

MICROSOFT®

ACCESS
® 2019

PROGRAMMING

Pocket Primer

LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY

By purchasing or using this book and disc (the “Work”), you agree that this
license grants permission to use the contents contained herein, including
the disc, but does not give you the right of ownership to any of the textual
content in the book / disc or ownership to any of the information or products
contained in it. This license does not permit uploading of the Work onto the
Internet or on a network (of any kind) without the written consent of the
Publisher. Duplication or dissemination of any text, code, simulations, im-
ages, etc. contained herein is limited to and subject to licensing terms for the
respective products, and permission must be obtained from the Publisher or
the owner of the content, etc., in order to reproduce or network any portion
of the textual material (in any media) that is contained in the Work.

Mercury Learning And Information(“MLI” or “the Publisher”) and any-
one involved in the creation, writing, or production of the companion disc,
accompanying algorithms, code, or computer programs (“the software”), and
any accompanying Web site or software of the Work, cannot and do not war-
rant the performance or results that might be obtained by using the contents
of the Work. The author, developers, and the Publisher have used their best
efforts to insure the accuracy and functionality of the textual material and/
or programs contained in this package; we, however, make no warranty of
any kind, express or implied, regarding the performance of these contents
or programs. The Work is sold “as is” without warranty (except for defective
materials used in manufacturing the book or due to faulty workmanship).

The author, developers, and the publisher of any accompanying content, and
anyone involved in the composition, production, and manufacturing of this
work will not be liable for damages of any kind arising out of the use of (or
the inability to use) the algorithms, source code, computer programs, or tex-
tual material contained in this publication. This includes, but is not limited
to, loss of revenue or profit, or other incidental, physical, or consequential
damages arising out of the use of this Work.

The sole remedy in the event of a claim of any kind is expressly limited to
replacement of the book and/or disc, and only at the discretion of the Pub-
lisher. The use of “implied warranty” and certain “exclusions” vary from state
to state, and might not apply to the purchaser of this product.

Companion files are also available from the publisher by writing to info@
merclearning.com.

MICROSOFT®

ACCESS
® 2019

PROGRAMMING

Pocket Primer

Julitta Korol

MERCURY LEARNING AND INFORMATION

Dulles, Virginia

Boston, Massachusetts

New Delhi

Copyright ©2019 by Mercury Learning and Information. All rights reserved.

This publication, portions of it, or any accompanying software may not be reproduced in any

way, stored in a retrieval system of any type, or transmitted by any means, media, electronic display

or mechanical display, including, but not limited to, photocopy, recording, Internet postings, or

scanning, without prior permission in writing from the publisher.

Publisher: David Pallai
Mercury Learning and Information
22841 Quicksilver Drive
Dulles, VA 20166
info@merclearning.com
www.merclearning.com
(800) 232-0223

J.Korol. Microsoft ® Access 2019 Programming Pocket Primer.

ISBN: 978-1-68392-409-8

Th e publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products. All brand names and product names
mentioned in this book are trademarks or service marks of their respective companies. Any
omission or misuse (of any kind) of service marks or trademarks, etc. is not an attempt to
infringe on the property of others.

Library of Congress Control Number: 2019939375

192021321 Printed on acid-free paper in the United States of America

Our titles are available for adoption, license, or bulk purchase by institutions, corporations, etc.
For additional information, please contact the Customer Service Dept. at 800-232-0223(toll free).

All of our titles are available in digital format at academiccourseware.com and other digital

vendors. Companion fi les (fi gures and code listings) for this title are available by contacting

info@merclearning.com. Th e sole obligation of Mercury Learning and Information to the
purchaser is to replace the disc, based on defective materials or faulty workmanship, but not
based on the operation or functionality of the product.

Acknowledgments .. xi
Introduction ... xiii

Chapter 1 Getting Started with Access VBA................................1

Understanding VBA Modules and
Procedure Types ..2
Writing Procedures in a Standard Module ..5
Executing Your Procedures ...8
Understanding Class Modules ..10
Events, Event Properties, and Event Procedures12

Why Use Events? ...13
Walking Through an Event Procedure ..13

Compiling Your Procedures ..18
Placing a Database in a Trusted Location ..19
Summary ..22

Chapter 2 Getting to Know Visual Basic Editor (VBE)23

Understanding the Project Explorer Window ..24
Understanding the Properties Window ...25
Understanding the Code Window ..27
Other Windows in the VBE ...29
Assigning a Name to the VBA Project ...30
Renaming the Module ..31
Syntax and Programming Assistance ...31

List Properties/Methods ..32
Parameter Info ..33

CONTENTS

vi CONTENTS

List Constants ..34
Quick Info ..35
Complete Word ...35
Indent/Outdent ...36
Comment Block/Uncomment Block ...37

Using the Object Browser ..38
Using the VBA Object Library ..40
Using the Immediate Window ..41
Summary ..44

Chapter 3 Access VBA Fundamentals45

Introduction to Data Types ...45
Understanding and Using Variables ..47

Declaring Variables...48
Specifying the Data Type of a Variable ..52

Using Type Declaration Characters.. 53

Assigning Values to Variables ...54
Forcing Declaration of Variables ..56
Understanding the Scope of Variables ...58

Procedure-Level (Local) Variables ... 59
Module-Level Variables ... 59
Project-Level Variables ... 62

Understanding the Lifetime of Variables ...63
Using Temporary Variables ...63

Creating a Temporary Variable with a TempVars
Collection Object .. 64
Retrieving Names and Values of TempVar Objects.................................. 64
Using Temporary Global Variables in Expressions 65
Removing a Temporary Variable from a
 TempVars Collection Object ... 65

Using Static Variables ...66
Using Object Variables ...68

Disposing of Object Variables ... 70

Finding a Variable Definition ...70
Determining the Data Type of a Variable ..70

Using Constants in VBA Procedures ...72
Intrinsic Constants ...73

Summary ..74

Chapter 4 Access VBA Built-In and Custom Functions75

Writing Function Procedures ..75
Various Methods of Running Function
Procedures ..76

CONTENTS vii

Specifying the Data Type for a
Function’s Result ...78
Passing Arguments to By Reference
and By Value ..79
Using Optional Arguments..81
Using the IsMissing Function ...83
Using VBA Built-In Functions for
User Interaction ...83

Using the MsgBox Function ..84
Returning Values from the MsgBox Function .. 91

Using the InputBox Function ..93
Converting Data Types ...95
Summary ..97

Chapter 5 Adding Decisions to Your Access
VBA Programs ...99

Relational and Logical Operators ..99
If…Then Statement ..100
Multiline If…Then Statement ...102
Decisions Based on More than One Condition104
If…Then…Else Statement ...105
If…Then…ElseIf Statement ..108
Nested If…Then Statements ..109
Select Case Statement ...111

Using Is with the Case Clause ...114
Specifying a Range of Values in a Case Clause115
Specifying Multiple Expressions in a Case Clause116

Summary ..117

Chapter 6 Adding Repeating Actions to Your Access
VBA Programs ...119

Using the Do…While Statement ..119
Another Approach to the Do…While Statement121

Using the Do…Until Statement ..123
Another Approach to the Do…Until Statement124

Using the For…Next Statement ..125
Using the For Each…Next Statement ..128
Exiting Loops Early ...129
Nested Loops ..130
Summary ..131

viii CONTENTS

Chapter 7 Keeping Track of Multiple
Values Using Arrays ..133

Understanding Arrays ..133
Declaring Arrays ...135
Array Upper and Lower Bounds ..137
Initializing and Filling an Array ...137

Filling an Array Using Individual Assignment Statements 137
Filling an Array Using the Array Function ... 138
Filling an Array Using the For…Next Loop .. 138

Using a One-Dimensional Array ..139
Arrays and Looping Statements ..141
Using a Two-Dimensional Array ..144
Static and Dynamic Arrays ..146
Array Functions ...148

The Array Function ..148
The IsArray Function ...149
The Erase Function ..149
The LBound and UBound Functions ..150

Errors in Arrays ...151
Parameter Arrays...154
Passing Arrays to Function Procedures ...155
Sorting an Array ..156
Summary ..157

Chapter 8 Keeping Track of Multiple
Values Using Object Collections159

Working with Collections of Objects ...160
Declaring a Custom Collection ..161
Adding Objects to a Custom Collection ..162
Removing Objects from a Custom Collection163

Creating Custom Objects in Class Modules ..164
Creating a Class...165
Variable Declarations ...166
Defining the Properties for the Class ...166

Creating the Property Get Procedures ... 168
Creating the Property Let Procedures ... 168

Creating the Class Methods ..170
Creating an Instance of a Class ...171
Event Procedures in the Class Module ..172

Creating the User Interface ..172
Running the Custom Application ...182
Watching the Execution of Your VBA Procedures183
Summary ..185

CONTENTS ix

Chapter 9 Getting to Know Built-In Tools
for Testing and Debugging187

Stopping a Procedure ..189
Using Breakpoints ...190

Removing Breakpoints ...195
Using the Immediate Window in Break Mode195
Using the Stop Statement ...196
Using the Assert Statement ..197
Using the Add Watch Window ...198

Removing Watch Expressions ...202
Using Quick Watch ...202
Using the Locals Window ..203
Using the Call Stack Dialog Box ..205
Stepping Through VBA Procedures ...205

Stepping Over a Procedure ..207
Stepping Out of a Procedure ...208
Running a Procedure to Cursor ..208
Setting the Next Statement ..208
Showing the Next Statement ...209

Navigating with Bookmarks ..209
Stopping and Resetting VBA Procedures ..210
Trapping Errors ...210

Using the Err Object ...211
Procedure Testing ...215
Setting Error-Trapping Options ...217

Summary ..218

Index ..219

ACKNOWLEDGMENTS

A
s years pass and we gain more and more knowledge on a particular
subject there is a tendency to publish books for people who want to
know it all. But the truth is that we really don’t have time to read all the

printed pages. I thank my publisher, David Pallai, for suggesting that I continue
creating a smaller book that will serve as a starting point for anyone attempt-
ing to get into VBA programming in Access. I hope that you as a reader of this
primer book will appreciate this short book and find that the knowledge gained
from its pages will not only allow you to continue your programming journey,
but also take you places you never thought possible.

I’m also thankful to Jennifer Blaney for her expert management of this book
project. I owe a heartfelt thanks to my copyeditor for the thorough review of
the manuscript. I am grateful to the compositor, Swaradha Typesetters, for all
the composition efforts that gave this book the easy-to-follow look and feel.

Julitta Korol
Brooklyn, New York

April 2019

INTRODUCTION

I
’ve been working with Access since the very beginning. Database concepts
were completely new to me, but Access interface made it a pleasure to work
with almost daily. Step by step I acquired the skills of database management

and then programming. I learned the latter by trial and error. When the first
consulting opportunity came up to use my Access skills, I found that I barely
knew enough to get started. But challenges do not scare me. I was eager to
learn on the job. My first Access programming project was designing a custom
quotation system for an automotive manufacturer. Despite my limited prior
exposure to the programming concepts I was able to deliver a system that auto-
mated a big chunk of work for that company. How was I able to do this? I find
reading and doing is the first step towards mastering a skill like programming.
This book presents enough programming concepts to get you started tackling
your own Access database challenges. This is not a book about using Access.
I assume you are already familiar with most tasks that you can achieve using
Access built-in commands. But if you are ready to look beyond the standard
user interface, you have come to the right place and have made a decision that
will bring a whole set of new possibilities to Access. So, let’s forget the menus
for now. Do your own thing. Automating Access is something everyone can
do. With the right training, that is. This book’s purpose is to introduce you to
Access built-in language, known as Visual Basic for Applications (VBA). With
VBA you can begin delegating repetitive tasks to Access while freeing your
time for projects that are more fun to do. Besides, knowing how to program
these days is a lucrative skill. It will get you a secure, well-paying job.

This book was designed for someone like you who needs to master Access
programming fundamentals without spending too much time. Most of the time
all you need is a short book to get you started. It’s less overwhelming to deal

xiv INTRODUCTION

with a new subject in smaller chunks. The VBA Programming Pocket Primer
series will show you only the things you need to know to feel at home with VBA.
What you learn in this book on Access programming will apply to, say, Excel
programming. Just see my other book, the Microsoft Excel 2019 Programming
Pocket Primer, to see what I mean. How’s that for knowledge transfer? Learn
in Access and use it in Excel or other Microsoft Office applications. I call this
sweet learning.

If you are looking for in-depth knowledge of Access programming (and
have time to read through a 1,000-page book), then go ahead and try some of
my thicker books available from Mercury Learning and Information.

Access is about doing and so is this book. So do not try to read it while not
at the computer. You can sit, stand, or lie down; it does not matter. But you do
need to work with this book. Do the examples, read the comments. Do this
until it becomes easy to do without the step-by-step instructions. Do not skip
anything as the concepts in later chapters build on material introduced earlier.

CHAPTER OVERVIEW

Before you get started, allow me to give you a short overview of the things you’ll
be learning as you progress through this primer book. Microsoft Access 2019
Programming Pocket Primer is divided into nine chapters that progressively
introduce you to programming Microsoft Access.

Chapter 1 – Getting Started with Access VBA

In this chapter you learn about the types of Access procedures you can write
and learn how and where they are written.

Chapter 2 — Getting to Know Visual Basic Editor (VBE)

In this chapter you learn almost everything you need to know about working
with the Visual Basic Editor window, commonly referred to as VBE. Some of
the programming tools that are not covered here are discussed and used in
Chapter 9.

Chapter 3 — Access VBA Fundamentals

This chapter introduces basic VBA concepts that allow you to store various
pieces of information for later use.

Chapter 4 — Access VBA Built-In and Custom Functions

In this chapter you find out how to provide additional information to your
procedures and functions before they are run.

INTRODUCTION xv

Chapter 5 — Adding Decisions to Your Access VBA Programs

In this chapter you learn how to control your program flow with a number of
different decision-making statements.

Chapter 6 — Adding Repeating Actions to Your Access VBA Programs

In this chapter you learn how to repeat the same actions in your code by using
looping structures.

Chapter 7 — Keeping Track of Multiple Values Using Arrays
In this chapter you learn about static and dynamic arrays and how to use them
for holding various values.

Chapter 8 — Keeping Track of Multiple Values Using Object Collections
This chapter teaches you how you can create and use your own objects and
collections of objects.

Chapter 9 — Getting to Know Built-In Tools for Testing and Debugging
In this chapter you begin using built-in debugging tools to test your
programming code. You also learn how to add effective error-handling code
to your procedures.

The above nine chapters will give you the fundamental techniques and con-
cepts you will need in order to continue your Access VBA learning path.

THE COMPANION FILES

The example files for all the hands-on activities in this book are available on the
disc included with this book. These files may also be downloaded by contact-
ing the publisher at info@merclearning.com. Digital versions of this title are
available at academiccourseware.com and other digital vendors.

1

V
isual Basic for Applications (VBA) is the programming language built
into all Microsoft® Office® applications, including Microsoft® Access®.
In this chapter you acquire the fundamentals of VBA that you will use

over and over again in building real-life Microsoft Access database applications.

Chapter

1
GETTING STARTED

WITH ACCESS VBA

2 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

UNDERSTANDING VBA MODULES AND
PROCEDURE TYPES

Your job as a programmer (at least during the course of this book) will boil
down to writing various procedures. A procedure is a group of instructions
that allows you to accomplish specific tasks when your program runs. When
you place instructions (programming code) in a procedure, you can call this
procedure whenever you need to perform that particular task. Although
many tasks can be automated in Access by using macro actions, such as
opening forms and reports, finding records, and executing queries, you will
need VBA skills to perform advanced customizations in your Access data-
bases.

In VBA you can write four types of procedures: subroutine procedures,
function procedures, event procedures, and property procedures. Procedures
are created and stored in modules. A module resembles a blank document
in Microsoft Word. Each procedure in the same module must have a unique
name; however, procedures in different modules can have the same name.
Let’s learn a bit about each procedure type so that you can quickly recognize
them when you see them in books, magazine articles, or online.

1. Subroutine procedures (also called subroutines or subprocedures)
Subroutine procedures perform useful tasks but never return values. They
begin with the keyword Sub and end with the keywords End Sub. Key-

words are words that carry a special meaning in VBA. Let’s look at the
simple subroutine ShowMessage that displays a message to the user:

Sub ShowMessage()

 MsgBox "This is a message box in VBA."

End Sub

Notice a pair of empty parentheses after the procedure name. The instruc-
tion that the procedure needs to execute is placed on a separate line be-
tween the Sub and End Sub keywords. You may place one or more instruc-
tions and even complex control structures within a subroutine procedure.
Instructions are also called statements. The ShowMessage procedure will
always display the same message when executed. MsgBox is a built-in VBA
function often used for programming user interactions (see Chapter 4,
“Access VBA Built-In and Custom Functions,” for more information on
this function).
 If you’d like to write a more universal procedure that can display a dif-
ferent message each time the procedure is executed, you will need to write
a subroutine that takes arguments. Arguments are values that are needed
for a procedure to do something. Arguments are placed within the paren-
theses after the procedure name. Let’s look at the following procedure that

GETTING STARTED WITH ACCESS VBA 3

also displays a message to the user; however, this time we can pass any text
string to display:

Sub ShowMessage2(strMessage)

 MsgBox strMessage

End Sub

This subprocedure requires one text value before it can be run; strMes-
sage is the arbitrary argument name. It can represent any text you want.
Therefore, if you pass it the text “Today is Monday,” that is the text the user
will see when the procedure is executed. If you don’t pass the value to this
procedure, VBA will display an error.
 If your subprocedure requires more than one argument, list the argu-
ments within the parentheses and separate them with commas. For ex-
ample, let’s improve the preceding procedure by also passing it a text string
containing a user name:

Sub ShowMessage3(strMessage, strUserName)

 MsgBox strUserName & ", your message is: " & strMessage

End Sub

The ampersand (&) operator is used for concatenating text strings inside
the VBA procedure. If we pass to the above subroutine the text “Keep on
learning.” as the strMessage argument and “John” as the strUserName
argument, the procedure will display the following text in a message box:

John, your message is: Keep on learning.

