implement loops in your
procedures: Do…While, Do…Until, For…Next, and For Each…Next.

SIDEBAR

Chapter

 6 ADDING REPEATING
ACTIONS TO YOUR
ACCESS VBA
PROGRAMS

132 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING THE DO…WHILE STATEMENT

Visual Basic has two types of Do loop statements that repeat a sequence of state-
ments either as long as or until a certain condition is true: Do…While and Do…
Until.

The Do…While statement lets you repeat an action as long as a condition is
true. This statement has the following syntax:
Do While condition
 statement1
 statement2
 statementN
Loop

When Visual Basic encounters this loop, it first checks the truth value of the con-
dition. If the condition is false, the statements inside the loop are not executed,
and Visual Basic will continue to execute the program with the first statement
after the Loop keyword or will exit the program if there are no more statements
to execute. If the condition is true, the statements inside the loop are run one
by one until the Loop statement is encountered. The Loop statement tells Visual
Basic to repeat the entire process again as long as the testing of the condition in
the Do…While statement is true.

Let’s see how you can put the Do…While loop to good use in Microsoft Ac-
cess. You will find out how to continuously display an input box until the user
enters the correct password. The following hands-on exercise demonstrates this.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 6.1 Using the Do…While Statement

1. Start Microsoft Access and create a new database named Chap06.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following AskForPassword

procedure:
Sub AskForPassword()6
 Dim pWord As String

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 133

 pWord = ""
 Do While pWord <> "DADA"
 pWord = InputBox("What is the report password?")
 Loop
 MsgBox "You entered the correct report password."
End Sub

5. Run the AskForPassword procedure.
In this procedure, the statement inside the Do…While loop is executed as long
as the variable pWord is not equal to the string “DADA.” If the user enters
the correct password (“DADA”), Visual Basic leaves the loop and executes the
MsgBox statement after the Loop keyword.
 To allow the user to exit the procedure gracefully and cancel out of the input
box if he does not know the correct password, add the following statement on
an empty line before the Loop keyword:
If pWord = "" Then Exit Do

The Exit Do statement tells Visual Basic to exit the Do loop if the variable
pWord does not hold any value (see the section titled “Exiting Loops Early”
later in this chapter). Therefore, when the input box appears, the user can leave
the text field empty and click OK or Cancel to stop the procedure. Without
the Exit Do statement, the procedure will keep on asking the user to enter the
password until the correct value is supplied.
 To forgo displaying the informational message when the user has not pro-
vided the correct password, you may want to use the conditional statement
If…Then that you learned in the previous chapter. Here is the revised AskFor-
Password procedure:
Sub AskForPassword() ' revised procedure
 Dim pWord As String

 pWord = ""
 Do While pWord <> "DADA"
 pWord = InputBox("What is the report password?")
 If pWord = "" Then
 MsgBox "You did not enter a password."
 Exit Do
 End If
 Loop
 If pWord <> "" Then
 MsgBox "You entered the correct report password."
 End If
End Sub

134 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Another Approach to the Do…While Statement

The Do…While statement has another syntax that lets you test the condition at
the bottom of the loop:
Do
 statement1
 statement2
 statementN
Loop While condition

When you test the condition at the bottom of the loop, the statements inside
the loop are executed at least once. Let’s try this in the next hands-on exercise.

 Hands-On 6.2 Using the Do…While Statement with a Condition at
the Bottom of the Loop

1. In the Visual Basic Editor window, insert a new module and enter the following
SignIn procedure:
Sub SignIn()
 Dim secretCode As String

 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Then Exit Do
 Loop While secretCode <> "sp1045"
End Sub

2. Run the SignIn procedure.
Notice that by the time the condition is evaluated, Visual Basic has already
executed the statements one time. In addition to placing the condition at the
end of the loop, the SignIn procedure shows again how to exit the loop when
a condition is reached. When the Exit Do statement is encountered, the loop
ends immediately.
 To exit the loop in the SignIn procedure without entering the password, you
may revise it as follows:
Sub SignIn() 'revised procedure
 Dim secretCode As String

 Do
 secretCode = InputBox("Enter your secret code:")
 If secretCode = "sp1045" Or secretCode = "" Then
 Exit Do
 End If

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 135

 Loop While secretCode <> "sp1045"
End Sub

Avoid Infi nite Loops

If you don’t design your loop correctly, you can get an infinite loop—a loop that
never ends. You will not be able to stop the procedure by using the Esc key. The
following procedure causes the loop to execute endlessly because the program-
mer forgot to include the test condition:
Sub SayHello()
 Do
 MsgBox "Hello."
 Loop
End Sub

To stop the execution of the infinite loop, you must press Ctrl+Break. When
Visual Basic displays the message box “Code execution has been interrupted,”
click End to end the procedure.

USING THE DO…UNTIL STATEMENT

Another handy loop is Do…Until, which allows you to repeat one or more state-
ments until a condition becomes true. In other words, Do…Until repeats a block
of code as long as something is false. Here is the syntax:
Do Until condition
 statement1
 statement2
 statementN
Loop

Using the preceding syntax, you can now rewrite the AskForPassword proce-
dure (written in Hands-On 6.1) as shown in the following hands-on exercise.

 Hands-On 6.3 Using the Do…Until Statement

1. In the Visual Basic Editor window, insert a new module and type the
AskForPassword2 procedure:
Sub AskForPassword2()
 Dim pWord As String

SIDEBAR

136 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 pWord = ""
 Do Until pWord = "DADA"
 pWord = InputBox("What is the report password?")
 Loop
End Sub

2. Run the AskForPassword2 procedure.
The first line of this procedure says: Perform the following statements until the
variable pWord holds the value “DADA.” As a result, until the correct password
is supplied, Visual Basic executes the InputBox statement inside the loop. This
process continues as long as the condition pWord = "DADA" evaluates to false.
You could modify this procedure to allow the user to cancel the input box
without supplying the password, as follows:
Sub AskForPassword2() 'revised procedure
 Dim pWord As String

 pWord = ""
 Do Until pWord = "DADA"
 pWord = InputBox("What is the report password?")
 If pWord = "" Then Exit Do
 Loop
End Sub

Variables and Loops

All variables that appear in a loop should be assigned default values before the
loop is entered.

Another Approach to the Do…Until Statement

Similar to the Do…While statement, the Do…Until statement has a second syntax
that lets you test the condition at the bottom of the loop:
Do
 statement1
 statement2
 statementN
Loop Until condition

If you want the statements to execute at least once, no matter what the value of
the condition, place the condition on the line with the Loop statement. Let’s try
out the following example that prints 27 numbers to the Immediate window.

SIDEBAR

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 137

 Hands-On 6.4 Using the Do…Until Statement with a Condition
at the Bottom of the Loop

1. In the Visual Basic Editor window, insert a new module and type the
PrintNumbers procedure shown here:
Sub PrintNumbers()
 Dim num As Integer

 num = 0
 Do
 num = num + 1
 Debug.Print num
 Loop Until num = 27
End Sub

2. Make sure the Immediate window is open in the Visual Basic Editor window
(choose View | Immediate Window or press Ctrl+G).

3. Run the PrintNumbers procedure.
The variable num is initialized at the beginning of the procedure to zero (0).
When Visual Basic enters the loop, the content of the variable num is increased
by one, and the value is written to the Immediate window with the Debug.
Print statement. Next, the condition tells Visual Basic that it should execute
the statements inside the loop until the variable num equals 27.

4. Return to the Microsoft Access application window by choosing File |
Close and Return to Microsoft Access. When prompted, save the changes to
all the modules.

Counters

A counter is a numeric variable that keeps track of the number of items that
have been processed. The preceding PrintNumbers procedure declares the
variable num to keep track of numbers that were printed. A counter variable
should be initialized (assigned a value) at the beginning of the program. This
ensures that you always know the exact value of the counter before you begin
using it. A counter can be incremented or decremented by a specified value.

USING THE FOR…NEXT STATEMENT

The For…Next statement is used when you know how many times you want to
repeat a group of statements. The syntax of a For…Next statement looks like this:

SIDEBAR

138 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

For counter = start To end [Step increment]
 statement1
 statement2
 statementN
Next [counter]

The code in the brackets is optional. Counter is a numeric variable that stores
the number of iterations. Start is the number at which you want to begin count-
ing. End indicates how many times the loop should be executed. For example, if
you want to repeat the statements inside the loop five times, use the following
For statement:
For counter = 1 To 5
 statements
Next

When Visual Basic encounters the Next statement, it will go back to the begin-
ning of the loop and execute the statements inside the loop again, as long as
the counter hasn’t reached the end value. As soon as the value of counter is
greater than the number entered after the To keyword, Visual Basic exits the
loop. Because the variable counter automatically changes after each execution
of the loop, sooner or later the value stored in the counter exceeds the value
specified in end.

By default, every time Visual Basic executes the statements inside the loop,
the value of the variable counter is increased by one. You can change this default
setting by using the Step clause. For example, to increase the variable counter
by three, use the following statement:
For counter = 1 To 5 Step 3
 statements
Next counter

When Visual Basic encounters this statement, it executes the statements inside
the loop twice. The first time the loop runs, the counter equals 1. The second
time the loop runs, the counter equals 4 (1+3). The loop does not run a third
time, because now the counter equals 7 (4+3), causing Visual Basic to exit the
loop.

Note that the Step increment is optional. Optional statements are always
shown in square brackets (see the syntax at the beginning of this section). The
Step increment isn’t specified unless it’s a value other than 1. You can place a
negative number after Step in order to decrement this value from the counter
each time it encounters the Next statement. The name of the variable (counter)

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 139

after the Next statement is also optional; however, it’s good programming prac-
tice to make your Next statements explicit by including the counter variable’s
name.

How can you use the For…Next loop in Microsoft Access? Suppose you want
to retrieve the names of the text boxes located on an active form. The procedure
in the next hands-on exercise demonstrates how to determine whether a control
is a text box and how to display its name if a text box is found.

 Hands-On 6.5 Using the For…Next Statement

1. Make sure you have a copy of the Northwind 2007.accdb database from the
companion CD in your VBAPrimerAccess_ByExample folder.

2. Import the Customers table from the Northwind 2007.accdb database.
To do this, click Access in the Import & Link section of the External Data
tab. In the File name text box of the Get External Data dialog box, enter C:\
VBAPrimerAccess_ByExample\Northwind 2007.accdb and click OK. In the
Import Objects dialog box, select the Customers table and click OK. Click
Close to exit the Get External Data dialog box.

3. Now, create a simple Customers form based on the Customers table. To do
this, select the Customers table in the navigation pane by clicking on its name.
Next, click the Form button in the Forms section of the Create tab. Access
creates a form as shown in Figure 6.1.

FIGURE 6.1 Automatic data entry form created by Microsoft Access shown in the Layout View.

140 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Press Alt+F11 to switch to the Visual Basic Editor window and insert a new
module.

5. In the module’s Code window, enter the following GetTextBoxNames
procedure:
Sub GetTextBoxNames()
 Dim myForm As Form
 Dim myControl As Control
 Dim c As Integer

 Set myForm = Screen.ActiveForm
 Set myControl = Screen.ActiveControl

 For c = 0 To myForm.Count - 1
 If TypeOf myForm(c) Is TextBox Then
 MsgBox myForm(c).Name
 End If
 Next c
End Sub

The conditional statement (If…Then) nested inside the For…Next loop tells
Visual Basic to display the name of the active control only if it is a text box.

6. Run the GetTextBoxNames procedure.

Paired Statements

For and Next must be paired. If one is missing, Visual Basic generates the fol-
lowing error message: “For without Next.”

USING THE FOR EACH…NEXT STATEMENT

When your procedure needs to loop through all the objects of a collection or
all of the elements in an array (arrays are the subject of the next chapter), the
For Each…Next statement should be used. This loop does not require a counter
variable. Visual Basic can figure out on its own how many times the loop should
execute. The For Each…Next statement looks like this:
For Each element In Group
 statement1
 statement2
 statementN
Next [element]

SIDEBAR

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 141

Element is a variable to which all the elements of an array or collection will be
assigned. This variable must be of the Variant data type for an array and of the
Object data type for a collection. Group is the name of a collection or an array.
Let’s now see how to use the For Each…Next statement to print the names of the
controls in the Customers form to the Immediate window.

 Hands-On 6.6 Using the For Each…Next Statement

This hands-on exercise requires the completion of Steps 1 and 2 of Hands-On
6.5.

1. Ensure that the Customers form you created in Hands-On 6.5 is still open in
Form view.

2. Switch to the Visual Basic Editor window and insert a new module.
3. In the Code window, enter the GetControls procedure shown here:

Sub GetControls()
 Dim myControl As Control
 Dim myForm As Form

 DoCmd.OpenForm "Customers"
 Set myForm = Screen.ActiveForm

 For Each myControl In myForm
 Debug.Print myControl.Name
 Next
End Sub

4. Run the GetControls procedure.
5. The results of the procedure you just executed will be displayed in the

Immediate window. If the window is not visible, press Ctrl+G in the Visual
Basic Editor window to open the Immediate window or choose View |
Immediate Window.

EXITING LOOPS EARLY

Sometimes you might not want to wait until the loop ends on its own. It’s pos-
sible that a user will enter the wrong data, a procedure will encounter an error,
or perhaps the task will complete and there’s no need to do additional looping.

142 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can leave the loop early without reaching the condition that normally ter-
minates it. Visual Basic has two types of Exit statements:

 ● Th e Exit For statement is used to end either a For…Next or a For Each…
Next loop early.

 ● Th e Exit Do statement immediately exits any of the VBA Do loops.

The following hands-on exercise demonstrates how to use the Exit For state-
ment to leave the For Each…Next loop early.

 Hands-On 6.7 Early Exit from a Loop

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, enter the following GetControls2 procedure:
Sub GetControls2()

 Dim myControl As Control
 Dim myForm As Form

 DoCmd.OpenForm "Customers"
 Set myForm = Screen.ActiveForm

 For Each myControl In myForm
 Debug.Print myControl.Name
 If myControl.Name = "Address" Then
 Exit For
 End If
 Next
End Sub

3. Run the GetControls2 procedure.
The GetControls2 procedure examines the names of the controls in the open
Customers form. If Visual Basic encounters the control named “Address,” it
exits the loop.

4. Return to the Microsoft Access application window by choosing File |
Close and Return to Microsoft Access.

Exiting Procedures

If you want to exit a subroutine earlier than normal, use the Exit Sub state-
ment. If the procedure is a function, use the Exit Function statement instead.

SIDEBAR

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 143

NESTED LOOPS

So far in this chapter you have tried out various loops. Each procedure dem-
onstrated the use of an individual looping structure. In programming practice,
however, one loop is often placed inside another. Visual Basic allows you to
“nest” various types of loops (For and Do loops) within the same procedure.
When writing nested loops, you must make sure that each inner loop is com-
pletely contained inside the outer loop. Also, each loop must have a unique
counter variable. When you use nesting loops, you can often execute specific
tasks more effectively.

The GetFormsAndControls procedure shown in the following hands-on ex-
ercise illustrates how one For Each…Next loop is nested within another For
Each…Next loop.

 Hands-On 6.8 Using Nested Loops

1. Import the Employees table from the Northwind 2007.accdb database located
in your VBAPrimerAccess_ByExample folder (see Hands-On 6.5). To do this,
click Access in the Import section of the External Data tab. In the File name
text box of the Get External Data dialog box, enter C:\VBAPrimerAccess_
ByExample\Northwind 2007.accdb and click OK. In the Import Objects
dialog box, select the Employees table and click OK. Click Close to exit the
Get External Data dialog box.

2. Now, create a simple Employees form based on the Employees table. To do
this, select the Employees table in the navigation pane by clicking on its name.
Next, click the Form button in the Forms section of the Create tab. Access
creates a simple Employees data entry form.

3. Leave the Employees form in Form view and press Alt+F11 to switch to
the Visual Basic Editor window.

4. Choose Insert | Module to add a new module. In the module’s Code
window, enter the GetFormsAndControls procedure shown here:
Sub GetFormsAndControls()
 Dim accObj As AccessObject
 Dim myControl As Control

 For Each accObj In CurrentProject.AllForms
 Debug.Print accObj.Name & " Form"
 If Not accObj.IsLoaded Then
 DoCmd.OpenForm accObj.Name

144 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
 For Each myControl In Forms(accObj.Name).Controls
 Debug.Print Chr(9) & myControl.Name
 Next
 DoCmd.Close , , acSaveYes
 Next
End Sub

5. Run the GetFormsAndControls procedure.
The GetFormsAndControls procedure uses two For Each…Next loops to
print the name of each currently open form and its controls to the Immediate
window. To enumerate through the form’s controls, the form must be open.
Notice the use of the Access built-in function IsLoaded. The procedure will
open the form only if it is not yet loaded. The control names are indented in
the Immediate window using the Chr(9) function. This is like pressing the Tab
key once. To get the same result, you can replace Chr(9) with a VBA constant:
vbTab.
 After reading the names of the controls, the form is closed, and the next
form is processed in the same manner. The procedure ends when no more
forms are found in the AllForms collection of CurrentProject.

6. Choose File | Save Chap06 to save changes to the modules.
7. Choose File | Close and Return to Microsoft Access.
8. Close the Chap06.accdb database and click Yes when prompted to save

changes.
9. Exit Microsoft Access.

SUMMARY

In this chapter, you learned how to repeat certain groups of statements in VBA
procedures by using loops. While working with several types of loops, you saw
how each loop performs repetitions in a slightly different way. As you gain expe-
rience, you’ll find it easier to choose the appropriate flow control structure for
your task.

The next chapter shows you how to write procedures that require a large
number of variables.

145

In previous chapters, you worked with many VBA procedures that used vari-
ables to hold specific information about an object, property, or value. For
each single value you wanted your procedure to manipulate, you declared

a variable. But what if you have a series of values? If you had to write a VBA
procedure to deal with larger amounts of data, you would have to create enough
variables to handle all the data. Can you imagine the nightmare of storing cur-
rency exchange rates for all the countries in the world in your program? To cre-
ate a table to hold the necessary data, you’d need at least three variables for each
country: country name, currency name, and exchange rate. Fortunately, Visual
Basic has a way to get around this problem. By clustering the related variables
together, your VBA procedures can manage a large amount of data with ease. In
this chapter, you’ll learn how to manipulate lists and tables of data with arrays.

Chapter

 7 KEEPING TRACK OF
MULTIPLE VALUES
USING ARRAYS

146 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING ARRAYS

In Visual Basic, an array is a special type of variable that represents a group of
similar values that are of the same data type (String, Integer, Currency, Date,
etc.). The two most common types of arrays are one-dimensional arrays (lists)
and two-dimensional arrays (tables).

A one-dimensional array is sometimes referred to as a list. A shopping list,
a list of the days of the week, and an employee list are examples of one-dimen-
sional arrays or, simply, numbered lists. Each element in the list has an index
value that allows you to access that element. For example, in the following il-
lustration we have a one-dimensional array of six elements indexed from 0 to 5:

(0) (1) (2) (3) (4) (5)

You can access the third element of this array by specifying index (2). By default,
the first element of an array is indexed zero (0). You can change this behavior by
using the Option Base 1 statement or by explicitly coding the lower bound of
your array as explained later in this chapter.

All elements of the array should be of the same data type. In other words, if
you declare an array to hold textual data you cannot store in it both strings and
integers. If you want to store values of different data types in the same array, you
must declare the array as Variant as discussed later. Following are two examples
of one-dimensional arrays: an array named cities that is populated with text
(String data type—$) and an array named lotto that contains six lottery num-
bers stored as integers (Integer data type—%).

A one-dimensional array: cities$ A one-dimensional array: lotto%
cities(0) Baltimore lotto(0) 25
cities(1) Atlanta lotto(1) 4
cities(2) Boston lotto(2) 31
cities(3) Washington lotto(3) 22
cities(4) New York lotto(4) 11
cities(5) Trenton lotto(5) 5

As you can see, the contents assigned to each array element match the array
type. Storing values of different data types in the same array requires that you
declare the array as Variant. You will learn how to declare arrays in the next
section.

A two-dimensional array may be thought of as a table or matrix. The posi-
tion of each element in a table is determined by its row and column numbers.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 147

For example, an array that holds the yearly sales data for each product your
company sells has two dimensions: the product name and the year. The follow-
ing is a diagram of an empty two-dimensional array.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)
(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)
(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)
(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)
(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)
(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

You can access the first element in the second row of this two-dimensional array
by specifying indices (1, 0). Following are two examples of two-dimensional
arrays: an array named yearlyProductSales that stores yearly product sales
using the Currency data type (@) and an array named exchange (of Variant
data type) that stores the name of the country, its currency, and the U.S. dollar
exchange rate.

A TWO-DIMENSIONAL array: yearlyProductSales@

Walking Cane
(0,0)

$25,023
(0,1)

Pill Crusher
(1,0)

$64,085
(1,1)

Electric Wheelchair
(2,0)

$345,016
(2,1)

Folding Walker
(3,0)

$85,244
(3,1)

A TWO-DIMENSIONAL array: exchange (not actual rates)

Japan
(0,0)

Japanese Yen
(0,1)

122.856
(0,2)

Australia
(1,0)

Australian Dollar
(1,1)

1,38220
(1,2)

Canada
(2,0)

Canadian Dollar
(2,1)

1.33512
(2,2)

Norway
(3,0)

Norwegian Krone
(3,1)

8.63744
(3,2)

Europe
(4,0)

Euro
(4,1)

0.939350
(4,2)

148 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In these examples, the yearlyProductSales array can hold a maximum of 8
elements (4 rows * 2 columns = 8) and the exchange array will allow a maxi-
mum of 15 elements (5 rows * 3 columns = 15).

Although VBA arrays can have up to 60 dimensions, most people find it dif-
ficult to picture dimensions beyond 3D. A three-dimensional array is an array
of two-dimensional arrays (tables) where each table has the same number of
rows and columns. A three-dimensional array is identified by three indices: ta-
ble, row, and column. The first element of a three-dimensional array is indexed
(0, 0, 0).

Declaring Arrays

Because an array is a variable, you must declare it in a similar way that you
declare other variables (by using the keywords Dim, Private, or Public). For
fixed-length arrays, the array bounds are listed in parentheses following the
variable name. The bounds of an array are its lowest and highest indices. If a
variable-length, or dynamic, array is being declared, the variable name is fol-
lowed by an empty pair of parentheses.

The last part of the array declaration is the definition of the data type that the
array will hold. An array can hold any of the following data types: Integer, Long,
Single, Double, Variant, Currency, String, Boolean, Byte, or Date. Let’s look at
some examples:

Array Declaration (one-dimensional) Description
Dim cities(5) as String Declares a 6-element array, indexed 0 to 5
Dim lotto(1 To 6) as String Declares a 6-element array, indexed 1 to 6
Dim supplies(2 To 11) Declares a 10-element array, indexed 2 to 11
Dim myIntegers(-3 To 6) Declares a 10-element array, indexed –3 to 6
Dim dynArray() as Integer Declares a variable-length array whose bounds

will be determined at runtime (see examples
later in this chapter)

Array Declaration (two-dimensional) Description
Dim exchange(4,2) as Variant Declares a two-dimensional

array (five rows by three
columns)

Dim yearlyProductSales(3, 1) as Currency Declares a two-dimensional ar-
ray (four rows by two columns)

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 149

Dim my2Darray(1 To 3, 1 To 7) as Single Declares a two-dimensional
array (three rows indexed 1 to
3 by seven columns indexed 1
to 7)

When you declare an array, Visual Basic automatically reserves enough memory
space for it. The amount of memory allocated depends on the array’s size and
data type. For a one-dimensional array with six elements, Visual Basic sets aside
12 bytes—2 bytes for each element of the array (recall that the size of the Integer
data type is 2 bytes—hence 2 * 6 = 12). The larger the array, the more memory
space is required to store the data. Because arrays can eat up a lot of memory
and impact your computer’s performance, it’s recommended that you declare
arrays with only as many elements as you think you’ll use.

What Is an Array Variable?

An array is a group of variables that have a common name. While a typical
variable can hold only one value, an array variable can store many individual
values. You refer to a specific value in the array by using the array name and
an index number.

Subscripted Variables

The numbers inside the parentheses of the array variables are called subscripts,
and each individual variable is called a subscripted variable or element. For
example, cities(5) is the sixth subscripted variable (element) of the array
cities().

Array Upper and Lower Bounds

By default, VBA assigns zero (0) to the first element of the array. Therefore, num-
ber 1 represents the second element of the array, number 2 represents the third,
and so on. With numeric indexing starting at 0, the one-dimensional array cit-
ies(5) contains six elements numbered from 0 to 5. If you’d rather start count-
ing your array’s elements at 1, you can explicitly specify a lower bound of the
array by using an Option Base 1 statement. This instruction must be placed in
the declaration section at the top of a VBA module before any Sub statements. If
you don’t specify Option Base 1 in a procedure that uses arrays, VBA assumes
that the statement Option Base 0 is to be used and begins indexing your array’s
elements at 0. If you’d rather not use the Option Base 1 statement and still have

SIDEBAR

SIDEBAR

150 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the array indexing start at a number other than 0, you must specify the bounds
of an array when declaring the array variable. As mentioned in the previous sec-
tion, the bounds of an array are its lowest and highest indices. Let’s look at the
following example:
Dim cities(3 To 6) As Integer

This statement declares a one-dimensional array with four elements. The num-
bers enclosed in parentheses after the array name specify the lower (3) and
upper (6) bounds of the array. The index of the first element of this array is 3,
the second 4, the third 5, and the fourth 6. Notice the keyword To between the
lower and upper indices.

Initializing and Filling an Array

After you declare an array, you must assign values to its elements. This is often
referred to as “initializing an array,” “filling an array,” or “populating an array.”
The three methods you can use to load data into an array are discussed in this
section.

Filling an Array Using Individual Assignment Statements

Assume you want to store the names of your six favorite cities in a one-dimen-
sional array named cities. After declaring the array with the Dim statement:
Dim cities(5) as String

or
Dim cities$(5)

you can assign values to the array variable like this:
cities(0) = "Baltimore"
cities(1) = "Atlanta"
cities(2) = "Boston"
cities(3) = "San Diego"
cities(4) = "New York"
cities(5) = "Denver"

Filling an Array Using the Array Function

VBA’s built-in Array function returns an array of Variants. Because Variant is
the default data type, the As Variant clause is optional in the array variable
declaration:

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 151

Dim cities() as Variant

or
Dim cities()

Notice that you don’t specify the number of elements between the parentheses.
Next, use the Array function as shown here to assign values to your cities

array:
 cities = Array("Baltimore", "Atlanta", "Boston", _
 "San Diego", "New York", "Denver")

When using the Array function to populate a six-element array like cities, the
lower bound of the array is 0 or 1 and the upper bound is 5 or 6, depending on
the setting of Option Base (see the previous section titled “Array Upper and
Lower Bounds”).

Filling an Array Using the For…Next Loop

The easiest way to learn how to use loops to populate an array is by writing a
procedure that fills an array with a specific number of integer values. Let’s look
at the following example procedure:
Sub LoadArrayWithIntegers()
 Dim myIntArray(1 To 10) As Integer
 Dim i As Integer

 ' Initialize random number generator
 Randomize

 ' Fill the array with 10 random numbers between 1 and 100
 For i = 1 To 10
 myIntArray(i) = Int((100 * Rnd) + 1)
 Next

 ' Print array values to the Immediate window
 For i = 1 To 10
 Debug.Print myIntArray(i)
 Next
End Sub

This procedure uses a For…Next loop to fill myIntArray with 10 random num-
bers between 1 and 100. The second loop is used to print out the values from
the array. Notice that the procedure uses the Rnd function to generate a random

152 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

number. This function returns a value less than 1 but greater than or equal to 0.
You can try it out in the Immediate window by entering:
x=rnd
?x

Before calling the Rnd function, the LoadArrayWithIntegers procedure uses
the Randomize statement to initialize the random number generator. To become
more familiar with the Randomize statement and Rnd function, be sure to follow
up with the Access online help. For an additional example of using loops, Ran-
domize and Rnd, see Hands-On 7.4.

USING A ONE-DIMENSIONAL ARRAY

Having learned the basics of array variables, let’s write a couple of VBA proce-
dures to make arrays a part of your new skill set. The procedure in Hands-On
7.1 uses a one-dimensional array to programmatically display a list of six North
American cities.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 7.1 Using a One-Dimensional Array

1. Start Microsoft Access and create a new database named Chap07.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following FavoriteCities procedure.

Be sure to enter the Option Base 1 statement at the top of the module.
Option Base 1

Sub FavoriteCities()
 ' declare the array
 Dim cities(6) As String

 ' assign the values to array elements
 cities(1) = "Baltimore"

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 153

 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5) & Chr(13) & cities(6)
End Sub

5. Choose Run | Run Sub/UserForm to execute the FavoriteCities procedure.
Before the FavoriteCities procedure begins, the default indexing for an array
is changed. Notice the Option Base 1 statement at the top of the module
window before the Sub statement. This statement tells Visual Basic to assign
the number 1 instead of the default 0 to the first element of the array. The array
cities() is declared with six elements of the String data type. Each element of
the array is then assigned a value. The last statement in this procedure uses the
MsgBox function to display the list of cities in a message box. When you run
this procedure, each city name will appear on a separate line (see Figure 7.1).
You can change the order of the displayed data by switching the index values.

FIGURE 7.1 You can display the elements of a one-dimensional array with the MsgBox function.

6. Click OK to close the message box.

154 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. On your own, modify the FavoriteCities procedure so that it displays the
names of the cities in reverse order (from 6 to 1).

The Range of the Array

The spread of the elements specified by the Dim statement is called the range
of the array—for example: Dim mktgCodes(5 To 15).

ARRAYS AND LOOPING STATEMENTS

Several of the looping statements you learned about in Chapter 6 (For…Next
and For Each…Next) will come in handy now that you’re ready to perform such
tasks as populating an array and displaying the elements of an array. It’s time to
combine the skills you’ve learned so far.

How can you rewrite the FavoriteCities procedure, so each city name is
shown in a separate message box? To answer this question, notice how in the
FavoriteCities2 procedure in Hands-On 7.2 we are replacing the last statement
of the original procedure with the For Each…Next loop.

 Hands-On 7.2 Using the For Each…Next Statement to List the Array
Elements

1. In the Visual Basic Editor window, insert a new module.
2. Enter the FavoriteCities2 procedure in the Code window. Be sure to enter the

Option Base 1 statement at the top of the module.
Option Base 1

Sub FavoriteCities2()
 ' declare the array
 Dim cities(6) As String
 Dim city As Variant

 ' assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 155

 ' display the list of cities in separate messages
 For Each city In cities
 MsgBox city
 Next
End Sub

3. Choose Run | Run Sub/UserForm to execute the FavoriteCities2 procedure.
Notice that the For Each…Next loop uses the variable city of the Variant data
type. As you recall from the previous chapter, the For Each…Next loop allows
you to loop through all of the objects in a collection or all of the elements of an
array and perform the same action on each object or element. When you run
the FavoriteCities2 procedure, the loop will execute as many times as there are
elements in the array.

In Chapter 4, you practiced passing arguments as variables to subroutines and
functions. The CityOperator procedure in Hands-On 7.3 demonstrates how
you can pass elements of an array to another procedure.

 Hands-On 7.3 Passing Elements of an Array to Another Procedure

1. In the Visual Basic Editor window, insert a new module.
2. Enter the following two procedures (CityOperator and Hello) in the module’s

Code window. Be sure to enter the Option Base 1 statement at the top of the
module.
Option Base 1

Sub CityOperator()
 ' declare the array
 Dim cities(6) As String

 ' assign the values to array elements
 cities(1) = "Baltimore"
 cities(2) = "Atlanta"
 cities(3) = "Boston"
 cities(4) = "San Diego"
 cities(5) = "New York"
 cities(6) = "Denver"

 ' call another procedure and pass
 ' the array as argument
 Hello cities()
End Sub

Sub Hello(cities() As String)

156 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim counter As Integer

 For counter = 1 To 6
 MsgBox "Hello, " & cities(counter) & "!"
 Next
End Sub

Notice that the last statement in the CityOperator procedure calls the Hello
procedure and passes to it the array cities() that holds the names of our
favorite cities. Also notice that the declaration of the Hello procedure includes
an array type argument—cities()—passed to this procedure as String.
In order to iterate through the elements of an array, you need to know how
many elements are included in the passed array. You can easily retrieve this
information via two array functions—LBound and UBound. Th ese functions are
discussed later in this chapter. In this procedure example, LBound(cities())
will return 1 as the fi rst element of the array, and UBound(cities()) will
return 6 as the last element of the cities() array. Th erefore, the statement For
counter = LBound(cities()) To UBound(cities()) will boil down to For
counter = 1 To 6.

3. Execute the CityOperator procedure (choose Run | Run Sub/UserForm).

Passing array elements from a subroutine to a subroutine or function procedure
allows you to reuse the same array in many procedures without unnecessary
duplication of the program code.

Here’s how you can put to work your newly acquired knowledge about arrays
and loops in real life. If you’re an avid lotto player who is getting tired of picking
your own lucky numbers, have Visual Basic do the picking. The Lotto procedure
in Hands-On 7.4 populates an array with six numbers from 1 to 54. You can
adjust this procedure to pick numbers from any range.

 Hands-On 7.4 Using Arrays and Loops in Real Life

1. In the Visual Basic Editor window, insert a new module.
2. Enter the following Lotto procedure in the module’s Code window:

Sub Lotto()
 Const spins = 6
 Const minNum = 1
 Const maxNum = 54
 Dim t As Integer ' looping variable in outer loop
 Dim i As Integer ' looping variable in inner loop
 Dim myNumbers As String ' string to hold all picks
 Dim lucky(spins) As String ' array to hold generated picks

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 157

 myNumbers = ""
 For t = 1 To spins
 Randomize
 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum

 ' check if this number was picked before
 For i = 1 To (t - 1)
 If lucky(t) = lucky(i) Then
 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum
 i = 0
 End If
 Next i
 MsgBox "Lucky number is " & lucky(t), , "Lucky number " & t
 myNumbers = myNumbers & " -" & lucky(t)
 Next t
 MsgBox "Lucky numbers are " & myNumbers, , "6 Lucky Numbers"
End Sub

The Randomize statement initializes the random number generator. The
instruction Int((maxNum – minNum + 1) * Rnd + minNum) uses the Rnd
function to generate a random value from the specified minNum to maxNum. The
Int function converts the resulting random number to an integer. Instead of
assigning constant values for minNum and maxNum, you can use the InputBox
function to get these values from the user.
 The inner For…Next loop ensures that each picked number is unique—it
may not be any one of the previously picked numbers. If you omit the inner
loop and run this procedure multiple times, you’ll likely see some occurrences
of duplicate numbers.

3. Execute the Lotto procedure (choose Run | Run Sub/UserForm) to get the
computer-generated lottery numbers.

Initial Value of an Array Element

Until a value is assigned to an element of an array, the element retains its de-
fault value. Numeric variables have a default value of zero (0), and string vari-
ables have a default value of empty string (“”).

Passing Arrays between Procedures

When an array is declared in a procedure, it is local to this procedure and un-
known to other procedures. However, you can pass the local array to another
procedure by using the array’s name followed by an empty set of parentheses
as an argument in the calling statement. For example, the statement Hello
cities() calls the procedure named Hello and passes to it the array cities.

SIDEBAR

SIDEBAR

158 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING A TWO-DIMENSIONAL ARRAY

Now that you know how to programmatically produce a list (a one-dimensional
array), it’s time to take a closer look at how you can work with tables of data.
The following procedure creates a two-dimensional array that will hold country
name, currency name, and exchange rate for three countries.

 Hands-On 7.5 Using a Two-Dimensional Array

1. In the Visual Basic Editor window, insert a new module.
2. Enter the Exchange procedure in the module’s Code window:

Sub Exchange()
 Dim t As String
 Dim r As String
 Dim Ex(3, 3) As Variant

 t = Chr(9) & Chr(9) ' 2 Tabs
 r = Chr(13) ' Enter

 Ex(1, 1) = "Japan"
 Ex(1, 2) = "Yen"
 Ex(1, 3) = 122.856
 Ex(2, 1) = "Europe"
 Ex(2, 2) = "Euro"
 Ex(2, 3) = 0.939350
 Ex(3, 1) = "Canada"
 Ex(3, 2) = "Dollar"
 Ex(3, 3) = 1.33512

 MsgBox "Country " & t & "Currency" & t & _
 "1 USD" & r & r _
 & Ex(1, 1) & t & Ex(1, 2) & t & Ex(1, 3) & r _
 & Ex(2, 1) & t & Ex(2, 2) & t & Ex(2, 3) & r _
 & Ex(3, 1) & t & Ex(3, 2) & t & Ex(3, 3), , _
 "Exchange Rates"
End Sub

3. Execute the Exchange procedure (choose Run | Run Sub/UserForm).
When you run the Exchange procedure, you will see a message box with the
information presented in three columns, as shown in Figure 7.2.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 159

FIGURE 7.2 The text displayed in the message box can be custom formatted. (Note that these are
fictitious exchange rates for demonstration only.)

4. Click OK to close the message box.

STATIC AND DYNAMIC ARRAYS

The arrays introduced thus far are static. A static array is an array of a specific
size. You use a static array when you know in advance how big the array should
be. The size of the static array is specified in the array’s declaration statement.
For example, the statement Dim Fruits(10) As String declares a static array
called Fruits that is made up of 10 elements.

But what if you’re not sure how many elements your array will contain? If
your procedure depends on user input, the number of user-supplied elements
might vary every time the procedure is executed. How can you ensure that the
array you declare is not wasting memory?

You may recall that after you declare an array, VBA sets aside enough mem-
ory to accommodate the array. If you declare an array to hold more elements
than what you need, you’ll end up wasting valuable computer resources. The
solution to this problem is making your arrays dynamic. A dynamic array is an
array whose size can change. You use a dynamic array when the array size will
be determined each time the procedure is run.

160 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Fixed-Dimension Arrays

A static array contains a fixed number of elements. The number of elements in
a static array will not change once it has been declared.

A dynamic array is declared by placing empty parentheses after the array
name—for example:
Dim Fruits() As String

Before you use a dynamic array in your procedure, you must use the ReDim
statement to dynamically set the lower and upper bounds of the array.

The ReDim statement redimensions arrays as the procedure code executes.
The ReDim statement informs Visual Basic about the new size of the array. This
statement can be used several times in the same procedure. Now let’s write a
procedure that demonstrates the use of a dynamic array.

 Hands-On 7.6 Using a Dynamic Array

1. Insert a new module and enter the following DynArray procedure in the
module’s Code window:
Sub DynArray()
 Dim counter As Integer
 Dim myArray() As Integer ' declare a dynamic array
 ReDim myArray(5) ' specify the initial size of the array
 Dim myValues As String

 ' populate myArray with values
 For counter = 1 To 5
 myArray(counter) = counter + 1
 myValues = myValues & myArray(counter) & Chr(13)
 Next

 ' change the size of myArray to hold 10 elements
 ReDim Preserve myArray(10)

 ' add new values to myArray
 For counter = 6 To 10
 myArray(counter) = counter * counter
 myValues = myValues & myArray(counter) & Chr(13)
 Next counter

 MsgBox myValues
 For counter = 1 To 10
 Debug.Print myArray(counter)

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 161

 Next counter
End Sub

In the DynArray procedure, the statement Dim myArray() As Integer de-
clares a dynamic array called myArray. Although this statement declares the
array, it does not allocate any memory to the array. The first ReDim statement
specifies the initial size of myArray and reserves for it 10 bytes of memory
to hold its five elements. As you know, every Integer value requires 2 bytes
of memory. The For…Next loop populates myArray with data and writes the
array’s elements to the variable myValues. The value of the variable counter
equals 1 at the beginning of the loop.
 The first statement in the loop (myArray(counter) = counter +1) assigns
the value 2 to the first element of myArray. The second statement (myValues
= myValues & myArray(counter) & Chr(13)) enters the current value of
myArray’s element followed by a carriage return (Chr(13)) into the variable
myValues. The statements inside the loop are executed five times. Visual Basic
places each new value in the variable myValues and proceeds to the next state-
ment: ReDim Preserve myArray(10).
 Normally, when you change the size of the array, you lose all the values
that were in that array. When used alone, the ReDim statement reinitializes
the array. However, you can append new elements to an existing array by fol-
lowing the ReDim statement with the Preserve keyword. In other words, the
Preserve keyword guarantees that the redimensioned array will not lose its
existing data.
 The second For…Next loop assigns values to the 6th through 10th elements
of myArray. This time the values of the array’s elements are obtained by multi-
plication: counter * counter.

2. Execute the DynArray procedure (choose Run | Run Sub/UserForm).

Dimensioning Arrays

You can’t assign a value to an array element until you have declared the array
with the Dim or ReDim statement. (An exception to this is if you use the Array
function discussed in the next section.)

ARRAY FUNCTIONS

You can manipulate arrays with five built-in VBA functions: Array, IsArray,
Erase, LBound, and UBound. The following sections demonstrate the use of each
of these functions in VBA procedures.

SIDEBAR

162 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Array Function

The Array function allows you to create an array during code execution without
having to first dimension it. This function always returns an array of Variants.
You can quickly place a series of values in a list by using the Array function.

The CarInfo procedure in the following hands-on exercise creates a fixed-
size, one-dimensional, three-element array called auto.

 Hands-On 7.7 Using the Array Function

1. Insert a new module and enter the following CarInfo procedure in the module’s
Code window:
Option Base 1

Sub CarInfo()
 Dim auto As Variant

 auto = Array("Ford", "Black", "2015")
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)

 auto(2) = "4-door"
 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)
End Sub

2. Run the CarInfo procedure and examine the results.
When you run this procedure, you get two message boxes. The first one
displays the following text: “Black Ford, 2015.” After changing the value of the
second array element, the second message box will say: “4-door Ford, 2015.”

NOTE

Be sure to enter Option Base 1 at the top of the module before
running the CarInfo procedure. If this statement is missing in
your module, Visual Basic will display runtime error 9—“Sub-
script out of range.”

The IsArray Function

The IsArray function lets you test whether a variable is an array. The IsArray
function returns True if the variable is an array or False if it is not an array. Let’s
do another hands-on exercise.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 163

 Hands-On 7.8 Using the IsArray Function

1. Insert a new module and enter the code of the IsThisArray procedure in the
module’s Code window:
Sub IsThisArray()
 ' declare a dynamic array
 Dim tblNames() As String
 Dim totalTables As Integer
 Dim counter As Integer
 Dim db As Database

 Set db = CurrentDb

 ' count the tables in the open database
 totalTables = db.TableDefs.Count

 ' specify the size of the array
 ReDim tblNames(1 To totalTables)

 ' enter and show the names of tables
 For counter = 1 To totalTables - 1
 tblNames(counter) = db.TableDefs(counter).Name
 Debug.Print tblNames(counter)
 Next counter

 ' check if this is indeed an array
 If IsArray(tblNames) Then
 MsgBox "The tblNames is an array."
 End If
End Sub

2. Run the IsThisArray procedure to examine its results.
When you run this procedure, the list of tables in the current database is written
to the Immediate window. A message box displays whether the tblNames array
is indeed an array.

The Erase Function

When you want to remove the data from an array, you should use the Erase
function. This function deletes all the data held by static or dynamic arrays. In
addition, the Erase function reallocates all of the memory assigned to a dynamic
array. If a procedure must use the dynamic array again, you must use the ReDim
statement to specify the size of the array. The next hands-on exercise demon-
strates how to erase the data from the array cities.

164 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 7.9 Removing Data from an Array

1. Insert a new module and enter the code of the FunCities procedure in the
module’s Code window:
' start indexing array elements at 1
Option Base 1

Sub FunCities()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)

 Erase cities

 ' show all that was erased
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)
End Sub

2. Run the FunCities procedure to examine its results.
3. Click OK to close the message box.

Visual Basic should now display an empty message box because all values were
deleted from the array by the Erase function.

4. Click OK to close the empty message box.

The LBound and UBound Functions

The LBound and UBound functions return whole numbers that indicate the lower
bound and upper bound indices of an array.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 165

 Hands-On 7.10 Finding the Lower and Upper Bounds of an Array

1. Insert a new module and enter the code of the FunCities2 procedure in the
module’s Code window:
Sub FunCities2()
 ' declare the array
 Dim cities(1 To 5) As String

 ' assign the values to array elements
 cities(1) = "Las Vegas"
 cities(2) = "Orlando"
 cities(3) = "Atlantic City"
 cities(4) = "New York"
 cities(5) = "San Francisco"

 ' display the list of cities
 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _
 & cities(3) & Chr(13) & cities(4) & Chr(13) _
 & cities(5)

 ' display the array bounds
 MsgBox "The lower bound: " & LBound(cities) & Chr(13) _
 & "The upper bound: " & UBound(cities)
End Sub

2. Run the FunCities2 procedure.
3. Click OK to close the message box that displays the favorite cities.
4. Click OK to close the message box that displays the lower and upper bound

indices.
To determine the upper and lower indices in a two-dimensional array, you
may want to add the following statements at the end of the Exchange proce-
dure that was prepared in Hands-On 7.5 (add these lines just before the End
Sub keywords):

MsgBox "The lower bound (first dimension) is " & LBound(Ex, 1) & "."
MsgBox "The upper bound (first dimension) is " & UBound(Ex, 1) & "."
MsgBox "The lower bound (second dimension) is " & LBound(Ex, 2) & "."
MsgBox "The upper bound (second dimension) is " & UBound(Ex, 2) & "."

NOTE
When determining the lower and upper bound indices of a two-
dimensional array, you must specify the dimension number: 1
for the first dimension and 2 for the second dimension.

166 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ERRORS IN ARRAYS

When working with arrays, it’s easy to make a mistake. If you try to assign more
values than there are elements in the declared array, Visual Basic will display the
error message “Subscript out of range” (see Figure 7.3).

FIGURE 7.3 This error was caused by an attempt to access a nonexistent array element.

Suppose you declared a one-dimensional array that consists of three elements,
and you are trying to assign a value to the fourth element. When you run the
procedure, Visual Basic can’t find the fourth element, so it displays the error
message shown in Figure 7.3. If you click the Debug button, Visual Basic will
highlight the line of code that caused the error (see Figure 7.4).

FIGURE 7.4 The statement that triggered the error shown in Figure 7.3. is highlighted.

The error Subscript out of range is often triggered in procedures using loops.
The procedure Zoo1 shown in Hands-On 7.11 serves as an example of such a
situation.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 167

 Hands-On 7.11 Understanding Errors in Arrays

1. Insert a new module and enter the following Zoo1 and Zoo2 procedures in the
module’s Code window:
Sub Zoo1()
 ' this procedure triggers an error
 ' "Subscript out of range"
 Dim zoo(3) As String
 Dim i As Integer
 Dim response As String

 i = 0
 Do
 i = i + 1
 response = InputBox("Enter a name of animal:")
 zoo(i) = response
 Loop Until response = ""
End Sub

Sub Zoo2()
 ' this procedure avoids the error
 ' "Subscript out of range"
 Dim zoo(3) As String
 Dim i As Integer
 Dim response As String

 i = 1
 Do While i >= LBound(zoo) And i <= UBound(zoo)
 response = InputBox("Enter a name of animal:")
 If response = "" Then Exit Sub
 zoo(i) = response
 Debug.Print zoo(i)
 i = i + 1
 Loop
End Sub

2. Run the Zoo1 procedure and enter your favorite animal names when prompted.
Do not cancel the procedure until you see the error.
While executing this procedure, when the variable i equals 4, Visual Basic will
not be able to find the fourth element in a three-element array, so the error
message will appear.

3. Click the Debug button in the error message.
Visual Basic will highlight the code that caused the error.

168 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Position the cursor over the variable i in the highlighted line of code to
view the variable’s value.
Visual Basic displays: i=4
Notice that at the top of the Zoo1 procedure zoo has been declared as an array
containing only three elements:
Dim zoo(3) As String

Because Visual Basic could not find the fourth element, it displayed the
“Subscript out of range” error.
The Zoo2 procedure demonstrates how, by using the LBound and UBound
functions introduced in the preceding section, you can avoid errors caused by
an attempt to access a nonexistent array element.

5. Choose Run | Reset to terminate the debugging session and exit the
procedure. You will learn more about debugging procedures in Chapter 9.

Another frequent error you may encounter while working with arrays is a Type
Mismatch error. To avoid this error, keep in mind that each element of an array
must be of the same data type. Therefore, if you attempt to assign to an element
of an array a value that conflicts with the data type of the array, you will get a
Type Mismatch error during the code execution. If you need to hold values of
different data types in an array, declare the array as Variant.

PARAMETER ARRAYS

In Chapter 4, you learned that values can be passed between subroutines or
functions as either required or optional arguments. If the passed argument is
not absolutely required for the procedure to execute, the argument’s name is
preceded by the keyword Optional. Sometimes, however, you don’t know in
advance how many arguments you want to pass. A classic example is addition.
One time you may want to add 2 numbers together, another time you may want
to add 3, 10, or 15 numbers.

Using the keyword ParamArray, you can pass an array consisting of any
number of elements to your subroutines and functions. The following hands-
on exercise uses the AddMultipleArgs function to add as many numbers as you
may require. This function begins with the declaration of an array myNumbers.
Notice the use of the ParamArray keyword.

The array must be declared as type Variant, and it must be the last argument
in the procedure definition.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 169

 Hands-On 7.12 Working with Parameter Arrays

1. Insert a new module and enter the following AddMultipleArgs function
procedure in the module’s Code window:
Function AddMultipleArgs(ParamArray myNumbers() As Variant)
 Dim mySum As Single
 Dim myValue As Variant

 For Each myValue In myNumbers
 mySum = mySum + myValue
 Next
 AddMultipleArgs = mySum
End Function

2. Choose View | Immediate Window and type the following instruction, and
then press Enter to execute it:
?AddMultipleArgs(1, 23.24, 3, 24, 8, 34)

When you press Enter, Visual Basic returns the total of all the numbers in the
parentheses: 93.24. You can supply an unlimited number of arguments. To add
more values, enter additional values in the parentheses after the function name
in the Immediate window, and then press Enter. Notice that each function
argument must be separated by a comma.

PASSING ARRAYS TO FUNCTION PROCEDURES

You can pass an array to a function procedure and return an array from a func-
tion. For example, let’s assume you have a list of countries. You want to convert
the country names stored in your array to uppercase and keep the original array
intact. You can delegate the conversion process to a function procedure. When
the array is passed using the ByVal keyword, the function will work with the
copy of the original array. Any modifications performed within the function
will affect only the copy. Therefore, the array in the calling procedure will not
be modified.

 Hands-On 7.13 Passing an Array to a Function Procedure

1. Insert a new module and enter the following procedure and function in the
module’s Code window:

170 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub ManipulateArray()
 Dim countries(1 To 6) As Variant
 Dim countriesUCase As Variant
 Dim i As Integer

 ' assign the values to array elements
 countries(1) = "Bulgaria"
 countries(2) = "Argentina"
 countries(3) = "Brazil"
 countries(4) = "Sweden"
 countries(5) = "New Zealand"
 countries(6) = "Denmark"

 countriesUCase = ArrayToUCase(countries)

 For i = 1 To 6
 Debug.Print countriesUCase(i)
 Debug.Print countries(i) & " (Original Entry)"
 Next i
End Sub

Public Function ArrayToUCase(ByVal myValues _
 As Variant) As String()
 Dim i As Integer
 Dim Temp() As String
 If IsArray(myValues) Then
 ReDim Temp(LBound(myValues) To UBound(myValues))
 For i = LBound(myValues) To UBound(myValues)
 Temp(i) = CStr(UCase(myValues(i)))
 Next i
 ArrayToUCase = Temp
 End If
 End Function

2. Run the ManipulateArray procedure and check its results in the Immediate
window.

SORTING AN ARRAY

We all find it easier to work with sorted data. Some operations on arrays, like
finding maximum and minimum values, require that the array is sorted. Once it
is sorted, you can find the maximum value by assigning the upper bound index
to the sorted array, as in the following:
y = myIntArray(UBound(myIntArray))

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 171

The minimum value can be obtained by reading the first value of the sorted
array:
x = myIntArray(1)

So how can you sort an array? Hands-On 7.14 demonstrates how to delegate the
sorting task to a classic bubble sort routine. A bubble sort is a comparison sort.
To create a sorted set, you step through the list to be sorted, compare each pair
of adjacent items, and swap them if they are in the wrong order. As a result of
this sorting algorithm, the smaller values “bubble” to the top of the list. In the
next procedure, we will sort the list of countries alphabetically in ascending
order.

 Hands-On 7.14 Sorting an Array

This hands-on exercise requires prior completion of Hands-On 7.13.

1. In the same module where you entered the ArrayToUCase function procedure,
enter the following BubbleSort function procedure:
Sub BubbleSort(myArray As Variant)
 Dim i As Integer
 Dim j As Integer
 Dim uBnd As Integer
 Dim Temp As Variant
 uBnd = UBound(myArray)
 For i = LBound(myArray) To uBnd - 1
 For j = i + 1 To uBnd
 If UCase(myArray(i)) > UCase(myArray(j)) Then
 Temp = myArray(j)
 myArray(j) = myArray(i)
 myArray(i) = Temp
 End If
 Next j
 Next i
End Sub

2. Add the following statements to the ManipulateArray procedure, placing them
just above the For…Next statement block (see Figure 7.5):
' call function to sort the array
 BubbleSort countriesUCase

172 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 7.5 Calling the BubbleSort function procedure from the ManipulateArray procedure.

3. Run the ManipulateArray procedure and check its results in the Immediate
window. Notice that the countries that appear in uppercase letters are shown
in alphabetic order.

4. Choose File | Save Chap07 and save changes to the modules when
prompted.

5. Choose File | Close and Return to Microsoft Access.
6. Close the Chap07.accdb database and exit Microsoft Access.

SUMMARY

In this chapter, you learned how, by creating an array, you can write procedures
that require a large number of variables. You worked with examples of proce-
dures that demonstrated how to declare and use a one-dimensional array (list)
and a two-dimensional array (table). You learned the difference between static
and dynamic arrays. This chapter introduced you to five built-in VBA func-
tions that are frequently used with arrays (Array, IsArray, Erase, LBound, and
UBound), as well as the ParamArray keyword. You also learned how to pass one
array and return another array from a function procedure. Finally, you saw how
to sort an array. You now know all the VBA control structures that can make
your code more intelligent: conditional statements, loops, and arrays.

In the next chapter, you will learn how to use collections instead of arrays to
manipulate large amounts of data.

173

Microsoft Access offers a large number of built-in objects that you can
access from your VBA procedures to automate many aspects of your
databases. You are not limited to using these built-in objects, how-

ever. VBA allows you to create your own objects and collections of objects, com-
plete with their own methods and properties. While writing your own VBA
procedures, you may come across a situation where there’s no built-in collection
to handle the task at hand. The solution is to create a custom collection object.
You already know from the previous chapter how to work with multiple items
of data by using static and dynamic arrays. Because collections have built-in
properties and methods that allow you to add, remove, and count their ele-
ments, they make working with multiple data items much easier. In this chapter,
you learn how to work with collections, including how to declare a custom Col-
lection object. Using class modules to create user-defined objects will also be
discussed. Before diving into theory and this chapter’s hands-on examples, let’s
review the following terms:

Collection—An object that contains a set of related objects.
Class—A definition of an object that includes its name, properties, methods,
and events. The class acts as a sort of object template from which an instance of
an object is created at runtime.

Chapter

 8 KEEPING TRACK OF
MULTIPLE
VALUES USING
OBJECT COLLECTIONS

174 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Class module—A module that contains the definition of a class, including its
property and method definitions.
Event—An action recognized by an object, such as a mouseclick or a keypress,
for which you can define a response. Events can be triggered by a user action, a
VBA statement, or the system.
Event procedure—A procedure that is automatically executed in response to an
event triggered by the user, program code, or the system.
Form module—A module that contains the VBA code for all event procedures
triggered by events occurring in a user form or its controls. A form module is a
type of class module.
Instance—A specific object that belongs to a class is referred to as an instance
of the class. When you create an instance, you create a new object that has the
properties and methods defined by the class.
Module—A structure containing subroutine and function procedures that are
available to other VBA procedures and are not related to any object in particular.

WORKING WITH COLLECTIONS OF OBJECTS

Collections are objects that contain other similar objects. For example, a Micro-
soft Access database has a collection of Tables, and each table has a collection
of Fields and Indexes. In Microsoft Excel, all open workbooks belong to the
Workbooks collection, and all the sheets in a particular workbook are members
of the Worksheets collection. In Microsoft Word, all open documents belong to
the Documents collection, and each paragraph in a document is a member of
the Paragraphs collection.

No matter what collection you want to work with, you can do the following:

 ● Insert new items into the collection by using the Add method.
The following example uses the Immediate window to create a collection
named myTestCollection and adds three items to the collection. To try
out these examples, type the statements in the Immediate window, and
then press Enter after each line:
set myTestCollection = New Collection
myTestCollection.Add "first member"
myTestCollection.Add "second member"
myTestCollection.Add "third member"

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 175

 ● Determine the number of items in the collection by using the Count
property.
For example, when you type this statement in the Immediate window,
and then press Enter:
?myTestCollection.Count

it returns the total number of items stored in the myTestCollection ob-
ject variable.

 ● Refer to a specifi c object in a collection by using an index value.
For example, to find out the names of the collection members, you can
type the following statement in the Immediate window, and then press
Enter:
?myTestCollection.Item(1)

Because the Item method is a default method of the collection, you may
omit it from the statement, as shown here:
?myTestCollection(1)

 ● Remove an object from a collection by using the Remove method.
For example, to remove the first object from the myTestCollection ob-
ject variable, enter the following statement, and then press Enter:
myTestCollection.Remove 1

 ● Cycle through every object in the collection by using the For Each…Next
loop.
For example, to remove all objects from the myTestCollection object
variable, type the following looping structure in the Immediate window,
and then press Enter:

For Each m in myTestCollection : myTestCollection.Remove 1 : Next

Note that a colon is used to separate one statement from the next. You can
write two or more statements on a single line by separating them with a
colon (:). This is very convenient when testing statements in the Immedi-
ate window. Because collections are reindexed, the preceding statement
will remove the first member of the collection on each iteration. When
you press Enter, myTestCollection should have zero objects. However,
to be sure, type the following statement in the Immediate window, and
then press Enter:
?myTestCollection.Count

176 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Now that you have learned the basics of working with built-in collections, let’s
move on to declaring and using custom collections.

Declaring a Custom Collection

To create a user-defined collection, you should begin by declaring an object
variable of the Collection type. This variable is declared with the New keyword
in the Dim statement:
Dim collection Fruits As New Collection

Adding Objects to a Custom Collection

After you’ve declared the Collection object, you can insert new items into the
collection by using the Add method. The objects with which you populate your
collection do not have to be of the same data type. The Add method looks as
follows:
object.Add item[, key, before, after]

For example, the following statement adds a new item to the previously declared
Fruits collection:
Fruits.Add "apples"

You are required only to specify object and item. object is the collection
name, such as Fruits. This is the same name that was used in the declaration of
the Collection object. The Item, such as “apples,” is the object you want to add
to the collection (Fruits).

Although the other arguments are optional, they are quite useful. It’s im-
portant to understand that the items in a collection are automatically assigned
numbers starting with 1. However, they can also be assigned a unique key value.
Instead of accessing a specific item with an index (1, 2, 3, and so on) at the
time an object is added to a collection, you can assign a key for that object. For
instance, to identify an individual in a collection of students or employees, you
could use Social Security numbers as a key. If you want to specify the position
of the object in the collection, you should use either the before or after argu-
ment (but not both). The before argument is the object before which the new
object is added. The after argument is the object after which the new object is
added.

The NewEmployees procedure in the following hands-on exercise declares
the custom Collection object called colEmployees.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 177

 Hands-On 8.1 Creating a Custom Collection

1. Start Microsoft Access and create a new database named Chap08.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following NewEmployees procedure.

Be sure to enter the Option Base 1 statement before this procedure.
Option Base 1 ' ensure that there is only one
 ' Option Base 1 statement
 ' at the top of the module

Sub NewEmployees()
 ' declare the employees collection
 Dim colEmployees As New Collection
 ' declare a variable to hold each element of a collection
 Dim emp As Variant

 ' Add 3 new employees to the collection
 With colEmployees
 .Add Item:="John Collins", Key:="128634456"
 .Add Item:="Mary Poppins", Key:="223998765"
 .Add Item:="Karen Loza", Key:="120228876", Before:=2
 End With

 ' list the members of the collection
 For Each emp In colEmployees
 Debug.Print emp
 Next

 MsgBox "There are " & colEmployees.Count & " employees."
End Sub

Note that the control variable used in the For Each…Next loop must be de-
clared as Variant or Object. When you run this procedure, you will notice that
the order of employee names stored in the colEmployees collection (as dis-
played in the Immediate window) may be different from the order in which
these employees were entered in the program code. This is the result of using
the optional before argument with Karen Loza’s entry. This argument’s value
tells Visual Basic to place Karen before the second item in the collection.

5. Choose Run | Run Sub/UserForm to execute the NewEmployees procedure.

178 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Removing Objects from a Custom Collection

Removing an item from a custom collection is as easy as adding an item. To
remove an item, use the Remove method in the following format:
object.Remove index

object is the name of the custom collection that contains the object you want
to remove. index is an expression specifying the position of the object in the
collection.

To demonstrate the process of removing an item from a collection, let’s work
with the following hands-on exercise that modifies the NewEmployees proce-
dure that you prepared in Hands-On 8.1.

 Hands-On 8.2 Removing Objects from a Collection

This hands-on exercise requires the prior completion of Hands-On 8.1.

1. Add the following lines to the NewEmployees procedure just before the End
Sub keywords:
' remove the third item from the collection
colEmployees.Remove 3
MsgBox colEmployees.Count & " employees remain."

2. Rerun the NewEmployees procedure.

Reindexing Collections

Collections are reindexed automatically when an item is removed. Therefore,
to remove all items from a custom collection you can use 1 for the Index
argument, as in the following example:
Do While myCollection.Count > 0
 myCollection.Remove Index:=1
Loop

CREATING CUSTOM OBJECTS IN CLASS MODULES

There are two module commands available in the Visual Basic Editor’s Insert
menu: Module and Class Module. So far, you’ve used a standard module to cre-
ate subprocedures and function procedures. You’ll use the class module for the
first time in this chapter to create a custom object and define its properties and
methods.

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 179

Creating a new VBA object involves inserting a class module into your proj-
ect and adding code to that module. However, before you do so you need a basic
understanding of what a class is.

If you refer back to the list of terms at the beginning of this chapter, you will
find out that the class is a sort of object template. A frequently used analogy is
comparing an object class to a cookie cutter. Just like a cookie cutter defines
what a cookie will look like; the definition of the class determines how a partic-
ular object should look and how it should behave. Before you can use an object
class, you must first create a new instance of that class. Object instances are the
cookies. Each object instance has the characteristics (properties and methods)
defined by its class. Just as you can cut out many cookies using the same cookie
cutter, you can create multiple instances of a class. You can change the proper-
ties of each instance of a class independently of any other instance of the same
class.

A class module lets you define your own custom classes, complete with cus-
tom properties and methods. A property is an attribute of an object that defines
one of its characteristics, such as shape, position, color, title, and so forth. A
method is an action that the object can perform. You can create the properties
for your custom objects by writing property procedures in a class module. The
object methods are also created in a class module by writing subprocedures or
function procedures.

After building your object in the class module, you can use it in the same way
you use other built-in objects. You can also export the object class outside the
VBA project to other VBA-capable applications.

Creating a Class

The following sections of this chapter walk you through the process of creating
and working with a custom object called CEmployee. This object will represent
an employee. It will have properties such as ID, FirstName, LastName, and Sal-
ary. It will also have a method to modify the current salary.

 Custom Project 8.1. (Step 1) Creating a Class Module

1. In the Visual Basic Editor window, choose Insert | Class Module.
2. In the Project Explorer window, highlight the Class1 module and use the

Properties window to rename the class module CEmployee (see Figure 8.1).

180 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 8.1 Use the Name property in the Properties window to rename the Class module.

Naming a Class Module

Every time you create a new class module, give it a meaningful name. Set the
name of the class module to the name you want to use in your VBA procedures
using the class. The name you choose for your class should be easily under-
stood and should identify the “thing” the object class represents. As a rule, the
object class name is prefaced with an uppercase “C.”

Variable Declarations

After adding and renaming the class module, the next step is to declare the vari-
ables that will hold the data you want to store in the custom CEmployee object.
Each item of data you want to store in an object should be assigned a variable.
Class variables are called data members and are declared with the Private key-
word. Using the Private keyword in a class module hides the data members
and prevents other parts of the application from referencing them. Only the
procedures within the class module in which the private variables were defined
can modify the value of these variables.

Because the name of a variable also serves as a property name, use meaning-
ful names for your object’s data members. It’s traditional to preface the class
variable names with “m_” to indicate that they are data members of a class.

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 181

 Custom Project 8.1 (Step 2) Declaring Class Members

1. Type the following declaration lines at the top of the CEmployee class module’s
code window:
Option Explicit

' declarations
Private m_LastName As String
Private m_FirstName As String
Private m_Salary As Currency
Private m_ID As String

Notice that the name of each data member variable begins with the prefi x “m_.”

Defining the Properties for the Class

Declaring the variables with the Private keyword ensures that they cannot be
directly accessed from outside the object. This means that the VBA procedures
outside the class module will not be able to set or read data stored in those
variables. To enable other parts of your VBA application to set or retrieve the
employee data, you must add special property procedures to the CEmployee
class module. There are three types of property procedures:

 ● Property Let—Th is type of procedure allows other parts of the applica-
tion to set the value of a property.

 ● Property Get—Th is type of procedure allows other parts of the applica-
tion to get or read the value of a property.

 ● Property Set—Th is type of procedure is used instead of Property Let
when setting the reference to an object.

Property procedures are executed when an object property needs to be set or
retrieved. The Property Get procedure can have the same name as the Property
Let procedure. You should create property procedures for each property of the
object that can be accessed by another part of your VBA application.

The easiest of the three types of property statements to understand is the
Property Get procedure. Let’s examine the syntax of the property procedures by
taking a close look at the Property Get LastName procedure.

Property procedures contain the following parts:

 ● A procedure declaration line
 ● An assignment statement
 ● Th e End Property keywords

182 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

A procedure declaration line specifies the name of the property and the data
type:
Property Get LastName() As String

LastName is the name of the property and As String determines the data type
of the property’s return value.

An assignment statement is similar to the one used in a function procedure:
LastName = m_LastName

LastName is the name of the property and m_LastName is the data member
variable that holds the value of the property you want to retrieve or set. The
m_LastName variable should be defined with the Private keyword at the top of
the class module. Here’s the complete Property Get procedure:
Property Get LastName() As String
 LastName = m_LastName
End Property

The Property Get procedure can return a result from a calculation, like this:
Property Get Royalty()
 Royalty = (Sales * Percent) - Advance
End Property

The End Property keywords specify the end of the property procedure.

Immediate Exit from Property Procedures

Just as the Exit Sub and Exit Function keywords allow you to exit early
from a subroutine or a function procedure, the Exit Property keywords give
you a way to immediately exit from a property procedure. Program execution
will continue with the statements following the statement that called the Prop-
erty Get, Property Let, or Property Set procedure.

Creating the Property Get Procedures

The CEmployee class object has four properties that need to be exposed to VBA
procedures that we will write later in a standard module named EmpOpera-
tions. When working with the CEmployee object, you would certainly like to
get information about the employee ID, first and last name, and current salary.

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 183

 Custom Project 8.1 (Step 3) Writing Property Get Procedures

1. Type the following Property Get procedures in the CEmployee class module,
just below the declaration section that you entered in Step 2 of this custom
project:
Property Get ID() As String
 ID = m_ID
End Property

Property Get LastName() As String
 LastName = m_LastName
End Property

Property Get FirstName() As String
 FirstName = m_FirstName
End Property

Property Get Salary() As Currency
 Salary = m_Salary
End Property

Notice that each employee information type requires a separate Property Get
procedure. Each of the preceding Property Get procedures returns the current
value of the property. Notice also how a Property Get procedure is similar to a
function procedure. Similar to function procedures, the Property Get proce-
dures contain an assignment statement. As you recall from Chapter 4, to return
a value from a function procedure, you must assign it to the function’s name.

Creating the Property Let Procedures

In addition to retrieving values stored in data members (private variables) with
Property Get procedures, you must prepare corresponding Property Let pro-
cedures to allow other procedures to change the values of these variables as
needed. The only time you don’t define a Property Let procedure is when the
value stored in a private variable is meant to be read-only.

Suppose you don’t want the user to change the employee ID. To make the
ID read-only, you simply don’t write a Property Let procedure for it. Hence,
the CEmployee class will have only three properties (LastName, FirstName, and
Salary). Each of these properties will require a separate Property Let procedure.
The employee ID will be assigned automatically with a return value from a func-
tion procedure.

184 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s continue with our project and write the required Property Let proce-
dures for our custom CEmployee object.

 Custom Project 8.1 (Step 4) Writing Property Let Procedures

1. Type the following Property Let procedures in the CEmployee class module
below the Property Get procedures:
Property Let LastName(L As String)
 m_LastName = L
End Property

Property Let FirstName(F As String)
 m_FirstName = F
End Property

Property Let Salary(ByVal dollar As Currency)
 m_Salary = dollar
End Property

The Property Let procedures require at least one parameter that specifies the
value you want to assign to the property. This parameter can be passed by value
(note the ByVal keyword in the preceding Property Let Salary procedure) or by
reference (ByRef is the default). If you need a refresher on the meaning of these
keywords, see the section titled “Passing Arguments by Reference and by Value”
in Chapter 4.

The data type of the parameter passed to the Property Let procedure must
be the same data type as the value returned from the Property Get or Set pro-
cedure with the same name. Notice that the Property Let procedures have the
same names as the Property Get procedures prepared in the preceding section.
By skipping the Property Let procedure for the ID property, you created a read-
only ID property that can be retrieved but not set.

Defi ning the Scope of Property Procedures

You can place the Public, Private, or Static keyword before the name of a
property procedure to define its scope. To indicate that the Property Get pro-
cedure is accessible to procedures in all modules, use the following statement
format:
Public Property Get FirstName() As String

To make the Property Get procedure accessible only to other procedures in the
module where it is declared, use the following statement format:

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 185

Private Property Get FirstName() As String

To preserve the Property Get procedure’s local variables between procedure
calls, use the following statement format:
Static Property Get FirstName() As String

If not explicitly specified using either Public or Private, property procedures
are public by default. Also, if the Static keyword is not used, the values of lo-
cal variables are not preserved between procedure calls.

Creating the Class Methods

Apart from properties, objects usually have one or more methods. A method
is an action that the object can perform. Methods allow you to manipulate the
data stored in a class object. Methods are created with subroutines or function
procedures. To make a method available outside the class module, use the Pub-
lic keyword in front of the sub or function definition. The CEmployee object
that you create in this chapter has one method that allows you to calculate the
new salary. Assume that the employee salary can be increased or decreased by a
specific percentage or amount.

Let’s continue with our project by writing a class method that calculates the
employee salary.

 Custom Project 8.1 (Step 5) Writing Class Methods

1. Type the following CalcNewSalary function procedure in the CEmployee
class module:
Public Function CalcNewSalary(choice As Integer, _
 curSalary As Currency, amount As Long) As Currency
 Select Case choice
 Case 1 ' by percent
 CalcNewSalary = curSalary + ((curSalary * amount) / 100)
 Case 2 ' by amount
 CalcNewSalary = curSalary + amount
 End Select
End Function

Th e CalcNewSalary function defi ned with the Public keyword in a class
module serves as a method for the CEmployee class. To calculate a new salary,
a VBA procedure from outside the class module must pass three arguments:
choice, CurSalary, and amount. Th e choice argument specifi es the type of

186 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the calculation. Suppose you want to increase the employee salary by 5% or
by $5.00. Th e fi rst option will increase the salary by the specifi ed percentage,
and the second option will add the specifi ed amount to the current salary. Th e
curSalary argument is the current salary fi gure for an employee, and amount
determines the value by which the salary should be changed.

About Class Methods

 ● Only those methods that will be accessed from outside of the class should
be declared as Public. All others should be declared as Private.

 ● Methods perform some operation on the data contained within the class.
 ● If a method needs to return a value, write a function procedure. Other-

wise, create a subprocedure.

Creating an Instance of a Class

After typing all the necessary Property Get, Property Let, sub, or function pro-
cedures for your VBA application in the class module, you are ready to create a
new instance of a class, which is called an object.

Before an object can be created, an object variable must be declared in a
standard module to store the reference to the object. If the name of the class
module is CEmployee, then a new instance of this class can be created with the
following statement:
Dim emp As New CEmployee

The emp variable will represent a reference to an object of the CEmployee class.
When you declare the object variable with the New keyword, VBA creates the
object and allocates memory for it. However, the object isn’t instanced until you
refer to it in your procedure code by assigning a value to its property or by run-
ning one of its methods.

You can also create an instance of the object by declaring an object variable
with the data type defined to be the class of the object, as in the following:
Dim emp As CEmployee
Set emp = New CEmployee

If you don’t use the New keyword with the Dim statement, VBA does not allocate
memory for your custom object until your procedure needs it.

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 187

 Custom Project 8.1 (Step 6) Creating an Instance of a Class

1. Activate the Visual Basic Editor window and choose Insert | Module to add a
standard module to your application.

2. Use the Name property in the Properties window to change the name of the
new module to EmpOperations.

3. Type the following declarations at the top of the EmpOperations module:
Dim emp As New CEmployee
Dim CEmployee As New Collection

Th e fi rst declaration statement (Dim) declares the variable emp as a new instance
of the CEmployee class. Th e second statement declares a custom collection.
Th e CEmployee collection will be used to store all employee data.

Event Procedures in the Class Module

An event is basically an action recognized by an object. Custom classes recog-
nize only two events: Initialize and Terminate. These events are triggered
when an instance of the class is created and destroyed, respectively. The Ini-
tialize event is generated when an object is created from a class (see the pre-
ceding section on creating an instance of a class).

In the CEmployee class example, the Initialize event will also fire the first
time that you use the emp variable in code. Because the statements included in-
side the Initialize event are the first ones to be executed for the object before
any properties are set or any methods are executed, the Initialize event is
a good place to perform initialization of the objects created from the class. As
you recall, we made the ID read-only in the CEmployee class. You can use the
Initialize event to assign a unique five-digit number to the m_ID variable.

The Class_Initialize procedure uses the following syntax:
Private Sub Class_Initialize()
 [code to perform tasks as the object is created goes here]
End Sub

The Terminate event occurs when all references to an object have been released.
This is a good place to perform any necessary cleanup tasks. The Class_Termi-
nate procedure uses the following syntax:
Private Sub Class_Terminate()
 [cleanup code goes here]
End Sub

188 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To release an object variable from an object, use the following syntax:
Set objectVariable = Nothing

When you set the object variable to Nothing, the Terminate event is generated.
Any code in this event is executed then.

CREATING THE USER INTERFACE

Implementing our custom CEmployee object requires that you design a form to
enter and manipulate employee data.

 Custom Project 8.1 (Step 7) Designing a User Form

1. Choose File | Close and Return to Microsoft Access.
2. Click the Blank form in the Forms section of the Create tab. Access will display

a blank form in the Form view.
3. Switch to the form’s Design view by choosing Design View from the Views

section.
4. Save the form as frmEmployeeSalaries.
5. Use the tools in the Controls section of the Design tab to place controls on the

form as shown in Figure 8.2.

FIGURE 8.2 This form demonstrates the use of the CEmployee custom object.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 189

6. Activate the property sheet and set the following properties for the form
controls. To set the specified property, first click the control on the form to
select it. Then, in the property sheet type the information shown in the Setting
column next to the property indicated in the Property column.

Object Property Setting
Label1 Caption Last Name
Text box next to the Last Name label Name txtLastName
Label2 Caption First Name
Text box next to the First Name label Name txtFirstName
Label3 Caption Salary
Text box next to the Salary label Name txtSalary
Option group 1 Name

Caption
frSalaryMod
Salary Modification

Text box in the option group titled
“Salary Modification”

Name txtRaise

Option button 1 Name
Caption

optPercent
Percent

Option button 2 Name
Caption

optAmount
Amount

Option group 2 Name
Caption

frSalaryFor
Salary Change for

Option button 3 Name
Caption

optSelected
Selected Employee

Option button 4 Name
Caption

optAll
All Employees

Listbox Name
Row Source Type
Column Count
Column Widths

lboxPeople
Value List
4
0.5”;0.9”;0.7”;0.5”

Command Button 1 Name
Caption

cmdAdd
Add

Command Button 2 Name
Caption

cmdClose
Close

Command Button 3 Name
Caption

cmdUpdate
Update Salary

Command Button 4 Name
Caption

cmdDelete
Delete Employee

190 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Now that the form is ready, you need to write a few event procedures to handle
various events, such as clicking a command button or loading the form.

 Custom Project 8.1 (Step 8) Writing Event Procedures

1. Activate the Code window behind the form by choosing the View Code button
in the Tools section of the Design tab.

2. Enter the following variable declarations at the top of the form’s Code window:
' variable declarations
Dim choice As Integer
Dim amount As Long

NOTE Please ensure that the Option Explicit statement appears at
the top of the module, above the variable declaration statements.

3. Type the following UserForm_Initialize procedure to enable or disable
controls on the form:
Private Sub UserForm_Initialize()
 txtLastName.SetFocus
 cmdUpdate.Enabled = False
 cmdDelete.Enabled = False
 lboxPeople.Enabled = False
 frSalaryFor.Enabled = False
 frSalaryFor.Value = 0
 frSalaryMod.Enabled = False
 frSalaryMod.Value = 0
 txtRaise.Enabled = False
 txtRaise.Value = ""
End Sub

4. Type the following Form_Load event procedure:
Private Sub Form_Load()
 Call UserForm_Initialize
End Sub

When the form loads, the UserForm_Initialize procedure will run.
5. Enter the following cmdAdd_Click procedure to add the employee to the

collection:
Private Sub cmdAdd_Click()
 Dim strLast As String
 Dim strFirst As String
 Dim curSalary As Currency

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 191

 ' Validate data entry
 If IsNull(txtLastName.Value) Or txtLastName.Value = "" _
 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _
 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then
 MsgBox "Enter Last Name, First Name and Salary."
 txtLastName.SetFocus
 Exit Sub
 End If
 If Not IsNumeric(txtSalary) Then
 MsgBox "You must enter a value for the Salary."
 txtSalary.SetFocus
 Exit Sub
 End If
 If txtSalary < 0 Then
 MsgBox "Salary cannot be a negative number."
 Exit Sub
 End If

 ' assign text box values to variables
 strLast = txtLastName
 strFirst = txtFirstName
 curSalary = txtSalary

 ' enable buttons and other controls
 cmdUpdate.Enabled = True
 cmdDelete.Enabled = True
 lboxPeople.Enabled = True
 frSalaryFor.Enabled = True
 frSalaryMod.Enabled = True
 txtRaise.Enabled = True
 txtRaise.Value = ""
 lboxPeople.Visible = True

 ' enter data into the CEmployees collection
 EmpOperations.AddEmployee strLast, strFirst, curSalary

 ' update listbox
 lboxPeople.RowSource = GetValues

 ' delete data from text boxes
 txtLastName = ""
 txtFirstName = ""
 txtSalary = ""
 txtLastName.SetFocus
End Sub

192 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The cmdAdd_Click procedure starts off by validating the user’s input in the
Last Name, First Name, and Salary text boxes. If the user entered correct
data, the text box values are assigned to the variables strLast, strFirst,
and curSalary. Next, several statements enable buttons and other controls
on the form so that the user can work with the employee data. The following
statement calls the AddEmployee procedure in the EmpOperations standard
module and passes the required parameters to it:
EmpOperations.AddEmployee strLast, strFirst, curSalary

Once the employee is entered into the collection, the employee data is added
to the listbox (see Figure 8.3) with the following statement:
lboxPeople.RowSource = GetValues

GetValues is the name of a function procedure in the EmpOperations module
(see Step 12 further on). This function cycles through the CEmployee collection
to create a string of values for the listbox row source.
 The cmdAdd_Click procedure ends by clearing the text boxes, and then
setting the focus to the Last Name text box so the user can enter new employee
data.

FIGURE 8.3 The listbox control displays employee data as entered in the custom collection
CEmployee.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 193

6. Enter the following cmdClose_Click procedure to close the form:
Private Sub cmdClose_Click()
 DoCmd.Close
End Sub

7. Write the following Click procedure for the cmdUpdate button:
Private Sub cmdUpdate_Click()
 Dim numOfPeople As Integer
 Dim colItem As Integer

 'validate user selections
 If frSalaryFor.Value = 0 Or frSalaryMod.Value = 0 Then
 MsgBox " choose appropriate option button in " & _
 vbCr & "the 'Salary Modification’ and " & _
 "’Change the Salary for’ areas.", vbOKOnly, _
 "Insufficient selection"
 Exit Sub
 ElseIf Not IsNumeric(txtRaise) Or txtRaise = "" Then
 MsgBox "You must enter a number."
 txtRaise.SetFocus
 Exit Sub
 ElseIf frSalaryMod.Value = 1 And _
 lboxPeople.ListIndex = -1 Then
 MsgBox "Click the employee name.", , _
 "Missing selection in the List box"
 Exit Sub
 End If

 If frSalaryMod.Value = 1 And lboxPeople.ListIndex = -1 Then
 MsgBox "Enter data or select an option."
 Exit Sub
 End If
 'get down to calculations
 amount = txtRaise
 colItem = lboxPeople.ListIndex + 1
 If frSalaryFor.Value = 1 And frSalaryMod.Value = 1 Then
 'by percent, one employee
 choice = 1
 numOfPeople = 1
 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 1 Then
 'by amount, one employee
 choice = 2
 numOfPeople = 1
 ElseIf frSalaryFor.Value = 1 And frSalaryMod.Value = 2 Then
 'by percent, all employees

194 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 choice = 1
 numOfPeople = 2
 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 2 Then
 'by amount, all employees
 choice = 2
 numOfPeople = 2
 End If
 UpdateSalary choice, amount, numOfPeople, colItem
 lboxPeople.RowSource = GetValues
End Sub

When the Update Salary button is clicked, the procedure checks to see whether
the user selected the appropriate option buttons and entered the adjusted
figure in the text box. The update can be done for the selected employee or for
all the employees listed in the listbox control and collection. You can increase
the salary by the specified percentage or amount (see Figure 8.4). Depending
on which options are specified, values are assigned to the variables choice,
amount, numOfpeople, and colItem. These variables serve as parameters for
the UpdateSalary procedure located in the EmpOperations module (see Step
13 further on). The last statement in the cmdUpdate_Click procedure sets
the row source property of the listbox control to the result obtained from the
GetValues function, which is located in the EmpOperations standard module.

FIGURE 8.4 The employee salary can be increased or decreased by the specified percentage or
amount.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 195

8. Enter the following cmdDelete_Click procedure:
Private Sub cmdDelete_Click()
 ' make sure an employee row is highlighted
 ' in the listbox control
 If lboxPeople.ListIndex > -1 Then
 DeleteEmployee lboxPeople.ListIndex + 1
 If lboxPeople.ListCount = 1 Then
 lboxPeople.RowSource = GetValues
 UserForm_Initialize
 Else
 lboxPeople.RowSource = GetValues
 End If
 Else
 MsgBox "Click the item you want to remove."
 End If
End Sub

The cmdDelete_Click procedure lets you remove an employee from the
custom collection CEmployee. If you click an item in the listbox and then click
the Delete Employee button, the DeleteEmployee procedure is called. This
procedure requires an argument that specifies the index number of the item
selected in the listbox. After the employee is removed from the collection, the
row source of the listbox control is reset to display the remaining employees.
When the last employee is removed from the collection, the UserForm_
Initialize procedure is called to tackle the task of disabling controls that cannot
be used until at least one employee is entered into the CEmployee collection.

9. To activate the EmpOperations module that you created earlier, double-
click its name in the Project Explorer window. The top of the module should
contain the following declaration lines, the first two automatically added by
Access:
Option Compare Database
Option Explicit

Dim emp As New CEmployee
Dim CEmployee As New Collection

10. In the EmpOperations standard module, enter the following AddEmployee
procedure:
Sub AddEmployee(empLast As String, empFirst As String, _
 empSalary As Currency)
 With emp
 .ID = SetEmpId

196 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .LastName = empLast
 .FirstName = empFirst
 .Salary = CCur(empSalary)
 If .Salary = 0 Then Exit Sub
 CEmployee.Add emp
 End With
End Sub

The AddEmployee procedure is called from the cmdAdd_Click procedure
attached to the form’s Add button. This procedure takes three arguments.
When Visual Basic for Applications reaches the With emp construct, a new
instance of the CEmployee class is created. The LastName, FirstName, and
Salary properties are set with the values passed from the cmdAdd_Click
procedure. The ID property is set with the number generated by the result
of the SetEmpId function (see the following step). Each time VBA sees the
reference to the instanced emp object, it will call upon the appropriate Property
Let procedure located in the class module. (The next section of this chapter
demonstrates how to walk through this procedure step by step to see exactly
when the Property procedures are executed.) The last statement inside the
With emp construct adds the user-defined object emp to the custom collection
called CEmployee.

11. In the EmpOperations standard module, enter the following SetEmpID
function procedure:
Function SetEmpID() As String
 Dim ref As String

 Randomize
 ref = Int((99999 - 10000) * Rnd + 10000)
 SetEmpId = ref
End Function

This function will assign a unique five-digit number to each new employee. To
generate a random integer between two given integers where ending_number
= 99999 and beginning_number = 10000, the following formula is used:

= Int((ending_number - beginning_number) * Rnd + beginning_number)

The SetEmpId function procedure also uses the Randomize statement to
reinitialize the random number generator. For more information on using the
Rnd and Integer functions, as well as the Randomize statement, refer to the
online help.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 197

12. Enter the following GetValues function procedure. This function, which
is called from the cmdAdd_Click, cmdUpdate_Click, and cmdDelete_Click
procedures, provides the values for the listbox control to synchronize it with
the current values in the CEmployee collection.
Function GetValues()
 Dim myList As String

 myList = ""
 For Each emp In CEmployee
 myList = myList & emp.ID & ";" & _
 emp.LastName & ";" & _
 emp.FirstName & "; $" & _
 Format(emp.Salary, "0.00") & ";"
 Next emp
 GetValues = myList
End Function

13. Enter the following UpdateSalary procedure:
Sub UpdateSalary(choice As Integer, myValue As Long, _
 peopleCount As Integer, colItem As Integer)
 Set emp = New CEmployee

 If choice = 1 And peopleCount = 1 Then
 CEmployee.Item(colItem).Salary = _
 emp.CalcNewSalary(1, CEmployee.Item(_
 colItem).Salary, myValue)
 ElseIf choice = 1 And peopleCount = 2 Then
 For Each emp In CEmployee
 emp.Salary = emp.Salary + ((emp.Salary * myValue) _
 / 100)
 Next emp
 ElseIf choice = 2 And peopleCount = 1 Then
 CEmployee.Item(colItem).Salary = _
 CEmployee.Item(colItem).Salary + myValue
 ElseIf choice = 2 And peopleCount = 2 Then
 For Each emp In CEmployee
 emp.Salary = emp.Salary + myValue
 Next emp
 Else
 MsgBox "Enter data or select an option."
 End If
End Sub

198 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The UpdateSalary procedure is called from the cmdUpdate_Click procedure,
which is assigned to the Update Salary button on the form. The click procedure
passes four parameters that the UpdateSalary procedure uses for the salary
calculations. When a salary for the selected employee needs to be updated by a
percentage or amount, the CalcNewSalary method residing in the class module
is called. For modification of salary figures for all the employees, we iterate
over the CEmployee collection to obtain the value of the Salary property of
each emp object, and then perform the required calculation by using a formula.
By entering a negative number in the form’s txtRaise text box, you can decrease
the salary by the specified percentage or amount.

14. Enter the DeleteEmployee procedure:
Sub DeleteEmployee(colItem As Integer)
 Dim getcount As Integer

 CEmployee.Remove colItem
End Sub

The DeleteEmployee procedure uses the Remove method to delete the selected
employee from the CEmployee custom collection. Recall that the Remove
method requires one argument, which is the position of the item in the
collection. The value of this argument is obtained from the cmdDelete_Click
procedure. The class module procedures were called from the standard module
named EmpOperations. This was done to avoid creating a new instance of a
user-defined class every time we needed to call it.

RUNNING THE CUSTOM APPLICATION

Now that you have finished writing the necessary VBA code, let’s load frmEm-
ployeeSalaries to enter and modify employee information.

 Custom Project 8.1 (Step 9) Running the Custom Project

1. Choose File | Save Chap08 to save all the objects in the VBA project.
2. Switch to the Microsoft Office Access window and activate frmEmployeeSalaries

in the Form view.
3. Enter the employee last and first name and salary and click the Add button.

The employee information now appears in the listbox. Notice that an employee
ID is automatically entered in the first column. All the disabled form controls
are now enabled.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 199

4. Enter data for another employee, and then click the Add button.
5. Enter information for at least three more people.
6. Increase the salary of the third employee in the listbox by 10%. To do

this, click the employee name in the listbox, click the Percent option button,
and type 10 in the text box in the Salary Modification section of the form. In
the Change the Salary for section of the form, click the Selected Employee
option button. Finally, click the Update Salary button to perform the update
operation.

7. Now increase the salary of all the employees by $5.
8. Remove the fourth employee from the listbox. To do this, select the

employee in the listbox and click the Delete Employee button.
9. Close frmEmployeeSalaries by clicking the Close button.

WATCHING THE EXECUTION OF YOUR VBA PROCEDURES

To help you understand what’s going on when your code runs and how the cus-
tom object works, let’s walk through the cmdAdd_Click procedure. Treat this
exercise as a brief introduction to the debugging techniques that are covered in
detail in the next chapter.

 Custom Project 8.1 (Step 10) Custom Project Code Walkthrough

1. Open frmEmployeeSalaries in Design view and click View Code in the Tools
section of the Design tab.

2. Select cmdAdd from the combo box at the top left of the Code window.
3. Set a breakpoint by clicking in the left margin next to the following line of

code, as shown in Figure 8.5:
If IsNull(txtLastName.Value) Or txtLastName.Value = "" _
 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _
 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then

200 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 8.5 A red circle in the margin indicates a breakpoint. The statement with a breakpoint is
displayed as white text on a red background.

4. Press Alt+F11 to return to the form frmEmployeeSalaries, and then switch
to the Form view.

5. Enter data in the Last Name, First Name, and Salary text boxes, and then click
the form’s Add button. Visual Basic should now switch to the Code window
because it came across the breakpoint in the first line of the cmdAdd_Click
procedure (see Figure 8.6).

FIGURE 8.6 When Visual Basic encounters a breakpoint while running a procedure, it switches to
the Code window and displays a yellow arrow in the margin to the left of the statement at which the
procedure is suspended.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 201

6. Step through the code one statement at a time by pressing F8. Visual Basic runs
the current statement, then automatically advances to the next statement and
suspends execution. The current statement is indicated by a yellow arrow in the
margin and a yellow background. Keep pressing F8 to execute the procedure
step by step. After Visual Basic switches to the EmpOperations module to run
the AddEmployee procedure and encounters the With emp statement, it will
run the function to set the employee ID and will go out to execute the Property
Let procedures in the CEmployee class module (see Figure 8.7).

FIGURE 8.7 Setting the properties of your custom object is accomplished through the Property Let
procedures.

7. Using the F8 key, continue executing the cmdAdd_Click procedure code to the
end. When VBA encounters the end of the procedure (End Sub), the yellow
highlighter will be turned off. At this time, press F5 to finish execution of the
remaining code. Next, switch back to the active form by pressing Alt+F11.

NOTE To activate the form, you may need to first click the Table1 tab
and then reselect the Employee Operations tab (see Figure 8.3).

8. Enter data for a new employee, and then click the Add button. When Visual
Basic displays the Code window, choose Debug | Clear All Breakpoints. Now
press F5 to run the remaining code without stepping through it.

202 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

9. In the Visual Basic Editor window, choose File | Save Chap08, and then
save changes to the modules when prompted.

10. Choose File | Close and Return to Microsoft Access.
11. Close the Chap08.accdb database and exit Microsoft Access.

VBA Debugging Tools

Visual Basic provides many debugging tools to help you analyze how your ap-
plication operates, as well as to locate the source of errors in your procedures.
See the next chapter for details on working with these tools.

SUMMARY

In this chapter, you learned how to create and use your own objects and col-
lections in VBA procedures. You used a class module to create a user-defined
(custom) object. You saw how to define your custom object’s properties using
the Property Get and Property Let procedures. You also learned how to write a
method for your custom object and saw how to make the class module available
to the user with a custom form. Finally, you learned how to analyze your VBA
application by stepping through its code.

As your procedures become more complex, you will need to start using spe-
cial tools for tracing errors, which are covered in the next chapter.

SIDEBAR

203

In the course of writing or editing VBA procedures, no matter how careful
you are, you’re likely to make some mistakes. For example, you may misspell
a word, misplace a comma or quotation mark, or forget a period or ending

parenthesis. These kinds of mistakes are known as syntax errors. Fortunately,
Visual Basic for Applications is quite helpful in spotting these kinds of errors. To
have VBA automatically check for correct syntax after you enter a line of code,
choose Tools | Options in the VBE window. Make sure the Auto Syntax Check
setting is selected on the Editor tab, as shown in Figure 9.1.

Chapter

 9 GETTING TO KNOW
BUILT-IN TOOLS
FOR TESTING AND
DEBUGGING

204 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 9.1 The Auto Syntax Check setting on the Editor tab of the Options dialog box helps you
find typos in your VBA procedures.

When VBA finds a syntax error, it displays an error message box and changes
the color of the incorrect line of code to red, or another color as indicated on the
Editor Format tab in the Options dialog box.

If the explanation of the error in the error message isn’t clear, you can click
the Help button for more help. If Visual Basic for Applications cannot point you
in the right direction, you must return to your procedure and carefully examine
the offending instruction for missed letters, quotation marks, periods, colons,
equal signs, and beginning and ending parentheses. Finding syntax errors can
be aggravating and time-consuming. Certain syntax errors can be caught only
during the execution of the procedure. While attempting to run your procedure,
VBA can find errors that were caused by using invalid arguments or omitting
instructions that are used in pairs, such as If…End statements and looping struc-
tures.

You’ve probably heard that computer programs are “full of bugs.” In pro-
gramming, errors are called bugs, and debugging is a process of eliminating er-
rors from your programs. Visual Basic for Applications provides a myriad of
tools for tracking down and eliminating bugs. The first step in debugging a pro-
cedure is to correct all syntax errors. In addition to syntax errors, there are two

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 205

other types of errors: runtime and logic. Runtime errors, which occur while the
procedure is running, are often caused by unexpected situations the program-
mer did not think of while writing the code. For example, the program may
be trying to access a drive or a file that does not exist on the user’s computer.
Or it may be trying to copy a file to a CD-ROM disc without first determining
whether the user had inserted a CD.

The third type of error, a logic error, often does not generate a specific error
message. Even though the procedure has no flaws in its syntax and runs without
errors, it produces incorrect results. Logic errors happen when your procedure
simply does not do what you want it to do. Logic errors are usually very difficult
to locate. Those that happen intermittently are sometimes so well concealed that
you can spend long hours—even days—trying to locate the source of the error.

STOPPING A PROCEDURE

VBA offers four methods of stopping your procedure and entering into a so-
called break mode:

 ● Pressing Ctrl+Break
 ● Setting one or more breakpoints
 ● Inserting the Stop statement
 ● Adding a watch expression

A break occurs when execution of your VBA procedure is temporarily sus-
pended. Visual Basic remembers the values of all variables and the statement
from which the execution of the procedure should resume when you decide to
continue.

You can resume a suspended procedure in one of the following ways:

 ● Click the Run Sub/UserForm button on the toolbar
 ● Choose Run | Run Sub/UserForm from the menu bar
 ● Click the Continue button in the error message box (see Figure 9.2)

206 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 9.2 This message appears when you press Ctrl+Break while your VBA procedure is running.

The error message box shown in Figure 9.2 informs you that the procedure was
halted. The description of each button is provided in Table 9.1.

TABLE 9.1 Error message box buttons.

Button Name Description
Continue Click this button to resume code execution. This button will be grayed out if an

error was encountered.
End Click this button if you do not want to troubleshoot the procedure at this time.

VBA will stop code execution.
Debug Click this button to enter break mode. The Code window will appear, and VBA

will highlight the line at which the procedure execution was suspended. You can
examine, debug, or step through the code.

Help Click this button to view the online help that explains the cause of this error
message.

USING BREAKPOINTS

If you know more or less where there may be a problem in your procedure
code, you should suspend code execution at that location (on a given line). Set a
breakpoint by pressing F9 when the cursor is on the desired line of code. When
VBA gets to that line while running your procedure, it will display the Code
window immediately. At this point you can step through the procedure code
line by line by pressing F8 or choosing Debug | Step Into.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 207

To see how this works, let’s look at the following scenario. Assume that dur-
ing the execution of the ListEndDates function procedure (see Custom Project
9.1) the following line of code could get you into trouble:
ListEndDates = Format(((Now() + intOffset) - 35) + 7 * row, _
 "MM/DD/YYYY")

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Custom Project 9.1 Debugging a Function Procedure

1. Start Microsoft Access and create a new database named Chap09.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Create the form shown in Figure 9.3.

FIGURE 9.3 The combo box control shown on this form will be filled with the result of the
ListEndDates function.

208 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Use the property sheet to set the following control properties:
Control Name Property Name Property Setting
combo box Name

Row Source Type
Column Count

cboEndDate
ListEndDates
1

text box controls Name txt1
txt2
txt3
txt4
txt5
txt6
txt7

4. Save the form as frmTimeSheet.
5. In the property sheet, select Form from the drop-down listbox. Click the

Event tab. Choose [Event Procedure] from the drop-down list next to the On
Load property, and then click the Build button (…). Complete the following
Form_Load procedure when the Code window appears:
Private Sub Form_Load()
 With Me.cboEndDate
 .SetFocus
 .ListIndex = 5 ' Select current end date
 End With
End Sub

6. Select the combo box control (cboEndDate) on the form. In the property
sheet, click the Event tab. Choose [Event Procedure] from the drop-down list
next to the On Change property, and then click the Build button (…). Enter
the following code:
Private Sub cboEndDate_Change()
 Dim endDate As Date

 endDate = Me.cboEndDate.Value
 With Me
 .txt1 = Format(endDate - 6, "mm/dd")
 .txt2 = Format(endDate - 5, "mm/dd")
 .txt3 = Format(endDate - 4, "mm/dd")
 .txt4 = Format(endDate - 3, "mm/dd")
 .txt5 = Format(endDate - 2, "mm/dd")
 .txt6 = Format(endDate - 1, "mm/dd")
 .txt7 = Format(endDate - 0, "mm/dd")
 End With
End Sub

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 209

7. In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

8. In the Properties window, change the Name property of Module1 to
TimeSheetProc.

9. Enter the ListEndDates function procedure in the TimeSheetProc module:
Function ListEndDates(fld As Control, id As Variant, _
 row As Variant, col As Variant, _
 code As Variant) As Variant

 Dim intOffset As Integer

 Select Case code
 Case acLBInitialize
 ListEndDates = True
 Case acLBOpen
 ListEndDates = Timer
 Case acLBGetRowCount
 ListEndDates = 11
 Case acLBGetColumnCount
 ListEndDates = 1
 Case acLBGetColumnWidth
 ListEndDates = -1
 Case acLBGetValue
 ' days till end date
 intOffset = Abs((8 - Weekday(Now)) Mod 7)
 ' start 5 weeks prior to current week end date
 ' (7 days * 5 weeks = 35 days before next end date)
 ' and show 11 dates

 ListEndDates = Format(((Now() + intOffset) - 35) _
 + 7 * row, "MM/DD/YYYY")
 End Select
End Function

10. In the ListEndDates function procedure, click anywhere on the line containing
the following statement:
ListEndDates = Format(((Now() + intOffset) - 35) _
 + 7 * row, "MM/DD/YYYY")

11. Press F9 (or choose Debug | Toggle Breakpoint) to set a breakpoint on the
line where the cursor is located.
When you set the breakpoint, Visual Basic displays a red dot in the margin. At
the same time, the line that has the breakpoint will change to white text on a

210 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

red background (see Figure 9.4). The color of the breakpoint can be changed
on the Editor Format tab in the Options dialog box (choose Tools | Options).
 Another way of setting a breakpoint is to click in the margin indicator to the
left of the line on which you want to stop the procedure.

FIGURE 9.4 The line of code where the breakpoint is set is displayed in the color specified on the
Editor Format tab in the Options dialog box.

12. Press Alt+F11 to switch to the Microsoft Access application window and open
the form frmTimeSheet in the Form view.
When the form is opened, Visual Basic for Applications will call the ListEndDates
function to fill the combo box, executing all the statements until it encounters
the breakpoint you set in Steps 10–11. Once the breakpoint is reached, the
code is suspended and the screen displays the Code window in break mode
(notice the word “break” surrounded by square brackets in the Code window’s
titlebar), as shown in Figure 9.5. VBA displays a yellow arrow in the margin to
the left of the statement at which the procedure was suspended. At the same
time, the statement appears inside a box with a yellow background. The arrow
and the box indicate the current statement, or the statement that is about to
be executed. If the current statement also contains a breakpoint, the margin
displays both indicators overlapping one another (the circle and the arrow).

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 211

FIGURE 9.5 Code window in break mode. A yellow arrow appears in the margin to the left of the
statement at which the procedure was suspended. Because the current statement also contains a
breakpoint (indicated by a red circle), the margin displays both indicators overlapping one another (the
circle and the arrow).

13. Finish running the ListEndDates function procedure by pressing F5 to
continue without stopping or press F8 to execute the procedure line by line.
When you step through your procedure code line by line by pressing F8, you
can use the Immediate window to further test your procedure (see the section
titled “Using the Immediate Window in Break Mode”). To learn more about
stepping through a procedure, refer to the section titled “Stepping through
VBA Procedures” later in this chapter.

You can set any number of breakpoints in a procedure. This way you can sus-
pend and continue the execution of your procedure as you . Press F5 to quickly
move between the breakpoints. You can analyze the code of your procedure and
check the values of variables while code execution is suspended. You can also
perform various tests by typing statements in the Immediate window. Consider
setting a breakpoint if you suspect that your procedure never executes a certain
block of code.

Removing Breakpoints

When you finish running the procedure in which you had set breakpoints, VBA
does not automatically remove them. To remove the breakpoint, choose Debug

212 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

| Clear All Breakpoints or press Ctrl+Shift+F9. All the breakpoints are removed.
If you had set several breakpoints in a given procedure and would like to remove
only some of them, click on the line containing the breakpoint you want to
remove and press F9 (or choose Debug | Clear Breakpoint). You should clear the
breakpoints when they are no longer needed. The breakpoints are automatically
removed when you exit Microsoft Access.

NOTE Remove the breakpoint you set in Custom Project 9.1.

USING THE IMMEDIATE WINDOW IN BREAK MODE

When the procedure execution is suspended, the Code window appears in
break mode. This is a good time to activate the Immediate window and type
VBA instructions to find out, for instance, the name of the open form or the
value of a certain control. You can also use the Immediate window to change
the contents of variables in order to correct values that may be causing errors.
By now, you should be an expert when it comes to working in the Immediate
window. Figure 9.6 shows the suspended ListEndDates function procedure and
the Immediate window with the questions that were asked of Visual Basic for
Applications while in break mode.

FIGURE 9.6 When code execution is suspended, you can check current values of variables and
expressions by entering appropriate statements in the Immediate window.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 213

In break mode, you can also hold the mouse pointer over any variable in a
running procedure to see the variable’s value. For example, in the ListEndDates
function procedure shown in Figure 9.7, the breakpoint has been set on the
statement just before the End Select keywords. When Visual Basic for Applica-
tions encounters this statement, the Code window appears in break mode. Be-
cause the statement that stores the value of the variable intOffset has already
been executed, you can quickly find out the value of this variable by resting the
mouse pointer over its name. The name of the variable and its current value ap-
pear in a floating frame. To show the values of several variables used in a proce-
dure, you should use the Locals window, which is discussed later in this chapter.

FIGURE 9.7 In break mode, you can find out the value of a variable by resting the mouse pointer on
that variable.

Working in a Code Window in Break Mode

While in break mode, you can change code, add new statements, execute the
procedure one line at a time, skip lines, set the next statement, use the Im-
mediate window, and more. When the procedure is in break mode, all the op-
tions on the Debug menu are available. You can enter break mode by pressing
Ctrl+Break or F8 or by setting a breakpoint. In break mode, if you change a
certain line of code, VBA will prompt you to reset the project by displaying the
message “This action will reset your project, proceed anyway?” Click OK to
stop the program’s execution and proceed editing your code or click Cancel to
delete the new changes and continue running the code from the point where it
was suspended. For example, change the variable declaration. As you press F5
to resume code execution, you’ll be prompted to reset your project.

SIDEBAR

214 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USING THE STOP STATEMENT

Sometimes you won’t be able to test your procedure right away. If you set up your
breakpoints and then close the database file, the breakpoints will be removed;
next time, when you are ready to test your procedure, you’ll have to begin by
setting up your breakpoints again. If you need to postpone the task of testing
your procedure until later, you can take a different approach by inserting a Stop
statement into your code wherever you want to halt a procedure.

Figure 9.8 shows the Stop statement before the With…End With construct.
VBA will suspend the execution of the cboEndDate_Change event procedure
when it encounters the Stop statement, and the screen will display the Code
window in break mode. Although the Stop statement has the same effect as
setting a breakpoint, it does have one disadvantage: All Stop statements stay in
the procedure until you remove them. When you no longer need to stop your
procedure, you must locate and remove all the Stop statements.

FIGURE 9.8 You can insert a Stop statement anywhere in your VBA procedure code. The procedure
will halt when it gets to the Stop statement, and the Code window will appear with the code line
highlighted.

USING THE ASSERT STATEMENT

A very powerful and easy-to-apply debugging technique is utilizing Debug.
Assert statements. Assertions allow you to write code that checks itself while
running. By including assertions in your programming code, you can verify

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 215

that a particular condition or assumption is true. Assertions give you immedi-
ate feedback when an error occurs. They are great for detecting logic errors
early in the development phase instead of hearing about them later from your
end users. Just because your procedure ran on your system without generating
an error does not mean that there are no bugs in that procedure. Don’t assume
anything—always test for validity of expressions and variables in your code. The
Debug.Assert statement takes any expression that evaluates to True or False
and activates the break mode when that expression evaluates to False. The syn-
tax for Debug.Assert is as follows:
Debug.Assert condition

where condition is a VBA code or expression that returns True or False. If con-
dition evaluates to False or 0 (zero), VBA will enter break mode. For example,
when running the following looping structure, the code will stop executing
when the variable i equals 50:
Sub TestDebugAssert()
 Dim i As Integer
 For i = 1 To 100
 Debug.Assert i <> 50
 Next
End Sub

Keep in mind that Debug.Assert does nothing if the condition is False or
zero (0). The execution simply stops on that line of code and the VBE screen
opens with the line containing the false statement highlighted so that you can
start debugging your code. You may need to write an error handler to handle
the identified error. Error-handling procedures are covered later in this chapter.
While you can stop the code execution by using the Stop statement (see the pre-
vious section), Debug.Assert differs from the Stop statement in its conditional
aspect; it will stop your code only under specific conditions. Conditional break-
points can also be set by using the Watches window (see the next section). After
you have debugged and tested your code, comment out or remove the Debug.
Assert statements from your final code. The easiest way to do this is to use Edit
| Replace in the VBE editor screen. To comment out the statements, in the Find
What box, enter Debug.Assert. In the Replace With box, enter an apostrophe
followed by Debug.Assert.

216 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

To remove the Debug.Assert statements from your code, enter
Debug.Assert in the Find What box. Leave the Replace With
box empty but be sure to mark the Use Pattern Matching check-
box.

USING THE ADD WATCH WINDOW

Many errors in procedures are caused by variables that assume unexpected val-
ues. If a procedure uses a variable whose value changes in various locations, you
may want to stop the procedure and check the current value of that variable.
VBA offers a special Watches window that allows you to keep an eye on vari-
ables or expressions while your procedure is running. To add a watch expression
to your procedure, select the variable whose value you want to monitor in the
Code window, and then choose Debug | Add Watch. The screen will display the
Add Watch dialog box, as shown in Figure 9.9.

FIGURE 9.9 The Add Watch dialog box allows you to define conditions you want to monitor while a
VBA procedure is running.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 217

The Add Watch dialog box contains three sections, which are described in
Table 9.2.

TABLE 9.2 Add Watch dialog box sections.

Section Description
Expression Displays the name of a variable you have highlighted in your procedure. If you

opened the Add Watch dialog box without selecting a variable name, type the
name of the variable you want to monitor in the Expression text box.

Context In this section, indicate the name of the procedure that contains the variable and
the name of the module where this procedure is located.

Watch Type Specifies how to monitor the variable. If you choose:
 • The Watch Expression option button, you can read the value of the variable

in the Add Watch window while in break mode.
 • Break When Value Is True, Visual Basic will automatically stop the proce-

dure when the variable evaluates to True (nonzero).
 • Break When Value Changes, Visual Basic will automatically stop the proce-

dure each time the value of the variable or expression changes.

You can add a watch expression before running a procedure or after suspending
the execution of your procedure.

The difference between a breakpoint and a watch expression is that the
breakpoint always stops a procedure in a specified location, but the watch stops
the procedure only when the specified condition (Break When Value Is True
or Break When Value Changes) is met. Watches are extremely useful when you
are not sure where the variable is being changed. Instead of stepping through
many lines of code to find the location where the variable assumes the specified
value, you can put a watch breakpoint on the variable and run your procedure
as normal. Let’s see how this works.

 Hands-On 9.1 Watching the Values of VBA Expressions

1. In the Visual Basic Editor window, choose Insert | Module to insert a new
standard module.

2. Use the Properties window to change the name of the module to Breaks.
3. In the Breaks Code window, type the following WhatDate procedure:

Sub WhatDate()
 Dim curDate As Date
 Dim newDate As Date
 Dim x As Integer

218 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 curDate = Date
 For x = 1 To 365
 newDate = Date + x
 Next x
End Sub

The WhatDate procedure uses the For…Next loop to calculate the date that is
x days in the future. You won’t see any result when you run this procedure un-
less you insert the following instruction in the procedure code just before the
End Sub keywords:
MsgBox "In " & x & " days, it will be " & NewDate

However, you don’t want to display the individual dates, day after day. Suppose
that you want to stop the program when the value of the variable x reaches 211.
In other words, you want to know what date will be 211 days from now. To
get the answer, you could insert the following statement into your procedure
before the Next x statement:
If x = 211 Then MsgBox "In " & x & " days it will be " & _
 NewDate

But this time, you want to get the answer without introducing any new
statements into your procedure. If you add watch expressions to the procedure,
Visual Basic for Applications will stop the For…Next loop when the specified
condition is met, and you’ll be able to check the values of the desired variables.

4. Choose Debug | Add Watch.
5. In the Expression text box, enter the following expression: x = 211.
6. In the Context section, choose WhatDate from the Procedure combo box and

Breaks from the Module combo box.
7. In the Watch Type section, select the Break When Value Is True option button.
8. Click OK to close the Add Watch dialog box. You have now added your first

watch expression.
9. In the Code window, position the insertion point anywhere within the name

of the curDate variable.
10. Choose Debug | Add Watch and click OK to set up the default watch type with

the Watch Expression option.
11. In the Code window, position the insertion point anywhere within the name

of the newDate variable.
12. Choose Debug | Add Watch and click OK to set up the default watch type with

the Watch Expression option.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 219

After performing these steps, the WhatDate procedure contains the following
three watches:
x = 211 Break When Value Is True
curDate Watch Expression
newDate Watch Expression

13. Position the cursor anywhere inside the code of the WhatDate procedure and
press F5.
Visual Basic stops the procedure when x = 211 (see Figure 9.10). Notice that
the value of the variable x in the Watches window is the same as the value you
specified in the Add Watch dialog box.

In addition, the Watches window shows the value of the variables curDate and
newDate. The procedure is in break mode. You can press F5 to continue, or you
can ask another question: What date will be in 277 days? The next step shows
how to do this.

FIGURE 9.10 Using the Watches window.

14. Choose Debug | Edit Watch and enter the following expression: x =
277.
You can also display the Edit Watch dialog box by double-clicking the
expression in the Watches window.

220 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

15. Click OK to close the Edit Watch dialog box. Notice that the Watches window
now displays a new value of the expression. x is now false.

16. Press F5. The procedure stops again when the value of x = 277. The value
of curDate is the same; however, the newDate variable now contains a new
value—a date that is 277 days from now. You can change the value of the
expression again or finish the procedure.

17. Press F5 to finish the procedure without stopping.
When your procedure is running and a watch expression has a value, the
Watches window displays the value of the Watch expression. If you open the
Watches window after the procedure has finished, you will see the error “<out
of context>” instead of the variable values. In other words, when the watch
expression is out of context, it does not have a value.

Removing Watch Expressions

To remove a watch expression, click on the expression you want to remove from
the Watches window and press Delete. Remove all the watch expressions you
defined in the preceding exercise.

USING QUICK WATCH

To check the value of an expression not defined in the Watches window, you can
use Quick Watch (see Figure 9.11).

To access the Quick Watch dialog box while in break mode, position the
insertion point anywhere inside a variable name or an expression you want to
watch and choose Debug | Quick Watch, or press Shift+F9.

FIGURE 9.11 The Quick Watch dialog box shows the value of the selected expression in a VBA
procedure.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 221

The Quick Watch dialog box contains an Add button that allows you to add the
expression to the Watches window. Let’s see how to take advantage of Quick
Watch.

 Hands-On 9.2 Using the Quick Watch Dialog Box

NOTE
Remove all the watch expressions you defined in Hands-On 9.1.
See the preceding section on how to remove a watch expression
from the Watches window.

1. In the WhatDate procedure, position the insertion point on the name of the
variable x.

2. Choose Debug | Add Watch.
3. Enter the expression x = 50.
4. Choose the Break When Value Is True option button and click OK.
5. Run the WhatDate procedure.

Visual Basic will suspend procedure execution when x = 50. Notice that the
Watches window does not contain either the newDate or the curDate variables.
To check the values of these variables, you can position the mouse pointer
over the appropriate variable name in the Code window, or you can invoke the
Quick Watch dialog box.

6. In the Code window, position the mouse inside the newDate variable and
press Shift+F9, or choose Debug | Quick Watch.
The Quick Watch dialog box shows the name of the expression and its current
value.

7. Click Cancel to return to the Code window.
8. In the Code window, position the mouse inside the curDate variable and press

Shift+F9, or choose Debug | Quick Watch.
9. The Quick Watch dialog box now shows the value of the variable curDate.

10. Click Cancel to return to the Code window.
11. Press F5 to continue running the procedure.

USING THE LOCALS WINDOW

If you need to keep an eye on all the declared variables and their current values
during the execution of a VBA procedure, choose View | Locals Window before
you run your procedure. While in break mode, VBA will display a list of vari-
ables and their corresponding values in the Locals window (see Figure 9.12).

222 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Locals window contains three columns: Expression, Value, and Type.
The Expression column displays the names of variables that are declared in

the current procedure. The first row displays the name of the module preceded
by the plus sign. When you click the plus sign, you can check if any variables
have been declared at the module level. Here the class module will show the
system variable Me. In the Locals window, global variables and variables used by
other projects aren’t displayed.

The second column, Value, shows the current variable values. In this col-
umn, you can change the value of a variable by clicking on it and typing the new
value. After changing the value, press Enter to register the change. You can also
press Tab, Shift+Tab, or the up or down arrows, or click anywhere within the
Locals window after you’ve changed the variable value.

Type, the third column, displays the type of each declared variable.

FIGURE 9.12 The Locals window displays the current values of all the declared variables in the
current VBA procedure.

To observe the variable values in the Locals window, let’s proceed to the fol-
lowing hands-on exercise.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 223

 Hands-On 9.3 Using the Locals Window

1. Choose View | Locals Window.
2. Click anywhere inside the WhatDate procedure and press F8.

Pressing F8 places the procedure in break mode. The Locals window displays
the name of the current module, the local variables, and their beginning values.

3. Press F8 a few more times while keeping an eye on the Locals window.
4. Press F5 to continue running the procedure.

USING THE CALL STACK DIALOG BOX

The Locals window (see Figure 9.12) contains a button with an ellipsis (…).
This button opens the Call Stack dialog box (see Figure 9.13), which displays
a list of all active procedure calls. An active procedure call is a procedure that
is started but not completed. You can also activate the Call Stack dialog box by
choosing View | Call Stack. This option is available only in break mode.

The Call Stack dialog box is especially helpful for tracing nested procedures.
Recall that a nested procedure is a procedure that is being called from within
another procedure (see Hands-On 9.5). If a procedure calls another, the name
of the called procedure is automatically added to the Calls list in the Call Stack
dialog box. When VBA has finished executing the statements of the called pro-
cedure, the procedure name is automatically removed from the Call Stack dialog
box. You can use the Show button in the Call Stack dialog box to display the
statement that calls the next procedure listed in the Call Stack dialog box.

FIGURE 9.13 The Call Stack dialog box displays a list of procedures that are started but not
completed.

224 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

STEPPING THROUGH VBA PROCEDURES

Stepping through the code means running one statement at a time. This allows
you to check every line in every procedure that is encountered. To start step-
ping through the procedure from the beginning, place the cursor anywhere
inside the code of your procedure and choose Debug | Step Into, or press F8.
The Debug menu contains several options that allow you to execute a procedure
in step mode (see Figure 9.14).

FIGURE 9.14 The Debug menu offers many commands for stepping through VBA procedures.
Certain commands on this menu are available only in break mode.

When you run a procedure one statement at a time, VBA executes each state-
ment until it encounters the End Sub keywords. If you don’t want to step through
every statement, you can press F5 at any time to run the remaining code of the
procedure without stepping through it.

 Hands-On 9.4 Stepping Through a Procedure

1. Place the cursor anywhere inside the procedure you want to trace.
2. Press F8 or choose Debug | Step Into.

Visual Basic for Applications executes the current statement, then automatically
advances to the next statement and suspends execution. While in break mode,

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 225

you can activate the Immediate window, the Watches window, or the Locals
window to see the effect of a particular statement on the values of variables
and expressions. And if the procedure you are stepping through calls other
procedures, you can activate the Call Stack dialog box to see which procedures
are currently active.

3. Press F8 again to execute the selected statement. After executing this statement,
VBA will select the next statement, and again the procedure execution will be
halted.

4. Continue stepping through the procedure by pressing F8, or press F5 to
continue running the code without stopping.

5. You can also choose Run | Reset to stop the procedure at the current statement
without executing the remaining statements.
When you step over procedures (Shift+F8), VBA executes each procedure as
if it were a single statement. This option is quite handy if a procedure contains
calls to other procedures you don’t want to step into because they have already
been tested and debugged, or because you want to concentrate only on the new
code that has not been debugged yet.

Stepping Over a Procedure

Suppose that the current statement in MyProcedure calls the SpecialMsg pro-
cedure. If you choose Debug | Step Over (Shift+F8) instead of Debug | Step
Into (F8), VBA will quickly execute all the statements inside the SpecialMsg
procedure and select the next statement in the calling procedure, MyProcedure.
While the SpecialMsg procedure is being executed, VBA continues to display
the current procedure in the Code window.

 Hands-On 9.5 Stepping Over a Procedure

This hands-on exercise refers to the Access form named frmTimeSheet that you
created in Custom Project 9.1 at the beginning of this chapter.

1. In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

2. In the module’s Code window, enter the MyProcedure and SpecialMsg
procedures as shown here:
Sub MyProcedure()
 Dim myName As String

 myName = Forms!frmTimeSheet.Controls(1).Name

226 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' choose Step Over to avoid stepping through the
 ' lines of code in the called procedure - SpecialMsg
 SpecialMsg myName
End Sub

Sub SpecialMsg(n As String)
 If n = "Label1" Then
 MsgBox "You must change the name."
 End If
End Sub

3. Add a breakpoint within MyProcedure at the following statement:
SpecialMsg myName

4. Place the insertion point anywhere within the code of MyProcedure and press
F5 to run it.
Visual Basic halts execution when it reaches the breakpoint.

5. Press Shift+F8 or choose Debug | Step Over.
Visual Basic runs the SpecialMsg procedure, and then execution advances to
the statement immediately after the call to the SpecialMsg procedure.

6. Press F5 to finish running the procedure without stepping through its code.
Now suppose you want to execute MyProcedure to the line that calls the
SpecialMsg procedure.

7. Click anywhere inside the statement SpecialMsg myName.
8. Choose Debug | Run to Cursor.

Visual Basic will stop the procedure when it reaches the specified line.
9. Press Shift+F8 to step over the SpecialMsg procedure.

10. Press F5 to execute the rest of the procedure without single stepping.

Stepping over a procedure is useful when you don’t want to analyze individual
statements inside the called procedure (SpecialMsg).

Stepping Out of a Procedure

Another command on the Debug menu, Step Out (Ctrl+Shift+F8), is used when
you step into a procedure and then decide that you don’t want to step all the way
through it. When you choose this option, Visual Basic will execute the remain-
ing statements in this procedure in one step and proceed to activate the next
statement in the calling procedure.

In the process of stepping through a procedure, you can switch between the
Step Into, Step Over, and Step Out options. The option you select depends on
which code fragment you wish to analyze at a given moment.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 227

Running a Procedure to Cursor

The Debug menu Run To Cursor command (Ctrl+F8) lets you run your pro-
cedure until the line you have selected is encountered. This command is quite
useful if you want to stop the execution before a large loop or you intend to step
over a called procedure.

Setting the Next Statement

At times, you may want to rerun previous lines of code in the procedure or
skip over a section of code that is causing trouble. In each of these situations,
you can use the Set Next Statement option on the Debug menu. When you halt
execution of a procedure, you can resume the procedure from any statement
you want. VBA will skip execution of the statements between the selected state-
ment and the statement where execution was suspended.

Skipping Lines of Code

Although skipping lines of code can be very useful in the process of debugging
your VBA procedures, it should be done with care. When you use the Next
Statement option, you tell Visual Basic for Applications that this is the line
you want to execute next. All lines in between are ignored. This means that
certain things you may have expected to occur don’t happen, which can lead
to unexpected errors.

Showing the Next Statement

If you are not sure where procedure execution will resume, you can choose
Debug | Show Next Statement, and VBA will place the cursor on the line that
will run next. This is particularly useful when you have been looking at other
procedures and are not sure where execution will resume. The Show Next State-
ment option is available only in break mode.

NAVIGATING WITH BOOKMARKS

In the process of analyzing or reviewing your VBA procedures, you will often
find yourself jumping to certain areas of code. Using the built-in bookmark fea-
ture, you can easily mark the spots you want to navigate between.

To set up a bookmark:

1. Click anywhere in the statement you want to define as a bookmark.

SIDEBAR

228 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Choose Edit | Bookmarks | Toggle Bookmark (or click the Toggle Bookmark
button on the Edit toolbar).
Visual Basic will place a blue, rounded rectangle in the left margin beside the
statement, as shown in Figure 9.15.

FIGURE 9.15 Using bookmarks, you can quickly jump between often-used sections of your
procedures.

Once you’ve set up two or more bookmarks, you can jump between the marked
locations of your code by choosing Edit | Bookmarks | Next Bookmark or
simply clicking the Next Bookmark button on the Edit toolbar. You may also
right-click anywhere in the Code window and select Next Bookmark from the
shortcut menu. To go to the previous bookmark, select Previous Bookmark. You
can remove bookmarks at any time by choosing Edit | Bookmarks | Clear All
or by clicking the Clear All Bookmarks button on the Edit toolbar. To remove a
single bookmark, click anywhere in the bookmarked statement and choose Edit
| Bookmarks | Toggle Bookmark, or click the Toggle Bookmark button on the
Edit toolbar.

STOPPING AND RESETTING VBA PROCEDURES

At any time while stepping through the code of a procedure in the Code win-
dow, you can press F5 to execute the remaining instructions without stepping
through them or choose Run | Reset to finish the procedure without executing

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 229

the remaining statements. When you reset your procedure, all the variables lose
their current values. Numeric variables assume the initial value of zero(0),
variable-length strings are initialized to a zero-length string (""), and fixed-
length strings are filled with the character represented by the ASCII character
code 0, or Chr(0). Variant variables are initialized to Empty, and the value of
Object variables is set to Nothing.

TRAPPING ERRORS

No one writes bug-free programs the first time. For this reason, when you cre-
ate VBA procedures you have to determine how your program will respond to
errors. Many unexpected errors happen at runtime. For example, your proce-
dure may try to give a new file the same name as an open file.

Runtime errors are often discovered not by a programmer but by the user
who attempts to do something that the programmer has not anticipated. If an
error occurs when the procedure is running, Visual Basic displays an error mes-
sage and the procedure is stopped. The error message that VBA displays to the
user is often quite cryptic.

You can keep users from seeing many runtime errors by including error-
handling code in your VBA procedures. This way, when Visual Basic encoun-
ters an error, instead of displaying a default error message, it will show a much
friendlier, more comprehensive error message, perhaps advising the user how
to correct the error.

How do you implement error handling in your VBA procedure? The first
step is to place the On Error statement in your procedure. This statement tells
VBA what to do if an error happens while your program is running. In other
words, VBA uses the On Error statement to activate an error-handling proce-
dure that will trap runtime errors. Depending on the type of procedure, you
can exit the error trap by using one of the following statements: Exit Sub, Exit
Function, Exit Property, End Sub, End Function, or End Property.

You should write an error-handling routine for each procedure. Table 9.3
shows how the On Error statement can be used.

230 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 9.3 On Error statement options.

On Error Statement Description
On Error GoTo Label Specifies a label to jump to when an error occurs. This

label marks the beginning of the error-handling routine.
An error handler is a routine for trapping and responding
to errors in your application. The label must appear in the
same procedure as the On Error GoTo statement.

On Error Resume Next When a runtime error occurs, Visual Basic ignores the
line that caused the error and continues the procedure
with the next line. An error message is not displayed.

On Error GoTo 0 Turns off error trapping in a procedure. When VBA runs
this statement, errors are detected but not trapped within
the procedure.

Is This an Error or a Mistake?

In programming, mistakes and errors are not the same thing. A mistake—such
as a misspelled or missing statement, a misplaced quotation mark or comma,
or an assignment of a value of one type to a variable of a different (and incom-
patible) type—can be removed from your program through proper testing and
debugging. But even though your code may be free of mistakes, errors can
still occur. An error is a result of an event or operation that doesn’t work as
expected. For example, if your VBA procedure accesses a certain file on disc
and someone deleted this file or moved it to another location, you’ll get an
error no matter what. An error prevents the procedure from carrying out a
specific task.

Using the Err Object

Your error-handling code can utilize various properties and methods of the Err
object. For example, to check which error occurred, check the value of Err.
Number. The Number property of the Err object will tell you the value of the
last error that occurred, and the Description property will return a description
of the error. You can also find the name of the application that caused the error
by using the Source property of the Err object (this is very helpful when your
procedure launches other applications). After handling the error, use the Err.
Clear statement to reset the error number. This will set Err.Number back to
zero.

SIDEBAR

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 231

To test your error-handling code you can use the Raise method of the Err
object. For example, to raise the “Disk not ready” error, use the following state-
ment:
Err.Raise 71

The following OpenToRead procedure demonstrates the use of the On Error
statement and the Err object.

 Hands-On 9.6 Error-Trapping Techniques

1. Copy the Vacation.txt file from the companion CD to your VBAPrimerAccess_
ByExample folder.

2. In the Visual Basic Editor window, insert a new module and rename it
ErrorTraps.

3. In the Code window, enter the following OpenToRead procedure:
Sub OpenToRead()
 Dim strFile As String
 Dim strChar As String
 Dim strText As String
 Dim FileExists As Boolean

 FileExists = True

 On Error GoTo ErrorHandler

 strFile = InputBox("Enter the name of file to open:")
 Open strFile For Input As #1

 If FileExists Then
 Do While Not EOF(1) ' loop until the end of file
 strChar = Input(1, #1) ' get one character
 strText = strText + strChar
 Loop
 Debug.Print strText
 ' Close the file
 Close #1
 End If
 Exit Sub

ErrorHandler:
 FileExists = False
 Select Case Err.Number
 Case 71

232 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox "The CD/DVD drive is empty."
 Case 53
 MsgBox "This file can’t be found on the specified drive."
 Case 76
 MsgBox "File Path was not found."
 Case Else
 MsgBox "Error " & Err.Number & " :" & Err.Description
 Exit Sub
 End Select
 Resume Next
End Sub

Before continuing with this hands-on, let’s examine the code of the
OpenToRead procedure. Th e purpose of the OpenToRead procedure is to read
the contents of the user-supplied text fi le character by character. When the
user enters a fi lename, various errors can occur. For example, the fi lename may
be wrong, the user may attempt to open a fi le from a CD-ROM or DVD disc
without actually placing the disc in the drive, or he may try to open a fi le that is
already open. To trap these errors, the error-handling routine at the end of the
OpenToRead procedure uses the Number property of the Err object. Th e Err
object contains information about runtime errors. If an error occurs while the
procedure is running, the statement Err.Number will return the error number.
 If errors 71, 53, or 76 occur, Visual Basic will display the user-friendly
messages given inside the Select Case block and then proceed to the Resume
Next statement, which will send it to the line of code following the one that
had caused the error. If another (unexpected) error occurs, Visual Basic will
return its error code (Err.Number) and error description (Err.Description).
 At the beginning of the procedure, the variable FileExists is set to True.
If the program doesn’t encounter an error, all the instructions inside the If
FileExists Then block will be executed. However, if VBA encounters an
error, the value of the FileExists variable will be set to False (see the first
statement in the error-handling routine just below the ErrorHandler label).
 If you comment the Close #1 instruction, Visual Basic will encounter
the error on the next attempt to open the same file. Notice the Exit Sub
statement before the ErrorHandler block. Put the Exit Sub statement just
above the error- handling routine. You don’t want Visual Basic to carry out the
error handling if there are no errors.
 How does this procedure accomplish the read operation? The Input
function allows you to return any character from a sequential file. Sequential
access files are files where data is retrieved in the same order as it is stored, such

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 233

as files stored in the CSV format (comma-delimited text), TXT format (text
separated by tabs), or PRN format (text separated by spaces). Configuration
files, error logs, HTML files, and all sorts of plain text files are all sequential
files. These files are stored on disc as a sequence of characters. The beginning
of a new text line is indicated by two special characters: the carriage return and
the linefeed. When you work with sequential files, start at the beginning of the
file and move forward character by character, line by line, until you encounter
the end of the file. Sequential access files can be easily opened and manipulated
by just about any text editor.

 If you use the VBA function named LOF (length of file) as the first argument
of the Input function, you can quickly read the contents of the sequential file
without having to loop through the entire file.
 For example, instead of the following Do…While loop statement block:

Do While Not EOF(1) ' loop until the end of file
 strChar = Input(1, #1) ' get one character
 strText = strText + strChar
Loop

you can simply write the following statement to get the contents of the fi le at
once:

strText = Input(LOF(1), #1)

Th e LOF function returns the number of bytes in a fi le. Each byte corresponds
to one character in a text fi le.
To read data from a fi le, you must fi rst open the fi le with the Open statement
using the following syntax:

Open pathname For mode[Access access][lock] As [#]filenumber _
[Len=reclength]

Th e Open statement has three required arguments: pathname, mode, and
filenumber. Pathname is the name of the fi le you want to open. Th e fi lename
may include the name of a drive and folder.
 Mode is a keyword that determines how the file was opened. Sequential files
can be opened in one of the following modes: Input, Output, or Append. Use
Input to read the file, Output to write to a file and overwrite any existing file
and Append to write to a file by adding to any existing information.
 Filenumber is a number from 1 to 511. This number is used to refer to the
file in subsequent operations. You can obtain a unique file number using the
VBA built-in FreeFile function.

234 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 The optional Access clause can be used to specify permissions for the file
(Read, Write, or Read Write). The optional lock argument determines which
file operations are allowed for other processes. For example, if a file is open in
a network environment, lock determines how other people can access it. The
following lock keywords can be used: Shared, Lock Read, Lock Write, or
Lock Read Write. The last element of the Open statement, reclength, speci-
fies the buffer size (total number of characters) for sequential files.
 Therefore, to open a sequential file in order to read its data, the example
procedure uses the following instruction:
Open strFile For Input As #1

And to close the sequential file, the following statement is used:
Close #1

4. Click anywhere within the OpenToRead procedure and press F5 to run it.
When prompted for the file to open, type C:\VBAPrimerAccess_ByExample\
Vacation.txt in the input dialog box and click OK. The procedure reads the
contents of the Vacation.txt file into the Immediate window.

5. Run the OpenToRead procedure again. When prompted for the file to
open, type P:\VBAPrimerAccess_ByExample\Vacation.txt in the input
dialog box and click OK. This time Visual Basic cannot find the specified file,
so it displays the message “File Path was not found.”

6. Run the OpenToRead procedure again. This time, when prompted for the
filename, enter the name of any file that references your CD/DVD drive (when
the drive slot is empty). This should trigger error 71 and result in the message
“The CD/DVD drive is empty.”

7. Comment the Close #1 statement and run OpenToRead. When prompted
for the file, enter C:\VBAPrimerAccess_ByExample\Vacation.txt as the
filename. Run the same procedure again, supplying the same filename. The
second run will cause the statements within the Case Else block to run. You
should get an error 55 “File already open” message because the text file will
still be open in memory. To remove the file from memory, type Close #1 in
the Immediate window and press Enter. Next, uncomment the Close # 1
statement in the OpenToRead procedure to return it to the original state.

Procedure Testing

You are responsible for the code you write. Before you give your procedure to
others to test, you should test it yourself. After all, you understand best how it
is supposed to work. Some programmers think testing their own code is some

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 235

sort of degrading activity, especially when they work in an organization that has
a team devoted to testing. Don’t make this mistake. The testing process at the
programmer level is as important as the code development itself. After you’ve
tested the procedure yourself, you should give it to the users to test. Users will
provide you with answers to questions such as: Does the procedure produce
the expected results? Is it easy and fun to use? Does it follow the standard con-
ventions? Also, it is a good idea to give the entire application to someone who
knows the least about using this type of application and ask them to play around
with it and try to break it.

You can test the ways your program responds to runtime errors by causing
them on purpose:

 ● Generate any built-in error by entering the following syntax:

Error error_number

For example, to display the error that occurs on an attempt to divide by
zero (0), type the following statement in the Immediate window:
Error 11

When you press Enter, Visual Basic will display the error message saying,
“Run-time error 11. Division by zero.”

 ● To check the meaning of the generated error, use the following syntax:

Error(error_number)

For example, to find out what error number 7 means, type the following
in the Immediate window:
?Error(7)

When you press Enter, Visual Basic returns the error description:
"Out of memory"

To generate the same error at runtime in the form of a message box like
the one in Figure 9.16, enter the following in the Immediate window or
in your procedure code:
Err.Raise 7

When you finish debugging your VBA procedures, make sure you remove all
statements that raise errors.

236 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 9.16 To test your error-handling code, use the Raise method of the Err object. This will
generate a runtime error during the execution of your procedure.

When testing your VBA procedure, use the following guidelines:

 ● If you want to analyze your procedure, step through your code one line at
a time by pressing F8 or by choosing Debug | Step Into.

 ● If you suspect that an error may occur in a specifi c place in your proce-
dure, use a breakpoint.

 ● If you want to monitor the value of a variable or expression used by your
procedure, add a watch expression.

 ● If you are tired of scrolling through a long procedure to get to sections of
code that interest you, set up a bookmark to quickly jump to the desired
location.

Setting Error-Trapping Options

You can specify the error-handling settings for your current Visual Basic proj-
ect by choosing Tools | Options and selecting the General tab (shown in Fig-
ure 9.17). The Error Trapping area located on the General tab determines how
errors are handled in the Visual Basic environment. The following options are
available:

 ● Break on All Errors
This setting will cause Visual Basic to enter the break mode on any error,
no matter whether an error handler is active or whether the code is in a
class module (class modules were covered in Chapter 8).

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 237

 ● Break in Class Module
This setting will trap any unhandled error in a class module. Visual Basic
will activate the break mode when an error occurs and will highlight the
line of code in the class module that produced this error.

 ● Break on Unhandled Errors
This setting will trap errors for which you have not written an error
handler. The error will cause Visual Basic to activate the break mode.
If the error occurs in a class module, the error will cause Visual Basic to
enter break mode on the line of code that called the offending procedure
of the class.

FIGURE 9.17 Setting the error-trapping options in the Options dialog box will affect all
instances of Visual Basic started after you change the setting.

238 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this chapter, you learned how to test your VBA procedures to make sure
they perform as planned. You debugged your code by stepping through it using
breakpoints and watches. You learned how to work with the Immediate window
in break mode; you found out how the Locals window can help you monitor the
values of variables; and you learned how the Call Stack dialog box can be helpful
in keeping track of where you are in a complex program. You also learned how
to mark your code with bookmarks so you can easily navigate between sections
of your procedure. Additionally, this chapter showed you how to trap errors by
including an error-handling routine inside your VBA procedure and how to use
the VBA Err object.

By using the built-in debugging tools, you can quickly pinpoint the problem
spots in your Access VBA procedures. Try to spend more time getting acquaint-
ed with the Debug menu options and debugging tools discussed in this chapter.
Mastering the art of debugging can save you hours of trial and error.

There are two sets of programming objects known as Data Access Objects
(DAO) and ActiveX® Data Objects (ADO) that enable Microsoft Access and
other client applications to access and manipulate data. In this part of the

book, you learn how to use DAO and ADO objects in your VBA procedures to
connect to a data source; create, modify, and secure database objects; and read, add,
update, and delete data.

Chapter 10 Data Access Technologies in Microsoft Access
Chapter 11 Creating and Accessing Database Tables and Fields
Chapter 12 Setting up Primary Keys, Indexes, and Table Relationships
Chapter 13 Finding and Reading Records
Chapter 14 Working with Records
Chapter 15 Creating and Running Queries with DAO/ADO
Chapter 16 Using Advanced ADO/DAO Features
Chapter 17 Implementing Database Security

Part

 II ACCESS VBA
PROGRAMMING WITH
DAO AND ADO

239

241

Microsoft Access has been effectively used by people all over the world
for organizing and accessing data. While each new software release
brings numerous changes in the design of the user interface and offers

simpler ways of performing common database tasks, database access methods
have evolved at a little slower pace.

This chapter begins with the introduction of the older (Jet) and the newer
(ACE) database engines and proceeds to an overview of Access versions and
file formats supported by Microsoft Access 2019. This is followed by a review of
data access methods that programmers and database developers can use to read,
write, and manipulate data in Access databases (in .mdb and the .accdb file for-
mats). In addition, this chapter demonstrates various ways of opening both na-
tive Microsoft Jet databases and external data sources. You will also learn how to
establish a connection to the currently open database, connect to an SQL Server,
create a new database, set database properties, and handle database errors.

Chapter

 10 DATA ACCESS
TECHNOLOGIES IN
MICROSOFT ACCESS

242 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING DATABASE ENGINES: JET/ACE

Since version 1.0 (1992), an integrated part of Microsoft Access has been its
database engine, commonly referred to as Microsoft Jet (Joint Engine Technol-
ogy (JET)) or Jet database engine. Microsoft Jet is a multiuser relational database
engine that provides support for the standard DBMS (Database Management
System) functionality such as data definition, data manipulation, querying,
security, and maintenance, as well as remote data access.

Jet stores data in the Microsoft Access database file format (.mdb) according
to the Indexed Sequential Access Method (ISAM). Queries are performed by the
Jet query engine. A replication engine is used to create copies (replicas) of data-
base structures on multiple systems with periodic synchronization. Jet provides
password-protected security and different levels of access via the user and group
accounts. The user information is kept in a separate system database (MDW).
Security is also built into the database tables in the form of object permissions.

The Microsoft Jet database engine enables you to access data that resides in
Microsoft Jet databases (.mdb files), external data sources (dBASE files, Micro-
soft Excel spreadsheets, SharePoint lists, Microsoft Outlook folders, text files,
XML files or HTML documents), and Open Database Connectivity (ODBC)
data sources (SQL Server®, Oracle®, or Sybase®). To access external data via
ODBC, you need a specific ODBC driver installed on the computer containing
the data source.

The main component of the Microsoft Jet database engine is a dynamic link
library file (.dll) (see Table 10.1). On the Windows platform, DLLs are libraries
of common code that can be used by more than one application. The Jet DLL
provides a simple interface to the data. If the data source is an .mdb file, then Jet
reads and writes directly to the file. If the data source is external, Jet calls on the
appropriate ODBC driver to perform the request.

Different versions of Access use different versions of Jet (see Table 10.1).
Beginning with Office Access 2007, Microsoft made many enhancements to

the database engine, making it private for Microsoft Office suite applications.
This private version of the database engine, called the Access Connectivity

TABLE 10.1 Database engine versions in Access 2019 and earlier

MS Access Version Database Engine Used Dynamic Link Library (DLL) File
Access 2007–2019 ACE 12 ace.dll
Access 2000–2003 Jet 4 msjet40.dll
Access 97 Jet 3.5 msjet35.dll

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 243

Engine (ACE), uses the file extension .accdb and offers many useful features to
Access users and developers alike (see Table 10.2).

UNDERSTANDING ACCESS VERSIONS AND FILE FORMATS

In Microsoft Access 2007–2019, the default file format is .accdb; however, you
can still directly open and use Jet databases (.mdb files) created in Access 2000–
2003. Jet databases created with Access 97 or earlier must be either enabled or
converted for use in Access 2007–2019. When an older database is enabled, it is
made compatible with Access so that you can make changes to the data. How-
ever, any design changes must be made in the version of Access that was used
when the database was first created. When you opt to convert an Access 97 or
earlier database to the .accdb file format, you must first convert it to Access
2000–2003. Table 10.2 lists various file formats that are supported since the
release of Access 2007.

TABLE 10.2 File formats supported in Access 2007–2019

File Format Description Additional Notes
.accdb File format first introduced in

Access 2007 (default).
This file format is not readable by
Access versions prior to 2007.
DO NOT use this file format if
you need to support:
• Replication
• User-level security

Note: Access 2013-2019 do not
support replicated databases.
Use Access 2010–2007 to create
a replica of an MDB database
formatted in Access 2000–2003
file format.

.accde File extension for Access
2007–2019 .accdb files that are
in execute only mode. These
files have all VBA source code
removed.
This file extension replaces the
.mde file extension used in earlier
versions of Access.

Users can only execute VBA
code; they cannot view or modify
it. In addition, users do not have
permissions to make design
changes to forms or reports.
If you need to save the Access
2019 database in .accde format,
open the database and choose
File | Save As | Save Database As.
Select Make ACCDE and click
the Save As button.

(Contd.)

244 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

File Format Description Additional Notes
.accdt This is an Access Database

Template file. Access 2007–2019
all come with professionally
designed database templates.

Templates provide you with
predefined tables/table relation-
ships, forms, reports, queries, and
macros.
To save the Access 2019 database
as a template, open the database
and choose File | Save As | Save
Database As. Select Template
(.accdt) and click the Save As
button.

.accdr This file extension denotes an
Access 2007–2019 database func-
tioning in runtime mode.

To create a “locked-down”
version of your Access 2019
database, simply change the file
extension from .accdb to .accdr.
To restore the full database func-
tionality, do the reverse: change
the file extension from .accdr to
.accdb.

.mdb
(Access 97, Access 2000,
Access 2002,
Access 2003)

Access database file format used
in versions prior to 2007.
Note: In Access 2007–2019 you
can create files in either the Ac-
cess 2000 format or the Access
2002–2003 database format.
These files will have the exten-
sion .mdb.

Use the .mdb file format if the
database will be used in earlier
versions of Access to:
• Support replication
• Support user-level security

.mde
(Access 97, Access 2000,
Access 2002,
Access 2003)

An .mde file is a compiled ver-
sion of an .mdb database without
any VBA code. This change pre-
vents a database user from read-
ing or changing your VBA code.
Users cannot edit the design of
forms, reports, or modules.

An .accde file is the Access
2007–2019 version of the .mde
file in earlier versions of Access.

.adp This is a file extension for a
Microsoft Access Data Project file
that lets you connect to an SQL
Server database or the Microsoft
Data Engine (MSDE) on your PC
and create client/server applica-
tions.

Access 2013-2019 does not sup-
port the .adp file format. If you
need to open and edit an existing
ADP database that was created
in an earlier version of Access or
create a new ADP database, use
Access 2007–2010.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 245

File Format Description Additional Notes
A project file does not contain
any data or data definition ob-
jects such as tables, views, stored
procedures, or user-defined
functions. All database objects
are stored in the SQL Server
database. An .adp file stores only
database frontend forms, reports,
and other application objects
(macros, modules).

.ade This is a file format for a Mi-
crosoft Access project (.adp) file
with all modules compiled and all
editable source code removed.
Similar to .mde files, projects
stored in the .ade file format
prevent users from making
design changes to the frontend
and gaining access to your VBA
source code.

Access 2019 does not support
the .ade file format. To create
an .ade file from your Access
Data Project (ADP), use Access
2007–2010.

.mdw
(Access 97, Access 2000,
Access 2002,
Access 2003)

This file format is used by a
Workgroup Information Fle. The
.mdw files store information for
secured MDB databases.

There are no changes to the .mdw
file format in Access 2016-2019.
The .mdw files created in earlier
versions of Access (2000 through
2003) can be used by Access
2016-2019. When an MDB data-
base is opened, you can choose
File | Info | Users & Permissions
| User-Level Security Wizard to
create a new Workgroup Infor-
mation File (.mdw).

.ldb This is a locking file extension
for the MDB database. This file
prevents users from writing data
to pages that have been locked by
other users and lets you deter-
mine which computer/user has
a file or record locked. The .ldb
file keeps track of usernames/
computer names of the people
who are currently logged into the
MDB.

A locking file is created automati-
cally when the database is opened
and is deleted automatically
when the last user closes a shared
database.
Note: You can view the informa-
tion stored in this file by opening
it with Windows Notepad.

(Contd.)

246 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

File Format Description Additional Notes
.laccdb This is the file extension for

a locking file used by Access
2007–2019 (.accdb file format).

As with the .ldb file, the .laccdb
file is created automatically when
the database is opened and is de-
leted automatically when the last
user closes a shared database.
Note: Because different locking
files are created for MDB and
ACCDB databases in Access
2007–2019, .mdb and .accdb files
can be open in Access 2007–2019
without causing conflicts in the
locking file.

UNDERSTANDING LIBRARY REFERENCES

A Microsoft Access database consists of various types of objects stored in differ-
ent object libraries. Libraries are components that provide specific functionality.
They are listed in the References dialog box, shown in Figure 10.1, which can be
opened from the Visual Basic Editor window by selecting Tools | References. If
you create an Access 2019 database in the default .accdb file format, you will see
the following default references in the References dialog box:

 ● Visual Basic For Applications
 ● Microsoft Access 16.0 Object Library
 ● OLE Automation
 ● Microsoft Offi ce 16.0 Access database engine Object Library

The Visual Basic for Applications and Access libraries that appear at the top
of the References dialog box are built in. Access will not allow you to remove
them from the database. The references that are checked are listed by prior-
ity. References that are not checked are listed alphabetically, other than the few
exceptions seen in Figure 10.1. When your VBA procedure references an object,
Visual Basic searches each referenced object library in the order in which the
libraries are displayed in the References dialog box. If the referenced libraries
have objects with the same name, Visual Basic uses the object definition pro-
vided by the library listed higher in the Available References list. You can change
the priority of an object library by selecting its name and clicking the up or
down arrow button in the References dialog box. To help Visual Basic resolve

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 247

library references, specify in your code the name of the library you intend to
use. For example, to specify that the DAO Recordset should be used, declare it
like this:
Dim rst As DAO.Recordset

To use the ADO Recordset, use the following declaration:
Dim rst As ADODB.Recordset

You can reference additional libraries in your Access database if your VBA
application requires features that are not provided by the default libraries. For
example, if your VBA procedures need to access files and folders on the com-
puter, you may want to check the box next to Microsoft Scripting Runtime.

NOTE
Do not add references to libraries you don’t plan to use as they
consume memory and may make your Access VBA project more
time-consuming to compile and harder to debug.

Missing Library

If the library is marked as Missing in the References dialog box, click the Browse
button, and locate the correct library file. You can disable a missing reference by
clearing the checkbox to the left of the reference labeled “Missing.”

SIDEBAR

FIGURE 10.1 The default object libraries for Access 2019.

248 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Library Does Not Show in the References Dialog Box

If the library you want to reference is not shown in the Available References list
box, you may need to unregister and reregister it with Windows.
 To unregister a library, close Microsoft Access. In Windows 7 and later,
choose Run from the Start menu, and enter regsvr32-u followed by a space
and the full path to the library file surrounded by quotation marks. For ex-
ample:
regsvr32-u "C:\Program Files\Common Files\System\Ado\msjro.dll"

To register a library, choose Run from the Start menu, and enter regsvr32 fol-
lowed by a space and the full path to the library file surrounded by quotation
marks. For example:
regsvr32 "C:\Program Files\Common Files\System\Ado\msjro.dll"

The next time you open Access the library name should be listed in the Refer-
ences dialog box.

Note: Press Windows Key + R to quickly access the Run dialog box.

NOTE
If you move a library file from where it was originally installed,
be sure to reregister it with the operating system or things may not
work as expected.

Because referencing a wrong library for the version of Access used can cause
data corruption, it is important to know which library files were designed for a
particular version of Access. The next section introduces you to library files that
you will find useful in creating and manipulating MDB and ACCDB databases
using VBA code.

OVERVIEW OF OBJECT LIBRARIES IN MICROSOFT ACCESS

The object library contains information about its objects, properties, and meth-
ods. To work with the VBA programming examples included in this book, you
will need to access objects from the libraries listed in the following subsections.

The Visual Basic for Applications Object Library (VBA)

Objects contained in this library allow you to access your computer’s file system,
work with date and time functions, perform mathematical and financial com-
putations, interact with users, convert data, and read text files. The VBA library
is stored in the vbe7.dll file.

SIDEBAR

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 249

The Microsoft Access 16.0 Object Library

This library provides objects that are used to display data and work with the
Microsoft Access application. In Access 2016-2019, the Access library is stored
in the msacc.olb file.file.

The Microsoft Office 16.0 Access Database Engine Object Library

This library is the enhanced version of the DAO Object Library. It was built
specifically for working with the ACE database engine. In Access 2016-2019,
the library is stored in the acedao.dll file. This library is used when you open an
Access database in the default Access format (.accdb).

The Microsoft DAO 3.6 Object Library

This library is stored in the dao360.dll file and is used by Access MDB databases
created in Access 2000 through 2019. Access 97 uses dao350.dll.

DAO provides programmatic access to Jet Access databases. It consists of
a hierarchy of objects that supply methods and properties for designing and
manipulating databases. The DBEngine object positioned at the top of the DAO
object hierarchy is often referred to as the Jet engine and is used to reference the
database engine as a whole. All the other objects and collections in the DAO
object hierarchy fall under DBEngine. The DBEngine contains the following
two collections of objects:

 ● Th e Errors collection, which stores a list of errors that have occurred
in the DBEngine. Th ese errors are represented by the Error objects and
should not be confused with the Err object, which stores runtime errors
generated in Visual Basic.

 ● Th e Workspaces collection (the default collection of the DBEngine ob-
ject), which contains the Workspace objects and is used for database se-
curity in multiuser applications. Th e Workspace object is used in con-
junction with User and Group objects.

Each open database is represented by the Database object. The Database object
is used to reference a Microsoft Access database file (.mdb) or another external
database represented by an ODBC data source. The Databases collection con-
tains all currently open databases. The Containers, QueryDefs, Relations, and
TableDefs collections contain objects that are used to reference various compo-
nents of the Database object. For example, the TableDef object represents a table
or a linked table in a Microsoft Jet workspace. The QueryDef object represents
a query in DAO. If values are supplied to a query, they are represented in DAO

250 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

by a Parameter object. The Parameters collection contains all of the Parameter
objects defined for a QueryDef object. The Relation object represents a rela-
tionship between fields in tables and queries. The Container object is used to
access collections of saved objects that represent databases, tables, queries, and
relationships.

The Recordsets collection contains all open Recordset objects. Each Record-
set object represents a set of records within a database. You will use Recordset
objects for retrieving, adding, editing, and deleting records from a database.

The Field object represents a field in a table, query, index, relation, or re-
cordset. The Fields collection is the default collection of a TableDef, QueryDef,
Index, Relation, or Recordset object.

Some DAO objects have a Properties collection. The Properties collection
contains a separate object for each property of the DAO object that is refer-
enced. You can use an object’s Properties collection to enumerate its properties
or to return their settings. You can also define your own custom properties on
DAO objects.

The Microsoft ActiveX Data Objects 6.1 Library (ADO)

This library is stored in the msado15.dll file. ActiveX Data Objects (ADO) that
are provided by this library are used for accessing and manipulating data from a
variety of sources through an OLE DB provider.

NOTE

If you scroll down the list of the Available References (Figure
10.1), you may get confused to see several different versions of
the Microsoft ActiveX Data Objects Library. Which version you
should use depends on whether the users of your Access applica-
tions are on Windows 7 and above or Vista and XP. For Windows
7 and above, use version 6.1 of this library. For Windows Vista,
stick to version 6.0 which came with Vista, and for Windows XP
SP3 or Windows Server 2003 SP1, select version 2.8 or lower.

ADO works with the technology known as OLE DB. This technology is object-
based, but it is not limited to relational databases. OLE DB can access both rela-
tional and non-relational data sources such as directory services, mail stores,
multimedia, and text files, as well as mainframe data (VSAM and MVS). You do
not need any specific drivers installed on your computer to access external data
with OLE DB because OLE DB does not use drivers; it uses data providers to
communicate with data stores. Data providers are programs that enable access
to data. OLE DB has many providers, such as Microsoft OLE DB Provider for

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 251

SQL Server and Microsoft Jet 4.0 OLE DB Provider. There are also providers for
Oracle, Active Directory®, and ODBC.

Similar to DAO, ADO objects make it possible to establish a connection with
a data source in order to read, insert, modify, and delete data. ADO offers to
programmers many advanced features that are not available in DAO. For ex-
ample, the ADO Connection object’s State property lets you determine whether
the connection is closed (adStateClosed), open and ready (adStateOpen), still
trying to connect (adStateConnecting), processing a command (adStateExecut-
ing), or fetching data (adStateFetching). The ADO Recordsets can be hierarchi-
cal, fabricated, disconnected, or persisted on disk.

ADO consists of three object models, each providing a different area of func-
tionality (see Table 10.3). Because of this, only the objects necessary for a spe-
cific task need to be loaded at any given time.

TABLE 10.3 Components of ADO

Object Model What It’s Used For
ADODB
(ActiveX Data Objects)

Data manipulation

Access and manipulate data through an OLE DB provid-
er. With ADO objects you can connect to a data source
and read, add, update, or delete data.
Library Name: Microsoft ActiveX Data Objects 6.1
Library
Library File: msado15.dll

ADOX
(ADO Extensions for DDL and
Security)

Data definition and security

With ADOX objects you can define data such as tables,
views, indexes, or relationships, as well as create and
modify user and group accounts, and grant and revoke
permissions on objects.
Library Name: Microsoft ADO Ext. 6.0 for DDL and
Security (ADOX)
Library File: msadox.dll

JRO
(Jet and Replication Objects)

Replication (used with .mdb databases only)

With JRO objects you can compact a Jet database, and
create, modify, and synchronize replicas. JRO can be used
only with Microsoft Jet databases.
Library Name: Microsoft Jet and Replication Objects 2.6
Library (JRO)
Library File: msjro.dll

252 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Later in this book you will learn how ADO can be used from a scripting lan-
guage such as Microsoft Visual Basic Scripting Edition (VBScript).

NOTE

Access 2000 was the first version to support ADO. In an attempt
to promote universal data access, Microsoft made ADO the de-
fault library in Access 2000 and 2002. DAO was to be phased out
and Access programmers were advised to move their application
code from DAO to ADO. Since then, having found out that DAO
still performed faster in most cases, was easier to use, and offered
features that were specifically designed with Jet/ODBC databases
in mind, Microsoft has returned to DAO as the main data access
layer. In Access 2007, DAO was enhanced to use the new data
types and other improvements available in the .accdb format.
This enhanced version of DAO was offered as the Microsoft Office
12.0 Access database engine Object Library. In Access 2016-2019,
it is offered as the Microsoft Office 16.0 Access database engine
Object Library.