2. Function procedures (functions)
Functions perform specific tasks and can return values. They begin with
the keyword Function and end with the keywords End Function. Let’s
look at a simple function that adds two numbers:

Function addTwoNumbers()

 Dim num1 As Integer

 Dim num2 As Integer

 num1 = 3

 num2 = 2

 addTwoNumbers = num1 + num2

End Function

The preceding function procedure always returns the same result, which
is the value 5. The Dim statements inside this function procedure are used
to declare variables that the function will use. A variable is a name that
is used to refer to an item of data. Because we want the function to per-
form a calculation, we specify that the variables will hold integer values.
Variables and data types are covered in detail in Chapter 3, “Access VBA
Fundamentals.”

4 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 The variable definitions (the lines with the Dim statements) are followed
by the variable assignment statements in which we assign specific num-
bers to the variables num1 and num2. Finally, the calculation is performed
by adding together the values held in both variables: num1 + num2. To
return the result of our calculation, we set the function name to the value
or the expression we want to return:

addTwoNumbers = num1 + num2

Although this function example returns a value, not all functions have to
return values. Functions, like subroutines, can perform actions without
returning any values.
 Like procedures, functions can accept arguments. For example, to make
our addTwoNumbers function more versatile, we can rewrite it as follows:

Function addTwoNumbers2(num1 As Integer, num2 As Integer)

 addTwoNumbers2 = num1 + num2

End Function

Now we can pass any two numbers to the preceding function to add them
together. For example, we can write the following statement to display the
result of the function in a message box:

Sub DisplayResult()

 MsgBox("Total=" & addTwoNumbers2(34,80))

End Sub

3. Event procedures
Event procedures are automatically executed in response to an event initi-
ated by the user or program code or triggered by the system. Events, event
properties, and event procedures are introduced later in this chapter. They
are also covered in Chapter 9, “Getting to Know Built-In Tools for Testing
and Debugging.”

4. Property procedures
Property procedures are used to get or set the values of custom properties
for forms, reports, and class modules. The three types of property proce-
dures (Property Get, Property Let, and Property Set) begin with the Prop-
erty keyword followed by the property type (Get, Let, or Set), the property
name, and a pair of empty parentheses, and end with the End Property
keywords. Here’s an example of a property procedure that retrieves the value
of an author’s royalty:

Property Get Royalty()

 Royalty = (Sales * Percent) – Advance

End Property

Property procedures are covered in detail in Chapter 8, “Keeping Track of
Multiple Values Using Object Collections.”

GETTING STARTED WITH ACCESS VBA 5

WRITING PROCEDURES IN A STANDARD MODULE

As mentioned earlier, procedures are created and stored in modules. Access
has two types of modules: standard and class. Standard modules are used
to hold subprocedures and function procedures that can be run from any-
where in the application because they are not associated with any particular
form or report.

Because we already have a couple of procedures to try out, let’s do a
quick hands-on exercise to learn how to open standard modules, write pro-
cedures, and execute them.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 1.1 Working in a Standard Module

1. Create a folder on your hard drive named C:\VBAPrimerAccess_
ByExample.

2. Open Microsoft Access and click Blank database. Type Chap01 in the File
Name box and click the folder button to set the location for the database
to the C:\VBAPrimerAccess_ByExample folder. Finally, click the Create
button to create the specified database (see Figure 1.1). Access will create
the database in its default .ACCDB format.

FIGURE 1.1 Creating a blank desktop Access database.

3. To launch the programming environment, select the Database Tools tab
and click Visual Basic (see Figure 1.2). You can also press Alt+F11 to get
to this screen.

6 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.2 Activating a Visual Basic development environment.

4. Insert a standard module by choosing Module from the Insert menu (see
Figure 1.3).

FIGURE 1.3 Inserting a standard module.

Each module begins with a declaration section that lists various settings
and declarations that apply to every procedure in the module. Figure 1.4
shows the default declaration. Option Compare Database specifies how
string comparisons are evaluated in the module—whether the comparison
is case-sensitive or insensitive. This is a case-insensitive comparison that
respects the sort order of the database. This means that “a” is the same as
“A.” If you delete the Option Compare Database statement, the default
string comparison setting for the module is Option Compare Binary
(used for case-sensitive comparisons where “a” is not the same as “A”).
 Another declaration (not shown here) called the Option Explicit
statement is often used to ensure that all variables used within this module
are formally declared. You will learn about this statement and variables in
Chapter 4.
 Following the declaration section is the procedure section, which holds
the module’s procedures. You can begin writing your procedures at the
cursor position within the Module1 (Code) window.

GETTING STARTED WITH ACCESS VBA 7

FIGURE 1.4 Standard module.

5. In the Module1 (Code) window, enter the code of subroutines and function
procedures as shown in Figure 1.5.
Notice that Access inserts a horizontal line after each End Sub or End
Function keyword to make it easier to identify each procedure. The
Procedure drop-down box at the top-right corner of the Module1 (Code)
window displays the name of the procedure in which the insertion point
is currently located.

FIGURE 1.5 Standard module with subprocedures and functions.

8 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

EXECUTING YOUR PROCEDURES

Now that you’ve filled the standard module with some procedures and
functions, let’s see how you can run them. There are many ways of running
your code. In the next hands-on exercise, you will execute your code in four
different ways using:

 ● Run menu (Run Sub/UserForm)

 ● Toolbar button (Run Sub/UserForm)

 ● Keyboard (F5)

 ● Immediate window

 Hands-On 1.2 Running Procedures and Functions

1. Place the insertion point anywhere within the ShowMessage procedure.
The Procedure box in the top-right corner of the Module1 (Code) window
should display ShowMessage. Choose Run Sub/UserForm from the Run
menu.
Access runs the selected procedure and displays the message box with the
text “This is a message box in VBA.”

2. Click OK to close the message box. Try running this procedure again,
this time by pressing the F5 key on the keyboard. Click OK to close the
message box. If the Access window seems stuck and you can’t activate any
menu option, this is often an indication that there is a message box open in
the background. Access will not permit you to do any operation until you
close the pop-up window.

3. Now, run this procedure for the third time by clicking the Run Sub/

UserForm button () on the toolbar. This button has the same tooltip

as the Run Sub/UserForm (F5) option on the Run menu.

NOTE

Procedures that require arguments cannot be executed
directly using the methods you just learned. You need to
type some input values for these procedures to run. A perfect
place to do this is the Immediate window, which is covered
in detail in Chapter 2, “Getting to Know Visual Basic Editor
(VBE).” For now, let’s open this window and see how you
can use it to run VBA procedures.

4. Select Immediate Window from the View menu.
Access opens a small window and places it just below the Module1 (Code)
window. You can size and reposition this window as needed. Figure 1.6

shows statements that you will run from the Immediate window in St eps
5–8.

GETTING STARTED WITH ACCESS VBA 9

5. Type the following in the Immediate window and press Enter to execute.
ShowMessage2 "I'm learning VBA."

Access executes the procedure and displays the message in a message box.
Click OK to close the message box. Notice that to execute the ShowMessage2
procedure, you need to type the procedure name, a space, and the text you want
to display. The text string must be surrounded by double quotation marks.
In a similar way you can execute the ShowMessage3 procedure by provid-
ing two required text strings. For example, on a new line in the Immediate
window, type the following statement and press Enter to execute:

ShowMessage3 "Keep on learning.", "John"

When you press the Enter key, Access executes the ShowMessage3 proce-
dure and displays the text “John, your message is: Keep on learning.” Click
OK to close this message box.

NOTE

You can also use the Call statement to run a procedure in the
Immediate window. When using this statement, you must place
the values of arguments within parentheses, as shown here:

Call ShowMessage3("Keep on learning.", "John")

Function procedures are executed using different methods. Step 6 demon-
strates how to call the addTwoNumbers function.

6. On a new line in the Immediate window, type a question mark followed by
the name of the function procedure and press Enter:

?addTwoNumbers

Access should display the result of this function (the number 5) on the
next line in the Immediate window.

7. Now run the addTwoNumbers2 procedure. Type the following instruction
in the Immediate window and press Enter:

?addTwoNumbers2(56, 24)

Access displays the result of adding these two numbers on the next line.
8. If you’d rather see the function result in a message box, type the following

instruction in the Immediate window and press Enter:

MsgBox("Total=" & addTwoNumbers2(34,80))

Access displays a message box with the text “Total=114”.

NOTE
See Chapter 2 for more information on running your proce-
dures and functions from the Immediate window.

10 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 1.6 Running procedures and functions in the Immediate window.

Now that you’ve familiarized yourself a bit with standard modules, let’s
move on to another type of module known as the class module.

UNDERSTANDING CLASS MODULES

Class modules come in three varieties: standalone class modules, form mod-
ules, and report modules.

1. Standalone class modules—These modules are used to create your
own custom objects with their own properties and methods. You create
a standalone class module by choosing Insert | Class Module in the
Microsoft Visual Basic for Applications window. Access will create a
default class module named Class1 and will list it in the Class modules
folder in the Project Explorer window. You will work with standalone class
modules in Chapter 8.

2. and 3. Form modules and report modules—Each Access form can
contain a form module, and each report can contain a report module. Th ese
modules are special types of class modules that are saved automatically
whenever you save the form or report.

All newly created forms and reports are lightweight by design because they
don’t have modules associated with them when they’re first created. There-
fore, they load and display faster than forms and reports with modules.
These lightweight forms and reports have their Has Module property set to
No (see Figure 1.7). When you open a form or report in Design view and
click the View Code button in the Tools section of the Design tab, Access
creates a form or report module. The Has Module property of a form or
report is automatically set to Yes to indicate that the form or report now
has a module associated with it. Note that this happens even if you have
not written a single line of VBA code. Access opens a module window and
assigns a name to the module that consists of three parts: the name of the

GETTING STARTED WITH ACCESS VBA 11

object (e.g., form or report), an underscore character, and the name of the
form or report. For example, a newly created form that has not been saved
is named Form_Form1, a form module in the Customers form is named
Form_Customers, and a report module in the Customers report is named
Report_Customers (see Figure 1.8).

As with report modules, form modules store event procedures for events
recognized by the form and its controls, as well as general function proce-
dures and subprocedures. You can also write Property Get, Property Let,
and Property Set procedures to create custom properties for the form or
report. The procedures stored in their class modules are available only while
you are using that form or report.

FIGURE 1.7 When you begin designing a new form in the Microsoft Access user interface, the

form does not have a module associated with it. Notice that the Has Module property on the

form’s property sheet is set to No.

FIGURE 1.8 Database modules are automatically organized in folders. Form and report

modules are listed in the Microsoft Access Class Objects folder. Standard modules can be found

in the Modules folder. The Class Modules folder organizes standalone class modules.

12 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

EVENTS, EVENT PROPERTIES, AND EVENT PROCEDURES

In order to customize your database applications or to deliver products
that fit your users’ specific needs, you’ll be doing quite a bit of event-driven
programming. Microsoft Access is an event-driven application. This means
that whatever happens in an Access application is the result of an event
that Access has detected. Events are things that happen to objects and can
be triggered by the user or by the system, such as clicking a mouse but-
ton, pressing a key, selecting an item from a list, or changing a list of items
available in a listbox. As a programmer, you will often want to modify the
application’s built-in response to a particular event. Before the application
processes the user’s mouseclicks and keypresses in the usual way, you can
tell the application how to react to the activity. For example, if a user clicks
a Delete button on your form, you can display a custom delete confirmation
message to ensure that the user selected the intended record for deletion.

For each event defined for a form, form control, or report, there is a
corresponding event property. If you open any Microsoft Access form in
Design view and choose Properties in the Tools section of the Design tab,
and then click the Event tab of the property sheet, you will see a long list of
events your form can respond to (see Figure 1.9).

FIGURE 1.9 Event properties for an Access form are listed on the Event tab in the property

sheet.

Forms, reports, and the controls that appear on them have various event
properties you can use to trigger desired actions. For example, you can open

GETTING STARTED WITH ACCESS VBA 13

or close a form when a user clicks a command button, or you can enable or
disable controls when the form loads.

To specify how a form, report, or control should respond to events, you
can write event procedures. In your programming code, you may need to de-
scribe what should happen if a user clicks on a command button or makes a
selection from a combo box. For example, when you design a custom form,
you should anticipate and program events that can occur at runtime (while
the form is being used). The most common event is the Click event. Every
time a command button is clicked, it triggers an event procedure to respond
to the Click event for that button.

When you assign your event procedure to an event property, you set an
event trap. Event trapping gives you considerable control in handling events
because you basically interrupt the default processing that Access would
normally carry out in response to the user’s keypress or mouseclick. If a
user clicks a command button to save a form, whatever code you’ve written
in the Click event of that command button will run. The event program-
ming code is stored as a part of a form, report, or control and is triggered
only when user interaction with a form or report generates a specific event;
therefore, it cannot be used as a standalone procedure.

Why Use Events?

Events allow you to make your applications dynamic and interactive. To
handle a specific event, you need to select the appropriate event property on
the property sheet and then write an event handling procedure. Access will
provide its own default response to those events you have not programmed.
Events cannot be defined for tables or queries.

Walking Through an Event Procedure

The following hands-on exercise demonstrates how to write event proce-
dures. Your task is to change the background color of a text box control on a
form when the text box is selected and then return the default background
color when you tab or click out of that text box.

 Hands-On 1.3 Writing an Event Procedure

1. Close the Chap01.accdb database file used in Hands-On 1.1 and save
changes to the file when prompted.

2. Copy the AssetTracking.accdb database from the companion CD to your
C:\VBAPrimerAccess_ByExample folder. This file is a copy of the Asset
tracking database provided by Microsoft.

3. Open the database C:\VBAPrimerAccess_ByExample\AssetTracking.
accdb. Upon loading, when you see a Welcome screen, click the Get
Started button.

14 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

4. Access opens the database and displays a security warning message (see
Figure 1.10). In order to use the file, click the Enable Content button in
the message bar. Access will close the database and reopen it. If you see the
Welcome screen, click the Get Started button again.

NOTE
The last section of this chapter explains how you can use
trusted locations to keep Access from disabling the VBA
code upon opening a database.

FIGURE 1.10 Active content such as VBA Macros can contain viruses and other security

hazards. By default, Access displays a Security Warning message when you first load a database

file that contains active content. You should enable content only if you trust the contents of the

file.

5. Open the Asset Details form in Design view. To do this, right-click the
Asset Details form and choose Design View from the shortcut menu.

NOTE
If the property sheet is not displayed next to the AssetDetails
form, click the Property Sheet button in the Tools group of
the Form Design Tools tab on the Ribbon.

6. Click the Manufacturer text box control on the Asset Details form, and
then click the Event tab in the property sheet. The property sheet will
display Manufacturer in the control drop-down box.
The list of event procedures available for the text box control appears, as
shown in Figure 1.11.

GETTING STARTED WITH ACCESS VBA 15

FIGURE 1.11 To create an event procedure for a form control, use the Build button, which is

displayed as an ellipsis (…). This button is not available unless an event is selected.

7. Click in the column next to the On Got Focus event name, and then click
the Build button (…), as shown in Figure 1.11 in the previous step. This
will bring up the Choose Builder dialog box (see Figure 1.12).

FIGURE 1.12 To write VBA programming code for your event procedure, choose Code Builder

in the Choose Builder dialog box.

8. Select Code Builder in the Choose Builder dialog box and click OK. This
will display a VBA code module in the Visual Basic Editor window (see
Figure 1.13). This window (often referred to as VBE) is discussed in detail
in Chapter 2.
Look at Figure 1.13. Access creates a skeleton of the GotFocus event pro-
cedure. The name of the event procedure consists of three parts: the object
name (Manufacturer), an underscore character (_), and the name of the
event (GotFocus) occurring to that object. The word Private indicates
that the event procedure cannot be triggered by an event from another

16 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

form. The word Sub in the first line denotes the beginning of the event
procedure. The words End Sub in the last line denote the end of the event
procedure. The statements to be executed when the event occurs are writ-
ten between these two lines.

FIGURE 1.13 Code Builder displays the event procedure Code window with a blank event

procedure for the selected object. Here you can enter the code for Access to run when the

specified GotFocus procedure is triggered.

Notice that each procedure name ends with a pair of empty parentheses ().
Words such as Sub, End, or Private have special meaning to Visual Basic
and are called keywords (reserved words). Visual Basic displays keywords
in blue, but you can change the color of your keywords from the Editor
Format tab in the Options dialog box (choose Tools | Options in the Visual
Basic Editor window). All VBA keywords are automatically capitalized.
 At the top of the Code window (see Figure 1.13), there are two drop-
down listboxes. The one on the left is called Object. This box displays the
currently selected control (Manufacturer). The box on the right is called
Procedure. If you position the mouse over one of these boxes, the tooltip
indicates the name of the box. Clicking on the down arrow at the right
of the Procedure box displays a list of all possible event procedures as-
sociated with the object type selected in the Object box. You can close
the drop-down listbox by clicking anywhere in the unused portion of the
Code window.

9. To change the background color of a text box control to green, enter the
following statement between the existing lines:

Me.Manufacturer.BackColor = RGB(0, 255, 0)

Notice that when you type each period, Visual Basic displays a list contain-
ing possible item choices. This feature, called List Properties/Methods, is
a part of Visual Basic’s on-the-fly syntax and programming assistance, and
is covered in Chapter 2. When finished, your first event procedure should
look as follows:

GETTING STARTED WITH ACCESS VBA 17

Private Sub Manufacturer_GotFocus()

 Me.Manufacturer.BackColor = RGB(0, 255, 0)

End Sub

The statement you just entered tells Visual Basic to change the background
color of the Manufacturer text box to green when the cursor is moved into
that control. The color is specified by using the RGB function.

10. In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Got
Focus event property in the property sheet for the selected Manufacturer
text box control (see Figure 1.14).

FIGURE 1.14 [Event Procedure] in the property sheet denotes that the text box’s On Got

Focus event has an event procedure associated with it.

18 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

11. To test your GotFocus event procedure, switch from the Design view of
the Asset Details form to Form view by clicking the View button on the
Ribbon’s Design tab.

12. While in the Form view, click in the Manufacturer text box and notice the
change in the background color.

13. Now, click on any other text box control on the Asset Details form.
Notice that the Manufacturer text box does not return to the original col-
or. So far, you’ve told Visual Basic only what to do when the specified con-
trol receives the focus. If you want the background color to change when
the focus moves to another control, there is one more event procedure to
write—On Lost Focus.

14. To create the LostFocus procedure, return your form to Design view and
click the Manufacturer control. In the property sheet for this control,
select the Event tab, and then click the Build button to the right of the On
Lost Focus event property. In the Choose Builder dialog box, select Code
Builder.

15. To change the background color of a text box control to white, enter the
following statement inside the Manufacturer_LostFocus event procedure:

 Me.Manufacturer.BackColor = RGB(255,255,255)

The completed On Lost Focus procedure is shown in Figure 1.15.

FIGURE 1.15 The GotFocus and LostFocus event procedures will now control the behavior of

the Manufacturer control when the control is in focus and out of focus.

16. In the Visual Basic window, choose File | Close and Return to Microsoft
Access. Notice that [Event Procedure] now appears next to the On Lost
Focus event property in the property sheet for the selected Manufacturer
text box control.

17. Repeat Steps 11–12 to test both event procedures you have written.
18. When you are done, close the Asset Tracking database and click OK when

prompted to save the changes.

COMPILING YOUR PROCEDURES

The VBA code you write in the Visual Basic Editor Code window is auto-
matically compiled by Microsoft Access before you run it. The syntax of

GETTING STARTED WITH ACCESS VBA 19

your VBA statements is first thoroughly checked for errors, and then your
procedures are converted into executable format. If an error is discovered
during the compilation process, Access stops compiling and displays an
error message. It also highlights the line of code that contains the error. The
compiling process can take from seconds to minutes or longer, depending
on the number of procedures written and the number of modules used.

To ensure that your procedures have been compiled, you can explicitly
compile them after you are done programming. You can do this by choosing
Debug | Compile in the Visual Basic Editor window.

Microsoft Access saves all the code in your database in its compiled
form. Compiled code runs more quickly the next time you open it. You
should always save your modules after you compile them. In Chapter 9,
“Getting to Know Built-In Tools for Testing and Debugging,” you will learn
how to test and troubleshoot your VBA procedures.

PLACING A DATABASE IN A TRUSTED LOCATION

By default, the security features built into Access disable the VBA code
when you open a database. To make it easy to work with Access databases in
this book, you will not want to bother with enabling content each time you
open a database. To trust your databases permanently, you can place them
in a trusted location—a folder on your local or network drive that you mark
as trusted. You can get more information about the Enable Content button
and access the Trust Center to set up a trusted folder by choosing File | Info
(see Figure 1.16). This screen can also be activated by clicking the text mes-
sage in the Security Warning message bar: “Some active content has been
disabled. Click for more details.” (See Figure 1.10 earlier.)

FIGURE 1.16 The Info tab with an explanation of the Security Warning message. Hands-On 1.4

will take you through the process of setting up a trusted folder for your Access databases by using

the Options button.

20 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 1.4 Placing an Access Database in a Trusted Location

1. Open the Chap01.accdb database and click the Enable Content button in
the Security Warning message.

2. Choose File | Options.
3. In the left pane of the Access Options dialog box, click Trust Center, and

then click Trust Center Settings in the right pane, as shown in Figure 1.17.

FIGURE 1.17 Working with the Trust Center (Step 1).

4. In the left pane of the Trust Center dialog box, click Trusted Locations, as
shown in Figure 1.18.

FIGURE 1.18 Working with the Trust Center (Step 2).

GETTING STARTED WITH ACCESS VBA 21

5. Click the Add new location button, as shown in Figure 1.18.
6. In the Path text box, type the path and folder name of the location on your

local drive that you want to set up as a trusted source for opening files.
Let’s enter C:\VBAPrimerAccess_ByExample to designate this folder as
a trusted location for this book’s database programming exercises (see
Figure 1.19).

FIGURE 1.19 Working with the Trust Center (Step 3).

7. Click OK to close the Microsoft Office Trusted Location dialog box.
8. The Trusted Locations list in the Trust Center dialog box now includes the

C:\VBAPrimerAccess_ByExample folder as a trusted source (see Figure
1.20). Files put in a trusted location can be opened without being checked
by the Trust Center security feature. Click OK to close the Trust Center
dialog box.

FIGURE 1.20 Working with the Trust Center (Step 4).

22 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

9. Click OK to close the Access Options dialog box and click OK when Access
displays informational message that the database needs to be closed for the
setting to take effect.

10. Close the open Access databases and exit Microsoft Access.
11. Open the Chap01.accdb database file from your C:\VBAPrimerAccess_

By Example folder and notice that Access no longer displays the Security
Warning message.

12. Close the Chap01.accdb database.

SUMMARY

In this chapter, you learned about subroutine procedures, function proce-
dures, property procedures, and event procedures. You also learned different
ways of executing subroutines and functions. The main hands-on exercise
in this chapter walked you through writing two event procedures in the
Asset Details form’s class module for a Manufacturer text control placed in
the form. You finished this chapter by designating a trusted location folder
for your Access databases.

This chapter has given you a glimpse of the Microsoft Visual Basic pro-
gramming environment built into Access. The next chapter will take you
deeper into this interface, showing you various windows and shortcuts that
you can use to program faster and with fewer errors.

23

N
ow that you know how to write procedures and functions in stan-
dard modules and event procedures in modules placed behind a
form, we’ll spend some time in the Visual Basic Editor window to

become familiar with the multitude of tools it offers to simplify your pro-
gramming tasks. With the tools located in the Visual Basic Editor window,
you can:

 ● Write your own VBA procedures

 ● Create custom forms

 ● View and modify object properties

 ● Test and debug VBA procedures and locate errors

You can enter the VBA programming environment in either of the follow-
ing ways:

 ● By selecting the Database Tools tab, and then Visual Basic in the
Macro group

 ● From the keyboard, by pressing Alt+F11

Chapter

2
GETTING TO KNOW

VISUAL BASIC EDITOR (VBE)

24 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

UNDERSTANDING THE PROJECT EXPLORER WINDOW

The Project Explorer window, located on the left side of the Visual Basic
Editor window, provides access to modules behind forms and reports via
the Microsoft Access Class Objects folder (see Figure 2.1). The Modules
folder lists only standard modules that are not behind a form or report.

In addition to the Microsoft Access Class Objects and Modules fold-
ers, the VBA Project Explorer window can contain a Class Modules folder.
Class modules are used for creating your own objects, as demonstrated in
Chapter 8. Using the Project Explorer window, you can easily move between
modules currently loaded into memory.

You can activate the Project Explorer window in one of three ways:

 ● From the View menu by selecting Project Explorer

 ● From the keyboard by pressing Ctrl-R

 ● From the Standard toolbar by clicking the Project Explorer button (
) as shown in Figure 2.2

FIGURE 2.1 The Project Explorer window provides easy access to your VBA procedure code.

NOTE
If the Project Explorer window is visible but not active, acti-
vate it by clicking the Project Explorer title bar.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 25

Buttons on the Standard toolbar (Figure 2.2) provide a quick way to access
many Visual Basic features.

FIGURE 2.2 Use the toolbar buttons to quickly access frequently used features in the VBE

window.

The Project Explorer window (see Figure 2.3) contains three buttons:

 ● View Code—Displays the Code window for the selected module.

 ● View Object—Displays the selected form or report in the Microsoft
Access Class Objects folder. Th is button is disabled when an object in
the Modules or Class Modules folder is selected.

 ● Toggle Folders—Hides and unhides the display of folders in the
Project Explorer window.

FIGURE 2.3 The VBE Project Explorer window contains three buttons that allow you to view

code or objects and toggle folders.

UNDERSTANDING THE PROPERTIES WINDOW

The Properties window allows you to review and set properties for the cur-
rently selected Access class or module. The name of the selected object is
displayed in the Object box located just below the Properties window title
bar. The Properties window displays the current settings for the selected
object. Object properties can be viewed alphabetically or by category by
clicking on the appropriate tab.

26 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 ● Alphabetic tab—Lists all properties for the selected object alphabeti-
cally. You can change the property setting by selecting the property
name, and then typing or selecting the new setting.

 ● Categorized tab—Lists all properties for the selected object by cat-
egory. You can collapse the list so that you see only the category
names, or you can expand a category to see the properties. Th e plus
(+) icon to the left of the category name indicates that the category
list can be expanded. Th e minus (–) indicates that the category is cur-
rently expanded.

The Properties window can be accessed in the following ways:

 ● From the View menu by selecting Properties Window

 ● From the keyboard by pressing F4

 ● From the Standard toolbar by clicking the Properties Window button

() located to the right of the Project Explorer button

Figure 2.4 displays the properties of the E-mail Address text box control
located in the Form_Order Details form in the Northwind 2007 sample
Access database. In order to access properties for a form control, you need
to perform the steps outlined in Hands-On 2.1.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 2.1 Using the Properties Window to View Control
Properties

1. Copy the Northwind 2007 sample database from the companion CD to
your C:\VBAPrimerAccess_ByExample folder.

2. Open and load the C:\VBAPrimerAccess_ByExample\Northwind 2007.
accdb file. Log in to the database as Andrew Cencini.

3. When Northwind 2007 opens, press Alt+F11 to activate the Visual Basic
Editor window.

4. In the Project Explorer window, click the Toggle Folders button () and
select the Microsoft Access Class Objects folder. Highlight the Form_
Order Details form (Figure 2.4) and click the View Object button ().
This will open the selected form in Design view.

5. Press Alt+F11 to return to the Visual Basic Editor. The Properties window
will be filled with the properties for the Form_Order Details form. To
view the properties of the E-mail Address text box control on this form,
as shown in Figure 2.4, select E-mail Address from the drop-down list
located below the Properties window’s title bar.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 27

FIGURE 2.4 You can edit object properties in the Properties window, or you can edit them in

the property sheet when a form or report is open in Design view.

UNDERSTANDING THE CODE WINDOW

The Code window is used for Visual Basic programming as well as for view-
ing and modifying the code of existing Visual Basic procedures. Each VBA
module can be opened in a separate Code window.

There are several ways to activate the Code window:

 ● From the Project Explorer window, choose the appropriate module

and then click the View Code button ()

 ● From the Microsoft Visual Basic menu bar, choose View | Code

 ● From the keyboard, press F7

At the top of the Code window there are two drop-down list boxes that
allow you to move quickly within the Visual Basic code. In the Object box

28 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

on the left side of the Code window, you can select the object whose code
you want to view, as shown in Figure 2.5.

The box on the right side of the Code window lets you select a procedure
to view. When you click the down arrow at the right of this box, the names
of all procedures located in a module are listed alphabetically, as shown in
Figure 2.6. When you select a procedure in the Procedure box, the cursor
will jump to the first line of that procedure.

FIGURE 2.5 The Object drop-down box lists objects that are available in the module selected in

the Project Explorer window.

FIGURE 2.6 The Procedure drop-down box lists events to which the object selected in the

Object drop-down box can respond. If the selected module contains events written for the

highlighted object, the names of these events appear in bold type.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 29

By choosing Window | Split or dragging the split bar down to a selected
position in the Code window, you can divide the Code window into two
panes, as shown in Figure 2.7.

FIGURE 2.7 By splitting the Code window, you can view different sections of a long procedure

or a different procedure in each window pane.

Setting up the Code window for the two-pane display is useful for copying,
cutting, and pasting sections of code between procedures in the same mod-
ule. To return to a one-window display, drag the split bar all the way to the
top of the Code window or choose Window | Split again.

There are two icons at the bottom of the Code window (see Figure 2.7).
The Procedure View icon changes the display to only one procedure at a
time in the Code window. To select another procedure, use the Procedure
drop-down box. The Full Module View icon changes the display to all the
procedures in the selected module. Use the vertical scrollbar in the Code
window to scroll through the module’s code. The Margin Indicator bar is
used by the Visual Basic Editor to display helpful indicators during editing
and debugging.

OTHER WINDOWS IN THE VBE

In addition to the Code window, there are several other windows that are
frequently used in the Visual Basic environment, such as the Immediate,
Locals, Watch, Project Explorer, Properties, and Object Browser windows.
The Docking tab in the Options dialog box, shown in Figure 2.8, displays a
list of available windows and allows you to choose which windows you want
to be dockable. To access this dialog box, select Tools | Options in the Visual
Basic Editor window.

30 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 2.8 You can use the Docking tab in the Options dialog box to control which windows

are currently displayed in the Visual Basic programming environment.

ASSIGNING A NAME TO THE VBA PROJECT

A VBA Project is a set of Microsoft Access objects, modules, forms, and
references.

When you create a Microsoft Access database and later switch to the
VBE window, you will see in the Project Explorer window that Access had
automatically assigned the database name to the VBA Project. For example,
if your database is named Chap01.accdb, the Project Properties window
displays Chap01 (Chap01) where the first “Chap01” denotes the VBA Proj-
ect name and the “Chap01” in the parentheses is the name of the database.
You can change the name of the VBA Project in one of the following ways:

 ● Choose Tools | <database name> Properties, enter a new name in the
Project Name box of the Project Properties window (see Figure 2.9),
and click OK.

 ● In the Project Explorer window, right-click the name of the project
and select <database name> Properties. Enter a new name in the
Project Name box of the Project Properties window (see Figure 2.9)
and click OK.

To avoid naming conflicts between projects, make sure that you give your
projects unique names.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 31

FIGURE 2.9 Use the Project Properties dialog box to rename the VBA Project.

RENAMING THE MODULE

When you insert a new module to your VBA Project, Access generates
a default name for the module—Module1, Module2, and so on. You can
rename your modules right after you insert them into the VBA project or
when your project is being saved for the first time. In the latter case, Access
will iterate through all the newly added (not saved) modules and will prompt
you with the Save As dialog box to accept or change the module name. You
can change the module name at any time via the Properties window. Simply
select the module name (e.g., Module1) in the Project Explorer window
and double-click the Name property in the Properties window. This action
will highlight the default module name next to the Name property. Type the
new name for the module and press Enter. The module name in the Project
Explorer window should now reflect your change.

SYNTAX AND PROGRAMMING ASSISTANCE

Writing procedures in Visual Basic requires that you use hundreds of built-
in instructions and functions. Because most people cannot memorize the
correct syntax of all the instructions available in VBA, the IntelliSense® tech-
nology provides you with syntax and programming assistance on demand
while you are entering instructions. While working in the Code window,

32 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

you can have special tools pop up and guide you through the process of
creating correct VBA code. The Edit toolbar in the VBE window, shown in
Figure 2.10, contains several buttons that let you enter correctly formatted
VBA instructions with speed and ease. If the Edit toolbar isn’t currently
docked in the Visual Basic Editor window, you can turn it on by choosing
View | Toolbars.

List Properties/Methods

Each object can contain one or more properties and methods. When you
enter the name of the object in the Code window followed by a period that
separates the name of the object from its property or method, a pop-up
menu may appear. This menu lists the properties and methods available
for the object that precedes the period. To turn on this automated feature,
choose Tools | Options. In the Options dialog box, click the Editor tab, and
make sure the Auto List Members checkbox is selected. As you enter VBA
instructions, Visual Basic suggests properties and methods that can be used
with the object, as demonstrated in Figure 2.11.

FIGURE 2.10 The Edit toolbar provides timesaving buttons while entering VBA code.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 33

FIGURE 2.11 When Auto List Members is selected, Visual Basic suggests properties and

methods that can be used with the object as you are entering the VBA instructions.

To choose an item from the pop-up menu, start typing the name of the
property or method you want to use. When the correct item name is high-
lighted, press Enter to insert the item into your code and start a new line
or press the Tab key to insert the item and continue writing instructions
on the same line. You can also double-click the item to insert it in your
code. To close the pop-up menu without inserting an item, press Esc. When
you press Esc to remove the pop-up menu, Visual Basic will not display the
menu for the same object again.

To display the Properties/Methods pop-up menu again, you can:

 ● Press Ctrl-J

 ● Use the Backspace key to delete the period, and then type the period
again

 ● Right-click in the Code window, and select List Properties/Methods
from the shortcut menu

 ● Choose Edit | List Properties/Methods

 ● Click the List Properties/Methods button () on the Edit toolbar

Parameter Info

Some VBA functions and methods can take one or more arguments (or
parameters). If a Visual Basic function or method requires an argument,
you can see the names of required and optional arguments in a tip box that
appears just below the cursor as soon as you type the open parenthesis or
enter a space. The Parameter Info feature (see Figure 2.12) makes it easy for
you to supply correct arguments to a VBA function or method. In addition,
it reminds you of two other things that are very important for the function

34 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

or method to work correctly: the order of the arguments and the required
data type of each argument. For example, if you enter in the Code win-
dow the instruction DoCmd.OpenForm and type a space after the OpenForm
method, a tip box appears just below the cursor. Then as soon as you sup-
ply the first argument and enter the comma, Visual Basic displays the next
argument in bold. Optional arguments are surrounded by square brackets [
]. To close the Parameter Info window, all you need to do is press Esc.

FIGURE 2.12 A tip window displays a list of arguments used by a VBA function or method.

To open the tip box using the keyboard, enter the instruction or func-
tion, followed by the open parenthesis, and then press Ctrl-Shift-I. You can
also click the Parameter Info button () on the Edit toolbar or choose
Edit | Parameter Info from the menu bar.

You can also display the Parameter Info box when entering a VBA func-
tion. To try this out quickly, choose View | Immediate Window, and then
type the following in the Immediate window:

Mkdir(

You should see the MkDir(Path As String) tip box just below the cursor.
Now, type "C:\NewFolder" followed by the ending parenthesis. When you
press Enter, Visual Basic will create a folder named NewFolder in the root
directory of your computer. Activate Explorer and check it out!

List Constants

If there is a check mark next to the Auto List Members setting in the Options
dialog box (Editor tab), Visual Basic displays a pop-up menu listing the
constants that are valid for the property or method. A constant is a value
that indicates a specific state or result. Access and other members of the
Microsoft Office suite have a number of predefined, built-in constants.

Suppose you want to open a form in Design view. In Microsoft Access,
a form can be viewed in Design view (acDesign), Datasheet view (acFor-
mDS), PivotChart view (acFormPivot Chart), PivotTable view (acFormPiv-
otTable), Form view (acNormal), and Print Preview (acPreview). Each of
these options is represented by a built-in constant. Microsoft Access con-

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 35

stant names begin with the letters “ac.” As soon as you enter a comma and
a space following your instruction in the Code window (e.g., DoCmd.Open-
Form "Products",), a pop-up menu will appear with the names of valid
constants for the OpenForm method, as shown in Figure 2.13.