ADO Classic versus ADO.NET

The classic ADO used in VBA in Microsoft Access and other Microsoft Office
applications is a completely different object model from ADO.NET used with
the Microsoft.NET framework. ADO.NET is not built on ActiveX technology
and its objects cannot be used directly in a VBA project.

CREATING A REFERENCE TO THE ADO LIBRARY

Prior to declaring variables as ADO objects in your VBA procedures, make sure
that the reference to the library you are intending to use is set in the Refer-
ences dialog box. Hands-On 10.1 demonstrates how to create a reference to the
Microsoft ActiveX Data Objects 6.1 Object Library.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

SIDEBAR

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 253

 Hands-On 10.1 Setting Up a Reference to the ADO Object Library

NOTE

Create a new folder on your computer named VBAAccess2019_
ByExample and designate it as a trusted folder (see Chapter 1 for
details). We will use this folder to store database files created in
Chapters 10–29.

1. Start Microsoft Access 2019 and create a new database named Chap10.accdb
in your C:\VBAAccess2019_ByExample folder.

2. Press Alt+F11 to switch to the Visual Basic Editor window, and then choose
Tools | References.

3. Scroll down the list of available references until you locate the Microsoft
ActiveX Data Objects 6.1 Library. Click the checkbox to the left of the name
to select it.

4. Click OK to close the References dialog box.

All libraries that are checked in the References dialog box can be browsed using
the Object Browser. This is a good way to become familiar with the names of
objects that are available in a specific library and their various properties and
methods (see Figure 10.2).

FIGURE 10.2 Use the Object Browser to find the objects available in a specific library.

254 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

UNDERSTANDING CONNECTION STRINGS

Needless to say, to retrieve or write data to a database, you will need to open it.
There are many ways to connect to a database or an external data source from
Microsoft Access 2019. The first thing to know about establishing database
connections from your VBA procedures is how to prepare and use connection
strings.

A connection string is a string variable that tells your VBA application how
to establish a connection to a data source. There are two types of connection
strings:

 ● ODBC connection strings (used by ODBC drivers)
 ● OLE DB connection strings (used by the OLE DB provider)

The syntax of ODBC and OLE DB connection strings is very similar. The con-
nection string consists of a series of keyword and value pairs separated by semi-
colons:
Keyword1=value; Keyword2=value

Please note that the connection string does not contain spaces before or after the
equal sign (=). The parameters in the connection string may vary depending on
the ODBC driver or OLE DB provider used and the data store that you are con-
necting to (e.g., Microsoft Access, SQL Server, and so forth).

Let’s examine the connection string you would need to connect to an older
Microsoft Access database in the .mdb file format. For the ODBC connection,
the following connection string will allow you to connect to an Access database
called Northwind.mdb:
"Driver={Microsoft Access Driver (*.mdb)};" & _
"DBQ=C:\VBAAccess2019_ByExample\Northwind.mdb;"

In the preceding connection string, Driver specifies what type of database
you’re using. DBQ is the physical path to the database. If the Northwind.mdb file
is protected with a password, you must provide additional information in the
connection string:
"Driver={Microsoft Access Driver (*.mdb)};" & _
"DBQ=C:\VBAAccess2019_ByExample\Northwind.mdb;" & _
"UID=admin;PWD=secret;"

UID specifies the username. PWD specifies the user password.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 255

To create an OLE DB connection to the same Northwind.mdb database that
uses standard security, you will need to write the connection string as follows:
"Provider=Microsoft.Jet.OLEDB.4.0;" & _
"Data Source=C:\VBAAccess2019_ByExample\Northwind.mdb;" & _
"User Id=Admin;Password=;"

Provider identifies the OLE DB provider for your database; in this case, we
want to use the Jet OLE DB Provider. Data Source specifies the full path and
filename of the .mdb database file.

To create an OLE DB connection to the SQL database called Northwind, use
the following connection string:
"Provider=SQLOLEDB; Data Source=(local);" & _
"Integrated Security=SSPI;Initial Catalog=Northwind"

In this connection string, SQLOLEDB is the name of the OLE DB provider for SQL
Server databases. The Data Source parameter specifies the name or address of
the SQL Server. To connect with an SQL Server running on the same com-
puter, use the keyword (local) for the Data Source. For a trusted connection
(Microsoft Windows NT integrated security), set the Integrated Security
parameter to SSPI. Use the Initial Catalog parameter to specify which data-
base you want to connect to.

NOTE

If the Provider keyword is not included in the connection string,
the OLE DB provider for ODBC (MSDASQL) is the default value.
This provides backward compatibility with ODBC connection
strings.

USING ODBC CONNECTION STRINGS

When you choose to connect to a data source via the ODBC, you must specify
the connection information. You do this by creating a DSN (Data Source Name)
or DSN-less connection. DSN connections store the connection information in
the Windows Registry or in a .dsn file. In a DSN-less connection, all connection
information is specified in the connection string. The following subsections
explain each ODBC connection type in detail.

Creating and Using ODBC DSN Connections

Windows uses an ODBC Data Source Administrator (see Figure 10.3) to man-
age ODBC drivers and data sources available on the computer. You can access

256 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

this tool by opening Control Panel | System and Security | Administrative Tools
| ODBC Data Sources (32-bit) or ODBC Data Sources (64-bit).

The DSN contains information about database configuration, location, and
user security. There are three types of DSNs:

 ● User DSN—A User DSN is stored locally in the Windows Registry and
limits database connectivity to the user who creates it. In other words, if
you create a User DSN under your user account, no other user will be able
to see it or use it. Hands-On 10.2 demonstrates how to create this type of
DSN so that you can run the example code on your computer.

 ● File DSN—A File DSN is a special type of fi le that stores all the connec-
tion settings. File DSNs are saved by default in the Program Files\Com-
mon Files\Odbc\Data Sources folder. Because the connection parameters
and values are stored in a fi le, they can be easily shared with other users. If
other users require the same connection, simply send them the DSN fi le
and you won’t need to confi gure a DSN for each system.

 ● System DSN—A System DSN is stored locally in the Windows Registry
and allows any logged-on user, process, and service to see it and use it.
System DSNs are oft en used in establishing connections to external data
sources from Active Server Pages (ASP).

FIGURE 10.3 The ODBC Data Source Administrator allows you to set up appropriate connections
with the required data provider via the User, System, or File DSN.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 257

Hands-On 10.2 will get you started with the ODBC Data Source Administra-
tor by walking you through the creation of a User DSN named MyDbaseFile to
access data in a legacy dBASE database file (Customer.dbf). You will then use
this data source name to programmatically open a dBASE file with ADO using
the ODBC DSN connection.

 Hands-On 10.2 Creating and Using the ODBC DSN Connection to
Read Data from a dBASE File

The procedure code in this Hands-On relies on the reference to the ActiveX
Data Objects Library that was set in Hands-On 10.1.

1. Copy the Customer.dbf file from the companion CD-ROM disc to your C:\
VBAAccess2019_ByExample folder.

2. Open the Control Panel, activate Administrative Tools, and double-click
ODBC Data Sources (32-bit).
The ODBC Data Source Administrator dialog box appears, as shown earlier
in Figure 10.3.

3. With the User DSN tab selected, click the Add button.
4. Select Microsoft dBASE driver (*.dbf) and click Finish.
5. Enter MyDbaseFile as the Data Source Name and choose dBASE 5.0 for the

database version, as shown in Figure 10.4. Make sure you clear the Use Current
Directory checkbox, then click the Select Directory button.

FIGURE 10.4 Creating a Data Source Name (DSN) to access a dBASE file.

6. In the Select Directory dialog box, select the C:\VBAAccess2019_ByExample
folder where the Customer.dbf file is located, and click the OK button.

7. Click OK to exit the ODBC dBASE Setup dialog box.

258 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The MyDbaseFile data source now appears in the list of User Data Sources in
the ODBC Data Source Administrator dialog box.

8. Click OK to close the ODBC Data Source Administrator dialog box.
9. Activate the Visual Basic Editor window and choose Insert | Module.

10. In the module’s Code window, enter the following Open_AndRead_dBaseFile
procedure:
Sub Open_AndRead_dBaseFile()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open "Provider=MSDASQL;DSN=MyDbaseFile;"

 Debug.Print conn.ConnectionString

 Set rst = New ADODB.Recordset
 rst.Open "Customer.dbf", conn

 Do Until rst.EOF
 Debug.Print rst.Fields(1).Value
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

11. Choose Run | Run Sub/UserForm to execute the procedure.
12. Press Ctrl+G to open the Immediate window to view the data returned by the

procedure.

NOTE

If Visual Basic displays the runtime error “Data source name not
found and no default driver specified,” make sure there are no
extra spaces in the connection string:

conn.Open "Provider=MSDASQL;DSN=MyDbaseFile;"

This is a very common error and it’s hard to trace because spaces
are difficult to spot.

The Open_AndRead_dBaseFile procedure uses the ADO Connection object to
establish a connection with the data source. Prior to using ADO objects in your

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 259

VBA procedures, make sure that the References dialog box contains the refer-
ence to the ActiveX Data Objects Library (see Hands-On 10.1). The procedure
begins by declaring an object variable of Connection type, like this:
Dim conn As ADODB.Connection

NOTE
The Connection object variable can be declared at procedure lev-
el or at module level. By declaring the variable at the top of the
module, you can reuse it in multiple procedures in your module.

To handle data retrieval, an object variable of Recordset type is also declared:
Dim rst As ADODB.Recordset

Before you can use the declared ADO Connection object, you must initialize the
object variable by using the Set keyword:
Set conn = New ADODB.Connection

At this point you can proceed to opening the data source by using the ADO
Connection object’s Open method. The required database connection informa-
tion is passed to the Open method in the connection string, like this:
conn.Open "Provider=MSDASQL;DSN=MyDbaseFile;"

MSDASQL is the Microsoft OLE DB provider for all ODBC data sources. The
names of common data providers used with ADO are listed in Table 10.4. The
Provider property of the ADO Connection object is used in the connection
string as the provider name. DSN is the name of the data source that you speci-
fied for your connection settings in the ODBC Data Source Administrator dia-
log box. Since MSDASQL is the default provider for ODBC, it’s okay to leave it
off, like this:
conn.Open "DSN=MyDbaseFile;"

TABLE 10.4 Common data providers used with ADO

Provider Name Provider Property Description
Microsoft ACE Microsoft.ACE.

OLEDB.14.0
Used by Access 2019-2010 databases in
.accdb file format. By default, this provider
opens databases in Read/Write mode.

Microsoft Jet Microsoft.Jet.OLEDB.4.0 Used for Jet 4.0 databases (in .mdb file
format). By default, this provider opens
databases in Read/Write mode.

(Contd.)

260 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Provider Name Provider Property Description
Microsoft SQL Server SQLOLEDB Used to access SQL Server databases.
Oracle MSDAORA Used to access Oracle databases.
ODBC MSDASQL Used to access ODBC data sources without

a specific OLE DB provider. This is the
default provider for ADO.

Active Directory
Service

ADSDSOObject Used to access Windows NT 4.0 directory
services, Novell® directory services, and
LDAP-compliant directory services.

Index Server MSIDXS Read-only access to Web data.

Once the connection to the dBASE database file is open, the procedure initial-
izes the rst object variable using the Set keyword in order to gain access to its
data:
Set rst = New ADODB.Recordset

ADO Recordsets are covered in detail in Chapter 13, “Finding and Reading
Records.” The ADO Recordset object’s Open method is used to open the Cus-
tomer.dbf file, like this:
rst.Open "Customer.dbf", conn

When you open the recordset, you need to specify at the minimum the data you
want to retrieve (Customer.dbf) and how to connect to that data (conn). Once
the recordset is open, you can start reading its data. The Do Until loop will
iterate through the recordset until the EOF (End of File) is reached. Each time
through the loop, VBA will write to the Immediate window the value of the first
field. When the procedure ends you should see in the Immediate window the
names of all customers from the Customer.dbf file.

When you are done reading the records, the procedure uses the Close meth-
od to close the recordset and destroy the rst object variable by setting it to
Nothing:
Set rst = Nothing

This statement completely releases the resources used by the Recordset object.
The same should be done with the Connection object variable (conn) when it is
no longer needed:
conn.Close
Set conn = Nothing

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 261

Creating and Using DSN-Less ODBC Connections

It is possible that your VBA application that relies on database access via ODBC
DSN (Data Source Name) may suddenly fail because the DSN was modified or
deleted. Therefore, it may be a better idea to use a so-called DSN-less connec-
tion. Instead of setting up a DSN as you did in Hands-On 10.2, specify your
ODBC driver name and all driver-specific information in your connection
string. Different types of databases can require that you specify different param-
eters. Because the ODBC DSN setup is not required, this type of connection is
called “DSN-less.”

Additional Code on CD-ROM
You can rewrite the procedure in Hands-On 10.2 to use a DSN-less ODBC con-
nection. See the HandsOn10.2_Supplement.txt on the CD-ROM disc.

TABLE 10.5 ODBC connection strings for common data sources

Data Source Driver ODBC Connection String
(used in DSN-less connections)

Microsoft Access 2019-2007 (accessing
.mdb or .accdb files in Access versions
2007 through 2019)

"Driver={Microsoft Access Driver (*.mdb, *.accdb)};
DBQ=path to mdb/accdb file;UID=admin;PWD=;"

Microsoft Access 2003–97
(accessing .mdb files from Access
2003/2002/2000/97)

Using standard security:
"Driver={Microsoft Access Driver (*.mdb)};
DBQ=C:\filepath\myDb.mdb;UID=admin;PWD=;"

Using user-level security (workgroup information file):
"Driver={Microsoft Access Driver (*.mdb)};
DBQ=C:\filepath\myDb.
mdb;SystemDB=C:\filepath\myDb.mdw;
UID=myUserName;PWD=myPassword;"

Microsoft Excel 2019–2007
(accessing .xls, .xlsx, .xlsm, and .xlsb files
from Excel 2019–2007)

"Driver={Microsoft Excel Driver (*.xls, *.xlsx, *.xlsm,
*.xlsb)};DBQ=path to xls/xlsx/xlsm/xlsb file;"

Microsoft Excel
(accessing .xls files from Excel 2003–97)

"Driver={Microsoft Excel Driver (*.xls)};
DBQ=C:\filepath\Spreadsheet.xls;"

dBASE "Driver={Microsoft dBASE Driver (*.dbf)};
DBQ=C:\filepath;"

Text "Driver={Microsoft Text Driver (*.txt, *.csv)};
DefaultDir=C:\filepath\myText.txt;"

(Contd.)

262 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Data Source Driver ODBC Connection String
(used in DSN-less connections)

Microsoft SQL Server Using Trusted Connection security:
"Driver={SQL Server};
Server=myServerName;
Database=myDatabaseName;
UID=;PWD=;"

Using standard security:
"Driver={SQL Server};
Server=myServerName;
Trusted_Connection=no;
Database=myDatabaseName;
UID=myUserName;PWD=myPassword;"

Oracle "Driver={Microsoft ODBC for Oracle};
Server=OracleServer.World;
UID=myUserName;PWD=myPassword;"

USING OLE DB CONNECTION STRINGS

In numerous VBA procedures in this chapter, we’ll use an OLE DB provider to
communicate with a data source. See Table 10.4 earlier in this chapter for the
names of common OLE DB providers used with ADO. Table 10.6 shows OLE
DB connection strings for common data sources.

TABLE 10.6 OLE DB connection strings for common data sources

Data Source OLE DB Connection String
Microsoft Access 2019–2007 "Provider=Microsoft.ACE.OLEDB.12.0;

Data Source=C:\VBAAccess2019_ByExample\
Northwind 2007.accdb"

Microsoft Access
(prior to 2007)

"Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=C:\VBAAccess2019_ByExample\
Northwind.mdb;"

Microsoft Excel 2019–2010 "Provider=Microsoft.ACE.OLEDB.12.0;
Data Source=C:\VBAAccess2019_ByExample\
Report2019.xlsx;
Extended Properties=""Excel 12.0;HDR=Yes"";"

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 263

Data Source OLE DB Connection String
Microsoft Excel 2007 "Provider=Microsoft.ACE.OLEDB.12.0;

Data Source=C:\VBAAccess2019_ByExample\
Report2019.xlsx;
Extended Properties=""Excel 12.0;HDR=Yes"";"

Microsoft Excel
(prior to 2007)

"Provider=Microsoft.Jet.OLEDB.4.0;
Data Source=C:\VBAAccess2019_ByExample\
Report.xls;
Extended Properties=""Excel 8.0;HDR=Yes"";"

Microsoft SQL Server "Provider=SQLOLEDB;Data
Source=myServerName;Network
Library=DBMSSOCN;Initial Catalog=Pubs;"

Oracle "Provider=MSDAORA;Data Source=myTable;"

CONNECTION STRING VIA A DATA LINK FILE

If you are using the Windows operating system and are looking for an easy way
to create and test a connection string that uses an ODBC driver or OLE DB pro-
vider, you may want to use the Data Link Properties dialog box, which is shown
in Figure 10.6.

A universal data link file (.udl) is a text file containing the connection infor-
mation. Hands-On 10.3 demonstrates how to create the .udl file to connect to
a Microsoft Access 2019 database. You can use the same technique to create a
valid connection string to other external data sources as long as the ADO pro-
vider is installed on your computer.

 Hands-On 10.3 Creating and Using a Universal Data Link File

1. In Windows File Explorer, select the C:\VBAAccess2019_ByExample folder.
Make sure that the option to hide extensions for known file types is deselected
in the View tab of the Folder Options. Next, Create a new Text Document in
this folder.

2. A new file named New Text Document.txt appears in the VBAAccess2019_
ByExample folder. Rename this file ConnectToAccdb.udl.
When changing the filename, be sure to type the new extension (.udl) as
indicated.
Windows will display a warning message that changing the fi le extension can
cause the fi le to become unusable. Ignore this message and click OK.

264 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Windows creates an empty universal data link file. Notice that the file size is
0 Kb.

3. If you are running a 32-bit version of Windows, double click the Connect-
ToAccdb.udl file to open the Data Link Properties dialog. On a 64-bit system
you will need to launch the udl file in 32 bit mode by running the command
prompt (cmd.exe) from the C:\Windows\SysWOW64 folder as shown in Fig-
ure 10.5.

FIGURE 10.5 Launching the 32-bit data link (.udl) file on a 64-bit OS. Look behind other open
windows to find the Data Link Properties window. Exit the Command Prompt window by typing Exit
and pressing Enter.

Windows opens the Data Link Properties dialog box (Figure 10.6), which
contains the following four tabs:

Data Link Tab Description
Provider Lists the names of the ADO providers installed on your computer. The

provider name you select must be appropriate for the data source you want
to use. For example, if you select Microsoft Jet 4.0 OLE DB provider, you
must select an Access database in .mdb format.

Connection Allows you to define a data source name for the selected provider type.
The entries shown here are specific to the provider type selected via the
Provider tab. The Connection tab is active by default when you activate the
Data Link Properties dialog box.

Advanced Allows you to view and set other initialization properties for your data
connection.

All Allows you to review and edit all OLE DB initialization properties avail-
able for the selected OLE DB provider.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 265

FIGURE 10.6 The Data Link Properties dialog box appears after you launch the .udl file.

4. Click the Provider tab and select Microsoft Office 12.0 Access Database
Engine OLE DB Provider, as shown in Figure 10.7.

FIGURE 10.7 The Provider tab in the Data Link Properties dialog box lists the names of the ADO
providers installed on your computer.

266 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

If you don’t see the above-mentioned data provider, you will
need to download and install the Microsoft Access Database
Engine Redistributable from Microsoft at:
https://www.microsoft.com/en-us/download/Confirmation.
aspx?ID=13255
Follow Microsoft instructions on the download page. If you run
into installation issues, be sure to follow the workaround at:
https://support.microsoft.com/en-us/help/2874601/can-not-
use-access-odbc-or-oledb-provider-outside-office-c2r-apps

5. Click the Next button or activate the Connection tab.
The entries shown on the Connection tab are related to the type of provider
you selected in step 4.

6. In the Data Source box, type the location and filename of the Access database
you want to connect to: C:\VBAAccess2019_ByExample\Northwind 2007.
accdb (see Figure 10.8).

7. Click the Test Connection button to test whether you can connect to the
specified database using the chosen data provider.

8. Click OK to the message box “Test connection succeeded.”
If you misspelled a filename or Windows cannot locate the file in the specified
folder, you will get an error.

FIGURE 10.8 Use the Data Link Properties dialog box to define a data source name for the selected
provider type. Be sure to enter .accdb as the extension for the Northwind 2007 database (the Data
Source text box is too short to capture the entire path in this image).

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 267

At this point your connection string is ready to use.
9. Click OK to close the Data Link Properties dialog box.

When writing a VBA procedure to connect to the Northwind 2007.accdb data-
base, you can simply pass the .udl filename to the Connection object’s Open
method:

Dim conn As ADODB.Connection
Set conn As New ADODB.Connection
conn.Open "File Name=C:\VBAAccess2019_ByExample\ConnectToAccdb.udl;"

When you use .udl files to store connection information, it is very easy to switch
your procedure’s data source without having to make changes to your code.
Simply double-click the .udl file and make desired modifications in the Data
Link Properties dialog box.

If you’d rather use the connection string in your VBA procedure, then go
ahead and copy the string from the .udl file. You can open this file in Notepad
in one of the following ways (see Figure 10.9):

 ● Right-click the .udl fi lename and choose Open With, then select Notepad.
If Notepad is not available in the shortcut menu, select Choose Program,
then choose Notepad, and click OK.

 ● Make a copy of the .udl fi le. Change the .udl extension of the created copy
to .txt. Double-click the fi le to open it in Notepad.

FIGURE 10.9 You can obtain the connection string from the universal data link (.udl) file by opening
the file in Windows Notepad.

OPENING MICROSOFT ACCESS DATABASES

In this section, you will learn how to use DAO and ADO to open Microsoft
Access ACCDB and MDB databases in read/write mode and in read-only mode.
You will also learn how to open Access databases that have been protected with
database passwords or user-level security.

268 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Opening a Microsoft Jet Database in Read/Write Mode with DAO

The easiest way to open an existing Microsoft Access database from a VBA
procedure is by using the Microsoft Access database engine’s OpenDatabase
method. This method requires that you provide at least one parameter—the
name of the existing database. When you open the database with the OpenDa-
tabase method, always remember to close it. The Close method removes the
database from the Databases collection.

Hands-On 10.4 demonstrates how to open an Access database in .accdb or
.mdb format using the DAO’s OpenDatabase method. This example will list
containers and documents in the open database. Each Database object has a
Containers collection that consists of built-in Container objects. The Contain-
ers collection is used for storing Microsoft Access’s own objects. The Jet engine
creates the following Container objects: Databases, Tables, and Relations. Other
Container objects are created by Microsoft Access (Forms, Reports, Macros,
and Modules).

Table 10.7 lists the Container objects and the type of information they contain.

TABLE 10.7 Container objects

Container Name Type of Information Stored
Databases Saved databases
Tables Saved tables and queries
Relations Saved relationships
Forms Saved forms
Modules Saved modules
Reports Saved reports
Scripts Saved scripts

Each Container object contains a Documents collection. Each document in this
collection represents an object that can be found in an Access database. For
example, the Forms container stores a list of all saved forms in a database, and
each form is represented by a Document object. You cannot create new Con-
tainer and Document objects; you can only retrieve the information about them.

 Hands-On 10.4 Opening a Database with DAO in Read/Write Mode

1. In the Chap10.accdb database that you created in Hands-On 10.1 switch to
the Visual Basic Editor window and choose Insert | Module to add a new
module to the current VBA project.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 269

2. In the module’s Code window, type the following openDB_DAO procedure:
Sub openDB_DAO()
 Dim db As DAO.Database
 Dim dbName As String
 Dim c As Container
 Dim doc As Document

 dbName = InputBox("Enter a name of an existing database:", _
 "Database Name")

 If dbName = "" Then Exit Sub
 If Dir(dbName) = "" Then
 MsgBox dbName & " was not found."
 Exit Sub
 End If

 Set db = OpenDatabase(dbName)
 With db
 ' list the names of the Container objects
 For Each c In .Containers
 Debug.Print c.Name & " container:" & _
 c.Documents.Count
 ' list the document names
 ' in the specified Container
 If c.Documents.Count > 0 Then
 For Each doc In c.Documents
 Debug.Print vbTab & doc.Name
 Next doc
 End If
 Next c
 .Close
 End With
End Sub

Th is procedure uses the OpenDatabase method of the DBEngine object to
open the specifi ed database in the default workspace. Th e database is opened
as shared with read/write access. By supplying additional arguments to the
OpenDatabase method you could open the database exclusively (a database
opened exclusively can be accessed by a single user at a time) or as read-only.
 Th e openDB_DAO procedure uses a For Each…Next loop to retrieve the
names of all the Container objects in the opened database. If the specifi ed
container is not empty, the inner For Each…Next loop will print the name of
each Document object in the Immediate window.

270 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Position the insertion point anywhere within the code of openDB_DAO and
press F5 or choose Run | Run Sub/UserForm to execute the procedure.
When you run this procedure you are prompted to enter the name of the
Access database.

4. Enter C:\VBAAccess2019_ByExample\Northwind 2007.accdb or C:\VBA
Access2019_ByExample\Northwind.mdb and press OK. Check the proce-
dure output in the Immediate window.

Opening a Microsoft Jet Database in Read/Write Mode with ADO

You can use ADO to open a Microsoft Access database for shared access (read/
write). To connect to an older Microsoft Access database in the .mdb format,
use the Microsoft.Jet.OLEDB.4.0 provider. To connect to an Access database in
the .accdb format, use the Microsoft.ACE.OLE DB.12.0 provider. The names of
common data providers used with ADO are listed in Table 10.4 earlier in this
chapter.

To specify the data source name, use the Connection object’s Connection-
String property. As you recall from earlier discussion, connection strings de-
scribe how to access data. Here’s a code fragment that specifies the minimum
required connection information:
With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0;"
 .ConnectionString = "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
End With

In the preceding example, the data source includes the full path to the data-
base file you are going to open. Change the Provider string to “Microsoft.ACE.
OLEDB.12.0” if you are planning to open a database in Access 2007 or its more
recent version:
With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0;"
 .ConnectionString = "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"
End With

Once you’ve specified the minimum connection information, you may proceed
to open the database.

Use the Connection object’s Open method to open the connection to a data
source:
conn.Open

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 271

ADO syntax is quite flexible. A connection to a database can also be opened
like this:
conn.Open "Provider = Microsoft.Jet.OLEDB.4.0;" & "Data Source=" & _
 CurrentProject.Path & "\Northwind.mdb"

As you can see in the preceding code fragment, the Provider name and the data
source (in this example, path to the database) are supplied as arguments when
you call a Connection object’s Open method.

Or you could open the database connection like this:
With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0;"
 .Mode = adModeReadWrite
 .ConnectionString = "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"
 .Open
End With

By default, the Connection object’s Open method opens a database for shared
access. You can use the Connection object’s Mode property to explicitly specify
the type of access to a database. The Mode property must be set prior to opening
the connection because it is read-only once the connection is open. Connec-
tions can be opened read-only, write-only, or read/write. You can also specify
whether other applications should be prevented from opening a connection.
The value for the Mode property can be one of the constants/values specified
in Table 10.8.

TABLE 10.8 Intrinsic constants of the Connection object’s Mode property

Constant Name Value Type of Permission
adModeUnknown 0 Permissions have not been set yet or cannot be deter-

mined. This is the default setting.
adModeRead 1 Read-only permissions.
adModeWrite 2 Write-only permissions.
adModeReadWrite 3 Read/write permissions.
adModeShareDenyRead 4 Prevents others from opening the connection with

read permissions.
adModeShareDenyWrite 8 Prevents others from opening the connection with

write permissions.
adModeShareExclusive 12 Prevents others from opening the connection.
adModeShareDenyNone 16 Prevents others from opening the connection with any

permissions.

272 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Hands-On 10.5 demonstrates how to use ADO to open an Access database for
shared access (read/write).

 Hands-On 10.5 Opening a Database with ADO in Read/Write Mode

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module to the currently open Chap10.accdb database.

2. In the module’s Code window, type the following openDB_ADO procedure:
Sub openDB_ADO()
 Dim conn As ADODB.Connection
 Dim strDb As String

 On Error GoTo ErrorHandler

 strDb = CurrentProject.Path & "\Northwind 2007.accdb"
 Set conn = New ADODB.Connection

 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0;"
 .Mode = adModeReadWrite
 .ConnectionString = "Data Source=" & strDb
 .Open
 End With

 If conn.State = adStateOpen Then
 MsgBox "Connection was opened."
 End If

 conn.Close
 Set conn = Nothing
 MsgBox "Connection was closed."
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

3. Position the insertion point anywhere within the code of the openDB_ADO
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.
Th e ADO Connection object’s State property returns a value that describes
whether the connection is open, closed, connecting, executing, or retrieving
data (see Table 10.9).

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 273

If conn.State = adStateOpen Then
 MsgBox "Database connection was established."
End If

TABLE 10.9 Intrinsic constants of the Connection object’s State property

Constant Value Description
adStateClosed 0 Connection is closed.
adStateOpen 1 Connection is open.
adStateConnecting 2 Connection is connecting.
adStateExecuting 4 Connection is executing a command.
adStateFetching 8 Connection is retrieving data.

If an error occurs during the procedure execution (for example, when a database
with the specifi ed name or path cannot be found), the statement On Error
GoTo ErrorHandler will pass the program control to the error-handling code
located at the ErrorHandler label at the bottom of the procedure. Errors that
occur in ADO are reported to the VBA Err object. You can fi nd out the details
about the error that occurred by using various properties of the Err object
(Name, Description, Source, HelpFile, or HelpContext). Th e code in the error
handler will execute only if an error occurs. If the procedure executes without
an error, the Exit Sub statement will cause the procedure to fi nish without
running the error code. You will fi nd more information on database errors
near the end of this chapter.

Opening a Microsoft Access Database in Read-Only Mode with DAO

You can open a Microsoft Access database in read-only mode by providing set-
tings for optional arguments in the OpenDatabase method.

Additional Code on CD-ROM
File Name: openDB_DAOReadOnly.txt
Description: Open a database for shared, read-only access using DAO

Opening a Microsoft Jet Database in Read-Only Mode with ADO

If you’d like to open a database for read-only access, simply set the ADO Con-
nection object’s Mode property to the adModeRead constant (see Table 10.8 ear-
lier).

274 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Opening a Microsoft Jet Database Secured with a Password

Using passwords to secure the database or objects in the database is known
as share-level security. When you set a password on the database, users will be
required to enter a password in order to gain access to the data and database
objects. Keep in mind that passwords are case-sensitive. You must use Data
Access Objects (DAO) or ActiveX Data Objects (ADO) to programmatically
open a password-protected Microsoft Access database. When using DAO to
change the password of an existing Microsoft Access database in a VBA proce-
dure, follow these steps:

1. Open the database in exclusive mode by setting the second argument of the
OpenDatabase method to True.

2. To set a database password, use the NewPassword property of the Database
object. This property requires that you first specify the old password and then
the new one. Passwords can be up to 20 characters long and can include any
characters except the ASCII character 0 (Null). To specify that the database
does not have a password, use a zero-length string (“”) in the first parameter of
the NewPassword property. To clear the password, use the zero-length string
for the second parameter of the New Password property.

To open a password-protected database using DAO, you must specify the
database password in the Connect parameter of the OpenDatabase method as
shown in Hands-On 10.6.

 Hands-On 10.6 Setting a Database Password and Opening a
Password-Protected Database with DAO

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module to the currently open Chap10.accdb database.

2. In the module’s Code window, type the setPass_AndOpenDB_withDAO
procedure shown here:
Sub setPass_AndOpenDB_withDAO()
 Dim db As DAO.Database
 Dim strDb As String

 ' strDb = "C:\VBAAccess2019_ByExample\Northwind 2007.accdb"
 strDb = "C:\VBAAccess2019_ByExample\Northwind.mdb"

 ' open the database in exclusive mode
 ' to set database password
 Set db = DBEngine.OpenDatabase(strDb, True)

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 275

 db.NewPassword "", "secret"
 MsgBox "Access Database version: " & Int(db.Version)
 db.Close

 ' open password-protected database
 Set db = DBEngine.OpenDatabase(Name:=strDb, _
 Options:=False, _
 ReadOnly:=False, _
 Connect:=";PWD=secret")

 MsgBox "Successfully opened a password-protected database."
 db.Close
 MsgBox "Password-protected database was closed."

 ' remove password protection from the database
 Set db = DBEngine.OpenDatabase(Name:=strDb, _
 Options:=True, _
 ReadOnly:=False, _
 Connect:=";PWD=secret")
 db.NewPassword "secret", ""

 MsgBox "Password protection was removed."
 db.Close
End Sub

3. Position the insertion point anywhere within the code of the setPass_And
OpenDB_withDAO procedure and press F5 or choose Run | Run Sub/User
Form to execute the procedure.
When you run this procedure, Access displays the version number of the Mi-
crosoft Jet or Microsoft Access database engine using the Version property
of DBEngine. The version number consists of the version number, a period,
and the release number. The procedure uses the VBA Int function to display
only the integer portion of the number. Microsoft Access 2007 and higher files
use the Microsoft Access database engine 12.0. Databases created in versions
2000–2003 use Microsoft Jet 4.0. Microsoft Access 97 uses Microsoft Jet 3.5.

NOTE

If a VBA procedure uses a method or a property that requires two
or more parameters, you can make the procedure more readable
by specifying the names of the parameters like this:

Set db = DBEngine.OpenDatabase(Name:=strDb, _
 Options:=False, _
 ReadOnly:=False, _
 Connect:=";PWD=secret")

276 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Use the Microsoft Visual Basic help to find the names of methods and prop-
erties and the names of the required and optional parameters.

Hands-On 10.7 demonstrates how to use ADO to set a database password
for a Microsoft Access database in the .mdb format and then open it using the
new password. This technique will not work for the Access 2007–2019 data-
bases in the .accdb format. To set a database password on an .mdb database file,
use the JRO JetEngine object’s CompactDatabase method and specify the Pass-
word parameter. The JRO JetEngine object is a member of the Microsoft Jet and
Replication Objects (JRO) Library.

FIGURE 10.10 Before writing procedures that set or change the database password using ADO,
you must set a reference to the Microsoft Jet and Replication Objects Library. To do this, in the Visual
Basic Editor window, choose Tools | References and select the required library in the list of Available
References.

 Hands-On 10.7 Setting a Database Password and Opening a
Password-Protected Database with ADO

1. Copy the Northwind.mdb database from the companion CD-ROM disc to
your C:\VBAAccess2019_ ByExample folder.

2. In the Visual Basic Editor window, choose Tools | References and select the
Microsoft Jet and Replication Objects 2.6 Library as shown in Figure 10.9,
then click OK.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 277

3. In the Visual Basic Editor window, choose Insert | Module to add a new
module to the currently open Chap10.accdb database.

4. In the module’s Code window, type the following setPass_AndOpenDB_
withADO procedure:
Sub setPass_AndOpenDB_withADO()
 Dim jetEng As JRO.JetEngine
 Dim conn As ADODB.Connection
 Dim strCompactFrom As String
 Dim strCompactTo As String
 Dim strPath As String

 strPath = CurrentProject.Path & "\"

 strCompactFrom = "Northwind.mdb"
 strCompactTo = "Northwind_P.mdb"

 On Error GoTo ErrorHandler

 Set jetEng = New JRO.JetEngine

 ' Compact the database specifying
 ' the new database password
 jetEng.CompactDatabase "Data Source=" & _
 strPath & strCompactFrom & ";", _
 "Data Source=" & strPath & strCompactTo & ";" & _
 "Jet OLEDB:Database Password=welcome"

 MsgBox "The database file " & strPath & strCompactTo & _
 " has been protected with password."
 Set jetEng = Nothing

 ' now open the password-protected MDB database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0;"
 .ConnectionString = "Data Source=" & _
 strPath & strCompactTo & ";" & _
 "Jet OLEDB:Database Password=welcome;"
 .Open
 End With

 If conn.State = adStateOpen Then
 MsgBox "Password-protected database was opened."
 End If

278 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 conn.Close
 MsgBox "Password-protected database was closed."

 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217897 Then
 Kill strPath & strCompactTo
 ElseIf Err.Number = -2147467259 Then
 MsgBox "Make sure to close the " & strCompactFrom & _
 " database file prior to compacting it."
 Exit Sub
 Else
 MsgBox Err.Number & ": " & Err.Description
 Exit Sub
 End If
 Resume
End Sub

5. Position the insertion point anywhere within the code of the setPass_
AndOpenDB_withADO procedure and press F8 or choose Debug | Step
Into to execute the procedure one line at a time. Keep pressing F8 until the
procedure ends.
Th e procedure demonstrated here uses the JetEngine object’s CompactDatabase
method to compact a Microsoft Jet database (MDB) and password-protect it.
By compacting the database, you can greatly improve its performance and
reduce its fi le size. Th e CompactDatabase method requires that you provide
the name of the .mdb fi le you want to compact and the name for the resulting
compacted fi le. Th ere are a number of connection properties that you can use
with the CompactDatabase method. Th is procedure illustrates how to use the
Jet OLEDB:Database Password property to set the password for the compacted
database. Th e database password is set using the following code:

jetEng.CompactDatabase "Data Source=" & _
 strPath & strCompactFrom & ";", _
 "Data Source=" & strPath & strCompactTo & ";" & _
 "Jet OLEDB:Database Password=welcome"

You must close the database before attempting to compact it or Visual
Basic will generate error –2147467259. Th e ErrorHandler code is used to
trap errors that may occur during procedure execution. For example, if the
database fi le cannot be found in the specifi ed path, Visual Basic will display the
error number and error description and will immediately exit the procedure.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 279

If you run this procedure more than once, Visual Basic will encounter error
–2147217897: database already exists. To allow the procedure to run again,
use the VBA Kill statement. Th is statement tells VBA to delete the fi le. Th e
Resume statement will pass the procedure execution back to the line of code
that caused the error and Visual Basic will proceed to execute this line and the
remaining lines of code that follow.

Notice that to open a Microsoft Jet database (an .mdb file) secured with a
password, you must specify the Jet OLEDB:Database Password property as part
of the Connection object’s ConnectionString property, like this:
With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0;"
 .ConnectionString = "Data Source=" & _
 strPath & strCompactTo & ";" & _
 "Jet OLEDB:Database Password=welcome;"
 .Open
End With

Opening a Microsoft Jet Database with User-Level Security

Ever since the release of Access 2007, Microsoft Access databases do not pro-
vide user-level security for databases that are created in the .accdb and .accde
file formats. The following discussion and Hands-On 10.8 apply only to Access
databases in the .mdb file format.

User-level security secures the code and objects in your MDB database so
that users can’t accidentally modify or change them. With this type of security
you can provide the most restrictive access over the database and objects it con-
tains. When you implement user-level security, the Microsoft Jet Engine uses a
workgroup information file named System.mdw to determine who can open a
database and to secure its objects.

The workgroup information file holds group and user information, includ-
ing passwords. The information contained in this file determines not only who
can open the database but also the permissions users and groups have on the ob-
jects in the database. The workgroup information file contains built-in groups
(Admins and Users) and a generic user account (Admin) with unlimited privi-
leges on the database and the objects it contains. When an .mdb file is open in
Access 2007–2019, the Access user interface provides commands that allow you
to manually implement user-level security (see Figure 10.11).

280 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 10.11 Setting user-level security in Access 2019 for earlier versions of Access in the .mdb file
format.

To open an MDB database that is secured at the user level, you must supply the
following:

 ● Full path to the workgroup information fi le (system database)
 ● User ID
 ● Password

 Hands-On 10.8 Opening a Database Secured at the User Level

1. Use Windows Explorer to create a copy of the C:\VBAAccess2019_ByExample\
Northwind.mdb database file and name it NorthSecureUser.mdb.

2. Open the C:\VBAAccess2019_ByExample\NorthSecureUser.mdb database.
On the Info page, click the down arrow in the Users and Permissions button
and select User-Level Security Wizard to begin creating a new workgroup
information file.

3. Follow the steps of the Security Wizard. Do not change anything until you
get to the screen asking for username and password. Set up a user account
named Developer with a password of WebMaster, and click the Add This
User to The List button. Click the Next button, and assign Developer to the
Admins group. To do this, begin by selecting Developer from the Group and
User Name drop-down, then click the checkbox next to the Admins group.
When done, press the Finish button. Access will display the One-Step Security
Wizard Report. Print it out for your reference, then close it. Follow the Access
prompts to create a snapshot of the data and close the NorthSecureUser
database.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 281

4. Open the Chap10.accdb database, switch to the Visual Basic Editor window,
and choose Insert | Module.

5. In the module’s Code window, type the following Open_WithUserSecurity
procedure:
Sub Open_WithUserSecurity()
 Dim conn As ADODB.Connection
 Dim strDb As String
 Dim strSysDb As String

 On Error GoTo ErrorHandler
 strDb = CurrentProject.Path & "\NorthSecureUser.mdb"
 strSysDb = CurrentProject.Path & "\Security.mdw"
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0;"
 .ConnectionString = "Data Source=" & strDb & ";" & _
 "Jet OLEDB:System Database=" & strSysDb
 .Open, "Developer", "WebMaster"
 End With
 MsgBox "Secured database was opened."
 conn.Close
 Set conn = Nothing
 MsgBox "Database was closed."
 Exit Sub

ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

6. Position the insertion point anywhere within the procedure code and press F5
or choose Run | Run Sub/UserForm to execute the procedure.

NOTE

The Security Wizard places a shortcut to the NorthSecureUser.
mdb file on your desktop to make it easy for you to start the
secured database using the new workgroup information file
(Security.mdw). The path to the file is as follows:
“C:\Program Files (x86)\Microsoft Office\root\Office16\
MSACCESS.EXE” “C:\VBAAccess2019_ByExample\
NorthSecureUser.mdb” /WRKGRP “C:\VBAAccess2019_
ByExample\Security.mdw”
For more information on .mdw files and implementing database
security with ADOX and JRO, see Chapter 17, “Implementing
Database Security.”

282 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CONNECTING TO THE CURRENT ACCESS DATABASE

Microsoft Access provides a quick way to access the current DAO database by
using the CurrentDb method. This method returns an object variable of type
Database that represents the database currently open in the Microsoft Access
window. In ADO, however, use the CurrentProject.Connection statement
to access the currently open database. The CurrentProject object refers to the
project for the current Microsoft Access database. These statements work only
in VBA procedures created in Microsoft Access. If you’d like to reuse your VBA
procedures in other Microsoft Office Visual Basic applications, you will be bet-
ter off creating a connection via an appropriate OLE DB provider.

The procedure in Hands-On 10.9 uses the CurrentProject.Connection
statement to return a reference to the current database. Once the connection
to the current database is established, the example procedure loops through the
Properties collection of the Connection object to retrieve its property names
and settings. The results are written both to the Immediate window and to a text
file named C:\VBAAccess2019_ByExample\Propfile.txt.

 Hands-On 10.9 Establishing a Connection to the Current Access
Database

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Connect_ToCurrentDB procedure

shown here:
Sub Connect_ToCurrentDB()
 Dim conn As ADODB.Connection
 Dim fs As Object
 Dim txtfile As Object
 Dim i As Integer
 Dim strFileName As String

 strFileName = "C:\VBAAccess2019_ByExample\Propfile.txt"

 Set conn = CurrentProject.Connection
 Set fs = CreateObject("Scripting.FileSystemObject")
 Set txtfile = fs.CreateTextFile(strFileName, True)

 For i = 0 To conn.Properties.Count - 1
 Debug.Print conn.Properties(i).Name & "=" & _
 conn.Properties(i).Value
 txtfile.WriteLine (conn.Properties(i).Name & _

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 283

 "=" & conn.Properties(i).Value)
 Next i
 MsgBox " check results in the " & _
 "Immediate window." & vbCrLf _
 & "The results have also been written to the " _
 & Chr(13) & strFileName & " file."

 txtfile.Close

 Set fs = Nothing
 conn.Close
 Set conn = Nothing
End Sub

Th e Connect_ToCurrentDB procedure uses the CurrentProject.Connection
statement to get a reference to the currently open database. To create a text
fi le from a VBA procedure, the CreateObject function is used to access the
Scripting.FileSystemObject. Th is function returns the FileSystemObject (fs).
Th e CreateTextFile method of the FileSystemObject creates the TextStream
object that represents a text fi le (txtfi le). Th e WriteLine method writes each
property and the corresponding setting to the newly created text fi le (C:\
Propfi le.txt). Finally, the Close method closes the text fi le.

3. Choose Run | Run Sub/UserForm to execute the procedure.

OPENING OTHER DATABASES, SPREADSHEETS,
AND TEXT FILES FROM ACCESS

The Microsoft Access Jet/ACE database engine can be used to access other
databases, spreadsheets, and text files. The following subsections of this chapter
demonstrate how to connect to SQL Server, Excel spreadsheets, and text files.

Connecting to an SQL Server Database

The ADO provides a number of ways of connecting to an SQL Server database.
To access data residing on Microsoft SQL Server, use SQLOLEDB, which is the
native Microsoft OLE DB provider for SQL.

You can also connect to an SQL database using the MSDASQL provider. This
provider allows you to access any existing ODBC data sources. You can open a
connection to the SQL Server by using an ODBC DSN (Data Source Name) or
an ODBC DSN-less connection. Both of these connection types were discussed

284 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

earlier in this chapter. The following code snippet opens and then closes a con-
nection with the SQL Server database based on a DSN named Pubs.
With conn
 .Open "Provider=MSDASQL; DSN=Pubs"
 .Close
End With

Recall that you can skip setting the Provider property because MSDASQL is the
default provider for ODBC. All you really need to establish a connection in this
case is a DSN.

Additional Code on CD-ROM
Filename: HandsOn_10.10.txt
Description: Connecting to an SQL Server Database Using SQLOLEDB Pro-
vider

Opening a Microsoft Excel Workbook

You can open a Microsoft Excel workbook from Access by writing procedures
that use DAO or ADO objects.

To open a Microsoft Excel 2007–2019 workbook with the .xlsx file format
using DAO, use the OpenDatabase method like this:
Dim db As DAO.Database
Set db = OpenDatabase("C:\VBAAccess2019_ByExample\" & _
 "Report2019.xlsx", _
 False, True, "Excel 12.0; HDR=YES;")

In the first parameter, specify the path and filename to your workbook. The
second parameter of the OpenDatabase method (False) indicates that the file
is to be opened in shared mode (this is the default). The third parameter is set
to True, which means the workbook file opens in read-only mode. The fourth
parameter is the connection information. It specifies the version of the Excel
sheet. For Excel 2007–2019, set it to Excel 12.0; for Excel 2000–2003, set it to
Excel 8.0; and for Excel version 97, set it to Excel 5.0. HDR=YES; indicates that
the first row contains column names. To indicate that the workbook does not
contain column names, set this to NO.

To open Microsoft Excel 2007–2019 workbook files with the .xlsx file format
using ADO, use the Microsoft ACE OLEDB 12.0 provider and use the Extended
Properties of the ADO Connection object to pass the connection string like this:
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 285

conn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=C:\VBAAccess2019_ByExample\" & _
 "Report2019.xlsx;" & _
 "Extended Properties=""Excel 12.0; HDR=YES"";"

To open workbook files created in Excel 2000–2003, use the Microsoft Jet OLE
DB 4.0 provider and Excel 8.0 in the Extended Properties:
Dim conn As ADODB.Connection
conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\VBAAccess2019_ByExample\Report.xls;" & _
 "Extended Properties=""Excel 8.0; HDR=YES"";"

You can also use ODBC to open an Excel workbook file. For example, the fol-
lowing code snippet establishes an ODBC DSN-less connection:
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection

With conn
 .ConnectionString = "Driver={Microsoft Excel Driver " & _
 "(*.xls, *.xlsx, *.xlsm, *.xlsb)};" & _
 "DBQ=C:\VBAAccess2019_ByExample\Report2019.xlsx;"
 .Open
End With

Hands-On 10.10 demonstrates how to use DAO to open a Microsoft Excel
workbook.

 Hands-On 10.10 Opening an Excel Workbook with DAO

1. Copy the Report2019.xlsx and Report.xls workbook files from the companion
CD-ROM disc to your C:\VBAAccess2019_ByExample folder.

2. In the Visual Basic Editor window, choose Insert | Module.
3. In the module’s Code window, type the following Open_Excel_DAO proce-

dure:
Sub Open_Excel_DAO(strFileName)
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim strHeader As String
 Dim strValues As String
 Dim fld As Variant

 strHeader = ""
 strValues = ""

286 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Right(strFileName, 1) = "x" Then
 Set db = OpenDatabase(CurrentProject.Path & _
 "\Report2019.xlsx", False, True, _
 "Excel 12.0; HDR=YES;")
 Else
 Set db = OpenDatabase(CurrentProject.Path & _
 "\Report.xls", False, True, _
 "Excel 8.0; HDR=YES;")
 End If

 Set rst = db.OpenRecordset("Sheet1$")

 ' get column names
 For Each fld In rst.Fields
 strHeader = strHeader & fld.Name & vbTab
 Next

 Debug.Print strHeader

 ' get cell values
 Do Until rst.EOF
 For Each fld In rst.Fields
 strValues = strValues & fld.Value & _
 vbTab & vbTab
 Next
 Debug.Print strValues
 strValues = ""
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

4. In the Visual Basic Editor window, press Ctrl+G to open the Immediate
window or choose View | Immediate Window.

5. To run the Open_Excel_DAO procedure, type Open_Excel_DAO “Report.
xls” in the Immediate window and press Enter.

6. Run the procedure again, supplying Report2019.xlsx as the parameter.

To run the Open_Excel_DAO procedure, you must provide the name of the
workbook file to open. If the last character in the file extension is “x” (this
is determined with the VBA Right function), then the procedure uses the

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 287

connection string designed for opening Excel 2007–2019 files. After making
a connection to the Excel file, the procedure goes on to retrieve information
stored in the desired worksheet. Using the DAO’s OpenRecordset method, we
can access the data on the Sheet1 worksheet. Notice a dollar sign ($) appended
to the sheet name. You must use the dollar sign syntax, Sheet1$, to refer to a
sheet. The procedure uses the For Each…Next loop to obtain the names of
all worksheet columns. The heading string is then written to the Immediate
window. Next, the Do Until…Loop block loops through the records until the
end of file (EOF) is reached. Cell values from each worksheet row are written
to the strValues variable and then to the Immediate window. Once the data
retrieval is completed, the Recordset is closed and its variable is destroyed. The
same is done with the Connection object.

Hands-On 10.11 demonstrates how to open an Excel workbook with ADO
and modify its data.

 Hands-On 10.11 Opening an Excel Workbook with ADO

1. In the same module where you entered the procedure in Hands-On 10.10, type
the following Open_Excel_ADO procedure:
Sub Open_Excel_ADO(strFileName As String)
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strFindWhat As String

 Set conn = New ADODB.Connection

 If Right(strFileName, 1) = "x" Then
 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0;"
 .ConnectionString = "Data Source=" & _
 CurrentProject.Path & "\" & strFileName & _
 ";Extended Properties=""Excel 12.0;HDR=Yes;IMEX=0"";"""
 .Open
 End With
 Else
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\" & strFileName & _
 ";Extended Properties=""Excel 8.0;HDR=Yes;IMEX=0"";"""
 End If

 Set rst = New ADODB.Recordset

288 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 rst.Open "SELECT * FROM [Sheet1$]", conn, _
 adOpenStatic, adLockOptimistic

 strFindWhat = "[Excel Version] = 'Excel 2000’"
 rst.Find strFindWhat
 rst(1).Value = "500"
 rst.Update
 rst.Close
 Set rst = Nothing
 MsgBox "Excel workbook was opened and updated."

 conn.Close
 Set conn = Nothing
End Sub

2. In the Visual Basic Editor window, press Ctrl+G to open the Immediate
window or choose View | Immediate Window.

3. To run the Open_Excel_ADO procedure, type Open_Excel_ADO “Re-
port2019.xlsx” in the Immediate window and press Enter.
Notice how the Open_Excel_ADO procedures passed the connection string
to the ADO Connection object’s Open method. Depending on the version of
Microsoft Excel used, the provider name is set to Microsoft Jet OLEDB 4.0
or Microsoft ACE OLEDB 12.0, and Extended Properties is set to use either
Excel 8.0 or Excel 12.0. Notice, the IMEX option, which stands for Import
Export mode, is set to zero (IMEX=0). Th is setting will allow the data in the
worksheet to be updatable. When IMEX=1, the fi le becomes read-only and
you’ll get an error on attempt to update the recordset. Once the connection
to the workbook fi le is open, an ADO Recordset is opened. We instruct the
procedure to select all data from the Sheet1 worksheet using the following SQL
statement:

"SELECT * FROM [Sheet1$]"

Notice that in the SELECT statement, the sheet name must be enclosed in square
brackets and have a dollar sign ($) appended to it. Th e Recordset is opened
using the open connection (conn). Th e procedure uses the ADO constants
adOpenStatic (Cursor Type parameter) and adLockOptimistic (Lock
Type parameter) to ensure that the Recordset is updatable. See Chapter 13,
“Finding and Reading Records,” for using various parameters when opening
a Recordset. Before you can modify data in a worksheet, you must fi nd it.
Th e search criteria string is defi ned in the strFindWhat variable. To fi nd the
data, the procedure uses the Find method of the Recordset object. Once the

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 289

searched data is located, we simply assign a new value to the Recordset fi eld
using the Value property:

rst(1).Value = "500"

Th e ADO Recordset fi elds are counted beginning with zero (0). Th erefore, the
preceding statement sets the value in the second column in the worksheet. To
save the changes to the fi le, call the Update method, like this:

rst.Update

Th e remaining code in this procedure performs the standard cleanup: closing
the objects and releasing the memory used by the object variables (rst, conn).

Opening a Text File Using ADO

There are several ways to open text files programmatically. This section demon-
strates how to gain access to a text file by using the Microsoft Text Driver. Notice
that this is a DSN-less connection (as explained earlier in this chapter). Hands-
On 10.12 demonstrates how to open a Recordset based on a comma-separated
file format and write the file contents to the Immediate window.

 Hands-On 10.12 Opening a Text File with ADO

1. Copy the Employees.txt file from the companion CD-ROM disc to your C:\
VBAAccess2019_ByExample folder, or prepare the text file from scratch by
typing the following in Notepad and saving the file as C:\VBAAccess2019_
ByExample\Employees.txt:

“Last Name”, “First Name”, “Birthdate”, “Years Worked”
“Krawiec”,”Bogdan”,#1963-01-02#,3
“Gorecka”,”Jadwiga”,#1948-05-12#,1
“Olszewski”,”Stefan”,#1957-04-07#,0

2. In the Visual Basic Editor window, choose Insert | Module.
3. In the module’s Code window, type the following Open_TextFile procedure:

Sub Open_TextFile()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim fld As ADODB.Field

 Set conn = New ADODB.Connection
 Debug.Print conn.ConnectionString

290 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 conn.Open "DRIVER={Microsoft Text Driver (*.txt; *.csv)};" & _
 "DBQ=" & CurrentProject.Path & "\"

 Set rst = New ADODB.Recordset
 rst.Open "SELECT * FROM [Employees.txt]", conn, adOpenStatic, _
 adLockReadOnly, adCmdText
 Do Until rst.EOF
 For Each fld In rst.Fields
 Debug.Print fld.Name & "=" & fld.Value
 Next fld
 rst.MoveNext
 Loop
 rst.Close
 Set rst = Nothing

 conn.Close
 Set conn = Nothing
 MsgBox "Open the Immediate window to view the data."
End Sub

4. Make sure that the C:\VBAAccess2019_ByExample\Employees.txt file is
closed and choose Run | Run Sub/UserForm to execute the procedure.

5. Open the Immediate window to view the procedure results.
If you worked through the previous exercises in this chapter, you should have
no problem following the code of the Open_TextFile procedure. Because you
are only reading the records, you can open the Recordset using the adOpen-
Static and adLockReadOnly ADO constants. Notice that the ADO constant
adCmdText is used as the last parameter of the Recordset’s Open method (see
Chapter 15, “Creating and Running Queries with DAO/ADO,” for SQL ex-
amples):

rst.Open "SELECT * FROM [Employees.txt]", conn, adOpenStatic, _
 adLockReadOnly, adCmdText

Th e last parameter in the preceding statement can be any valid option. You
can indicate the type of source you are using with the adCmdText constant
(for an SQL statement), adCmdTable (to retrieve all the rows in a table), or
adCmdStoredProc (to get records via a stored procedure). If you do not specify
the type of source, adCmdUnknown is used as the default.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 291

CREATING A NEW ACCESS DATABASE

You can create a new Microsoft Access database programmatically by using
DAO or ADO. This section explains how to use both methods.

Creating a Database with DAO

When you start Microsoft Access, the program automatically creates a default
workspace named DBEngine.Workspaces(0). The Workspace object has several
useful methods, and the most frequently used are CreateDatabase (for creat-
ing a new database) and OpenDatabase (for opening an existing database). The
CreateDatabase method requires that you specify the name and path of your
database as well as the built-in constant indicating a collating order for creating
the database. Use the built-in constant dbLangGeneral for English, German,
French, Portuguese, Italian, and Modern Spanish.

The procedure in Hands-On 10.13 creates a new Access 2019 database and
displays the number of system tables that Access automatically creates for its
own use.

 Hands-On 10.13 Creating a Database Using DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CreateNewDB_DAO pro-

cedure:
Sub CreateNewDB_DAO()
 Dim db As DAO.Database
 Dim dbName As String

 dbName = "C:\VBAAccess2019_ByExample\TestDAO.accdb"

 On Error GoTo ErrorHandler

 Set db = CreateDatabase(dbName, dbLangGeneral)

 MsgBox "The database contains " & _
 db.TableDefs.Count & " tables."
 db.Close
 Set db = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Description
End Sub

292 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
To create a Database object in code, fi rst declare an object variable of type
Database. Once the Database object variable is defi ned, set the variable to the
object returned by the CreateDatabase method:

Set db = CreateDatabase(dbName, dbLangGeneral)

The CreateDatabase method creates a new Database object and appends it to
the Databases collection. The new database contains several system tables that
Access creates for its own use. If the database already exists, an error occurs.
You can check for the existence of the database by using an If statement in
combination with the VBA Dir function (see Hands-On 10.15) and then use
the VBA Kill statement to delete the database (see Hands-On 10.14).

Creating a Database with ADO

To create a new Access database using ADO, you must use the ADOX Catalog
object’s Create method. The ADOX library is discussed in Chapter 18. The
Create method creates and opens a new ADO connection to the data source.
An error will occur if the provider does not support creating new catalogs.

The procedure in Hands-On 10.14 creates a new blank database named Tes-
tADO.mdb in your C:\VBAAccess2019_ByExample folder. The error trap en-
sures that the procedure works correctly even if the specified file already exists.
The VBA Kill statement is used to delete the file from your hard disk when the
error is encountered.

 Hands-On 10.14 Creating a Database Using ADO

1. In the Visual Basic Editor window, choose Tools | References. In the References
dialog box, select the Microsoft ADO Ext. 6.0 for DDL and Security Object
Library and click OK.

2. In the same module where you entered the procedure in Hands-On 10.13, type
the CreateNewDB_ADO procedure shown here:
Sub CreateNewDB_ADO()

 ' you must make sure that a reference to
 ' Microsoft ADO Ext. 6.0 for DDL and Security
 ' Object Library is set in the References dialog box

 Dim cat As ADOX.Catalog
 Dim strDb As String

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 293

 Set cat = New ADOX.Catalog
 strDb = "C:\VBAAccess2019_ByExample\TestADO.mdb"

 On Error GoTo ErrorHandler
 cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strDb
 MsgBox "The database was created (" & strDb & ")."
 Set cat = Nothing
 Exit Sub

ErrorHandler:
 If Err.Number = -2147217897 Then
 Kill strDb
 Resume 0
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
This procedure uses the error handler to detect whether a database of the spec-
ified name already exists. When error –2147217897 occurs, the procedure de-
letes the database file using the VBA Kill statement and returns to the state-
ment that caused the error.
While creating a database, you may specify that the database should be en-
crypted by setting the Jet OLEDB:Encrypt Database property to True. You
can also include the database version information with the Jet OLEDB:Engine
Type property. Simply include these properties in the connection string, as
shown in the following example:
cat.Create "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strDb & _
 "Jet OLEDB:Encrypt Database=True;" & _
 "Jet OLEDB:Engine Type=1;"

To create a Microsoft Access database (ACCDB) in Access 2007–2019, change
the name of the provider to Microsoft.ACE.OLEDB.12.0.

COPYING A DATABASE

At times you may want to duplicate your database programmatically. This can
be easily done in DAO with the DBEngine object’s CompactDatabase method.
ADO does not have a special method for copying files. However, you can set

294 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

up a reference to the File Scripting object (the Microsoft Scripting Runtime
Library) to gain access to your computer filesystem, or use the CreateObject
function to access this library without setting up a reference.

Copying a Database with DAO

Before using the CompactDatabase method, make sure the source database is
closed and there is enough disk space to create a duplicate copy. Creating a copy
of your database in code requires that you define two string variables: one to
hold the name of the source database and the other to specify the name for the
duplicate version.

Hands-On 10.15 shows how to use the CompactDatabase method to copy a
database.

 Hands-On 10.15 Copying a Database with DAO

This hands-on exercise makes a copy of the TestDAO.accdb database created in
Hands-On 10.13.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CopyDB_DAO procedure:

Sub CopyDB_DAO()
 Dim dbName As String
 Dim dbNewName As String

 dbName = InputBox("Enter the name of the database you " & _
 "want to copy: " & Chr(13) & _
 "(example: C:\VBAAccess2019_ByExample\TestDAO.accdb)", _
 "Create a copy of")

 If dbName = "" Then Exit Sub

 If Dir(dbName) = "" Then
 MsgBox dbName & " was not found. " & Chr(13) _
 & "Check the database name or path."
 Exit Sub
 End If

 dbNewName = InputBox("Enter the name of the duplicate " & _
 "database:" & Chr(13) _
 & "(example: C:\VBAAccess2019_ByExample\Copy_TestDAO.accdb)", _
 "Save As")

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 295

 If dbNewName = "" Then Exit Sub

 If Dir(dbNewName) <> "" Then
 Kill dbNewName
 End If

 DBEngine.CompactDatabase dbName, dbNewName
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure. You will be
prompted to specify the name of the database you want to copy and the name
for the copy.
Th is procedure uses the VBA Dir function to check for the existence of the
database with the specifi ed name:

If Dir(dbNewName) <> "" Then
 Kill dbNewName
End If

Because the database cannot be deleted programmatically using DAO, the
VBA Kill statement is used to perform the deletion. The last statement in the
CopyDB_DAO procedure uses the CompactDatabase method of the DBEngine
object to create a copy of a database using the user-supplied arguments: a source
database name (dbName) and a destination database name (dbNewName).

Copying a Database with FileSystemObject

You can use the CopyFile method of the FileSystemObject from the Microsoft
Scripting Runtime Library to copy any file. This method allows you to copy
one or more files and requires that you specify the source and destination. The
source is the name of the file you want to copy or the file specification. For
example, to copy all your MDB databases located in a specific directory, you can
include wildcard characters to specify the source like this: C:\VBAAccess2019_
ByExample*.mdb. The destination is the string specifying where the file or files
are to be copied. You cannot use wildcard characters in the destination string.
The third argument of the CopyFile method is optional. It indicates whether
existing files in the destination are to be overwritten. If True, files are overwrit-
ten; if False, they are not. The default is True.

Hands-On 10.16 demonstrates how to copy a file from one directory to an-
other using this method.

296 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 10.16 Copying a File Using FileSystem Object

This hands-on exercise makes a copy of the TestADO.mdb database created in
Hands-On 10.14.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Copy_AnyFile procedure:

Sub Copy_AnyFile()
 Dim fso As Object
 Dim strFolder As String
 Dim strFolderNew As String
 Dim strDb As String

 On Error GoTo ErrorHandler
 strFolder = "C:\VBAAccess2019_ByExample\"
 strFolderNew = strFolder & "TestFolder"
 strDb = strFolder & "TestADO.mdb"

 Set fso = CreateObject("Scripting.FileSystemObject")
 fso.CreateFolder strFolderNew
 fso.CopyFile strDb, strFolderNew & "\TestADO.mdb"

 Set fso = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
This procedure uses the CreateObject method to return a reference to a

FileSystemObject from the Microsoft Scripting Runtime Library. The Create-
Folder method of the FileSystemObject is used to create a new folder named
TestFolder in your VBAAccess2019_ByExample folder. The CopyFile method
of the FileSystemObject is then used to copy the specified database to the newly
created folder.

DATABASE ERRORS

So far in this book you’ve seen several procedures that incorporated error han-
dling. You already know that an error handler is a block of code that is executed
when a runtime error occurs. The procedure execution is transferred to error-

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 297

handling code via the On Error GoTo <Label> statement. Recall that there are
three types of On Error statements:

 ● On Error GoTo <Label>—Th is statement tells VBA to jump to the speci-
fi ed label when an error occurs. A label is any unreserved word followed
by a colon and is placed on a separate line in the same procedure as the On
Error statement. Th e code between the line that caused the error and the
line with the label is simply ignored. Th e execution of the procedure con-
tinues from the line following the label. Th e error-handling code is placed
at the very bottom of the procedure. To ensure that the error handler is
not executed if there are no errors, place an Exit Sub or Exit Function
statement on a separate line just before the label.

 ● On Error Resume Next—Th is statement tells VBA to resume the proce-
dure execution at the line following the statement that caused the error.
Place this statement in your code anywhere you think the error might oc-
cur. Th e runtime error will be trapped and stored in the VBA Err object.
You should check the error number of the Err object immediately aft er
that statement to determine how to handle the error.

 ● On Error GoTo 0—Th is statement disables the error handler in the
current procedure. When an error occurs, VBA will display its stan-
dard runtime error message box in which you can click the End button
to terminate the procedure or press Debug to enter the break mode for
troubleshooting.

In Chapter 9, you learned that VBA has a built-in Err object that has several
properties useful for determining the type of error that occurred. You can use
the Err object’s Number property to determine the error number. The Descrip-
tion property contains the text description of the error. You can also find out the
source of an error by using the Source property.

When using ADO to access data, you can get information about the errors
from both the VBA Err object and the ADO Error object. When an error occurs
in an application that uses the ADO Object Model, an Error object is appended
to the ADO Errors collection of the Connection object and you are advised
about the error via a message box.

While the VBA Err object holds information only about the most recent er-
ror, the ADO Errors collection can contain several entries regarding the last
ADO error. You can count the errors caused by an invalid operation by using
the Count property of the Errors collection. By checking the contents of the
Errors collection you can learn more information about the nature of the er-

298 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ror. The Errors collection is available only from the Connection object. Errors
that occur in ADO itself are reported to the VBA Err object. Errors that are
provider-specific are appended to the Errors collection of the ADO Connection
object. These errors are reported by the specific OLE DB provider when ADO
objects are being used to access data.

The DBError2 procedure in Hands-On 10.17 attempts to open a nonexistent
database to demonstrate the capabilities of the VBA Err object and the ADO
Errors collection.

 Hands-On 10.17 Using the VBA Err Object and ADO Errors
Collection

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following DBError2 procedure:

Sub DBError2()
 Dim conn As New ADODB.Connection
 Dim errADO As ADODB.Error

 On Error GoTo CheckErrors
 conn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" _
 & "Data Source=C:\my.accdb"
 Debug.Print CurrentProject.Path

CheckErrors:
 Debug.Print "Listed below is information " _
 & "regarding this error " & vbCrLf _
 & "contained in the ADO Errors collection."
 For Each errADO In conn.Errors
 Debug.Print vbTab & _
 "Error Number: " & errADO.Number
 Debug.Print vbTab & _
 "Error Description: " & errADO.Description
 Debug.Print vbTab & _
 "Jet Error Number: " & errADO.SQLState
 Debug.Print vbTab & _
 "Native Error Number: " & errADO.NativeError
 Debug.Print vbTab & _
 "Source: " & errADO.Source
 Debug.Print vbTab & _
 "Help Context: " & errADO.HelpContext
 Debug.Print vbTab & _
 "Help File: " & errADO.HelpFile
 Next

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 299

 MsgBox "Errors were written to the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
In this procedure, an error is encountered when VBA attempts to open a da-
tabase file that does not exist in the specified directory. The On Error GoTo
CheckErrors statement tells VBA to jump to the line labeled CheckErrors.
The line that prints the current project path is never executed. The Check-
Errors handler reads the content of the VBA Err object and prints the error
number and its description to the Immediate window. After that, we retrieve
more information about the encountered errors by looping through the ADO
Errors collection.

Here’s the output from running the procedure in this Hands-On:
Listed below is information regarding this error
contained in the ADO Errors collection.
 Error Number: -2147467259
 Error Description: Could not find file 'C:\my.accdb’.
 Jet Error Number: 3024
 Native Error Number: -534578963
 Source: Microsoft Access Database Engine
 Help Context: 5003024
 Help File:

NOTE
To trace errors in your VBA procedures, don’t forget to use the
Step commands in the Visual Basic Debug menu (see Chapter 9
for more information).

COMPACTING A DATABASE

With frequent use over a period of time, the performance of your database
may deteriorate. When objects are deleted from a database but the space isn’t
reclaimed, fragmentation may occur. To improve database performance and
reduce the database file size, you can compact or repair Microsoft Access data-
bases. To compact a database, use one of the following methods:

 ● CompactDatabase (Microsoft Jet and Replication Objects (JRO) Li-
brary)—To use the JRO library, choose Tools | References in the Vi-
sual Basic application window and select Microsoft Jet and Replication
Objects 2.6 Library. We will use this method to compact a database in
Hands-On 10.18.

300 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● CompactDatabase (DBEngine object)—Th is method requires that you
specify the full path and fi lename of the database you want to compact,
and the full path and fi lename of the compacted database, as follows:

DBEngine.CompactDatabase "C:\VBAAccess2019_ByExample\Northwind
 2007.accdb","C:\VBAAccess2019_ByExample\CompNorthwind.accdb"

 ● CompactRepair (Application object)—Th e Application object refers to
the active Microsoft Access application. Th is method requires that you
specify the full path and fi lename of the database you want to compact,
and the full path and fi lename of the compacted database. You may also
specify an optional argument to indicate whether a log fi le should be cre-
ated. True means that if corruption is detected in the source fi le, the log
fi le will be created in the destination directory. If you omit the third argu-
ment or set it to False, no log fi le is created. Here’s an example that uses
this method:

Application.CompactRepair "C:\VBAAccess2019_ByExample\Northwind.
mdb", "C:\VBAAccess2019_ByExample\TestFolder\NorthwindRepaired.
mdb", false

Th e preceding statement entered on one line in the Immediate window will
create a compacted and repaired version of the Northwind.mdb database in the
specifi ed folder. Recall the destination folder was created in Hands-On 10.16.
Upon running this statement, Access displays a Security Warning message.
Click the Open button to proceed with the creation of the database.

When compacting or repairing a database, keep in mind the following:

 ● You cannot compact or repair a database that is currently open.
 ● You cannot compact a database to the same fi lename. You must specify a

new name for the compacted database. Aft er the compact/repair process
is complete, simply delete the original database fi le and rename the com-
pacted database using the original name.

 ● You cannot compact a database if it is secured and you don’t have appro-
priate permissions.

Hands-On 10.18 demonstrates how to compact the Northwind database using
JRO.

DATA ACCESS TECHNOLOGIES IN MICROSOFT ACCESS 301

 Hands-On 10.18 Compacting a Database Using JRO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CompactDb procedure:

' use Tools|References to set up a reference
' to the Microsoft Jet and Replication Objects Library

Sub CompactDb()
 Dim jetEng As JRO.JetEngine
 Dim strCompactFrom As String
 Dim strCompactTo As String
 Dim strPath As String

 strPath = CurrentProject.Path & "\"
 strCompactFrom = "Northwind.mdb"
 strCompactTo = "NorthwindComp.mdb"

 ' Make sure there isn’t already a file with the
 ' name of the compacted database.
 On Error GoTo HandleErr

 ' Compact the database
 Set jetEng = New JRO.JetEngine
 jetEng.CompactDatabase "Data Source=" & _
 strPath & strCompactFrom & ";", _
 "Data Source=" & _
 strPath & strCompactTo & ";"

 ' Delete the original database
 Kill strPath & strCompactFrom

 ' Rename the file back to the original name
 Name strPath & strCompactTo As strPath & strCompactFrom

ExitHere:
 Set jetEng = Nothing
 MsgBox "Compacting completed."
 Exit Sub
HandleErr:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

302 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this chapter, you were introduced to the two database engines that Microsoft
Access 2019 uses (Jet and ACE) as well as several object libraries that provide
objects, properties, and methods for your VBA procedures. You mastered the
art of programmatically connecting to native Microsoft Access databases and
external databases and files using various connection strings and connection
methods (ODBC/OLE DB, DSN, and DSN-less connections, and .udl files). You
also learned how to write VBA code to create, open, copy, compact, and delete
a Microsoft Access database. Finally, you learned about statements (On Error
GoTo…) and objects (Err and Error) that are helpful in trapping and trouble-
shooting database errors.

In the next chapter, you will learn the DAO and ADO techniques for creat-
ing and linking tables, and adding and modifying fields. In other words, you
will learn which DAO/ADO objects can give you access to the structure of the
database.

303

Now that you know how to create a Microsoft Access database program-
matically and connect to it using multiple methods, it’s time to fill it
with some useful objects. The first object you will create is a table. Typi-

cal operations you may want to perform on database tables and fields include
the following:

 ● Setting fi eld properties
 ● Making a copy of a table
 ● Deleting a table
 ● Listing table properties
 ● Adding new fi elds to an existing table
 ● Changing fi eld properties
 ● Deleting a fi eld from a table
 ● Linking a table to a database
 ● Listing tables in a database
 ● Changing the AutoNumber
 ● Listing data types

In this chapter, you will write VBA procedures that use both DAO and ADO
objects to perform these database tasks.

Chapter

 11 CREATING AND
ACCESSING DATABASE
TABLES AND FIELDS

304 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING A MICROSOFT ACCESS TABLE AND SETTING
FIELD PROPERTIES (DAO METHOD)

Each saved table in an Access database is an object called a TableDef object. The
TableDef object has a number of properties that characterize it, such as Name,
RecordCount, DateCreated, and DateUpdated. The TableDef object also has
methods that act on the object. For example, the CreateField method creates
a new field for the TableDef object and the OpenRecordset method creates an
object called Recordset that is used to manipulate the data in the table.

The procedure in Hands-On 11.1 illustrates how to create a table in the cur-
rent database using DAO.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 11.1 Creating a Table (DAO)

1. Start Microsoft Access 2019 and create a new database named Chap11.accdb
in your C:\VBAAccess2019_ByExample folder.

2. Press Alt+F11 to switch to the Visual Basic Editor window and choose Insert
| Module.

3. In the module’s Code window, type the following CreateTableDAO procedure:
Sub CreateTableDAO()
 Dim db As DAO.Database
 Dim tblNew As DAO.TableDef
 Dim fld As DAO.Field
 Dim prp As DAO.Property

 On Error GoTo ErrorHandler
 Set db = CurrentDB
 Set tblNew = db.CreateTableDef("Agents")

 Set fld = tblNew.CreateField("AgentID", dbText, 6)
 fld.ValidationRule = "Like 'A*’"
 fld.ValidationText = "Agent ID must begin with the " & _
 "letter 'A’ and cannot contain more than 6 characters."
 tblNew.Fields.Append fld

 Set fld = tblNew.CreateField("Country", dbText)
 fld.DefaultValue = "USA"
 tblNew.Fields.Append fld

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 305

 Set fld = tblNew.CreateField("DateOfBirth", dbDate)
 fld.Required = True
 tblNew.Fields.Append fld
 db.TableDefs.Append tblNew

 ' Create Caption property and set its value
 ' add it to the collection of field properties
 Set prp = tblNew.Fields("DateOfBirth"). _
 CreateProperty("Caption")
 prp.Type = dbText
 prp.Value = "Date of Birth"
 fld.Properties.Append prp
 MsgBox fld.Properties("Caption").Value

 Set prp = tblNew.CreateProperty("Description")
 prp.Type = dbText
 prp.Value = "Sample table created with DAO code"
 tblNew.Properties.Append prp

ExitHere:
 Set fld = Nothing
 Set tblNew = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

4. Choose Run | Run Sub/UserForm to execute the CreateTableDAO procedure.
5. Choose File | Save and click OK to save the Module1 when prompted. This

will ensure that Access refreshes the application window and makes the newly
created table visible in the navigation bar.

The CreateTableDAO procedure uses the CurrentDb method to define an object
variable (db) to point to the database that is currently open in the Microsoft
Access window. This method allows you to access the current database from
Visual Basic without having to know the database name. Next, a table is created
using the CreateTableDef method of a DAO Database object. This method
requires that you specify a string or string variable to hold the name of the new
TableDef object. For instance, the following line sets the object variable tblNew
to point to a table named Agents:
Set tblNew = db.CreateTableDef("Agents")

306 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Because a table must have at least one field, the next step in the table creation
process is to use the CreateField method of the TableDef object to create fields.
For instance, in the following statement:
Set fld = tblNew.CreateField("AgentID", dbText, 6)

 ● tblNew is a table defi nition variable.
 ● "AgentID" is a string specifying the name for the new fi eld object.
 ● dbText is an integer constant that determines the data type of the new

Field object (see Table 11.1).
 ● 6 is an integer indicating the maximum size in bytes for a text fi eld. Text

fi elds can hold from 1 to 255 bytes. Th is argument is ignored for other
types of fi elds.

TABLE 11.1 Constants for the Type property in DAO Object Library (DataTypeEnum enumeration)

Data Type Name Value Description
dbAttachment 101 Attachment data
dbBigInt 16 Big integer data
dbBinary 9 Binary data
dbBoolean 1 Boolean (True/False) data
dbByte 2 Byte (8-bit) data
dbChar 18 Text data (fixed width)
dbComplexByte 102 Multivalue byte data
dbComplexDecimal 108 Multivalue decimal data
dbComplexDouble 106 Multivalue double-precision floating-point data
dbComplexGUID 107 Multivalue GUID data
dbComplexInteger 103 Multivalue integer data
dbComplexLong 104 Multivalue long integer data
dbComplexSingle 105 Multivalue single-precision floating-point data
dbComplexText 109 Multivalue text data (variable width)
dbCurrency 5 Currency data
dbDate 8 Date value data
dbDecimal 20 Decimal data (ODBCDirect only)
dbDouble 7 Double-precision floating-point data
dbFloat 21 Floating-point data (ODBCDirect only)
dbGUID 15 GUID data

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 307

Data Type Name Value Description
dbInteger 3 Integer data
dbLong 4 Long integer data
dbLongBinary 11 Binary data (bitmap)
dbMemo 12 Memo data (extended text)
dbNumeric 19 Numeric data (ODBCDirect only)
dbSingle 6 Single-precision floating-point data
dbText 10 Text data (variable width)
dbTime 22 Data in time format (ODBCDirect only)
dbTimeStamp 23 Data in time and date format (ODBCDirect only)
dbVarBinary 17 Variable binary data (ODBCDirect only)

NOTE

ODBCDirect workspaces are not supported since the release of
Access 2007. Use ADO if you want to access external data sources
without using the Microsoft Access database engine.
Constants for complex data types and the dbAttachment data
type do not apply to versions prior to Access 2007.

When creating fields for your table, you may want to set certain field proper-
ties such as Validation Rule, Validation Text, Default Value, and Required. The
Validation Rule property is a text string that describes the rule for validation. In
the CreateTableDAO procedure, we require that each entry in the AgentID field
begin with the letter “A.”

The Validation Text property is a string that is displayed to the user when
the validation fails; that is, when the user attempts to enter data that does not
comply with the specific validation rule.

The Default Value property sets or returns the default value of a Field ob-
ject. In this example procedure, we make the data entry easier for the user by
specifying “USA” as the default value in the Country field. Each new record will
automatically have an entry of USA in the Country field. Because certain fields
should not be left blank, you can ensure that the user enters data in a particular
field by setting the Required property of that field to True.

In addition to built-in properties of an object, there are two other types of
properties:

 ● Application-defi ned properties
 ● User-defi ned properties

308 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The application-defined property is created only if you assign a value to that
property. A classic example of such a property is the Description property of the
TableDef object. To set the Description property of a table in the Access user in-
terface, simply right-click on the table name and choose Table Properties, then
type the text you want in the Description field. Access will create a Description
property for the table and will append it automatically to the Properties collec-
tion for that TableDef object. If you do not type a description in the Description
field, Access will not create a Description property. Therefore, if you use the
Description property in your code in this case, Access will display an error. For
this reason, it is a good idea to check beforehand whether a referenced property
exists. Users may create their own properties to hold additional information
about an object.

The CreateTableDAO procedure demonstrates how to use the CreatePro-
perty method of the TableDef object to create application-defined or user-de-
fined properties. To create a property you will need to supply the name for the
property, the property type, and the property value. For example, here’s how to
use the CreateProperty method to create a Caption property for the DateOf-
Birth field in the newly created table Agents:
Set prp = tblNew.Fields("DateOfBirth").CreateProperty("Caption")

Next, the data type of the Property object is defined:
prp.Type = dbText

See Table 11.1 earlier in the chapter for the names of the Type property con-
stants in VBA.

Finally, a value is assigned to the new property:
prp.Value = "Date of Birth"

Instead of writing three separate lines of code, you can create a new property of
an object with the following line:
Set prp = tblNew.Fields("DateOfBirth"). _
CreateProperty("Caption", dbText, "Date of Birth")

A user-defined property must be appended to the Properties collection of
the corresponding object. In this example procedure, the Caption property is
appended to the Properties collection of the Field object, and the Description
property is appended to the Properties collection of the TableDef object:
fld.Properties.Append prp
tblNew.Properties.Append prp

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 309

After creating a field and setting its built-in, application-defined, or user- defined
properties, the Append method is used to add the field to the Fields collection, as
in the following example:
tblNew.Fields.Append fld

Once all the fields have been created and appended to the Fields collection,
remember to append the new table to the TableDefs collection, as in the follow-
ing example:
db.TableDefs.Append tblNew

You can delete user-defined properties from the Properties collection, but you
can’t delete built-in properties. If you set a property in the user interface, you
don’t need to create and append the property in code because the property is
automatically included in the Properties collection.

After running the procedure code, a new table named Agents appears in the
Microsoft Access window.

To check the value of the Description property for the Agents table that was
set as a result of running the example procedure, right-click the Agents table
in the database window, and choose Table Properties from the shortcut menu.

To check the properties that were set and defined in this procedure, activate
the Agents table in Design view, click the field name for which you set or created
a custom property in the code, and examine the corresponding field properties.
Figure 11.1 shows the current settings of the Validation Rule and Validation
Text properties for the AgentID field.

FIGURE 11.1 You can create a database table like this one using VBA code. You can also set
appropriate field properties programmatically.

310 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING A MICROSOFT ACCESS TABLE AND SETTING
FIELD PROPERTIES (ADO METHOD)

You can also get going with your database design by using Access objects con-
tained in the ADOX library. The full name of this library is ActiveX Data Object
Extensions for DDL and Security. To use ADOX in your VBA procedures,
choose Tools | References from your Visual Basic Editor window and select
Microsoft ADO Ext. 6.0 for DDL and Security. The ADOX Object Model is an
extension of the ADODB library.

The most important ADOX object is called Catalog. It represents an entire
database and contains database tables, columns, indexes, groups, users, proce-
dures, and views. You will use the ADOX Catalog object in your VBA proce-
dures to create a table.

The following steps outline the process of creating a new Microsoft Access
table:

1. Declare the variables representing the Connection, Catalog, and Table objects:
Dim conn As ADODB.Connection
Dim cat As ADOX.Catalog
Dim tbl As ADOX.Table

2. Open the connection to your database:
Set conn = New ADODB.Connection
conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\VBAAccess2019_ByExample\Chap11b.mdb"

3. Supply the open connection to the ActiveConnection property of the ADOX
Catalog object:
Set cat = New ADOX.Catalog
Set cat.ActiveConnection = conn

4. Create a new Table object:
Set tbl = New ADOX.Table

5. Provide the name for your table:
tbl.Name = "tblAssets"

The Table object is a member of the Tables collection, which in turn is a
member of the Catalog object. Each Table object has a Name property and
a Type property. The Type property specifies whether a Table object is a
standard Microsoft Access table, a linked table, a system table, or a view. To

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 311

see an example of using the Type property, refer to the section titled “Listing
Database Tables” later in this chapter.

6. Append the Table object to the Catalog object’s Tables collection:
cat.Tables.Append tbl

At this point your table is empty.
7. Add new fields (columns) to your new table:

With tbl.Columns
 .Append "SiteID", adVarWChar, 10
 .Append "Category", adSmallInt
 .Append "InstallDate", adDate
End With

The preceding code fragment creates three fields named SiteID, Category, and
InstallDate. You can create new fields in a table by passing the Column object’s
Name, Type, and DefinedSize properties as arguments of the Columns collec-
tion’s Append method. Notice that ADOX uses different data types than those
used in the Access user interface (see Table 11.2 for a comparison of the data
types).

NOTE

The Table object contains the Columns collection that contains
Column objects. To add a new field to a table, you could create a
Column object and write the code like this:
Dim col As ADOX.Column
set col = New ADOX.Column
With col
 .Name = "SiteID"
 .DefinedSize = 10
End With
tbl.Columns.Append col

The last statement in the preceding example appends the new
Column object (field) to the Columns collection of a table. The
Name property specifies the name of the column. The DefinedSize
property designates the maximum size of an entry in the column.
To create another field, you would have to create a new Column
object and set its properties. Creating fields in this manner takes
longer and is less efficient than using the method demonstrated
earlier.

312 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The complete procedure is shown here:
Sub CreateTableADO()
Dim conn As ADODB.Connection
Dim cat As ADOX.Catalog
Dim tbl As ADOX.Table

' make sure to set up a reference to
' the Microsoft ActiveX Data Objects 6.1 Library
' and ADO Ext. 6.0 for DDL and Security

' copy Chap11b.mdb from the Companion CD-ROM disk
' to your C:\VBAAccess2019_ByExample folder

Set conn = New ADODB.Connection
conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\VBAAccess2019_ByExample\Chap11b.mdb"

Set cat = New ADOX.Catalog
Set cat.ActiveConnection = conn

Set tbl = New ADOX.Table
tbl.Name = "tblAssets"

cat.Tables.Append tbl

With tbl.Columns
 .Append "SiteID", adVarWChar, 10
 .Append "Category", adSmallInt
 .Append "InstallDate", adDate
End With

Set cat = Nothing
conn.Close
Set conn = Nothing
End Sub

TABLE 11.2 ADO data types versus Microsoft Access data types

ADO Data Type Corresponding Data Type in Access
adBoolean Yes/No
adUnsignedTinyInt Number (FieldSize = Byte)
adSmalIInt Number (FieldSize = Integer)
adSingle Number (FieldSize = Single)
adDouble Number (FieldSize = Double)

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 313

ADO Data Type Corresponding Data Type in Access
adDecimal Number (FieldSize = Decimal)
adInteger Number (FieldSize = LongInteger) AutoNumber
adCurrency Currency
adVarWChar Text
adDate Date/Time
adLongVarBinary OLE object
adLongVarWChar Memo
adLongVarWChar Hyperlink

NOTE

ADO does not support the Attachment data type, multi select
lookup fields, and the Append Only and Rich Text memo fields
that were first introduced in Access 2007. To programmatically
access these features in Access 2007–2019, you must rely on DAO.

COPYING A TABLE

The procedure in Hands-On 11.2 uses the SQL SELECT…INTO statement to select
all records from the Customers table in the Northwind database and place them
into a new table called CustomersCopy. The SELECT…INTO statement is equiva-
lent to a MakeTable query in the Microsoft Access user interface. This statement
creates a new table and inserts data from other tables. To copy a table, the SQL
statement is passed as the first argument of the Execute method of the ADO
Connection object. Note that the copied table will not have the indexes that may
exist in the original table.

 Hands-On 11.2 Making a Copy of a Table (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Copy_Table procedure:

' make sure to set up a reference to
' the Microsoft ActiveX Data Objects 6.1 Library

Sub Copy_Table()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strSQL As String

314 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 On Error GoTo ErrorHandler

 strTable = "Customers"

 strSQL = "SELECT " & strTable & ".* INTO "
 strSQL = strSQL & strTable & "Copy "
 strSQL = strSQL & "FROM " & strTable

 Debug.Print strSQL

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 conn.Execute strSQL
 conn.Close
 Set conn = Nothing
 MsgBox "The " & strTable & " table was copied."
 Exit Sub

ErrorHandler:
 If Err.Number = -2147217900 Then
 conn.Execute "DROP Table " & strTable
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
When you run this procedure, Access creates a copy of the Customers table
named CustomersCopy in the Northwind.mdb database.

DELETING A DATABASE TABLE

You can use ADO to delete a table programmatically by opening the ADOX
Catalog object, accessing its Tables collection, and calling the Delete method.
The procedure in Hands-On 11.3 requires a parameter that specifies the name
of the table you want to delete.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 315

 Hands-On 11.3 Deleting a Table from a Database (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Delete_Table procedure shown here:

Sub Delete_Table(strTblName As String)
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog

 On Error GoTo ErrorHandler

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set cat = New ADOX.Catalog

 cat.ActiveConnection = conn

 cat.Tables.Delete strTblName
 Set cat = Nothing
 conn.Close
 Set conn = Nothing

 Exit Sub

ErrorHandler:
 MsgBox "Table '" & strTblName & _
 "' cannot be deleted " & vbCrLf & _
 "because it does not exist."
 Resume Next
End Sub

3. To run this procedure, type the following statement in the Immediate window
and press Enter:
Delete_Table "CustomersCopy"

The CustomersCopy table was created by running the Copy_Table procedure
in Hands-On 11.2. When you press Enter, Visual Basic will delete the specified
table from the Northwind.mdb database. If the table does not exist, an appro-
priate message is displayed.

316 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ADDING NEW FIELDS TO AN EXISTING TABLE

At times you may want to programmatically add a new field to an existing table.
The procedure in Hands-On 11.4 adds a new text field called MyNewField to a
table located in the Northwind database.

 Hands-On 11.4 Adding a New Field to a Table (ADO)

The procedure demonstrated in this hands-on exercise uses the CustomersCopy
table in the Northwind database.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Add_NewFields procedure:

Sub Add_NewFields()
 Dim conn As ADODB.Connection
 Dim cat As New ADOX.Catalog
 Dim myTbl As New ADOX.Table

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 cat.Tables("CustomersCopy").Columns.Append _
 "MyNewField", adVarWChar, 15

 Set cat = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Run the Copy_Table procedure in Hands-On 11.2 to ensure that the
CustomersCopy table exists in the Northwind database.

4. Choose Run | Run Sub/UserForm to run the Add_NewFields procedure.

In DAO, use the CreateField and Append methods to add new fields to the
existing table.

 Hands-On 11.5 Adding a New Field to a Table (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 317

2. In the module’s Code window, type the following Add_NewFieldsDAO
procedure:
Sub Add_NewFieldsDAO()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim tblName As String

 tblName = "CustomersCopy"

 On Error GoTo ErrorHandler
 Set db = OpenDatabase _
 ("C:\VBAAccess2019_ByExample\Northwind.mdb")
 Set tdf = db.TableDefs(tblName)

 MsgBox "Number of fields in the table: " & _
 db.TableDefs(tblName).Fields.Count

 With tdf
 .Fields.Append .CreateField("NoOfMeetings", dbInteger)
 .Fields.Append .CreateField("Result", dbMemo)
 End With

 MsgBox "Number of fields in the table: " & _
 db.TableDefs(tblName).Fields.Count
 db.Close
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

3. Choose Run | Run Sub/UserForm to run the Add_NewFieldsDAO procedure.
Th e Add_NewFieldsDAO procedure uses the following With…End With
construct to quickly add two new fi elds to an existing table:

With tdf
 .Fields.Append .CreateField("NoOfMeetings", dbInteger)
 .Fields.Append .CreateField("Result", dbMemo)
End With

Each new fi eld is appended to the Fields collection of the specifi ed DAO
TableDef object. In this example, we create a new fi eld on the fl y while calling
the Append method. Be sure to include a space between the Append method
and the dot operator in front of the CreateField method. To add two new
fi elds to an existing table without using the With…End With construct, you
would use the following statements:

318 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

tdf.Fields.Append tdf.CreateField("NoOfMeetings", dbInteger)
tdf.Fields.Append tdf.CreateField("Result", dbMemo)

However, using the With…End With construct makes the code both clearer
and faster to execute.

CREATING CALCULATED FIELDS

Access has the ability to store calculated values in tables via a so-called calculated
field. A classic example of the calculated field is a person’s full name. A person’s
first and last names are stored in separate fields in an Access table. In versions of
Access prior to 2010, the full name was generally obtained via a query by writing
an expression that concatenated the first and last name:
Select [FirstName] & " " & [LastName] AS FullName

In Access 2010–2019, you can define the expression for the calculation in the
calculated field and Access will store the calculated values in the table. With this
feature, there is no need to calculate the person’s full name in multiple locations
in your Access application. When the underlying values change (for example, a
female employee got married and the last name field used in the expression was
updated), the expression will automatically update the value that is stored in the
calculated field.

Calculated columns can be added to Access tables manually or with VBA. To
create a calculated column using the manual method, open the table in Design
view and enter the field name. In the Data Type column, select Calculated. At
this point, Access will display the Expression Builder dialog box where you can
enter the expression (see Figure 11.2).

FIGURE 11.2 You can add a calculated field to a table using the table Design view and the Expression
Builder.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 319

NOTE

Certain calculations should never be stored in a calculated field
in a table. For example, expressions based on the results of the
date and time functions such as Date() and Now() will return
different values each time they are called, and therefore should
be left in queries. Also, expressions that use domain aggregate
functions (such as DCount(), DSum(), DAvg(), and so on) are
not good candidates for use in calculated fields because checking
changes in underlying values requires going beyond one record
which, depending on the number of records that have to be ac-
cessed, can hinder database performance.

To create a calculated field in DAO, you will need to set the Expression property
of the DAO.Field2 object to the expression you’d like to use for the calculated
field, as shown in Hands-On 11.6. A Field2 object represents a column of data in
an Access table. It contains all of the same properties and methods as the Field
object with the addition of several properties and methods that support field
types added in Access 2007 (multivalue lookup fields and attachment fields)
and Access 2010 (calculated fields).

 Hands-On 11.6 Creating a Calculated Field with DAO

1. In the VBE screen, choose Insert | Module and enter the following procedure
in the module’s Code window:
Sub CreateCalcField()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field2

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 ' add two text fields
 tdf.Fields.Append tdf.CreateField _
 ("FirstName", dbText, 25)
 tdf.Fields.Append tdf.CreateField _
 ("LastName", dbText, 25)

 ' add a calculated field
 Set fld = tdf.CreateField("FullName", dbText, 50)

320 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 fld.Expression = "[FirstName] & "" "" & [LastName]"
 tdf.Fields.Append fld

ExitHere:
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3211 Then
 ' table is open; need to close it to continue
 DoCmd.Close acTable, "Agents", acSaveYes
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

2. Run the CreateCalcField procedure.
The CreateCalcField procedure adds three new fields (FirstName, LastName,
and FullName) to the existing Agents table in the current database. To append
fields to the table, Access needs exclusive access to the table definition. The
included ErrorHandler executes the statement that closes the table if it is found
open:
DoCmd.Close acTable, "Agents", acSaveYes

Notice that before you can create a calculated field you need to ensure that the
fields the calculation is based upon are also present in the table. After adding
the required fields to the table, the calculated field is added and its expression
for the calculation is defined as follows:
fld.Expression = "[FirstName] & "" "" & [LastName]"

Figure 11.2 earlier in this section shows the Agents table in Design view dis-
playing the properties of the calculated field. To manually change the calcula-
tion expression, click the ellipsis button to the right of the Expression property
to bring up the Expression Builder.

CREATING MULTIVALUE LOOKUP FIELDS WITH DAO

Thanks to the introduction of the complex multivalue data type in the .accdb
file format, table columns can store more than one value. This makes it easy

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 321

for an Access user to create a lookup field without having to know much about
setting table relationships. Access will automatically store the values entered in
multivalue fields in hidden system tables and create proper table relationships
if necessary. The source data for a multivalue field can be one of the following:
value list, field list, or table/query. To have Access guide you in the creation of a
multivalue field, choose Lookup Wizard in the Data Type column of the table’s
Design view.

Multivalue lookup fields are often referred to as complex fields because they
use data types that begin with dbComplex (see Table 11.3).

TABLE 11.3 Data types used by multivalue lookup fields

Data Type Value Description
dbComplexByte 102 Multivalue byte data
dbComplexDecimal 108 Multivalue decimal data
dbComplexDouble 106 Multivalue double-precision floating-point data
dbComplexGUID 107 Multivalue GUID data
dbComplexInteger 103 Multivalue integer data
dbComplexLong 104 Multivalue long integer data
dbComplexSingle 105 Multivalue single-precision floating-point data
dbComplexText 109 Multivalue text data (variable width)

The following hands-on exercise demonstrates how to use VBA to add a multi-
value field named Literature to the Northwind 2007.accdb database’s Customers
table.

 Hands-On 11.7 Creating a Multivalue Lookup Field with DAO

1. In the VBE screen, choose Insert | Module and enter the following CreateMul-
tiValueFld procedure in the module’s Code window:
 Sub CreateMultiValueFld()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Dim strDBName As String
 Dim strTblName As String
 Dim strLitItems As String
 Dim strPath As String

 On Error GoTo ErrorHandler

322 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strPath = "C:\VBAAccess2019_ByExample\"
 strDBName = "Northwind 2007.accdb"
 strLitItems = "Product Brochure;Product Flyer A;"
 strLitItems = strLitItems & "Product Flyer B"
 strTblName = "Customers"

 Set db = OpenDatabase(strPath & strDBName)
 Set tdf = db.TableDefs(strTblName)
 Set fld = tdf.CreateField("Literature", dbComplexText)
 tdf.Fields.Append fld

 With fld
 .Properties.Append .CreateProperty(_
 "DisplayControl", dbText, acComboBox)
 .Properties.Append .CreateProperty(_
 "RowSourceType", dbText, "Value List")
 .Properties.Append .CreateProperty(_
 "RowSource", dbText, strLitItems)
 .Properties.Append .CreateProperty(_
 "BoundColumn", dbInteger, 1)
 .Properties.Append .CreateProperty(_
 "ColumnCount", dbInteger, 1)
 .Properties.Append .CreateProperty(_
 "ColumnWidths", dbText, "1")
 .Properties.Append .CreateProperty(_
 "ListWidth", dbText, "1.5")
 .Properties.Append .CreateProperty(_
 "AllowMultipleValues", dbBoolean, True)
 .Properties.Append .CreateProperty(_
 "AllowValueListEdits", dbBoolean, True)
 End With

ExitHere:
 db.Close
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

2. Run the CreateMultiValueFld procedure.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 323

3. Open the C:\VBAAccess2019_ByExample\Northwind 2007.accdb database
and check the newly created Literature field in the Customers table (see Figures
11.3 and 11.4).

FIGURE 11.3 The multivalue lookup field (Literature) created by the VBA procedure in Hands-On
11.7 displays a combo box.

FIGURE 11.4 The Field Properties Lookup tab contains numerous properties that tell Access how
to display values in the Literature field.

CREATING ATTACHMENT FIELDS WITH DAO

The Attachment data type makes it possible to store various types of external
files directly in the database. This data type is only available in Access databases
created in the .accdb file format in Access 2007–2019. Earlier versions of Access
used the OLE Object data type for embedding external files within MDB data-
bases, and this format continues to be available in Access 2010 for backward

324 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

compatibility. The Attachment data type eliminates the bloating issues that
plagued Access MDB databases whenever the OLE Object data type was used.
To keep .accdb files as small as possible, Access compresses the uncompressed
files in the attachments before storing them in a database.

The Attachment data type allows you to add multiple attachments to a single
record. However, keep in mind that the maximum size of an attached data file
cannot exceed 256 MB (megabytes). You can store as many external files as you
want as long as you stay within 2 GB (gigabytes) of data, which is the maximum
size of an Access database. You cannot restrict how many attachments are al-
lowed in a database field. Also, some attachment file types are not supported.
(You can see the list of blocked file extensions in the Access online help.)

You can work with attachments manually via the Attachments dialog box
(see Figure 11.5) or programmatically using the Attachment object. Hands-On
11.8 demonstrates how to create an Attachment field. You will find more details
about working with attachments in Chapter 14, “Working with Records.”

 Hands-On 11.8 Adding an Attachment Field to an Existing Table

1. In the VBE screen, choose Insert | Module and enter the following CreateAt-
tachmentFld procedure in the module’s Code window:
Sub CreateAttachmentFld()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field2

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 ' add an attachment field
 Set fld = tdf.CreateField("AttachLiterature", _
dbAttachment)
 tdf.Fields.Append fld

ExitHere:
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 325

 If Err.Number = 3211 Then
 ' table is open; need to close it to continue
 DoCmd.Close acTable, "Agents", acSaveYes
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

2. Run the CreateAttachmentFld procedure.
Aft er running this procedure, the Agents table in the current database contains
an extra fi eld as shown in Figure 11.5. To add attachments, double-click
the @(0) in the record to bring up the Attachments dialog box. To add and
manipulate attachments programmatically, refer to Chapter 14.

FIGURE 11.5 The attachment field added with the VBA procedure in Hands-On 11.8 currently does
not contain any attachments.

CREATING APPEND ONLY MEMO FIELDS WITH DAO

Another type of complex multivalue field available in the .accdb file format is
the Append Only memo field (see Figure 11.6). When the Append Only prop-
erty is set to Yes, you can append data to the field, but you are not allowed to
change the data that has been previously entered into this field. This feature is
useful for keeping track of the changes made to the field.

Let’s say you want to preserve the history of problems submitted by users.
Every time you edit the data in the Append Only memo field, the date and time
stamp and your changes are automatically saved to the version history of the

326 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

field (see Figure 11.7). You can view the history of an Append Only memo field
by right-clicking a value in the field and selecting Show column history from the
shortcut menu. Custom Project 11.1 demonstrates how to create a table with an
Append Only memo field and how to retrieve the history of data changes from
this field.

FIGURE 11.6 To collect history on a memo field, you must set the field’s Append Only property to
Yes.

FIGURE 11.7 To access the memo field’s history, right-click the field and select Show column history
from the shortcut menu.

NOTE

Beginning with Access 2013 there is no “memo” data type in the
Data Type list. The Long Text data type has replaced the memo
data type found in prior versions of Access. The Long Text data
type is used for longer text fields (see FieldNotes field in Figure
11.6) and the Short Text data type is used for storing up to 255
characters.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 327

 Custom Project 11.1 Working with Append Only Memo Fields

1. In the VBE screen, choose Insert | Module and enter the following CreateAp-
pendOnlyFld procedure in the module’s Code window:
Sub CreateAppendOnlyFld()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field2

 On Error GoTo ErrorHandler

 Set db = CurrentDb
 Set tdf = db.TableDefs("Agents")

 ' create a memo field
 Set fld = tdf.CreateField("FieldNotes", dbMemo)
 tdf.Fields.Append fld

 ' set the memo field to track version history
 fld.AppendOnly = True

ExitHere:
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3211 Then
 ' table is open; need to close it to continue
 DoCmd.Close acTable, "Agents", acSaveYes
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

2. Run the CreateAppendOnlyFld procedure.
Notice that aft er creating the FieldNotes memo fi eld, you need to set the
AppendOnly property of this fi eld to True to ensure that Access keeps the
history of changes for this fi eld.
Let’s enter some data in one or two records.

328 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Switch to the Microsoft Access window, and double-click the Agents table in the
navigation pane.

4. Type in the data as shown in Figure 11.8. Recall that you don’t need to enter data
in the FullName field because this is a calculated field and Access will perform
the required calculation based on the defined expression.

FIGURE 11.8 Entering sample data in a Datasheet view.

5. In the FieldNotes field for Barbara McDonald, type the following text:

Delivered Presentation to Travel Agency.

6. In the FieldNotes field for Ronald Sepia, type the following text:

Mr. Brook invited us to a dinner party tomorrow.

7. Move back to Barbara McDonald’s record and in the FieldNotes enter the
following text, overwriting the previously written text:

Our team won the award in the Adventure category.

8. Press Enter to record the changes to the field.
9. Move back to the FieldNotes field of Barbara McDonald’s record and type the

following text:

Organizing a trip to Alaska.

10. Continue to enter more data in the first two records of the Agents table so that
you can build up some history in the FieldNotes Append Only memo field.

11. After you are done with the data entry, right-click on the FieldNotes field
in each record and choose Show Column History to check out the version
history. The record history for the first record is shown in Figure 11.7 earlier.

12. Close the Agents table.
You can retrieve the history of values that have been stored in a memo fi eld by
using the ColumnHistory method of the Application object. For example, the
following statement entered on one line in the Immediate window will print all
the notes for an agent whose AgentID equals A100 (see Figure 11.9).

Debug.Print Application.ColumnHistory("Agents", "FieldNotes",
"AgentID='A100'")

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 329

FIGURE 11.9 Retrieving the history of values stored in a memo field.

Notice that the ColumnHistory method requires three parameters: the name
of the table that contains the Append Only memo fi eld, the name of the
memo fi eld, and a string used to locate a record in the table. Let’s now write a
complete procedure that will retrieve the history data into three separate items:
MemoDate, MemoTime, and MemoText.

13. In the same module where you entered the previous procedure in this project,
enter the following RetrieveMemoHistory procedure:
Sub RetrieveMemoHistory()
 Dim arrayString() As String
 Dim MemoText As String
 Dim i As Integer
 Dim strSearch As String
 Dim startPos As Integer
 Dim EndDatePos As Integer
 Dim EndTimePos As Integer
 Dim MemoDate As Date
 Dim MemoTime As Date

 arrayString = Split(Application.ColumnHistory(_
 "Agents", "FieldNotes", _
 "AgentID='A100'"), "[Version: ")

 If UBound(arrayString) = -1 Then
 MsgBox "There is no history data for this field."
 Exit Sub
 End If
 For i = 1 To UBound(arrayString)
 startPos = 1
 strSearch = arrayString(i)
 EndDatePos = InStr(startPos, strSearch, " ")
 MemoDate = CDate(Left(strSearch, EndDatePos - 1))
 startPos = EndDatePos + 1
 EndTimePos = InStr(startPos, arrayString(i), "]") - 3
 MemoTime = CDate(Mid(strSearch, startPos, _
 EndTimePos - startPos))
 startPos = EndTimePos + 3

330 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strSearch = Trim(Replace(strSearch, vbCrLf, ""))
 MemoText = Right(strSearch, Len(strSearch) - startPos)
 Debug.Print MemoDate, MemoTime, MemoText
 Next
End Sub

As mentioned earlier, the Application object’s ColumnHistory method is used
in VBA to retrieve memo column history data. Because Access returns this
data in a single string and we want to divide it into separate items, we use
the Split function. Th is function is ideal for breaking a long string into an
array of substrings based on a specifi ed delimiter. Th e Split function returns
a zero-based, one-dimensional array where each substring is an element. To
hold the result of this function, the RetrieveMemoHistory procedure defi nes
an array variable of the String data type named arrayString.
 The first argument of the Split function specifies the string expression you
want to split. The string that will be returned by the ColumnHistory method
of the Application object is as follows:

arrayString = Split(Application.ColumnHistory(_
 "Agents", "FieldNotes", _
 "AgentID='A100'"), "[Version: ")

Th e second argument of the Split function specifi es a string that is used to
identify substring limits. You can split a string on a single character, a space,
or a group of characters. Because each history item is separated by a line feed
and a carriage return (vbCrLf), you might think that it’s a good idea to break
the Access-generated history string into separate lines by using the vbCrLf
delimiter. Well, it isn’t, simply because memo fi elds allow carriage returns. A
better delimiter is something that does not confl ict with anything the user may
enter into the memo fi eld. You should be able to use the “[Version:” string that
Access adds to each line of the history string without having to worry about
unexpected results. Notice that there are two spaces aft er the colon that we also
want to include in the delimiting string. Now that we have eliminated from the
history string extraneous text ([Version:), we need to iterate through the array
elements using the For…Next loop. However, there is no point doing this if the
arrayString variable does not contain any elements. To check this out, we
can use the UBound function, which will return –1 when the array is empty.
While enumerating the history data, the procedure uses several variables
to determine the character position where the date and time strings end
(EndDatePos, EndTimePos). We also use the startPos variable to specify at
which position in the search string the search should begin. Before extracting

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 331

the date and time strings, we fi nd the end character positions for these strings
using the InStr function:

EndDatePos = InStr(startPos, strSearch, " ")

Th e InStr function returns the position of the fi rst occurrence of one string
within another. Th e fi rst parameter is optional. It indicates the character
position where the search should start. Obviously, we want to start at the fi rst
position so that we can examine the entire string. Th e second parameter is
the string to search in. We are storing it in the strSearch variable. Th e third
parameter of the InStr function is the string you want to fi nd. In this case, we
want to fi nd a single space aft er the date. Notice that the single space separates
the date from the time (see Figure 11.9 earlier). Th e InStr function also has an
optional fourth argument that specifi es the type of string comparison. When
omitted, Access performs a binary comparison where each character matches
only itself. Th is is the default. Th e InStr function will return a zero (0) when
the string you are looking for is not found in the string you searched.
 We also use other text functions (Right, Left, Mid) to extract a specifi ed
number of characters from the string. Th e Right function is used to extract
characters from the right side of the string; the Left function does the same
but from the left side of the string; and the Mid function extracts characters
from the middle of the string. Notice that the text operations also require the
use of the built-in Len function that returns the total number of characters in
the specifi ed string.
 We defi ned the MemoDate and MemoTime variables as Date; thus, aft er
extracting the date and time strings from the searched string, we use the CDate
function to convert them into the Date format.
 Run the RetrieveMemoHistory procedure. Th e procedure prints to the
Immediate window the history string broken into three columns as shown in
Figure 11.10.

FIGURE 11.10 The history data from the FieldNotes column is output to the Immediate window via
a VBA procedure.

332 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING RICH TEXT MEMO FIELDS WITH DAO

The .accdb file format boasts the Rich Text feature in memo fields. This allows
you to format your memo fields in a datasheet with the bold, italics, underline,
and other formatting options that are available via the Ribbon. To enable the
Rich Text feature, open a table in Design view; in the Field Properties area for
the selected memo field, set the Text Format property to Rich Text (see Figure
11.11). When you use the Rich Text feature in a memo field, Access stores the
data in HTML format. Figure 11.12 shows an example of rich text formatting for
a field in the Northwind 2007 database.

FIGURE 11.11 Enabling Rich Text for a memo field.

FIGURE 11.12 The Notes field for Jan Kotas in the Employees table of the Northwind 2007.accdb
database is shown here with the rich text formatting.

 Hands-On 11.9 Creating a Rich Text Memo Field

1. In the VBE screen, choose Insert | Module and enter the following two
procedures in the module’s Code window:
Sub CreateRichMemoFld()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 333

 Dim fld As DAO.Field2
 Dim strTbl As String
 Dim strFld As String

 On Error GoTo ErrorHandler

 strTbl = "Agents"
 strFld = "PersonalNotes"

 Set db = CurrentDb
 Set tdf = db.TableDefs(strTbl)

 ' add an attachment field
 Set fld = tdf.CreateField(strFld, dbMemo)
 tdf.Fields.Append fld

 ConvertToRichText strTbl, strFld

ExitHere:
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3211 Then
 ' table is open; need to close it to continue
 DoCmd.Close acTable, strTbl, acSaveYes
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

Sub ConvertToRichText(strTbl As String, _
 strFld As String)

 With CurrentDb
 With .TableDefs(strTbl)
 With .Fields(strFld)
 On Error Resume Next
 .Properties("TextFormat") = 1
 If Err.Number = 3270 Then _
 .Properties.Append .CreateProperty _
 ("TextFormat", dbByte, 1)
 End With

334 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End With
 End With
End Sub

2. Run the CreateRichMemoFld procedure.
Th e CreateRichMemoFld procedure begins by creating a memo fi eld called
PersonalNotes in the current database’s Agents table. Once the fi eld is
appended to the TableDefs collection of the Agents table, we need to set its
TextFormat property to RichText. We do this by calling the ConvertToRichText
procedure. If the TextFormat property already exists, this procedure will set the
TextFormat property of the FieldNotes fi eld to 1, which denotes the Rich Text
setting. Th e default value of the TextFormat property is 0 (Plain Text). If the
property is not found, error 3270 will occur, and at this point we want Access
to execute the statement that will create the new property called TextFormat
and then append it to the Properties collection:

If Err.Number = 3270 Then
 .Properties.Append .CreateProperty _
 ("TextFormat", dbByte, 1)

Th e last argument in the Create Property method specifi es the type of setting
for the Rich Text memo fi eld. As mentioned earlier, 1 represents Rich Text, and
0 represents Plain Text.

3. Open the Agents table in Design view and verify the changes made by the
CreateRichMemoFld procedure in this hands-on exercise.

4. Close the Agents table.

REMOVING A FIELD FROM A TABLE

You may remove any field from an existing table, whether or not this field con-
tains data. However, you can’t delete a field after you have created an index that
references that field. You must first delete the index.

The procedure in Hands-On 11.10 illustrates how to access the ADOX
Columns collection of a Table object and use the Columns collection’s Delete
method to remove a field from a table. This procedure will fail if the field you
want to delete is part of an index.

 Hands-On 11.10 Removing a Field from a Table (ADO)

This hands-on exercise requires that you created and executed the CopyTable
and Add_NewFields procedures in Hands-On 11.2 and 11.4.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 335

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Delete_Field procedure shown here:

Sub Delete_Field()
 Dim conn As ADODB.Connection
 Dim cat As New ADOX.Catalog

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 cat.Tables("CustomersCopy").Columns.Delete _
 "MyNewField"

 Set cat = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

In DAO, use the Fields collection’s Delete method to remove a field from an
existing table.

 Hands-On 11.11 Removing a Field from a Table (DAO)

The following procedure removes from the CustomersCopy table two fields that
were added by the procedure in Hands-On 11.5.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following DeleteFields_DAO

procedure:
Sub DeleteFields_DAO()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim strDBName As String
 Dim strTblName As String
 Dim strFolder As String

 On Error GoTo ErrorHandler

 strFolder = "C:\VBAAccess2019_ByExample\"

336 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strDBName = "Northwind.mdb"
 strTblName = "CustomersCopy"

 Set db = OpenDatabase(strFolder & strDBName)
 Set tdf = db.TableDefs(strTblName)

 MsgBox "Number of fields in the table: " & _
 db.TableDefs(strTblName).Fields.Count

 With tdf
 .Fields.Delete "NoOfMeetings"
 .Fields.Delete "Result"
 End With

 MsgBox "Number of fields in the table: " & _
 db.TableDefs(strTblName).Fields.Count

 db.Close
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

RETRIEVING TABLE PROPERTIES

You can set or retrieve table properties using the Properties collection of an
ADOX Table object. The Properties collection exposes standard ADO proper-
ties as well as properties specific to the data provider. You can iterate through all
of the properties of an object using the For Each…Next programming structure.

The procedure in the following hands-on exercise accesses the Customers-
Copy table (see Hands-On 11.2) and lists its properties and their values in the
Immediate window (see Figure 11.13).

 Hands-On 11.12 Listing Table Properties

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following List_TableProperties

procedure:
Sub List_TableProperties()
 Dim conn As ADODB.Connection

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 337

 Dim cat As ADOX.Catalog
 Dim tbl As ADOX.Table
 Dim pr As ADOX.Property

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn

 Set tbl = cat.Tables("CustomersCopy")

 ' retrieve table properties
 For Each pr In tbl.Properties
 Debug.Print tbl.Name & ": " & _
 pr.Name & "= "; pr.Value
 Next
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

FIGURE 11.13 You can list the names of table properties and their values programmatically as
shown in Hands-On 11.11.

Additional Code on CD-ROM
File Name: ListTableProperties_DAO.txt
Description: Use the Properties collection of the DAO TableDef object to list
properties of the Agents table in the Chap11.accdb database.

338 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

RETRIEVING FIELD PROPERTIES

The procedure in Hands-On 11.13 retrieves the field properties of the field
named AgentID located in the Agents table in the current database and prints
them to the Immediate window, as shown in Figure 11.14.

 Hands-On 11.13 Listing Field Properties

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the List_FieldProperties procedure shown

here:
Sub List_FieldProperties()
 Dim cat As ADOX.Catalog
 Dim col As ADOX.Column
 Dim pr As ADOX.Property

 Set cat = New ADOX.Catalog
 Set cat.ActiveConnection = _
 CurrentProject.Connection
 Set col = New ADOX.Column
 Set col = cat.Tables("Agents"). _
 Columns("AgentID")

 Debug.Print "Properties of the AgentID " & _
 "field (" & col.Properties.Count & ")"
 ' retrieve Field properties
 For Each pr In col.Properties
 Debug.Print pr.Name & "="; pr.Value
 Next

 Set cat = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

FIGURE 11.14 Running the procedure in Hands-On 11.13 generates a list of field properties and
their values in the Immediate window.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 339

LINKING A MICROSOFT ACCESS TABLE

To create a linked Access table, you must set the following table properties:
Jet OLEDB:LinkDatasource
Jet OLEDB:Remote Table Name
Jet OLEDB:CreateLink

The procedure in Hands-On 11.14 demonstrates how to establish a link to the
Customers table located in the Northwind.mdb database.

 Hands-On 11.14 Linking a Microsoft Jet Table

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Link_JetTable procedure as shown in

Figure 11.15.

 FIGURE 11.15 Creating a link to the Customers table in the Northwind.mdb database.

340 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
To access the linked Customers table after running this procedure, be sure to
refresh the Access application window by pressing Ctrl+F5.

LINKING A DBASE TABLE

You can also link tables that reside in other programs or have different file for-
mats such as Microsoft Excel, dBASE, or Paradox. In DAO, to link a table to an
Access database, use the CreateTableDef method to create a new table:
Set myTable = db.CreateTableDef("TableDBASE")

Next, specify the Connect property of the TableDef object. For example, the fol-
lowing statement specifies the connect string:
myTable.Connect = "dBase 5.0;Database=C:\VBAAccess2019_ByExample"

Next, specify the SourceTableName property of the TableDef object to indicate
the actual name of the table in the source database:
myTable.SourceTableName = "Customer.dbf"

Finally, use the Append method to append the TableDef object to the TableDefs
collection:
db.TableDefs.Append myTable

Additional Code on CD-ROM
File Name: LinkDBaseTable_DAO.txt
Description: Linking a dBASE table to the current database

LINKING A MICROSOFT EXCEL WORKSHEET

You can link an Excel worksheet to a Microsoft Access database by using the
TransferSpreadsheet method of the DoCmd object, as shown in Hands-On
11.15. Note, however, that neither the DoCmd object nor its TransferSpread-
sheet method are members of the ADO Object Model. The DoCmd object is
built into the Microsoft Access library.

 Hands-On 11.15 Linking an Excel Worksheet

This hands-on exercise uses the Regions.xls workbook file provided on the CD-
ROM disc. You can revise the procedure code to use any workbook file that you

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 341

have available; however, you must match the name of the spreadsheet constant
with the Excel version. Table 11.4 shows the constant names and values if you
need a different format.

TABLE 11.4 Spreadsheet constants

Constant Value Description
acSpreadsheetTypeExcel3 0 Microsoft Excel 3.0 format
acSpreadsheetTypeExcel4 6 Microsoft Excel 4.0 format
acSpreadsheetTypeExcel5 5 Microsoft Excel 5.0 format
acSpreadsheetTypeExcel7 5 Microsoft Excel 95 format
acSpreadsheetTypeExcel8 8 Microsoft Excel 97 format
acSpreadsheetTypeExcel9 8 Microsoft Excel 2000–2003 format
acSpreadsheetTypeExcel12 9 Microsoft Excel 2007–2010 format (.xls)
acSpreadsheetTypeExcel12Xml 10 Microsoft Excel 2007–2019 format (.xml)

1. Copy the Regions.xls workbook from the companion CD-ROM disc to your
C:\VBAAccess2019_ByExample folder.

2. In the Visual Basic Editor window, choose Insert | Module.
3. In the module’s Code window, type the following Link_ExcelSheet procedure:

Sub Link_ExcelSheet()
 Dim rst As ADODB.Recordset

 DoCmd.TransferSpreadsheet acLink, _
 acSpreadsheetTypeExcel12, _
 "mySheet", _
 CurrentProject.Path & "\Regions.xls", _
 -1, "Regions!A1:B15"

 Set rst = New ADODB.Recordset
 With rst
 .ActiveConnection = CurrentProject.Connection
 .CursorType = adOpenKeyset
 .LockType = adLockOptimistic
 .Open "mySheet", , , , adCmdTable
 End With

 Do Until rst.EOF
 Debug.Print rst.Fields(0).Value, _
 rst.Fields(1).Value
 rst.MoveNext

342 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Loop
 rst.Close
 Set rst = Nothing
End Sub

4. Choose Run | Run Sub/UserForm to execute the procedure.
Th e Link_ExcelSheet procedure begins by creating a linked table named
mySheet from the specifi ed range of cells (A1:B15) in the Regions worksheet
in the Regions.xls fi le. Th e fi rst argument in the DoCmd statement indicates that
the fi rst row of the spreadsheet contains column headings. Next, the procedure
uses the ADO Recordset object to retrieve the data from the mySheet table
into the Immediate window. Notice that prior to opening the Recordset object,
several properties of the Recordset object must be set:

 ● Th e ActiveConnection property sets the reference to the current data-
base.

 ● Th e CursorType property specifi es how the Recordset object should in-
teract with the data source.

Th e adOpenKeyset setting tells Visual Basic that instead of retrieving all the
records from the data source, only the keys are to be retrieved. Th e data for
these keys is retrieved only as you scroll through the recordset. Th is guarantees
better performance than retrieving big chunks of data at once.

 ● Th e LockType property determines how to lock the data while it is being
manipulated.

Th e adLockOptimistic setting locks the record only when you attempt to save
it.

 ● Opening the Recordset object also requires that you specify the data
source. Th e data source in this procedure is the linked table named
mySheet. Th e parameter passed depends on the source type used.

Th e adCmdTable setting indicates that all rows from the source table
should be included.

You could also open the Recordset object by passing all the required parameters
at once, as follows:

rst.Open "mySheet", _
CurrentProject.Connection, adOpenKeyset, _
adLockOptimistic, adCmdTable

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 343

LISTING DATABASE TABLES

The procedure in Hands-On 11.16 generates a list of tables in the Northwind
database. It uses the ADOX Catalog object to gain access to the database, then
iterates through the Tables collection to retrieve the names of Access tables, sys-
tem tables, and views. The ADOX Tables collection stores various types of Table
objects, as shown in Table 11.5.

TABLE 11.5 Types of tables in the ADOX Tables collection

Name Description
ACCESS TABLE An Access system table
LINK A linked table from a non-ODBC data source
PASS-THROUGH A linked table from an ODBC data source
SYSTEM TABLE A Microsoft Jet system table
TABLE A Microsoft Access table
VIEW A table from a row-returning, non-parameterized query

 Hands-On 11.16 Creating a List of Database Tables

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ListTbls procedure:

Sub ListTbls()
 Dim cat As ADOX.Catalog
 Dim tbl As ADOX.Table

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 For Each tbl In cat.Tables
 If tbl.Type <> "VIEW" And _
 tbl.Type <> "SYSTEM TABLE" And _
 tbl.Type <> "ACCESS TABLE" Then
 Debug.Print tbl.Name
 End If
 Next tbl
 Set cat = Nothing
 MsgBox "View the list of tables in " & _

344 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 "the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

The OpenSchema method of the ADO Connection object offers another way to
list tables in your database (see the following section).

LISTING TABLES AND FIELDS

Earlier in this chapter you learned how to enumerate tables in the Northwind
database by accessing the Tables collection of the ADOX Catalog object. The
procedures in Hands-On 11.17 and Hands-On 11.18 demonstrate how to use
the OpenSchema method of the ADO Connection object to obtain more infor-
mation about a database table and its fields.

 Hands-On 11.17 Using the OpenSchema Method to List Database
Tables

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ListTbls2 procedure:

Sub ListTbls2()
 ' This procedure lists database tables using
 ' the OpenSchema method
 Dim rst As ADODB.Recordset
 Set rst = CurrentProject.Connection.OpenSchema _
 (adSchemaTables)

 Do Until rst.EOF
 Debug.Print rst.Fields("TABLE_TYPE") & " ->" _
 & rst.Fields("TABLE_NAME")
 rst.MoveNext
 Loop
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Obtaining the names of fields requires that you use adSchemaColumns as the
parameter for the OpenSchema method. The ListTblsAndFields procedure in
Hands-On 11.18 retrieves the names of fields in each table of the Northwind
database.

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 345

 Hands-On 11.18 Listing Tables and Their Fields Using the
OpenSchema Method

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ListTblsAndFields

procedure:
Sub ListTblsAndFields()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim curTable As String
 Dim newTable As String
 Dim counter As Integer

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = conn.OpenSchema(adSchemaColumns)
 curTable = ""
 newTable = ""
 counter = 1
 Do Until rst.EOF
 curTable = rst!table_Name
 If (curTable <> newTable) Then
 newTable = rst!table_Name
 Debug.Print "Table: " & rst!table_Name
 counter = 1
 End If
 Debug.Print "Field" & counter & ": " & _
 rst!Column_Name
 counter = counter + 1
 rst.MoveNext
 Loop
 rst.Close
 conn.Close
 Set rst = Nothing
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

346 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

LISTING DATA TYPES

The ListDataTypes procedure in Hands-On 11.19 uses the adSchemaProvider-
Types parameter of the ADO Connection object’s OpenSchema method to list
the data types supported by the Microsoft Jet OLE DB 4.0 provider.

 Hands-On 11.19 Listing Data Types

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the ListDataTypes procedure shown

below.
Sub ListDataTypes()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn=New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
 Set rst=conn.OpenSchema(adSchemaProviderTypes)
 Do Until rst.EOF
 Debug.Print rst!Type_Name & vbTab _
 & "Size: " & rst!Column_Size
 rst.MoveNext
 Loop

 rst.Close
 conn.Close
 Set rst = Nothing
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

CHANGING THE AUTONUMBER

When you create a table in a Microsoft Access database, you can assign an
AutoNumber data type to a primary key field manually using the Access user
interface. The AutoNumber is a unique sequential number (incremented by 1)
or a random number assigned by Microsoft Access whenever a new record is
added to a table. You can set the start and step value of auto- increment fields
programmatically by using Jet 4.0 SQL statements (see Chapter 18, “Creating,
Modifying, and Deleting Tables and Fields,” for more information).

CREATING AND ACCESSING DATABASE TABLES AND FIELDS 347

The procedure in Hands-On 11.20 opens the ADO Recordset object based
on the Shippers table in the Northwind database, retrieves the last used Au-
toNumber value, and determines the current step (increment) value in effect.

 Hands-On 11.20 Changing the Value of an AutoNumber

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the ChangeAutoNumber procedure

shown here:
Sub ChangeAutoNumber()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strSQL As String
 Dim beginNum As Integer
 Dim stepNum As Integer

 Set conn = New ADODB.Connection
 conn.Open "Provider = Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 With rst
 .CursorType = adOpenKeyset
 .LockType = adLockReadOnly
 .Open "Shippers", conn
 .MoveLast
 End With
 beginNum = rst(0)
 rst.MovePrevious
 stepNum = beginNum - rst(0)

 MsgBox "Last Auto Number Value = " & _
 beginNum & vbCr & _
 "Current Step Value = " & stepNum, _
 vbInformation, _
 "AutoNumber"

 rst.Close
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

348 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

This chapter has shown you how to programmatically create Microsoft Access
tables by using ADO and DAO objects. You learned how to add fields to your
tables and define field data types and field properties. You found out how to list
both tables and fields, and investigate their properties. In addition to creating
new tables from scratch, you discovered how to work with linked tables. You
also learned how to copy and delete tables.

The next chapter will demonstrate how to create indexes and set up table
relationships using VBA procedures.

349

After defining the fields for your tables, take the time to set up primary
keys, indexes, and relationships between tables. This chapter focuses
on the DAO and ADOX objects that are designed to work with these

features.

CREATING A PRIMARY KEY INDEX

Indexes determine the order in which records are accessed from database
tables and whether or not duplicate records are accepted. While indexes can
speed up access to specifi c records in large tables, too many indexes can also
slow down updates to the database. Each table in your database should include
a fi eld (or set of fi elds) that uniquely identifi es each individual record in a table.
Such a fi eld or set of fi elds is called a primary key. A primary key is an index
with its Unique and Primary properties set to True. Th ere can be only one
primary key per table.

Chapter

 12 SETTING UP PRIMARY
KEYS, INDEXES, AND
TABLE RELATIONSHIPS

350 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING INDEXES USING ADO

In ADO, indexes are created using the Key object from the ADOX library. Th e
Type property of the Key object allows you to determine whether the key is
primary, foreign, or unique. For example, to create a primary key, set the Key
object’s Type property to adKeyPrimary.

The procedure in Hands-On 12.1 demonstrates how to add a primary key to
the tblFilters table.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 12.1 Creating a Primary Key (ADO)

1. Start Microsoft Access and create a new database named Chap12.accdb in
your C:\VBAAccess2019_ByExample folder.

2. In the Access window, press Alt+F11 to switch to the Visual Basic Editor
window.

3. In the Visual Basic Editor window, choose Insert | Module.
4. Choose Tools | References and add a reference to the Microsoft ActiveX Data

Objects 6.1 and Microsoft ADO Ext. 6.0 for DDL and Security libraries.
5. In the module’s Code window, type the following Create_PrimaryKey proce-

dure:
' make sure to set up a reference to
' the Microsoft ActiveX Data Objects 6.1
' and Microsoft ADO Ext. 6.0 for DDL and Security

Sub Create_PrimaryKey()
Dim cat As ADOX.Catalog
 Dim tbl As ADOX.Table
 Dim pKey As ADOX.Key

 On Error GoTo ErrorHandler

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = CurrentProject.Connection

 Set tbl = New ADOX.Table
 tbl.Name = "tblFilters"

 cat.Tables.Append tbl

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 351

 With tbl.Columns
 .Append "ID", adVarWChar, 10
 .Append "Description", adVarWChar, 255
 .Append "Type", adInteger
 End With

 SetKey:
 Set pKey = New ADOX.Key
 With pKey
 .Name = "PrimaryKey"
 .Type = adKeyPrimary
 End With

 pKey.Columns.Append "ID"
 tbl.Keys.Append pKey

 Set cat = Nothing
 Exit Sub

 ErrorHandler:
 If Err.Number = -2147217856 Then
 MsgBox "The " & tbl.Name & " is open.", _
 vbCritical, "Please close the table"
 ElseIf Err.Number = -2147217857 Then
 MsgBox Err.Description
 Set tbl = cat.Tables(tbl.Name)
 Resume SetKey
 ElseIf Err.Number = -2147217767 Then
 tbl.Keys.Delete pKey.Name
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

6. Choose Run | Run Sub/UserForm to execute the procedure.
Th e Create_PrimaryKey procedure begins by creating a table named tblFilters
in the currently open database and proceeds to set the primary key index on
the ID fi eld. If the tblFilters table already exists, the error handler code displays
the error message and sets an object variable (tbl) to point to this table. Th e
Resume SetKey statement refers the procedure execution to the label SetKey.
Th e code that follows that label defi nes the primary key using the Name and
Type properties of the Key object. Next, the procedure appends the ID column
to the Columns collection of the Key object, and the Key object itself is appended

352 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to the Keys collection of the table. Because errors could occur if a table is open
or it already contains the primary key, the error handler is included to ensure
that the procedure runs as expected.

7. Run this procedure again using step mode (press F8).

CREATING INDEXES USING DAO

In DAO, indexes are created using the CreateIndex method for a TableDef
object. The following statement creates an index named PrimaryKey:
Set idx = tdf.CreateIndex("PrimaryKey")

To ensure that the correct type of index is created, you need to set index prop-
erties. For example, the Primary property of an index indicates that the index
fields constitute the primary key for the table:
idx.Primary = True

Use the Unique property to specify whether or not the values in an index must
be unique:
idx.Unique = True

The Required property indicates whether the index can accept Null values.
When you set this property to True, nulls will not be accepted:
idx.Required = True

Use the IgnoreNulls property to determine whether a record with a Null value
in the index fields should be included in the index:
idx.IgnoreNulls = False

To actually index a table, you must use the CreateField method on the Index
object to create a Field object for each field you want to include in the index:
Set fld = idx.CreateField("AgentID", dbText)

Note that in the Microsoft Access 2019 User Interface the AgentID field will
display its data type as Short Text when you open the table in the Design view.
Beginning with Access 2016, the Short Text replaces the Text data type. In pro-
gramming, use the dbText to indicate that the field should hold character data.
This has not changed from the prior versions.

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 353

Once the Field object is created, you need to append it to the Fields col-
lection:
idx.Fields.Append fld

The last step in index creation is appending the Index object to the Indexes
collection:
tdf.Indexes.Append idx

The procedure in Hands-On 12.2 uses DAO to create a primary key index in
the Agents table.

 Hands-On 12.2 Creating a Primary Key (DAO)

The procedure in this hands-on exercise uses the Agents table in the Chap11.
accdb database.

1. In the Visual Basic Editor window, choose Insert | Module.
In the module’s Code window, type the following Create_PrimaryKeyDAO
procedure:

Sub Create_PrimaryKeyDAO()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Dim idx As DAO.Index
 Dim strDB As String

 strDB = "C:\Access2019_ByExample\Chap11.accdb"
 Set db = OpenDatabase(strDB)
 Set tdf = db.TableDefs("Agents")

 ' create a Primary Key
 Set idx = tdf.CreateIndex("PrimaryKey")
 idx.Primary = True
 idx.Required = True
 idx.IgnoreNulls = False
 Set fld = idx.CreateField("AgentID", dbText)
 idx.Fields.Append fld

 ' add the index to the Indexes collection in the Agents table
 tdf.Indexes.Append idx
 db.Close
 Set db = Nothing
End Sub

354 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Choose Run | Run Sub/UserForm to execute the procedure.

To verify that the index was created, open the Agents table in the Chap11.accdb
database. Activate the Design view and click the Indexes button on the Ribbon.
The result of running the Create_PrimaryKeyDAO procedure is shown in Fig-
ure 12.1.

FIGURE 12.1 The Indexes window after running the procedure in Hands-On 12.2.

CREATING A SINGLE-FIELD INDEX USING ADO

In ADO, you can add an index to a table by using the ADOX Index object.
Before creating an index, make sure the table is not open and that it does not
already contain an index with the same name.

To define an index, perform the following:

1. Append one or more columns to the index by using the Append method.
2. Set the Name property of the Index object and defi ne other index

properties, if necessary.
3. Use the Append method to add the Index object to the table’s Indexes

collection.
You can use the Unique property of the Index object to specify whether
the index keys must be unique. The default value of the Unique property is
False. Another property, IndexNulls, lets you specify whether Null values are
allowed in the index. This property can be set to one of the constants shown in
Table 12.1.

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 355

TABLE 12.1 Intrinsic constants for the IndexNulls property of the ADOX Index object (see the
AllowNullsEnum in the ADOX Library)

Constant Name Description
adIndexNullsAllow You can create an index if there is a Null value in the index

field (an error will not occur).
adIndexNullsDisallow
(This is the default value)

You cannot create an index if there is a Null value in the
index field for the column (an error will occur).

adIndexNullsIgnore You can create an index if there is a Null value in the index
field (an error will not occur). The Ignore Nulls property in
the Indexes window in the user interface will be set to Yes.

adIndexNullsIgnoreAny
(This value is not supported by the
Microsoft Jet Provider)

You can create an index if there is a Null value in the index
field. The Ignore Nulls property in the Indexes window in
the user interface will be set to No.

The Add_SingleFieldIndex procedure in Hands-On 12.3 demonstrates how to
add a single-field index called idxDescription to the table tblFilters.

 Hands-On 12.3 Adding a Single-Field Index to an Existing Table
(ADO)

This procedure uses the tblFilters table created in Hands-On 12.1.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Add_SingleFieldIndex

procedure
Sub Add_SingleFieldIndex()
 Dim cat As New ADOX.Catalog
 Dim myTbl As New ADOX.Table
 Dim myIdx As New ADOX.Index
 Dim strTblName As String

 On Error GoTo ErrorHandler

 strTblName = "tblFilters"
 cat.ActiveConnection = CurrentProject.Connection
 Set myTbl = cat.Tables(strTblName)

 With myIdx
 .Name = "idxDescription"
 .Unique = False
 .IndexNulls = adIndexNullsIgnore
 .Columns.Append "Description"

356 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .Columns(0).SortOrder = adSortAscending
 End With
 myTbl.Indexes.Append myIdx

 Set cat = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217856 Then
 MsgBox strTblName & " will be closed.", _
 vbCritical, "Warning: Table is Open"
 DoCmd.Close acTable, strTblName, acSaveYes
 Resume
 ElseIf Err.Number = -2147217868 Then
 myTbl.Indexes.Delete myIdx.Name
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Aft er the index properties are set, the Description column is appended to the
index, and the index sort order is set to the default (adSortAscending). To set
the index fi eld’s sort order to descending, use the adSortDescending constant.
Next, the index is appended to the Indexes collection of the Table object.

ADDING A MULTIPLE-FIELD INDEX TO A
TABLE USING DAO

The procedure in Hands-On 12.3 demonstrated adding a single-field index to
an existing table by using the ADOX Index object. The procedure in the next
hands-on exercise shows how to use DAO to add a multiple-field index to the
Employees table in the Northwind database.

 Hands-On 12.4 Adding a Multiple-Field Index to an Existing Table
(DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
In the module’s Code window, type the Add_MultiFieldIndex procedure
shown here:

Sub Add_MultiFieldIndex()
 Dim db As DAO.Database

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 357

 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field
 Dim idx As DAO.Index
 Dim strDB As String
 Dim strTblName As String

 strDB = "C:\Access2019_ByExample\Northwind.mdb"
 strTblName = "Employees"
 Set db = OpenDatabase(strDB)
 Set tdf = db.TableDefs(strTblName)

 Set idx = tdf.CreateIndex("Location")
 Set fld = idx.CreateField("City", dbText)
 idx.Fields.Append fld

 Set fld = idx.CreateField("Region", dbText)
 idx.Fields.Append fld
 tdf.Indexes.Append idx

 db.Close
 Set db = Nothing
 Debug.Print "New index (Location) was created."
End Sub

2. Choose Run | Run Sub/UserForm to execute the procedure.

Th e Add_MultiFieldIndex procedure creates a two-fi eld index in the Employees
table. To create an index, use the CreateIndex method on a TableDef object.
Next, use the CreateField method on the Index object to create the fi rst fi eld
to be included in the index, and then append this fi eld to the Fields collection.
Repeat the same steps for the second fi eld you want to include in the index. It
is important to remember that the order in which the fi elds are appended has
an eff ect on the index order. If you open the Indexes window in the Employees
table of the Northwind database aft er running this procedure, the Location
index will consist of two fi elds, as shown in Figure 12.2.

358 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 12.2 The Location index was created by running the procedure in Hands-On 12.4.

LISTING INDEXES IN A TABLE

The ADO Indexes collection contains all Index objects of a table. You can
retrieve all the index names from the Indexes collection. The procedure in the
next hands-on exercise demonstrates how to list the names of indexes available
in the Northwind database’s Employees table in the Immediate window.

 Hands-On 12.5 Listing Indexes in a Table (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following List_Indexes procedure:

Sub List_Indexes()
 Dim conn As New ADODB.Connection
 Dim cat As New ADOX.Catalog
 Dim tbl As New ADOX.Table
 Dim idx As New ADOX.Index

 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Open "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
 End With

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 359

 cat.ActiveConnection = conn
 Set tbl = cat.Tables("Employees")

 For Each idx In tbl.Indexes
 Debug.Print idx.Name
 Next idx

 conn.Close
 Set conn = Nothing
 MsgBox "Indexes are listed in the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
In DAO, you can use the For Each…Next loop to retrieve the names of indexes
from the Indexes collection of the TableDef object, as illustrated in the
following procedure:

Sub List_IndexesDAO()
 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim idx As DAO.Index

 Set db = CurrentDb
 Set tdf = db.TableDefs("tblFilters")

 For Each idx In tdf.Indexes
 Debug.Print idx.Name
 Next

 ' show Immediate window
 SendKeys "^g"
 Set db = Nothing
End Sub

DELETING TABLE INDEXES

Although you can delete unwanted or obsolete indexes from the Indexes win-
dow in the Microsoft Access 2019 user interface, it is much faster to remove
them programmatically. The procedure in Hands-On 12.6 illustrates how to
delete all but the primary key index from the Employees table located in the
Northwind database.

360 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 12.6 Deleting Indexes from a Table (ADO)

The procedure in this hands-on exercise will delete all but the primary key
index from the Employees table in the Northwind database. It is recommended
that you prepare a backup copy of the original Northwind.mdb database prior
to running this code.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Delete_Indexes procedure:

Sub Delete_Indexes()
 ' This procedure deletes all but the primary
 ' key index from the Employees table
 ' Prior to running this procedure make
 ' a backup copy of the original
 ' Northwind.mdb database

 Dim conn As New ADODB.Connection
 Dim cat As New ADOX.Catalog
 Dim tbl As New ADOX.Table
 Dim idx As New ADOX.Index
 Dim count As Integer

 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Open "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
 End With

 cat.ActiveConnection = conn
Setup:
 Set tbl = cat.Tables("Employees")

 Debug.Print tbl.Indexes.count
 For Each idx In tbl.Indexes
 If idx.PrimaryKey <> True Then
 tbl.Indexes.Delete (idx.Name)
 GoTo Setup
 End If
 Next idx

 conn.Close
 Set conn = Nothing
End Sub

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 361

3. Choose Run | Run Sub/UserForm to execute the procedure.

Notice that each time you delete an index from the table’s Indexes collection
you must set the reference to the table because current settings are lost when
an index is deleted. Hence, the GoTo Setup statement sends Visual Basic to the
Setup label to get the new reference to the Table object.

CREATING TABLE RELATIONSHIPS USING ADO

This book assumes that you are familiar with the manual method of creating
various types of relationships between Microsoft Access tables. If you need a
refresher, you can either check the online help or peruse other materials on this
topic. This section demonstrates how you can relate two tables via VBA code.
We will establish the most common relationship, known as a parent-child rela-
tionship. In database terms, this relationship is also called a one-to-many rela-
tionship. We will create a Publishers table as a parent table and a Titles table as
a child table. Then we will link them by a parent-child relationship. Recall that
in this type of relationship, a record in the parent table can have multiple child
records in the other table. In other words, when the term one-to-many is used,
the parent is the o ne (single record) and many represents the children (multiple
child records) in the other table.

In ADO, to establish a one-to-many relationship between tables, you’ll need
to perform the following steps:

1. Use the ADOX Key object to create a foreign key and set the Type property of
the Key object to adKeyForeign. A foreign key consists of one or more fields in
a foreign table that uniquely identify all rows in a primary table.

2. Use the RelatedTable property to specify the name of the related table.
3. Use the Append method to add appropriate columns in the foreign table to the

foreign key. A foreign table is usually located on the “many” side of a one-to-
many relationship and provides a foreign key to another table in a database.

4. Set the RelatedColumn property to the name of the corresponding column in
the primary table.

5. Use the Append method to add the foreign key to the Keys collection of the
table containing the primary key.

The procedure in Hands-On 12.7 illustrates how to create a one-to-many rela-
tionship between two tables: Titles and Publishers.

362 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 12.7 Creating a One-to-Many Relationship

1. In the current database (Chap12.accdb), create the Titles and Publishers tables
and add the fields as shown in the following table:

Table Name Field Name Data Type Size
Titles TitleID Number
Titles PubID Number
Titles Title Short Text 100
Titles Price Currency
Publishers PubID Number
Publishers PubName Short Text 40
Publishers City Short Text 25
Publishers Country Short Text 25

NOTE
Instead of building the Titles and Publishers tables manually,
try to write a VBA procedure based on what you learned about
creating table definitions in Chapter 12.

2. Make TitleID the primary key for the Titles table and PubID the primary key
for the Publishers table.

3. In the Visual Basic Editor window, choose Insert | Module.
4. In the module’s Code window, type the CreateTblRelation procedure shown

here:
Sub CreateTblRelation()
 Dim cat As New ADOX.Catalog
 Dim fKey As New ADOX.Key

 On Error GoTo ErrorHandler

 cat.ActiveConnection = CurrentProject.Connection

 With fKey
 .Name = "fkPubID"
 .Type = adKeyForeign
 .RelatedTable = "Publishers"
 .Columns.Append "PubID"
 .Columns("PubID").RelatedColumn = "PubID"
 End With
 cat.Tables("Titles").Keys.Append fKey

SETTING UP PRIMARY KEYS, INDEXES, AND TABLE RELATIONSHIPS 363

 MsgBox "Relationship was created."

 Set cat = Nothing
 Exit Sub

ErrorHandler:
 cat.Tables("Titles").Keys.Delete "fkPubID"
 Resume
End Sub

5. Choose Run | Run Sub/UserForm to execute the procedure.
If you receive an error while running this procedure, make sure that both
tables are closed.
 You can view the relationship between the Publishers and Titles tables that
was created by the CreateTblRelation procedure in the Relationships window.
To activate this window, switch to the Access application window and choose
Database Tools | Relationships. You should see the Publishers and Titles tables
in the Relationships window linked with a one-to-many relationship (see
Figure 12.3).

FIGURE 12.3 The one-to-many relationship between the Publishers and Titles tables was
created programmatically by accessing objects in the ADOX library (see the code in the
CreateTblRelation procedure in Hands-On 12.7).

364 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this short chapter, you acquired programming skills that enable you to create
keys (primary keys and indexes) in Microsoft Access tables. You also learned
how to establish a one-to-many relationship between tables.

In the next chapter, you will learn how to find and read database records.

365

In order to work with data, you need to learn how to use the Recordset object.
The Recordset object represents a set of records in a table or a set of records
returned by executing a stored query or an SQL statement. Each column of a

Recordset represents a field, and each row represents a record. The Recordset is
a temporary object and is not saved in the database. All Recordset objects cease
to exist after the procedure ends. All open Recordset objects are contained in
the Recordsets collection. Creating and using the Recordset objects depends
on the type of object library (DAO/ADO) that you’ve selected for your pro-
gramming task. In this chapter, you will learn various methods of opening the
Recordset object. You will also find out how to navigate in the Recordset, and
how to find, filter, read, and count the records. Both DAO and ADO Recordsets
will be covered.

INTRODUCTION TO DAO RECORDSETS

In DAO there are five types of Recordset objects: Table-type, Dynaset-type,
Snapshot-type, Forward-only-type, and Dynamic-type. Each of these recordsets
offers a different functionality (see Table 13.1). You create a Recordset object
using the OpenRecordset method. The type of the Recordset is specified by
the type argument of the OpenRecordset method. If the Recordset’s type is not

Chapter

 13 FINDING AND
READING RECORDS

366 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

specified, DAO will attempt to create a Table-type Recordset. If this type isn’t
available, attempts are made to create a Dynaset, Snapshot, or Forward-only-
type Recordset object.

TABLE 13.1 Types of DAO Recordsets

Recordset Type Description
Table-type Used to access records in a table stored in an Access database. You can

retrieve, add, update, and delete records in a single table.
Dynaset-type Used to retrieve, add, update, and delete records from one or more tables in

a database as well as any table that is linked to the Access database.
Snapshot-type Used to access records from a local table stored in an Access database as

well as any linked table or a query. Snapshot recordsets contain a copy of
the records in RAM (random access memory) and provide no direct access
to the underlying data. They are used for reading data only—you can’t use
them to add, update, or delete records.

Forward-only-type This is a special type of a Snapshot recordset that only allows you to scroll
forward through the records. It provides the fastest access when you want
to make a single pass through the data.

Dynamic-type This recordset is generated by a query based on one or more tables. It al-
lows you to add, change, or delete records from a row-returning query. In
addition, it includes the records that other users may have added, modified,
or deleted.

In order to find and read database records, you must understand how to navi-
gate through the recordset. When you open a Recordset object, the first record
is the current record. All recordsets have a current record.

 ● To move to subsequent records, use the MoveNext method.
 ● To move to the previous record, use the MovePrevious method.
 ● Th e MoveFirst and MoveLast methods move the cursor to the fi rst and

last records, respectively.
 ● If you call the MoveNext method when the cursor is already pointing to

the last record, the cursor will move off the last record to the area known
as end of fi le (EOF), and the EOF property will be set to True.

 ● If you call the MoveNext method when the EOF property is True, an error
is generated because you cannot move past the end of the fi le. Similarly,
by calling the MovePrevious method when the cursor is pointing to the
fi rst record, you will move the cursor to the area known as beginning
of fi le (BOF). Th is will set the BOF property to True. When the BOF

FINDING AND READING RECORDS 367

property is True and you call the MovePrevious method, an error will be
generated.

When navigating through a recordset, you may want to mark a specific record
in order to return to it at a later time. You can use the Bookmark property to
obtain a unique identification for a specific record.

The Recordset object has numerous properties and methods. We will discuss
only those properties and methods that are required for performing a specific
task, as demonstrated in the example procedures.

Opening Various Types of Recordsets

Use the OpenRecordset method to create or open a Recordset. For example,
to open a Table-type recordset on a table named tblClients, use the following
statement:
Set rst = CurrentDb.OpenRecordset("tblClients", _
 dbOpenTable)

Notice that the second argument in the OpenRecordset method specifies the
type of recordset. The RecordsetTypeEnum constants (shown in Table 13.2) can
be used here.

TABLE 13.2 Constants used to specify the type of a DAO Recordset object

Type Constant Value Description
dbOpenTable 1 Opens a Table-type recordset
dbOpenDynaset 2 Opens a Dynaset-type recordset
dbOpenSnapshot 4 Opens a Snapshot-type recordset
dbOpenForwardOnly 8 Opens a Forward-only-type recordset
dbOpenDynamic 16 Opens a Dynamic-type recordset

In the preceding example, if you don’t specify a recordset type, a Table-type
recordset will be created based on tblClients. A Table-type recordset represents
the records in a single table in a database.

The OpenRecordset method opens a new Recordset object for reading, add-
ing, updating, or deleting records from a database. The OpenRecordset method
can also be performed on a query. Note that a query can only be opened as a
Dynaset or Snapshot Recordset object. For example, to open a Recordset based
on a query, use the following statements:
Dim db As DAO.Database
Dim rst As DAO.Recordset

368 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Set db = CurrentDb()
Set rst = db.OpenRecordset("qryMyQuery", dbOpenSnapshot)

The procedure in Hands-On 13.1 demonstrates how to open various types of
DAO Recordsets on the Customers table in the Northwind 2007.accdb database
and return the total number of records.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 13.1 Opening Table-, Dynaset-, and Snapshot-Type
Recordsets (DAO)

1. Start Microsoft Access and create a new database named Chap13.accdb in
your C:\VBAAccess2019_ByExample folder.

2. In the Access window, press Alt+F11 to switch to the Visual Basic Editor win-
dow.

3. In the Visual Basic Editor window, choose Insert | Module.
4. In the module’s Code window, type the following ThreeRecordsetsDAO

procedure:
Sub ThreeRecordsetsDAO()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim dynaRst As DAO.Recordset
 Dim snapRst As DAO.Recordset
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"
 Set db = OpenDatabase(strPath & strDb)
 Set tblRst = db.OpenRecordset("Customers", _
 dbOpenTable)
 Debug.Print "Records in a table: " & _
 tblRst.RecordCount

 Set dynaRst = db.OpenRecordset("Customers", _
 dbOpenDynaset)
 Debug.Print "Records in a Dynaset: " & _
 dynaRst.RecordCount
 dynaRst.MoveLast
 Debug.Print "Records in a Dynaset: " & _
 dynaRst.RecordCount

FINDING AND READING RECORDS 369

 Set snapRst = db.OpenRecordset("Customers", _
 dbOpenSnapshot)
 Debug.Print "Records in a Snapshot: " & _
 snapRst.RecordCount
 snapRst.MoveLast
 Debug.Print "Records in a Snapshot: " & _
 snapRst.RecordCount

 tblRst.Close
 dynaRst.Close
 snapRst.Close
 db.Close
 Set db = Nothing
 SendKeys "^g"
End Sub

5. Choose Run | Run Sub/UserForm to execute the procedure.
Notice that to get the correct count of records in Dynaset and Snapshot
recordsets, you need to invoke the MoveLast method to access all the records.
Counting records is covered in more detail in the next section.
 Th e last statement in this procedure (SendKeys "^g") activates the
Immediate window so that you can see the results for yourself.

Opening a Snapshot and Counting Records

When you want to search tables or queries, you will get the fastest results by
opening a Snapshot-type recordset. A snapshot is simply a nonupdatable set of
records that contain fields from one or more tables or queries. Snapshot-type
Recordset objects can be used only for retrieving data. Use the OpenRecordset
method to create or open a recordset. For example, to open a Snapshot-type
recordset on a table named Customers, use the following statement:
Set rst = CurrentDb.OpenRecordset("Customers", dbOpenSnapshot)

At times, you may need to know where you are in a recordset. There are two
properties that can be used to determine your position in the recordset:

 ● Th e AbsolutePosition property allows you to position the current record
pointer at a specifi c record based on its ordinal position in a Dynaset-
or Snapshot-type Recordset object. Th is property lets you determine the
current record number. Zero (0) refers to the fi rst record in the Record-
set object. If there is no current record, the AbsolutePosition property
returns –1. However, because the position of a record changes when

370 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

preceding records are deleted, you should rely more on bookmarks to
position the current record. Th e AbsolutePosition property can be used
only with Dynasets and Snapshots. Because the AbsolutePosition proper-
ty value is zero-based, 1 is added to the AbsolutePosition value to display
current record information:

MsgBox «Current record: " & rst.AbsolutePosition + 1

 ● Th e PercentPosition property shows the current position relative to the
number of records that have been accessed. Both AbsolutePosition and
PercentPosition are not accurate until you move to the last record.

The procedure in Hands-On 13.2 attempts to get the total number of records in
a Snapshot-type recordset by using the RecordCount property.

 Hands-On 13.2 Opening a Snapshot-Type Recordset and Retrieving
the Number of Records (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the OpenSnapshot procedure shown here:

Sub OpenSnapshot()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = OpenDatabase("C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb")
 Set rst = db.OpenRecordset("Customers", _
 dbOpenSnapshot)

 MsgBox "Current record: " & rst.AbsolutePosition + 1
 MsgBox "Number of records: " & rst.RecordCount
 rst.MoveLast
 MsgBox "Current record: " & rst.AbsolutePosition + 1
 MsgBox "Number of records: " & rst.RecordCount
 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e RecordCount property of the Recordset object returns the number of
records that have been accessed.

FINDING AND READING RECORDS 371

 Zero (0) is returned if there are no records in the recordset, and 1 is returned
if there are records in the recordset. If you open a Table-type recordset and
check the RecordCount property, it will return the total number of records
in a table. However, if you open a Dynaset- or Snapshot-type recordset, the
RecordCount property will return 1, indicating that the recordset contains
records. To fi nd out the total number of records in a Dynaset or Snapshot,
call the MoveLast method prior to retrieving the RecordCount property value.
Th e record count becomes accurate aft er you’ve visited all the records in the
recordset.

Retrieving the Contents of a Specific Field in a Table

To retrieve the contents of any field, start by creating a recordset based on the
desired table or query, then loop through the recordset, printing the field’s con-
tents for each record to the Immediate window.

The procedure in Hands-On 13.3 generates a listing of all clients in the Cus-
tomers table. Customer names are retrieved starting from the last record (see
the MoveLast method). The BOF property of the Recordset object determines
when the beginning of your recordset is reached.

 Hands-On 13.3 Retrieving Field Values (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the ReadFromEnd procedure shown here:

Sub ReadFromEnd()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)
 Set rst = db.OpenRecordset("Customers", _
 dbOpenTable)
 rst.MoveLast

 Do Until rst.BOF
 Debug.Print rst!Company
 rst.MovePrevious
 Loop

372 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 SendKeys "^g"
 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Moving between Records in a Table

All recordsets have a current position and a current record. The current record
is usually the record at the current position. However, the current position can
be before the first record and after the last record. You can use one of the Move
methods in Table 13.3 to change the current position.

TABLE 13.3 Move methods used with DAO Recordsets

Method Name Description
MoveFirst Moves to the first record
MoveLast Moves to the last record
MoveNext Moves to the next record
MovePrevious Moves to the previous record
Move n Moves forward or backward n positions

The procedure in Hands-On 13.4 demonstrates how to move between records
in the Employees table using the Table-type or Dynaset-type recordset.

 Hands-On 13.4 Moving between Records in a Table (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following NavigateRecords procedure:

Sub NavigateRecords()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim dynaRst As DAO.Recordset
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)
 Set tblRst = db.OpenRecordset("Employees")

FINDING AND READING RECORDS 373

 tblRst.MoveFirst

 Do While Not tblRst.EOF
 Debug.Print "Employee: " & tblRst![Last Name]
 tblRst.MoveNext
 Loop

 Set dynaRst = db.OpenRecordset("Employees", _
 dbOpenDynaset)
 dynaRst.MoveFirst

 Do While Not dynaRst.EOF
 Debug.Print "Hello " & dynaRst![Last Name]
 dynaRst.MoveNext
 Loop

 tblRst.Close
 dynaRst.Close

 Set tblRst = Nothing
 Set dynaRst = Nothing
 db.Close
 Set db = Nothing
 SendKeys "^g"
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Finding Records in a Table-Type Recordset

While the Move methods are convenient for looping through records in a
Recordset object, you should use Seek or Find methods to look for specific
records. When you know exactly which record you want to find in a Table-type
recordset and the field you are searching is indexed, the quickest way to find
that record is to use the Seek method. One thing to remember with the Seek
method is that the table must contain an index. The Index property must be
set before the Seek method can be used. If you try to use the Seek method on
a Table-type recordset without first setting the current index, a runtime error
will occur. The Seek method searches through the recordset and locates the first
matching record. Once the record is found, it is made the current record and
the NoMatch property is set to False. If the record is not found, the NoMatch
property is set to True and the current record is undefined. Table 13.4 lists com-
parison operators that you can use with the Seek method.

374 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 13.4 Comparison operators used with the Seek method

Operator Description
“=” Finds the first record whose indexed field is equal to the specified value
“>=” Finds the first record whose indexed field is greater than or equal to the specified value
“>” Finds the first record whose indexed field is greater than the specified value
“<=” Finds the first record whose indexed field is less than or equal to the specified value
“<” Finds the first record whose indexed field is less than the specified value

The comparison operator used with the Seek method must be enclosed in
quotes. If there are several records that match your criteria, the Seek method
returns the first record it finds. The Seek method cannot be used to search for
records in a linked table. You must use the Find methods (see the next section)
for locating specific records in linked tables, as well as Dynaset- and Snapshot-
type recordsets. The procedure in Hands-On 13.5 searches for an employee
whose last name begins with the letter “K.”

 Hands-On 13.5 Finding Records in a Table-Type Recordset (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FindRecordsInTable pro-

cedure:
Sub FindRecordsInTable()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)

 Set tblRst = db.OpenRecordset("Employees", _
 dbOpenTable)
 ' find the first employee in the table whose
 ' name begins with the letter "K"

 tblRst.Index = "Last Name"
 tblRst.Seek ">=", "K"

 If Not tblRst.NoMatch Then
 MsgBox "Found the following employee: " & _

FINDING AND READING RECORDS 375

 tblRst![Last Name]
 Else
 MsgBox "There is no employee with such a name."
 End If

 tblRst.Close
 Set tblRst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Finding Records in Dynasets or Snapshots

Use the Find methods to search for a record in Dynaset-type and Snapshot- type
recordsets. Table 13.5 lists the available Find methods.

TABLE 13.5 Find methods in a DAO Recordset

Method Name Description
FindFirst Finds the first matching record in the recordset
FindNext Finds the next matching record, starting at the current record
FindPrevious Finds the previous matching record, starting at the current record
FindLast Finds the last matching record in the recordset

If a record is not found for the given criteria, the NoMatch property of the
Recordset object is set to True. Before searching for records, set a bookmark
at the current record. If the search fails, you will be able to use the bookmark
to return to the current record; otherwise, you will get the error “No current
record.” Each record in a Recordset object has a unique bookmark that you can
use to locate that record. To get the current record’s bookmark, move the cursor
to that record and assign the value of the Bookmark property of the Recordset
object to a Variant variable:
Dim mySpot As Variant
mySpot = dynaRst.Bookmark

In Hands-On 13.6, the bookmark is set on the first record of a Dynaset-type
recordset. The procedure then searches for employees whose name ends with
the string “er.” The asterisk (✳) in the search string is a wildcard character rep-
resenting any number of letters (✳er).

376 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To return to the bookmarked record, set the Bookmark property to the value
held by the Variant variable:
dynaRst.Bookmark = mySpot

While recordsets based on local Microsoft Access tables support bookmarks,
non-Access databases may not support them. To determine whether a Record-
set object supports bookmarks, you can check the Bookmarkable property.
Bookmarks are supported if this property is True.
If dynaRst.Bookmarkable Then
 mySpot = dynaRst.Bookmark
End If

If the Recordset object does not support bookmarks, an error occurs. You can
set as many bookmarks as you wish. Bookmarks can be created for a record
other than the current record by moving to the desired record and assigning the
value of the Bookmark property to a String variable that identifies that record.

 Hands-On 13.6 Finding a Record in a Dynaset-Type Recordset
(DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FindRecInDynaset proce-

dure:
Sub FindRecInDynaset()
 Dim db As DAO.Database
 Dim dynaRst As DAO.Recordset
 Dim mySpot As Variant
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)
 Set dynaRst = db.OpenRecordset("Employees", _
 dbOpenDynaset)

 MsgBox "Current employee: " & _
 dynaRst![Last Name]
 mySpot = dynaRst.Bookmark

 ' find clients whose name ends
 ' with the string "er"
 dynaRst.FindFirst "[Last Name] Like '*er'"

FINDING AND READING RECORDS 377

 Do While Not dynaRst.NoMatch
 Debug.Print dynaRst![Last Name]
 dynaRst.FindNext "[Last Name] Like '*er'"
 Loop

 dynaRst.Bookmark = mySpot
 MsgBox "Back to: " & dynaRst![Last Name]
 dynaRst.Close

 Set dynaRst = Nothing
 db.Close
 Set db = Nothing
 SendKeys "^g"
 End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
The names of all employees that match the search criteria are printed to the

Immediate window.

Finding the nth Record in a Snapshot

The procedure in Hands-On 13.7 demonstrates how to locate the nth record in
a Snapshot-type recordset.

 Hands-On 13.7 Finding the nth Record in a Snapshot-Type
Recordset (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the FindNthRecord procedure shown

here:
Sub FindNthRecord()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim fld As DAO.Field
 Dim totalRec As Integer
 Dim nth As String
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\" & _
 "Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)
 Set rst = db.OpenRecordset("Employees", _
 dbOpenSnapshot)

378 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 rst.MoveLast

 totalRec = rst.RecordCount
 rst.MoveFirst
 nth = InputBox("Enter the number of positions" & _
 "to move forward:")

 On Error Resume Next
 If totalRec > nth Then
 rst.Move nth
 For Each fld In rst.Fields
 Debug.Print fld.Name & ": " & fld.Value
 Next fld
 Else
 MsgBox "Please enter a value that is less than " _
 & totalRec & "."
 End If

 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Notice that immediately aft er opening the recordset, the MoveLast method is
used to ensure that all records have been visited. Th e total number of records
is then retrieved with the RecordCount property of the Recordset object and
stored in the totalRec variable. Next, the MoveFirst method is used to return
to the fi rst record and the InputBox method is used to prompt the user for the
number of positions to move forward in the recordset. If the user-supplied
value is less than the total number of records, the cursor moves to the specifi ed
record and the For…Each loop is used to print this record’s fi eld names and
values to the Immediate window. An attempt to move beyond the end of the
recordset will cause an error. Th erefore, the procedure displays a message if the
user-supplied position to move to is greater than the total number of records.

INTRODUCTION TO ADO RECORDSETS

The Recordset object is one of the three most-used ADO objects (the other two
are Connection and Command). What you can do with a recordset depends
entirely on the built-in capabilities of its OLE DB provider. You can open an

FINDING AND READING RECORDS 379

ADO Recordset by using the Recordset object’s Open method. The information
needed to open a recordset can be provided by first setting properties and then
calling the Open method, or by using the Open method’s parameters like this:
rst.Open [Source], [ActiveConnection], [CursorType], [LockType],
 [CursorLocation], [Options]

Notice that all the parameters are optional (they appear in square brackets). If
you decide that you don’t want to pass parameters, then use a different syntax to
open a recordset. For example, examine the following code block:
With rst
 .Source = strSQL
 .ActiveConnection = strConnect
 .CursorType = adOpenStatic
 .LockType = adLockOptimistic
 .CursorLocation = adUseClient
 .Open Options := adCmdText
End with

The preceding code segment opens a recordset by first setting properties of the
Recordset object, then calling its Open method. Notice that the names of the
required Recordset properties are equivalent to the parameter names listed ear-
lier. The values assigned to each property are discussed later. You will become
familiar with both methods of opening a recordset as you work with the exam-
ple procedures that follow.

Let’s return to the syntax of the Recordset’s Open method, which specifies
the parameters. Needless to say, you need to know what each parameter is and
how it is used. The Source parameter determines where you want your records
to come from. The data source can be an SQL string, a table, a query, a stored
procedure or view, a saved file, or a reference to a Command object. Later in this
chapter you will learn how to open a recordset based on a table, a query, and an
SQL statement.

The ActiveConnection parameter can be an SQL string that specifies the
connection string or a reference to a Connection object. This parameter tells
where to find the database as well as what security credentials to use.

Before we discuss the next three parameters, you need to know that the ADO
Recordsets are controlled by a cursor. The cursor determines whether the record-
set is scrollable (backward and forward or forward only), whether it is read-only
or updatable, and whether changes made to the data are visible to other users.

380 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The ADO cursors have three functions specified by the following param-
eters:

 ● CursorType

 ● LockType

 ● CursorLocation

Before you choose the cursor, you need to think of how your application will
use the data. Some cursors yield better performance than others. It’s important
to determine where the cursor will reside and whether changes made while the
cursor is open need to be visible immediately. The following subsection should
assist you in choosing the correct cursor.

Cursor Types

The CursorType parameter specifies how the recordset interacts with the data
source and what is allowed or not allowed when it comes to data changes or
movement within the recordset. This parameter can take one of four constants:
adOpenForwardOnly (0), adOpenKeyset (1), adOpenDynamic (2), and adOpen-
Static (3).

You can find out what types of cursors are available by using the Object
Browser. Before proceeding, make sure that the Chap13.accdb database file you
created at the beginning of this chapter has a reference to the ActiveX Data
Objects library. Set this reference by switching to the Visual Basic Editor win-
dow and choosing Tools | References. Find and select Microsoft ActiveX Data
Objects 6.1 Library in the References dialog box and click OK. Next, activate the
Object Browser window by pressing F2 or choosing View | Object Browser. Se-
lect ADODB from the Project/Library drop-down listbox and type CursorType
in the Search text box, as shown in Figure 13.1.

 ● When the cursor type is dynamic (adOpenDynamic), users are allowed
to view changes other users made to the database. Th e dynamic cursor
is not supported by the Jet 4.0 engine in Microsoft Access. To use this
cursor, you must use other OLE DB providers, such as MSDASQL or
SQLOLEDB. Using the dynamic cursor you can move back and forth in
the recordset.

 ● When the cursor type is forward-only (adOpenForwardOnly), additions,
changes, or deletions made by other users are not visible. Th is is both the
default and the fastest cursor because it only allows you to scroll forward
in the recordset.

FINDING AND READING RECORDS 381

 ● When the cursor type is keyset driven (adOpenKeyset), you can scroll
back and forth in the recordset; however, you cannot view records added
or deleted by another user. Use the Recordset’s Requery method to over-
come this limitation.

 ● When the cursor type is static (adOpenStatic), all the data is retrieved
as it was at a point in time. Th is cursor is desirable when you need to fi nd
data or generate a report. You can scroll back and forth within a record-
set, but additions, changes, or deletions by other users are not visible. Use
this cursor to retrieve an accurate record count.

You must set the CursorType before opening the recordset with the Open
method. Otherwise, Access will create a Forward-only recordset. You may use a
constant name or its value in your VBA procedures.

Lock Types

After you choose a cursor type, it is important to specify how the ADO should lock
the row when you make a change. The LockType specifies whether the recordset
is updatable. The default setting for LockType is read-only. The LockType pre-
defined constants are listed in the Object Browser, as shown in Figure 13.2.

FIGURE 13.1 The Object Browser lists four predefined constants you can use to specify the
cursor type to be retrieved.

382 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 13.2 The Object Browser lists four predefined constants that you can use to specify what
type of locking ADO should use when you make a change to the data.

When the LockType property is batch optimistic (adLockBatchOptimistic),
batch updates made to the data are stored locally until the UpdateBatch method
is called, during which all pending updates are committed all at once. Until the
UpdateBatch method is called, no locks are placed on edited data. Batch opti-
mistic locking eliminates network roundtrips that normally occur with optimis-
tic locking (adLockOptimistic) when users make changes to one record and
move to another. With batch optimistic locking, a user can make all the changes
to all the records and then submit them as a single operation.

 ● When the LockType property is optimistic (adLockOptimistic = 3), no
locks are placed on the data until you attempt to save a row. Records are
locked only when you call the Update method, and the lock is released as
soon as the Save operation is completed. Two users are allowed to update
a record at the same time. Optimistic locking allows you to work with
one row at a time. If you need to make multiple updates, it’s better to save
them all at once by using batch optimistic locking.

FINDING AND READING RECORDS 383

 ● When the LockType property is pessimistic (adLockPessimistic = 2),
all the records are locked as soon as you begin editing a record. Th e re-
cord remains locked until the edit is committed or canceled. Th is type of
lock guarantees that two users will not make changes to the same record.
If you use pessimistic locking, ensure that your code does not require any
input from the users. You certainly don’t want a scenario where a user
opens a record and makes a change, then leaves for lunch without saving
the record. In that case, the record is locked until the user comes back and
saves or discards the edit. In this situation, it is better to use optimistic
locking.

 ● When the LockType property is read-only (adLockReadOnly = 1), you
will not be able to alter any data. Th is is the default setting.

Cursor Location

The CursorLocation parameter determines whether ADO or the SQL Server
database engine manages the cursor. Cursors use temporary resources to hold
the data. These resources can be memory, a disk paging file, temporary disk
files, or even temporary storage in the database.

 ● When a cursor is created and managed by ADO, the recordset is said to
be using a client-side cursor (adUseClient). With the client-side cursor,
all the data is retrieved from the server in one operation and is placed on
the client computer. Because all the requested data is available locally, the
connection to the database can be closed and reopened only when anoth-
er set of data is needed. Since the entire result set has been downloaded to
the client computer, browsing through the rows is very fast.

 ● When a cursor is managed by a database engine, the recordset is said to
be using a server-side cursor (adUseServer). With the server-side cursor,
all the data is stored on the server and only the requested data is sent over
the network to the user’s computer. Th is type of cursor can provide better
performance than the client-side cursor when excessive network traffi c
is an issue. However, it’s important to point out that a server-side cursor
consumes server resources for every active client and, because it provides
only single-row access to the data, it can be quite slow.

It is recommended that you use the server-side cursor when working with
local Access databases, and the client-side cursor when working with remote
Access databases or SQL Server databases.

384 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The CursorLocation predefined constants are listed in the Object Browser,
as shown in Figure 13.3.

FIGURE 13.3 The CursorLocation parameter of the Recordset’s Open method can be set by using the
adUseClient or adUseServer constant.

The Options Parameter

The Options parameter specifies the data source type being used. Similar to
the parameters related to cursors, the Options parameter can take one of many
values, as shown in Figure 13.4.

 ● When the Options parameter is set to adCmdFile (256), it tells the ADO
that the source of the recordset is a path or fi lename. ADO can open re-
cordsets based on fi les in diff erent formats.

 ● When the Options parameter is set to adCmdStoredProc (4), it tells the
ADO that the source of the recordset is a stored procedure or parameter-
ized query.

 ● When the Options parameter is set to adCmdTable (2), it tells the ADO
that the source of the recordset is a table or view. Th e adCmdTable con-
stant will cause the provider to generate an SQL query to return all rows

FINDING AND READING RECORDS 385

from a table or view by prepending SELECT * FROM in front of the speci-
fi ed table or view name.

 ● When the Options parameter is set to adCmdTableDirect (512), it tells
the ADO that the Source argument should be evaluated as a table name.
How does this constant diff er from adCmdTable? Th e adCmdTableDirect
constant is used by OLE DB providers that support opening tables di-
rectly by name, using an interface called IOpenRowset instead of an ADO
Command object. Since the IOpenRowset method does not need to build
and execute a Command object, its use results in increased performance
and functionality.

 ● When the Options parameter is set to adCmdText (1), it tells the ADO
that you are using an SQL statement to open the recordset.

 ● When the Options parameter is set to adCmdUnknown (8), it tells the
ADO that the command type in the Source argument is unknown. Th is
is the default, which is used if you don’t specify any other option. By us-
ing the adCmdUnknown constant, or not specifying any constant at all for
the Options parameter, you force ADO to make an extra roundtrip to the

FIGURE 13.4 The Options parameter of the Recordset’s Open method is supplied by the constant values
listed under the CommandType property of the Command object.

386 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

server to determine the source type. As you would expect, this will de-
crease your VBA procedure’s performance; therefore, you should use ad-
CmdUnknown only if you don’t know what type of information the Source
parameter will contain.

NOTE
Not all options are supported by all data providers. For example,
Microsoft Jet OLE DB Provider does not support the adCmdTa-
bleDirect cursors.

In addition to specifying the type of CommandType in the Options parameter
(see Figure 13.4), you can pass additional information in the Options param-
eter. For example, you can tell ADO how to execute the command by specifying
whether ADO should wait while all the records are being retrieved or should
continue asynchronously.

Asynchronous Record Fetching

Asynchronous fetching is an ADO feature that allows some records to be
downloaded to the client while the remaining records are still being fetched
from the database. As soon as the user sees some records, he can begin pag-
ing through them. The user does not know that only a few records have been
returned. As he pages through the rows backward and forward, a new con-
nection is made to the server and more records are fetched and passed to the
client’s computer. Once all records have been returned, paging is very quick
because all records are on the client. Asynchronous fetching makes it seem to
the user that the data retrieval is pretty fast. The downside is that records can-
not be sorted until they have all been downloaded.

Additional Options parameters are described in the following list. Note that only
the first three constants (adAsyncExecute, adAsyncFetch, and adAsyncFetch-
NonBlocking) can be used with the Recordset’s Open method. Other constants
are used with the Command or Connection object’s Execute method.

 ● adAsyncExecute (16)—Th is tells ADO to execute the command asyn-
chronously, meaning that all requested rows are retrieved as soon as they
are available. Using adAsyncExecute enables the application to perform
other tasks while waiting for the cursor to populate.
Note that the adAsyncExecute constant cannot be used with
adCmdTableDirect.

SIDEBAR

FINDING AND READING RECORDS 387

 ● adAsyncFetch (32)—Using this constant requires that you specify a val-
ue greater than 1 for the Recordset’s CacheSize property. Th e CacheSize
property is used to determine the number of records ADO will hold in
local memory. For example, if the cache size is 100, the provider will re-
trieve the fi rst 100 records aft er fi rst opening the Recordset object. Th e
adAsyncFetch constant tells ADO that the rows remaining aft er the
initial quantity specifi ed in the CacheSize property should be retrieved
asynchronously.

 ● adAsyncFetchNonBlocking (64)—Th is option tells ADO that it should
never wait for a row to be fetched. Th e application will continue execution
while records are being continuously extracted from a very large data fi le.
If the requested recordset row has not been retrieved yet, the current row
automatically moves to the end of the fi le (causing the Recordset’s EOF
property to become True). In other words, the data retrieval process will
not block other processes.
Note that adAsynchFetchNonBlocking has no eff ect when the
adCmd Table Direct option is used to open the recordset. Also,
adAsyncFetchNon Blocking is not supported with a Server cursor
(adUseServer) when you use the ODBC provider (MSDASQL).

 ● adExecuteNoRecords (128)—Th is option tells ADO not to expect any
records when the command is executed. Use this option for commands
that do not return records, such as INSERT, UPDATE, or DELETE. Use
the adExecuteNoRecords constant with adCmdText to improve the per-
formance of your application. When this option is specifi ed, ADO does
not create a Recordset object and does not set any cursor properties.
Note that adExecuteNoRecords can only be passed as an optional
parameter to the Command or Connection object’s Execute method and
cannot be used when opening a recordset.

 ● adExecuteStream (256)—Indicates that the results of a Command ex-
ecution should be returned as a stream. Th e adExecuteStream constant
can only be passed as an optional parameter to the Command or Con-
nection object’s Execute method and it cannot be used when opening a
recordset.

 ● adExecuteRecord (512)—Indicates that the value of the CommandText
property is a command or stored procedure that returns a single row as a
Record object (a Record object represents one row of data).

388 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● adOptionUnspecified (–1)—Indicates that the command is unspeci-
fi ed. Th is is the default option.

Note that similar to adExecuteNoRecords, adExecuteStream, and adExe-
cuteRecord, this constant can only be passed as an optional parameter to the
Command or Connection object’s Execute method and cannot be used when
opening a recordset.

Opening a Recordset

ADO offers numerous ways of opening a Recordset object. To begin with, you
can create ADO Recordsets from scratch without going through any other
object. Suppose you want to retrieve all the records from the Employees table.
The code you need to write is very simple. Let’s try this out in Hands-On 13.8.

 Hands-On 13.8 Opening a Recordset (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following OpenADORst procedure:

' make sure to set up a reference to
' the Microsoft ActiveX Data Objects 6.1 Library

Sub OpenADORst()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0"
 .Open "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"
 End With

 Set rst = New ADODB.Recordset
 With rst
 .Source = "SELECT * FROM Employees"
 .ActiveConnection = conn
 .Open
 Debug.Print rst.Fields.Count
 .Close
 End With

 Set rst = Nothing
 conn.Close

FINDING AND READING RECORDS 389

 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
In the preceding code example, we fi rst defi ne and open a connection to
the database. Next, we declare a Recordset object and create a new instance
of it. Th e Recordset object’s Source property specifi es the data you want to
retrieve. Th e source can be a table, query, stored procedure, view, saved fi le,
or Command object. Th e SQL SELECT statement tells VBA to select all the
data from the Employees table. Next, the ActiveConnection property specifi es
how to connect to the data. We set the ActiveConnection property to the
object variable (conn) that holds the connection information. Finally, the Open
method retrieves the specifi ed records into the recordset. Before we close the
recordset using the Recordset’s Close method, we retrieve the number of fi elds
in the open recordset by examining the Recordset’s Fields collection and write
the result to the Immediate window.

Opening a Recordset Based on a Table or Query

A recordset can be based on a table, view, SQL statement, or command that
returns rows. It can be opened via a Connection or Command object’s Execute
method or a Recordset’s Open method (see the following example procedures).

 ● Using the Execute method of the Connection object:
Sub ConnectAndExec()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim fld As Variant

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
 Set rst = conn.Execute("SELECT * FROM Employees")
 Debug.Print rst.Source
 Do Until rst.EOF
 Debug.Print "\\\\\\\\\\\\\\\\\\\\\\\\\\\"
 For Each fld In rst.Fields
 Debug.Print fld.Name & "=" & fld.Value
 Next
 'Debug.Print "---new record ---"
 rst.MoveNext

390 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Loop
 'Debug.Print rst.Fields(1).Value
 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing

End Sub

NOTE

Once you open the recordset, you can perform the required oper-
ation on its data. In this example, we use the Recordset’s Source
property to write to the Immediate window the SQL command
on which the recordset is based. Next, we loop through the re-
cordset to retrieve the contents of each field in every record. To
open the Northwind 2007.accdb database instead of the North-
wind.mdb file, change the provider string to Microsoft.ACE.
OLEDB.12.0 and the name of the database to Northwind 2007.
accdb:
conn.Open "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 ● Using the Execute method of the Command object:
Sub CommandAndExec()
 Dim conn As ADODB.Connection
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 With conn
 .ConnectionString = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"
 .Open
 End With

 Set cmd = New ADODB.Command
 With cmd
 .ActiveConnection = conn
 .CommandText = "SELECT * FROM Customers"
 End With

FINDING AND READING RECORDS 391

 Set rst = cmd.Execute

 MsgBox rst.Fields(1).Value

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

NOTE
Once you open the recordset, you can perform the required op-
eration on its data. In this example, we display a message with
the name of the first customer.

 ● Using the Open method of the Recordset object:
Sub RecSetOpen()
 Dim rst As ADODB.Recordset
 Dim strConnection As String

 strConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 With rst
 .Open "SELECT * FROM Customers", _
 strConnection, adOpenForwardOnly
 .Save CurrentProject.Path & "\MyRst.dat"
 .Close
 End With
 Set rst = Nothing
End Sub

NOTE

Once you open the recordset, you can perform the required op-
eration on its data. In this example, we save the entire recordset
to a disk file named MyRst.dat. In Chapter 16, “Using Advanced
ADO/DAO Features,” you learn how to work with records that
have been saved in a file.

The procedure in Hands-On 13.9 illustrates how to open a recordset based on
a table or query.

392 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 13.9 Opening a Recordset Based on a Table or Query
(ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following OpenRst_TableOrQuery

procedure:
Sub OpenRst_TableOrQuery()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0"
 .Open "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"
 End With

 Set rst = New ADODB.Recordset
 rst.Open "Employees", conn

 Debug.Print "CursorType: " & _
 rst.CursorType & vbCr _
 & "LockType: " & rst.LockType & vbCr _
 & "Cursor Location: " & rst.CursorLocation

 Do Until rst.EOF
 Debug.Print rst.Fields(2)
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

After opening the recordset, it’s a good idea to check what type of recordset was
created. Notice that this procedure uses the CursorType, LockType, and Cur-
sorLocation properties to retrieve this information. After the procedure is run,
the Immediate window displays the following:
CursorType: 0
LockType: 1
Cursor Location: 2

FINDING AND READING RECORDS 393

Notice that because you did not specify any parameters in the Recordset’s Open
method, you obtained a default recordset. This recordset is forward-only (0),
read-only (1), and server-side (2). (For more information, refer to the section
titled “Introduction to ADO Recordsets” earlier in this chapter.)

To create a different type of recordset, pass the appropriate parameters to
the Recordset’s Open method. For example, if you open your recordset like this:
rst.Open "Employees", conn, adUseClient, adLockReadOnly

you will get the static (3), read-only (1), and client-side (3) recordset. In this
recordset, you can easily find out the number of records by using the Recordset’s
RecordCount property:
Debug.Print rst.RecordCount

Next, this procedure uses the MoveNext method to iterate through all the records
in the recordset until the end of file (EOF) is reached.

Counting Records

Use the Recordset object’s RecordCount property to determine the number
of records in a recordset. If the number of records cannot be determined, this
property will return –1. The RecordCount property setting depends on the
cursor type and the capabilities of the provider. To get the actual count of re-
cords, open the recordset with the static (adOpenStatic) or dynamic (adOp-
enDynamic) cursor.

To quickly test the contents of the recordset, we write the employees’ last names
to the Immediate window. Since this recordset contains all the fields in the
Employees table, you can add extra code to list the remaining field values.

Is This Recordset Empty?

A recordset may be empty. To check whether your recordset has any records
in it, use the Recordset object’s BOF and EOF properties. The BOF property
stands for “beginning of file,” and EOF indicates “end of file.”

 ● If you open a Recordset object that contains no records, the BOF and
EOF properties are both set to True.

 ● If you open a Recordset object that contains at least one record, the BOF
and EOF properties are False and the fi rst record is the current record.

SIDEBAR

SIDEBAR

394 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can use the following conditional statement to test whether there are any
records:
If rst.BOF and rst.EOF Then

MsgBox "This recordset contains no records"
End If

To open a recordset based on a saved query, replace the table name with your
query name.

Opening a Recordset Based on an SQL Statement

The procedure in Hands-On 13.10 demonstrates how to use the Connection
object’s Execute method to open a recordset based on an SQL statement that
selects all the employees from the Employees table in the sample Northwind
2007.accdb database. Only the name of the first employee is written to the
Immediate window. As in the preceding example, the resulting recordset is
 forward-only and read-only.

 Hands-On 13.10 Opening a Recordset Based on an SQL Statement
(ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the CreateRst_WithSQL procedure shown

here:
Sub CreateRst_WithSQL()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String

 strConn = _
 "Provider = Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 Set conn = New ADODB.Connection
 conn.Open strConn

 Set rst = conn.Execute _
 ("SELECT * FROM Employees")
 Debug.Print rst("Last Name") & _
 ", " & rst("First Name")

FINDING AND READING RECORDS 395

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Opening a Recordset Based on Criteria

Instead of retrieving all the records from a specific table or query, you can use
the SQL WHERE clause to get only those records that meet certain criteria. The
procedure in Hands-On 13.11 calls the Recordset’s Open method to create a
forward-only and read-only recordset populated with employees who are sales
representatives.

 Hands-On 13.11 Opening a Recordset Based on Criteria (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following OpenRst_WithCriteria

procedure:
Sub OpenRst_WithCriteria()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String

 strConn = _
 "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 Set conn = New ADODB.Connection
 conn.Open strConn

 Set rst = New ADODB.Recordset
 rst.Open "SELECT * FROM Employees WHERE " & _
 "[Job Title] = " & _
 "'Sales Representative'", _
 conn, adOpenForwardOnly, adLockReadOnly

 Do While Not rst.EOF
 Debug.Print rst.Fields(2).Value
 rst.MoveNext
 Loop

396 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Opening a Recordset Directly

If you are planning to open just one recordset from a specific data source, you
can take a shortcut and open it directly without first opening a Connection
object. This method requires you to specify the source and connection informa-
tion prior to calling the Recordset object’s Open method, as shown in Hands-On
13.12.

 Hands-On 13.12 Opening a Recordset Directly (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the OpenRst_Directly procedure shown

here:
Sub OpenRst_Directly()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0"
 .Open "Data Source=" & _
 CurrentProject.Path & _
 "\Northwind 2007.accdb"
 End With

 Set rst = New ADODB.Recordset
 With rst
 .Source = "SELECT * FROM Employees"
 .ActiveConnection = conn
 .Open
 End With
 MsgBox rst.Fields(2)

 rst.Close
 Set rst = Nothing
 conn.Close

FINDING AND READING RECORDS 397

 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Moving Around in a Recordset

You can navigate the ADO Recordset by using the following five methods:
MoveFirst, MoveLast, MoveNext, MovePrevious, and Move. The procedure in
Hands-On 13.13 demonstrates how to move around in a recordset and retrieve
the names of fields and their contents for each record.

 Hands-On 13.13 Moving Around in a Recordset (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following MoveAround procedure:

Sub MoveAround()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim fld As ADODB.Field
 Dim strConn As String

 strConn = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set conn = New ADODB.Connection
 conn.Open strConn

 Set rst = New ADODB.Recordset
 rst.Open "SELECT * FROM Customers WHERE " & _
 "ContactTitle = 'Owner'", _
 conn, adOpenForwardOnly, adLockReadOnly
 Do While Not rst.EOF
 Debug.Print "New Record --------------"
 For Each fld In rst.Fields
 Debug.Print fld.Name & " = " & _
 fld.Value
 Next
 rst.MoveNext
 Loop

 rst.Close

398 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Finding the Record Position

Use the AbosolutePosition property of the Recordset object to determine the
current record number. This property specifies the relative position of a record
in an ADO Recordset. The procedure in Hands-On 13.14 opens a recordset
filled with employee records from the Employees table in the Northwind data-
base and uses the AbsolutePosition property to return the record number three
times during the procedure execution.

 Hands-On 13.14 Finding the Record Position (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FindRecordPosition

procedure:
Sub FindRecordPosition()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String

 strConn = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set conn = New ADODB.Connection
 conn.Open strConn

 Set rst = New ADODB.Recordset
 With rst
 .Open "SELECT * FROM Employees", _
 conn, adOpenKeyset, _
 adLockOptimistic, adCmdText
 Debug.Print .AbsolutePosition
 .Move 3 ' move forward 3 records
 Debug.Print .AbsolutePosition
 .MoveLast ' move to the last record
 Debug.Print .AbsolutePosition

FINDING AND READING RECORDS 399

 Debug.Print .RecordCount
 .Close
 End With

 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Notice that at the beginning of the recordset, the record number is 1. Next,
the FindRecordPosition procedure uses the Move method to move the cursor
three rows ahead, aft er which the AbsolutePosition property returns 4 (1 + 3)
as the current record position. Finally, the MoveLast method is used to move
the cursor to the end of the recordset. Th e AbsolutePosition property now
determines that this is the ninth record (9). Th e RecordCount property of the
Recordset object returns the total number of records (9).

Reading Data from a Field

Use the Fields collection of a Recordset object to retrieve the value of a specific
field in an open recordset. The procedure in Hands-On 13.15 uses the Do…While
loop to iterate through the recordset and prints the names of all the employees
to the Immediate window.

 Hands-On 13.15 Retrieving Field Values (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ReadField procedure:

Sub ReadField()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.ACE.OLEDB.12.0"
 .Open "Data Source=" & _
 CurrentProject.Path & _
 "\Northwind 2007.accdb"
 End With

 Set rst = New ADODB.Recordset
 rst.Open "SELECT * FROM Employees", _
 conn, adOpenStatic

400 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Do While Not rst.EOF
 Debug.Print rst.Fields("Last Name").Value
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Returning a Recordset as a String

Instead of using a loop to read the values of fields in all rows of the open record-
set, you can use the Recordset object’s GetString method to get the desired
data in one step. The GetString method returns a recordset as a string-valued
Variant. This method has the following syntax:
Variant = Recordset.GetString(StringFormat, NumRows, _
 ColumnDelimiter, RowDelimiter, NullExpr)

 ● Th e fi rst argument (StringFormat) determines the format for represent-
ing the recordset as a string. Use the adAddClipString constant as the
value for this argument.

 ● Th e second argument (NumRows) specifi es the number of recordset rows
to return. If blank, GetString will return all the rows.

 ● Th e third argument (ColumnDelimiter) specifi es the delimiter for the
columns within the row (the default column delimiter is tab (vbTab)).

 ● Th e fourth argument (RowDelimiter) specifi es a row delimiter (the de-
fault is carriage return (vbCrLf)).

 ● Th e fi ft h argument (NullExpr) specifi es an expression to represent Null
values (the default is an empty string ("")).

 Hands-On 13.16 Converting the Recordset to a String (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the GetRecords_AsString procedure

shown here:
Sub GetRecords_AsString()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

FINDING AND READING RECORDS 401

 Dim varRst As Variant
 Dim fso As Object
 Dim myFile As Object

 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.JET.OLEDB.4.0"
 .Open "Data Source=" & _
 CurrentProject.Path & _
 "\Northwind.mdb"
 End With

 Set rst = New ADODB.Recordset
 rst.Open "SELECT EmployeeId, " & _
 "LastName & "", """ & _
 "FirstName AS FullName " & _
 "FROM Employees", _
 conn, adOpenForwardOnly, _
 adLockReadOnly, adCmdText

 If Not rst.EOF Then
 ' Return all rows as a formatted string with
 ' columns delimited by Tabs, and rows
 ' delimited by carriage returns

 varRst = rst.GetString(adClipString, , _
 vbTab, vbCrLf)
 Debug.Print varRst
 End If

 ' save the recordset string to a text file
 Set fso = CreateObject _
 ("Scripting.FileSystemObject")
 Set myFile = fso.CreateTextFile _
 (CurrentProject.Path & _
 "\RstString.txt", True)
 myFile.WriteLine varRst
 myFile.Close

 Set fso = Nothing
 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

402 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e GetRecords_AsString procedure demonstrates how you can transform
a recordset into a tab-delimited list of values using the Recordset object’s
GetString g method. You can use any characters you want to separate columns
and rows. Th is procedure uses the following statement to convert a recordset
to a string:

varRst = rst.GetString(adClipString, , vbTab, vbCrLf)

Notice that the second argument is omitted. Th is indicates that we want to
obtain all the records. To convert only three records to a string, you could write
the following line of code:

varRst = rst.GetString(adClipString, 3, vbTab, vbCrLf)

Th e vbTab and vbCrLf arguments are VBA constants that denote the Tab and
carriage return characters.
 Because adClipString, vbTab, and vbCrLf are default values for the
GetString method’s arguments, you can skip them altogether. Th erefore, to
put all of the records in this recordset into a string, you can simply use the
GetString method without arguments, like this:

varRst = rst.GetString

Sometimes you may want to save your recordset string to a fi le. To gain access
to a computer’s fi lesystem, the procedure uses the CreateObject function to
access the FileSystemObject from the Microsoft Scripting Runtime Library.
You can easily create a File object by using the CreateTextFile method of
this object. Notice that the second argument of the CreateTextFile method
(True) indicates that the fi le should be overwritten if it already exists. Once you
have defi ned your fi le, you can use the WriteLine method of the File object to
write the text to the fi le. In this example, your text is the variable holding the
contents of a recordset converted to a string.

Finding Records Using the Find Method

The ADO Object Model provides you with two methods for locating records:
Find and Seek. This section demonstrates how to use the ADO Find method
to locate all the employee records based on a condition. ADO has a single Find
method. The search always begins from the current record or an offset from
it. The search direction and the offset from the current record are passed as
parameters to the Find method. The SearchDirection parameter can be either
adSearchForward or adSearchBackward.

FINDING AND READING RECORDS 403

 Hands-On 13.17 Finding Records Using the Find Method (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Find_WithFind procedure:

Sub Find_WithFind()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 rst.Open "Employees", conn, _
 adOpenKeyset, adLockOptimistic

 ' find the first record matching
 ' the criteria
 rst.Find "TitleOfCourtesy ='Ms.'"
 Do Until rst.EOF
 Debug.Print rst.Fields("LastName").Value
 ' search forward starting from
 ' the next record
 rst.Find "TitleOfCourtesy ='Ms.'", _
 SkipRecords:=1, _
 SearchDirection:=adSearchForward
 Loop

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
To fi nd the last record, call the MoveLast method before using Find d. If
none of the records meets the criteria, the current record is positioned before
the beginning of the recordset (if searching forward) or aft er the end of the
recordset (if searching backward). You can use the EOF or BOF properties of
the Recordset object to determine whether a matching record was found.

404 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

The ADO Find method does not support the Is operator. To
locate a record that has a Null value, use the equal sign (=). For
example:
' find records that do not have
' an entry in the ReportsTo field

rst.Find "ReportsTo = Null"

' find records that have data
' in the ReportsTo field

rst.Find " ReportsTo <> Null"

To find records based on more than one condition, use the Filter property of
the Recordset object, as demonstrated in Hands-On 13.19 later in this chapter.

Finding Records Using the Seek Method

You can use the Recordset object’s Seek method to locate a record based on an
index. If you don’t specify the index before searching, the primary key will be
used. If the record is found, the current row position is changed to that row. The
syntax of the Seek method looks like this:
recordset.Seek KeyValues, SeekOption

The first argument of the Seek method specifies the key values you want to find.
The second argument specifies the type of comparison to be made between the
columns of the index and the corresponding KeyValues.

The procedure in Hands-On 13.18 uses the Seek method to find the first
company with an entry in the Region field equal to “SP”:
rst.Seek "SP", adSeekFirstEQ

To find the last record that meets the same condition, use the following state-
ment:
rst.Seek "SP", adSeekLastEQ

The type of Seek to execute is specified by the constants shown in Table 13.6.
The Seek method is recognized only by the Microsoft Jet 4.0/ACE 12.0 da-

tabases. To determine whether the Seek method can be used to locate a row in
a recordset, use the Recordset object’s Supports method. This method deter-
mines whether a specified Recordset object supports a particular type of fea-

FINDING AND READING RECORDS 405

ture. The Boolean value of True indicates that the feature is supported; False
indicates that it is not.
' find out if the recordset
' supports the Seek method
 MsgBox rst.Supports(adSeek)

 Hands-On 13.18 Finding Records Using the Seek Method (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Find_WithSeek procedure:

Sub Find_WithSeek()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 With rst
 .Index = "Region"
 .Open "Customers", conn, adOpenKeyset, _
 adLockOptimistic, adCmdTableDirect

 ' find out if this recordset
 ' supports the Seek method

TABLE 13.6 Seek method constants

Constant Value Description
adSeekFirstEQ 1 Seeks the first key equal to KeyValues
adSeekLastEQ 2 Seeks the last key equal to KeyValues
adSeekAfterEQ 4 Seeks a key either equal to KeyValues or just after

where that match would have occurred
adSeekAfter 8 Seeks a key just after where a match with KeyValues

would have occurred
adSeekBeforeEQ 16 Seeks a key either equal to KeyValues or just before

where that match would have occurred
adSeekBefore 32 Seeks a key just before where a match with KeyVal-

ues would have occurred

406 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox rst.Supports(adSeek)
 .Seek "SP", adSeekFirstEQ
 End With

 If Not rst.EOF Then
 Debug.Print rst.Fields _
 ("CompanyName").Value
 End If

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
If the Seek method is based on a multifi eld index, use the VBA Array function
to specify values for the KeyValues parameter. For example, the Order
Details table in the Northwind.mdb database uses a multifi eld index as the
PrimaryKey. Th is index is a combination of the OrderID and ProductID fi elds.
To fi nd the order in which OrderID = 10295 and ProductID = 56, use the
following statement:

rst.Seek Array(10295, 56), adSeekFirstEQ

Finding a Record Based on Multiple Conditions

ADO’s Find method does not allow you to find records based on more than
one condition. The workaround is using the Recordset object’s Filter property
to create a view of the recordset that contains only those records that match the
specified criteria. The procedure in Hands-On 13.19 uses the Filter property to
find the female employees who live in the United States.

 Hands-On 13.19 Finding a Record Based on Multiple Criteria (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Find_WithFilter procedure shown

here:
Sub Find_WithFilter()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open _

FINDING AND READING RECORDS 407

 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 rst.Open "Employees", conn, _
 adOpenKeyset, adLockOptimistic
 rst.Filter = _
 "TitleOfCourtesy ='Ms.' and Country ='USA'"
 Do Until rst.EOF
 Debug.Print rst.Fields("LastName").Value
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Using Bookmarks

When you work with database records, you must keep in mind that the actual
number of records in a recordset can change at any time as new records are
added or others are deleted. Therefore, you cannot save a record number to
return to it later. Because records change all the time, the record numbers can-
not be trusted. However, programmers often need to save the position of a
record after they’ve moved to it or found it based on certain criteria. Instead
of scrolling through every record in a recordset comparing the values, you can
move directly to a specific record by using a bookmark. A bookmark is a value
that uniquely identifies a row in a recordset.

Use the Bookmark property of the Recordset object to mark the record so
you can return to it later. The Bookmark property is read/write, which means
that you can get a bookmark for a record or set the current record in a Recordset
object to the record identified by a valid bookmark. The Recordset’s Bookmark
property always represents the current row. Therefore, if you need to mark more
than one row for later retrieval, you may want to use an array to store multiple
bookmarks (see Hands-On 13.20).

A single bookmark can be stored in a Variant variable. For example, when
you get to a particular row in a recordset and decide that you’d like to save its
location, store the recordset’s bookmark in a variable, like this:

408 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

varMyBkmrk = rst.Bookmark

varMyBkmrk is the name of a Variant variable declared with the following state-
ment:
Dim varMyBkmrk As Variant

To retrieve the bookmark, move to another row, then use the saved bookmark
to move back to the original row, like this:
rst.Bookmark = varMyBkmrk

Because not all ADO Recordsets support the Bookmark property, you should
use the Supports method to determine if the recordset does. Here’s how:
If rst.Supports(adBookmark) then
 MsgBox "Bookmarks are supported."
Else
 MsgBox "Sorry, can't use bookmarks!"
End If

Recordsets defined with a Static or Keyset cursor always support bookmarks. If
you remove the adOpenKeyset intrinsic constant from the code used in the next
procedure (Hands-On 13.20), the default cursor (adOpenForward Only) will be
used, and you’ll get an error because this cursor does not support bookmarks.

Another precaution to keep in mind is that there is no valid bookmark when
the current row is positioned at the new row in a recordset. For example, if you
add a new record with the following statement:
rst.AddNew

and then attempt to mark this record with a bookmark:
varMyBkmrk = rst.Bookmark

you will get an error.
When you close the recordset, bookmarks you’ve saved become invalid.

Also, bookmarks are unique to the recordset in which they were created. This
means that you cannot use a bookmark created in one recordset to move to the
same record in another recordset. However, if you clone a recordset (that is, you
create a duplicate Recordset object), a Bookmark object from one Recordset
object will refer to the same record in its clone. (See the section titled “Cloning
a Recordset” in Chapter 16.)

FINDING AND READING RECORDS 409

 Hands-On 13.20 Marking Records with a Bookmark (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following TestBookmark procedure:

Sub TestBookmark()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim varMyBkmrk As Variant

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 rst.Open "Employees", conn, adOpenKeyset

 If Not rst.Supports(adBookmark) Then
 MsgBox "This recordset does not " & _
 "support bookmarks!"
 Exit Sub
 End If

 varMyBkmrk = rst.Bookmark
 Debug.Print rst.Fields(1).Value

 ' Move to the 7th row
 rst.AbsolutePosition = 7
 Debug.Print rst.Fields(1).Value

 ' move back to the first row
 ' using bookmark
 rst.Bookmark = varMyBkmrk
 Debug.Print rst.Fields(1).Value
 rst.Close
 Set rst = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Notice that this procedure uses the AbsolutePosition property of the Recordset
object. Th e absolute position isn’t the same as the record number. Th is property
can change if a record with a lower number is deleted.

410 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Using Bookmarks to Filter a Recordset

Bookmarks provide the fastest way of moving through rows. You can also use
them to filter a recordset as shown in Hands-On 13.21.

 Hands-On 13.21 Using Bookmarks to Filter Records (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Filter_WithBookmark

procedure:
Sub Filter_WithBookmark()
 Dim rst As ADODB.Recordset
 Dim varMyBkmrk() As Variant
 Dim strConn As String
 Dim i As Integer
 Dim strCountry As String
 Dim strCity As String

 i = 0
 strCountry = "France"
 strCity = "Paris"

 strConn = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 rst.Open "Customers", strConn, adOpenKeyset

 If Not rst.Supports(adBookmark) Then
 MsgBox "This recordset does not " & _
 "support bookmarks!"
 Exit Sub
 End If

 Do While Not rst.EOF
 If rst.Fields("Country") = strCountry And _
 rst.Fields("City") = strCity Then
 ReDim Preserve varMyBkmrk(i)
 varMyBkmrk(i) = rst.Bookmark
 i = i + 1
 End If
 rst.MoveNext

FINDING AND READING RECORDS 411

 Loop

 rst.Filter = varMyBkmrk()

 rst.MoveFirst
 Do While Not rst.EOF
 Debug.Print rst("CustomerId") & _
 " - " & rst("CompanyName")
 rst.MoveNext
 Loop
 rst.Close
 Set rst = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Using the GetRows Method to Fill the Recordset

To retrieve multiple rows from a recordset, use the GetRows method, which
returns a two-dimensional array. Recall that using arrays in VBA procedures
was the main focus of Chapter 7. To find out how many rows were retrieved,
use VBA’s UBound function, as illustrated in Hands-On 13.22. Because arrays are
zero-based by default, you must add one (1) to the result of the UBound function
to get the correct record count.

 Hands-On 13.22 Counting the Number of Returned Records (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CountRecords procedure:

Sub CountRecords()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim myarray As Variant
 Dim returnedRows As Integer
 Dim r As Integer ' record counter
 Dim f As Integer ' field counter

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset

412 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 rst.Open "SELECT * FROM Employees", _
 conn, adOpenForwardOnly, _
 adLockReadOnly, _
 adCmdText

 ' Return all rows into array
 myarray = rst.GetRows()
 returnedRows = UBound(myarray, 2) + 1

 MsgBox "Total number of records: " & _
 returnedRows

 ' Find upper bound of second dimension
 For r = 0 To UBound(myarray, 2)
 Debug.Print "Record " & r + 1
 ' Find upper bound of first dimension
 For f = 0 To UBound(myarray, 1)
 ' Print data from each row in array
 Debug.Print Tab; _
 rst.Fields(f).Name & " = " & myarray(f, r)
 Next f
 Next r

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Notice how the CountRecords procedure prints the contents of the array to the
Immediate window by using a nested loop.

SUMMARY

In this chapter, you familiarized yourself with various methods of opening
DAO and ADO Recordsets, moving around in a recordset, finding, filtering,
and bookmarking required records as well as reading the contents of a record-
set. You have also learned how to use the Recordset object’s properties such as
EOF, BOF, and RecordCount. In addition, you found out how to fill the ADO
Recordset with the GetString and GetRows methods.

In the next chapter, you will gain experience performing such important
data manipulation tasks as adding, modifying, copying, deleting, and sorting
records.

413

Now that you’ve familiarized yourself with various methods of opening,
moving around in, and finding records, and reading the contents of a
recordset (see Chapter 13), let’s look at DAO and ADO techniques for

adding, modifying, copying, deleting, and sorting records.

ADDING A NEW RECORD WITH DAO

In the Microsoft Access user interface, before you can add a new record to a
table you must first open the appropriate table. In code, you simply open the
Recordset object by calling the OpenRecordset method. For example, the fol-
lowing statements declare and open the Recordset object based on the Employ-
ees table:
Dim tblRst As DAO.Recordset
Set tblRst = db.OpenRecordset("Employees")

Once the Recordset object is open, use the AddNew method to create a blank
record. For example:
 tblRst.AddNew

Next, you may set values for all or some of the fields in the new record. You
must set the field’s value if the Required property of a field is set to True. In the

Chapter

 14 WORKING WITH
RECORDS

414 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Microsoft Access user interface in Table Design view, there will be a Yes entry
next to the Required property if the entry in the selected field is required. Here
are some examples of setting field values in code:
tblRst.Fields("Last Name").Value = "Smith"
tblRst.Fields("Job Title").Value = "Marketing Director"

Note that because Value is the default property of a Field object, the use of this
keyword is optional and it was omitted in the code of the example procedure in
Hands-On 14.1.

After filling in field values, you need to use the Update method on the Re-
cordset object to ensure that the newly added record is saved:
tblRst.Update

Hands-On 14.1 demonstrates how to add a new record to the Employees table
and populate some of its fields with values.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 14.1 Adding a New Record to a Table (DAO)

1. Start Microsoft Access and create a new database named Chap14.accdb in
your C:\VBAAccess2019_By Example folder.

2. In the Access window, press Alt+F11 to switch to the Visual Basic Editor
window.

3. In the Visual Basic Editor window, choose Insert | Module.
4. In the module’s Code window, type the AddNewRec_DAO procedure shown

here:
Sub AddNewRec_DAO()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)
 Set tblRst = db.OpenRecordset("Employees")

 With tblRst
 .AddNew
 .Fields("Company") = "Northwind Traders"

WORKING WITH RECORDS 415

 .Fields("Last Name") = "Smith"
 .Fields("First Name") = "Regina"
 .Fields("Job Title") = "Marketing Director"
 .Fields("E-mail Address") = "regina@northwindtraders.com"
 .Update
 End With

 tblRst.Close
 Set tblRst = Nothing
 db.Close
 Set db = Nothing
End Sub

5. Choose Run | Run Sub/UserForm to execute the procedure.
In a Table-type recordset, the new record is placed in the order identified by

the table’s index. In a Dynaset-type recordset, the new record is added at the end
of the recordset. When you add a new record to a table, the new record does not
become the current record. The record that was current prior to adding the new
record remains current. In other words, while a new record is being added to
the end of the table, the cursor remains in the record that was selected prior to
adding a new record. You can, however, make the newly added record current
by using the Bookmark and LastModified properties, like this:
tblRst.Bookmark = tblRst.LastModified

ADDING A NEW RECORD WITH ADO

To add a new record, use the ADO Recordset’s AddNew method. Use the Update
method if you are not going to add any more records. In ADO, it is not neces-
sary to call the Update method if you are moving to the next record. Calling
the Move method implicitly calls the Update method before moving to the new
record. Look at the following statements:
rst![Last Name] = "Roberts"
rst.MoveNext

In this code fragment, the Update method is automatically called when you
move to the next record. The procedure in Hands-On 14.2 demonstrates how to
add a new record to the Employees table.

416 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 14.2 Adding a New Record to a Table (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following AddNewRec_ADO proce-

dure:
' Use the References dialog box
' to set up a reference to
' the Microsoft ActiveX Data 6.1 Object Library

Sub AddNewRec_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String

 strConn = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 Set rst = New ADODB.Recordset
 With rst
 .Open "SELECT * FROM Employees", _
 strConn, adOpenKeyset, adLockOptimistic

 ' Add a record and specify some field values
 .AddNew
 ![Company] = "Northwind Traders"
 ![Last Name] = "Roberts"
 ![First Name] = "Paul"
 ![Job Title] = "Sales Representative"
 ![E-mail Address] = "paul@northwindtraders.com"

 ' Retrieve the Employee ID for the current record
 Debug.Print !ID.Value

 ' Move to the first record
 .MoveFirst
 Debug.Print !ID.Value
 .Close
 End With

 Set rst = Nothing
 Set conn = Nothing
End Sub

WORKING WITH RECORDS 417

3. Choose Run | Run Sub/UserForm to execute the procedure.
When adding or modifying records, you can set the record’s fi eld values in one
of the following ways:

rst.Fields("First Name").value = "Paul"

or

rst![First Name] = "Paul"

As mentioned earlier, when you use the AddNew method to add a new record
and then use the Move method, the newly added record is automatically saved
without explicitly having to call the Update method. In the preceding example
procedure, we used the MoveFirst method to move to the fi rst record; however,
you can call any of the other move methods (Move, MoveNext, MovePrevious)
to have ADO implicitly call the Update method. Aft er calling the AddNew
method, the new record becomes the current record.

ADDING ATTACHMENTS

In Hands-On 11.8 in Chapter 11, “Creating and Accessing Database Tables and
Fields,” you learned how to programmatically add an Attachments field to a
table. Hands-On 14.3 demonstrates how to use VBA to add external files to
records in the Customers table of the Northwind database.

 Hands-On 14.3 Using DAO to Add an Attachment to a Table Record

1. Copy the External Docs folder from the companion CD-ROM disc to your
VBAAccess2019_ByExample folder.

2. In the Visual Basic Editor window, choose Insert | Module.
3. In the module’s Code window, type the following AddAttachmentToRecord

procedure:
Option Compare Database
Option Explicit

Sub AddAttachmentToRecord()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset2
 Dim rstChild As DAO.Recordset2
 Dim addFlag As Boolean

418 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Const dirPath = "C:\VBAAccess2019_ByExample\"
 Const subDirName = "External Docs\"
 Const strFile = "California3.jpg"
 Const strDb = "Northwind 2007.accdb"

 Set db = OpenDatabase(dirPath & strDb)

 ' Open the recordset for the Customers table
 Set rst = db.OpenRecordset("Customers")
 ' move to the 16th customer (count records from 0)

 rst.Move 15

 ' initialize child recordset
 Set rstChild = rst.Fields("Attachments").Value

 If rstChild.RecordCount > 0 Then
 ' check if the specified file is already attached
 Do Until rstChild.EOF
 If rstChild.Fields("FileName").Value = strFile Then
 addFlag = True
 Exit Do
 End If
 Loop
 End If

 If addFlag Then MsgBox "The specified file " & _
 strFile & " is already attached to this record."

 If Not addFlag Then
 ' put the parent recordset in Edit mode
 rst.Edit
 ' add a new record to the child recordset
 rstChild.AddNew
 ' load the attachment file
 rstChild.Fields("FileData").LoadFromFile _
 dirPath & subDirName & strFile
 ' update both the child and parent recordsets
 rstChild.Update
 rst.Update
 MsgBox "Successfully attached " & strFile & _
 " to " & rst.Fields(1).Value & " record."
 End If

 Set rstChild = Nothing

WORKING WITH RECORDS 419

 rst.Close
 Set rst = Nothing
 Set db = Nothing
End Sub

Th is procedure adds an attachment to the 16th record in the Customers table.
Th is is a record for Company P. Th e child recordset holds the records for the
Attachment fi eld. Prior to adding a record to this recordset, the procedure
checks the RecordCount property of the child recordset to verify that the
specifi ed fi le is not already attached. If RecordCount is greater than zero
(0), then the addFlag Boolean variable is set to True and the user will see a
message that the fi le is already attached. Th e procedure will then end. If the
addFlag Boolean variable is False, then we know that it is okay to add the fi le.
Note that before adding a new record to the child recordset you must put the
parent recordset in Edit mode using the Edit method of the Recordset object.
Next, call the AddNew method of the child recordset to add a new child record,
and use the LoadFromFile method to load the new attachment fi le. Be sure to
update both the child and parent recordsets.

4. Run the AddAttachmentToRecord procedure.
5. Open the Customers table in the Northwind 2007 database. Find the 16th

record in the table and check out the paper clip column. It should indicate that
one record is attached. You can view the attached file by double-clicking the
attachment field in the 16th record (see Figure 14.1).

FIGURE 14.1 Attachment files can be added to records in an Access table manually using the
Attachments dialog box or via VBA programming.

420 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Close the Customers table and exit the Northwind 2007 database.
7. Return to the Visual Basic Editor window in the Chap14.accdb database

and run the AddAttachmentToRecord procedure again to test the condition
when the attachment file already exists for the specified record.

ADDING VALUES TO MULTIVALUE LOOKUP FIELDS

In Chapter 11 (see Hands-On 11.7), you used DAO to create a multivalue lookup
field called Literature. You can add a new value to a multivalue field by modify-
ing its RowSource property when the RowSourceType property is set to Value
List. The function procedure in the next hands-on exercise adds new values to
the Literature multivalue lookup field in the Customers table.

 Hands-On 14.4 Using DAO to Add Values to a Multivalue Lookup
Field

This hands-on exercise requires the completion of Hands-On 11.7 in Chapter 11.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following AddToMultiValueList

function procedure:
Function AddToMultiValueList(strTblName As String, _
 strMultiFldName As String, strNewVal As String)

 Dim db As DAO.Database
 Dim tdf As DAO.TableDef
 Dim fld As DAO.Field2
 Dim prp As DAO.Property
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"

 On Error GoTo ErrorHandler

 Set db = OpenDatabase(strPath & strDb)

 Set tdf = db.TableDefs(strTblName)
 Set fld = tdf.Fields(strMultiFldName)

WORKING WITH RECORDS 421

 If fld.Properties("RowSourceType").Value = _
 "Value List" Then
 Set prp = fld.Properties("RowSource")
 Debug.Print prp.Value
 If InStr(1, prp.Value, strNewVal) = 0 Then
 prp.Value = prp.Value & Chr(59) & Chr(34) & _
 strNewVal & Chr(34)
 Debug.Print prp.Value
 End If
 End If
ExitHere:
 Set prp = Nothing
 Set fld = Nothing
 Set tdf = Nothing
 Set db = Nothing
 Exit Function
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 GoTo ExitHere
End Function

Th is function procedure takes three arguments: the strTblName argument
specifi es the name of a table where a multivalue lookup fi eld is located; the
strMultiFldName argument specifi es the name of a multivalue lookup fi eld,
and the strNewVal argument specifi es the value you want to add to the list.
To work with the specifi ed table, we begin by setting the tdf object variable to
point to our table:

Set tdf = db.TableDefs(strTblName)

Recall that the DAO TableDefs collection contains TableDef objects, which
are table defi nitions. Each TableDef object contains a Fields collection. We
set up the fld object variable to gain access to the specifi ed multivalue lookup
fi eld via the Fields collection of the TableDef object:

Set fld = tdf.Fields(strMultiFldName)

Th e Field object has a collection of properties. Before we do any work, we
check that the RowSourceType property is set to Value List. If this test is
True, we need to get the current value of the RowSource property. We set up
the prp object variable to point to this property and write the property value
to the Immediate window:

Set prp = fld.Properties("RowSource")
Debug.Print prp.Value

422 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Because we only want to have unique values in the multivalue lookup fi eld, we
need to check if the value passed in the strNewVal parameter is already in the
value list. To do this, you can use the VBA InStr function that was introduced
in Chapter 11:

If InStr(1, prp.Value, strNewVal) = 0 Then

Recall that the InStr function returns the position of the fi rst occurrence
of one string within another. Th e fi rst parameter is optional. It indicates the
character position where the search should start. Obviously, we want to start at
the fi rst position so that we can examine the entire value list string. Th e second
parameter is the string to search in. Th e value of the prp variable contains the
following string when the function is called:

"Product Brochure";"Product Flyer A";"Product Flyer B"

Th e third parameter of the InStr function is the string you want to fi nd. We
will specify this string when we call the function procedure in the next step.
Th e InStr function also has an optional fourth argument that specifi es the type
of string comparison. When omitted, Access performs a binary comparison
where each character matches only itself. Th is is the default.
Th e InStr function will return a zero (0) when the string you are looking for
was not found in the string you searched in. We will then add the new item to
the current RowSource value list:

prp.Value = prp.Value & Chr(59) & Chr(34) & _
 strNewVal & Chr(34)

To add a new value to the list, we use the concatenation character (&). Th e
Chr(59) function will give us the required semicolon (;) and the Chr(34) is
for the double quotes (“). Th e underscore character (_) simply breaks the long
code line into two lines. Notice that the procedure uses the ErrorHandler code
to trap errors that may result from entering a nonexistent table or column
name.

3. Run the AddToMultiValueList function procedure by typing the following
statement in the Immediate window and pressing Enter to execute:
AddToMultiValueList "Customers", "Literature", "Sales Contract"

Aft er you execute the function procedure, the Immediate window should
display the original value of the RowSource property and the new updated
value:

"Product Brochure";"Product Flyer A";"Product Flyer B"

WORKING WITH RECORDS 423

"Product Brochure";"Product Flyer A";"Product Flyer B";
"Sales Contract"

4. Run the AddToMultiValueList function procedure again by typing the
following statement in the Immediate window and pressing Enter to execute:
AddToMultiValueList "Customers", "Literature",
"Dinner Invitation"

You should now see in the Immediate window the following two strings:

"Product Brochure";"Product Flyer A";"Product Flyer B";"Sales
Contract"
"Product Brochure";"Product Flyer A";"Product Flyer B";"Sales
Contract";"Dinner Invitation"

5. Open the Customers table in the Northwind 2007 database and take a look at
the drop-down list in the Literature field. In addition to the values added in
Chapter 11, you should see two entries that were added by the VBA code in
this hands-on exercise: Sales Contract and Dinner Invitation.

6. Close the Customers table and exit the Northwind 2007 database.

MODIFYING A RECORD WITH DAO

To edit an existing record, use the OpenRecordset method to open the Record-
set object. Next, locate the record you want to modify. In a Table-type recordset,
you can use the Seek method and a table index to find a record that meets your
criteria. In Dynaset-type and Snapshot-type recordsets, you can use any of the
Find methods (FindFirst, FindNext, FindPrevious, FindLast) to locate the
appropriate record. However, recall that you can edit data only in Table-type
or Dynaset-type recordsets (Snapshots are used for retrieving data only). Once
you’ve located the record, use the Edit method of the Recordset object and pro-
ceed to change field values. When you are done with the record modification,
invoke the Update method for the Recordset object.

The procedure in Hands-On 14.5 demonstrates how to modify a record in
the Employees table.

 Hands-On 14.5 Modifying a Record in a Table (DAO)

This hands-on exercise requires the completion of Hands-On 14.1.

424 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ModifyRecord_DAO

procedure:
Sub ModifyRecord_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim strFind As String
 Dim intResult As Integer
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"

 Set db = OpenDatabase(strPath & strDb)
 Set rst = db.OpenRecordset("Employees", dbOpenTable)

 rst.MoveFirst
 ' change the Zip/Postal Code of all employees
 ' from 99999 to 99998

 Do While Not rst.EOF
 With rst
 .Edit
 .Fields("Zip/Postal Code") = "99998"
 .Update
 .MoveNext
 End With
 Loop

 ' find the record with the last name of Smith
 ' enter data in Country/Region field
 strFind = "Smith"
 rst.MoveFirst
 rst.Index = "Last Name"

 rst.Seek "=", strFind
 MsgBox rst![Last Name]
 Debug.Print rst.EditMode
 rst.Edit

 rst![Country/Region] = "USA"
 If rst.EditMode = dbEditInProgress Then
 intResult = MsgBox("Do you want to save the " & _
 "changes to this record?", vbYesNo, _
 "Save or Cancel Changes?")

WORKING WITH RECORDS 425

 End If
 If intResult = 6 Then ' Save changes
 rst.Update
 ElseIf intResult = 7 Then ' Cancel changes
 rst.CancelUpdate
 End If

 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e procedure in Hands-On 14.5 opens a Table-type recordset based on the
Employees table and makes a change in the Zip/Postal Code of all employees.
Next, the procedure locates a specifi c employee record. Note that the Index
property must be set before using the Seek method for searching the Table-
type recordset. If you set the Index property to an index that doesn’t exist, a
run time error will occur. Once the desired record is located, the procedure
displays the employee name in a message box. Th e exclamation point (!) is
used to separate an object’s name from the name of the collection of which it is
a member. Because the default collection of the Recordset object is the Fields
collection, you can omit the default collection name. Next, the procedure
places the found employee record into Edit mode and modifi es the value of
the Country/Region fi eld. Th e EditMode property of the Recordset object
is used to determine if the Edit operation is in progress. Th e EditModeEnum
constants, which are shown in Table 14.1, indicate the state of editing for the
current record. Before committing the changes to the data, the user is asked
to verify if changes should be saved or canceled. If the Yes button is selected
in the message box, the Recordset’s Update method is called; otherwise, the
CancelUpdate method of the Recordset object will discard the changes to the
current record.

TABLE 14.1 EditModeEnum constants used in the EditMode property of the DAO Recordset object

Constant Name Value Description
dbEditNone 0 Edit method not invoked
dbEditInProgress 1 Edit method invoked
dbEditAdd 2 AddNew method invoked

426 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

At times when working with records you will need to leave the
record and discard the changes. To cancel any pending updates
to the data, call the CancelUpdate method of the DAO Record-
set object. This method aborts any changes you’ve made to the
current row. You can use the CancelUpdate method to cancel
any changes made after the Edit or AddNew method was in-
voked. You can check if there is a pending operation that can be
canceled by using the EditMode property of the Recordset object.

MODIFYING A RECORD WITH ADO

To modify data in a specific field, find the record and set the Value property of
the required field to a new value. Always call the Update method if you are not
planning to edit any more records. If you modify a row and then try to close the
recordset without calling the Update method first, ADO will trigger a runtime
error.

The procedure in Hands-On 14.6 modifies an employee record.

 Hands-On 14.6 Modifying a Record (ADO)

This hands-on exercise requires the completion of Hands-On 14.2.
1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the ModifyRecord_ADO procedure

shown here:
Sub ModifyRecord_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String

 strConn = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 Set rst = New ADODB.Recordset

 With rst
 .Open "SELECT * FROM Employees WHERE " _
 & "[Last Name] = 'Roberts'", _
 strConn, adOpenKeyset, adLockOptimistic

WORKING WITH RECORDS 427

 .Fields("City").Value = "Redmond"
 .Fields("State/Province").Value = "WA"
 .Fields("Country/Region").Value = "USA"
 .Update
 .Close
 End With

 Set rst = Nothing
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure modifi es a table record by fi rst accessing the desired fi elds. You
can modify several fi elds in a specifi c record by calling the Update method and
passing it two arrays. Th e fi rst array should specify the fi eld names, and the
second one should list the new values to be entered. For example, the following
statement updates the data in the City, State/Province, and Country/Region
fi elds with the corresponding values:

rst.Update Array("City", "State/Province", "Country/Region"),
Array("Redmond", "WA", "USA")

You can use the same technique with the AddNew method.

EDITING MULTIPLE RECORDS WITH ADO

ADO has the ability to perform batch updates. This means that you can edit
multiple records and send them to the OLE DB provider in a single operation.
To take advantage of batch updates, you must use the Keyset or Static cursor
(see Chapter 13 for more information about cursors).

The procedure in Hands-On 14.7 finds all records in the Employees table
where Title is “Sales Representative” and changes it to “Sales Rep.” The changes
are then committed to the database in a single Update operation.

 Hands-On 14.7 Performing Batch Updates (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following BatchUpdate_Records_

ADO procedure:

428 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub BatchUpdate_Records_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String
 Dim strCriteria As String

 strConn = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 strCriteria = "[Job Title] = 'Sales Representative'"

 Set conn = New ADODB.Connection
 conn.Open strConn

 Set rst = New ADODB.Recordset

 With rst
 Set .ActiveConnection = conn
 .Source = "Employees"
 .CursorLocation = adUseClient
 .LockType = adLockBatchOptimistic
 .CursorType = adOpenKeyset
 .Open
 .Find strCriteria
 Do While Not .EOF
 .Fields("Job Title") = "Sales Rep"
 .Find strCriteria, 1
 Loop
 .UpdateBatch
 End With

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e BatchUpdate_Records_ADO procedure uses the ADO Find method to
locate all the records that need to be modifi ed. Once the fi rst record is located,
it is changed in memory and the fi nd operation goes on to search for the next
record and so on until the end of the recordset is reached. Notice that the
following statement is issued to search past the current record:

.Find strCriteria, 1

WORKING WITH RECORDS 429

Once all the records have been located and changed, the changes are all
committed to the database in a single operation by issuing the UpdateBatch
statement.

Updating Data: Differences between ADO and DAO

ADO differs from DAO in the way update and delete operations are per-
formed. In DAO, you are required to use the Edit method of the Recordset
object prior to making any changes to your data. ADO does not require you to
do this; consequently, there is no Edit method in ADO. Also, in ADO, your
changes are automatically saved when you modify a record. In DAO, leaving a
row without first calling the Update method of the Recordset object will auto-
matically discard your changes.

DELETING A RECORD WITH DAO

To delete an existing record, open the Recordset object by calling the Open-
Recordset method, then locate the record you want to delete. In a Table-type
recordset, you can use the Seek method and a table index to find a record that
meets your criteria. In a Dynaset-type recordset, you can use any of the Find
methods (FindFirst, FindNext, FindPrevious, FindLast) to locate the appro-
priate record. Next, use the Delete method on the Recordset object to perform
the deletion. Before using the Delete method, it is a good idea to write code
to ask the user to confirm or cancel the deletion. Immediately after a record
is deleted, there is no current record. Use the MoveNext method to move the
record pointer to an existing record.

The example procedure in Hands-On 14.8 deletes those employees who have
an ID greater than 9.

 Hands-On 14.8 Deleting a Record (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following DeleteRecord_DAO

procedure:
Sub DeleteRecord_DAO()
 Dim db As DAO.Database
 Dim tblRst As DAO.Recordset
 Dim counter As Integer
 Dim strDb As String

SIDEBAR

430 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"

 Set db = OpenDatabase(strPath & strDb)

 ' delete all the employees with ID greater than 9
 Set tblRst = db.OpenRecordset("Employees")
 tblRst.MoveFirst
 Do While Not tblRst.EOF
 Debug.Print tblRst!ID
 If tblRst![ID] > 9 Then
 tblRst.Delete
 counter = counter + 1
 End If
 tblRst.MoveNext
 Loop

 MsgBox "Number of deleted records: " & counter
 tblRst.Close
 Set tblRst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e statement Do While Not tblRst.EOF tells Visual Basic to execute
the statements inside the loop until the end of fi le (EOF) is reached. Th e
conditional statement inside the loop checks the value of the ID fi eld and
deletes the current record only if the specifi ed condition is True. Every time a
record is deleted, the counter variable’s value is increased by 1. Th e counter
variable stores the total number of deleted records. Aft er the record is deleted,
the MoveNext method is called to move the record pointer to the next existing
record as long as the end of fi le has not yet been reached. Even though you can
use the Delete method and the While loop to remove the required records as
shown in Hands-On 14.8, it is more effi cient to delete records with a Delete
query (see Chapter 15).

WORKING WITH RECORDS 431

DELETING A RECORD WITH ADO

To delete a record, find the record you want to delete and call the Delete
method. After you delete a record, it’s still the current record. You must use
the MoveNext method to move to the next row if you are planning to perform
additional operations with your records. An attempt to do anything with the
row that has just been deleted will generate a runtime error. The procedure in
Hands-On 14.9 deletes a record from the Employees table.

 Hands-On 14.9 Deleting a Record (ADO)

This hands-on exercise requires the completion of Hands-On 14.2.
1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Delete_Record_ADO procedure

shown here:
Sub Delete_Record_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String
 Dim strCriteria As String

 ' call procedure from Hands-On 14.2 to ensure
 ' that we have a record to delete
 AddNewRec_ADO

 strConn = "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 Set conn = New ADODB.Connection
 Set rst = New ADODB.Recordset

 With rst
 .Open "SELECT * FROM Employees WHERE " _
 & "[Last Name] ='Roberts'", _
 strConn, adOpenKeyset, adLockOptimistic
 .Delete
 .Close
 End With
 Set rst = Nothing
 Set conn = Nothing
End Sub

432 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
Because we don’t want to delete any original rows in the Employees table, the
procedure makes a call to the AddNewRec_ADO procedure that we created in
Hands-On 14.2 to ensure that we have a custom row to delete.

DELETING ATTACHMENTS

The following hands-on exercise uses the Delete method of the Record-
set2 object to delete an attachment from a table record.

 Hands-On 14.10 Using DAO to Delete an Attachment from a Table
Record

This hands-on exercise requires the completion of Hands-On 14.4.
1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following RemoveAttachmentFrom-

Record procedure:
Sub RemoveAttachmentFromRecord()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset2
 Dim rstChild As DAO.Recordset2
 Dim removeFlag As Boolean

 Const dirName = _
 "C:\VBAAccess2019_ByExample\External Docs\"
 Const strFile = "California3.jpg"
 Const strDb = _
 "C:\VBAAccess2019_ByExample\Northwind 2007.accdb"

 Set db = OpenDatabase(strDb)

 ' Open the recordset for the Customers table
 Set rst = db.OpenRecordset("Customers")
 ' move to the 16th customer
 rst.Move 15
 ' get the child recordset for the Attachment field
 Set rstChild = rst.Fields("Attachments").Value
 ' search for the attachment file and remove it
 ' if found

 Do Until rstChild.EOF
 If rstChild.Fields("FileName").Value = _

WORKING WITH RECORDS 433

 strFile Then
 rstChild.Delete
 removeFlag = True
 End If
 rstChild.MoveNext
 Loop

 ' display a message
 If Not removeFlag Then
 MsgBox "The specified file " & strFile & _
 " is not attached to this record.", _
 vbOKOnly + vbInformation, "Nothing to Remove"
 Else
 MsgBox "The specified file " & strFile & _
 " was deleted from this record.", _
 vbOKOnly + vbInformation, "Attachment Removed"
 End If

 ' cleanup code
 rstChild.Close
 Set rstChild = Nothing
 rst.Close
 Set rst = Nothing
 Set db = Nothing
End Sub

3. Run the RemoveAttachmentFromRecord procedure.
4. Open the Customers table in the Northwind 2007 database and navigate

to the 16th record. The Attachment field in this record should indicate that
there are no attachments.

5. Close the Customers table and exit the Northwind 2007 database.
6. Run the RemoveAttachmentFromRecord procedure again to test the

condition when the attachment file for the specified record does not exist.

COPYING RECORDS TO AN EXCEL WORKSHEET

You can copy the contents of a DAO or ADO Recordset object directly to an
Excel worksheet or a worksheet range by using the Workbook Range object’s
CopyFromRecordset method.

 ● To copy all the records in the Recordset object to a worksheet range start-
ing at cell A1, use the following statement:

434 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Set rng = objSheet.Cells(2, 1)
rng.CopyFromRecordset rst

Th e rst following the name of the method is an object variable
representing a Recordset object.

 ● To copy fi ve records to a worksheet range, use the following statement:

Set rng = objSheet.Cells(2, 1)
rng.CopyFromRecordset rst, 5

 ● To copy fi ve records and four fi elds to a worksheet range, use the follow-
ing statement:

Set rng = objSheet.Cells(2, 1)
rng.CopyFromRecordset rst, 5, 4

You can also specify the number of records (rows) and fi elds to be copied using
variables:

Set rng = objSheet.Cells(2, 1)
rng.CopyFromRecordset rst, myRows, myColumns

The procedure in Hands-On 14.11 uses the CopyFromRecordset method to
copy data from the Employees table to an Excel worksheet (see Figure 14.2).

 Hands-On 14.11 Copying Records to an Excel Worksheet (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following ExportToExcel_DAO

procedure:
Sub ExportToExcel_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim xlApp As Object
 Dim wkb As Object
 Dim objSheet As Object
 Dim rng As Object
 Dim strExcelFile As String
 Dim strDb As String
 Dim strTable As String
 Dim count As Integer
 Dim iCol As Integer
 Dim rowsToReturn As Integer
 Dim strPath As String

WORKING WITH RECORDS 435

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"
 strTable = "Employees"
 strExcelFile = CurrentProject.Path & _
 "\ExcelFromAccess.xls"

 ' If Excel file already exists, delete it
 If Dir(strExcelFile) <> "" Then Kill strExcelFile

 Set db = OpenDatabase(strPath & strDb)
 Set rst = db.OpenRecordset(strTable)

 ' get the number of records from the recordset
 count = rst.RecordCount

 rowsToReturn = CInt(InputBox _
 ("How many records to copy?"))

 If rowsToReturn <= count Then

 ' set the reference to Excel and make
 ' Excel visible
 Set xlApp = CreateObject("Excel.Application")
 xlApp.Application.Visible = True

 ' set references to the Excel workbook
 ' and worksheet
 Set wkb = xlApp.Workbooks.Add
 Set objSheet = xlApp.ActiveWorkbook.sheets(1)
 objSheet.Activate

 ' write column names to the first
 ' worksheet row
 For iCol = 0 To rst.Fields.count - 1
 objSheet.Cells(1, iCol + 1).Value = _
 rst.Fields(iCol).Name
 Next

 ' specify the cell range that will
 ' receive the data
 Set rng = objSheet.Cells(2, 1)

 ' copy the specified number of records
 ' to the worksheet
 rng.CopyFromRecordset rst, rowsToReturn

436 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' autofit the columns to make the data fit
 objSheet.columns.AutoFit

 ' close the workbook
 ' and save it in Excel 97-2003 file format
 wkb.SaveAs FileName:=strExcelFile, _
 FileFormat:=56
 wkb.Close

 ' quit Excel and release object variables
 Set objSheet = Nothing
 Set wkb = Nothing
 xlApp.Quit
 Set xlApp = Nothing
 Else
 MsgBox "Please specify a number less than " _
 & count + 1 & "."
 End If

 db.Close
 Set db = Nothing
End Sub

3. Position the insertion point anywhere within the procedure code and choose
Debug | Step Into to execute the procedure one line at a time. (Press F8 to
execute each statement.)
Th is procedure creates a recordset based on the Employees table and stores
the total number of records in the count variable. Th e user is asked to specify
the number of records to copy to Excel. If the specifi ed number is less than
or equal to the total number of records in the recordset, the code proceeds
to copy the records to Excel using the CopyFromRecordset method. Notice
that the procedure uses the As Object clause to declare object variables that
will contain references to Excel objects when the procedure is run. When you
defi ne an object variable as Object, the variable is late bound. Th is means
that VBA does not know what type of object the variable references until the
program is run. To set a reference to Microsoft Excel, it is necessary to use the
CreateObject function. Once the object is created (Excel.Application), it is
referenced with the object variable (xlApp). Th e CreateObject function will
create a new instance of the Excel application. To use the current instance or
to start Excel and load a specifi c fi le while Excel is already running, use the
GetObject function. To view what’s going on while the procedure is running,
set the Visible property of the Microsoft Excel application to True. Th en, if

WORKING WITH RECORDS 437

you run the ExportToExcel_DAO procedure in step mode, you will be able to
check the contents of the Excel window as you execute each statement.

FIGURE 14.2 Access records copied programmatically to Excel.

Before you can copy Access data to the Excel worksheet, you need to set refer-
ences to the Workbook, Worksheet, and Range objects. Once these references
are defined, the procedure uses the Add method to add a new Excel workbook
and then activates the first worksheet. The Recordset fields’ names are written as
column names to the first worksheet row. Next, the reference is set to the Range
object that will receive the data from the recordset. The CopyFromRecordset
method is used to copy the specified number of records to the worksheet. Once
data is placed in the worksheet, it is fit into the columns with the AutoFit prop-
erty. The Excel worksheet is then saved in the file format compatible with Excel
97–2003. The Workbook’s SaveAs method requires the FileFormat parameter
that specifies the file format for the workbook. The following file formats are
used in Excel:

 ● 50 (xlExcel12)—Excel binary workbook with or without macros (.xlsb)
 ● 52 (xlOpenXMLWorkbookMacroEnabled)—.xml fi le format with or with-

out macros (.xlsm)
 ● 51 (xlOpenXMLWorkbook)—.xml fi le format without macros (.xlsx)
 ● 56 (xlExcel8)—97–2003 format (.xls)

Aft er saving the workbook, the procedure uses the Workbook Close method
to close the Excel fi le. Th e Excel Application object’s Quit method is used to
close the Excel application.

438 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

COPYING RECORDS TO A WORD DOCUMENT

There are several techniques for placing Microsoft Access data in a Microsoft
Word document. The procedure in Hands-On 14.12 demonstrates how to use
the Recordset’s GetString method to insert data from the Invoice Data table
into a newly created Word document. Hands-On 14.13 shows how to insert data
from the Shippers table and format the output using Word’s Table object.

 Hands-On 14.12 Copying Records to a Word Document (Example 1)

1. In the Visual Basic Editor window, choose Insert | Module.
2. Choose Tools | References in the Visual Basic Editor window. Scroll down to

locate the Microsoft Word 16 Object Library, click the checkbox next to it,
and then click OK to exit.

3. In the module’s Code window, type the following SendToWord_ADO
procedure:
' be sure to select Microsoft Word 16 Object Library
' in the References dialog box

Public myWord As Word.Application

Sub SendToWord_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim doc As Word.Document
 Dim strSQL As String
 Dim varRst As Variant
 Dim f As Variant
 Dim strHead As String

 Set conn = New ADODB.Connection
 Set rst = New ADODB.Recordset

 conn.Provider = "Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind 2007.accdb"

 strSQL = "SELECT [Order ID] AS OrderID,"
 strSQL = strSQL & "[Ship Name], "
 strSQL = strSQL & "[Ship City] FROM [Invoice Data]"

 conn.Open
 rst.Open strSQL, conn, adOpenForwardOnly, _

WORKING WITH RECORDS 439

 adLockReadOnly, adCmdText

 ' retrieve data and table headings
 ' into variables
 If Not rst.EOF Then
 varRst = rst.GetString(adClipString, , _
 vbTab, vbCrLf)
 For Each f In rst.Fields
 strHead = strHead & f.Name & vbTab
 Next
 End If

 ' notice that Word application is declared
 ' at the top of the module
 Set myWord = New Word.Application

 ' create a new Word document
 Set doc = myWord.Documents.Add
 myWord.Visible = True

 ' paste contents of variables into
 ' Word document
 doc.Paragraphs(1).Range.Text = strHead & vbCrLf
 doc.Paragraphs(2).Range.Text = varRst

 On Error GoTo ErrorHandler
 doc.Close SaveChanges:=wdPromptToSaveChanges
EndProc:
 myWord.Quit
 Set myWord = Nothing
 Exit Sub
ErrorHandler:
 If Err = 4198 Then
 MsgBox "You refused to save this document."
 End If
 Resume EndProc
End Sub

4. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure uses the Recordset object’s GetString method to return
recordset data as a string-valued Variant (see “Returning a Recordset as
a String” in Chapter 13). Prior to running this procedure you must set a
reference to the Microsoft Word 16 Object Library (or its lower version if
you do not have Word 2016/2019 installed on the computer). Th is reference

440 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

allows the procedure to access the Word application objects, properties, and
methods via its own library. Th e top of the module contains the declaration of
the myWord object variable that will point to the Word application. Notice that
this variable is declared with the Public scope; therefore it can be accessed by
other procedures in the current VBA project. (Th e next hands-on exercise also
uses this variable.)
 To launch Word and create a new document, we set the Application object
to a new instance of Word.Application using the New keyword:

Set myWord = New Word.Application

To work with a Word document, the Add method of the Word Documents
collection is used to create a blank document. We store the reference to this
document in the doc object variable. To enable the user to see what’s going on
while the procedure is running, the Visible property of the Word application
is set to True. Next, the contents of the Recordset and the fi eld names that
we previously saved in the string variables are written to the Word document
using the Document object’s Paragraphs property. Th e procedure ends by
prompting the user to save changes to the Word document. If the user does
not opt to save the document, error 4198 is triggered.

 Hands-On 14.13 Copying Records to a Word Document (Example 2)

This procedure uses the myWord object variable that was declared in Hands-On
14.12 at the top of the module.

1. In the same module’s Code window where you entered the procedure in the
previous hands-on exercise, type the SendToWord2 procedure shown here:
Sub SendToWord2()
 Dim db As DAO.Database
 Dim doc As Word.Document
 Dim wrdTbl As Word.Table
 Dim rst As DAO.Recordset
 Dim f As Variant
 Dim numRows As Integer
 Dim numCols As Integer
 Dim r As Integer ' row counter
 Dim c As Integer ' column counter

 Set db = OpenDatabase _
 ("C:\VBAAccess2019_ByExample\Northwind.mdb")

WORKING WITH RECORDS 441

 Set rst = db.OpenRecordset("Shippers")

 numRows = rst.RecordCount
 numCols = rst.Fields.count

 ' the myWord application object variable
 ' is declared at the top of the module
 Set myWord = New Word.Application

 ' create a new Word document
 Set doc = myWord.Documents.Add

 ' insert table
 Set wrdTbl = doc.Tables.Add _
 (doc.Range, numRows + 1, numCols)

 c = 1
 If numRows > 0 Then
 ' Create the column headings in table cells
 For Each f In rst.Fields
 With wrdTbl
 .Cell(1, c).Range.Text = f.Name
 c = c + 1
 End With
 Next f
 End If

 r = 2
 Do While Not rst.EOF
 For c = 1 To numCols
 wrdTbl.Cell(r, c).Range.Text = _
 rst.Fields(c - 1).Value
 Next c
 r = r + 1
 rst.MoveNext
 Loop

 myWord.Visible = True

 rst.Close
 Set rst = Nothing
 Set myWord = Nothing
 db.Close
 Set db = Nothing
End Sub

442 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Choose Run | Run Sub/UserForm to execute the procedure.
3. Close the Word document and exit the Word application after you’ve

looked at the resulting document, shown in Figure 14.3.

FIGURE 14.3 Access records copied programmatically to a Word document.

COPYING RECORDS TO A TEXT FILE

To write records to a text file, save them as a string by using the Recordset
object’s GetString method. Next, create a text file with the CreateTextFile
method of the FileSystemObject from the Microsoft Scripting Runtime Library.

The procedure in Hands-On 14.14 demonstrates how to write the records
from the Order Details table in the Northwind.mdb database to a text file
named TestFile. Figures 14.4 and 14.5 show the generated text file after it has
been opened in Notepad and in Microsoft Excel, respectively.

 Hands-On 14.14 Copying Records to a Text File (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following WriteToFile procedure:

Sub WriteToFile()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim f As ADODB.Field
 Dim fso As Object
 Dim txtfile As Object
 Dim strFileName As String

 Set conn = New ADODB.Connection

WORKING WITH RECORDS 443

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 strFileName = CurrentProject.Path & "\TestFile.txt"

 Set fso = CreateObject("Scripting.FileSystemObject")
 Set txtfile = fso.CreateTextFile(strFileName, True)

 Set rst = New ADODB.Recordset
 rst.Open "[Order Details]", conn

 With rst
 For Each f In .Fields
 ' Write field name to the text file
 txtfile.Write (f.Name)
 txtfile.Write Chr(9)
 Next

 ' move to a new line
 txtfile.WriteLine

 ' write out all the records to the text file
 txtfile.Write rst.GetString(adClipString)

 .Close
 End With

 txtfile.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure uses the CreateObject function to access the FileSystemObject.
Th e File object is created using the FileSystemObject’s CreateTextFile
method. Th e fi rst argument of this method specifi es the name of the fi le
to create, and the second argument (True) indicates that the fi le should be
overwritten if it already exists. Next, the procedure iterates through the
recordset based on the Order Details table and writes fi eld names to the text
fi le using the Write method of the File object. Th e data from the recordset is
converted into a string using the GetString method of the Recordset object
and then written to the text fi le using the File object’s Write method.

444 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The text file is then closed with the Close method.

FIGURE 14.4 After running the WriteToFile procedure in Hands-On 14.14, the records from the
Order Details table are placed in a text file.

FIGURE 14.5 The Access-generated text file in Hands-On 14.14 opened in Excel 2019.

FILTERING RECORDS USING THE SQL WHERE CLAUSE

When you want to work only with a certain subset of records, you can filter out
those records you don’t want to see by using the SQL WHERE clause or the Filter
property. You can apply a filter to a Dynaset-type or Snapshot-type Recordset
object. The fastest way to filter records is to open a new Recordset object by
using an SQL statement that includes a WHERE clause. Hands-On 14.15 provides
an example of using the SQL WHERE clause to retrieve product orders with an
order quantity greater than 100.

WORKING WITH RECORDS 445

 Hands-On 14.15 Filtering Records with the SQL WHERE Clause
(DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FilterWithSQLWhere_DAO

 procedure:
Sub FilterWithSQLWhere_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim qdf As DAO.QueryDef
 Dim qryName As String
 Dim mySQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"

 Set db = OpenDatabase(strPath & strDb)

 qryName = "qryOrdersOver100"
 mySQL = "SELECT * FROM " _
 & "[Product Orders] WHERE Quantity > 100;"
 Set qdf = db.CreateQueryDef(qryName)
 qdf.SQL = mySQL
 Set rst = db.OpenRecordset(qryName)
 Debug.Print "There are " & rst.RecordCount & _
 " orders with the order quantity greater than 100."

 rst.Close
 Set rst = Nothing
 Set qdf = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure creates a simple Select query in the Northwind 2007.accdb
database based on the Product Orders table. Th e SQL WHERE clause in the SQL
statement specifi es that only orders with a quantity greater than 100 should
be returned. If the expression contained in the WHERE clause is True, then the
record is selected; otherwise, the record is excluded from the opened set of
records.

446 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 The procedure in Hands-On 14.16 opens a recordset that contains only
records having the value of Null in the Region field or an entry of “Mrs.” in the
TitleOfCourtesy field.

 Hands-On 14.16 Filtering Records with the SQL WHERE Clause
(ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FilterWithSQLWhere_ADO

 procedure:
Sub FilterWithSQLWhere_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strSQL As String

 strSQL = "SELECT * FROM Employees " & _
 "WHERE IsNull(Region)" & _
 " or TitleOfCourtesy = 'Mrs.' "

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 rst.Open strSQL, conn, adOpenKeyset, _
 adLockOptimistic
 MsgBox "Selected " & rst.RecordCount & _
 " records."

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

FILTERING RECORDS USING THE FILTER PROPERTY

You can use the DAO or ADO Filter property to obtain a set of records that meet
specific criteria.

WORKING WITH RECORDS 447

Hands-On 14.17 uses the Filter property with the DAO Recordset to restrict
the subset of records to those in which the employee’s city begins with the letter
“R.”

 Hands-On 14.17 Filtering Records Using the Filter Property (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the FilterRecords_DAO procedure shown

here:
Sub FilterRecords_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim FilterRst As DAO.Recordset
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"

 Set db = OpenDatabase(strPath & strDb)
 Set rst = db.OpenRecordset("Employees", _
 dbOpenDynaset)
 rst.Filter = "City like 'R*'"
 Set FilterRst = rst.OpenRecordset()

 Do Until FilterRst.EOF
 Debug.Print FilterRst.Fields _
 ("Last Name").Value
 FilterRst.MoveNext
 Loop

 FilterRst.Close
 Set FilterRst = Nothing
 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

448 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th is procedure begins by opening a Dynaset-type Recordset object based on
the Employees table and setting the Filter property on this recordset:

rst.Filter = "City like 'R*'"

For the fi lter to take eff ect aft er you set it, you must open a new recordset based
on the Recordset object to which the fi lter was applied:

Set FilterRst = rst.OpenRecordset()

Next, the procedure writes to the Immediate window the value of the Last
Name fi eld for all of the records in the fi ltered recordset.
 Th e procedure in Hands-On 14.18 creates a fi ltered view of customers listed
in the Northwind database who are located in Madrid, Spain.

 Hands-On 14.18 Filtering Records Using the Filter Property (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following FilterRecords_ADO

procedure:
Sub FilterRecords_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset
 With rst
 .Open "Customers", conn, _
 adOpenKeyset, adLockOptimistic
 .Filter = "City='Madrid' and Country='Spain'"
 MsgBox .RecordCount & _
 " records meet the criteria.", _
 vbInformation, "Customers in Madrid (Spain)"
 End With

 Do Until rst.EOF
 Debug.Print rst.Fields(1).Value
 rst.MoveNext
 Loop

WORKING WITH RECORDS 449

 rst.Filter = adFilterNone
 MsgBox "Filter was removed. " & vbCr _
 & "The table contains " & _
 rst.RecordCount & " records."

 rst.Close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure defi nes the fi lter on the Customers table and displays the
fi ltered records. Th en the fi lter is removed by setting the Filter property to
adFilterNone.
 Use the Filter property as a workaround to the ADO Find method whenever
you need to find records that meet more than one condition. If the specific set
of records you want to obtain is located on the SQL Server, you should use
stored procedures instead of the Filter property.

SORTING RECORDS

You can use the Recordset object’s Sort property to change the order in which
records are displayed. The Sort property does not physically rearrange the
records; it merely displays the records in the order specified by the index. If you
are sorting on non-indexed fields, a temporary index is created for each field
specified in the index. This index is removed automatically when you set the
Sort property to an empty string. In ADO you can only use Sort on client- side
cursors. If you use the server-side cursor, you will receive this error: “The opera-
tion requested by the application is not supported by the provider.”

The default sort order is ascending. To order a recordset by country in as-
cending order, then by city in descending order, you would use the following
statement:
rst.Sort = "Country ASC, City DESC"

Although you can use the Sort property to sort your data, you will most likely
get better performance by specifying an SQL ORDER BY clause in the SQL state-
ment or query used to open the recordset. The procedure in Hands-On 14.19
displays customer records from the Northwind database in ascending order by
country.

450 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 14.19 Sorting Records (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following SortRecords_ADO proce-

dure:
Sub SortRecords_ADO()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset

 Set conn = New ADODB.Connection
 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & CurrentProject.Path & _
 "\Northwind.mdb"

 Set rst = New ADODB.Recordset

 ' sort on nonindexed field
 With rst
 .CursorLocation = adUseClient
 .Open "Customers", conn, adOpenKeyset, _
 adLockOptimistic
 .Sort = "Country"
 Do Until rst.EOF
 Debug.Print rst.Fields _
 ("CompanyName").Value & ": " & _
 rst.Fields("Country").Value
 .MoveNext
 Loop

 Debug.Print _
 "--original sort order --"; .Sort = ""
 Do Until .EOF
 Debug.Print rst.Fields _
 ("CompanyName").Value & ": " & _
 rst.Fields("Country").Value
 .MoveNext
 Loop
 .Close
 End With

 Set rst = Nothing
 conn.Close
 Set conn = Nothing
End Sub

WORKING WITH RECORDS 451

3. Choose Run | Run Sub/UserForm to execute the procedure.
In this procedure, after sorting records in the specified order, the Sort prop-

erty is set to an empty string and records are displayed in the order in which
they physically appear in the table.

SUMMARY

This chapter demonstrated several methods of the DAO and ADO Recordset
objects you can use for working with records. You learned about the AddNew,
Update, and Delete methods for performing such common database tasks as
adding, modifying, and deleting records. These methods are suitable for han-
dling a small number of records. Better performance can be achieved by using
the SQL INSERT, UPDATE, and DELETE statements, as you will see in next chapter
and in Chapter 22, “Views and Stored Procedures.”

This chapter also showed you how to render your database records into three
popular formats: an Excel worksheet, a Word document, and a text file. Because
working with large quantities of records can be difficult unless data is properly
organized, this chapter also covered methods for filtering and sorting your re-
cords.

In the next chapter, you will learn how to create and run Access queries from
your VBA procedures.

453

Having worked with Microsoft Access for a while, you already know that
to retrieve relevant information from your database and perform data-
oriented tasks you need to write queries. Queries are SQL statements

that are saved in the database and can be run at any time. Microsoft Access 2019
supports several types of queries.

The simplest queries allow you to select a set of records from a table. How-
ever, when you need to extract information from more than one table at a time,
you must write a more complex query by using an SQL JOIN statement. Other
queries perform specific actions on existing data, such as creating a new table,
appending rows to a table, updating the values in a table, or deleting rows from
a table. Although Microsoft Access provides a friendly interface—the Query
Design view—for creating queries manually, this chapter teaches you how to
create and execute the same queries by using DAO and ADO objects as well as
SQL Data Manipulation Language (DML) statements in VBA code.

CREATING A SELECT QUERY MANUALLY

Select queries retrieve a set of records from a database table. These queries are
easily recognized by the SELECT and FROM keywords in their syntax. Let’s take a
look at a couple of examples:

Chapter

 15 CREATING AND
RUNNING QUERIES
WITH DAO/ADO

454 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SELECT LastName FROM Employees Selects the LastName field from the
Employees table. If there is a space in
the field name, enclose the field name in
square brackets: [Last Name].

SELECT FirstName, LastName, PhoneNo
FROM Employees

Selects the FirstName, LastName, and
PhoneNo fields from the Employees
table.

SELECT * FROM Employees Selects all fields for all records from the
Employees table. The asterisk (*) is used
to represent all fields.

Often the WHERE clause is used with Select queries to specify criteria that deter-
mine which records the query will affect. Some examples of using the WHERE
clause to restrict records are shown in the following table:

SELECT * FROM Employees
WHERE City IN ('Redmond', 'London')

Selects from the Employees table all fields
for all records that have the value Red-
mond or London in the City field.

SELECT * FROM Employees
WHERE City IN ('Redmond', 'London')
AND ReportsTo LIKE 'Buchanan,
Steven'

Selects from the Employees table all
fields for all records that have the value
Redmond or London in the City field
and have a value Buchanan, Steven in the
ReportsTo field.

SELECT * FROM Employees
WHERE ((Year([HireDate])<1993) OR
(City='Redmond'))

Selects from the Employees table all fields
for all records that have a value less than
1993 in the HireDate field or have the
value Redmond in the City field.

SELECT * FROM Products
WHERE UnitPrice BETWEEN 10 AND 25

Selects from the Products table all fields
for all records that have an amount in the
UnitPrice field between $10 and $25.

SELECT * FROM Employees
WHERE ReportsTo IS NULL

Selects from the Employees table all fields
for all records that do not have a value in
the ReportsTo field.

You can use expressions in WHERE clauses to qualify SQL statements. An SQL
expression is a string that is used in SQL statements. Expressions can contain
literal values, constants, field names, operators, and functions. Several operators
that are often used in expressions are shown in Table 15.1.

CREATING AND RUNNING QUERIES WITH DAO/ADO 455

TABLE 15.1 Operators commonly used in expressions

Operator Name Description/Usage
IN The IN operator is used to determine whether the value of an

expression is equal to any of several values in a specified list. If the
expression is found in the list of values, the IN operator returns
True; otherwise, it returns False. You can include the NOT logical
operator to determine whether the expression is not in the list of
values.
For example, you can use NOT IN to determine which employees
don’t live in Redmond or London:
SELECT * FROM Employees
WHERE City NOT IN ('Redmond', 'London')

LIKE The LIKE operator compares a string expression to a pattern in
an SQL expression. For a pattern, you specify the complete value
(for example, LIKE 'Buchanan, Steven'), or you can use
wildcard characters to find a range of values (for example, LIKE
'B*'). You can use a number of wildcard characters in the LIKE
operator pattern (see Table 15.2).

BETWEEN…AND The BETWEEN…AND operator is used to determine whether the
value of an expression falls within a specified range of values. If the
value of the expression is between value1 and value2 (inclusive), the
BETWEEN…AND operator returns True; otherwise, it returns False.
You can include the NOT logical operator to evaluate the opposite
condition, that is, whether the expression falls outside the range
defined by value1 and value2.
For example, you can select all products with the amount in the
UnitPrice field less than $10 and greater than $25:
SELECT * FROM Products
WHERE UnitPrice NOT BETWEEN 10 AND 25

IS NULL The IS NULL operator is used to determine whether the expres-
sion value is equal to the Null value. A Null value indicates missing
or unknown data. You can include the NOT logical operator to
return only records that have values in the specified field.
For example, you can extract only the employee records that have a
value in the ReportsTo field. Records where the ReportsTo field is
blank will not be included:
SELECT * FROM Employees
WHERE ReportsTo IS NOT NULL

456 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 15.2 Wildcard characters used in the LIKE operator patterns

Wildcard Description
* (asterisk) Matches any number of characters.
? (question mark) Matches any single character.
% (percent sign) Matches any number of characters (used only with the ADO

and Jet OLE DB Provider; not in the Access user interface).
_ (underscore) Matches any single character (used only with the ADO and Jet

OLE DB Provider; not in the Access user interface).
(number sign) Matches any single digit.
[] (square brackets) Matches any single character within the list of characters en-

closed in brackets.
! (exclamation point) Matches any single character that is not found in the list en-

closed in the square brackets.
- (hyphen) Matches any one of the range of characters enclosed in the

square brackets.

In addition to the WHERE clause, you can use predicates to further restrict the
set of records to be retrieved. A predicate is an SQL statement that qualifies the
SELECT statement, similar to the WHERE clause; however, the predicate must be
placed before the column list. Several popular predicates are shown in Table 15.3.

TABLE 15.3 Commonly used predicates in SQL SELECT statements

Predicate Name Description/Usage
ALL The ALL keyword is the default keyword and is used when no predicate is

declared in the SQL statement.
The following two examples are equivalent and return all records from the
Employees table:
SELECT ALL *
FROM Employees
ORDER BY EmployeeID;
SELECT *
FROM Employees
ORDER BY EmployeeID

DISTINCT The DISTINCT keyword eliminates duplicate values from the returned
set of records. The values for each field listed in the SELECT statement
must be unique.
For example, to return a list of nonduplicate (unique) cities from the Em-
ployees table, you can write the following SELECT statement:
SELECT DISTINCT City
FROM Employees
Note: The output of a query that uses DISTINCT isn’t updatable (it’s
read-only).

CREATING AND RUNNING QUERIES WITH DAO/ADO 457

Predicate Name Description/Usage
DISTINCTROW While the DISTINCT keyword is based on duplicate fields, the DIS-

TINCTROW keyword is based on entire rows. It is used only with multiple
tables.
For example, if you join the Customers and Orders tables on the Cus-
tomerID field, you can find customers that have at least one order. The
Customers table contains no duplicate CustomerID fields, but the Orders
table does because each customer can have many orders.
SELECT DISTINCTROW CompanyName
FROM Customers, Orders
WHERE Customers.CustomerID =
Orders.CustomerID
ORDER BY CompanyName;
Note: If you omit DISTINCTROW, this SELECT statement will produce
multiple rows for each company that has more than one order. DIS-
TINCTROW has an effect only when you select fields from some, but not
all, of the tables used in the query. DISTINCTROW is ignored if your
query includes only one table or if you output fields from all tables.

TOP or PERCENT The TOP keyword returns a certain number of records that fall at the top
or bottom of a range specified by an ORDER BY clause.
For example, suppose you want to select the five most expensive products:
SELECT TOP 5 * FROM Products
ORDER BY UnitPrice DESC
The TOP predicate doesn’t choose between equal values. If there are equal
values present, the TOP keyword will return all rows that have the equal
value.
You can also use the PERCENT keyword to return a percentage of records
that fall at the top or bottom of a range specified by an ORDER BY clause.
For example, to return the lowest 10 percent priced products, you can
write the following statement:
SELECT TOP 10 PERCENT *
FROM Products
ORDER BY UnitPrice ASC;
Note: If you don’t include the ORDER BY clause, the SELECT TOP state-
ment will return a random set of rows.

If you’d like to sort records returned by the SELECT statement, use the ORDER
BY clause with the ASC (ascending sort) or DESC (descending sort) keywords, as
shown in the following example:

SELECT * FROM
Employees
ORDER BY Country
DESC

Select all records from the Employees table and arrange them in de-
scending order based on the Country field. If no order is specified,
the order is ascending (ASC) by default.

458 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

By default, records are sorted in ascending order. The fields you want to sort
by do not need to be enumerated in the SELECT statement’s field list. Instead of
sorting by field name, you can sort by field position. For example, the statement:
 SELECT * FROM EMPLOYEES ORDER BY 2

will sort the records in ascending order by the second field.

CREATING A SELECT QUERY WITH DAO

In DAO, the QueryDef object represents a saved query in a database. All Que-
ryDef objects are contained in the QueryDefs collection. You can read and set
the SQL definition of a Query object using the SQL property. To create a query
in code, use the CreateQueryDef method. For example, to create a Select query
named myQuery, the following statement is used:
Set qdf = db.CreateQueryDef("myQuery", strSQL)

When you specify the name for your query, the new QueryDef object is auto-
matically appended to the QueryDefs collection when it is created. The second
argument of the CreateQueryDef method is a string variable that holds a valid
Access SQL statement. Prior to using this variable, you must assign to it a string
expression:
strSQL = "SELECT * FROM Employees WHERE TitleOfCourtesy = 'Ms.'"

The WHERE clause is used with Select queries to specify criteria that determine
which records the query will affect. (See “Creating a Select Query Manually” at
the beginning of this chapter.)

The procedure in Hands-On 15.1 selects from the Employees table all re-
cords that have a value of “Ms.” in the TitleOfCourtesy field. The keyword LIKE
can be substituted for the equals sign (=), as in the following:

strSQL = "SELECT * FROM Employees WHERE TitleOfCourtesy LIKE 'Ms.'"

When creating queries in code, be sure to include an error handler. After all, the
query you are trying to create may already exist, or an unexpected error could
occur.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

CREATING AND RUNNING QUERIES WITH DAO/ADO 459

 Hands-On 15.1 Creating a Select Query with DAO

1. Create a new Microsoft Access database named Chap15.accdb and save it in
your C:\VBAAccess2019_ByExample folder.

2. In the database window, press Alt+F11 to switch to the Visual Basic Editor
window.

3. In the Visual Basic Editor window, choose Insert | Module.
4. In the module’s Code window, type the Create_SelectQuery_DAO

procedure shown here:
Sub Create_SelectQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strSQL As String
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\Northwind.mdb"

 On Error GoTo Err_SelectQuery

 strSQL = "SELECT * FROM Employees "
 strSQL = strSQL & "WHERE TitleOfCourtesy = 'Ms.'"
 Set db = OpenDatabase(strDb)
 Set qdf = db.CreateQueryDef("myQuery", strSQL)
ExitHere:
 Set qdf = Nothing
 db.Close
 Set db = Nothing
 Exit Sub
Err_SelectQuery:
 If Err.Number = 3012 Then
 MsgBox "Query with this name already exists."
 Else
 MsgBox Err.Description
 End If
 Resume ExitHere
End Sub

5. Choose Run | Run Sub/UserForm to execute the procedure.
When you run the Create_SelectQuery_DAO procedure, the next time you

open the Northwind.mdb database you should see the query named myQuery
in the list of stored queries in the Access window.

460 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

 Instead of a query that is saved in the database for future use, it
is possible to create a temporary query by setting the QueryDef-
Name property to a zero-length string (“”), as in the following
example:

Set qdf = db.CreateQueryDef("", strSQL)

The advantage of temporary queries is that they don’t clutter the
Access Application window.

CREATING A SELECT QUERY WITH ADO

In ADO, queries, SQL statements, views, and stored procedures are repre-
sented by the Command object. This object is part of the ADOX Object Model.
The Command object has many properties and methods that will allow you to
return records or execute changes to your data (inserts, updates, and deletes). In
this chapter you will become acquainted with the properties of the Command
object, including ActiveConnection, CommandText, and CommandType. These
properties will be discussed as they appear in the example procedure code. You
will also learn how to use the Command object’s Execute method to run your
queries.

The procedure in Hands-On 15.2 demonstrates how to create and save a
Select query using ActiveX Data Objects (ADO).

 Hands-On 15.2 Creating a Select Query with ADO

1. In the Visual Basic Editor window of the Chap15.accdb database, choose
Insert | Module.

2. Choose Tools | References and select the following object libraries: Microsoft
ADO Ext. 6.0 for DDL and Security Object Library and Microsoft ActiveX
Data Objects 6.1 Object Library.

3. In the module’s Code window, type the following Create_SelectQuery_
ADO procedure:
Sub Create_SelectQuery_ADO()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim strPath As String
 Dim strSQL As String
 Dim strQryName As String

CREATING AND RUNNING QUERIES WITH DAO/ADO 461

 On Error GoTo ErrorHandler

 ' assign values to string variables
 strPath = CurrentProject.Path & _
 "\Northwind 2007.accdb"
 strSQL = "SELECT Employees.* "
 strSQL = strSQL & "FROM Employees WHERE "
 strSQL = strSQL & "Employees.City='Redmond';"

 strQryName = "Redmond Employees"

 ' open the Catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & strPath

 ' create a query based on the specified
 ' SELECT statement
 Set cmd = New ADODB.Command
 cmd.CommandText = strSQL

 ' add the new query to the database
 cat.Views.Append strQryName, cmd

 MsgBox "Ccompleted successfully.", _
 vbInformation, "Create Select Query"
ExitHere:
 Set cmd = Nothing
 Set cat = Nothing
 Exit Sub

ErrorHandler:
 If InStr(Err.Description, _
 "already exists") Then
 cat.Views.Delete strQryName
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

462 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Choose Run | Run Sub/UserForm to execute the procedure.
Th e Create_SelectQuery_ADO procedure opens the Catalog object and sets
its ActiveConnection property to the Northwind 2007.accdb database:

Set cat = New ADOX.Catalog
cat.ActiveConnection="Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & strPath

As you may recall from Chapter 11, the Catalog object represents an
entire database. It contains objects that represent all the elements of the
database: tables, stored procedures, views, columns of tables, and indexes.
Th e ActiveConnection property of the Catalog object indicates the ADO
Connection object the Catalog belongs to. Th e value of this property can be
a reference to the Connection object or a connection string containing the
defi nition for a connection. Next, the procedure defi nes a Command object and
uses its CommandText property to set the SQL statement for the query:

Set cmd = New ADODB.Command
cmd.CommandText = strSQL

Th e CommandText property contains the text of a command you want to issue
against a provider. In this procedure, we assigned the string variable’s value
(strSQL) to the CommandText property.
 Th e ADO Command object always creates a temporary query. So, to create
a stored (saved) query in a database, the procedure must append the Command
object to the ADOX Views collection, like this:

cat.Views.Append strQryName, cmd

When you open the sample Northwind 2007.accdb database aft er running this
procedure, you will fi nd the Redmond Employees query in the Access window.

Row-returning, Non-parameterized Queries

Queries that return records, such as Select queries, are known as row- returning,
non-parameterized queries.
 In ADO, use the View object to work with queries that return records and
do not take parameters. All View objects are contained in the Views collection
of the ADOX Catalog object. To save these queries in a database, append the
ADO Command object to the ADOX Views collection as shown in Hands-On
15.2.

SIDEBAR

CREATING AND RUNNING QUERIES WITH DAO/ADO 463

EXECUTING AN EXISTING SELECT QUERY WITH ADO

There’s more than one way of executing a row-returning query with ADO. This
section demonstrates two procedures that run the Products by Category query
located in the Northwind.mdb database.

The procedure in Hands-On 15.3 uses the Command and Recordset objects
to perform this task.

 Hands-On 15.3 Executing a Select Query

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Execute_SelectQuery_ADO procedure

shown here:
Sub Execute_SelectQuery_ADO()
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim strPath As String

 strPath = CurrentProject.Path & _
 "\Northwind.mdb"

 Set cmd = New ADODB.Command
 With cmd
 .ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath
 .CommandText = "[Products by Category]"
 .CommandType = adCmdTable
 End With

 Set rst = New ADODB.Recordset
 Set rst = cmd.Execute

 Debug.Print rst.GetString

 rst.Close
 Set rst = Nothing
 Set cmd = Nothing
 MsgBox "View results in the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

464 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In the Execute_Select Query_ADO procedure, the connection to the database
is opened by setting the ActiveConnection property of the Command object.
Next, the Command object’s CommandText property specifi es the name of the
query you want to run. Notice that you need to place square brackets around the
query’s name when it contains spaces. Th e query type is determined by setting
the CommandType property of the Command object. Use the adCmdTable or
adCmdStoredProc constants if the query string in the CommandText property
is a query name. Finally, the Execute method of the Command object executes
the query. Notice that the resulting recordset is passed to the Recordset object
variable so that you can access the records retrieved by the query. Instead of
looping through the records to read the returned records, the procedure uses
the Recordset object’s GetString method to print all the recordset rows to the
Immediate window. Th e GetString method returns the recordset as a string
(for more information, please see Chapter 14). Figure 15.1 shows the output of
the Execute_Select Query_ADO procedure.

FIGURE 15.1 This is a sample result of records that were generated by executing the Select query in
Hands-On 15.3.

The example procedure in Hands-On 15.4 demonstrates another method
of running a row-returning query with ADO. Notice that in addition to the
ADO Command and Recordset objects, this procedure uses the ADOX Catalog
object. The connection to the database is established by setting the ActiveCon-
nection property of the Catalog object and not the Command object, as was the
case in Hands-On 15.3.

CREATING AND RUNNING QUERIES WITH DAO/ADO 465

 Hands-On 15.4 Executing a Select Query with an ADO Catalog
Object

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Execute_SelectQuery2_

ADO procedure:
Sub Execute_SelectQuery2_ADO()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim strPath As String

 strPath = CurrentProject.Path & _
 "\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

 Set cmd = New ADODB.Command
 Set cmd = cat.Views("Products by Category").Command

 Set rst = New ADODB.Recordset
 rst.Open cmd, , adOpenStatic, _
 adLockReadOnly, adCmdTable

 Debug.Print rst.GetString
 MsgBox "The query returned " & _
 rst.RecordCount & vbCr & _
 " records to the Immediate window."
 rst.Close
 Set rst = Nothing
 Set cmd = Nothing
 Set cat = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
In this procedure, the following line of code is used to indicate the name of the
query to be executed:

Set cmd = cat.Views("Products by Category").Command

Th is statement sets the cmd object variable to the desired query stored in the
Views collection of the ADOX Catalog object. Next, the Open method of the

466 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Recordset object is used to open the recordset based on the specifi ed query:

rst.Open cmd, , adOpenStatic, adLockReadOnly, adCmdTable

Notice that several optional arguments of the Open method are used to
specify the data source: cmd, ActiveConnection (a comma appears in this spot
because the existing connection is being used), CursorType (adOpenStatic),
LockType (adLockReadOnly), and Options (adCmdTable). Refer to Chapter 14
for information about using these ADO constants. Next, the procedure dumps
the contents of the records into the Immediate window (just as the procedure in
Hands-On 15.3 did) by using the Recordset’s GetString method. Th e MsgBox
function contains a string that includes the information about the number of
records retrieved. Th e RecordCount property of the Recordset object is used
to get the record count. To get the correct record count, you must set the
CursorType argument of the Recordset’s Open method to adOpenStatic. If
you set this argument to adOpenDynamic or adOpenForwardOnly, the Record-
Count property will return –1. To learn more about these constants, refer to
the sections in Chapter 14 on working with Recordset objects in ADO.

MODIFYING AN EXISTING QUERY WITH ADO

If you’d like to modify an existing query, follow these steps:

1. Retrieve the query from the Views or Procedures collection of the Catalog
object.

2. Set the CommandText property of the Command object to the new SQL
statement.

3. Save the changes by setting the Procedure or View object’s Command property
to the modified Command object.

Earlier in this chapter you learned how to create a Select query named Red-
mond Employees by using ADO (see Hands-On 15.2). The following hands-on
exercise modifies this query so that employee records are ordered by last name.

 Hands-On 15.5 Modifying a Select Query with ADO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Modify_Query_ADO pro-

cedure:
Sub Modify_Query_ADO()

CREATING AND RUNNING QUERIES WITH DAO/ADO 467

 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim strPath As String
 Dim newStrSQL As String
 Dim oldStrSQL As String
 Dim strQryName As String

 strPath = CurrentProject.Path & _
 "\Northwind 2007.accdb"

 newStrSQL = "SELECT Employees.* FROM " & _
 "Employees WHERE Employees.City='Redmond'" & _
 " ORDER BY [Last Name];"

 strQryName = "Redmond Employees"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & strPath

 Set cmd = New ADODB.Command
 Set cmd = cat.Views(strQryName).Command

 ' get the current SQL statement for this query
 oldStrSQL = cmd.CommandText

 MsgBox oldStrSQL, vbInformation, _
 "Current SQL Statement"

 ' now update the query's SQL statement
 cmd.CommandText = newStrSQL
 MsgBox newStrSQL, vbInformation, _
 "New SQL Statement"

 ' save the modified query
 Set cat.Views(strQryName).Command = cmd

 Set cmd = Nothing
 Set cat = Nothing
End Sub

468 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
When you run this procedure the Redmond Employees query created in
Hands-On 15.2 is modifi ed from the following SQL statement:

SELECT Employees.*
FROM Employees
WHERE Employees.City='Redmond';

to:

SELECT Employees.*
FROM Employees
WHERE Employees.City='Redmond' ORDER BY [Last Name];

CREATING AND RUNNING A PARAMETER
QUERY WITH DAO

A special type of a Select query is known as a Parameter query. Instead of retriev-
ing the same records each time a query is run, a user can enter the search criteria
in a special dialog box at runtime. In DAO, the parameters of a Parameter query
are represented by Parameter objects. The QueryDef object contains a Param-
eters collection. Parameter objects represent existing parameters.

To create a Parameter query, create a query string that includes the PARAM-
ETERS keyword:
strSQL = "PARAMETERS [Enter Country] Text;" & _
 "SELECT * FROM CUSTOMERS WHERE Country = [Enter Country];"

Before executing an existing Parameter query, assign a value to the parameter,
as shown in Hands-On 15.6. Once the parameter value is specified, you need to
open a recordset based on the query.

The procedure in Hands-On 15.6 demonstrates how to create and run a
Parameter query to retrieve the names of the companies in the user-specified
country.

 Hands-On 15.6 Creating a Parameter Query with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CreateRun_ParameterQu-

ery_DAO procedure:

CREATING AND RUNNING QUERIES WITH DAO/ADO 469

Sub CreateRun_ParameterQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim rst As DAO.Recordset
 Dim strQryName As String
 Dim strSQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind.mdb"

 On Error GoTo Err_Handler

 strQryName = "myParamQuery"
 strSQL = "PARAMETERS [Enter Country] Text; " & _
 "SELECT * FROM Customers WHERE " & _
 "Country = [Enter Country];"

 Set db = OpenDatabase(strPath & strDb)
 Set qdf = db.CreateQueryDef(strQryName, strSQL)

RunQuery:
 ' specify the parameter
 qdf.Parameters("Enter Country") = _
 InputBox("Enter the country name:", _
 "Which Country?", "Germany")

 If IsNull(qdf.Parameters("Enter Country").Value) _
 Then GoTo ExitHere

 ' open a recordset based on the specified query
 Set rst = qdf.OpenRecordset(dbOpenDynaset)
 rst.MoveLast
 MsgBox "Number of records: " & rst.RecordCount

 ' write the contents of the second field
 ' to the Immediate window
 rst.MoveFirst
 Do Until rst.EOF
 Debug.Print rst(1)
 rst.MoveNext
 Loop

ExitHere:
 If Not rst Is Nothing Then

470 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 rst.Close
 Set rst = Nothing
 End If
 Set qdf = Nothing
 db.Close
 Set db = Nothing
 Exit Sub

Err_Handler:
 If Err.Number = 3012 Then
 MsgBox "This query already exists."
 Set qdf = db.QueryDefs(strQryName)
 Resume RunQuery
 Else
 MsgBox Err.Description
 End If
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure defi nes a Parameter query that contains one parameter named
Enter Country. Prior to running this query, the procedure retrieves the name of
the country from the user via the VBA InputBox method. While the suggested
default country name is Germany, the user can supply the name of another
country. Th e supplied value is then used as the value of the Enter Country
parameter. Next, the recordset is opened based on the specifi ed query, and the
number of records for the specifi ed country is retrieved via the RecordCount
property of the Recordset object. In order to get the correct record count, we
must move to the end of the recordset, using the MoveLast method, to access
all records. Th e procedure ends by retrieving to the Immediate window the
names of all the companies in the specifi ed country. Th e procedure contains
several labels such as RunQuery, ExitHere, and Err_Handler, which are
used in error trapping and ensuring that certain code lines are run only when
required. For example, when you execute this procedure again, the statement
that attempts to create a query will fail and VBA will generate error 3012. At
this point, we want to run the existing query, so we must set the qdf object
variable with the following statement:

Set qdf = db.QueryDefs(strQryName)

And then we can safely resume running the code from the label RunQuery.

CREATING AND RUNNING QUERIES WITH DAO/ADO 471

CREATING AND RUNNING A PARAMETER
QUERY WITH ADO

In ADO, to create a row-returning, parameterized query, simply add the param-
eters to the query’s SQL string. The parameters must be defined by using the
PARAMETERS keyword, as in the following:
strSQL = "PARAMETERS [Country Name] Text;" & _
 "SELECT Customers.* FROM Customers WHERE " _
 & "Customers.Country=[Type Country Name];"

The preceding SQL statement begins by defining one parameter called Coun-
try Name. This parameter will be able to accept text entries. The second part of
the SQL statement selects all the records from the Customers table that have an
entry in the Country field equal to the provided parameter value. The complete
procedure is shown in Hands-On 15.7.

 Hands-On 15.7 Creating a Parameter Query with ADO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Create_ParameterQuery_

ADO procedure:
Sub Create_ParameterQuery_ADO()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim strPath As String
 Dim strSQL As String
 Dim strQryName As String

 On Error GoTo ErrorHandler

 strPath = CurrentProject.Path & "\Northwind.mdb"

 strSQL = "PARAMETERS [Country Name] Text;" & _
 "SELECT Customers.* FROM Customers WHERE " _
 & "Customers.Country=[Country Name];"

 strQryName = "Customers by Country"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

472 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set cmd = New ADODB.Command
 cmd.CommandText = strSQL

 cat.Procedures.Append strQryName, cmd
 Set cmd = Nothing
 Set cat = Nothing

 MsgBox "The procedure completed.", _
 vbInformation, "Create Parameter Query"
 Exit Sub

ErrorHandler:
 If InStr(Err.Description, "already exists") Then
 cat.Procedures.Delete strQryName
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure creates a simple Parameter query with one parameter. Because
the ADO Command object always creates a temporary query, you must
append the Command object to the ADOX Procedures collection in order to
save a parameterized query in a database.

Row-Returning, Parameterized Queries

Queries that return records and take parameters are known as row-returning,
parameterized queries.
 In ADO, use the ADOX Procedure object to work with queries that return
records and take parameters. All Procedure objects are contained in the Proce-
dures collection of the ADOX Catalog object. To save these queries in a data-
base, append the ADO Command object to the ADOX Procedures collection.

To execute a Parameter query you must specify the parameter value using the
Parameters collection of the Command object, like this:
cmd.Parameters("Country Name") = "France"

The procedure in Hands-On 15.8 shows how to run the Parameter query cre-
ated by the procedure in Hands-On 15.7.

SIDEBAR

CREATING AND RUNNING QUERIES WITH DAO/ADO 473

 Hands-On 15.8 Executing a Parameter Query with ADO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Execute_ParamQuery_

ADO procedure:
Sub Execute_ParamQuery_ADO(strCountry As String)
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim strQryName As String
 Dim strPath As String

 strQryName = "Customers by Country"
 strPath = CurrentProject.Path & "\Northwind.mdb"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

 Set cmd = New ADODB.Command
 Set cmd = cat.Procedures(strQryName).Command

 ' specify a parameter value
 cmd.Parameters("[Country Name]") = strCountry

 ' use the Execute method of the Command
 ' object to open the recordset
 Set rst = cmd.Execute

 ' return company names to the Immediate window
 Do Until rst.EOF
 Debug.Print rst(1)
 rst.MoveNext
 Loop

 rst.Close
 Set rst = Nothing
 Set cmd = Nothing
 Set cat = Nothing
End Sub

3. Execute this procedure from the Immediate window by typing the following
statement and pressing Enter:

474 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Execute_ParamQuery_ADO "Argentina"

Th e Execute_ParamQuery_ADO procedure establishes the connection to the
Northwind database. Next, the name of the query is supplied in the following
statement:

Set cmd = cat.Procedures(strQryName).Command

Because this is a Parameter query, the parameter value is specifi ed by using the
Parameters collection of the Command object, like this:

cmd.Parameters("[Country Name]") = strCountry

Th en, the Recordset object is opened by using the Execute method of the
Command object:

Set rst = cmd.Execute

Finally, the procedure loops through the recordset to retrieve the company
names and print them to the Immediate window. Aft er running this procedure,
the following lines are returned to the Immediate window for the specifi ed
country:
Cactus Comidas para llevar
Océano Atlántico Ltda.
Rancho grande

NOTE

Note: Instead of specifying the parameter values before the re-
cordset is open, you can use the Parameters argument of the
Command object’s Execute method to pass the parameter val-
ue, as follows:

Set rst = cmd.Execute(Parameters:=strCountry)

CREATING AND RUNNING A MAKE-TABLE
QUERY WITH DAO

A Make-Table query creates a new table out of records from one or more tables
or queries. Make-Table queries are often used to preserve data as it existed at
a particular time or to create a backup copy of a table without backing up the
entire database. Use the SELECT INTO statement to create a Make-Table query.
This statement consists of the following parts:

CREATING AND RUNNING QUERIES WITH DAO/ADO 475

SELECT fieldname Field name (use * for all fields)
INTO newTableName Name of the new table
FROM table/queryName Name of a table or query from which data is taken
WHERE condition Criteria/limit operation to desired rows (optional)
ORDER BY fieldname Order of the records in the new table (optional)

The procedure in Hands-On 15.9 creates a table of the customers in Brazil.

 Hands-On 15.9 Creating and Running a Make-Table Query with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following MakeATableQuery_DAO

procedure:
Sub MakeATableQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strSQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"

 strDb = "Northwind.mdb"

 On Error GoTo Err_Handler

 strSQL = "SELECT * INTO SouthAmericanClients" & _
 " FROM Customers WHERE Country='Brazil';"
 Set db = OpenDatabase(strPath & strDb)
 Set qdf = db.CreateQueryDef("", strSQL)
 qdf.Execute
ExitHere:
 Set qdf = Nothing
 db.Close
 Set db = Nothing
 Exit Sub
Err_Handler:
 MsgBox Err.Description
 Resume ExitHere
End Sub

476 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e SELECT INTO statement in the MakeATableQuery_DAO procedure is
used to make a new table named SouthAmericanClients containing the names
of all Brazilian customers from the Customers table in the Northwind.mdb
database. Notice that by not assigning a name to the query, we create a Make-
Table query that is temporary (not stored in the Access window):

Set qdf = db.CreateQueryDef("", strSQL)

CREATING AND RUNNING AN UPDATE QUERY WITH DAO

An Update query is a type of Action query. Update queries are very convenient
to use when you want to change fields for a single record or for multiple records
in a table. The UPDATE statement consists of the following three parts:

UPDATE TableName or QueryName
SET Expression/operation to perform
WHERE Criteria/limit operation to desired rows

For example, to mark product 10 as discontinued, you would use the following
UPDATE statement:
UPDATE Products SET Discontinued = True WHERE ProductID = 10

The condition in the WHERE clause is used to determine which rows will be
updated. The Update query does not produce a result table. To avoid updating
the wrong records, always determine which rows you want to be updated by
creating and running a Select query first.

The Execute method of a QueryDef object is used to run any type of Action
query. The procedure in Hands-On 15.10 demonstrates how to create and run
an Update query with DAO.

 Hands-On 15.10 Creating and Running an Update Query with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CreateRunUpdateQuery_

DAO procedure:
Sub CreateRunUpdateQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef

CREATING AND RUNNING QUERIES WITH DAO/ADO 477

 Dim strSQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind.mdb"

 On Error GoTo Err_Handler

 strSQL = "UPDATE Suppliers " & _
 "INNER JOIN Products ON " & _
 "Suppliers.SupplierID = Products.SupplierID " & _
 "SET Products.UnitPrice = [UnitPrice]+2 " & _
 "WHERE (((Suppliers.CompanyName)='Tokyo Traders'));"

 Set db = OpenDatabase(strPath & strDb)

 Set qdf = db.CreateQueryDef("PriceIncrease", strSQL)
 qdf.Execute
ExitHere:
 Set db = Nothing
 Exit Sub
Err_Handler:
 If Err.Number = 3012 Then
 MsgBox "Query with this name already exists."
 Else
 MsgBox Err.Description
 End If
 Resume ExitHere
End Sub

To perform the required update, this procedure needs to join two tables. Th e
Products table is joined with the Suppliers table on the SupplierID fi eld that
exists in both tables. Use the INNER JOIN statement to combine column values
from one row of a table with column values from another row of another (or
the same) table to obtain a single row of data. Th e join condition is specifi ed
aft er the ON keyword and determines how the two tables are to be compared to
each other to produce the join result. Because the update must occur only for
a specifi c supplier, we also specify the supplier’s company name in the WHERE
clause.

3. Choose Run | Run Sub/UserForm to execute the procedure.
After running this procedure, the prices for all products supplied by Tokyo

Traders are increased by $2.00.

478 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The following procedure demonstrates how to use the Execute method of the
DAO Database object to run an existing (previously saved) Update query.
Sub UpdateRun_DAO()
 Dim db As DAO.Database
 Dim strDb As String

 strDb = "C:\VBAAccess2019_ByExample\Northwind.mdb"

 Set db = OpenDatabase(strDb)
 db.Execute "PriceIncrease"
 db.Close
 Set db = Nothing
End Sub

EXECUTING AN UPDATE QUERY WITH ADO

Executing bulk queries that update data is quite easy with ADO. You can use
the Execute method of the Connection or Command object. The procedure
in Hands-On 15.11 uses the Connection object’s Execute method to update
records in the Products table of the Northwind.mdb database where CategoryId
is equal to 8. The UnitPrice of the records that match this condition will be
increased by one dollar. Note that the number of updated records is returned by
the Execute method in the NumOfRec variable.

 Hands-On 15.11 Executing an Update Query with ADO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Execute_UpdateQuery_

ADO procedure:
Sub Execute_UpdateQuery_ADO()
 Dim conn As ADODB.Connection
 Dim NumOfRec As Integer
 Dim strPath As String

 strPath = CurrentProject.Path & "\Northwind.mdb"

 Set conn = New ADODB.Connection

 conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath

CREATING AND RUNNING QUERIES WITH DAO/ADO 479

 conn.Execute "UPDATE Products " & _
 "SET UnitPrice = UnitPrice + 1" & _
 " WHERE CategoryId = 8", _
 NumOfRec, adExecuteNoRecords

 MsgBox NumOfRec & " records were updated."
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure uses the Data Manipulation Language (DML) UPDATE statement
to make a change in the UnitPrice fi eld of the Products table. Th e Execute
method of the Connection object allows the provider to return the number of
records that were aff ected via the RecordsAff ected parameter. Th is parameter
applies only to Action queries or stored procedures. To get the number of
records returned by a result-returning query or stored procedure, you must use
the RecordCount property. In the Execute_UpdateQuery_ADO procedure, we
store the number of records aff ected in the string variable NumOfRec. Note that
when a command does not return a recordset, you should include the constant
adExecuteNoRecords. Th e adExecuteNoRecords constant can only be passed
as an optional parameter to the Command or Connection object’s Execute
method.

The procedure in Hands-On 15.12 demonstrates how to execute an Update
query by using the ADO Command object instead of the Connection object
used in the preceding example. After running the following example the Unit-
Price of all the records in the Products table will increase by 10 percent.

 Hands-On 15.12 Executing an Update Query Using the Command
Object

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Execute_UpdateQuery2_ADO pro-

cedure shown here:
Sub Execute_UpdateQuery2_ADO()
 Dim cmd As ADODB.Command
 Dim NumOfRec As Integer
 Dim strPath As String

 strPath = CurrentProject.Path & "\Northwind.mdb"

480 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Set cmd = New ADODB.Command
 With cmd
 .ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strPath
 .CommandText = "Update Products " & _
 "Set UnitPrice = UnitPrice *1.1"
 .Execute NumOfRec, adExecuteNoRecords
 End With
 MsgBox NumOfRec
 Set cmd = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Non-Row-Returning Queries

Queries that do not return records, such as Action queries or Data Definition
Language (DDL) queries, are known as non-row-returning queries.

 ● Action queries are Data Manipulation Language (DML) queries that per-
form bulk operations on a set of records. Th ey allow you to add, update,
or delete records.

 ● DDL queries are used for creating database objects and altering the struc-
ture of a database.

 ● Use the ADOX Procedure object to work with queries that don’t return
records. All Procedure objects are contained in the Procedures collection
of the ADOX Catalog object. To save these types of queries in a database,
append the ADO Command object to the ADOX Procedures collection.

RUNNING AN APPEND QUERY WITH DAO/ADO

Append queries are used for adding records from one or more tables to other
tables. You can append records to a table in a current database or another Access
or non-Access database. An Append query is an Action query that adds new
records to the end of an existing table or query. Append queries don’t return
records. They are useful for archiving records. Before you can archive the
records, you need to create a new table structure to hold the records. To add a
record or multiple records to a table, use the INSERT INTO statement. This state-
ment has the following parts:

SIDEBAR

CREATING AND RUNNING QUERIES WITH DAO/ADO 481

INSERT INTO target [(Field1,
Field2)]

The name of the table or query to which records are
appended. You may indicate the names of the fields
to which data is appended.

SELECT fieldName(s) The names of fields from which data is obtained.
FROM tableName
or
expression

The name of the table or tables from which records
are inserted, the name of a saved query, or a SE-
LECT statement.

WHERE condition Criteria/limit operation to desired rows.

The procedure in Hands-On 15.13 demonstrates how to execute an Append
query using the Execute method of the DAO Database object.

 Hands-On 15.13 Running an Append Query with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following RunAppendQry_DAO

procedure:
Sub RunAppendQry_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim strSQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind.mdb"

 strSQL = "SELECT * FROM " & _
 "SouthAmericanClients " & _
 "WHERE Country = 'Argentina'"

 Set db = OpenDatabase(strPath & strDb)
 Set rst = db.OpenRecordset(strSQL, _
 dbOpenSnapshot)

 If rst.EOF Or rst.BOF Then
 ' Argentina clients not found in
 ' destination table - proceed with insert
 db.Execute "INSERT INTO " & _
 "SouthAmericanClients " & _
 "SELECT * FROM Customers " & _
 "WHERE Country = 'Argentina'"

482 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox "Argentina clients have been appended."
 Else
 MsgBox "Clients from Argentina already " & _
 "exist in the destination table."
 End If

 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure begins by opening the Northwind database and creating a
Snapshot-type recordset based on the supplied SQL query string. Prior to
executing the Append query that inserts customers from Argentina into the
SouthAmericanClients table, we check the EOF and BOF properties of the
DAO Recordset object to determine if the recordset contains any records. If
rst.EOF Or rst.BOF is True, then there is no current record (the recordset is
empty), so we go ahead and use the Execute method of the database object to
add Argentina customers to the destination table.

The following procedure demonstrates how to execute an Append query using
the Execute method of the ADO Connection object:
Sub RunAppendQry_ADO()
 Dim conn As ADODB.Connection
 Dim strSQL As String
 Dim recAffected As Long

 On Error Resume Next
 Set conn = New ADODB.Connection

 conn.Provider = "Microsoft.Jet.OLEDB.4.0"
 conn.Open _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"
 strSQL = "INSERT INTO SouthAmericanClients " & _
 "SELECT * FROM Customers " & _
 "WHERE Country = 'Venezuela'"

 conn.Execute strSQL, recAffected
 If Err <> 0 Then
 Debug.Print "Error Number: " & Err.Number
 Debug.Print "Error Description: " & _
 Err.Description

CREATING AND RUNNING QUERIES WITH DAO/ADO 483

 Else
 Debug.Print recAffected & " records inserted."
 End If
 conn.Close
 Set conn = Nothing
End Sub

This procedure opens a connection to the Northwind.mdb database. Once the
database is open, the Execute method of the ADO Connection object is used
to execute the specified SQL INSERT INTO statement. You can use an optional
RecordsAffected parameter (see the recAffected variable in the procedure)
with the Execute method to determine the number of records that the Execute
method affected. This parameter must be a variable of the Long data type. If
the Insert operation was successful, the VBA Err object will return zero (0).
The default property of the Err object is Number. Therefore, the statement:

If Err <> 0

is equivalent to:
If Err.Number <> 0

If a runtime error occurs, for example, the destination table does not exist,
the procedure will print to the Immediate window the error number and its
description text. If there were no errors, the Immediate window will contain the
number of records that were affected by the Insert operation.

RUNNING A DELETE QUERY WITH DAO

With a Delete query you can delete a single record or multiple records from a
database. The DELETE statement used to delete rows from a table consists of the
following three parts:

DELETE

FROM Table name
WHERE Criteria/limit operation to desired rows

For example, to delete discontinued products from the Products table, you
would use the following DELETE statement:
DELETE FROM Products WHERE Discontinued = True

484 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To delete all the rows from the Products table, the following statement can be
executed:
DELETE FROM Products

You cannot reverse the operation performed by the DELETE statement. Always
make a backup copy of your table prior to running a Delete query. It is a good
idea to create and run a Select query before using DELETE to see which rows will
be affected by the Delete operation.

The Execute method is used to run Action queries or execute an SQL state-
ment. This method can take optional arguments. For example, in the statement:
qdf.Execute dbFailOnError

the constant dbFailOnError will generate a runtime error and will roll back
updates or deletes if an error occurs. Use the RecordsAffected property of the
QueryDef object to determine the number of records affected by the most recent
Execute method. For example, the following statement displays the number of
records that were deleted:
MsgBox qdf.RecordsAffected & " records were deleted."

The procedure in Hands-On 15.14 creates a Delete query and then executes it if
the user responds positively to the message shown in Figure 15.2.

FIGURE 15.2 You can display an SQL statement underlying a query in a message box.

CREATING AND RUNNING QUERIES WITH DAO/ADO 485

 Hands-On 15.14 Running a Delete Query with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following CreateRunDeleteQuery_

DAO procedure:
Sub CreateRunDeleteQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strQryName As String
 Dim strSQL As String
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"

 strDb = "Northwind.mdb"

 On Error GoTo ErrorHandler

 strQryName = "DeletePolishOrders"
 strSQL = "DELETE * FROM Orders "
 strSQL = strSQL & "WHERE [ShipCountry] = 'Poland'"

 Set db = OpenDatabase(strPath & strDb)
 Set qdf = db.CreateQueryDef(strQryName, strSQL)

 ' Chr(13) & Chr(13) is a double carriage return
 If (MsgBox("Do you want to: " & _
 Chr(13) & Chr(13) _
 & qdf.SQL, vbYesNo + vbDefaultButton2, _
 "SQL Expression")) = vbYes Then

 qdf.Execute dbFailOnError
 MsgBox qdf.RecordsAffected & _
 " records were deleted."
 End If
ExitHere:
 Set qdf = Nothing
 db.Close
 Set db = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3012 Then
 Set qdf = db.QueryDefs(strQryName)

486 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Resume Next
 Else
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure creates a Delete query named DeletePolishOrders in the
Northwind database, then runs this query when the user clicks OK to the
message. If the specifi ed Delete query already exists in the database, the qdf
object variable is set to the existing query name and the user is prompted to
proceed or cancel the operation.

CREATING AND RUNNING A PASS-THROUGH
QUERY WITH DAO

A Pass-Through query works directly with an external ODBC (Open Database
Connectivity) data source. Instead of linking to a table that resides on a server,
you can send commands directly to the server to retrieve data.

To create a Pass-Through query manually in the Access window, choose Cre-
ate | Query Design. Close the Show Table dialog box and click Design | Pass-
Through. This will bring up a window where you can type a query statement.
The SQL statement must be in the format understood by the external data
source from which you are retrieving data. Pass-Through queries can also be
used in lieu of Action queries when you need to bulk append, update, or delete
data in remote databases.

Pass-Through queries can be created and executed programmatically from
your VBA procedures. In DAO, use the Connect property to execute an SQL
Pass-Through query. If you do not specify a connection string in the Connect
property, Access will ask you for the connection information every time you run
the Pass-Through query (and this can be very annoying).

The following procedure uses the MaxRecords property to return 15 records
from the dbo.entity table located on an SQL server. Notice that the ReturnsRe-
cords property is set to True. If your query does not need to return records, set
the ReturnsRecords property to False.
Sub PassThruQry_DAO()
 Dim db As DAO.Database
 Dim qdfPass As DAO.QueryDef

CREATING AND RUNNING QUERIES WITH DAO/ADO 487

 On Error GoTo err_PassThru

 Set db = CurrentDb
 Set qdfPass = db.CreateQueryDef("GetRecords")

 ' enter your own connect string
 ' supply the server database name you
 ' want to connect to, your User ID,
 ' password, and the Data Source name

 qdfPass.Connect = _
 "ODBC;Database=myDbName; " & _
 "UID=JKO;PWD=tester;DSN=myDataS"
 qdfPass.SQL = "SELECT * FROM dbo.entity"
 qdfPass.ReturnsRecords = True
 qdfPass.MaxRecords = 15

 DoCmd.OpenQuery "GetRecords"
 Exit Sub
err_PassThru:
 If Err.Number = 3151 Then
 MsgBox Err.Description
 Exit Sub
 End If
 db.QueryDefs.Delete "GetRecords"
 Resume 0
 Exit Sub
End Sub

Instead of displaying a datasheet with the records retrieved from the SQL data-
base, the following procedure reads the records to a temporary query and pro-
ceeds to open a recordset based on that query. Next, the contents of two fields
are printed to the Immediate window.
Sub PassThru2()
 Dim db As DAO.Database
 Dim qdfPass As DAO.QueryDef
 Dim rstTemp As DAO.Recordset

 On Error GoTo err_PassThru

 Set db = CurrentDb
 Set qdfPass = db.CreateQueryDef("")

488 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' enter your own connect string
 ' supply the server database name you
 ' want to connect to, your User ID,
 ' password, and the Data Source name

 qdfPass.Connect = _
 "ODBC;Database=myDbName;UID=JKO;" & _
 "PWD=tester;DSN=myDataS"
 qdfPass.SQL = "SELECT * FROM dbo.entity"
 qdfPass.ReturnsRecords = True
 qdfPass.MaxRecords = 15
 Set rstTemp = qdfPass.OpenRecordset()
 ' print data to the Immediate window
 With rstTemp
 Do While Not .EOF
 Debug.Print .Fields("entity_id"), _
 .Fields("entity_name")
 .MoveNext
 Loop
 .Close
 End With
 SendKeys "^g"
ExitHere:
 Set db = Nothing
 Exit Sub
err_PassThru:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

CREATING AND EXECUTING A PASS-THROUGH
QUERY WITH ADO

As mentioned earlier, SQL Pass-Through queries are SQL statements that are
sent directly to the database server for processing. In earlier versions of Micro-
soft Access, Pass-Through queries were used with Data Access Objects (DAO)
to increase performance when accessing external ODBC data sources. In ADO,
you can use the Microsoft OLE DB Provider for SQL Server to directly access
the SQL Server. For this reason, you do not need to create Pass-Through que-
ries. However, since it is possible to create a Pass-Through query using ADOX
and Microsoft Jet Provider, the next hands-on exercise demonstrates how to do
this.

CREATING AND RUNNING QUERIES WITH DAO/ADO 489

 Hands-On 15.15 Creating a Pass-Through Query with ADO

This hands-on exercise requires that you have access to an SQL Server North-
wind database and that you make changes in the connection string to point to
your server.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Create_PassThroughQuery procedure

shown here:
Sub Create_PassThroughQuery()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim strPath As String
 Dim strSQL As String
 Dim strQryName As String
 Dim strODBCConnect As String

 On Error GoTo ErrorHandler

 strSQL = "SELECT Customers.* FROM " & _
 "Customers WHERE " & _
 "Customers.Country='France';"

 strQryName = "French Customers"

 ' modify the following string to connect
 ' to your SQL Server
 strODBCConnect = "ODBC;Driver=SQL Server;" & _
 "Server=PROD15;" & _
 "Database=Northwind;" & _
 "UID=;" & _
 "PWD="

 'strODBCConnect = "ODBC;DSN=ODBCNorth;UID=sa;PWD=;"

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = CurrentProject.Connection

 Set cmd = New ADODB.Command
 With cmd
 .ActiveConnection = cat.ActiveConnection
 .CommandText = strSQL
 .Properties _

490 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ("Jet OLEDB:ODBC Pass-Through Statement") = True
 .Properties _
 ("Jet OLEDB:Pass-Through Query Connect String") _
 = strODBCConnect
 End With

 cat.Procedures.Append strQryName, cmd

 Set cmd = Nothing
 Set cat = Nothing
 MsgBox "The procedure completed successfully.", _
 vbInformation, "Create Pass-Through Query"
 Exit Sub

ErrorHandler:
 If InStr(Err.Description, "already exists") Then
 cat.Procedures.Delete strQryName
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure creates a Pass-Th rough query named French Customers in
the current database. Notice that to connect to the SQL Server database, the
following string is built and later assigned to the Jet OLEDB:Pass-Th rough
Query Connect String property of the Command object:

strODBCConnect = "ODBC;Driver=SQL Server;" & _
 "Server=PROD15;" & _
 "Database=Northwind;" & _
 "UID=;" & _
 "PWD="

Needless to say, if you want to try this procedure, you must have access to a
remote data source (such as an SQL Server database) and you’ll need to modify
the preceding string to point to your server. Th is string allows you to connect
via the DSN-less connection. If you prefer, you may build your connection
string to the remote data source using the DSN that you defi ne in the Control
Panel via Administrative Tools (ODBC). Your connection string could then
look like this:

strODBCConnect = "ODBC;DSN=myDSN;UID=sa;PWD=;"

CREATING AND RUNNING QUERIES WITH DAO/ADO 491

To create a Pass-Th rough query, you must also set two provider-specifi c
properties of the Command object: Jet OLEDB:ODBC Pass-Th rough Statement
and Jet OLEDB:Pass-Th rough Query Connect String.
 To permanently store the Pass-Th rough query in your database, you need to
append it to the Catalog object’s Procedures collection, like this:

cat.Procedures.Append strQryName, cmd

Aft er you run the Create_PassTh roughQuery procedure, the query can be
viewed and accessed from the navigation pane in the Microsoft Access window.

In Hands-On 15.15, you learned how to create a Pass-Through query in VBA
with ADO. This query retrieved the list of French customers from the North-
wind database located on the SQL Server. The Pass-Through query was named
French Customers and was saved permanently in the Chap15.accdb database.
Let’s see how you can execute this query from a VBA procedure.

 Hands-On 15.16 Executing a Pass-Through Query Saved in Access
(ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the Execute_PassThroughQuery_ADO

procedure shown here:
Sub Execute_PassThroughQuery_ADO()
 Dim cat As ADOX.Catalog
 Dim cmd As ADODB.Command
 Dim rst As ADODB.Recordset
 Dim strConnect As String

 ' modify the connection string to connect
 ' to your SQL Server Northwind database
 strConnect = "Provider=SQLOLEDB;" & _
 "Data Source=PROD15;" & _
 "Initial Catalog=Northwind;" & _
 "User Id=sa;" & _
 "Password="

 Set cat = New ADOX.Catalog
 cat.ActiveConnection = CurrentProject.Connection

 Set cmd = New ADODB.Command
 Set cmd = cat.Procedures("French Customers").Command
 Set rst = cmd.Execute

492 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Debug.Print "--French Customers Only--" & vbCrLf _
 & rst.GetString

 Set rst = Nothing
 Set cmd = Nothing
 Set cat = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e procedure begins by building a connection string to the SQL Server
database. Th is is a standard connection that uses the native OLE DB SQL
Server Provider (SQLOLEDB). Th is connection requires that you also provide
the name of the SQL Server (Data Source), the name of the database from
which to retrieve records (Initial Catalog), and the security context with which
to log in (User Id, Password). If you connect to your SQL Server database using
the NT integrated security, your connection string will look like this:

strConnect = "Provider=SQLOLEDB;" & _
 "Data Source=yourServerName;" & _
 "Integrated Security=SSPI;" & _
 "Initial Catalog=Northwind"

Because the Pass-Th rough query you want to execute has been saved in the
Access database, you need to open the ADOX Catalog object to access its
Procedures collection. Th e following line of code specifi es the name of the
query you want to execute and assigns it to the Command object:

Set cmd = cat.Procedures("French Customers").Command

To execute a Pass-Th rough query that returns records, you need to use the
Recordset object in addition to the Command object. Th e following statement
executes the Pass-Th rough query:

Set rst = cmd.Execute

Th e Pass-Th rough query executes on the server. To quickly view data on
the client machine, we retrieve the contents of the recordset by using the
GetString method:

Debug.Print "--French Customers Only--" & vbCrLf _
 & rst.GetString

CREATING AND RUNNING QUERIES WITH DAO/ADO 493

PERFORMING OTHER OPERATIONS WITH QUERIES

Now that you know how to programmatically create and run various queries
using DAO and ADO objects, you may be interested to find out how to use
Visual Basic to perform other operations related to queries, such as retrieving a
list of queries and their properties, deleting a query, and determining if a query
is updatable.

Retrieving Query Properties with DAO

Just like tables and other database objects, queries have properties. To generate a
list of properties for a specific query, use the For Each…Next looping structure
to iterate through the Properties collection of the DAO QueryDef object. The
procedure in Hands-On 15.17 demonstrates this.

 Hands-On 15.17 Listing Query Properties with DAO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the List_QryProperties_DAO procedure

shown here:
Sub List_QryProperties_DAO()
 Dim db As DAO.Database
 Dim prp As DAO.Property
 Dim strDBName As String
 Dim strPath As String

 On Error Resume Next

 strPath = "C:\VBAAccess2019_ByExample\"
 strDBName = "Northwind 2007.accdb"
 Set db = OpenDatabase(strPath & strDBName)
 For Each prp In db.QueryDefs _
 ("Invoice Data").Properties
 Debug.Print prp.Name & "= " & prp.Value
 Next prp
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
4. Activate the Immediate Window to view the procedure output.

494 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Listing All Queries in a Database with DAO/ADO

You can obtain the listing of all queries in a database by using the For…Each
loop to enumerate the QueryDefs collection of the DAO QueryDef object. The
following procedure writes to the Immediate window the names of all queries in
the Northwind 2007.accdb database.
Sub List_AllQueries_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strDb As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind 2007.accdb"
 Set db = OpenDatabase(strPath & strDb)
 For Each qdf In db.QueryDefs
 Debug.Print qdf.Name
 Next qdf

 Set qdf = Nothing
 db.Close
 Set db = Nothing
End Sub

Th e procedure in Hands-On 15.18 retrieves the names of all saved queries in
the Northwind.mdb database by iterating through the View objects stored in
the ADOX Catalog object’s Views collection.

 Hands-On 15.18 Listing Queries in a Database with ADO

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the List_AllQueries_ADO procedure

shown here:
Sub List_AllQueries_ADO()
 Dim cat As New ADOX.Catalog
 Dim v As ADOX.View
 Dim strPath As String

 strPath = CurrentProject.Path & "\Northwind.mdb"
 cat.ActiveConnection = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source= " & strPath

CREATING AND RUNNING QUERIES WITH DAO/ADO 495

 For Each v In cat.Views
 Debug.Print v.Name
 Next

 Set cat = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
4. After running this procedure, open the Immediate window to view the list

of all saved queries in the Northwind.mdb database.

Deleting a Query from a Database with DAO/ADO

To remove a DAO QueryDef object from a QueryDefs collection, use the
Delete method as shown in Hands-On 15.19. The DeleteAQuery_DAO proce-
dure deletes the query that was created in Hands-On 15.1.

 Hands-On 15.19 Deleting a Query from a Database (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following DeleteAQuery_DAO

procedure:
Sub DeleteAQuery_DAO()
 Dim db As DAO.Database
 Dim qdf As DAO.QueryDef
 Dim strDb As String
 Dim strPath As String

 On Error GoTo ErrorHandler
 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind.mdb"
 Set db = OpenDatabase(strPath & strDb)
 db.QueryDefs.Delete "myQuery"
ExitHere:
 db.Close
 Set db = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

496 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Aft er running the procedure in Hands-On 15.19, the query named myQuery
is removed from the Northwind.mdb database.

To delete a query in ADO, use the Delete method of the Procedures or Views
collection. By running the procedure in Hands-On 15.20, you can quickly delete
the Redmond Employees query created in Hands-On 15.2.

 Hands-On 15.20 Deleting a Query from a Database (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following DeleteAQuery_ADO

procedure:
Sub DeleteAQuery_ADO()
 Dim cat As New ADOX.Catalog
 Dim strPath As String

 On Error GoTo ErrorHandler

 strPath = _
 CurrentProject.Path & "\Northwind 2007.accdb"
 cat.ActiveConnection = _
 "Provider=Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source= " & strPath

 cat.Views.Delete "Redmond Employees"

ExitHere:
 Set cat = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3265 Then
 MsgBox "Query does not exist."
 Else
 MsgBox Err.Number & ": " & Err.Description
 End If
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
After running the procedure in Hands-On 15.20, the query named Red-

mond Employees is removed from the Northwind 2007.accdb database.

CREATING AND RUNNING QUERIES WITH DAO/ADO 497

Determining If a Query Is Updatable

When a query is updatable you may edit the values in the result set of records
and your changes are automatically reflected in the underlying tables. Micro-
soft Access’s online help lists situations in which query results can or cannot
be updated (see Figure 15.3). The DAO QueryDef object has an Updatable
property that you can use in your VBA code to find out if the query definition
can be updated. However, to determine whether the resulting recordset can be
updated, you must use the Updatable property of the DAO Recordset object as
demonstrated in Hands-On 15.21. If the Recordset object cannot be edited, the
value of the Updatable property is False.

FIGURE 15.3 Records returned by a query may or may not be updatable.

498 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

The Updatable property of the DAO Snapshot-type and For-
ward-only-type Recordset objects is always False. The same is
true if the Recordset object contains read-only fields. However,
when one or more fields are updatable, the property’s value is
True. Because a recordset can contain fields that can’t be up-
dated, you may want to check the DataUpdatable property of
each field in the Fields collection of the Recordset object before
attempting to edit a record.

For details, please see: http://office.microsoft.com/en-us/access-help/update-data-
by-using-a-query-HA010076527.aspx.

The procedure in Hands-On 15.21 checks whether records returned by two
queries in the Northwind.mdb database can be edited.

 Hands-On 15.21 Determining if Records Returned by a Query Can
Be Edited (DAO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following IsQryUpdatable_DAO

procedure:
 Sub IsQryUpdatable_DAO()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset
 Dim fld As DAO.Field
 Dim strDb As String
 Dim strQryName1 As String
 Dim strQryName2 As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Northwind.mdb"
 strQryName1 = "Order Subtotals"
 strQryName2 = "Invoices"

 Set db = OpenDatabase(strPath & strDb)

 Set rst = db.OpenRecordset(strQryName1)
 Debug.Print strQryName1 & _
 ": Updatable=" & rst.Updatable
 Set rst = db.OpenRecordset(strQryName2)
 Debug.Print strQryName2 & _

CREATING AND RUNNING QUERIES WITH DAO/ADO 499

 ": Updatable=" & rst.Updatable
 For Each fld In rst.Fields
 If Not fld.DataUpdatable Then
 Debug.Print fld.Name & " cannot be edited."
 End If
 Next

 rst.Close
 Set rst = Nothing
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
When you run this procedure, the Updatable property returns True for the
Invoices query and False for the Order Subtotals query. Th e OpenRecordset
method is used to open each of these queries. Th e Order Subtotals query is
not updatable because its SQL statement contains a GROUP BY clause. While
the Invoices query is updatable, not all fi elds in the resulting recordset can be
edited (see Figure 15.4).