FIGURE 2.13 The List Constants pop-up menu displays a list of constants that are valid for the

property or method typed.

The List Constants menu can be activated by pressing Ctrl+Shift+J or by
 clicking the List Constants button () on the Edit toolbar.

Quick Info

When you select an instruction, function, method, procedure name, or con-

stant in the Code window and then click the Quick Info button () on the

Edit toolbar (or press Ctrl+I), Visual Basic will display the syntax of the

highlighted item as well as the value of its constant (see Figure 2.14). The
Quick Info feature can be turned on or off using the Options dialog box
(Tools | Options). To use the feature, click the Editor tab in the Options
dialog box, and make sure there is a check mark in the box next to Auto
Quick Info.

FIGURE 2.14 The Quick Info feature provides a list of function parameters, as well as constant

values and VBA statement syntax.

Complete Word

Another way to increase the speed of writing VBA procedures in the Code
window is with the Complete Word feature. As you enter the first few letters

36 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

of a keyword and click the Complete Word button () on the Edit toolbar,

Visual Basic will complete the keyword entry for you. For example, if you
enter the first three letters of the keyword DoCmd (DoC) in the Code win-
dow, and then click the Complete Word button on the Edit toolbar, Visual
Basic will complete the rest of the command. In the place of DoC you will see
the entire instruction, DoCmd.

If there are several VBA keywords that begin with the same letters, when
you click the Complete Word button on the Edit toolbar, Visual Basic will
display a pop-up menu listing all of them. To try this, enter only the first
three letters of the word Application (App), and then press the Complete
Word button on the toolbar. You can then select the appropriate word from
the pop-up menu.

Indent/Outdent

The Editor tab in the Options dialog box, shown in Figure 2.15, contains
many settings you can enable to make automated features available in the
Code window.

FIGURE 2.15 The Options dialog box lists features you can turn on and off to fit the VBA

programming environment to your needs.

When the Auto Indent option is turned on, Visual Basic automatically
indents the selected lines of code using the Tab Width value. The default
entry for Auto Indent is four characters (see Figure 2.15). You can easily
change the tab width by typing a new value in the text box. Why would you
want to use indentation in your code? Indentation makes your VBA proce-
dures more readable and easier to understand. Indenting is especially rec-
ommended for entering lines of code that make decisions or repeat actions.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 37

Let’s see how you can indent and outdent lines of code using the Form_
InventoryList form in the Northwind database that you opened in the previ-
ous hands-on exercise.

 Hands-On 2.2 Using the Indent/Outdent Feature

1. In the Project Explorer window in the Microsoft Access Class Objects
folder, double-click Form_Inventory List. The Code window should now
show the CmdPurchase_Click event procedure written for this form.

2. In the Code window, select the block of code beginning with the keyword
If and ending with the keywords End If.

3. Click the Indent button () on the Edit toolbar or press Tab on the

keyboard. The selected block of code will move four spaces to the right.

You can adjust the number of spaces to indent by choosing Tools | Options
and entering the appropriate value in the Tab Width box on the Editor tab.

4. Now, click the Outdent button () on the Edit toolbar or press Shift+Tab
to return the selected lines of code to the previous location in the Code
window. The Indent and Outdent options are also available from Visual
Basic Editor’s Edit menu.

Comment Block/Uncomment Block

The apostrophe placed at the beginning of a line of code denotes a com-
ment. Besides the fact that comments make it easier to understand what
the procedure does, comments are also very useful in testing and trouble-
shooting VBA procedures. For example, when you execute a procedure, it
may not run as expected. Instead of deleting the lines of code that may be
responsible for the problems encountered, you may want to skip the lines
for now and return to them later. By placing an apostrophe at the beginning
of the line you want to avoid, you can continue checking the other parts of
your procedure. While commenting one line of code by typing an apos-
trophe works fine for most people, when it comes to turning entire blocks
of code into comments, you’ll find the Comment Block and Uncomment
Block buttons on the Edit toolbar very handy and easy to use.

To comment a few lines of code, select the lines and click the Comment

Block button (). To turn the commented code back into VBA instruc-

tions, click the Uncomment Block button (). If you click the Comment

Block button without selecting a block of text, the apostrophe is added only
to the line of code where the cursor is currently located.

38 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

USING THE OBJECT BROWSER

If you want to move easily through the myriad of VBA elements and fea-
tures, examine the capabilities of the Object Browser. This special built-in
tool is available in the Visual Basic Editor window.

To access the Object Browser, use any of the following methods:

 ● Press F2

 ● Choose View | Object Browser

 ● Click the Object Browser button () on the toolbar

The Object Browser allows you to browse through the objects available to
your VBA procedures, as well as view their properties, methods, and events.
With the aid of the Object Browser, you can quickly move between pro-
cedures in your database application and search for objects and methods
across various type libraries.

The Object Browser window, shown in Figure 2.16, is divided into sever-
al sections. The top of the window displays the Project/Library drop-down
listbox with the names of all currently available libraries and projects.

A library is a special file that contains information about the objects in
an application. New libraries can be added via the References dialog box
(select Tools | References). The entry for <All Libraries> lists the objects of
all libraries installed on your computer. While the Access library contains
objects specific to using Microsoft Access, the VBA library provides access
to three objects (Debug, Err, and Collection), as well as several built-in func-
tions and constants that give you flexibility in programming. You can send
output to the Immediate window, get information about runtime errors,
work with the Collection object, manage files, deal with text strings, convert
data types, set date and time, and perform mathematical operations.

Below the Project/Library drop-down listbox is a search box (Search
Text) that allows you to quickly find information in a library. This field
remembers the last four items you searched for. To find only whole words,
right-click anywhere in the Object Browser window, and then choose Find
Whole Word Only from the shortcut menu. The Search Results section of
the Object Browser displays the Library, Class, and Member elements that
meet the criteria entered in the Search Text box. When you type the search
text and click the Search button, Visual Basic expands the Object Browser
window to show the search results. You can hide or show the Search Results
section by clicking the button located to the right of the binoculars. In the
lower section of the Object Browser window, the Classes listbox displays the
available object classes in the selected library. If you select the name of the
open database (e.g., Northwind) in the Project/Library listbox, the Classes
list will display the objects as listed in the Explorer window.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 39

In Figure 2.16, the Form_Inventory List object class is selected. When
you highlight a class, the list on the right side (Members) shows the proper-
ties, methods, and events available for that class. By default, members are
listed alphabetically. You can, however, organize the Members list by group
type (properties, methods, or events) using the Group Members command
from the Object Browser shortcut menu (right-click anywhere in the Object
Browser window to display this menu).

When you select the Northwind 2007 project in the Project/Library list-
box, the Members listbox will list all the procedures available in this proj-
ect. To examine a procedure’s code, double-click its name. When you select
a VBA library in the Project/Library listbox, you will see the Visual Basic
built-in functions and constants. If you need more information on the se-
lected class or member, click the question mark button located at the top of
the Object Browser window.

The bottom of the Object Browser window displays a code template area
with the definition of the selected member. Clicking the green hyperlink
text in the code template lets you jump to the selected member’s class or
library in the Object Browser window. Text displayed in the code template
area can be copied and pasted to a Code window. If the Code window is vis-
ible while the Object Browser window is open, you can save time by drag-
ging the highlighted code template and dropping it into the Code window.
You can easily adjust the size of the various sections of the Object Browser
window by dragging the dividing horizontal and vertical lines.

FIGURE 2.16 The Object Browser window allows you to browse through all the objects,

properties, and methods available to the current VBA project.

Let’s put the Object Browser to use in VBA programming. Assume that you
want to write a VBA procedure to control a checkbox placed on a form and
would like to see the list of properties and methods that are available for
working with checkboxes.

40 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 2.3 Using the Object Browser

1. In the Visual Basic Editor window, press F2 to display the Object Browser.
2. In the Project/Library listbox (see Figure 2.16), click the drop-down arrow

and select the Access library.
3. Type checkbox in the Search Text box and click the Search button ().

Make sure you don’t enter a space in the search string.

Visual Basic begins to search the Access library and displays the search
results. By analyzing the search results in the Object Browser window, you
can find the appropriate VBA instructions for writing your VBA proce-
dures. For example, looking at the Members list lets you quickly determine
that you can enable or disable a checkbox by setting the Enabled property.
To get detailed information on any item found in the Object Browser, select
the item and press F1 to activate online help.

USING THE VBA OBJECT LIBRARY

While programming in Microsoft Access you will need to rely on some
functions that are general in nature. Functions that are available in the
VBA Objects Library will allow you to manage files and folders, set the date
and time, interact with users, convert data types, deal with text strings, or
perform mathematical calculations. In the following exercise, you will see
how to use one of these functions to create a new subfolder without leaving
Access.

 Hands-On 2.4 Using Built-In VBA Functions

1. In the Visual Basic Editor window with the Northwind 2007 database
open, choose Insert | Module to create a new standard module.

2. In the Properties Window, change the Name property of Module1 to
VBAPrimerAccess_Chap2.

4. In the Code window, enter Sub NewFolder() as the name of the procedure
and press Enter. Visual Basic will enter the ending keywords: End Sub.

5. Press F2 to display the Object Browser.
6. Click the drop-down arrow in the Project/Library listbox and select VBA.
7. Enter file in the Search Text box and press Enter.
8. Scroll down in the Members listbox and highlight the MkDir method.
9. Click the Copy button in the Object Browser window to copy the selected

method name to the Windows clipboard.
10. Close the Object Browser and return to the Code window. Paste the copied

instruction inside the NewFolder procedure.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 41

11. Now, enter a space, followed by “C:\Study”. Be sure to enter the name
of the entire path and the quotation marks. Your NewFolder procedure
should look like the following:

Sub NewFolder()

 MkDir "C:\Study"

End Sub

12. Choose Run | Run Sub/UserForm to run the NewFolder procedure.
After you run the NewFolder procedure, Visual Basic creates a new folder
on drive C called Study. To see the folder, activate Windows Explorer.
After creating a new folder, you may realize that you don’t need it after all.
Although you could easily delete the folder while in Windows Explorer,
how about getting rid of it programmatically?
The Object Browser contains many other methods that are useful for work-
ing with folders and files. The RmDir method is just as simple to use as the
MkDir method. To remove the Study folder from your hard drive, replace
the MkDir method with the RmDir method and rerun the NewFolder pro-
cedure. Or create a new procedure called RemoveFolder, as shown here:

Sub RemoveFolder()

 RmDir "C:\Study"

End Sub

When writing procedures from scratch, it’s a good idea to consult the Object
Browser for names of the built-in VBA functions.

USING THE IMMEDIATE WINDOW

The Immediate window is a sort of VBA programmer’s scratch pad. Here
you can test VBA instructions before putting them to work in your VBA
procedures. It is a great tool for experimenting with your new language.
Use it to try out your statements. If the statement produces the expected
result, you can copy the statement from the Immediate window into your
procedure (or you can drag it right onto the Code window if the window is
visible).

To activate the Immediate window, choose View | Immediate Window
in the Visual Basic Editor, or press Ctrl+G while in the Visual Basic Editor
window.

The Immediate window can be moved anywhere on the Visual Basic
Editor window, or it can be docked so that it always appears in the same
area of the screen. The docking setting can be turned on and off from the
Docking tab in the Options dialog box (Tools | Options).

To close the Immediate window, click the Close button in the top-right
corner of the window.

42 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

The following hands-on exercise demonstrates how to use the Immedi-
ate window to check instructions and get answers.

 Hands-On 2.5 Experiments in the Immediate Window

1. If you are not in the VBE window, press Alt+F11 to activate it.
2. Press Ctrl+G to activate the Immediate window or choose View |

Immediate Window.
3. In the Immediate window, type the following instruction and press Enter:

DoCmd.OpenForm "Inventory List"

4. If you entered the preceding VBA statement correctly, Visual Basic opens
the Inventory List form, assuming the Northwind database is open.

5. Enter the following instruction in the Immediate window:

Debug.Print Forms![Inventory List].RecordSource

When you press Enter, Visual Basic indicates that Inventory is the Re-
cordSource for the Inventory List form. Every time you type an instruc-
tion in the Immediate window and press Enter, Visual Basic executes the
statement on the line where the insertion point is located. If you want to
execute the same instruction again, click anywhere in the line containing
the instruction and press Enter. For more practice, rerun the statements
shown in Figure 2.17. Start from the instruction displayed in the first line
of the Immediate window. Execute the instructions one by one by clicking
in the appropriate line and pressing Enter.

FIGURE 2.17 Use the Immediate window to evaluate and try Visual Basic statements.

So far you have used the Immediate window to perform some actions. The
Immediate window also allows you to ask questions. Suppose you want to
find out the answers to “How many controls are in the Inventory List form?”
or “What’s the name of the current application?” When working in the
Immediate window, you can easily get answers to these and other questions.

In the preceding exercise, you entered two instructions. Let’s return
to the Immediate window to ask some questions. Access remembers the
instructions entered in the Immediate window even after you close this
window. The contents of the Immediate window are automatically deleted
when you exit Microsoft Access.

GETTING TO KNOW VISUAL BASIC EDITOR (VBE) 43

 Hands-On 2.6 Asking Questions in the Immediate Window

1. Click in a new line of the Immediate window and enter the following
statement to find out the number of controls in the Inventory List form:

?Forms![Inventory List].Controls.Count

When you press Enter, Visual Basic enters the number of controls on a
new line in the Immediate window.

2. Click in a new line of the Immediate window, and enter the following
statement:

?Application.Name

When you press Enter, Visual Basic enters the name of the active
application on a new line in the Immediate window.

3. In a new line in the Immediate window, enter the following instruction:

?12/3

When you press Enter, Visual Basic shows the result of the division on
a new line. But what if you want to know the result of 3 + 2 and 12 * 8
right away? Instead of entering these instructions on separate lines, you
can enter them on one line as in the following example:

?3+2:?12*8

Notice the colon separating the two blocks of instructions. When you
press the Enter key, Visual Basic displays the results 5 and 96 on separate
lines in the Immediate window.
Here are a couple of other statements you may want to try out on your own
in the Immediate window:

?Application.GetOption("Default Database Directory")

?Application.CodeProject.Name

Instead of using the question mark, you may precede the statement typed
in the Immediate window with the Print command, like this:

Print Application.CodeProject.Name

To delete the instructions from the Immediate window, highlight all the
lines and press Delete.

4. In the Visual Basic Editor window, choose File | Close and Return to
Microsoft Access.

5. Close the Northwind 2007.accdb database.

44 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

NOTE

Recall that in Chapter 1 you learned how to run subroutine
procedures and functions from the Immediate window. You
will find other examples of running procedures and func-
tions from this window in subsequent chapters.

SUMMARY

Programming in Access requires a working knowledge of objects and col-
lections of objects. In this chapter, you explored features of the Visual Basic
Editor window that can assist you in writing VBA code. Here are some
important points:

 ● When in doubt about objects, properties, or methods in an existing
VBA procedure, highlight the instruction in question and fi re up the
online help by pressing F1.

 ● When you need on-the-fl y programming assistance while typing
your VBA code, use the shortcut keys or buttons available on the Edit
toolbar.

 ● If you need a quick listing of properties and methods for every avail-
able object, or have trouble locating a hard-to-fi nd procedure, go
with the Object Browser.

 ● If you want to experiment with VBA and see the results of VBA com-
mands immediately, use the Immediate window.

In the next chapter, you will learn how you can remember values in your
VBA procedures by using various types of variables and constants.

45

I
n Chapter 2, you used the question mark to have Visual Basic return
some information in the Immediate window. Unfortunately, when you
write Visual Basic procedures outside the Immediate window, you can’t

use the question mark. So how do you obtain answers to your questions
in VBA procedures? To find out what a VBA instruction (statement) has
returned, you must tell Visual Basic to memorize it. This is done by us-
ing variables. This chapter introduces you to many types of variables, data
types, and constants that you can and should use in your VBA procedures.

INTRODUCTION TO DATA TYPES

When you create Visual Basic procedures, you have a purpose in mind: You
want to manipulate data. Because your procedures will handle different
kinds of information, you should understand how Visual Basic stores data.

The data type determines how the data is stored in the computer’s mem-
ory. For example, data can be stored as a number, text, date, object, etc. If
you forget to tell Visual Basic the data type, it is assigned the Variant data
type. The Variant type can figure out on its own what kind of data is being
manipulated and then take on that type. The Visual Basic data types are
shown in Table 3.1. In addition to the built-in data types, you can define
your own data types; these are known as user-defined data types. Because
data types take up different amounts of space in the computer’s memory,
some of them are more expensive than others. Therefore, to conserve mem-
ory and make your procedure run faster, you should select the data type
that uses the fewest bytes but at the same time can handle the data that your
procedure has to manipulate.

Chapter

3
ACCESS VBA

FUNDAMENTALS

46 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

TABLE 3.1 VBA data types.

Data Type Storage Size Range

Byte 1 byte A number in the range of 0 to 255.

Boolean 2 bytes Stores a value of True (0) or False (–1).

Integer 2 bytes A number in the range of –32,768 to 32,767.
The type declaration character for Integer is the percent
sign (%).

Long
(long integer)

4 bytes A number in the range of –2,147,483,648 to
2,147,483,647.
The type declaration character for
Long is the ampersand (&).

LongLong 8 bytes Stored as a signed 64-bit (8-byte) number rang-
ing in value from –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.
The type declaration character for LongLong is the caret
(^). LongLong is a valid declared type only on 64-bit
platforms.

LongPtr
(Long integer on
32-bit systems;
LongLong integer
on 64-bit
systems)

4 bytes on
32-bit;
8 bytes on
64-bit

Numbers ranging in value from –2,147,483,648
to 2,147,483,647 on 32-bit systems;
–9,223,372,036,854,775,808 to 9,223,372,036,854,775,807
on 64-bit systems. Using LongPtr enables writing code
that can run in both 32-bit and 64-bit environments.

Single
(single-precision
floating-point)

4 bytes Single-precision floating-point real number ranging in
value from –3.402823E38 to –1.401298E–45 for negative
values and from 1.401298E–45 to 3.402823E38 for posi-
tive values.
The type declaration character for Single is the exclama-
tion point (!).

Double
(double-precision
floating-point)

8 bytes Double-precision floating-point real number in the range
of –1.79769313486231E308 to –4.94065645841247E–324
for negative values and 4.94065645841247E–324 to
1.79769313486231E308 for positive values.
The type declaration character for Double is the number
sign (#).

Currency
(scaled integer)

8 bytes Monetary values used in fixed-point calculations:
–922,337,203,685,477.5808 to 922,337,203,685,477.5807.
The type declaration character for Currency is the at sign
(@).

Decimal 14 bytes 96-bit (12-byte) signed integer scaled by a variable power
of 10. The power of 10 scaling factor specifies the number
of digits to the right of the decimal point, and ranges
from 0 to 28. With no decimal point (scale of 0), the larg-
est value is +/–79,228,162,514,264,337,593,543,950,335.
With 28 decimal places, the largest value is +/–
7.9228162514264337593543950335. The smallest non-
zero value is +/–0.0000000000000000000000000001.

ACCESS VBA FUNDAMENTALS 47

Data Type Storage Size Range

You cannot declare a variable to be of type Decimal. You
must use the Variant data type. Use the CDec function to
convert a value to a decimal number:
Dim numDecimal As Variant
numDecimal = CDec(0.02 * 15.75 * 0.0006)

Date 8 bytes Date from January 1, 100, to December 31, 9999, and
times from 0:00:00 to 23:59:59. Date literals must be
enclosed within number signs (#); for example: #January
1, 2011#

Object 4 bytes Any Object reference.
Use the Set statement to declare a variable as an Object.

String
(variable-length)

10 bytes +
string length

A variable-length string can contain up to approximately
2 billion characters.
The type declaration character for String is the dollar sign
($).

String
(fixed-length)

Length of
string

A fixed-length string can contain 1 to approximately
65,400 characters.

Variant
(with numbers)

16 bytes Any numeric value up to the range of a Double.

Variant
(with characters)

22 bytes +
string length

Any valid nonnumeric data type in the same range as for
a variable-length string.

User-defined
(using Type)

One or more
elements

A data type you define using the Type statement. User-
defined data types can contain one or more elements of a
data type, an array, or a previously defined user-defined
type. For example:

Type custInfo

 custFullName as String

 custTitle as String

 custBusinessName as String

 custFirstOrderDate as Date

End Type

UNDERSTANDING AND USING VARIABLES

A variable is a name used to refer to an item of data. Each time you want to
remember the result of a VBA instruction, think of a name that will repre-
sent it. For example, if you want to keep track of the number of controls on
a form, you can make up a name such as NumOfControls, TotalControls, or
FormsControlCount.

The names of variables can contain characters, numbers, and punctua-
tion marks except for the following:

, # $ % & @ !

48 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

The name of a variable cannot begin with a number or contain a space.
If you want the name of the variable to include more than one word, use
the underscore (_) as a separator. Although a variable name can contain
as many as 254 characters, it’s best to use short and simple names. Using
short names will save you typing time when you need to reuse the variable
in your Visual Basic procedure. Visual Basic doesn’t care whether you use
uppercase or lowercase letters in variable names; however, most program-
mers use lowercase letters. When the variable name is composed of more
than one word, most programmers capitalize the first letter of each word, as
in the following: NumOfControls, First_Name.

Reserved Words Can’t Be Used for Variable Names

You can use any label you want for a variable name except for the reserved
words that VBA uses. Visual Basic function names and words that have a
special meaning in VBA cannot be used as variable names. For example,
words such as Name, Len, Empty, Local, Currency, or Exit will generate an
error message if used as a variable name.

Give your variables names that can help you remember their roles. Some
 programmers use a prefix to identify the variable’s type. A variable name
preceded with “str,” such as strName, can be quickly recognized within the
procedure code as the variable holding the text string.

Declaring Variables

You can create a variable by declaring it with a special command or by just
using it in a statement. When you declare your variable, you make Visual
Basic aware of the variable’s name and data type. This is called explicit vari-
able declaration.

Advantages of Explicit Variable Declaration

Explicit variable declaration:
 ● Speeds up the execution of your procedure. Since Visual Basic knows

the data type, it reserves only as much memory as is necessary to
store the data.

 ● Makes your code easier to read and understand because all the vari-
ables are listed at the very beginning of the procedure.

 ● Helps prevent errors caused by misspelling a variable name. Visual
Basic automatically corrects the variable name based on the spelling
used in the variable declaration.

If you don’t let Visual Basic know about the variable prior to using it, you are
implicitly telling VBA that you want to create this variable. Implicit variables

SIDEBAR

SIDEBAR

ACCESS VBA FUNDAMENTALS 49

are automatically assigned the Variant data type (see Table 3.1 earlier in the
chapter). Although implicit variable declaration is convenient (it allows you
to create variables on the fly and assign values to them without knowing
in advance the data type of the values being assigned), it can cause several
problems.

Disadvantages of Implicit Variable Declaration

 ● If you misspell a variable name in your procedure, Visual Basic may
display a runtime error or create a new variable. You are guaranteed
to waste some time troubleshooting problems that could easily have
been avoided had you declared your variable at the beginning of the
procedure.

 ● Since Visual Basic does not know what type of data your variable will
store, it assigns it a Variant data type. Th is causes your procedure to
run slower because Visual Basic must check the data type every time
it deals with your variable. And because Variant variables can store
any type of data, Visual Basic must reserve more memory to store
your data.

You declare a variable with the Dim keyword. Dim stands for “dimension.”
The Dim keyword is followed by the variable’s name and type.

Suppose you want the procedure to display the age of an employee. Be-
fore you can calculate the age, you must feed the procedure the employee’s
date of birth. To do this, you declare a variable called dateOfBirth, as fol-
lows:

Dim dateOfBirth As Date

Notice that the Dim keyword is followed by the name of the variable
(dateOfBirth). If you don’t like this name, you are free to replace it with
another word, as long as the word you are planning to use is not one of the
VBA keywords. You specify the data type the variable will hold by including
the As keyword followed by one of the data types from Table 3.1. The Date
data type tells Visual Basic that the variable dateOfBirth will store a date.

To store the employee’s age, you declare the variable as follows:

Dim intAge As Integer

The intAge variable will store the number of years between today’s date and
the employee’s date of birth. Because age is displayed as a whole number,
the intAge variable has been assigned the Integer data type. You may also
want your procedure to keep track of the employee’s name, so you declare
another variable to hold the employee’s first and last name:

Dim strFullName As String

SIDEBAR

50 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Because the word Name is on the VBA list of reserved words, using it in
your VBA procedure would guarantee an error. To hold the employee’s full
name, we used the variable strFullName and declared it as the String data
type because the data it will hold is text. Declaring variables is regarded as
good programming practice because it makes programs easier to read and
helps prevent certain types of errors.

Informal (Implicit) Variables

Variables that are not explicitly declared with Dim statements are said to
be implicitly declared. These variables are automatically assigned a data
type called Variant. They can hold numbers, strings, and other types of
information. You can create an informal variable by assigning some value
to a variable name anywhere in your VBA procedure. For example, you
implicitly declare a variable in the following way: intDaysLeft = 100.

Now that you know how to declare your variables, let’s write a procedure
that uses them.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 3.1 Using Variables

1. Start Microsoft Access and create a new database named Chap03.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module, and notice
Module1 under the Modules folder in the Project Explorer window.

4. In the Module1 (Code) window, enter the following AgeCalc procedure.

Sub AgeCalc()

 ' variable declaration

 Dim strFullName As String

 Dim dateOfBirth As Date

 Dim intAge As Integer

 ' assign values to variables

 strFullName = "John Smith"

 dateOfBirth = #1/3/1967#

 ' calculate age

 IntAge = Year(Now()) - Year(dateOfBirth)

 ' print results to the Immediate window

 Debug.Print strFullName & " is " & intAge & " years old."

End Sub

SIDEBAR

ACCESS VBA FUNDAMENTALS 51

Notice that in the AgeCalc procedure the variables are declared on separate
lines at the beginning of the procedure. You can also declare several
variables on the same line, separating each variable name with a comma,
as shown here (be sure to enter this on one line):

Dim strFullName As String, dateOfBirth As Date, intAge As

Integer

When you list all your variables on one line, the Dim keyword appears only
once at the beginning of the variable declaration line.

5. If the Immediate window is not open, press Ctrl+G or choose View |
Immediate Window. Because the example procedure writes the results to
the Immediate window, you should ensure that this window is open prior
to executing Step 6.

6. To run the AgeCalc procedure, click any line between the Sub and End
Sub keywords and press F5.

What Is the Variable Type?

You can find out the type of a variable used in your procedure by right-
clicking the variable name and selecting Quick Info from the shortcut
menu.

When Visual Basic executes the variable declaration statements, it creates
the variables with the specified names and reserves memory space to store
their values. Then specific values are assigned to these variables. To assign
a value to a variable, you begin with a variable name followed by an equal
sign. The value entered to the right of the equal sign is the data you want
to store in the variable. The data you enter here must be of the type stated
in the variable declaration. Text data should be surrounded by quotation
marks and dates by # characters.

Using the data supplied by the dateOfBirth variable, Visual Basic cal-
culates the age of an employee and stores the result of the calculation in the
variable called intAge. Then, the full name of the employee and the age are
printed to the Immediate window using the instruction Debug.Print.

Concatenation

You can combine two or more strings to form a new string. The joining
operation is called concatenation. You saw an example of concatenated
strings in the AgeCalc procedure in Hands-On 3.1. Concatenation is rep-
resented by an ampersand character (&). For instance, "His name is

" & strFirstName will produce a string like: His name is John or His
name is Michael. The name of the person is determined by the contents
of the strFirstName variable. Notice that there is an extra space between
“is” and the ending quotation mark: "His name is ". Concatenation of

SIDEBAR

SIDEBAR

52 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

strings can also be represented by a plus sign (+); however, many program-
mers prefer to restrict the plus sign to numerical operations to eliminate
ambiguity.

Specifying the Data Type of a Variable

If you don’t specify the variable’s data type in the Dim statement, you end up
with the untyped variable. Untyped variables in VBA are always assigned
the Variant data type. Variant data types can hold all the other data types
(except for user-defined data types). This feature makes Variant a very flex-
ible and popular data type. Despite this flexibility, it is highly recommended
that you create typed variables. When you declare a variable of a certain
data type, your VBA procedure runs faster because Visual Basic does not
have to stop to analyze the variable to determine its type.

Visual Basic can work with many types of numeric variables. Integer
variables can hold only whole numbers from –32,768 to 32,767. Other types
of numeric variables are Long, Single, Double, and Currency. The Long vari-
ables can hold whole numbers in the range –2,147,483,648 to 2,147,483,647.
As opposed to Integer and Long variables, Single and Double variables can
hold decimals.

String variables are used to refer to text. When you declare a variable of
the String data type, you can tell Visual Basic how long the string should
be. For instance, Dim strExtension As String * 3 declares the fixed-
length String variable named strExtension that is three characters long. If
you don’t assign a specific length, the String variable will be dynamic. This
means that Visual Basic will make enough space in computer memory to
handle whatever text length is assigned to it.

After a variable is declared, it can store only the type of information that
you stated in the declaration statement.

Assigning string values to numeric variables or numeric values to string
variables results in the error message “Type Mismatch” or causes Visual Ba-
sic to modify the value. For example, if your variable was declared to hold
whole numbers and your data uses decimals, Visual Basic will disregard the
decimals and use only the whole part of the number.

Let’s use the MyNumber procedure in Hands-On 3.2 as an example of
how Visual Basic modifies the data according to the assigned data types.

 Hands-On 3.2 Understanding the Data Type of a Variable

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

ACCESS VBA FUNDAMENTALS 53

2. Enter the following procedure code for MyNumber in the new module’s
Code window.

Sub MyNumber()

 Dim intNum As Integer

 intNum = 23.11

 MsgBox intNum

End Sub

3. To run the procedure, click any line between the Sub and End Sub
keywords and press F5 or choose Run | Run Sub/UserForm.

When you run this procedure, Visual Basic displays the contents of the vari-
able intNum as 23, and not 23.11, because the intNum variable was declared
as an Integer data type.

Using Type Declaration Characters

If you don’t declare a variable with a Dim statement, you can still designate
a type for it by using a special character at the end of the variable name. For
example, to declare the FirstName variable as String, you append the dollar
sign to the variable name:

Dim FirstName$

This is the same as Dim FirstName As String. Other type declaration
characters are shown in Table 3.2. Notice that the type declaration charac-
ters can be used only with six data types. To use the type declaration char-
acter, append the character to the end of the variable name.

TABLE 3.2 Type declaration characters.

Data Type Character

Integer %

Long &

Single !

Double #

Currency @

String $

Declaring Typed Variables

The variable type can be indicated by the As keyword or by attaching a
type symbol. If you don’t add the type symbol or the As command, VBA
will default the variable to the Variant data type.

SIDEBAR

54 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 3.3 Using Type Declaration Characters in Variable
Names

This hands-on exercise uses the Chap03.accdb database that you created in
Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the AgeCalc2 procedure code in the new module’s Code window.

Sub AgeCalc2()

 ' variable declaration

 Dim FullName$

 Dim DateOfBirth As Date

 Dim age%

 ' assign values to variables

 FullName$ = "John Smith"

 DateOfBirth = #1/3/1967#

 ' calculate age

 age% = Year(Now()) - Year(DateOfBirth)

 ' print results to the Immediate window

 Debug.Print FullName$ & " is " & age% & " years old."

End Sub

3. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

Assigning Values to Variables

Now that you know how to correctly name and declare variables, it’s time to
learn how to initialize them.

 Hands-On 3.4 Assigning Values to Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the code of the CalcCost procedure in the new module’s Code

window.

Sub CalcCost()

 slsPrice = 35

 slsTax = 0.085

 cost = slsPrice + (slsPrice * slsTax)

 strMsg = "The calculator total is $" & cost & "."

 MsgBox strMsg

End Sub

ACCESS VBA FUNDAMENTALS 55

3. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.

4. Change the calculation of the cost variable in the CalcCost procedure as
follows:

cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

5. To run the modified procedure, click any line between the Sub and End
Sub keywords and press F5 or choose Run | Run Sub/UserForm.

The CalcCost procedure uses four variables: slsPrice, slsTax, cost, and
strMsg. Because none of these variables have been explicitly declared with
the Dim keyword and a specific data type, they all have the same data type—
Variant. The variables slsPrice and slsTax were created by assigning some
values to the variable names at the beginning of the procedure. The cost
variable was assigned the value resulting from the calculation slsPrice +
(slsPrice * slsTax). The cost calculation uses the values supplied by the
slsPrice and slsTax variables. The strMsg variable puts together a text
message to the user. This message is then displayed with the MsgBox func-
tion.

When you assign values to variables, you follow the name of the vari-
able with the equal sign. After the equal sign you enter the value of the
variable. This can be text surrounded by quotation marks, a number, or an
expression. While the values assigned to the variables slsPrice, slsTax,
and cost are easily understood, the value stored in the strMsg variable is a
little more involved.

Let’s examine the content of the strMsg variable:

strMsg = "The calculator total is $" & cost & "."

 ● Th e string "The calculator total is $" begins and ends with
quotation marks. Notice the extra space before the ending quotation
mark.

 ● Th e & symbol allows one string to be appended to another string or
to the contents of a variable and must be used every time you want to
append a new piece of information to the previous string.

 ● Th e cost variable is a placeholder. Th e actual cost of the calculator
will be displayed here when the procedure runs.

 ● Th e & symbol attaches yet another string.

 ● Th e period (.) is a character and must be surrounded by quotation
marks. When you require a period at the end of the sentence, you
must attach it separately when it follows the name of a variable.

56 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Variable Initialization

Visual Basic automatically initializes a new variable to its default value
when it is created. Numerical variables are set to zero (0), Boolean vari-
ables are initialized to False, string variables are set to the empty string
(“”), and Date variables are set to December 30, 1899.

Notice that the cost displayed in the message box has three decimal places.
To display the cost of a calculator with two decimal places, you need to use
a function. VBA has special functions that allow you to change the format
of data. To change the format of the cost variable you should use the Format
function. This function has the following syntax:

Format(expression, format)

where expression is a value or variable you want to format, and format is
the type of format you want to apply.

After having tried the CalcCost procedure, you may wonder why you
should bother declaring variables if Visual Basic can handle undeclared
variables so well. The CalcCost procedure is very short, so you don’t need to
worry about how many bytes of memory will be consumed each time Visual
Basic uses the Variant variable. In short procedures, however, it is not the
memory that matters but the mistakes you are bound to make when typing
variable names. What will happen if the second time you use the cost vari-
able you omit the “o” and refer to it as cst?

strMsg = "The calculator total is " & "$" & cst & "."

And what will you end up with if, instead of slsTax, you use the word tax
in the formula?

cost = Format(slsPrice + (slsPrice * tax), "0.00")

When you run the procedure with the preceding errors introduced, Visual
Basic will not show the cost of the calculator because it does not find the
assignment statement for the cst variable. And because Visual Basic does
not know the sales tax, it displays the price of the calculator as the total
cost. Visual Basic does not guess—it simply does what you tell it to do. This
brings us to the next section, which explains how to make sure that errors
of this sort don’t occur.

NOTE
Before you continue with this chapter, be sure to replace the
names of the variables cst and tax with cost and slsTax.

Forcing Declaration of Variables

Visual Basic has an Option Explicit statement that you can use to auto-
matically remind yourself to formally declare all your variables. This state-

SIDEBAR

ACCESS VBA FUNDAMENTALS 57

ment must be entered at the top of each of your modules. The Option
Explicit statement will cause Visual Basic to generate an error message
when you try to run a procedure that contains undeclared variables.

 Hands-On 3.5 Forcing Declaration of Variables

1. Return to the Code window where you entered the CalcCost procedure
(see Hands-On 3.4).

2. At the top of the module window (below the Option Compare Database
statement), enter

Option Explicit

and press Enter. Visual Basic will display the statement in blue.
3. Position the insertion point anywhere within the CalcCost procedure and

press F5 to run it. Visual Basic displays this error message: “Compile error:
Variable not defined.”