FIGURE 15.4 An updatable query can contain one or more fields that cannot be edited
(see Hands-On 15.21).

SUMMARY

Creating and executing queries are the most frequently performed database
operations. This chapter has shown you how to create, run, and modify various
types of queries using the DAO and ADO code.

In the next chapter, you will learn more about the advanced features of the
ADO/DAO Object Model.

501

At this point you should feel comfortable using ADO in most of your
Microsoft Access programming endeavors. By using the knowledge
you’ve acquired in the last few chapters, you can switch to any other

Office application (Excel, Word, PowerPoint, or Outlook) and start program-
ming. Because you already know the ADO methods of accessing databases and
manipulating records, all you need to learn is the object model that the specific
application is using. Learning a new type library is not very difficult. Recall that
VBA offers the Object Browser that lists all the application’s objects, properties,
methods, and intrinsic constants that you may need for writing code. However,
if you’d like to accomplish more with ADO, this chapter will introduce you to a
couple of more advanced ADO features that will set you apart from beginning
programmers. You will learn about fabricating, persisting, disconnecting, clon-
ing, and shaping recordsets. You will also learn how to process data modifica-
tions and additions by using ADO and DAO transactions.

FABRICATING A RECORDSET

In previous chapters, you worked with recordsets that were created from data
that came from a Microsoft Access database, a text or dBASE file, an Excel
spreadsheet, or a Word document. You may have also practiced working with

Chapter

 16 USING ADVANCED
ADO/DAO FEATURES

502 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

a recordset generated from an SQL Server database. In each of these circum-
stances, to get the necessary data you needed to establish a connection to the
appropriate data source. In other words, you worked with recordsets that had a
live connection to the data source. These connected recordsets obtained their
structure and data from a query to a data source to which they were connected.
But what if you need to create a recordset with data that does not come from a
data source? As you may recall from Chapter 10, “Data Access Technologies in
Microsoft Access,” the ADO Object Model allows you to work with both rela-
tional and non-relational data stores.

To store non-relational data in an ADO Recordset, you can create your re-
cordset from scratch. This recordset will be defined programmatically in mem-
ory and will not be connected to any data source. For example, you can easily
fabricate a custom recordset that holds non-relational data, such as the informa-
tion about the files located in one of your hard drive’s directories.

When you create your own recordset from scratch, you define the types of
fields in the recordset and then populate the recordset with the information
you want. The fields are defined using the Fields collection’s Append method.
You must specify the field name and the data type. The syntax for the Append
method looks like this:
Fields.Append Name, DataType[, FieldSize], [Attribute]

Arguments in square brackets are optional. FieldSize specifies the size in
characters or bytes. Attribute specifies characteristics such as whether the
field enables Null values or whether it is a primary key or an identity column.

Once you have defined the structure of your recordset, simply open it and
populate it with the desired data. You can add data to your custom recordset
in the same way you add data to a connected recordset: by using the Recordset
object’s AddNew method.

The procedure in Hands-On 16.1 demonstrates how to create an empty re-
cordset containing three fields (Name, Size, and Modified) and then populate it
with files located in a user-specified file folder.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 16.1 Creating a Custom Recordset (ADO)

1. Start Microsoft Access and create a new database named Chap16.accdb in
your C:\VBAAccess2019_ByExample folder.

USING ADVANCED ADO/DAO FEATURES 503

2. In the database window, press Alt+F11 to switch to the Visual Basic Editor
window.

3. In the Visual Basic Editor window, choose Tools | References. In the References
dialog box, locate and select Microsoft ActiveX Data Objects 6.1 Library (or
an earlier version) and then click OK to close this dialog box.

4. In the Visual Basic Editor window, choose Insert | Module.
5. In the module’s Code window, type the following Custom_Recordset

procedure:
Sub Custom_Recordset()
 Dim rst As ADODB.Recordset
 Dim strFile As String
 Dim strPath As String
 Dim strFolder As String

 Const MyFolder = "C:\VBAAccess2019_ByExample"
 strPath = InputBox("Enter pathname, e.g., " & MyFolder, _
 "Enter the Folder Name", MyFolder)
 If Right(strPath, 1) <> "\" Then strPath = strPath & "\"
 strFolder = strPath
 strFile = Dir(strPath & "*.*")
 If strFile = "" Then
 MsgBox "This folder does not contain files."
 Exit Sub
 End If
 Set rst = New ADODB.Recordset
 ' Create an empty recordset with 3 fields
 With rst
 Set .ActiveConnection = Nothing
 .CursorLocation = adUseClient
 With .Fields
 .Append "Name", adVarChar, 255
 .Append "Size", adDouble
 .Append "Modified", adDBTimeStamp
 End With
 .Open
 Do While strFile <> ""
 If strFile = "" Then Exit Do
 ' Add a new record to the recordset
 .AddNew Array("Name", "Size", "Modified"), _
 Array(strFile, FileLen(strFolder & strFile), _
 FileDateTime(strFolder & strFile))
 strFile = Dir
 Loop

504 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .MoveFirst
 ' Print the contents of the recordset
 ' to the Immediate window
 Do Until .EOF
 Debug.Print !Name & vbTab & !Size & vbTab & !Modified
 .MoveNext
 Loop
 .Close
 End With
 Set rst = Nothing
End Sub

6. Choose Run | Run Sub/UserForm to execute the procedure.
In the Custom_Recordset procedure, we start by creating a Recordset object
variable. To tell ADO that your recordset is not connected to any database,
we set the ActiveConnection property of the Recordset object to Nothing.
We also set the CursorLocation property to adUseClient to indicate that the
processing will occur on the client machine as opposed to the database server.
Next, we determine what columns the recordset should contain and add these
columns to the Recordset’s Fields collection by using the Append method.
Once the structure of your recordset is defi ned, you can call the Open method
to actually open your custom recordset. Now you can populate the recordset
with the data you want. We obtain the data by looping through the folder the
user specifi ed in the input box and reading the information about each fi le. Th e
VBA FileLen function is used to retrieve the size of a fi le in bytes. Another
VBA function, FileDateTime, is used to retrieve the date and time a fi le was
last modifi ed. To retrieve the date and time separately, use the FileDateTime
function as an argument of the DateValue or TimeValue functions.
 Check the following statements in the Immediate window while stepping
through the Custom_Recordset procedure:

? DateValue(FileDateTime(myFolder & myFile))
? TimeValue(FileDateTime(myFolder & myFile))

Now that the recordset is fabricated and populated with the required data,
you can display its contents in the Immediate window or send the output to
another application. You can also save the recordset to a disk fi le as explained
later in this chapter.

USING ADVANCED ADO/DAO FEATURES 505

DISCONNECTED RECORDSETS

In the previous section, you learned how to create a recordset from scratch.
This recordset had a structure custom-defined by you and was populated with
data that did not come from a database. In other words, it was a disconnected
recordset that was defined on the fly. A disconnected recordset is a recordset that
is not connected to a data source. A disconnected recordset can be defined pro-
grammatically (as you saw in Hands-On 16.1) or it can get its information from
the data source (as shown in Hands-On 16.2).

Using disconnected recordsets allows you to connect to a database, retrieve
some records, return the records to the client, and then disconnect from the
database. By keeping your connection to a database open just long enough to
obtain the required data, you can help conserve valuable server resources. You
can work with the disconnected recordset offline and then connect to the data-
base again to add your changes.

To get started using disconnected recordsets, perform Hands-On 16.2. The
example procedure retrieves some data from the Orders table in the Northwind
database, then disconnects from the database. While disconnected from the da-
tabase, you can manipulate and examine the content of the retrieved recordset.

 Hands-On 16.2 Creating a Disconnected Recordset (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following Rst_Disconnected procedure:

Sub Rst_Disconnected()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strConn As String
 Dim strSQL As String
 Dim strRst As String
 Dim strFilePath As String
 Dim strFile As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strFile = "Northwind.mdb"
 strSQL = "SELECT * FROM Orders WHERE " & _
 "CustomerID = 'VINET'"
 strFilePath = strPath & strFile

 strConn = "Provider=Microsoft.Jet.OLEDB.4.0;"

506 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strConn = strConn & "Data Source = " & strFilePath
 Set conn = New ADODB.Connection
 conn.ConnectionString = strConn
 conn.Open

 Set rst = New ADODB.Recordset
 Set rst.ActiveConnection = conn

 ' retrieve the data
 rst.CursorLocation = adUseClient
 rst.LockType = adLockBatchOptimistic
 rst.CursorType = adOpenStatic
 rst.Open strSQL, , , , adCmdText

 ' disconnect the recordset
 Set rst.ActiveConnection = Nothing

 ' change the CustomerID in the first
 ' record to 'OCEAN'
 rst.MoveFirst
 Debug.Print rst.Fields(0) & " was previously: " _
 & rst.Fields(1)
 rst.Fields("CustomerID").Value = "OCEAN"
 rst.Update

 ' stream out the recordset as
 ' a comma-delimited string
 strRst = rst.GetString(adClipString, , ",")
 Debug.Print strRst
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Notice that to create a disconnected recordset that gets its data from a data source,
you need to set the CursorLocation, LockType, and CursorType properties
of the Recordset object. CursorLocation should be set to adUseClient. Th is
setting indicates that the cursor will reside on the client computer that is
creating the recordset. Set LockType to adLockBatchOptimistic to enable
multiple records to be updated. Finally, set CursorType to adOpenStatic to
retrieve the snapshot of the data.
 To disconnect a recordset, you must set the Recordset object’s ActiveCon-
nection property to Nothing aft er you’ve called the Recordset’s Open method.

USING ADVANCED ADO/DAO FEATURES 507

 When the recordset is disconnected from the database, you can freely ma-
nipulate its data or pass it to another application or process. In this example
procedure, we manipulate our recordset by changing the value of the Custom-
erID fi eld in the fi rst retrieved record from VINET to OCEAN. Th en we cre-
ate a comma-delimited string using the Recordset object’s GetString method.
Th e content of the disconnected recordset is then printed out to the Immediate
window, as shown here:

10274 was previously: VINET
10274,OCEAN,6,8/6/1996,9/3/1996,8/16/1996,1,6.01,Vins et
alcools Chevalier,59 rue de l'Abbaye,Reims,,51100,France
10295,VINET,2,9/2/1996,9/30/1996,9/10/1996,2,1.15,Vins et
alcools Chevalier,59 rue de l'Abbaye,Reims,,51100,France
10737,VINET,2,11/11/1997,12/9/1997,11/18/1997,2,7.79,Vins et
alcools Chevalier,59 rue de l'Abbaye,Reims,,51100,France
10739,VINET,3,11/12/1997,12/10/1997,11/17/1997,3,11.08,Vins et
alcools Chevalier,59 rue de l'Abbaye,Reims,,51100,France

SAVING A RECORDSET TO DISK

The ADO has a Save method that allows you to save a recordset to disk and
work with it from your VBA application. This method takes two parameters.
You must specify a filename and one of the following two data formats:

 ● adPersistADTG—Advanced Data TableGram
 ● adPersistXML—Extensible Markup Language

A saved (or persisted) recordset is a recordset that is saved to a file. This file can
later be reopened without an active connection.

In this section, you will persist a recordset into a file using the adPersistADTG
format. You will work with the adPersistXML format in Chapter 31, “XML
Features in Access 2019.”

To save a recordset in a file, you must first open it. When you have applied
a filter to a recordset and then decide to save that recordset, only the filtered
records will be saved. Using the Save method does not close the recordset. You
can continue to work with the recordset after it has been saved. However, always
remember to close the recordset when you are done working with it.

The procedure in Hands-On 16.3 opens the recordset based on the Custom-
ers table. Once the recordset is open, the Save method is called to persist the
customer records into a file.

508 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 16.3 Saving Records to a Disk File (ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following SaveRecordsToDisk proce-

dure:
Sub SaveRecordsToDisk()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strFileName As String
 Dim strNorthPath As String

 strFileName = CurrentProject.Path & "\Companies.rst"
 strNorthPath = CurrentProject.Path & "\Northwind.mdb"

 On Error GoTo ErrorHandler

 Set conn = New ADODB.Connection

 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = "Data Source = " & strNorthPath
 .Mode = adModeReadWrite
 .Open
 End With

 Set rst = New ADODB.Recordset
 With rst
 .CursorLocation = adUseClient
 ' Retrieve the data
 .Open "Customers", conn, _
 adOpenKeyset, adLockBatchOptimistic, adCmdTable

 ' Disconnect the recordset
 .ActiveConnection = Nothing

 ' Save the recordset to disk
 .Save strFileName, adPersistADTG
 .Close
 End With

 MsgBox "Records were saved in " & strFileName & "."
ExitHere:
 ' Cleanup
 Set rst = Nothing
Exit Sub

USING ADVANCED ADO/DAO FEATURES 509

ErrorHandler:
 If Not IsEmpty(Dir(strFileName)) Then
 Kill strFileName
 Resume
 Else
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure saves all the data located in the Customers table to a fi le with
an .rst extension. We named this fi le Companies.rst, but you are free to choose
any fi lename and extension while saving your recordset.

Persisted recordsets are very useful for populating combo boxes or listboxes,
especially when the data is located on a server and does not change too often.
You can update your data as needed by running a procedure that creates a new
dump of the required records and deletes the old disk file. This way, your Access
application can display the most recent data in its combo boxes or listboxes
without having to connect to a database. Let’s look at how you can fill a combo
box with a saved recordset by working with Custom Project 16.1.

 Custom Project 16.1 Filling a Combo Box with a Disconnected
Recordset (ADO)

This custom project requires that you complete Hands-On 16.2.

1. Create an Access form as shown in Figure 16.1. Place a combo box control in
the form. Change the Name property of this control to cboCompany and set
the Caption property of the label control to Company:

FIGURE 16.1 This custom form is used to demonstrate how you can fill the combo box control
with a disconnected recordset.

510 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Set the form’s Caption property to Disconnected combo.
3. Save the form as frmFillCombo.
4. In the form’s property sheet, activate the Event tab and click the button next

to the On Load event name. In the Choose Builder dialog box, select Code
Builder and click OK.

5. Complete the Form_Load procedure as shown here:
Private Sub Form_Load()
 Dim rst As ADODB.Recordset
 Dim strRowSource As String
 Dim strName As String

 strName = CurrentProject.Path & "\Companies.rst"

 Set rst = New ADODB.Recordset
 With rst
 .CursorLocation = adUseClient
 .Open strName, , , , adCmdFile
 Do Until .EOF
 strRowSource = strRowSource & rst!CompanyName & ";"
 .MoveNext
 Loop
 With Me.cboCompany
 .RowSourceType = "Value List"
 .RowSource = strRowSource
 End With

 .Close
 End With
 Set rst = Nothing
End Sub

6. Open the frmFillCombo form in Form view.
To populate a combo box with values, the code in the Form_Load procedure
changes the RowSourceType property of the combo box control to Value List
and sets the RowSource property to the string obtained by iterating though
the recordset. When the form opens, its caption is changed to Disconnected
combo, as shown in Figure 16.2.

USING ADVANCED ADO/DAO FEATURES 511

FIGURE 16.2 After opening the form prepared in Custom Project 16.1, the combo box is filled with
the names of companies obtained via a persisted recordset.

7. Close the Disconnected combo (frmFillCombo) form.

Persisted recordsets are especially handy when you need to support discon-
nected users or when you want to take data on the road with you. You can save
the required set of records to a disk file, send it to your users in remote locations,
or take it with you. While disconnected from the database, you or your users
can view or modify the records. The next time you connect to the database you
can update the original data with your changes using the BatchUpdate method.
Custom Project 16.2 demonstrates this scenario.

 Custom Project 16.2 Taking Persisted Data on the Road

This custom project requires that you complete Hands-On 16.2.

Part 1: Saving a Recordset to Disk

Before you can take a recordset on the road with you, you must save the records
to a disk file. To create the data for this project, prepare and run the procedure

512 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

in Hands-On 16.3. You should have the Companies.rst file available in your C:\
VBAAccess2019_ByExample folder before you proceed to Part 2.

Part 2: Creating an Unbound Access Form to View and Modify Data

Once you’ve saved the recordset to a disk file, the recordset becomes portable.
You can take the file with you on the road or send it to someone else. Before
either one of you can view the data and modify it, however, you need some sort
of a user interface. In this part, you will create an unbound Access form that will
enable you to work with the file that contains the saved recordset.

1. Create a form as shown in Figure 16.3. Notice that this form contains only a
couple of fields from the Customers table. This form serves only as an example.
You can use as many fields as you have saved in the disk file.

FIGURE 16.3 This custom form is used to demonstrate how you can use the saved recordset in an
unbound form.

2. Set the following properties for the form’s controls:
Object Property Setting
Label1 Caption Company Name:
Text box next to the Company Name label Name txtCompany
Label2 Caption City:
Text box next to the City label Name

Back Color
txtCity
Select any color you like

Label3 Caption Country:
Text box next to the Country label Name txtCountry
Label4 Caption

Name
90
lbRecordNo

Command button 1 Caption
Name

First
cmdFirst

USING ADVANCED ADO/DAO FEATURES 513

Object Property Setting
Command button 2 Caption

Name
Previous
cmdPrevious

Command button 3 Caption
Name

Next
cmdNext

Command button 4 Caption
Name

Last
cmdLast

NOTE
We have set the Back Color property of the txtCity text box in
the example application to visually indicate that the user can
update only this field’s data.

3. To visually match the form in Figure 16.3, draw a rectangle control over the
command buttons and set its Back Color property to any color you like. Select
the rectangle and choose Arrange | Send to Back to move the rectangle behind
the command buttons.

4. In the property sheet, select Form from the drop-down list and activate the
Format tab. Set the following properties for the form:

Property Name Setting
Scroll Bars Neither
Record Selectors No
Navigation Buttons No

5. Save the form as frmCompanyInfo.

Part 3: Writing Procedures to Control the Form and Its Data

Now that you’ve designed the form for your data, you need to write a couple
of VBA procedures. The first procedure you’ll write is an event procedure for
the Form_Load event. This procedure will load the form with data from the
persisted file. You will start by declaring a module-level Recordset object vari-
able called rst and a module-level Integer variable called counter. You will
also write Click procedures for all the command buttons and a procedure to fill
the text boxes with the data from the current record in the recordset. Let’s get
started!

1. In the form’s property sheet, activate the Event tab and click the Build button
next to the On Load event name. In the Choose Builder dialog box, select
Code Builder and click OK.

514 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Enter the code for the Form_Load event procedure as shown here, starting
with the declaration of module-level variables:
Dim rst As ADODB.Recordset
Dim counter As Integer

Private Sub Form_Load()
 Dim strFileName As String

 strFileName = CurrentProject.Path & "\Companies.rst"
 On Error GoTo ErrorHandler

 Set rst = New ADODB.Recordset
 With rst
 .CursorLocation = adUseClient
 .Open strFileName, , adOpenKeyset, _
 adLockBatchOptimistic, adCmdFile
 End With

 counter = 1
 Call FillTxtBoxes(rst, Me)

 With Me
 .txtCompany.SetFocus
 .cmdFirst.Enabled = False
 .cmdPrevious.Enabled = False
 .lbRecordNo.Caption = counter
 End With
 ExitHere:
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

Th e Form_Load event procedure loads Companies.rst from a disk fi le. To fi ll
the text boxes with the data from the current record in the recordset, you need
to write the following code:

With Me
 .txtCompany = rst!CompanyName
 .txtCity = rst!City
 .txtCountry = rst!Country
End With

USING ADVANCED ADO/DAO FEATURES 515

Because the preceding code will need to be entered in several procedures in
this application, you can save yourself a great deal of typing by placing this
code in a subroutine and calling it like this:

Call FillTxtBoxes(rst, Me)

Th is statement calls the subroutine named FillTxtBoxes and passes it two
arguments: the Recordset object variable and the reference to the current
form. Th e FillTxtBoxes procedure (see Step 3) is entered in a standard module
and contains the code shown in the next step.
 Th e counter variable, which was declared at the module level, is initialized
to the value of 1. We will use this variable to control the display of command
buttons on the form. Th e Form_Load event procedure ends by setting the focus
to the fi rst text box (txtCompanyName) and disabling the fi rst two command
buttons. Th ese buttons will not be required when the form fi rst opens on the
fi rst record.

3. In the Visual Basic Editor Code window, choose Insert | Module and type the
code of the following FillTxtBoxes procedure:
Sub FillTxtBoxes(ByVal rst As ADODB.Recordset, frm As Form)
 With frm
 .txtCompany = rst!CompanyName
 .txtCity = rst!City
 .txtCountry = rst!Country
 End With
End Sub

Th is procedure fi lls the three text boxes on the form with the data from the
current record in the recordset. Th is procedure is called from the Form_Load
event procedure and the Click event procedures for each command button.

4. In the Form_frmCompanyInfo Code window, type the following Click event
procedure for the First command button:
Private Sub cmdFirst_Click()
 On Error GoTo Err_cmdFirst_Click

 rst.Update "City", Me.txtCity
 rst.MoveFirst

516 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Call FillTxtBoxes(rst, Me)

 With Me
 .txtCompany.SetFocus
 .cmdFirst.Enabled = False
 .cmdLast.Enabled = True
 .cmdPrevious.Enabled = False
 .cmdNext.Enabled = True
 counter = 1
 .lbRecordNo.Caption = counter
 End With
 Exit_cmdFirst_Click:
 Exit Sub
Err_cmdFirst_Click:
 MsgBox Err.Description
 Resume Exit_cmdFirst_Click
End Sub

5. In the Form_frmCompanyInfo Code window, type the following Click event
procedure for the Next command button:
Private Sub cmdNext_Click()
 On Error GoTo Err_cmdNext_Click

 rst.Update "City", Me.txtCity
 rst.MoveNext
 counter = counter + 1

 Me.cmdFirst.Enabled = True

 Call FillTxtBoxes(rst, Me)

 Me.cmdPrevious.Enabled = True
 Me.lbRecordNo.Caption = counter
 Me.txtCompany.SetFocus
 If counter = rst.RecordCount Then
 Me.cmdNext.Enabled = False
 Me.cmdLast.Enabled = False
 End If

 Exit_cmdNext_Click:
 Exit Sub
Err_cmdNext_Click:
 MsgBox Err.Description
 Resume Exit_cmdNext_Click
End Sub

USING ADVANCED ADO/DAO FEATURES 517

6. In the Form_frmCompanyInfo Code window, type the following Click event
procedure for the Previous command button:
Private Sub cmdPrevious_Click()
 On Error GoTo Err_cmdPrevious_Click

 rst.Update "City", Me.txtCity
 rst.MovePrevious
 counter = counter - 1

 Call FillTxtBoxes(rst, Me)

 With Me
 .txtCompany.SetFocus
 .cmdLast.Enabled = True
 .cmdNext.Enabled = True
 .lbRecordNo.Caption = counter
 End With
 If counter = 1 Then
 Me.cmdFirst.Enabled = False
 Me.cmdPrevious.Enabled = False
 End If

 Exit_cmdPrevious_Click:
 Exit Sub
Err_cmdPrevious_Click:
 MsgBox Err.Description
 Resume Exit_cmdPrevious_Click
End Sub

In the Form_frmCompanyInfo Code window, type the following Click event
procedure for the Last command button:

Private Sub cmdLast_Click()
 On Error GoTo Err_cmdLast_Click

 rst.Update "City", Me.txtCity
 rst.MoveLast

 Call FillTxtBoxes(rst, Me)

 With Me
 .txtCompany.SetFocus
 .cmdFirst.Enabled = True
 .cmdPrevious.Enabled = True
 .cmdLast.Enabled = False

518 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .cmdNext.Enabled = False
 End With
 counter = rst.RecordCount
 Me.lbRecordNo.Caption = counter
 Exit_cmdLast_Click:
 Exit Sub
Err_cmdLast_Click:
 MsgBox Err.Description
 Resume Exit_cmdLast_Click
End Sub

Notice that all the Click event procedures you prepared in Steps 4–7 contain
the following line of code:

rst.Update "City", Me.txtCity

Th is statement updates the value of the City fi eld in the recordset with the
current value found in the txtCity text box on the form as you move through the
records. Although the user can enter data in other text boxes, all modifi cations
are ignored as there is no code in the Click event procedures that will allow
changes to fi elds other than City. Of course, you can easily change this behavior
by adding the necessary lines of code. Depending on which button was clicked,
certain command buttons are disabled and others are enabled. Th is gives the
user a visual clue of what actions are allowed at a particular moment.
 To make the form work, we need to write one more event procedure. Before
closing the form, we must make sure that the changes to the City fi eld in
the current record are saved and all changes in the City fi eld we made while
working with the form data are written back to the disk fi le. In other words,
we must replace the Companies.rst disk fi le with a new fi le. Th is is done in the
Form_Unload event procedure as shown in Step 8.

7. In the Form_frmCompanyInfo Code window, type the code of the Form_
Unload event procedure as shown here:
Private Sub Form_Unload(Cancel As Integer)
 If rst.Fields("City").OriginalValue <> Me.txtCity Then
 rst.Update "City", Me.txtCity
 End If
 Kill (CurrentProject.Path & "\Companies.rst")
 rst.Save CurrentProject.Path & "\Companies.rst", _
 adPersistADTG
End Sub

ADO Recordsets have a special property called OriginalValue, which is used
for storing original values that were retrieved from a database. Th ese original

USING ADVANCED ADO/DAO FEATURES 519

values are left unchanged while you edit the recordset offl ine. Any changes to
the data made locally are recorded using the Value property of the Recordset
object. Th e OriginalValue property is updated with the values changed locally
when you reconnect to the database and perform an UpdateBatch operation
(see Part 5 in this custom project).
 Th e Form_Unload event occurs when you attempt to close a form but before
the form is actually removed from the screen. Th is is a good place to perform
those operations that must be executed before the form is closed. In the Form_
Unload procedure, we use the Recordset’s OriginalValue property to check
whether changes were made to the content of the City fi eld in the current
record. If OriginalValue is diff erent from the value found in the current record’s
txtCity text box, we want to save the record by using the Update method of the
recordset. Next, we delete the fi le containing the original recordset and save
the current recordset to a fi le with the same name.

Part 4: Viewing and Editing Data Offline

Now that you’ve written all the procedures for the custom application, let’s begin
using the form to view and edit the data.

1. Open the frmCompanyInfo form in Form view.
2. In the first record, replace Berlin with Drezden.
3. Click the Last button, and replace Warszawa with Opole.
4. Click the First button and notice that the value of City is Drezden, just as you

changed it in Step 2.
5. Use the Next button to move to the fourth record and replace London with

Dover.
6. Close the form and then reopen it. Check the values in the City text box in the

first, fourth, and last records. You should see Drezden, Dover, and Opole.
7. Close the frmCompanyInfo form.

Part 5: Connecting to a Database to Update the Original Data

After you’ve made changes to the data by using the custom form, you can send
the file with the modified recordset to your database administrator so that he
can update the underlying database with your changes. Let’s write a procedure
that will take care of this task.

520 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

The procedure that you are about to write will modify the
Customers table in the Northwind database. I recommend that
you take a few minutes now and create a copy of this database
so that you can restore the original data later if necessary.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, type the following UpdateDb procedure:

Sub UpdateDb()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim strNorthPath As String
 Dim strRecStat As String

 On Error GoTo ErrorHandler
 strNorthPath = CurrentProject.Path & "\Northwind.mdb"

 ' Open the connection to the database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = "Data Source = " & strNorthPath
 .Mode = adModeReadWrite
 .Open
 End With

 ' Open the recordset from the local file
 ' that was persisted to the hard drive
 ' and update the data source with the changes
 Set rst = New ADODB.Recordset
 With rst
 .CursorLocation = adUseClient
 .Open CurrentProject.Path & "\Companies.rst", conn, _
 adOpenKeyset, adLockBatchOptimistic, adCmdFile
 .UpdateBatch adAffectAll

 ' Check if there were records with conflicts
 ' during the update
 .Filter = adFilterAffectedRecords
 Do Until .EOF

 strRecStat = strRecStat & " " & rst!City & ":" & rst.Status
 .MoveNext
 Loop

USING ADVANCED ADO/DAO FEATURES 521

 .Close
 Debug.Print strRecStat
 End With

 ExitHere:
 Set rst = Nothing
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
In the UpdateDb procedure, we used the UpdateBatch method of the ADO
Recordset object to update the underlying database with the changes we made
to the data while working with it offl ine. Th e UpdateBatch method takes an
optional parameter that determines how many records will be aff ected by the
update. Th is parameter can be one of the constants shown in Table 16.1.

TABLE 16.1 Enumerated constants used with the UpdateBatch method

Constant Value Description
adAffectCurrent 1 Pending changes will be written only for the current

record.
adAffectGroup 2 Pending changes will be written for the records that satisfy

the current filter.
adAffectAll 3 Pending changes will be written for all the records in the

recordset. This is the default.

When you update the data, your changes are compared with values that
are currently in the database. Th e update will fail if the record was deleted
or updated in the underlying database since the recordset was saved to disk.
Th erefore, aft er calling the UpdateBatch method, you should check the status
of the records to locate records with confl icts. To do this, we must fi lter the
recordset to see only the aff ected records:

rst.Filter = adFilterAffectedRecords

Next, we loop through the recordset and check the Status property of each
record. Th is property can return diff erent values, as shown in Table 16.2. You
can locate these values in the Object Browser by typing RecordStatus Enum in
the Search box.

522 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 16.2 RecordStatusEnum constants returned by the Status property

Constant Value Description
adRecCanceled 256 The record was not saved because the

operation was canceled.
adRecCantRelease 1024 The new record was not saved because

the existing record was locked.
adRecConcurrencyViolation 2048 The record was not saved because opti-

mistic concurrency was in use.
adRecDBDeleted 262144 The record has already been deleted

from the data source.
adRecDeleted 4 The record was deleted.
adRecIntegrityViolation 4096 The record was not saved because the

user violated integrity constraints.
adRecInvalid 16 The record was not saved because its

bookmark is invalid.
adRecMaxChangesExceeded 8192 The record was not saved because there

were too many pending changes.
adRecModified 2 The record was modified.
adRecMultipleChanges 64 The record was not saved because it

would have affected multiple records.
adRecNew 1 The record is new.
adRecObjectOpen 16384 The record was not saved because of a

conflict with an open storage object.
adRecOK 0 The record was successfully updated.
adRecOutOfMemory 32768 The record was not saved because the

computer has run out of memory.
adRecPendingChanges 128 The record was not saved because it

refers to a pending insert.
adRecPermissionDenied 65536 The record was not saved because the

user has insufficient permissions.
adRecSchemaViolation 131072 The record was not saved because it

violates the structure of the underlying
database.

adRecUnmodified 8 The record was not modified.

While iterating through the recordset you can add additional code to resolve
any encountered confl icts or check, for example, the original value and the
updated value of the fi elds in updated records. As mentioned earlier, the

USING ADVANCED ADO/DAO FEATURES 523

OriginalValue property returns the fi eld value that existed prior to any
changes (since the last Update method was called). You can cancel all pending
updates by using the CancelBatch method.
When you execute the UpdateDb procedure, your changes are written to the
database.

4. Open the Northwind database and review the content of the City field in
the Customers table. You should see Drezden, Dover, and Opole in the first,
fourth, and last records.

5. Close the Northwind database and the Access window in which it was
displayed. Do not close the Chap16.accdb database.

This completes Custom Project 16.2 in which you learned how to:

 ● Save the recordset to disk with the Save method
 ● Create a custom form to view and edit the recordset data in the disk fi le
 ● Open the recordset from disk with the Open method
 ● Work with the recordset offl ine (view and edit data)
 ● Reopen the connection to the original database and write your changes

with the UpdateBatch method

NOTE
Refer to Chapter 31, “XML Features in Access 2019” to find out
how you can save a recordset in XML format using the adPer-
sistXML format.

CLONING A RECORDSET

Sometimes you may want to manipulate a recordset without losing the current
position in the recordset. You can do this by cloning your original recordset. Use
the ADO Clone method to create a recordset that is a copy of another recordset.
You can create a recordset clone like this:
Dim rstOrg As ADODB.Recordset ' your original recordset
Dim rstClone As ADODB.Recordset ' cloned recordset

Set rstClone = rstOrg.Clone

As you can see from the assignment statement, the rstClone object variable
contains a reference to the original recordset. After you’ve used the Clone
method, you end up with two copies of the recordset that contain the same

524 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

records but can be filtered and manipulated separately. You can create more
than one clone of the original recordset.

Use the Clone method when you want to perform an operation on a re-
cordset that requires multiple current records. The Clone object and the origi-
nal Recordset object each have their own current records; therefore, the record
pointers in the original and cloned recordsets can move independently of one
another. And, because the clone points to the same set of data as the original,
any changes made using either the original recordset or any of its clones will
be visible in the original and its clones. However, the original recordset and
its clones can get out of sync if you requery the original recordset against the
database. When you close the original recordset, the clones remain open until
you close them. Closing any of the clones does not close the original recordset.

Because the Clone method does not create another copy of the data (it only
points to the data), cloning a recordset is faster and more efficient than opening
a second recordset based on the same criteria. A recordset created by a method
other than cloning will have a different set of bookmarks than the original re-
cordset, even when it is based on the same SQL statement.

You can make a clone read-only by using an optional parameter like this:
Set rstClone = rstOrg.Clone(adLockReadOnly)

It’s worth mentioning that you can only clone bookmarkable recordsets. Use the
Recordset object’s Supports method to find out if the recordset supports book-
marks (see the “Using Bookmarks” section in Chapter 13). If you try to clone a
non-bookmarkable recordset, you will receive a runtime error. The clone and
the original recordset have the same bookmarks, which you can share. A book-
mark reference from one Recordset object refers to the same record in any of
its clones.

Custom Project 16.3 demonstrates how the Clone method can be used to
create a single form for displaying the current and previous records side by side
(see Figure 16.4).

 Custom Project 16.3 Displaying the Contents of the Current and
Previous Record by Using the Clone Method

1. In the Microsoft Access window of the Chap16.accdb database, choose
External Data | Access. In the File name box of the Get External Data dialog
box, enter C:\VBAAccess2019_ByExample\Northwind.mdb, and then click
OK. In the Import Objects window, select the Customers table and click OK.
Click Close to exit the Get External Data dialog box.

USING ADVANCED ADO/DAO FEATURES 525

2. Choose Create | Form Design and create a form like the one depicted in
Figure 16.4. The following steps will help you set up the form and its control
properties.

FIGURE 16.4 This custom form is used to demonstrate how the recordset cloning is used to read
the contents of the previous record.

3. In the Controls area of the Design tab, click the Combo Box control and click
inside the form area to position it at the upper right as shown in Figure 16.4. In
the Combo Box Wizard’s first screen, choose the option button labeled I want
the combo box to look up the values in a table or query. Click Next. Make
sure the Customers table is selected and click Next. The fields available in
the Customers table should appear. Move CustomerID and CompanyName
from the Available Fields box to the Selected Fields box, and then click Next.
Specify CompanyName as the Ascending sort order for your combo box, and
then click Next. In the next wizard dialog, adjust the width of the combo box
column to fit the longest company name and click Finish. Now you should see
the combo box placed on your form.

4. Place the remaining controls on the form and set their properties as shown in
the following table (properties of controls that are not listed do not need to be
set for this example to work):

Object Property Setting
Label1 (in front of the combo box) Caption

Tag
Select Company Name:
Cbo

Combo0 (created by the Combo Box
Wizard)

Name
Tag

CboCompany
Cbo

526 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Object Property Setting
Label2 Caption

Tag
Previous Record
PrevRec

Label3 Caption Current Record
Rectangle: Box1 Tag PrevRec
Label4 (in front of Text box 1) Caption

Tag
Customer ID:
PrevRec

Text box 1 Name
Tag
Control Source

CustIdPrev
PrevRec
should be blank

Label5 (in front of Text box 2) Caption
Tag

Company Name:
PrevRec

Text box 2 Name
Tag
Control Source

CompanyPrev
PrevRec
should be blank

Label6 (in front of Text box 3) Caption
Tag

Contact Name:
PrevRec

Text box 3 Name
Tag
Control Source

ContactPrev
PrevRec
should be blank

Label7 (in front of Text box 4) Caption
Tag

Contact Title:
PrevRec

Text box 4 Name
Tag
Control Source

TitlePrev
PrevRec
should be blank

Label8 (in front of Text box 5) Caption Customer ID:
Text box 5 Name

Control Source
CustomerID
CustomerID

Label9 (in front of Text box 6) Caption Company Name:
Text box 6 Name

Control Source
CompanyName
CompanyName

Label10 (in front of Text box 7) Caption Contact Name:
Text box 7 Name

Control Source
ContactName
ContactName

Label11 (in front of Text box 8) Caption Contact Title:
Text box 8 Name

Control Source
ContactTitle
ContactTitle

USING ADVANCED ADO/DAO FEATURES 527

5. In the property sheet, select Form from the drop-down box and set the
following form properties:

Property Name Setting
Caption Record Comparison
Scroll Bars Neither
Record Selectors No
Navigation Buttons No

6. Save the form as frmCompare.
7. Click the combo box control on the form to select it. Activate the Event tab in

the property sheet and click to the right of the AfterUpdate event name. Select
[Event Procedure] from the drop-down box, and then click the Build button
(…) to activate the Code window. Complete the cboCompany_AfterUpdate
procedure shown here:
Private Sub cboCompany_AfterUpdate()
 ' Find the record that matches the control.
 Dim rs As Object
 Dim c As Control

 On Error GoTo ErrHandle

 Set rs = Me.Recordset.Clone
 rs.FindFirst "[CustomerID] = '" & Me![cboCompany] & "'"
 If Not rs.EOF Then Me.Bookmark = rs.Bookmark
 ' Move to the previous record in the clone
 ' so that we can load the previous records'
 ' data in the form's text boxes
 rs.MovePrevious
 If Not rs.BOF Then
 For Each c In Me.Controls
 c.Visible = True
 Next
 With Me
 .CustIdPrev = rs.Fields(0).Value
 .CompanyPrev = rs.Fields(1)
 .ContactPrev = rs.Fields(2)
 .TitlePrev = rs.Fields(3)
 End With
 Else
 For Each c In Me.Controls
 If c.Tag = "PrevRec" Then
 c.Visible = False

528 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 End If
 Next
 End If
 ExitHere:
 Exit Sub
ErrHandle:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

Notice that this event procedure begins by creating a clone of the form’s
recordset. Next, the FindFirst method is used to locate the customer record
based on the entry selected in the combo box. To ensure that the form’s record
is in sync with the entry selected in the combo box, the following line of
code moves the form’s bookmark to the same location as the recordset clone’s
bookmark as long as we are not at the end of fi le (EOF):

If Not rs.EOF Then Me.Bookmark = rs.Bookmark

Next, the procedure ensures that the controls used to display the contents of
the previous record are visible whenever the selected record is not the fi rst
record. Th e control’s Tag property is used to allow easy selection of controls
that need to be hidden or made visible.

8. Press Ctrl+S to save the current changes.
9. Test your form by opening it in Form view. Selecting a company name from

the combo box should fill the text boxes under the Current Record label with
the selected company’s data. The boxes under the Previous Record label should
pull company data from the previous record.
Before we start working with this custom project, let’s write a Form_Load
event procedure to ensure that only the combo box and its label are visible
when the form is opened.

10. In the Code window where you have written the cboCompany_AfterUp date
event procedure, select Form from the object drop-down box in the top-left
corner. Select Load from the procedure drop-down box on the right. Complete
the code for the Form_Load event procedure as shown here:
Private Sub Form_Load()
 Dim c As Control

 For Each c In Me.Controls
 If c.Tag <> "cbo" Then
 c.Visible = False
 End If

USING ADVANCED ADO/DAO FEATURES 529

 Next
End Sub

11. Make sure there are no errors in your code by choosing Debug | Compile
Chap16.

12. Save and close your form.
13. Open the frmCompare form in the Form view and test it by choosing various

company names from the combo box.
14. Close the form.

Think of ways to improve this form. For example, add a set of controls and
write additional code to display the next record.

INTRODUCTION TO DATA SHAPING

Designing database applications often requires that you pull information from
multiple tables. For instance, to obtain a listing of customers and their orders,
you must link the required tables with SQL JOIN statements as shown here:
SELECT Customers.CustomerID AS [Cust Id],
 Customers.CompanyName,
 Orders.OrderDate,
 [Order Details].OrderID,
 Products.ProductName,
 [Order Details].UnitPrice,
 [Order Details].Discount,
 CCur([Order Details].[UnitPrice]*[Quantity]*(1-
[Discount])/100)*100
 AS [Extended Price]
FROM Products
 INNER JOIN ((Customers
 INNER JOIN Orders ON Customers.CustomerID = Orders.CustomerID)
 INNER JOIN [Order Details]
 ON Orders.OrderID = [Order Details].OrderID)
 ON Products.ProductID = [Order Details].ProductID
 ORDER BY Customers.CustomerID, Orders.OrderDate DESC;

When you execute this SQL statement in the Northwind.mdb database, your
output will match Figure 16.5.

530 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 16.5 When you use SQL JOIN statements you get a flat recordset with a lot of duplicate
information.

When you output your data in a standard way by using the SQL JOIN syntax,
you get a lot of duplicate information. You can eliminate this redundant infor-
mation by using an advanced feature of ADO known as a shaped (or hierarchi-
cal) recordset.

Data shaping allows you to create recordsets within recordsets with a sin-
gle ADO object. This sort of hierarchical data arrangement is often seen as a
parent-child relationship. The parent recordset contains the child recordset. A
child recordset can contain another child recordset, which is a grandchild of the
original recordset. A parent-child relationship can be placed in an easy-to-read
tree structure. You will produce such a structure in Custom Project 16.4 later in
this chapter. For now, let’s focus on learning some new concepts that will enable
you to present your data in a format that’s easy to view and navigate.

Writing a Simple SHAPE Statement

You can easily create a hierarchy of data by using a data shaping language. All
you need to know is how to use the following three commands: SHAPE, APPEND,
and RELATE. The basic syntax looks like this:
SHAPE {parent-command}
APPEND ({child-command} [[AS] table-alias]
RELATE (parent-column TO child-column)

parent-command and child-command are often SQL SELECT statements that
pull the data from the required tables. Let’s look at the following example that
uses the preceding syntax:
SHAPE {SELECT CustomerID AS [Cust Id],
CompanyName AS (Company) Customers}
APPEND ({SELECT CustomerId, OrderDate, OrderId,

USING ADVANCED ADO/DAO FEATURES 531

Freight FROM Orders} AS custOrders
RELATE (CustomerID TO CustomerID)

The preceding statement is a shaped recordset. This statement selects two fields
from the Customers table and four fields from the Orders table. By using this
SHAPE statement, you can list all orders for each of the customers in the Custom-
ers table without returning any redundant information.

Notice that there are two SELECT statements in this recordset:

 ● Th e fi rst SELECT statement is the parent recordset. Th is recordset retrieves
the data from the Customers table. Notice this SELECT statement is sur-
rounded by curly braces and preceded by the SHAPE command, which
defi nes a recordset.

 ● Th e second SELECT statement is the child recordset. It gets the data from
the Orders table. Notice that this SELECT statement is also surrounded by
curly braces; however, it is preceded by the APPEND clause and an opening
parenthesis. Th e APPEND clause will add the child recordset to the parent.

NOTE

When you append a child recordset to the parent recordset, a new
field (column) is created in a parent recordset. This field is called
a chapter column and has a data type called adChapter. You can
use the AS clause to assign a name to the chapter column. If the
appended column has no chapter alias, a name will be generated
for it automatically. In our example, the chapter column is called
custOrders. Always specify an alias for your child recordset if you
are planning to refer to it later in your code.

After specifying the SELECT statement for the child recordset, you must indicate
how you want the two recordsets to be linked. You do this with the RELATE
clause. The column (CustomerID) from the parent recordset is related to the
column (CustomerID) of the child recordset. Notice that you don’t have to
specify table names in the RELATE clause. Always specify the name of the parent
column first.

NOTE
The fields you use to relate parent and child recordsets must be in
both recordsets. For example, you could not relate both recordsets
if you did not select CustomerID from the Orders table.

Finally, remember to place a closing parenthesis at the end of the statement.

532 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Working with Data Shaping

To work with data shaping in your VBA procedure, you need two providers: one
for the data shaping functionality and the other for the data itself. Therefore,
before you can create shaped (hierarchical) recordsets in your programs, you
will need to specify:

 ● Th e name of a service provider
Th e data shaping functionality is provided by the data shaping service
for OLE DB. Th e name of this service provider is MSDataShape and it is
specifi ed as the value of the Connection object’s Provider property like
this:

conn.Provider = "MSDataShape"

or it can be a connection string like this:

"Provider=MSDataShape"

 ● Th e name of a data provider
Because a shaped recordset needs to be populated with rows of data, you
must specify the name of a data provider as the value of the DataProvider
property of the Connection object:

conn.DataProvider = "Microsoft.Jet.OLEDB.4.0;"

or in the connection string like this:

"Data Provider=Microsoft.Jet.OLEDB.4.0;"

The following is a code fragment from the procedure in Hands-On 16.4 that
demonstrates how to specify the names of the data and service providers:
' define database connection string
' using the OLE DB provider
' and Northwind database as Data Source

strConn = "Data Provider=Microsoft.Jet.OLEDB.4.0;"
strConn = strConn & "Data Source = " & _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"

' specify Data Shaping provider
' and open connection to the database
Set conn = New ADODB.Connection
With conn

USING ADVANCED ADO/DAO FEATURES 533

 .ConnectionString = strConn
 .Provider = "MSDataShape"
 .Open
End With

Data Shaping with Other Databases

The data shaping service creates a shaped (hierarchical) recordset from any
data supplied by a data provider. In order to provide shaped data from a data-
base other than Microsoft Access, let’s say, an SQL Server database, a connec-
tion string might look like this:
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection
conn.Open = "Provider = MSDataShape;" & _
 "Data Provider = SQLOLEDB;" & _
 "Server=myServerName;" & _
 "Initial Catalog = Northwind;" & _
 "User ID = myId; Password="

or like this:
Dim conn As ADODB.Connection
Set conn = New ADODB.Connection
conn.Provider = "MSDataShape"
conn.Open "Data Provider=SQLOLEDB; " & _
"Integrated Security=SSPI;" & _
"Database=Northwind"

In Hands-On 16.4, you learn how to create a shaped recordset in a VBA proce-
dure and display hierarchical data in the Immediate window (see Figure 16.6).

 Hands-On 16.4 Creating a Shaped Recordset (ADO)

1. In the Visual Basic Editor window of the Chap16 database, choose Insert |
Module.

2. In the module’s Code window, enter the ShapeDemo procedure shown here:
Sub ShapeDemo()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim rstChapter As Variant
 Dim strConn As String
 Dim shpCmd As String

 ' define database connection string

SIDEBAR

534 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' using the OLE DB provider
 ' and Northwind database as Data Source
 strConn = "Data Provider=Microsoft.Jet.OLEDB.4.0;"
 strConn = strConn & "Data Source = " & _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"

 ' specify Data Shaping provider
 ' and open connection to the database
 Set conn = New ADODB.Connection
 With conn
 .ConnectionString = strConn
 .Provider = "MSDataShape"
 .Open
 End With

 ' define the SHAPE command for
 ' the shaped recordset
 shpCmd = "SHAPE " & _
 "{SELECT CustomerID AS [Cust Id], " & _
 " CompanyName AS Company FROM Customers}" & _
 " APPEND ({SELECT CustomerID, OrderDate," & _
 " OrderID, Freight FROM Orders}" & _
 " AS custOrders" & _
 " RELATE [Cust Id] TO CustomerID)"

 ' create and open the parent recordset
 ' using the open connection
 Set rst = New ADODB.Recordset
 rst.Open shpCmd, conn

 ' output data from the parent recordset
 Do While Not rst.EOF
 Debug.Print rst("Cust Id"); _
 Tab; rst("Company")
 rstChapter = rst("custOrders")
 ' write out column headings
 ' for the child recordset
 Debug.Print Tab; _
 "OrderDate", "Order #", "Freight"
 ' output data from the child recordset
 Do While Not rstChapter.EOF
 Debug.Print Tab; _
 rstChapter("OrderDate"), _
 rstChapter("OrderID"), _
 Format(rstChapter("Freight"), "$ #.##")
 rstChapter.MoveNext

USING ADVANCED ADO/DAO FEATURES 535

 Loop
 rst.MoveNext
 Loop

 ' Cleanup
 rst.Close
 Set rst = Nothing
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th is procedure begins by specifying the data provider and data source name
in the strConn variable. Next, we defi ne a new ADO Connection object and
set the ConnectionString property of this object to the strConn variable. Now
that we have the data provider name and also know which database we need to
pull the data from, we specify the data shaping service provider. Th is is done
by using the Provider property of the Connection object. We set this property
to MSDataShape, which is the name of the service provider for the hierarchical
recordsets. Now we are ready to actually open a connection to the database.
Before we can pull the required data from the database, we defi ne the shaped
recordset statement and store it in the shpCmd String variable. Next, we create
a new Recordset object and open it using the open database connection. Th en,
we populate it with the content of the shpCmd variable like this:

Set rst = New ADODB.Recordset
rst.Open shpCmd, conn

Now that we have fi lled the hierarchical recordset, we begin to loop through
the parent recordset. Th e fi rst statement in the loop:

Debug.Print rst("Cust Id"); Tab; rst("Company")

will write out the customer ID (Cust Id) and the company name (Company) to
the Immediate window.
 In the second statement in the loop:

rstChapter = rst("custOrders")

we create a Recordset object variable based on the value of the custOrders field.
As you recall from an earlier discussion, custOrders is an alias for the child
recordset. The object variable (rstChapter) can be any name you like as long
as it’s not a VBA keyword.

536 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE
Because a child recordset is simply a field in a parent recordset,
when you retrieve the value of that field you will get the entire
recordset filtered to include only the related records.

Before iterating through the child recordset, the column headings are output
to the Immediate window for the fi elds we want to display. Th is way it is much
easier to understand the meaning of the data in the child recordset. Th e next
block of code loops through the child recordset and dumps the data to the
Immediate window under the appropriate column heading. Once the data is
retrieved for each parent record, we can close the recordset and release the
memory.

FIGURE 16.6 After running the ShapeDemo procedure in Hands-On 16.4, you can see the contents
of the hierarchical recordset in the Immediate window.

How to Determine If a Recordset Contains a Field Pointing to Another
Recordset

To find out if a certain recordset contains another recordset, you can use the
following conditional statement:
Dim rst as New ADODB.Recordset

If rst.Fields("custOrders").Type = adChapter then
 Debug.Print "This is a child recordset"
End If

SIDEBAR

USING ADVANCED ADO/DAO FEATURES 537

NOTE custOrders is the chapter column alias you created with the AS
clause while appending a child recordset to the parent.

Writing a Complex SHAPE Statement

In the previous section, you worked with a simple SHAPE statement that dis-
played order information for each customer in the Northwind.mdb database
in the Immediate window. You learned how to nest a child recordset within a
parent recordset and access the fields in both. In the following sections, you will
learn how to write more complex SHAPE statements that include multiple child
and grandchild recordsets.

Shaped Recordsets with Multiple Children

Data shaping does not limit you to having just one child recordset within a par-
ent recordset. You can specify as many children as you want. For example, to
display a parent with two children, use the following syntax:
SHAPE {SELECT * FROM Parent}
APPEND ({SELECT * FROM Child1}
RELATE parent-column TO child1-column) AS child1-alias,
({SELECT * FROM Child2}
RELATE parent-column TO child2-column) AS child2-alias

Notice that additional children (siblings) are added to the end of the APPEND
clause.

Suppose you want to display both the orders and products for a customer in
the Northwind database. Using the syntax provided earlier, you can shape your
hierarchical recordset as demonstrated in the ShapeMultiChildren procedure
shown in Hands-On 16.5.

 Hands-On 16.5 Creating a Shaped Recordset with Multiple Children
(ADO)

1. In the Visual Basic Editor window of the Chap16 database, choose Insert |
Module.

2. In the module’s Code window, enter the ShapeMultiChildren procedure
shown here:
Sub ShapeMultiChildren()
 Dim conn As ADODB.Connection
 Dim rst As ADODB.Recordset
 Dim rstChapter1 As Variant
 Dim rstChapter2 As Variant

538 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim strConn As String
 Dim shpCmd As String
 Dim strParent As String
 Dim strChild1 As String
 Dim strChild2 As String
 Dim strLink As String
 Dim str1stChildName As String
 Dim str2ndChildName As String

 ' define database connection string
 ' using the OLE DB provider
 ' and Northwind database as Data Source
 strConn = _
 "Data Provider=Microsoft.Jet.OLEDB.4.0;"
 strConn = strConn & "Data Source = " & _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"

 ' specify Data Shaping provider
 ' and open connection to the database
 Set conn = New ADODB.Connection
 With conn
 .ConnectionString = strConn
 .Provider = "MSDataShape"
 .Open
 End With

 ' define the SHAPE command for
 ' the shaped recordset

 strParent = "SELECT CustomerID AS [Cust Id], " & _
 "CompanyName AS Company FROM Customers"

 strChild1 = "SELECT CustomerID, OrderDate," & _
 "OrderID, Freight FROM Orders"

 strChild2 = "SELECT Customers.CustomerID," & _
 "Products.ProductName FROM Products " & _
 "INNER JOIN ((Customers INNER JOIN Orders ON " & _
 "Customers.CustomerID = Orders.CustomerID) " & _
 "INNER JOIN [Order Details] ON " & _
 "Orders.OrderID = [Order Details].OrderID) ON " & _
 "Products.ProductID = [Order Details].ProductID " & _
 "Order By Products.ProductName"

 str1stChildName = "custOrders"
 str2ndChildName = "custProducts"

USING ADVANCED ADO/DAO FEATURES 539

 strLink = "RELATE [Cust Id] TO CustomerID"

 shpCmd = "SHAPE {"
 shpCmd = shpCmd & strParent
 shpCmd = shpCmd & "}"
 shpCmd = shpCmd & " APPEND ({"
 shpCmd = shpCmd & strChild1
 shpCmd = shpCmd & "}"
 shpCmd = shpCmd & strLink
 shpCmd = shpCmd & ")"
 shpCmd = shpCmd & " AS " & str1stChildName
 shpCmd = shpCmd & ", ({"
 shpCmd = shpCmd & strChild2
 shpCmd = shpCmd & "} "
 shpCmd = shpCmd & strLink
 shpCmd = shpCmd & ")"
 shpCmd = shpCmd & " AS " & str2ndChildName

 ' create and open the parent recordset
 ' using the open connection
 Set rst = New ADODB.Recordset
 rst.Open shpCmd, conn

 ' output data from the parent recordset
 Do While Not rst.EOF
 Debug.Print rst("Cust Id"); Tab; rst("Company")
 rstChapter1 = rst("custOrders")

 ' write out column headings
 ' for the 1st child recordset
 Debug.Print Tab(4); " (" & rst("Cust Id") & _
 " Orders)"
 Debug.Print Tab; "OrderDate", "Order #", "Freight"

 ' output data from the 1st child recordset
 Do While Not rstChapter1.EOF
 Debug.Print Tab; _
 rstChapter1("OrderDate"), _
 rstChapter1("OrderID"), _
 Format(rstChapter1("Freight"), "$ #,#0.00")
 rstChapter1.MoveNext
 Loop

 rstChapter2 = rst("custProducts")
 ' write out column headings
 ' for the 2nd child recordset

540 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Debug.Print Tab(4); " (" & rst("Cust Id") & _
 " Products)"

 ' output data from the 2nd child recordset
 Do While Not rstChapter2.EOF
 Debug.Print Tab; _
 rstChapter2("ProductName")
 rstChapter2.MoveNext
 Loop
 rst.MoveNext
 Loop

 ' Cleanup
 rst.Close
 Set rst = Nothing
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e SHAPE statement in this procedure has been specially formatted so that
you can easily create any shaped recordset containing multiple children by
replacing SELECT statements with your own. Th is procedure produces the
output in the Immediate window as shown in Figure 16.7. Notice that each
customer has two child records: Orders and Products.

FIGURE 16.7 The ShapeMultiChildren procedure in Hands-On 16.5, generates the following
output of the hierarchical recordset with multiple children in the Immediate window.

USING ADVANCED ADO/DAO FEATURES 541

Shaped Recordsets with Grandchildren

In addition to the parent recordset having multiple children, the child record-
set can contain a child of its own. Simply put, your hierarchical recordset can
contain grandchildren. Creating such a hierarchy is a bit harder, but it can be
tackled in no time if you take a step-by-step approach. The SHAPE syntax that
includes grandchildren looks like this:
SHAPE {SELECT * FROM Parent}
APPEND ((SHAPE {SELECT * FROM Child}
APPEND ({SELECT * FROM Grandchild}
RELATE child-column TO grandchild-column) AS grandchild-alias)
RELATE parent-column TO child-column) as child-alias

Notice that when grandchildren are present, the child recordset is appended
with another SHAPE command.

Although you can have as many children or grandchildren as you want, it
will be more difficult to write a SHAPE statement that uses more than three or
four levels.

In Custom Project 16.4, you create a shaped recordset that contains both
children and grandchildren. Next, you display this recordset on the Access form
in the ActiveX TreeView control (see Figure 16.11 for the final output). This
project will also introduce you to using aggregate functions within your shaped
recordsets.

 Custom Project 16.4 Using Hierarchical Recordsets

Part 1: Creating a Form with a TreeView Control

1. In the Access window of the Chap16.accdb database, choose Create | Form
Design. The Form design window opens.

2. In the Controls area of the Design tab, click the More button in the Scroll area,
and choose ActiveX Controls (see Figures 16.8 and 16.9).

FIGURE 16.8 Adding an ActiveX control to an Access form (Step 1).

542 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 16.9 Adding an ActiveX control to an Access form (Step 2).

3. In the Insert ActiveX Control window, choose Microsoft TreeView Control,
version 6.0 as shown in Figure 16.10, and click OK to place a TreeView control
on the form.

FIGURE 16.10 The Microsoft TreeView control provides an excellent way to display shaped
recordsets in an Access form.

4. Resize the TreeView control and the form to match Figure 16.11.
5. Click the TreeView control to select it. In the property sheet, change the Name

property of the TreeView control from TreeView0 to myTreeCtrl.
6. Right-click the TreeView control in Design view and choose TreeCtrl_Object

| Properties. Adjust the custom properties of the TreeView control as listed on
the General tab in Figure 16.12.
In addition to the properties listed in the property sheet, the ActiveX TreeView
control exposes a number of custom properties that can be adjusted via the
TreeCtrl Properties dialog box, as shown in Figure 16.12.

USING ADVANCED ADO/DAO FEATURES 543

FIGURE 16.11 A TreeView control after being placed and resized on the Access form.

FIGURE 16.12 You can set custom properties of the TreeView control in the TreeCtrl Properties
dialog box.

7. Save the form as frmOrders.

544 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Part 2: Writing an Event Procedure for the Form Load Event

1. In the property sheet, select Form from the drop-down box and click the
Event tab for the selected form.

2. Click the Build button (…) next to the On Load event name to display the
Choose builder dialog box.

3. In the Choose Builder dialog box, select Code Builder and click OK. The form
module window appears with the following Form_Load event procedure stub:
Private Sub Form_Load()

End Sub

4. Type the code for the Form_Load event procedure shown here, or copy the
procedure code from Chap16.txt on the companion CD-ROM disk:
Private Sub Form_Load()
 Dim conn As ADODB.Connection
 Dim rstCustomers As ADODB.Recordset
 Dim rstOrders As ADODB.Recordset
 Dim rstOrderDetails As ADODB.Recordset
 Dim fld As Field
 Dim objNode1 As Node
 Dim objNode2 As Node
 Dim strConn As String
 Dim strSQL As String

 Dim strSQLCustomers As String
 Dim strSQLOrders As String
 Dim strSQLOrderDetails As String
 Dim strSQLRelParentToChild As String
 Dim strSQLRelGParentToParent As String

 ' Create the ADO Connection object
 Set conn = New ADODB.Connection

 ' Specify a valid connection string
 strConn = "Data Provider=Microsoft.Jet.OLEDB.4.0;"
 strConn = strConn & "Data Source = " & _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"
 conn.ConnectionString = strConn

 ' Specify the Data Shaping provider
 conn.Provider = "MSDataShape"

USING ADVANCED ADO/DAO FEATURES 545

 ' Open the connection
 conn.Open

 ' Specify SELECT statement for the Grandparent
 strSQLCustomers = "SELECT CustomerID " & _
 "AS [Cust #]," & _
 "CompanyName AS [Customer] " & _
 "FROM Customers"
 ' Specify SELECT statement for the Parent
 strSQLOrders = "SELECT OrderID AS " & _
 "[Order #]," & _
 "OrderDate AS [Order Date]," & _
 "Orders.CustomerID AS [Cust #] " & _
 "FROM Orders ORDER BY OrderDate DESC"

 ' Specify SELECT statement for the Child
 strSQLOrderDetails = _
 "SELECT od.OrderID AS [Order #]," & _
 "p.CategoryId AS [Category]," & _
 "p.ProductName AS [Product]," & _
 "od.Quantity," & _
 "od.ProductId," & _
 "od.UnitPrice AS [Unit Price]," & _
 "(od.UnitPrice * od.Quantity) " & _
 "AS [Extended Price] " & _
 "FROM [Order Details] od " & _
 "INNER JOIN Products p " & _
 "ON od.ProductID = p.ProductID " & _
 "ORDER BY p.CategoryId, p.ProductName"

 ' Specify RELATE clause to link Parent to Child
 strSQLRelParentToChild = _
 "RELATE [Order #] TO [Order #]"

 ' Specify RELATE clause to link Grandparent
 ' to Parent
 strSQLRelGParentToParent = _
 "RELATE [Cust #] TO [Cust #]"

 ' Build complete SQL statement for the
 ' shaped recordset adding aggregate
 ' functions for the Grandparent and Parent
 strSQL = "SHAPE(SHAPE{" & strSQLCustomers & "}"
 strSQL = strSQL & _
 "APPEND((SHAPE{" & strSQLOrders & "} "

546 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strSQL = strSQL & _
 "APPEND({" & strSQLOrderDetails & "} "
 strSQL = strSQL & _
 strSQLRelParentToChild & ") AS rstOrderDetails,"
 strSQL = strSQL & _
 "COUNT(rstOrderDetails.Product) "
 strSQL = strSQL & _
 " AS [Items On Order],"
 strSQL = strSQL & _
 "SUM(rstOrderDetails.[Extended Price]) "
 strSQL = strSQL & _
 " AS [Order Total])"
 strSQL = strSQL & _
 strSQLRelGParentToParent & ") AS [rstOrders],"
 strSQL = strSQL & _
 "SUM(rstOrders.[Order Total]) "
 strSQL = strSQL & _
 " AS [Cust Grand Total]"
 strSQL = strSQL & ") AS rstCustomers"

 ' Create and open the Grandparent recordset
 Set rstCustomers = New ADODB.Recordset
 rstCustomers.Open strSQL, conn

 ' Fill the TreeView control
 Do While Not rstCustomers.EOF
 Set objNode1 = myTreeCtrl.Nodes.Add _
 (Text:=rstCustomers.Fields(0) & _
 " " & rstCustomers.Fields(1) & _
 " ($ " & rstCustomers.Fields(3) & ")")
 Set rstOrders = _
 rstCustomers.Fields("rstOrders").Value
 Do While Not rstOrders.EOF
 Set objNode2 = myTreeCtrl.Nodes.Add _
 (relative:=objNode1.Index, _
 relationship:=tvwChild, _
 Text:=rstOrders.Fields(0) & _
 " " & rstOrders.Fields(1) & _
 " " & rstOrders.Fields(4) & " (items)" & _
 " $" & rstOrders.Fields(5) & _
 " (Order Total)")
 Set rstOrderDetails = _
 rstOrders.Fields("rstOrderDetails").Value
 Do While Not rstOrderDetails.EOF
 myTreeCtrl.Nodes.Add _

USING ADVANCED ADO/DAO FEATURES 547

 relative:=objNode2.Index, _
 relationship:=tvwChild, _
 Text:=rstOrderDetails.Fields(3) & _
 " " & rstOrderDetails.Fields(2) & _
 " $" & rstOrderDetails.Fields(6) & _
 " (" & rstOrderDetails.Fields(3) & _
 " x $" & rstOrderDetails.Fields(5) & ")"
 rstOrderDetails.MoveNext
 Loop
 rstOrders.MoveNext
 Loop
 rstCustomers.MoveNext
 Loop

 ' Cleanup
 rstCustomers.Close
 Set rstCustomers = Nothing
 Set conn = Nothing
End Sub

5. Choose Tools | References and set the reference to the Microsoft Windows
Common Controls 6.0 (SP6). If this reference is not listed in the Available
References list box, click the Browse button. In the Add a Reference window,
in the System32 folder, select ActiveX Controls (*.ocx) in the files of type
drop-down box, and scroll down to locate and select MSCOMCTL.OCX.
Click the Open button to confirm your selection, and then OK to exit the
References window.

6. Press Ctr+F11 to return to the Access application window and open frmOrders
in Form view.

When you open the frmOrders form, the Form_Load procedure populates the
TreeView control with the data from the Northwind.mdb database. As you can
see in Figure 16.13, the results are quite impressive. Double-clicking on the
nodes in the TreeView control expands and collapses the details underneath
those nodes.

548 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 16.13 The TreeView control is filled with the data from the Northwind database when the
user opens the form.

Prior to populating the TreeView control with the data, we connect to the data-
base and enlist the services of the Data Shaping provider:
conn.Provider = "MSDataShape"

Because a TreeView control displays data as a hierarchy, we need to build a com-
plex SQL statement using the SHAPE syntax we learned in preceding sections. To
make things easier for ourselves, we start by defining SQL statements with fields
we want to display for parent, child, and grandchild recordsets. Notice that we
renamed some fields using the AS clause. We also defined separate statements
to allow us to link grandparent to parent and parent to child. The structure we
need to create can be illustrated like this:
 Grandparent
 Parent
 Child

Now that we’ve defined the relationship and the fields for our data hierarchy, we
use the SHAPE commands to build the complete SHAPE statement:
strSQL = "SHAPE(SHAPE{" & strSQLCustomers & "}"
 strSQL = strSQL & _
 "APPEND((SHAPE{" & strSQLOrders & "} "
 strSQL = strSQL & _
 "APPEND({" & strSQLOrderDetails & "} "

USING ADVANCED ADO/DAO FEATURES 549

 strSQL = strSQL & _
 strSQLRelParentToChild & ") AS rstOrderDetails,"
 strSQL = strSQL & _
 "COUNT(rstOrderDetails.Product) "
 strSQL = strSQL & _
 " AS [Items On Order],"
 strSQL = strSQL & _
 "SUM(rstOrderDetails.[Extended Price]) "
 strSQL = strSQL & _
 " AS [Order Total])"
 strSQL = strSQL & _
 strSQLRelGParentToParent & ") AS [rstOrders],"
 strSQL = strSQL & _
 "SUM(rstOrders.[Order Total]) "
 strSQL = strSQL & _
 " AS [Cust Grand Total]"
 strSQL = strSQL & ") AS rstCustomers"

While creating the SHAPE statement, we added additional calculated fields using
the aggregate functions. For instance, in the parent recordset (rstOrders) we
calculated the number of items ordered using the COUNT function:
 COUNT(rstOrderDetails.Product) AS [Items On Order]

We also used the SUM function to obtain the total amount of the order:
 SUM(rstOrderDetails.[Extended Price]) AS [Order Total]

In the grandparent recordset (rstCustomers), we used the SUM function to cal-
culate the total amount owed by a customer.

When expanded, the complete SHAPE statement will look as follows:
strSQL = "SHAPE(SHAPE{"
strSQL = strSQL & "SELECT CustomerID AS [Cust #],"
strSQL = strSQL & "CompanyName AS [Customer]"
strSQL = strSQL & "FROM Customers"
strSQL = strSQL & "}"
strSQL = strSQL & "APPEND((SHAPE{"
strSQL = strSQL & "SELECT OrderID AS [Order #],"
strSQL = strSQL & "OrderDate AS [Order Date],"
strSQL = strSQL & "Orders.CustomerID AS [Cust #]"
strSQL = strSQL & "FROM Orders "
strSQL = strSQL & "ORDER BY OrderDate DESC"
strSQL = strSQL & "}"
strSQL = strSQL & "APPEND({"
strSQL = strSQL & "SELECT od.OrderID AS [Order #],"
strSQL = strSQL & "p.CategoryId AS [Category],"

550 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

strSQL = strSQL & "p.ProductName AS [Product],"
strSQL = strSQL & "od.Quantity,"
strSQL = strSQL & "od.ProductID,"
strSQL = strSQL & "od.UnitPrice AS [Unit Price],"
strSQL = strSQL & "(od.UnitPrice * od.Quantity) "
strSQL = strSQL & "AS [Extended Price] "
strSQL = strSQL & "FROM [Order Details] od INNER JOIN Products p"
strSQL = strSQL & " ON od.ProductID = p.ProductID "
strSQL = strSQL & "ORDER BY p.CategoryId, p.ProductName"
strSQL = strSQL & "}"
strSQL = strSQL & "RELATE [Order #] TO [Order #]"
strSQL = strSQL & ")"
strSQL = strSQL & "AS rstOrderDetails,"
strSQL = strSQL & "COUNT(rstOrderDetails.Product) "
strSQL = strSQL & "AS [Items On Order],"
strSQL = strSQL & "SUM(rstOrderDetails.[Extended Price]) "
strSQL = strSQL & "AS [Order Total])"
strSQL = strSQL & "RELATE [Cust #] TO [Cust #]"
strSQL = strSQL & ") "
strSQL = strSQL & "AS [rstOrders],"
strSQL = strSQL & "SUM(rstOrders.[Order Total]) "
strSQL = strSQL & "AS [Cust Grand Total]) AS rstCustomers"

Notice that the SHAPE statement we built contains standard fields pulled from
the database tables and child recordsets (rstOrders, rstOrderDetails), as well
as calculated columns. The rstOrders recordset is a field in the rstCustomers
recordset. This field contains order information for a customer. rstOrderDetails
is a field within the rstOrders recordset. This field contains the order details
information for a customer’s order.

Now that we’ve completed the SHAPE statement, we can open the grandpar-
ent recordset and begin populating the TreeView control with our data.

A TreeView control consists of Node objects, which you can expand or col-
lapse to display or hide child nodes. Nodes that have child nodes are referred to
as parent nodes. The nodes located at the top of the tree control are referred to as
root nodes. Root nodes can have sibling nodes that are located on the same level.
For example, customer ALFKI (see Figure 16.13) is a root node, and so is the
customer ANATR, ANTON, and so on. They are also siblings of one another.

To populate a TreeView control, we use the Add method of the Nodes collec-
tion like this:
 Set objNode1 = myTreeCtrl.Nodes.Add

USING ADVANCED ADO/DAO FEATURES 551

objNode1 is an object variable representing the Node object. The first node
added to a TreeView is a root node. The Add method of the Nodes collection
uses the following syntax:
object.Add([relative,] [relationship,] [key], text[, image,]
[selectedimage])

The only required arguments in the syntax are object and text. The object is
the object variable (myTreeCtrl) representing the TreeView control. The text is
a string that appears in the node. The following complete statement:
 Set objNode1 = myTreeCtrl.Nodes.Add _
 (Text:=rstCustomers.Fields(0) & _
 " " & rstCustomers.Fields(1) & _
 " ($ " & rstCustomers.Fields(3) & ")")

creates a root node to display the following information:
 Cust # (rstCustomers.Fields(0))
 Customer (rstCustomers.Fields(1))
 Cust Grand Total (rstCustomers.Fields(3))

Because the preceding statement appears inside a looping structure, the Tree-
View control will display all the customers at their root level.

Now that we’ve taken care of the root node, we go on to add children and
grandchildren. A child node has a relationship to a parent node that has already
been added. To define a child node, in addition to the required text argument,
we will use two optional arguments of the Add method as follows:

 ● relative—Th is is the index number or key of a preexisting Node object.
In our example, we used the index of the parent node that we just created
(relative:=objNode1.Index).

NOTE
When a Node object is created, it is automatically assigned an
index number. This number is stored in the Node object’s Index
property.

 ● relationship—Specifi es the type of relationship you are creating. Use
the tvwChild setting to create a child node of the node named in the rel-
ative argument. Th e statement that creates a child node looks like this:

Set objNode2 = myTreeCtrl.Nodes.Add _
 (relative:=objNode1.Index, _
 relationship:=tvwChild, _
 Text:=rstOrders.Fields(0) & _

552 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 " " & rstOrders.Fields(1) & _
 " " & rstOrders.Fields(4) & " (items)" & _
 " $" & rstOrders.Fields(5) & _
 " (Order Total)")

The preceding statement displays order information for a customer. The child
node text argument is set to display:
Order # (rstOrders.Fields(0))
Order Date (rstOrders.Fields(1))
Items On Order (rstOrders.Fields(4))
Order Total (rstOrders.Fields(5))

Because this statement appears inside a looping structure, the TreeView control
will display the order information for each customer. Finally, we add grandchil-
dren using the following statement:
myTreeCtrl.Nodes.Add _
 relative:=objNode2.Index, _
 relationship:=tvwChild, _
 Text:=rstOrderDetails.Fields(3) & _
 " " & rstOrderDetails.Fields(2) & _
 " $" & rstOrderDetails.Fields(6) & _
 " (" & rstOrderDetails.Fields(3) & _
 " x $" & rstOrderDetails.Fields(5) & ")"

This statement displays order details for a customer’s order. Notice that this
Node object references the index number of the child object that has just been
added (relative:=objNode2.Index).

The grandchild node text argument is set to display:
Quantity (rstOrderDetails.Fields(3))
Product (rstOrderDetails.Fields(2))
Extended Price (rstOrderDetails.Fields(6))
Quantity x Unit Price (rstOrderDetails.Fields(3) & "x $" &
rstOrderDetails.Fields(5))

Th e looping structure ensures that these order details are listed for all
customers’ orders.

Now that you are done with this custom project, you should be able to provide
your own hierarchical data in a pretty neat user interface.

USING ADVANCED ADO/DAO FEATURES 553

TRANSACTION PROCESSING

To improve your application’s performance and to ensure that database activi-
ties can be recovered in case an unexpected hardware or software error occurs,
consider grouping sets of database activities into a transaction. A transaction
is a set of operations that are performed together as a single unit. If you use
an automatic teller machine (ATM), you are already familiar with transaction
processing. When you go to the bank to get cash, your account must be deb-
ited. In other words, the cash withdrawal must be deducted from your savings
or checking account. A transaction is a two-sided operation. If anything goes
wrong during the transaction, the entire transaction is canceled. If both opera-
tions succeed, that is, you get the cash and the bank debits your account, the
transaction’s work is saved (or committed).

Database transactions often involve modifications and additions of one or
more records in a single table or in several tables. When a transaction has to be
undone or canceled, the transaction is rolled back. Often, when you perform
batch updates to database tables and an error occurs, updates to all tables must
be canceled or the database could be left in an inconsistent state, resulti ng not
only in loss of important information but also in a number of other headaches.

Transactions are extremely important for maintaining data integrity and
consistency. In ADO, the Connection object offers three methods (BeginTrans,
CommitTrans, and RollbackTrans) for managing transaction processing. You
should use these methods to save or cancel a series of changes made to the data
as a single unit.

 ● BeginTrans—Begins a new transaction
 ● CommitTrans—Saves any changes and ends the current transaction
 ● RollbackTrans—Cancels any changes made during the current transac-

tion and ends the transaction

Please note that in ADO a transaction is limited to one database because the
Connection object can only point to one database.

To work with transaction processing in DAO, use the transaction methods of
the Workspace or DBEngine object: BeginTrans, CommitTrans, and Rollback.
Within a Workspace transaction you can perform operations on more than one
connection or database.

554 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Creating a Transaction with ADO

Use the BeginTrans method to specify the beginning of a transaction and the
CommitTrans method to save the changes. BeginTrans and CommitTrans are
used in pairs. The data-modifying instructions you place between these key-
words are stored in memory until VBA encounters the CommitTrans statement.
After reaching CommitTrans, Access writes to the disk the changes that have
occurred since the BeginTrans statement; therefore, any changes you’ve made
in the tables become permanent.

If an error is generated during the transaction process, the RollbackTrans
statement placed further down in your procedure will undo all changes made
since the BeginTrans statement. The rollback ensures that the data is returned
to the state it was in before you started the transaction.

Using transaction processing helps improve database performance because
the operations carried out during a transaction are run in memory. If the trans-
action succeeds, the results are written to the disk in a single operation. If any
operation included in a transaction fails, the transaction is simply aborted and
no changes are written to the database. If you don’t use transactions, the results
of each operation must be written to the disk separately—a process that con-
sumes more database resources.

The procedure in Hands-On 16.6 assumes that you want to enter an order
for a new customer. Because this customer does not exist in the database, you
will use a transaction to ensure that the new order is entered only after the cus-
tomer record has been created in the Customers table. The result is shown in
Figure 16.14.

 Hands-On 16.6 Using a Database Transaction to Insert Records
(ADO)

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, enter the Create_Transaction_ADO procedure

as shown here:
Sub Create_Transaction_ADO()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = New ADODB.Connection

 With conn

USING ADVANCED ADO/DAO FEATURES 555

 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .ConnectionString = "Data Source = " & _
 "C:\VBAAccess2019_ByExample\Northwind.mdb"
 .Open
 .BeginTrans

 ' insert a new customer record
 .Execute "INSERT INTO Customers " & _
 "Values ('GWIPO','Gwiazda Polarna'," & _
 "'Marcin Garnia', 'Sales Manager'," & _
 "'ul.Majewskiego 10', 'Warszawa', Null, " & _
 "'02-106', 'Poland', '0114822230445', Null)"

' insert the order for that customer
 .Execute "INSERT INTO Orders " & _
 " (CustomerId, EmployeeId, " & _
 " OrderDate, RequiredDate) " & _
 " Values ('GWIPO', 1, Date(), Date()+5)"
 .CommitTrans
 .Close
 MsgBox "Both inserts completed."
 End With

ExitHere:
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147467259 Then
 MsgBox Err.Description
 Resume ExitHere
 Else
 MsgBox Err.Description
 With conn
 .RollbackTrans
 .Close
 End With
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e fi rst SQL INSERT INTO statement inserts the customer data into the
Customers table in the Northwind.mdb database. Before the customer can
actually order specifi c products, a record must be added to the Orders table.
Th e second SQL INSERT INTO statement takes care of this task. Because both

556 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

inserts must occur prior to fi lling in order details, they are treated as a single
transaction. If an error occurs anywhere (for example, the Orders table is open
in Design view), the entire transaction is rolled back. Notice how the INSERT
INTO statement is used in this procedure. If you do not specify the fi eld names,
you will need to include values for each fi eld in the table.

FIGURE 16.14 After running the procedure in Hands-On 16.6, a record for a new customer,
“GWIPO,” is added to the Customers and Orders tables.

Creating a Transaction with DAO

The DAO Object Model supports transactions through the BeginTrans, Com-
mitTrans, and Rollback methods of the Workspace and DBEngine objects.
When you use these methods with the DBEngine object, the transaction is
applied to the default workspace—DBEngine.Workspaces(0). If you need to
manage transactions or connections to multiple databases, use the Workspace
object. A Workspace object represents a user’s session. A transaction on a work-
space will affect all data modifications made within the workspace. You can
manage transactions independently across Database objects by creating addi-
tional Workspace objects.

As in ADO, use the BeginTrans method to specify the beginning of a trans-
action, the CommitTrans method to save the changes, and Rollback to cancel
the transaction. BeginTrans and CommitTrans are used in pairs. The data-mod-
ifying instructions you place between these keywords are stored in memory un-
til VBA encounters the CommitTrans statement. After reaching CommitTrans,
Access writes to the disk the changes that have occurred since the BeginTrans
statement; therefore, any changes you’ve made in the tables become permanent.

If an error is generated during the transaction process, the Rollback state-
ment placed further down in your procedure will undo all changes made since
the BeginTrans statement, which ensures that the data is returned to the state it
was in before you started the transaction.

Transaction processing should be used for archiving historical data. For in-
stance, the procedure in Hands-On 16.7 selects all orders placed in 1997 and

USING ADVANCED ADO/DAO FEATURES 557

appends them to an archive table in another database (Chap10.accdb). Then the
records are deleted from the source table.

 Hands-On 16.7 Using a Database Transaction to Archive Records
(DAO)

This Hands-On requires the Chap10.accdb database that was created in Chap-
ter 10.

1. In the Microsoft Access window of the Chap16.accdb database, choose
External Data | Access. In the File name box of the Get External Data dialog
box, enter C:\VBAAccess2019_ByExample\Northwind.mdb, and then click
OK. In the Import Objects window, select the Orders table and click OK. Click
Close to exit the Get External Data dialog box.

2. In the Visual Basic Editor window of the Chap16 database, choose Insert |
Module.

3. In the module’s Code window, enter the OrdersArchive1997_DAO procedure
shown here:
Sub OrdersArchive1997_DAO()
 Dim db As DAO.Database
 Dim blnTrans As Boolean
 Dim strSQL As String
 Dim strPath As String
 Dim strDb As String
 Dim strDateCriteria As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDb = "Chap10.accdb"
 strDateCriteria = _
 "BETWEEN #1/1/1997# AND #12/31/1997#;"

 'begin transaction
 DBEngine.BeginTrans
 blnTrans = True

 Set db = CurrentDb()

 ' create an archive table on the fly
 ' and fill it with records

558 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strSQL = _
 "SELECT * INTO OrdersArchive1997 IN " & _
 Chr(34) & strPath & strDb & Chr(34) & _
 " FROM Orders WHERE Orders.OrderDate " & _
 strDateCriteria

 db.Execute strSQL, dbFailOnError

 ' delete records from the source table
 If db.RecordsAffected <> 0 Then
 strSQL = "DELETE FROM Orders " & _
 "WHERE Orders.OrderDate " & _
 strDateCriteria

 db.Execute strSQL, dbFailOnError

 ' ask user if OK to commit changes
 If MsgBox("Click OK if you want to archive " _
 & db.RecordsAffected & _
 " records.", vbOKCancel + _
 vbQuestion + vbDefaultButton2, _
 "Proceed?") = vbOK Then
 DBEngine.CommitTrans
 Else
 If blnTrans Then DBEngine.Rollback
 End If
 Else
 DBEngine.Rollback
 MsgBox "No records to archive " & _
 "with the specified criteria.", _
 vbInformation + vbOKOnly, _
 "Records not found"
 End If
Cleanup:
 Set db = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = 3010 Then
 ' hardcoding path and filename for
 ' demonstration only
 strSQL = "INSERT INTO OrdersArchive1997 IN " & _
 """C:\VBAAccess2019_ByExample\Chap10.accdb""" & _
 " SELECT * FROM Orders WHERE Orders.OrderDate " & _
 strDateCriteria

USING ADVANCED ADO/DAO FEATURES 559

 Resume 0
 Else
 If blnTrans Then DBEngine.Rollback
 MsgBox Err.Description
 Resume Cleanup
 End If
End Sub

4. Choose Run | Run Sub/UserForm to execute the procedure.
In this procedure, we start a transaction with the DBEngine object’s BeginTrans
method and set the transaction fl ag to True (blnTrans) to indicate that the
transaction is active. We also initiate the Database object variable to point to
the current database. Th e fi rst data operation in this transaction requires that
we create a table in another Access database to store the selected records from
the Orders table in the current database. In the Access user interface, we would
simply create a Make-Table query; in VBA programming, we can use the SQL
SELECT…INTO statement. Th e fi rst part of this statement specifi es the fi elds we
want to select; in this case we use a wildcard (*) to denote that all fi elds should
be copied into the new table. Th is is followed by the INTO clause and the name
of the table to be created. Th e path and database name must be surrounded by
the quotation marks. You can use the Chr(34) function to prepend and append
double quotes to the strings.
 If the table already exists, then the SELECT…INTO statement will fail and VBA
will respond with error 3010. We must set an error trap (see the ErrorHandler
code). To add the data to the existing table, we must use the SQL INSERT INTO
statement. Th e name of the table in the SELECT…INTO statement is followed by
the IN clause and the name of the external database into which data is to be
inserted. Again, you need to specify the full path to the target database fi le.
Here the path and database name are hardcoded for you to see another way of
building an SQL insert statement string.
 Th e name of the external database is followed by the FROM clause and the
name of the existing table from which records are selected. You may select data
from more than one table. You may also specify selection criteria following
the WHERE clause. Aft er creating the SQL statement, we execute it using the
Execute method of the Database object.
 Notice the use of the dbFailOnError option with the Execute method. If
the statement fails, dbFailOnError will generate an error message we can trap.
Without it, you are not notifi ed of any errors, and the entire procedure may
not produce the intended results. You can see how the error trap works by

560 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

running the procedure more than once. If the Execute statement succeeds,
we proceed to delete records from the source table. However, we don’t want
to execute the delete code if the SELECT statement returned no records. Aft er
the Execute command is run, we use the RecordsAff ected property of the
Database object to obtain the number of records aff ected by the most recent
Execute command.
 If we have more than one record, we specify the records to delete using the
SQL DELETE statement, and then carry out the delete operation by calling the
Execute method of the Database object. If dbFailOnError did not notify us
of any errors, we assume that the Execute statement succeeded and we can
commit the transaction. Before carrying out this operation, we ask the user to
confi rm or cancel the transaction. If the user chooses not to go ahead with the
changes, we roll back the transaction. We also withdraw changes to the records
if there were no records to archive.
 It is important to keep in mind that in case of an error you must roll back
the transaction. Always check if the transaction is still active by using a fl ag.
Rolling back the transaction will ensure that the transaction doesn’t stay active
aft er your VBA procedure has ended.

5. Run the procedure once again in step mode (using F8) to walk through the
error code.

SUMMARY

This chapter covered quite a bit of advanced ADO and DAO material you will
find useful in developing professional applications in Microsoft Access. You
started by creating your own recordset from scratch and using it for storing
non-relational data. Next, you learned how to disconnect a recordset from a
database and work with it offline. You also learned that a recordset can be saved
to a disk file and later reopened without an active connection to the database.
Next, you discovered how you can use the Clone method of the Recordset object
to create a recordset that is a copy of another recordset. Finally, you familiarized
yourself with the concepts of data shaping and learned statements that make it
possible to create impressive hierarchical views of your data. You also learned
how transactions are used to ensure that certain database operations are always
performed as a single unit.

In the next chapter, we will focus on writing VBA procedures that handle
database security.

561

The .accdb file format does not support user-level security. This means
that you cannot create user and group accounts or assign object permis-
sions in Access ACCDB databases. This chapter focuses on implement-

ing database security in Access databases created in the .mdb file format.
In the course of this chapter, you will learn how to:

 ● Use the Users and Groups collections of the ADOX Catalog object to cre-
ate and manage security user accounts.

 ● Use the GetPermissions and SetPermissions methods of the ADOX
User and Group objects to retrieve and set permissions on database ob-
jects.

 ● Use the ChangePassword method of the ADOX User object to change the
user’s password.

 ● Use the CompactDatabase method of the JRO JetEngine object to set a
database password.

NOTE

To use ADOX and JRO in your VBA procedures, you must set a
reference to the Microsoft ADO Ext. 6.0 for DDL and Security
Object Library and Microsoft Jet and Replication Objects (JRO)
Library (choose Tools | References in the Visual Basic Editor win-
dow to open the References dialog box).

Chapter

 17 IMPLEMENTING
DATABASE SECURITY

562 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TWO TYPES OF SECURITY IN MICROSOFT ACCESS

Depending on your requirements, Microsoft Access allows you to implement
share-level or user-level security to protect and secure your Access database. As
mentioned earlier, user-level security can only be implemented in Access data-
bases created in the .mdb file format.

Share-Level Security (in Access .accdb and .mdb File Formats)

Using passwords to secure the database or objects in the database is known as
share-level security. When you set a password on the database, users are required
to enter a password in order to gain access to the data and database objects.
Anyone with the password has unrestricted access to all Access data and data-
base objects.

To manually change the database password:

 ● For an Access database in the .accdb fi le format, choose File | Info | En-
crypt with Password.

 ● For an Access database in the .mdb fi le format, choose File | Info | Set
Database Password.

NOTE

Refer to the sections titled “Setting a Database Password Using
the CompactDatabase Method” and “Setting a Database Pass-
word Using the NewPassword Method” later in this chapter to
set a database password from within a VBA procedure.

User-Level Security

User-level security is a relatively complex process that secures the code and
objects in your database so that users can’t accidentally modify or change them.
With this type of security you can provide the most restrictive access to the
database and the objects it contains. When you use user-level security, a work-
group information file is used to determine who can open a database and what
objects are available to them.

The workgroup information file holds group and user information, includ-
ing passwords. The information contained in this file determines not only
who can open the database, but also the permissions users and groups have on
the objects in the database. The workgroup information file contains built-in
groups (Admins and Users) and a generic user account (Admin) with unlimited
privileges on the database and the objects it contains.

IMPLEMENTING DATABASE SECURITY 563

When an Access .mdb database file is open in Access 2019, you can manually
implement user-level security by choosing File | Info | Users and Permissions.
You can also define user and group accounts and their passwords from your
VBA procedures by using ADO code, as demonstrated later in this chapter.

UNDERSTANDING WORKGROUP INFORMATION FILES

To successfully run the procedures in this chapter, you need to know the loca-
tion of the workgroup information file on your computer. This file, also known
as system database (System.mdw), is created automatically on your computer
(see Table 17.1).

Please note that the Application Data folder (used for storing the System.
mdw file for an Access database in the .mdb file format) is a hidden folder. To
browse this folder, perform the following steps:

 ● In Windows 7: activate Windows Explorer and choose Tools | Folder Op-
tions. In the Folder Options window, click the View tab, click the option
button next to Show hidden fi les and folders, and click OK.

 ● In Windows 8 and 10: activate File Explorer and click the View tab. Check
the Hidden Items in the View/Hide section of the ribbon.

Now you should be able to access the path, where <username> is the name of
your user profile. Take a few minutes right now to locate the System.mdw file
on your machine.

TABLE 17.1 The workgroup information file in different versions of Access

Access
Version

Default Workgroup
Information
Filename

Workgroup Information File Location

2.0 System.mda C:\Access
95 System.mdw C:\MSOffice\Access
97 System.mdw C:\Windows\System
2000 System.mdw C:\Program Files\Common Files\System
2002–2003 System.mdw C:\Documents and Settings\<username>\Application

Data\Microsoft\Access
2007–2010 System.mdw C:\Users\<username>\AppData\Roaming\

Microsoft\Access\System.mdw
2013 / 2019 System.mdw C:\Users\<username>\AppData\Roaming\

Microsoft\Access\System.mdw

564 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You can also find the location and name of the workgroup information file
by starting Microsoft Access and opening any MDB database. Switch to the Vi-
sual Basic Editor window and activate the Immediate window. Type the follow-
ing statement on one line (beginning with a question mark) and press Enter to
execute:
? CurrentProject.Connection.Properties(
 "Jet OLEDB:System Database").Value

When you press Enter, Access displays the full path of the workgroup informa-
tion file that the currently open database uses for its security information. Jet
OLEDB:System Database is a provider-specific property of the Microsoft OLE
DB Provider for Jet in the ADO Properties collection of the Connection object.

Access uses the workgroup information file to store the following informa-
tion:

 ● Th e name of each user and group
 ● Th e list of users who belong to each group
 ● Th e encrypted logon password for each workgroup user
 ● Th e Security Identifi er (SID) of each user and group in a binary format

Once you add user and group accounts to your database, the workgroup infor-
mation file will contain vital security information. YOU DON’T WANT TO
LOSE THIS INFORMATION. Always take time to make a backup copy of the
System.mdw file and store it in a safe location. This way, if the original file gets
corrupted, you’ll be able to quickly restore your backup file and avoid having to
recreate user and group accounts.

The workgroup information file is like any other Access database file except
that it contains hidden system tables with information regarding user and group
accounts and their actual permissions. However, you cannot change the security
information by opening this file directly. All the security data stored in hidden
system tables is encrypted and protected. Changes to the workgroup informa-
tion file are done automatically by the JetEngine when you use the built-in Ac-
cess commands to manage security or execute ADO/JRO code in your VBA
procedures.

You can use the same workgroup information file for more than one data-
base or you can create a separate workgroup information file for each database
you are securing. You can also give this file a name other than the default Sys-
tem.mdw. Most people find it best to use the same name as the database file. For
example, if your secured database file is named Assets.mdb, you could create

IMPLEMENTING DATABASE SECURITY 565

a workgroup information file called Assets.mdw and put it in the same folder
as the database file. This way, you’d know right away that these two files are as-
sociated with one another even after many weeks or months have passed since
you created them. Keeping track of which workgroup information file goes with
which database can be quite challenging, especially if you are managing more
than a couple of secured Access databases.

NOTE

If you try to open a secured database while another workgroup
information file is active, Access displays the following message:
 You do not have the necessary permissions to use the <name>
object. Have your system administrator or the person who created
this object establish the appropriate permissions for you.
 If you receive the preceding message while opening an Access
database in the .mdb file format, you should look for the accom-
panying workgroup information file and perform one of the fol-
lowing:

 ● Set Up a Shortcut
Set up a shortcut to the database file that uses the /WRKGRP
command-line switch to load the specified workgroup informa-
tion file when the database is opened (see Custom Project 17.1).

 ● Use the Workgroup Administrator Tool in Microsoft Ac-
cess 2019

1. Start Access and open any Access database.
2. Press Alt+F11 to switch to the Visual Basic Editor window.
3. Choose View | Immediate Window.
4. In the Immediate window, type the following statement

and press Enter to execute:
DoCmd.RunCommand acCmdWorkgroupAdministrator

5. In the Workgroup Administrator dialog box, click Join,
then click Browse.

6. Locate the workgroup information file and then click
Open. See Table 17.1 for the .mdw filenames used with
various versions of Access.

7. In the Workgroup Administrator dialog box, click OK,
then click Exit.

566 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Creating and Joining Workgroup Information Files

When you open a database, Microsoft Access reads the workgroup informa-
tion file to find out who is allowed to access the database. If security was put
into place, you will be prompted for the user ID and password. Custom Project
17.1 walks you through the steps required to create and join a new workgroup
information file. Once you join the workgroup, you create a new Access data-
base and set up a password for the Admin user. This information is saved in the
workgroup information file that you just joined. The workgroup information
file is created using the User-Level Security Wizard. This option is available by
choosing File | Info | Users and Permissions.

Securing a database boils down to creating a new workgroup information
file, adding a new member to the Admins group, and removing the default
Admin user from that group. You also need to remove permissions from the
Admin user and from the Users group, and assign permissions to your own
groups that you create. Don’t be discouraged if you need to go over the security
steps more than once. Access security is complex and can be approached from
many different angles. Books of several hundred pages have been written to
explain its inner workings. The approach presented here simply provides us with
a secured Access database file we use to perform the programming exercises in
this chapter. Although you could learn how to use the ADOX commands for
managing security using the currently open unsecured Access database, this
particular approach gives you a better set of skills to build from. So let’s begin.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Custom Project 17.1 Securing a Microsoft Access MDB Database

You must complete this project in order to work with the hands-on exercises in
this chapter.

1. Start Microsoft Access and create a new blank database called SpecialDb.mdb
in your C:\VBAAccess2019_ByExample folder. Be sure to select Microsoft
Access Databases (2002–2003) (*.mdb) file format.
You will use the built-in User-Level Security Wizard to secure the blank Access
database (SpecialDb.mdb) you just created.

2. Choose File | Info | Users and Permissions | User-Level Security Wizard.
3. Click Yes in response to the message that the database should be opened in

shared mode to run the Security Wizard.

IMPLEMENTING DATABASE SECURITY 567

Microsoft Access closes the database and reopens it in shared mode.
4. Microsoft Access automatically activates the Security Wizard (see Figure 17.1).

Click Next to continue.

FIGURE 17.1 Security Wizard (screen 1).

5. Another Security Wizard window appears (see Figure 17.2). Do not make any
changes in this screen. Click Next to continue.

FIGURE 17.2 Security Wizard (screen 2). The workgroup information file named Security.mdb
stores user and group account information for the SpecialDb database.

568 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. The Security Wizard window now shows an empty tabbed screen that normally
displays database objects (Figure 17.3). Because our database does not contain
any tables, queries, reports, etc., there’s nothing you can do in this screen. Click
Next to continue.

FIGURE 17.3 Security Wizard (screen 3).

7. The Security Wizard window now displays a list of optional security accounts
that you could include in your new workgroup information file (Figure 17.4).
Because we will define our accounts in programming code later in this chapter,
do not make any selections in this screen. Click Next to continue to the next
screen.

FIGURE 17.4 Security Wizard (screen 4).

IMPLEMENTING DATABASE SECURITY 569

8. Now the Security Wizard asks whether you want to grant permissions to the
Users group (Figure 17.5). The Users group will have no permissions, so do
not make any changes in this screen. We will work with permissions in our
VBA procedures later. Click Next to continue.

FIGURE 17.5 Security Wizard (screen 5).

9. Now the Security Wizard shows a screen (Figure 17.6) where you finally can
do a little bit of work. You need to define a new user in your database. This user
will function as a new Admin. Let’s call this user Developer and allow him to
log into the database using chapter17 as a password. Fill in the User name and
the Password boxes as shown in Figure 17.6 and click the Add This User to the
List button. Developer should now appear in the users list (see Figure 17.7).
Do not leave this screen yet.

FIGURE 17.6 Security Wizard (screen 6a).

570 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 17.7 Security Wizard (screen 6b).

10. Now remove the user account you used to log into Access. In the list of users,
select the username you logged in with and click the Delete User from the List
button. Now Developer is the only user in our database, as shown in Figure
17.8. Click Next to continue.

FIGURE 17.8 Security Wizard (screen 6c).

11. The Security Wizard shows the screen where you can assign users to groups in
the workgroup information file (Figure 17.9). Notice that the user (Developer)
you created in Step 8 is a member of the Admins group. Click Next to continue.

IMPLEMENTING DATABASE SECURITY 571

FIGURE 17.9 Security Wizard (screen 7).

12. The Security Wizard has now collected all the required information. Click
Finish.

13. Access performs its final tasks of securing your database and displays the
Security Wizard report (Figure 17.10). If you are connected to a printer, it’s
a good idea to take a minute now to print this report. You can also magnify
the report to read it on screen. When you are done, close the Security Wizard
report window.

FIGURE 17.10 Security Wizard (screen 8).

572 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

14. When you close Print Preview window, the Security Wizard displays a warning
message that asks whether you would like to save the report as a Snapshot
(.snp) file that you can view later. Click Yes. You should see the confirmation
message that the Security Wizard has encoded your database and to reopen the
database you must use the new workgroup file you created by closing Access
and reopening it. You’ll do as suggested in the next section. Click OK to this
message.

15. Close the Microsoft Access window.

OPENING A SECURED MDB DATABASE

The following four files were added to your C:\VBAAccess2019_ByExample
folder when you completed Custom Project 17.1:

 ● A database fi le named SpecialDb.mdb
 ● A workgroup information fi le named Security.mdw that stores user and

group account information for the SpecialDb database
 ● A snapshot fi le named SpecialDb.snp
 ● A backup copy of the SpecialDb database named SpecialDb.bak

Also, there is a shortcut on your desktop (created by the Security Wizard) that
allows you to quickly start the SpecialDb database using the new workgroup
information file (Security.mdw). If you right-click that desktop shortcut and
choose Properties, you will see in the Target box the following path:
"C:\Program Files (x86)\Microsoft Office\root\Office16\MSACCESS.
EXE" "C:\VBAAccess2019_ByExample\SpecialDb.mdb" /WRKGRP "C:\
VBAAccess2019_ByExample\Security.mdw"

Because this path is very long it’s shown here on three lines. Notice that the first
part of this path is the location of the Microsoft Access executable program
on your disk enclosed by quotation marks. The path to the MSAccess.exe file
is followed by a space and the full path of the database file (also in quotation
marks). Because this database file is secured, we must also include a space and
a command-line switch, /WRKGRP, followed by a space and the name of the
accompanying workgroup information file (also in quotation marks).

The /WRKGRP command-line switch tells Access that you want to start a
database with a specific workgroup. If you know which user account you want
to log on with, you can use the /User and /Pwd command-line switches to avoid
being prompted by Access for the username and password:

IMPLEMENTING DATABASE SECURITY 573

"C:\Program Files (x86)\Microsoft Office\root\Office16\MSACCESS.EXE"
"C:\VBAAccess2019_ByExample\SpecialDb.mdb" /WRKGRP
"C:\VBAAccess2019_ByExample\Security1.mdw"
 /User "Developer" /Pwd "chapter17"

The information about the username and password follows the name of the
workgroup information file and a single space.

Now that you know how the path to a secured database is built, you can cre-
ate similar shortcuts to other secured databases if they use different workgroup
information files.

 Hands-On 17.1 Opening a Secured MDB Database

This hands-on exercise requires prior completion of Custom Project 17.1.

1. On your desktop, double-click the shortcut to SpecialDb.mdb to open the
database. Because this database is protected, a logon box appears. Enter
Developer in the Name box and chapter17 in the Password box and click OK.

2. Now that your secured database file is open, let’s take a look at the changes
the Security Wizard has made in the Users and Groups accounts. Choose File
| Info | Users and Permissions | User and Group Accounts. Notice that the
Admin user is a member of the Users group (see Figure 17.11). The Security
Wizard removed the Admin account from the Admins group. If you open the

FIGURE 17.11 In Custom Project 17.1, you removed the default Admin user from the Admins
group while running the built-in User-Level Security Wizard.

574 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Name drop-down list in the User area of this screen and select Developer, you
will see that Developer is a member of two groups: Admins and Users. Click
Cancel to exit the User and Group Accounts window.

3. Having checked the Users and Groups accounts, you can also examine the
changes made by the Security Wizard in the group permissions. Choose File
| Info | Users and Permissions | User and Group Permissions. The users
Developer and Admin don’t have permissions on any new objects (see Figure
17.12). To view group permissions, click the Groups option button. The
Admins group has all the necessary permissions to administer the database
while the Users group has no permissions at all. You will learn how to grant
and revoke permissions to database objects in the example procedures in this
chapter. Now click Cancel to exit the User and Group Permissions window.

FIGURE 17.12 Use the User and Group Permissions window to check current permissions for the
users Admin and Developer after running the User-Level Security Wizard in Custom Project 17.1.

4. Now let’s import a couple of objects into this database. We will need them
for our tests later in this chapter when we learn to handle permissions for

IMPLEMENTING DATABASE SECURITY 575

database objects. In the Access window, choose External Data | New Data
Source | From Database | Access. In the Get External Data dialog box, enter
C:\VBAAccess2019_ByExample\ Northwind.mdb in the File name box and
click OK.

5. In the Import Objects window, click Select All to select all the tables. Click
the Queries tab, then choose Select All to select all the queries. Finally, click
OK to begin importing. When the import operation is completed, click the
Close button.

6. The objects you selected in Step 5 have now been added to your database.
Close the SpecialDb database and exit Access.

CREATING AND MANAGING GROUP AND USER ACCOUNTS

To create a new group account from a VBA procedure using ADO, open the
ADOX Catalog object by specifying the connection to the appropriate database
and use the Append method of the Catalog object’s Groups collection to add a
new group account.

To create a new user account, pass the name and password to the Append
method of the Users collection. Specifying a password at this time is optional.
You can assign a password later with the User object’s ChangePassword method.

The procedure in Hands-On 17.2 illustrates how to create two group ac-
counts and a user account in the secured database (SpecialDb.mdb) that you
created in Custom Project 17.1.

 Hands-On 17.2 Creating User and Group Accounts (ADO)

This hands-on exercise requires that you have completed Custom Project 17.1.

1. Start Microsoft Access and create a new database named Chap17.mdb in
your C:\VBAAccess2019_ByExample folder. Make sure you select Microsoft
Access Databases (2002–2003) (*.mdb) file format.

2. Press Alt+F11 to switch to the Visual Basic Editor window and choose Insert
| Module.

3. Choose Tools | References and click the checkbox next to the following
three object libraries: Microsoft ActiveX Data Objects 6.1 Library, Microsoft
ADO Ext. 6.0 for DDL and Security Object Library, and Microsoft Jet and
Replication Objects 2.6 Library. After making these selections, click OK to
exit the References dialog box.

576 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Activate the Immediate window by choosing View | Immediate Window.
Type the following statement in the Immediate window and press Enter:
DoCmd.RunCommand acCmdWorkgroupAdministrator

When you press Enter, Access loads the Workgroup Administrator tool, which
lets you check the path to the workgroup information fi le that is currently being
used. In Access 2019–2013 there is no command in the user interface to access
this tool. You must enter the preceding code in the Immediate Window of the
Access database in the .mdb fi le format to use the Workgroup Administrator
tool.
Perform one of the following steps:
a. If System1.mdw appears in the Workgroup path, click OK to exit the

Workgroup Administrator dialog box and proceed with Step 5.
b. If the Workgroup path includes the Security.mdw file that was created in

Custom Project 17.1, click the Join button to join another work group.
Use the Browse button in the Workgroup Information File dialog box to
select and open System.mdw. Refer to the beginning of this chapter for
information on the default location of this file. Once you select the correct
file, the dialog box should display its full path. Click OK to exit this
dialog box. Access will display a message box saying you successfully
joined the workgroup defined by the selected information file. Click OK
to the message and click OK in the Workgroup Administrator dialog box
to exit. Proceed to Step 5.

5. In the module’s Code window, enter the following Create_UserAndGroup_
ADO procedure:
 Sub Create_UserAndGroup_ADO()
 Dim cat As ADOX.Catalog
 Dim conn As ADODB.Connection
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String
 Dim strGrpName1 As String
 Dim strGrpName2 As String
 Dim strUsrName As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"

IMPLEMENTING DATABASE SECURITY 577

 strSysDB = "Security.mdw"
 strGrpName1 = "Masters"
 strGrpName2 = "Elite"
 strUsrName = "PowerUser"
 ' open connection to the database
 ' using the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 With cat
 .ActiveConnection = conn
 ' create group accounts
 .Groups.Append strGrpName1
 .Groups.Append strGrpName2
 Debug.Print "Created group accounts."
 ' create a user account
 .Users.Append strUsrName, "star"
 Debug.Print "Created user account."
 ' Add user to the group
 .Users(strUsrName).Groups.Append strGrpName2
 Debug.Print strUsrName & _
 " is a member of the " & _
 strGrpName2 & " group account."
 End With

ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Description
 Resume ExitHere
End Sub

578 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Choose Run | Run Sub/UserForm to execute the Create_UserAndGroup_
ADO procedure.
Upon executing this procedure, two new group accounts named Masters and
Elite are established in the secured SpecialDb database you created in Custom
Project 17.1. A new user account named PowerUser is added and made a
member of the Elite group account. Notice that before opening the database
we need to set the Jet OLEDB:System Database property in the Properties
collection of the ADO Connection object to specify the path and name of the
workgroup information fi le that should be active when the database is opened.
We also set the User ID and Password properties to log onto the database.
Aft er opening the database, we open the Catalog object and use the Append
method of the Catalog’s Groups collection to add new group accounts. Th e
Groups collection contains all groups in the specifi ed workgroup information
fi le. Th e Append method of the Catalog’s Users collection is used to create a
new user account. Th is user account is then appended to the Groups collection
and made a member of a group (Elite). You can verify that the accounts were
indeed created by opening the SpecialDb.mdb fi le.

7. If you’d like to take a moment now, open the SpecialDb database using the
shortcut on your desktop. Once the database is open, choose File | Info | Users
and Permissions | User and Group Accounts. Notice that the database now
contains the Masters and Elite groups in addition to the default Admins and
Users groups (see Figure 17.13).

FIGURE 17.13 The Elite and Masters group accounts are created by running the procedure in
Hands-On 17.2.

IMPLEMENTING DATABASE SECURITY 579

8. Close the SpecialDb database and the Access window in which it was displayed.
Be careful not to close the Chap17.mdb database you are working with.

Deleting User and Group Accounts

Use the Delete method of the Catalog object’s Users collection to delete a user
account. Use the Delete method of the Catalog object’s Groups collection to
delete a group account.

The procedure in Hands-On 17.3 deletes the user account named PowerUser
and the group account named Masters that were created in Hands-On 17.2.

 Hands-On 17.3 Deleting User and Group Accounts (ADO)

This hands-on exercise requires the prior completion of Custom Project 17.1
and Hands-On 17.2.

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the following Delete_UserAndGroup

procedure:
Sub Delete_UserAndGroup(UserName As String, _
 GroupName As String)
 Dim cat As ADOX.Catalog
 Dim conn As ADODB.Connection
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

580 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ' Open the catalog
 Set cat = New ADOX.Catalog
 With cat
 .ActiveConnection = conn
 ' Delete user
 .Users.Delete UserName
 ' Delete group
 .Groups.Delete GroupName
 End With

ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Description
 Resume ExitHere
End Sub

3. To run this procedure, enter the following statement in the Immediate window
and press Enter to execute it:
Delete_UserAndGroup "PowerUser", "Masters"

Aft er running the Delete_UserAndGroup procedure, the Masters group
account and the PowerUser user account are removed from the SpecialDb
database.

Listing User and Group Accounts

The procedure in Hands-On 17.4 demonstrates how to retrieve the names of all
defined group and user accounts from the Groups and Users collections of the
Catalog object (see Figure 17.15).

 Hands-On 17.4 Listing Group and User Accounts (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the List_GroupsAndUsers_ADO proce-

dure as shown here:
Sub List_GroupsAndUsers_ADO()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim grp As New ADOX.Group

IMPLEMENTING DATABASE SECURITY 581

 Dim usr As New ADOX.User
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 ' list group and user accounts
 For Each grp In cat.Groups
 Debug.Print "Group: " & grp.Name
 Next

 For Each usr In cat.Users
 Debug.Print "User: " & usr.Name
 Next

 Set cat = Nothing
 conn.Close
 Set conn = Nothing

 MsgBox "Groups and users are " & _
 "listed in the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e procedure result is shown in Figure 17.14.

582 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 17.14 The names of existing security group and user accounts are written to the Immediate
window by the procedure in Hands-On 17.4.

Notice that in addition to the user accounts you have defined, Access reveals the
names of its two built-in users: Creator and Engine. To keep these built-in users
from showing up in your users listing, use the following conditional statement:
If usr.Name <> "Creator" And usr.Name <> "Engine" Then
 Debug.Print "User:" & usr.Name
End If

Listing Users in Groups

Sometimes you will need to know which users belong to which groups. The
procedure in Hands-On 17.5 demonstrates how to obtain such a list, which is
shown in Figure 17.15.

 Hands-On 17.5 Listing Users in Groups (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the List_UsersInGroups procedure as

shown here:
Sub List_UsersInGroups()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim grp As New ADOX.Group
 Dim usr As New ADOX.User
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"

IMPLEMENTING DATABASE SECURITY 583

 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 For Each grp In cat.Groups
 Debug.Print "Group: " & grp.Name
 If cat.Groups(grp.Name).Users.Count = 0 Then
 Debug.Print vbTab & "There are no " & _
 "users in the " & grp & " group."
 End If
 For Each usr In cat.Groups(grp.Name).Users
 Debug.Print vbTab & "User: " & usr.Name
 Next usr
 Next grp

 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 MsgBox "Groups and Users are listed " & _
 "in the Immediate window."
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e procedure result is shown in Figure 17.15.

584 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 17.15 After running the procedure in Hands-On 17.5, security group account names and
the corresponding user accounts are listed in the Immediate window.

SETTING AND RETRIEVING USER AND
GROUP PERMISSIONS

Users and groups of users can be granted specific permissions to database
objects. For example, a user or an entire group of users can be authorized to
only read an object’s contents, while other users or groups can have less restric-
tive access to a database, allowing them to modify or delete objects.

NOTE

It is important to understand that when you set permissions for
a group, every user in that group automatically inherits those
permissions. Also, keep in mind that while the user and group
accounts are stored in the workgroup information file, the per-
missions that those users and groups have to specific objects are
stored in system tables in your database.

The following sections of this chapter will get you started using ADOX to
retrieve, list, and set permissions for various database objects.

Determining the Object Owner

The database, and every object in the database, has an owner. The owner is the
user who created that particular object. The object owner has special privileges,
including the ability to assign or revoke permissions for that object. To retrieve
the name of the object owner, use the GetObjectOwner method of a Catalog
object. This method takes two parameters: the object’s name and the object’s
type. For example, to determine the owner of a table, use the following syntax:
cat.GetObjectOwner(myObjName, adPermObjTable)

IMPLEMENTING DATABASE SECURITY 585

where cat is an object variable representing the ADOX Catalog object, myObj-
Name is the name of a database table, and adPermObjTable is a built-in ADOX
constant specifying the type of object. The constants for the Type parameter can
be looked up in the Object Browser, as shown in Figure 17.16.

FIGURE 17.16 The Object Browser displays the available constants for the Type parameter of the
GetObjectOwner method.

 Hands-On 17.6 Retrieving the Name of the Object Owner (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the Get_ObjectOwner procedure as

shown here:
Sub Get_ObjectOwner()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim strObjName As Variant

586 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"
 strObjName = "Customers"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn

 ' Display the name of the table owner
 MsgBox "The owner of the " & strObjName & _
 " table is " & vbCr _
 & cat.GetObjectOwner(strObjName, _
 adPermObjTable) & "."

 Set cat = Nothing
 conn.Close
 Set conn = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

To set the ownership of an object with ADOX, use the SetObjectOwner method
of the Catalog object like this:
cat.SetObjectOwner("Customers", adPermObjTable, "PowerUser")

The preceding statement says that the ownership of the Customers table is to
be transferred to the user named PowerUser. Note that currently there is no

IMPLEMENTING DATABASE SECURITY 587

such user in the SpecialDb database. Recall that we created the PowerUser
user account in Hands-On 17.2 and deleted it in Hands-On 17.3. If you want
to experiment with changing object ownership, you need to make appropri-
ate changes in the example procedure using the information you have already
learned.

Setting User Permissions for an Object

With ADOX, you set permissions on an object by using the SetPermissions
method. User-level security can be easier to manage if you set permissions only
for groups, and then assign users to the appropriate groups. Recall that permis-
sions set for the group are automatically inherited by all users in that group. The
SetPermissions method, which can be used for setting both user and group
permissions, has the following syntax:
GroupOrUser.SetPermissions(Name, ObjectType, Action, Rights[,
Inherit] [,ObjectTypeId])

 ● Name—Th e name of the object to set permissions on.
 ● ObjectType—Th e type of object the permissions are set for. (See Figure

17.16 for the names of the ADOX built-in constants that can be used to
specify the Type parameter.)

 ● Action—Th e type of action to perform when setting permissions. Use
the adAccessSet constant for Microsoft Access databases to specify that
the group of users will have exactly the requested permissions.

 ● Rights—A Long value containing a bitmask indicating the permissions
to set. Th e Rights argument can consist of a single permissions constant
or several constants combined with the OR operator. See Figure 17.17 for
the names of the ADOX built-in constants that can be used in the Rights
argument to specify the type of permissions to set.

NOTE

A bitmask is a numeric value intended for a bit-by-bit value
comparison with other numeric values, usually to flag options
in parameters or return values. In Visual Basic, this compari-
son is done with bitwise logical operators, such as AND and
OR. The ADOX GetPermissions and SetPermissions
methods use the bitwise logical operator OR to retrieve the
bitmask for the existing permissions and to add new permis-
sions to the bitmask.

588 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The last two arguments (those in square brackets) are optional:
 ● Inherit—A Long value that specifi es how objects will inherit these per-

missions. Th e default value is adInheritNone.
 ● ObjectTypeId—A Variant value that specifi es the GUID (global unique

identifi er) for a provider object type not defi ned by OLE DB. Th is param-
eter is required if ObjectType is set to adPermObj Pro vi derSpecific
(which is used for setting permissions for forms, reports, and macros);
otherwise, it is not used. See Table 17.2 for available GUIDs.

TABLE 17.2 GUIDs for provider objects

Object GUID
Form {c49c842e-9dcb-11d1-9f0a-00c04fc2c2e0}
Report {c49c8430-9dcb-11d1-9f0a-00c04fc2c2e0}
Macro {c49c842f-9dcb-11d1-9f0a-00c04fc2c2e0}

FIGURE 17.17 In ADOX, you can use many security constants for setting permissions to
database objects.

IMPLEMENTING DATABASE SECURITY 589

The example procedure in Hands-On 17.7 grants a user the permission to read
(adRightRead), insert (adRightInsert), update (adRightUpdate), and delete
(adRightDelete) records.

 Hands-On 17.7 Setting User Permissions for an Object (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the Set_UserObjectPermissions

procedure as shown here:
Sub Set_UserObjectPermissions()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 ' add a user account
 cat.Users.Append "PowerUser", "star"

 ' Set permissions for PowerUser
 ' on the Customers table
 cat.Users("PowerUser").SetPermissions _

590 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 "Customers", _
 adPermObjTable, _
 adAccessSet, _
 adRightRead Or _
 adRightInsert Or _
 adRightUpdate Or _
 adRightDelete
 MsgBox "Read, Insert, Update and Delete " & _
 vbCrLf & " permissions were set on " & _
 "Customers table for PowerUser."
ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147467259 Then
 MsgBox "PowerUser user already exists."
 Resume Next
 Else
 MsgBox Err.Description
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

Setting User Permissions for a Database

To specify permissions for the database, specify an empty string (“”) as the name
of the database:
cat.Users("PowerUser").SetPermissions "", _
adPermObjDatabase, _
adAccessSet, adRightExclusive

This statement gives the user named PowerUser the right to open the database
exclusively.

Figure 17.18 displays the permissions for the SpecialDb database that are set
when the example procedure in Hands-On 17.8 is run.

 Hands-On 17.8 Setting User Permissions for a Database (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the Set_UserDbPermissions_ADO

procedure as shown here:

IMPLEMENTING DATABASE SECURITY 591

Sub Set_UserDbPermissions_ADO()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn

 ' add a user account
 cat.Users.Append "PowerUser", "star"

 ' Set permissions for PowerUser
 cat.Users("PowerUser").SetPermissions "", _
 adPermObjDatabase, adAccessSet, _
 adRightExclusive
 MsgBox "PowerUser has been granted " & _
 vbCrLf & "permission to open the " & _
 "database exclusively."
ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:

592 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Err.Number = -2147467259 Then
 ' because PowerUser user already exists
 ' we ignore this statement
 Resume Next
 Else
 MsgBox Err.Description
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

FIGURE 17.18 The settings shown here are found in the User and Group Permissions
window for the SpecialDb database after running the Set_UserDbPermissions_ADO procedure in
Hands-On 17.8.

Setting User Permissions for Containers

Now that you’ve learned how to grant permissions to a user for a specific object
such as a table or query, you may want to know how to specify permissions for
an entire set of objects such as tables, queries, forms, reports, and macros.

Each Database object has a Containers collection consisting of built-in Con-
tainer objects. A Container object groups together similar types of Document
objects. You can use the Containers collection to set security for all Document
objects of a given type. You can set the permissions that users and groups will

IMPLEMENTING DATABASE SECURITY 593

receive by default on all newly created objects in a database by passing in Null
for the object name argument of the ADOX SetPermissions method, as shown
in the example procedure in Hands-On 17.9.

 Hands-On 17.9 Setting User Permissions for Containers (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the Set_UserContainerPermissions_

ADO procedure as shown here:
Sub Set_UserContainerPermissions_ADO()
 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn

 ' add a user account
 cat.Users.Append "PowerUser", "star"

 ' Set permissions for PowerUser on
 ' the Tables Container

594 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 cat.Users("PowerUser").SetPermissions Null, _
 adPermObjTable, _
 adAccessSet, _
 adRightRead Or _
 adRightInsert Or _
 adRightUpdate Or _
 adRightDelete, adInheritNone
 MsgBox "You have granted " & vbCrLf & _
 "permissions to PowerUser on " & _
 "the Tables Container."
ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147467259 Then
 ' because PowerUser user already exists
 ' we ignore this statement
 Resume Next
 Else
 MsgBox Err.Description
 Resume ExitHere
 End If
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
This procedure gives the PowerUser account the permission to design, read,

update, insert, and delete data for all newly created tables and queries. Notice
that Null is passed as the first argument of the SetPermissions method to in-
dicate that permissions are to be set only on new objects of the type specified by
the second argument of this method.

After executing this procedure, the user account PowerUser has the permis-
sions listed in Figure 17.19 on all newly created Table and Query objects.

IMPLEMENTING DATABASE SECURITY 595

FIGURE 17.19 The settings shown here are found in the User and Group Permissions window after
running the Set_UserContainerPermissions_ADO procedure in Hands-On 17.9.

Checking Permissions for Objects

You can retrieve the permissions for a particular user or group on a particular
object with the ADOX GetPermissions method. Because this method returns
a numeric permission value for the specified object, you must write more code
to decipher the returned value if you want to display the names of constants rep-
resenting permissions. The procedure in Hands-On 17.10 demonstrates how to
retrieve the permissions set for PowerUser on the Customers table in a sample
database (Figure 17.20).

 Hands-On 17.10 Checking Permissions for a Specifi c Object (ADO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the GetObjectPermissions_ADO proce-

dure as shown here:
Sub GetObjectPermissions_ADO(strUserName As String, _
 varObjName As Variant, _
 lngObjType As ADOX.ObjectTypeEnum)

596 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim conn As ADODB.Connection
 Dim cat As ADOX.Catalog
 Dim strPath As String
 Dim strDB As String
 Dim strSysDB As String
 Dim listPerms As Long
 Dim strPermsTypes As String

 On Error GoTo ErrorHandler

 strPath = "C:\VBAAccess2019_ByExample\"
 strDB = "SpecialDb.mdb"
 strSysDB = "Security.mdw"

 ' Open connection to the database using
 ' the specified system database
 Set conn = New ADODB.Connection
 With conn
 .Provider = "Microsoft.Jet.OLEDB.4.0"
 .Properties("Jet OLEDB:System Database") = _
 strPath & strSysDB
 .Properties("User ID") = "Developer"
 .Properties("Password") = "chapter17"
 .Open strPath & strDB
 End With

 ' Open the catalog
 Set cat = New ADOX.Catalog
 cat.ActiveConnection = conn
 ' add a user account
 cat.Users.Append "PowerUser", "star"

 listPerms = cat.Users(strUserName) _
 .GetPermissions(varObjName, lngObjType)
 Debug.Print listPerms

 If (listPerms And ADOX.RightsEnum.adRightCreate) = _
 adRightCreate Then
 strPermsTypes = strPermsTypes & _
 "adRightCreate" & vbCr
 End If
 If (listPerms And RightsEnum.adRightRead) = _
 adRightRead Then
 strPermsTypes = strPermsTypes & _
 "adRightRead" & vbCr
 End If

IMPLEMENTING DATABASE SECURITY 597

 If (listPerms And RightsEnum.adRightUpdate) = _
 adRightUpdate Then
 strPermsTypes = strPermsTypes & _
 "adRightUpdate" & vbCr
 End If
 If (listPerms And RightsEnum.adRightDelete) = _
 adRightDelete Then
 strPermsTypes = strPermsTypes & _
 "adRightDelete" & vbCr
 End If
 If (listPerms And RightsEnum.adRightInsert) = _
 adRightInsert Then
 strPermsTypes = strPermsTypes & _
 "adRightInsert" & vbCr
 End If
 If (listPerms And RightsEnum.adRightReadDesign) = _
 adRightReadDesign Then
 strPermsTypes = strPermsTypes & _
 "adRightReadDesign" & vbCr
 End If

 Debug.Print strPermsTypes
 MsgBox "Permissions are listed in " & _
 "the Immediate Window."
ExitHere:
 Set cat = Nothing
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147467259 Then
 ' because PowerUser user already exists
 ' we ignore this statement
 Resume Next
 Else
 MsgBox Err.Description
 Resume ExitHere
 End If
End Sub

3. To run the GetObjectPermissions_ADO procedure, type the following state-
ment in the Immediate window and press Enter to execute it:
GetObjectPermissions_ADO "PowerUser", "Customers", adPermObjTable

598 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 17.20 The procedure in Hands-On 17.10 writes the permissions found for PowerUser in
the Customers table to the Immediate window.

Setting a Database Password Using the CompactDatabase Method

You can implement share-level security by setting a database password. When
you set a database password, the password dialog box will appear when you
open the database. Only users with a valid password can open the database.

You cannot use ADOX objects to set a database password. Instead, you have
to use the objects from the Microsoft Jet and Replication Objects (JRO) Library.
Use the CompactDatabase method of the JRO JetEngine object and specify the
Password parameter. Remember that passwords are case sensitive.

The procedure in Hands-On 17.11 sets the sample database password to
“welcome.”

 Hands-On 17.11 Setting a Database Password (JRO)

1. Create a new Access database named PasswordTest.mdb in your C:\VBAAc-
cess2019_ByExample folder. Close this database before proceeding to step 2.

2. Reopen the Chap17.mdb file if it was closed. Switch to the Visual Basic Editor
window and choose Insert | Module.

3. Set a reference to the Microsoft Jet and Replication Objects Library. To do
this, choose Tools | References in the Visual Basic Editor window and select
the required library in the list of Available References

4. In the module’s Code window, enter the Change_DBPassword procedure
as shown here:
Sub Change_DBPassword()
 Dim jetEng As JRO.JetEngine
 Dim strCompactFrom As String
 Dim strCompactTo As String
 Dim strPath As String

IMPLEMENTING DATABASE SECURITY 599

 On Error GoTo ErrHandler
 strPath = CurrentProject.Path & "\"

 strCompactFrom = "PasswordTest.mdb"
 strCompactTo = "PasswordTest_Compact.mdb"

 Set jetEng = New JRO.JetEngine
 ' Compact the database specifying
 ' the new database password
 jetEng.CompactDatabase _
 "Data Source=" & strPath & _
 strCompactFrom & ";", _
 "Data Source=" & strPath & _
 strCompactTo & ";" & _
 "Jet OLEDB:Database Password=welcome"

ExitHere:
 Set jetEng = Nothing
 Exit Sub
ErrHandler:
 If Err.Number = -2147217897 Then
 Kill strPath & strCompactTo
 Resume
 Else
 MsgBox Err.Number & ": " & _
 Err.Description
 Resume ExitHere
 End If
End Sub

5. Choose Run | Run Sub/UserForm to execute the procedure.
6. After you run this procedure, open the PasswordTest_Compact.mdb data-

base file. You should be prompted for the password. Type welcome to log in.
7. Close the PasswordTest_Compact.mdb file.

Setting a Database Password Using the NewPassword Method

The DAO Object Model has a NewPassword method of the Database object that
you can use to change the password of an existing Microsoft Access database in
.accdb or .mdb file format. The NewPassword method requires two parameters.
The first one specifies the old password, and the second one provides the new
password. Both passwords can be up to 20 characters long and can include any
characters except the ASCII character 0 (Null). Use a zero-length string ("") for

600 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the old password if the database does not have a password. Use a zero-length
string ("") for the new password to clear the password. Password operations
require that the database is open in exclusive mode. Remember that passwords
are case sensitive.

The procedure in Hands-On 17.12 sets the password for the Chap11.accdb
database you created earlier in this book.

 Hands-On 17.12 Setting a Database Password (DAO)

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the Set_DBPassword_DAO procedure

as shown here:
Sub Set_DBPassword_DAO()
 Dim db As DAO.Database
 Dim strDB As String

 strDB = CurrentProject.Path & "\Chap11.accdb"

 Set db = OpenDatabase(strDB, True)

 db.NewPassword "", "chapter11"
 db.Close
 Set db = Nothing
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.
Th e second parameter (True) in the OpenDatabase method tells VBA to open
the database in exclusive mode.

4. Open the Chap11.accdb database and notice that you are now prompted to
enter a password. Type chapter11 for the password and click OK. When the
database opens, close it and close the Access window in which it was opened.
Do not close the Chap17.mdb file.

You can unset the password on the Chap11.accdb database by running the fol-
lowing procedure:
Sub Unset_DBPassword_DAO()
 Dim db As DAO.Database
 Dim strDB As String

 strDB = CurrentProject.Path & _
 "\Chap11.accdb"

IMPLEMENTING DATABASE SECURITY 601

 Set db = OpenDatabase(strDB, True, _
 False, ";pwd=chapter11")

 db.NewPassword "chapter11", ""
 db.Close
 Set db = Nothing
End Sub

Notice the parameters of the OpenDatabase method. True specifies that the
database is to be opened in exclusive mode, and False indicates that the data-
base should be opened in read/write mode. Because the Chap11.accdb database
has been protected with a password by the Set_DBPassword_DAO procedure in
Hands-On 17.12, we also had to specify the password in the connect parameter.
After you run the preceding procedure, you will not be prompted for a password
when you open the Chap11.accdb database.

Changing a User Password

User passwords are stored in the workgroup information file. To change a user’s
password in VBA code, use the ADOX User object’s ChangePassword method.
This method takes as parameters the user’s current password and the new pass-
word. If a user does not yet have a password, use an empty string ("") for the
user’s current password.

The procedure in Hands-On 17.13 demonstrates how to change a password
for the Admin user. Recall that Admin is the default user account that has a
blank password. In an unsecured Access database, all users are automatically
logged on using the Admin account. When establishing user-level security, you
should start by changing the password for the Admin user. Changing an Admin
password activates the Logon dialog box the next time you start Microsoft Ac-
cess. Only users with a valid username and password will be able to log onto the
database. Although users are permitted to change their own passwords, only a
user who belongs to the Admins group can clear a password that another user
has forgotten.

 Hands-On 17.13 Changing a User Password (ADO)

1. Create a new Access database named AdminPwd.mdb in your C:\VBAAc-
cess2019_ByExample folder. Close this database before proceeding to step 2.

2. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.

602 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the module’s Code window, enter the Change_UserPassword_ADO
procedure as shown here:
Sub Change_UserPassword_ADO()
 Dim cat As ADOX.Catalog
 Dim strDB As String
 Dim strSysDB As String

 On Error GoTo ErrorHandler

 strDB = CurrentProject.Path & "\AdminPwd.mdb"
 ' change the path to use the default
 ' workgroup information file on your computer
 strSysDB = "C:\Users\Julitta\" & _
 "AppData\Roaming\Microsoft\Access\System1.mdw"

 ' Open the catalog, specifying the system
 ' database to use
 Set cat = New ADOX.Catalog
 With cat
 .ActiveConnection = _
 "Provider='Microsoft.Jet.OLEDB.4.0';" & _
 "Data Source='" & strDB & "';" & _
 "Jet OLEDB:System Database='" & _
 strSysDB & "';" & _
 "User Id=Admin;Password=;"

 ' Change the password for the Admin user
 .Users("Admin").ChangePassword "", "secret"
 End With

ExitHere:
 Set cat = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Description
 GoTo ExitHere
End Sub

4. Choose Run | Run Sub/UserForm to execute the procedure.
5. When you open the AdminPwd.mdb database after running the procedure,

a Logon dialog box will appear. Enter Admin in the Name text box and secret
in the Password text box, and click OK (Figure 17.21).

IMPLEMENTING DATABASE SECURITY 603

FIGURE 17.21 A Logon dialog box requests the username and password for the Admin user.

6. Remove the Admin password by choosing File | Info | Users and Permissions
| User and Group Accounts. Click the Change Logon Password tab and type
the old password (secret). Click the Apply button, and click OK to exit the
User and Group Accounts window (Figure 17.22).

FIGURE 17.22 You can remove the Admin password via the Change Logon Password tab in the
User and Group Accounts window or by modifying the VBA code shown in Hands-On 17.13.

7. After removing the Admin password, reopen the AdminPwd.mdb file. The
database should now open without prompting you to enter a password.

8. Close the AdminPwd.mdb database and exit the Access window in which
the file was opened.

604 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ENCRYPTING A SECURED MDB DATABASE

To achieve a higher level of security and protect your database from unauthor-
ized access, you can encrypt it. Prior to encrypting, secure your database by set-
ting user and group permissions on database objects. To encrypt a database, you
must be the owner or the creator of the database, or a member of the Admins
group in the workgroup information file (System.mdw) that was in use when
the database was created.

Use the CompactDatabase method of the Microsoft Jet and Replication Ob-
jects (JRO) JetEngine object to encrypt or decrypt a database. To use the JRO
JetEngine object, you must first set a reference to the Microsoft Jet and Rep-
lication Objects Library. To encrypt the database, set the Jet OLEDB:Encrypt
Database property to True in the connection string destination argument of the
CompactDatabase method.

After a database has been encrypted, it cannot be read or written to directly
by using any utility program or word processor. The procedure in Hands-On
17.14 creates an encrypted version of the SpecialDb.mdb database that you cre-
ated in Custom Project 17.1.

 Hands-On 17.14 Encrypting a Database (JRO)

The procedure in this hands-on exercise should be run after you have ini-
tially secured your database by creating the necessary user and group accounts
and assigned user and group permissions on database objects.

1. In the Visual Basic Editor window of Chap17.mdb, choose Insert | Module.
2. In the module’s Code window, enter the EncryptDb procedure as shown here:

Sub EncryptDb()
 Dim jetEng As JRO.JetEngine
 Dim strCompactFrom As String
 Dim strCompactTo As String
 Dim strSource As String
 Dim strDest As String
 Dim strSysDB As String

 strCompactFrom = CurrentProject.Path & _
 "\SpecialDb.mdb"
 strCompactTo = CurrentProject.Path & _
 "\SpecialDb_Enc.mdb"
 strSysDB = CurrentProject.Path & _
 "\Security.mdw"

IMPLEMENTING DATABASE SECURITY 605

 On Error GoTo HandleErr

 ' Use the CompactDatabase method to create
 ' a new, encrypted version of the database
 Set jetEng = New JRO.JetEngine

 strSource = "Data Source=" & _
 strCompactFrom & ";" & _
 "Jet OLEDB:System Database=" & _
 strSysDB & ";" & _
 "User ID=Developer" & ";" & _
 "Password=chapter17"

 strDest = "Data Source=" & _
 strCompactTo & ";" & _
 "Jet OLEDB:Engine Type=5;" & _
 "Jet OLEDB:Encrypt Database=True"

 jetEng.CompactDatabase strSource, strDest
ExitHere:
 Set jetEng = Nothing
 Exit Sub
HandleErr:
 MsgBox Err.Number & ": " & Err.Description
 Resume ExitHere
End Sub

3. Choose Run | Run Sub/UserForm to execute the procedure.

To open the secured SpecialDb_Enc database file, you must provide the name of
the workgroup information file as shown here:

"C:\Program Files (x86)\Microsoft Office\root\Office16\MSACCESS.EXE"
"C:\VBAAccess2019_ByExample\SpecialDb_Enc.mdb" /WRKGRP
"C:\VBAAccess2019_ByExample\Security.mdw" /User "Developer"
/Pwd "chapter17"

Use the preceding command to setup a shortcut on your desktop similar to the
one that was set up by the Access Security Wizard when you completed Custom
Project 17.1. You should log in as Developer using “chapter17” as the password.

606 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this chapter, you worked with VBA procedures that implemented share-level
and user-level security in Microsoft Access databases. You found out that in
Access 2019, user-level security can only be used in Access databases created
in the .mdb file format. You learned to work with workgroup information files
and practiced creating and modifying user and group accounts, and setting user
permissions to a database and its objects. You also learned how to set a database
password on Access databases, and how to write a procedure that encrypts a
secured .mdb file.

This chapter concludes Part II of this book in which we focused on perform-
ing important database tasks using DAO and ADO.

The next chapter will show you how the Data Definition Language is used to
work with Access tables and fields.

Data Definition Language (DDL) is a component of Structured Query Lan-
guage (SQL), which is used for defining database objects (tables, views,
stored procedures, primary keys, indexes, and constraints) and managing

database security. In this part of the book, you will learn how to use DDL with Jet
databases, ADO, and the Jet 4.0/ACE OLE DB Provider.

Chapter 18 Creating, Modifying, and Deleting Tables and Fields
Chapter 19 Enforcing Data Integrity and Relationships between Tables
Chapter 20 Defining Indexes and Primary Keys
Chapter 21 Database Security
Chapter 22 Views and Stored Procedures

Part

 III PROGRAMMING WITH
THE JET DATA
DEFINITION
LANGUAGE

607

609

In Part II of this book, you tried out different methods that are available in
Microsoft Access for creating and manipulating databases via VBA pro-
gramming code using the DAO and ADO object models. In particular, you

learned how to create new databases from scratch, add tables and indexes, set
up relationships between tables, secure a database with a password, define user
and group security accounts, and handle object permissions. In addition to us-
ing DAO and ADO, you can perform many of the mentioned database tasks by
using Data Definition Language (DDL), which is a component of Structured
Query Language (SQL).

SQL is a widely used language for data retrieval and manipulation in da-
tabases. The SQL specification (known as ANSI SQL-89) was first published
in 1989 by the American National Standards Institute (ANSI). The ANSI SQL
standard was revised in 1992; this version is referred to as ANSI SQL-92 or
SQL-2. This revised specification is supported by the major database vendors,
many of whom have created their own extensions of the SQL language. Micro-
soft Access 2019 supports both SQL specifications and refers to them as ANSI
SQL query modes.

Chapter

 18 CREATING,
MODIFYING, AND
DELETING TABLES
AND FIELDS

610 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

While the ANSI-89 SQL query mode (also called Microsoft Jet SQL and
ANSI SQL) uses the traditional Jet SQL syntax, the ANSI-92 SQL mode uses
syntax that is more compliant with SQL-92 and Microsoft SQL Server. For ex-
ample, ANSI-92 uses the percent sign (%) and the underscore character (_) for
its wildcards instead of the asterisk (*) and the question mark (?), which are
commonly used in VBA. Microsoft Access Jet Engine does not implement the
complete ANSI SQL-92 standard and provides its own Jet 4.0 ANSI SQL-92
extensions to support new features of Access. You can use the ANSI-92 syntax
in your VBA procedures with the Microsoft OLE DB Provider for Jet or with
the Data Definition Language, which we cover in this part of the book. ANSI-89
is the default setting for a new Microsoft Access database in Access 2002–2003
and 2000 file formats. Because the two ANSI SQL query modes are not compat-
ible, you must decide which query mode you are going to use for the current
database. This can easily be done in the Microsoft Access user interface as out-
lined in Hands-On 18.1.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 18.1 Setting the ANSI SQL Query Mode

1. Start Microsoft Access and create a new database named Chap18.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Click the File tab and select the Options button.
3. In the left pane of the Access Options window, select Object Designers.
4. In the right pane, in the Query design section, look for the SQL Server

Compatible Syntax (ANSI 92) area (see Figure 18.1). Set the query mode to
ANSI-92 SQL by clicking the This database checkbox. (You can set the query
mode to ANSI-89 SQL by clearing the This database checkbox.)

5. Click OK to exit the Access Options window. Microsoft Access displays a
message as shown in Figure 18.2.

6. Click OK to accept the message. The Microsoft Access database will close and
reopen with the new settings in effect.

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 611

FIGURE 18.1 Use the Access Options window to set the ANSI SQL query mode for the current
database or all new databases.

FIGURE 18.2 When you change the query mode to ANSI-92, Microsoft Access displays an
informational message alerting you to possible problems.

There are two areas of Microsoft Access SQL:

 ● Data Defi nition Language (DDL) off ers a number of SQL statements to
manage database security and to create and alter database components
(such as tables, indexes, relationships, views, and stored procedures).
Th ese statements are: CREATE TABLE, DROP TABLE, ALTER TABLE, CRE-
ATE INDEX, DROP INDEX, CHECK CONSTRAINT, CREATE VIEW, DROP VIEW,
CREATE PROCEDURE, DROP PROCEDURE, EXECUTE, ALTER DATABASE, ADD
USER, ALTER USER, CREATE USER, CREATE GROUP, DROP GROUP, DROP
USER, GRANT, and REVOKE.

 ● Data Manipulation Language (DML) off ers SQL statements that allow
you to retrieve and manipulate data contained in the database tables as
well as perform transactions. Th ese statements are: SELECT, UNION, UP-

612 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

DATE, DELETE, INSERT INTO, SELECT INTO, INNER JOIN, LEFT JOIN,
RIGHT JOIN, TRANSFORM, PARAMETERS, BEGIN TRANSACTION, COMMIT, and
ROLLBACK.

This chapter and the remaining chapters of Part III focus on using the DDL
language for creating and changing the underlying structure of a database. To
get the most out of these chapters, you should be familiar with using DAO and
ADO, discussed in Part II.

CREATING TABLES

Using the Microsoft Access SQL CREATE TABLE statement and the Execute
method of either the DAO Database object or the ADO Connection object,
you can define a new table, its fields, and field constraints. The CREATE TABLE
statement can only be used with Microsoft Jet and Microsoft Access engine
databases. The two examples that follow illustrate how to create a table named
tblSchools in the currently open database and in a new database using ADO.

 Hands-On 18.2 Creating a Table in the Current Database
(DDL with ADO)

1. In the Chap18.accdb database that you created in Hands-On 18.1, switch to the
Visual Basic Editor window and choose Tools | References. In the References
dialog box, scroll down to locate Microsoft ActiveX Data Objects 6.1 Library.
Click the checkbox to the left of this library name to set a reference to it and
click OK to exit the dialog box.

2. Choose Insert | Module to add a new module to the current VBA project.
3. In the module’s Code window, type the following CreateTable procedure:

Sub CreateTable()
 ' you must set up a reference to
 ' the Microsoft ActiveX Data Objects Library
 ' in the References dialog box
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 strTable = "tblSchools"

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 613

 conn.Execute "CREATE TABLE " & strTable & _
 "(SchoolID AUTOINCREMENT(100, 5), " & _
 "SchoolName CHAR," & _
 "City CHAR (25), District CHAR (35), " & _
 "YearEstablished DATE);"

 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

4. Position the insertion point anywhere within the code of the CreateTable
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

This procedure uses ADO to establish a connection to the current database
(Chap18.accdb). The ADO Connection object’s Execute method is used to exe-
cute the Data Definition Language CREATE TABLE statement that defines a new
table and its fields. The first field is named SchoolID and its data type is defined
as AutoNumber.

The seed and increment values of AutoNumber columns are specified using
the following syntax:
Column_name AUTOINCREMENT (seed, increment)

The table, tblSchools, has an AutoNumber column with a seed of 100 and an
increment of 5:
SchoolID AUTOINCREMENT(100, 5)

When you switch to the database window and open this table in Datasheet view,
the SchoolID for the first record will be 100, the second will be 105, the third
110, and so on.

Three fields are defined as Text fields and one field as a Date/Time field. The
Text fields are defined using the CHAR data type (see Table 18.1). To specify the
size of the Text field, put the appropriate value between parentheses. If the size
of the Text field is not specified, it is assumed to be 255 characters long.

When you examine the code of the CreateTable procedure and compare the
resultant table in Figure 18.3, you will notice that Access SQL uses different data

614 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

types than those available in the Table Design window. Table 18.1 shows the
equivalent SQL data types.

FIGURE 18.3 The tblSchools table was generated by the CreateTable procedure in Hands-On 18.2
using the Microsoft Access SQL statement CREATE TABLE.

TABLE 18.1 Table design data types and their Access SQL equivalents

Table Design Data Types Access SQL Data Types
Text TEXT, ALPHANUMERIC, CHAR, CHARACTER,

STRING, or VARCHAR
Memo LONGTEXT, MEMO, LONGCHAR, or NOTE
Number (Field Size = Byte) BYTE or INTEGER1
Number (Field Size = Integer) SHORT, INTEGER2, or SMALLINT
Number (Field Size = Long Integer) COUNTER, INTEGER, INT, or AUTOINCRE-

MENT
Number (Field Size = Single) SINGLE, FLOAT4, or REAL
Number (Field Size = Double) DOUBLE, FLOAT, or NUMBER
Date/Time DATETIME, DATE, TIME, or TIMESTAMP
Currency CURRENCY or MONEY
AutoNumber (Field Size = Long Integer) AUTOINCREMENT or COUNTER
AutoNumber (Field Size = Replication Id) GUID
Yes/No BOOLEAN, BIT, LOGICAL, LOGICAL1, or

YESNO
OLE Object LONGBINARY, OLEOBJECT, or GENERAL

The RefreshDatabaseWindow method of the Application object ensures that
the database window is updated after the creation of the new table object. The
error-handling code will alert you if an error is encountered. Try to run this
procedure again in step mode (F8) to see what happens. Notice that the pro-
cedure uses two labels to mark appropriate sections in the procedure. The On
Error GoTo ErrorHandler statement will transfer the procedure execution to

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 615

the line labeled ErrorHandler when an error is triggered. Statements follow-
ing this label will be executed until the Resume statement is encountered. This
statement will direct the code execution to the line labeled ExitHere. The Exit
Sub statement in the ExitHere block of code will allow us to exit the procedure
whether or not an error is encountered.

Sometimes you may be required to create a new database and a new table in
one procedure. Hands-On 18.3 demonstrates how to create a table in a brand-
new database.

 Hands-On 18.3 Creating a Table in a New Database (DDL with
ADO/ADOX)

1. In the Visual Basic Editor window, choose Tools | References. In the References
dialog box, scroll down to locate Microsoft ADO Ext. 6.0 for DDL and
Security Object Library. Click the checkbox to the left of the library name to
set a reference to it. Also, make sure that the Microsoft ActiveX Data Objects
6.1 Library is selected. Click OK to exit the dialog box.

2. In the module’s Code window, enter the following CreateTableInNewDB
procedure:
Sub CreateTableInNewDB()
 ' use the References dialog box
 ' to set up a reference to
 ' Microsoft ADO Ext. 6.0 for
 ' DDL and Security Object Library
 ' and Microsoft ActiveX Data
 ' Objects 6.1 Library
 Dim cat As ADOX.Catalog
 Dim conn As ADODB.Connection
 Dim strDb As String
 Dim strTable As String
 Dim strConnect As String

 On Error GoTo ErrorHandler

 Set cat = New ADOX.Catalog
 strDb = CurrentProject.Path & "\Sites.mdb"
 strConnect = _
 "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strDb

 ' create a new database file
 cat.Create strConnect

616 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox "The database was created (" & strDb & ")."

 ' set connection to currently open catalog
 Set conn = cat.ActiveConnection

 strTable = "tblSchools"
 conn.Execute "CREATE TABLE " & strTable & _
 "(SchoolID AUTOINCREMENT(100, 5), " & _
 "SchoolName CHAR," & _
 "City CHAR (25), District CHAR (35), " & _
 "YearEstablished DATE);"
ExitHere:
 Set cat = Nothing
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217897 Then
 ' delete the database file if it exists
 Kill strDb
 ' start from statement that caused this error
 Resume 0
 Else
 MsgBox Err.Number & ": " & Err.Description
 GoTo ExitHere
 End If
End Sub

3. Position the insertion point anywhere within the CreateTableInNewDB
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

The CreateTableInNewDB procedure shown here creates a new database named
Sites.mdb in the current folder. You can create a Microsoft Access database by
using the Create method of the ADOX Catalog object. Before creating a table
in the new database, set the conn object variable to the currently open Catalog,
like this:
Set conn = cat.ActiveConnection

Use the Connection object’s Execute method to create a new table named
tblSchools in the Sites.mdb file. Like other procedure examples in this section,
this table contains an AutoNumber field with a sequence starting at 100 that will
be incremented by 5 as new columns are added. Notice that the error-handling
code demonstrated in this procedure is slightly different from previous exam-
ples. If you know the type of error that is most likely to occur, you can check for

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 617

the error number in the error handler and execute the appropriate statement
when the condition is met. If the database already exists, it will be deleted using
the VBA Kill statement (don’t do this in the production environment unless
you are absolutely certain this is what you want to do). The statement Resume 0
in the error-handling code will return the code execution to the line that caused
the error. If other errors are encountered, error information will appear in a
message box and the code execution will continue from the line following the
ExitHere label.

DELETING TABLES

It’s time to remove some of our test data by using the DROP TABLE statement to
delete an existing table from a database. Note that a table must be closed before
it can be deleted. The procedure in Hands-On18.4 will delete the tblSchools
table that was created in Hands-On 18.2.

 Hands-On 18.4 Deleting a Table

This hands-on exercise requires the prior completion of Hands-On 18.2.

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, enter the following DeleteTable procedure:

Sub DeleteTable()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 conn.Execute "DROP TABLE " & strTable
 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217900 Then
 DoCmd.Close acTable, strTable, acSavePrompt
 Resume 0
 Else

618 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If
End Sub

3. Position the insertion point anywhere within the code of the DeleteTable
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

You can also execute the DROP TABLE statement directly in the Microsoft Access
user interface’s Data Definition Query window by following these steps:

1. Choose Create | QueryDesign.
2. Click the Close button in the Show Table dialog box.
3. Choose Design | SQL | Data Definition.
4. Enter the following statement in the Query window:

DROP TABLE tblSchools;

5. Choose Design | Run.

MODIFYING TABLES WITH DDL

You can modify a table definition by altering, adding, or dropping columns and
constraints. Constraints allow you to enforce integrity by creating rules for a
table. The procedures in the following sections illustrate how to use Microsoft
Access SQL DDL statements to:

 ● Add new columns to a table
 ● Change the column’s data type
 ● Change the size of a Text column
 ● Delete a fi eld from a table
 ● Add a primary key to an existing table
 ● Add a unique, multiple-fi eld index to an existing table
 ● Delete an index
 ● Set a default value for a column in a table
 ● Change the seed and increment values of AutoNumber columns

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 619

Adding New Fields to a Table

Use the ALTER TABLE statement followed by a table name to modify the design
of a table after it has been created with the CREATE TABLE statement. Prior to
modifying the structure of an existing table, it’s recommended that you make a
backup copy of the table.

The ALTER TABLE statement can be used with the ADD COLUMN clause to add
a new field to the table. For example, the procedure in Hands-On 18.5 adds a
Currency field called Budget2019 to the tblSchools table using the following
statement:
ALTER TABLE tblSchools ADD COLUMN Budget2019 MONEY

When you add a new field to a table, you should specify the name of the field, its
data type and, for Text and Binary fields, the size of the field.

 Hands-On 18.5 Adding a New Field to an Existing Table

1. Run the procedure in Hands-On 18.2 to create the tblSchools table in the
current database if you deleted the table in Hands-On 18.4.

2. In the Visual Basic Editor window, choose Insert | Module.
3. In the module’s Code window, enter the following AddNewField procedure:

Sub AddNewField()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "Budget2019"

 conn.Execute "ALTER TABLE " & strTable & _
 " ADD COLUMN " & strCol & " MONEY;"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

620 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Position the insertion point anywhere within the code of the AddNewField
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

Changing the Data Type of a Table Column

You can use the ALTER COLUMN clause in the ALTER TABLE statement to change
the data type of a table column. You must specify the name of the field, the
desired data type, and the size of the field, if required.

The procedure in Hands-On 18.6 changes the data type of the SchoolID field
in the tblSchools table from AutoNumber to a 15-character Text field.

 Hands-On 18.6 Changing the Field Data Type

This hands-on exercise uses the tblSchools table created in Hands-On 18.2 and
recreated in Hands-On 18.5.

1. In the same module where you entered the procedure in Hands-On 18.5, enter
the following ChangeFieldType procedure:
Sub ChangeFieldType()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "SchoolID"
 conn.Execute "ALTER TABLE " & strTable & _
 " ALTER COLUMN " & strCol & " CHAR(15);"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the ChangeFieldType
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 621

This procedure modifies the SchoolID data type to store text data. You can dou-
ble-check the procedure changes by switching to the Microsoft Access window
and opening the tblSchools table in Design view.

When done, make sure you close the tblSchools table.

Changing the Size of a Text Column

It’s easy to increase or decrease the size of a Text column. Simply use the ALTER
TABLE statement followed by the name of the table, and the ALTER COLUMN
clause followed by the name of the column whose size you want to modify. Then
specify the data type of the column and the new column size.

Hands-On 18.7 modifies the size of the SchoolName field from the default
255 characters to 40.

 Hands-On 18.7 Changing the Size of a Field

This hands-on exercise uses the tblSchools table created in Hands-On 18.2.

1. In the same module where you entered the procedure from the previous
hands-on exercise, enter the following ChangeFieldSize procedure:
Sub ChangeFieldSize()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "SchoolName"

conn.Execute "ALTER TABLE " & strTable & _
 " ALTER COLUMN " & strCol & " CHAR(40);"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

622 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Position the insertion point anywhere within the code of the ChangeField Size
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.
Th is procedure sets the size of the SchoolName fi eld to 40 characters. You can
double-check the procedure changes by switching to the Microsoft Access
window and opening the tblSchools table in Design view.
 When done, be sure to close the tblSchools table.

Deleting a Column from a Table

Use the DROP COLUMN clause in the ALTER TABLE statement to delete a column
from a table. You only need to specify the name of the field you want to remove.

The example procedure in Hands-On 18.8 deletes the Budget2019 column
from the tblSchools table.

 Hands-On 18.8 Deleting a Field from a Table

This hands-on exercise uses the tblSchools table created in Hands-On 18.2.
Make sure this table contains the Budget2019 column, which was added in
Hands-On 18.5.

3. In the same module where you entered previous hands-on exercises, enter the
following DeleteField procedure:
Sub DeleteField()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "Budget2019"

conn.Execute "ALTER TABLE " & strTable & _
 " DROP COLUMN " & strCol & ";"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 623

 Resume ExitHere
End Sub

4. Position the insertion point anywhere within the code of the DeleteField
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

This procedure removes the Budget2019 field from the tblSchools table.

Adding a Primary Key to a Table

You can use the ADD CONSTRAINT clause in the ALTER TABLE statement to define
one or more columns as a primary key. The primary key is defined using the
PRIMARY KEY keywords.

Hands-On 18.9 defines a primary key for the tblSchools table created in
Hands-On 18.2. The result is shown in Figure 18.4.

 Hands-On 18.9 Adding a Primary Key to a Table

This hands-on exercise uses the tblSchools table created in Hands-On 18.2.

1. In the same module where you entered previous hands-on exercises, enter the
following AddPrimaryKey procedure:
Sub AddPrimaryKey()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "SchoolID"

 conn.Execute "ALTER TABLE " & strTable & _
 " ADD CONSTRAINT pKey PRIMARY KEY " & _
 "(" & strCol & ");"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

624 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Position the insertion point anywhere within the code of the AddPrimaryKey
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

Adding a Multiple-Field Index to a Table

Use the ADD CONSTRAINT clause and the UNIQUE keyword in the ALTER TABLE
statement to add a multiple-field index. The UNIQUE keyword prevents duplicate
values in the index.

 Hands-On 18.10 Adding a Unique Index Based on Two Fields to an
Existing Table

This hands-on exercise uses the tblSchools table created in Hands-On 18.2.

1. In the same module where you entered previous hands-on exercises, enter the
following AddMulti_UniqueIndex procedure:
Sub AddMulti_UniqueIndex()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "SchoolID, District"

 conn.Execute "ALTER TABLE " & strTable & _
 " ADD CONSTRAINT multiIdx UNIQUE " & _
 "(" & strCol & ");"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the AddMulti_
UniqueIndex procedure and press F5 or choose Run | Run Sub/UserForm to
execute the procedure. Figure 18.4 shows the result.

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 625

FIGURE 18.4 After running the procedures in Hands-On 18.9 and 18.10, the tblSchools table
contains a primary key and a unique index based on two fields.

Deleting an Indexed Column

Deleting an index field is a two-step process:

 ● Use the DROP CONSTRAINT clause to delete an index. You must specify the
index name.

 ● Use the DROP COLUMN clause to delete the desired column. You must spec-
ify the column name.

Both clauses must be used in the ALTER TABLE statement.
The procedure in Hands-On 18.11 deletes the District column from the

tblSchools table. Recall that the procedure in Hands-On 18.10 added a multiple-
field index based on the SchoolID and District columns.

 Hands-On 18.11 Deleting a Field that Is Part of an Index

This hands-on exercise uses the tblSchools table created in Hands-On 18.2. You
must perform Hands-On 18.10 prior to running this procedure.