4. Click OK to exit the message box. Visual Basic selects the name of the
variable, slsPrice, and highlights in yellow the name of the procedure,
Sub CalcCost(). The titlebar displays “Microsoft Visual Basic for
Applications—Chap03 [break]—[Module4 (Code)].” The Visual Basic
Break mode allows you to correct the problem before you continue. Now
you must formally declare the slsPrice variable.

5. Enter the declaration statement

Dim slsPrice As Currency

on a new line just below Sub CalcCost() and press F5 to continue. When
you declare the slsPrice variable and rerun your procedure, Visual Basic
will generate the same compile error as soon as it encounters another
variable name that was not declared. To fix the remaining problems with
the variable declaration in this procedure, choose Run | Reset to exit the
Break mode.

6. Enter the following declarations at the beginning of the CalcCost
procedure:

' declaration of variables

Dim slsPrice As Currency

Dim slsTax As Single

Dim cost As Currency

Dim strMsg As String

7. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm. Your revised CalcCost
procedure looks like this:

' revised CalcCost procedure with variable declarations

Sub CalcCost()

 ' declaration of variables

58 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Dim slsPrice As Currency

 Dim slsTax As Single

 Dim cost As Currency

 Dim strMsg As String

 slsPrice = 35

 slsTax = 0.085

 cost = Format(slsPrice + (slsPrice * slsTax), "0.00")

 strMsg = "The calculator total is $" & cost & "."

 MsgBox strMsg

End Sub

The Option Explicit statement you entered at the top of the module
Code window (see Step 2) forced you to declare variables. Because you must
include the Option Explicit statement in each module where you want to
require variable declaration, you can have Visual Basic enter this statement
for you each time you insert a new module.

To automatically include Option Explicit in every new module you
create, follow these steps:

1. Choose Tools | Options.
2. Ensure that the Require Variable Declaration checkbox is selected in the

Options dialog box (Editor tab).
3. Choose OK to close the Options dialog box.

From now on, every new module will be added with the Option Explicit
statement. If you want to require variables to be explicitly declared in a
module you created prior to enabling Require Variable Declaration in the
Options dialog box, you must enter the Option Explicit statement manu-
ally by editing the module yourself.

More about Option Explicit

Option Explicit forces formal (explicit) declaration of all variables in a
module. One big advantage of using Option Explicit is that misspell-
ings of variable names will be detected at compile time (when Visual Basic
attempts to translate the source code to executable code). The Option Ex-
plicit statement must appear in a module before any procedures.

Understanding the Scope of Variables

Variables can have different ranges of influence in a VBA procedure. Scope
defines the availability of a variable to the same procedure or other proce-
dures.

Variables can have the following three levels of scope in Visual Basic for
Applications:

SIDEBAR

ACCESS VBA FUNDAMENTALS 59

 ● Procedure-level scope

 ● Module-level scope

 ● Project-level scope

Procedure-Level (Local) Variables

From this chapter you already know how to declare a variable using the Dim
statement. The position of the Dim statement in the module determines the
scope of a variable. Variables declared with the Dim statement within a VBA
procedure have a procedure-level scope. Procedure- level variables can also
be declared by using the Static statement (see “Using Static Variables” later
in this chapter).

Procedure-level variables are frequently referred to as local variables,
which can be used only in the procedure where they were declared. Unde-
clared variables always have a procedure-level scope.

A variable’s name must be unique within its scope. This means that you
cannot declare two variables with the same name in the same procedure.
However, you can use the same variable name in different procedures. In
other words, the CalcCost procedure can have the slsTax variable, and the
ExpenseRep procedure in the same module can have its own variable called
slsTax. Both variables are independent of each other.

Local Variables: With Dim or Static?

When you declare a local variable with the Dim statement, the value of the
variable is preserved only while the procedure in which it is declared is
running. As soon as the procedure ends, the variable dies. The next time
you execute the procedure, the variable is reinitialized.
 When you declare a local variable with the Static statement, the value
of the variable is preserved after the procedure in which the variable was
declared has finished running. Static variables are reset when you quit the
Microsoft Access application or when a runtime error occurs while the
procedure is running.

Module-Level Variables

Often you want the variable to be available to other VBA procedures in
the module after the procedure in which the variable was declared has fin-
ished running. This situation requires that you change the variable’s scope
to module-level.

Module-level variables are declared at the top of the module (above the
first procedure definition) by using the Dim or Private statement. These
variables are available to all of the procedures in the module in which they
were declared but are not available to procedures in other modules.

SIDEBAR

60 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

For instance, to make the slsTax variable available to any other pro-
cedure in the module, you could declare it by using the Dim or Private
statement:

Option Explicit

Dim slsTax As Single ' module-level variable declared with

 ' Dim statement

Sub CalcCost()

...Instructions of the procedure...

End Sub

Notice that the slsTax variable is declared at the top of the module, just
below the Option Explicit statement and before the first procedure defi-
nition. You could also declare the slsTax variable like this:

Option Explicit

Private slsTax As Single ' module-level variable declared with

 ' Private statement

Sub CalcCost()

 ...Instructions of the procedure...
End Sub

There is no difference between module-level variables declared with Dim or
Private statements.

Before you can see how module-level variables actually work, you need
another procedure that also uses the slsTax variable.

 Hands-On 3.6 Understanding Module-Level Variables

This hands-on exercise requires the prior completion of Hands-On 3.4 and
3.5.

1. In the Code window, in the same module where you entered the CalcCost
procedure, cut the declaration line Dim slsTax As Single and paste it at
the top of the module sheet, below the Option Explicit statement.

2. Enter the following code of the ExpenseRep procedure in the same module
where the CalcCost procedure is located (see Figure 3.1).

Sub ExpenseRep()

 Dim slsPrice As Currency

 Dim cost As Currency

 slsPrice = 55.99

 cost = slsPrice + (slsPrice * slsTax)

 MsgBox slsTax

 MsgBox cost

End Sub

ACCESS VBA FUNDAMENTALS 61

The ExpenseRep procedure declares two Currency type variables:
slsPrice and cost. The slsPrice variable is then assigned a value of
55.99. The slsPrice variable is independent of the slsPrice variable
declared within the CalcCost procedure.
 The ExpenseRep procedure calculates the cost of a purchase. The
cost includes the sales tax. Because the sales tax is the same as the one
used in the CalcCost procedure, the slsTax variable has been declared
at the module level. After Visual Basic executes the CalcCost procedure,
the contents of the slsTax variable equals 0.085. If slsTax were a local
variable, the contents of this variable would be empty upon the termination
of the CalcCost procedure. The ExpenseRep procedure ends by displaying
the value of the slsTax and cost variables in two separate message boxes.

FIGURE 3.1 Using module-level variables.

After running the CalcCost procedure, Visual Basic erases the contents
of all the variables except for the slsTax variable, which was declared at
a module level. As soon as you attempt to calculate the cost by running
the ExpenseRep procedure, Visual Basic retrieves the value of the slsTax
variable and uses it in the calculation.

3. Click anywhere inside the revised CalcCost procedure and press F5 to run
it.

4. As soon as the CalcCost procedure finishes executing, run the ExpenseRep
procedure.

62 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Project-Level Variables

In the previous sections, you learned that declaring a variable with the Dim
or Private keyword at the top of the module makes it available to other
procedures in that module. Module-level variables that are declared with
the Public keyword (instead of Dim or Private) have project-level scope.
This means that they can be used in any Visual Basic for Applications mod-
ule. When you want to work with a variable in all the procedures in all
the open VBA projects, you must declare it with the Public keyword—for
instance:

Option Explicit

Public gslsTax As Single

Sub CalcCost()

...Instructions of the procedure...
End Sub

Notice that the gslsTax variable declared at the top of the module with the
Public keyword will now be available to any VBA modules that your code
references.

A variable declared in the declaration section of a module using the Pub-
lic keyword is called a global variable. This variable can be seen by all pro-
cedures in the database’s modules. It is customary to use the prefix “g” to
indicate this type of variable.

When using global variables, it’s important to keep in mind the following:

 ● Th e value of the global variable can be changed anywhere in your
program. An unexpected change in the value of a variable is a com-
mon cause of problems. Be careful not to write a block of code that
modifi es a global variable. If you need to change the value of a vari-
able within your application, make sure you are using a local variable.

 ● Values of all global variables declared with the Public keyword are
cleared when Access encounters an error. Since the release of the Ac-
cess 2007 database format (ACCDB), you can use the TempVars col-
lection for your global variable needs (see “Using Temporary Vari-
ables” later in this chapter).

 ● Don’t put your global variable declaration in a form class module.
Variables in the code module behind the form are never global even
if you declare them as such. You must use a standard code module
(Insert | Module) to declare variables to be available in all modules
and forms. Variables declared in a standard module can be used in the
code for any form.

 ● Use constants as much as possible whenever your application re-
quires global variables. Constants are much more reliable because
their values are static. Constants are covered later in this chapter.

ACCESS VBA FUNDAMENTALS 63

Public Variables and the Option Private Module Statement

Variables declared using the Public keyword are available to all proce-
dures in all modules across all applications. To restrict a public module-
level variable to the current database, include the Option Private Mod-
ule statement in the declaration section of the standard or class module in
which the variable is declared.

Understanding the Lifetime of Variables

In addition to scope, variables have a lifetime. The lifetime of a variable
determines how long a variable retains its value. Module-level and project-
level variables preserve their values as long as the project is open. Visual
Basic, however, can reinitialize these variables if required by the program’s
logic. Local variables declared with the Dim statement lose their values when
a procedure has finished. Local variables have a lifetime as long as a proce-
dure is running, and they are reinitialized every time the program is run.
Visual Basic allows you to extend the lifetime of a local variable by changing
the way it is declared.

Using Temporary Variables

In the previous section, you learned that you can declare a global variable
with the Public keyword and use it throughout your entire application. You
also learned that these variables can be quite problematic, especially when
you or another programmer accidentally changes the value of the variable
or your application encounters an error and the values of the variables you
have initially set for your application to use are completely wiped out. To
avoid such problems, many programmers resort to using separate global
variables form to hold their global variables. And if they need certain val-
ues to be available the next time the application starts, they create a sepa-
rate database table to store these values. A global variables form is simply a
blank Access form where you can place both bound and unbound controls.
Bound controls are used to pull the data from the table where global vari-
ables have been stored. You can use unbound controls on a form to store
values of global variables that are not stored in a separate table. Simply set
the ControlSource property of the unbound control by typing a value in it
or use a VBA procedure to set the value of the ControlSource. The form
set up as a global variables form must be open while the application is run-
ning for the values of the bound and unbound controls to be available to
other forms, reports, and queries in the database. A global variables form
can be hidden if the values of the global variables are pulled from a database
table or set using VBA procedures or macro actions.

If your database is in the ACCDB format, instead of using a database
table or global variables, you can use the TempVars collection to store the

SIDEBAR

64 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Variant values you want to reuse. TempVars stands for temporary variables.
Temporary variables are global. You can refer to them in VBA modules,
event procedures, queries, expressions, add-ins, and in any referenced da-
tabases. Access .ACCDB databases allow you to define up to 255 temporary
variables at one time. These variables remain in memory until you close
the database (unless you remove them when you are finished working with
them). Unlike public variables, temporary variable values are not cleared
when an error occurs.

Creating a Temporary Variable with a TempVars Collection Object

Let’s look at some examples of using the TempVars collection first intro-
duced in Access 2007. Assume your application requires three variables
named gtvUserName, gtvUserFolder, and gtvEndDate.

To try this out, open the Immediate window and type the following
statements. The variable is created as soon as you press Enter after each
statement.

TempVars("gtvUserName").Value = "John Smith"

TempVars("gtvUserFolder").Value = Environ("HOMEPATH")

TempVars("gtvEndDate").Value = Format(now(),"mm/dd/yyyy")

Notice that to create a temporary variable all you have to do is specify its
value. If the variable does not already exist, Access adds it to the TempVars
collection. If the variable exists, Access modifies its value.

You can explicitly add a global variable to the TempVars collection by
using the Add method, like this:

TempVars.Add "gtvCompleted", "true"

Retrieving Names and Values of TempVar Objects

Each TempVar object in the TempVars collection has Name and Value prop-
erties that you can use to access the variable and read its value from any pro-
cedure. By default, the items in the collection are numbered from zero (0),
with the first item being zero, the second item being one, the third two, and
so on. Therefore, to find the value of the second variable in the TempVars
you have entered (gtvUserFolder), type the following statement in the
Immediate window:

?TempVars(1).Value

When you press Enter, you will see the location of the user’s private folder on
the computer. In this case, it is your private folder. The folder information
was returned by passing the “HOMEPATH” parameter to the built-in Envi-
ron function. Functions and parameter passing are covered in Chapter 4.

You can also retrieve the value of the variable from the TempVars collec-
tion by using its name, like this:

ACCESS VBA FUNDAMENTALS 65

?TempVars("gtvUserFolder").Value

You can iterate through the TempVars collection to see the names and val-
ues of all global variables that you have placed in it. To do this from the
Immediate window, you need to use the colon operator (:) to separate lines
of code. Type the following statement all on one line to try this out:

For Each gtv in TempVars : Debug.Print gtv.Name & ":"

& gtv.Value : Next

When you press Enter, the Debug.Print statement will write to the Imme-
diate window a name and value for each variable that is currently stored in
the TempVars collection:

gtvUserName:John Smith

gtvUserFolder:\Documents and Settings\John

gtvEndDate:09/12/2015

gtvCompleted:true

The For Each…Next statement, a popular VBA programming construct,
is covered in detail in Chapter 6. The “gtv” is an object variable used as an
iterator. An iterator allows you to traverse through all the elements of a col-
lection. You can use any variable name as an iterator as long as it is not a
VBA keyword. Object variables are discussed later in this chapter. For more
information on working with collections, see Chapter 8.

Using Temporary Global Variables in Expressions

You can use temporary global variables anywhere expressions can be used.
For example, you can set the value of the unbound text box control on a
form to display the value of your global variable by activating the property
sheet and typing the following in the ControlSource property of the text
box:

=[TempVars]![gtvCompleted]

You can also use a temporary variable to pass selection criteria to queries:

SELECT * FROM Orders WHERE Order_Date = TempVars!gtvEndDate

Removing a Temporary Variable from a TempVars Collection Object

When you are done using a variable, you can remove it from the TempVars
collection with the Remove method, like this:

TempVars.Remove "gtvUserFolder"

To check the number of the TempVar objects in the TempVars collection, use
the Count property in the Immediate window:

?TempVars.Count

66 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Finally, to quickly remove all global variables (TempVar objects) from the
TempVars collection, simply use the RemoveAll method, like this:

TempVars.RemoveAll

The TempVars Collection Is Exposed to Macros

The following three macros allow macro users to set and remove TempVar
objects:

 ● SetTempVar—Sets a TempVar to a given value. You must specify the
name of the temporary variable and the expression that will be used
to set the value of this variable. Expressions must be entered without
an equal sign (=).

 ● RemoveTempVar—Removes the TempVar from the TempVars collec-
tion. You must specify the name of the temporary variable you want
to remove.

 ● RemoveAllTempVars—Clears the TempVars collection.

The values of TempVar objects can be used in the arguments and in the
condition columns of macros.

Using Static Variables

A variable declared with the Static keyword is a special type of local vari-
able. Static variables are declared at the procedure level. Unlike the local
variables declared with the Dim keyword, static variables remain in existence
and retain their values when the procedure in which they were declared
ends.

The CostOfPurchase procedure (see Hands-On 3.7) demonstrates the
use of the static variable allPurchase. The purpose of this variable is to
keep track of the running total.

 Hands-On 3.7 Using Static Variables

This hands-on exercise uses the C:\VBAPrimerAccess_ByExample\Chap03.
accdb database that you created in Hands-On 3.1.

1. In the Visual Basic window, choose Insert | Module to add a new module.
2. Enter the following CostOfPurchase procedure code in the new module’s

Code window.

Sub CostOfPurchase()

 ' declare variables

 Static allPurchase

 Dim newPurchase As String

 Dim purchCost As Single

SIDEBAR

ACCESS VBA FUNDAMENTALS 67

 newPurchase = InputBox("Enter the cost of a purchase:")

 purchCost = CSng(newPurchase)

 allPurchase = allPurchase + purchCost

 ' display results

 MsgBox "The cost of a new purchase is: " & newPurchase

 MsgBox "The running cost is: " & allPurchase

End Sub

This procedure begins with declaring a static variable named allPurchase
and two local variables named newPurchase and purchCost. The InputBox
function is used to get a user’s input while the procedure is running. As
soon as the user inputs the value and clicks OK, Visual Basic assigns the
value to the newPurchase variable. Because the result of the InputBox
function is always a string, the newPurchase variable was declared as the
String data type. You cannot use strings in mathematical calculations, so
the next instruction uses a type conversion function (CSng) to translate the
text value into a numeric value, which is stored as a Single data type in the
variable purchCost. The CSng function requires only one argument: the
value you want to translate. Refer to Chapter 4 for more information about
converting data types.
The next instruction, allPurchase = allPurchase + purchCost, adds
the new value supplied by the InputBox function to the current purchase
value. When you run this procedure for the first time, the value of the
allPurchase variable is the same as the value of the purchCost variable.
During the second run, the value of the static variable is increased by the
new value entered in the dialog box. You can run the CostOfPur chase
procedure as many times as you want. The allPurch variable will keep
the running total for as long as the project is open.

3. To run the procedure, position the insertion point anywhere within the
CostOfPurchase procedure and press F5.

4. When the dialog box appears, enter a number. For example, type 100 and
press Enter. Visual Basic displays the message “The cost of a new purchase
is: 100.”

5. Click OK in the message box. Visual Basic displays the second message
“The running cost is: 100.”

6. Rerun the same procedure.
7. When the input box appears, enter another number. For example, type

50 and press Enter. Visual Basic displays the message “The cost of a new
purchase is: 50.”

8. Click OK in the message box. Visual Basic displays the second message
“The running cost is: 150.”

9. Run the procedure a couple of times to see how Visual Basic keeps track
of the running total.

68 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Type Conversion Functions

To learn more about the CSng function, position the insertion point any-
where within the word CSng and press F1.

Using Object Variables

The variables you’ve learned about so far are used to store data, which is
the main reason for using “normal” variables in your procedures. There are
also special variables that refer to the Visual Basic objects. These variables
are called object variables. Object variables don’t store data; they store the
location of the data. You can use them to reference databases, forms, and
controls as well as objects created in other applications. Object variables
are declared in a similar way as the variables you’ve already seen. The only
difference is that after the As keyword, you enter the type of object your
variable will point to—for instance:

Dim myControl As Control

This statement declares the object variable called myControl of type Con-
trol.

Dim frm As Form

This statement declares the object variable called frm of type Form.
You can use object variables to refer to objects of a generic type, such as

Application, Control, Form, or Report, or you can point your object vari-
able to specific object types, such as TextBox, ToggleButton, CheckBox,
CommandButton, ListBox, OptionButton, Subform or Subreport, Label,
BoundObjectFrame or UnboundObjectFrame, and so on. When you de-
clare an object variable, you also have to assign it a specific value before
you can use it in your procedure. You assign a value to the object variable
by using the Set keyword followed by the equal sign and the value that the
variable refers to—for example:

Set myControl = Me!CompanyName

The preceding statement assigns a value to the object variable called myCon-
trol. This object variable will now point to the CompanyName control on
the active form. If you omit the word Set, Visual Basic will display the error
message “Runtime error 91: Object variable or With block variable not set.”

Again, it’s time to see a practical example. The HideControl procedure
in Hands-On 3.8 demonstrates the use of the object variables frm and my-
Control.

SIDEBAR

ACCESS VBA FUNDAMENTALS 69

 Hands-On 3.8 Working with Object Variables

1. Close the currently open Access database Chap03.accdb. When prompted
to save changes in the modules, click OK. Save the modules with the
suggested default names Module1, Module2, and so on.

2. Copy the HandsOn_03_8.accdb database from the companion CD to
your C:\VBAPrimerAccess_ByExample folder. This database contains
a Customer table and a simple Customer form imported from the
Northwind.mdb sample database that shipped with an earlier version of
Microsoft Access.

3. Open Access and load the C:\VBAPrimerAccess_ByExample\
HandsOn_03_8. accdb database file.

4. Open the Customers form in Form view.
5. Press Alt+F11 to switch to the Visual Basic Editor window.
6. Choose Insert | Module to add a new module.
7. Enter the following HideControl procedure code in the new module’s

Code window.

Sub HideControl()

 ' this procedure is run against the open Customers form

 Dim frm As Form

 Dim myControl As Control

 Set frm = Forms!Customers

 Set myControl = frm.CompanyName

 myControl.Visible = False

End Sub

8. To run the procedure, click any line between the Sub and End Sub keywords
and press F5 or choose Run | Run Sub/UserForm.
The procedure begins with the declaration of two object variables called
frm and myControl. The object variable frm is set to reference the Custom-
ers form. For the procedure to work, the referenced form must be open.
Next, the myControl object variable is set to point to the CompanyName
control located on the Customers form.
 Instead of using the object’s entire address, you can use the shortcut—
the name of the object variable. For example, the statement

Set myControl = frm.CompanyName

is the same as

Set myControl = Forms!Customers.CompanyName

The purpose of this procedure is to hide the control referenced by the
object variable myControl. After running the HideControl procedure,
switch to the Microsoft Access window containing the open Customers
form. The CompanyName control should not be visible on the form.

70 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

NOTE
To make the CompanyName text box visible again, modify
the last line of this procedure by setting the Visible property
of myControl to True and rerun the procedure.

Advantages of Using Object Variables

The advantages of object variables are:

 ● Th ey can be used instead of the actual object.

 ● Th ey are shorter and easier to remember than the actual values they
point to.

 ● You can change their meaning while your procedure is running.

Disposing of Object Variables

When the object variable is no longer needed, you should assign Nothing to
it. This frees up memory and system resources:

Set frm = Nothing

Set myControl = Nothing

Finding a Variable Definition

When you find an instruction that assigns a value to a variable in a VBA
procedure, you can quickly locate the definition of the variable by selecting
the variable name and pressing Shift+F2. Alternately, you can choose View |
Definition. Visual Basic will jump to the variable declaration line. To return
your mouse pointer to its previous position, press Ctrl+Shift+F2 or choose
View | Last Position. Let’s try it out.

 Hands-On 3.9 Finding a Variable Defi nition

This hands-on exercise requires prior completion of Hands-On 3.8.

1. Locate the code of the procedure HideControl you created in Hands-On
3.8.

2. Locate the statement myControl.Visible = .
3. Right-click the myControl variable name and choose Definition from the

shortcut menu.
4. Press Ctrl+Shift+F2 to return to the previous location in the procedure

code (myControl.Visible =).

Determining the Data Type of a Variable

Visual Basic has a built-in VarType function that returns an integer indicat-
ing the variable’s type. Let’s see how you can use this function in the Imme-
diate window.

SIDEBAR

ACCESS VBA FUNDAMENTALS 71

 Hands-On 3.10 Asking Questions about the Variable Type

1. Open the Immediate window (View | Immediate Window) and type the
following statements that assign values to variables:

age = 28

birthdate = #1/1/1981#

firstName = "John"

2. Now, ask Visual Basic what type of data each variable holds:

?varType(age)

When you press Enter, Visual Basic returns 2. The number 2 represents
the Integer data type, as shown in Table 3.3.

?varType(birthdate)

Now Visual Basic returns 7 for Date. If you make a mistake in the variable
name (let’s say you type birthday instead of birthdate), Visual Basic
returns zero (0).

?varType(firstName)

Visual Basic tells you that the value stored in the firstName variable is a
String (8).

TABLE 3.3 Values returned by the VarType function.

vbEmpty 0 Empty (uninitialized)

vbNull 1 Null (no valid data)

vbInteger 2 Integer

vbLong 3 Long integer

vbSingle 4 Single-precision floating-point number

vbDouble 5 Double-precision floating-point number

vbCurrency 6 Currency value

vbDate 7 Date value

vbString 8 String

vbObject 9 Object

vbError 10 Error value

vbBoolean 11 Boolean value

vbVariant 12 Variant (used only with arrays of variants)

vbDataObject 13 Data access object

vbDecimal 14 Decimal value

vbByte 17 Byte value

vbLongLong 20 Long Long integer (on 64-bit platform only)

vbUserDefinedType 36 Variants that contain user-defined types

vbArray 8192 Array

72 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

USING CONSTANTS IN VBA PROCEDURES

The value of a variable can change while your procedure is executing. If your
procedure needs to refer to unchanged values repeatedly, you should use
constants. A constant is like a named variable that always refers to the same
value. Visual Basic requires that you declare constants before you use them.

You declare constants by using the Const statement, as in the following
examples:

Const dialogName = "Enter Data" As String

Const slsTax = 8.5

Const Discount = 0.5

Const ColorIdx = 3

A constant, like a variable, has a scope. To make a constant available within
a single procedure, you declare it at the procedure level, just below the name
of the procedure—for instance:

Sub WedAnniv()

 Const Age As Integer = 25

 ...instructions...

End Sub

If you want to use a constant in all the procedures of a module, use the Pri-
vate keyword in front of the Const statement—for instance:

Private Const dsk = "B: " As String

The Private constant must be declared at the top of the module, just before
the first Sub statement.

If you want to make a constant available to all modules in your applica-
tion, use the Public keyword in front of the Const statement—for instance:

Public Const NumOfChar As Integer = 255

The Public constant must be declared at the top of the module, just before
the first Sub statement.

When declaring a constant, you can use any one of the following data
types: Boolean, Byte, Integer, Long, Currency, Single, Double, Date, String,
or Variant.

Like variables, constants can be declared on one line if separated by
commas—for instance:

Const Age As Integer = 25, PayCheck As Currency = 350

Using constants makes your VBA procedures more readable and easier to
maintain. For example, if you need to refer to a certain value several times in
your procedure, use a constant instead of using a value. This way, if the value
changes (e.g., the sales tax rate goes up), you can simply change the value in
the declaration of the Const statement instead of tracking down every occur-
rence of the value.

ACCESS VBA FUNDAMENTALS 73

Intrinsic Constants

Both Microsoft Access and Visual Basic for Applications have a long list
of predefined (intrinsic) constants that do not need to be declared. These
built-in constants can be looked up using the Object Browser window,
which was discussed in detail in Chapter 2.

Let’s open the Object Browser to look at the list of constants in Access.

 Hands-On 3.11 Exploring Access’s Constants

1. In the Visual Basic Editor window, choose View | Object Browser.
2. In the Project/Library list box, click the drop-down arrow and select the

Access library.
3. Enter constants as the search text in the Search Text box and either press

Enter or click the Search button. Visual Basic shows the results of the search
in the Search Results area. The right side of the Object Browser window
displays a list of all built-in constants available in the Microsoft Access
Object Library (see Figure 3.2). Notice that the names of all the constants
begin with the prefix “ac.”

FIGURE 3.2 Use the Object Browser to look up any intrinsic constant.

4. To look up VBA constants, choose VBA in the Project/Library list box.
Notice that the names of the VBA built-in constants begin with the prefix
“vb.”

Hands-On 3.12 illustrates how to use the intrinsic constants acFilterBy-
Form and acFilterAdvanced to disable execution of filtering on a form.

74 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 3.12 Using Intrinsic Constants in a VBA Procedure

This hands-on exercise uses the HandsOn_03_8.accdb database file used in
Hands-On 3.8.

1. Open the Customers form in Design view.
2. If the property sheet is not visible, activate it by pressing Alt+Enter.
3. In the property sheet, click the Event tab. Make sure that Form is selected

in the drop-down box on the top of the property sheet.
4. Click to the right of the On Filter property and select the Build button

(…).
5. In the Choose Builder dialog box, select Code Builder and click OK.
6. In the Code window, enter the following Form_Filter event procedure

code.

Private Sub Form_Filter(Cancel As Integer, FilterType As

Integer)

 If FilterType = acFilterByForm Or _

 FilterType = acFilterAdvanced Then

 MsgBox "You need authorization to filter records."

 Cancel = True

 End If

End Sub

7. Press Alt+F11 to switch back to Design view in the Customers form.
8. Right-click the Customers form tab and choose Form View. You can also

use the Views section of the Design tab to activate the Form view.
9. Choose Home | Sort & Filter | Advanced Filter Options | Filter By Form.

Access displays the message “You need authorization to filter records.” The
same message appears when you choose Advanced Filter/Sort from the
Advanced Filter Options.

SUMMARY

This chapter has introduced you to several important VBA concepts such
as data types, variables, and constants. You learned how to declare vari-
ous types of variables and define their types. You also saw the difference
between a variable and a constant.

In the next chapter, you will expand your knowledge of Visual Basic
for Applications by writing procedures and functions with arguments.
In addition, you will learn about built-in functions that allow your VBA
procedures to interact with users.

75

A
s you already know from Chapter 1, VBA subroutines and function
procedures often require arguments to perform certain tasks. In this
chapter, you learn various methods of passing arguments to procedures

and functions.

WRITING FUNCTION PROCEDURES

Function procedures can perform calculations based on data received
through arguments. When you declare a function procedure, you list the
names of arguments inside a set of parentheses, as shown in Hands-On 4.1.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 4.1 Writing a Function Procedure with Arguments

1. Start Microsoft Access and create a new database named Chap04.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module and notice that
Module1 appears under the Modules folder in the Project Explorer
window.

Chapter

4
ACCESS VBA
BUILT-IN AND

CUSTOM FUNCTIONS

76 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

4. In the Module1 (Code) window, enter the code of the JoinText function
procedure as shown here.

Function JoinText(k, o)

 JoinText = k + " " + o

End Function

Note that there is a space character in quotation marks concatenated be-
tween the two arguments of the JoinText function’s result: JoinText = k
+ " " + o.
 A better way of adding a space is by using one of the following built-in
functions:

JoinText = k + Space(1) + o

or:

JoinText = k + Chr(32) + o

The Space function returns a string of spaces as indicated by the number
in the parentheses. The Chr function returns a string containing the
character associated with the specified character code.
 Other control characters you may need to use when writing your VBA
 procedures include:

Tab Chr(9)

Linefeed Chr(10)

Carriage Return Chr(13)

VARIOUS METHODS OF RUNNING FUNCTION
PROCEDURES

You can execute a function procedure from the Immediate window, or you
can write a subroutine to call the function. See Hands-On 4.2 and 4.3 for
instructions on how to run the JoinText function procedure using these two
methods.

 Hands-On 4.2 Executing a Function Procedure from the
Immediate Window

This hands-on exercise requires prior completion of Hands-On 4.1.

1. Choose View | Immediate Window or press Ctrl+G, and enter the
following statement:

?JoinText("function", " procedure")

Notice that as soon as you type the opening parenthesis, Visual Basic
displays the arguments that the function expects. Type the value of the first

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 77

argument, enter the comma, and supply the value of the second argument.
Fin ish by entering the closing parenthesis.

2. Press Enter to execute this statement from the Immediate window. When
you press Enter, the string “function procedure” appears in the Immediate
window.

 Hands-On 4.3 Executing a Function Procedure from a Subroutine

This hands-on exercise requires prior completion of Hands-On 4.1.

1. In the same module where you entered the JoinText function procedure,
enter the following EnterText subroutine:

Sub EnterText()

 Dim strFirst As String, strLast As String, strFull As String

 strFirst = InputBox("Enter your first name:")

 strLast = InputBox("Enter your last name:")

 strFull = JoinText(strFirst, strLast)

 MsgBox strFull

End Sub

2. Place the cursor anywhere inside the code of the EnterText procedure and
press F5 to run it.

As Visual Basic executes the statements of the EnterText procedure, it uses
the InputBox function to collect the data from the user, and then stores the
data (the values of the first and last names) in the variables strFirst and
strLast. Then these values are passed to the JoinText function. Visual Basic
substitutes the variables’ contents for the arguments of the JoinText func-
tion and assigns the result to the name of the function (JoinText). When
Visual Basic returns to the EnterText procedure, it stores the function’s value
in the strFull variable. The MsgBox function then displays the contents of
the strFull variable in a message box. The result is the full name of the user
(first and last name sepa rated by a space).

More about Arguments

Argument names are like variables. Each argument name refers to whatev-
er value you provide at the time the function is called. You write a subrou-
tine to call a func tion procedure. When a subroutine calls a function pro-
cedure, the required arguments are passed to the procedure as variables.
Once the function does something, the result is assigned to the function
name. Notice that the function procedure’s name is used as if it were a
variable.

SIDEBAR

78 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

SPECIFYING THE DATA TYPE FOR A
FUNCTION’S RESULT

Like variables, functions can have types. The data type of your function’s
result can be a String, Integer, Long, and so forth. To specify the data type
for your function’s result, add the As keyword and the name of the desired
data type to the end of the function declaration line—for example:

Function MultiplyIt(num1, num2) As Integer

If you don’t specify the data type, Visual Basic assigns the default type
(Variant) to your function’s result. When you specify the data type for your
function’s result, you get the same advantages as when you specify the data
type for your variables—your procedure uses memory more efficiently, and
therefore runs faster.

Let’s look at an example of a function that returns an integer, even though
the arguments passed to it are declared as Single in a calling subroutine.

 Hands-On 4.4 Calling a Function from a Procedure

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. Enter the following HowMuch subroutine in the Code window:

Sub HowMuch()

 Dim num1 As Single

 Dim num2 As Single

 Dim result As Single

 num1 = 45.33

 num2 = 19.24

 result = MultiplyIt(num1, num2)

 MsgBox result

End Sub

3. Enter the following MultiplyIt function procedure in the Code window
below the HowMuch subroutine:

Function MultiplyIt(num1, num2) As Integer

 MultiplyIt = num1 * num2

End Function

4. Click anywhere within the HowMuch procedure and press F5 to run it.
Because the values stored in the variables num1 and num2 are not whole
numbers, you may want to assign the Integer type to the result of the
function to ensure that the result of the multiplication is a whole number.
If you don’t assign the data type to the MultiplyIt function’s result, the

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 79

HowMuch procedure will display the result in the data type specified in
the declaration line of the result variable. Instead of 872, the result of the
multiplication will be 872.1492.
 To make the MultiplyIt function more useful, instead of hard-coding
the values to be used in the multiplication, you can pass different values
each time you run the procedure by using the InputBox function.

5. Take a few minutes to modify the HowMuch procedure on your own,
following the example of the EnterText subrou tine that was created in
Hands-On 4.3.

6. To pass a specific value from a function to a subroutine, assign the value
to the function name. For example, the NumOfDays function shown here
passes the value of 7 to the subroutine DaysInAWeek.

Function NumOfDays()

 NumOfDays = 7

End Function

Sub DaysInAWeek()

 MsgBox "There are " & NumOfDays & " days in a week."

End Sub

Subroutines or Functions: Which Should You Use?

Create a subroutine when you:

 ● Want to perform some actions

 ● Want to get input from the user

 ● Want to display a message on the screen

Create a function when you:

 ● Want to perform a simple calculation more than once

 ● Must perform complex computations

 ● Must call the same block of instructions more than once

 ● Want to check whether a certain expression is true or false

PASSING ARGUMENTS TO BY REFERENCE
AND BY VALUE

In some procedures, when you pass arguments as variables, Visual Basic can
suddenly change the value of the variables. To ensure that the called func-
tion procedure does not alter the value of the passed arguments, you should
precede the name of the argument in the function’s declaration line with the
ByVal keyword. Let’s practice this in the following example.