1. In the same module where you entered previous hands-on exercises, enter the
following DeleteIdxField procedure:
Sub DeleteIdxField()
 Dim conn As ADODB.Connection

626 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim strTable As String
 Dim strCol As String
 Dim strIdx As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "District"
 strIdx = "multiIdx"

 conn.Execute "ALTER TABLE " & strTable & _
 " DROP CONSTRAINT " & strIdx & ";"

 conn.Execute "ALTER TABLE " & strTable & _
 " DROP COLUMN " & strCol & ";"

ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the DeleteIdxField
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

Deleting an Index

Use the DROP CONSTRAINT clause to delete an index. You must specify the index
name.

The procedure in Hands-On 18.12 deletes a primary key index from the
tblSchools table.

 Hands-On 18.12 Deleting an Index

This hands-on exercise uses the tblSchools table created in Hands-On 18.2. You
must perform Hands-On 18.10 prior to running this procedure.

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 627

1. In the same module where you entered previous hands-on exercises, enter the
following RemovePrimaryKeyIndex procedure:
Sub RemovePrimaryKeyIndex()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strIdx As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strIdx = "pKey"

 conn.Execute "ALTER TABLE " & strTable & _
 " DROP CONSTRAINT " & strIdx & ";"

ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the
RemovePrimaryKeyIndex procedure and press F5 or choose Run | Run Sub/
UserForm to execute the procedure.
Aft er running the procedures in Hands-On 18.11 and 18.12, the Indexes
window (see Figure 18.4 earlier) should be empty.

Setting a Default Value for a Table Column

Specifying a default value for a field automatically enters that value in the field
each time a new record is added to a table unless the user provides a value for
the field. Using DDL, you can add a default value for an existing column with
the SET DEFAULT clause. The required syntax is as follows:
ALTER TABLE table_name ALTER [COLUMN] column_name SET DEFAULT
default-value;

The [COLUMN] in the syntax is optional.

628 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 18.13 Setting a Default Value for a Field

This hands-on exercise uses the tblSchools table created in Hands-On 18.2.

1. In the same module where you entered previous hands-on exercises, enter the
following SetDefaultFieldValue procedure:
Sub SetDefaultFieldValue()
 Dim conn As ADODB.Connection
 Dim strTable As String
 Dim strCol As String
 Dim strDefVal As String
 Dim strSQL As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "tblSchools"
 strCol = "City"
 strDefVal = "Boston"
 strSQL = "ALTER TABLE " & strTable & _
 " ALTER " & strCol & " SET DEFAULT " & strDefVal

 conn.Execute strSQL

ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the SetDefaultFieldValue
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure. Figure 18.5 shows that the Default Value property of the City field
has been set to Boston.

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 629

FIGURE 18.5 After running the procedure in Hands-On 18.13, the Default Value property of the
City field is set to Boston.

Changing the Seed and Increment Values of AutoNumber Columns

When a table contains a field with an AutoNumber data type, you can set a seed
value and an increment value. The seed value is the initial value for the column,
and the increment value is the number added to the seed value to obtain a new
counter value for the next record. If not specified, both seed and increment val-
ues default to 1. You can use DDL to change the seed and increment values of
AutoNumber columns by using one of the following three statements:
 ALTER TABLE Table_name
 ALTER COLUMN Column_name AUTOINCREMENT (seed, increment)

 ALTER TABLE Table_name
 ALTER COLUMN Column_name COUNTER (seed, increment)

 ALTER TABLE Table_name
 ALTER COLUMN Column_name IDENTITY (seed, increment)

The example procedure in Hands-On 18.14 modifies the seed value of the exist-
ing AutoNumber column in the SchoolID column to start at 1000. Because we
changed the SchoolID column’s data type to the Text data type in one of the
earlier hands-on exercises, you will modify the SchoolID column in the Sites.
mdb file you created in Hands-On 18.3 earlier in this chapter.

630 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 18.14 Changing the Start (Seed) Value of the
AutoNumber Field

This hands-on exercise uses the Sites.mdb database file and tblSchools table cre-
ated in Hands-On 18.3.

1. In the same module where you entered previous hands-on exercises, enter the
following ChangeAutoNumber procedure:
Sub ChangeAutoNumber()
 Dim conn As ADODB.Connection
 Dim strDb As String
 Dim strConnect As String
 Dim strTable As String
 Dim strCol As String
 Dim intSeed As Integer

 On Error GoTo ErrorHandler

 strDb = CurrentProject.Path & "\" & "Sites.mdb"
 strConnect = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=" & strDb

 strTable = "tblSchools"
 strCol = "SchoolID"
 intSeed = 1000

 Set conn = New ADODB.Connection
 conn.Open strConnect
 conn.Execute "ALTER TABLE " & strTable & _
 " ALTER COLUMN " & strCol & _
 " COUNTER (" & intSeed & ");"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147467259 Then
 MsgBox "The database file cannot be located.", _
 vbCritical, strDb
 Exit Sub
 Else
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If

End Sub

CREATING, MODIFYING, AND DELETING TABLES AND FIELDS 631

2. Position the insertion point anywhere within the code of the ChangeAuto-
Number procedure and press F5 or choose Run | Run Sub/UserForm to
execute the procedure.

3. Launch Microsoft Access with the Sites.mdb database and open the tblSchools
table.

4. Enter a couple of new records in this table. In the YearEstablished field, enter
the date in the format mm/dd/yyyy. Note that the first new record is numbered
1000, the second 1001, the third 1002, and so on.

5. Close the Sites.mdb database file.

SUMMARY

In this chapter, you learned various Data Definition Language (DDL) com-
mands for creating a new Access database, as well as creating, modifying, and
deleting tables. You also learned how to add, modify, and delete fields and
indexes, how to change the seed and increment values for AutoNumber fields,
and how to change a field’s data type. You also practiced assigning default values
to table fields.

In the next chapter, you will learn about several DDL commands used for
establishing relationships between tables and controlling referential integrity.

633

When creating tables in a database, you often need to define rules
regarding the values allowed in columns (fields). As mentioned in
Chapter 18, constraints allow you to enforce integrity by creating

rules for a table. The five types of constraints are listed in Table 19.1.

TABLE 19.1 Table constraints

Constraint Name Usage
PRIMARY KEY Identifies the column or set of columns whose values uniquely identify a row

in a table.
FOREIGN KEY Defines the relationship between tables and maintains data integrity when

records are being added, changed, or deleted in a table.
UNIQUE Ensures that no duplicate values are entered in a specific column or

combination of columns that is not a table’s primary key.

NOT NULL Specifies that a column cannot contain a Null value. Primary key
columns are automatically defined as NOT NULL.
Note: A Null value is not the same as zero (0), blank, or a zero-length
character string ("”). A Null value indicates that no entry has been
made. You can determine if a field contains a Null value by using the
IsNull function.

CHECK Enforces integrity by limiting the values that can be placed in a column.

Chapter

 19 ENFORCING DATA
INTEGRITY AND
RELATIONSHIPS
BETWEEN TABLES

634 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When constraints are added, all existing data is verified for constraint violations.

USING CHECK CONSTRAINTS

Tables and columns can contain multiple CHECK constraints. A CHECK
 constraint can validate a column value against a logical expression or another
column in the same or another table. What you can’t do with the CHECK con-
straint is to specify the custom validation message, as is possible to do in the
Access user interface.

The procedure in Hands-On 19.1 uses a PRIMARY KEY constraint explicitly
named PrimaryKey to identify the ID column as a primary key. The CHECK
constraint used in this procedure ensures that only numbers within the speci-
fied range are entered in the YearsWorked column. You can apply CHECK con-
straints to a single column or to multiple columns. When a table is deleted,
CHECK constraints are also dropped.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 19.1 Using a CHECK Constraint to Specify a Condition
for All Values Entered for the Column

1. Start Microsoft Access and create a new database named Chap19.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Switch to the Visual Basic Editor window and choose Tools | References.
In the References dialog box, scroll down to locate Microsoft ActiveX Data
Objects 6.1 Library. Click the checkbox to the left of this library name to set a
reference to it and click OK to exit the dialog box.

3. Choose Insert | Module to add a new module to the current VBA project.
4. In the module’s Code window, type the CheckColumnValue procedure shown

below.
Sub CheckColumnValue()
 ' you must set up a reference to the
 ' Microsoft ActiveX Data Objects Library
 ' in the References dialog box
 Dim conn As ADODB.Connection
 Dim strTable As String
 On Error GoTo ErrorHandler

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 635

 Set conn = CurrentProject.Connection
 strTable = "tblAwards"

 conn.Execute "CREATE TABLE " & strTable & _
 "(ID AUTOINCREMENT CONSTRAINT " & _
 "PrimaryKey PRIMARY KEY," & _
 "YearsWorked INT, CONSTRAINT FromTo " & _
 "CHECK (YearsWorked BETWEEN 1 AND 30));"

ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

Position the insertion point anywhere within the code of the Check Column-
Value procedure and press F5 or choose Run | Run Sub/UserForm to execute
the procedure.

The CheckColumnValue procedure creates the tblAwards table with
the CHECK constraint.

Open the tblAwards table and enter a value in the YearsWorked column
that does not fall between 1 and 30. You should receive the message shown in
Figure 19.1.

FIGURE 19.1 This message appears when you attempt to enter a value in the YearsWorked column
that is not within the range of values specified by the FromTo constraint.

Hands-On 19.2 demonstrates how to create a CHECK constraint to ensure that
the value of the Items column in the tblBookOrders table is less than the value
of the MaxUnits column in the tblSupplies table for the specified ISBN num-
ber. This hands-on exercise also illustrates how to use the SQL Data Manipula-
tion Language (DML) statements INSERT INTO, BEGIN TRANSACTION, COMMIT
TRANSACTION, and ROLLBACK TRANSACTION.

636 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 19.2 Creating a Table with a Validation Rule Referencing a
Column in Another Table

1. In the same module where you entered the procedure in Hands-On 19.1, enter
the ValidateAgainstCol_InAnotherTbl procedure shown here:
Sub ValidateAgainstCol_InAnotherTbl()
 Dim conn As ADODB.Connection
 Dim strTable1 As String
 Dim strTable2 As String
 Dim InTrans As Boolean

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strTable1 = "tblSupplies"
 strTable2 = "tblBookOrders"

 conn.Execute "BEGIN TRANSACTION"
 InTrans = True
 conn.Execute "CREATE TABLE " & strTable1 & _
 "(ISBN CHAR CONSTRAINT " & _
 "PrimaryKey PRIMARY KEY, " & _
 "MaxUnits LONG);", adExecuteNoRecords

 conn.Execute "INSERT INTO " & strTable1 & _
 " (ISBN, MaxUnits) " & _
 " Values ('158-76609-09', 5);", _
 adExecuteNoRecords

 conn.Execute "INSERT INTO " & strTable1 & _
 " (ISBN, MaxUnits) " & _
 " Values ('167-23455-69', 7);", _
 adExecuteNoRecords

 conn.Execute "CREATE TABLE " & strTable2 & _
 "(OrderNo AUTOINCREMENT CONSTRAINT " & _
 "PrimaryKey PRIMARY KEY, " & _
 "ISBN CHAR, Items LONG, " & _
 "CONSTRAINT OnHandConstr CHECK " & _
 "(Items <(SELECT MaxUnits FROM " & strTable1 & _
 " WHERE ISBN = " & strTable2 & ".ISBN)));", _
 adExecuteNoRecords

conn.Execute "COMMIT TRANSACTION"

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 637

 InTrans = False
 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If InTrans Then
 conn.Execute "ROLLBACK TRANSACTION"
 Resume ExitHere
 Else
 MsgBox Err.Number & ":" & Err.Description
 Exit Sub
 End If
End Sub

2. Position the insertion point anywhere within the code of the ValidateAgainstCol_
InAnotherTbl procedure and press F5 or choose Run | Run Sub/UserForm to
execute the procedure.
This procedure creates two tables. Because the Items column in the
tblBookOrders table needs to be validated against the contents of the MaxUnits
column in the tblSupplies table, we wrapped the process of creating these
tables and entering data in the tblSupplies table into a transaction. To trap
errors that could occur during the procedure execution, we declared a Boolean
variable named InTrans to help us determine whether an error occurred during
the transaction; if the value of InTrans is True, we will cancel the transaction.
Notice that in Access SQL syntax we use the BEGIN TRANSACTION statement
to start the transaction, the COMMIT TRANSACTION statement to save the results
of the transaction, and the ROLLBACK TRANSACTION statement to cancel any
changes. These transaction statements can only be used through the Jet OLE
DB Provider and ADO. They will cause an error when used with the Access
user interface or DAO.
 In this example procedure, we used the adExecuteNoRecords option to
specify that no rows should be returned. You can use this setting with the
Connection or Command object’s Execute method to improve performance
when no rows are returned or when you don’t plan to access the returned rows
in your procedure code. If you omit this setting, your ADO code will still
execute successfully, but the ADO will unnecessarily create a Recordset object
as the return value for the Execute method. Using the adExecuteNoRecords
setting is one of several techniques for optimizing data access using ADO.

638 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. Open the tblBookOrders table and enter the record shown at the top of Figure
19.2.
When you try to save this record or move to the next data row, Access will
display a message informing you that the value you are trying to enter is
prohibited.

4. Click OK to dismiss the message box, then press Esc to cancel the data entry.
5. Enter the value of 4 in the Items column. This time Access approves of the

entry and no error message is displayed.
6. Close the tblBookOrders table.

FIGURE 19.2 When you attempt to enter a value that does not meet the validation rule, Microsoft
Access displays an error message.

7. In the object Navigation pane on the left side of the database window, right-
click the tblBookOrders table and choose Delete. Click Yes to confirm the
deletion. Access will respond with the error message shown in Figure 19.3.

FIGURE 19.3 If you try to manually delete a table referenced by the CHECK constraint, Microsoft
Access will display an error message.

Now, let’s see how you can use the Access user interface to issue commands
that delete tables and CHECK constraints.

 Hands-On 19.3 Deleting Tables and Constraints Using the Access
User Interface

This hands-on exercise requires that you have created the tblBookOrders and
tblAwards tables in Hands-On 19.1 and 19.2.

1. In the database window, choose Create | Query Design.

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 639

2. In the Show Table dialog box, click the Close button.
3. Choose Design | Data Definition.
4. In the Data Definition Query window, enter Drop Table tblBookOrders

statement as shown in Figure 19.4.

FIGURE 19.4 To delete a table that contains a CHECK constraint, type the DROP TABLE statement
in the Data Definition Query window, then click Run.

5. To run the Data Definition query, click the Run button in the Ribbon.
Note that a table must be closed before it can be deleted. If you don’t want to
delete a table but need to remove a constraint from a table, use the following
syntax:
ALTER TABLE table_name DROP CONSTRAINT constraint_name

To remove a constraint, you must know its name.
6. To delete the constraint from the tblAwards table, type the statement shown

in Figure 19.5 in the Data Definition Query window. Make sure that the
tblAwards table is closed.

FIGURE 19.5 To remove a table constraint, use the DROP CONSTRAINT statement with ALTER
TABLE.

NOTE Before using ALTER TABLE, it is a good idea to make a backup
copy of the table.

640 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. Click the Run button on the Ribbon to execute the statement that will delete
the constraint.

8. On your own, delete the tblSupplies table using the Data Definition Query
window.

ESTABLISHING RELATIONSHIPS BETWEEN TABLES

To establish a link between the data in two tables, add one or more columns that
hold one table’s primary key values to the other table. This column becomes a
foreign key in the second table. In SQL DDL, you can use a FOREIGN KEY con-
straint to reference another table. Foreign keys can be single- or multicolumn.

A FOREIGN KEY constraint enforces referential integrity by ensuring that
changes made to data in the primary key table do not break the link to data in
the foreign key table. For example, you cannot delete a record in a primary key
table or change a primary key value if the deleted or changed primary key value
corresponds to a value in the FOREIGN KEY constraint of another table. The
REFERENCES clause identifies the parent table of the relation.

To create a brand-new table and relate it to an existing table, the following
steps are required:

1. Use the CREATE TABLE statement followed by a table name.
CREATE TABLE tblOrder_Details

2. Follow the table name with one or more column definitions. A column
definition consists of ColumnName followed by the data type and column size
(if required).
InvoiceID CHAR, ProductId CHAR, Units LONG, Price MONEY

3. To designate a primary key, use the CONSTRAINT clause followed by the
constraint name, the PRIMARY KEY clause, and the name of the column or
columns to be designated as the primary key.
CONSTRAINT PrimaryKey PRIMARY KEY (InvoiceId, ProductId)

4. To designate a foreign key, use the CONSTRAINT clause followed by the constraint
name, the FOREIGN KEY clause, and the name of the column to be designated
as the foreign key.
CONSTRAINT fkInvoiceId FOREIGN KEY (InvoiceId)

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 641

5. Use the REFERENCES clause to specify the parent table to which a relationship
is established.
REFERENCES tblProduct_Orders

6. If required, specify ON UPDATE CASCADE and/or ON DELETE CASCADE to enable
referential integrity rules with cascading updates or deletes.
ON UPDATE CASCADE ON DELETE CASCADE

NOTE

You may choose not to enforce referential integrity rules by spec-
ifying ON UPDATE NO ACTION or ON DELETE NO ACTION, or
skipping the ON UPDATE or ON DELETE keywords. If you choose
this path, you will not be able to change the value of a primary
key if matching records exist in the foreign table.

Refer to the procedure in Hands-On 19.4 to find out how to correctly combine
the preceding example statements into a single SQL statement.

 Hands-On 19.4 Relating Two Tables and Setting up Cascading
Referential Integrity Rules

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, enter the RelateTables procedure shown here:

Sub RelateTables()
 Dim conn As ADODB.Connection
 Dim strPrimaryTbl As String
 Dim strForeignTbl As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strPrimaryTbl = "tblProduct_Orders"
 strForeignTbl = "tblOrder_Details"

 conn.Execute "CREATE TABLE " & _
 strPrimaryTbl & _
 "(InvoiceID CHAR(15), " & _
 "PaymentType CHAR(20), " & _
 " PaymentTerms CHAR(25), " & _
 "Discount LONG, " & _
 " CONSTRAINT PrimaryKey " & _
 "PRIMARY KEY (InvoiceID));", _
 adExecuteNoRecords

642 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 conn.Execute "CREATE TABLE " & _
 strForeignTbl & _
 "(InvoiceID CHAR(15), " & _
 "ProductID CHAR(15), " & _
 " Units LONG, Price MONEY, " & _
 "CONSTRAINT PrimaryKey PRIMARY KEY " & _
 "(InvoiceID, ProductID), " & _
 "CONSTRAINT fkInvoiceID " & _
 "FOREIGN KEY (InvoiceID) " & _
 "REFERENCES " & strPrimaryTbl & _
 " ON UPDATE CASCADE ON DELETE CASCADE);", _
 adExecuteNoRecords
 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the RelateTables
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.
Th e RelateTables procedure creates and joins two tables. A primary key table
named tblProduct_Orders is created with a primary key on the InvoiceID
fi eld. Th e foreign key table named tblOrder_Details is created with a multifi eld
primary key index based on the ProductID and InvoiceID fi elds. Th e
REFERENCES clause specifi es the tblProduct_Orders table as the parent table.
Th e created relationship has the referential integrity rules enforced via the ON
UPDATE CASCADE and ON DELETE CASCADE statements.
 Th e outcome of the RelateTables procedure is illustrated in the following
fi gures. Figure 19.6 displays the one-to-many relationship between tblProduct_
Orders and tblOrder_Details. Figure 19.7 presents the Edit Relationships
window in which both cascading updates and deletes are selected.

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 643

FIGURE 19.6 To access the Relationships window, choose Database Tools | Relationships.

FIGURE 19.7 To access the Edit Relationships window, choose Design | Edit Relationship.

USING THE DATA DEFINITION QUERY WINDOW

To enhance your understanding of creating tables and relationships with Data
Definition Language, perform Hands-On 19.5 using the Data Definition Query
window.

 Hands-On 19.5 Running DDL Statements in the Microsoft Access
User Interface

Each of the statements in this hands-on exercise can be executed by choosing
Design | Run.

1. In the database window, choose Create | Query Design.

644 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. In the Show Table dialog box, click the Close button.
3. Choose Design | Data Definition.
4. In the Data Definition Query window that appears, enter the statement shown

earlier in Figure 19.4 and run the query.
5. To create a table on the primary (one) side of the relationship, type the following

statement on one line in the query window and run the query:
CREATE TABLE myPrimaryTbl(ID COUNTER CONSTRAINT pKey
 PRIMARY KEY, COUNTRY TEXT(15));

6. To create a table on the foreign (many) side of the relationship, delete the
preceding statement, then type the following statement, and run the query:

CREATE TABLE myForeignTbl(ID LONG, Region TEXT (15));

7. To create a one-to-many relationship between myPrimaryTbl and
myForeignTbl, delete the preceding statement, then type the following
statement on one line in the query window, and run the query:
ALTER TABLE myForeignTbl ADD CONSTRAINT Rel FOREIGN KEY(ID)
 REFERENCES myPrimaryTbl (ID);

8. In the database window, choose Database Tools | Relationships.
9. In the Relationships window, choose Design | All Relationships. This will add

both tables (myPrimaryTbl and myForeignTbl) to the Relationships window
(see Figure 19.8).

FIGURE 19.8 Notice that the tables you created by running the DDL statements in Steps 5 and 6
are joined on the ID column (see Step 7).

ENFORCING DATA INTEGRITY AND RELATIONSHIPS BETWEEN TABLES 645

10. Right-click the line that joins the myPrimaryTbl and myForeignTbl tables and
choose Edit Relationship to open the Edit Relationships dialog box, as shown
in Figure 19.9. You can also double-click the line to open this dialog box.

FIGURE 19.9 You can edit relationships between tables via the Edit Relationships window.

11. Click Cancel to exit the Edit Relationships window.
12. To delete the relationship between the tables, type the following statement

in the Data Definition Query window (overwriting the previously entered
statement), and run the query:
ALTER TABLE myForeignTbl DROP CONSTRAINT Rel;

13. To delete the table on the one side (myPrimaryTbl), type the following
statement in the Data Definition Query window (overwriting the preceding
statement), and run the query:
DROP TABLE myPrimaryTbl;

14. To delete the table on the many side (myForeignTbl), type the following
statement in the Data Definition Query window (overwriting the preceding
statement), and run the query:
DROP TABLE myForeignTbl;

646 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 SUMMARY

In this short chapter, you learned how to enforce data integrity by creating rules
for tables with constraints. You learned how to validate data against another
column in the same table or a column located in another table. You also learned
how to use the Access Data Definition Query window to delete tables that have
constraints and remove constraints from a table. Finally, you saw how you can
establish relationships between tables using DDL commands inside a VBA pro-
cedure.

The next chapter focuses on ways to use DDL for defining and removing
indexes and primary keys.

647

Indexes speed the processes of finding and sorting records. You should create
indexes for fields that are frequently used in searches and in sorting. You can
create an index on a new or existing table. An index can be made of one or

more fields. This chapter presents a number of procedures that use Data Defini-
tion Language statements to define indexes and primary keys.

CREATING TABLES WITH INDEXES

You can create an index while creating a table by using the CONSTRAINT clause
with the CREATE TABLE statement. The procedure in Hands-On 20.1 creates a
new table called Supplier1 with a unique index called idxSupplier Name based
on the SupplierName field.

Chapter

 20 DEFINING INDEXES
AND PRIMARY KEYS

648 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 20.1 Creating a Table with a Single-Field Index

1. Start Microsoft Access and create a new database named Chap20.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Switch to the Visual Basic Editor window and choose Tools | References.
In the References dialog box, scroll down to locate Microsoft ActiveX Data
Objects 6.1 Library. Click the checkbox to the left of this library name to set a
reference to it and click OK to exit the dialog box.

3. Choose Insert | Module to add a new module to the current VBA project.
4. In the module’s Code window, type the following SingleField_Index procedure:

Sub SingleField_Index()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 strTable = "Supplier1"

 conn.Execute "CREATE TABLE " & strTable _
 & "(SupplierID INTEGER, " _
 & "SupplierName CHAR (30), " _
 & "SupplierPhone CHAR (12), " _
 & "SupplierCity CHAR (19), " _
 & "CONSTRAINT idxSupplierName UNIQUE " _
 & "(SupplierName));"
 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

5. Position the insertion point anywhere within the code of the SingleField_
Index procedure and press F5 or choose Run | Run Sub/UserForm to execute
the procedure.

DEFINING INDEXES AND PRIMARY KEYS 649

When you run this procedure then switch to the Access database window,
you will notice a table named Supplier1. Th ere is a unique index on the
SupplierName fi eld, as shown in Figure 20.1.

FIGURE 20.1 The idxSupplierName index was created by running the procedure in Hands-On 20.1.

ADDING AN INDEX TO AN EXISTING TABLE

To add an index to an existing table, use the CREATE INDEX statement. You can
add an index based on one or more fields. The procedure in Hands-On 20.2
demonstrates how to add an index to the Supplier1 table you created in Hands-
On 20.1.

 Hands-On 20.2 Adding a Single-Field Index to an Existing Table

1. In the same module where you entered the procedure in Hands-On 20.1, enter
the SingleField_Index2 procedure shown here:
Sub SingleField_Index2()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strTable = "Supplier1"

650 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 conn.Execute "CREATE INDEX idxCity ON " & strTable & _
 "(SupplierCity);"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Position the insertion point anywhere within the code of the SingleField_
Index2 procedure and press F5 or choose Run | Run Sub/UserForm to execute
the procedure.
Th e preceding procedure adds a single-fi eld index named idxCity to the
Supplier1 table. Th e following procedure will add a multiple-fi eld index named
idxSupplierNameCity to the Supplier2 table.

Sub MultiField_Index()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "Supplier2"

 conn.Execute "CREATE TABLE " & strTable _
 & "(SupplierID INTEGER, " _
 & "SupplierName CHAR(30), " _
 & "SupplierPhone CHAR(12), " _
 & "SupplierCity CHAR(19), " _
 & "CONSTRAINT idxSupplierNameCity UNIQUE " _
 & "(SupplierName, SupplierCity));"

 Application.RefreshDatabaseWindow
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

DEFINING INDEXES AND PRIMARY KEYS 651

CREATING A TABLE WITH A PRIMARY KEY

When you create a database table, you should define a primary key to uniquely
identify rows within the table. A primary key allows you to relate a particular
table with other tables in the database (for procedure examples, refer to the pre-
vious chapter). A table can have only one primary key; however, a primary key
can consist of more than one column.

To create a table with a primary key, use the CONSTRAINT clause with the
CREATE TABLE statement. The procedure in Hands-On 20.3 uses the following
CONSTRAINT clause to create a single-field primary key based on the SupplierID
field:
CONSTRAINT idxPrimary PRIMARY KEY(SupplierID)

To create a table with a primary key based on two or more columns, specify col-
umn names in parentheses following the PRIMARY KEY keywords. For example,
the following CONSTRAINT clause will create a primary key based on the Suppli-
erID and SupplierName columns:
CONSTRAINT idxPrimary PRIMARY KEY (SupplierID, SupplierName)

 Hands-On 20.3 Creating a Single-Field Primary Key

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the SingleField_PKey procedure shown

here:
Sub SingleField_PKey()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strTable = "Supplier3"

 conn.Execute "CREATE TABLE " & strTable _
 & "(SupplierID INTEGER, " _
 & "SupplierName CHAR(30), " _
 & "SupplierPhone CHAR(12), " _
 & "SupplierCity CHAR(19), " _
 & "CONSTRAINT idxPrimary PRIMARY KEY " _
 & "(SupplierID));"
 Application.RefreshDatabaseWindow

652 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the SingleField_PKey
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure. After running this procedure, you will have a primary key index
named idxPrimary based on the SupplierID column, as shown in Figure 20.2.

FIGURE 20.2 The result of running the SingleField_PKey procedure in Hands-On 20.3 is a primary
key index named idxPrimary based on the SupplierID column.

CREATING INDEXES WITH RESTRICTIONS

You can use the CREATE INDEX statement to add an index to an existing table.
The CREATE INDEX statement can be used with the following options:

 ● PRIMARY option—Creates a primary key index that does not allow dupli-
cate values in the key.

 ● DISALLOW NULL option—Creates an index that does not allow adding
records with Null values in the indexed fi eld.

DEFINING INDEXES AND PRIMARY KEYS 653

 ● IGNORE NULL option—Creates an index that does not include records
with Null values in the key.

Use the WITH keyword to declare the preceding index options.
The procedure in Hands-On 20.4 designates the SupplierID field as the pri-

mary key by using the PRIMARY option (see Figure 20.3).

 Hands-On 20.4 Creating a Primary Key Index with Restrictions

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following Index_WithPrimaryOption

procedure:
Sub Index_WithPrimaryOption()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strTable = "Supplier1"

 conn.Execute "CREATE INDEX idxPrimary1 ON " & strTable _
 & "(SupplierID) WITH PRIMARY;"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the Index_
WithPrimaryOption procedure and press F5 or choose Run | Run Sub/
UserForm to execute the procedure.

654 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 20.3 The index created by the procedure in Hands-On 20.4 has the Primary and Unique
properties set to Yes, which means that this index is a primary key and every value in this index must
be unique.

NOTE Primary key indexes are automatically created as unique in-
dexes.

You can prohibit the entry of Null values in the indexed fields by using the DIS-
ALLOW NULL option as shown in the example procedure in Hands-On 20.5. The
result of running this procedure is an index called idxSupplierCity that does not
allow Null values, as shown in Figure 20.4.

 Hands-On 20.5 Creating an Index that Disallows
Null Values in the Key

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following Index_WithDisal-

lowNullOption procedure:.
Sub Index_WithDisallowNullOption()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler
 Set conn = CurrentProject.Connection

 strTable = "Supplier3"

DEFINING INDEXES AND PRIMARY KEYS 655

 conn.Execute _
 "CREATE INDEX idxSupplierCity ON " & strTable _
 & "(SupplierCity) WITH DISALLOW NULL;"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the Index_WithDis-
allowNullOption procedure and press F5 or choose Run | Run Sub/UserForm
to execute the procedure.

FIGURE 20.4 The result of running the procedure in Hands-On 20.5 is an index called
idxSupplierCity that does not allow Null values.

You can prevent records with Null values in the indexed fields from being
included in the index by using the IGNORE NULL option, as illustrated in Hands-
On 20.6. Figure 20.5 shows the result of this procedure.

 Hands-On 20.6 Creating an Index with the Ignore Null Option

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following Index_WithIgnoreNullOp-

tion procedure:

656 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Sub Index_WithIgnoreNullOption()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 strTable = "Supplier3"

 conn.Execute "CREATE INDEX idxSupplierPhone ON " _
& strTable _
 & "(SupplierPhone) WITH IGNORE NULL;"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the Index_WithIgno-
reNullOption procedure and press F5 or choose Run | Run Sub/UserForm to
execute the procedure.

FIGURE 20.5 The result of running the procedure in Hands-On 20.6 is an index called
idxSupplierPhone that allows Null values in the key. However, records containing Null values will be
excluded from any searches that use that index.

DEFINING INDEXES AND PRIMARY KEYS 657

DELETING INDEXES

Use the DROP INDEX statement to remove an index. Anytime you want to delete
a column that is part of an index, you must first remove the index using the DROP
CONSTRAINT or DROP INDEX statement. Before removing the index, make sure
that the table containing the index is closed. The procedure in Hands-On 20.7
deletes the index named idxSupplierName from the Supplier1 table.

 Hands-On 20.7 Deleting an Index

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following DeleteIndex procedure:

Sub DeleteIndex()
 Dim conn As ADODB.Connection
 Dim strTable As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection
 strTable = "Supplier1"

 conn.Execute "DROP INDEX idxSupplierName ON " _
 & strTable & ";"
ExitHere:
 conn.Close
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

3. Position the insertion point anywhere within the code of the DeleteIndex
procedure and press F5 or choose Run | Run Sub/UserForm to execute the
procedure.

4. On your own, write a procedure to remove other indexes created in this
chapter’s procedures.

658 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

This chapter introduced you to using DDL statements for creating indexes. Col-
umns that are frequently used in database queries should be indexed to allow
for faster access to the information. However, if you frequently add, delete, and
update rows, you might want to limit the number of indexes, as they take up
disk space and slow data operations. You also learned that a primary key is a
special type of index that allows you to uniquely identify rows in a table as well
as create a relationship between two tables, as demonstrated in the previous
chapter.

The next chapter introduces you to the DDL statements that are used to
manage database security.

659

The procedures in this chapter demonstrate how to use simple Data Def-
inition Language statements to easily manage database and user pass-
words, create or delete user and group accounts, and grant or delete per-

missions for database objects.

SETTING THE DATABASE PASSWORD

Database security can be handled at share level or user level. Share-level security
is the easiest to implement, as it only requires that you set a password on the
database. As mentioned earlier in this book, user-level security can only be used
with Access databases created in the .mdb file format.

To set a new database password or change an existing password, use the AL-
TER DATABASE PASSWORD statement in the following format:
ALTER DATABASE PASSWORD newPassword oldPassword

When setting the password for the first time, use Null for the old password
(see the example procedure in Hands-On 21.1). The Access database must be
opened in exclusive mode to perform password operations. Therefore, when

Chapter

 21 DATABASE
SECURITY

660 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

using ADO, set the ADO Connection object’s Mode property to adModeShare-
Exclusive before opening a database.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 21.1 Setting a Database Password

This hands-on exercise sets a database password on the Chap20.accdb database
file you created in the previous chapter

1. Start Microsoft Access and create a new database named Chap21.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Switch to the Visual Basic Editor window and choose Tools | References.
In the References dialog box, scroll down to locate Microsoft ActiveX Data
Objects 6.1 Library. Click the checkbox to the left of this library name to set a
reference to it and click OK to exit the dialog box.

3. Choose Insert | Module to add a new module to the current VBA project.
4. In the module’s Code window, type the following SetDBPassword function:

Function SetDBPassword(strFullFilePath)
 Dim conn As ADODB.Connection
 On Error GoTo ErrorHandler
 Set conn = New ADODB.Connection
 With conn
 .Mode = adModeShareExclusive
 .Open "Provider = Microsoft.ACE.OLEDB.12.0;" & _
 "Data Source=" & strFullFilePath & ";"
 .Execute "ALTER DATABASE PASSWORD secret null "
 End With
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Function
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Function

5. Execute the SetDBPassword function from the Immediate window by typing
the following statement and pressing Enter:
SetDBPassword "C:\VBAAccess2019_ByExample\Chap20.accdb"

DATABASE SECURITY 661

While you may supply the name of a diff erent Access database to the
SetDBPassword function, the database must be in the new .accdb fi le format
because the function opens a connection to the database fi le using the ACE
OLE DB Provider.
 Aft er opening a database in exclusive mode, this function procedure
changes the database password from Null to “secret.” Notice that the new
password is listed fi rst, followed by the old password. Notice also how the
function uses the State property of the ADO Connection object to determine
whether the connection to the database is open. State returns adStateOpen if
the Connection object is open and adStateClosed if it is not.

REMOVING THE DATABASE PASSWORD

To remove a database password, replace the existing password with Null. The
password can be removed by using the ALTER DATABASE PASSWORD statement,
as illustrated in the preceding section. When the database is secured with a
password, you will need to use the Jet/ACE OLEDB:Database Password prop-
erty to specify the password to open the database. This is a Microsoft Jet 4.0/
ACE OLE DB Provider-specific property of the Connection object. The follow-
ing procedure shows how to remove the password “secret” from the Chap20.
accdb database that was set by the SetDBPassword function in Hands-On 21.1.

 Hands-On 21.2 Deleting a Database Password

This procedure requires prior completion of Hands-On 21.1.

1. In the same module where you entered the SetDBPassword function (Hands-
On 21.1), enter the ResetDBPassword function shown here:
Function ResetDBPassword(strFullFilePath, _
 strNewPwd, strOldPwd)

 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler
 Set conn = New ADODB.Connection

 With conn
 .Mode = adModeShareExclusive
 .Open "Provider = Microsoft.ACE.OLEDB.12.0;" & _

662 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 "Data Source=" & strFullFilePath & _
 "; Jet OLEDB:Database Password=" & _
 strOldPwd & ";"
 .Execute "ALTER DATABASE PASSWORD " & _
 strNewPwd & " " & _
 strOldPwd
 End With
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Function
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Function

2. Execute the ResetDBPassword function from the Immediate window by typing
the following statement on one line and pressing Enter:

ResetDBPassword "C:\VBAAccess2019_ByExample\Chap20.accdb", "null",
 "secret"

3. Close the Chap21.accdb database file.

CREATING A USER ACCOUNT

Establishing database security at a user level is more involved than setting a
database password. It requires that you create group and user accounts and
assign permissions to groups and users to perform operations on various data-
base objects. Use the CREATE USER statement to create a new user account. Spec-
ify the username to log in to the account followed by the required password and
a personal identifier (PID) to make the account unique. The syntax of creating
a user account looks like this:
CREATE USER userLoginName password PID

You can create more than one user account at a time by separating the user-
names with a comma.

The procedure in Hands-On 21.3 sets up a new user account for GeorgeM
with “fisherman” as the login password and “0302” as the PID. While this ex-
ample procedure uses a simple PID number, the PID number you choose for a

DATABASE SECURITY 663

production environment should be from 4 to 20 characters long (preferably a
combination of numbers and uppercase and lowercase letters that will be dif-
ficult for someone to guess).

 Hands-On 21.3 Creating a User Account

1. Create a new Microsoft Access database named Chap21.mdb in your C:\
VBAAccess2019_ByExample folder. Be sure to select Microsoft Access
databases (2002–2003)(*.mdb) file format.

2. Switch to the Visual Basic Editor window and choose Tools | References.
In the References dialog box, scroll down to locate Microsoft ActiveX Data
Objects 6.1 Library. Click the checkbox to the left of this library name to set a
reference to it and click OK to exit the dialog box.

3. Choose Insert | Module to add a new module to the current VBA project.
4. In the module’s Code window, enter the CreateUserAccount procedure

shown here:
Sub CreateUserAccount()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "CREATE USER GeorgeM fisherman 0302"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

5. Run the CreateUserAccount procedure.
6. Press Alt+F11 to switch to the Microsoft Access application window.

Choose File | Info | Users and Permissions | User and Group Accounts.
Aft er running the CreateUserAccount procedure in Hands-On 21.3, you will
see a listing for the GeorgeM user account in the User and Group Accounts
window, as shown in Figure 21.1.

664 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 21.1 The User and Group Accounts window.

7. Click Cancel to close the User and Group Accounts window.

CHANGING A USER PASSWORD

A user account password can be changed by using the ALTER USER statement in
the following form:
ALTER USER userAccountName PASSWORD newPassword oldPassword

The procedure in Hands-On 21.4 changes the GeorgeM account’s user pass-
word from “fisherman” to “primate.”

 Hands-On 21.4 Changing a User Password

This hands-on exercise requires prior completion of Hands-On 21.3.

1. In the same module where you entered the CreateUserAccount procedure in
Hands-On 21.3, enter the following ChangeUserPassword procedure as:
Sub ChangeUserPassword()
 Dim conn As ADODB.Connection

DATABASE SECURITY 665

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "ALTER USER GeorgeM PASSWORD " _
 "primate fisherman"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the ChangeUserPassword procedure.

CREATING A GROUP ACCOUNT

Use the CREATE GROUP statement to create a new group account. You must spec-
ify the group name followed by a unique PID (personal identifier):
CREATE GROUP groupName PID

You can create more than one group at a time by separating the group names
with a comma. The procedure in Hands-On 21.5 creates a new group account
called Mozart with “2019Best” as the PID.

 Hands-On 21.5. Creating a Group Account

1. In the same module where you entered the ChangeUserPassword procedure in
Hands-On 21.4, enter the CreateGroupAccount procedure shown here:
Sub CreateGroupAccount()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "CREATE GROUP Mozart 2019Best"
ExitHere:

666 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the CreateGroupAccount procedure.
Th e Groups tab in the User and Group Accounts window (see Figure 21.2) will
now list the name of the newly created Mozart user group.

FIGURE 21.2 The User and Group Accounts window shows the Mozart group after running the
CreateGroupAccount procedure in Hands-On 21.5.

ADDING USERS TO GROUPS

Use the ADD USER statement to make a user account a member of a group.
Specify the user account name followed by the TO keyword and a group name:
ADD USER userAccountName TO groupName

DATABASE SECURITY 667

 Hands-On 21.6 Making a User Account a Member of a Group

This hands-on exercise requires prior completion of Hands-On 21.3 and 21.5.

1. In the same module where you entered the procedure in Hands-On 21.5, enter
the following AddUserToGroup procedure:
Sub AddUserToGroup()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "ADD USER GeorgeM TO Mozart"

ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the AddUserToGroup procedure.
Th e user account GeorgeM is now a member of the Mozart group account.
Th is can be easily verifi ed by opening the User and Group Accounts window
in the Access application window (see Step 6 in Hands-On 21.3) and selecting
GeorgeM from the Name drop-down.

REMOVING A USER FROM A GROUP

To delete a user from a group, use the DROP USER statement followed by the
username, the FROM keyword, and the group name. For example, to delete the
GeorgeM account from the Mozart group, use the following statement:
DROP USER GeorgeM FROM Mozart

668 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 21.7 Removing a User Account from a Group

This hands-on exercise requires prior completion of Hands-On 21.5 and 21.6.

1. In the same module where you entered the procedure in Hands-On 21.6, enter
the RemoveUserFromGroup procedure shown here:
Sub RemoveUserFromGroup()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "DROP USER GeorgeM FROM Mozart"

ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the RemoveUserFromGroup procedure to remove the GeorgeM user
account from the Mozart group.

DELETING A USER ACCOUNT

To delete a user account, use the DROP USER statement followed by the user
account name, as demonstrated by the DeleteUserAccount procedure in Hands-
On 21.8.

 Hands-On 21.8 Deleting a User Account

This procedure requires prior completion of Hands-On 21.3.

1. In the same module where you entered the procedures in the previous hands-
on exercises, enter the following DeleteUserAccount procedure:

DATABASE SECURITY 669

Sub DeleteUserAccount()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "DROP USER GeorgeM"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the DeleteUserAccount procedure to delete the user account named
GeorgeM.

GRANTING PERMISSIONS FOR AN OBJECT

Use the GRANT statement to assign security permissions for an object in a data-
base to an existing user or group account. The procedure in Hands-On 21.9
grants the SELECT, DELETE, INSERT, and UPDATE permissions on all tables
to the Mozart group.

The GRANT statement requires the following:

 ● A list of privileges to be granted
 ● Th e keyword ON followed by the name of a table, a nontable object, or an

object container (e.g., Tables, Forms, Reports, Modules, Scripts)
 ● Th e keyword TO followed by the user or group name

GRANT listOfPermissions ON tableName | objectName |
 containerName TO accountName

Please note that in addition to tables, the Tables container contains queries,
views, and procedures, and the Scripts container includes macros.

670 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 21.9 Granting Permissions for Tables to an Existing Group

This hands-on exercise requires prior completion of Hands-On 21.5.

1. In the same module where you entered the procedure in Hands-On 21.8, enter
the following SetTblPermissions procedure:
Sub SetTblPermissions()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "GRANT SELECT, DELETE, INSERT, " _
 & "UPDATE ON CONTAINER TABLES TO Mozart"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the SetTblPermissions procedure.
Aft er running the SetTblPermissions procedure, you can open the User and
Group Permissions window (choose File | Info | Users and Permissions | User
and Group Permissions) to check out the privileges granted to the members
of the Mozart group, as shown in Figure 21.3.

DATABASE SECURITY 671

FIGURE 21.3. Verifying the group permissions to database objects.

REVOKING SECURITY PERMISSIONS

Use the REVOKE statement to revoke security permissions for an object from an
existing user or group account. This statement has the following form:
REVOKE listOfPermissions ON tableName | objectName |
containerName FROM accountName

The procedure in Hands-On 21.10 removes the privilege of deleting tables from
the members of the Mozart group (see Figure 21.4).

 Hands-On 21.10 Revoking Security Permissions

This hands-on exercise requires prior completion of Hands-On 21.5 and 21.9.

1. In the same module where you entered the procedure in Hands-On 21.9, enter
the RevokePermission procedure shown here:
Sub RevokePermission()

672 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "REVOKE DELETE ON CONTAINER TABLES FROM Mozart"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the RevokePermission procedure.

FIGURE 21.4 After running the procedure in Hands-On 21.10, the Delete Data permission on new
tables and queries for the members of the Mozart group is turned off.

DATABASE SECURITY 673

DELETING A GROUP ACCOUNT

Use the DROP GROUP statement to delete a group account. You only need to
specify the name of the group account you want to delete. To delete more than
one account, separate each group name with a comma.

 Hands-On 21.11 Deleting a Group Account

This hands-on exercise requires prior completion of Hands-On 21.5.

1. In the same module where you entered the procedure in Hands-On 21.9, enter
the following DeleteGroupAccount procedure:
Sub DeleteGroupAccount()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "DROP GROUP Mozart"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
End Sub

2. Run the DeleteGroupAccount procedure to delete the Mozart group account.

SUMMARY

This chapter demonstrated the use of Data Definition Language (DDL) state-
ments in VBA procedures for managing security in a Microsoft Access data-
base. You used the ALTER DATABASE PASSWORD statement to create, modify, and
remove the database password. You managed user-level accounts with the CRE-
ATE, ADD, ALTER, and DROP statements. You also learned how to use the GRANT
and REVOKE statements to establish and remove permissions on database objects

674 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

for user and group accounts in an Access MDB database created in the 2002–
2003 file format.

In the next chapter, you will learn how to organize your data using structures
known as views and how to use stored procedures in lieu of Access Action and
Parameter queries.

675

In this chapter, we will work with advanced Data Definition Language state-
ments that are used for creating, altering, and deleting two special database
objects known as views and stored procedures. These objects are used to

perform various query operations. Views are like Access Select queries; how-
ever, you can’t use the ORDER BY clause to sort your data or use parameters to
filter records. Stored procedures perform the same operations as Access Action
and Parameter queries. They can also be used for creating sorted Select queries.
Stored procedures are saved precompiled so that at runtime the procedure ex-
ecutes much faster than a standard SQL statement. Learning how to create and
use views and stored procedures will give you more control over your database.

CREATING A VIEW

If you want users to view and update data in a table or set of tables, but you do
not want them to open the underlying tables directly, you can create a view. An
SQL view is like a virtual table. Similar to an Access Select query, a view can
display data from one or more tables. Instead of providing all the available data
in your tables, you decide exactly what fields you’d like to include for viewing.

Chapter

 22 VIEWS AND STORED
PROCEDURES

676 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To create a view, use a SELECT statement to select the columns you want to
include in the view and the FROM keyword to specify the table. Next, associate
the SELECT statement with a CREATE VIEW statement. The syntax looks like this:
CREATE VIEW viewName [(columnNames)]
AS
SELECT (columnNames)
FROM tableName;

Views must have unique names in the database. The name of the view cannot
be the same as the name of an existing table. Specifying the names of columns
following the name of the view is optional (note the square brackets in the pre-
ceding syntax). Column names must be specified in the SELECT statement. Use
the asterisk (*) to select all columns.

Let’s put more meaning into the preceding syntax. The following example
statement creates a view that lists only orders with a Freight amount less than
$20.
CREATE VIEW cheapFreight
AS
SELECT Orders.OrderID,
Orders.[Shipping Fee],
Orders.[ShipCountry/Region]
FROM Orders
WHERE Orders.[Shipping Fee] < 20;

The SELECT statement that defines the view cannot contain any parameters and
cannot be typed directly in the SQL pane of the Query window. It must be used
through the ADO Connection object’s Execute method after establishing the
connection to a database, as illustrated here:
Sub Create_View_CheapFreight()
 Dim conn As ADODB.Connection
 Set conn = CurrentProject.Connection
 conn.Execute "CREATE VIEW CheapFreight AS " & _
 "SELECT Orders.[Order ID], Orders.[Shipping Fee], " & _
 "Orders.[Ship Country/Region] " & _
 "FROM Orders WHERE Orders.[Shipping Fee] < 20;"
 Application.RefreshDatabaseWindow
 conn.Close
 Set conn = Nothing
End Sub

The Application.RefreshDatabaseWindow statement ensures that after the
view is created it is immediately listed in the Navigation pane in the Access

VIEWS AND STORED PROCEDURES 677

application window. If you omit this statement, you will need to refresh the
Navigation pane manually by selecting any object in it and pressing Shift+F5.

To return data from the CheapFreight view, simply double-click its name in
the Navigation pane.

A view can be used as if it were a table. The following statement can be used
to return all records from the CheapFreight view:
SELECT * FROM CheapFreight;

Remember that a view never stores any data; it simply returns the data as stated
in the SELECT statement used in the view definition. Because a view is like a
Select query, you can use the OpenQuery method of the Access DoCmd object
to open it from your VBA code:
Sub OpenView()
 DoCmd.OpenQuery "CheapFreight", acViewNormal
End Sub

The OpenQuery method is used to carry out the OpenQuery action in Visual
Basic.

To get working experience with the views, let’s proceed to the hands-on sec-
tion. We will start by creating a view called vw_Employees. This view is based
on the Employees and Orders tables, and contains four columns (Employee ID,
Full Name, Job Title, and Order ID).

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 22.1 Creating a View Based on a Table

1. Start Microsoft Access and create a new database named Chap22.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Choose External Data | Access.
3. In the File name box of the Get External Data dialog box, enter C:\VBAAc-

cess2019_ByExample\Northwind 2007.accdb and click OK.
4. In the Import Objects dialog box, select the Employees, Orders, and Shippers

tables and click OK.
5. Click Close to exit the Get External Data dialog box.

Th e Employees, Orders and Shippers tables are now listed in the Navigation
pane.

6. Switch to the Visual Basic Editor window and choose Tools | References.
In the References dialog box, scroll down to locate Microsoft ActiveX Data

678 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Objects 6.1 Library. Click the checkbox to the left of this library name to set a
reference to it and click OK to exit the dialog box.

7. Choose Insert | Module to add a new module to the current VBA project.
8. In the module’s Code window, type the following Create_View procedure:

' Don't forget to set up a reference to the
' Microsoft ActiveX Data Objects 6.1 Library
' in the References dialog box

Sub Create_View()
 Dim conn As ADODB.Connection

 Set conn = CurrentProject.Connection

 On Error GoTo ErrorHandler

 conn.Execute _
 "CREATE VIEW vw_Employees AS " & _
 "SELECT Employees.ID AS [Employee ID], " & _
 "[First Name] & chr(32) & [Last Name] " & _
 "AS [Full Name], " & _
 "[Job Title], Orders.[Order ID] " & _
 "AS [Order ID] " & _
 "FROM Employees " & _
 "INNER JOIN Orders ON " & _
 "Orders.[Employee ID] = Employees.ID;"
 Application.RefreshDatabaseWindow
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217900 Then
 conn.Execute "DROP VIEW vw_Employees"
 Resume
 Else
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If
End Sub

9. Run the Create_View procedure.

VIEWS AND STORED PROCEDURES 679

Th is procedure creates a view named vw_Employees. If the view already exists,
it will be deleted using the DROP VIEW statement. Th e chr(32) statement will
insert a space between the fi rst and last name.
 Notice that views don’t diff er much from saved queries. When you open the
view created by the Create_View procedure in Design view, you will notice
that this view is simply a Select query. Because the query defi ned by the SELECT
statement is updatable, the vw_Employees view is also updatable. If the query
were not updatable, the view would be read-only.

Views cannot contain the ORDER BY clause. To return the records in a specific
order, you might want to use the view in a stored procedure, as discussed later
in this chapter.

ENUMERATING VIEWS

You can find out the names of the views that have been created by iterating
through the Views collection of the ADOX Catalog object, as illustrated in
Hands-On 22.2.

 Hands-On 22.2 Generating a List of Saved Views

1. In the Visual Basic Editor window, choose Tools | References. In the References
dialog box, scroll down to locate Microsoft ADO Ext. 6.0 for DDL and
Security Object Library. Click the checkbox to the left of this library name to
set a reference to it and click OK to exit the dialog box.

2. Choose Insert | Module to add a new module to the current VBA project.
3. In the module’s Code window, enter the List_Views procedure shown here:

' Don't forget to set up a reference to the
' Microsoft ADO Ext. 2.8 for DDL and Security

Sub List_Views()
 Dim cat As New ADOX.Catalog
 Dim myView As ADOX.View

 cat.ActiveConnection = CurrentProject.Connection

 For Each myView In cat.Views
 Debug.Print myView.Name
 Next myView
End Sub

680 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Run the List_Views procedure.
Th e List_Views procedure writes the names of the existing views to the
Immediate window.

DELETING A VIEW

Use the DROP VIEW statement to delete a particular view from the database. You
must specify the name of the view you want to delete. The following example
procedure deletes a view named vw_Employees that was created by the proce-
dure in Hands-On 22.1.

Note that both the CREATE VIEW and DROP VIEW statements can only be ex-
ecuted using the Execute method of the ADO Connection object.

 Hands-On 22.3 Deleting a View

1. In the same module where you entered the procedure in Hands-On 22.2, enter
the Delete_View procedure shown here:
Sub Delete_View()
 Dim conn As ADODB.Connection

 Set conn = CurrentProject.Connection

 On Error GoTo ErrorHandler
 conn.Execute "DROP VIEW vw_Employees"
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If Err.Number = -2147217865 Then
 MsgBox "The view was already deleted."
 Exit Sub
 Else
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If
End Sub

2. Run the Delete_View procedure.

VIEWS AND STORED PROCEDURES 681

3. Run the List_Views procedure from Hands-On 22.2 to ensure that the vw_
Employees view was deleted.

CREATING A STORED PROCEDURE

Stored procedures allow you to perform bulk operations that delete, update, or
append records. Unlike views, stored procedures allow the ORDER BY clause and
parameters. Use the CREATE PROCEDURE (or CREATE PROC) statement to create
a stored procedure. You must specify the name of the stored procedure and the
AS keyword followed by the desired SQL statement that performs the required
database operation. The syntax is as follows:
CREATE PROC[EDURE] procName
[(param1 datatype1 [, param2 datatype2 [, ...]])]
AS
 sqlStatement;

The name of the stored procedure cannot be the same as the name of an existing
table. To pass values to a stored procedure, include parameters after the proce-
dure name. Parameter names are followed by a data type and are separated by
commas. The parameters are listed in parentheses (see Hands-On 22.4 in the
next section). Up to 255 parameters can be specified in the parameter list. If the
stored procedure does not require parameters, the AS keyword immediately fol-
lows the name of the stored procedure.

The SQL statement for the stored procedure can be prepared in the Access
Query Design window and then copied to the VBA procedure from the SQL
view and appropriately formatted.

To return the employee records from the vw_Employees view (see Hands-
On 22.1) ordered by Full Name, the following stored procedure can be written:
CREATE PROCEDURE usp_EmpByFullName
AS
 SELECT * FROM vw_Employees
 ORDER BY [Full Name];

This stored procedure selects all columns that exist in the vw_Employees view
and orders the returned data by the Full Name field. Notice that this proce-
dure does not require any parameters. You might want to precede the name of
the stored procedure with a prefix indicating the type of stored procedure. The
“usp” prefix is often used to indicate a user-defined stored procedure.

Like views, stored procedures are created via the ADO Connection object’s
Execute method after establishing a connection to the database. Therefore, you

682 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

can use the following VBA code to create the usp_EmpByFullName stored pro-
cedure:
Sub Create_StoredProc()
 Dim conn As ADODB.Connection

 Set conn = CurrentProject.Connection
 conn.Execute "CREATE PROCEDURE usp_EmpByFullName AS " & _
 "SELECT * FROM vw_Employees " & _
 "ORDER BY [Full Name];"
 Application.RefreshDatabaseWindow
 conn.Close
 Set conn = Nothing
End Sub

Once created, stored procedures can be executed in the Access user interface
by double-clicking the stored procedure name in the Navigation pane, or from
VBA code by calling the EXECUTE statement with the ADO Connection object’s
Execute method (see Hands-On 22.5).

CREATING A PARAMETERIZED STORED PROCEDURE

Most advanced stored procedures require one or more parameters. The param-
eters are then used as part of the SQL statement, usually the WHERE clause. When
creating a parameterized stored procedure, Access allows you to specify up to
255 parameters in the parameters list. The stored procedure parameters must be
separated by commas and enclosed in parentheses.

The procedure in Hands-On 22.4 creates a stored procedure that allows you
to insert a new record into the Shippers table on the fly by supplying the required
parameter values. Note that the SQL Data Manipulation Language (DML) IN-
SERT INTO statement is used for adding new records to a table.

 Hands-On 22.4 Creating a Stored Procedure that Accepts Parameters

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following Create_SpWithParam

procedure:
Sub Create_SpWithParam()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

VIEWS AND STORED PROCEDURES 683

 Set conn = CurrentProject.Connection

 conn.Execute _
 "CREATE PROCEDURE usp_procEnterData " & _
 "(@Company TEXT (50), " & _
 "@Tel TEXT (25)) AS " & _
 "INSERT INTO Shippers " & _
 "(Company, [Business Phone]) " & _
 "VALUES (@Company, @Tel);"
 Application.RefreshDatabaseWindow
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If InStr(1, Err.Description, _
 "procEnterData") Then
 conn.Execute "DROP PROC procEnterData"
 Resume
 Else
 MsgBox Err.Number & ":" & Err.Description
 Resume ExitHere
 End If
End Sub

3. Run the Create_SpWithParam procedure.
Th e preceding stored procedure requires two values to be entered at runtime.
Th e fi rst value is passed by the @Company parameter and the second value
by the @Tel parameter. In this example, the names of the parameters have
been preceded with the @ sign for easy migration of the stored procedure into
the SQL Server environment. If you omit the @ sign, the procedure will still
execute correctly in Microsoft Access. If the procedure already exists, it will be
dropped using the DROP PROC statement.
 Like views, stored procedures appear in the Navigation pane in the Access
application window. Because we used the SQL INSERT INTO statement,
Microsoft Access treats this stored procedure as a parameterized Append
query.

4. Run the stored procedure named usp_procEnterData by double-clicking its
name in the Navigation pane of the Access application window. Figures 22.1
through 22.4 outline the process of running this stored procedure, and Figure
22.5 shows the result.

684 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.1 When you double-click a stored procedure name in the Navigation pane of the Access
database window, Access displays this message when the stored procedure expects parameters and
its SQL statement attempts to insert data into a table.

FIGURE 22.2 Because the stored procedure expects some input, you are prompted for the first
parameter value.

FIGURE 22.3 Here you are prompted to enter the phone number for the second stored procedure
parameter.

FIGURE 22.4 Once all input has been gathered via the parameters, Access informs you about the
action that is to be performed. Click Yes to execute the stored procedure or No to cancel.

VIEWS AND STORED PROCEDURES 685

FIGURE 22.5 After you click Yes, Access runs the Append query. To view the result of this
operation, double-click the Shippers table in the Navigation pane. Notice that a new record (Orient
Express) was added to the Shippers table.

EXAMINING THE CONTENTS OF A STORED PROCEDURE

You can examine the contents of the stored procedure created in Hands-On
22.4 by right-clicking on the usp_procEnterData procedure in the Navigation
pane and choosing Design View. Figure 22.6 displays the Design view of the
Append query. Other stored procedures that you create may be presented as
diff erent Action queries.

FIGURE 22.6 To view or modify the contents of a stored procedure, open it in Design view.

You can examine the SQL statements used by Access to execute your stored
procedure by switching to the SQL view (click Design | View and select SQL
View), as shown in Figure 22.7.

686 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 22.7 The SQL view of the Query window displays the SQL statement that Access will execute
when you run the stored procedure created in Hands-On 22.4.

EXECUTING A PARAMETERIZED STORED PROCEDURE

In the preceding section, you learned how to run a parameterized stored pro-
cedure from the Access user interface. To execute an existing stored procedure
from VBA code, use the Execute method of the ADO Connection or Com-
mand object. Here’s how:

 ● With the Execute method of the Connection object:

conn.Execute "usp_procEnterData"

 ● With the Execute method of the Command object:
cmd.CommandText = "usp_procEnterData"
cmd.CommandType = adCmdStoredProc

cmd.Execute
rst.Open cmd

If the stored procedure requires parameters, parameter values follow the pro-
cedure name as a comma-separated list. Here’s an example procedure that exe-
cutes the usp_procEnterData stored procedure and contains the values for its
two parameters:
Sub RunProc_WithParam()
 Dim conn As ADODB.Connection

 Set conn = CurrentProject.Connection
 conn.Execute "usp_procEnterData ""My Company2"", _
""(234) 334-3344"""
 conn.Close
 Set conn = Nothing
End Sub

VIEWS AND STORED PROCEDURES 687

Instead of surrounding parameters with sets of double quotes, you can use sin-
gle quotes like this:
conn.Execute "procEnterData 'My Company2', '(234) 334-3344'"

The procedure in Hands-On 22.5 runs the stored procedure named usp_pro-
cEnterData created in Hands-On 22.4. Notice how this procedure uses the
InputBox function to obtain the parameter values from the user instead of
hard-coding them in the Execute method of the Connection object (as shown
in the preceding example). Still another way of providing parameter values to
a stored procedure would be via an Access form. This is left for you to try on
your own.

 Hands-On 22.5 Executing a Parameterized Stored Procedure

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the following Execute_StoredProcWith-

Param procedure:
Sub Execute_StoredProcWithParam()
 Dim conn As ADODB.Connection
 Dim strCompany As String
 Dim strPhone As String

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 strCompany = InputBox("Please enter " & _
 "company name:", "Company")
 strPhone = InputBox("Please enter " & _
 "the phone number:", "Phone")
 If strCompany <> "" And strPhone <> "" Then
 conn.Execute "usp_procEnterData " & _
 strCompany & ", " & strPhone
 End If
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ":" & Err.Description

688 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Resume ExitHere
End Sub

3. Run the Execute_StoredProcWithParam procedure.
When you run the parameterized stored procedure in Hands-On 22.5, Access
displays an input box for each parameter. Aft er you have supplied values for
both required parameters, a new record is entered into the Shippers table.

DELETING A STORED PROCEDURE

Use the DROP PROCEDURE (or DROP PROC) statement to delete a stored proce-
dure. The syntax looks like this:
DROP PROC[EDURE] procedureName

The following example procedure deletes the stored procedure named usp_pro-
cEnterData from the current database.

 Hands-On 22.6 Deleting a Stored Procedure

1. Switch to the Visual Basic Editor window and insert a new module.
2. In the module’s Code window, enter the Delete_StoredProc procedure shown

here:
Sub Delete_StoredProc()
 Dim conn As ADODB.Connection

 On Error GoTo ErrorHandler

 Set conn = CurrentProject.Connection

 conn.Execute "DROP PROCEDURE usp_procEnterData; "
ExitHere:
 If Not conn Is Nothing Then
 If conn.State = adStateOpen Then conn.Close
 End If
 Set conn = Nothing
 Exit Sub
ErrorHandler:
 If InStr(1, Err.Description, "cannot find") Then
 MsgBox "The procedure you want to delete " & _
 "does not exist.", _
 vbDefaultButton1 + vbInformation, _

VIEWS AND STORED PROCEDURES 689

 "Request failed"
 Else
 MsgBox Err.Number & ":" & Err.Description
 End If
 Resume ExitHere
End Sub

3. Run the Delete_StoredProc procedure to remove the usp_procEnterData
procedure from the database.

CHANGING DATABASE RECORDS WITH
STORED PROCEDURES

Stored procedures can perform various actions similar to what Access Action
queries and Select queries with parameters can do. For example, here’s how
you would write a statement to create a stored procedure that, when executed,
deletes a record from the Shippers table:
conn.Execute "CREATE PROCEDURE usp_DeleteRec " & _
 "(ID Integer) " & _
 "AS " & _
 "DELETE * FROM Shippers WHERE ID = ID;"

To update a phone number in a specified record in the Shippers table, you may
want to create a stored procedure that performs the specified record update with
the following statement:
conn.Execute "CREATE PROCEDURE usp_UpdatePhone " & _
 "(ID Integer, tel text (25)) " & _
 "AS " & _
 "UPDATE Shippers SET [Business Phone] = tel " & _
 "WHERE ID = ID;"

SUMMARY

This chapter introduced you to two powerful database objects you can use in
Access: views and stored procedures. You learned how views are used as virtual
tables to make specific rows and columns from one or more tables available
to your Access users. Remember that views are similar to SELECT statements,
except they cannot contain the ORDER BY clause to sort the data and they do not

690 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

allow parameters. Views can be used in queries to hide from users the complex-
ity of joins between the tables. Converting your Access queries into views and
stored procedures will help with migration of your Access applications to the
SQL Server environment in the future.

This chapter concludes Part III of this book, which presented numerous
examples of using SQL DDL statements inside VBA procedures. In particular,
you learned how DDL statements are used to create tables, views, stored pro-
cedures, primary keys, indexes, and constraints that define the database. You
also learned some advanced Data Manipulation Language (DML) statements.
Although there is more to Access SQL than this part of the book has covered,
the information presented here should be quite sufficient to get you started us-
ing SQL in your own Access database applications.

The behavior of Microsoft Access objects such as forms, reports, and controls
can be modified by writing programming code known as an event proce-
dure or an event handler. In this part of the book, you will learn how you

can design more effective and visually appealing forms and reports, and make your
forms, reports, and controls perform useful tasks by writing event procedures in
class modules. You also learn how to use VBA, macros, and XML to customize the
user interface in Access 2019.

Chapter 23 Enhancing Access Forms
Chapter 24 Using Form Events
Chapter 25 Events Recognized by Form Controls
Chapter 26 Enhancing Access Reports and Using Report Events
Chapter 27 Advanced Event Programming
Chapter 28 Programming the User Interface

Part

 IV ENHANCING THE
USER EXPERIENCE

691

693

Access 2019 offers users a great number of features in the form design
area. For example, the Layout view gives form interface a true WYSI-
WYG: you can see the live data as you design your form without the

need to constantly switch between the Design and Form views. The form fea-
tures include various methods of creating forms, the Split Form, Bound Image
controls, the Attachments control, styles and AutoFormats, rich text support as
well as various ways of grouping controls by using the layouts. Many features
are available in datasheets, including the Date Picker, alternating row colors, the
Totals row, truncated number displays, sorting and filtering, and an easy way to
add new list items to combo boxes.

The Web Browser control extends the capabilities of Access forms by en-
abling users to view and interact with Web data directly from Access. The Navi-
gator control allows the creation of modern-looking tab-style navigation forms
that replace the old-fashioned switchboard style form used in earlier versions of
Access. With the Navigation control, it is possible to create richer user interfaces
with “parent” and “child” navigation forms. You can further enhance your Ac-
cess forms by linking subreports to the form and making it possible for users to
view information related to the record as they navigate the form. You can pub-
lish your application to the Web using SharePoint. With the Web Form Designer
you can quickly and easily create forms in tabular format that are properly ren-
dered on SharePoint via Access Services.

Chapter

 23 ENHANCING
ACCESS FORMS

694 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING ACCESS FORMS

The form buttons on the Ribbon’s Create tab (see Figure 23.1) enable users to
create both simple and advanced forms.

The classic Access form with a columnar layout is generated automatically
by selecting a record source (a table or query) in the Navigation pane and click-
ing the Form button. The next button, called Form Design, is used to create a
blank form in Design view. This form is not bound to any data source. Instead,
you are presented with a list of tables and queries on which you can base your
form. The Blank Form button on the Ribbon can be used to create a custom
form from scratch in Layout view. As in earlier versions of Access, this form is
not connected to any data source and can be used to create any form you want.
The Form Wizard button allows you to create simple customizable forms. When
you use the Form Wizard, Access allows you to specify which fields to include
from which table or query and makes it easy to choose from a variety of Auto-
Formats. Using the wizard lets you choose only the fields you want so you don’t
have to spend extra time deleting the fields you don’t want and repositioning the
remaining fields.

The Navigation button is a gallery control that allows you to create forms
that browse to other forms and reports. When you click the Navigation button,
it will present a selection of different layouts (see Figure 23.1).

FIGURE 23.1 Use the Navigation control button on the Create tab (Forms group) to create
customizable navigation forms.

The More Forms button (see Figure 23.2) provides additional types of forms
users can create in Access 2019: Multiple Items, Datasheet, Split Form, and
Modal Dialog. Notice there are no options for creating PivotChart and Pivot-
Table forms.

ENHANCING ACCESS FORMS 695

FIGURE 23.2 The More Forms button provides many types of forms that you can create
in Access 2019.

The Multiple Items form is a standard continuous form used in earlier versions of
Access. This form (see Figure 23.3) displays multiple records in a datasheet, with
one record per row, and allows you to arrange the controls any way you want.

FIGURE 23.3 The Multiple Items form in Access 2019.

The Datasheet form (see Figure 23.4) organizes data like the Multiple Items
form but looks more like an Excel worksheet with one record per row.

FIGURE 23.4 The Datasheet form resembles an Excel worksheet.

696 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Split Form contains a datasheet and a standard Access form (see Figure
23.5). The datasheet displays multiple records. Simply click on the record in the
datasheet and the form will change to show the details for this record, which you
can edit. Access can create these types of forms with ease without asking you a
single question.

The Modal Dialog form opens a form that functions like a modal window.
This means that the user will not be able to activate any other object before
closing that form. Modal Dialog forms are very useful when you need to gather
specific information from users before allowing them to perform other actions.

FIGURE 23.5 The Split Form is a combination of a standard form in an upper section and a
datasheet in a lower section. It allows easy browsing through the records and entering or editing data
for the selected record in the standard form.

GROUPING CONTROLS USING LAYOUTS

In Access you can group controls through a feature known as Layouts. Layout
view enables you to work with entire groups of controls without having to guess
whether the controls are properly sized and positioned. Take a look at Figure
23.6 and notice the Selector widget. When you click on the widget, you will see
which controls are included in that layout. Using the Layout view you can eas-
ily move controls around in the form and resize them. To control the layouts,
use the buttons in the Control Layout section of the Ribbon’s Arrange tab (see
Figure 23.7).

Groups of controls can be moved to a new layout in one step. The tabular lay-
out makes it easy to group the controls similar to a spreadsheet, with labels posi-
tioned across the top and data displayed in columns below the labels. To do this
quickly, select the control group you want to reposition by clicking the anchor
(Selector widget), then click the Tabular button on the Ribbon. The Stacked but-

ENHANCING ACCESS FORMS 697

ton can be used to create a layout similar to a paper form with labels to the left of
the data. Removing entire groups of controls is also easily done by clicking the
Selector widget and pressing the Delete key.

You can use anchoring to tie a control or a group of controls to a section
or another control so it moves into place in accordance with the parent. The
Anchoring options in Figure 23.8 show various positions where controls can be
moved and ways they can be stretched to maximize the use of the space avail-
able on the form.

FIGURE 23.8 The Anchoring button reveals several options for positioning and stretching form
controls.

To keep users from making changes to the form, you can disallow the Layout
view in the property sheet for the form.

FIGURE 23.6 A group of controls on the form can be moved easily by using the anchor point
(Selector widget).

FIGURE 23.7 The Form Layout Tools section of the Ribbon provides numerous options for
controlling the layout of the controls placed on the form.

698 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

RICH TEXT SUPPORT IN FORMS

In Chapter 11, you learned how to enable rich text formatting in memo fields.
You can also use rich text formatting on Access forms via the Text Box control.
For an unbound text box, all you need to do is open the property sheet for the
text box and set its Text Format property to Rich Text (see Figure 23.9). This
change will enable text formatting tools on the Ribbon. At runtime, users will
be able to change the font style and color; add bold, italics, and highlighting;
and apply other formatting. If the text box is bound to a field in a table, you
must first change the Text Format property of the table field before changing the
property of the control. If you forget to do this, Access will display the warning
message shown in Figure 23.10.

FIGURE 23.9 Access allows Rich Text format to be used in text box controls placed on the form.

FIGURE 23.10 Before changing the Text Format of a bound text box control to Rich Text, be sure to
change the Text Format property of the table field.

ENHANCING ACCESS FORMS 699

USING BUILT-IN FORMATTING TOOLS

Access provides a gallery of themes you can use to give your forms a pleasing
and consistent look. To preview the available designs, switch to the Form Layout
view and click on the Themes button in the Themes section of the Design tab
(see Figure 23.11).

FIGURE 23.11 The Themes button provides a gallery of quick formats in Microsoft Access.

USING IMAGES IN ACCESS FORMS

Access 2007 came with better image support. Earlier versions of Access con-
verted images from their native format and stored them as bitmaps (.bmp). This
format caused a significant increase in the size of the database because bitmap
files are not compressed. Also, any image transparency features were lost dur-
ing the conversion process. If you use the Image control in Access 2007–2019
and specify the image in the Picture property, Access will store the image in its
native format with no conversion. Images with transparency work just fine. You

700 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

can see examples of transparent buttons and pictures in the Northwind 2007
database’s forms (see Figure 23.12).

FIGURE 23.12 Access form with transparent images and buttons.

The older MDB databases do not support saving images in the native format,
so there is a special database property that lets you choose whether the images
should be converted to DIB (device-independent bitmap) or stored in their
native format. The default setting is to store images in their native format and
convert them to bitmaps for MDB databases. If you want your images to be dis-
played in previous versions of Access, choose the second option button under
the Picture Property Storage Format setting (see Figure 23.13).

FIGURE 23.13 You can tell Access how to store images in older versions of Access (2003 and earlier)
by using the options under Picture Property Storage Format. The Access Options window can be
accessed by clicking File | Options.

Access 2007 introduced a bound Image control. Access 2003 and earlier needed
lots of VBA code to display images on forms and reports when the images were

ENHANCING ACCESS FORMS 701

stored in the directories on disk. The Image control can be bound to the image
path. To add an image to your form, place the form in Design view and click the

Image button () in the Controls group of the Ribbon’s Design tab. When

you click the form grid, Access displays the Insert Picture dialog box where you
can browse to your picture location on disk. When you click OK, the selected
picture is placed in the Image control on the form. If you activate the property
sheet for the Image control, you will see that Access has placed the filename
in the Picture property (see Figure 23.14). If you don’t like the picture you’ve
chosen, you can simply click the ellipsis button (…) next to the Picture property
and choose another image.

FIGURE 23.14 The picture is shown here using the Image control placed on an Access form.

USING THE ATTACHMENTS CONTROL

In the Controls group of the Form Design tab you will find an Attachments con-

trol () that enables you to attach a file or a collection of files to any database

record. When you click on the Attachments field on the form, Access displays
a small toolbar with three buttons (see Figure 23.15). The Forward and Back-
ward buttons allow you to move through the attached files, and the third button
opens the Attachments dialog box. You can also right- click the Attachments
field and choose the same options from the shortcut menu.

702 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Recall that in Chapter 14 (see Hands-On 14.3), you wrote a VBA procedure
that added an attachment to a customer record in the Northwind 2007 database.
Let’s now see how you can work with the attachments in an Access form.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Custom Project 23.1 Working with the Attachments Control

1. Start Microsoft Access and create a new database named Chap23.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Choose External Data | Access to import the Customers table. In the File
name box, type C:\VBAAccess2019_ByExample\Northwind 2007.accdb and
click OK. In the Import Objects window, activate the Tables tab and select the
Customers table, then click OK. Click Close to exit the dialog boxes when the
import process has completed.

3. In the Navigation pane, double-click the Customers table.
4. Double-click on the paper clip icon for the third record. You should see an

empty Attachments dialog box. Click the Add button, select the California1.
jpg and California2.jpg images from your C:\VBAAccess2019_ByExample\
External Docs folder, and click Open. The names of the selected files are now
listed in the Attachments dialog box.

5. Click OK to close the dialog box and press Ctrl+S to save the record.
Notice that the paper clip column now displays the number of attached files in
parentheses next to the paper clip icon for the record.

6. Close the Customers table.
7. Highlight the Customers table in the Navigation pane, then click the Form

button in the Forms group on the Ribbon’s Create tab.
Access will display a form as shown in Figure 23.15.

8. Activate the record for the third customer.
9. On the Customers form, click the Attachments control next to the

Attachments label; notice a small toolbar with three buttons. Scroll through
the attached files by clicking the Forward and Backward buttons.
Let’s modify the form to display additional information about the attachments.

10. Switch to the Design view of the Customers form and use the Text Box control
in the Controls group of the Design tab to add a text box to the form as shown
in Figure 23.16. Change the default label of the text box control to Current
File as shown.

ENHANCING ACCESS FORMS 703

FIGURE 23.16 Placing an unbound text box control on the form.

11. In the form grid, click the unbound text box next to Current File. In the property
sheet for this text box, click the All tab and type txtCurrentFileName in the
Name property. Click the Format tab and change the Back Color property to
any color you like.

12. In the form grid, click the Current File label. In the property sheet for the
selected label control, click the All tab and type lblCurrentFile in the Name
property.

13. In the form grid, click the Attachments label. In the property sheet for this
label, click the All tab and type lblTotalFiles in the Name property.
Now let’s write an event procedure to display information about the
attached fi le.

14. In the form grid, click the Attachments control. In the property sheet for
this control, click the Event tab, then click the Browse button next to the On
Attachment Current property. In the Choose Builder dialog box, select Code
Builder and click OK.
Access will write the stub of the Attachments_AttachmentCurrent event
procedure.

15. Complete the code of the Attachments_AttachmentCurrent procedure as
shown in Figure 23.17.

704 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 23.17 Use the AttachmentCurrent event procedure for the Attachments control to retrieve
information about attachments and load it into your form’s controls.

Th e Attachments control comes with special properties that apply to working
with the Attachment data type. Th e FileName property returns the name of
the attached fi le. If you need to display the fi le extension, use the FileType
property. Th e AttachmentCount property returns the number of attachments
stored for the record.
Th e Attachments control has a special event called AttachmentCurrent. Th is
event is similar to the form’s OnCurrent event. It is triggered when you move
the focus from one attachment to another. Th e code shown in Figure 23.17
begins by checking whether the form’s default view is set to Single Form (0).
If DefaultView is set to display other types of Access forms, the code in the
event procedure will not run. Th e procedure hides the txtCurrentFileName
text box control and its label lblTotalFiles for all records that do not have any
attachments. Th is is done by setting the Visible property of the text box control
and label control to False. Next, the procedure fi lls in the text boxes with the
values retrieved from the AttachmentCount and FileName properties. Notice
how the procedure manipulates the Attachments label control to display the
total number of attachments for records that have them.

16. Press Alt+F11 to return to the Microsoft Access window and activate the
Customers form in Form view.

17. Scroll to the third customer record.

ENHANCING ACCESS FORMS 705

18. Notice that the Attachments label now shows the number of attached files in
parentheses. There is also a text box below the attachment listing the current
filename (see Figure 23.18). To scroll through the available files, select the At-
tachments field and click the Forward button in the tiny pop-up toolbar. No-
tice that when the new file loads into the Attachments control, the Current File
box displays the name of the file being viewed.

FIGURE 23.18 The Current File text box control added to the form provides information about the
attachment filename currently displayed in the Attachments control. The Attachments label has been
modified to include the total number of attached files for records that contain attachments.

19. Press Ctrl+S to save changes to the Customers form, and then close this form.

706 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

This chapter presented a quick overview of types of forms you can create with
Access 2019 and types of formatting you can apply to make your forms more
attractive.

You learned how you can group form controls using the layouts, implement
rich formatting in form controls, professionally format your forms using built-
in themes, and enhance forms with images.

The chapter’s main project focused on using the Attachments control in
an Access form and showed you how to write an event procedure to display
additional information about the attachments. You may want to treat it as a
"warm-up” exercise for the next chapter, which gives you a complete overview
and working knowledge of event procedures you can write for Access forms to
change or enhance their default behavior.

707

Chapter 1 provided a quick introduction to events, event properties, and
event procedures as well as an example event procedure that changed the
background color of a text box control placed on a form. Now is a good

time to go back to the beginning of this book and review these topics. Here’s a
rundown of the terms you need to be familiar with:

 ● Event—Events are things that happen to an object. Events occur when
you move a mouse, press a key, make changes to data, open a form, or
add, modify, or delete a record, etc. An event can be triggered by the user
or by the operating system.

 ● Event property—Forms, reports, and controls have various event proper-
ties you can use to trigger desired actions. When an event occurs, Micro-
soft Access runs a procedure assigned to an event property. Event proper-
ties are listed in the Event tab of the object’s property sheet. Th e name of
the event property begins with “On” and is followed by the event’s name.
Th erefore, the On Click event property corresponds to the Click event,
and the On Got Focus event property is used for responding to the Got-
Focus event.

 ● Event procedure—Th is is programming code you write to specify how a
form, report, or control should respond to a particular event. By writing
event procedures you can modify the application’s built-in response to an
event.

Chapter

 24 USING FORM
EVENTS

708 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Event trapping—When you assign programming code to an event prop-
erty, you set an event trap. When you trap an event, you interrupt the
default processing that Access would normally carry out in response to
the user’s keypress or mouse click.

 ● Sequence of events—Events occur in a predefi ned order. For example,
the Click event occurs before the DoubleClick event. When you perform
an action, several events occur, one aft er the other. For instance, the fol-
lowing form and control events occur when you open a form:

Open Load Resize Activate v Current Enter (control)
GotFocus (control)

Closing the form triggers the following control and form events:

Exit (control) LostFocus (control) Unload Deactivate Close

To find out whether a particular event is triggered in response to a user action,
you may want to place the MsgBox statement inside the event procedure for the
event you want to test. Microsoft Access forms, reports, and controls recognize
various events.

Events can be organized by object (form, report, control) or by cause (what
caused the event to happen). This chapter contains numerous examples of event
procedures you can write to make your forms and reports dynamic. You can
also experiment with various events in the data entry/lookup application (As-
setsDataEntry.accdb) located on the companion CD-ROM.

Microsoft Access forms can respond to a variety of events. These events al-
low you to manage entire records and respond to changes in the data. You can
determine what happens when records are added, changed, or deleted, or when
a different record becomes current. You can decide how the form appears to the
user when it is first displayed on the screen and what happens when the form is
closed. You can also manage problems that occur when the data is unavailable.
As you design your custom forms, you will find that some form events are used
more frequently than others. The following sections provide hands-on examples
of event procedures you can write for Access forms.

DATA EVENTS

Data events occur when you change the data in a control or record placed on a
form, or when you move the focus from one record to another.

USING FORM EVENTS 709

Current

The Current event occurs when the form is opened or re-queried and when the
focus moves to a different record. Use the Current event to synchronize data
among forms or move focus to a specific control.

The event procedure in Hands-On 24.1 sets the BackColor property of
the form’s header (Section 1) to red (255) for each discontinued product. The
Form_Current event will occur each time you move to a new record if the speci-
fied condition is true.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 24.1 Writing the Form_Current Event Procedure

1. Start Microsoft Access and create a new database named Chap24.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Import all the tables, queries, forms, reports, macros, and modules from
the Northwind.mdb sample database to your Chap24.accdb database. To do
this, in the Access window, choose External Data | Access. In the File name
box, type C:\VBAAccess2019_ByExample\Northwind.mdb and click OK.
In the Import Objects window, select the Tables tab and click the Select All
button. This will highlight all the tables. Select the Queries tab and click the
Select All button. Select the Forms tab and click the Select All button. Select
the Reports tab and click the Select All button. Do the same for macros and
modules. After selecting all the objects on the specified tabs, click OK to begin
importing. Click the Close button when done.

3. In the Access window of the Chap24.accdb database, right-click on the
Products form and choose Design View. Make sure the form’s property sheet
is visible and the Selection Type is set to Form. To activate the property sheet,
choose Property Sheet in the Tools section of the Design tab.

4. In the form’s property sheet, click the Event tab. Click next to the On
Current event property and choose [Event Procedure] from the drop-down
box. Click the Build button (…).
Access opens the Visual Basic Editor window and writes the stub of the Form_
Current event procedure.

5. Complete the code of the Form_Current event procedure as shown here:
Private Sub Form_Current()
Dim strPath As String

710 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dim strImage As String

strPath = "C:\VBAAccess2019_ByExample\External Docs\"
strImage = "Pinelumb.jpg"
 If Discontinued = True Then
 Me.Section(1).BackColor = 255
 Me.Picture = ""
 Else
 Me.Picture = strPath & strImage
 End If
End Sub

6. To test this event procedure, activate the Products form that is currently open
in Design view. You can quickly switch to the selected form from Visual Basic
by clicking the View Object button in the Project Explorer window. Next, in
the Access window, click the View button on the Ribbon to display the form in
Form view. Use the record selectors to move to record 5. Because this record
is marked as Discontinued, the code in the Form_Current event will change
the form header section’s color to red (see Figure 24.1). The records that are
not discontinued will appear with the background image specified in the Else
clause.

7. Close the Products form and save all the changes when prompted.

FIGURE 24.1 The Products form displays a red header background when a product is
marked as Discontinued.

USING FORM EVENTS 711

BeforeInsert

The BeforeInsert event occurs when the first character is typed in a new record
but before the new record is created. Use the BeforeInsert event to verify that
the data is valid or to display information about data being added. This event is
quite useful for placing default values in the fields at runtime. The BeforeInsert
event can be canceled if the data being added does not meet specific criteria.
The event procedure in Hands-On 24.2 demonstrates how to enter a default
value in the Country field when a user begins to enter data in the form.

 Hands-On 24.2 Writing the Form_BeforeInsert Event Procedure

For this hands-on exercise, we will create a new form based on the Customers
table.

1. Highlight the Customers table in the left pane of the Access window. Choose
Create | Form Wizard.

2. Select the following fields: CustomerID, CompanyName, Address, City,
Region, PostalCode, and Country. Step through the Form Wizard screens,
pressing the Next button until you get to the screen where you are asked for
the form’s title. Type New Customers for the form’s title, select the Modify the
form’s design option button, and click Finish.
Access opens the New Customers form in Design view.

3. In the property sheet, select Form from the drop-down box, and click the Data
tab. Set the Data Entry property to Yes.

4. In the form’s property sheet, click the Event tab. Click next to the Before
Insert event property and choose [Event Procedure] from the drop-down
box. Click the Build button (…).
Access opens the Visual Basic Editor window and writes the stub of the Form_
BeforeInsert event procedure.

5. Complete the code of the Form_BeforeInsert event procedure as shown here:
Private Sub Form_BeforeInsert(Cancel As Integer)
 Me.Country = "USA"
End Sub

6. To test this event procedure, activate the New Customers form in Form view.
7. Type JANIT in the CustomerID field. Notice that as soon as you start filling in

the form’s text boxes, the text “USA” appears in the Country field.
8. Press the Esc key twice to undo the changes to the form.
9. Close the New Customers form and save all the changes when prompted.

712 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

AfterInsert

The AfterInsert event occurs when a new record has been inserted. Use this
event to re-query the recordset when a new record is added or to display other
information. The event procedure in Hands-On 24.3 retrieves the total number
of records in the Customers table after a new record has been inserted.

 Hands-On 24.3 Writing the Form_AfterInsert Event Procedure

This hands-on exercise uses the New Customers form created in Hands-On
24.2.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_New
Customers.

2. In the Code window, you will see the Form_BeforeInsert event procedure pre-
pared in Hands-On 24.2. Below this procedure code, enter the Form_AfterIn-
sert event procedure as shown here:
Private Sub Form_AfterInsert()
 Dim db As DAO.Database
 Dim rst As DAO.Recordset

 Set db = CurrentDb()
 Set rst = db.OpenRecordset("Customers")

 MsgBox "Total Number of Records: " & _
 rst.RecordCount & "."

 rst.Close
 Set rst = Nothing
 Set db = Nothing
End Sub

3. To test this event procedure, open the New Customers form in Form view.
Type TRYIT in the Customer ID text box and Test Events in the Company
Name text box. Now use the record selector to move to the next record. Access
executes the code in the Form_AfterInsert event procedure and displays the
total number of records.

4. Close the New Customers form and save all the changes if prompted.

BeforeUpdate

The BeforeUpdate event occurs after a record has been edited but before it is
written to the table. This event is triggered by moving to another record or
attempting to save the current record. The BeforeUpdate event takes place after

USING FORM EVENTS 713

the BeforeInsert event. Use this event to validate the entire record and display a
message to confirm the change. The BeforeUpdate event can be canceled if the
record cannot be accepted. The event procedure in Hands-On 24.4 will supply
the value for the CustomerID field before the newly entered record is saved.

 Hands-On 24.4 Writing the Form_BeforeUpdate Event Procedure

This hands-on exercise uses the New Customers form created in Hands-On
24.2.

1. In the Visual Basic Editor’s Project Explorer window, double- click Form_New
Customers.

2. In the Code window, other event procedures prepared in Hands-On 24.2 and
24.3 will be listed. Enter the following Form_BeforeUpdate event procedure
below the code of the last procedure:
Private Sub Form_BeforeUpdate(Cancel As Integer)
 If Not IsNull(Me.CompanyName) Then
 Me.CustomerID = Left(CompanyName, 3) & _
 Right(CompanyName, 2)
 MsgBox "You just added Customer ID: " & _
 Me.CustomerID
 Else
 MsgBox "Please enter Company Name.", _
 vbOKOnly, "Missing Data"
 Me.CompanyName.SetFocus
 Cancel = True
 End If
End Sub

3. To test this event procedure, open the New Customers form in Form view.
Type Event Enterprises in the Company Name box. Click the record selector
to move to the next record. The BeforeUpdate event procedure code will run at
this point and you will see a message box with the custom-generated Customer
ID. Click OK to the message. Another message will appear with the number of
total records. This message box is generated by the AfterInsert event procedure
that was prepared in Hands-On 24.3. Click OK to this message.

4. Close the New Customers form and save changes to the form if prompted.

AfterUpdate

The AfterUpdate event occurs after the record changes have been saved in the
database. It is also invoked when a control loses focus and after the data in the
control has changed. Use the AfterUpdate event to update data in other controls

714 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

on the form or to move the focus to a different record or control. The event
procedure in Hands-On 24.5 creates an audit trail for all newly added records,
as illustrated in Figure 24.2.

FIGURE 24.2 The Form_AfterUpdate event procedure is used here to store information about newly
added records in a text file.

 Hands-On 24.5 Writing the Form_AfterUpdate Event Procedure

This hands-on exercise requires the New Customers form that was created in
Hands-On 24.2.

1. In the Visual Basic Editor window, choose Tools | References. Locate and
select Microsoft Scripting Runtime in the Available References list and click
OK.

2. In the Project Explorer window, double-click Form_New Customers.
3. Other procedures that were prepared in Hands-On 24.2, 24.3, and 24.4 will

be listed in the Code window. Enter the following Form_AfterUpdate event
procedure below the code of the last procedure:
Private Sub Form_AfterUpdate()
 Dim fso As FileSystemObject
 Dim objFile As Object
 Dim strFileName As String
 Dim strPath As String
 Dim strFullPath As String

 On Error Resume Next

 strPath = "C:\VBAAccess2019_ByExample\"
 strFileName = "MyCust.txt"
 strFullPath = strPath & strFileName

 Set fso = New FileSystemObject
 Set objFile = fso.GetFile(strFullPath)

USING FORM EVENTS 715

 If Err.Number = 0 Then
 ' open text file
 Set objFile = fso.OpenTextFile(strFullPath, 8)
 Else
 ' create a text file
 Set objFile = fso.CreateTextFile(strFullPath)
 End If

 objFile.WriteLine UCase(Me.CustomerID) & _
 " Created on: " & Date & " " & Time
 objFile.Close
 Set fso = Nothing
 MsgBox "This record was logged in: " & strFullPath
End Sub

Th is event procedure fi rst checks whether the specifi ed text fi le exists on your
computer. If the fi le is found, then the Err.Number statement returns zero.
At this point you want to open the fi le. Th e “8” represents the open mode for
appending. Use “2” if you want to replace the contents of a fi le with the new
data.

4. To test the event procedure, open the New Customers form in Form view.
Type Time Organizers in the Company Name box. Click the record selector to
move to the next record. The BeforeUpdate event procedure code you prepared
in Hands-On 24.4 will run at this point and you should see a message box that
displays the custom-generated Customer ID. Click OK to the message. The
next message box notifies you about the location of the audit trail (the result
of the AfterUpdate event procedure prepared in this exercise). Click OK to the
message. Another message will appear with the number of total records. This
message box is generated by the AfterInsert event procedure that was prepared
in Hands-On 24.3. Click OK to this message.
As you enter more customer records using the New Customers form, events
are executed in the following order:
BeforeInsert (Hands-On 24.2)
BeforeUpdate (Hands-On 24.4)
Aft erUpdate (Hands-On 24.5)
Aft erInsert (Hands-On 24.3)

5. Close the New Customers form and save changes to the form if prompted.

716 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dirty

The Dirty event occurs when the contents of a form or the text portion of a
combo box changes. This event will be triggered by an attempt to enter a char-
acter directly in the form’s text box or combo box. Use this event to determine
if the record can be changed. The event procedure in Hands-On 24.6 disallows
changes to form data when the CategoryID is less than or equal to 4.

 Hands-On 24.6 Writing the Form_Dirty Event Procedure

1. Highlight the Categories table in the left pane of the Access window. Choose
Create | Form Wizard.

2. Add all the fields as listed in the Categories table. Step through the Form
Wizard screens, clicking the Next button until you get to the screen where
you are asked for the form’s title. Type Product Categories for the form’s title,
select the Modify the form’s design option button, and click Finish.
Access opens the Product Categories form in Design view.

3. In the property sheet, select Form from the drop-down box, and click the Event
tab. Click next to the On Dirty event property and choose [Event Procedure]
from the drop-down box. Click the Build button (…).
Access opens the Visual Basic Editor window and writes the stub of the Form_
Dirty event procedure.

4. Complete the code of the Form_Dirty event procedure as shown here:
Private Sub Form_Dirty(Cancel As Integer)
 If CategoryID <= 4 Then
 MsgBox "You cannot make changes in this record."
 Cancel = True
 End If
End Sub

5. To test this event procedure, open the Product Categories form in Form view.
Try to make any changes to the original records. You will not be able to make
changes to the data if the product’s CategoryID is less than or equal to 4.

6. Close the Product Categories form and save changes to the form when
prompted.

OnUndo

The OnUndo event occurs when the user undoes a change to a combo box con-
trol, form, or text box control. By setting the Cancel argument to True, you can
cancel the undo operation and leave the control or form in its edited state. The

USING FORM EVENTS 717

Undo event for forms is triggered when the user clicks the Undo button, presses
the Esc key, or calls the Undo method.

Delete

The Delete event occurs when you select one or more records for deletion and
before the records are actually removed from the table. Use this event to place
restrictions on the data that can be deleted. When deleting multiple records, the
Delete event occurs for each record. This enables you to confirm or cancel each
deletion in your event procedure code. You can cancel the deletion in the Delete
or BeforeDelConfirm events by setting the Cancel argument to True.

The event procedure in Hands-On 24.7 demonstrates how to disallow dele-
tion of records when CategoryID is less than or equal to 8 and ask the user to
confirm the deletion for other records.

 Hands-On 24.7 Writing the Form_Delete Event Procedure

This hands-on exercise uses the Product Categories form created in Hands-On
24.6.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_
Product Categories, which was created in Hands-On 24.6.

2. In the Code window, you will see the Form_Dirty event procedure that was
prepared in Hands-On 24.6. Below this procedure code, enter the Form_
Delete event procedure as shown here:
Private Sub Form_Delete(Cancel As Integer)
 If CategoryID <= 8 Then
 MsgBox "You can't delete the original categories."
 Cancel = True
 Else
 If MsgBox("Do you really want to delete " & _
 "this record?", vbOKCancel, _
 "Delete Verification") = vbCancel Then
 Cancel = True
 End If
 End If
End Sub

3. To test this event procedure, open the Product Categories form in Form
view. Click on the record selector to the left of the first record and press the
Delete key. At this point Access will execute the code of the Form_Delete event

718 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

procedure. You should see the message that you cannot delete original product
categories.

4. Click the New button on the Ribbon to add a new record to the form.
Enter a new category named Organic Food and save the record. Now press
the Delete button on the Ribbon to delete this record. If there is no code in
the Form_BeforeDelConfirm event procedure (see Hands-On 24.8), you will
be prompted twice to confirm the deletion. Go ahead with the deletion by
clicking OK to the first message and Yes to the second.

5. Close the Product Categories form and save changes to the form when
prompted.

BeforeDelConfirm

The BeforeDelConfirm event occurs after the Delete event but before the Delete
Confirm message box is displayed. If you don’t write your own BeforeDel-
Confirm event, Access will display a standard delete confirmation message as
described in Hands-On 24.7. You can use this event to write a custom deletion
confirmation message. The event procedure in Hands-On 24.8 demonstrates
how to suppress the default message.

 Hands-On 24.8 Writing the Form_BeforeDelConfi rm Event Procedure

This hands-on exercise uses the Product Categories form created in Hands-On
24.6.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_Prod-
uct Categories, which was created in Hands-On 24.6 and modified in Hands-
On 24.7.

2. In the Code window, two event procedures are shown that were prepared in
Hands-On 24.6 and 24.7. Enter the following Form_BeforeDelConfirm event
procedure below the code of the last procedure:
Private Sub Form_BeforeDelConfirm(Cancel _
 As Integer, Response As Integer)
 Response = acDataErrContinue
End Sub

In this procedure code, the statement Response = acDataErrContinue will
suppress the default message box that Microsoft Access normally displays
when you attempt to delete a record.

3. To test this event procedure, open the Product Categories form in Form view.
Click the New button on the Ribbon to add a new record, save it, and then

USING FORM EVENTS 719

delete it. The Form_Delete event procedure prepared in Hands-On 24.7 will
be executed at this point, and you will see a dialog with your custom prompt to
confirm the deletion. Click Yes. Notice that Access does not display its default
message asking you to confirm the deletion of the specified number of records.

4. Close the Product Categories form and save changes to the form when
prompted.

NOTE

Instead of writing your custom confirmation message in the
Form_Delete event procedure, you can place it in the Form_Be-
foreDelConfirm event procedure as shown here:
Private Sub Form_BeforeDelConfirm(Cancel As Integer, _
 Response As Integer)
 ' remove the default Access message box
 ' that prompts to confirm deletion
 Response = acDataErrContinue
 If MsgBox("Do you really want to delete this record?", _
 vbOKCancel) = vbCancel Then
 Cancel = True
 End If
End Sub

AfterDelConfirm

The AfterDelConfirm event occurs after the record is actually deleted or after
deletion is canceled in the BeforeDelConfirm event procedure. Use the After-
DelConfirm event to move to another record or to display a message indicat-
ing whether the deletion was successful. The Status argument allows you to
check whether deletion progressed normally or was canceled by the user or
Visual Basic. The following constants can be used for the Status argument in
the AfterDelCon firm event procedure: acDelete (6), acDeleteCancel (1),
acDeleteOK (0), or acDeleteUserCancel (2).

The event procedure in Hands-On 24.9 displays a message when a record is
successfully deleted.

 Hands-On 24.9 Writing the Form_AfterDelConfi rm Event Procedure

This hands-on exercise uses the Product Categories form created in Hands-On
24.6.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_
Product Categories.

720 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. The Code window appears with several event procedures that were prepared
in previous hands-on exercises. Enter the following Form_After Del Confirm
event procedure below the code of the last procedure:
Private Sub Form_AfterDelConfirm(Status As Integer)
 MsgBox "The selected record was deleted."
 Debug.Print "Status = " & Status
End Sub

3. To test this event procedure, open the Product Categories form in Form view.
Add a new record, save it, and delete it. Access will execute the code in the
Form_Delete event procedure (Hands-On 24.7) that displays a message box
asking you whether you want to delete the record. Click Yes. Access will then
check the code in Form_BeforeDelConfirm (Hands-On 24.8). The statement
Response = acDataErrContinue will cause Access to suppress its default
Delete Confirm message box and you will not be prompted again to reconfirm
the deletion. Finally, Form_AfterDel Confirm will run and you will see a
message about the successful deletion.

4. Close the Product Categories form and save changes to the form when
prompted.

FOCUS EVENTS

Focus events occur when a form becomes active or inactive and when a form or
form control loses or gains the focus.

Activate

The Activate event occurs whenever the form gains the focus and becomes the
active window. This situation occurs when the form is first opened and when
the user activates the form again by clicking on the form or one of its controls.
Use this event to display or hide supporting forms.

The event procedure in Hands-On 24.10 will hide the tab labeled Personal
Information when the Employees form is displayed. Notice that the tabs are
numbered beginning with 0, hence the second tab in the tab control placed on
the form has an index value of 1.

 Hands-On 24.10 Writing the Form_Activate Event Procedure

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_Em-
ployees.

USING FORM EVENTS 721

2. The Code window contains several event procedures and functions already
written for this form. Enter the following Form_Activate event procedure
below the code of the last procedure:
Private Sub Form_Activate()
 Me.TabCtl0.Pages(1).Visible = False
End Sub

3. To test this event procedure, open the Employees form in Form view. Notice
that only the tab labeled Company Info is shown.

4. Close the Employees form and save changes to the form when prompted.

Deactivate

The Deactivate event occurs when the user switches to another form or closes
the form. Use this event to display or hide supporting forms. The event pro-
cedure in Hands-On 24.11 will display a message when the focus moves to a
different form.

 Hands-On 24.11 Writing the Form_Deactivate Event Procedure

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_
Employees.

2. The Code window contains a number of event procedures and functions
already written for this form. Enter the following Form_Deactivate event
procedure below the code of the last procedure:
Private Sub Form_Deactivate()
 MsgBox "You are leaving the " & Me.Name & " form."
 If Me.Dirty Then
 DoCmd.Save acForm, Me.Name
 MsgBox "Your changes have been saved."
 End If
End Sub

3. To test this event procedure, open the Products form in Form view. Next,
activate the Employees form in Form view and change the phone extension in
the first employee record. Now go back to the Products form. You should get
two messages as programmed in the Form_Deactivate event procedure. Click
OK to each message.

4. Close the Employees and the Products forms.

722 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

GotFocus

The GotFocus event happens when a form receives the focus, provided that
there are no visible or enabled controls on the form. The GotFocus event is fre-
quently used for controls placed on the form and rarely used for the form itself.

LostFocus

The LostFocus event happens when a form loses focus, provided there are no
visible or enabled controls on the form. This event is frequently used for con-
trols placed on the form and rarely used for the form itself.

MOUSE EVENTS

Mouse events occur when you move a mouse or click any of the available mouse
buttons.

Click

The Click event occurs when you click a mouse button on a blank area of a form,
a form’s record selector, or a control placed on the form.

The event procedure in Hands-On 24.12 will cause a text box control to
move one inch to the right when you click the record selector.

 Hands-On 24.12 Writing the Form_Click Event Procedure

1. Create a new form with two text boxes. Position both text boxes starting at 1
inch on the horizontal ruler. Save the form as Mouse Test.

2. In the form’s property sheet, make sure Form is selected and click the Event
tab. Click next to the On Click event property and choose [Event Procedure]
from the drop-down box. Click the Build button (…).
Access opens the Visual Basic Editor window and writes the stub of the Form_
Click event procedure.

3. Complete the code of the Form_Click event procedure as shown here:
Private Sub Form_Click()
 MsgBox "Form Click Event Occurred."
 Me.Text0.Left = Text0.Left + 1440
End Sub

Th e fi rst text box control placed on the form is automatically named Text0. Th e
Left property is used to specify an object’s location on a form or report. Th is

USING FORM EVENTS 723

procedure moves a text box control one inch to the right. Screen measurements
are expressed in units called twips, and there are 1440 twips per inch. Th us, to
calculate the new position of the text box, you must add 1440 to the current
position.

4. To test this event procedure, open the Mouse Test form in Form view. Click
on the record selector (a bar to the left of a record). This will cause the Form_
Click event procedure code to execute and you will see a message box. After
clicking OK in response to the message, the first text box control will move one
inch to the right as illustrated in Figure 24.3.

5. Close the Mouse Test form and save changes to the form when prompted.

FIGURE 24.3 The Form_Click event procedure has moved the first text box to the right.

DblClick

The DblClick event occurs when you double-click on a blank area of the form,
the form’s record selector, or a control placed on the form.

MouseDown

The MouseDown event occurs when you click and hold on a blank area of the
form, the form’s record selector, or a control placed on the form. This event
occurs before the Click event. The MouseDown event has four arguments:

 ● Button—Identifi es the state of the mouse buttons. Use acLeftButton
to check for the left mouse button, acRightButton to check for the right
mouse button, and acMiddleButton to check for the middle mouse
button.

724 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Shift —Specifi es the state of the Shift , Ctrl, and Alt keys when the button
specifi ed by the Button argument was pressed or released. Use acShift-
Mask (1) to test for the Shift key, acCtrlMask (2) to test for the Ctrl key,
and acAltMask (4) to test for the Alt key. You can test for any combina-
tion of buttons. For example, to specify that Ctrl and Alt were pressed, use
the value of 6 (2+4) as the Shift argument.

 ● X—Specifi es the horizontal (x) position from the left edge of the form or
control.

 ● Y—Specifi es the vertical (y) position from the top edge of the form or
control.

The event procedure in Hands-On 24.13 displays two messages when the form’s
MouseDown event is fired. The first message tells whether you pressed the Alt,
Ctrl, or Shift key, and the second one announces which mouse button was used.

 Hands-On 24.13 Writing the Form_MouseDown Event Procedure

1. Create a new form based on the Products table adding all the available fields to
the form. Save this form as Products Test.

2. In the form’s property sheet, make sure Form is selected and click the Event
tab. Click next to the On Mouse Down event property and choose [Event
Procedure] from the drop-down box. Click the Build button (…).

3. Enter the following code in the Form_MouseDown event:
Private Sub Form_MouseDown(Button As Integer, _
 Shift As Integer, _
 X As Single, _
 Y As Single)
 Debug.Print "Mouse Down"

 Select Case Shift
 Case 0
 MsgBox "You did not press a key."
 Case 1 ' or acShiftMask
 MsgBox "You pressed SHIFT."
 Case 2 ' or acCtrlMask
 MsgBox "You pressed CTRL."
 Case 3
 MsgBox "You pressed CTRL and SHIFT."
 Case 4 ' or acAltMask
 MsgBox "You pressed ALT."
 Case 5

USING FORM EVENTS 725

 MsgBox "You pressed ALT and SHIFT."
 Case 6
 MsgBox "You pressed CTRL and ALT."
 Case 7
 MsgBox "You pressed CTRL, ALT, and SHIFT."
 End Select

 If Button = 1 Then ' acLeftButton
 MsgBox "You pressed the left button."
 ElseIf Button = 2 Then ' acRightButton
 MsgBox "You pressed the right button."
 ElseIf Button = 4 Then ' acMiddleButton
 MsgBox "You pressed the middle button."
 End If
End Sub

4. To test this event procedure, switch to the Products Test form and open it in
Form view. Click on the record selector while holding down any mouse button
and pressing the Shift, Ctrl, or Alt keys or combinations of these keys.

5. Close the Products Test form and save changes to the form when prompted.

MouseMove

The MouseMove event occurs when you move the mouse over a blank area of
the form, the form’s record selector, or a control placed on the form. The Mouse-
Move event occurs before the Click event and has the same arguments as the
MouseDown event.

MouseUp

The MouseUp event occurs when you release the mouse button. It occurs before
the Click event and uses the same arguments as the MouseDown and Mouse-
Move events.

MouseWheel

The MouseWheel event occurs in Form view or Datasheet view when the user
rotates the mouse wheel on a mouse device that has a wheel. This event takes
the following two arguments:

 ● Page—Returns True if the page was changed.
 ● Count—Specifi es the number of lines that were scrolled with the mouse

wheel.

726 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE
Because there is no Cancel argument, you cannot use the Mouse-
Wheel event to prevent users from using the mouse wheel to scroll
through records on a form.

KEYBOARD EVENTS

Keyboard events occur when you hold down, press, or release a key on the key-
board or send a keystroke by using the SendKeys statement in Visual Basic or
the SendKeys action in a macro.

The keyboard events occur in the following sequence:

KeyDown KeyPress KeyUp

If the form’s KeyPreview property is set to Yes, all keyboard events occur first
for the form, and then for the control that has the focus. When you press and
hold down the key, the KeyDown and KeyPress events occur repeatedly. When
you release the key, the KeyUp event occurs.

KeyDown

The KeyDown event occurs when you press a key while a form or control has
the focus. This event is also triggered by using the SendKeys statement in Visual
Basic or the SendKeys action in a macro. If the form’s KeyPreview property is
set to Yes, all keyboard events occur first for the form, and then for the control
that has the focus.

The KeyDown event takes the following two arguments:

 ● KeyCode—Determines which key was pressed. To specify keycodes, use
members of the KeyCodeConstants class in the VBA Object Library in
the Object Browser. To prevent an object from receiving the keystroke,
set KeyCode to zero (0).

 ● Shift —Determines if the Shift , Ctrl, or Alt key was pressed. Use acShift -
Mask(1) to test for the Shift key, acCtrlMask(2) to test for the Ctrl key,
and acAltMask(4) to test for the Alt key. You can test for any combination
of buttons. For example, to specify that Ctrl and Alt were pressed, use the
value of 6 (2+4) as the Shift argument.

The event procedure in Hands-On 24.14 displays a message when you press one
of the following keys: F1, Home, Tab, Shift, Ctrl, Alt, or Delete.

USING FORM EVENTS 727

 Hands-On 24.14 Writing the Form_KeyDown Event Procedure

1. Open the Products form in Design view. In the form’s property sheet, make
sure Form is selected and click the Event tab. Set the Key Preview property
to Yes.

2. Save the Products form.
3. Click next to the On Key Down event property and choose [Event

Procedure] from the drop-down box. Click the Build button (…).
In the Code window there are a couple of event procedures already written for
this form.

4. Enter the following Form_KeyDown event procedure below the last procedure
code.
Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
 Select Case KeyCode
 Case vbKeyF1
 MsgBox "You pressed the F1 key."
 Case vbKeyHome
 MsgBox "You pressed the Home key."
 Case vbKeyTab
 MsgBox "You pressed the Tab key."
 End Select

 Select Case Shift
 Case acShiftMask
 MsgBox "You pressed the SHIFT key."
 Case acCtrlMask
 MsgBox "You pressed the CTRL key."
 Case acAltMask
 MsgBox "You pressed the ALT key."
 End Select
 If KeyCode = vbKeyDelete Then
 MsgBox "Delete Key is not allowed."
 KeyCode = 0
 End If
End Sub

5. To test this event procedure, open the Products form in Form view. Press one
of the following keys: F1, Home, Tab, Shift, Ctrl, Alt, or Delete. Click OK to
the message.

6. Close the Products form and save changes to the form when prompted.

728 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

KeyPress

The KeyPress event occurs when you press and release a key or a key combina-
tion. This event is also triggered by using the SendKeys statement in Visual
Basic or the SendKeys action in a macro. If the form’s KeyPreview property is
set to Yes, all keyboard events occur first for the form, and then for the control
that has the focus.

The KeyPress event responds only to the ANSI characters generated by the
keyboard, the Ctrl key combined with a character from the standard alphabet or
a special character, and the Enter or Backspace key. Other keystrokes are han-
dled by the KeyDown and KeyUp event procedures. KeyAscii is a read/write
argument that specifies which ANSI key was pressed. To cancel the keystroke in
the KeyPress event, set the KeyAscii argument to 0. The KeyPress event treats
uppercase and lowercase letters as different characters.

The event procedure in Hands-On 24.15 prints the ASCII code and the value
of the pressed key to the Immediate window. Upon pressing the Escape key
(KeyAscii=27), the user is prompted to save changes. Clicking Yes to the mes-
sage will cause the form to be closed. All other keystrokes are ignored.

 Hands-On 24.15 Writing the Form_KeyPress Event Procedure

1. Open the Suppliers form in Design view. In the property sheet, make sure that
Form is selected and click the Event tab. Set the Key Preview property to Yes.
Click next to the On keypress event property and choose [Event Procedure]
from the drop-down box. Click the Build button (…).
In the Code window there are a couple of event procedures already written for
this form.

2. Enter the following Form_KeyPress event procedure below the last procedure
code.
Private Sub Form_KeyPress(KeyAscii As Integer)
 Debug.Print "keypress: KeyAscii = " & KeyAscii & _
 Space(1) & "= " & Chr(KeyAscii)
 If KeyAscii = 27 Then
 If MsgBox("Save changes to this form?", _
 vbYesNo) = vbYes Then
 DoCmd.Close acForm, Me.Name, acSaveYes
 Else
 KeyAscii = 0
 End If

USING FORM EVENTS 729

 Else
 KeyAscii = 0
 End If
End Sub

Th e statement KeyAscii = 0 will disable any input to all the controls on
the form. Recall that a form’s Key Preview property determines whether form
keyboard events are invoked before control keyboard events. To prevent key-
strokes from going to the form’s controls, the KeyPreview property must be set
to Yes.
 Note that the KeyPress event is not triggered by the Delete key. You can
delete any data on this form as long as there is no custom VBA code written in
the KeyDown or KeyUp event procedure that blocks the use of this key.

3. To test this event procedure, open the Suppliers form in Form view. Try to edit
a field by typing some text. Because the input to all the controls on the form
has been disabled by the Form_KeyPress event procedure, you cannot see any
input. However, when you switch to the Immediate window, you will see the
complete listing of keys that you pressed. Switch back to the Suppliers form
and press the Escape key. If you agree to save changes to this form, the form
will be closed.

KeyUp

The KeyUp event occurs when you release a key while a form or control has
the focus. This event is also triggered by using the SendKeys statement in Visual
Basic or the SendKeys action in a macro. If the form’s KeyPreview property is
set to Yes, all keyboard events occur first for the form, and then for the control
that has the focus.

The KeyUp event takes the following two arguments:

 ● KeyCode—Determines which key was pressed. To specify keycodes, use
members of the KeyCodeConstants class in the VBA Object Library in
the Object Browser. To prevent an object from receiving the keystroke,
set KeyCode to zero (0).

 ● Shift —Determines if the Shift , Ctrl, or Alt key was pressed. Use acShift-
Mask (1) to test for the Shift key, acCtrlMask (2) to test for the Ctrl key,
and acAltMask (4) to test for the Alt key. You can test for any combina-
tion of buttons. For example, to specify that Ctrl and Alt were pressed, use
the value of 6 (2+4) as the Shift argument.

730 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The event procedure in Hands-On 24.16 will print to the Immediate window
the keycode and the value of the key that was released. Also, the information
about KeyCode and the state of the Shift key will be shown in the form’s caption.

 Hands-On 24.16 Writing the Form_KeyUp Event Procedure

1. Open the Suppliers form in Design view. In the form’s property sheet, make
sure Form is selected and click the Event tab. Make sure the Key Preview
property is set to Yes.

2. Click next to the On Key Up event property and choose [Event Procedure]
from the drop-down box. Click the Build button (…).
Th e Code window contains a couple of event procedures already written for
this form.

3. Enter the following Form_KeyUp event procedure below the code of the last
procedure:
Private Sub Form_KeyUp(KeyCode As Integer, _
 Shift As Integer)
 Debug.Print "Key up : " & Chr(KeyCode) & _
 "(" & KeyCode & ") " & _
 Shift
 Me.Caption = Me.Name
 Me.Caption = Me.Caption & ": KeyCode=" & _
 KeyCode & " " & "Shift=" & Shift
End Sub

4. To test this event procedure, open the Suppliers form in Form view. Press vari-
ous keys on the keyboard and notice the key information in the form’s caption.

5. Switch to the Visual Basic Editor window and activate the Immediate window.
You should see a listing of the keys that were pressed and released while per-
forming Step 4.

6. Close the Suppliers form and save changes to the form when prompted.

ERROR EVENTS

The Error event is triggered by runtime errors generated either in the Microsoft
Access interface or by the Microsoft Jet/ACE database engine. The Error event
does not trap VBA errors.

USING FORM EVENTS 731

Error

The Error event occurs when there is a problem accessing data for the form. Use
this event to suppress the standard error messages and display a custom error
message instead.

The Error event takes the following two arguments:

 ● DataErr—Contains the number of the Microsoft Access error that oc-
curred.

 ● Response—Determines whether or not error messages should be dis-
played. It may be one of the following constants:

 ■ acDataErrContinue—Ignore the error and continue without display-
ing the default Microsoft Access error message.

 ■ acDataErrDisplay—Display the default Microsoft Access error mes-
sage. Th is is the default.

The event procedure in Hands-On 24.17 displays a custom message when an
attempt is made to add a new record with a customer ID that already exists. The
standard Microsoft Access error message is not displayed.

 Hands-On 24.17 Writing the Form_Error Event Procedure

1. Create a new form based on the Customers table. Add all the fields from the
Customers table and save the new form as Customers Data Entry.

2. Activate the Customers Data Entry form in Design view. In the property sheet,
make sure Form is selected and click the Data tab. Set the form’s DataEntry
property to Yes.

3. Click the Event tab, set the On Error property to [Event Procedure], and
press the Build button (…).
Access will create the event procedure stub.

4. Enter the following Form_Error event procedure:
Private Sub Form_Error(DataErr As Integer, _
 Response As Integer)

 Dim strMsg As String
 Dim custId As String

 Const conDuplicateKey = 3022
 custId = Me.CustomerID

732 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If DataErr = conDuplicateKey Then
 ' Don't show built-in error messages
 Response = acDataErrContinue
 strMsg = "Customer " & custId & " already exists."
 ' Show a custom error message
 MsgBox strMsg, vbCritical, "Duplicate Value"
 End If
End Sub

5. Open the Customers Data Entry form in Form view. Enter ALFKI in the
CustomerID field and Alfred Fiki in the Company Name field. Click the Save
button. When you try to save this record, the Form_Error event procedure
code will cause a message box to appear, saying that the customer already
exists. Click OK to the message. Press Esc to cancel the changes to this record.

6. Close the Customers Data Entry form and save the changes to the form.

FILTER EVENTS

Filter events are triggered by opening or closing a filter window or when you are
applying or removing a filter.

Filter

The Filter event occurs when you design a filter to limit the form’s records to
those matching specified criteria. This event takes place when you select the
Filter by Form or Advanced Filter/Sort options. Use this event to remove the
filter that was previously set, to enter initial settings for the filter, or to call your
own custom filter dialog box. To cancel the filtering command, set the Cancel
argument for the event procedure to True.

The event procedure in Hands-On 24.18 allows the use of the Filter by Form
option but disallows the use of the Advanced Filter/Sort option.

 Hands-On 24.18 Writing the Form_Filter Event Procedure

This hands-on exercise uses the Product Categories form created in Hands-On
24.6.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_
Product Categories.

USING FORM EVENTS 733

2. The Code window shows other event procedures already written for this form.
Enter the following Form_Filter event procedure below the code of the last
procedure:
Private Sub Form_Filter(Cancel As Integer, _
 FilterType As Integer)
 Select Case FilterType
 Case acFilterByForm
 MsgBox "You selected to filter records " & _
 "by form.", vbOKOnly + vbInformation, _
 "Filter By Form"
 Me.CategoryName.SetFocus
 Me.CategoryID.Enabled = False
 Case acFilterAdvanced
 MsgBox "You are not authorized to use " & _
 " Advanced Filter/Sort.", _
 vbOKOnly + vbInformation, _
 "Advanced Filter By Form"
 Cancel = True
 End Select
End Sub

3. To test this event procedure, open the Product Categories form in Form view.
4. In the Sort & Filter area of the Ribbon, choose Advanced | Filter by Form.

The code in the Form_Filter event procedure runs and you will see a message
box. Click OK. The Filter by Form dialog box appears with the Category ID
text box disabled. You can disable certain controls on the form if you don’t
want the user to filter by them.

5. Filter the form to display only records for Seafood or Meat/Poultry. Be
sure to click Toggle Filter in the Sort & Filter area of the Ribbon after setting
up filter criteria.

6. Now, remove the filter by clicking Toggle Filter again.
7. Choose Advanced | Advanced Filter/Sort. You will not be able to use the

advanced filter for this form because the form’s Filter event has disabled this
action.

8. Close the Product Categories form and save changes to the form when
prompted.

ApplyFilter

The ApplyFilter event occurs when you apply the filter to restrict the records.
This event takes place when you select the Apply Filter/Sort, Filter by Selection,
or Remove Filter/Sort options. Use this event to change the form display before

734 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

the filter is applied or undo any changes made when the Filter event occurred.
The ApplyType argument can be one of the predefined constants shown in

Table 24.1.

TABLE 24.1 ApplyType argument constants

Constant Name Constant Value
acShowAllRecords 0
acApplyFilter 1
acCloseFilterWindow 2
acApplyServerFilter 3
acCloseServerFilterWindow 4

The event procedure in Hands-On 24.19 displays a different message depend-
ing on whether or not the user has made a selection in the Filter by Form dialog
box.

 Hands-On 24.19 Writing the Form_ApplyFilter Event Procedure

This hands-on exercise uses the Product Categories form created in Hands-On
24.6.

1. In the Visual Basic Editor’s Project Explorer window, double-click Form_
Product Categories.

2. The Code window shows other event procedures already written for this form.
Enter the following Form_ApplyFilter event procedure below the code of the
last procedure:
Private Sub Form_ApplyFilter(Cancel As Integer, _
 ApplyType As Integer)

 Dim Response As Integer

 If ApplyType = acApplyFilter Then
 If Me.Filter = "" Then
 MsgBox "You did not select any criteria.", _
 vbOKOnly + vbCritical, "No Selection"
 GoTo ExitHere
 End If
 Response = MsgBox("The selected criteria " & _
 "is as follows:" & vbCrLf & _
 Me.Filter, vbOKCancel + vbQuestion, _

USING FORM EVENTS 735

 "Filter Criteria")
 End If

 If Response = vbCancel Then
 Cancel = True
 End If
 If ApplyType = acShowAllRecords Then
 Me.Filter = ""
 MsgBox "Filter was removed."
 End If
 If ApplyType = acCloseFilterWindow Then
 Response = MsgBox("Are you sure you " & _
 "want to close the Filter window?", vbYesNo)
 If Response = vbNo Then
 Cancel = True
 End If
 End If
ExitHere:
 With Me.CategoryID
 .Enabled = True
 .SetFocus
 End With
End Sub

3. To test this event procedure, open the Product Categories form in Form view.
4. From the Sort & Filter area of the Ribbon, choose Advanced | Filter by

Form. The Form_Filter event will be triggered (see Hands-On 24.18). Click
OK to the message box.

5. Select a category from the Category Name combo box and click Toggle Filter
on the Ribbon. This action will trigger the Form_ApplyFilter event procedure.
Experiment with the form filter, testing other situations such as clicking Tog-
gle Filter when the filtering criteria were not specified or closing the Filter by
Form dialog box.

6. Close the Product Categories form and save changes to the form when
prompted.

TIMING EVENTS

Timing events occur in response to a specified amount of time passing.

736 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Timer

The Timer event occurs when the form is opened. The duration of this event
is determined by the value (milliseconds) entered in the TimerInterval prop-
erty located on the Event tab of the form’s property sheet. Use this event to dis-
play a splash screen when the database is opened. The Timer event is helpful in
 limiting the time the record remains locked in multiuser applications.

The event procedure in Hands-On 24.20 will flash the button’s text, “ Preview
Product List” (or the entire button if you use the commented code instead).
For the code to work, you must start the timer by changing the TimerInterval
property from 0 (stopped) to the desired interval. A timer interval of 1,000 will
invoke a timer event every second. The form’s Load event procedure sets the
form’s TimerInterval property to 250, so the button text (or the entire button) is
toggled once every quarter second. You may change the timer interval manually
by typing the value next to the form’s TimerInterval property in the property
sheet or by placing the following statement in the Form_Load event:
 Me.TimerInterval = 250

 Hands-On 24.20 Writing the Form_Timer Event Procedure

1. In the Visual Basic Editor’s Project Explorer window, double-click the Products
form.

2. The Code window shows other event procedures already written for this form.
Enter the following Form_Timer event procedure below the code of the last
procedure:
Private Sub Form_Timer()
 Static OnOff As Integer

 If OnOff Then
 Me.PreviewReport.Caption = "Preview Product List"
 ' Me.PreviewReport.Visible = True
 Else
 Me.PreviewReport.Caption = ""
 ' Me.PreviewReport.Visible = False
 End If
 OnOff = Not OnOff
End Sub

3. Activate the Products form in Design view. In the property sheet, make sure
Form is selected and click the Event tab. Enter 250 for the TimerInterval
property.

USING FORM EVENTS 737

4. Switch the form to Form view. Notice the flashing effect of the Preview
Product List button’s text.

5. Close the Products form and save changes to the form when prompted.

NOTE

To make the entire button flash, uncomment the commented lines
of code and comment the original lines. Next, open the Products
form in Form view and notice that the entire button is now flash-
ing.

EVENTS RECOGNIZED BY FORM SECTIONS

In addition to trapping events for the entire form, you can write event proce-
dures for the following form sections: Detail, FormHeader, FormFooter, Page-
Header, and PageFooter. Form sections respond to the following events: Click,
DblClick, MouseDown, MouseUp, and MouseMove.

DblClick (Form Section Event)

The DblClick event occurs when you double-click inside the form’s header or
footer section.

The example procedure in Hands-On 24.21 demonstrates how to randomly
change the background color for each of the form’s sections every time you dou-
ble-click anywhere within the form’s Detail section.

 Hands-On 24.21 Writing the Detail_DblClick Event Procedure

1. In the Navigation pane of the Chap24.accdb database, open the Product Cat-
egories form in Design view. Recall that you created this form in Hands-On
24.6.

2. Increase the size of the header and footer so that they are visible when you run
the form.

3. In the property sheet, choose Detail from the drop-down box. Click the
Event tab and select [Event Procedure] next to the DblClick property name.
Click the Build button (…).

4. In the Code window, you should have the stub of the Detail_DblClick event
procedure already written for you. Complete this procedure as shown here:
Private Sub Detail_DblClick(Cancel As Integer)
 With Me
 .Section(acHeader).BackColor = _
 RGB(Rnd * 128, _

738 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Rnd * 256, _
 Rnd * 255)
 .Section(acDetail).BackColor = _
 RGB(Rnd * 128, _
 Rnd * 256, _
 Rnd * 255)
 .Section(acFooter).BackColor = _
 RGB(Rnd * 128, _
 Rnd * 256, _
 Rnd * 255)
 End With
End Sub

5. To test this event procedure, open the Product Categories form in Form view.
Double-click anywhere in the Detail section of the form and see the colors of
the Detail, Header, and Footer sections change.

UNDERSTANDING AND USING THE OPENARGS PROPERTY

It’s been over a decade since Microsoft introduced in Access an extremely useful
property of the Form and Report objects called OpenArgs. Using the OpenArgs
property you can pass parameters to the form or report when you open it with
the DoCmd command. The OpenArgs property also comes in handy when:

 ● You want to pass values from one form to another,
 ● You want to move the focus to a specifi c record when the form opens,
 ● You want to automatically populate a control on the form,
 ● You want to restrict access to certain forms.

NOTE To use the OpenArgs property with the Access reports, turn to
Chapter 26.

The OpenArgs property is a string expression. It can be used both in macros and
in VBA code. Only one OpenArgs string can be used in the OpenForm or Open-
Report command; however, by combining values into one string separated by a
unique character and using the Split function, you can overcome this limita-
tion. Before we delve into a practical example, let’s take a look at the complete
syntax of the OpenForm method:
DoCmd.OpenForm FormName, View, FilterName, WhereCondition,
DataMode, WindowMode, OpenArgs

The parameter definitions are listed in Table 24.2.

USING FORM EVENTS 739

TABLE 24.2 Parameters used with the OpenForm method of the DoCmd object.

Parameter Name Data Type Description
FormName
(This parameter is required.)

Variant A string expression containing
the name of a form in the current
database.

View acFormView The acFormView constant
specifies the view in which the
form should open. The default is
acNormal.

FilterName Variant A string expression containing
the name of a query in the current
database.

WhereCondition Variant A string expression containing the
SQL WHERE clause without the
word WHERE.

DataMode acFormOpenDataMode An acFormOpenDataMode
constant specifies the data entry
mode for the form and applies only
to forms open in the Form view or
Datasheet view. The default is ac-
FormPropertySettings.

WindowMode acWindowMode An acWindowMode constant
specifies the window mode in which
the form opens. The default is ac-
WindowNormal.

OpenArgs Variant A string expression used to set the
form’s OpenArgs property in a
VBA code or in a macro.

The Hands-On 24.22 shows you how to use the OpenArgs property to pass val-
ues from a custom form (frmOpenArgs) to the Northwind 2007 database built-
in form (Employee List).

 Hands-On 24.22 Passing Values to a Form Using the
OpenArgs Property

1. Copy the Northwind 2007_Revised.accdb database from the companion CD-
ROM disc to your VBAAccess2019_ByExample folder.

2. Open the Northwind 2007_Revised.accdb database. Cancel the login dialog
box upon loading of the database.

740 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the Navigation pane on the left, double click the frmOpenArgs to open
it in Form view (see Figure 24.4).

4. Select the last value from the drop-down box and click the Execute button.
Access displays the Employee List form as shown in Figure 24.5.

5. Switch to the Visual Basic Editor window and analyze the VBA code in the
Form_Employee List form class module, Form_frmEmpOpenArgs form class
module, and in the OpenArgs_Demo module. Use the debugging techniques
that you acquired earlier in this book to step line by line through the code
sections.

FIGURE 24.4 Working with the OpenArgs Demo (frmOpenArgs form).

Notice that the example form contains a combo box control with four items.
Every time you select an item from the combo box and click the Execute
button, an Employee List form is loaded with a slightly diff erent eff ect. Th e
code attached to the click event of the Execute button is shown below:

Private Sub cmdOpenEmpList_Click()
On Error GoTo Err_cmdOpenEmpList_Click

Dim strFormToOpen As String
Dim strUserSelection As String
strFormToOpen = "Employee List"

If IsOpenForm(strFormToOpen) Then
 DoCmd.Close acForm, strFormToOpen
 DoEvents
End If

If Not IsNull(cboSelection) Then
 strUserSelection = cboSelection.Value

USING FORM EVENTS 741

 Select Case cboSelection
 Case "View All Employees"
 DoCmd.OpenForm FormName:=strFormToOpen, _
 View:=acNormal, WindowMode:=acWindowNormal, _
 OpenArgs:=strUserSelection
 Case "Enter an Employee"
 DoCmd.OpenForm FormName:=strFormToOpen, _
 View:=acNormal, DataMode:=acFormAdd, _
 OpenArgs:=strUserSelection
 Case "Set Reports Combo"
 DoCmd.OpenForm strFormToOpen, acNormal, _
 , , , acWindowNormal, "Customer Address Book"
 Case "Set Reports Combo and Caption"
 DoCmd.OpenForm strFormToOpen, acNormal, _
 , , , acWindowNormal, _
 Me.Name & "|" & "Customer Phone Book"

 End Select
Else
 MsgBox "Please make a selection from the combo box."
End If
Exit_cmdOpenEmpList_Click:
 Exit Sub
Err_cmdOpenEmpList_Click:
 MsgBox Err.Description
 Resume Exit_cmdOpenEmpList_Click
End Sub

Notice how this event procedure uses the OpenArgs property of the form to
send diff erent values to the Employee List form. To open a form, we simply
use the OpenForm method of the DoCmd object and pass the name of the form
as well as other parameters that defi ne the type of view, data mode, window
mode, and the OpenArgs. Th e parameters used with the DoCmd object are listed
in Table 24.2. Th ese parameters can be passed by name (as shown in the fi rst
two Select Case statements, or in line (as shown in the last two Select Case
statements).
 The Form_Load event procedure of the Employee List form reads the values
placed in the OpenArgs property and makes changes to the specified form
controls:

Private Sub Form_Load()
 Dim aArgs() As String
 Dim counter As Integer

742 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Not IsNull(Me.OpenArgs) Then
 If Me.OpenArgs = "Customer Address Book" Then
 Me.cboReports = Me.OpenArgs
 Me.cboReports.Width = 2800
 Exit Sub
 End If

 If DelimFound(Me.OpenArgs, "|") Then
 MsgBox "Passing multiple values."
 aArgs() = Split(Me.OpenArgs, "|")
 For counter = 0 To UBound(aArgs)
 If aArgs(counter) = "frmOpenArgs" Then
 Me.Auto_Title0.Caption = _
 Me.Auto_Title0.Caption & _
 " called from " & aArgs(counter)
 End If
 If aArgs(counter) = "Customer Phone Book" Then
 Me.cboReports = aArgs(counter)
 Me.cboReports.Width = 2800
 End If
 Debug.Print counter & ":" & aArgs(counter)
 Next counter
 Else
 Me.Auto_Title0.Caption = Me.OpenArgs
 End If

 End If
End Sub

Th is procedure begins by checking whether the OpenArgs property contains
any values. If the property is not Null, Access will run the remaining code
prior to loading the form. Notice that to determine whether the OpenArgs
property is passing more than one value, we make a call to the custom
DelimFound function (see the second code excerpt below). We pass two values
to the DelimFound function. Th e fi rst value is the contents of the OpenArgs
property; the second value is the delimiter. In this example, we are using the
Pipe character (|) as the delimiter. If the delimiter is found, we need to extract
the values from the OpenArgs property by using the Split function:

aArgs() = Split(Me.OpenArgs, "|")

Th e extracted values are stored in the aArgs array variable. Th e For…Next
loop is then used to iterate through the array and assign the values to the form
controls. In this process we assign corresponding values to the Auto_Title0
and the cboReports controls.

USING FORM EVENTS 743

 The supplemental function procedures that the Click event procedure
and the Load event procedure call are placed in a standard module called
OpenArgs_Demo.
 The IsOpenForm function returns true if the Employee List form is open
and false if it is closed. If the form is open, the cmdOpenEmpList_Click event
procedure will close it prior to executing the remaining code.

Function IsOpenForm(strFormName As String) _
 As Boolean

 IsOpenForm = Application.CurrentProject. _
 AllForms(strFormName).IsLoaded

End Function

Th e DelimFound function checks if the specifi ed delimiter can be found in
the string passed in the OpenArgs property. Th is is done by using the built-in
InStr function.

Function DelimFound(strOpenArgs As String, _
 strDelim As String) As Boolean

 If InStr(1, strOpenArgs, strDelim) Then
 DelimFound = True
 Else
 DelimFound = False
 End If

End Function

FIGURE 24.5 When you select the last value from the OpenArgs Demo drop-down list
(see Figure 24.4), Access displays the Employee List form with changes made to the form caption and
the Reports drop-down list.

744 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

In this chapter, you learned that numerous events can occur on a Microsoft
Access form and that you can react to a specific form event by writing an event
procedure. If you don’t write your own code to handle a particular form event,
Access will use its default handler for the event. You have also learned how to
use the Form’s OpenArgs property to pass values from one form to another.

After trying out numerous hands-on exercises presented in this chapter, you
should have a good understanding of how to write event procedures for an Ac-
cess form. You should also be able to recognize the importance of form events
in an Access application.

For more hands-on experience with event programming, proceed to the next
chapter, which discusses the events recognized by controls placed on an Access
form.

745

In addition to the events for forms introduced in Chapter 24, you can control
a great many events that occur for labels, text boxes, combo boxes, list boxes,
option buttons, checkboxes, and other controls installed by default with an

Access application. These events make it possible to manage what happens on
a field level.

The best way to learn about form, report, or control events is to develop
an application that addresses specific needs. For example, the AssetsDataEntry.
accdb database keeps track of computer assets in various companies. We will
use this database to further experiment with event programming. The main
data entry form is divided into four easy-to-maintain sections as illustrated in
Figure 25.1.

Chapter

 25 EVENTS
RECOGNIZED BY
CONTROLS

746 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 25.1 Custom data entry form.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 25.1 Launching the Custom Access Application

1. Copy the AssetsDataEntry.accdb file from the companion CD-ROM disc to
your C:\VBAAccess2019_ByExample folder.

2. To access the database source code, double-click the C:\VBAAccess2019_
ByExample\AssetsDataEntry.accdb file while holding down the Shift key.

3. When Access loads the database, locate the frmDataEntryMain form in
the Navigation pane and open it in the Design View.

Now that the main data entry form is open, let’s proceed to examine the events
that this form’s controls respond to.

ENTER (CONTROL)

The Enter event occurs before a control actually receives the focus from another
control on the same form. The Enter event applies to text boxes, combo boxes,
list boxes, option buttons, checkboxes, option groups, command buttons, toggle
buttons, bound and unbound object frames, and subform and subreport con-
trols. You can use the Enter event to display a message directing the user to first
fill in another control on the form.

EVENTS RECOGNIZED BY CONTROLS 747

For example, when a user attempts to make a selection from the combo box
controls located in the Room Information and Project Information sections of
the Asset Management form (Figure 25.1) without first specifying the Company
ID, the Enter event procedures may be triggered for: cboRooms_Enter, cbo-
RoomType_Enter, cboOS_Enter, and cboProject_Enter.

 Hands-On 25.2 Using the Enter Event Procedure for the Combo
Box Control

1. Open the frmDataEntryMain form in Form View.
2. Click inside the combo box control located to the right of Room No. This

action will fire the following Enter event procedure:
Private Sub cboRooms_Enter()
 If Me.cboCompanyID = "" Or _
 IsNull(Me.cboCompanyID) Then
 MsgBox "Please select Company ID.", _
 vbInformation + vbOKOnly, _
 "Missing Company ID"
 Me.cboCompanyID.SetFocus
 Exit Sub
 End If
End Sub

3. Click OK to the information message generated by the cboRooms_Enter
event procedure. Notice that the cursor has been positioned inside the combo
box control containing Company IDs. Don’t make any selections from the
Company ID combo box at this time.

4. Click on the combo box control next to Room Type. This action will fire
the following Enter event procedure:
Private Sub cboRoomType_Enter()
 If Me.cboCompanyID = "" Or _
 IsNull(Me.cboCompanyID) Then
 MsgBox "Please select Company ID.", _
 vbInformation + vbOKOnly, _
 "Missing Company ID"
 Me.cboCompanyID.SetFocus
 Exit Sub
 End If
 If Me.cboRooms = "" Or IsNull(Me.cboRooms) Then
 MsgBox "Please specify or " & _
 "select Room number.", _
 vbInformation + vbOKOnly, _
 "Missing Room Number"

748 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Me.cboRooms.SetFocus
 Exit Sub
 End If
End Sub

When you click the cboRoomType combo box control, the Enter event checks
whether the cboCompanyID combo box control or cboRooms combo box
control is empty. If no selection has been made in these controls, a message
box is displayed, and the focus is moved to the appropriate combo box control.

5. Click OK to the information message generated by the cboRoomType_Enter
event procedure and notice that the cursor has again been positioned inside
the Company ID combo box control.

BEFOREUPDATE (CONTROL)

The BeforeUpdate event occurs when you attempt to save the record or leave the
control after making changes. This event applies to text boxes, combo boxes, list
boxes, option buttons, checkboxes, and bound object frames. Use this event to
validate the entry.

For example, the combo box control in the Company Information section of
the Asset Management form causes Access to display a custom message if the
value of the cboCompanyID combo box control is Null. To cancel the Update
event, the Cancel argument has been set to True.

 Hands-On 25.3 Using the BeforeUpdate Event Procedure for the
Combo Box Control

1. Press Alt+F11 to switch to the Visual Basic Editor window.
2. In the Project Explorer window, double-click the frmDataEntryMain form.
3. From the Object drop-down box at the top-left side of the Code window,

select cboCompanyID. In the Procedure drop-down box at the top-right side
of the Code window, select BeforeUpdate.

4. The Code window should display this event procedure:
 Private Sub cboCompanyID_BeforeUpdate _
 (Cancel As Integer)
 Dim strMsg As String, strTitle As String
 Dim intStyle As Integer

 If IsNull(Me!cboCompanyID) Or _
 Me!cboCompanyID = "" Then

EVENTS RECOGNIZED BY CONTROLS 749

 strMsg = "You must pick a value " & _
 "from the Company ID list."
 strTitle = "Company ID Required"
 intStyle = vbOKOnly
 MsgBox strMsg, intStyle, strTitle
 Cancel = True
 End If
End Sub

5. Position the cursor on the line with the If statement, then press F9 or choose
Debug | Toggle Breakpoint.

6. Activate the frmDataEntryMain form in Form view and make a selection
from the Company ID combo box.
When you make your selection, the BeforeUpdate event procedure is fi red and
the Code window appears in break mode. Press F8 to step through the code
line by line. Because you have not set up more breakpoints, you cannot see that
two other events (cboCompanyID_Aft erUpdate and cboRooms_Enter) were
triggered when you made a selection from the Company ID combo box.

7. When the procedure finishes executing, activate the frmDataEntryMain
form. You should see the text boxes filled with a company name and address
and the cursor positioned inside the Room No combo box and ready for the
next selection or data entry.

AFTERUPDATE (CONTROL)

The AfterUpdate event occurs after the data in the control has been modified. It
applies to text boxes, combo boxes, list boxes, option buttons, checkboxes, and
bound object frames. Unlike the BeforeUpdate event, the AfterUpdate event
cannot be canceled. Use this event to fill in other controls on the form based on
the newly entered or selected value.

For example, after updating the cboCompanyID combo box in the Company
Information section of the Asset Management form, the following event proce-
dure is executed:
Private Sub cboCompanyID_AfterUpdate()
 With Me
 .txtCompanyName = Me.[cboCompanyID].Column(1)
 .txtAddress = Me.cboCompanyID.Column(2)
 .txtCity = Me.cboCompanyID.Column(3)
 .txtRegion = Me.cboCompanyID.Column(4)
 .txtPostalCode = Me.cboCompanyID.Column(5)

750 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 .txtCountry = Me.cboCompanyID.Column(6)
 .cboRooms.Value = vbNullString
 .cboRooms.Requery
 .txtRoomDescription = vbNullString
 .cboRoomType = vbNullString
 .cboOS = vbNullString
 .txtOperatingSystem = vbNullString
 .cboProject = vbNullString
 .txtPID = vbNullString
 End With
 If Me.cboRooms.ListCount = 0 Then
 'do not display column headings
 Me.cboRooms.ColumnHeads = False
 Else
 Me.cboRooms.ColumnHeads = True
 End If
 Me.cboRooms.SetFocus
End Sub

In the preceding procedure, the company address information is filled in based
on the contents of the cboCompanyID columns. For example, to fill in the street
address, you can read the value of the Columns() property of the cboCompa-
nyID control, even though this column is not visible when you view the combo
box:
Me.txtAddress = Me.cboCompanyID.Column(2)

Note that because the combo box column numbering begins with zero (0), this
statement actually reads the contents of the third column. Next, the combo box
labeled Room No is re-queried and a number of other controls on the form are
cleared.

Also, note how the intrinsic constant named vbNullString is used here in-
stead of an empty string (“”) to clear text boxes or combo boxes on a form. The
final procedure code segment contains the If…Then…Else statement that sets
the ColumnHeads property of the cboRooms control to False if there are no
rooms associated with the selected Company ID.

The last line of the code:
Me.cboRooms.SetFocus

moves the focus to the combo box control with the room numbers. When this
code is executed, the cboRooms_Enter event procedure will be triggered.

EVENTS RECOGNIZED BY CONTROLS 751

 Hands-On 25.4 Using the AfterUpdate Event Procedure for the
Combo Box Control

1. In the Code window of the frmDataEntryMain form, ensure that the Object
drop-down box displays cboCompanyID.

2. Choose the AfterUpdate event from the Procedure drop-down box, then set a
breakpoint on the first line of this procedure.

3. Switch to Form view for the frmDataEntryMain form, then make another
selection from the Company ID combo box. When the Code window appears
in break mode, step through the code line by line by pressing F8. Notice that
the following three event procedures are run:
cboCompanyID_BeforeUpdate
cboCompanyID_AfterUpdate
cboRooms_Enter

4. Choose Debug | Clear All Breakpoints to remove the breakpoint you set in
this and the previous hands-on exercise.

5. When the procedure finishes executing, activate the frmDataEntryMain
form.

NOTINLIST (CONTROL)

The NotInList event is triggered if the user enters a value that is not in the
list when the LimitToList property of a combo box control is set to True. The
NotInList event procedure can take the following two arguments:

 ● NewData—A string that Access uses for passing the user-entered text to
the event procedure.

 ● Response—An integer specifying what Access should do aft er the proce-
dure executes. Th is argument can be set to one of the following constants:

 ● acDataErrAdded—Set the Response argument to acDataErrAdded if the
event procedure enters a new value in the combo box. Th is constant tells
Access to re-query the combo box, adding the new value to the list.

 ● acDataErrDisplay—Set the Response argument to acDataErrDisplay
if you want Access to display the default error message when a user at-
tempts to add a new value to the combo box. Th e default Access message
requires the user to enter a valid value from the list.

 ● acDataErrContinue—Set the Response argument to acDataErrCon-
tinue if you display your own message in the event procedure. Access
will not display its default error message.

752 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The NotInList event applies only to combo boxes. Use this event to display a
custom warning message or to trigger a custom function that allows the user to
add a new item to the list. For example, after attempting to enter a nonexistent
value in the combo box labeled Room Type in the Room Information section of
the Asset Management form, this event procedure is executed:
Private Sub cboRoomType_NotInList _
 (NewData As String, _
 Response As Integer)
 MsgBox "Please select a value " & _
 "from the list.", _
 vbInformation + vbOKOnly, _
 "Invalid entry"
 ' Continue without displaying
 ' default error message.
 Response = acDataErrContinue
End Sub

The cboRoomType_NotInList code displays a custom message if a user attempts
to type an invalid entry in the cboRoomType combo box control on the form.

 Hands-On 25.5 Using the NotInList Event Procedure for the Combo
Box Control

1. In the Code window of the frmDataEntryMain form, enter the code of the
cboRoomType_NotInList procedure as shown in the previous section.

2. Open the frmDataEntryMain form in Form view.
3. Select a company ID from the Company ID combo box.
4. Select a room number from the Room No combo box, or type a value in

this box.
5. Type a new value in the Room Type combo box, then click on the

Operating System combo box. This will trigger the cboRoomType_NotInList
event procedure code to run. Your custom error message should appear. Click
OK to the message box. Notice that Access does not display its own default
message because we set the Response argument to acDataErrContinue.

6. Select a value from the Room Type combo box.

CLICK (CONTROL)

The Click event occurs when the user clicks a control with the left mouse but-
ton or presses an Enter key when a command button placed on a form has its

EVENTS RECOGNIZED BY CONTROLS 753

Default property set to Yes. The Click event applies only to forms, form sec-
tions, and controls on a form. The Asset Management data entry form contains
several command buttons that allow the user to add new values to appropriate
combo box selections. For example, when the user clicks the button labeled Add
New Company, the following Click event procedure is triggered:
Private Sub cmdNewCompany_Click()
 On Error GoTo Err_cmdNewCompany_Click

 Dim stDocName As String
 Dim stLinkCriteria As String

 stDocName = "frmAddCompany"
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_cmdNewCompany_Click:
 Exit Sub
Err_cmdNewCompany_Click:
 MsgBox Err.Description
 Resume Exit_cmdNewCompany_Click
End Sub

This event procedure opens a window titled New Company Data Entry Screen
(Figure 25.2), where the user can enter new company information.

FIGURE 25.2 This data entry form is used for adding new companies to the database.

754 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When the user clicks the Save button on the New Company Data Entry Screen
window, the Click event procedure attached to this button ensures that:

 ● All text boxes have been fi lled in
 ● Th e Company ID does not contain more than fi ve characters
 ● Th e Postal Code text box contains a fi ve-digit zip code for the United

States
 ● Th e Company ID does not already exist in the table

Notice that the New Company Data Entry form is unbound (it isn’t connected
to a record source such as a table, query, or SQL statement). After successful
data validation, the procedure uses the AddNew method of the ADO Recordset
object to create a new record. This record is added to the tblCompanies table
that provides the record source for the Company ID combo box control on the
Asset Management data entry form. Next, the cboCompanyID combo box con-
trol on the Asset Management form is re-queried so that the new Company ID
can be accessed from the drop-down list when the user returns to the form.
Private Sub cmdSaveCompanyInfo_Click()
 Dim conn As ADODB.Connection
 Dim rst As New ADODB.Recordset
 Dim ctrl As Control
 Dim count As Integer

 On Error GoTo Err_cmdSaveCompanyInfo_Click

 'validate data prior to save

 For Each ctrl In Me.Controls
 If ctrl.ControlType = acTextBox And IsNull(ctrl) _
 Or IsEmpty(ctrl) Then
 count = count + 1
 If count > 0 Then
 MsgBox "All text fields must be filled in.", _
 vbInformation + vbOKOnly, _
 "Missing Data"
 ctrl.SetFocus
 Exit Sub
 End If
 End If
 Next

 If Len(Me.txtAddCompanyID) <> 5 Then
 MsgBox "The Company ID requires 5 characters"

EVENTS RECOGNIZED BY CONTROLS 755

 Me.txtAddCompanyID.SetFocus
 Exit Sub
 End If

 'check the zipcode field
 If Len(Me.txtAddPostalCode) <> 5 And _
 UCase(Me.txtAddCountry) = "USA" Then
 MsgBox "Please enter a five-digit zip code " & _
 "for the United States.", _
 vbInformation + vbOKOnly, "Invalid Zip Code"
 Me.txtAddPostalCode.SetFocus
 Exit Sub
 End If

 'are any alphabetic characters in zip code?
 If Not IsNumeric(Me.txtAddPostalCode) And _
 UCase(Me.txtAddCountry) = "USA" Then
 MsgBox "You can't have letters in Zip Code.", _
 vbInformation + vbOKOnly, "Invalid Zip Code"
 Me.txtAddPostalCode.SetFocus
 Exit Sub
 End If

 'save the data
 Set conn = CurrentProject.Connection
 With rst
 .Open "SELECT * FROM tblCompanies", _
 conn, adOpenKeyset, adLockOptimistic
 'check if the CompanyID is not a duplicate
 .Find "CompanyID='" & Me.txtAddCompanyID & "'"
 'if Company already exists then get out

 If Not rst.EOF Then
 MsgBox "This Company is already in the list : " _
 & rst("CompanyID"), _
 vbInformation + vbOKOnly, "Duplicate Company ID"
 Me.txtAddCompanyID.SetFocus
 Exit Sub
 End If

 .AddNew
 !CompanyID = Me.txtAddCompanyID
 !CompanyName = Me.txtAddCompanyName
 !Address = Me.txtAddAddress
 !City = Me.txtAddCity
 !Region = Me.txtAddRegion

756 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 !PostalCode = Me.txtAddPostalCode
 !Country = Me.txtAddCountry
 .Update
 .Close
 End With
 Set rst = Nothing
 conn.Close
 Set conn = Nothing

 'requery the combo box on the main form
 Forms!frmDataEntryMain.cboCompanyID.Requery
 'close the form
 DoCmd.Close

Exit_cmdSaveCompanyInfo_Click:
 Exit Sub
Err_cmdSaveCompanyInfo_Click:
 MsgBox Err.Description
 Resume Exit_cmdSaveCompanyInfo_Click
End Sub

 Hands-On 25.6 Using the Click Event Procedure for the Command
Button Control

1. Open the frmDataEntryMain form in Form view.
2. Click the Add New Company command button.
3. When the New Company Data Entry Screen window appears, enter the infor-

mation shown in Figure 25.3.

FIGURE 25.3 After saving the new company information in this window, the Company ID will
appear in the Company ID combo box on the main form.

EVENTS RECOGNIZED BY CONTROLS 757

4. Click the Save button to save the company information. Access will run the
cmdSaveCompanyInfo_Click event procedure, as shown earlier. If you have
not entered data according to the criteria listed in this event procedure, Access
will not allow you to save data until you correct the problem.

5. Back on the main form, select the newly added company (GOSPO) from the
Company ID combo box.

Notice how the data entry form displays a number of icons with a question
mark. Each icon is actually a command button with a Click event attached to
it. When you click on the question mark button, a simple form will appear with
help information pertaining to the form’s section of the data entry screen.

For example, the following Click event procedure is executed upon clicking
the question mark button in the Room Information section on the Asset Man-
agement data entry form:
Private Sub cmdRoomInfoSec_Click()
 Dim stDocName As String
 Dim stLinkCriteria As String

 On Error GoTo Err_cmdRoomInfoSec_Click

 stDocName = "frmHelpMe"
 stLinkCriteria = "HelpId = 2"
 DoCmd.OpenForm stDocName, , , stLinkCriteria

Exit_cmdRoomInfoSec_Click:
 Exit Sub
Err_cmdRoomInfoSec_Click:
 MsgBox Err.Description
 Resume Exit_cmdRoomInfoSec_Click
End Sub

This procedure loads the appropriate help topic into the text box control, as
illustrated in Figure 25.4.

758 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 25.4 By clicking the question mark button in each section of the data entry form, users can
get detailed guidelines on how to work with the form section.

DBLCLICK (CONTROL)

The DblClick event occurs when the user double-clicks the form or control.
This event applies only to forms, form sections, and controls on a form, not
controls on a report. Hands-On 25.7 demonstrates how the user of the Asset
Management application can delete an asset by double-clicking on its name.

 Hands-On 25.7 Using the DblClick Event Procedure for the Listbox
Control

1. Open the frmDataEntryMain form in Form view.
2. Make appropriate selections on the Asset Management data entry form.
3. Click the Add New Asset Type button in the Hardware Information

section. If this button cannot be clicked, you have not made all the necessary
selections in the upper part of the form.

4. The Add New Asset Type Data Entry Screen window will appear, as shown
in Figure 25.5.

EVENTS RECOGNIZED BY CONTROLS 759

FIGURE 25.5 This form allows the user to add a new entry to the Asset Type column in the
Hardware Information section of the Asset Management form or delete the asset entry by double-
clicking on the entry in the Available Assets listbox.

5. In the Add New Asset Type Data Entry Screen window, enter iPad in the
Asset Type text box and click the Save button.

6. In the main form, open the combo box in the Asset Type column and scroll
down to view the newly added asset type—iPad. Do not make any selection in
this combo box.

7. Click the Add New Asset Type button in the Hardware Information
section to return to the Add New Asset Type Data Entry Screen window.
Th e left side of the data entry screen (see Figure 25.6) displays a listbox with
the currently available assets. When the user double-clicks any item in the list,
the following DblClick event procedure will determine whether the item can
be deleted:

Private Sub lboxCategories_DblClick _
 (Cancel As Integer)
 Dim conn As ADODB.Connection
 Dim myAsset As String
 Dim myAssetDesc As String
 Dim Response As String
 Dim strSQL As String

 myAsset = Me.lboxCategories.Value
 myAssetDesc = Me.lboxCategories.Column(1)

 If myAsset >= 1 And myAsset <= 11 Then
 MsgBox "Cannot Delete - " & _

760 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 "This item is being used.", _
 vbOKOnly + vbCritical, _
 "Asset Type: " & myAsset
 Exit Sub
 End If

 If (Not IsNull(DLookup("[AssetType]", _
 "tblProjectDetails", _
 "[AssetType] = " & myAsset))) Or _
 Not IsNull(DLookup("[EquipCategoryID]", _
 "tblEquipInventory", _
 "[EquipCategoryID] = " & myAsset)) Then

 MsgBox "This item cannot be deleted.", _
 vbOKOnly + vbCritical, _
 "Asset Type: " & myAsset
 Else
 Response = MsgBox("Do you want to " & _
 "delete this Asset?", _
 vbYesNo, "Delete - " & myAssetDesc & " ?")
 If Response = 6 Then
 Set conn = CurrentProject.Connection
 strSQL = "DELETE * FROM " & _
 "tblEquipCategories Where EquipCategoryID = "
 conn.Execute (strSQL & myAsset)
 conn.Close
 Set conn = Nothing
 Me.lboxCategories.Requery
 End If
 End If

 DoCmd.Close

'requery the combo box on the subform
Forms!frmDataEntryMain.frmSubProjectDetails.Form.EquipCatId.
Requery
End Sub

EVENTS RECOGNIZED BY CONTROLS 761

FIGURE 25.6 You can delete an item from the Available Assets list only if the item has not yet
been used during the data entry.

8. Double-click on iPad in the Available Assets listbox. The DblClick event
procedure attached to the listbox will ask you whether you want to delete this
asset. Click Yes to the message.
Notice that the iPad entry disappears from the Available Assets listbox.

9. Click the Cancel button to exit the Add New Asset Type Data Entry Screen
window.

SUMMARY

In this chapter, you worked with a custom Microsoft Access application and
examined event procedures for various controls placed on an Access form. There
are other event procedures not discussed here that control how the Asset Man-
agement form and its controls respond to the user’s actions. As you explore this
application on your own, you will start noticing the areas where writing addi-
tional event handlers would prove beneficial to the application’s users. So get to
it! Tear this sample application apart. Rebuild it. Add new features. Change the
user interface if you want. Learn how to handle whatever event may come your
way. Be prepared, because events happen frequently in an Access application,
and sooner or later you’ll need to respond to them.

The next chapter focuses on working with Access reports and controlling
report behavior with event programming.

763

Reports have always been a very popular and widely used feature in Ac-
cess. Access reporting is very interactive thanks to a view called Report
view. With the Report view you can easily perform data searches, sorting

and filtering. You can also copy the data. Many of the Access form features are
also available for reports. For example, to make long tabular reports easier to
read, you can apply alternating row shading just by changing the Alternate Back
Color property in the report’s Detail section. Like forms, reports can utilize
bound Image controls, rich text formatting, and filtering and sorting features.
The Layout view makes it easier to design reports; because you are working
with the live data in Layout view, you do not need to switch between Design
and Report views to see how the final report will look. The Layout view allows
formatting report sections and controls, adding new fields, applying AutoFor-
mats, grouping and sorting data, and changing many of the report’s properties.
As with the Layouts feature in forms, layouts can be used in reports for resiz-
ing and moving groups of controls together, or adding grid lines that grow or
shrink with the data. Designing objects in Layout view has become very easy.
You can drop any control anywhere within the layout. Your controls can span

Chapter

 26 ENHANCING ACCESS
REPORTS AND
USING REPORT

EVENTS

764 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

multiple rows and columns. Like forms, reports can be enhanced by applying
a consistent style using Office themes. The reports distribution is easy with the
portable document format (.pdf) and XML Paper Specification (.xps) format.
The feature most appreciated by all Access users is the ability to view a report as
a subform on a form. Additionally, you can specify the name of a report by using
the SourceObject property of a subform control on a form.

CREATING ACCESS REPORTS

The Access Report Wizard will walk you through the report creation process by
presenting various options to choose from, such as selecting a data source for
your report, determining grouping and sorting criteria, and offering formatting
options (layout, orientation, and style). Using the wizard makes it easy to create
a report based on multiple tables.

If you need more control over creating a report, you may want to try Report
Designer. You can bind your report to a table, query, or SQL statement, and
add VBA code behind a report as demonstrated later in this chapter. When us-
ing Report Designer, you will not be able to see the actual data from tables and
views at design time. You need to switch to Print Preview to view the entire re-
port. To overcome this limitation, try working with the Layout view. In Layout
view, you can add different types of controls, as well as functionality for sorting,
grouping, and calculating totals. You can also apply different formatting to the
Layout view while viewing the actual data from your tables and queries.

In addition to creating Access reports via these built-in tools, you can create
an Access report programmatically by using the CreateReport method of the
Application object.

USING REPORT EVENTS

When an Access report is run, a number of events can occur. The following
examples demonstrate how to control what happens not only when the report is
opened, activated, deactivated, or closed, but also when there are no records for
the report to display or the report record source simply does not exist.

Open

The Open event for a report occurs when the report is opened. Use this event to
display support forms or custom buttons, or to change the record source for the

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 765

report. The event procedure in Hands-On 26.1 demonstrates how to change a
report’s record source on the fly.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 26.1. Writing the Report_Open Event Procedure

1. Start Microsoft Access and create a new database named Chap26.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Import all the tables, queries, forms, reports, macros, and modules from the
Northwind.mdb sample database to your Chap26.accdb database.

 ● To do this, in the Access window, choose External Data | New Data
Source | From Database | Access.

 ● In the File name box, type C:\VBAAccess2019_ByExample\Northwind.
mdb and click OK.

 ● In the Import Objects window, select the Tables tab and click the Select
All button. Th is will highlight all the tables. Select the Queries tab and
click the Select All button. Select the Forms tab and click the Select All
button. Select the Reports tab and click the Select All button. Do the
same for macros and modules. Aft er selecting all the objects on the speci-
fi ed tabs, click OK to begin importing.

 ● Click the Close button when done.
3. In the Access window’s Navigation pane, select the Customers table and

choose Create | Report Wizard. Select all the fields for the report and click
the Next button. Continue clicking Next until you get to the Report Wizard
screen where you can specify the title for your report. Type rptCustomers for
the title and click Finish. Access opens the report in Print Preview.

4. Right-click the report tab and choose Design view from the context menu.
5. In the Report Header area, click the report title (label control) to select it.

Resize the control to allow for longer text that will be entered dynamically
by the event procedure in step 7. In the property sheet for the selected label
control, click the All tab and enter lblCustomers as the Name property and
enter Customers as the Caption property.

6. In the property sheet, select Report from the drop-down box and click the
Event tab. Click next to the On Open event property and choose [Event
Procedure] from the drop-down box. Click the Build button (…).

766 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. Access opens the Visual Basic Editor window and writes the stub of the
Report_Open event procedure. Complete the code of the following Report_
Open event procedure:
Private Sub Report_Open(Cancel As Integer)
 Dim strCustName As String
 Dim strSQL As String
 Dim strWHERE As String
 Dim ctrl As TextBox

 On Error GoTo ErrHandler
 strSQL = "SELECT * FROM Customers"

 strCustName = InputBox("Type the first letter " & _
 " of the Company Name or type an asterisk (*) " & _
 " to view all companies.", "Show All /Or Filter")

 If strCustName = "" Then
 Cancel = True
 ElseIf strCustName = "*" Then
 Me.RecordSource = strSQL
 Me.lblCustomers.Caption = "All Customers"
 Else
 strCustName = "'" & Trim(strCustName) & "*'"
 strWHERE = " WHERE CompanyName Like " _
 & strCustName & ""
 Debug.Print strSQL
 Debug.Print strWHERE
 Me.RecordSource = strSQL & strWHERE
 Me.lblCustomers.Caption = "Selected Customers" & _
 " (" & UCase(strCustName) & ")"
 End If

For Each ctrl In Me.Detail.Controls
 If ctrl.BackStyle = 1 Then ctrl.BackStyle = 0
 Next
 Exit Sub
ErrHandler:
 MsgBox Err.Description
End Sub

8. Switch to the rptCustomers report’s Design view and choose Home | View |
Print Preview. A message box will appear where you can enter an asterisk (*)
to view all customers or the first letter of a company name if you’d like to limit
your records. To cancel the report, click Cancel or press the Esc key.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 767

Close

The Close event occurs when you close the report. Use this event to close
supporting forms or to perform other cleanup operations. You cannot cancel
the Close event. Figure 26.1 shows the Report_Close event procedure for the
Report_Sales by Year report. This report opens via the Sales by Year Dialog form
where the user can specify the report beginning and ending dates. This form
remains open while the report is open and is closed during the Report_Close
event.

FIGURE 26.1 The Report_Close event procedure is often used to close supporting forms.

Activate

The Activate event occurs when the report is opened right after the Open event
but before the event for the first section of the report. The procedure in Hands-
On 26.2 displays a message when the report is open in Print Preview and returns
the name of the default printer to the Immediate window.

 Hands-On 26.2 Writing the Report_Activate Event Procedure

This hands-on exercise uses the rptCustomers report created in Hands-On 26.1.

1. In the Visual Basic Editor’s Project Explorer window, double-click the rptCus-
tomers report. In the Code window, enter the following Report_Activate event
procedure:
Private Sub Report_Activate()

768 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 If Me.CurrentView = acCurViewPreview Then
 MsgBox "Activating Print Preview of " _
 & Me.Name & " report."
 Debug.Print "Default Printer: " & _
 Application.Printer.DeviceName
 End If
End Sub

Notice how the CurrentView property is used to determine the current view of
an object. Table 26.1 lists the CurrentView property constants.

TABLE 26.1 CurrentView property names and values

CurrentView Property Name Value Description
acCurViewDesign 0 The object is in Design view.
acCurViewFormBrowse 1 The object is in Form view.
acCurViewDatasheet 2 The object is in Datasheet view.
acCurViewPivotTable 3 The object is in PivotTable view.
acCurViewPivotChart 4 The object is in PivotChart view.
acCurViewPreview 5 The object is in Print Preview.
acCurViewReportBrowse 6 The object is in Report view.
acCurViewLayout 7 The object is in Layout view.

2. In the Navigation pane of the Access window, right-click the rptCus tomers
report and choose Print Preview. Enter your report criteria when prompted.
Upon activation of the report, the Report_Activate event will fire and a message
will be displayed. Click OK to the message, and then switch to the Immediate
window to check out the name of the default printer.

3. Close the rptCustomers report and save changes to the report when prompted.

Deactivate

The Deactivate event occurs when a report loses the focus to a table, query,
form, report, macro, module, or database window. This event occurs before the
Close event for the report.

NoData

The NoData event occurs when the record source for the report contains no
records. This event allows you to cancel the report when no records are avail-
able. The event procedure in Hands-On 26.3 displays a message when the user
enters criteria that are not met.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 769

 Hands-On 26.3 Writing the Report_NoData Event Procedure

This hands-on exercise uses the rptCustomers report created in Hands-On 26.1.

1. In the Visual Basic Editor’s Project Explorer window, double-click the Report_
rptCustomers report. In the Code window, enter the following Report_
NoData event procedure:
Private Sub Report_NoData(Cancel As Integer)

 MsgBox "There is no data for the criteria " & _
 "you entered."
 Cancel = True
End Sub

2. Switch to the Access window and open the rptCustomers report. Request
to see customers with a company name starting with the letter “X.” Because
there aren’t any company names beginning with “X,” a message box will be
displayed, saying that there is no data for the criteria entered, and the report
will be canceled.

Page

The Page event occurs after a page is formatted but before it is printed. Use the
Page event to customize the appearance of your printed reports by adding lines,
circles, and graphics. The event procedure in Hands-On 26.4 will draw a red
border around the report pages.

 Hands-On 26.4 Drawing a Page Border Using the Report_Page Event
Procedure

This hands-on exercise uses the rptCustomers report created in Hands-On 26.1.

1. In the Visual Basic Editor’s Project Explorer window, double-click the rptCus-
tomers report. In the Code window, enter the following Report_Page event
procedure:
Private Sub Report_Page()
 Me.DrawWidth = 15 ' pixels
 Me.Line (0, 0)-(Me.ScaleWidth, Me.ScaleHeight), vbRed, B
End Sub

Notice that the DrawWidth method specifi es the thickness of the line and
the Line method draws a line with the upper-left corner at (0, 0) and the
lower-right corner at (Me.ScaleWidth, Me.ScaleHeight). Th e ScaleWidth and
ScaleHeight properties specify the width and height of the report.

770 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Switch to the Access window and open the rptCustomers report in Print
Preview. Notice that when the report appears on the screen, a red border
surrounds the pages (see Figure 26.2).

3. Close the rptCustomers report and save changes when prompted.

FIGURE 26.2 You can frame your Access report pages with a red line by implementing the Report_
Page event procedure shown in Hands-On 26.4. See Hands-On 26.6 to find out about
report shading.

Error

The Error event is triggered by errors in accessing the data for the report. Use
this event to replace the default error message with your custom message. The
Error event takes the following two arguments:

 ● DataErr—Contains the number of the Microsoft Access error that oc-
curred.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 771

 ● Response—Determines whether error messages should be displayed. It
may be one of the following constants:

 ■ acDataErrContinue—Ignore the error and continue without display-
ing the default Microsoft Access error message.

 ■ acDataErrDisplay—Display the default Microsoft Access error mes-
sage. Th is is the default.

The Report_Error event procedure in Hands-On 26.5 illustrates how to use
the value of the DataErr argument together with the AccessError method to
determine the error number and its descriptive string.

The statement:
Response = acDataErrContinue

will prevent the standard Microsoft Access error message from appearing. The
Error event for reports works the same as the Error event for forms—but only
Microsoft Access ACE or Jet Engine errors can be trapped here.

To trap errors in your VBA code, use the On Error GoTo statement to di-
rect the procedure flow to the location of the error-handling statements in your
procedure.

 Hands-On 26.5 Writing the Report_Error Event Procedure

This hands-on exercise uses the rptCustomers report created in Hands-On 26.1.

1. In the Navigation pane, rename the Customers table Customers2.
2. In the Visual Basic Editor’s Project Explorer window, double-click the rptCus-

tomers report. In the Code window, enter the following Report_Error event
procedure:
Private Sub Report_Error(DataErr As Integer, _
 Response As Integer)
 ' obtain information about the error
 MsgBox Application.AccessError(DataErr), _
 vbOKOnly, "Error Number: " & DataErr
 If DataErr = 3078 Then
 Response = acDataErrContinue
 MsgBox "Your custom error message goes here."
 End If
End Sub

3. Switch to the Access window and open the rptCustomers report. When the
input box appears prompting you for the criteria, type any letter and press OK.

772 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

At this point the Report_Error event will fire because the underlying data for
the rptCustomers report does not exist. Because you renamed the Customers
table that this report uses for its data source, Microsoft Access cannot locate
the data and generates the error.

4. In the Navigation pane, change the Customers2 table’s name back to Cus-
tomers and open the rptCustomers report to ensure that it does not produce
unexpected errors.

5. Close the report when finished and save the changes when prompted.

EVENTS RECOGNIZED BY REPORT SECTIONS

An Access report can contain various sections such as Report Header/Footer,
Page Header/Footer, the Detail section, and Group Headers/Footers. All report
sections can respond to the Format and Print events. These events occur when
you print or preview a report. In addition, the Report Header/Footer and the
Detail sections recognize the Retreat event that occurs when Access returns to a
previous section during report formatting.

Format (Report Section Event)

A Format event occurs for each section in a report before Microsoft Access for-
mats the section for previewing or printing. This event takes the following two
arguments:

 ● Cancel—Determines if the formatting of the section occurs. To cancel
the section formatting, set this argument to True.

 ● FormatCount—Is an integer that specifi es whether the Format event has
occurred more than once for a section. If a section does not fi t on one
page and the rest of the section needs to be moved to the next page of the
report, the FormatCount argument is set to 2.

Use the Format event in the appropriate report section for changes that affect
page layout, as described in Table 26.2. For changes that don’t affect page layout,
use the Print event for the report section.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 773

TABLE 26.2 Effect of the Format event on report sections

Report Sections Description of Event
Detail The Format event occurs for each record in the section just before Micro-

soft Access formats the data in the record. You can access the data in the
current record using the event procedure.

Group Headers The Format event occurs for each new group. You can access the data in the
Group Header and the data in the first record in the Detail section using the
event procedure.

Group Footers The Format event occurs for each new group. You can access the data in
the Group Footer and the data in the last record in the Detail section via an
event procedure.

The event procedure in Hands-On 26.6 demonstrates how to make reports
 easier to read by shading alternate rows.

 Hands-On 26.6 Shading Alternate Rows Using the Detail_Format
Event Procedure

This hands-on exercise uses the rptCustomers report created in Hands-On 26.1.

1. In the Visual Basic Editor’s Project Explorer window, double-click the
rptCustomers report. In the Code window, enter the following Detail_Format
event procedure. Do not type the Option Compare Database and Option
Explicit statements if they are already present at the top of the Code window.
Option Compare Database
Option Explicit

Dim shaded As Boolean

Private Sub Detail_Format(Cancel As Integer, _
 FormatCount As Integer)
 If shaded Then
 Me.Detail.BackColor = vbYellow
 Else
 Me.Detail.BackColor = vbWhite
 End If
 shaded = Not shaded
End Sub

Notice that at the top of the module sheet (in the module’s Declarations area)
we have placed the following statement:

Dim shaded As Boolean

774 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th is statement declares the global variable of the Boolean type to keep track of
the alternate rows.
 When you run the report, upon printing the Detail section, Access will
check the value of the shaded variable. If the value is True, it will change
the background of the formatted row to yellow (which produces a light gray
background when printed on a noncolor printer). Th e shaded value will then
be set to False for the next row by using the following statement:

shaded = Not shaded

Th is statement works as a toggle. If shaded was True, it will be False now, and
so on.

2. Modify the Report_Open event procedure as follows:
a. Add the following statement just below the other variable declarations that

are already present inside this procedure:

Dim ctrl As TextBox

b. Enter the following code before the Exit Sub statement:
For Each ctrl In Me.Detail.Controls
 If ctrl.BackStyle = 1 Then ctrl.BackStyle = 0
Next

Th e For Each loop will iterate through the controls in the detail section of the
rptCustomers report and set the Back Style property of each text box control
to 0 (Transparent).

3. Switch to the Access window and open the rptCustomers report in Print
Preview. When the input box prompts you for the criteria, type an asterisk
(*) and press OK. Figure 26.2 earlier shows the result of applying alternate
shading to this report.

NOTE

In Access 2007–2019, you can shade alternate rows by setting
the AlternateBackColor property for the Detail section in-
stead of writing VBA code for the Format event of the Detail
section.

4. Close the rptCustomers report, saving changes when prompted.

The next hands-on exercise demonstrates how to suppress the Page Footer on
the first page of your report by placing code in the PageFooterSection_Format
event procedure.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 775

 Hands-On 26.7 Suppressing the Page Footer Using the
PageFooterSection_Format Event Procedure

1. Using the Report Wizard, create a report called rptProducts based on
the Products table. Choose the following fields for this report: ProductID,
ProductName, UnitPrice, and UnitsInStock. On the last page of the Report
Wizard, select the Modify the report’s design option button.

2. In the Design view of the rptProducts report, select PageFooterSection in the
property sheet. Click the Event tab. Click next to the On Format property and
select [Event Procedure] from the drop-down list. Click the Build button (…)
to activate the Code window.

3. In the Code window for rptProducts, enter the following PageFooter Section_
Format event procedure:
Private Sub PageFooterSection_Format(Cancel As Integer, _

 FormatCount As Integer)
 Dim ctrl As Control

 For Each ctrl In Me.PageFooterSection.Controls
 If Me.Page = 1 Then
 ctrl.Visible = False
 Else
 ctrl.Visible = True
 End If
 Next ctrl
End Sub

4. Switch to the Access window and open the rptProducts report in Print Preview.
Notice that the Footer section does not appear on the first page of the report.

5. Close the rptProducts report and save changes to the report when prompted.

Print (Report Section Event)

The Print event occurs after the data in a report section has been formatted but
before the data is printed. The Print event occurs only for sections that are actu-
ally printed, as described in Table 26.3. To access data from sections that are not
printed, use the Format event.

You can use the PrintCount argument to check whether the Print event has
occurred more than once for a record. If part of a record is printed on one page
and the rest is printed on the next page, the Print event will occur twice, and
the PrintCount argument will be set to 2. You can use the Cancel argument to
cancel the printing of a section.

776 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 26.3 Effect of the Print event on report sections

Report Section Description of Event
Detail The Print event occurs for each record in the Detail section just

before Microsoft Access prints the data in the record.
Group Headers The Print event occurs for each new group.
Group Footers The Print event occurs for each new group.

The event procedure in Hands-On 26.8 demonstrates how to print a record
range indicator in the report’s Footer. This indicator will display the range of
records printed on each page. You can easily modify this example procedure to
print the first and last customer ID on the page (see the discussion that follows
this hands-on exercise).

 Hands-On 26.8 Displaying a Record Range in the Report’s Footer
Using the Detail_Print Event Procedure

This hands-on exercise uses the rptCustomers report you created in Hands-On
26.1.

1. Open the rptCustomers report in Design view and place two unbound text
boxes in the report’s Page Footer section.

2. Change the Name property of the first box to txtPage and set its Visible
property to No. Delete the label control in front of this text box.

3. Name the second text box txtRange and set the Caption property of its label
control to Records.

4. In the property sheet for the txtRange and Records controls, set the Display
When property to Print Only (see the note at the end of this exercise).

5. In the property sheet, select Detail from the drop-down box and click the Event
tab. Set the On Print property of the Detail section to [Event Procedure] and
write the code for the Detail_Print event as shown here:
Private Sub Detail_Print(Cancel As Integer, _
 PrintCount As Integer)
 Static rCount As Integer
 Static start As Integer
 Static firstID As String
 Static lastID As String

 If Me.Page <> Me.txtPage Then
 start = Me.CurrentRecord
 firstID = CustomerID
 Me.txtPage = Me.Page

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 777

 rCount = 0
 End If
 rCount = rCount + 1
 lastID = CustomerID
 If start <= rCount Then
 Me.txtRange = start & "-" & rCount
 ' Me.txtRange = UCase(firstID) & _
 "-" & UCase(lastID)
 Else
 rCount = Me.CurrentRecord
 lastID = CustomerID
 End If
End Sub

Th e Detail_Print event procedure is triggered for each record. It uses the start
and rCount variables to keep track of the fi rst and last items on the page.

6. In the Code window, enter the PageHeaderSection_Print event procedure
shown here:
Private Sub PageHeaderSection_Print(Cancel As Integer, _
 PrintCount As Integer)
 Me.txtPage = 0
End Sub

7. To test this event procedure, switch to the Access window and open the
rptCustomers report in Print Preview displaying all customers. Notice the
record range indicator at the bottom of the report page, as shown in Figure 26.3.

FIGURE 26.3 This report displays the record range indicator at the bottom of the page
(see Hands-On 26.8).

778 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

8. Close the rptCustomers report and save changes when prompted.
Th e PageHeaderSection_Print event procedure will set the value of the
unbound txtPage text box to zero (0) whenever the Print event occurs for a
new page.

You can modify the event procedure in Hands-On 26.8 to print the first and last
customer IDs on the page as shown in Figure 26.4. Simply replace the following
statement in the Detail_Print event procedure:
Me.txtRange = start & "-" & rCount

with the following line of code:
Me.txtRange = UCase(firstID) & "-" & UCase(lastID)

FIGURE 26.4 This report displays the first and last Customer ID for a specific
page at the bottom of each printed page.

NOTE

When you open the rptCustomers report in Report view instead
of in Print Preview, you will notice that there is no calculated val-
ue in the Records text box at the bottom of the page. The reason
for this is that in Report view there aren’t any pages. The entire
report is one big continuous page. Since there aren’t any pages
Access cannot calculate any values that depend on the Page or
Pages properties. Also, it’s important to remember that the Print
event for report sections does not fire in Report view. You can tell
Access to display certain controls only in Print Preview by chang-
ing the Display When property of the control to Print Only in the
property sheet.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 779

Retreat (Report Section Event)

The Retreat event occurs when Microsoft Access returns to previous sections
of the report during report formatting. For example, after formatting a report
section, if Access discovers that the data will not fit on the page, it will go back
to the necessary location in the report to ensure that the section can properly
begin on the next page.

The Retreat event occurs after the Format event but before the Print event.
This event applies to all report sections except Page Headers and Footers. The
Retreat event occurs for Group Headers and Footers whose KeepTogether prop-
erty has been set to Whole Group or With First Detail. This event is also trig-
gered in subreports whose CanGrow or CanShrink properties have been set to
True.

The Retreat event makes it possible to undo any changes made during the
Format event for the section. The Retreat event is demonstrated in the sample
Northwind.mdb database’s Sales by Year report, as shown in Figure 26.5.

FIGURE 26.5 The Sales by Year report in the Northwind.mdb database uses the GroupFooter1_
Retreat event procedure to control printing of a page header.

USING THE REPORT VIEW

Reports have an interactive view called Report view, as shown in Figure 26.6.
This is the default view for all new reports created in Access 2007–2019. In this
view you can easily copy data by selecting it and then clicking the Copy but-
ton in the Clipboard group of the Home tab or pressing Ctrl+C. If you need to
find particular data in the report, use the Find button in the Find group of the
Home tab or press Ctrl+F. Access will pop up the standard Find dialog box in
which you can enter your search criteria. Filtering and sorting is also enabled
for the Report view via the buttons located in the Sort & Filter section of the
Home tab. A report open in Report view isn’t divided into pages; it is a single
big page. If you have any calculations that depend on the Page or Pages proper-
ties of the report, they may not return the correct results. Certain report events,

780 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

such as Print and Format, will not be triggered when the report is displayed
in the Report view. The Report view has its own new event called Paint that is
used with sections in Report view. This event fires whenever a section needs to
be drawn on the screen. Use this event to conditionally format controls in that
view, as shown in Hands-On 26.9.

NOTE

The Paint event fires multiple times for each section of the report
because Access paints various elements of the given section sepa-
rately at different times. The calculated controls and the items
that require a change in background or foreground colors are
each painted separately.

FIGURE 26.6 Access reports can be displayed using four different views: Report View, Layout View,
Design View, and Print Preview.

 Hands-On 26.9 Conditionally Formatting a Control in Report View

1. Open the Northwind 2007.accdb database in your C:\VBAAccess2019_
ByExample folder. Close the Login box when prompted to log in.

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 781

2. In the Navigation pane, right-click the Customer Address Book report and
choose Design View.

3. Click the Detail section and activate the property sheet.
4. In the property sheet of the Detail section, click the Event tab, select Event

Procedure from the drop-down box next to the On Paint property, then click
the Ellipsis button (…).
Access activates the Code window and writes the stub of the Detail_Paint
event procedure.

5. Complete the code of the Detail_Paint procedure as shown here:
Private Sub Detail_Paint()
 If Me.City.Value = "Chicago" Then
 Me.City.ForeColor = vbBlue
 Else
 Me.City.ForeColor = vbBlack
 End If
End Sub

Th is event procedure will set the ForeColor property for a control called City
to blue when the city name is Chicago and display the names of all other cities
in black. Th is procedure will be triggered when you open the report in Report
view.

6. Press Ctrl+S to save the changes in the Code window.
7. Press Ctrl+F11 to return to the Microsoft Access window.
8. Click the View button in the Views group of the Design tab.
9. Access displays the report in its default Report view. Press Ctrl+F to activate

the Find dialog box. Enter Chicago and click Find Next. Access locates the
first customer who lives in Chicago. Click Find Next again to locate the next
customer. Notice that all the occurrences of “Chicago” are shown in blue.

10. Close the Customer Address Book report.

SORTING AND GROUPING DATA

Access offers users a convenient interface for grouping data, adding totals, and
filtering. These features are available from a separate Group, Sort, and Total
pane as shown in Figure 26.7. To work with this pane, open the report in Layout
view, click the Design tab, and select the Group & Sort button in the Grouping
& Totals section. When you click on the Add a Group or Add a Sort buttons
in the pane at the bottom of the report, Access will walk you through the steps
required to create new report groups, add totals, or sort (Figure 26.8).

782 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 26.7 The Group, Sort, and Total pane provides a quick way to group and sort data, and add
calculations in Access reports.

FIGURE 26.8 The Group, Sort, and Total pane indicates that the report is sorted by the Company
Name in Ascending Order (with A on top).

SAVING REPORTS IN .PDF OR .XPS FILE FORMAT

Access reports can be saved to the .pdf or .xps format, as shown in Figure 26.9.
The Portable Document Format (.pdf) preserves document formatting and
makes files easy to distribute and print. Reports distributed as .pdf files retain

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 783

their format and are protected so that the data may not be copied or changed.
Another format that you can use for your report distribution is the XML Paper
Specification (.xps) format, which also retains the format of the original docu-
ment.

FIGURE 26.9 To save your report to .pdf or .xps file format, click File | Save As. Select Save Object
As, select PDF or XPS, and click the Save As button. Access will display the Publish As PDF or XPS
dialog box where you can specify the required file format as well as the file name and destination folder.

USING THE OPENARGS PROPERTY OF
THE REPORT OBJECT

Like forms, Access reports have a very useful property called OpenArgs that you
can use from a VBA code or a macro to pass a value to a report as the report is
opened. Use the OpenReport method of the DoCmd object in the following form:
DoCmd.OpenReport (reportname, view, filtername,
wherecondition, windowmode, OpenArgs)

The OpenArgs argument is a string expression of the Variant data type. As dem-
onstrated in Chapter 24, you can pass multiple values in the OpenArgs argument
by concatenating your values.

The OpenArgs property can be used to set a report format or to determine
what data the report should display. With the OpenArgs property, you can reuse
the same report, instead of creating a new report for a similar requirement.

The Hands-On 26.10 demonstrates how to filter a report with the help of the
OpenArgs property.

784 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 26.10 Using the OpenArgs property to fi lter
an Access report

1. Open the Northwind 2007_Revised.accdb database in your C:\VBAAccess
2019_ByExample folder. Cancel out of the Login dialog box.

2. In the Navigation pane on the left, locate and double-click the frmEmployee-
Address.
You should see the form as shown in Figure 26.10.

FIGURE 26.10 The form used to filter the Employee Address Book report by City or Country/
Region.

3. Choose Redmond from the combo box.
Access executes the following code in the cboReports_AfterUpdate event
procedure:

Private Sub cboReports_AfterUpdate()
 Dim strFilterBy As Variant
 Dim strRpt As String

 strRpt = "Employee Address Book"

 If SysCmd(acSysCmdGetObjectState, acReport, _
 strRpt) <> 0 Then
 DoCmd.Close acReport, strRpt
 End If

 strFilterBy = Me.cboReports.Value
 DoCmd.OpenReport ReportName:=strRpt, _

ENHANCING ACCESS REPORTS AND USING REPORT EVENTS 785

 View:=acViewReport, _
 OpenArgs:=strFilterBy

End Sub

Th is event procedure closes the Employee Address Book report if it is open.
Th e SysCmd method is used here to return the state of a specifi ed database
object. Use this method to fi nd out whether the object is open, is a new object,
or has been changed but not saved. For more information on using this method
in your VBA procedures, see the online help.
 Next, the procedure stores the selected value in the strFilterBy variable.
This variable is then referenced in the OpenArgs property when the report
is opened with the OpenReport method. The Report_Load event procedure
of the Report_Employee Address book (see the code below) then checks the
OpenArgs property for the Null value. If the property is not Null, the strFilter
variable is set to contain filtering criteria for the City or Country/Region fields.
If you selected Redmond from the form’s combo box, the strFilter will be
set to City = ‘Redmond’. The statement Me.OpenArgs returns the value stored
in the OpenArgs property. With the filtering expression set, all you need to do
is tell Access to turn the filter on by using the FilterOn property and set the
Filter property to the strFilter variable.

Private Sub Report_Load()
 Dim strFilter As String

 If IsNull(Me.OpenArgs) Then
 Exit Sub
 Else
 If Me.OpenArgs = "USA" Then
 strFilter = "[Country/Region] = '" & _
 Me.OpenArgs & "'"
 Else
 strFilter = "City = '" & Me.OpenArgs & "'"
 End If
 Me.FilterOn = True
 Me.Filter = strFilter

 End If
End Sub

Aft er the procedure fi nishes executing its code, you should see the Employee
Address Book fi ltered by Redmond or whatever item you specifi ed in the
form’s combo box (Figure 26.11).

786 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 26.11 This report was filtered by using the value passed in the OpenArgs property.

4. To filter the report again, make another selection from the form’s combo box.

SUMMARY

In this chapter, you discovered various ways of creating reports in Access and
learned how you can extend your reports by incorporating some VBA code.
You worked with several events that fire when the report is run. By writing your
own event procedures you can specify what happens when the report is opened,
activated, deactivated, or closed. You can also display a custom message when
an error occurs or the report does not contain any data, or you can make last-
minute changes to the report format before it is printed or previewed. In the last
section of this chapter, you were introduced to the OpenArgs property of the
Report object and learned how to use it to filter a report.

This chapter barely scratched the surface of what is possible and doable with
reports. There are numerous templates in Access 2019 that you can study to
gain more insight into designing very appealing, informative, and interactive
reports.

In the next chapter, you learn how to handle an object’s events from stand-
alone class modules, as well as how to program and raise your own events.

787

So far in this book you’ve worked with event procedures that executed from
the form or report class module when a certain event occurred for a form,
report, or control. You have probably noticed that event programming, as

you’ve seen it implemented in the form and report class modules, requires that
you copy and paste your existing event code into new form or report events in
order to obtain exactly the same functionality. For instance, say you added cer-
tain features to a text box on one form and now you’d like to have a text box on
other forms behave in the same way. You could react to the text box’s events in
the same way on all your forms by entering the same event procedure code in a
form class module for each form, or you could save keystrokes by learning how
to centralize and reuse your event code.

You can avoid typing the same event procedure code again and again by
using classes. Recall that we’ve already used classes in this book; in Chapter 8,
you learned how you can design your own objects in VBA by writing code in
a standalone class module. You worked with property procedures that allowed
data to be read or written to the object. You also learned how to create functions
in a class module that worked as object methods. In this chapter, you learn how
to react to an object’s events from a standalone class module.

Chapter

 27 ADVANCED EVENT
PROGRAMMING

788 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

You will need to become familiar with the following VBA terms:

 ● Event sink—A class that implements an event. Only classes can sink
events.

 ● Event source—An object that raises events. An event source can have
multiple event sinks. Note that source and sink terminology is derived
from electronics. A device that outputs current when active is said to be
sourcing current. A device that draws current into it when active is said
to be sinking current.

 ● WithEvents—A keyword that allows you to handle an object’s events in-
side classes other than form or report classes. Th e variable that you de-
clare for the WithEvents keyword is used to handle an object’s events.

 ● Event—A statement used to declare a user-defi ned event. Th e Event dec-
laration must appear in a class module.

 ● RaiseEvent—A statement used to call a custom event. Th e custom event
must fi rst be declared using the Event statement.

SINKING EVENTS IN STANDALONE CLASS MODULES

Instead of writing your event procedures in the form and report class modules,
you can make the maintenance of your Microsoft Access applications much
simpler by writing the event code in standalone class modules.

Recall that a standalone class module is a special type of class module that
is not associated with any particular form or report. This class module can be
inserted in the Visual Basic Editor window by choosing Insert | Class Module.
In addition to creating custom objects (see examples in Chapter 8), standalone
class modules can implement object events.

The process of listening to an object’s events is called sinking the event. To
sink (handle) events in a standalone class module, you must use the WithEvents
keyword. This keyword will tell the class that you want to sink some or all of
the object’s events in the class module. You determine which events you want to
sink by writing appropriate event code (see Custom Project 27.1). Only classes
can sink events. Therefore, the WithEvents keyword can only be used in classes.
You can use the WithEvents keyword to declare as many individual variables as
you need; however, you cannot create arrays using WithEvents.

An object that generates events is called an event source. The process of
broadcasting an event is called sourcing the event. To handle events raised by

ADVANCED EVENT PROGRAMMING 789

an event source, you must declare an object variable using the WithEvents key-
word. For example, to react to form events in a standalone class module, you
would need to enter the following module-level variable declaration in the class
module:
Private WithEvents m_frm As Access.Form

In this statement, m_frm is the name of the object variable that references the
Form object. While you can use any variable name you want, this variable can-
not be a generic object. That means you cannot declare it as Object. If the vari-
able were declared as Object, Visual Basic wouldn’t know what type library
should be used. Therefore, it would not be able to provide you with the names
of events for which you can write code.

Now, let’s walk through these new concepts step by step. Custom Project
27.1 demonstrates how to create a record logger class that handles a form’s Af-
terUpdate event. Each time the AfterUpdate event occurs, this class will enter
information about the newly created record into a text file.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Custom Project 27.1 Sinking Events in a Standalone Class Module

Part 1: File Preparation

1. Start Microsoft Access and create a new database named Chap27.accdb in
your C:\VBAAccess2019_ByExample folder.

2. Import the Customers, Products, Suppliers, and Categories tables from the
sample Northwind.mdb database. To do this, in the Access window, choose
External Data | New Data Source | From Database | Access. In the File
name box, type C:\VBAAccess2019_ByExample\Northwind.mdb and click
OK. In the Import Objects window, on the Tables tab, select the Customers,
Products, Suppliers, and Categories tables and click OK to begin importing.
Click the Close button when done.

3. In the Navigation pane of the Access application window, select the Customers
table and choose Create | Form Wizard to create a new form based on the
Customers table. Select all the fields from the Customers table, choose
Columnar layout, and specify frmCustomers as the form’s title. After you
click Finish, the newly designed frmCustomers form will appear in the Form
view as shown in Figure 27.1.

790 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 27.1 The frmCustomers form is used in Custom Project 27.1 to demonstrate how an
object’s event can be handled outside of the form class module.

4. Close the frmCustomers form created in Step 3.

Part 2: Creating the cRecordLogger Class

5. Press Alt+F11 to activate the Visual Basic Editor window.
6. In the Project Explorer window, select Chap27 (Chap27) and choose Insert

| Class Module. A new class called Class1 will appear in the Project Explorer
window. Use the Name property in the Properties window to change the name
of the class to cRecordLogger (see Figure 27.2).

FIGURE 27.2 Use the Name property in the Properties window to change the name of the class
module.

ADVANCED EVENT PROGRAMMING 791

7. In the cRecordLogger class module’s Code window, enter the following
module-level variable declaration just below the Option Compare Database
and Option Explicit statements:
Private WithEvents m_frm As Access.Form

Aft er declaring the object variable using WithEvents, the variable name m_frm
appears in the Object box in your class module (see Figure 27.3). When you
select this variable from the drop-down list, the valid events for that object will
appear in the Procedure box (see Figure 27.4). By choosing an event from the
Procedure drop-down list, an empty procedure stub will be added to the class
module where you can write your code for handling the selected event. By
default, Access adds the Load event procedure stub aft er an object is selected
from the Object drop-down list.

8. In the cRecordLogger class module’s Code window, enter the following
Property procedure just below the variable declaration:
Public Property Set Form(cur_frm As Form)
 Set m_frm = cur_frm
 m_frm.AfterUpdate = "[Event Procedure]"
End Property

In order to sink events in the class module, you must tell the class which specifi c
form’s events the class should be responding to. You do this by writing the
Property Set procedure. Recall from Chapter 8 that Property Set procedures
are used to assign a reference to an object. Th erefore, the statement:

Set m_frm = cur_frm

will assign the current form (passed in the cur_frm variable) to the m_frm
object variable declared in Step 3. Pointing the object variable (m_frm) at the
object (cur_frm) isn’t enough. Access will not raise the event unless the object’s
Event property is set to [Event Procedure]. Th erefore, the second statement in
the preceding procedure:

m_frm.AfterUpdate = "[Event Procedure]"

will ensure that Access knows that it must raise the form’s Aft erUpdate event.
9. Choose Tools | References and add the Microsoft Scripting Runtime

Library to the class module. You will need this library to gain access to the
FileSystemObject in the next Step.

792 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 27.3 The Object drop-down list in the cRecordLogger’s Code window lists the m_frm
object variable that was declared using the WithEvents keyword.

FIGURE 27.4 The Procedure drop-down list in the cRecordLogger’s Code window lists the valid
events for the object declared with the WithEvents keyword.

ADVANCED EVENT PROGRAMMING 793

10. In the cRecordLogger class module’s Code window, enter the following m_
frm_AfterUpdate event procedure:
Private Sub m_frm_AfterUpdate()
 Dim fso As FileSystemObject
 Dim myFile As Object
 Dim strFileN As String
 Dim ctrl As Control

 On Error Resume Next

 Set fso = New FileSystemObject
 strFileN = "C:\VBAAccess2019_ByExample\MyCust.txt"
 Set myFile = fso.GetFile(strFileN)

 If Err.Number = 0 Then
 ' open text file
 Set myFile = fso.OpenTextFile(strFileN, 8)
 Else
 ' create a text file
 Set myFile = fso.CreateTextFile(strFileN)
 End If

 For Each ctrl In m_frm.Controls
 If ctrl.ControlType = acTextBox And _
 InStr(1, ctrl.Name, "ID") Then
 myFile.WriteLine "ID:" & ctrl.Value & _
 " Created on: " & Date & " " & Time & _
 " (Form: " & m_frm.Name & ")"
 MsgBox "See the audit trail in " & strFileN & "."
 Exit For
 End If
 Next
 myFile.Close
 Set fso = Nothing
End Sub

Th e code inside the m_frm_Aft erUpdate event procedure will be executed aft er
Access fi nds that the form’s Aft erUpdate property is set to [Event Procedure].
Th is code tells Access to open or create a text fi le named MyCust.txt and write
a line consisting of the value of the ID control on the form, the date and time
the record was inserted or modifi ed, and the name of the form. Notice how
the InStr function is used to locate the control whose name contains the “ID”
string. Th e fi rst argument of the InStr function determines the character

794 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

position where the search should begin, the second argument is the string
being searched, and the third argument is the string expression being sought
within the string specifi ed in the second argument.

11. Save the code that you wrote in the class module by clicking the Save button on
the toolbar or choosing File | Save. When the Save As dialog box appears with
cRecordLogger in the text box, click OK.
For the events to actually fi re now that you’ve written the code to handle the
event in the standalone class module, you need to instantiate the class and pass
it the object whose events you want to track. Th is requires that you write a
couple of lines of code in your form’s class module.

Part 3: Creating an Instance of the Custom Class in the Form’s Class Module

12. Switch to the Access window by pressing Alt+F11. In the Navigation pane,
right-click the frmCustomers form you created in Step 3 of Part 1. Select
Design View from the shortcut menu.

13. In the property sheet, make sure Form is selected in the drop-down list, and
activate the Event tab. Click next to the On Open property and select [Event
Procedure]. Click the Build (…) button. Access activates the Code window
and writes the procedure stub for the Form_Open event. Complete the code
of this event procedure and the Form_Close event procedure, as shown here:
Private clsRecordLogger As cRecordLogger

Private Sub Form_Open(Cancel As Integer)
 Set clsRecordLogger = New cRecordLogger
 Set clsRecordLogger.Form = Me
End Sub

Private Sub Form_Close()
 Set clsRecordLogger = Nothing
End Sub

To instantiate a custom class module, we begin by declaring a module-
level object variable, clsRecordLogger, as the name of our custom class,
cRecordLogger. You can choose any name you wish for your variable name.
Next, we instantiate the class in the Form_Open event procedure by using the
following Set statement:

Set clsRecordLogger = New cRecordLogger

Notice that you must use the New keyword to create a new object of a particular
class. By setting the reference to an actual instance of the object when the form

ADVANCED EVENT PROGRAMMING 795

fi rst opens, we ensure that the object refers to an actual object by the time the
event is fi rst fi red. Th e second statement in the Form_Open event procedure:

Set clsRecordLogger.Form = Me

sets the Form property defi ned by the Property procedure in the class module
(see Step 4 of Part 2) to the Form object whose events we want to sink. Th e Me
keyword represents the current instance of the Form class.
When you are done pointing the object variable to the instance of the custom
class, it is a good idea to release the variable reference. We’ve done this by
setting the object variable clsRecordLogger to Nothing in the Form_Close
event procedure. Th e complete code entered in the frmCustomers form class
module is shown in Figure 27.5.

FIGURE 27.5 To sink form events in a custom class module, you must enter some code in the form
class module.

14. Press Ctrl+S to save the code you entered in Step 2 or click the Save button on
the toolbar.

15. Close the frmCustomers form.
Now that all the code has been written in the standalone class module and in
the form class module, it’s time to test our project.

Part 4: Testing the cRecordLogger Custom Class

16. Switch to the Access window and open the frmCustomers form in Form view.
17. In the Records section of the Home tab, choose New.

796 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

18. Enter MARSK in the Customer ID text box and Marski Enterprises in the
Company Name text box (see Figure 27.6). Press the record selector on the left
side of the form to save the record.

FIGURE 27.6 The frmCustomers form in the Data Entry mode is used for testing out the custom
cRecordLogger class.

When you save the newly entered record, a message box appears with the text
“See the audit trail in C:\VBAAccess2019_ByExample\MyCust.txt.” Recall
that this message was programmed inside the m_frm_Aft erUpdate() event
procedure in the cRecordLogger class module. It looks like our custom class
has successfully sunk the Aft erUpdate event. Th e form’s Aft erUpdate event was
propagated to the custom class module.

19. Click OK to close the message box.
20. Activate File Explorer and open the C:\VBAAccess2019_ByExample\

MyCust.txt file.
Th e MyCust.txt fi le (see Figure 27.7) displays the record log. You may want
to revise the m_frm_Aft erUpdate() event procedure so that you can track
whether a record was created or modifi ed.

21. Close the MyCust.txt file.
22. Add a few more records to the frmCustomers form and check out the C:\

VBAAccess2019_ByExample\MyCust.txt file.

ADVANCED EVENT PROGRAMMING 797

FIGURE 27.7 The MyCust.txt file is used by the cRecordLogger custom class for tracking record
additions.

23. Close the frmCustomers form.
Now that you know how to sink the form’s Aft erUpdate event outside the form
class module, you can use the same idea to sink other form events in a class
module and make your code easier to implement and maintenance free. Just
remember that if you want to sink events in a standalone class module, you
must write code in two places: in your class module and in your form or report
class module. Th e class module must contain a module-level WithEvents
variable declaration, and you must set the reference to an actual instance of
the object in the form or report module.

Part 5: Using the cRecordLogger Custom Class with another Form

The code you’ve written so far in this project is ready for reuse in another Micro-
soft Access form. In the remaining steps, we will hook it up to the frmProducts
form. Let’s begin by creating this form.

24. In the Navigation pane of the Access window, select the Products table and
choose Create | Form. Access creates a form and displays it in the Form Layout
view.

25. Press Ctrl+S or click the Save button on the toolbar to save the form. In the
Save As dialog box, type frmProducts for the form name and click OK.

26. Activate the frmProducts form in Design view. In the property sheet, make
sure Form is selected from the drop-down box and click the Other tab. Set
the Has Module property of the form to Yes. Save the changes to the form by
pressing Ctrl+S.

27. Switch to the Visual Basic Editor window, and double-click the Form_
frmProducts object in the Project Explorer window. Access opens the Code
module for the form.

28. Copy the code from the frmCustomers Code window to the frmProducts Code
window. The code in the frmProducts Code window should match Figure 27.5
shown earlier.

798 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

29. In the frmProducts Code window, replace all the references to the object
variable clsRecordLogger with clsRecordLogger2.

NOTE

To quickly perform this operation, position the cursor inside
the first clsRecordLogger variable name and choose Edit |
Replace. The Find What text box should automatically display
the name of the variable you want to replace. Type clsRecord-
Logger2 in the Replace With text box and click the Replace All
button. Click OK to confirm the replacement of four instances
of variable names. Click Cancel to exit the Replace dialog box.
Save and close the frmProducts form.

30. Open the frmProducts form in Form view and in the Records section of the
Home tab choose New.

31. Enter Delicious Raisins in the Product Name text box and press the record
selector on the left side of the form to save the record.
At this point you should receive the custom message about the audit trail that you
defi ned in the Aft erUpdate event procedure within the custom cRecordLogger
class module. Th is indicates that the Aft erUpdate event that was raised by the
form when you saved the newly entered record was successfully propagated to
the custom class module.

32. Click OK to close the message box.
33. Close the frmProducts form.
34. Open the C:\VBAAccess2019_ByExample\MyCust.txt file to view the record

log. Close this file when you are finished.
You may want to choose a more generic name for your record log text fi le if it
will be used for tracking various types of information.

WRITING EVENT PROCEDURE CODE IN TWO PLACES

If you write event procedure code for the same event both in the form module
and in the class module, the code defined in the form class module will run
first, followed by the code in the custom class module. You can easily test this
by entering the following Form_AfterUpdate event procedure code in the form
class module of the frmCustomers or frmProducts forms prepared in Custom
Project 27.1:
Private Sub Form_AfterUpdate()
 MsgBox "Transferring control to the custom class."

ADVANCED EVENT PROGRAMMING 799

 ' when you click OK to this message, the code
 ' inside the AfterUpdate procedure in the custom
 ' class module will run
End Sub

When you open the form and add and save a new record, the Form_After-
Update event will fire and you will see the message about transferring control to
the custom class. Next, the AfterUpdate event procedure will run in the custom
class, and you will see a message informing you that you can view the audit trail
in the specified text file.

RESPONDING TO CONTROL EVENTS IN A CLASS

Everyone designing Microsoft Access forms sooner or later realizes that it takes
a long time to customize some of the controls placed on the form. It’s no wonder
then that once the control is working correctly, there is a tendency toward copy-
ing the control and its event procedures to a new form that requires a control
with the same functionality. If you followed this chapter carefully, you already
know a better (and a neater) solution. By using the WithEvents keyword you can
create an object variable that points to the control raising the events. Instead of
responding to control events in the form module, you will react to these events
in a different location: a standalone class module. This lets you write centralized
code that is easy to implement in other form controls of the same type.

Suppose you need a text box that converts lowercase letters to uppercase and
disallows numbers. Hands-On 27.1 demonstrates how to create a text box with
these features and hook it up with any Microsoft Access form.

 Hands-On 27.1 Responding to Control Events in a Class

This hands-on exercise requires prior completion of Custom Project 27.1.

1. Activate the Visual Basic Editor window and choose Insert | Class Module. A
new class named Class1 will appear in the Project Explorer window.

2. In the Properties window, click the (Name) property and type UCaseBox as
the new name of Class1. Click again on the (Name) property to save the new
name. You should see the UCaseBox entry under the Class Modules folder in
the Project Explorer.

800 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the UCaseBox class module’s Code window, enter the following code:
Private WithEvents txtBox As Access.TextBox

Public Function InitializeMe(myTxt As TextBox)
 Set txtBox = myTxt
 txtBox.OnKeyPress = "[Event Procedure]"
End Function

Private Sub txtBox_KeyPress(KeyAscii As Integer)
 Select Case KeyAscii
 Case 48 To 57
 MsgBox "Numbers are not allowed!"
 KeyAscii = 0
 Case Else
 ' convert to uppercase
 KeyAscii = Asc(UCase(Chr(KeyAscii)))
 End Select

 txtBox.FontBold = True
 txtBox.FontItalic = True
 txtBox.BackColor = vbYellow
End Sub

Notice that to respond to a control’s events in a class module you start by
declaring a module-level object variable using the WithEvents keyword. In
our text box example, we declared the object variable txtBox as an Access text
box control.
 Because the form can contain more than one text box control, we should tell
the class which text box it needs to respond to. We do this by creating a Property
Set procedure (like the one created in Custom Project 27.1) or a function
procedure like the one shown here. We called this function InitializeMe, but
you can use any name you wish. Recall from Chapter 8 that a function entered
in a class module serves as an object’s method. We will call the InitializeMe
method later from a form class module and pass it the actual control we want
it to respond to (see Step 7). Th e InitializeMe method will assign the passed
in control to the WithEvents object variable like this:

Set txtBox = myTxt

Next, we set the text box KeyPress property to [Event Procedure] to tell the
class that we are interested in tracking this particular event.
 Finally, we write the event procedure code for the text box control’s KeyPress
event. Th is code begins by checking the value of the key that was pressed by the

ADVANCED EVENT PROGRAMMING 801

user. If a number was entered, the user is advised that numbers aren’t allowed
and the digit is removed from the text box by setting the value of KeyAscii
to zero (0). Otherwise, if the user typed a lowercase letter, the character is
converted to uppercase using the following statement:

KeyAscii = Asc(UCase(Chr(KeyAscii)))

KeyAscii is an integer that returns a numerical ANSI keycode. To convert the
KeyAscii argument into a character, we use the Chr function:

Chr(KeyAscii)

Once we’ve converted a key into a character, we use the UCase function to
convert it to uppercase:

UCase(Chr(KeyAscii))

Finally, we translate the character back to an ANSI number by using the Asc
function:

Asc(UCase(Chr(KeyAscii)))

Th e txtBox_KeyPress event procedure ends by adding some visual
enhancements to the text box. Th e text entered in it will appear in bold italic
type on a yellow background.

4. Save the code you entered in the UCaseBox class module’s Code window by
pressing the Save button on the toolbar.

5. In the Project Explorer window, double-click the Form_frmProducts. The
Form_frmProducts class module’s Code window should already contain code
you entered while working with Part 3 of Custom Project 27.1 earlier in this
chapter. To connect the UCaseBox class module with the actual text box on
any Access form, you would need to enter the following code in a form’s class
module (do not enter it yet):
' module-level variable declaration
Private clsTextBox1 As UCaseBox

Private Sub Form_Open(Cancel As Integer)
 Set clsTextBox1 = New UCaseBox
 clsTextBox1.InitializeMe Me.Controls("ProductName")
End Sub

Private Sub Form_Close()
 Set clsTextBox1 = Nothing
End Sub

802 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Since the frmProducts form already contains a call to the cRecordLogger class
created earlier, all of the procedures we need are already in place; therefore, we
will simply add the appropriate lines of code to the existing procedures.

6. In the Form_frmProducts Code window, enter the following module-level
variable declaration just above the Form_Open event procedure (see Figure
27.8):
Private clsTextBox1 As uCaseBox

Th is statement declares the clsTextBox1 class variable. Th is variable is used in
instantiating the UCaseBox object and connecting it with the actual text box
control on the form (see the next step).

7. Enter the following lines of code before the End Sub statement of the Form_
Open event procedure (see Figure 27.8):
Set clsTextBox1 = New uCaseBox
clsTextBox1.InitializeMe Me.Controls("ProductName")

Before our UCaseBox class can respond to a text box’s events, you need
these two lines of code; the fi rst one sets the class variable clsTxtBox1 to
a new instance of the UCaseBox class, and the second one calls the class
InitializeMe method and supplies it with the name of the text box control.
Enter the following line of code before the End Sub statement of the Form_
Close event procedure (see Figure 27.8):

Set clsTextBox1 = Nothing

When we are done with the object variable, we set it to Nothing to release the
resources that have been assigned to it.

8. Save the changes made in the Code window by clicking the Save button on the
toolbar.

9. Open the frmProducts form in Form view and in the Records section of
the Home tab choose New.

10. Enter prune butter in the Product Name text box. Notice that as you type,
the characters you enter are converted to uppercase. They are also made bold
and italic, and appear on a yellow background. If you happen to press a number
key, which is disallowed by your custom KeyPress event, you receive an error
message. Click on the record selector to save the record. Because this form also
responds to the AfterUpdate event that we programmed in Custom Project
27.1, you should see two message boxes when you save this form.

11. Close the frmProducts form.

ADVANCED EVENT PROGRAMMING 803

FIGURE 27.8 The form class module shows code that instantiates and hooks up objects created in
the cRecordLogger and UCaseBox class modules with the form and text box control.

DECLARING AND RAISING EVENTS

Standalone class modules automatically support two events: Initialize and Ter-
minate. Use the Initialize event to give the variables in your classes initial values.
The Initialize event is called when you make a new instance of a class. The Ter-
minate event is called when you set the instance to Nothing. In addition to these
default events, you can define custom events for your class module.

To create a custom event, use the Event statement in the declaration section
of a class module. For example, the following statement declares an event named
SendFlowers that requires two arguments:
Public Event SendFlowers(ByVal strName As String, cancel As
Boolean)

The Event statement declares a user-defined event. This statement is followed
by the name of the event and any arguments that will be passed to the event
procedure. Arguments are separated by commas. An event can have ByVal and
ByRef arguments. Recall that when passing the variable ByRef, you are actually

804 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

passing the memory location of the variable. If you pass a variable ByVal, you
are sending a copy of the variable.

When declaring events with arguments, bear in mind that events cannot
have named arguments, optional arguments, or ParamArray arguments. The
Public keyword is optional as events are public by default.

Use the RaiseEvent statement to fire the event. This is usually done by cre-
ating a method in a class module. For example, here’s how you could trigger the
SendFlowers event:
Public Sub Dispatch(ByVal toWhom As String, cancel As Boolean)
 RaiseEvent SendFlowers(toWhom, True)
End Sub

Events can only be raised in the module in which they are declared using the
Event statement. After declaring the event and writing the method that will
be used for raising the event, you need to switch to the form class module and
perform the following tasks:

 ● Declare a module-level variable of the class type using the WithEvents
keyword

 ● Assign an instance of the class containing the event to the object defi ned
using the WithEvents statement

 ● Write a procedure that calls the class method
 ● Write the event handler code

The next hands-on exercise demonstrates how a user-defined event can be used
in a class. We will learn how to raise the SendFlowers event from a Microsoft
Access form.

 Hands-On 27.2 Declaring and Raising Events

1. Activate the Visual Basic Editor window and choose Insert | Class Module. A
new class named Class1 will appear in the Project Explorer window.

2. In the Properties window, click the (Name) property and type cDispatch as
the new name of Class1. Click again on the (Name) property to save the new
name. You should see the cDispatch entry under the Class Modules folder in
the Project Explorer.

3. In the cDispatch class module’s Code window, enter the following code:
Public Event SendFlowers(ByVal strName As String, _
 cancel As Boolean)

ADVANCED EVENT PROGRAMMING 805

Sub Dispatch(ByVal ToWhom As String, cancel As Boolean)
 If ToWhom = "Julitta" Then
 cancel = True
 MsgBox "Dispatch to " & ToWhom & " was cancelled.", _
 vbInformation + vbOKOnly, "Reason Unknown"
 Else
 RaiseEvent SendFlowers(ToWhom, True)
 End If
End Sub

Th e fi rst statement in the preceding code declares a custom event called
SendFlowers. Th is event will accept two arguments: the name of the person to
whom fl owers should be sent and a Boolean value of True or False that will
allow you to cancel the event if necessary.
 Next, the Dispatch procedure is used as a class method. Th e code states that
the fl owers should be sent to the person whose name is passed in the ToWhom
argument as long as the person’s name is not “Julitta.” Th e RaiseEvent statement
will call the event handler that we will write in a form module in a later step.

4. Create a new form as shown in Figure 27.9. This form isn’t bound to any
data source. Use the property sheet to set the Name property of the text box
control to Recipient and the Caption property of the accompanying label
control to Recipient Name:. Set the Name property of the command button
to cmdFlowers and its Caption property to Send Flowers. Save this form as
frmFlowers.

FIGURE 27.9 The frmFlowers form is used in Hands-On 27.2 to demonstrate the process of raising
and handling custom events.

5. While the frmFlowers form is displayed in Design view, click the View
Code button in the Tools area of the Design tab.

806 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Enter the following code in the Form_frmFlowers Code window:
Private WithEvents clsDispatch As cDispatch

Private Sub Form_Load()
 Set clsDispatch = New cDispatch
End Sub

Private Sub Form_Close()
 Set clsDispatch = Nothing
End Sub

Our form class can respond to events from an object only if it has a reference
to that object. Th erefore, at the top of the form class module we declare the
object variable clsDispatch by using the WithEvents keyword. Th is means
that from now on the instance of the cDispatch class is associated with events.
 Th e next step involves setting the object variable to an object. In the Form_
Load event procedure, we create a class object with the Set statement and
the New keyword. When the object variable is no longer needed, we release
the reference to the object by setting the object variable to Nothing (see the
preceding Form_Close event procedure).
 Now that we are done with declaring, setting, and resetting the object
variable, let’s proceed to write some code that will allow us to raise the
SendFlowers event when we click on the Send Flowers button.

7. In the Form_frmFlowers Code window, enter the following Click event
procedure for the cmdFlowers command button that you placed on the
frmFlowers form:
Private Sub cmdFlowers_Click()
 If Len(Me.Recipient) > 0 Then
 clsDispatch.Dispatch Me.Recipient, False
 Else
 MsgBox "Please specify the recipient name."
 Me.Recipient.SetFocus
 Exit Sub
 End If

End Sub

Notice that this event procedure begins by checking whether the user has
entered data in the Recipient text box. If the data exists, the Dispatch method
is called; otherwise, the user is asked to enter data in the text box. When calling
the Dispatch method, we must provide two arguments that this method
expects: the name of the recipient and the value for the Boolean variable
Cancel. Recall that the Dispatch method has the necessary code that raises

ADVANCED EVENT PROGRAMMING 807

the SendFlowers event (see Step 3). Now what’s left to do is to write an event
handler for the SendFlowers event.

8. Select the clsDispatch variable from the Object drop-down list in the upper-
left corner of the Form_frmFlowers Code window. As you make this selection,
a template of the event procedure will be inserted into the Code window as
shown here:
Private Sub clsDispatch_SendFlowers(ByVal strName As String, _
 cancel As Boolean)

End Sub

Th e code that you write within this procedure stub will be executed when the
event is generated by the object.

9. Enter the following statement inside the clsDispatch_SendFlowers procedure
stub:
MsgBox "Flowers will be sent to " & strName & ".", , _
 "Order taken"

Our custom event is not overly exciting but should give you an understanding
of how custom events are declared and raised in a standalone class module
and how they are consumed in a client application (form class module). Th e
complete code entered in the form class module is shown in Figure 27.10.

FIGURE 27.10 The form class module shows code that uses a custom object with its events.

808 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

10. Save the changes you made in the Code window by clicking the Save button
on the toolbar.

11. To test the code, open the frmFlowers form in Form view, type any name in
the Recipient text box, and click the Send Flowers button. You should see the
message generated by the SendFlowers custom event. Also see what happens
when you type Julitta in the text box.

NOTE

Be sure to try out the example provided in the online help for the
RaiseEvent statement topic. The quickest way to find this ex-
ample is by positioning the cursor in the RaiseEvent statement
(located in the cDispatch class module) and pressing F1.

SUMMARY

In this chapter, you were introduced to advanced concepts in event-driven pro-
gramming. You learned how you can make your code more manageable and
portable to other objects by responding to events in class modules other than
form modules. This chapter has also shown you the process of creating your
own events for a class and raising them from a public method by calling the
RaiseEvent statement with the arguments defined for the event. The important
thing to understand is that while events happen all the time whether or not you
respond to them, you are the one to decide where to respond to the built-in
events. And, if you ever find yourself short of an event, you can always create
one that does exactly what you need by using the knowledge acquired in this
chapter.

In the next chapter, you learn how to use VBA, macros, and XML to custom-
ize the user interface in Access 2019.

809

If you have used previous versions of Microsoft Access, you are already famil-
iar with the Fluent Ribbon user interface that replaced the menus and tool-
bars in earlier versions of Access. If you are new to Access, there is nothing

you need to unlearn to take full advantage of this chapter. This chapter provides
an overview of the programing elements available in the Ribbon and shows how
you can customize the user interface (UI) in your Access database applications.

THE INITIAL MICROSOFT ACCESS 2019 WINDOW

When you launch Access, you are presented with a button for creating a blank
Access database plus a search bar where you can search online for prebuilt data-
base templates. The templates come with ready-to-use tables, forms, reports,
queries, relationships, and macros that can be modified as needed.

Once you open an existing Access database or create a new one, you will
notice above the File tab is a special tool area known as the Quick Access toolbar
where you can quickly access the most frequently used commands (see Figure
28.1 in the next section). The Quick Access toolbar will expand to accommodate

Chapter

 28 PROGRAMMING THE
USER INTERFACE

810 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

as many commands as you wish to add. You can add other Access built-in
commands to the Quick Access toolbar by using any of the following methods:

 ● Click on the drop-down arrow in the Quick Access toolbar and select a
command you want to add or click More Commands.

 ● Right-click on the Quick Access toolbar and choose Customize Quick
Access Toolbar.

 ● Click File | Options and choose Quick Access Toolbar.

Together with the title bar and the tabs, the Quick Access toolbar belongs to a
large rectangular area called the Ribbon. This area is positioned at the top of the
UI window. The Quick Access toolbar was designed for the convenience of end
users. Developers should not alter this toolbar. However, if you have a valid rea-
son to hide the contents of this toolbar or add other buttons to it, you can apply
your own customizations as described later in this chapter.

CUSTOMIZING THE NAVIGATION PANE

When an Access database is open, you can easily access all of your objects via
the Navigation pane on the left side of the window (see Figure 28.1). If you need
more screen real estate, you can hide the Navigation pane by clicking on the
Shutter Bar Open/Close button (the double arrow at the top of the pane) or by
pressing F11.

FIGURE 28.1 The Navigation pane in Access 2019.

Use the Navigation pane to organize your objects by type, date created or modi-
fied, or related table, or create your own custom groups of objects. By clicking
on the down arrow button at the top of the Navigation pane, you can define how
you view and manage database objects (see Figure 28.2). To sort and filter your

PROGRAMMING THE USER INTERFACE 811

database objects, activate the Search Bar, or access the navigation options, right-
click the top bar of the Navigation pane (Figure 28.3).

FIGURE 28.2 Grouping options in the Navigation pane.

FIGURE 28.3 Objects in the Navigation pane can be easily categorized, sorted, and filtered. Use the
Search Bar to locate a hard-to-find object. Use the Navigation Options tool to create custom groups of
objects.

812 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Navigation Options dialog box (see Figure 28.4) allows you to create any
number of custom groups for organizing your objects according to specific
database needs. The exercise in Hands-On 28.1 will walk you through the pro-
cess of creating a custom group to track your development efforts.

FIGURE 28.4 The Navigation Options dialog box.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 28.1 Adding a Custom Group to the Navigation Pane

1. Open the C:\VBAAccess2019_ByExample\Northwind 2007.accdb database.
Cancel the login box.

2. Right-click the top bar of the Navigation pane and choose Navigation Options.
3. Click the Add Item button and type a new name for the category: Objects in

Development.
4. While the new Objects in Development category is selected, click the Add

Group button and enter Dev Tables for the new group name.
5. Click the Add Group button again to add another group named Dev Queries.
6. Add two more groups under Objects in Development named Dev Forms and

Dev Reports. See Figure 28.4 for the final output.
7. Click OK to close the Navigation Options dialog box.

PROGRAMMING THE USER INTERFACE 813

8. Click on the down arrow button at the top of the Navigation pane and choose
Objects in Development (Figure 28.5).

FIGURE 28.5 Displaying a custom group in the Navigation pane.

The next logical step is placing some database objects into your custom groups.
Hands-On 28.2 requires prior completion of Hands-On 28.1.

 Hands-On 28.2 Assigning Objects to Custom Groups in the
Navigation Pane

1. In the Northwind 2007.accdb database you opened in Hands-On 28.1, right-
click the Customers table and choose Copy.

2. Right-click anywhere in the Navigation pane and choose Paste. In the Paste
Table As dialog box, enter Companies for the new name of the table and select
the Structure Only option button. Click OK to exit the dialog box.

3. Drag the Companies table from the Unassigned Objects group to the Dev
Tables group.
When you place a database object into a custom group in the Navigation pane,
Access creates a shortcut to this object (see Figure 28.6). You can rename your
shortcut by right-clicking its name and choosing Rename Shortcut. You can
also hide the shortcut in the group or remove it from the group, provided the
Navigation pane has not been locked (this is discussed in the next section).

814 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In addition to the Hidden attribute, each shortcut has a Disable Design View
shortcuts attribute you can set to prevent users from switching to Design
view when using the shortcut. You must restart your Access database for this
property change to take eff ect. To display the shortcut properties as shown in
Figure 28.6, right-click on the Companies shortcut under the Dev Tables group
and choose Table Properties. You can drag any object listed in the Unassigned
Objects group into your custom groups.

FIGURE 28.6 Navigation pane with custom groupings.

USING VBA TO CUSTOMIZE THE NAVIGATION PANE

You can lock down and customize the Navigation pane programmatically by
using the following methods of the DoCmd object: LockNavigationPane, Nav-
igateTo, and SetDisplayedCategories. There are also two methods of the
Application object (ExportNavigationPane and ImportNavigationPane) that
enable you to quickly apply the same Navigation pane customizations to any
other Access database.

Locking the Navigation Pane

To prevent users from deleting database objects that are displayed in the Naviga-
tion pane, use the following statement:
DoCmd.LockNavigationPane True

The LockNavigationPane method of the DoCmd object requires a Lock argu-
ment. Use the Boolean value of True to lock the Navigation pane and False to
unlock it.

PROGRAMMING THE USER INTERFACE 815

Controlling the Display of Database Objects

To automatically navigate to a specific category in the Navigation pane upon
startup of your Access database or to display only certain objects in the category,
use the NavigateTo method of the DoCmd object. This method takes two argu-
ments: Category (required) and Group (optional). The Category argument
specifies the category you want to navigate to. This argument can be the name
of your custom category, such as the Objects in Development category you cre-
ated in Hands-On 28.1, or a constant representation of the Object Type, Tables
and Views, Created Date, and Modified Date categories. The Group argument
is optional. If you omit it, the Navigation pane will display all database objects
arranged by the criteria specified in the Category argument. See Table 28.1 for
valid Group arguments for the various Category arguments.

TABLE 28.1 Category and Group arguments used in the NavigateTo method

Category
Argument

Category Argument
Constant

Group
Argument

Group Argument
Constant

Object Type acNavigationCategoryObjectType Tables
Forms
Reports
Queries
Pages
Macros
Modules

acNavigationGroupTables
acNavigationGroupForms
acNavigationGroupReports
acNavigationGroupQueries
acNavigationGroupPages
acNavigationGroupMacros
acNavigationGroupModules

Tables and
Views

acNavigationCategoryTablesAnd-
Views

Name of a specific table or view in your
database

Modified Date acNavigationCategoryModifiedDate Today
Yesterday
Last
Month
Older

acNavigationGroupToday
acNavigationGroupYester-
day
acNavigationGroupLast-
Month
acNavigationGroupOlder

Created Date acNavigationCategoryCreatedDate Today
Yesterday
Last
Month
Older

acNavigationGroupToday
acNavigationGroupYester-
day
acNavigationGroupLast-
Month
acNavigationGroupOlder

Custom Name of your custom category Name of one of the custom groups you
have created for the specified custom
category

816 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Let’s get some practice with the NavigateTo method.

 Hands-On 28.3 Using the NavigateTo Method to Control the Display
of Database Objects in the Navigation Pane

1. In the Northwind 2007.accdb database, press Alt+F11 to switch to the Visual
Basic Editor window. Press Ctrl+G (or choose View | Immediate Window) to
open the Immediate window.

2. In the Immediate window, type each of the following DoCmd.NavigateTo
statement examples on one line, pressing Enter to execute each statement.
After the execution of each statement, check the resulting display in the
Navigation pane of the Access main window.
DoCmd.NavigateTo "acNavigationCategoryCreatedDate"

Th is statement will navigate to the Created Date category and display all
database objects.

DoCmd.NavigateTo "acNavigationCategoryObjectType",
"acNavigationGroupForms"

Th is statement will navigate to the Object Type category and select the Forms
group.

DoCmd.NavigateTo "acNavigationCategoryTablesAndViews",
"Invoices"

Th is statement will navigate to the Invoices table in the Tables and Views
category.

DoCmd.NavigateTo "Objects in Development", "Dev Forms"

Th is statement will navigate to the Dev Forms group objects in the Objects in
Development category created in Hands-On 28.1.
DoCmd.NavigateTo "acNavigationCategoryModifiedDate",

"acNavigationGroupOlder"

Th is statement will navigate to the Modifi ed Date category and display all the
database objects beginning with a date earlier than the previous month.

3. In the VBE window, press Ctrl+G, Ctrl+A, then the Delete key to remove the
contents of the Immediate window.

PROGRAMMING THE USER INTERFACE 817

Setting Displayed Categories

The SetDisplayedCategories method of the DoCmd object is used to specify
which categories should be displayed under Navigate To Category in the title
bar of the Navigation pane. Use this method to show and hide groups from
the top bar of the Navigation pane. For example, the following statement will
remove the custom category Objects in Development from the Navigation pane
titlebar’s drop-down list:
DoCmd.SetDisplayedCategories False, "Objects in Development"

Notice that the SetDisplayedCategories method uses two arguments. The
first argument specifies whether to show or hide the category. Use the Boolean
value of False to hide the category specified in the second argument of this
method or True to show the category. The second argument denotes the name
of the category you want to show or hide. Do not specify this argument if you
want to show or hide all categories.

Saving and Loading the Configuration of the Navigation Pane

The configuration of the Navigation pane can be saved at any time with the
ExportNavigationPane method of the Application object. This method re-
quires one argument—the path and the name of the XML file where you want
to save the configuration of the Navigation pane. For example, the following
statement entered on a single line in the Immediate Window will save the cur-
rent configuration of the Navigation pane to North2007NavConfig.xml in the
C:\VBAAccess2019_ByExample folder:
Application.ExportNavigationPane
"C:\VBAAccess2019_ByExample\North2007NavConfig.xml"

To load a saved Navigation pane configuration from the XML file, use the
ImportNavigationPane method of the Application object:
Application.ImportNavigationPane
"C:\VBAAccess2019_ByExample\North2007NavConfig.xml", False

Notice that the ImportNavigationPane method used in the previous statement
has two arguments. The first one specifies the path and name of the XML file
that contains the Navigation pane configuration to load. The second argument
is optional. When set to True, the imported categories will be appended to the
existing categories. The default value is False.

Hands-On 28.4 demonstrates how to save the current configuration of the
Navigation pane and then load it into another Access database.

818 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 28.4 Saving and Loading the Confi guration of the
Navigation Pane

1. In the VBE window of the Northwind 2007.accdb database, type the following
statement on one line in the Immediate window and press Enter to execute:
Application.ExportNavigationPane
"C:\VBAAccess2019_ByExample\North2007NavConfig.xml"

2. Switch to File Explorer and check that the North2007NavConfig.xml file is in
the VBAAccess2019_ByExample folder.

3. Double-click the filename to open it in the browser. Figure 28.7 displays the
partial content of the configuration file.
Th e XML fi le contains the objects and structure of the Access Navigation
pane. Th is fi le includes information about the contents of the Navigation
pane system tables: MSysNavPaneGroupCategories, MSysNavPaneGroups,
MSysNavPaneGroupToObjects, and MSysNavPaneObjectIDs.

FIGURE 28.7 The current configuration of the Navigation pane is saved in this XML file.

4. Close the Browser window.
5. Close the Northwind 2007.accdb database.
6. Create a new Access database named Load_North2007NavConfig.accdb in

your C:\VBAAccess2019_ByExample folder.

PROGRAMMING THE USER INTERFACE 819

7. Click the top bar of the Navigation pane and view the Navigation pane title
bar’s drop-down list before proceeding to import the saved configuration file.

8. Press Alt+F11, then press Ctrl+G to activate the Immediate window. Type the
following statement on one line and press Enter to execute:
Application.ImportNavigationPane "C:\VBAAccess2019_ByExample\
North2007NavConfig.xml", False

9. Press Alt+F11 to switch back to the Access application window.
10. Click the top bar of the Navigation pane and display the Navigation pane title

bar’s drop-down list again (see Figure 28.8).
Notice the additional entries in the drop-down list: Northwind Traders and

Objects in Development.

FIGURE 28.8 The Navigation pane can be easily modified using the external XML file containing the
custom configuration settings.

Now that you know how to manually and programmatically control the Naviga-
tion pane, you should find it easy to provide users with the needed customiza-
tion of the Access database navigation system. The next section will expand

820 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

your knowledge of the Access user interface by giving you a quick overview of
the Ribbon.

A QUICK OVERVIEW OF THE ACCESS 2019
RIBBON INTERFACE

All Microsoft Access program commands can be accessed from the Ribbon (see
Figure 28.9). Beginning with the release of Access 2007, the Ribbon replaced the
system of menus and toolbars found in earlier versions of Access. The Ribbon
contains the title bar, the File tab (for access to the Backstage View), the Quick
Access toolbar, and a number of other tabs listing various commands. Each tab
on the Ribbon provides access to features and commands related to a partic-
ular database task. For example, you can use the Create tab to quickly create
new tables, forms, reports, queries, macros, modules, and Microsoft Windows
SharePoint Services lists (see Figure 28.10). Related commands within a tab are
organized into groups. For example, the Create tab divides its commands into
six groups: Templates, Tables, Queries, Forms, Reports, and Macros & Code.
This type of organization makes it easy to locate a particular command.

FIGURE 28.9 The rectangular area at the top of the Access 2019 window is called the Ribbon.

FIGURE 28.10 All Access commands related to creating various database objects are grouped on the
Create tab.

Various program commands are displayed as large or small buttons. Large but-
tons denote frequently used commands, while small buttons show specific fea-
tures of the main commands. For example, in the Forms group there is a large
Form button and a small Form Wizard button. Some large and small command
buttons include drop-down lists of other specialized commands. For example,
the small More Forms button drop-down contains additional methods for cre-
ating a form: Multiple Items, Datasheet, Split Form, and Modal Dialog (Figure
28.11).

PROGRAMMING THE USER INTERFACE 821

FIGURE 28.11 Additional commands can be accessed by clicking on the down arrow to the right of
the button control.

Some controls that you find on the Ribbon do not display commands. Instead,
they provide a visual clue of the output you might expect when a specific option
is selected. These types of controls are known as galleries. Gallery controls are
often used to present various formatting options, such as the margin settings
shown in Figure 28.12.

FIGURE 28.12 Clicking on the Margins button on the Print Preview tab displays a gallery of different
margin settings.

822 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Some tab groups have dialog box launchers in the bottom-right corner (see
Figure 28.13) that display a dialog box in which you can set several advanced
options at once.

FIGURE 28.13 The dialog box launcher button in the bottom-right corner of the Text Formatting
group on the Home tab will display the Datasheet Formatting dialog box.

In addition to the main Ribbon tabs, there are also contextual tabs that con-
tain commands that apply to what you are doing. When a particular object
is selected, the Ribbon displays a contextual tab that provides commands for
working with that object. For example, when a table is open in Datasheet view,
the Ribbon displays a contextual tab called Table Tools. Clicking on the Table
Tools tab activates the Fields tab (see Figure 28.14). The contextual tab disap-
pears when you cancel the selection of the object. In other words, close the data-
sheet and the Table Tools tab will be gone.

FIGURE 28.14 A contextual tab (Table Tools) in the Ribbon.

PROGRAMMING THE USER INTERFACE 823

Now that you’ve reviewed the main features of the Ribbon interface, let’s look at
how you can extend it with your own tabs and controls. The next section intro-
duces you to Ribbon programming.

RIBBON PROGRAMMING WITH XML, VBA, AND MACROS

The components of the Ribbon user interface can be manipulated program-
matically using Extensible Markup Language (XML) or other programming
languages. Refer to Chapter 31 (“XML Features in Access 2019”) for an intro-
duction to using XML with Access.

All Office 2019 applications use the Ribbon and rely on the programming
model known as Ribbon extensibility, or RibbonX.

This section introduces you to customizing Access 2019 Ribbons by using
XML markup. No special tools are required to perform these customizations.
XML is plain text; therefore, you can use any text editor to create your custom-
ization files. In the examples that follow, we’ll be using the simple Windows
Notepad.

Your customizations can be stored in a special Access table, in a VBA proce-
dure, or in another Access database, or they can be linked to an Excel spread-
sheet. When storing your customizations in a location other than the Access
table, you must call the LoadCustomUI method of the Application object to load
your XML markup manually and then set the Ribbon name in your program at
runtime. Ribbon customizations can be applied to the entire application or to
specific forms and reports.

NOTE

Simple text editors such as Notepad do not provide tools for vali-
dating your XML markup. You must be extra careful to write
well-formed XML or your code will fail (see Chapter 31 for an
introduction to XML terms and markup). If you have access to a
copy of Visual Studio® 2005 or later, you can use its editor to per-
form the XML validation based on the XSD schema file. You can
download this file (customUI.xsd) from the following Web site:
http://www.microsoft.com/download/en/details.
aspx?displaylang=en&id=1574
If you’d like to work with the XML in a tree-based format, you
may want to download a free copy of XML Notepad 2007 from:

824 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

http://www.microsoft.com/download/en/details.aspx?id=7973
None of these advanced tools are necessary for the completion of
this chapter’s Ribbon customizations. Each new tool, especially an
advanced one, requires that you first familiarize yourself with its
interface. To get started with XML programming without further
delays, the built-in Windows Notepad will do.

Creating the Ribbon Customization XML Markup

To make custom changes to the Ribbon user interface in Access 2019, you need
to prepare an XML markup file that specifies all your customizations. The XML
markup file that we will use in the hands-on exercise in this section is shown in
Figure 28.15. You can see the resulting output in Figure 28.16.

FIGURE 28.15 This XML file defines a new tab with two groups for the existing Access 2019 Ribbon.
See the output this file produces in Figure 28.16.

FIGURE 28.16 The custom Edu Systems tab is based on the XML markup file shown in Figure 28.15.

 Hands-On 28.5 Creating an XML Document with Ribbon
Customizations

1. Open Windows Notepad and type the following XML markup, or copy the
code from the EduSystems_01.txt on the companion CD-ROM disc:

PROGRAMMING THE USER INTERFACE 825

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">
 <ribbon startFromScratch="false">
 <tabs>
 <tab id="custTabEdu" label="Edu Systems">
 <group id="StudGroup" label="Students">
 <button id="btnNewStud" imageMso="RecordsAddFromOutlook"
 size="large" label="Add Student" screentip="Add Student"
 supertip="Enter new student information"
 onAction="OpenStudentDetails" />
 <button id="btnViewAllStud" imageMso="ShowDetailsPage"
 size="large" label="View Students" screentip="View Students"
 supertip="View Current Students" onAction="OpenStudentList"
/>
 </group>
 <group id="ToolsGroup" label="Special Commands">
 <button idMso="FilePrintQuick" size="normal" />
 <button idMso="FileSendAsAttachment" size="normal" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

Let’s go over the contents of this fi le. In Chapter 31, you will learn that every
XML document consists of several elements, called nodes. In any XML
document there must be a root node, or a top-level element. In the Ribbon
customization fi le, the root tag is <customUI>. Th e root’s purpose is to specify
the current Offi ce RibbonX XML namespace:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui">

Namespaces are used to uniquely identify elements in the XML documents
and avoid name collisions when elements with the same name are combined
in the same document. If you were to customize the Offi ce 2007 Ribbon, you
would use the following namespace instead:

<customUI xmlns="http://schemas.microsoft.com/office/2006/01/
customui">

Th e xmlns attribute of the <customUI> tag holds the name of the default
namespace to be used in the Ribbon customization. Notice that the root
element encloses all other elements of this XML document: ribbon, tabs, tab,

826 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

group, and button. Each element consists of a beginning and ending tag. For
example, <customUI> is the name of the beginning tag and </customUI> is
the ending tag.
Th e actual Ribbon defi nition is contained within the <ribbon> tag:

<ribbon startFromScratch="false">
[Include xml tags to specify the required ribbon customization]
</ribbon>

Th e startFromScratch attribute of the <ribbon> tag defi nes whether you want
to replace the built-in Ribbon with your own (true) or add a new tab to the
existing Ribbon (false).

Hiding the Elements of the Access User Interface

Setting startFromScratch="true" in the <ribbon> tag will hide the default
Ribbon as well as the contents of the Quick Access toolbar.
The File tab will be left with only four commands: New, Open, SaveAs, and
Close Database.

To create a new tab set in the Ribbon, use the <tabs> tag. Each tab element is
defi ned with the <tab> tag. Th e label attribute of the tab element specifi es the
name of your custom tab. Th e name in the id attribute is used to identify your
custom tab:

<tabs>
<tab id="custTabEdu" label="Edu Systems">

Ribbon tabs contain controls organized in groups. You can defi ne a group for
the controls on your tab with the <group> tag. Th e example XML markup fi le
defi nes the following two groups for the Edu Systems tab:

<group id="StudGroup" label="Students">
<group id="ToolsGroup" label="Special Commands">

Similar to the tab node, the group nodes of the XML document contain the
id and label attributes. Placing controls in groups is easy. Th e group labeled
Students has two custom button controls, identifi ed by the <button> elements.
Th e group labeled Special Commands also contains two buttons; however,
unlike the Students group, the buttons placed here are built-in Offi ce system
controls rather than custom controls. You can quickly determine this by

SIDEBAR

PROGRAMMING THE USER INTERFACE 827

looking at the id attribute for the control. Any attribute that ends with “Mso”
refers to a built-in Offi ce item:

<button idMso="FilePrintQuick" size="normal" />

You can download control IDs for built-in controls in all applications that use
the Offi ce Fluent user interface from the following Web site:
http://www.microsoft .com/download/en/details.aspx?id=6627
As mentioned earlier in this chapter, buttons placed on the Ribbon can be
large or small. You can defi ne the size of the button with the size attribute set
to “large” or “normal.” Buttons can have additional attributes:

<button id="btnNewStud" imageMso="RecordsAddFromOutlook"
size="large" label="Add Student"
screentip="Add Student" supertip="Enter new student
information"
onAction="OpenStudentDetails" />

Th e imageMso attribute denotes the name of the existing Offi ce icon. You can
use images provided by any Offi ce application. To provide your own image, you
must use the getImage attribute in the XML markup (see more information in
the section “Using Images in Ribbon Customizations” later in this chapter).
 Th e screentip and supertip attributes allow you to specify the short and
longer text that should appear when the mouse pointer is positioned over the
button.
 Th e controls that you specify in the XML markup perform their designated
actions via callback procedures. For example, the onAction attribute of a button
control contains the name of the callback procedure that is executed when the
button is clicked. When that procedure completes, it calls back the Ribbon to
provide the status or modify the Ribbon. You will write the callback procedures
for the onAction attribute in the next section (see Custom Project 28.1).
 Buttons borrowed from the Offi ce system do not require the onAction
attribute. When clicked, these buttons will perform their default built-in
action.
 Before fi nishing off the XML Ribbon customization document, always make
sure that you have included all the required ending tags:

</tab>
</tabs>
</ribbon>
</customUI>

828 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Save the file as C:\VBAAccess2019_ByExample\EduSystems_01.xml. By
entering the XML extension, the text file is saved as an XML document.

3. To ensure that this XML document is well formed (it follows the formatting
rules for XML), open it in a browser. If the browser can read the document,
then its output should match Figure 28.15. If the browser finds problems
with the document, it will show you the incorrect statement. It is up to you to
figure out what correction is required. Open the file in Notepad, correct the
erroneous code, save the file, and test it again by loading it in the browser.

4. Close the browser.
At this point, you should have a well-formed XML document with Ribbon
customizations.

Now that you know how to structure an XML document for Ribbon custom-
izations, you should find it straightforward to add other features to the Access
Ribbon as they are discussed in this chapter.

Loading Ribbon Customizations from an External XML Document

Since your first Ribbon customization is already in an external XML document,
we will go ahead and load it into Access using the combination of VBA and
macros. In a later section of this chapter, you will learn how to load the same
XML markup into a local Access table and have Access take care of the Ribbon
modifications at startup.

Custom Project 28.1 walks you through the steps required to integrate Rib-
bon customizations into your database application.

 Custom Project 28.1 Applying Ribbon Customizations from an
External XML File

This custom project depends on the XML document prepared in Hands-On
28.5.

Part 1: Setting Access Options

1. Copy the EduSystems1.accdb database from the companion CD-ROM disc to
your C:\VBAAccess2019_ByExample folder.

2. Open the EduSystems1 database and click File | Options, then Client Settings.
3. In the General section, enable the Show add-in user interface errors option

(Figure 28.17).
When you enable this option, you will be able to see error messages if errors
are encountered when you load your Ribbon customizations.

4. Click OK to close the Access Options dialog box.

PROGRAMMING THE USER INTERFACE 829

FIGURE 28.17 When you check Show add-in user interface errors, Access will notify you about any
problems in the Ribbon XML.

Part 2: Setting Up the Programming Environment

5. Choose Database Tools | Visual Basic to switch to the Visual Basic Editor
window.

6. Choose Tools | References. In the References dialog box, add references to the
following two libraries: Microsoft Office 16.0 Object Library and Microsoft
Scripting Runtime (Figure 28.18).

FIGURE 28.18 To avoid compile errors, you must set library references as shown here.

830 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. Click OK to close the References dialog box.
8. Choose Insert | Module.
9. In the Properties window, change the Name property of the module to

RibbonModification.

Part 3: Writing VBA Code

10. In the RibbonModification Code window, enter the following VBA procedures,
or copy and paste the VBA code from RibbonVBA.txt on the companion CD-
ROM disc:
Sub OpenStudentDetails(ByVal control As IRibbonControl)
 DoCmd.OpenForm "Student Details", acNormal, , , acFormAdd
End Sub

Sub OpenStudentList(ByVal control As IRibbonControl)
 DoCmd.OpenForm "Student List", acNormal
End Sub

Notice that both of the preceding procedures open the specifi ed Access forms.
In addition, the OpenStudentDetails procedure opens the Student Details form
in Add mode. You may recall that these procedures (OpenStudentDetails and
OpenStudentList) are the names of the callback procedures that were specifi ed
in the onAction attribute of the button XML:

<button id="btnNewStud" imageMso="RecordsAddFromOutlook"
 size="large" label="Add Student"
 screentip="Add Student" supertip="Enter new student
information"
 onAction="OpenStudentDetails" />
<button id="btnViewAllStud" imageMso="ShowDetailsPage"
 size="large" label="View Students"
 screentip="View Students"
 supertip="View Current Students"
 onAction="OpenStudentList" />

A callback procedure executes some action and then notifi es the Ribbon that
the task has been completed. Th e onAction callback can be handled by a VBA
procedure, a macro, or an expression. When using VBA, the callback must
include the IRibbonControl parameter and return type, as shown here:

Sub OpenStudentDetails(ByVal control As IRibbonControl)
Sub OpenStudentList(ByVal control As IRibbonControl)

Th e IRibbonControl parameter is the control that was clicked. Th is control is

PROGRAMMING THE USER INTERFACE 831

passed to your VBA code by the Ribbon. For VBA to recognize this parameter,
we added a reference to the Microsoft Offi ce 16.0 Object Library in Part 2 of
this custom project.

The IRibbonControl Properties

You can view the properties (Context, Id, and Tag) of the IRibbonControl ob-
ject in the Object Browser. The Context property returns the active window
that contains the Ribbon interface, in this case Microsoft Access. The Id prop-
erty contains the ID of the control that was clicked. The Tag property can be
used to store additional information with the control. To use this property,
you need to add the tag attribute to the XML markup. You can write a more
generic procedure to handle the callbacks by using the Tag property. For ex-
ample, instead of writing a separate procedure to open the Student Details and
Student List forms as we did in Custom Project 28.1, you could write a single
procedure like this:
Sub OpenFrm(ByVal control AS IRibbonControl)
 Select Case control.Id
 Case "btnNewStud"
 DoCmd.OpenForm "Student Details", acNormal, , , acFormAdd
 Case "btnViewAllStud"
 DoCmd.OpenForm "Student List", acNormal
 End Select
End Sub

Next, you would need to add the tag attribute to the XML markup and change
the onAction callback to the OpenFrm procedure name:
<button id="btnNewStud" imageMso="RecordsAddFromOutlook"
 size="large" label="Add Student"
 screentip="Add Student" supertip="Enter new student
information"
 onAction="OpenFrm" tag="Student Details" />
<button id="btnViewAllStud" imageMso="ShowDetailsPage"
 size="large" label="View Students"
 screentip="View Students"
 supertip="View Current Students"
 onAction="OpenFrm" tag="Student List" />

You can see the implementation of the preceding technique in the EduSys-
tems2.accdb database and EduSystems_02.xml document located on the com-
panion CD-ROM disc.

SIDEBAR

832 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

11. In the RibbonModification Code module, enter the following LoadRibbon
function procedure, or copy and paste the procedure code from the
RibbonVBA.txt:
Public Function LoadRibbon()
 Dim strXML As String
 Dim oFso As New FileSystemObject
 Dim oTStream As TextStream

 ' Open the file containing the Ribbon customizations
 ' and return a TextStream object that will be used
 ' for reading from the file
 Set oTStream = oFso.OpenTextFile _
 ("C:\VBAAccess2019_ByExample" & _
 "\EduSystems_01.XML", ForReading)

 ' Read the entire stream into a string variable
 strXML = oTStream.ReadAll

 ' Close the TextStream object
 oTStream.Close

 ' Free up resources
 Set oTStream = Nothing
 Set oFso = Nothing

 ' load XML markup that represents a customized Ribbon
 Application.LoadCustomUI "EduTabR", strXML

End Function

Th is procedure uses the LoadCustomUI method of the Application object to
load into Access the XML markup that contains your Ribbon customizations.
To use this method, you must pass the name of the Ribbon and the XML code
that defi nes the customized Ribbon. In this example, EduTabR is the name of
our customized Ribbon. You can name your Ribbon anything you want. Th e
strXML variable contains the XML markup. Because the XML markup must be
passed as a text string, the procedure begins by accessing the FileSystemObject
from the Microsoft Scripting Runtime (see Part 2) and reading the contents of
the XML fi le using the ReadAll method of the TextStream object.
 In Part 4 of this custom project, you will call the LoadRibbon function from
the AutoExec macro to make the custom Ribbon available to the database
application on startup.

PROGRAMMING THE USER INTERFACE 833

12. Click the Save button to save changes in the RibbonModification module.
13. Choose Debug | Compile EduSystems1 to ensure that the VBA code does

not contain spelling or other errors. If errors are found, correct them before
proceeding to the next step.

14. Press Alt+Q to close the Visual Basic Editor window and return to Microsoft
Access.

Part 4: Calling the LoadRibbon function from an Autoexec Macro

15. In the Access window’s Navigation pane, right-click the AutoExec macro name
and select Design View.

16. In the macro design window, select RunCode from the Add New Action drop-
down list. Enter LoadRibbon() in the Function Name text box (see Figure
28.19). The function name should automatically appear when you start typing
its name.

FIGURE 28.19 To load a Ribbon customization in your Access database, enter the custom
LoadRibbon() function in the AutoExec macro.

17. Press Ctrl+S or click the Save icon on the Quick Access toolbar.
18. An Access macro named AutoExec runs automatically each time you open

the database. If you need to open a database without running this macro or

834 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to bypass other startup options, hold down the Shift key when opening the
database. For more information about using macros in Access 2019, refer to
Chapter 29 (“Macros and Templates.”).

19. To run the AutoExec macro right now, click the Run button on the Design tab.
If you clicked the Run button and received no error, the macro has run
successfully and your Ribbon customization (EduTabR) has been loaded. For
the changes in the Ribbon to become visible, you must complete the steps in
Part 5 of this custom project.

20. Close the Macro Designer window.

Part 5: Applying the Customized Ribbon

21. Click the File tab, then click Options.
22. Click the Current Database option. In the Ribbon and Toolbar Options

section, choose EduTabR from the Ribbon Name list (Figure 28.20).

FIGURE 28.20 Enabling a customized Ribbon in the current database.

23. Click OK to close the Access Options window.
Microsoft Access displays a message informing you that you must close and
reopen the current database for the specifi ed option to take eff ect.

24. Click OK to the message. Then close and restart the EduSystems1 database.
When the database reopens, you should see in the default database Ribbon
your custom tab named Edu Systems (see Figure 28.16 earlier in this chapter).
Before going on to the next section, allow some time for testing the controls
placed in this custom tab.

25. Close the EduSystems1.accdb database.

PROGRAMMING THE USER INTERFACE 835

Embedding Ribbon XML Markup in a VBA Procedure

In Custom Project 28.1, you saw how to load a Ribbon customization from
an external XML document. Because the name and path of this document are
hard-coded in the LoadRibbon function, prior to loading the database you must
make sure that the XML markup file exists in the specified folder or Access will
greet you with one or more error messages. If you don’t want to worry about the
location of the XML markup file, you can place the XML markup directly inside
the VBA function procedure that loads the Ribbon, as shown in Figure 28.21.
While the formatting of the XML string is more time-consuming than refer-
encing the file directly, it will ensure that your Ribbon markup travels with the
database. Placing Ribbon XML markup inside a VBA procedure is not recom-
mended if you plan on using the same Ribbon customizations in more than one
database. If the Ribbon needs to be modified, you would need to make changes
in several places, which can become confusing.

FIGURE 28.21 Ribbon XML markup can be embedded inside the VBA procedure (see the
EduSystems3.accdb database on the companion CD-ROM).

Storing Ribbon Customization XML Markup in a Table

If you store your Ribbon customization XML markup in a local database table,
your XML code will be loaded automatically at startup and you won’t need to
write a special VBA function to load your markup as you did in Custom Project
28.1. To store your XML in a table, you must create a system table named USy-
sRibbons. This table must include two fields: a text field named RibbonName
and a memo field named RibbonXML. Access expects these specific column

836 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

names and data types to read your Ribbon customizations. Any additional fields
in this table will be ignored. In the RibbonName field, enter a unique name that
identifies your custom Ribbon. The RibbonXML field must contain the XML
customization markup to be applied to the Ribbon. The USysRibbons table is
a hidden system table. To show this table in the Navigation pane, you must tell
Access to show system objects (see the next side bar). You can define multiple
Ribbons in your database application by adding a new record to the USysRib-
bons table.

Let’s now proceed to Hands-On 28.6 in which you create the USysRibbons
table to store the Ribbon customization prepared earlier in this chapter.

 Hands-On 28.6 Creating a Local System Table to Store Ribbon
Customization

This hands-on exercise requires the XML document prepared in Hands-On
28.5.

1. Copy the Access database named EduSystems_Local.accdb from the com-
panion CD-ROM disc to your C:\VBAAccess2019_ByExample folder.

2. Open the EduSystems_Local.accdb database and click Create | Table Design.
3. In Table Design view, enter the table structure as shown in Figure 28.22. To

make the RibbonName field the primary key, select this field and click the
Primary Key button in the Tools group of the Design tab.

FIGURE 28.22 USysRibbons is a special system table used for storing Ribbon customizations.

PROGRAMMING THE USER INTERFACE 837

4. Save the table as USysRibbons. (Press Ctrl+S or click the Save button on the
Quick Access toolbar to open the Save As dialog box.)

5. Open the C:\VBAAccess2019_ByExample\EduSystems_01.xml in Windows
Notepad. Press Ctrl+A to select all text and Ctrl+C to copy it to the clipboard,
then close Notepad.

6. Back in Microsoft Access, in the Design tab, click the View button and open
the table in the Datasheet view.

7. In the RibbonName field, enter TestRibbonTab. Press Ctrl+V to paste the
entire contents of the C:\VBAAccess2019_ByExample\EduSystems_01.xml
document into the RibbonXML field. Expand the row width so that the entire
XML markup is visible. Make changes in the onAction attribute of the buttons
as shown in Figure 28.23. In the onAction attribute for btnNewStud, enter
RibbonLib.OpenStudentDetails. In the onAction attribute for btnViewAll-
Stud, enter RibbonLib.OpenStudentList.

FIGURE 28.23 The USysRibbons table with a record defining Ribbon customization. To define
multiple Ribbons in your application, simply add a new record to this table.

8. Save and close the USysRibbons table.

838 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Showing System Objects in the Navigation Pane

By default, system tables do not show in the Navigation pane. If you need to
open the USysRibbons table to correct any errors or add a new record, you must
enable the system objects in the Navigation Options dialog box, as follows:

 1. Click the File tab, then click Options.
 2. Click Current Database, then in the Navigation section click the Naviga-

tion Options button.
 3. Select Show System Objects and click OK to close the Navigation Options

dialog box.
 4. Click OK to exit the Access Options dialog box.

Th e next step is to enter callbacks that are needed for the button actions. In
Custom Project 28.1 you wrote VBA callback procedures for the btnNewStud
and btnViewAllStud buttons. Instead of a VBA callback, the onAction attribute
of the button control can invoke a macro. Macro callbacks do not require that
you return a value to the Ribbon. Also, your Ribbon customization can be
functional even in safe mode (when code is not enabled for the database). It is
up to you to decide whether to write VBA callbacks or to create simple macro
actions for your custom Ribbon controls.
Hands-On 28.7 demonstrates the implementation of macros in the onAction
attribute for controls. Th is hands-on exercise also introduces you to submacros.
Submacros are like subroutines. Instead of cluttering the Navigation pane with
a large number of small macros that perform a specifi c task, you can defi ne
a series of actions in one place as a submacro and then call that submacro
whenever it’s needed.

 Hands-On 28.7 Using Macros Instead of VBA Callbacks

1. In the database window, click the Create tab, then in the Macros & Code
group, click the Macro button.

2. In the macro design window, select Submacro from the Add New Action
drop-down list.

3. In the Submacro name text box, enter OpenStudentDetails.
4. Specify the form settings as shown in Figure 28.24:

 a. Select OpenForm from the Add New Action drop-down list.
 b. Select StudentDetails from the Form Name drop-down list.
 c. Select Add from the Data Mode drop-down list.

SIDEBAR

PROGRAMMING THE USER INTERFACE 839

5. Select Submacro from the Add New Action drop-down list located below End
Submacro.

6. In the Submacro name text box, enter OpenStudentList.
7. Specify the form settings as shown in Figure 28.25:

 a. Select OpenForm from the Add New Action drop-down list.
 b. Select StudentList from the Form Name drop-down list.

FIGURE 28.24 Creating the OpenStudentDetails submacro.

FIGURE 28.25 Creating the OpenStudentList submacro.

840 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

8. Press Ctrl+S to invoke a Save As dialog box. Enter RibbonLib for your macro
name. This macro contains the two submacros created in earlier steps.

9. Close the Macro Designer window.
Now that your macro callbacks are ready, you must tell Access to read your
Ribbon defi nition from the USysRibbons system table. To do this, you must
close and restart the application.

10. Restart Access and then reload the EduSystems_Local.accdb database.
When the application starts, Access looks for the USysRibbons system table. If
the table exists, Access proceeds to read the data. If any errors are encountered
in the Ribbon defi nition and you have set the option to Show add-in user
interface errors (see Figure 28.17 earlier), you will see error messages like the
one shown in Figure 28.26. You must correct all the errors before Access can
display your customization in the Ribbon.

FIGURE 28.26 Upon loading the database, Access displays an error message if errors are found in
the Ribbon customization markup.

If there are no errors, Access loads your customization; however, before you
can see the Ribbon you need to tell Access to apply your Ribbon customization
when the application is started.

11. Click the File tab, then click Options.
12. Click Current Database. In the Ribbon and Toolbar Options section, choose the

name of your customized Ribbon from the Ribbon Name list: TestRibbonTab.
13. Click OK to close the Access Options window.

Access will advise you that you must close and restart the application before
the changes take eff ect.

14. Close and restart the database.
When the EduSystems_Local database is reloaded, it should see your custom
Ribbon tab named Edu Systems. Take the time to test the controls placed on
this tab to make sure that the macro actions are invoked correctly.

PROGRAMMING THE USER INTERFACE 841

15. Close the EduSystems_Local.accdb database.

NOTE If you don’t want Access to automatically load Ribbon custom-
izations from the USysRibbons table, simply rename this table.

Assigning Ribbon Customizations to Forms and Reports

In addition to customizing the main database Ribbon, Access allows you to
create Ribbons that are associated with a particular form or report. To display
Ribbon content for forms and reports, you can use a contextual tabset called
AccessFormReportExtensibility. This tabset is hidden by default; however,
it will become visible when it has controls to display. You will insert some com-
mands into this contextual tabset in Custom Project 28.2. Because the contex-
tual tabset takes focus when the form or report is first opened, your users will be
able to see right away the special controls you’ve made available for them. These
controls can include built-in icons from other Access tabs or your own custom
buttons and other types of controls as discussed later in this chapter.

Keep in mind that Ribbon customizations for forms and reports are only dis-
played when a form or report is loaded or activated, and they are removed when
the object is closed or deactivated. While a specific form or report is in use, you
may also hide other built-in Ribbon items. You can do this by setting the visible
attribute of a Ribbon item to False. This will prevent users from using features
of the program that you don’t want to be available.

To assign a custom Ribbon to a form or report, you must open a form or
report in Design or Layout view. On the Other tab of the property sheet, choose
the Ribbon you want to apply from the Ribbon Name list.

 Custom Project 28.2 Creating and Assigning Ribbon Customization
to a Report

This custom project requires access to the EduSystems_Local.accdb database
and the USysRibbons table that was created in Hands-On 28.6.

Part 1: Creating Ribbon Customization for a Report Using a Local System Table

1. Open the C:\VBAAccess2019_ByExample\EduSystems_Local.accdb data-
base.
Th is database will display a custom tab named Edu Systems. Recall that the
XML markup for this customization is stored in the local system table named
USysRibbons. In this exercise, you will add another record to this table to

842 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

specify a Ribbon customization for an Access report. Before you proceed to the
next step, make sure that the USysRibbons table is displayed in the Navigation
pane. To unhide the table, follow the steps outlined in the previous sidebar,
“Showing System Objects in the Navigation Pane.”

2. Open the USysRibbons table and enter a new record for the Ribbon named
AlergMedRpt as shown in Figure 28.27. You can copy the XML markup file
from EduSystems_04.xml on your companion CD-ROM disc.

FIGURE 28.27 Entering Ribbon customization for a report.

Th e RibbonXML fi eld contains the XML markup you want to apply to a
report. Th e RibbonName can be any name you want to use to identify this
customization. To have Access use the special contextual tabset available for
forms and reports, you must use the <contextualTabs> XML tag. Within this
tag, use the <tabSet> tag. Because this tabset is defi ned by Access, you must
specify TabSetFormReportExtensibility in the idMso attribute:

<contextualTabs>
<tabSet idMso="TabSetFormReportExtensibility">

In the next statement, assign a custom ID and a name to the tab that will
contain your customization:

<tab id="rptTools" label="Report Tools">

Th e preceding XML statement tells Access to place the focus on the Report
Tools tab when the report is opened.

PROGRAMMING THE USER INTERFACE 843

Th e next two XML statements defi ne the controls you want to display:

<group idMso="GroupSortAndFilter" />
<group idMso="GroupFindAccess" />
</tab>

In this example, you are telling Access to simply add the Sort and Filter and
Find groups from its library of built-in controls. As mentioned earlier, you can
download the list of control IDs from the Microsoft Web site. Since currently
you are not defi ning other customizations to appear on this tab, you need to
close this XML group by including the closing tags:

</tabSet>
</contextualTabs>

When the report is loaded, you also want to disable certain built-in features
such as controls that collect data and use SharePoint lists. Th is can be done
by setting the visible attribute of the named built-in control groups to false:

<tabs>
<tab idMso="TabExternalData" visible="true">
<group idMso="GroupCollectData" visible="false" />
<group idMso="GroupSharepointLists" visible="false" />
</tab>
</tabs>

To fi nish off the customization markup, you need to include the ending tags:

</ribbon>
</customUI>

3. Press Ctrl+S to save changes to the USysRibbons table.
4. Close the USysRibbons table.

Part 2: Making Access Aware of the New Customization

Remember that the Ribbon customization cannot be displayed until you close
and reopen the database.

5. Exit Access and reopen the EduSystems_Local.accdb database.
When Access loads, it will read the Ribbon customizations from the
USysRibbons table. Now is the time to tell Access to load the customized
Ribbon for a specifi c report.

844 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

You should follow the same steps for creating and assigning Rib-
bon customizations for a form. Of course, your XML markup
for a form ought to include the features related to forms and not
reports.

Part 3: Assigning a Ribbon Customization to a Report

6. In the Navigation pane, right-click the Allergies and Medications report and
choose Design View.

7. If the property sheet is not displayed, press Alt+Enter to display it. Make
sure Report is selected in the selection list at the top of the property sheet.

8. In the property sheet, click the Other tab, click the down arrow next to the
Ribbon Name property, and choose AlergMedRpt from the drop-down list
(see Figure 28.28).

FIGURE 28.28 Use the Ribbon Name property of the report to assign your Ribbon customization
to the active report.

9. Press Ctrl+S to save the changes.
10. Close the Allergies and Medications report, then reopen it.

Notice that when the report opens, the focus is on your custom Ribbon tab
named Report Tools (Figure 28.29).

PROGRAMMING THE USER INTERFACE 845

FIGURE 28.29 The custom Report Tools tab appears in the Access Ribbon when the Allergies and
Medications report is opened.

11. Click the External Data tab and notice that only two control groups are shown:
Import & Link and Export. The Collect Data tab that normally appears for
reports is removed from the Ribbon. This report group is made invisible when
the Allergies and Medications report is active, and appears on the External
Data tab when any other report is open.

12. Close the Allergies and Medications report when you are finished viewing
Ribbon customizations.

13. Close the EduSystems_Local.accdb database.

USING IMAGES IN RIBBON CUSTOMIZATIONS

The images you have learned to use so far in your Ribbon customizations are
images provided by any Office application that implements the Ribbon. You
already know that to reuse an Office icon you must use the imageMso attri-
bute of a control. However, instead of using built-in Office images you can also
use your own BMP, GIF, and JPEG image files. These images can be stored in
a directory on your computer or a network drive, or in an Access table, then
passed to your Ribbon controls via the loadImage callback for the Ribbon or the
getImage callback for a control.

Requesting Images via the loadImage Callback

You can specify the name of a custom image file to be loaded for a specific con-
trol on the Ribbon by using the image attribute. When you request the image via
the image attribute, the loadImage callback is called. To load images dynamically
with one procedure call, define the callback procedure name in the loadImage

846 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

attribute of the customUI node. Here’s a fragment of the XML markup file that
we’ll use in Custom Project 28.3 to implement this method of loading images:

1. In the first line of your Ribbon customization markup (inside the <customUI>
tag), use the loadImage attribute and specify the name of the callback procedure:
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui"
loadImage="OnLoadImage">

2. When defining your Ribbon controls, use the image attribute and specify the
name of the image file:
<group id="ImagesGroup" label ="Special Features">
<button id="btnNotes" label="Open Notepad"
image="Note.gif" size="large" onAction="OpenNotepad" />
<button id="btnComputer" label="Computer folder"
image="MyFolder.gif" size="normal" />
</group>

3. Write the loadImage callback procedure (OnLoadImage) in a VBA module:
Public Sub OnLoadImage(imgName As String, ByRef image)
 Dim strImgFileName As String
 strImgFileName = "C:\VBAAccess2019_ByExample\images\" &
 imgName

 Set image = LoadPicture(strImgFileName)
End Sub

Notice that to load a picture from a fi le, you need to use the LoadPicture
function. Th is function is a member of the stdole.StdFunctions library. Th e
library fi le, which is called stdole2.tlb, is installed in the System or System32
folder on your computer and is available to your VBA procedures without
setting additional references. Th e LoadPicture function returns an object of
type IPictureDisp that represents the image. You can view objects, methods,
and properties available in the stdole library by activating the Object Browser
in the Visual Basic Editor window.

4. Write the callback procedure for the button labeled Open Notepad:
Public Sub OpenNotepad(ctl As IRibbonControl)
 Shell "Notepad.exe", vbNormalFocus
End Sub

Th e OpenNotepad procedure tells Access to use the Shell function to open
Windows Notepad. Notice that the name of the program’s executable fi le is in

PROGRAMMING THE USER INTERFACE 847

double quotes. Th e second argument of the Shell function is optional. Th is
argument specifi es the window style, that is, how the program will appear once
it is launched. Th e vbNormalFocus constant will open Notepad in a normal
size window with focus. If the window style is not specifi ed, the program will
be minimized with focus (vbMinimizedFocus).

Let’s proceed to Custom Project 28.3, which adds two new buttons with custom
images to the Ribbon.

 Custom Project 28.3 Loading Custom Images Using the
loadImage Callback

This project requires access to the EduSystems_Local.accdb database and the
USysRibbons table that was created in Hands-On 28.6. To use custom images,
copy the Images folder from the companion CD-ROM disc to your C:\VBAAc-
cess2019_ByExample folder.

Part 1: Creating Ribbon Customization for Loading Custom Images

1. Open the C:\VBAAccess2019_ByExample\EduSystems_Local.accdb data-
base.

2. In the Navigation pane, double-click the USysRibbons table to open it. If you
cannot find this table, refer to Part 1 in Custom Project 28.2.

3. Enter a new record for the Ribbon named CustomImage1 as shown in Figure
28.30. You can copy the XML markup from the EduSystems_05.txt file on the
companion CD-ROM disc.
 In the fi rst line of the Ribbon customization markup (inside the <customUI>
tag), notice that we’ve added the loadImage attribute. Th is attribute specifi es
the name of the callback procedure, OnLoadImage, that will handle loading
the custom images included in the Special Features group. Th e Special Features
group contains two images to be loaded from the C:\VBAAccess2019_
ByExample\Images folder. Notice that the names of these images are specifi ed
in the image attribute of each button control in this group. You do not
need to specify the fi le path; the OnLoadImage procedure will contain this
information. For the button to perform some action, you need to include the
onAction attribute with the name of the macro, VBA procedure, or expression
to be executed. Th is example does not defi ne the onAction callback for the
button named Computer Folder. To test your skills, you can add your own
action for this button when you have completed this project.

848 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Press Ctrl+S to save changes to the USysRibbons table.
5. Close the USysRibbons table.

FIGURE 28.30 Entering Ribbon customization for loading custom images.

Part 2: Setting Up the Programming Environment

6. Press Alt+F11 to switch to the Visual Basic Editor window.
7. Choose Tools | References. In the References dialog box, add a reference

to the following library: Microsoft Office 16.0 Object Library.
8. Click OK to close the References dialog box.

Part 3: Writing the VBA Callback Procedures

9. Choose Insert | Module.
10. In the module Code window, enter the following VBA procedures:

Public Sub OnLoadImage(imgName As String, ByRef image)
 Dim strImgFileName As String

PROGRAMMING THE USER INTERFACE 849

 strImgFileName = "C:\VBAAccess2019_ByExample\images\" &
imgName

 Set image = LoadPicture(strImgFileName)
End Sub

Public Sub OpenNotepad(ctl As IRibbonControl)
 Shell "Notepad.exe", vbNormalFocus
End Sub

NOTE For the explanations of these procedures, please refer to the be-
ginning of this section.

11. Press Ctrl+S to save changes in the Code window. When asked to name your
module, enter any name you want.

12. Choose File | Close and Return to Microsoft Access.

Part 4: Making Access Aware of the New Customization

Remember that the Ribbon customization cannot be displayed until you close
and reopen the database.

13. Close and reopen the EduSystems_Local.accdb database.
When Access loads, it will read the Ribbon customizations from the USysRib-
bons table.

14. Click the File tab, then click Options.
15. Click the Current Database option. In the Ribbon and Toolbar Options

section, choose CustomImage1 from the Ribbon Name list.
16. Click OK to close the Access Options window.

Microsoft Access displays a message informing you that you must close and
reopen the current database for the specifi ed option to take eff ect.

17. Click OK to the message. Then close and restart the EduSystems_Local da-
tabase.
When the database reopens, you should see the default database Ribbon with
your custom tab named Edu Systems (Figure 28.31).

FIGURE 28.31 The Ribbon customization as defined in Custom Project 28.3.

850 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

18. Try out one of the buttons by clicking the Open Notepad button to open
Windows Notepad. Then close Notepad.

Before going on to the next section, take time to modify the Ribbon XML to
include the onAction callback for the button labeled Computer Folder and write
your own custom VBA procedure to execute when this button is clicked. For
example, you can make this button display a dialog box asking the user for the
name of the folder to create, then use the VBA built-in function MkDir to create
it. Use the Object Browser to locate this function. Remember that you will have
to close and reopen the database for Access to recognize your Ribbon changes.

Requesting Images via the getImage Callback

Custom images can also be loaded to the Ribbon using the getImage attribute
of a control. The procedure you specify in this attribute will retrieve the correct
image from the specified location using the same LoadPicture function you
worked with in the previous section. The following XML markup adds two new
controls with custom images to the Special Features group that was defined in
Custom Project 28.3:

<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
loadImage="OnLoadImage">
 <ribbon startFromScratch="false">
 <tabs>
 <tab id="custTabEdu" label="Edu Systems">
 <group id="StudGroup" label="Students">
 <button id="btnNewStud" imageMso="RecordsAddFromOutlook"
 size="large" label="Add Student"
 screentip="Add Student" supertip="Enter new student information"
 onAction="RibbonLib.OpenStudentDetails" />
 <button id="btnViewAllStud" imageMso="ShowDetailsPage"
 size="large" label="View Students"
 screentip="View Students"
 supertip="View Current Students"
 onAction="RibbonLib.OpenStudentList" />
 </group>
 <group id="ToolsGroup" label="Special Commands">
 <button idMso="FilePrintQuick" size="normal" />
 <button idMso="FileSendAsAttachment" size="normal" />
 </group>
 <group id="ImagesGroup" label="Special Features">
 <button id="btnNotes" label="Open Notepad"
 image="Note.gif" size="large"
 onAction="OpenNotepad" />

PROGRAMMING THE USER INTERFACE 851

 <button id="btnComputer" label="Computer Folder"
 image="MyFolder.gif" size="normal" />
 <button id="btnRedStar" label="Honor Student"
 getImage="OnGetImage" size="large" />
 <gallery id="glHolidays" label="Holidays" columns="3" rows="4"
 getImage="OnGetImage" getItemCount="OnGetItemCount"
 getItemLabel="OnGetItemLabel" getItemImage="OnGetItemImage"
 getItemID="onGetItemID" onAction="onSelectedItem" />
 </group>
 </tab>
 </tabs>
 </ribbon>
</customUI>

In the preceding Ribbon customization markup, we are using all the controls
that have been added thus far in this chapter’s hands-on exercises and proj-
ects. In addition, the Special Features group now includes a new button labeled
Honor Student and a gallery control labeled Holidays:
<button id="btnRedStar" label="Honor Student"
 getImage="OnGetImage" size="large" />
<gallery id="glHolidays" label="Holidays" columns="3" rows="4"
 getImage="OnGetImage" getItemCount="OnGetItemCount"
 getItemLabel="OnGetItemLabel" getItemImage="OnGetItemImage"

 getItemID="onGetItemID" onAction="onSelectedItem" />

In this XML markup, the gallery control will perform the action specified in
the onSelectedItem callback procedure. To specify your own callback procedure
for the Honor Student button, you must add the onAction attribute to this but-
ton, then write the appropriate VBA code. Notice that the gallery control has
many attributes that contain static text or define callbacks. We will discuss them
later. Right now, let’s focus on the image-loading process. Both the button and
the gallery controls use the getImage attribute with the OnGetImage callback
procedure. This procedure will tell Access to load the appropriate image to the
Ribbon for each of these controls:
Public Sub OnGetImage(ctl As IRibbonControl, ByRef image)
 Select Case ctl.id
 Case "btnRedStar"
 Set image = _ LoadPicture("C:\VBAAccess2019_ByExample\
 images\redstar.gif")
 Case "glHolidays"
 Set image = _
LoadPicture("C:\VBAAccess2019_ByExample\images\Square0.gif")
 End Select
End Sub

852 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that the decision as to which image should be loaded is based on the ID
of the control in the Select Case statement. The gallery control also uses the
OnGetItemImage callback procedure (defined in the getItemImage attribute) to
load custom images for its drop-down selection list (see Figure 28.32).

Use the columns and rows attributes to specify the number of columns and
rows in the gallery when it is opened. If you need to define the height and width
of images in the gallery, use the itemHeight and itemWidth attributes (not used
in this example due to the simplicity of the utilized images). The getItemCount
and getItemLabel attributes contain callback procedures that provide informa-
tion to the Ribbon on how many items should appear in the drop-down list
and the names of those items. The getItemImage attribute contains a callback
procedure that specifies the images to be displayed next to each gallery item.
The getItemID attribute specifies the onGetItemID callback procedure that will
provide a unique ID for each of the gallery items.

Now that we’ve discussed the Ribbon customization markup, let’s go over
the VBA callbacks that are referenced in it. The following procedures need to be
added to the VBA module for the preceding XML markup to work:
Public Sub OnGetItemCount(ctl As IRibbonControl, ByRef count)
 count = 12
End Sub

In this procedure, we use the count parameter to return to the Ribbon the
number of items we want to have in the gallery control.
Public Sub OnGetItemLabel(ctl As IRibbonControl, _
 index As Integer, ByRef label)
 label = MonthName(index + 1)
End Sub

This procedure will label each of the gallery items. The VBA MonthName func-
tion is used to retrieve the name of the month based on the value of the index.
The initial value of the index is zero (0). Therefore, index + 1 will return Feb-
ruary. To display the month’s name abbreviated (Jan, Feb, etc.), specify True as
the second parameter to this function:
label = MonthName(index + 1, True)

If you are using a localized version of Microsoft Office (French, Spanish, etc.),
the MonthName function will return the name of the month in the specified
interface language.

PROGRAMMING THE USER INTERFACE 853

The next callback procedure shows how to load images for each gallery item:
Public Sub OnGetItemImage(ctl As IRibbonControl, _
 index As Integer, ByRef image)

 Dim imgPath As String

 imgPath = "C:\VBAAccess2019_ByExample\images\square"
 Set image = LoadPicture(imgPath & index + 1 & ".gif")
End Sub

Each item in the gallery must have a unique ID, so the onGetItemID callback
uses the MonthName function to specify the ID:
Public Sub onGetItemID(ctl As IRibbonControl, _
 index As Integer, ByRef id)

 id = MonthName(index + 1)

End Sub

The last procedure you need to write for the gallery control should define the
actions to be performed when an item in the gallery is clicked. This is done via
the following onSelectedItem callback that was specified in the onAction attri-
bute of the XML markup:

Public Sub onSelectedItem(ctl As IRibbonControl, _
 selectedId As String, _
 selectedIndex As Integer)

 Select Case selectedIndex
 Case 6
 MsgBox "Holiday 1: Independence Day, July 4th", _
 vbInformation + vbOKOnly, _
 selectedId & " Holidays"
 Case 11
 MsgBox "Holiday 1: Christmas Day, December 25th", _
 vbInformation + vbOKOnly, _
 selectedId & " Holidays"
 Case Else
 MsgBox "Please program holidays for " & selectedId & ".", _
 vbInformation + vbOKOnly, _
 " Under Construction"
 End Select
End Sub

854 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

In the preceding callback procedure, the selectedId parameter returns the
name that was assigned to the label, while the selectedIndex parameter is the
position of the item in the list. The first item in the list (January) is indexed
with zero (0), the second with 1, and so forth. In this procedure we have just
coded two holidays: one for the month of July (selectedIndex=6) and one for
December (selectedIndex=11). The Case Else clause in the Select Case
statement provides a message when other months are selected.

FIGURE 28.32 Customized Ribbon with the gallery control.

To implement the Ribbon customization shown in Figure 28.32, follow the steps
outlined in Hands-On 28.8.

 Hands-On 28.8 Loading Custom Images Using the getImage Callback

This hands-on exercise requires access to the EduSystems_Local.accdb database
and the USysRibbons table that was created in Hands-On 28.6. This exercise
assumes that you have also completed Custom Project 28.3, which presented
a method of loading images via the loadImage callback. By now you should
be very familiar with the Ribbon customization process, and thus this exercise
outlines only the main steps you need to take to complete it.

For a detailed explanation of the process, refer to the previous exercises
and projects. The images used in this example are located in the C:\VBAAc-
cess2019_ByExample\Images folder.

1. In the USysRibbons table of the EduSystems_Local database, add a new
record. In the RibbonName field, enter CustomImage2 for the name of the
new Ribbon customization. In the RibbonXML field, paste the XML markup
from the EduSystems_06.txt file on the companion CD-ROM disc. Press
Ctrl+S to save the changes, then close the USysRibbons table.

2. Press Alt+F11 to switch to the Visual Basic Editor window. You should see one
module with VBA procedures that were added in Custom Project 28.3. You do
not need to create a new module for this customization. Simply enter in the
existing module Code window the VBA procedures discussed earlier in this
section (OnGetImage, OnGetItemCount, OnGetItemLabel, OnGetItemImage,

PROGRAMMING THE USER INTERFACE 855

onGetItemID, and onSelectedItem). Press Ctrl+S to save the changes in your
module and exit Visual Basic Editor.

3. Close and restart the EduSystems_Local database. When the database is
reloaded, click the File tab and select Options. In the Access Options window,
click Current Database, and select your new Ribbon (CustomImage2) from
the Ribbon Name list in the Ribbon and Toolbar Options section. Click OK
to close the Access Options window. Microsoft Access will display a message
informing you that you must close and reopen the current database for the
specified option to take effect. Click OK to the message. Then close and restart
the EduSystems_Local database.

The customized Ribbon should appear as shown earlier in Figure 28.32. Test the
gallery control by clicking on some of the month items.

NOTE

Instead of loading custom images from a computer folder, you
can create an Access table to store your images and then use
the Recordset object in the getImage callback to read the images
from the table. This table should contain at least two fields: the
ControlID field with the name of the control and the ImageFile-
Name field specifying the name of the image file for the control.
Custom images can also be stored and loaded from an Attach-
ment field, which is available in Access databases created in the
.accdb file format.

Understanding Attributes and Callbacks

Ribbon controls have properties defined by attributes, such as id, label, enabled,
screentip, and so on. By using a specific attribute you can modify the appear-
ance of a control either at design time or at runtime. To define a control attribute
at runtime, simply set it to the allowable value right in the Ribbon customization
XML markup. For example, you can provide the name for your control in the
label attribute. The control label can contain up to 1,024 characters.

If the attribute value is unknown at design time, add the prefix “get” to the
design-time attribute name and specify the name of the callback procedure or
macro as the attribute value. For example, if the control’s label needs to be de-
fined at runtime, use the getLabel attribute and specify the name of the callback
procedure:
<group id="Today’s Events" getLabel="getEventDate">

856 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When the Ribbon is loaded, the procedure in the getLabel attribute will run and
provide the actual value of the attribute:
Public Sub getEventDate(ctl As IRibbonControl, _
 ByRef ReturnValue As Variant)

 ReturnValue = "Events for " & Format(Now(), "mm/dd/yyyy")
End Sub

This procedure will display the current date in the name of the group label.
Although many times you will see the callback procedure name prefixed by “get”
or “onGet,” keep in mind that you do not have to give the callback procedure
the same name as the attribute it is used with. Use any name that makes sense to
you. The only requirement is that the callback procedure matches a particular
signature, which is the declaration of the procedure, the parameters, and return
types. For example, the callback for the onAction attribute of a button control
has the following signature:
Public Sub NameOfCallback(control As IRibbonControl)

IRibbonControl is the control that was clicked. This control is passed to your
procedure by the Ribbon. You can specify your own name for the control param-
eter. For example:
Public Sub NameOfCallback(ctl As IRibbonControl)

Before using the IRibbonControl, you need to add a reference to the Microsoft
Office 16.0 Object Library in your VBA project. The onAction attribute is a
special type of attribute that does not need to be prefixed by the word “get” to
point to a callback procedure.

USING VARIOUS CONTROLS IN RIBBON CUSTOMIZATIONS

Now that you know how to go about creating the XML markup for your Rib-
bon customizations and loading and applying the custom Ribbon to a database,
form, or report, let’s look at other types of controls you can show in the Ribbon
to give your database application a more polished and professional look. You
can reuse the EduSystems_Local database used in the earlier examples to cre-
ate additional Ribbon customizations that utilize the controls discussed in this
section.

PROGRAMMING THE USER INTERFACE 857

Creating Toggle Buttons

A toggle button is a button that alternates between two states. Many formatting
features such as Bold, Italic, or Format Painter are implemented as toggle but-
tons. When you click a toggle button, the button stays down until you click it
again. To create a toggle button, use the <toggleButton> XML tag as shown here:
<toggleButton id="tglNewStudent" label="New Student
Questionnaire"
size="normal" getPressed="OnGetPressed" onAction="ShowHideQ" />

You can add a built-in image to the toggle button with the imageMso attri-
bute, or use a custom image as discussed earlier in this chapter. To find out
whether the toggle button is pressed, include the getPressed attribute in your
XML markup. The getPressed callback procedure provides two arguments: the
control that was clicked and the pressed state of the toggle button:
Sub OnGetPressed(control As IRibbonControl, _
 ByRef pressed)

 If control.id="tglNewStudent" then
 pressed = False
 End If
End Sub

The preceding callback routine will ensure that the specified toggle button is not
pressed when the Ribbon is loaded.

To perform an action when the toggle button is clicked, set the onAction
attribute to the name of your custom callback procedure. This callback also pro-
vides two arguments: the control that was clicked and the state of the toggle
button:
Sub ShowHideQ(control As IRibbonControl, pressed As Boolean)
 If pressed Then
 MsgBox "The toggle button is pressed."
 Else
 MsgBox "The toggle button is not pressed."
 End If
End Sub

If the toggle button is pressed, the value of the pressed argument will be True;
otherwise, it will be False. The toggle button named New Student Questionnaire
is shown in Figure 28.33.

858 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 28.33 The custom toggle button Student Questionnaire will become highlighted when
pressed and will return to its normal state when clicked again.

Creating Split Buttons, Menus, and Submenus

A split button is a combination of a button or toggle button and a menu. Click-
ing the button performs one default action, and clicking the drop-down arrow
opens a menu with a list of related options to select from. To create the split but-
ton, use the <splitButton> tag. Within this tag, you need to define a <button>
or a <toggleButton> control and the <menu> control, as shown in the following
XML markup:
<group id="OtherControlsGroup" label="Other Controls" >
<splitButton id="btnSplit1" size="large" >
<button id="btnImport" label="Import More"
imageMso="ImportAccess" />
<menu id="mnuImport" label="More Import Formats"
itemSize="normal" >
<menuSeparator id="mnuDiv1" title="Other Databases" />
<button id="btnImportODBC" label="ODBC database"
imageMso="ImportOdbcDatabase" />
<button id="btnImportDbase" label="Dbase file"
imageMso="ImportDBase" />
<button id="btnImportParadox" label="Paradox file"
imageMso="ImportParadox" />
<menuSeparator id="mnuDiv2" title="Spreadsheet Files" />
<menu id="mnuExcel" label="Excel File Formats"
imageMso="ImportExcel" itemSize="normal" >
<checkBox id="xlsFormat" label="xls file" />
<checkBox id="xlsxFormat" label="xlsx file" />
</menu>
<button id="btnImportLotus" label="Lotus 1-2-3 file"
imageMso="ImportLotus" />
<menuSeparator id="mnuDiv3" title="Other Files" />
<button id="btnText" label="Text file"
imageMso="ImportTextFile" />
<button id="btnXML" label="XML file" imageMso="ImportXmlFile" />

PROGRAMMING THE USER INTERFACE 859

<button id="btnHTML" label="HTML file"
imageMso="ImportHtmlDocument" />
<button id="btnOutlook" label="Outlook folder"
imageMso="ImportOutlook" />
<button id="btnSharepoint" label="SharePoint List"
imageMso="ImportSharePointList" />
</menu>
</splitButton>
</group>

NOTE The <checkBox> tag used in the preceding example XML is dis-
cussed in detail in the next section.

You can specify the size of the items in the menu using the itemSize attribute.
To display a description for each menu item below the item label, set the item-
Size attribute to large (itemSize="large") and use the description attribute to
specify the text. The <menuSeparator> tag can be used inside the menu node
to break the menu into sections. Each menu segment can then be titled using
the title attribute, as shown in the preceding example. You can add the onAc-
tion attribute to each menu button to specify the callback procedure or macro
to execute when the menu item is clicked. In addition to button controls, menus
can contain toggle buttons, checkboxes, gallery controls, split buttons, nested
menus, and dynamic menus. Figure 28.34 displays the Ribbon with split but-
tons, menus, and submenus created in this section.

FIGURE 28.34 Custom split button controls can use the built-in Office images. They can also contain
menus and submenus consisting of checkboxes.

Creating Checkboxes

The checkbox control is used to provide an option, such as true/false or on/off.
It can be included inside a menu control as was demonstrated in the previous

860 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

section or used as a separate control on the Ribbon. To create a checkbox, use
the <checkBox> tag, as shown in the following XML:
<separator id="OtherControlsDiv1" />
<labelControl id="TitleForBox1" label="Areas of Interest (please
 check below)" />
<box id="boxLayout1">
<checkBox id="chkSafety" label="School Safety"
 enabled="true" visible="true"
 onAction="DoSomething" />
<checkBox id="chkHealth" label="Health" enabled="false" />
<checkBox id="chkSportsMusic" getLabel="onGetLabel" />
</box>

In the preceding XML markup, the <separator> tag will produce the vertical
bar that visually separates controls within the same Ribbon group (see Figure
28.35). The <labelControl> tag can be used to display static text anywhere in
the Ribbon. In this example, we use it to place a header over a set of controls.
To control the layout of various controls (to display them horizontally instead
of vertically), use the <box> tag. You can define whether a checkbox should
be visible or hidden by setting the visible attribute to true or false. To disable
a checkbox, set the enabled attribute to false; this will cause the checkbox to
appear grayed out. Notice that the checkbox labeled Health is not active (it is
grayed out).

FIGURE 28.35 These checkbox controls are laid out horizontally.

Similar to other controls, labels for checkboxes can contain static text in the
label attribute, or they can be assigned dynamically using the callback proce-
dure in the getLabel attribute:
<checkBox id="chkSportsMusic" getLabel="onGetLabel" />

The getLabel attribute points to the onGetLabel callback procedure, which
needs to be added to your VBA module:
Public Sub onGetLabel(ctl As IRibbonControl, ByRef label)
 If ctl.id = "chkSportsMusic" And _
 Weekday(Now(), vbWednesday) Then
 label = "Sports"

PROGRAMMING THE USER INTERFACE 861

 Else
 label = "Music"
 End If
End Sub

This procedure will run automatically when the Ribbon loads. If today happens
to be Wednesday, you will see a checkbox for Sports; otherwise, it will be Music.

The action of the checkbox control is handled by the callback procedure in
the onAction attribute:
<checkBox id="chkSafety" label="School Safety"
 enabled="true" visible="true"
 onAction="DoSomething" />

The DoSomething procedure needs to be added to the VBA module for the
School Safety checkbox to respond to a user’s click:
Public Sub DoSomething(ctl As IRibbonControl, _
 pressed As Boolean)
 If ctl.id = "chkSafety" And pressed Then
 MsgBox "Safety is our number one concern."
 Else
 MsgBox "Sorry to hear that safety is not your concern."
 End If
End Sub

To get the checked state for a checkbox, point to your callback procedure in the
getPressed attribute, similar to what we’ve done earlier with the toggle button.
The default VBA syntax for this callback is as follows:
Sub GetPressed(control As IRibbonControl, ByRef return)

NOTE
As mentioned earlier, callback procedures don’t need to be
named the same as the attribute they are used with. Also, you
may change the callback’s argument names as desired.

Creating Edit Boxes

Use the <editBox> tag to provide an area on the Ribbon where users can type
text or numbers:
<editBox id="txtFullName" label="First and Last Name:"
sizeString="AAAAAAAAAAAAAAAA" maxLength="25"
onChange="onFullNameChange" />

Figure 28.36 shows the result of the preceding XML markup.

862 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 28.36 An edit box control allows data entry directly on the Ribbon.

The sizeString attribute specifies the width of the edit box. Set it to a string that
will give you the width you want. The maxLength attribute allows you to limit
the number of characters and/or digits that can be typed in the edit box. If the
text entered exceeds the specified number of characters (25 in this case), Access
automatically displays a balloon message on the Ribbon: “The entry may con-
tain no more than 25 characters.”

When the entry is updated in an edit box control, the callback procedure
specified in the onChange attribute is called:
Public Sub onFullNameChange(ctl As IRibbonControl, _
 text As String)
 If text <> "" Then
 MsgBox "Is '" & text & _
 "’ your real name?"
 End If
End Sub

When the user enters text in the edit box, the procedure will display a message
box.

Creating Combo Boxes and Drop Downs

There are three types of drop-down controls that can be placed on the Ribbon:
combo box, drop down, and gallery.

These controls can be dynamically populated at runtime by writing callbacks
for their getItemCount, getItemID, getItemLabel, getItemImage, getItemScreen-
tip, or getItemSupertip attributes. The combo box and drop-down controls can
also be made static by defining their drop-down content using the <item> tag,
as shown here:
<separator id="OtherControlsDiv2" />
<comboBox id="cmbLang" label="Languages"
supertip="Select Language Guide"
 onChange="OnChangeLang" >
 <item id="English" label="English" />
 <item id="Spanish" label="Spanish" />
 <item id="French" label="French" />
 <item id="German" label="German" />

PROGRAMMING THE USER INTERFACE 863

 <item id="Russian" label="Russian" />
</comboBox>

To separate the combo box control from other controls in the same Ribbon
group, this example uses the <separator> tag. Notice that each <item> tag speci-
fies a new drop-down row.

NOTE

A combo box is a combination of a drop-down list and a single-
line edit box, allowing the user to either type a value directly
into the control or choose from the list of predefined options. Use
the sizeString attribute to define the width of the edit box.

The combo box control does not have the onAction attribute. It uses the
onChange attribute that specifies the callback to execute when the item selec-
tion changes:
Public Sub OnChangeLang(ctl As IRibbonControl, _
 text As String)

 MsgBox "You selected the " & text & " language guide."
End Sub

Notice that the onChange callback provides only the text of the selected item; it
does not give you access to the selected index. If you need the index of the selec-
tion, use the dropdown control instead, as shown here:
<dropDown id="drpBoro" label="City Borough"
 supertip="Select School Borough"
 onAction="OnActionBoro" >
 <item id="M" label="Manhattan" />
 <item id="B" label="Brooklyn" />
 <item id="Q" label="Queens" />
 <item id="I" label="Staten Island" />
 <item id="X" label="Bronx" />
</dropDown>

The onAction callback of the drop-down control will give you both the selected
item’s ID and its index:
Public Sub OnActionBoro(ctl As IRibbonControl, _
 ByRef SelectedID As String, _
 ByRef SelectedIndex As Integer)

 MsgBox "Index=" & SelectedIndex & " ID=" & SelectedID
End Sub

864 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Figure 28.37 shows the combo box and drop-down controls created in this
section.

FIGURE 28.37 The Languages combo box and City Borough drop-down controls look the same on
the Ribbon.

NOTE

The gallery control was introduced earlier in this chapter in the
section titled “Requesting Images via the getImage Callback.”
This control cannot be static; it must be dynamically populated
at runtime.

Creating a Dialog Box Launcher

Some Ribbon tabs have a small dialog launcher button at the bottom-right cor-
ner of a group (see Figure 28.15 earlier). You can use this button to open a spe-
cial form that allows the user to set up many options at once, or you can display
a form that contains specific information. To add a custom dialog launcher but-
ton to the Ribbon, use the <dialogBoxLauncher> tag, as shown here:
<dialogBoxLauncher>
 <button id="Launch1"
 screentip="Show Product Key"
 onAction="OnActionLaunch" />
</dialogBoxLauncher>

The dialog box launcher control must contain a button. The OnAction attribute
for the button contains the callback procedure that will execute when the button
is clicked:
Public Sub OnActionLaunch(ctl As IRibbonControl)
 ' open the About Microsoft Office Access box
 DoCmd.RunCommand acCmdAboutMicrosoftAccess
End Sub

The dialog box launcher control must appear as the last element within the con-
taining group element in the XML markup. The entire definition of the custom
Edu Systems Ribbon tab created in this chapter and depicted in Figure 28.38 is
available in the EduSystems_12_withDialogLauncher.txt file on the companion
CD-ROM disc.

PROGRAMMING THE USER INTERFACE 865

FIGURE 28.38 A dialog box launcher control on the Ribbon.

Disabling a Control

You can disable a built-in or custom Ribbon control by using the enabled or
getEnabled attribute. Here’s how we disabled our custom checkbox control ear-
lier by using the enabled attribute:
<checkBox id="chkHealth" label="Health" enabled="false" />

Use the getEnabled attribute to disable a control based on some conditions or
simply display a “not authorized” message. The following XML code shows how
to disable the built-in Relationships button on the Ribbon’s Database Tools tab:
<!-- Built-in commands section -->
<commands>
 <command idMso="DatabaseRelationships"
onAction="DisableRelations" />
</commands>

To make your XML code more readable, you can include comments between
the <!-- and --> characters. The <command> tag can be used to refer to any
built-in command. This tag must appear in the <commands> section of the
XML code. To see the exact position of the above XML markup in the Ribbon
Customization, open the EduSystems_13_DisableAndRepurpose.txt file on the
companion CD-ROM disc. Notice the built-in command section just before the
line:
<ribbon startFromScratch="false">

The onAction attribute contains the following callback procedure that will dis-
play a message when the Relationships button is clicked:
Sub DisableRelations(ctl As IRibbonControl, _
 ByRef cancelDefault)

 MsgBox "You are not authorized to use this function."
 cancelDefault = True
End Sub

You can add more code to this procedure if you need to cancel the control’s
default behavior only when certain conditions have been satisfied.

866 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Repurposing a Built-in Control

It is possible to change the purpose of a built-in Ribbon button. For example,
when the user clicks the DatabaseDocumentor button (Database Tools | Ana-
lyze Group) while the Student List form is open, you could display a Database
Properties dialog box instead of the default Documentor dialog box:

<command idMso="DatabaseDocumentor" onAction="ShowDbProperties" />

Public Sub ShowDbProperties(ctl As IRibbonControl, _
 ByRef cancelDefault)

 If CurrentProject.AllForms("Student List").IsLoaded Then
 ' display Database Properties dialog box instead
 DoCmd.RunCommand acCmdDatabaseProperties
 Else
 cancelDefault = False
 End If
End Sub

Only simple buttons that perform an action when clicked can be repurposed.
You cannot repurpose advanced controls such as combo boxes, drop downs, or
galleries.

Refreshing the Ribbon

So far in this chapter you’ve seen how to use callback procedures to specify the
values of control attributes at runtime. But what if you need to update your
custom Ribbon or the controls placed in the Ribbon based on what the user is
doing in your application? The good news is that you can change the attribute
values at any time by using the InvalidateControl method of the IRibbonUI
object. To use this object, start by adding the onLoad attribute to the customUI
element in your Ribbon customization XML:
<customUI xmlns="http://schemas.microsoft.com/office/2009/07/
customui"
loadImage="OnLoadImage" onLoad="RefreshMe" >

The onLoad attribute points to the callback procedure that will give you a copy
of the Ribbon that you can use to refresh anytime you want. In this example, the
onLoad callback procedure name is RefreshMe.

Let’s say you have a checkbox that is disabled when the Ribbon is first loaded
and you would like to enable it when the user enters text in an edit box. Also, upon
entry you want the text of the edit box to appear in uppercase. To implement

PROGRAMMING THE USER INTERFACE 867

the onLoad callback, start by declaring a Public module-level variable of type
IRibbonUI:
Public objRibbon As IribbonUI

The preceding statement should appear in the declaration section at the top of
the VBA module. To keep track of the state of the two Ribbon controls we are
interested in, declare two Private module-level variables:
Private strUserTxt As String
Private isCtlEnabled As Boolean

Next, enter the callback procedure that will store a copy of the Ribbon in the
objRibbon variable and assign an initial value to the isCtlEnable variable:
' callback for the onLoad attribute of customUI
Public Sub RefreshMe(ribbon As IRibbonUI)
 Set objRibbon = ribbon
 isCtlEnabled = False
End Sub

When the Ribbon loads, the checkbox control will be disabled. You will also
have a copy of the IRibbonUI object saved for later use. Now, let’s take a look at
the XML markup used in this scenario:
<checkBox id="chkHealth" label="Health"
getEnabled="onGetEnabled_Health" />
<editBox id="txtFullName" label="First and Last Name:"
 sizeString="AAAAAAAAAAAAAAAAAA" maxLength="25"
 getText="getEditBoxText" onChange="onFullNameChangeToUcase" />

These checkbox and edit box controls were introduced earlier in this chapter
(see Figure 28.39). In order to change the enabled state of the checkbox control
based on the user action, the getEnabled attribute must be used. The callback
procedure for this attribute is as follows:
Public Sub onGetEnabled_Health(control As IRibbonControl, _
 ByRef enabled)
 enabled = isCtlEnabled
End Sub

When the Ribbon is loaded, the onGetEnabled_Health procedure will provide
the value for the getEnabled attribute. The Health checkbox will be displayed in
the Ribbon in its disabled mode because we have set the value of the isCtlEn-
abled variable to False in the RefreshMe procedure.

The edit box control contains two attributes that require callback procedures.
The getText attribute points to the following callback:

868 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Public Sub getEditBoxText(control As IRibbonControl, _
 ByRef text)
 text = UCase(strUserTxt)
End Sub

The preceding callback uses the VBA built-in UCase function to change the text
that the user entered in the edit box to uppercase letters. When text is updated
in the edit box, the procedure in the onChange attribute is called:
Public Sub onFullNameChangeToUcase(ByVal control As
IRibbonControl, _
 text As String)

 If text <> "" Then
 strUserTxt = text
 objRibbon.InvalidateControl "txtFullName"
 isCtlEnabled = True
 Else
 isCtlEnabled = False
 End If
 objRibbon.InvalidateControl "chkHealth"
End Sub

The preceding callback begins by checking the value of the text parameter pro-
vided by the Ribbon. If this parameter contains a value other than an empty
string (“ “), the text the user entered is stored in the strUserTxt variable.
Before a change can occur in the Ribbon control, you need to mark the control
as invalid. This is done by calling the InvalidateControl method of the IRib-
bonUI object that we have stored in the objRibbon variable:
objRibbon.InvalidateControl "txtFullName"

This statement will tell the txtFullName control to refresh itself the next time it
is displayed. When the control is invalidated, it will automatically call its call-
back functions. The getEditBoxText callback procedure in the onChange attri-
bute will execute, causing the text entered in the txtFullName edit box control
to appear in uppercase letters.

The second action that we want to perform is to enable the chkHealth check-
box control when the user enters text in the edit box control and keep this but-
ton disabled when the edit box control is empty. This is done by setting the is-
CtlEnabled Boolean variable to True or False and invalidating the chkHealth
checkbox control. When the chkHealth control is marked as invalid, it will call
its callback functions. The onGetEnabled_Health callback procedure in the

PROGRAMMING THE USER INTERFACE 869

getEnabled attribute will execute, causing the control to appear in the enabled
state if the txtFullName edit box control contains any text.

Figure 28.39 shows the Ribbon after it has been refreshed.

FIGURE 28.39 The Ribbon controls are shown here after the Ribbon refresh. The Health checkbox is
enabled upon entry of text in the First and Last Name edit box and disabled when the entry is deleted.

The XML markup for the final Ribbon customization is contained in the
EduSystems_14_WithRefresh.txt file on the companion CD-ROM disc. You
will find the completed customizations demonstrated in this chapter in the Edu-
Systems_Local.accdb file.

Figure 28.40 shows the names of all custom Ribbons contained in the Edu-
Systems_Local.accdb database.

NOTE

The IRibbonUI object has only two methods: InvalidateCon-
trol and Invalidate. Use the InvalidateControl method
to refresh an individual control. Use the Invalidate method to
refresh all controls in the Ribbon.

FIGURE 28.40 Each time you apply a different Ribbon customization you need to close and reopen
the Access database.

870 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

THE COMMANDBARS OBJECT AND THE RIBBON

You can make your custom Ribbon button match any built-in button by using
the CommandBars object. This object has been extended with several get meth-
ods that expose the state information for the built-in controls: GetEnabledMso,
GetImageMso, GetLabelMso, GetPressedMso, GetScreentipMso, GetSuper-
tipMso, and GetVisibleMso. Use these methods in your callbacks to check the
built-in control’s properties. For example, the following statement will return
False if the Ribbon’s built-in Cut button is currently disabled (grayed out), and
True if it is enabled (ready to use):
MsgBox Application.CommandBars.GetEnabledMso("Cut")

Notice that the GetEnabledMso method requires that you provide the name of
the built-in control. To see the result of the preceding statement, simply type it
in the Immediate window and press Enter.

The GetImageMso method is very useful if you’d like to reuse any of the built-
in button images in your own controls. This method allows you to get the bit-
map for any imageMso tag. For example, to retrieve the bitmap associated with
the Cut button on the Ribbon, enter the following statement in the Immediate
window:
MsgBox Application.CommandBars.GetImageMso("Cut", 16, 16)

The preceding GetImageMso method uses three arguments: the name of the
built-in control, and the width and height of the bitmap image in pixels. Because
this method returns the IPictureDisp object, it is very easy to place the retrieved
bitmap onto your own custom Ribbon control by writing a simple VBA callback
for your control’s getImage attribute.

In addition to the methods that provide information about the properties
of the built-in controls, the CommandBars object also includes a handy Exe-
cuteMso method that can be used to trigger the built-in control’s default action.
This method is quite useful when you want to perform a click operation for
the user from within a VBA procedure or want to conditionally run a built-in
feature.

Let’s take a look at the example implementation of the GetImageMso and
ExecuteMso methods. Here’s the XML definition for a custom Ribbon button
(see Figure 28.41):
<button id="btnRptWizard" label="Use Report Wizard"
size="normal"
 getImage="onGetBitmap" onAction="DoDefaultPlus" />

PROGRAMMING THE USER INTERFACE 871

FIGURE 28.41 The custom Use Report Wizard button in the Special Features group of the Edu
Systems tab uses a built-in image and runs a built-in Access feature based on the condition specified in
the callback assigned to its onAction attribute.

The preceding XML code can be added to any of the custom Ribbon definitions
you’ve already defined in the USysRibbons table. Now let’s look at the VBA part.
You want the button to use the same image as the built-in button labeled Report
Wizard. When the button is clicked, you’d like to display the built-in Report
Wizard dialog box only when a certain condition is true. Here is the code you
need to add to your VBA module:
Sub onGetBitmap(ctl As IRibbonControl, ByRef image)
 Set image = Application.CommandBars. _
 GetImageMso("CreateReportFromWizard", 16, 16)
End Sub

When the Ribbon is loaded, the onGetBitmap callback automatically retrieves
the image bitmap from the Report Wizard button’s imageMso attribute and
assigns it to the getImage attribute of your button. When your button is clicked
and the Student List form is open, the Report Wizard dialog box will pop up; if
the specified object is not open, the user will see a message box:
Sub DoDefaultPlus(ctl As IRibbonControl)
 If Application.CurrentObjectName = "Student List" Then
 Application.CommandBars.ExecuteMso "CreateReportFromWizard"
 Else
 MsgBox "To run this Wizard you need to open " & _
 " the Student List Form", _
 vbOKOnly + vbInformation, "Action Required"
 End If
End Sub

You will find the XML markup discussed in this section in the EduSystems_15_
withCommandBars.txt file on the companion CD-ROM disc.

872 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TAB ACTIVATION AND GROUP AUTO-SCALING

Tab activation makes it possible to activate a specific tab in response to some
event. To activate a custom tab on the Access 2019 Ribbon, use the Activa-
teTab method of the IRibbonUI object by passing to it the ID of the custom
string. For example, to activate the Edu Systems tab you created in this chapter,
try the following statement in the Immediate window while any of the default
Access tabs is active:
objRibbon.ActivateTab "custTabEdu"

Recall that objRibbon is the module-level Public variable we declared earlier
for accessing the IRibbonUI object. To activate a built-in tab, use the Activa-
teTabMso method. For example, the following statement activates the Create tab:
objRibbon.ActivateTabMso "TabCreate"

Finally, there is also a special ActivateTabQ method used to activate a tab
shared between multiple add-ins. In addition to the tabID, this method requires
that you specify the namespace of the add-in. The syntax is shown here:
expression.ActivateTabQ(tabID As String, namespace as String)

where expression returns an IRibbonUI object. Keep in mind that tab activa-
tion applies only to tabs that are visible.

Group auto-scaling enables custom Ribbon groups to change their layout
when the user resizes the window (see Figure 28.42). You can enable auto-scaling
by setting the autoScale attribute of the <group> tab to true as in the following:

<group id="ImagesGroup" label="Special Features" autoScale="true">

Notice that the value of the autoScale attribute is entered in lowercase. Auto-
scaling is set on a per-group basis.

FIGURE 28.42 The commands in the Other Controls group of the Ribbon are automatically
compressed to a single button when the Access application window is made smaller. To change the
icon that appears when the group is compressed, assign an image to the group itself. When you set the
autoScale attribute to true, the group of controls in Special Features will change its layout to best fit
the resized window.

PROGRAMMING THE USER INTERFACE 873

You will find the Ribbon customizations discussed in this section in the EduSy-
stems_16_WithAutoScale.txt file on the companion CD-ROM disc.

CUSTOMIZING THE BACKSTAGE VIEW

The Access File tab provides an entry point to a part of the Office UI known as
Backstage View. This view is specifically designed for working with a database
as a whole. It contains commands known as Fast commands that provide quick
access to common functionality such as saving, opening, or closing a database.
Here you also find the Exit command for exiting Access and the Options com-
mand for customizing numerous Access features. In addition to Fast com-
mands, the navigation bar on the left-hand side of the Backstage View includes
several tabs that group related tasks. For example, clicking the Print tab in the
navigation bar displays all the information related to the installed printers and
allows you to easily access and change many of the print settings. The Info tab
organizes tasks related to compacting and repairing a database and encrypting
it with a password. As an Access developer already familiar with Ribbon UI cus-
tomization, you should feel very comfortable customizing the Backstage View.
Like the Ribbon, the Backstage View uses XML markup. The Backstage View is
a perfect place to include custom solutions that present summaries of business
processes or workflows (see the sidebar with links to Microsoft documents that
will walk you through the process of customizing the Office 2019 Backstage
View). In this section you’ll perform a couple of simple operations in the Back-
stage View to get your feet wet so that you can later move on to more advanced
customizations with the downloads recommended in the sidebar.

Backstage View Development

For an advanced introduction to the Backstage View, you may want to down-
load the following Microsoft papers that apply to the current and previous
versions of Microsoft Office:

Customizing the Office 2010 Backstage View for Developers:
http://msdn.microsoft.com/en-us/library/ee815851.aspx

Dynamically Changing the Visibility of Groups and Controls in the Office
2010 Backstage View:
http://msdn.microsoft.com/en-us/library/ff645396.aspx

SIDEBAR

874 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Backstage View XML markup should be entered between <backstage> </
backstage> elements within the <customui> </customui> tags and below any
Ribbon customization markup. The following XML markup adds a custom but-
ton named Synchronize and a custom tab named Endless Possibilities to the
Backstage View:
<backstage>
<button id="btnSync" label="Synchronize" imageMso="SyncNow"
isDefinitive="true"
insertBeforeMso="FileClose" onAction="onActionCopyToArchive" />
<tab id="mySpecialTab" label="Endless Possibilities"
 insertAfterMso="TabRecent">
<firstColumn>
<group id="grp01" label="Home Group"
helperText="This is group 1 help text">
<topItems>
<button id="myButton1" label="My button" />
</topItems>
</group>
<group id="gr02" label="Cheat Sheet">
<topItems>
<button id="myButton2" label="Cheat Ideas" />
</topItems>
<bottomItems>
<layoutContainer id="set1" layoutChildren="horizontal" >
<editBox id="item1" label="Cheat Item 1" />
<editBox id="item2" label="Cheat Item 2" />
</layoutContainer>
</bottomItems>
</group>
</firstColumn>
<secondColumn>
<group id="grpHyperlinks"
label="Frequently Accessed Websites" visible="true">
<primaryItem>
<button id="top1" label="Primary Button"
imageMso="HyperlinkProperties" />
</primaryItem>
<topItems>
<hyperlink id="msft" label="Microsoft"
getTarget="onActionExecHyperlink" />
<layoutContainer id="set2" layoutChildren="vertical" >
<hyperlink id="YouTube" label="YouTube"
getTarget="onActionExecHyperlink" />
<hyperlink id="amazon" label="Amazon"

PROGRAMMING THE USER INTERFACE 875

getTarget="onActionExecHyperlink" />
<hyperlink id="merc" label="Mercury Learning and Information"
getTarget="onActionExecHyperlink" />
</layoutContainer>
</topItems>
</group>
</secondColumn>
</tab>
</backstage>

You will find the preceding Backstage View customization in the EduSys-
tems_17_withBackstageView.txt file on the companion CD-ROM disc. The
resulting Backstage customization is shown in Figure 28.43.

FIGURE 28.43 The Backstage View is highly customizable. The Synchronize button and the Endless
Possibilities tab were created by adding custom XML markup to the USysRibbons system table.

In the preceding example XML markup, the <button> element is used to incor-
porate into the Backstage View navigation bar a custom command labeled Syn-
chronize:
<button id="btnSync" label="Synchronize" imageMso="SyncNow"
isDefinitive="true" insertBeforeMso="FileClose" onAction="onActi
onCopyToArchive" />

The <button> element contains the isDefinitive attribute. When this attribute
is set to true, clicking the button will trigger the callback procedure defined in
the onAction attribute and then automatically close the Backstage View. The

876 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

onAction callback for the custom Synchronize button is shown here. The call-
back calls the CreateDbCopy procedure that allows you to make a copy of the
specified database. Be sure to enter the procedure code in the VBA code module
of the EduSystems_Local database.
Sub onActionCopyToArchive(ctl As IRibbonControl)
 CreateDbCopy
End Sub

Sub CreateDbCopy()
 Dim fso As Object
 Dim dbName As String
 Dim dbNewName As String

 On Error GoTo ErrorHandler

 Set fso = CreateObject("Scripting.FileSystemObject")

 dbName = InputBox("Enter the name of the database " & _
 "you want to copy: " & _
 "(C:\VBAAccess2019_ByExample\Chap26.accdb)", _
 "Create a copy of")

 If dbName = "" Then Exit Sub
 If Dir(dbName) = "" Then
 MsgBox dbName & " was not found. " & Chr(13) _
 & "Check the database name or path."
 Exit Sub
 End If

 dbNewName = InputBox("Enter the name for the " & _
 "copied database:" & Chr(13) & _
 "(C:\Access2019_ByExample\Chap26Ver2.accdb)", _
 "Save As")
 If dbNewName = "" Then Exit Sub

 If Dir(dbNewName) <> "" Then
 Kill dbNewName
 End If

 fso.CopyFile dbName, dbNewName
 Set fso = Nothing

 Exit Sub
ErrorHandler:

PROGRAMMING THE USER INTERFACE 877

 MsgBox Err.Number & ":" & Err.Description
End Sub

The Backstage View XML markup also adds to the Backstage View navigation
bar a custom tab labeled Endless Possibilities. Each <tab> element can have one
or more columns. Our example contains two columns. Each tab can contain
multiple <group> elements. Here we have two groups in the first column and
one group in the second column. The Backstage group can contain different
types of controls. You can group the controls into the following three types of
sections:

<primary item> This element is used to specify the most important item in the group. The
primary item control can be a button or a menu with buttons, toggle buttons,
checkboxes, or another menu.

<topItems> This element defines controls that will appear at the top of the group.
<bottomItems> This element defines the controls that will appear at the bottom of the group.

The layout of controls in the Backstage View is defined using the <layoutCon-
tainer> element. This element’s layoutChildren attribute can define the layout
of controls as horizontal or vertical. The second column of our example XML
markup uses the onActionExecHyperlink callback procedure for the hyperlinks
shown in Figure 28.43. Enter this procedure in the VBA code module of the
EduSystems_Local database:
Sub onActionExecHyperlink(ctl As IRibbonControl, _
 ByRef target)
 Select Case ctl.ID
 Case "YouTube"
 target = "http://www.YouTube.com"
 Case "amazon"
 target = "http://www.amazon.com"
 Case "merc"
 target = "http://www.merclearning.com"
 Case "msft"
 target = "http://www.Microsoft.com"
 Case Else
 MsgBox "You clicked control id " & ctl.ID & _
 " that has not been programmed!"
 End Select
End Sub

878 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Hiding Backstage Buttons and Tabs

The following XML will hide the Options button in the Backstage View navi-
gation bar:
<button idMso="ApplicationOptionsDialog" visible="false" />

The Backstage View uses the following button IDs: FileSave, FileSaveAs,
FileOpen, FileClose, ApplicationOptionsDialog, and FileExit.

To hide the Info tab in the Backstage View, use this markup:
<tab idMso="TabInfo" visible="false" />

The Backstage View tab IDs are as follows: TabInfo, TabRecent, TabNew,
TabPrint, TabShare, and TabHelp.

Things to Remember when Customizing the Backstage View.

 ● Th e maximum number of allowed tabs is 255.
 ● You cannot reorder built-in tabs.
 ● You can add your custom tab before or aft er the built-in tab.
 ● You cannot modify the column layout of any built-in tab.
 ● You cannot reorder built-in groups; however, you can specify the order of

groups you create.

CUSTOMIZING THE QUICK ACCESS TOOLBAR (QAT)

The Quick Access toolbar that appears just above the File tab gives application
users quick access to tools they use most frequently. These tools can be easily
added to the toolbar by selecting More Commands from the Customize Quick
Access Toolbar drop-down menu. The Quick Access toolbar can only be cus-
tomized in the start from scratch mode by setting the startFromScratch attri-
bute to true in the Ribbon XML customization file:
<ribbon startFromScratch="true">

The preceding XML markup will hide all built-in tabs. You must add your own
custom tabs as demonstrated earlier in this chapter. Quick Access toolbar modi-
fications are specified using the <qat> element. Within this element you should
use the <documentControls> element to specify the controls that you want to

SIDEBAR

SIDEBAR

PROGRAMMING THE USER INTERFACE 879

appear in the Quick Access toolbar. The following XML markup creates the cus-
tom Quick Access toolbar shown in Figure 28.44. You will find this code in the
CustomUI_ QAT.txt file located on the companion CD-ROM disc .
<customUI
xmlns="http://schemas.microsoft.com/office/2009/07/customui" >
<ribbon startFromScratch="true">
 <qat>
 <documentControls>
 <button id="btnCalc2" label="Calculator"
 imageMso="SadFace" onAction="OpenCalculator" />
 <button idMso="FilePrintQuick" />
 </documentControls>
 </qat>
</ribbon>
</customUI>

FIGURE 28.44 Customized Quick Access toolbar.

The button labeled Calculator that is represented by the SadFace image calls the
OpenCalculator procedure shown here:
Public Sub OpenCalculator(ctl As IRibbonControl)
Shell "Calc.exe", vbNormalFocus
End Sub

Enter this procedure in the VBA code module of the EduSystems_Local.accdb
database.

SUMMARY

This chapter introduced you to using and customizing the user interface in
Access 2019. After a short overview of the initial Microsoft Access screen and
the Quick Access toolbar, we looked at numerous features of the Access Naviga-
tion pane. You learned how to use the Navigation pane to access and organize
your database objects by using both manual techniques and VBA code. Next,
we briefly covered the Ribbon interface to get you warmed up and ready for
the Ribbon customization exercises. You learned how to create XML Ribbon
customization markup and load it in your database by using the LoadCustomUI
method of the Application object or via a special Access system table called

880 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

USysRibbons. You also learned how Ribbon customizations can be assigned to
forms or reports. You spent quite a bit of time in this chapter familiarizing your-
self with various controls that can be added to the Ribbon and writing callback
procedures in order to set your controls’ attributes at runtime. In addition to
Ribbon customizations, you learned how to modify the Quick Access toolbar.

While this chapter introduced many controls and features of the Ribbon, it
did not attempt to cover all there is to know about this interface. After all, this
book is about VBA programming in Access in general, not just the Ribbon. The
knowledge and experience you gained in this chapter can be applied to custom-
izing the Ribbon in all of the Microsoft Office 2019 applications.

In the next chapter, we will take a look at Access templates and macros.

Writing VBA code is not the only way to provide rich functionality to
your Access database users. Macros have long been used to enhance the
user experience without writing a single line of VBA code. The Macro

Designer allows you to include complex logic, business rules, and error handling
in your macros.

In this part of the book, you are introduced to three types of macros that you can
create in Access 2019. In addition, you learn how to convert macros to VBA and get
started with built-in templates that extensively use macros.

Chapter 29 Macros and Templates

Part

 V VBA AND MACROS

881

883

When programming Access applications, there are two other areas of
Access that you need to be acquainted with: macros and templates.
Macros in Access have been around longer than the Visual Basic for

Applications language. When Access 2 came out in 1992, it included a macro
language called Access Basic that contained a subset of Visual Basic 2.0’s core
syntax. Access 95 replaced Access Basic with Visual Basic for Applications, but
until Access 97, macros were the most common means of automating database
tasks. When Access 2000 came out, many successful macro users had already
moved to the new programming platform to take advantage of the language
model that offered more control over Access. In fact, in versions 2000 through
2003, Microsoft recommended VBA to automate Access applications, and mac-
ros were supported mainly for backward compatibility.

The outlook on macros changed with the release of Access 2007. After per-
forming some extensive research, Microsoft found out that many users were
intimidated by the programming environment that Access provided but were
quite successful at creating macros. It seems that it is much simpler to pick a
macro action and set a couple of parameters than it is to write VBA code. Be-
cause most of the Access applications created by end users are loaded with mac-
ros, Microsoft decided to improve the “macro experience” in Access 2007 by
adding event handling, temporary variables (TempVars), better error handling,
and a new type of macro called an embedded macro. In Access 2010, Microsoft

Chapter

 29 MACROS AND
TEMPLATES

884 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

added a Macro sandbox, which was related to the security model introduced
in the 2007 release. Access 2010 also brought a powerful enhancement known
as data macros. This chapter focuses on the macro features available in Access
2019. After we’ve discussed macros, we will take a look at the .accdt file format
used with Access desktop database templates.

MACROS OR VBA?

You can use both VBA and macros to automate your Microsoft Access applica-
tions. While macros have become very powerful in Access applications, whether
you use macros or VBA will depend on what you want to do. Macros can per-
form just about any task you can do with the Access user interface by using
the keyboard or the mouse. They provide an easy way of opening and closing
various Access objects (tables, queries, forms, and reports). You can also use
them to automate repetitive tasks, execute commands on the Access Ribbons,
set values for form and report controls, import and export spreadsheet and text
files, display informative messages, or even sound a beep. With data macros you
can also enforce business rules at a table level. These are just a few examples of
what macros can do.

What macros cannot do is create and manipulate database objects the way
we did in VBA earlier in this book by using DAO or ADO, or step through the
records in a recordset and perform an operation on each record. You need to
write VBA code to perform these types of operations. You must also use VBA
when you need to pass parameters to your Visual Basic procedures, call dy-
namic link libraries (DLLs), create custom functions, or find out whether a file
exists on the system. Even if you don’t want to get started with macros now that
you know how to write code in VBA, you still need to understand how macros
are used in Access 2019, as Microsoft makes extensive use of macros in their
templates and the built-in Button Wizard creates embedded macros.

ACCESS 2019 MACRO SECURITY

In Microsoft’s documentation, the term “macro security” applies to macros and
VBA, as well as other executable content that could be harmful when allowed to
run. In Chapter 1, we specified that Access should trust any database file opened
from the C:\VBAPrimerAccess_ByExample folder (see Hands-On 1.4). This
enabled you to work with this book’s examples without having to constantly

MACROS AND TEMPLATES 885

deal with the Access security warning. However, if you attempt to open a file
that contains macros and that file is not located in a trusted location, Access will
determine whether to display a security alert by checking your macro settings
(see Figure 29.1). You can change your macro settings at any time by following
these steps:

1. Click the File tab, then click Options.
2. In the Access Options dialog box, click the Trust Center tab, then click Trust

Center Settings.
3. In the Trust Center dialog box, select Macro Settings.

FIGURE 29.1 The Macro Settings options allow you to specify whether the macros should be
disabled or allowed to run and whether you should see a notification when macros are disabled.

If the Disable all macros with notification option is selected, you may want to
leave that setting as is. This option allows you to enable the disabled content only
for this session by clicking the Enable Content button in the Security Warning
message bar when a database file is opened.

You can access advanced security options by clicking the message text to the
left of the Enable Content button in the Security Warning message bar. This will
activate the Backstage View where you can click the Enable Content button to
bring up a menu of additional options as shown in Figure 29.2. When you click
Advanced Options, Access displays the dialog box shown in Figure 29.3.

886 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.2 The Info tab in Backstage View displays information related to the Security Warning
message and a brief description of the active content. By clicking on the Enable Content button, you
can either enable all content in the current database or choose advanced options that allow you to
specify which active content should be enabled.

FIGURE 29.3 The Microsoft Office Security Options dialog box allows you to temporarily enable
disabled programming content by selecting the Enable content for this session radio button.

MACROS AND TEMPLATES 887

If you select the first radio button in Figure 29.3, Access will open the database
in Sandbox mode, meaning it will turn off all executable content such as:

 ● VBA code and any references to it
 ● Unsafe expressions

 An unsafe expression contains functions that could allow a user to mod-
ify the database or gain access to resources outside the database.

 ● Unsafe macro actions
 Th ese are actions that could allow a user to modify the database or gain

access to resources outside the database.
 ● Certain types of queries such as:

■ Action Queries
 These are queries that could allow a user to make unauthorized addi-
tions, changes or deletions of database data.

■ Data Defi nition Language (DDL) Queries
 These are queries that are used to create or alter objects in a database,
such as tables and procedures.

■ SQL Pass-Th rough Queries
 These queries allow a user to send commands directly to a database
server that supports the Open Database Connectivity (ODBC) stan-
dard.

 ● ActiveX controls
 Th ese are small programs that have unrestricted access to your comput-

er’s fi le system that could be used to take control of your computer.

If you plan on distributing your Access database in the new .accdb file format, you
can use the IsTrusted property of the CurrentProject object to test whether your
application has its executable content disabled. Use this property in an AutoExec
macro to check whether your application can load (see the next section).

USING THE AUTOEXEC MACRO

The most important macro that every Access programmer needs to be familiar
with is the AutoExec macro. This macro is not new in Access 2019; it’s been with
Access since the very beginning. An AutoExec macro in your Access application

888 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

will automatically run when the database is opened. This is very convenient,
especially when you need to check whether the rest of your application will load.
Let’s see how Microsoft does this in the Northwind 2007 database.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 29.1 Understanding and Using the AutoExec Macro

1. Copy the C:\VBAAccess2019_ByExample\Northwind 2007.accdb database
to your desktop or any other new folder that you want to create for this hands-
on exercise.

2. Double-click the copied database file to open it.
When Access starts, notice the appearance of the Security Warning message
bar with the Enable Content button.

3. Click the Enable Content button.
4. Dismiss the Login dialog box by clicking the “X” in the upper-right corner.
5. In the Navigation pane, select All Access Objects (you may need to select

Object Type from the drop-down menu to show this option) and activate the
Macros group. Right-click the AutoExec macro name and choose Design
View. Access displays the contents of the AutoExec macro, as shown in Figure
29.4.

FIGURE 29.4 The contents of the AutoExec macro in the Northwind 2007 sample database as
shown in Access 2019.

MACROS AND TEMPLATES 889

6. Close the AutoExec macro in the same way you close any other Access window
(by clicking the “X” button in the window’s upper-right corner or right-clicking
the AutoExec tab and choosing Close).

Understanding Macro Actions, Arguments, and Program Flow

A macro can have more than one action, but you must specify at least one action
when you create a macro. When you open the Macro Designer, the only thing
you see is a drop-down list of macro actions. The macro design area will expand
to show more options when you make a selection from the drop-down list. For
example, if the action requires additional data, a list of arguments is displayed.
Access 2019 has a long list of macro actions to pick from. If you are not sure
which action to select to perform a particular task, you can browse the Action
Catalog that appears to the right of the macro window (see Figure 29.4). All
available macro actions are grouped by subject in the Action Catalog. You can
see the description of the selected macro action at the bottom of the Action
Catalog (see Figure 29.5). In addition to a hierarchical listing of macro actions,
the Action Catalog contains several program flow constructs that you can apply
to your macros. These are shown at the top of the Action Catalog. Comments
should be used to document your macros. Macro groups make it easy to organize

FIGURE 29.5 The Action Catalog in Access 2019. The description of the selected macro action
appears at the bottom of the window.

890 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

your macro actions in a named block that can be easily collapsed, moved, or
copied. The If construct allows you to create macros based on a condition. Your
condition could test a value in a field or evaluate the result of a function. You
can use any expression that evaluates to True/False (Yes/No). To add conditional
logic to your macro, double-click or drag the If to the macro design area. The
macro actions will execute when the condition defined at the top of the If block
is true. If the condition is not true, the action will be skipped, and the macro
control will move to the next row. The actions that should not be executed when
the condition is true are preceded with Not, as shown in Figure 29.4.

To see all the available actions in the catalog, click the Show All Actions but-
ton on the Ribbon.

Actions that are considered unsafe are denoted by a yellow warning sign to
the left of the macro action name.

The AutoExec macro included in the Northwind 2007 database uses the fol-
lowing macro actions:

 ● SetDisplayedCategories—Th is action (found in the User Interface Com-
mands section of the Action Catalog) is used to specify which categories
are displayed under Navigate to Category in the title bar of the Naviga-
tion pane. Th is action has two arguments. Th e Show argument can be set
to Yes to show the category name or No to hide it. Th e Category argu-
ment specifi es the name of the category you want to show or hide. Th e
Northwind 2007 database contains a custom category named Northwind
Traders, so the macro starts by displaying this category in the Navigation
pane.

 ● OpenForm—Th is action (found in the Database Objects section of the
Action Catalog) is used to open any form. Th e form can be selected from
a drop-down list when you click the Form Name box (see Figure 29.6).
All forms in the current database will be shown. You can also specify the
view in which the form will open. Th e default view is Form; you can select
the view from the View drop-down box. Not all arguments need to be
fi lled in. You can easily look up the meaning of an action’s arguments by
moving your mouse over the argument name. Th e second If block in the
AutoExec example shown in Figure 29.6 tells Access to open the Login
dialog box in Form view using the Normal window. Notice that values for
some arguments (Filter Name, Where Condition, and Data Mode) are
not provided.

MACROS AND TEMPLATES 891

FIGURE 29.6 The AutoExec macro is shown here in Edit mode.

Whether a form opens can depend on a certain condition being met; in
this example, the fi rst If block tells Access to show the startup screen
only if the current project (the database) is not trusted:

If Not [CurrentProject].[IsTrusted]

Notice how the IsTrusted property of the CurrentProject object is used to
test whether your application has its executable content disabled. You saw
this code block execute when you opened the Northwind 2007 database.
Th e next If block loads the Login dialog box if [CurrentProject].
[IsTrusted] is true. Th is code block was executed when you told Access
to “Enable Content” (see Step 3 in Hands-On 29.1).

NOTE To open an Access database without running the AutoExec
macro, hold down the Shift key while opening the database.

892 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

CREATING AND USING MACROS IN ACCESS 2019

Access 2019 supports three types of macros:

 ● standalone macros (also used in versions of Access prior to 2007)
 ● embedded macros (introduced in Access 2007)
 ● data macros (introduced in Access 2010)

Standalone macros are visible in the Navigation pane under Macros, while
embedded macros are part of the object in which they are embedded (form,
report, or control) and therefore are not visible in the Navigation pane. Data
macros allow developers to implement business rules in an Access application.
These macros do not have a user interface; they are applied at the table level and
cannot be used to open a form or a report. In the following sections, we take a
closer look at each of these macro types.

Creating Standalone Macros

The AutoExec macro we looked at in the previous section is a standalone macro.
Once created, this macro appears in the Navigation pane.

The general steps to create a standalone macro are as follows:
1. Click Macro in the Macros & Code group of the Create tab (Figure 29.7).

FIGURE 29.7 Creating a standalone macro.

Access displays the Macro Designer window with one drop-down box, as
shown in Figure 29.8. As you can see, the Macro Designer layout has a collaps-
ible drop-down interface.

2. Choose the action from the drop-down list. When the Ribbon’s Show All
Actions button is selected, this list displays all the available macro actions.
When this button is not selected, you will see a shorter list of actions that are
allowed to run even if the database is not trusted.

MACROS AND TEMPLATES 893

NOTE

You can also add a macro action to the macro design surface
by double-clicking an action in the Action Catalog or dragging
an action onto the macro design surface. To activate the Action
Catalog, click the Action Catalog button in the Ribbon’s Macro
Tools Design tab.

3. If the macro action you select requires arguments, Access displays an inline
dialog box where you can specify the required values (see Figure 29.9).
Default argument values are prefilled for you. Notice that the code blocks
are collapsible. You can expand or collapse the code areas by clicking the +/-
controls to the left side of the code block or using buttons in the Collapse/
Expand group of the Ribbon.

FIGURE 29.8 The initial Macro Designer window.

894 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.9 The OpenTable macro action opens a table. You need to specify the required
arguments: the name of the table to open, the type of the view for the presentation of the data, and the
Data Mode.

4. If desired, add another macro action as shown in Figure 29.10.

FIGURE 29.10 You can restrict the number of records in a table by using the SetFilter macro action.

5. If the macro action should be conditionally executed (see Figure 29.11),
choose the If block from the Actions drop-down box. Type your conditional
expression in the text box or click the Builder button next to the expression
box to invoke the Expression Builder. Because the macro actions within

MACROS AND TEMPLATES 895

the If block only run when the conditional expression resolves to True, the
expression you enter must be of the Boolean type (True/False). If the condition
evaluates to False, the action specified within the If block will be skipped.

FIGURE 29.11 Adding conditions to the macro.

NOTE

In Microsoft Access 2007 and earlier, you could write only sim-
ple conditional statements in the Macro Designer’s Condition
column. In Access 2010–2019, Macro Designer allows you to
create complex conditions by using the Else If and Else state-
ments. To include these statements, click the Add Else If or Add
Else hyperlinks in the lower part of the code block (see Figure
29.11).

Expression Builder in Access 2019

Expressions are an important part of an Access application. Th ey are used in
tables, queries, forms, reports, and macros to evaluate and test data, perform
calculations, manipulate character strings, and specify the logic that drives the
behavior of your database application. Expressions in Access are like formulas
and functions used in Excel. Depending on their complexity, they can contain
user-defi ned or built-in functions, operators, identifi ers, and constants.

SIDEBAR

896 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Building expressions in Access is easy thanks to the Expression Builder (see
Figure 29.12). Th e Expression Builder off ers the IntelliSense feature that
provides guidance as you type an expression. If you remember syntax and
available functions and properties, you can enter your expression from scratch
in the provided expression box. Otherwise, you can select the expression
elements, categories, and values from the appropriate panes in the lower part
of the Expression Builder window. Notice in Figure 29.12 that in addition to
expression elements (Functions, Constants, and Operators), the Expression
Elements pane also provides quick access to the Common Expressions. Th ese
include prebuilt expressions for displaying page numbers and the current date
and time.
 To access the Expression Builder, click the Expression Builder icon shown
in Figure 29.11.

FIGURE 29.12 Building a macro expression using Expression Builder in Access 2019.

6. To make your macro actions easy to understand for yourself and others, you
can add comments to the macro (see Figure 29.13). Comments are optional.
To add a comment, choose Comment from the Actions drop-down box and
type the text in the provided box. You can also type // in an Add New Action
drop-down box. Comments are easy to spot because they appear as green
text. You can move the comment to the appropriate location in your macro by
clicking the Move Up or Move Down arrows to the right of the comment box.

MACROS AND TEMPLATES 897

FIGURE 29.13 Comments can be added anywhere within your macro code block.

7. To add another action to your macro, select an action from the Actions drop-
down.
To add an action between the actions you’ve already entered, fi rst select the
desired action from the Actions drop-down, and then move it to the appropriate
location within your macro using the Move Up or Move Down arrows.
To delete an action, select it and click the X button. You can also right-click the
action and choose Delete from the menu.

NOTE
If you add an action that is considered “unsafe,” Access displays
a yellow warning sign to the left of the macro action name. An
unsafe action will not execute if the database is not trusted.

For more complex macros you may want to use a program fl ow construct
known as a group. With this construct you can put multiple actions and
program fl ow into a group block so you can expand or collapse an entire group
for better readability.

8. When you are done entering all actions for your macro, press Ctrl+S to save
your macro, or click the Save button on the Quick Access toolbar. Enter the
macro name in the Save As dialog box and click OK (see Figure 29.14).

898 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.14. Saving a macro.

9. Close the Macro Designer window. The saved macro appears in the Navigation
pane.

Running Standalone Macros

You can run standalone macros from the Design view, the Navigation pane,
another macro, or a VBA procedure, or in response to an event on a form,
report, or control.

 ● Running a macro from the Design view—If the standalone macro is
open in the Design view, you can click the Run button in the Tools group
of the Design tab to run the macro.

NOTE
You can also run your macro one action at a time by selecting
the Single Step button and then clicking the Run button (see “Er-
ror Handling in Macros” later in this chapter).

 ● Running a macro from the Navigation pane—A standalone macro can
be run directly from the Navigation pane. Simply right click the macro
name and choose Run from the shortcut menu, but make sure you know
what the macro will do before you run it. A badly designed macro could
wipe out all the data in your database without asking you if you want to
proceed.

NOTE

When you right-click a macro containing submacros in the
Navigation pane and choose Run, only the first submacro will
execute (see “Creating and Using Submacros” in the next sec-
tion).

 ● Running a macro from another macro—To run a macro from another
macro, you must create at least two macros. Th e main macro should in-
clude the RunMacro action. Set the Macro Name argument of this ac-
tion to the name of the macro you want to run. When you run the main
macro, both macros will execute.

MACROS AND TEMPLATES 899

 ● Running a macro from a VBA procedure—Th e RunMacro method of
the DoCmd object carries out the RunMacro action in VBA.
To run a standalone macro, use the following statement:

DoCmd.RunMacro "YourMacroName"

Optionally, you may specify how many times the macro should be run:

DoCmd.RunMacro "YourMacroName", 2

 To run a macro with submacros, use the name of the main macro followed
by a period and the name of the submacro:

DoCmd.RunMacro "Sales.AddProducts"

 ● Running a macro in response to an event on a form, report, or con-
trol—A standalone macro can be bound to events for forms, reports, or
controls. For example, if your form contains a button that needs to open
another form and you have previously created a macro that performs this
action, you can specify the macro name in the OnClick property of the
button, as shown in Figure 29.15. To do this, you must open the form in
Design or Layout view, click the Button control on the form, and open
the property sheet. On the property sheet for the button, click the Event
tab, and then click the event property for the event you want to trigger.
Th e macro will run when you return to Form view and click the button.
Notice that Access lists all the available macros when you open a drop-
down list next to an event property. Macros that contain submacros are
listed in two parts—the name of the standalone macro and the name of
the submacro (e.g., Suppliers.Review Products).

FIGURE 29.15 Binding a standalone macro to an event property. Shown here is the Suppliers form in
the sample Northwind.mdb database from an earlier version of Access.

900 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Creating and Using Submacros

Instead of having a large number of standalone macros listed in the Navigation
pane, consider storing related macros together using submacros. Submacros
are similar to VBA subroutines in VBE modules. Figure 29.16 shows submac-
ros that can be attached to the Suppliers form in the Northwind.mdb database.
Notice how this single macro object named Suppliers stores a number of sub-
macros, each of which performs a different action. To create submacros within
a particular macro, you must give each submacro a unique name.

FIGURE 29.16 The Suppliers macro in the sample Northwind.mdb database contains submacros
that can be used in the Suppliers form.

The general steps to create submacros are as follows:

1. Click the Macro button in the Macros & Code group of the Create tab (see
Figure 29.7 earlier).

2. Select Submacro from the Add New Action drop-down list. Access enters the
default name Sub1 for your submacro (see Figure 29.17). Replace the suggested
name with the desired name.

3. Specify the macro actions for your submacro.
4. Add another submacro if desired and specify the actions to perform.
5. Save the macro by pressing Ctrl+S and typing the name for the macro. The

name you specify is the name of the main macro that contains the submacros.
This name will appear in the Navigation pane under Macros.

MACROS AND TEMPLATES 901

6. Close the Macro Designer window.

FIGURE 29.17 Creating a submacro.

Recall from an earlier section that when a macro contains submacros and you
right-click the macro in the Navigation pane and choose Run, only the first
submacro will execute.

Submacros are frequently implemented in forms and reports. To gain a bet-
ter understanding of submacros, study the Suppliers macro and the Suppliers
form in the Northwind.mdb database. Another excellent example of using sub-
macros is the Customer Labels Dialog macro attached to the Customer Labels
Dialog form in the Northwind.mdb database (see Figure 29.18).

FIGURE 29.18 The implementation of submacros in the Customer Labels Dialog form in the
Northwind.mdb database. The yellow warning sign in the record selector indicates that the specified
action will not execute if the database is not trusted.

902 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Creating and Using Embedded Macros

Beginning with the release of Access 2007, macros can be embedded in any of
the events provided by a form, report, or control. These embedded macros are
not visible in the Navigation pane.

The general steps to create an embedded macro are as follows:

1. Open a form or report in Design or Layout view.
2. Select an object to which you want to assign an embedded macro (a form,

report, or control).
3. Activate the property sheet. In Design view, the Property Sheet button is

located in the Tools group of the Design tab. In Layout view, you will find this
button in the Tools group of the Arrange tab.

4. In the property sheet, click the Event tab, and then click the Build button (…)
next to the desired property.

5. In the Choose Builder dialog box, select Macro Builder, then click OK.
Access will open the same Macro Designer window that you use for creating
standalone macros.

6. Choose the actions for your macro, and specify the arguments and conditions
if required.

7. Press Ctrl+S to save your macro, and click the Close button in the Close group
of the Design tab. Access closes the Macro Design view and enters [Embedded
Macro] in the event property (see Figure 29.19).

FIGURE 29.19 Assigning an embedded macro to the event property of a form’s command button in
the Northwind 2007.accdb database.

MACROS AND TEMPLATES 903

NOTE

To modify the embedded macro, click on the Build button (…)
next to the property with [Embedded Macro]. Access will open
the Macro Designer (Design view) where you can make the re-
quired modifications.

Keep in mind that you cannot reference an embedded macro from other mac-
ros. To reference a macro from another macro, you must create a standalone
macro.

Copying Embedded Macros

Because embedded macros are part of the object in which they are created, the
macro behind the control is also copied when you copy the form, report, or
control.

You can also copy an embedded macro from one event property to another.
This is possible thanks to so-called “shadow properties.” What this means is that
for each event property of a control, form, or report there is a “shadow” event
property that contains the embedded macro for that property. For example, if
your form’s On Load event property is set to [Embedded Macro], then the shad-
ow property called On Load Macro contains its embedded macro. The On Click
event property has the On Click Macro property if you are using the embedded
macro to trigger the On Click event. If the event property is empty, then there
is no shadow property.

Hands-On 29.2 demonstrates how to use VBA to copy an embedded macro
from the Shipper Details form to the Supplier List form in the Northwind 2007.
accdb database.

 Hands-On 29.2 Copying Embedded Macros

1. In the Northwind 2007.accdb database, open the Supplier List form in Design
view. You may use the same version of the database that you opened in Hands-
On 29.1.

2. In the Form Header section, right-click the Home button and choose Copy.
3. Right-click anywhere in the empty area of the Form Header section and choose

Paste. The copied button appears in the upper-left corner of the Form Header
section. Leave the button in this location for now until we change some of its
properties. The button has the same label as the original button and a default
name beginning with Command and followed by some numbers, such as
Command231. You need to change the button’s Name and Caption properties.

904 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. While the button is selected, click the Property Sheet button in the Tools group
of the Design tab. Click the All tab and change the button’s Name property to
cmdClose and the Caption property to &Close. The ampersand in front of the
letter “C” assigns a keyboard shortcut to the button.

5. Position the Close button to the left of the Home button as shown in Figure
29.20.

FIGURE 29.20 Use the property sheet to change the Name and Caption properties of the Close
command button.

6. Press Ctrl+S to save the changes to the form.
7. While the Close button is selected, click the Event tab in the property sheet.

Notice that when you copied the Home button, Access also copied the
embedded macro attached to the On Click event property (see Figure 29.21).
At this point, you could simply click the Build button (…) to modify this
macro to have it close the Supplier List form instead of opening the Home
form. However, the purpose of this exercise is to show you how to use VBA
to copy an embedded macro from one property to another. We will overwrite
this embedded macro with a diff erent one by writing a VBA procedure in the
next steps.

FIGURE 29.21 When you copied the Home button, the new button inherited the embedded macro
assigned to the On Click event property.

8. Press Alt+F11 to activate the Visual Basic Editor window, and choose Insert
| Module.

MACROS AND TEMPLATES 905

9. In the module’s Code window, enter the following Copy_OnClickMacro
procedure:

Sub Copy_OnClickMacro()
 Dim ctl As Control

 ' open in the Design view the Supplier List form
 DoCmd.OpenForm "Supplier List", acDesign

 ' only run the code if the specified control
 ' exists on the form
 For Each ctl In Forms("Supplier List").Controls
 If TypeOf ctl Is CommandButton Then
 If StrComp(ctl.Name, "cmdClose", vbTextCompare) = 0 Then

 ' open in the Design view the Shipper Details form
 ' this form contains an embedded macro in the OnClick
 ' event of cmdClose button

 DoCmd.OpenForm "Shipper Details", acDesign

 ' copy macro from the OnClick event property of the
 ' cmdClose button on the Shipper Details form
 ' to the OnClick event property of the cmdClose button
 ' on the Supplier List form

 Forms("Supplier List").Controls("cmdClose").OnClickMacro = _
 Forms("Shipper Details").Controls("cmdClose").OnClickMacro
 DoCmd.Save acForm, "Supplier List"
 DoCmd.Close acForm, "Shipper Details"
 MsgBox "The embedded macro was successfully copied."
 Exit Sub
 End If
 End If
 Next

 MsgBox "Operation could not be performed. " & vbCrLf & _
 "Ensure that the specified control exists."
End Sub

In this procedure, we begin by opening the Supplier List form in Design view
and iterate through the form’s controls to fi nd out whether the form contains
the control named cmdClose. We use the TypeOf…Is expression to specifi cally
look for the CommandButton control. Because the Supplier List form contains
several buttons, we can use the StrComp function to determine if we found the
correct button. Th is function will tell us if the string specifi ed in the second

906 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

argument is found in the string specifi ed in the fi rst argument. Th e third
argument of the StrComp function tells Access to perform the comparison of
the two text strings. If the StrComp function returns zero (0), then we found
the control we were looking for and we can proceed to open the Shipper Details
form and copy the embedded macro assigned to the On Click event property
of this form’s cmdClose button to the On Click event property of the Supplier
List’s equivalent button. Th e following statement copies the embedded macro
from the On Click event property to another On Click event property:
Forms("Supplier List").Controls("cmdClose").OnClickMacro = _
 Forms("Shipper Details").Controls("cmdClose").OnClickMacro

Once we are fi nished copying, we can simply exit the procedure using the early
exit expression Exit Sub.
If the Supplier List form does not contain the button with the specifi ed name,
we display a message.

10. Run the Copy_OnClickMacro procedure.
If you followed all the steps of this hands-on exercise, you should see a message
stating that the embedded macro was successfully copied. Click OK to close
the message box. If you got a diff erent message, check the code for any errors
and ensure that the Supplier List form has the cmdClose button. Th en rerun
the procedure.

11. Press Ctrl+S to save changes in the module. Access will ask you to assign a new
name to the module. Click OK to accept the default name.

12. Press Alt+F11 to return to the Access window.
13. In the property sheet for the cmdClose button, click the Build (…) button

next to the On Click event property on the Event tab. Access opens the Macro
Design view, as shown in Figure 29.22. This macro will close the form when
the user clicks the Close button on the Supplier List form.

FIGURE 29.22 Examining an embedded macro after it’s been copied from another event property.

MACROS AND TEMPLATES 907

14. Exit the Macro Design view.
15. Right-click the Supplier List tab, and choose Form View.
16. Click the Close button in the Header section of the Supplier List form to close

this form.
You can see the contents of the OnClickMacro shadow property by typing

the following statement in the Immediate window and pressing Enter (the form
must be open for this to work):
?Forms("Supplier List").Controls("cmdClose").OnClickMacro

You should see the following output:

Version =196611
ColumnsShown =8
Begin
 Action ="Close"
 Argument ="-1"
 Argument =""
 Argument ="0"
End
Begin
 Comment ="_AXL:<?xml version=\"1.0\" encoding=\"UTF-16\" sta
ndalone=\"no\"?>\015\012<UserI"
 "nterfaceMacro For=\"cmdClose\" xmlns=\"http://schemas.
microsoft.com/office/acces"
 "sservices/2009/11/application\"><Statements><Action
Name=\"CloseWindow\"/></Stat"
 "ements></UserInterfaceMacro>"
End

Access has a large number of hidden properties that make it possible to
get and set embedded macros. Th e property name begins with the name of
the event property and ends with “EmMacro,” such as OnClickEmMacro,
Aft erUpdateEmMacro, and so on. Try the following statement in the Immediate
window (the form must be open for this to work), and notice that it produces
the same output as the previous statement:

?Forms("Supplier List").Controls("cmdClose").
Properties("OnClickEmMacro").Value

With this knowledge, it is easy to create a standalone macro from an embedded
macro. Here’s an example VBA procedure that does just that:

Sub SaveEmToStandalone()
Dim strMacro As String

908 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dim objFileSys As Object
Dim objFile As Object
Dim strFileName As String

' open in the Design view the form that contains
' the embedded macro
DoCmd.OpenForm "Login Dialog", acDesign

' to write an embedded macro to a file use the
' Value property
strMacro = Forms("Login Dialog"). _
Controls("cboCurrentEmployee"). _
Properties("AfterUpdateEmMacro").Value

' close the form
DoCmd.Close acForm, "Login Dialog"

' Create a text file
strFileName = "C:\Access2013_ByExample\cboAfterUpdate.txt"

Set objFileSys = CreateObject("Scripting.FileSystemObject")
Set objFile = objFileSys.CreateTextFile(strFileName, True)

' Write strMacro to the text file
objFile.Write strMacro
' Close the file
objFile.Close

' Use the undocumented LoadFromText method of
' the Application object to create a standalone macro
' from the text file
Application.LoadFromText acMacro, _
 "cboEmployeeAfterUpdate", strFileName

End Sub

Th e LoadFromText method of the Application object makes it possible to
create various Access database objects (including macros) from information
that was previously saved to a text fi le. Th e LoadFromText method requires
that you specify the object type, the object name, and the name of the text fi le.
 Aft er running this procedure, you should see the cboEmployeeAft erUpdate
macro listed in the Navigation pane under Macros.

MACROS AND TEMPLATES 909

Working in Sandbox Mode

By default Access runs in Sandbox mode, which means that the program blocks
all the expressions in field properties and controls that are considered unsafe.
A safe expression is one that does not use functions that could be used to access
drives or other resources on a user’s computer to damage data or files. When
Access is running in Sandbox mode, any expressions that use unsafe macro ac-
tions are marked with a yellow warning sign, as shown earlier in Figure 29.18.
 Access allows you to disable Sandbox mode by setting the macro security
level to low; however, for security reasons this setting is not recommended. If
you trust the database and want to run unsafe expressions that the Sandbox
mode blocks without having to change your current macro security, you can
disable Sandbox mode by changing a Registry key. Modifying the Registry is
beyond the scope of this chapter.

Generating Macros Using the Command Button Wizard

You do not have to write all your macros from scratch. Access provides a built-
in tool known as the Command Button Wizard. If you are working with the
ACCDB database, the wizard will generate embedded macros to open forms,
run queries, find records, apply filters, or print reports. For older databases in
the .mdb file formats (in order to support backward compatibility), the wizard
creates VBA code.

Using Data Macros

Prior to Access 2010, macros could only be attached or embedded in forms
and reports. Access programmers had long asked for a feature similar to SQL
triggers that would enable them to automatically update data in a table or track
when a record was last modified or deleted. Microsoft answered this program-
ming request in Access 2010 by introducing data macros. A data macro contains
one or more actions that execute in response to a table event.

With data macros programmers can enforce complex business rules at table
level. For example, by attaching a data macro to a table you can control what
happens to a table’s data when the user interacts with the data via an Access
form. You can specify what occurs after data is inserted, updated, or deleted. For
instance, you may want to verify the accuracy of table data, send an email noti-
fication to the database manager about the changes that occurred to the data, or
automatically update fields in another table. By using the data macros attached

SIDEBAR

SIDEBAR

910 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

to the After Insert, After Update, and After Delete events, you can check and
modify records in the current table or other tables. You can use the For Each
Record construct to iterate through a set of records in a table to update records
that meet certain criteria or accumulate the totals. You can also perform specific
actions before data is inserted, changed, or deleted. The Before Change data
macro event will allow you to check a value in another table and, if necessary,
prevent a change or insert from happening. You can use an IsInsert property to
detect whether it’s an insert or an update operation. You can find out whether
the value of a specific field has changed by using the Updated function, and, if
the value of a field has changed, you can use the Old property to find out the
previous value of the field. Before deleting records you can use the Before Delete
data macro event to determine whether the record can be deleted. You can also
update an audit file to indicate that the record was deleted.

By using data macros you can guarantee that your business logic is executed
even if the user modifies a record outside the forms you provide such as in a
Datasheet view or by running another macro or a VBA procedure. Your data
macros will run silently in the background regardless of how the data is ac-
cessed. With data macros, you no longer need to attach the same macro to a
number of forms. All you need to do is add the logic to the table. Any form
based on that table will inherit that logic.

In addition to event data macros that are triggered by table events, you can
create standalone named data macros. Named data macros allow you to save
time by incorporating the common tasks into one macro. Instead of repeating
the same actions in multiple data macros, simply create a named data macro
and call it from a data event. Named macros can be called using the RunDataM-
acro action.

Keep in mind that data macros do not have any user interface (UI); they are
stored within a table itself and therefore do not show up in the Navigation pane.
Do not attempt to use data macros to handle multivalue and attachment data
types as they are not supported. Also, keep in mind that data macros can only
be attached to events in local tables, not linked tables.

Creating a Data Macro

In the following hands-on exercise, you will work with the Purchase Order
Details table in the Northwind 2007 database. You’ll write a data macro to ensure
that the order quantity cannot be modified if the order was already posted to
inventory or the Date Received field contains a date value. The following VBA

MACROS AND TEMPLATES 911

procedure has already been written by the Microsoft team to validate the Quan-
tity field in the Form_Purchases subform for Purchase Order Details:

Private Sub Quantity_BeforeUpdate(Cancel As Integer)
 If Me![Posted To Inventory] Or Not IsNull(Me![Date Received]) Then
 MsgBoxOKOnly CannotModifyPurchaseQuantity
 Cancel = True
 End If
End Sub

While this procedure works just fine for controlling data entry operations on
the form, it has no effect on data manipulations performed directly at the table
level. By creating a Before Change data macro, you can ensure that this test sce-
nario is addressed no matter how data is being accessed.

 Hands-On 29.3 Creating and Testing a Data Macro

1. Start the Northwind2007.accdb database located in your VBAAccess2019_
ByExample folder. Log in as Andrew Cencini.

2. Close the Home form that is automatically launched upon login.
3. Open the Purchase Order Details table.
4. Select the Table tab on the Ribbon and click the Before Change button (Figure

29.23). It does not matter which table field is currently selected.

NOTE Data macros can be created from the table Datasheet view or
Design view (see Figure 29.23 and Figure 29.24).

FIGURE 29.23 Creating a data macro from the Datasheet view.

912 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.24 Creating a data macro from the Design view.

Table 29.1 lists five events that can trigger a data macro.

TABLE 29.1 Data macro events

Event Name Event Description
Before Change Runs before a record is about to be updated. Use it to validate changes

before saving them to the table. You can include logic to allow new
values or show an error to reject the changes. Use the IsInsert property
to determine whether the change is an insert or an update.

Before Delete Runs before a record is about to be deleted. You can include logic that
validates the deletion and allows it, or cancels the deletion and raises
an error.

After Insert Runs after a new record has been added to the table.
After Update Runs after a record has been edited in the table. Use the

Updated(“Field Name”) function to determine if a specific field
has changed. Use Old.[Field Name] to find out the value the field
had before the record was changed.

After Delete Runs after a record has been deleted from the table. Use Old.[Field
Name] to find out the value the field had before the record was deleted.

MACROS AND TEMPLATES 913

5. When you click the event name, Access opens the Macro Designer (Figure
29.25).

FIGURE 29.25 Macro Designer for writing data macros.

Th e Action Catalog shows three categories of actions that can be specifi ed
for a data macro: Program Flow, Data Blocks, and Data Actions. Th e actions
listed in each category depend on the type of table event you have selected.
When you are working with data macros, the only Program Flow constructs
are comments (used for documenting your data macro), groups (used for
organizing your macro), and If blocks (for applying a conditional logic). Data
Blocks contain constructs that are used to perform specifi c operations on
database records like looking up a record in a table (LookupRecord), adding
a record to a table (CreateRecord), modifying an existing record in a table
(EditRecord), and looping through every record in a table (ForEachRecord).
Notice that only the LookupRecord data block is available for the Before
Change event. When you select a construct from the Data Blocks category,
you can add one or more actions and these actions will be performed as part
of the data block. You can even nest data blocks. For example, you can set up
a ForEachRecord data block to iterate through every record in a table and,
depending on your conditional logic, create the CreateRecord data block to
add a record to another table based on the found record.
 Th e Data Actions category in the Action Catalog lists the available data
actions. Some table events have more actions than others. You can fi nd the
description of an event by selecting it and then checking the bottom of the
Action Catalog (see Figure 29.25).

914 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

6. Double-click the If construct in the Program Flow section. Access adds a
conditional block as shown in Figure 29.26.

FIGURE 29.26 Adding an If block to the data macro.

7. In the If box, enter the following conditional expression on one line:

Updated(“Quantity”) And ([Posted To Inventory] Or Not
 IsNull([Date Received]))

8. Select SetLocalVar from the Add New Action drop-down located within the
If…Then…End If block. Enter strMsg in the Name box and “” (an empty
string) in the Expression box, as shown in Figure 29.27.
Th e SetLocalVar action allows you to create a local variable. In this macro,
you’ll use a local variable named strMsg to store the error message text that
you’ll retrieve from the Strings table that is a part of the Northwind 2007.accdb
database. Notice that the initial value of the strMsg variable is set to an empty
string.

FIGURE 29.27 Adding a local variable to your data macro.

MACROS AND TEMPLATES 915

9. Select LookupRecord from the Add New Action drop-down located within
the If…Then…End If block. The Macro Designer adds a LookupRecord block.
Fill in the block as depicted in Figure 29.28. Choose Strings from the Look
Up A Record In drop-down box, and enter [Strings].[String ID] = 31 for the
Where Condition. This condition tells the macro to find the 31st record in the
Strings table. Notice that as you start typing in the Where Condition box the
IntelliSense technology is at work displaying appropriate choices for you to
select.

FIGURE 29.28 Adding an action to look up a record in a table.

10. Within the LookupRecord block, add a new SetLocalVar action. In the Name
box, enter the name of the local variable strMsg that you declared at the
beginning of the macro. In the Expression box, enter [Strings].[String Data],
as shown in Figure 29.29.

FIGURE 29.29 Storing data retrieved by the LookupRecord action in a local variable.

916 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

11. In the Add New Action drop-down box within the LookupRecord block,
choose Comment. When a text box appears, enter the following text: Record
Lookup Completed. Figure 29.30 shows the result of adding a comment. The
comments appear in green italics between the /* and */ delimiters.

FIGURE 29.30 Adding a comment to a macro.

12. In the Add New Action drop-down box located outside the LookupRecord
block, choose RaiseError. Enter 100 in the Error Number box and =[strMsg]
in the Error Description box. This will tell the macro to display the text stored
in the local variable strMsg when an error occurs. Be sure to enter the equals
sign before the variable name. Figure 29.31 displays the completed macro.

FIGURE 29.31 Adding a macro action to raise an error.

MACROS AND TEMPLATES 917

13. Click the Save button to save your macro, then click the Close button to close
the Macro Designer. Notice that when a macro is defined for a table event, the
button with the event name has a shaded background (see Figure 29.32).

FIGURE 29.32 The highlighted Before Change button on the Ribbon indicates that there is a data
macro attached to this event.

14. To test your macro, you need to perform the action that will trigger the event
for which you defined the macro. In the Purchase Order Details table, enter a
different value in the Quantity field for any record that has both a checkmark
in the Posted To Inventory field and a value in the Date Received field. When
you attempt to save the record after making a change to the Quantity field,
Access displays the error message shown in Figure 29.33. The error message
has been retrieved from the Strings table. Click OK to the message and then
press the Esc key to exit the edit mode.

FIGURE 29.33 The error raised by the data macro assigned to the Before Change event.

NOTE

A form based on a table that contains a data macro will inherit
the logic defined in the table. This means that you no longer
need to write separate VBA code in the form class modules to
respond to events that are already handled at a table level.

918 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Creating a Named Data Macro

As mentioned earlier, in addition to writing data macros that are triggered by
a table event, you can create named data macros. You can pass arguments to
these macros and call them from anywhere within your application. To create a
named data macro, follow these general guidelines:

1. In the Navigation Pane, double-click the desired table to open it.
2. Select the Table tab on the Ribbon.
3. In the Named Macros group, choose Named Macro | Create Named Macro

(Figure 29.34). Access opens the Macro Designer as shown in Figure 29.35.
Notice that the Action Catalog lists a number of data actions that you can use
in your named data macro logic.

FIGURE 29.34 Creating a named data macro.

FIGURE 29.35 The Macro Designer window for creating a named data macro.

MACROS AND TEMPLATES 919

4. If you need to pass parameters to your macro, click the Create Parameter
hyperlink at the top of the Macro Designer screen. Enter the name of the
parameter in the Name box. You may also enter a description in the Description
box (Figure 29.36).

FIGURE 29.36 Specifying parameters in the named data macro.

5. Select an appropriate action from the Add New Action drop-down box to
specify your macro logic. Figure 29.37 shows the completed named data macro.

FIGURE 29.37 The completed named data macro.

920 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE

The named data macro depicted in Figure 29.37 is available
in the Charitable Contributions database. Follow these steps to
open the database:
 1. Copy the Charitable Contributions Web Database.accdb

file from the companion CD-ROM disc to your C:\
VBAAccess2019_ByExample folder.

 2. Double click the copied file to open it in Access.
 3. In the Login window, click the New User hyperlink.
 4. In the User Details window, enter your name in the Full

Name text box, and click Save & Close.
 5. Select your name in the Login window and click Login.
 6. When prompted, click the Enable Content button in the

message bar. This will activate the Login window. Select
your name and click Login.

 7. Open the Navigation pane and double-click the
Donations table.

 8. Click the Table tab and select Named Macros | Edit
Named Macro | TrackCampaignDonation to view the
data macro and access the named macros in this table.

6. When you are done with the macro logic, save the macro by clicking the Save
As button on the Ribbon.

Editing an Existing Named Macro

You can edit an existing named data macro by clicking the Named Macro button
on the Ribbon and selecting Edit Named Macro. Access will display the list of
available macros as shown in Figure 29.38.

FIGURE 29.38 If the table contains named data macros, the Edit Named Macro option is
highlighted.

MACROS AND TEMPLATES 921

Calling a Named Macro from Another Macro

You can run a named macro from another macro using the RunDataMacro
action. Figure 29.39 shows two named data macros that are run from within
the After Insert data macro in the Donations table. Notice that to run a named
macro you need to:

 ● Specify the RunDataMacro action.
 ● Specify the named macro name (Donations.TrackDonorDonation, Do-

nations.TrackCampaignDonation).
 ● Specify the values for the parameters that the named data macro expects.

FIGURE 29.39 Running named macros from the After Insert data macro in the Donations table.

Using ReturnVars in Data Macros

A powerful feature in data macros is their ability to return values to other mac-
ros by using ReturnVars. ReturnVars can be compared to values returned by
functions in VBA procedures. You can specify the ReturnVars by using the
SetReturnVar action in a named data macro as depicted in Figure 29.40. After
selecting the SetReturnVar macro action from the Add New Action drop-
down box, enter the name of the ReturnVar in the Name box and specify the
value or expression in the Expression box. For example, to return the number
of backordered inventory items, the example macro in Figure 29.40 sets up a
ReturnVar named retBackOrdered, and sets its value in the Expression box
to [BackOrdered], which is the name of the field in the Inventory table. The
number of the backordered items will be returned by the LookupRecord macro
action for the specified ProductID. Notice that all return variables are initialized
at the top of the macro.

922 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.40 The named data macro GetInventoryLevels located in the Inventory table of the
Northwind Web database demonstrates the use of return variables. You can open this database from
the companion CD-ROM disc.

NOTE

Access 2010 introduced a new type of database file known as
Access Web Database. You could use Access Web Databases to
publish your Access data to a Microsoft SharePoint server run-
ning Access Services. Once published, your database could be
used in an Internet browser. Because Access Web Database is
not compatible with VBA, all programming had to be done us-
ing macros. In Access 2010, to design an Access Web Applica-
tion, you had to choose File | New and click Blank Web Da-
tabase. Well, this option is not available in Access 2016-2019.
Simply put, Microsoft has retired the Web Apps. While you can
open, design, and publish existing Access 2010 Web databases in
Access 2016-2019, it is no longer possible to create new Access
2010 Web databases.

MACROS AND TEMPLATES 923

To get the return value, you must first call the macro. The GetInventoryLevels
macro (shown in Figure 29.40) is called from the embedded macro (see Fig-
ure 29.41) that is attached to the After Update event of chkPostedToInventory
checkbox control. This control is located on the PurchaseOrderLineItemsRe-
ceiving form in the Northwind Web database.

Notice that to reference the return variable in a macro, you must use the Re-
turnVars command like this:
= [ReturnVars]![retBackOrdered]

FIGURE 29.41 Referencing return variables (ReturnVars) inside a macro attached to the After Update
event of a control placed on a form. Notice that the value of the return variable is being retrieved into a
local variable named varQtyBackOrdered.

Tracing Data Macro Execution Errors

Access automatically writes all errors encountered during execution of your data
macros in a system table called USysApplicationLog. Any failure that occurs
while executing a named data macro or a data macro attached to an event will
be reported in this table. By default, the USysApplicationLog table is created the
first time Access encounters a data macro error. There are a couple of ways to
access this table:

924 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Via the Backstage View (see Figure 29.42).
If the USysApplicationLog table is present in your database, select the
File tab, and click the View Application Log Table button to open the
table.

FIGURE 29.42 Accessing the USysApplicationLog table in the Backstage View.

 ● Via the Navigation pane (see Figure 29.43).
Before you can access the USysApplicationLog table from the Navigation
pane you must tell Access to display system objects. To do this, select File
| Options, and click Current Database. Scroll down to the Navigation
section and click the Navigation Options button. Select the Show System
Objects box at the bottom of the Navigation Options dialog box and click
OK.

You can use USysApplicationLog to view the details of errors that occurred
during data macro execution. Access provides a special action called LogEvent
that allows you to write your own messages to the log table. You can keep track
of the data macros that ran by adding the LogEvent action to the end of your
named macro and setting its Description fi eld to whatever message you want
to write (see Figure 29.37 earlier).

MACROS AND TEMPLATES 925

Figure 29.43 displays the contents of the USysApplicationLog table aft er
adding data to a donations table.

FIGURE 29.43 Viewing the contents of the USysApplicationLog table.

Copying Data Macros

Access stores macros as XML. Saving your macro as XML enables you to email
it to someone else or create a backup copy of your macro before attempting to
edit its logic.
 You can copy the XML markup of your data macro to a text editor using
these steps:

 1. Open the macro and select the action you’d like to copy. A gray box appears
around the selected action. To select all actions, press Ctrl+A.

 2. Right-click the selected area and choose Copy.
 3. Open Notepad and choose Edit | Paste.

Error Handling in Macros

Access provides special macro actions that give macros the capability to handle
errors: OnError, ClearMacroError, and SingleStep. A MacroError object pro-
vides you with information about the error received and allows you to create
user-friendly error messages. The OnError action is similar to the On Error
statement in VBA. This action specifies how errors should be handled when
a runtime error occurs. The OnError action has two arguments, as shown in
Table 29.2.

SIDEBAR

926 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

TABLE 29.2. OnError action arguments

Arguments Description
Go To
(This argument is required.)

Specifies how macros should handle errors. The Go To argu-
ment can be set to: Next, Macro Name, or Fail.
Next—The error is recorded in the MacroError object and the
execution of the macro moves to the next macro action. This is
similar to the On Error Resume Next statement in VBA.
Macro Name—Macro execution is passed to the macro that is
named in the Macro Name argument. This is similar to the On
Error GoTo statement in VBA.
Fail—Access will stop the execution of the macro and display
an error. This is similar to On Error GoTo 0 in VBA.

Macro Name
(This argument is optional.)

If the Go To argument is set to Macro Name, the name of the
macro in the current macro group will handle the error.

The OnError action suppresses standard error messages displayed by Access
when an error occurs. When you use this action in your macro, you should use
the error information saved in the MacroError object to display a user-friendly
message about the error.

The MacroError object has the following properties: ActionName, Argu-
ments, Condition, Description, MacroName, and Number. You can check the
MacroError object’s Number property to find out if an error occurred, as shown
in Figure 29.44. If there was no error, the Number property will return zero (0).
However, if [MacroError].[Number] <> 0, then you should handle the error
right away.

By default, the MacroError object is cleared at the end of the macro execu-
tion; however, you can clear it right after the error has been handled by us-
ing the ClearMacroError action. This action will reset the error number in the
MacroError object back to zero and clear other information stored in the object
such as macro name, action name, condition, arguments, and description. The
MacroError object contains information about only one error at a time; if more
than one error occurred, only the error information about the last error can be
retrieved. Therefore, when writing longer macros use the ClearMacroError ac-
tion right after handling the first error so the ErrorObject will be able to capture
information about the next error that might occur.

Use the StopMacro action to stop the currently running macro. In Figure
29.44, the StopMacro action is run right after the user receives the message
about the macro error.

MACROS AND TEMPLATES 927

FIGURE 29.44 Error handling in an Access macro located in the Northwind 2007.accdb database.

To debug a macro that is not working properly, you can click the Single Step
button in the Tools group of the Design tab and then click the Run button, or
you can use the SingleStep macro action just before an action that you suspect
is causing a problem. The SingleStep macro action was introduced in Access
2007. This action pauses the macro and opens the Macro Single Step dialog box
(see Figure 29.45), which displays information about the current macro action
(macro name, condition, action name, arguments, and error number). The
Macro Single Step dialog box contains the three buttons described in Table 29.3.

TABLE 29.3 Macro Single Step dialog box buttons

Button Name Description
Step Move to the next macro action.
Stop All Macros Stop the current macro and any other macros that may be running.
Continue Use this button to exit Single Step mode and continue the normal execution of

the macro.

928 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 29.45 Debug your macros by selecting the Single Step option on the Ribbon and clicking the
Run button.

NOTE

If you opened the Macro Single Step dialog box using the Single
Step button on the Ribbon, you must click this button again
when you are done debugging your macro or the next macros
that you run will also be run using Single Step mode.

Using Temporary Variables in Macros

The functionality to add temporary variables (TempVars) has been in Access
since its 2007 release. This functionality applies to both VBA and macros.
You’ve seen the VBA side of using the TempVar object in Chapter 3. Recall that
the TempVar object of the TempVars collection allows you to get or set a value
for a variable. Each TempVar object has a name and value property. In macros,
there are three macro actions that relate to TempVars:

MACROS AND TEMPLATES 929

 ● SetTempVar(name, expression)—Th is macro action is used to create a
new temporary variable. Th is variable can then be used as a condition or
argument in subsequent macro actions. Temporary variables are global;
therefore, you can use them in another macro, in an event procedure, or
on a form or report. Th e fi rst argument of the SetTempVar macro action
assigns a name to the temporary variable. Th e second argument is the
expression that Access should use to set the value for this temporary vari-
able. You can defi ne up to 255 temporary variables at one time.

 ● RemoveTempVar(name)—Th is macro action is used to remove the
temporary variable. Use the name argument to provide the name of the
variable to remove. It is recommended that you remove the temporary
variable once you’ve fi nished working with it. If you don’t remove your
temporary variables, they will be removed automatically when you close
the database.

 ● RemoveAllTempVar—Th is macro action is used to remove all tempo-
rary variables from the TempVars collection.

Figure 29.46 shows how to specify the name of a report by using a temporary
variable.

FIGURE 29.46 Using temporary variables in an Access macro.

930 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

NOTE
 Because both macros and VBA use the same TempVars col-
lection, it is easy to share data between your macros and VBA
procedures.

Converting Macros to VBA Code

The ability to convert standalone macros to VBA code has been available since
Access 97. With the introduction of embedded macros, Access also provides a
button to convert to VBA code macros stored in an event property of a form,
report, or control (see Figure 29.47).

Converting a Standalone Macro to VBA

To convert a standalone macro to VBA, follow these steps:

1. In the Navigation pane under Macros, right-click the macro you want to
convert, then click Design View.

2. In the Tools group of the Design tab, click Convert Macros to Visual Basic
(see Figure 29.47).

3. Access will display a dialog box asking whether you want to include error
handling and comments in the code (see Figure 29.48). To keep your code
very simple, you can clear both checkboxes. Start the conversion process by
clicking the Convert button.

FIGURE 29.47 Click the Convert Macro to Visual Basic button to convert a standalone macro to
Visual Basic for Applications code.

MACROS AND TEMPLATES 931

FIGURE 29.48 Access displays this dialog box when you click the Convert Macros to Visual Basic
button (see Figure 29.47).

Upon completion of the macro conversion process, Access displays a message
stating that the conversion is fi nished. Click OK to the message and review the
Modules group in the Navigation pane. You should see a separate module for
the converted macro. Th e name of the module is Converted Macro followed by
a dash and the name of the macro you converted. For example, aft er converting
the Delete All Data macro, the name of the VBA module is Converted Macro
– Delete All Data. To view the converted macro, double-click the converted
module’s name. Th is will open the Visual Basic Editor window, as shown in
Figure 29.49.

FIGURE 29.49 This VBA code was generated by Access from a standalone macro.

NOTE You can modify the code generated by the macro conversion
process to suit your needs.

932 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Converting Embedded Macros to VBA

To convert embedded macros, open the form or report in Design view. You
should see the button named Convert Form’s Macros to Visual Basic in the
Macro group, as shown in Figure 29.50.

FIGURE 29.50 Converting embedded macros to VBA code using the Convert Form’s Macros to
Visual Basic button.

After clicking the Convert Form’s Macros to Visual Basic button, Access dis-
plays the same dialog box shown earlier in the conversion process for standalone
macros (see Figure 29.48). When you click the Convert button, Access begins
the conversion process, and when this process completes you will see a message
about the successful completion of the conversion. Click OK to the message.
Next, activate the property sheet, and notice that form and control event prop-
erties that have previously been set to [Embedded Macro] now display [Event
Procedure]. You can click the Build button (…) to view the VBA code. Figure
29.51 shows the VBA procedure that was generated for the embedded macro
attached to the DoubleClick event of the Last Name text box control placed on
a form. Notice that for each converted macro, Access writes its equivalent XML
code as a comment at the top of the VBA procedure.

NOTE

If after the conversion process you still want to keep the [Embed-
ded Macro] setting in the event properties of a form, report, or
control, perform these steps:
 1. Save the VBA code generated by the macro conversion

to a file by choosing File | Export File in the Visual
Basic Editor window. Access will create a file with the
.cls extension. To view the contents of this file, right-click
its name in Windows Explorer and choose Open With |
Choose Program. Select Notepad and click OK.

 2. In Access, close the form and answer No when prompted
for changes. Access will revert the [Event Procedure]
setting in the event properties to [Embedded Macro].

MACROS AND TEMPLATES 933

FIGURE 29.51 VBA code from a converted embedded macro.

ACCESS TEMPLATES

Access comes with several prebuilt templates that give users a head start with
various types of projects. In Access 2019, the templates listed on the startup
screen have built-in tables, queries, forms, and reports in various subject cat-
egories. The template files can be easily recognized by their .accdt file extension.
By default, Access stores the template files in the C:\Users\username\AppData\
Roaming\Microsoft\Templates folder. Please note that AppData is a hidden
folder and you will need to unhide it in the File Explorer in order to access its
content.

Creating a Custom Blank Database Template

When you select the Blank database button in the Backstage View (File | New)
and click the Create button, Access provides you with an empty database that
you can customize to suit your specific needs. If you are like many users, you
start your next database project by again clicking the Blank database button and
proceed to implement many of the same customizations that you applied to the
previous database project. If you have been working like this, however, you are
not taking advantage of the startup template—Blank.accdb. Instead of custom-
izing each new blank database, simply create a new database called Blank.accdb
in the template folder and customize it to include specific database properties,
VBA references and custom functions, Ribbon customizations, default forms
and reports, and customized controls, as well as any other special configura-

934 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

tion settings that you normally use in your database applications. The next time
you click the Blank database button in the Backstage View, Access will make a
copy of your Blank.accdb database so you won’t need to start from scratch. Your
new database will already contain the common settings that you saved in the
Blank.accdb file. Moreover, if your database requirements have changed, you
can create a new Blank.accdb database with settings that conform to these new
requirements.

Understanding the .accdt File Format

The .accdt file format that Access (2007–2019) uses for its database templates is
based on the Microsoft Office Open Packaging Convention (.opc) file format.
This file format is based on the XML and ZIP archive technologies. The .opc
file format is also used by the .docx, .xlsx, and .pptx file formats first introduced
in Office 2007 for Word, Excel, and PowerPoint. The .opc format makes it pos-
sible to store a number of text, image, and .xml/.xsd files in a single compressed
file. The .opc files can be easily opened and examined. Before you can open an
Access template file (.accdt) and examine its structure, you need to add the .zip
extension at the end of the filename as shown in the following steps:

1. Launch Microsoft Access 2019. On the startup screen, type asset tracking in the
search box and press Enter to begin searching the online content. You must be
connected to the Internet to make it work. When Access displays the templates
that matched your search criteria, click the one named Asset tracking. Enter
the name of the database as MyAssetTracking.accdb and change the folder
to C:\VBAAccess2019_ByExample, and then click the Create button. Access
downloads the template file and creates the specified desktop database. The
resulting database is shown in Figure 29.52.

FIGURE 29.52 The MyAssetTracking database is based on the Asset Tracking template downloaded
from the Microsoft Access templates archive.

MACROS AND TEMPLATES 935

2. Close the DesktopAssetTracking.accdb file and exit Microsoft Access.
3. Open your Documents folder in File Explorer. Notice that Access has saved

the downloaded template file named Asset tracking.accdt in this folder. If you
cannot see this file, search for it on your C:\ drive.

4. Rename the file Asset tracking.accdt.zip as shown in Figure 29.53.
5. When the Rename dialog box appears, click Yes to confirm that you want

to change the filename extension. Click Continue, if prompted to provide
administrator permission to rename this file. The file format should now
change to the zip archive.

FIGURE 29.53 By adding the zip file extension to the accdt file format you can turn it into a zip
archive that you can examine and modify depending on your needs.

6. To open the Asset tracking.accdt.zip file, right-click the filename and choose
Open With | Compressed (zipped) Folders or File Explorer. The folders that
make up the document are shown in Windows Explorer (see Figure 29.54).

FIGURE 29.54 The directory structure of an Access template file.

Notice that the archive fi le contains the following three folders: _rels, docProps,
and template. Th e _rels folder contains one .xml fi le with the extension .rels
that defi nes the relationships between various fi les included in the fi le package
(see Figure 29.55). Access uses this fi le to fi nd out information about the
template and the database.

FIGURE 29.55 The contents of the .rels .xml file in the _rels folder.

936 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e docProps folder contains the the core.xml fi le that describes the core
document properties such as creator name, identifi er, title, description,
keywords, category, version, and lastModifi edBy (see Figure 29.56).

FIGURE 29.56 The contents of the core.xml file in the docProps folder.

When you double-click the template folder, you will see two subfolders named
_rels and database, as well as t a template.xml fi le (Figure 29.57).

FIGURE 29.57 The contents of the template folder.

Th e template.xml fi le contains information about the format of the template
fi le.
 You can fi nd out a lot of information about the contents and structure of the
.accdt fi le by opening the database folder (Figure 29.58).

FIGURE 29.58 The contents of the database folder.

Th e databaseProperties.xml fi le in the database folder stores various database
settings and properties. You can modify this fi le to include additional properties
that need to be set by adding new nodes to the fi le.
 Th e navpane.xml fi le contains information about the structure of the Navi-
gation pane. It also contains the data for the Navigation pane system tables:
MSysNavPaneGroupCategories, MSysNavPaneGroups, MSysNavPaneGroup-
ToObjects, and MSysNavPaneObjectIDs.

MACROS AND TEMPLATES 937

 Th e relationships.xml fi le contains the contents of the MSysRelationships
system table.
 Th e vbaReferences.xml fi le contains all VBA project references that Access
needs to set.
 In the objects folder, you will fi nd many other fi les that describe diff erent
database objects (Figure 29.59).

FIGURE 29.59 Files in the objects folder contain information about different database objects in
the template file as well as information about sample data and properties for each object included in
the template.

You can open any of the fi les listed in Figure 29.59 and examine the type of
information being stored. Because this chapter covered macros, look at the
macroFilters.txt fi le to fi nd out how Access stores the embedded macros.

NOTE
When you are done viewing the files, change the name of the
Asset tracking.accdt.zip file back to its original name—Asset
tracking.accdt.

938 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

This chapter introduced you to working with macros in Access 2019. We took
a detailed look at macro security; created standalone and embedded macros;
worked with data macros; saw examples of return variables (ReturnVars), local
variables, and temporary variables (TempVars), and examined the error-han-
dling actions in macros. We also learned how standalone and embedded macros
can be converted to Visual Basic code. Because Access uses embedded mac-
ros extensively in its templates, we examined the structure and contents of the
.accdt file format.

This chapter concludes Part V of the book, which focused on getting familiar
with macro interface and usage of templates in Access 2019. In Part VI of the
book, you learn how to use your Access VBA skills to build Internet applica-
tions.

Gone are the times when working with Access required the Microsoft Access
application to be installed on a user’s desktop. Thanks to the development
of Internet technologies, you can publish both static and dynamic Access

data to the Web. In this part of the book, you learn how Active Server Pages (ASP)
and Extensible Markup Language (XML) are used with Microsoft Access to de-
velop database solutions for the World Wide Web.

Chapter 30 Access and Active Server Pages
Chapter 31 XML Features in Access 2019

Part

 VI TAKING YOUR VBA
PROGRAMMING SKILLS
TO THE WEB

939

941

In today’s world, everyone wants to be able to access data via the company
intranet or the World Wide Web. This book would not be complete with-
out showing you how to take your skills where the demand is. So, how can

you make the information stored in your Access database available for others to
view or query in a Web browser? By adding some HyperText Markup Language
(HTML) and Microsoft Visual Basic Scripting Edition (VBScript) to your cur-
rent VBA skill set, you can start making your applications Web-ready. Micro-
soft Access allows you to save tables, queries, and forms to the Web as HTML
or XML documents. This chapter focuses on showing you how you can create
classic Active Server Pages (ASP) in order to display, query, insert, update, and
delete data stored in a Microsoft Access database from a Web browser.

INTRODUCTION TO CLASSIC ASP

With Active Server Pages (ASP), a technology developed by Microsoft, and your
current working knowledge of VBA, you can begin designing and program-
ming powerful and dynamic Web applications.

Chapter

 30 ACCESS AND

ACTIVE SERVER PAGES

942 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The current version of ASP is 3.0, and it is available with Internet Infor-
mation Services (IIS) 5.0 or higher. Active Server Pages are text files with the
.asp extension. These files contain standard HTML formatting tags and em-
bedded scripting statements. Because the default scripting language for ASP is
VBScript, a subset of Visual Basic and Visual Basic for Applications, you already
have many of the skills required to Web-enable your Access applications. In ad-
dition, the tools you need to make Access work with the intranet or Internet are
within your reach. You don’t need special tools to write your code. You can use
Windows Notepad or any other text editor. So, where do you start? You can start
by acquiring some knowledge of the HyperText Markup Language (HTML).
There are plenty of free tutorials on the web that can get you started. Because
Active Server Pages are a mix of HTML and a programming language such as
VBScript or JavaScript, you should learn as much as you can about each compo-
nent that you will be using.

To better understand this chapter’s topics, here are some terms to get ac-
quainted with:

 ● HyperText Markup Language (HTML)—a simple, text-based language
that uses special commands known as tags to create a document that can
be viewed in a browser. HTML tags begin with a less-than sign (<) and
end with a greater-than sign (>). For example, to indicate that the text
should be displayed in bold letters, you simply type your text between the
 and tags like this:

This text will appear in bold letters.

Using plain HTML you can produce static Web pages with text, images,
and hyperlinks to other Web pages.

 ● Dynamic HTML (DHTML)—allows the HTML tags to be changed pro-
grammatically via scripting. Use DHTML to add interactivity to your
Web pages.

 ● VBScript—a scripting language based on Microsoft Visual Basic for Ap-
plications (VBA). Because this is just a subset of VBA, some of the VBA
features have been removed. For example, VBScript does not support
data types—every variable is a Variant. Like VBA, VBScript is an event-
driven language—the VBScript code is executed in response to an event
caused by a user action or the Web browser itself.

 ● JavaScript—a compact, object-oriented scripting language invented by
Netscape and used for developing client and server Internet applications.

ACCESS AND ACTIVE SERVER PAGES 943

Th is is a cross-platform language that can be embedded in other prod-
ucts and applications, such as Web browsers. Use JavaScript instead of
VBScript in client-side scripts if you want to support browsers such as
Firefox®, Chrome, or Safari®.

 ● JavaScript Libraries—are collections of JavaScript code that contain
commonly used functions, animation eff ects, and various shortcuts that
allow you to quickly accomplish common JavaScript tasks. Popular Ja-
vaScript libraries include jQuery, knockout, Dojo, Prototype, MooTools,
and YUI.

 ● Active Server Pages (ASP)—also referred to as “classic” ASP (this ver-
sion of ASP preceded a newer technology known as ASP.NET), Active
Server Pages is a Web development technology that enables you to com-
bine HTML, scripts, and reusable ActiveX® server components to create
dynamic Web applications. ASP is not limited to a particular language.
To create ASP pages, you can use scripting languages such as VBScript,
JavaScript, or any language for which you have a third-party ActiveX
scripting engine. While HTML pages store the actual data, Active Server
Pages only store the information on how to obtain the data. How does
this work? Suppose you typed the address of the ASP page in your Web
browser’s address bar and pressed Enter. Th e Web server will read the
script instructions contained in the ASP page (a fi le with an .asp exten-
sion) and access the specifi ed database. Once the data is obtained, the
Web server will put this information into an HTML page and return that
page to you in the Web browser in plain HTML code. Users never see
the instructions contained in your ASP fi le unless they have access to
the Web server and have been given the appropriate permissions to open
these fi les. Because the Web server reads and processes the instructions in
the ASP page every time your browser requests the page, the information
you receive is highly dynamic. ASP allows the page to be built or custom-
ized on the fl y before the page is returned to the browser. ASP is platform
independent. Th is means that you can view ASP pages in any browser
(Edge, Internet Explorer®, Firefox, Safari, Chrome, Opera™, and others).

 ● ASP.NET (pronounced ASP DOT NET)—a newer, more advanced, and
feature-rich Web development technology from Microsoft that requires
the Microsoft .NET Framework to be installed on users’ computers. Un-
like Active Server Pages (ASP), which is limited to scripting languages,
.NET technology provides cross-language support (you can write and
share code in many diff erent .NET languages such as Visual Basic .NET,

944 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

C#, Managed C++, JScript .NET, and J#). ASP fi les prepared in .NET end
in .aspx, .ascx, or .asmx. ASP.NET is not an upgrade of the classic ASP;
it is an entirely new infrastructure for Web development that requires
learning new concepts about building Web applications and “unlearning”
the concepts utilized in programming classic ASP applications. Because
programming in .NET languages is quite diff erent from writing programs
in Visual Basic for Applications, it is not covered here. Instead, this chap-
ter gives you a handle on ASP classic programming, which is more related
to Visual Basic via its subset, VBScript.

CREATING AN ASP PAGE

In this section, you will create your first ASP page using HTML and Microsoft
Visual Basic Scripting Edition (VBScript). In Hands-On 30.1, you will create an
ASP page that retrieves data from the Employees table in the Northwind.mdb
database.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 30.1 Creating an Active Server Page from a Microsoft
Access Table

1. Create a new folder named C:\VBAAccess2019_ASP_Classic for this chapter’s
files.

2. Copy the Northwind.mdb database to the C:\VBAAccess2019_ASP_Classic
folder.

3. Open Windows Notepad and type the following code:
<% @Language="Vbscript" %>
<%

' declare variables
Dim accessDB
Dim conn
Dim rst
Dim sql

' name of the database
accessDB = "Northwind"

ACCESS AND ACTIVE SERVER PAGES 945

' establish connection to the database
conn = "DRIVER={Microsoft Access Driver (*.mdb)};"
conn = conn & "DBQ=" & Server.MapPath(accessDB)

' Create a Recordset
Set rst = Server.CreateObject("ADODB.Recordset")

' select all records from Employees table
' for indicated fields only
sql = "SELECT FirstName, LastName, Title, City,"
sql = sql & " Country FROM Employees"

' Open Recordset (and execute SQL statement above)
' using the open connection
rst.Open sql, conn

%>

<html>
<head>
<title>Northwind Employees</title>
</head>
<body>
<table border="1">
<%
For Each fld In rst.Fields
 Response.Write ("<th>") & fld.Name & ("</th>")
Next
rst.MoveFirst
Do While Not rst.EOF
 Response.Write ("<tr>")
 For Each fld In rst.Fields
 Response.Write ("<td>") & fld.Value & ("</td>")
 Next
 Response.Write ("</tr>")
 rst.MoveNext
Loop
%>
</table>
</body>
</html>
<%
' close the Recordset
rst.Close
Set rst = Nothing
%>

946 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Save the file as C:\VBAAccess2019_ASP_Classic\Employees.asp and exit
Notepad.
Let’s spend a few minutes analyzing the Classic ASP page you’ve just written.
Th e code shown here begins by specifying a scripting language for the page
with the Active Server Pages directive <% @Language=”Vbscript” %>.
 Th e script between the <% and %> delimiters is Visual Basic script code that
gets executed on the Web server. Th e <% says that what follows is a server-side
script, not HTML. Th e %> indicates the end of a script segment. Th e script
code between the <% and %> delimiters is executed on the Web server as
the page is processed. Any values you want returned by the script are placed
between the <% and %> delimiters.
 Like VBA procedures, the fi rst step in scripting is the declaration of variables.
Because all variables in VBScript are of the Variant type, you don’t need to use
the As keyword to specify the type of variable. To declare a variable, simply
precede its name with the Dim keyword:
Dim accessDB
Dim conn
Dim rst
Dim sql

Also, like VBA, you can declare all your variables on one line, like this:
Dim accessDB, conn, rst, sql

To connect with the Access database, we specify a connection string like this:
conn = "DRIVER={Microsoft Access Driver (*.mdb)};"
conn=conn & "DBQ=" & Server.MapPath(accessDB)

Th e DRIVER parameter specifi es the name of the driver that you are planning to
use for this connection (Microsoft Access Driver (*.mdb)). Th e DBQ parameter
indicates the database path. Th e exact path will be supplied by the MapPath
method of the Server object:
Server.MapPath(accessDB)

You can also connect to your Access MDB database by using the OLEDB data
provider as follows:
Set conn = Server.CreateObject("OLEDB.Connection")
conn.Open "Provider=Microsoft.Jet.OLEDB.4.0; Data Source=" _
 & Server.MapPath(accessDB)

ACCESS AND ACTIVE SERVER PAGES 947

To connect to an SQL server database, use the following format:
Set conn = Server.CreateObject("OLEDB.Connection")
conn.Open "Provider="SQLOLEDB;" & _
 "Data Source=YourServerName;" & _
 "Initial Catalog=accessDB;" & _
 "UID=yourId; Password=yourPassword;"

To access database records, we create the Recordset object using the
CreateObject method of the Server object:
Set rst = Server.CreateObject("ADODB.Recordset")

Aft er creating the recordset, we open it using the Open method, like this:
rst.Open sql, conn

Th is statement opens a set of records. Th e sql variable is set to select all the
records from the Employees table for the indicated fi elds. Th e conn variable
indicates how you will connect with the database.
Th e %> delimiter indicates the end of the server-side script.

Server-Side and Client-Side Scripting

A server-side script is the script code that runs on the Web server before the
page comes down to the client (the user’s machine). This script begins to run
when a browser requests an ASP file from your Web server. The Web server
then calls the ASP interpreter (ASP.dll), which processes the blocks of code
between the <% and %> delimiter tags. After the script commands are execut-
ed, the Web page is sent to the browser. Server-side scripts cannot be readily
copied because only the result of the script is returned to the browser. Users
cannot view the script commands that created the page they are viewing. All
they can see is the HTML source code for the page.
 In addition to server-side scripts, an ASP file can contain client scripts. A
client script is the script code that is processed by a browser on the user’s ma-
chine while the page is viewed. Client scripts are enclosed between <script>
and </script> tags. When a browser encounters a <script> tag, it sends the
script that follows this tag to a scripting engine. A scripting engine is the part
of the Web browser that processes the scripts. Because not all browsers can
process client scripts, comment tags (<!-- and -->) are often used to make
browsers that do not recognize the <script> tag ignore it.

Notice the many tags between the angle brackets: <html>, </html>, <head>,
</head>, <title>, </title>, <body>, </body>, <tr>, and so on (see Table 30.1).

SIDEBAR

948 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e tags tell the browser how to display the fi le. For example, the <html>
tag tells the browser that what follows is an HTML document. Th e closing
</html> tag at the end of the fi le tells the browser that the HTML document is
completed. Th e closing tags are denoted by placing a forward slash before the
tag name (for example, </title>, </body>, </html>). Closing tags cancel the
eff ect of the tag.
 Th e next part of the ASP page contains HTML formatting tags that prepare
a table. Th ese tags are summarized in Table 30.1.
 Th e table headings are read from the Fields collection of the Recordset
object using the For...Each...Next loop. Notice that all instructions that
need to be executed on the server are enclosed by the <% and %> delimiters.
To enter the data returned by the server in the appropriate table cell, use the
Write method of the ASP Response object:
Response.Write ("<th>") & fld.Name & ("</th>")

Th is statement will return the name of a table header. Because this instruction
appears in the fi le between the <th> and </th> HTML formatting tags, the
names of the table fi elds will be written as headings in bold type.
 Aft er reading the headings, the next loop reads the values of the fi elds in
each record:
Response.Write («<td>») & fld.Value & («</td>»)

Because this statement is located between the <td> and </td> formatting tags,
each time the loop is executed, the value retrieved from the current fi eld in a
particular record will be written to the table cells.
 Th e script ends by closing the recordset and releasing the memory used by it:
rst.Close
set rst = Nothing

Because the Web server reads and processes the instructions in the ASP
page every time your browser requests the page, the information you receive
is highly dynamic. ASP allows the page to be built or customized on the fl y
before the page is returned to the browser.

TABLE 30.1 Frequently used script delimiters and HTML tags

Delimiters and Tags Description
<% and %> Beginning and end of the ASP script fragment. The script code between

the <% and %> delimiters will be executed on the server before the page is
delivered to the user’s browser.

ACCESS AND ACTIVE SERVER PAGES 949

Delimiters and Tags Description
<html> and </html> You should place the <html> tag at the beginning of each Web page. To

indicate the end of a Web page, use the closing tag: </html>. The HTML
document has two main sections: <head> and <body>.

<head> and </head> The <head> section contains information about the document such as its
title, keywords, description, and stylesheet. Often Java scripts are placed
in the <head> section.

<title> and </title> Place the text you want to display in the window titlebar between these
HTML tags. The <title> tag always appears within the <head> section.

<body> and </body> The text you want to display on the Web page should be placed between
these tags.

<table> and </table> The beginning and the end of a table.
<table border= “1”> The border parameter specifies the width of the table border.
<th> and </th> Place table headings between <th> and </th> tags. They will be automati-

cally displayed in bold font.
<tr> and </tr> The <tr> tag begins a new row in a table. Each table row ends with the

</tr> tag.
<td> and </td> Each table data item starts with the <td> tag and ends with the </td> tag.

Note that you are not ready yet to view the data. Before you can view the Employ-
ees data in a browser, you need to perform the following tasks:

 ● Install and confi gure Microsoft Internet Information Services (IIS). Th e
installation instructions are presented following the next section.

 ● Create a virtual folder (see the section following the IIS installation in-
structions).

THE ASP OBJECT MODEL

ASP has its own object model consisting of the objects shown in Table 30.2.

TABLE 30.2 The ASP object model

ASP Object Name Object Description
Request Obtains information from a user
Response Sends the information to the client browser
Application Shares information for all the users of an application
Server Creates server components and server settings
Session Stores information pertaining to a particular visitor

950 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The ASP objects have methods, properties, and events that can be called to
manipulate various features. For example, the Response object’s Write method
allows you to write text to the client browser. The CreateObject method of the
Server object is required to create a link between a Web page and your Access
database. You will become familiar with some of these ASP objects and their
properties and methods as you create the example ASP pages in this chapter.

NOTE

Complete coverage of the ASP object model is beyond the scope
of this book. This chapter’s objective is to demonstrate how your
VBA skills can be used with other Internet technologies (HTML,
VBScript, and classic ASP) to programmatically access database
data in a browser.

INSTALLING INTERNET INFORMATION SERVICES (IIS)

Internet Information Services (IIS) is a Web server application created by
Microsoft for use with the Microsoft Windows operating system. The following
versions of IIS are currently in use:

 ● IIS 10 – Windows 10 / Windows Server 2019
 ● IIS 8.5 – Windows 8.1 / Widows Server 2012 R2
 ● IIS 8 – Windows 8 / Windows Server 2012
 ● IIS 7.5 – Windows 7 / Windows Server 2008 R2

The classic version of ASP is not installed by default on IIS 7.5 and
later. Therefore, before running the examples in this chapter, you need to
enable this feature using the Control Panel. The Hands-On 30.2 exercise
walks you through the process of getting the Classic ASP to be recog-
nized by your computer.

 Hands-On 30.2 Enabling Classic ASP in Windows

1. Open the Control Panel and click on the Programs link as shown in Figure
30.1.

2. Under Programs and Features, click Turn Windows features on or off as
shown in Figure 30.2.

ACCESS AND ACTIVE SERVER PAGES 951

FIGURE 30.1 Enabling classic ASP in Windows (Step 1).

FIGURE 30.2 Enabling classic ASP in Windows (Step 2).

3. If you are prompted with a request for permission to continue, click Continue
in the User Account Control (UAC) window to give Windows permission to
proceed.

4. Wait while Windows retrieves all the features.

952 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

5. Expand the Internet Information Services tree node and make sure your
selections under various IIS nodes match those shown in Figures 30.3a
(Windows 7) or 30.3b (Windows 10).

FIGURE 30.3A Enabling classic ASP in Windows 7 (Step 3). Make sure ASP is checked under
Application Development Features.

ACCESS AND ACTIVE SERVER PAGES 953

FIGURE 30.3B Enabling classic ASP in Windows 10 (Step 3). Make sure ASP is checked under the
Application Development Features. Also, IIS Management Console under Web Management Tools
should be selected.

6. After checking ASP, click OK and wait for Windows to apply changes. This
might take several minutes.

7. Once the features are configured, close all open Control Panel windows.
8. After completing the preceding configuration steps, you should see the folder

named inetpub on your computer’s system drive as shown in Figure 30.4.

NOTE
After you have installed IIS, it is important that you run Win-
dows Update to ensure that your system has the most recent
security patches and bug fixes.

954 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 30.4 After you have enabled classic ASP, a new folder named inetpub appears on your
computer’s system drive.

CREATING A VIRTUAL DIRECTORY

The default home directory for the World Wide Web (WWW) service is \Inet-
pub\wwwroot. Files located in the home directory and its subdirectories are
automatically available to visitors to your site. If you have Web pages in other
folders on your computer and you’d like to make them available for viewing by
your Web site visitors, you can create virtual directories. A virtual directory
appears to client browsers as if it were physically contained in the home direc-
tory.

NOTE
For the purposes of this chapter, you created a directory called
VBAAccess2019_ASP_Classic (see Hands-On 30.1). In Hands-
On 30.3, you will designate it as a virtual directory.

 Hands-On 30.3 Creating a Virtual Directory in Windows

1. Open the Control Panel, choose System and Security, and then click on
Administrative Tools.

2. Double-click Internet Information Services (IIS) Manager as shown in
Figure 30.5.

3. Click Continue in the User Account Control (UAC) window if Windows asks
you for permission to continue. Respond No to any other question.

4. Expand the tree nodes in the Connections pane on the left, right-click on
Default Web Site, and select Add Virtual Directory as shown in Figure 30.6.

ACCESS AND ACTIVE SERVER PAGES 955

FIGURE 30.5 To set up a virtual directory on your computer, you must first activate Internet
Information Services (IIS) Manager in the Administrative Tools of the Windows Control Panel.

FIGURE 30.6 You can add a virtual directory by right-clicking Default Web Site in the Connections
pane of the Internet Information Services (IIS) Manager window.

5. A virtual directory has an alias, or name that client browsers use to access that
directory. An alias is often used to shorten a long directory name. In addition,
an alias provides increased security. Because users do not know where your
files are physically located on the server, they cannot modify them.

6. Type NorthDB in the Alias box as shown in Figure 30.7. Set the Physical path
to point to the C:\VBAAccess2019_ASP_Classic folder that you created in
Hands-On 30.1.

956 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

7. Click OK to save the changes.
8. Notice the virtual directory named NorthDB now appears under Default Web

Site in the Connections pane (Figure 30.8). The middle section of the Internet
Information Services (IIS) Manager displays the NorthDB Home.

9. Do not close the IIS Manager window, as you will continue with it in the next
section.

FIGURE 30.7 The Add Virtual Directory dialog box is used to specify the name and path to your
Web site folder. The physical folder named VBAAccess2019_ASP_Classic will be shared over the Web
as NorthDB.

FIGURE 30.8 After creating a virtual directory, you should see it listed under Default Web Site in
the Connections pane of the Internet Information Services (IIS) Manager window.

ACCESS AND ACTIVE SERVER PAGES 957

SETTING ASP CONFIGURATION PROPERTIES

To make it easy to debug your code and to ensure that you can use relative paths
in your code, you should change a couple of default configuration properties in
the IIS Manager. The following hands-on exercise walks you through the steps
required to make the necessary modifications.

 Hands-On 30.4 Confi guring ASP Properties

1. In the IIS Manager’s Connections pane, select Default Web Site, and then in
the middle section under IIS, double-click ASP.

2. Expand the Debugging Properties tree node and set the Send Errors To
Browser property to True, as shown in Figure 30.9.

NOTE

By default, when ASP script errors are encountered, Windows
displays the following message: “An error occurred on the Server
when processing the URL. Please contact the System Adminis-
trator.” To prevent this error, be sure to select True next to the
Send Errors To Browser property as shown in Figure 30.9.

FIGURE 30.9 By setting the Send Errors To Browser property to True, you can easily troubleshoot
errors when your Active Server Page encounters an error.

3. In the Behavior section, set Enable Parent Paths to True as shown in Figure
30.9.

958 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. Parent paths allow you to use relative addresses that contain “..” in the
paths of files and folders. For example, the following line will cause an
error if parent paths are disabled:
Response.Write Server.MapPath(«../login.asp»)

In earlier versions of IIS, parent paths were enabled by default. In IIS 7 and
above, you need to remember to enable parent paths in order to prevent errors
when relative paths are used.

5. In the Actions area on the right, click Apply to save the changes. When changes
have been successfully saved, you should see a message in the Alerts area in the
right pane of the IIS Manager window that the changes have been successfully
saved.

6. Close the Internet Information Services (IIS) Manager window and any
Control Panel windows that are still open.

TURNING OFF FRIENDLY HTTP ERROR MESSAGES

Friendly HTTP error messages don’t provide enough information for program-
mers to effectively troubleshoot ASP script errors. Use the following steps to
uncheck the Show friendly HTTP error messages option in your browser so
you will get more meaningful error messages that can help you solve your script
problems.

 Hands-On 30.5 Turning Off Friendly HTTP Error Messages

1. Open Control Panel and search for Internet Options.
2. In the Internet Options window, click the Advanced tab.
3. Locate the Browsing settings and uncheck Show friendly HTTP error

messages as shown in Figure 30.10.
4. Click OK to save your changes and exit the Internet Options window.

NOTE
Your IIS is now configured to run classic ASP scripts on your
computer and provide you with meaningful error messages in
case errors are encountered in your scripts at runtime.

ACCESS AND ACTIVE SERVER PAGES 959

FIGURE 30.10 Turn off the Show friendly HTTP error messages option so you can see the actual
Windows messages when troubleshooting your ASP scripts.

NOTE

Your IIS is now configured to run classic ASP scripts on Win-
dows machine (32-bit systems). If you are working with the 64-
bit system, you will need to take additional steps as follows:

a. Open the Control Panel, change the view to show all
icons, and then click on Administrative Tools.

b. Double-click Internet Information Services (IIS)
Manager as shown in Figure 30.5.

c. Expand the tree node in the Connections pane on the
left , right-click the Application Pools and choose Add
Application Pool.

d. In the name box, enter MyClassicASP. For the .NET
Framework version choose No Managed Code. In the
Managed Pipeline Mode drop-down, choose Classic.
Aft er making these selections, click OK.

e. Th e MyClassicASP entry should now appear in the
Application Pool list in the middle section of the IIS
Manager window. Right-click this entry and choose
Advanced Settings.

960 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

f. In the (General) section of the Advanced Settings
dialog, specify True for Enable 32-bit Applications.

g. Click OK to close the Advanced Settings dialog.
h. In the Connections pane on the left , right-click

Default Web Site, and choose Manage Web Site |
Advanced Settings.

i. In the Advanced Settings window, change the
Application Pool to MyClassicASP and click OK.

j. Close the IIS Manager window.

For more information see the following link:
http://www.iis.net/learn/application-frameworks/
running-classic-asp-applications-on-iis-7-and-iis-8

RUNNING YOUR FIRST ASP SCRIPT

Now that you’ve prepared the ASP file and set up the virtual directory, includ-
ing the required settings, it’s time to see the result of your efforts. In Hands-On
30.6, you will access the employee data from a Web browser by requesting in a
browser the Active Server Page (Employees.asp) that you prepared in Hands-
On 30.1.

 Hands-On 30.6 Requesting an ASP Page

This hands-on exercise requires completion of Hands-On 30.1 through 30.5.

1. To ensure that all of the components you need for this chapter’s examples can be
quickly accessed, make sure that you have copied the sample Northwind.mdb
database file from the companion CD-ROM disc to your VBAAccess2019_
ASP_Classic folder.

2. Open your Internet browser.
3. Type http://localhost/NorthDB/Employees.asp in the address box and press

Enter to execute the Active Server Pages (ASP) file.
4. The contents of the Employees table should appear in your browser as shown

in Figure 30.11.
Localhost is the name of the Web server installed on your computer, and
NorthDB is the name of the virtual folder where the ASP script fi le named
Employees.asp is stored.

ACCESS AND ACTIVE SERVER PAGES 961

NOTE

If you are working on a brand-new computer, you may encoun-
ter an error “800A0E7A – Provider cannot be found. It may not
be properly installed.” To fix this issue, download the 2007 Of-
fice System Driver Data Connectivity Components:
http://www.microsoft.com/download/en/confirmation.
aspx?id=23734
After installing the above driver, execute the Step 3 in this ex-
ercise.

FIGURE 30.11 You can request the ASP page by typing its URL in the Web browser’s address bar.

5. Right-click anywhere in the browser window and select View Source to view
the source code (see Figure 30.12) .

6. Depending on your browser version, View Source command opens Windows
Notepad or Developer Tools to display a source file. Because the script
commands contained in the ASP file are evaluated on the server before the
browser receives the page, the resulting page in the browser is 100% pure
HTML code. Notice that the browser does not display any of your ASP code
that was surrounded by the <% and %> delimiters. The scripting code is
evaluated on the server and only the resulting HTML is passed to the browser.

962 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 30.12 Viewing the source code of the ASP page.

7. Close Notepad or Developer Tools and exit the browser.

RETRIEVING RECORDS

In the preceding sections of this chapter, we worked with the ASP page that
retrieved records from the Employees table. To gain more experience in data
retrieval, let’s create another ASP page. The example ASP code in Hands-On
30.7 retrieves only customer names from the Customers table.

 Hands-On 30.7 Creating an ASP File to Retrieve Records

This hands-on exercise requires completion of Hands-On 30.1.
1. Start Notepad and enter the following ASP code:

<%@ Language="Vbscript" %>
<html>
<head>
<title>Retrieving a Recordset</title>
</head>
<body>
<%

ACCESS AND ACTIVE SERVER PAGES 963

Set conn = Server.CreateObject("ADODB.Connection")
conn.Open "DRIVER=Microsoft Access Driver" & _
 " (*.mdb);DBQ=" & _
 "C:\VBAAccess2019_ASP_Classic\Northwind.mdb"
Set rst = conn.Execute("SELECT CompanyName " & _
 "FROM Customers")
Do While Not rst.EOF
 Response.Write rst("CompanyName") & "
"
 rst.MoveNext
Loop
%>
</body>
</html>

Th is code begins by specifying a scripting language for the page with the ASP
directive <%@ Language="Vbscript" %>. Recall that the script contained
within the <% and %> is Visual Basic script. Th is script performs the following
actions:

 ● Creates an instance of the ADO Connection object
 ● Opens the connection to the Northwind.mdb database using the Micro-

soft Access driver (this is the DSN-less connection)

Th e SQL SELECT statement retrieves the values in the CompanyName
fi eld from the table named Customers into a Recordset object named rst.
Th e SELECT statement is executed with the Execute method of the Server
Connection object. Notice that the instance of the Recordset object is created
implicitly when the SQL statement is executed.
 Th e Do While loop is used to output all the rows from the recordset to
the browser. Th e Write method of the Response object outputs the value of
a specifi c string or expression to the browser. Th e HTML
 tag is used to
produce a carriage return aft er the value of the CompanyName fi eld is output
to the browser. Th anks to this tag, all company names are displayed on separate
lines. Here, the value of the CompanyName fi eld and a line break (
 tag) is
written to the browser with the Response.Write statement like this:

Response.Write rst("CompanyName") & "
"

Th e rst("CompanyName") part retrieves the value of the CompanyName fi eld
from the Recordset object. You can output the values from the Recordset object
by using any of the following statements:

Response.Write rst.Fields("CompanyName")
Response.Write rst.Fields("CompanyName").Value

964 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Response.Write rst.Fields(1)
Response.Write rst.Fields(1).Value
Response.Write rst(1)
Response.Write rst("CompanyName")

Because the Fields collection is the default collection of the Recordset object,
you can omit the word “Fields.” Th e MoveNext method in the next statement
moves to the next record in the recordset.

2. Save the file as C:\VBAAccess2019_ASP_Classic\GetCustomers.asp.
3. Close Notepad.

Now that you know what the code does, let’s proceed to request this ASP page
in the browser.

4. Open your browser and type http://localhost/NorthDB/GetCustomers.asp
in the address bar and press Enter.

5. When you request the GetCustomers.asp file in the browser, you get the results
shown in Figure 30.13.

FIGURE 30.13 The ASP page created in Hands-On 30.7 displays the names of customers from the
Customers table in the Northwind database.

Breaking Up a Recordset When Retrieving Records

In the preceding section, you worked with the ASP page that retrieved 91 records
from the Customers table in the Northwind.mdb database. When you need to
display more than a few records, it is a good idea to break up the recordset by
dividing the list into multiple pages. This allows the user of your application to
view a limited number of records at a time.

ACCESS AND ACTIVE SERVER PAGES 965

In Hands-On 30.8, you will create an ASP page that displays 12 customer
names per page. The user will be able to move between the pages of data by
clicking on the page number listed at the bottom of the page. To make the ASP
page more useful, you will display the customer names as hyperlinks. Clicking
on the customer name will call another ASP page that displays the customer’s
address as listed in the Customers table.

 Hands-On 30.8 Creating a Multipage ASP File

1. Start Notepad and enter the following ASP code:
<%@ Language="Vbscript" %>
<html>
<head>
<title>View Few at a Time</title>
</head>
<body>
<%
Dim conn, rst, mySQL, currPage, rows, counter
Set conn = Server.CreateObject("ADODB.Connection")
conn.Open "DRIVER=Microsoft Access Driver" & _
 " (*.mdb);DBQ=" & _
 "C:\VBAAccess2019_ASP_Classic\Northwind.mdb"
Set rst = Server.CreateObject("ADODB.Recordset")

rst.CursorType = 3 'adOpenStatic
rst.PageSize = 12

mySQL= "SELECT * FROM Customers " & _
 "ORDER BY CompanyName"
rst.Open mySQL, conn
If Request.QueryString("currPage")="" Then
 currPage=1
Else
 currPage=Request.QueryString("currPage")
End If

rst.AbsolutePage=currPage
rows = 0

Response.Write ("<h2>Northwind Customers</h2>")
Response.Write ("<i>Displaying page " & _
 currPage & " of ")
Response.Write rst.PageCount & ("</i>")

966 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Response.Write ("<hr/>")

Do While Not rst.EOF And rows < rst.PageSize
 Response.Write _
 ("<a href=""Address.asp?CustomerID=") & _
 rst("CustomerID") & """>"
 Response.Write rst("CompanyName") & ("
")
 rows = rows + 1
 rst.MoveNext
Loop

Response.Write ("<hr/>")
Response.Write ("Result Pages: ")

For counter = 1 To rst.PageCount
 Response.Write _
 («<a href=»»PageMe.asp?currPage=») & _
 counter & """>"
 Response.Write counter & ("")
 Response.Write Chr(32)
Next
rst.close
Set rst = Nothing
conn.Close
Set conn = Nothing
%>
</body>
</html>

2. Save the file as C:\VBAAccess2019_ASP_Classic\PageMe.asp.
3. Close Notepad.

Let’s examine this ASP page. Th e scripting section begins with the declaration
of variables. Because all variables are Variants in Active Server Pages, it is
convenient to list them on one line:

Dim conn, rst, mySQL, currPage, rows, counter

Following the declaration of variables, the Connection object is created and
the connection to the Northwind database is opened using the Microsoft
Access driver.
 Next, the Recordset object is created. For Recordset paging to work
properly, CursorType must be set to adOpenStatic. Notice that the script uses
the literal value (3) instead of the constant name adOpenStatic. By default,
ADO enumerated constants are not defi ned in VBScript. However, a list of

ACCESS AND ACTIVE SERVER PAGES 967

constants used with ADO is defi ned in the Adovbs.inc fi le (for VBScript) or
in the Adojavas.inc fi le (for JScript). Th ese fi les are installed in the \Program
Files\Common Files\System\ado folder. To use constant names instead of their
values, you can add a reference to the Adovbs.inc fi le at the top of your ASP
page by using the #INCLUDE FILE directive, as shown here:

<%@ Language="Vbscript" %>
<!-- #INCLUDE FILE="adovbs.inc" -->
<html>

For the #INCLUDE FILE directive to work, you must copy the Adovbs.inc fi le
to the VBAAccess2019_ASP_Classic folder. When you add this directive, you
will be able to use the ADO constants instead of literal values in your VBScript.
Using the enumerated constants will make your code easier to understand.
 Use the PageSize property of the Recordset object to specify how many
records are to be displayed on a page. Here the page is set to display 12 records:

rst.PageSize = 12

Th e SQL SELECT statement retrieves all the records in the Customers table into
the recordset. We store this statement in the mySQL variable and proceed to
open the recordset using the connection that we set up earlier:

rst.Open mySQL, conn

Next, the script retrieves the page you are currently on. If the contents of the
currPage variable is an empty string (“”), then you are on the fi rst page.
Th e AbsolutePage property of the Recordset object is used to move to a
particular page aft er opening the recordset. Th e AbsolutePage property
identifi es the page number of the current record. AbsolutePage equals 1 when
the current record is the fi rst record in the recordset.
 Th en the rows variable is initialized to zero (0). Th is variable limits the
number of records that are displayed on a particular page.
 Next, we use the Write method of the Response object to write a little
HTML code that formats the page. For example, to format the page title we
use the HTML second-level heading tag <h2> and its ending companion tag
</h2> like this:

Response.Write ("<h2>Northwind Customers</h2>")

Th e next two Response.Write statements inform the user about the page
number being displayed and the total number of available pages:

968 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Response.Write ("<i>Displaying page " & currPage & " of ")
Response.Write rst.PageCount & ("</i>")

Th e HTML <i> tag will cause the text to appear in italics. You get the page
number from the currPage variable and obtain the total number of pages
from the PageCount property of the Recordset object.
 Before we display the data, we want to draw a horizontal line on the page.
Th is is done with the HTML <hr/> tag.
 Th e Do While loop iterates through the recordset, counting the rows
(records) as they are being retrieved and making sure that the number of
records displayed per page is less than the specifi ed page size. Company names
are written to each page as hyperlinks using the HTML <a> anchor tag. Th e
anchor tag uses the href attribute to designate a target page and forwards data
to the target page when the user clicks the company name link:

Response.Write ("<a href=""Address.asp?CustomerID=") & _
 rst("CustomerID") & """>"
Response.Write rst("CompanyName") & ("
")

Th e target page (Address.asp) is created in the next hands-on exercise in this
chapter. A question mark (?) separates the target page from the data. Th e data
attached to the hyperlink is a fi eld name followed by an equals sign and the
fi eld value. When you use Response.Write to write the links, you must pay
attention to the quotes. Notice the pairs of double quotes inside the string.
Each pair of double quotes (“”) can be replaced with a single quote (‘) to make
it easier to read, like this:

Response.Write ("<a href= 'Address.asp?CustomerID='") & _
 rst("CustomerID") & ">"
Response.Write rst("CompanyName") & ("
")

Th e HTML
 tag ensures that each company name appears on a separate
line.
 When the value of the rows variable is greater than the page size, the records
are output to the next page.
 Aft er all records are retrieved and placed on appropriate pages, a horizontal
line is placed on the page using the HTML <hr/> tag. Following the horizontal
line, a list of links to the individual pages appears with the text “Result Pages:”
formatted in bold (notice the and HTML tags). Again, to write those
page links we use the HTML <a> tag with the href attribute:

ACCESS AND ACTIVE SERVER PAGES 969

Response.Write («<a href=»»PageMe.asp?currPage=») & _
 counter & """>"
Response.Write counter & ("")

Th e next statement uses the Chr(32) function to put a space between the page
links:

Response.Write Chr(32)

Finally, the script segment ends by closing all objects and releasing the memory
used. We announce the end of the fi le by writing two ending HTML tags:

</body>
</html>

Now that you know what the code does, let’s proceed to request this page in
the browser.

4. Open your browser and type http://localhost/NorthDB/PageMe.asp in the
address bar, then press Enter.

5. You should see the listing of Northwind customers spanning multiple pages
(Figure 30.14).

6. Navigate to different pages by clicking on the page links.

NOTE
Clicking on the company name does not work yet. You must cre-
ate another ASP page to display the selected customer’s address
(see Hands-On 30.9).

FIGURE 30.14 The result of running the ASP page titled PageMe.asp is a list of Northwind
customers that is both easy to examine and to use.

970 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 30.9 Creating an ASP File for Loading from a Hyperlink

This hands-on exercise is required in order to use the company name hyper-
links in the PageMe.asp file created in Hands-On 30.8.

1. Start Notepad and enter the following ASP code:
<%@ Language="Vbscript" %>
<html>
<head><title>Lookup Results</title></head>
<body>
<%
Dim mySQL, myPath

CustomerID = TRIM(Request.QueryString("CustomerID"))
myPath = "C:\VBAAccess2019_ASP_Classic\Northwind.mdb"

Set conn = Server.CreateObject("ADODB.Connection")
conn.Open "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & myPath

Set rst = Server.CreateObject("ADODB.Recordset")
rst.CursorType = 3 'adOpenStatic

mySQL= "SELECT * FROM Customers " & _
 "WHERE CustomerID='" & CustomerID & "'"
rst.Open mySQL,conn

%>
<h1>Address Lookup</h1>
<i>Displaying address for
<%=rst("CompanyName")%></i>
<hr/>
<table colspan="2" align="Center">
 <tr>
 <td>Customer Id:</td>
 <td><input type="text" name="CustomerID"
 value="<%=rst("CustomerID")%>" size="5">
 </td>
 </tr>
 <tr>
 <td>Street:</td>
 <td><input type="text" name="Address"
 value="<%=rst("Address")%>" size="60">
 </td>

ACCESS AND ACTIVE SERVER PAGES 971

 </tr>
 <tr>
 <td>City:</td>
 <td><input type="text" name="City"
 value="<%=rst("City")%>" size="15">
 </td>
 </tr>
 <tr>
 <td>Region:</td>
 <td><input type="text" name="Region"
 value="<%=rst("Region")%>" size="15">
 </td>
 </tr>
 <tr>
 <td>Country:</td>
 <td><input type="text" name="Country"
 value="<%=rst("Country")%>" size="15">
 </td>
 </tr>
 <tr>
 <td>Zip:</td>
 <td><input type="text" name="PostalCode"
 value="<%=rst("PostalCode")%>" size="10">
 </td>
 </tr>
 <tr>
 <td>Phone:</td>
 <td><input type="text" name="Phone"
 value="<%=rst("Phone")%>" size="24">
 </td>
 </tr>
 <tr>
 <td>Fax:</td>
 <td><input type="text" name="Fax"
 value="<%=rst("Fax")%>" size="24">
 </td>
 </tr>
</table>

<center>
[Go Back]
</center>

<%
rst.close

972 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Set rst = Nothing
conn.Close
Set conn = Nothing
%>

</body>
</html>

Th e fi rst VBScript code segment between the <% and %> delimiters connects
to the sample Northwind.mdb database using the native OLEDB Provider. Th e
SQL SELECT statement retrieves the record for the selected customer, and the
information is output to the page. First, the internal title is written out and
formatted using the HTML level 1 heading tag <h1>. Th e user is given the
name of the customer whose information he is viewing. Next are the horizontal
line (see the <hr/> tag) and the table structure that displays the customer
information. Th e HTML tag <table> denotes the beginning of a table, <tr>
starts a new row, and <td> indicates the table cell (where the data is displayed).
Each of these tags is closed with an ending tag (</td>, </tr>, and </table>).
Once the data is written to the page, you should provide the user with a way to
return to the previous page so that another customer record can be requested.
Th e Go Back hyperlink at the bottom of the page performs the same action as
clicking the Back button in the browser’s toolbar:

<center>
[Go Back]
</center>

Th e HTML <center> tag positions the hyperlink centered between the page
margins. To make the Go Back link compatible across all browsers, you will
need to replace vbscript with javascript as in the following:

<center>
[Go Back]
</center>

Now that you know what the code does, let’s proceed to request this page in
the browser.

2. Save the file as C:\VBAAccess2019_ASP_Classic\Address.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/PageMe.asp

and press Enter. You should see the listing of Northwind customers spanning
multiple pages.

ACCESS AND ACTIVE SERVER PAGES 973

5. Click a company name of your choice to view its address information. When
you click a company name in the browser, the Address Lookup screen appears
as illustrated in Figure 30.15.

FIGURE 30.15 When you click the company name on the PageMe.asp page (see Figure 30.14), you
are presented with a Web page that displays the selected company’s address.

Retrieving Records with the GetRows Method

Instead of looping through a recordset to retrieve records, you can use the Get-
Rows method of the Recordset object to retrieve records into a two-dimensional
array. You’ve already seen examples of using the GetRows method earlier in this
book. Hands-On 30.10 uses the GetRows method to move records from the
Shippers table into an array. Once in the array, the records are written out to a
table and displayed in a client browser. When you place records into an array,
you can free up the Recordset and Connection objects earlier than in a loop,
thus releasing valuable server resources.

 Hands-On 30.10 Quick Data Retrieval

1. Start Notepad and enter the ASP code shown here:
<%@ Language="Vbscript" %>
<html>
<head><title>Fast Retrieve</title></head>
<body>
<%
Dim conn, rst, strSQL, myPath, fld
Dim allRecords, RowCounter, ColCounter
Dim NumOfCols, NumOfRows, currField

974 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

strSQL = "SELECT * FROM Shippers ORDER BY ShipperId"
myPath = "C:\VBAAccess2019_ASP_Classic\Northwind.mdb"

Set conn = Server.CreateObject("ADODB.Connection")
conn.open "Provider=Microsoft.Jet.OLEDB.4.0; " & _
 "Data Source=" & myPath

Set rst = conn.Execute(strSQL)

Response.Write ("<table border='1'><tr>") & VbCrLf
For Each fld In rst.Fields
 Response.Write ("<td>") & fld.name & _
("</td>") & VbCrLf
Next
Response.Write ("</tr>") & VbCrLf
allRecords = rst.GetRows

rst.Close
Set rst = Nothing
conn.Close
Set conn = Nothing

NumOfCols = UBound(allRecords, 1)
NumOfRows = UBound(allRecords, 2)
For RowCounter = 0 To NumOfRows
 Response.Write ("<tr>") & VbCrLf
 For ColCounter = 0 To NumOfCols
 currField = allRecords(ColCounter, RowCounter)
 If IsNull(currField) Then
 currField = currField & ("
")
 ElseIf currField = "" Then
 currField="."
 End If
 Response.Write ("<td Valign='Top'>")
 Response.Write currField
 Response.Write ("</td>") & VbCrLf
 Next
 Response.Write ("</tr>") & VbCrLf
Next
Response.Write ("</table>")
%>

</body>
</html>

ACCESS AND ACTIVE SERVER PAGES 975

Th e VBScript code here uses the OLEDB Provider to connect to the Northwind
database. Aft er executing the SQL statement, the Write method of the
Response object is used to create a table:

Response.Write («<table border='1'><tr>») & VbCrLf

Th e VbCrLf constant denotes a carriage return/linefeed combination. Because
this constant is built into VBScript, you don’t need to defi ne it before using it.
Th e HTML <tr> tag is used to add a table row.
 Next, the For Each…Next loop retrieves the fi elds from the recordset and
places the fi eld names as table headings in the fi rst table row. Notice how
the HTML tags are embedded within the VBScript code segment. Aft er the
headings are fi lled in, the procedure uses the GetRows method of the Recordset
object and places all the fetched records in the variable named allRecords.
Because we already have all the data that we need, we close the recordset
and the connection to the database. At this point the records are in a two-
dimensional array. Prior to writing them into table cells, you can use the VBA
UBound function to check how many rows and columns were retrieved. Th e
data is placed into table cells by using the For…Next loop. Because some fi elds
in a retrieved recordset may not have any data in them, you can end up with
some missing HTML table cells. To avoid blank spaces in a table, the VBScript
code places the HTML
 (break) tag in a table cell if the fi eld contains a
Null value:

currField = currField & ("
")

You can also use a nonbreaking space () for this purpose:

currField = currField & " "

Th is statement will make the cell border show up when the cell is empty. You
can also write the following statement to ensure that there are no gaps in your
table:

Response.Write ("<td>") & currField & " </td>"

In addition, if a fi eld contains a zero-length string (“”), the VBScript procedure
places a dot in a table cell, so that you not only keep the structure of the table
intact, but also diff erentiate between information that does not exist (zero-
length) and information that may exist (Null). Recall that by setting the Allow
Zero Length property of a table fi eld to Yes and the Required property to No,
you can enter two double quotation marks to indicate that the information

976 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

does not exist. Leaving the fi eld blank by not entering any data in it indicates
that the information may exist but is not known at the time of entry.

2. Save the file as C:\VBAAccess2019_ASP_Classic\FastRetrieve.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/FastRetrieve.

asp and press Enter or click Go. You should see the listing of three shipping
companies placed in a table as shown in Figure 30.16.

FIGURE 30.16 The FastRetrieve ASP page retrieves records from the Shippers table using the
GetRows method.

5. Open the Northwind.mdb database located in the VBAAccess2019_ASP_
Classic folder and open the Shippers table in Design view. Click in the Phone
field and change the Required property of this field to No and the Allow Zero
Length property to Yes.

6. Save the Shippers table and open it in Datasheet view. Add Airborne Express
as a new shipping company. Leave the Phone field for Airborne Express empty.
Add DHL as a new shipping company. Enter 455-3333 in the Phone field for
DHL.

7. Close the Shippers table and exit Microsoft Access.
8. Return to your browser and press F5 to refresh the window. Notice the two

new records were added to the display.

NOTE

You can change the SQL statement in the FastRetrieve.asp page
to retrieve data from another Access table in the Northwind da-
tabase. For example, replace

strSQL = "SELECT * FROM Shippers ORDER BY
ShipperId"

With
strSQL = "SELECT * FROM Customers"

to pull data from the Customers table.

ACCESS AND ACTIVE SERVER PAGES 977

DATABASE LOOKUP USING DROP-DOWN LISTS

Access forms often use a drop-down box to look up information in a database.
When you use a drop-down box, the available choices are limited, so you don’t
need to worry that the user will enter incorrect information. Hands-On 30.11
illustrates how you can display a drop-down listbox in a browser, load it with
product names, and return product information formatted in a table.

 Hands-On 30.11 Creating a Web Page with a Drop-Down Listbox

1. Start Notepad and enter the ASP code shown here:
<%@ Language="Vbscript" %>

<%
Dim conn, rst, strSQL
Set conn = Server.CreateObject("ADODB.Connection")
conn.ConnectionTimeout = 15
conn.CommandTimeout = 30
conn.Open "Driver={Microsoft Access Driver (*.mdb)};" & _
 "DBQ=" & Server.MapPath("Northwind.mdb") & ";"
Set rst = Server.CreateObject("ADODB.Recordset")
If Len(Request.QueryString("ProductID")) <> 0 Then
 strSQL="SELECT * FROM Products WHERE ProductID="
 rst.Open(strSQL & Request.QueryString("ProductID")), _
 conn, 0, 1
 If Not rst.EOF Then
 rst.MoveFirst
 Response.Write ("<html><body><table border='1'>")
 Response.Write ("<tr>")
 Response.Write ("<td>Product ID</td>")
 Response.Write ("<td>Product Name</td>")
 Response.Write ("<td>Quantity Per Unit</td>")
 Response.Write ("<td>Units in Stock</td>")
 Response.Write ("<td>Unit Price</td>")
 Response.Write ("</tr>")
 Response.Write ("<tr>")
 Response.Write ("<td align='Center'>")
 Response.Write rst.Fields("ProductID") & ("</td>")
 Response.Write ("<td align='Left'>")
 Response.Write rst.Fields("ProductName") & ("</td>")
 Response.Write ("<td align='Left'>")
 Response.Write rst.Fields("QuantityPerUnit") & ("</td>")
 Response.Write ("<td align='Center'>")

978 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Response.Write rst.Fields("UnitsInStock") & ("</td>")
 Response.Write ("<td align='Right'>")
 Response.Write FormatCurrency(rst.Fields("UnitPrice"),2)
 Response.Write ("</td>")
 Response.Write ("</tr>")
 Response.Write ("</table>")
 End If
 rst.Close
End If
rst.Open "Products", conn, 0, 1
If Not rst.EOF Then
 rst.MoveFirst
 Response.Write _
 ("<form action='./ProductLookup.asp' method='GET'>")
 Response.Write ("Select a Product:
")
 Response.Write ("<select name='ProductID'>")
 Response.Write ("<option></option>")
 Do While Not rst.EOF
 Response.Write _
 ("<option value=" & rst.Fields("ProductID") & ">")
 Response.Write _
 rst.Fields("ProductName") & ("</option>")
 rst.MoveNext
 Loop
 Response.Write ("</select>")
 Response.Write _
 ("<input type='Submit' value='View Details'>")
 Response.Write ("</form>")
End If
rst.Close
Set rst = Nothing
conn.Close
Set conn = Nothing
%>
</body>
</html>

Th is VBScript code segment above begins with establishing a connection
with the data source. Instead of using a fully qualifi ed path to the
Northwind database, the code shows you how to use the MapPath method of the
ASP Server object to retrieve the path to the database. Th e statement Server.
MapPath("Northwind.mdb") will return the following path: VBAAccess2019_
ASP_Classic\Northwind.mdb. In fact, if you add the statement:

Response.Write Server.MapPath("Northwind")

ACCESS AND ACTIVE SERVER PAGES 979

to the preceding code, the fi lename with its path will appear in the browser.
It is not diffi cult to guess that using Server.MapPath generates an additional
request for the server to process. Th erefore, when deploying your website,
you should replace Server.MapPath with a fully qualifi ed path to get better
performance (see the previous hands-on examples for how this is done).
Notice that before the connection to the database is opened, the following
statements are used:

conn.ConnectionTimeout = 15
conn.CommandTimeout = 30

Th e fi rst statement instructs the Connection object’s ConnectionTimeout
property to wait 15 seconds before abandoning a connection attempt and
issuing an error message. In the second statement, the CommandTimeout
property of the Connection object specifi es how long to wait while executing a
command before terminating the attempt and generating an error. Th e default
for the ConnectionTimeout and CommandTimeout properties is 30 seconds.
Using ConnectionTimeout and CommandTimeout in this example procedure is
optional. Before utilizing these properties in your own database applications,
make sure that the data source and the provider you are using support them.
Next, the script instantiates a Recordset object and opens it using the open
connection. Th e recordset is opened as forward-only (0 = adOpenForwardOnly)
and read-only (1 = adLockReadOnly). As mentioned earlier in this chapter,
you need to add the #INCLUDE FILE directive at the beginning of the Active
Server Pages fi le in order to use enumerated ADO constants.
 Th e SQL SELECT statement contains the WHERE clause that will only pull
the record for a selected product ID if the user chooses from the drop-down
box. Th e data available for the selected record is then placed in a table. In this
example, the table headings are hard-coded. If you don’t want to hard-code the
headings, you could loop through the recordset to read the fi eld names (see the
FastRetrieve.asp fi le created earlier for an example). Aft er writing out the table
headings, the procedure fi lls the table cells with data. Th e table will contain
only one row of data because the recordset is limited to one product selected
from the drop-down list. Aft er the data is presented in a table, the Recordset
object is closed.
 Next, another recordset is opened. Th is time the code opens the entire
Products table. We loop through the recordset to build a drop-down listbox.
For each record, an <option> tag is created, its value is set to the ProductID
fi eld, and the text is set to the ProductName. Th e fi rst entry in the drop-

980 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

down list is a blank line. Th is eff ect is achieved by omitting the value and text
attributes inside the HTML <option> tag:

<option></option>

Th e drop-down listbox is part of a form. Th e <form> tag is used to generate an
HTML form.
 Forms allow user input into the browser and act as a container for ActiveX
controls. Forms can be processed via two methods: GET and POST. Th is
example uses the GET method to send information. (See Hands-On 30.13 for
an example of processing form input with the POST method.) Within a <form>
and </form> block, you can insert tags representing various HTML controls.
In this example, the form contains the listbox produced by the <select> tag
and a command button produced by the <input> tag. When the user clicks a
submit form button labeled “Get Product Details,” the data gathered from the
drop-down listbox is passed to the Active Server Pages fi le specifi ed within the
<form> tag by the action attribute.

2. Save the file as C:\VBAAccess2019_ASP_Classic\ProductLookup.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/ProductLookup.

asp and press Enter. The Web page displays a drop-down box and a button as
shown in Figure 30.17.

5. Open the drop-down list. When you do so, the list of products appears. Notice
that the first entry in the list is a blank line.

6. Select a product from the drop-down list and click the View Details button.
The product details appear in a table, as shown in Figure 30.18.

FIGURE 30.17 By using a drop-down box in a Web page, you can provide a user-friendly interface
for selecting records.

ACCESS AND ACTIVE SERVER PAGES 981

FIGURE 30.18 When you select a product from the drop-down list and click the View Details
button, the selected product information is presented at the top of the Web page.

When you use a form with the GET method to send the information, the data is
appended to the request for the processing page. The data being passed is visible
in the address bar in your browser (see Figure 30.18). Because the data is visible,
you can easily troubleshoot any problems by looking at the address bar. The
drawback of using the GET method for sending information is that the data is
not secure and it is limited in size to the maximum length of the request string.

DATABASE LOOKUP USING A
MULTIPLE-SELECTION LISTBOX

In the previous section, you saw an example of looking up product information
by selecting a product name from a drop-down list. At times, however, a user
may want to view several products at once. To meet this requirement, you will
need to create a multiple-selection listbox and process the user’s selections.

Hands-On 30.12 illustrates how you can display a multiple-selection listbox
in a browser, load it with the product names, and return product information
formatted in a table.

 Hands-On 30.12 Creating a Web Page with a
Multiple-Selection Listbox

1. Start Notepad and enter the following ASP code:
<%@ Language=VBScript %>
<html>
<head>
<title>Select Multiple Products</title>
</head>

<body>
<%

982 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dim conn, rst, strSelect, strWhere
Dim strSQL, totalItems, fld

Set conn = Server.CreateObject("ADODB.Connection")
conn.ConnectionTimeout = 15
conn.CommandTimeout = 30

conn.Open "Driver={Microsoft Access Driver (*.mdb)};" _
 & " DBQ=" & Server.MapPath("Northwind.mdb") & ";"
Set rst = Server.CreateObject("ADODB.Recordset")

If Len(Request.QueryString("ProductID")) <> 0 Then
 strSelect="SELECT ProductID AS [ID], ProductName AS "
 strSelect=strSelect & "[Product Name], QuantityPerUnit "
 strSelect=strSelect & "AS [Qty/Unit], UnitsInStock "
 strSelect=strSelect & "AS Stock, UnitPrice AS "
 strSelect=strSelect & "[Unit Price] FROM Products "

 strWhere = "WHERE ProductID="
 strSQL = strSelect & strWhere

 totalItems = Request.QueryString("ProductID").Count
 myValues = Request.QueryString("ProductID").Item

 Response.Write ("<p/><h3><i>")
 Response.Write "The following SQL statement was used:"
 Response.Write ("</i></h3>")

 If totalItems = 1 Then
 rst.Open(strSQL & Request.QueryString("ProductID")), _
 conn, 0, 1
 %>

 <%=strSQL & Request.QueryString("ProductID") %>

 <%
 Else
 strWhere = "WHERE ProductID IN ("
 strSQL = strSelect & strWhere
 rst.Open(strSQL & myValues & ")"), conn, 0, 1
 %>
 <textarea cols="80" rows="3">
 <%=strSQL & myValues & ")" %></textarea>

 <%
 End if

ACCESS AND ACTIVE SERVER PAGES 983

' get table headings
 Response.Write "<p/><table Border=""1"">"
 Response.Write ("<tr>")
 For Each fld in rst.Fields
 Response.Write "<th>" & fld.Name & ("</th>")
 Next
 Response.Write "</tr>"

' get the data
 Do While not rst.EOF
 Response.Write ("<tr>")
 For Each fld in rst.Fields
 Response.Write ("<td>")
 If fld.Name = "UnitPrice" Then
 Response.Write FormatCurrency(fld.value,2)
 Else
 Response.Write fld.value
 End If
 Response.Write ("</td>")
 Next
 Response.Write ("</tr>")
 rst.MoveNext
 Loop
 Response.Write ("</table>")
 rst.Close
End If

rst.Open "Products", conn, 0, 1
If Not rst.EOF Then
 rst.MoveFirst
%>
 <form action="MultiProductLookup.asp" method="GET">
 <p style="font-size: small; font-style: italic;
 font-weight: bold; font-family: Tahoma">
 Hold down CTRL or SHIFT

 to select multiple products:

 <select name="ProductID" multiple size="8">
<%
Do While Not rst.EOF
%>
 <option value="<%=rst.Fields("ProductID")%>">
 <%=rst.Fields("ProductName")%></option>
<%
 rst.MoveNext
 Loop

984 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

%>
 </select>
 <input type="Submit" Value="Get Product(s) Details">
 </form>
<%
End If
rst.Close
Set rst = Nothing
conn.Close
Set conn = Nothing
%>
</body>
</html>

Th e preceding VBScript code segment establishes a DSN-less connection to
the Northwind database by using the Microsoft Access driver and instantiates a
Recordset object. Refer to the previous hands-on exercise for an explanation of
the Connection object’s ConnectionTimeout and CommandTimeout properties
and the Server object’s MapPath method.
 Th e code proceeds to check whether the user has selected any items in the
listbox. If at least one product was picked from the list, the procedure defi nes
the SQL SELECT statement and uses the QueryString method of the Request
object to retrieve the total number of selected products. Th is number is then
stored in the totalItems variable. Th e next Request.QueryString statement
retrieves the IDs of the selected items and places them in the myValues variable.
Th e next statement announces that the line that follows is the SQL statement
the user has selected. Th is statement is formatted with the HTML <h3> and
<i> tags. Th is will make the enclosed text an italicized heading of size 3 (the
largest heading is 1 and the smallest is 6). Th e <p/> tag designates the text as
a plain paragraph.
 If one product was selected in the listbox, a recordset is opened using the
following statement:

rst.Open(strSQL & Request.QueryString("ProductID")), conn, 0, 1

Recall that 0 and 1 at the end of this statement indicate a forward-only and
read-only recordset.
Th e statement:

<textarea cols="80" rows="3">
 <%=strSQL & myValues & ")" %></textarea>

ACCESS AND ACTIVE SERVER PAGES 985

will write the complete SQL statement to the <textarea> control whenever
the user selects multiple products. When the user selects a single product from
the listbox, the following statement:

<pre><%=strSQL & Request.QueryString("ProductID") %></pre>

will write the complete SQL statement to the body of the HTML page. When
you use the HTML <pre> and </pre> tags, the text between these tags is
formatted exactly as it is typed. Spaces and carriage returns are preserved.
If more than one product was selected in the listbox, we need to change the
contents of the strWhere variable to include the IN keyword in the WHERE
clause. Th e IN keyword restricts the rows being selected to those rows where
the column values are in the list presented in the SQL statement. If the user
selected products with IDs of 1, 3, and 6 in the listbox, the following SQL
statement will be generated:

SELECT ProductID AS [ID], ProductName AS [Product Name],
QuantityPerUnit AS [Qty/Unit], UnitsInStock AS Stock,
UnitPrice AS [Unit Price]
FROM Products WHERE ProductID IN (1, 3, 6)

Th e remaining code segment creates a table in a browser. We use the For
Each…Next loop to write out the column names to the browser:

For Each fld in rst.Fields
 Response.Write ("<th>") & fld.Name & ("</th>")
Next

Th e <th> tag makes a cell a table heading. Th is automatically makes the text
bold. Aft er populating the table with the headings, we use the Do While loop
to write out the table rows until the end of the recordset is encountered. We
must obtain fi eld values for each column in a row. Th is is done with the For
Each… Next loop like this:

 For Each fld in rst.Fields
 Response.Write ("<td>")
 If fld.Name = "UnitPrice" Then
 Response.Write FormatCurrency(fld.value,2)
 Else
 Response.Write fld.value
 End If
 Response.Write ("</td>")
 Next

986 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice the conditional statement within the code segment. We use it to perform
an additional operation on the UnitPrice fi eld. We format this fi eld as currency
using the FormatCurrency function. When all the table rows are written to the
browser, the table is closed with the HTML table close tag </table>, and the
recordset itself is closed.
 Next, the VBScript code continues by opening the recordset based on the
Products table and cycling through this recordset to retrieve the product
IDs and product names for inclusion in the listbox. Th e HTML form section
contains the multiple keyword in the <select> tag to indicate that the listbox
should be created. Th e size of the listbox is set to display eight products like this:
<select name="ProductID" multiple size="8">

Once we have defi ned the listbox we can populate it with product names using
a Do While loop. We use the <option> tag with the Value attribute <option
value=" "> to specify items in the list:
Do While Not rst.EOF

%>
 <option value="<%=rst.Fields("ProductID")%>">
 <%=rst.Fields("ProductName")%></option>
<%
 rst.MoveNext
Loop

Notice again that we set the list values outside the VBScript. For better
understanding, and to practice various methods of coding, you can rewrite
this code as follows:
Do While Not rst.EOF
 Response.Write "<option value="
 Response.Write rst.Fields("ProductID") & (">")
 Response.Write rst.Fields("ProductName") & _
 ("</option>")
 rst.MoveNext
Loop

To allow the user to submit selections to the server, the form contains the
submit button labeled “Get Product(s) Details.” When the user presses this
button, the form data will be submitted using the GET method.
 Th e procedure ends by closing both the Recordset and Connection objects
and freeing up memory.
 Let’s test our work in the browser.

ACCESS AND ACTIVE SERVER PAGES 987

2. Save the file as C:\VBAAccess2019_ASP_Classic\MultiProductLookup.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/

MultiProductLookup.asp and press Enter.
5. The browser will display a listbox. Select the items as shown in Figure 30.19

and press the Get Product(s) Details button. The product details will be
displayed as shown in Figure 30.20.

FIGURE 30.19 You can allow users to filter the data by using a multiple-selection listbox.

FIGURE 30.20 After selecting the products in the listbox (see Figure 30.19) and clicking on the Get
Product(s) Details button, your browser displays data as shown here.

ADDING DATA TO A TABLE

You may want to use a Web page to collect data from a user and save it in Access.
The following hands-on exercise creates a simple data entry form that contains
two fields. The purpose of this form is to allow users to enter new shippers into
the Northwind database Shippers table.

988 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 30.13 Creating a Data Input Page

1. Start Notepad and enter the ASP code shown here:
<%@ Language="Vbscript" %>
<%
Dim conn, strConn, strSQL, name, phone, goAhead
name=Request("txtCompanyName")
phone=Request("txtPhone")

For Each key In Request.Form
 If Request.Form(key) = "" Then
 If key = "txtCompanyName" Then
 Response.Write "<i>" & _
 ("Please enter the Shipper name.</i>")
 Else
 Response.Write "<i>" & _
 ("Please enter the Phone number.</i>")
 End If
 goAhead = False
 Exit For
 End If
 goAhead=True
Next

If goAhead = True Then
 name=Replace(Request("txtCompanyName"),"'","''")

 If Len(name) <> 0 Or _
 Len(phone) <> 0 Then
 Set conn = Server.CreateObject("ADODB.Connection")
 strConn=»Provider=Microsoft.Jet.OLEDB.4.0; «
 strConn=strConn & «Data Source=»
 strConn=strConn & _
 server.MapPath("Northwind.mdb") & ";"
 strConn=strConn & "User ID=; Password=;"

 strSQL = "INSERT INTO Shippers(CompanyName, Phone)"
 strSQL = strSQL & "Values ('" & name & "'"
 strSQL = strSQL & ",'" & phone & "')"

 With conn
 .Mode = 3
 .Open strConn
 .Execute(strSQL)

ACCESS AND ACTIVE SERVER PAGES 989

 End With
 Response.Write "<i>" & _
 "Successfully added the following data:" & _
 "</i><hr/>"

 ' get the ShipperID
 strSQL = "SELECT MAX(ShipperID) AS lastID "
 strSQL = strSQL & "FROM Shippers;"
 Set rst = conn.Execute(strSQL)
 Response.Write ("Shipper ID: ") & _
 rst("lastID")
 Response.Write ("<p/>")

 rst.close
 Set rst = Nothing
 conn.Close
 Set conn = Nothing

 Response.Write ("Company Name: ")
 Response.Write _
 Request("txtCompanyName") & ("<p/>")
 Response.Write _
 ("Phone Number: ") & phone & ("")

 ' clear the Shipper Name and Phone input boxes
 name = ""
 phone = ""
 End If
End If
%>
<html>
<head>
<title>Data Entry Screen</title>
</head>
<body>
<form name="form1" action="NWDataEntry.asp"
 method="POST">
</p>
Shipper Name: <input type="text"
 name="txtCompanyName"
 value="<%=name%>" size="30" >
Phone: <input type="text" name="txtPhone"
 value="<%=phone%>">
</p></p>
<input type="Submit" name="cmdSubmit"

990 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Value="Add Data">
</p>
</form>
</body>
</html>

Th e preceding VBScript segment assigns values to the name and phone
variables. Th ese values are collected from the text fi elds located on the HTML
form. To collect information from a form, use the Request.Form("name")
command, where name is the name of the form fi eld (text box, checkbox, etc.).
Th e VBScript here uses the abbreviated form of the Request.Form command:

Request("txtCompanyName")

To remove leading and trailing spaces that users oft en enter in text fi elds, use
the TRIM function as follows:

name = TRIM(Request("txtCompanyName")

Th e For Each…Next loop validates user input prior to sending information to
the server. It’s a good idea to write validation scripts to check for such things
as whether the user entered a valid number or whether a text box was left
empty. Th is example only checks whether any of the text fi elds are empty. Data
validation should be performed on the client side to reduce server loads and
improve response time. Notice how we check the values of the form elements
with the For Each…Next loop:

For Each key In Request.Form
 If Request.Form(key) = "" Then
 If key = "txtCompanyName" Then
 Response.Write "<i>" & _
 ("Please enter the Shipper name.</i>")
 Else
 Response.Write "<i>" & _
 ("Please enter the Phone number.</i>")
 End If
 goAhead = False
 Exit For
 End If
 goAhead=True
Next

Th is code iterates through the Forms collection to check whether the user
has entered any data in the CompanyName and Phone fi elds and displays a
message in a diff erent color if any of the text fi elds were left blank. If both text

ACCESS AND ACTIVE SERVER PAGES 991

fi elds were fi lled in, the goAhead variable is set to True, and the procedure
continues.
 Because the company name that the user entered may contain an apostrophe,
an error could occur when the value is inserted into the SQL statement.
To avoid the error, the procedure uses the Replace function to replace one
apostrophe with two apostrophes in the user-supplied text:

name=Replace(Request("txtCompanyName"),"'","''")

Provided that the length of the strings contained in the name or phone variables
is not equal to zero (0), the connection is established to the Northwind database,
and the SQL INSERT INTO statement is executed. Th is statement inserts a new
record into the Shippers table and places the contents of the name and phone
variables into the CompanyName and Phone fi elds. Next, the procedure uses
the green font color to inform the user about the successful addition of the
data. Another SQL statement is executed to retrieve the ID of the newly added
record, and the Response.Write statement displays the ShipperID for the user
to see in the browser.
 Aft er retrieving the value of the ShipperID fi eld, the Recordset and
Connection objects are closed. Next, we write out the user-supplied shipper
name and phone number to the browser and clear the name and phone variables
so that the form’s input boxes display no data.
 Th e remaining section of the ASP page contains HTML tags that generate
a form where the user can enter the shipping company and phone number
and includes a button for submitting information to a Web server. Notice
that the form’s Action argument refers to the fi le named NWDataEntry.asp.
When the user submits data that he or she entered in the form’s text fi elds by
clicking the Add Data button, the browser will use the POST method to send
the information to the ASP fi le on the server, in this case NWDataEntry.asp.
 An ASP fi le can create a form that posts information to itself (as shown in
this example) or to another ASP fi le. By using the POST method, you can send
an almost unlimited number of characters to the Web server. Th e POST method
is also more secure than the GET method because the information passed to
the server does not appear in the browser’s address bar. (Refer to the previous
hands-on exercise for an example of processing form input with the GET
method.) Notice how the values of the name and phone variables are retrieved:

Value = "<%=name%">
Value = "<%=phone%">

992 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Save the file as C:\VBAAccess2019_ASP_Classic\NWDataEntry.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/NWDataEntry.

asp and press Enter.
5. Enter the data shown in Figure 30.21 and click the Add Data button.

FIGURE 30.21 When you request the ASP page prepared in Hands-On 30.13, you are presented

with the data entry screen for the Northwind database Shippers table.

When you enter data in the Shipper Name text box and click the Add Data
button, the browser displays the data that was inserted into the Shippers table
and allows you to make more additions by clearing out previous values from
the input boxes (Figure 30.22).

FIGURE 30.22 Notice that the browser displays the Shipper ID of the newly added record as well
as the data entered in the text boxes prior to the Add Data button being pressed (see Figure 30.21).
You can continue adding new data by typing new values into the text boxes and clicking the Add Data
button.

MODIFYING A RECORD

You can display a record in a browser and allow the user to edit the data. Changes
made to the data can then be submitted to the server for processing. The easiest
and quickest way to modify a record is by executing the SQL UPDATE statement.

ACCESS AND ACTIVE SERVER PAGES 993

The following hands-on exercise creates an ASP page where the user can se-
lect a product to update from a drop-down list. After clicking the Retrieve Data
button, the selected product’s current price and units in stock are retrieved from
the Products table. The retrieved data is placed in text boxes inside a table struc-
ture. The user can edit the data in the retrieved fields and insert the changes to
the database table by clicking the Update Data button.

 Hands-On 30.14 Creating a Page for Data Modifi cation

1. Start Notepad and enter the followingASP code:
If Not IsEmpty(Request.Form("submit2")) Then
 If Request.Form("UnitPrice")= "" or _
 Request.Form("UnitsInStock") = "" Then
 Response.Write ("")
 Response.Write ("Blank fields are not allowed.")
 Response.Write ("")
 Else
 strSQL = "UPDATE Products SET " _
 & "UnitPrice = '" & Request.Form("UnitPrice")& "', " _
 & "UnitsInStock = '" & Request.Form("UnitsInStock")& "' " _
 & "WHERE ProductID = " & Request.Form("txtProductID")
 conn.Execute strSQL
 Response.Write "The following Update statement was "
 Response.Write "executed for " & _
 Request.Form("txtProductName")
 Response.Write ("
")
 Response.Write ("<pre>" & strSQL & "</pre>
")
 End If
End If

Notice that the preceding ASP page contains two HTML forms: Form1 and
Form2.
 Form1 (whose code appears at the bottom of the ASP page) displays a drop-
down list of products for the user to select. Th is form uses the GET method
to send data to the server. Th is means that you will see the query string in
the browser’s address bar once you click the Retrieve Data button (see Figures
30.23 and 30.24).
 Form2 (whose code appears higher in the ASP page) displays two text boxes
with Unit Price and Units in Stock values for the product that was selected
from the drop-down list on Form1. Th e user can modify the data in these text

994 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

boxes. Th is form uses the POST method to send the information to the server.
Th e submitted information will not be visible in the browser’s address bar. Th is
form will be submitted to itself aft er the user clicks the Update Data button.
Two hidden text fi elds are placed on Form2 to store information about the
retrieved Product ID and Product Name:

<input type="hidden" name="txtProductID"
 value=<% =rst("ProductID") %>>
<input type="hidden" name="txtProductName"
 Value=<% =rst("ProductName") %>>

In this example, the information stored in hidden fi elds is used by the VBScript
code later in the ASP fi le to create an SQL UPDATE statement and write an
information message in the browser. Hidden form fi elds are oft en used with
the POST method to hide information from the user.
 Th e fi rst VBScript code segment establishes a connection to the Northwind
database and creates an instance of the Recordset object. Next, we check
whether a selection was made from the drop-down list. If the user made a
product selection and clicked the Retrieve Data button, we open the recordset:

rst.Open(strSQL & Request.QueryString("ProductID")), _
 conn, 0, 1

Th e Open method of the Recordset object is used to issue an SQL SELECT
statement with the WHERE clause that specifi es which record should be
retrieved. We placed the SELECT statement in the strSQL variable. Th e Open
method also specifi es the connection to the database (conn), the cursor type
(adOpenForwardOnly = 0), and the lock type (adLockReadOnly = 1). Th e
recordset is opened to retrieve only the data that the user is allowed to modify.
Th e data is placed in a table (see the HTML code segment). Once the data is
retrieved, the recordset is closed.
 Th e next VBScript code segment runs aft er the user clicks the Update
Data button on Form2. When the form is posted, all controls, including the
command buttons, are posted with it. You can use the IsEmpty function to
fi nd out if the user clicked the command button:

If Not IsEmpty(Request.Form("submit2")) Then

Prior to submitting the data to the server for insertion into the Products table,
the code checks whether the Unit Price and Units in Stock text boxes contain
any data. If either of these fi elds is empty (the user may have erased the data
completely), a validation message is sent to the browser and the user must

ACCESS AND ACTIVE SERVER PAGES 995

request the product again from the drop-down list if he wants to continue. On
the other hand, if there is data in both text fi elds (even if the user has not made
any changes to the original data), clicking the Update button on the form will
send the SQL UPDATE statement to the server. As a result, the user will see the
name of the product he updated together with the SQL UPDATE statement that
was executed.
 Th e last code segment creates a recordset to populate a drop-down list
with product names. You should already be familiar with this code as it was
demonstrated in the previous hands-on exercise.

2. Save the file as C:\VBAAccess2019_ASP_Classic\UpdateProduct.asp.
3. Close Notepad.
4. In your browser’s address bar, type http://localhost/NorthDB/UpdateProduct.

asp and press Enter.
5. Select a product as shown in Figure 30.23 and click the Retrieve Data button.

The resulting page displays the product information, as shown in Figure 30.24.

FIGURE 30.23 When you request the UpdateProduct.asp file in your browser, a screen appears
with a drop-down list where you can select a product you want to update.

FIGURE 30.24 When you select a product from the drop-down list and click the Retrieve Data
button, the selected product’s unit price and units in stock data are retrieved from the Products table
and placed at the top of the page.

You can modify the original data in the text boxes and click the Update Data
button. If you click the Update Data button when information is missing in the

996 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Unit Price or Units In Stock text boxes, you are prompted to enter the data and
try again. If you click the Update Data button while the Unit Price and Units In
Stock text boxes are not empty, the UPDATE statement is executed on the server
and the submitted changes are inserted in the Products table. See the page in
Figure 30.25 confi rming the update request.

FIGURE 30.25 After submitting the product modification, you are presented with the confirmation
page with the UPDATE statement that was executed and you are given an opportunity to continue by
retrieving other products for modification.

DELETING A RECORD

When you need to delete a record, you can use the SQL DELETE statement.
When writing a VBScript to handle the delete request, it’s always a good idea to
check for the following conditions:

 ● Did the user specify a record to delete? Th e user may have pressed the
submit button without typing the record ID in the provided text box.

 ● Does the provided record ID exist in the table? Th is question is particu-
larly important when the user is expected to type the record ID in a text
box instead of selecting it from the drop-down list.

 ● What happens when the record the user wants to delete has related re-
cords in other tables? As you know, Access will not allow you to delete
records when the referential integrity rules are enforced.

The next hands-on exercise demonstrates how to delete a shipper from the
Shippers table.

ACCESS AND ACTIVE SERVER PAGES 997

 Hands-On 30.15 Creating Pages that Allow Record Deletions

This hands-on exercise uses two ASP files for performing the delete operation.
The first file will submit the user-specified data to the second file that will per-
form the deletion.

1. Start Notepad and enter the ASP code shown here:
<html>
<head>
<title>DELETE DEMO</title>
</head>
<body>
<form name="DeleteShipperForm"
 method="GET"
action="DeleteShipper.asp"
<input type="Hidden" name="Action"
 value="Delete">
Please enter the Shipper ID
you want to delete
<input type="Text" Size="6"
name="ShipperID">
<input type="Submit" name="Delete"
value="Submit">
</form>
</body>
</html>

Notice that the form’s Action argument will call the ASP page named Delete-
Shipper.asp upon clicking the Submit button (see Figure 30.26).

2. Save the file as C:\VBAAccess2019_ASP_Classic\RequestDeleteShipper.asp.
3. Close Notepad.
4. Start Notepad and enter the ASP code shown here:

<%@ Language=»Vbscript» %>
<%
Dim conn
Dim mydbFile
Dim myShipper
Dim strSQL

Set conn = Server.CreateObject("ADODB.Connection")
mydbFile=Server.MapPath("Northwind.mdb")

conn.Open "Driver={Microsoft Access Driver (*.mdb)}; " & _

998 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 "DBQ=" & mydbFile & ";"
myShipper = Cstr(Request.QueryString("ShipperID"))
strSQL = "DELETE * FROM Shippers WHERE "
strSQL = strSQL & "ShipperID = " & myShipper

If myShipper <>"" Then
 Set rst = Server.CreateObject("ADODB.Recordset")
 rst.Open "Shippers", conn, 3
 rst.Find "ShipperID = " & myShipper
 If rst.EOF Then
 Response.Write ("The Shipper ID ") & myShipper
 Response.Write (" does not exist.")
 Else
 On Error Resume Next
 conn.Execute strSQL
 If conn.Errors.Count > 0 Then
 Response.Write "Error Number: " & err.Number & ("<p/>")
 Response.Write "Error Description: " & _
 err.Description & ("<p>")
 Else
 Response.Write ("<h2>The Shipper ID ") & myShipper & _
 " was deleted.</h2>"
 End If
 rst.close
 Set rst = Nothing
 End If
Else
 Response.Write "The Shipper ID was not supplied."
End If
%>
<html>
<head><title>DELETE SHIPPER</title></head>
<body>
<hr/>

Please click here to return.
</body>
</html>

Th e VBScript code segment shown here establishes a connection to the data
source and stores the ShipperID value in the myShipper variable. If the variable
is not empty, then the code proceeds to create an instance of the Recordset
object and opens the Shippers table. Th e recordset is opened using the static
cursor (adOpenStatic) represented by the value 3 in the following statement:

rst.Open "Shippers", conn, 3

ACCESS AND ACTIVE SERVER PAGES 999

Recall that the static cursor retrieves all the data as it was at a point in time
and is particularly desirable when you need to fi nd data. Th e next statement
uses the Find method to check whether the supplied ShipperID exists in the
Shippers table:

rst.Find "ShipperID = " & myShipper

Next, the If…Then…Else statement decides what information should be
returned to the browser. When the EOF property of the Recordset object is
True, the recordset contains no records. In this situation you want to tell the
user that there is no such record in the table. However, if the record is found in
the Shippers table, the SQL DELETE statement is executed:

strSQL = "DELETE * FROM Shippers WHERE "
strSQL = strSQL & "ShipperID = " & myShipper

conn.Execute strSQL

As noted at the beginning of this section, a user may enter a ShipperID that
has related records in other tables. Because this situation will certainly result
in an error, the VBScript is instructed to ignore the error and continue with
the next line of code:

On Error Resume Next

Th e next line of code is another If…Then…Else block statement that sends a
text message to the browser depending on whether the error was generated. Th e
code displays the error number and description if the user picked a ShipperID
that cannot be deleted. You may want to replace this code section with a more
user-friendly message. If there is no error, then the browser will display a
message that the record was deleted. Th e text of this message is formatted in
large letters using the HTML level 2 heading tag <h2>.
 Next, the Recordset object is closed. And now we are back at the fi rst
If…Then…Else statement block where the Else part is executed if the user
happened to click the Submit button without fi rst typing in the ShipperID to
delete.
 Th e fi nal part of the ASP page shown here creates a hyperlink to allow
the user to navigate back to the RequestDeleteShipper.asp fi le. To create a
hyperlink, use the following format:

displaytext

where address is the name of the fi le you want to activate and displaytext is the
text that the user should click on.

1000 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

5. Save the file as C:\VBAAccess2019_ASP_Classic\DeleteShipper.asp.
6. Close Notepad.
7. In your browser’s address bar, type http://localhost/NorthDB/RequestDe-

leteShipper.asp and press Enter. Your screen should resemble Figure 30.26.

FIGURE 30.26 This HTML page is used for submitting information to an ASP page.

8. Click the Submit button without typing anything in the provided text box. You
should see a message informing you that the ShipperID was not supplied. Also,
there is a link to allow you to return to the previous page.

9. Click the hyperlink to return to the previous page and enter 999 in the text
box, then click the Submit button. Because this ShipperID does not exist in the
Shippers table, you are again informed about the problem and provided a way
to return to the previous page.

10. Click the hyperlink to return to the previous page. Enter the ShipperID that
you inserted into the Shippers table in Hands-On 30.13 and click the Submit
button. If you don’t have a shipper record to delete, add a new record to the
Shippers table and delete it using this process. When you type in a ShipperID
that exists in the Shippers table but is not referenced in other tables, you get the
screen that confirms the deletion (Figure 30.27).

FIGURE 30.27 This screen confirms a deletion of the shipper record having the ID of 5.

When you enter a ShipperID that is referenced in other tables, Access will not
allow you to delete that Shipper’s record:

Error Number: –2147467259

Error Description: [Microsoft][ODBC Microsoft Access Driver]
Th e record cannot be deleted or changed because table ‘Orders’ includes related
records.

ACCESS AND ACTIVE SERVER PAGES 1001

To see this error in action, try to delete the shipper with an ID of 1.
You can trap the error –2147467259 in your VBScript code to display a user-

friendly message.

CREATING A SUMMARY PAGE

Now that we’ve developed several sample ASP pages, let’s create a launch web
page to make it easy to access them (see Figure 30.28).

FIGURE 30.28 This page allows easy access to the hands-on examples on ASP programming
introduced in this chapter.

In Hands-On 30.16, you create the launch page for this chapter’s hands-on exer-
cises.

 Hands-On 30.16 Creating a Summary Page with Hyperlinks

1. Start Notepad and enter the following HTML code:
<!DOCTYPE html>
<html>
<head>
<title>ASP EXAMPLES</title>
</head>
<body>
<img style="vertical-align:middle;

1002 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

width:100px; height:100px"
alt="Visit us today!"
src="mercury-logo-m.jpg" />
<a href="http://www.merclearning.com"
style="color:blue"
target="_blank">ercury Learning

<h4>Chapter 30 - ASP Examples</h4>
</p>

Hands-On 30.7 (Retrieve records)

Hands-On 30.8, 30.9 (Limit records per page)

Hands-On 30.10 (Retrieve records using GetRows)

Hands-On 30.11 (Use a drop-down box)

Hands-On 30.12 (Use a multiple selection list box)

Hands-On 30.13 (Add a new record)

Hands-On 30.14 (Modify a record)

Hands-On 30.15 (Delete a record)

</body>
</html>

Th e <!DOCTYPE html> declaration at the top of the page tells the browser that

ACCESS AND ACTIVE SERVER PAGES 1003

this is an HTML5 document. Th e text between the <title></title> tags will
appear in the browser tab when you activate this page. Th e code below the
<body> tag places an image (mercury-logo-m.jpg, available on the CD-ROM)
at the top of the page using the tag. Th e style tag is used to specify
style information for the image. It tells the browser how to position the text
and format the image. Th e width and height attributes determine the size
of the image in pixels. Th e src and alt are two required attributes for the
 tag. In the src attribute you must specify the URL of the image. Th e alt
attribute specifi es an alternate text for an image. Th e text placed to the right
of the image is a hyperlink. Clicking on it will take the user to the Mercury
Learning website.
 Next, there is a series of hyperlinks to diff erent hands-on examples. Each
of these examples has a corresponding ASP fi le in the VBAAccess2019_ASP_
Classic folder. Hyperlinks are presented as an unordered (bulleted) list using
the and tags.
Here’s how we create the fi rst hyperlink:

Hands-On 30.7 (Retrieve records)

Th e <a> tag defi nes a hypertext link. Th e href attribute specifi es the associated
URL. In other words, when the user clicks on the “Hands-On 30.7 (Retrieve
records)” hyperlink, the GetCustomers.asp fi le will be requested. All the
remaining hyperlinks are created in the same way. Notice that the
tag must precede the fi rst link, and the tag must appear aft er the last
hyperlink. Each tag must have an ending tag.

2. Save the file as C:\VBAAccess2019_ASP_Classic\AllExamples.asp.
3. Close Notepad.
4. Copy the image file mercury-logo-m.jpg from the companion CD-ROM disc

to your VBAAccess2019_AS P_Classic folder.
You now should have the launch page ready for testing.

5. In your browser’s address bar, type http://localhost/NorthDB/allexamples.
asp and press Enter.

6. Your screen should resemble Figure 30.28, shown earlier in this chapter.
7. Verify the results of each hands-on exercise by clicking on each hyperlink.

1004 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

SUMMARY

This chapter has introduced you to the world of Web development by using a
server-side scripting technology from Microsoft known as Active Server Pages
(ASP). You learned how to use VBScript, a subset of VBA, to quickly extract
data from a database and present it to a user in a standard HTML page. You also
learned how to submit Action queries to insert, update, and delete a database
record. You’ve seen two coding styles: one that mixes HTML and script com-
mands, and one that returns HTML text to the browser by using the ASP built-
in Response object and its Write method. By working through several hands-on
examples, you’ve seen that making your application Web-ready is not rocket
science. Classic ASP scripts are quite easy to write provided you understand
VBA statements and have already worked with ActiveX Data Objects (ADO).

In the next chapter, you explore another Internet technology known as Ex-
tensible Markup Language (XML) and learn how it is integrated with Access
2019.

1005

If you need to deliver information over the Web or you want to store, share,
and exchange data between different applications regardless of the operating
system or programming language used, you need to become familiar with

Extensible Markup Language (XML). Imagine these two scenarios where your
combined knowledge of Access and XML will come in handy:

 ● You have just received a fi le in XML format, and you need to merge its
data with an existing Access table, or perhaps create a new table.

 ● You have been asked to provide a data dump from your Access database
in XML format.

XML is a complex language that cannot be covered within the pages of one
chapter; however, this chapter will get you started using XML with Access 2019.

WHAT IS XML?

In the previous chapter, you learned how HTML (Hypertext Markup Language)
uses tags to format data on a Web page. Like HTML, Extensible Markup Lan-
guage uses markup tags; however, its tags serve a different purpose—they are

Chapter

 31 XML FEATURES IN
ACCESS 2019

1006 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

used to describe data content. HTML uses fixed, non-customizable tags to pro-
vide formatting instructions that should be applied to the data. XML is exten-
sible, which means that it is not restricted to a set of predefined tags. XML allows
you to invent your own tags in order to define and describe data stored in a wide
range of documents. The XML parser does not care what tags you use; it only
needs to be able to find the tags and confirm that the XML document is well
formed. A document that follows the formatting rules for XML is considered
a well-formed document (see the section titled “What Is a Well-Formed XML
Document?”).

What Is a Parser?

If you want to read, update, create, or manipulate any XML document, you
will need an XML parser. A parser is a software engine, usually a dynamic-link
library (DLL), that can read and extract data from XML. Microsoft Internet
Explorer 5 and above have a built-in XML parser (MSXML.DLL, MSXML2.
DLL, MSXML3.DLL, MSXML4.DLL, MSXML5.DLL, and MSXML6.DLL)
that is capable of reading well-formed documents and detecting those that are
not. MSXML has its own object model, known as DOM (Document Object
Model), that you can use from VBA to quickly and easily extract information
from an XML document. The Microsoft XML parser has been renamed Mi-
crosoft XML Core Services (MSXML).
 To ensure that you are working with the most recent XML parser, check out
the following link:
http://www.microsoft.com/downloads/details.aspx?FamilyID=993C0BCF-
3BCF-4009-BE21-27E85E1857B1&displaylang=en

An XML document must also be valid. When a document is valid, it follows
the predefined rules for valid data. These rules are defined in a Document Type
Definition (DTD) or a schema, which is written in XML. DTD is an old method
of data validation. Later in this chapter you will see how Access uses a schema
to determine the types of elements and attributes an XML document should
contain, how these elements and attributes should be named, whether they’re
optional or required, their data types and default values, and the relationship
between the elements.

Because of its extensibility, XML makes it easy to describe any data structure
and send it anywhere across the Web using common protocols such as HTTP
(Hypertext Transfer Protocol) or FTP (File Transfer Protocol). Although XML
was designed specifically for delivering information over the World Wide Web,

SIDEBAR

XML FEATURES IN ACCESS 2019 1007

it is being utilized in other areas, such as storing, sharing, and exchanging data.
Because XML is stored in plain text files, it can be read by many types of applica-
tions, independent of the operating system or hardware.

What Is a Well-Formed XML Document?

An XML document must have one root element. While in HTML the root ele-
ment is always <html>, in an XML document you can name your root element
anything you want. Element names must begin with a letter or underscore char-
acter. The root element must enclose all other elements, and elements must be
properly nested. The XML data must be hierarchical; the beginning and ending
tags cannot overlap.
<Employee>
 <Employee ID>090909</Employee ID>
</Employee>

All element tags must be closed (a beginning tag must be followed by an ending
tag):
<Sessions>5</Sessions>

You can use shortcuts, such as a single slash (/), to end the tag so you don’t have
to type the full tag name. For example, if the current <Sessions> element is
empty (does not have a value), you could use the following tag:
<Sessions />

Tag names are case-sensitive: The tags <Title> and </Title> aren’t equivalent
to <TITLE> and </TITLE>.

For example, the following line:
<Title>Beginning VBA Programming</Title>

is not the same as:
<TITLE>Beginning VBA Programming</TITLE>

All attributes must be inside quotation marks:
<Course ID="VBAEX1"/>

You cannot have more than one attribute with the same name within the same
element. If the <Course> element has two ID attributes, they must be written
separately, as shown here:
<Course ID="VBAEX1"/>
<Course ID="VBAEX2"/>

1008 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The main goals of XML are the separation of content from presentation and
data portability. It is important to understand that XML was designed to address
the limitations of HTML and not to replace it. One of these limitations is the
inability of HTML to identify data. By using XML tags you can give meaning to
the data in the document and provide a consistent way of identifying each item
of data. By separating content from presentation and structuring data based
on its meaning, we are finally able to create documents that are easy to reuse,
manipulate, and search.

XML SUPPORT IN ACCESS 2019

Microsoft Access has supported XML since its 2002 release. You can import and
export XML data by using buttons available in the Import and Export areas on
the External Data tab or you can do this programmatically with VBA. Addition-
ally, Access has the capability to export related tables to a single XML file. When
importing XML data, you can create multiple tables from a single XML docu-
ment and schema. Unfortunately, the parent–child relationships between the
tables are not maintained; you must create them yourself. You can also specify a
custom schema during the export or import of XML data.

EXPORTING XML DATA

You can export tables, queries, forms, and/or reports to XML files from an
Access database (MDB or ACCDB) file. There is no XML support for macros or
modules. When you export a form or report, you actually export the data from
the form or report’s underlying table or query.

Access uses a special XML vocabulary known as ReportML for representing
its objects as XML data. ReportML is an XML file that contains tags describing
properties, methods, events, and attributes of the Access object being exported.
This file is generated automatically by Access when you begin the export pro-
cess and is used by Access to generate the final output files.

To allow XML data to be viewed in browsers in a user-friendly format, Re-
portML relies on a rather complicated stylesheet that contains formatting in-
structions. We examine stylesheets later in this chapter.

After the formatting instructions contained in the stylesheet have been ap-
plied to the XML file, the ReportML file is automatically deleted.

XML FEATURES IN ACCESS 2019 1009

No matter what Access object you need to export to XML, you always follow
the same procedure:

 ● To export all the data, select the appropriate object (table, query, report,
or form) in the database window and choose External Data | XML File,
or right-click the object name in the Navigation pane and select Export |
XML File from the shortcut menu.

 ● To export a single record or a fi ltered or sorted set of records, open the
appropriate object and follow these steps:

You want to… Step 1 Step 2
Export a single record Select that record Choose External Data | XML File,

specify the name of the export file
you want to create, and click OK.
Click the More Options button
and in the Records to Export area,
select Current Record.

Export filtered records Apply a filter to the
records

Choose External Data | XML File
and select the appropriate options.

Export records in a
predefined order

Arrange records in the
order you want

Choose External Data | XML File
and select the appropriate options.

The following hands-on exercise demonstrates how to use the Export command
to save the Shippers table in XML format.

 Please note files for the hands-on project may be found on the companion
CD-ROM.

 Hands-On 31.1 Exporting an Access Table to an XML File

1. Use File Explorer to create a new folder named C:\VBAAccess2019_XML for
this chapter’s practice files.

2. You will now set the Access2019_XML folder as a virtual directory.
 ● Refer to Chapter 30 on how to set up the Internet Information Services

on your computer. When you have confi gured your computer, choose
Control Panel | Administrative Tools | Internet Information Services
(IIS) Manager. In the Connections pane, double-click on your computer,
and then double-click the Sites folder. Right-click Default Web Site and
choose Add Virtual Directory. In the Add Virtual Directory dialog box,
type xml in the Alias box, and enter C:\VBAAccess2019_XML in the

1010 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Physical path box. Click OK to exit the dialog box. You should see a new
folder named xml under the Default Web Site in the Connections pane.
Close the Internet Information Services (IIS) Manager.

3. Copy the sample Northwind 2007.accdb database to the C:\VBAAccess2019_
XML folder and then open it. If you get a Security warning message that some
active content has been disabled, click the Enable Content button.

4. Login as Andrew Cencini.
5. Add the C:\VBAAccess2019_XML folder to your trusted locations. Refer to

the section titled “Placing a database in a trusted location” in Chapter 1 for
more details.

6. In the Access window’s Navigation pane, select the Shippers table, and choose
External Data. In the Export Group, choose XML File.
Please note, that you must select the table to make sure that the buttons in the
Export group of the External Data tab are enabled.

7. In the File name box, enter C:\VBAAccess2019_XML\Shippers.xml and click
OK.
In the Export XML dialog box that appears, there are three checkboxes (see
Figure 31.1). Th e fi rst one, which is selected by default, will cause Access
to generate an XML fi le containing the data from the Shippers table. Th e
second checkbox specifi es that Access should create an XSD fi le with the data
defi nition. Th e third checkbox tells Access to generate the stylesheet (XSL) fi le
that will contain formatting specifi cations.

FIGURE 31.1 The Export XML dialog box displays three checkboxes; the first one is selected by
default. The More Options button allows for more customization.

8. Select all the checkboxes and click OK to proceed with the export.
When the export operation completes, Access displays the Export - XML File
window where you are given a chance to save the export steps so that you can
repeat them in the future without using the wizard.

9. Click Close to exit the Export - XML File window without saving the export
steps.

XML FEATURES IN ACCESS 2019 1011

Understanding the XML Data File

In Hands-On 31.1 you prepared the Shippers.xml file. Let’s switch to File
Explorer and examine the contents of your Access2019_XML folder.

 Hands-On 31.2 Examining the Contents of an XML Data File

1. Open File Explorer and switch to the C:\VBAAccess2019_XML folder. Figure
31.2 displays the contents of the Access2019_XML folder after exporting the
Shippers table to XML in Hands-On 31.1.

FIGURE 31.2 After exporting the Shippers table to XML with all three checkboxes selected in the
Export XML dialog box, Access creates four files and the Images folder.

2. Highlight the Shippers XML document (Shippers.xml) and choose Open With
from the File menu. Select Internet Explorer or another browser of your choice.
Access displays the Shippers data in XML format as shown in Figure 31.3.

FIGURE 31.3 The tree-like structure of the XML document.

1012 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

When you open an XML fi le in the browser, you can see the hierarchical layout
of an XML document very clearly. Th e plus and minus (+/–) signs make it
possible to display the document as a collapsible tree. Th e fi rst line in the XML
fi le is a processing instruction. Processing instructions begin with <? and
end with ?>. Th e XML document begins with a processing instruction that
contains an XML declaration:

<?xml version="1.0" encoding="ISO-8859-1" ?>

Th e version attribute (version="1.0") tells the XML processor that the
document conforms to version 1.0 of the XML specifi cation. Th e encoding
attribute (encoding="ISO-8859-1") identifi es which encoding is used to
represent the characters in the document. For more information on types of
encodings that are currently in use, please see the following link:

https://en.wikipedia.org/wiki/ISO/IEC_8859-1
Th e second line in the XML document is a dataroot element:

<dataroot generated="2019-05-31T13:14:03"
xsi:noNamespaceSchemaLocation="Shippers.xsd"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:od="urn:schemas-microsoft-com:officedata">

Th e dataroot element tag defi nes two namespaces:

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:od="urn:schemas-microsoft-com:officedata"

A namespace is a collection of names in which each name is unique. Th e XML
namespaces are used in XML documents to ensure that element names do not
confl ict with one another and are unique within a set of names (a namespace).
 For example, the <TITLE> tag will certainly have a diff erent meaning and
content in an XML document generated from the Books table than the <TITLE>
element used to describe the courtesy titles of your customers. If the two XML
documents containing the <TITLE> tag were to be merged, there would be an
element name confl ict. Th erefore, in order to distinguish between tags that
have the same names but need to be processed diff erently, namespaces are
used.
 Th e attribute xmlns is an XML keyword for a namespace declaration. Th e
namespace is identifi ed by a Uniform Resource Identifi er (URI)—either a
Uniform Resource Locator (URL) or a Uniform Resource Name (URN).
Th e URI used as an XML namespace name is simply an identifi er; it is not
guaranteed to point to anything. Most namespaces use URIs for the namespace

XML FEATURES IN ACCESS 2019 1013

names because URIs are guaranteed to be unique. Th e use of a namespace is
identifi ed via a name prefi x, which is mapped to a URI to select a namespace.
For example, in the context of the Shippers.xml document, the od prefi x is
associated with the urn:schemas-microsoft -com:offi cedata namespace and
the xsi prefi x identifi es the http://www.w3.org/2001/XMLSchema-instance
namespace. Th ese prefi xes may be associated with other namespaces outside
of this XML document. Notice that the prefi x is separated from the xmlns
attribute with a colon and the URI is used as the value of the attribute.
In addition to namespaces, the dataroot element specifi es where to fi nd the
schema. Th is is done by using two attributes: the location of a schema fi le that
defi nes the rules of an XML document and the date the fi le was generated.
An XML document’s data is contained in elements. An element consists of the
following three parts:

 ● Start tag—Contains the element’s name (e.g., <ID>)
 ● Element data—Represents the actual data (e.g., 1)
 ● End tag—Contains the element’s name preceded by a slash (e.g., </ID>)

If you click on the minus sign in front of the dataroot element, you will notice
that the dataroot element encloses all the elements in the Access XML fi le.
Each element in a tree structure is called a node.
 Th e dataroot node contains child nodes for each row of the Shippers table.
Notice that the table name is used for each element representing a row. You can
expand or collapse any row element by clicking on the plus or minus sign (+/–)
in front of the element tag name.
 Within row elements, there is a separate element for each column (ID,
Company, and so on). Notice that each XML element contains a start tag, the
element data, and the end tag:

<Shippers>
 <ID>1</ID>
 <Company>Shipping Company A</Company>
 <Address>123 Any Street</Address>
 <City>Memphis</City>
 <State_x002F_Province>TN</State_x002F_Province>
 <ZIP_x002F_Postal_x0020_Code>99999</ZIP_x002F_Postal_x0020_
Code>
 <Country_x002F_Region>USA</Country_x002F_Region>
</Shippers>

1014 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e ID, Company, Address, City, State_x002F_Province, Zip_x002F_Postal_
x0020_Code, and Country_x002F_Region elements are children of the
Shippers element. In turn, each Shippers element is a child of the dataroot
element. XML documents can be nested to any depth as long as each inner
node is entirely contained within the outer node.

3. Close the browser containing the Shippers.xml file.

Understanding the XML Schema File

Now that you have familiarized yourself with the structure of an XML docu-
ment, let’s look at another type of XML file that was created by Access during
the export to XML process—the XML schema file (XSD).

Schema files describe XML data using the XML Schema Definition (XSD)
language and allow the XML parser to validate the XML document. An XML
document that conforms to the structure of the schema is said to be valid.

Here are some examples of the types of information that can be found in an
XML schema file:

 ● Elements that are allowed in a given XML document
 ● Data types of allowed elements
 ● Number of allowed occurrences of a given element
 ● Attributes that can be associated with a given element
 ● Default values for attributes
 ● Child elements of other elements
 ● Th e sequence and number of child elements

 Hands-On 31.3 Examining the Contents of an XML Schema File

1. Open File Explorer and switch to the C:\VBAAccess2019_XML folder
containing the files generated in Hands-On 31.1 (see Figure 31.2).

2. Use Notepad to open the Shippers.xsd file located in the Access2019_XML
folder. Access displays the contents of the Shippers.xsd file as shown in Figure
31.4.

XML FEATURES IN ACCESS 2019 1015

FIGURE 31.4 The schema file shown here defines the data in the Shippers.xml document.

If you examine the Shippers.xsd fi le currently open in Notepad, you will
notice several XSD declarations and commands that begin with the <xsd> tag
followed by a colon and the name of the command. You will also notice the
names of the elements and attributes that are allowed in the Shippers.xml fi le
as well as the data types for each element.
 Th e names of the data types begin with the od prefi x followed by a colon.

od:jetType="text" Defines the Jet data type for an element
od:sqlSType="nvarchar" Defines the Microsoft SQL Server data type for an

element
od:autounique="yes" Defines a Boolean data type for an auto-incremented

identity column
od:nonNullable="yes" Indicates whether or not a column can contain a Null

value

1016 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e schema fi le also specifi es the number of times an element can be used
in a document based on the schema. Th is is done via the minOccurs and
maxOccurs attributes.

3. Close Notepad and the Shippers.xsd file.

NOTE

To learn more about XML schemas, check out the following
links:

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/

Understanding the XSL Transformation Files

When you examined the contents of the Shippers.xml document earlier in
this chapter you may have noticed that the file did not contain any formatting
instructions. Although it is easy to display the XML file in the browser, end users
expect to see documents that are nicely formatted. To meet their expectations,
the raw XML data is formatted with the Extensible Stylesheet Language (XSL).

When you exported the Shippers table to XML and selected the Presenta-
tion of your data (XSL) checkbox in the Export XML dialog box (see Hands-On
31.1), Access generated an XSL file. Extensible Stylesheet Language is a trans-
formation style language that uses XSL Transformations (XSLT) to create tem-
plates that are applied to the source document data to create the target docu-
ment. The target document can be another XML document, an HTML page, or
even a text-based file.

XSL files include all the XSLT transforms that are needed to define how the
data is to be presented. Transformations allow you to change the order of el-
ements and selectively process elements. Later in this chapter you will learn
how to create XSL files with XSLT transforms to display only selected fields
from the Access-generated XML documents. There is no limit to the number of
stylesheets that can be used with a particular XML document. By creating more
than one XSL file, you can present different formats of the same XML document
to various users.

 Hands-On 31.4 Examining the Contents of an XSL File

1. Right-click the Shippers.xsl file located in the C:\VBAAccess2019_XML
folder and choose Open with | Internet Explorer. Access displays the contents
of the Shippers.xsl file as shown in Figure 31.5.

XML FEATURES IN ACCESS 2019 1017

FIGURE 31.5 The XSL stylesheet document is just another XML document that contains HTML
formatting instructions and XSLT formatting elements for transforming raw XML data into HTML.

When you expand all the nodes and scroll through the contents of the
Shippers.xsl fi le you will notice a number of XSLT formatting elements such
as <xsl:template>, <xsl:for-each>, and <xsl:value-of>. You will also
fi nd many HTML formatting instructions such as <head>, <title>, <body>,
<table>, <colgroup>, <col>, <tbody>, <tr>, <td>, <div>, and .
 Th e fi rst line of the stylesheet code declares that this is an XML document
that follows the XML 1.0 standard (version). An XSL document is a type of
XML document. While XML documents store data, XSL documents specify
how the data should be displayed.
 Th e second line declares the namespace that will be used to identify the tags
in the XSL document. (See the “Understanding the XML Data File” section
earlier in this chapter for more information about namespaces.) Th e third line
specifi es that HTML should be used to display the data.
 Th e next line is the beginning of the formatting section. Before we look at
the XSLT tags, you need to know that XSL documents use templates to perform
transformations of XML documents. Th e XSL stylesheet can contain one or
more XSLT templates. You can think of templates as special blocks of code that
apply to one or more XML tags. Templates contain rules for displaying a set
of elements in the XML document. Th e use of templates is made possible via
special formatting tags.
 Notice that the Shippers.xsl fi le contains the <xsl:template> tag to defi ne
a template for the entire document. Th e <xsl:template> element has a match

1018 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

attribute. Th e value of the match attribute indicates the nodes (elements) for
which this template is appropriate.
 For example, the special pattern “//” in the match attribute tells the XSL
processor that this is the template for the document root:

<xsl:template match="//dataroot"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

Th e template ends with the </xsl:template> closing tag. Following the
defi nition of the template, standard HTML tags are used to format the
document. Next, the XSLT formatting instruction <xsl:for-each> (Figure
31.6) tells the XSL processor to do something every time it fi nds a pattern. Th e
pattern follows the select attribute.
For example:

<xsl:for-each select="Shippers">

tells the XML processor to loop through the <Shippers> elements. Th e loop is
closed with a closing loop tag:

</xsl:for-each>

Th e XSLT formatting instruction <xsl:value-of> tells the XSL processor to
retrieve the value of the tag specifi ed in the select attribute. For example:

<xsl:value-of select="ID">

tells the XML processor to select the ID column. Because this formatting
instruction is located below the <xsl:for-each> tag, the XSL processor will
retrieve the value of the ID column for each Shippers element. Th e select
attribute uses the XML Path language (XPath) expression to locate the child
elements to be processed.
 If you scroll down the Shippers.xsl fi le, you will also notice that Access has
generated several VBScript functions to evaluate expressions. To prevent the
XSL processor from parsing these functions, the function section is placed
within the CDATA directive.

XML FEATURES IN ACCESS 2019 1019

2. Close the browser containing the Shippers.xsl file.

FIGURE 31.6 The XSLT formatting instructions in the Shippers.xsl file.

What Exactly Is XPath?

XPath is a query language used to create expressions for finding data in the
XML data file. These expressions can manipulate strings, numbers, and Bool-
ean values. They can also be used to navigate an XML tree structure and pro-
cess its elements with XSLT instructions. XPath is designed to be used by XSL
Transformations (XSLT). With XPath expressions, you can easily identify and
extract from the XML document specific elements (nodes) based on their
type, name, values, or the relationship of a node to other nodes. When prepar-
ing stylesheets for transforming your XML documents into HTML, you will
often use various XPath expressions in the select attribute.

NOTE For more information about Extensible Stylesheet Language
(XSL), visit the following link: http://www.w3.org/TR/xsl/

SIDEBAR

1020 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Viewing XML Documents Formatted with Stylesheets

When you exported the Shippers table to XML format, Access applied XSLT
transforms to turn the XML data into an HTML file so that you can view for-
matted data in the browser (see Figure 31.8). To display the Access-generated
Shippers.htm file in Internet Explorer, type http://localhost/xml/Shippers.htm
in the address box and press Enter.

NOTE

For more information about Extensible Stylesheet Language
(XSL), visit the following link: http://www.w3.org/TR/xsl/
If you open the Shippers.htm file in Internet Explorer and the
page is blank, you will need to check if there were any parsing
errors on loading either the XML or style sheet. To troubleshoot
this issue while in Internet Explorer, press F12 to open the de-
veloper tools. Choose Debugger and then refresh the web page.
Click the Console to view the errors (see Figure 31.7).

To correct the reported warnings and errors, do the following:
1. Open Shippers.htm file in Notepad.
2. Enter <!DOCTYPE html> on the first line.
3. Place the following code on the line just below the <Head>

tag:
<meta http-equiv="x-ua-compatible"
content="IE=10">

4. In the ApplyTransform function, replace the lines:
Document.Open "text/html"
Document.Write objData.TransformNode(objStyle)

 with the following (ensuring that the Document is spelled
with a lowercase “d”):
document.Open "text/html"
document.Write objData.TransformNode(objStyle)

5. Press Ctrl+S to save the changes to the Shippers.htm.
6. Close Notepad.
7. Reload the http://localhost/xml/Shippers.htm to view

the Shippers table.

XML FEATURES IN ACCESS 2019 1021

FIGURE 31.7 At the time of writing, the HTM file generated by Access 2019
via the Export to XML File does not load in Internet Explorer due to parsing
errors. This page will generate other errors when opened in other browsers like
Edge, Chrome or FireFox.

FIGURE 31.8 This HTML file was created from XML data by using XSLT. It was successfully opened in
IE browser only after making the aforementioned changes in the Access generated code.

To display only the fields containing data, you will need to export data to the
XML file based on a query. For example, the following SQL statement can be
used to create the qryShippers query:
SELECT Shippers.[ID], Shippers.[Company], Shippers.[Address],
 Shippers.[State/Province], Shippers.[ZIP/Postal Code],
 Shippers.[Country/Region]
FROM Shippers;

You can then right-click the qryShippers query in the Navigation pane and
choose Export | XML File. Make the code changes to the file as outlined above.
The output based on the qryShippers query is shown in Figure 31.9.

FIGURE 31.9 This HTML file was created from XML data by using XSLT.

1022 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Advanced XML Export Options

When you exported the Shippers table to XML format, you may have noticed
the More Options button in the Export XML dialog box (see Figure 31.1 at the
beginning of this chapter). Pressing this button opens a window with three tabs
as shown in Figure 31.10. Each tab groups options for the types of XML objects
that you can export. The Data tab contains options for the XML document, the
Schema tab lists options for the XSD document, and the Presentation tab pro-
vides options for generating the XSL document.

Data Export Options

The options shown on the Data tab (see Figure 31.9) control the data that is
exported to the XML documents. These options are grouped into three main
areas.

The Data to Export section displays data that you may want to export. In this
particular scenario the Customers table has been chosen for export. Because
this table is directly related to the Orders table in the Northwind 2007 database,
the Orders table is displayed as a child node of Customers. The Orders table is
related to the Order Details table and so on. Clicking on the plus sign in front
of the [Lookup Data] node will display the names of tables that provide lookup
information for the main tables. By clicking on the checkbox you may export
just the table that you originally requested or you can export the customers’ data
along with all the orders, and perhaps include lookup information.

Below the Data to Export section is the Export Location area that shows the
filename for the XML document that will be created when you click the OK but-
ton. You can change the location of this document by using the Browse button.
Simply navigate to the folder where you want to save the XML file. You can also
change the name of the document by replacing the name shown in the text box
with another name.

The area to the right of the Data to Export section allows you to specify
which records you want to export. This area contains three option buttons that
allow you to export all records, filtered records, or the current record. Notice
that only one option is enabled in Figure 31.10.

When you highlight the table to export in the database window and then
choose the Export command from the File menu, only the All Records option
button will be enabled in the Records To Export section. Opening the table pri-
or to choosing the Export command tells Access to enable the All Records and
Current record option buttons. And if you open the table and apply a filter to
the data, then select the Export command, Access will enable the Apply existing
filter option button in addition to the other two buttons.

XML FEATURES IN ACCESS 2019 1023

FIGURE 31.10 Use the Data tab in the Export XML window to set advanced data options.

The other options on the Data tab are Apply Existing Sort, Transforms, and
Encoding. The Apply Existing Sort checkbox is enabled if the exported object
is open and a sort is applied. Access will export the data in the specified order.
Clicking the Transforms button allows you to select a custom XSL transform
file to apply to the data during export. You can choose from the transforms you
have written or received with the XML data. Use the Encoding drop-down list to
select UTF-8 or UTF-16 encoding for the exported XML. The default is UTF-8.

When you export an object from an Access database file, Access exports
static data. This means that the exported object is not automatically updated
when the data changes. If the data in the Access database has changed since you
exported an Access object to an XML data file, you will need to re-export the
object so the new data is available to the client application.

NOTE

Exporting live data is supported by Access data projects (.adp
file format) in Access 2010. Support for ADP was removed in
Access 2013, therefore additional options related to Access data
projects are not discussed here.

Schema Export Options

The options shown on the Schema tab (see Figure 31.11) control the way the
schema file for the object is exported. Advanced schema options are presented
in two sections: Export Schema and Export Location.

1024 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The Export Schema section has two checkboxes. By selecting the Export
Schema checkbox you indicate that you want to export the object’s schema as an
XSD file. This selection is the same as choosing the Schema of the data (XSD)
option in the first Export XML dialog box (see Figure 31.1). The checkboxes
under Export Schema allow you to specify whether you want to include primary
key and index information in the XSD schema file, and whether to export all
table and field properties.

The Export Location section has two option buttons that allow you to spec-
ify whether you want the schema information to be embedded in the exported
XML data document or stored in a separate schema file. You can enter the file-
name in the provided text box and specify the location of the schema file by
clicking the Browse button.

FIGURE 31.11 Use the Schema tab in the Export XML dialog box to set advanced schema options.

Presentation Export Options

The selections on the Presentation tab (see Figure 31.12) specify available
options for the XSL files. The Export Presentation (HTML 4.0 Sample XSL)
checkbox allows you to indicate whether you want to export the object’s pre-
sentation. Choose the Client (HTML) option in the Run from section if you
want the presentation to run on the client. Access will create an HTML file with
the script necessary to perform the transform. The script will be executed on
the client machine. While this selection reduces the load on the server, a client

XML FEATURES IN ACCESS 2019 1025

application will need to download a few files (HTML document, XML data file,
and XSD schema file) to present the data in the browser. If the XSL file is going
to be placed on the Web server and called from an ASP page, choose the Server
(ASP) option. By choosing this option, only the final HTML is downloaded to
the client.

FIGURE 31.12 Use the Presentation tab in the Export XML dialog box to set advanced
presentation options.

If the exported presentation includes pictures, you can indicate whether to
include them in the output by clicking the appropriate option button in the
Include report images section. If you choose to include the images, Access will
create separate image files and link them with the HTML file. By default, the
image files are stored in the Images folder of the main export folder. To place
them in another location, click the Browse button to specify the folder name.

The Export Location section allows you to specify the name and location of
the export files. When you export a presentation file, Access creates two files: an
XSL file that includes all the XSLT transforms needed to define how the data is
presented, and a simple HTML file that contains properly formatted data from
the exported object and not the raw data with XML tags. The HTML file con-
tains a snapshot of the data as it existed during the export process.

1026 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

APPLYING XSLT TRANSFORMS TO EXPORTED DATA

When exporting Access data to XML format, you can use custom transforma-
tion files (XSL) to modify the data after you export it. Hands-On 31.5 demon-
strates how to create a custom stylesheet for use after export. This stylesheet
assumes that for each customer in the Customers table we want to display only
selected columns from the Orders table. You learn how to apply this custom
stylesheet in Hands-On 31.6. Take a quick look at Figure 31.15 later in this chap-
ter to see the final outcome.

 Hands-On 31.5 Creating a Custom Transformation File

1. Open Notepad and enter the following statements:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">
<xsl:output method="html" version="4.0" indent="yes"/>

<xsl:template match="dataroot">
 <html>
 <body>
 <h2>Orders by Customer</h2>
 <p></p>
 <xsl:apply-templates select="Customers"/>
 </body>
 </html>
</xsl:template>

<xsl:template match="Customers">
<table>
 <tr>
 <td bgColor="#FFCC33">

 <xsl:value-of select="CustomerID"/>

 </td>
 <td>
 <xsl:value-of select="CompanyName"/>
 </td>
 </tr>
</table>
<table cellpadding="5" cellspacing="5">
 <tr bgColor="black">

XML FEATURES IN ACCESS 2019 1027

 <td bgcolor="black" width="10px"></td>
 <td>Order ID</td>
 <td>Order Date</td>
 <td>Shipped Date</td>
 <td>Required Date</td>
 <td>Freight</td>
 </tr>
 <xsl:apply-templates select="Orders"/>
</table>
</xsl:template>

<xsl:template match="Orders">
 <tr>
 <td bgcolor="black" width="10px"></td>
 <td><xsl:value-of select="OrderID"/></td>
 <td><xsl:value-of select="substring(OrderDate, 1, 10)"/></td>
 <td><xsl:value-of select="substring(ShippedDate, 1, 10)"/></td>
 <td><xsl:value-of select="substring(RequiredDate, 1, 10)"/></td>
 <td>$<xsl:value-of select="format-
 number(Freight,'####0.00')"/></td>
 </tr>
</xsl:template>

</xsl:stylesheet>

2. Save the file as C:\VBAAccess2019_XML\ListCustOrders.xsl. You must in-
clude the file extension to ensure that the file is not saved as text.

3. Close Notepad.
Let’s now proceed to analyze the contents of the ListCustOrders.xsl fi le that
will be used to transform XML to HTML in our next hands-on exercise. Notice
that because the XSLT stylesheet is an XML document, we started out with a
standard XML declaration:

<?xml version="1.0" encoding="UTF-8"?>

Next, we defi ned the namespace for the stylesheet and declared its prefi x like
this:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

1028 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

On the third line we indicated that XSLT should transform the XML into
HTML by using the <xsl:output> tag as follows:
<xsl:output method="html" version="4.0" indent="yes"/>

In the preceding XML, the <xsl:output> tag has three attributes: method,
version, and indent. Th e method attribute specifi es the format of the output.
Th is can be XML, HTML, or text. Th e version attribute sets the version
number for the output format. Th e indent attribute, which is set to “yes” in this
example, indicates that the XML should be indented. Th is will make the fi nal
XML document more readable when viewed in the browser.
 Th e remaining part of the XSL fi le contains transformation instructions for
the XML document element nodes. We begin by creating the root template.
Th e <xsl:template> tag initiates a template within a stylesheet. Because a
template must indicate which nodes you want to use, we supplied the node
information by using the tag’s match attribute, like this:
<xsl:template match="dataroot">

Th is tells the XSLT processor to extract the XML document’s root node. Th e
root node provides a base node upon which we will build our Web page. Notice
that in the root template we included the <html> and <body> tags to create the
structure of the fi nal document and used HTML tags such as <h2>, ,
and <p> to add the required formatting to our Web page. In the root template
we are also telling the XSLT processor that it should apply the template rules
found in the Customers template (defi ned further down in the fi le):
<xsl:apply-templates select="Customers"/>

When the XSLT processor encounters the <xsl:apply-templates> instruc-
tion, it will proceed to the following line:
<xsl:template match="Customers">

Th is line marks the beginning of the Customers template rule. Within it there
are HTML tags as well as other XSLT processing instructions. For example,
to output the CustomerID we use the <xsl:value-of> tag with the select
attribute like this:
<xsl:value-of select="CustomerID"/>

Because the <xsl:value-of> tag does not have any content, you must end it
with the forward slash (/). Notice that we placed the value of the CustomerID
fi eld in a table cell. Using the same approach we output the CompanyName:
<xsl:value-of select="CompanyName"/>

XML FEATURES IN ACCESS 2019 1029

Next, we defi ned the column headings for the Orders table. For a special
eff ect, we added to the output a 10-pixel-wide dummy column with a black
background:
<td bgcolor="black" width="10px"></td>

We also told the XSLT processor to apply the Orders template:
<xsl:apply-templates select="Orders"/>

Th e Orders template rules indicate how to extract values for each of the
defi ned column headings. Th is is done by using the <xsl:value-of> tag with
the select attribute, like this:

<td><xsl:value-of select="OrderID"/></td>
<td><xsl:value-of select="substring(OrderDate, 1, 10)"/></td>
<td><xsl:value-of select="substring(ShippedDate, 1, 10)"/></td>
<td><xsl:value-of select="substring(RequiredDate, 1, 10)"/></td>
<td>$<xsl:value-of select="format-
number(Freight,'####0.00')"/></td>

To obtain only the date portion from the OrderDate, ShippedDate, and
RequiredDate columns, we use the XPath substring function in the select
attribute. Th is function has the same syntax as the VBA Mid function, allowing
you to extract a specifi ed number of characters from a string starting at a
specifi c position. Th e format of the substring function is as follows:
substring(string, startpos, length)

startpos is the position of the fi rst character to extract, and length
represents the number of characters to be returned from string. Th erefore,
the expression
<xsl:value-of select="substring(OrderDate, 1, 10)"/>

tells the XSLT processor to retrieve only the fi rst 10 characters from the value
found in the OrderDate column.
 Notice also that to correctly format the Freight column we used the format-
number XPath expression like this:
<xsl:value-of select="format-number(Freight,'####0.00')"/>

Th is tells the XSLT processor to format the value found in the Freight column
as a number using two decimal places. Notice that the dollar sign cannot be a
part of the XPath expression. It is appended to the fi nal output as shown here:
<td>$<xsl:value-of select="format-number(Freight,'####0.00')"/>
 </td>

1030 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that each of the defi ned template rules ends with the </xsl:template>
ending tag and the stylesheet itself ends with the </xsl:stylesheet> tag.
Th is concludes our hands-on example of how you can make your own custom
stylesheets. While this is a basic stylesheet to get you started, in real life you
will probably want to create stylesheets that allow:

 ● Batch-processing nodes (<xsl:for-each> tag with the select attribute)
 ● Conditional processing of nodes (<xsl:if> tag with the test attribute)
 ● Decisions based on conditions (<xsl:choose> tag and <xsl:when> tag

with the test attribute)
 ● Sorting nodes before processing (<xsl:sort> tag with the select attri-

bute)

NOTE
For more information about XSL Transformations (XSLT), visit
the following link: http://www.w3.org/TR/xslt#section-Apply-
ing-Template-Rules

Now that you have a custom stylesheet, what do you do with it? Hands-On 31.6
demonstrates how to export data from an Access table directly to an HTML file
and apply a custom transform so that only certain columns are displayed in the
browser.

 Hands-On 31.6 Exporting Data and Applying a Custom XSL File

1. Open the C:\VBAAccess2019_XML\Northwind.mdb database.
2. In the Navigation pane, right-click the Customers table and choose Export |

XML File.
3. In the File name box, enter C:\VBAAccess2019_XML\ListCustOrders.xml,

and click OK.
4. In the Export XML dialog box, make sure that the first two checkboxes are

selected. Click the More Options button.
5. In the Data to Export area, the Customers table is automatically selected. Click

the checkbox next to the Orders table to include it in the export.
6. Click the Transforms button.
7. In the Export Transforms window that appears, click the Add button.
8. Access displays the Add New Transform window. Switch to the C:\VBAAc-

cess2019_XML folder and select the ListCustOrders.xsl file that you created
in the previous hands-on exercise. Click the Add button to add this file to the
list of transforms. The transformation file appears in the list as shown in Fig-
ure 31.13.

XML FEATURES IN ACCESS 2019 1031

FIGURE 31.13 Use this window to indicate a transformation file (stylesheet) to be used after
export.

9. In the Export Transforms window, click OK.
10. Back in the Export XML dialog box, change the file extension from xml to

html as shown in Figure 31.14.

FIGURE 31.14 To export XML data directly to the HTML file, you must choose the transformation
file using the Transforms button and change the file extension from xml to html.

11. Click the OK button to begin the export.

1032 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

12. Upon successful export operation, click Close.

NOTE

If the selected transformation file is invalid, you will see an error
message. Access will prompt you to save the data for trouble-
shooting and will bring up the Export XML dialog box. At this
time you may want to open the transformation file in Notepad
and make appropriate corrections. Once you save the corrected
XSL file, you should return to the Export XML dialog box to try
the export again. Before you click the OK button in the Export
XML dialog box, ensure that the appropriate tables are selected.

13. Close the Northwind database and exit Microsoft Access.
14. In your browser’s address bar, type http://localhost/xml/ListCustOrders.

html and press Enter. The final result of applying the custom transformation
file is shown in Figure 31.15.

15. Close the browser window.

FIGURE 31.15 XML data can be formatted any way you like by applying a custom transformation
(see Figures 31.13 and 31.14).

IMPORTING XML DATA

You can use the Access built-in Import command to import an XML data or
XML schema document to a database. When you import structure or data from
an XML file, Access assigns the Text data type to all the fields in a table. How-

XML FEATURES IN ACCESS 2019 1033

ever, when you import structure from an XSD schema file, each field is assigned
a data type that closely matches the data type specified in the schema. You can
change the data types after importing data or a table structure as long as the
fields’ data allows such a change.

When you import a schema, Access creates a new empty table with the struc-
ture of the imported schema. Earlier in this chapter, when you exported the
Shippers table to XML format, Access also created the schema of that table.
Hands-On 31.7 shows how to import this schema document to a new Access
database.

 Hands-On 31.7 Importing a Schema File (XSD) to an Access
Database

1. Create a new Access database named C:\VBAAccess2019_XML\Chap31.accdb.
2. In the Access window, choose External Data, and then select New Data Source |

From File | XML File.
3. In the Get External Data - XML File window, type C:\VBAAccess2019_XML\

Shippers.xsd in the File name box and click OK. Access displays the Import
XML dialog box as shown in Figure 31.16.

FIGURE 31.16 When importing a schema file to an Access database, the Import XML dialog box
displays the table name and its columns as defined in the schema.

1034 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Notice that you cannot indicate which columns you would like to import.
Access always imports the entire XSD fi le.

4. Click OK to perform the import. When the import operation is completed,
click Close. The Shippers table appears in the Navigation pane of the Access
window. Figure 31.17 shows this table opened in Design view.

5. Close the Chap31.accdb database.

FIGURE 31.17 The Shippers table was created by importing the Shippers.xsd schema file.

When importing an XML data file to an Access database, you can use the
Import Options section to specify whether you want to import structure only,
import structure and data, or append data to an existing table (see Figure 31.18).
When you append data to an existing table, Access compares the structure of
the imported table with the table structures that are already in the database.
If Access cannot find a table structure matching the imported table, the data
is placed in a new table; otherwise, it is appended to the existing table. You
can also click the Transform button in the Import XML dialog box to specify a
transformation file that you want to apply when the XML data is imported.

It is important to point out that when XML data is imported to an Access
database, it is not linked with the original XML file. This means that to refresh
the data in the table, you need to repeat the import process.

XML FEATURES IN ACCESS 2019 1035

FIGURE 31.18 Importing XML data (qryShippers.xml) to the Chap31.accdb database.

The following project demonstrates how to import XML data to an Access data-
base and modify the data before import using a transformation file. We will
perform the tasks outlined here:

 ● Create a custom transformation fi le to be used aft er the XML data import
 ● Export the Customers table and the related Orders table to an XML fi le
 ● Import to an Access database only two columns from the Customers table

and fi ve columns from the Orders table

 Custom Project 31.1 Importing XML Data to an Access Database
and Applying a Transform

Part 1: Creating a Custom Transformation File to Be Used after the XML Data Import

1. Open Notepad and enter the following statements:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.
w3.org/1999/XSL/Transform">
<xsl:output method="html" version="4.0" indent="yes"/>

1036 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

<xsl:template match="dataroot">
 <html>
 <body>
 <table>
 <xsl:apply-templates select="Customers"/>
 </table>
 <table>
 <xsl:apply-templates select="Customers/Orders"/>
 </table>
 </body>
 </html>
</xsl:template>

<xsl:template match="Customers">
 <Customer>
 <CustomerID>
 <xsl:value-of select="CustomerID"/>
 </CustomerID>
 <CompanyName>
 <xsl:value-of select="CompanyName"/>
 </CompanyName>
 </Customer>
</xsl:template>

<xsl:template match="Customers/Orders">
 <Order>
 <OrderID>
 <xsl:value-of select="OrderID"/>
 </OrderID>
 <OrderDate>
 <xsl:value-of select="substring(OrderDate, 1, 10)"/>
 </OrderDate>
 <ShippedDate>
 <xsl:value-of select="substring(ShippedDate, 1, 10)"/>
 </ShippedDate>
 <RequiredDate>
 <xsl:value-of select="substring(RequiredDate, 1, 10)"/>
 </RequiredDate>
 <Freight>
 <xsl:value-of select="format-number(Freight,'####0.00')"/>
 </Freight>
 </Order>
</xsl:template>

</xsl:stylesheet>

XML FEATURES IN ACCESS 2019 1037

2. Save the file as C:\VBAAccess2019_XML\CustomerOrders.xsl. You must
include the file extension to ensure that the file is not saved as text.

3. Close Notepad.

Since you’ve already created a similar stylesheet in Hands-On 31.5, the contents
of the CustomerOrders.xsl file should be recognizable. All that’s different here
are the <Customer> and <Order> tags that specify the names of Access tables
where we want to place our XML data. When importing data, tables are named
according to the name of the XML element being imported. If the Access data-
base already has a table with the specified name, a number is appended to the
name.

Part 2: Exporting the Customers and Related Orders Tables to an XML File

1. Open the C:\VBAAccess2019_XML\Northwind.mdb database. In the Navi-
gation pane, right-click the Customers table and choose Export | XML File.

2. In the Export - XML File window, type C:\VBAAccess2019_XML\Customer-
Orders.xml in the File name box and click OK.

3. Access displays the Export XML dialog box with three checkboxes; the first
two checkboxes should be selected. Click the More Options button.

4. In the Data to Export area of the Export XML dialog box, select the checkbox
next to the Orders table. The Customers and Orders tables should both be
selected.

5. Click OK to perform the export of all the records in the selected tables. When
the export operation is completed, click Close.

6. Close the Northwind.mdb database file.

Part 3: Importing to an Access Database Only Two Columns from the Customers
Table and Five Columns from the Orders Table

1. Open the C:\VBAAccess2019_XML\Chap31.accdb database file that you
created in Hands-On 31.7.

2. In the Access window, choose External Data, and then select New Data
Source | From File | XML File.

3. In the Get External Data - XML File window, type C:\VBAAccess2019_XML\
CustomerOrders.xml in the File name box and click OK.
Access displays the Import XML window with the fi le’s Customers and Orders
tables listed. By expanding nodes in the tree structure, you can see the columns
in each table, but you cannot indicate which columns to import, as Access
always imports the entire fi le by default. You can, however, tell Access to
perform a custom XSLT transform to import only the columns needed.

1038 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

4. In the Import XML window, click the Transform button.
5. In the Import Transforms window that appears, click the Add button to apply

a transform before importing.
Access displays the Add New Transform window. Switch to the VBAAc-
cess2019_XML folder and select the CustomerOrders.xsl fi le that you cre-
ated in Part 1 of this project. Click the Add button to add this fi le to the list of
transforms.

6. In the Import Transforms window, click OK.
7. Back in the Import XML window, make sure that the Structure and Data

option button is selected under Import Options and click OK. When Access
finishes importing the C:\VBAAccess2019_XML\CustomerOrders.xml docu-
ment, click Close.

8. In the Navigation pane of the Access window, notice the appearance of two
new tables: Customer and Order. Open both tables and check their contents.
As you can see, Access has applied the custom stylesheet before importing
the data and only the columns specified in the stylesheet were imported (see
Figure 31.19).

9. Open the Order table in Design view. Notice that all the fields in this table
have been assigned the Text data type. After importing data or table structure
you can change the fields’ data types.

10. Change the data type of the OrderDate, ShippedDate, and RequiredDate
columns to Date/Time and the Freight column’s data type to Currency to
match the original Orders table.

11. Save the modified Order table and close the Chap31.accdb database file.

FIGURE 31.19 Applying a custom transformation file before XML data import to limit the number
of columns of data imported to Access database tables.

XML FEATURES IN ACCESS 2019 1039

PROGRAMMATICALLY EXPORTING TO AND IMPORTING
FROM XML

Now that you’ve mastered the use of Microsoft Access 2019 built-in commands
for exporting and importing XML data, let’s look at what tools are available for
programmers who want to perform these XML operations via code. In the fol-
lowing sections of this chapter, you will learn how to work with XML using:

 ● Th e ExportXML and ImportXML methods from the Microsoft Access 16.0
Object Library

 ● Th e TransformXML method

Exporting to XML Using the ExportXML Method

Use the Microsoft Access 16.0 Object Library ExportXML method of the Applica-
tion object to export XML data, schemas (XSD), and presentation information
(XSL) from a Microsoft Access database, Microsoft SQL Server 2000 Desktop
Engine (MSDE 2000), or Microsoft SQL Server 6.5 or later.

The ExportXML method takes a number of arguments, which are shown in
Table 31.1.

TABLE 31.1 Arguments of the ExportXML method (in order of appearance)

Argument Type Data Type / Description
ObjectType
(required)

AcExportXMLObjectType
Use one of the following constants:

Constant Value
acExportForm 2
acExportFunction 10
acExportQuery 1
acExportReport 3
acExportServerView 7
acExportStoredProcedure 9
acExportTable 0

Specifies the type of Access object to export.
The constant values 10, 7, and 9 are used only with Microsoft Access
projects.

1040 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Argument Type Data Type / Description
DataSource
(required)

String
Indicates the name of the Access object specified in the Object-
Type argument.

DataTarget
(optional)

String
Specifies the path and filename for the exported data. Omit this
argument only if you don’t want the data to be exported.

SchemaTarget
(optional)

String
Specifies the path and filename for the exported schema informa-
tion. Omit this argument only if you don’t want the schema to be
exported to a separate file.

PresentationTarget
(optional)

String
Specifies the path and filename for the exported presentation infor-
mation. Omit this argument only if you don’t want the presentation
information to be exported.

ImageTarget
(optional)

String
Specifies the path for the exported images. Omit this argument if
you don’t want to export images.

Encoding
(optional)

AcExportXMLEncoding
Use one of the following constants:

Constant Value
acUTF16 1
acUTF8 0

The default is acUTF8.
Specifies the text encoding for the exported data.

OtherFlags
(optional)

AcExportXMLOtherFlags
Use one or more of the following constants:

Constant Value
acEmbedSchema 1
acExcludePrimaryKeyAndIndexes 2
acExportAllTableAndFieldProper-
ties 32
acLiveReportSource 8
acPersistReportML 16
acRunFromServer 4

XML FEATURES IN ACCESS 2019 1041

Argument Type Data Type / Description
Specifies behaviors associated with exporting to XML. Values can be
added to specify a combination of behaviors. Here are the meanings
of the constants:
(1) Write schema information into a separate document specified by
the DataTarget argument. This value takes precedence over the
SchemaTarget argument.
(2) Does not export primary key and index schema properties.
(32) The exported schema contains properties of the table and its
fields.
(8) Used only when exporting reports bound to SQL Server 2000.
Will create a live link to a Microsoft SQL Server database.
(16) Persists the exported object’s ReportML file.
(4) Used only when exporting reports. Creates an Active Server
Pages (ASP) or HTML wrapper. The default is HTML.

WhereCondition
(optional)

String
Specifies a subset of records to export.

AdditionalData
(optional)

AdditionalData
AdditionalData is an Access object that represents the collec-
tion of tables and queries that will be included with the parent table
that is exported by the ExportXML method (see Hands-On 31.8).
Specifies additional tables to export. This argument is ignored if the
OtherFlags argument is set to acLiveReportSource (8).

In its simplest form, the ExportXML method looks like this:
Application.ExportXML ObjectType:=acExportTable, _
 DataSource:="Customers", _
 DataTarget:= "C:\VBAAccess2019_XML\North_Customers.xml"

The preceding statement, when typed on a single line (without the underscore
characters) in the Visual Basic Editor’s Immediate window or inside a VBA pro-
cedure stub in a Visual Basic module, will render the Customers table in the
XML format in the North_Customers.xml file.

Using the arguments described in Table 31.1, you can easily write the com-
mand to export the XML Products table with its schema and presentation infor-
mation placed in separate files:

Application.ExportXML ObjectType:=acExportTable, _
 DataSource:="Products", _
 DataTarget:= "C:\VBAAccess2019_XML\North_Products.xml", _
 SchemaTarget:= "C:\VBAAccess2019_XML\North_ProdSchema.xsd", _
 PresentationTarget:= "C:\VBAAccess2019_XML\North_ProdReport.xsl"

1042 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

To export a specific customer’s data to an XML data file, use the following state-
ment:
Application.ExportXML ObjectType:=acExportTable, _
 DataSource:="Customers", _
 DataTarget:="C:\VBAAccess2019_XML\OneCustomer.xml", _
 WhereCondition:="CustomerID = 'GROSR'"

NOTE

To try out the preceding statements, open the Northwind.mdb
database, switch to the Visual Basic Editor window, insert a
new standard module and type each statement inside a Visual
Basic procedure named Test_ExportToXML. After executing
the procedure, locate and check out the newly created XML files
in your C:\VBAAccess2019_XML folder.

Hands-On 31.8 demonstrates how to export to XML three tables: Customers,
Orders, and Order Details.

 Hands-On 31.8 Exporting Multiple Tables to an XML Data File

1. In the C:\VBAAccess2019_XML\Chap31.accdb database, switch to the
Visual Basic Editor window.

2. Choose Insert | Module to add a standard module to the current VBA project.
3. In the module’s Code window, enter the following Export_CustomerOrder-

Details procedure:
Sub Export_CustomerOrderDetails()
 Dim objAppl As New Access.Application
 Dim objOtherTbls As AdditionalData
 Dim strPath As String
 Dim strDBName As String

 strPath = "C:\VBAAccess2019_XML\"
 strDBName = "Northwind.mdb"

 On Error GoTo ErrorHandler
 objAppl.OpenCurrentDatabase (strPath & strDBName)
 objAppl.Visible = False

 Set objOtherTbls = objAppl.CreateAdditionalData

 ' include the Orders and OrderDetails tables
 ' in export
 objOtherTbls.Add "Orders"

XML FEATURES IN ACCESS 2019 1043

 objOtherTbls.Add "Order Details"

 ' export Customers, Orders, and Order
 ' Details table into one XML data file

 objAppl.ExportXML ObjectType:=acExportTable, _
 DataSource:="Customers", _
 DataTarget:=strPah & "CustomerOrdersDetails.xml", _
 AdditionalData:=objOtherTbls

 MsgBox "Export operation completed."

Exit_Here:
 On Error Resume Next
 objAppl.CloseCurrentDatabase
 Set objAppl = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume Exit_Here
End Sub

Th e Application object refers to the active Microsoft Access application, which
in this case is the Chap31.accdb database where you wrote the procedure
code shown here. Because this database does not contain the tables we
want to export, we used the New keyword to create a new instance of the
Microsoft Access Application object and then opened another Access database
(Northwind.mdb) using the OpenCurrentDatabase method. You can use the
OpenCurrentDatabase method to open an existing Microsoft Access database
as the current database.
 Using the AdditionalData object, you can export any set of Access tables to
an XML data file. To use this object, perform the following:

 ● Declare an object variable as AdditionalData:
Dim objOtherTbls As AdditionalData

 ● Create the AdditionalData object using the CreateAdditionalData
method of the Application object and set the object variable to the newly
created object:
Set objOtherTbls = objAppl.CreateAdditionalData

1044 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 ● Use the AdditionalData object’s Add method to add table names to the
object:
objOtherTbls.Add "Orders"
objOtherTbls.Add "Order Details"

 ● Pass the AdditionalData object to the ExportXML method:
objAppl.ExportXML ObjectType:=acExportTable, _
DataSource:="Customers", _
DataTarget:="C:\VBAAccess2019_XML\CustomerOrdersDetails.
xml", _
AdditionalData:=objOtherTbls

4. Place the insertion point anywhere within the Export_CustomerOrderDetails
procedure code and choose Run | Run Sub/UserForm. Access executes the
procedure code and displays a message.

5. Click OK to clear the informational message.
6. Switch to File Explorer and locate and open the C:\VBAAccess2019_XML\

CustomerOrdersDetails.xml file. Notice that all the requested data was placed
into one file.

7. Exit File Explorer.

Now that you know how to use VBA to export Access tables to XML, let’s see
how Access handles other objects. Custom Project 31.2 demonstrates how to
export the Invoice report from the Northwind.mdb database to an XML file
together with the presentation information and images.

 Custom Project 31.2 Exporting an Access Report to an XML Data
File with ASP

This project requires prior completion of the Hands-On 31.1 exercise.

Part 1: Creating a VBA Procedure to Export Invoice Data

1. In the Visual Basic Editor window, choose Insert | Module to add a standard
module to the current VBA project.

2. In the module’s Code window, enter the following Export_InvoiceReport
procedure:
Sub Export_InvoiceReport()
 Dim objAppl As New Access.Application
 Dim strPath As String
 Dim strDBName As String

XML FEATURES IN ACCESS 2019 1045

 strPath = "C:\VBAAccess2019_XML\"
 strDBName = "Northwind.mdb"

 On Error GoTo ErrorHandler
 objAppl.OpenCurrentDatabase (strPath & strDBName)
 objAppl.Visible = False

 objAppl.ExportXML ObjectType:=acExportReport, _
 DataSource:="Invoice", _
 DataTarget:=strPath & "Invoice.xml", _
 PresentationTarget:=strPath & "Invoice.xsl", _
 ImageTarget:=strPath, _
 WhereCondition:="OrderID=11075"

 MsgBox "Export operation completed successfully."

Exit_Here:
 On Error Resume Next
 objAppl.CloseCurrentDatabase
 Set objAppl = Nothing
 Exit Sub
ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume Exit_Here
End Sub

Take a look at the last two arguments of the ExportXML method used in this pro-
cedure. ImageTarget specifies that images displayed on the Invoice report are
to be placed in the VBAAccess2019_XML folder. The WhereCondition argu-
ment specifies that we want only the data for Order 11075.

Part 2: Executing the VBA Code to Export Data

1. Place the insertion point anywhere within the Export_InvoiceReport procedure
code and choose Run | Run Sub/UserForm. Access executes the procedure
code and displays a message.

2. Click OK to clear the informational message.
3. Switch to File Explorer and open the C:\VBAAccess2019_XML folder.
4. Notice that Access has created a number of files: Invoice.xsl (stylesheet),

Invoice.xml (XML document), Invoice.htm (HTML document), and two
image files (PictureLogo.bmp and NameLogo.bmp).

1046 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Part 3: Viewing the Invoice Page in the Browser

1. In the Internet Explorer’s address bar, type http://localhost/xml/Invoice.htm
and press Enter.

2. Important Note: If you see a blank page, see the Note preceding Figure 31.7
earlier in this chapter and modify the file accordingly.

3. The Invoice.htm file is shown in Figure 31.20. The invoice which is displayed
in the browser is an exact image of the report displayed in the Access user
interface. However, there are some spacing issues that did not exist in earlier
versions of Access when the same report was rendered in the browser.

4. Close the browser window.

FIGURE 31.20 Viewing the exported invoice report in Internet Explorer.

Part 4: Examining the Content of the Invoice.htm File

1. In File Explorer, right-click the Invoice.htm file and choose Open with |
Notepad.
Let’s spend few minutes reviewing the code statements in this fi le. Notice
that when the HTML page loads, it executes the VBScript ApplyTransform
function:

XML FEATURES IN ACCESS 2019 1047

<BODY ONLOAD="ApplyTransform()">

Th e VBScript code uses a soft ware component called the XML Document
Object Model (DOM). Th e DOM off ers methods and properties for working
with XML programmatically, allowing you to output and transform the XML
data.
 Th e DOMDocument object is the top level of the XML DOM hierarchy and
represents a tree structure composed of nodes. You can navigate through this
tree structure and manipulate the data contained in the nodes by using various
methods and properties. Because every XML object is created and accessed
from DOMDocument, you must fi rst create the DOMDocument object in order to
work with an XML document.
 Th e ApplyTransform function begins by setting an object variable (objData)
to an instance of DOMDocument that’s returned by a custom CreateDOM
function:

Set objData = CreateDOM

Th e CreateDOM function that appears at the bottom of the VBScript code
that a reference to the DOMDocument is set via the CreateObject method
of the Server object. Because diff erent versions of the MSXML parser may
be installed on a client machine (DOMDocument5, DOMDocument4,
DOMDocument, etc.), the function attempts to instantiate the DOMDocument
object using the most recent version. If such a version is not found, it looks for
older versions of the MSXML parser that may exist. It is extremely important
that only one version of the DOMDocument is used, since mixing DOMDocument
objects from diff erent versions of the MSXML parser can cause ugly errors.
 Once the DOMDocument object has been instantiated, the LoadDOM
function listed at the bottom of the page is called. Th is function expects
two parameters: objectDOM, which is the objData variable referencing the
DOMDocument, and strXMLFile, which is the name of the fi le to load into the
DOMDocument object. To ensure that Internet Explorer waits until all the
data is loaded before rendering the rest of the page, the Async property of the
DOMDocument is set to False:

objDOM.Async = False
objDOM.Load strXMLFile

Th e Load method is used to load the supplied fi le into the objData object
variable. Th is method returns True if it successfully loaded the data and False

1048 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

otherwise. If there is a problem with loading, a description of the error is
returned in a message box.
 Th e Document object of XML DOM exposes a parseError object that
allows you to check whether there was an error when loading the XML fi le or
stylesheet. Th e ParseError object has the properties listed in Table 31.2.

TABLE 31.2 The ParseError object properties

Property Description
errorCode Error number of the error that occurred.
filepos Character position within the file where the error occurred.
line Line number where the error occurred.
linepos Character position within the line where the error occurred.
reason Text description of the error.
srcText The source (text) of the line where the error occurred.
url URL or path of the file that was loaded.

Aft er loading the Invoice.xml data fi le into the DOM soft ware component,
the ApplyTransform function repeats the same process for the Invoice.xsl fi le.
Aft er both fi les are successfully loaded, the transform is applied to the data
using the TransformNode method:

document.Write objData.TransformNode(objStyle)

Th e TransformNode method performs the transformation by applying the XSL
stylesheet to the XML data fi le. Th e result is the HTML document displayed in
the browser as shown in Figure 31.20 earlier in this chapter.

2. Close the Invoice.htm file and exit Notepad.

Transforming XML Data with the TransformXML Method

So far you’ve learned how to use stylesheets to transform XML data files to
HTML formatting in order to create a Web page. While rendering XML files
into HTML for display in a Web browser is the most popular use of stylesheets,
XML data files can also be transformed into other XML files using the XSLT
transforms.

In this section we will learn how to use the TransformXML method to apply
an XSL stylesheet to an XML data file and write the resulting XML to another
XML data file.

XML FEATURES IN ACCESS 2019 1049

The TransformXML method takes a number of arguments, which are pre-
sented in Table 31.3. In its simplest form, the TransformXML method looks like
this:
Application.TransformXML DataSource:="C:\VBAAccess2019_XML\
InternalContacts.xml",
 TransformSource:="C:\VBAAccess2019_XML\Extensions.xsl", _
 OutputTarget:="C:\VBAAccess2019_XML\EmpExtensions.xml"

The preceding statement can be used inside a VBA procedure stub to program-
matically apply the specified stylesheet.

TABLE 31.3 Arguments of the TransformXML method (in order of appearance)

Argument Type Data Type Description
DataSource
(required)

String Specifies the full path of
the XML data file that
will be transformed.

TransformSource
(required)

String Specifies the full path
of the XSL stylesheet to
apply to the XML data
file specified in the Da-
taSource argument.

OutputTarget
(required)

String Specifies the full path of
the resulting XML data
file after applying the
XSL stylesheet.

WellFormedXMLOutput
(optional)

Boolean Set this argument to
True to create a well-
formed XML document.
Set this argument to
False to encode the
resulting XML file in
UTF-16 format. The
default is False.

ScriptOption
(optional)

AcTransformXMLScriptOption
Use one of the following constants:

Constant Value
acDisableScript 2
acEnableScript 0
acPromptScript 1

Use this argument
to specify the ac-
tion that should be
taken if the XSL file
contains scripting code.
acPromptScript is
the default.

1050 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Custom Project 31.3 demonstrates how to transform an XML data file into
another XML file. We will start by creating a custom stylesheet named Exten-
sions.xsl that will transform the InternalContacts.xml file (generated from the
Northwind.mdb database Employees table) into an XML file named EmpExten-
sions.xml. Next, we will write a VBA procedure that exports the XML source
file and performs the transformation. Finally, we will import the resulting XML
data file into Access.

 Custom Project 31.3 Applying a Stylesheet to an XML Data File with
the TransformXML Method

Part 1: Creating a Custom Stylesheet for Transforming an XML Source File into
Another XML Data File

1. Open Notepad and enter the following statements:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/
XSL/Transform">
<xsl:output method="xml" indent="yes"/>
<xsl:template match="/">
<dataroot>
<xsl:for-each select="//Employees">
<Extensions>
 <LastName>
 <xsl:value-of select="LastName" />
 </LastName>
 <FirstName>
 <xsl:value-of select="FirstName" />
 </FirstName>
 <Extension>
 <xsl:value-of select="Extension" />
 </Extension>
</Extensions>
</xsl:for-each>
</dataroot>
</xsl:template>
</xsl:stylesheet>

Look at the preceding stylesheet and notice that we have asked the XSL
processor to produce the output in XML format:

<xsl:output method="xml" indent="yes"/>

XML FEATURES IN ACCESS 2019 1051

Next, we used the following instruction:

<xsl:template match="/">

Th is instruction defi nes a template for the entire document. Th e special
pattern “/” in the match attribute tells the XSL processor that this is a template
for the document root. Because each XML document must have a root node,
we proceeded to defi ne <dataroot> as the document root. You can use any
name you want for this purpose. Next, we told the XSL processor to get all the
Employees nodes from the source XML data fi le:

<xsl:for-each select="//Employees">

Th e fi rst forward slash in the preceding instruction represents the XML
document root. Th is is the same as:

<xsl:for-each select="dataroot/Employees">

Next, we proceed to extract data from the required nodes. We are only interested
in three columns from the source XML data fi le: FirstName, LastName, and
Extension. We create the necessary elements using the <xsl:value-of> tag
with the select attribute specifying the element name:

<LastName>
 <xsl:value-of select="LastName" />
</LastName>
<FirstName>
 <xsl:value-of select="FirstName" />
</FirstName>
<Extension>
 <xsl:value-of select="Extension" />
</Extension>

We tell the XSL processor to place the defi ned elements under the <Extensions>
node. When importing the resulting XML fi le to Access, Access will create an
Extensions table with three columns: LastName, FirstName, and Extension.
You can use any name you want when specifying the container node for your
elements.
 To fi nish the stylesheet, we must write the necessary closing tags:

</xsl:for-each>
</dataroot>
</xsl:template>
</xsl:stylesheet>

1052 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

2. Save the file as C:\VBAAccess2019_XML\Extensions.xsl. You must include
the .xsl file extension to ensure that the file is not saved as text.

3. Close Notepad.
Now that we’ve got the stylesheet for our transformation, we can write a VBA

procedure to actually export the source data and perform the transformation.

Part 2: Writing a VBA Procedure to Export and Transform Data

1. In the Chap31.accdb database, choose External Data and click New Data
Source | From Database | Access. In the File name box, enter C:\VBAAc-
cess2019_XML\Northwind.mdb and click OK. In the Import Object dialog
box, select Employees and click OK. Click Close to exit the External Data
dialog box.

2. You should see the Employees table in the Navigation pane.
3. In the Visual Basic Editor window, choose Insert | Module to add a standard

module to the current VBA project.
4. In the module’s Code window, enter the following Transform_Employees

procedure:
Sub Transform_Employees()
Dim strPath As String
 ' use the ExportXML method to
 ' create a source XML data file

strPath = "C:\VBAAccess2019_XML\"
 Application.ExportXML _
 ObjectType:=acExportTable, _
 DataSource:="Employees", _
 DataTarget:=strPath & "InternalContacts.XML"

 MsgBox "The export operation completed."

 ' use the TransformXML method
 ' to apply the stylesheet
 ' that transforms the source
 ' XML data file into
 ' another XML data file
 Application.TransformXML _
 DataSource:=strPath & "InternalContacts.xml", _
 TransformSource:=strPath & "Extensions.xsl", _
 OutputTarget:=strPath & "EmpExtensions.xml", _
 WellFormedXMLOutput:=False

 MsgBox "The transform operation completed."
End Sub

XML FEATURES IN ACCESS 2019 1053

Th e fi rst part of this procedure exports the Employees table from the
Northwind database to an XML fi le named InternalContacts.xml. Th e second
part of this procedure applies the Extensions.xsl stylesheet prepared in Part 1
of this custom project to the InternalContacts.xml data fi le. Th e resulting XML
document aft er the transformation is named EmpExtensions.xml. A portion
of this fi le is shown in Figure 31.21.

5. Run the Transform_Employees procedure.

FIGURE 31.21 Partial contents of the EmpExtensions.xml file.

Aft er transforming our source XML data fi le into another XML document,
you can bring it into Access (see Part 3).

Part 3: Importing the Transformed XML Data File to Access

1. In the database window, choose External Data | New Data Source | From File
| XML File.

2. In the File name box, type C:\VBAAccess2019_XML\EmpExtensions.xml
and click OK. Access displays the Import XML dialog box. In the Import XML
dialog box, click OK to perform the import. Click Close to exit the Import
XML window.

1054 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the Navigation pane of the Access window, notice the appearance of the
Extensions table. Open the Extensions table to examine its contents.

4. Close the Extensions table.

A nice thing about XSLT transformations is that you can apply different stylesheets
to the same XML data file to create and view the resulting document in different
formats.

For example, let’s assume that in the Extensions table you’d like to combine
the LastName and FirstName columns into one column and sort the data by last
name. You could create the following Extensions_SortByEmp.xsl stylesheet
and apply it to the InternalContacts.xml file to get the desired XML output:
 <?xml version="1.0"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" indent="yes"/>
 <xsl:template match="/">
 <dataroot>
 <xsl:apply-templates select="dataroot/Employees">
 <xsl:sort select="LastName" order="ascending" />
 </xsl:apply-templates>
 </dataroot>
 </xsl:template>

 <xsl:template match="//Employees">
 <Extensions>
 <FullName>
 <xsl:value-of select="LastName" />
 <xsl:text>, </xsl:text>
 <xsl:value-of select="FirstName" />
 </FullName>
 <Extension>
 <xsl:value-of select="Extension" />
 </Extension>
 </Extensions>
 </xsl:template>
 </xsl:stylesheet>

The preceding stylesheet uses the <xsl:apply-templates> tag to tell the XSL
processor to select the child elements of the dataroot/Employees node. For each
child element, it will find in the stylesheet the matching template rule and pro-
cess it:
 <xsl:apply-templates select="dataroot/Employees">
 <xsl:sort select="LastName" order="ascending" />
 </xsl:apply-templates>

XML FEATURES IN ACCESS 2019 1055

The <xsl:sort> tag specifies how the resulting XML document should be
sorted. The select attribute of this tag is set to LastName, indicating that the file
should be sorted by the LastName element. The order attribute defines the sort
order as ascending.

Next, in this stylesheet you can see the template rule that begins with the
<xsl:template> tag. Its match attribute specifies which nodes in the document
tree the template rule should process:
 <xsl:template match="//Employees">

The //Employees expression in the match attribute is equivalent to dataroot/
Employees.

Next, you need to define the document node in the output file as Extensions,
and proceed to define its child elements as FullName and Extension:
 <Extensions>
 <FullName>
 <xsl:value-of select="LastName" />
 <xsl:text>, </xsl:text>
 <xsl:value-of select="FirstName" />
 </FullName>
 <Extension>
 <xsl:value-of select="Extension" />
 </Extension>
 </Extensions>

The FullName element should contain the last name of the employee followed
by a space and the first name. You can obtain the values of these fields with
the <xsl:value-of> tag and use the <xsl:text> </xsl:text> tag pair to out-
put a comma followed by a space between the last name and first name. Since
there is nothing special about the Extension element, you can simply use the
<xsl:value-of> tag to obtain this element’s value.

Finally, complete the template and the stylesheet with the required closing
tags:
 </xsl:template>
 </xsl:stylesheet>

To apply the preceding stylesheet to the source XML file, you could write the
following VBA procedure:
Sub Transform_ContactsSort()
 Dim objAppl As New Access.Application
 Dim strPath As String
 Dim strDBName As String

1056 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 strPath = "C:\VBAAccess2019_XML\"

 strDBName = "Northwind.mdb"

 On Error GoTo ErrorHandler
 objAppl.OpenCurrentDatabase (strPath & strDBName)

 ' use the ExportXML method to create
 ' a source XML data file
 objAppl.ExportXML ObjectType:=acExportTable, _
 DataSource:="Employees", _
 DataTarget:=strPath & "InternalContacts.xml"

 ' use the TransformXML method
 ' to apply the stylesheet that
 ' transforms the source XML data
 ' file into another XML data file

 objAppl.TransformXML _
 DataSource:=strPath & "InternalContacts.xml", _
 TransformSource:=strPath & _
 "Extensions_SortByEmp.xsl", _
 OutputTarget:=strPath & "EmpExtensions.xml", _
 WellFormedXMLOutput:=False

Exit_Here:
 On Error Resume Next
 objAppl.CloseCurrentDatabase
 Set objAppl = Nothing
 Exit Sub

ErrorHandler:
 MsgBox Err.Number & ": " & Err.Description
 Resume Exit_Here
End Sub

After you import the EmpExtensions.xml file to Access, you should see the
Extensions1 table in the database window. When opened, this table displays a
sorted list of employees with their extensions (see Figure 31.22).

XML FEATURES IN ACCESS 2019 1057

FIGURE 31.22 Extensions table after it was reformatted with another stylesheet.

Importing to XML Using the ImportXML Method

Use the ImportXML method to programmatically import an XML data file and/or
schema file. The ImportXML method takes two arguments, as shown in Table 31.4.

TABLE 31.4 Arguments of the ImportXML method (in order of appearance)

Argument Type Data Type Description
DataSource
(required)

String Specifies the full path of the
XML file to import.

ImportOptions
(optional)

acImportXMLOption
Use one of the following constants:
Constant Value

acAppendData 2

acStructureAndData 1

acStructureOnly 0

Specifies whether to import
structure only (0), import
structure and data (1)
(default), or append data (2).

1058 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

The following procedure will import the structure of the Extensions table
from the EmpExtensions.xml file:
Sub Import_XMLFile()
Application.ImportXML _
 DataSource:="C:\VBAAccess2019_XML\EmpExtensions.xml", _
 ImportOptions:=acStructureOnly
End Sub

MANIPULATING XML DOCUMENTS PROGRAMMATICALLY

You can create, access, and manipulate XML documents programmatically
using the XML Document Object Model (DOM). The DOM has objects, prop-
erties, and methods for interacting with XML documents.

To use the XML DOM from your VBA procedures, take a few minutes now
to set up a reference to the MSXML Object Library using the following steps:

1. Switch to the Visual Basic Editor window in Chap31.accdb and choose Tools
| References.

2. In the References window, select Microsoft XML, v6.0 (see Figure 31.23) and
click OK.
If you don’t have version 6.0 installed, select the lower version of this object
type library or upgrade your browser to the higher version so that the most
recent library is available.

FIGURE 31.23 To work with XML documents programmatically, you need to establish a reference
to the Microsoft XML object type library.

XML FEATURES IN ACCESS 2019 1059

3. Now that you have the reference set, open the Object Browser (press F2) and
examine XML DOM’s objects, methods, and properties (see Figure 31.24).

FIGURE 31.24 To view objects, properties, and methods exposed by the XML DOM, open the
Object Browser after setting up a reference to the Microsoft XML object type library (see Figure
31.23).

4. Close the Object Browser window.

As mentioned in Part 4 of Custom Project 31.2, the DOMDocument object is
the top level of the XML DOM object hierarchy. This object represents a tree
structure composed of nodes. You can navigate through this tree structure and
manipulate the data contained in the nodes by using various methods and prop-
erties. The hands-on exercises in the following sections demonstrate how to
read and manipulate XML documents by using VBA procedures.

Loading and Retrieving the Contents of an XML File

Hands-On 31.9 shows how to open an XML data file and retrieve both the raw
data and the actual text stored in nodes.

1060 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

 Hands-On 31.9 Loading and Retrieving the Contents of an XML File

1. In the Visual Basic Editor window of the Chap31.accdb database, choose
Insert | Module to add a new standard module to the current VBA project.

2. In the module’s Code window, enter the following ReadXMLDoc procedure:

NOTE
For this procedure to work correctly, you must set up the refer-
ence to the Microsoft XML object type library as instructed at
the beginning of this section.

Sub ReadXMLDoc()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"
 Set xmldoc = New MSXML2.DOMDocument60

 xmldoc.Async = False
 If xmldoc.Load(strPath & "Shippers.xml") Then
 Debug.Print xmldoc.XML
 ' Debug.Print xmldoc.Text
 End If
End Sub

To work with an XML document, we begin by creating an instance of the
DOMDocument object as follows:

Dim xmldoc As MSXML2.DOMDocument60
Set xmldoc = New MSXML2.DOMDocument60

MSXML uses an asynchronous loading mechanism by default for working with
documents. Asynchronous loading allows you to perform other tasks during
long database operations, such as providing feedback to the user as MSXML
parses the XML fi le or giving the user the chance to cancel the operation.
Before calling the Load method, however, it’s a good idea to set the Async
property of the DOMDocument object to False to ensure that the XML fi le is
fully loaded before other statements are executed. Th e Load method returns
True if it successfully loaded the data and False otherwise. Having loaded
the XML data into a DOMDocument object, you can use the XML property
to retrieve the raw data or use the Text property to obtain the text stored in
document nodes.

XML FEATURES IN ACCESS 2019 1061

3. Position the insertion point anywhere within the code of the ReadXMLDoc
procedure and choose Run | Run Sub/UserForm. The procedure executes and
writes the contents of the XML file into the Immediate window as shown in
Figure 31.25.

4. In the code of the ReadXMLDoc procedure, comment the first Debug.Print
statement and uncomment the second statement that reads Debug.Print
xmldoc.Text.

5. Run the ReadXMLDoc procedure again. This time the Immediate window
should show the entry as one long line of text.

FIGURE 31.25 By using the XML property of the DOMDocument object you can retrieve the raw
data from an XML file.

Working with XML Document Nodes

1. As you already know, the XML DOM represents a tree-based hierarchy of
nodes. An XML document can contain nodes of different types. For example,
an XML document can include a document node that provides access to the
entire XML document or one or more element nodes representing individual
elements. Some nodes represent comments and processing instructions in the
XML document, and others hold the text content of a tag. To determine the
type of node, use the nodeType property of the IXMLDOMNode object. Node
types are identified by either a text string or a constant.
 For example, the node representing an element can be referred to as NODE_
ELEMENT or 1, while the node representing the comment is named NODE_

1062 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

COMMENT or 8. See the MSXML2 Library in the Object Browser for the
names of other node types.

2. In addition to node types, nodes can have parent, child, and sibling nodes.
The hasChildNodes method lets you determine if a DOMDocument object has
child nodes. There’s also a childNodes property, which simplifies retrieving
a collection of child nodes. Before you start looping through the collection
of child nodes, it’s a good idea to use the length property of the IXMLDOMNode
object to determine how many elements the collection contains.
 Th e following hands-on exercise uses the Shippers.xml fi le to demonstrate
how to work with XML document nodes.

 Hands-On 31.10 Working with XML Document Nodes

1. In the same module of the Visual Basic Editor window where you entered
the ReadXMLDoc procedure in the previous hands-on exercise, enter the
following LearnAboutNodes procedure:
Sub LearnAboutNodes()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlNode As MSXML2.IXMLDOMNode
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.Async = False

 xmldoc.Load (strPath & "Shippers.xml")
 If xmldoc.hasChildNodes Then
 Debug.Print "Number of child Nodes: " & _
 xmldoc.childNodes.length
 For Each xmlNode In xmldoc.childNodes
 Debug.Print "Node name:" & xmlNode.nodeName
 Debug.Print vbTab & "Type:" & _
 xmlNode.nodeTypeString _
 & "(" & xmlNode.nodeType & ")"
 Debug.Print vbTab & "Text: " & xmlNode.Text
 Next xmlNode
 End If
 Set xmldoc = Nothing
End Sub

Notice that this procedure uses the hasChildNodes property of the
DOMDocument object to check whether there are any child nodes in the loaded

XML FEATURES IN ACCESS 2019 1063

XML fi le. If child nodes are found, the length property of the childNodes
collection returns the total number of child nodes found. Next, the procedure
loops through the childNodes collection and retrieves the node name using
the nodeName property of the IXMLDOMNode object.
Th e nodeTypeString property returns the string version of the node type
(for example, processing instruction, element, text, etc.) and the nodeType
property is used to return the enumeration value. Finally, the Text property of
the IXMLDOMNode object retrieves the node text.

2. Position the insertion point anywhere within the code of the LearnAbout-
Nodes procedure and choose Run | Run Sub/UserForm. Running the Learn-
AboutNodes procedure produces the following output:
Number of child Nodes: 2
Node name:xml
 Type:processinginstruction(7)
 Text: version="1.0" encoding="UTF-8"
Node name:dataroot
 Type:element(1)
 Text: 1 Shipping Company A 123 Any Street Memphis TN 99999
USA 2 Shipping Company B 123 Any Street Memphis TN 99999 USA 3
Shipping Company C 123 Any Street Memphis TN 99999 USA

Retrieving Information from Element Nodes

Let’s assume that you want to read the information from only the text element
nodes. Use the getElementsByTagName method of the DOMDocument object to
retrieve an IXMLDOMNodeList object containing all the element nodes. This
method takes one argument specifying the tag name to search for. To search for
all the element nodes, use “*” as the tag to search for.

The following hands-on exercise demonstrates how to obtain data from
XML document element nodes.

 Hands-On 31.11 Retrieving Information from Element Nodes

1. In the Visual Basic Editor Code window, enter the following IterateThruEl-
ements procedure below the last procedure code you entered in Hands-On
31.10:
Sub IterateThruElements()
Dim xmldoc As MSXML2.DOMDocument60
Dim xmlNode As MSXML2.IXMLDOMNode
Dim xmlNodeList As MSXML2.IXMLDOMNodeList
Dim myNode As MSXML2.IXMLDOMNode

1064 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Dim strPath As String

strPath = "C:\VBAAccess2019_XML\"

Set xmldoc = New MSXML2.DOMDocument60
xmldoc.Async = False
xmldoc.Load (strPath & "Shippers.xml")
Set xmlNodeList = xmldoc.getElementsByTagName("*")
For Each xmlNode In xmlNodeList
 For Each myNode In xmlNode.childNodes
 If myNode.nodeType = NODE_TEXT Then
 Debug.Print xmlNode.nodeName & _
 "=" & xmlNode.Text
 End If
 Next myNode
Next xmlNode
Set xmldoc = Nothing
End Sub

Th e IterateTh ruElements procedure retrieves the XML document name and
the corresponding text for all the text elements in the Shippers.xml fi le. Notice
that this procedure uses two For Each…Next loops. Th e fi rst one (the outer
loop) iterates through the entire collection of element nodes. Th e second one
(the inner loop) uses the nodeType property to fi nd only those element nodes
that contain a single text node.

2. Position the insertion point anywhere within the code of the IterateThruEle-
ments procedure and choose Run | Run Sub/UserForm. Running the Iterate-
ThruElements procedure produces the following results:
ID=1
Company=Shipping Company A
Address=123 Any Street
City=Memphis
State_x002F_Province=TN
ZIP_x002F_Postal_x0020_Code=99999
Country_x002F_Region=USA
ID=2
Company=Shipping Company B
Address=123 Any Street
City=Memphis
State_x002F_Province=TN
ZIP_x002F_Postal_x0020_Code=99999
Country_x002F_Region=USA
ID=3
Company=Shipping Company C

XML FEATURES IN ACCESS 2019 1065

Address=123 Any Street
City=Memphis
State_x002F_Province=TN
ZIP_x002F_Postal_x0020_Code=99999
Country_x002F_Region=USA

Retrieving Specific Information from Element Nodes

You can list all the nodes that match a specified criterion by using the select-
Nodes method. The following hands-on exercise prints to the Immediate win-
dow the text for all Company nodes that exist in the Shippers.xml file. The //
Company criterion of the selectNodes method looks for the element named
Company at any level within the tree structure of the nodes.

 Hands-On 31.12 Retrieving Specifi c Information from Element Nodes

1. In the Visual Basic Editor Code window, in the same module where you entered
previous procedures, enter the following SelectNodesByCriteria procedure:
Sub SelectNodesByCriteria()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlNodeList As MSXML2.IXMLDOMNodeList
 Dim myNode As MSXML2.IXMLDOMNode
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.Async = False
 xmldoc.Load (strPath & "Shippers.xml")
 Set xmlNodeList = xmldoc.selectNodes("//Company")
 If Not (xmlNodeList Is Nothing) Then
 For Each myNode In xmlNodeList
 Debug.Print myNode.Text
 If myNode.Text = "Shipping Company A" Then
 myNode.Text = "Airborne Express"
 xmldoc.Save strPath & "Shippers.xml"
 End If
 Next myNode
 End If
 Set xmldoc = Nothing
End Sub

Th e SelectNodesByCriteria procedure creates the IXMLDOMNodeList object
that represents a collection of child nodes. Th e selectNodes method applies
the specifi ed pattern to this node’s context and returns the list of matching

1066 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

nodes as IXMLDOMNodeList. Th e expression used by the selectNodes
method specifi es that all the Company element nodes should be included in
the node list.

You can use the Is Nothing conditional expression to find out whether a
matching element was found in the loaded XML file. If the matching elements
were found in the IXMLDOMNodeList, the procedure iterates through the node
list and prints each element node text to the Immediate window. In addition, if
the node element’s text value is Shipping Company A, the procedure replaces
this value with Airborne Express. The Save method of the DOMDocument is
used to save the changes in the Shippers.xml file.

2. Position the insertion point anywhere within the code of the SelectNodesBy-
Criteria procedure and choose Run | Run Sub/UserForm. Running the Select-
NodesByCriteria procedure produces the following results:
Shipping Company A
Shipping Company B

Shipping Company C

NOTE

When you run this procedure again, you should see the follow-
ing output:
Airborne Express
Shipping Company B
Shipping Company C

Retrieving the First Matching Node

If all you want to do is retrieve the first node that meets the specified criterion,
use the SelectSingleNode method of the DOMDocument object. For this meth-
od’s argument specify the string representing the node you’d like to find. For
example, the following procedure finds the first node that matches the criterion
//Company in the Shippers.xml file:
Sub SelectSingleNode()
 Dim xmldoc As MSXML2.DOMDocument60
 Dim xmlSingleNode As MSXML2.IXMLDOMNode
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"
 Set xmldoc = New MSXML2.DOMDocument60
 xmldoc.Async = False

XML FEATURES IN ACCESS 2019 1067

 xmldoc.Load (strPath & "Shippers.xml")
 Set xmlSingleNode = _
 xmldoc.SelectSingleNode("//Company")
 If xmlSingleNode Is Nothing Then
 Debug.Print "No nodes selected."
 Else
 Debug.Print xmlSingleNode.Text
 End If
 Set xmldoc = Nothing
End Sub

The XML DOM provides a number of other methods that make it possible to
programmatically add or delete elements in the XML document tree structure.
Covering all of the details of the XML DOM Object Model is beyond the scope
of this chapter. When you are ready for more information on this subject, visit
the following website:

http://www.w3.org/DOM/

USING ACTIVEX DATA OBJECTS WITH XML

In Chapter 17, yo u learned how to save ADO Recordsets to disk using the
Advanced Data TableGram (adPersistADTG) format. This section expands
on what you already know about ADO Recordsets by showing you how to use
ADO with XML. Since the release of ADO version 2.5 (in 2000), it is possible
to save all types of recordsets to disk as XML using the Extensible Markup Lan-
guage (adPersistXML) format.

Saving an ADO Recordset as XML to Disk

To save an ADO Recordset to a disk file as XML, use the Save method of the
Recordset object with the adPersistXML constant. Hands-On 31.13 demon-
strates how to create an XML file from ADO.

 Hands-On 31.13 Creating an XML Document from ADO

1. In the Visual Basic Editor window of the Chap31.accdb database, choose
Insert | Module to add a new standard module to the current VBA project.

2. Choose Tools | References to open the References dialog box. Check the box
next to Microsoft ActiveX Object Library 6.1 (or a lower version) and click
OK.

1068 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

3. In the module’s Code window, enter the following SaveRst_ToXMLwithADO
procedure:
Sub SaveRst_ToXMLwithADO()
 Dim rst As ADODB.Recordset
 Dim conn As New ADODB.Connection
 Dim strPath As String
 Dim strDBName As String

 strPath = "C:\VBAAccess2019_XML\"
 strDBName = "Northwind.mdb"
 strConn = "Provider=Microsoft.Jet.OLEDB.4.0;" _
 & "Data Source=" & strPath & strDBName

 ' open a connection to the database
 conn.Open strConn

 ' execute an SQL SELECT statement
 ' against the database
 Set rst = conn.Execute("SELECT * FROM Products")

 ' delete the file if it exists
 On Error Resume Next
 Kill strPath & "Products_AttribCentric.xml"

 ' save the recordset as an XML file
 rst.Save strPath & "Products_AttribCentric.xml", _
 adPersistXML

 ' cleanup
 Set rst = Nothing
 Set conn = Nothing
End Sub

Th is procedure begins by establishing a connection to the sample Northwind
database using the ADO Connection object. Next, it executes an SQL SELECT
statement against the database to retrieve all of the records from the Products
table. Once the records are placed in a recordset, the Save method is called to
store the recordset to a disk fi le using the adPersistXML format. If the disk
fi le already exists, the procedure deletes the existing fi le using the VBA Kill
statement. Th e On Error Resume Next statement bypasses the Kill statement
if the fi le you are going to create does not yet exist.

4. Position the insertion point anywhere within the code of the procedure and
choose Run | Run Sub/UserForm.

XML FEATURES IN ACCESS 2019 1069

5. Open the C:\VBAAccess2019_XML\Products_AttribCentric.xml file cre-
ated by the SaveRst_ToXMLwithADO procedure and examine its content.
Th e Web browser displays the raw XML as shown in Figure 31.26. Notice that
the content of this fi le looks diff erent from other XML fi les you generated in
this chapter. Th e reason for this is that XML that is persisted from ADO Re-
cordsets is created in attribute-centric XML. Microsoft Access supports only
element-centric XML. Th erefore, in order to import to Access an XML fi le
created from ADO, you must fi rst create and apply an XSLT transformation to
the source document. Th e stylesheet you create should convert the attribute-
centric XML to element-centric XML that Access can handle (see Hands-On
31.14).

FIGURE 31.26 Saving a recordset to an XML file with ADO produces an attribute-centric XML file.

Attribute-Centric and Element-Centric XML

In the XML file generated in Hands-On 31.13 (see Figure 31.26) notice below
the XML document’s root tag two child nodes: <s:Schema> and <rs:data>.

The schema node describes the structure of the recordset, while the data
node holds the actual data. Inside the <s:Schema id="RowsetSchema"> and
</s:Schema> tags, ADO places information about each column: field name,

1070 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

position, data type and length, nullability, and whether the column is writable.
Each field is represented by the <s:AttributeType> element. Notice that the
value of the name attribute is the field name. The <s:AttributeType> element
also has a child element, <s:datatype>, which holds information about its data
type (integer, number, string, etc.) and the maximum field length.

Below the schema definition is the actual data. The ADO schema represents
each record using the <z:row> tag. The fields in a record are expressed as at-
tributes of the <z:row> element. Every XML attribute is assigned a value that is
enclosed in a pair of single or double quotation marks; however, if the value of a
field in a record is Null, the attribute on the <z:row> is not created. Notice that
each record is written in the following format:
 <z:row ProductID='1' ProductName='Chai' SupplierID='1'
 CategoryID='1' QuantityPerUnit='10 boxes x 20 bags'
 UnitPrice='18' UnitsInStock='39' UnitsOnOrder='0'
 ReorderLevel='10' Discontinued='False'/>

The preceding code fragment is attribute-centric XML that Access cannot
import. To make the XML file compatible with Access, you should have each
record written out as follows:
<Product>
 <ProductID>1</ProductID>
 <ProductName>Chai</ProductName>
 <SupplierID>1</SupplierID>
 <CategoryID>1</CategoryID>
 <QuantityPerUnit>10 boxes x 20 bags</QuantityPerUnit>
 <UnitPrice>18</UnitPrice>
 <UnitsInStock>39</UnitsInStock>
 <UnitsOnOrder>0</UnitsOnOrder>
 <ReorderLevel>10</ReorderLevel>
 <Discontinued>False</Discontinued>
</Product>

This code fragment represents element-centric XML. Each record is wrapped in
a <Product> tag, and each field is an element under the <Product> tag.

Changing the Type of an XML File

Because it is much easier to work with element-centric XML files (and Micro-
soft Access does not support attribute-centric XML), you must write an XSL
stylesheet to transform an attribute-centric XML file to an element-centric
XML file before you can import an XML file created from an ADO Recordset
to Access.

XML FEATURES IN ACCESS 2019 1071

The following hands-on exercise demonstrates how to write a stylesheet to
convert an XML document from attribute-centric to element-centric.

 Hands-On 31.14 Creating a Stylesheet to Convert Attribute-Centric
XML to Element-Centric XML

1. Open Notepad and type the following stylesheet code:
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:rs="urn:schemas-microsoft-com:rowset">
<xsl:output method="xml" encoding="UTF-8" />

 <xsl:template match="/">

 <!-- root element for the XML output -->
 <Products xmlns:z="#RowsetSchema">

 <xsl:for-each select="/xml/rs:data/z:row">
 <Product>
 <xsl:for-each select="@*">
 <xsl:element name="{name()}">
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 </Product>
 </xsl:for-each>
 </Products>

 </xsl:template>
</xsl:stylesheet>

2. Save this stylesheet as C:\VBAAccess2019_XML\AttribToElem.xsl. Be sure
to include the .xsl extension so the file is not saved as text. We will use this
stylesheet for the transformation in the next hands-on exercise.

Notice in the preceding stylesheet that the “@*” wildcard matches all attribute
nodes. Each time the <z:row> tag is encountered, an element named <Product>
will be created. And for each attribute, the attribute name will be converted to
the element name using the built-in XPath name() function. Expressions in
curly braces are evaluated and converted to strings. The select="." returns the
current value of the attribute being read.

See the next section on how to apply this stylesheet to the XML document.

1072 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Applying an XSL Stylesheet

Now that you’ve created the stylesheet to transform an attribute-centric XML file
into an element-centric file, you can use the transformNodeToObject method
of the DOMDocument object to apply the stylesheet to the Products_AttribCen-
tric.xml file created in Hands-On 31.13. The hands-on exercise that follows
demonstrates how to do this. In addition, the procedure in this exercise will
import the converted ADO XML file to Access.

 Hands-On 31.15 Applying a Stylesheet to an ADO XML Document
and Importing It to Access

1. Enter the following procedure below the procedure code you created in Hands-
On 31.13:
Sub ApplyStyleSheetAndImport()
 Dim myXMLDoc As New MSXML2.DOMDocument60
 Dim myXSLDoc As New MSXML2.DOMDocument60
 Dim newXMLDoc As New MSXML2.DOMDocument60
 Dim strXMLFile As String
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"

 strXMLFile = "Products_AttribCentric.xml"
 myXMLDoc.Async = False
 If myXMLDoc.Load(strPath & strXMLFile) Then
 myXSLDoc.Load strPath & "AttribToElem.xsl"

 ' apply the transformation
 If Not myXSLDoc Is Nothing Then
 myXMLDoc.transformNodeToObject _
 myXSLDoc, newXMLDoc

 ' save the output in a new file
 newXMLDoc.Save strPath & _
 "Products_Converted.xml"

 ' import to Access
 Application.ImportXML _
 strPath & "Products_Converted.xml"
 End If
 End If

Th is procedure begins by loading both the Products_AttribCentric.xml fi le
(created in Hands-On 31.13) and the AttribToElem.xsl stylesheet (created

XML FEATURES IN ACCESS 2019 1073

in Hands-On 31.14) into the DOMDocument object. Next, the stylesheet is
applied to the source fi le by using the transformNodeToObject method. Th is
method is applied to a node in the source XML document’s tree and takes two
arguments. Th e fi rst argument is a stylesheet in the form of a DOMDocument
node. Th e second argument is another DOMDocument node that will hold the
result of the transformation. Next, the result of the transformation is saved to
a fi le (Products_Converted.xml) and the fi le is imported to Access using the
ImportXML method, which was introduced earlier in this chapter.

2. Run the ApplyStyleSheetAndImport procedure.
3. Open the C:\VBAAccess2019_XML\Products_Converted.xml file. Notice

that the Products_Converted.xml file content is now element-centric XML
(see Figure 31.27).

4. In the Access window, locate and open the table named Product.
Th e Product table was created by the ImportXML method in the Apply-
StyleSheetAndImport procedure.

FIGURE 31.27 This element-centric XML file is a result of applying a stylesheet to the attribute-
centric ADO Recordset that was saved to an XML file.

1074 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Transforming Attribute-Centric XML Data into an HTML Table

As you’ve seen in earlier examples, creating an XML file from an ADO Record-
set results in generated output that contains attribute-centric XML. To import
this type of output to Access you had to create a special stylesheet and apply
the transformation to convert the attribute-centric XML to the element-centric
XML that Access supports. But what if you simply want to display the XML file
created from an ADO Recordset in a Web browser? You can create a generic
XSL stylesheet that draws a simple HTML table for the users when they open
the XML attribute-centric file in their browser.

Hands-On 31.16 demonstrates how to create a stylesheet to transform the
attribute-centric XML file that we created in Hands-On 31.13 into HTML.
Hands-On 31.17 performs the transformation by inserting a reference to the
XSL stylesheet into the XML document.

 Hands-On 31.16 Creating a Generic Stylesheet to Transform an
Attribute-Centric XML File into HTML

1. Open Notepad and type the following stylesheet code:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:s='uuid:BDC6E3F0-6DA3-11d1-A2A3-00AA00C14882'
xmlns:dt='uuid:C2F41010-65B3-11d1-A29F-00AA00C14882'
xmlns:rs='urn:schemas-microsoft-com:rowset'
xmlns:z='#RowsetSchema'
xmlns:html="http://www.w3.org/TR/REC-html40">

<xsl:template match="/">
<html>
<head>
<title>Using Stylesheet to convert attribute based
 XML to HTML</title>
<style type="text/css">
.myHSet { font-Family:verdana; font-Size:9px; color:blue; }
.myBSet { font-Family:Garamond; font-Size:8px; }
</style>
</head>
<body>
<table width="100%" border="1">
<xsl:for-each
select="xml/s:Schema/s:ElementType/s:AttributeType">
<th class="myHSet">

XML FEATURES IN ACCESS 2019 1075

<xsl:value-of select="@name" />
</th>
</xsl:for-each>
<xsl:for-each select="xml/rs:data/z:row">
<tr>
<xsl:for-each select="@*">
<td class="myBSet" valign="top">
<xsl:value-of select="."/>
</td>
</xsl:for-each>
</tr>
</xsl:for-each>
</table>
</body>
</html>
</xsl:template>
</xsl:stylesheet>

Th e preceding stylesheet uses the feature known as Cascading Stylesheets
(CSS) to format the HTML table. A style comprises diff erent properties—
bold, italic, font size and font weight, color, etc.—that you want to apply to text
(titles, headers, body, etc.) and assigns a common name to these properties.
Th us, in this stylesheet, two styles are defi ned. A style named myHSet is
applied to the table headings, and a style named myBSet is used for formatting
the text in the body of the table. Using styles is very convenient. If you don’t
like the formatting, you can simply change the style defi nition and get a new
look instantly. Notice that to defi ne a style you must type a period and a class
name. Using letters and numbers, you can defi ne any name for your style class.
Aft er the class name, you need to type the defi nition for the class between curly
braces { }.

<style type="text/css">
 .myHSet { font-Family:Verdana; font-Size:9px; color:blue; }
 .myBSet { font-Family:Garamond; font-Size:8px; }
</style>

Notice that the defi nition of the class includes the name of the property followed
by a colon and the property value. Properties are separated by a semicolon. A
semicolon is also placed before the ending curly brace (}). A style class can be
applied to any HTML tag.
 Th e example stylesheet uses template-based processing. Th e following
instruction defi nes a template for the entire document:

<xsl:template match="/">

1076 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Th e code between the opening and closing tags will be processed for all tags
whose names match the value of the match attribute. In other words, you want
the pattern matching to be applied to the entire document (/).
Next, a loop is used to write out the column headings. To do this, you must
move through all the AttributeType elements of the root element, outputting
the name attribute’s value like this:

<xsl:for-each
select="xml/s:Schema/s:ElementType/s:AttributeType">
 <th class="myHSet">
 <xsl:value-of select="@name" />
 </th>
</xsl:for-each>

An attribute’s name is always preceded by @.
Next, another loop runs through all the <z:row> elements representing actual
records:

<xsl:for-each select="xml/rs:data/z:row">

All the attributes of any <z:row> element are enumerated:

<xsl:for-each select="@*">
 <td class="myBSet" valign="top">
 <xsl:value-of select="." />
 </td>
</xsl:for-each>

Th e string “@*” denotes any attribute. For each attribute found under the
<z:row> element, you need to match the attribute name with its corresponding
value. Notice the period in the <xsl:value-of> tag. Th e period represents the
node that XSLT is currently working with. In summary, the preceding code
fragment tells the XSLT processor to display the value of the current node
during the iteration of the <z:row> attributes.

2. Save the stylesheet as AttribToHTML.xsl. Be sure to include the .xsl extension
so the file is not saved as text.

3. Close Notepad.
4. Open the AttribToHTML.xsl file in the browser to test whether it is well

formed. If you made any errors while typing the stylesheet code, you must
correct the problems before going on to the next section.

5. Close the browser.

XML FEATURES IN ACCESS 2019 1077

Now that you are finished with the stylesheet, you need to link the XML and
XSL files. You can do this by adding a reference to a stylesheet in your XML
document as shown in Hands-On 31.17.

 Hands-On 31.17 Linking the Attribute-Centric XML File with the
Generic Stylesheet and Displaying the Transformed
File in a Web Browser

1. Save the Products_AttribCentric.xml file as Products_AttribCentric_2.xml.
2. Open the Products_AttribCentric_2.xml file with Notepad.
3. Type the following definition in the first line of this file:

<?xml-stylesheet type="text/xsl" href="AttribToHTML.xsl"?>

Th is instruction establishes a reference to the XSL fi le.
4. Save the changes made to the Products_AttribCentric_2.xml file and close

Notepad.
5. Open the Products_AttribCentric_2.xml file in your browser. You should see

the data formatted in a table (see Figure 31.28).

FIGURE 31.28 You can apply a generic stylesheet to an XML document generated by the ADO to
display the data in a simple HTML table.

1078 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

Loading an XML Document in Excel

After saving an ADO Recordset to an XML file on disk (see Hands-On 31.13
earlier in this chapter), you can load it into a desired application and read it as
if it were a database. To gain access to the records saved in the XML file, use
the Open method of the Recordset object and specify the filename, including its
path and the persisted recordset service provider as Provider=MSPersist. The
following hands-on exercise demonstrates how to open a persisted recordset
and write its data to an Excel workbook.

 Hands-On 31.18 From Access to Excel: Loading an XML
File into an Excel Workbook

1. In the Visual Basic Editor window, choose Insert | Module to add a new
standard module to the current VBA project.

2. Choose Tools | References and click the checkbox next to the Microsoft Excel
16.0 Object Library (or its earlier version). Click OK to exit the References
dialog box.

3. In the module’s Code window, enter the following OpenAdoFile procedure:
Sub OpenAdoFile()
 Dim rst As ADODB.Recordset
 Dim objExcel As Excel.Application
 Dim wkb As Excel.Workbook
 Dim wks As Excel.Worksheet
 Dim StartRange As Excel.Range
 Dim h As Integer
 Dim strPath As String

 strPath = "C:\VBAAccess2019_XML\"
 Set rst = New ADODB.Recordset

 ' open your XML file and load it
 rst.Open strPath & "Products_AttribCentric.xml", _
 "Provider=MSPersist"

 ' display the number of records
 MsgBox "There are " & rst.RecordCount & _
 " records in this file."

 Set objExcel = New Excel.Application

 ' create a new Excel workbook
 Set wkb = objExcel.Workbooks.Add

XML FEATURES IN ACCESS 2019 1079

 ' set a reference to the ActiveSheet
 Set wks = wkb.ActiveSheet

 ' make Excel application window visible
 objExcel.Visible = True

 ' copy field names as headings
 ' to the 1st row of the worksheet
 For h = 1 To rst.Fields.Count
 wks.Cells(1, h).Value = rst.Fields(h - 1).Name
 Next

 ' specify the cell range to
 ' receive the data (A2)
 Set StartRange = wks.Cells(2, 1)

 ' copy the records from the
 ' recordset beginning in cell A2
 StartRange.CopyFromRecordset rst

 ' autofit the columns to make the data fit
 wks.Range("A1").CurrentRegion.Select
 wks.Columns.AutoFit

 ' save the workbook
 wkb.SaveAs strPath & "ExcelReport.xls"

 Set objExcel = Nothing
 Set rst = Nothing
End Sub

Th is procedure is well commented, so we will skip its analysis and proceed to
the next step.

4. Run the OpenAdoFile procedure.
When the procedure is complete, the Excel application window should be
visible with the ExcelReport.xls workbook fi le displaying products retrieved
from the XML fi le (see Figure 31.29).

5. Close the Excel workbook and exit Excel.

1080 MICROSOFT ACCESS 2019 PROGRAMMING BY EXAMPLE WITH VBA, XML, AND ASP

FIGURE 31.29 An ADO Recordset persisted to an XML file is now opened in Excel.

SUMMARY

This chapter has shown you that Microsoft Access 2019 makes it easy to work
with XML files. Using a combination of Access built-in commands and VBA
programming code, you can export Access data to an XML file and import an
XML file and display the file as an Access table.

You learned what XML is and how it is structured. After working through
the examples in this chapter, it’s easy to see that XML supplies you with numer-
ous ways to accomplish a specific task. Because XML is stored in plain text files,
it can be read by many types of applications, independent of the operating sys-
tem or hardware. You learned how to transform data from XML to HTML and
from one XML format to another. You explored the ADO Recordset methods
suitable for working with XML programmatically and were introduced to XSL
stylesheets and XSLT transformations.

All of the methods and techniques you’ve studied here will take time to sink
in. XML is not like VBA. It is not very independent and needs many support-
ing technologies to assist it in its work. So don’t despair if you don’t understand
something right away. Learning XML requires learning many other new con-
cepts (like XSLT, XPath, schemas, etc.) at the same time. Take XML step by step
by experimenting with it. The time that you invest in studying this technology
will not be wasted. XML has been around for quite a while and is here to stay.

XML FEATURES IN ACCESS 2019 1081

The three main reasons why you should really consider using XML are as fol-
lows:

 ● XML separates content from presentation.
If you are planning to design Web pages, you do not need to make changes
to your HTML fi les when the data changes. Because the data is kept in
separate fi les, it’s easy to make modifi cations.

 ● XML is perfect for sharing and exchanging data.
You no longer must worry about whether your data needs to be processed
by a system that’s not compatible with yours. Because all systems can
work with text fi les (and XML documents are simply text fi les), you can
share and exchange your data without a headache.

 ● XML can be used as a database.
You no longer need a database system to have a database.

This chapter concludes the final part of this book, which focused on working
with an Access database over the Internet by writing Classic Active Server Pages
and XML files.

A

AbsolutePosition property, 369–370, 398,
399, 409

.accdb file format, 241, 243, 246, 259, 320, 323,
325, 332, 561, 855, 887

.accde file format, 243, 279

.accdr file format, 244

.accdt file format, 244, 884, 934–938
Access 2007 database format (ACCDB), 70
Access 2016 Ribbon interface, 820–823

contextual tab, 822
Create tab, 820
dialog box launcher button, 822
Margins button, 821
More Forms button, 820

Access Connectivity Engine (ACE), 242–243
Access form(s)

attachments control, 693, 701–705
built in formatting tools, using, 699–701

Th emes button, 699
creating, 694–696

Datasheet form, 695
More Forms button, 695
Multiple Items form, 695
Navigation button, 694
Split Form, 694

grouping controls using layouts, 696–697
Anchoring button,
Form Layout Tools,

images in, –
rich text support in, 698

Access report(s)
creating, 764
events

Activate, 767–768
Close, 767
Deactivate, 768
Error, 770–771
NoData, 768–769
Open, 764–766
Page, 769–772

Group, Sort, and Total pane, 781
OpenArgs property, 783–786
report section events, 772–779

Format, 772–775

Print, 775–779
Retreat, 779

Report view, 779–781
saving reports in .pdf or .xps file format,

781–783
sorting and grouping data, 781–781

Access templates, 933–937
.accdt file format, 934–938
custom blank database template, creating,

933–934
Access versions and file formats in Access

2007-2016, 243–246
Access Web app, 922
Access Web Database, 922
AcDataErrAdded, 751
AcDataErrContinue, 718, 731, 751, 771
AcDataErrContinue, 718
AcDataErrDisplay, 731, 751, 771
AcDataErrDisplay, 731, 751, 771
ACE. See Access Connectivity Engine (ACE)
Action Catalog in Access 2019, 889
Action queries, 479, 480, 484, 486, 685, 690,

1004
Activate event, 720–721, 767–768
Active procedure call, 223
Active Server Pages (ASP), 256, 939, 941–1004

adding data to table, 987–992
ASP object model, 949–950
ASP page, creating, 944–949
ASP script, running first, 960–962
classic, 941–944

ASP, 943
ASP.NET, 943–944
Dynamic HTML (DHTML), 942
HyperText Markup Language

(HTML), 942
JavaScript, 942–943
JavaScript libraries, 943
VBScript, 942

configuring ASP Properties, 957–958
deleting record, 996–1001
drop-down listbox, database lookup using,

977–981
friendly HTTP error messages, turning off,

958–960

INDEX

1084 INDEX

Internet Information Services (IIS), 950–954
modifying record, 992–996
multiple-selection listbox, database lookup

using, 981–987
retrieving records, 962–976

breaking up recordset, 964–973
GetRows method, 973–976

summary page, creating, 1001–1003
virtual directory, creating, 954–956

ActiveConnection parameter, 379
ActiveConnection property, 342
ActiveX controls, 541, 547, 887, 980
ActiveX® Data Objects (ADO), 239, 250

ADO Classic versus ADO.NET, 252–253
common data providers, 259
components of, 251
difference between ADO and DAO, 429

AdAsyncExecute, 386
AdAsyncFetch, 387
AdAsyncFetchNonBlocking, 387
AdCmdFile, 384
AdCmdStoredProc, 384
AdCmdTable, 384, 385, 464, 466,
AdCmdTableDirect, 385, 386,
AdCmdText, 290, 387
AdCmdUnknown, 290, 385
Add method, 437, 440, 550
ADD USER statement, 666,
Add Watch dialog box, 216–218
AddNew method, 413, 417, 419, 425, 427,

502, 754
.ade file format, 245
AdExecuteNoRecords, 387
AdExecuteRecord, 387
AdExecuteStream, 387
AdKeyForeign, 361,
AdLockBatchOptimistic, 382, 506
AdLockOptimistic, 288, 342, 382
AdLockPessimistic, 383
AdLockReadOnly, 290, 383, 393, 466, 979, 994
ADO. See ActiveX® Data Objects (ADO)
ADO classic vs. ADO.NET, 252
ADO Recordsets, 378–412

asynchronous fetching, 386–388
bookmarks, using, 407–409

bookmarks to filter recordset, using,
410–411

cursor location, 383–384
cursor types, 380–381
cursors, 383–384
finding record based on multiple conditions,

406–407
finding record position, 398–399
finding records using find

 method, 402–404
finding records using seek

method, 404–406
GetRows method to fill the

recordset, using, 411–412
lock types, 381–383
moving around in Recordset, 397–398
opening Recordset, 388–397

based on criteria, 395–396
based on SQL Statement, 394–395
based on table or query, 389–394
directly, 396–397

Options parameter, 384–388
reading data from field, 399–400
returning Recordset as string, 400–402

ADODB (ActiveX Data Objects), 251
AdOpenDynamic, 380, 393, 466
AdOpenForwardOnly, 380, 466, 979, 994
AdOpenKeyset,342, 380, 381, 408
AdOpenStatic, 288, 381, 393, 466, 506,

966, 998
AdOptionUnspecified, 388
ADOX (ADO Extensions for DDL and

Security), 251
ADOX Object Model, 310, 460
.adp file format, 244–245
AdSchemaColumns, 344
AdSchemaProviderTypes, 346
AdSortAscending, 356
AdSortDescending, 356
Advanced ADO/DAO features

cloning recordset, 523–529
creating custom recordset (ADO), 502–504
data shaping, 529–552

creating shaped recordset (ADO),
537–540

INDEX 1085

with other databases, 533
shaped recordsets with

grandchildren, 541
shaped recordsets with multiple children

(ADO), 537–540
working with, 532–537
writing complex SHAPE statement, 537
writing simple SHAPE statement, 530–531

disconnected recordset (ADO), 505–507
displaying current and previous records by

using Clone method, 524–529
fabricating recordset, 501–504
filling combo box with disconnected

recordset (ADO), 509–511
hierarchical recordsets

creating form with TreeView control,
541–543

writing event procedure for form load
event, 544–552

saving records to disk (ADO), 507–523
taking persisted data on road

creating unbound Access form to view
and modify data, 512–513

saving recordset to disk, 511–512
viewing and editing data offl ine, 519
writing procedures to control form and

data, 513–519
transaction processing, 553–560

creating transaction with ADO/DAO,
556–560

Advanced event programming
declaring and raising events, 803–808
responding to control events, 799–803
sinking events in standalone class module,

788–789
cRecordLogger class, creating, 790–794
cRecordLogger custom class with another

form, 797–798
fi le preparation, 789–790
frmCustomers form, 789
instance of custom class, creating,

794–795
MyCust.txt fi le, 796
Name property, 799, 804, 805
Object drop-down list, 791, 807

Procedure drop-down list, 791
testing cRecordLogger custom class,

795–797
writing event procedure code, 798–799

AfterDelConfirm event, 719–720
AfterInsert event, 712
AfterUpdate event, 713–714
AfterUpdate event (control), 749–751
ALL keyword, 456
Alphabetic tab, 30
ALTER COLUMN clause, 620
ALTER DATABASE PASSWORD statement, 659,

661, 673
ALTER TABLE statement, 619, 620–625
ALTER USER statement, 664
American National Standards Institute

(ANSI), 609
AND operator, 114, 115
ANSI. See American National Standards

Institute (ANSI)
ANSI SQL-89, 609
ANSI SQL-92 or SQL-2, 609, 610
ANSI SQL query modes, 610

setting, 610–612
Append method, 309, 311, 316, 317, 340, 354,

361, 502, 504, 575, 578
Append Only memo fields, 325–331
Append queries, 480–483
Application-defined property, 308
ApplyFilter event, 733–735
Arguments, 4, 88

optional, 89–91
passing arguments by reference and value,

88–89
Array function, 161–165
Array variable, 149
Array(s), 146–152

Array function, 150–151
Debug button, 166, 167
declaring, 148–149
dimensioning, 161
dynamic, 159–161
Erase function, 163–164
errors in, 166–168
fixed-dimension, 160

1086 INDEX

functions, 161–165
initial value of array element, 157
initializing and filling, 150

Array function, 150–151
For…Next loop, 151–152
individual assignment statements, 150

IsArray function, 162–163
LBound and UBound functions, 164–165
looping statements, 154–157

For Each…Next statement, 154–155
For…Next statement, 154, 157
loops in real life and, 156–157
passing elements of array to another

procedure, 155–156
one-dimensional array, 146, 149, 150,

152–154
Option Base 1 statement, 146, 149
parameter, 168–169
passing arrays between procedures, 157
passing arrays to function procedures, 169–170
range of, 154
sorting, 170–172
static, 159–161
two-dimensional array, 146–148, 158–159
upper and lower bounds, 149–150

ArrayString, 330
ASP.NET, 943
Assert statement, 214–216
Asterisk (✳), 375
Asynchronous record fetching, 386
Attachment data type, 313, 323, 324
Attachment fields, 323–325
Attachments control, in Access forms, 693–706

Attachments dialog box, 701
Current File text box, 702
Forward and Backward buttons, 70
AttachmentCurrent event procedure, 703
unbound text box, 698

Attribute-centric XML, 1071
AutoExec macro, 887–891

contents of, 888
macro actions, arguments, and program

flow, 889–891
OpenForm, 890

SetDisplayedCategories, 890
AutoNumber, 346–347

B

Backstage View, 873–878
customizing, 878
development, 873
hiding buttons and tabs, 878

BeforeDelConfirm event, 718–719
BeforeInsert event, 711
BeforeUpdate event, 712–713
BeforeUpdate event (control), 748–749
Beginning of file (BOF), 393
BeginTrans method, 554, 556, 559
BETWEEN…AND operator, 455
Bookmark property, 367, 375, 376, 407, 408
Bookmarks, 407–408
Boolean expressions, 110
Break mode, 205
Breakpoints, 206–207
Bubble sort, 171
Built-in functions, 43, 44, 91–92
ByRef keyword, 89
ByVal keyword, 88, 89

C

Calculated field, 318–320
Call Stack dialog box, 223
Callback procedures, 827, 830, 838
CancelBatch method, 523
CancelUpdate method, 425
Cascading Stylesheets (CSS), 1075
Case Else clause, 123
Catalog, 310
Categorized tab, 30
Category argument, 815
CDate function, 118, 331
ChangePassword method, 561, 575, 601
CHECK constraints, 634–640
Class, 173, 178–179
Class methods, 185
Class modules, 12–13, 173, 178–188

INDEX 1087

form, 12–13
naming, 180
report, 12–13
standalone, 12

Classic ASP, 941–944
Click event, 15, 515, 518, 707, 722–723
Click event (control), 752–758
Client-side cursor (adUseClient), 383
Client-side script, 943, 947
Clone method, 523, 524, 560
Cloning recordset, 523–529
Close event, 767
Close method, 260, 268, 283, 389, 437, 444
Code window, 213

activate, 32
splitting, 33

Collection(s), 173, 174. See also Specific
collections

custom (See Custom collection)
of objects, 174–176
reindexing, 178

ColumnHistory method, 328, 329, 330
Combo box, 15, 862–863
Command Button Wizard, 909
Command object, 379, 385, 389, 460
CommandBars object and Ribbon, 870–871
CommandText property, 387, 462, 464, 466
CommandType property, 385, 464
CommitTrans method, 554, 556
CompactDatabase method, 276, 278, 293,

294–295,
Compacting database

CompactDatabase (DBEngine object), 300
CompactDatabase (Microsoft Jet and

Replication Objects (JRO)
Library), 299

CompactRepair (Application object), 300
Concatenation, 58
Conditional expression, 109, 110

If…Then statement, 110–111
If…Then…else statement, 116–118
If…Then…Elseif statement, 118–119
logical operators, 109–110
nested if…then statements, 119–122
relational operators, 110

Select Case statement, 123–129
specifying multiple expressions in Case

clause, 128
specifying range of values in Case clause,

126–128
using Is with Case clause, 125–126

Conditional statements, 109
Connection strings, 254–255

ODBC
creating and using DSN-less ODBC

connections, 261–262
creating and using ODBC DSN

connections, 255–257
data sources, 262

OLE DB, 262–263
via data link file, 263–266

Constants in VBA procedures, 80–82
declaring, 80
defining, 108
intrinsic, 81–82
Private constant, 80
Public constant, 80

CONSTRAINT clause, 623, 624, 625, 626
Constraints, 607, 611, 612, 618, 623, 624, 633

CHECK, 634–640
FOREIGN KEY, 633, 640
NOT NULL, 633
PRIMARY KEY, 633, 634
UNIQUE, 633

Container objects, 268
CopyFromRecordset method, 433, 434, 436,

437
Copying database

with DAO, 294–295
with FileSystemObject, 295–296

Counter, 137
CREATE INDEX statement, 649
CREATE PROCEDURE (or CREATE PROC)

statement, 681
CREATE TABLE statement, 612, 613, 619, 640,

647, 651
CREATE USER statement, 662
CREATE VIEW statement, 676
CreateField method, 304, 306, 317, 352, 357
CreateIndex method, 352, 357

1088 INDEX

CreateObject function, 283, 294, 402,
436, 443

CreateProperty method, 308
CreateQueryDef method, 458
CreateReport method, 764
CreateTableDef method, 305, 340
CreateTextFile method, 283, 402, 442, 443
Current event, 709–710
CurrentDb method, 282, 305
CurrentView property names and values, 768
Cursor, 380
CursorLocation parameter, 383–384
CursorType parameter, 380
CursorType property, 342
Custom application, running, 198–199
Custom collection

adding objects to, 176
creating, 177
declaring, 176
removing objects from, 178

Custom data entry form, 746
Custom objects, 178–179

creating class methods, 178–179
creating class module, 179
defining properties for class, 181–182
event procedures in class module, 187–188
instance of class, creating, 186
naming class module, 180–181
variable declarations, 180

D

DAO. See Data Access Objects (DAO)
DAO Recordsets, 365–378

finding nth record in Snapshot, 377–378
finding records in Dynasets or Snapshots,

375–377
finding records in Table-type recordset,

374–375
moving between records, 372–373
navigating through recordset, 367
opening Snapshot and counting records,

369–371
opening Table-, Dynaset-, and Snapshot-type

Recordsets, 368–369

retrieving contents of specific field, 371–372
types, 366

Data Access Objects (DAO), 488
Data Access technologies

Access versions and formats, 243–244
fi le formats supported in Access

2007-2019, 243–246
connection to current Access database,

282–283
copying database

with DAO, 293–296
with FileSystemObject, 295–296

creating a reference to ADO library, 252–253
creating new Access database

with ADO, 292–293
with DAO, 291–292

database engines: JET/ACE, 242–243
library references, 246–248
Microsoft Access databases, opening

in read-only mode with ADO, 273
in read-only mode with DAO, 273–274
in read/write mode with ADO, 270–272
in read/write mode with DAO, 268
secured with password, 274–275
with user-level security, 279–280

Object libraries, 248–252
Microsoft Access 16.0 Object Library, 249
Microsoft ActiveX Data Objects 6.1

Library (ADO), 250–251
Microsoft DAO 3.6 Object Library,

249–250
Microsoft Offi ce 16.0 Access Database

Engine Object Library, 249
VBA object library, 248

opening databases, spreadsheets
and text files

connecting to SQL server database,
283–284

opening Microsoft Excel workbook,
284–289

opening text fi le using ADO, 289–290
Data Definition Language (DDL), 480, 609, 631,

673
Data Definition Language (DDL) queries, 480
Data Definition Query window, 643–645

INDEX 1089

Data events, 708–720
AfterDelConfirm, 719–720
AfterInsert, 712
AfterUpdate, 713–714
BeforeDelConfirm, 718–719
BeforeInsert, 711
BeforeUpdate, 712–713
Current, 709–710
Delete, 717–718
Dirty, 716
OnUndo, 716–717

Data Link Properties dialog box, 263, 264
Advanced tab, 264
Connection tab, 264
Provider tab, 264

Data macros, 909–925
copying, 925
creating, 910–917
event, 899
events, 902
execution errors, 923–925
named data macro, 910, 918–920
ReturnVars, using, 921–923
using, 909–910

Data Manipulation Language (DML), 453, 611,
635, 682, 690

Data members, 180
Data providers, 250, 259
Data shaping, 529–552

creating shaped recordset (ADO),
533–536

with other databases, 533
shaped recordsets with grandchildren, 537
shaped recordsets with multiple children

(ADO), 537–540
working with, 532–537
writing complex SHAPE statement, 537
writing simple SHAPE statement, 530–531

Data type(s), 51–53
ADO vs. Microsoft Access data types,

312–313
converting, 105–107
listing, 343–344
user-defined, 53
variant, 53

Database engines
JET/ACE, 242–243
versions, 242

Database errors
On Error GoTo 0, 297
On Error GoTo Label, 297
On Error Resume Next, 297
VBA Err object and ADO Errors collection,

298–299
Database security

adding users to groups, 666–667
changing user password, 664–665
creating group account, 665–666
creating user account, 662–664
deleting group account, 673
deleting user account, 668–669
granting permissions for object, 669–671
removing database password, 661–662
removing user account from group, 668
revoking security permissions, 671–672
setting database password, 659–661

Database security, implementing
encrypting secured MDB database, 604–606
opening secured MDB database, 572–575
securing Access MDB database, 566–572
share-level security, 562
user and group accounts (ADO)

creating, 575–579
deleting, 579–580
listing, 580–582
listing users in groups, 582–584

user and group permissions
changing user password, 601–603
checking permissions for objects,

595–598
object owner, retrieving name of, 585–587
setting database password using

CompactDatabase method,
598–599

setting database password using
NewPassword method, 599–600

setting permissions for containers,
592–595

setting permissions for database,
590–592

1090 INDEX

setting permissions for object, 587–590
user-level security, 562–563
workgroup information file, 279, 563–565

Access versions, 563
creating and joining, 566–572

DblClick event, 723, 737, 758
DblClick event (control), 758–761
DblClick (Form section event), 737–738
DDL. See Data Definition Language (DDL)
Deactivate event, 721, 768
Debug button, 166
Debugging, 202
Default Value property, 307, 628
Delete event, 717–718
Delete method, 314, 334, 429–431,

495–496, 579
Delete query, 483–486
DelimFound function, 742, 743
Dirty event, 716
DISALLOW NULL option, 652, 654
Disconnected recordsets, 505–507

creating, 505–506
DISTINCT keyword, 456, 457
DISTINCTROW keyword, 457
Document Object Model (DOM), 1006,

1047, 1058
Document Type Definition (DTD), 1006
Do…While statement, 132–135
DROP COLUMN clause, 622, 625
DROP CONSTRAINT clause, 625
Drop-down listbox, database lookup using, 977–981
DROP GROUP statement, 673
DROP INDEX statement, 657
DROP PROCEDURE (or DROP PROC)

statement, 688
DROP USER statement, 667
DROP VIEW statement, 679
DSN (Data Source Name), 255–256

File, 256
System, 256
User, 256

Dynamic array, 159–161
Dynamic HTML (DHTML), 942
Dynamic link library (DLL), 242, 1006
Dynamic-type Recordset, 367

Dynaset-type Recordset, 367, 372, 375, 415,
423, 429, 448

E

Edit method, 419, 423,
EditModeEnum constants, 425
Element-centric XML, 1069–1070
ElseIf clause, 118
Embedded macros

copying, 903–909
creating, 902 –903

End of file (EOF), 393
Enter event (control), 746–748
Erase function, 163–164
Err object, 230–234
Error, mistake and, 230
Error event, 770–772

DataErr, 770
Response, 771

Error events, 730–732
DataErr, 731
Response, 731

Error handler, 215
Error trapping, 231–237

Err object, using, 230–231
On Error statement, 230,
procedure testing, 234–236
setting options in visual basic project, 236–237

Event data macros, 910
Event-driven programming, advanced

concepts in
declaring and raising events, 803–808
responding to control events, 799–893
sinking events in standalone class module,

788–798
creating cRecordLogger class, 790–794
creating instance of custom class,

794–795
fi le preparation, 789–790
testing cRecordLogger custom class,

795–797
using cRecordLogger custom class with

another form, 797–798
writing event procedure code, 798–799

INDEX 1091

Event handler. See Event procedures
Event procedures, 4, 6, 13, 14–21, 25, 71, 174,

190, 515, 518, 528, 691, 703
compiling, 21
writing, 15–16

Event properties, 14, 707
Event sink, 788
Event source, 788
Event statement, 788, 803
Event trapping, 15, 708
Event(s), 14, 15, 174, 187, 703, 707, 708

AfterUpdate (control), 749–751
BeforeUpdate (control), 748–749
Click (control), 752–758
data, 708–720

Aft erDelConfi rm, 719–720
Aft erInsert, 712
Aft erUpdate, 713–715
BeforeDelConfi rm, 718–719
BeforeInsert, 711
BeforeUpdate, 712–713
Current, 709–710
Delete, 717–718
Dirty, 716
OnUndo, 716–717

DblClick (control), 758–761
Enter (control), 746–748
error, 730–731

DataErr, 731
Response, 731

filter, 732–733
ApplyFilter, 733–735
Filter, –732-733

focus, 720–722
Activate, 721–722
Deactivate, 721–722
GotFocus, 722
LostFocus, 722

form section, 737–738
DblClick, 737–738

keyboard, 726–730
KeyDown, 726–727
KeyPress, 728–729
KeyUp, 729–730

mouse, 722–726

Click, 722–723
DblClick, 723
MouseDown, 723–725
MouseMove, 725
MouseUp, 725
MouseWheel, 725–726

NotInList (control), 751–752
OpenArgs property, 739–743
sequence of, 708
timing, 735–737

Timer, 736–737
Exclamation point (!), 425, 456
Execute method, 313, 386–390, 394, 460, 464,

474, 476, 478, 479, 481–484, 559–560,
612, 616, 637, 676, 680–682, 686, 963

ExecuteMso method, 870
Exiting loops early, 141–142
Exiting procedures, 142
Explicit variable declaration, 54

advantages of, 55
ExportNavigationPane method, 817
ExportXML method, 1039

arguments of, 1039–1041
Expression Builder, 895–898
Extensible Markup Language (XML), 939

F

Fabricating recordset, 501–504
Fast commands, 873
Field Properties Lookup tab, 323
FileDateTime function, 504
FileFormat parameter, 437
FileLen function, 504
Filter events, 732–735

ApplyFilter, 733–735
Filter, 732–733

Filter property, 446–449
Find methods, 288, 373, 402–404,

423, 449, 999
Fixed-dimension arrays, 160
Focus events, 720–722

Activate, 720–721
Deactivate, 721–722
GotFocus, 722

1092 INDEX

LostFocus, 722
For Each…Next loop statement, 140–141,

154–155, 175, 269, 287, 336, 359, 493,
948, 975, 985, 990, 1064

Foreign key, 361
FOREIGN KEY constraint, 640
Form module, 12, 808
Form section event, 737–738

DblClick, 737 738
Format event (Report Section Event), 772–775

Cancel, 772
effect on report sections, 772
FormatCount, 772

For…Next loop statement, 151–152, 154,
Forward-only-type Recordset, 367
Friendly HTTP error messages, turning off,

958–960
Function procedures, 84–85

methods of running
from Immediate window, 85
from subroutine, 85

passing arguments to, 88–89
specifying data types, 86–87

Function procedures (functions), 5–6
Functions, 83–107

built-in functions, 91–92
InputBox function, 102–105
IsMissing function, 91
MsgBox function, 92–101

formatting, 93–97
MsgBox buttons argument settings,

96–97
prompt argument, 93
returning values from, 101–102
syntax of, 93
using functions with arguments, 99–100

passing arguments to function procedures
by reference and value, 88–89
specifying data types, 86–87
using optional arguments, 89–91

running function procedure
from Immediate window, 84–85
from subroutine, 85–86

understanding procedures, 84–85

G

Galleries, 821
GetEnabledMso method, 870
GetImageMso method, 870
GetObject function, 436
GetObjectOwner method, 584
GetPermissions method, 595
GetRows method, 411–412, 973–976
GetString method, 400, 412, 438, 439, 442,

443, 464, 466, 492, 507
Global variable, 774
Global variables form, 70
GotFocus event, 722
GRANT statement, 669
Group, 872
Group argument, 815
GUIDs, 588

H

HTML tags, 942
HyperText Markup Language (HTML), 942
Hyphen (-), 456

I

If block instructions, 116
If…Then statement, 110–112

formats of, 113–114
multiline, 112–114
with AND operator, 115–116

If…Then…else statement, 116–118
If…Then…Elseif statement, 118–119

ElseIf clause, 119
IGNORE NULL option, 653, 655–657
IgnoreNulls property, 352
Immediate window

in break mode, 212–213
Implicit variable declaration, 55

disadvantages of, 55
ImportNavigationPane method, 817
ImportXML method, 1039
ImportXML method, arguments of, 1057–1058
IN operator, 455
Indexed Sequential Access Method (ISAM), 242

INDEX 1093

Index(es), 349, 647
adding index to existing table, 649–650
adding multiple-field index to existing table

(DAO), 356–358
creating indexed with restrictions,

653–654
DISALLOW NULL option, 652,
IGNORE NULL option, 653, 655–656
PRIMARY option, 652,

creating indexes using ADO, 350–352
creating indexes using DAO, 352–354
creating primary key, 349
creating single field index using ADO,

354–356
creating table with primary key,

651–652
creating tables with indexes, 647–649
deleting indexes, 657
deleting table indexes (ADO), 359–361
listing indexes in table (ADO), 358–359

IndexNulls property, 355
Infinite loop, 135
Informal (implicit) variables, 56
InputBox function, 103–105
InputBox method, 378, 470
Instance, 174, 179
InStr function, 331,422, 743, 793
Internet Information Services (IIS), 942, 949,

950–954
Intrinsic constants, 81–82
IRibbonControl properties, 831–834
IRibbonUI object, 866–869, 872

Invalidate method, 869
InvalidateControl method, 866, 868

IS NULL operator, 455
IsArray function, 162–163
IsMissing function, 91

J

JavaScript, 942–943
JavaScript libraries, 943
Jet. See Microsoft Jet (Joint Engine Technology

(JET)), 242
JRO (Jet and Replication Objects), 251

K

Keyboard events, 726–730
KeyDown, 726–727
KeyPress, 728–729
KeyUp, 729–730

KeyDown event, 726–727
KeyCode, 729
Shift, 729

KeyPress event, 728–729
KeyUp event, 729–730

KeyCode, 729
Shift, 729

Keywords, 4

L

.laccdb file format, 246
Layout view, 696, 699, 763, 768, 781
Layouts, 693
LBound function, 164–165
.ldb file format, 245
Left function, 331
Len function, 331
Libraries, 246
Library, 43
Library references, 246–248

default object libraries, 246
missing library, 247
References dialog box, 248

Lifetime of variables, 70
LIKE operator, 455
Link_ExcelSheet procedure, 342
List Properties/Methods, 19
Local variables. See Procedure-level (local)

variables
Locals Window, 221–223
Location index, 357
LockType property, 342
LockType property, 382–383
Logic errors, 205
Logical operators, 109–110
Loop, 131

infinite, 135
Looping, 131

1094 INDEX

Looping statements
Do…Until statement, 135–136
Do…While statement, 132–135
For Each…Next statement, 140–141
exiting loops early, 141–142
For…Next statement, 137–140
infinite loops, avoiding, 135
nested loops, 143–144
paired statements, 140
variables and loops, 136

LostFocus event, 722

M

Macro security (Access 2019), 884–887
Macro(s), 883–938

Access 2019 macro security, 884–887
AutoExec macro, 887–892

contents of, 888
macro actions, arguments, and program

fl ow, 889–890
OpenForm, 890
SetDisplayedCategories, 890

converting macros to VBA code, 930–931
data macros, 909–910
embedded macros, creating, 902–903
error handling in, 925–926
generating macros using Command Button

Wizard, 909
Info tab, 873
Macro Settings options, 885
Microsoft Office Security Options dialog

box, 886
standalone macros, creating, 892–895
submacros, creating, 900–901
temporary variables in, 928–929
VBA and, 930

Make-Table query, 474–476
.mdb file format, 244, 254, 259, 279, 390, 561
.mde file format, 244
.mdw file format, 245
Method, 185
Microsoft Access 16.0 Object Library, 246
Microsoft Access database

compacting database, 299–302

CompactDatabase (DBEngine object),
300

CompactDatabase (Microsoft Jet and
Replication Objects (JRO)
Library), 300, 301

CompactRepair (Application object), 300
connection to current Access database,

282–283
copying database

with DAO, 294–295
with FileSystemObject, 295

creating new Access database
with ADO, 292–293
with DAO, 291–292

opening database
in read-only mode with ADO, 273
in read-only mode with DAO, 273
in read/write mode with ADO, 270–273
in read/write mode with DAO, 268–270
secured with password, 274–276
with user-level security, 279–281

Microsoft Access database field
creating append only memo fields with

DAO, 325–331
creating attachment fields with DAO,

323–325
creating calculated fields with DAO, 319–320
creating multivalue lookup fields with DAO,

320–322
creating rich text memo fields with DAO,

332–334
listing fields, 338
removing field from table (ADO/DAO),

334–336
retrieving field properties, 336–337

Microsoft Access database table
adding new fields to existing tables (ADO/

DAO), 316–318
AutoNumber, changing value of, 346–347
copying table (ADO), 313–314
creating table (ADO/DAO), 304–313
deleting table (ADO), 314–315
linking Access table, 339–340
linking dBASE table, 340
linking Excel worksheet, 340–341

INDEX 1095

listing database tables, 343–344
listing tables, 344–345
retrieving table properties, 336–337

Microsoft Access Jet/ACE database engine,
242–243

opening databases, spreadsheets
and text files, 283–290

connecting to SQL server database,
283–284

opening Microsoft Excel workbook,
284–189

opening text fi le using ADO, 289–290
Microsoft Access tables

indexes
adding multiple-fi eld index to existing

table (DAO), 356–358
creating indexes using ADO, 350–352
creating indexes using DAO, 352–354
creating primary key, 350–352
creating single fi eld index using ADO,

361–363
deleting table indexes (ADO), 359–361
listing indexes in table (ADO), 358–359

primary keys, 350
table relationships, using ADO

one-to-many relationship, 362–363
parent-child relationship, 361

Microsoft ActiveX Data Objects 6.1 Library
(ADO), 250–252

ADO classic vs. ADO.NET, 252
components of, 251
creating reference to, 252–253
data providers, 259–260

Microsoft DAO 3.6 Object Library, 249–250
Errors collection, 249
Parameters collection, 250
Properties collection, 250
Recordsets collection, 250
Workspaces collection, 249

Microsoft Jet (Joint Engine Technology
(JET)), 242

Microsoft Jet or Jet database engine, 242–243
Microsoft Office 16.0 Access Database Engine

Object Library, 249
Microsoft Visual Basic Scripting Edition

(VBScript), 252, 941
Microsoft XML Core Services (MSXML), 1006
Mid function, 331, 1029
Module-level variables, 66–67
Module(s), 4, 174

class, 12–13, 174
form, 12–13, 174
renaming, 36
report, 12–13
standalone, 12
standard, 7–12

executing procedures and functions, 10–12
writing procedures in, 7–9

Mouse events, 722–726
Click, 722–723
DblClick, 723
MouseDown, 723–724
MouseMove, 725
MouseUp, 725
MouseWheel, 725–726

MouseDown event, 723–724
Button, 723
Shift, 724
X, 724
Y, 724

MouseMove event, 725
MouseUp event, 725
MouseWheel event, 725–726

Count, 725
Page, 725

Move methods, 372, 373, 399
MoveFirst method, 378, 417
MoveLast method, , 366, 369, 371, 378, 399,

403, 470
MoveNext method, 366, 393, 429, 964
MovePrevious method, 366–367
MsgBox, 4
MsgBox function, 62, 92–102

formatting, 93–96
MsgBox buttons argument settings, 96–97
prompt argument, 93
returning values from, 101–102
syntax of, 92
using functions with arguments, 99–101
using parentheses, 102

1096 INDEX

Multiline If…Then statement, 112–114
Multiple-selection listbox, database lookup

using, 981–987
Multivalue lookup fields, 320–323

adding values to, 420–423
creating, 321–323
data types, 321

N

Name property, 36, 310
Named data macros, 918

creating, 918–920
editing, 920
running, 921

Namespace, 1012
NavigateTo method, 815
Navigating with bookmarks, 227–228
Navigation pane, 810–814

in Access 2019, 810
adding custom group, 812–813
assigning objects to custom groups in,

813–814
with custom groupings, 814
customizing, 814–820

controlling display of database objects,
815–816

locking Navigation pane, 814
saving and loading confi guration of,

817–818
setting displayed categories, 817

Grouping options, 811
Navigation Options dialog box, 812
Search Bar or navigation options, 811
system objects in, 838

Navigator control, 693
Nested if…then statements, 119–122
Nested loops, 143–144
Nesting statements, 122
NewPassword method, 599–600
NoData event, 768
Non-row-returning queries, 480

Action queries, 480
DDL queries, 480

NOT NULL constraint, 633

NOT operator, 633
NotInList event (control), 751–752

NewData, 751
Response, 751

Number sign (#), 52, 456

O

Object Browser window
intrinsic constants, 82

Object collections
custom collection, 176

adding objects to, 176
creating, 177
declaring, 176
removing objects from, 178

keeping track of multiple values using,
173–202

working with, 174–178
Object libraries, 248–252

Microsoft Access 16.0 Object Library, 249
Microsoft ActiveX Data Objects 6.1 Library

(ADO), 250–252
Microsoft DAO 3.6 Object Library,

249–250
Microsoft Office 16.0 Access Database

Engine Object Library, 249
VBA object library, 248

Object variables in VBA procedures, 75–78
advantages of, 77
disposing of, 78

ODBC Data Source Administrator, 255–262
File DSN, 256
System DSN, 256
User DSN, 256

OLE DB, 250
On Error GoTo statement, 771
One-to-many relationship, between tables,

362–363
OnError action arguments, 926
OnUndo event, 716–717
Open event, 764–765
Open method, 259, 260, 267, 271, 288, 290, 379,

384, 389, 393, 395, 465, 466, 504, 523,
947, 994, 1078

INDEX 1097

OpenArgs property, 738–744
of Report object, 783–786

OpenForm method, 738
parameters, 739

OpenQuery method, 677
OpenRecordset method, 287, 304, 365, 367,

369, 413, 423, 499
OpenReport method, 783
OpenSchema method, 344
Option Base 1 statement, 146, 149, 152–154,

162
Option Explicit statement, 190
Option Private Module statement, 70
Optional arguments, 89–91
Options parameter, 384–388
OR operator, 114
ORDER BY clause, 449, 675, 679, 681, 689

P

Page event, 769
Paired statements, 140
ParamArray keyword, 168–169
Parameter query, 468–471

creating Parameter query with ADO,
471–474

creating Parameter query with DAO,
468–469

executing Parameter query with ADO,
478–480

Parameterized stored procedures
creating, 682–685
executing, 686–687

Parent-child relationship, between tables, 361,
531

ParseError object, 1048
ParseError object properties, 1048
Parser, 1006
Pass-Through query, 486–488
Passing arguments

ByRef and ByVal, 89
optional arguments, using, 89–91
by reference and value, 88
specifying data types, 86–88
subroutines and functions, 87, 88–89

.pdf file format, saving reports in, 782–783
Percent sign (%), 456
PercentPosition property, 370
Predicate, 456
PRIMARY KEY constraint, 633
Primary keys, 349, 647, 690
PRIMARY option, 652
Print event (Report Section Event), 775–779

effect on report sections, 776
PrintCount, 775

Private constant, 80
Procedure-level (local) variables, 66
Procedure testing, 234–236
Procedure(s), 4

compiling, 21
execution of VBA, 199–202
in standard modules, 7–9
stepping through VBA

running procedure to cursor, 227
setting Next statement, 227
showing Next statement, 227
stepping out of procedure, 226
stepping over, 225–226

stopping, 205–206
stopping and resetting VBA, 228–229
testing VBA, 234–236
types of, 4–7

event, 6
function, 5–6
property, 6–7
subroutine, 4–5

writing function, 83–84
Programs, adding repeating actions to

Do…Until statement, 135–137
Do…While statement, 132–135
For Each…Next statement, 140–141
exiting loops early, 141–142
For…Next statement, 137–140
infinite loops, avoiding, 135
looping statements, 131
nested loops, 143–144
paired statements, 140
variables and loops, 136

Project Explorer window
activate, 28

1098 INDEX

buttons, 29
standard toolbar, 29

Project-level variables, 69–70
Prompt argument, 93
Properties window, 30–31

access to, 30
alphabetic tab, 30
categorized tab, 30
to view control properties, 30–31

Property, 181
Property procedures, 6–7

defining scope of, 181–182
immediate exit from, 182
Property Get procedure, 182–183
Property Let procedure, 183–184
Property Set procedure, 181

Public constant, 80
Public keyword, 70

Q

Queries,
Append query with DAO, running, 480–483
Delete query with DAO, running, 483–486
Make-Table query with DAO, creating and

running, 474–476
non-row-returning, 80
other operations with

deleting query from database with
DAO/ADO, 495–496

listing all queries in database with
DAO/ADO, 494–495

retrieving query properties with DAO,
493–494

updatable query, 497–498
Parameter query with ADO/DAO, creating

and running, 468–474
Pass-Through query with ADO/DAO,

creating and running, 486–492
row-returning, non-parameterized, 462
row-returning, parameterized, 471
Select query manually, creating, 453–458

examples of queries recognized by
SELECT and FROM keywords, 453

operators used in expressions, 454

predicates in SQL SELECT statements,
456–457

WHERE clause in SQL SELECT
statements, 458

wildcard characters used in LIKE
operator patterns, 456

Select query with ADO, executing, 463–466
Select query with ADO, modifying, 466–468
Select query with ADO/DAO, creating,

460–466
Update query with ADO, executing, 478–480
Update query with DAO, creating and

running, 478–483
Question mark (?), 456
Quick Access toolbar, 810, 878–879
Quit method, 437

R

RaiseEvent statement, 788, 804
Range of array, 154
RecordCount property, 304, 371, 378, 393, 399,

419, 466, 470, 479
Record(s)

adding attachments, 417–420
adding new record with ADO, 415–417
adding new record with DAO, 413–415
adding values to multivalue lookup field,

420–423
copying records to Excel worksheet, 433–437
copying records to text file (ADO), 442–444
copying records to Word document, 438–442
deleting attachments, 432–433
deleting record with ADO, 431–432
deleting record with DAO, 429–430
editing multiple records with ADO, 427–429
filtering records using filter property (DAO

and ADO), 446–449
filtering records using SQL WHERE clause

(DAO and ADO), 444–446
modifying record with ADO, 426–427
modifying record with DAO, 423–426
sorting records (ADO), 449–451

Recordset objects, 365, 367, 370, 371, 373, 375
types of, 366

INDEX 1099

Recordset(s)
ADO Recordsets, 378–412

asynchronous fetching, 386
bookmarks, using, 407–409
bookmarks to fi lter recordset, 410–411
cursor location, 383
cursor types, 380–381
fi nding record based on multiple

conditions, 406–407
fi nding record position, 398–399
fi nding records using fi nd method,

402–403
fi nding records using seek method,

404–406
GetRows method to fi ll recordset,

411–412
lock types, 381–383
moving around in Recordset, 397–398
opening Recordset, 388–391
opening Recordset based on criteria,

395–396
opening Recordset based on SQL

Statement, 394–395
opening Recordset based on table or

query, 389–391
opening Recordset directly, 396–397
Options parameter, 384–386
reading data from fi eld, 399–400
returning Recordset as string, 400–402

counting records, 393
DAO Recordsets, 365–378

fi nding nth record in Snapshot, 377–378
fi nding records in Dynasets or Snapshots,

375–377
fi nding records in Table-type recordset,

373–375
moving between records, 372–373
navigating through recordset, 367
opening Snapshot and counting records,

369–370
opening Table-, Dynaset-, and Snapshot-

type Recordsets, 368–369
retrieving contents of specifi c fi eld,

371–372
types, 367

empty, 393
RecordStatusEnum constants, 522
REFERENCES clause, 640
RefreshDatabaseWindow method, 614
Reindexing collections, 178
Relational operators, 110
RemoveAllTempVar, 929
RemoveTempVar, 929
Report events, 763–786

Activate, 767–768
Close, 767
Deactivate, 768
Error, 770–771
NoData, 768
Open, 764–766
Page, 769

Report modules, 12–13
Report section events, 772–779

Format, 772–775
Print, 775–77
Retreat, 779

Report view, 779–781
ReportML, 1008
Required property, 307, 352
Retreat event (Report Section Event), 779
REVOKE statement, 671
Ribbon extensibility or RibbonX, 823
Ribbon programming with XML, VBA and

Macros, 823–845
Edu Systems tab, 824
IRibbonControl properties, 831
library references, 829
Ribbon customizations to forms and reports,

assigning, 841–845
Ribbon XML markup

creating, 824–825
embedding, 835
loading, 828–834
storing, 835–837

Show add-in user interface errors, 828–829
USysRibbons table, 835,
XML file, 824

Ribbon UI customizations
Backstage View, 873–874
CommandBars object and, 870–871

1100 INDEX

controls in
built-in control, 866
checkboxes, 859–860
combo boxes and drop downs, 862–863
dialog box launcher, 864–865
disabling control, 865
edit boxes, 861–862
refreshing Ribbon, 866–867
split buttons, menus, and submenus,

858–859
toggle button, 857–858

images in
attributes and callbacks, 855–856
requesting images via getImage callback,

850–851
requesting images via loadImage

callback, 845–850
Quick Access Toolbar (QAT), 878–879
tab activation and group auto scaling,

872–873
Ribbon user interface (Access 2019), 820–823

contextual tab, 822
Create tab, 820
dialog box launcher button, 822
Margins button, 821
More Forms button, 694

Rich text memo fields, 332–334
Right function, 286, 331
RollbackTrans method, 553, 554
Row-returning, non-parameterized queries, 462
Row-returning, parameterized queries, 472
RowSource property, 420
RowSourceType property, 420
Runtime errors, 205, 229

S

Safe expression, 909
Sandbox mode, 909
Save method, 507, 1066
SaveAs method, 437
Saved (persisted) recordset, 507
Saving recordset to disk (ADO), 507–509
Script delimiters and HTML tags, 948
Seek method, 373, 404–406

Select Case statement, 123–128
specifying multiple expressions in Case

clause, 128
specifying range of values in Case clause,

126–127
using Is with Case clause, 125–126

SELECT INTO statement, 313, 474, 559
Select query, 453–458

creating, 458–462
executing, 463–466
modifying, 466–468

SELECT statement, 530–531, 676
Sequence of events, 708
Server-side cursor (adUseServer), 383
Server-side script, 947–949
Set Next Statement, 227
SetDisplayedCategories method, 817
SetPermissions method, 587, 593
SetTempVar, 929
SHAPE statement, 530–531, 537
Share-level security, 562, 598, 659
Show Next Statement, 227
Sinking events, 788–789
Sinking events, in standalone class module, 788–798

cRecordLogger class, creating, 790–794
cRecordLogger custom class with another

form, 797–798
file preparation, 789–790
frmCustomers form, 790, 794
instance of custom class, creating, 794–795
MyCust.txt file, 793
Name property, 765, 776, 790, 799
Object drop-down list, 807
Procedure drop-down list, 791
testing cRecordLogger custom class, 795–796

Skipping lines of code, in debugging, 227
Snapshot-type Recordset, 365, 366, 368–369
Source parameter, 255, 379
Sourcing event, 788
Split button, 858
Split function, 330, 738, 742
Spreadsheet constants, 341
SQL. See Structured Query Language (SQL)
SQL JOIN statements, 529–530
SQL Pass-Through Queries, 486, 887

INDEX 1101

SQL specifications, 609
SQL WHERE clause, 444–446
Square brackets [], 456
Standalone class modules, 12, 786
Standalone macros

creating, 892–895
running, 898–899

Startpos, 330, 1029
Statements, 4
Static array, 159–160
Static variables in VBA procedures, 74–75
Stepping through VBA procedure, 224–227

running procedure to cursor, 227
setting Next statement, 227
showing Next statement, 227
stepping out of procedure, 226
stepping over, 225

Stop statement, 214–215
Stopping and resetting, of VBA

procedures, 228–229
Stored procedure(s), 675

changing database records with, 689
contents of, 685–686
creating, 675–676
creating parameterized, 682–685
deleting, 680–681
executing parameterized, 686–688

StrMultiFldName argument, 421
StrNewVal argument, 421
StrSearch, 331
StrTblName argument, 421
Structured Query Language (SQL), 607
Submacros, 838, 840, 899
Submacros, creating, 900–901
Subroutine procedures (subroutines), 4–5, 107
Subscripted variables, 149
Subscripts, 149
Supports method, 404
Syntax errors, 203
SysCmd method, 785
System database (System.mdw), 563

T

Table object, 310

Table relationships, using ADO
one-to-many relationship, 361–363
parent-child relationship, 361

Table-type Recordset, 365, 367, 371
TableDef object, 304, 352
Table(s)

constraints, 633
CHECK, 633
FOREIGN KEY, 633
NOT NULL, 633
PRIMARY KEY, 633,
UNIQUE, 633

creating, 609–631
in current database (DDL with ADO),

610–612
in new database (DDL with ADO/

ADOX), 615–617
Data Definition Query window, 643–645
deleting, 617–618
design data types and Access SQL

equivalents, 614
establishing relationship between, 640–643
modifying with DDL, 618–631

adding multiple-fi eld index to table,
624–625

adding new fi elds to table, 619–620
adding primary key to table, 623–624
changing data type of table column,

620–621
changing seed and increment values of

autonumber columns, 629–631
changing size of Text column, 621–622
deleting column from table, 622–623
deleting index, 626–627
deleting indexed column, 625–626
setting default value for table column,

627–629
Templates, 933–937

.accdt file format, 934–937
custom blank database template, creating,

933–934
Temporary variables, 70–73

creating temporary variable with TempVars
collection object, 71–72

removing temporary variable from

1102 INDEX

TempVars collection objects, 73
retrieving names and values of TempVars

objects, 72
temporary global variables in expressions, 73
TempVars collection exposed to macros, 73

Testing and debugging
Add Watch window, 216–220
Assert statement, 214–216
breakpoints, using, 206–211
Call Stack dialog box, 223
Err object, using, 230–231
immediate window in break mode, 212–213
Locals Window, 221–222
navigating with bookmarks, 227–228
quick watch, 220–221
stepping through VBA procedure, 224–225
Stop statement, 214
stopping procedure, 205–206
trapping errors, 229–237

Timer event, 736–737
Timing events, 736–737
Toggle button, 857–858
Toggle folders, 29
TOP keyword, 457
TotalRec, 378
Transaction, 553
Transaction processing, 553–560

creating transaction with ADO/DAO,
556–557

TransferSpreadsheet method, 340
TransformXML method, 1048–1050

arguments of, 1049
Trapping errors, 229–237

Err object, using, 230–234
On Error statement, 229, 230
procedure testing, 234–235
setting options in visual basic

project, 236
Troubleshooting errors in arrays, 166–168
Trusted location folder for Access database,

22–25
Type conversion functions (CSng), 74
Type declaration characters, 60
Type mismatch error, 168
Type property, 306

U

UBound function, 164–165
Underscore character (_), 456
Uniform Resource Identifier (URI), 1012
Uniform Resource Locator (URL), 1012
Uniform Resource Name (URN), 1012
UNIQUE constraint, 633
UNIQUE keyword, 624
Unique property, 352
Universal data link file (.udl), 263
Update method, 289, 382, 414–415, 417, 423,

425, 427, 519, 523
Update query, 476–478

creating and running, 476–478
executing, 478–479

UpdateBatch method, 382, 521
User and group accounts (ADO)

creating, 575–579
deleting, 579–580
listing, 580–582
listing users in groups, 582–584

User and Group Accounts window, 663, 665
User and group permissions

changing user password, 601–603
checking permissions for objects, 595–598
object owner, retrieving name of, 585–587
setting database password using

CompactDatabase method,
599–600

setting database password using
NewPassword method, 599–601

setting permissions for containers, 592–595
setting permissions for database, 590–592
setting permissions for object, 587–590

User-defined property, 308
User interface (UI)

Access 2019 Ribbon interface, 820–823
Backstage view, customizing, 873–878
CommandBars object and Ribbon, 870–871
controls in Ribbon customizations

built-in control, 866
checkboxes, 859–861
combo boxes and drop downs, 862–864
dialog box launcher, 864–865
disabling control, 865

INDEX 1103

edit boxes, 861–862
refreshing Ribbon, 866–869
split buttons, menus, and submenus,

858–859
toggle button, 857–858

creating
designing User Form, 188–190
writing event procedures, 190–198

hiding elements of, 826
images in Ribbon customization

attributes and callbacks, 855–856
requesting images via getImage callback,

850–855
requesting images via loadImage

callback, 845–847
initial window, 809
Navigation pane, 810–814
Navigation pane, customizing

controlling display of database objects,
815–816

locking Navigation pane, 814
saving and loading confi guration of, 817
setting displayed categories, 817

Quick Access Toolbar (QAT), 878–879
Ribbon programming with XML, VBA and

Macros, 823–845
assigning Ribbon customizations to

forms and reports, 841–845
embedding Ribbon XML markup, 835
loading Ribbon customizations from

external XML document,
828–831

Ribbon customization XML markup,
creating, 824–834

storing Ribbon customization XML
markup, 835–841

tab activation and group auto scaling, 872
User-level security, 562–563
USysRibbons table, 835, 836, 838

V

Validation Rule property, 307
Validation Text property, 307
Variable type, 57

Variables, 5
assigning values to, 61–62
concatenation, 58
declaring, 54
declaring typed, 60–61
defined, 58
determining data type of, 78–79
explicit variable declaration, 55
finding variable definition, 78
forcing declaration of, 63–65
global, 71, 72
implicit variable declaration, 55–56
informal, 56
initialization, 62–63
lifetime of, 70
module-level, 66–67
names, 54
object, 75–78
procedure-level (local), 66
project-level, 69–70
scope of, 65–66
specifying data type of, 58–59
static, 74–75
temporary, 70–71
type declaration characters, 60

Variant data type, 51
VBA. See Visual Basic for Applications (VBA)
VBA functions

Array function, 161–162
Erase function, 163–164
IsArray function, 162–163
LBound and UBound functions, 164–165

VBA programs, adding repeating actions
Do…Until statement, 135–137
Do…While statement, 132–135
For Each…Next statement, 140–141
exiting loops early, 141–142
For…Next statement, 137–140
infinite loops, avoiding, 135
looping statements, 131
paired statements, 140
variables and loops, 136

VBA Project, 35
VBE. See Visual Basic Editor (VBE)
VBScript, 941–942

1104 INDEX

View(s), 675
creating, 675–679
deleting, 680–681
generating list of saved, 679–680

Virtual directory, creating, 954–956
Visual Basic Editor (VBE)

Code window, 32–24
Immediate window, 46–49
Object Browser, 42–45
other windows, 34
Project Explorer window, 28–29
Properties window, 30–31
renaming module, 36
syntax and programming assistance

Comment Block button, 42
Complete Word button, 40
Indent button, 41–42
List Constants button, 39–40
List Properties/Methods option, 36
Outdent button, 41–42
Parameter Info button, 38–39
Quick Info button, 40
Uncomment Block button, 42

VBA object library, using, 45–46
Visual Basic for Applications (VBA), 3

assigning name to project, 35
data types, 51–53
debugging tools of, 202
object library, 51
procedures

compiling, 21
event, 6
executing, 10–12
function, 5–6
property, 6–7
in standard modules, 7–9
subroutine, 4–5

stopping and resetting, of VBA procedures,
228–229

W

Watch expressions
adding, 216–220

removing, 220
vs. breakpoint, 217

WHERE clause, 444–446, 454, 456, 458, 476, 559,
682, 739, 979

With…End With construct, 214, 317–318
WithEvents keyword, 788
Workgroup information file, 562, 563–572

Access versions, 563
Application Data folder, 563
creating and joining, 566–572
location and name of, 564

Write method, 443, 948
WriteLine method, 283, 402

X

.xls, 437

.xlsb, 437

.xlsm, 437

.xlsx, 437
XML document nodes, 1061–1063
XML (Extensible Markup Language), 1005

ActiveX data objects with, 1067–1080
attribute-centric and element-centric

XML, 1069–1070
saving ADO recordset as XML to disk,

1067–1069
applying XSLT transforms to exported data,

1026–1032
character encodings in, 1012
exporting data, 1030–1032

advanced XML export options, 1022–1025
data export options, 1022–1023
presentation export options, 1024–1026
schema export options, 1023–1021
XML data fi le, 1008–1025
XML documents formatted with

stylesheets, 1020–1021
XML schema fi le, 1014–1016
XSL transformation fi les, 1016–1020

exporting to and importing from XML,
1039–1058

ExportXML method, 1039–1048
ImportXML method, 1057–1058

INDEX 1105

TransformXML method, 1048–1057
importing data, 1035–1039

XML data to Access database,
1037–1039

XSD schema fi le to Access database,
1033–34

manipulating XML documents,
1058–1067

applying XSL stylesheet,
1072–1073

changing type of XML fi le,
1070–1071

loading and retrieving contents of XML
fi le, 1059–1061

loading XML document in Excel,
1078–1080

retrieving fi rst matching node,
1066–1067

retrieving information from element
nodes, 1063–1065

transforming attribute-centric
XML data into HTML table, 4–8

XML document nodes, 1061–1063
support in Access 2019, 1008
well-formed XML document, 1007–1008

XML schema file (XSD), 1014–1016
Xmlns attribute, 825, 1013
XPath, 1018
.xps file format, saving reports in, 782–783
XSL (Extensible Stylesheet Language), 1016
XSL Transformations (XSLT), 1016, 1019