SIDEBAR

80 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 4.5 Passing Arguments to Subroutines and Functions

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, type the following ThreeNumbers subroutine and
the MyAverage function procedure:

Sub ThreeNumbers()

 Dim num1 As Integer, num2 As Integer, num3 As Integer

 num1 = 10

 num2 = 20

 num3 = 30

 MsgBox MyAverage(num1, num2, num3)

 MsgBox num1

 MsgBox num2

 MsgBox num3

End Sub

Function MyAverage(ByVal num1, ByVal num2, ByVal num3)

 num1 = num1 + 1

 MyAverage = (num1 + num2 + num3) / 3

End Function

3. Click anywhere within the ThreeNumbers procedure and press F5 to run
it.
The ThreeNumbers procedure assigns values to three variables, and
then calls the MyAverage function to calculate and return the average of
the numbers stored in these variables. The function’s arguments are the
names of the variables: num1, num2, and num3. Notice that all variable
names are preceded with the ByVal keyword. Also, notice that prior to the
calculation of the average, the MyAverage function changes the value of
the num1 variable. Inside the function procedure, the num1 variable equals
11 (10 + 1). Therefore, when the function passes the calculated average to
the ThreeNumbers procedure, the MsgBox function displays the result as
20.3333333333333 and not 20, as expected. The next three functions show
the con tents of each of the variables. The values stored in these variables
are the same as the original values assigned to them: 10, 20, and 30.
 What will happen if you omit the ByVal keyword in front of the num11
argument in the MyAverage function’s declaration line? The function’s
result will still be the same, but the content of the num1 variable displayed
by the MsgBox num1 is now 11. The MyAverage function has not only
returned an unexpected result (20.3333333333333 instead of 20), but also
modified the original data stored in the num1 variable. To prevent Visual
Basic from permanently changing the values supplied to the function, use
the ByVal keyword.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 81

Know Your Keywords: ByRef and ByVal

Because any of the variables passed to a function procedure (or a subrou-
tine) can be changed by the receiving procedure, it is important to know
how to protect the original value of a variable. Visual Basic has two key-
words that give or deny the permission to change the contents of a vari-
able: ByRef and ByVal.
 By default, Visual Basic passes information to a function procedure (or
a subroutine) by reference (ByRef keyword), referring to the original data
specified in the function’s argument at the time the function is called. So, if
the function alters the value of the argument, the original value is changed.
You will get this result if you omit the ByVal keyword in front of the num1
argument in the MyAverage function’s declaration line. If you want the
function procedure to change the original value, you don’t need to explic-
itly insert the ByRef keyword because passed variables default to ByRef.
 When you use the ByVal keyword in front of an argument name, Visual
Basic passes the argument by value, which means that Visual Basic makes
a copy of the original data. This copy is then passed to a function. If the
function changes the value of an argument passed by value, the original
data does not change—only the copy changes. That’s why when the MyAv-
erage function changed the value of the num1 argument, the original value
of the num1 variable remained the same.

USING OPTIONAL ARGUMENTS

At times, you may want to supply an additional value to a function. Let’s say
you have a function that calculates the price of a meal per person. Some-
times, however, you’d like the function to perform the same calculation for
a group of two or more people. To indicate that a procedure argument isn’t
always required, precede the name of the argument with the Optional key-
word. Arguments that are optional come at the end of the argument list,
following the names of all the required arguments. Optional arguments
must always be the Variant data type. This means that you can’t specify the
optional argument’s type by using the As keyword.

In the preceding section, you created a function to calculate the aver-
age of three numbers. Suppose that sometimes you would like to use this
function to calculate the average of two numbers. You could define the third
argument of the MyAverage function as optional. To preserve the original
MyAverage function, let’s create the Avg function to calculate the average for
two or three numbers.

SIDEBAR

82 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 4.6 Using Optional Arguments

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. Type the following Avg function procedure in the Code window:

Function Avg(num1, num2, Optional num3)

 Dim totalNums As Integer

 totalNums = 3

 If IsMissing(num3) Then

 num3 = 0

 totalNums = totalNums - 1

 End If

 Avg = (num1 + num2 + num3) / totalNums

End Function

3. Call this function from the Immediate window by entering the following
instruction and pressing Enter:

?Avg(2, 3)

As soon as you press Enter, Visual Basic displays the result: 2.5.
4. Now, type the following instruction and press Enter:

?Avg(2, 3, 5)

This time the result is: 3.3333333333333.

As you’ve seen, the Avg function is used to calculate the average of two or
three numbers. You decide what values and how many values (two or three)
you want to average. When you start typing the values for the function’s
arguments in the Immediate window, Visual Basic displays the name of the
optional argument enclosed in square brackets.

Let’s take a few minutes to analyze the Avg function. This function can
take up to three arguments. Arguments num1 and num2 are required. Argu-
ment num3 is optional. Notice that the name of the optional argument is pre-
ceded by the Optional keyword. The optional argument is listed at the end
of the argument list. Because the types of the num1, num2, and num3 argu-
ments are not declared, Visual Basic treats all three arguments as Variants.

Inside the function procedure, the totalNums variable is declared as an
Integer and then assigned a beginning value of 3. Because the function has
to be capable of calculating an average of two or three numbers, the handy
built-in function IsMissing checks for the number of supplied arguments.
If the third (optional) argument is not supplied, the IsMissing function
puts the value of zero (0) in its place and deducts the value of 1 from the
value stored in the totalNums variable. Hence, if the optional argument is
missing, totalNums is 2. The next statement calculates the average based
on the supplied data, and the result is assigned to the name of the function.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 83

USING THE ISMISSING FUNCTION

The IsMissing function called from within Hands-On 4.6 allows you to
determine whether the optional argument was supplied. This function
returns the logical value of True if the third argument is not supplied and
returns False when the third argument is given. The IsMissing function is
used here with the decision-making statement If…Then (discussed in Chap-
ter 5). If the num3 argument is missing (IsMissing), then Visual Basic sup-
plies a zero (0) for the value of the third argument (num3 = 0), and reduces
the value stored in the argument totalNums by 1 (totalNums = totalNums
– 1).

USING VBA BUILT-IN FUNCTIONS FOR
USER INTERACTION

VBA comes with numerous built-in functions that can be looked up in the
Visual Basic online help. To access an alphabetical listing of all VBA func-
tions, choose Help | Microsoft Visual Basic for Applications Help in the
Visual Basic Editor window. In the Table of Contents, choose Visual Basic
for Applications Language Reference | Visual Basic Language Reference |
Functions. Each function is described in detail and is often illustrated with
a code fragment or a complete function procedure that shows how to use
it in a specific context. After completing this chapter, be sure to launch the
VBA help, and browse through the built-in functions to familiarize yourself
with their names and usage. You can also search for the function name in
your favorite browser to get more information.

NOTE

If you are working with Access via the Office 365 subscription
service, you will need an active Internet connection to access the
Visual Basic for Applications language reference for Microsoft
Office 2013 and later. You will find the list of all VBA functions
under this link:

http://msdn.microsoft.com/en-us/library/office/jj692811.aspx
The following link will bring up the Office VBA language
reference:
http://msdn.microsoft.com/en-us/library/office/gg264383.aspx

One of the features of a good program is its interaction with the user. When
you work with Microsoft Access, you interact with the application by using
various dialog boxes, such as message boxes and input boxes. When you
write your own procedures, you can use the MsgBox function to inform
users about an unexpected error or the result of a specific calculation. So far

84 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

you have seen a simple implementation of this function. In the next section,
you will find out how to control the appearance of your message. Then you
will learn how to get information from the user with the InputBox function.

Using the MsgBox Function

The MsgBox function you have used thus far was limited to displaying a
message to the user in a simple, one-button dialog box. You closed the mes-
sage box by clicking the OK button or pressing the Enter key. You can create
a simple message box by following the MsgBox function name with the text
of the message enclosed in quotation marks. In other words, to display the
message “The procedure is complete.” you use the following statement:

MsgBox "The procedure is complete."

You can try this instruction by entering it in the Immediate window. When
you type this instruction and press Enter, Visual Basic displays the message
box shown in Figure 4.1.

FIGURE 4.1 To display a message to the user, place the text as the argument of the MsgBox

function.

The MsgBox function allows you to use other arguments that make it pos-
sible to determine the number of buttons that should be available in the
message box or to change the title of the message box from the default. You
can also assign your own help topic. The syntax of the MsgBox function is
shown here.

MsgBox (prompt [, buttons] [, title], [, helpfile, context])

Notice that while the MsgBox function has five arguments, only the first one,
prompt, is required. The arguments listed in square brackets are optional.

When you enter a long text string for the prompt argument, Visual Basic
decides how to break the text so it fits the message box. Let’s do some exer-
cises in the Immediate window to learn various text formatting techniques.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 85

 Hands-On 4.7 Formatting the Message Box

1. In the Visual Basic Editor window, activate the Immediate window and
enter the following instruction. Be sure to enter the entire text string on
one line, and then press Enter.

MsgBox "All done. Now open ""Test.doc"" and place an empty CD

or DVD in your computer’s CD/DVD drive. The following procedure

will copy this file to the disc."

As soon as you press Enter, Visual Basic shows the resulting dialog box
(see Figure 4.2). If you get a compile error, click OK. Then make sure that
the name of the file is surrounded by double quotation marks (""Test.
doc"").

FIGURE 4.2 This long message will look more appealing to the user when you take the text

formatting into your own hands.

When the text of your message is particularly long, you can break it into
several lines using the VBA Chr function. The Chr function’s argument
is a number from 0 to 255, which returns a character represented by this
number. For example, Chr(13) returns a carriage return character (this
is the same as pressing the Enter key), and Chr(10) returns a linefeed
character (this is useful for adding spacing between the text lines).

2. Modify the instruction entered in the previous step in the following way
and make sure it stays on the same line in the Immediate window:

MsgBox "All done." & Chr(13) & "Now open ""Test.doc"" and

place

an empty" & Chr(13) & "CD or DVD in your computer’s CD/DVD

drive." & Chr(13) & "The following procedure will copy this

file to the disc."

Your result should look like Figure 4.3.

86 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 4.3 You can break a long text string into several lines by using the Chr(13) function.

You must surround each text fragment with quotation marks. Quoted text
embedded in a text string requires an additional set of quotation marks,
as in ""Test.doc"". The Chr(13) function indicates a place where you’d
like to start a new line. The concatenate character (&) is used to combine
the strings. When you enter exceptionally long text messages on one line,
it’s easy to make a mistake. An underscore (_) is a special line continuation
character in VBA that allows you to break a long VBA statement into
several lines. Unfortunately, the line continuation character cannot be used
in the Immediate window. A better place to try out various formatting of
your long strings for the MsgBox function is within a VBA procedure.

3. Add a new module by choosing Insert | Module.
4. In the Code window, enter the following MyMessage subroutine. Be sure

to precede each line continuation character (_) with a space.

Sub MyMessage()

 MsgBox "All done." & Chr(13) _

 & "Now open ""Test.doc"" and place an empty" & Chr(13) _

 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _

 & "The following procedure will copy this file to the

disc."

End Sub

5. Position the insertion point within the code of the MyMessage procedure
and press F5 to run it.
When you run the MyMessage procedure, Visual Basic displays the same
message as the one illustrated earlier in Figure 4.3.
 As you can see, the text entered on several lines is more readable, and the
code is easier to maintain. To improve the readability of your message, you
may want to add more spacing between the text lines by including blank
lines. To do this, use two Chr(13) functions, as shown in the following
step.

6. Enter the following MyMessage2 procedure:

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 87

Sub MyMessage2()

 MsgBox "All done." & Chr(13) & Chr(13) _

 & "Now open ""Test.doc"" and place an empty" & Chr(13) _

 & "CD or DVD in your computer’s CD/DVD drive." & Chr(13) _

 & Chr(13) & "The following procedure will copy this " & _

 "file to the disc."

End Sub

7. Position the insertion point within the code of the MyMessage2 procedure
and press F5 to run it. The result should look like Figure 4.4.

FIGURE 4.4 You can increase the readability of your message by increasing spacing between

selected text lines.

Now that you have mastered the text formatting techniques, let’s take a
closer look at the next argument of the MsgBox function. Although the but-
tons argument is optional, it is frequently used. The buttons argument
specifies how many and what types of buttons you want to appear in the
message box. This argument can be a constant or a number (see Table 4.1).
If you omit this argument, the resulting message box contains only the OK
button, as you’ve seen in the preceding examples.

TABLE 4.1 The MsgBox buttons argument settings.

Constant Value Description

Button settings

vbOKOnly 0 Displays only an OK button. This is the
default.

vbOKCancel 1 OK and Cancel buttons

vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons

vbYesNoCancel 3 Yes, No, and Cancel buttons

vbYesNo 4 Yes and No buttons

vbRetryCancel 5 Retry and Cancel buttons

(contd.)

88 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Constant Value Description

Icon settings

vbCritical 16 Displays the Critical Message icon

vbQuestion 32 Displays the Question Message icon

vbExclamation 48 Displays the Warning Message icon

vbInformation 64 Displays the Information Message icon

Default button settings

vbDefaultButton1 0 The first button is default.

vbDefaultButton2 256 The second button is default.

vbDefaultButton3 512 The third button is default.

vbDefaultButton4 768 The fourth button is default.

Message box modality

vbApplicationModal 0 The user must respond to the message before
continuing to work in the current application.

vbSystemModal 4096 On Win16 systems, this constant is used
to prevent the user from interacting with
any other window until he or she dismisses
the message box. On Win32 systems, this
constant works like the vbApplicationModal
constant with the following exception: The
message box always remains on top of any
other programs you may have running.

Other MsgBox display settings

vbMsgBoxHelpButton 16384 Adds the Help button to the message box

vbMsgBoxSetForeground 65536 Specifies the message box window as the
foreground window

vbMsgBoxRight 524288 Text is right-aligned.

vbMsgBoxRtlReading 1048576 Text appears as right-to-left reading on He-
brew and Arabic systems.

When should you use the buttons argument? Suppose you want the user
of your procedure to respond to a question with Yes or No. Your message
box will then require two buttons. If a message box includes more than one
button, one of them is considered a default button. When the user presses
Enter, the default button is selected automatically.

Because you can display various types of messages (critical, warning,
information), you can visually indicate the importance of the message by
including the graphical representation (icon). In addition to the type of
message, the buttons argument can include a setting to determine whether
the message box must be closed before the user switches to another applica-
tion. It’s quite possible that the user may want to switch to another program
or perform another task before he responds to the question posed in your
message box. If the message box is application modal (vbApplicationMo-

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 89

dal), then the user must close the message box before continuing to use
your application.

For example, consider the following message box:

MsgBox "How are you?", vbOKOnly + vbApplicationModal, " Close Me"

If you type the preceding statement in the Immediate window and press
Enter, a message box will pop up and you won’t be able to work with your
currently open Microsoft Access application until you respond to the mes-
sage box.

On the other hand, if you want to keep the message box visible while the
user works with other open applications, you must include the vbSystem-
Modal setting in the buttons argument, like this:

MsgBox "How are you?", vbOKOnly + vbSystemModal, "System Modal"

NOTE
Use the vbSystemModal constant when you want to ensure
that your message box is always visible (not hidden behind
other windows).

The buttons argument settings are divided into five groups: button settings,
icon settings, default button settings, message box modality, and other Msg-
Box display settings (see Table 4.1). Only one setting from each group can
be included in the buttons argument. To create a buttons argument, you
can add up the values for each setting you want to include. For example, to
display a message box with two buttons (Yes and No), the question mark
icon, and the No button as the default button, look up the corresponding
values in Table 4.1, and add them up. You should arrive at 292 (4 + 32 +
256).

To see the message box using the calculated message box argument, en-
ter the following statement in the Immediate window:

MsgBox "Do you want to proceed?", 292

The resulting message box is shown in Figure 4.5.

FIGURE 4.5 You can specify the number of buttons to include, their text, and an icon in the

message box by using the optional buttons argument.

90 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

When you derive the buttons argument by adding up the constant values,
your procedure becomes less readable. There’s no reference table where you
can check the hidden meaning of 292. To improve the readability of your
MsgBox function, it’s better to use the constants instead of their values. For
example, enter the following revised statement in the Immediate window:

MsgBox "Do you want to proceed?",

 vbYesNo + vbQuestion + vbDefaultButton2

The preceding statement produces the result shown in Figure 4.5. The fol-
lowing example shows how to use the buttons argument inside a Visual
Basic procedure.

 Hands-On 4.8 Using the MsgBox Function with Arguments

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the MsgYesNo subroutine shown here:

Sub MsgYesNo()

 Dim question As String

 Dim myButtons As Integer

 question = "Do you want to open a new report?"

 myButtons = vbYesNo + vbQuestion + vbDefaultButton2

 MsgBox question, myButtons

End Sub

3. Run the MsgYesNo procedure by pressing F5.
In this subroutine, the question variable stores the text of your message.
Th e settings for the buttons argument are placed in the myButtons
variable. Instead of using the names of constants, you can use their values,
as in the following:

myButtons = 4 + 32 + 256

The question and myButtons variables are used as arguments for the Msg-
Box function. When you run the procedure, you see a result similar to the
one shown in Figure 4.5. Note that the No button is selected, indicating that
it’s the default button for this dialog box. If you press Enter, Visual Basic
removes the message box from the screen. Nothing happens because your
procedure does not have any instructions following the MsgBox function.
To change the default button, use the vbDefaultButton1 setting instead.

The third argument of the MsgBox function is title. While this is also
an optional argument, it’s very handy because it allows you to create proce-
dures that don’t provide visual clues to the fact that you programmed them
with Microsoft Access. Using this argument, you can set the titlebar of your
message box to any text you want.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 91

Suppose you want the MsgYesNo procedure to display the text “New
report” in its title. The following MsgYesNo2 procedure demonstrates the
use of the title argument.

Sub MsgYesNo2()

 Dim question As String

 Dim myButtons As Integer

 Dim myTitle As String

 question = "Do you want to open a new report?"

 myButtons = vbYesNo + vbQuestion + vbDefaultButton2

 myTitle = "New report"

 MsgBox question, myButtons, myTitle

End Sub

The text for the title argument is stored in the myTitle variable. If you
don’t specify the value for the title argument, Visual Basic displays the
default text “Microsoft Access.” Notice that the arguments are listed in the
order determined by the MsgBox function.

If you would like to list the arguments in any order, you must precede the
value of each argument with its name, as shown here:

MsgBox title:=myTitle, prompt:=question, buttons:=myButtons

The last two MsgBox arguments, helpfile and context, are used by more
advanced programmers who are experienced with using help files in the
Windows environment. The helpfile argument indicates the name of a
special help file that contains additional information you may want to dis-
play to your VBA application user. When you specify this argument, the
Help button will be added to your message box. When you use the help-
file argument, you must also use the context argument. This argument
indicates which help subject in the specified help file you want to display.
Suppose HelpX.hlp is the help file you created and 55 is the context topic
you want to use. To include this information in your MsgBox function, you
would use the following instruction:

MsgBox title:=myTitle, _

 prompt:=question, _

 buttons:=myButtons, _

 helpfile:= "HelpX.hlp", _

 context:=55

The preceding is a single VBA statement broken down into several lines
using the line continuation character.

Returning Values from the MsgBox Function

When you display a simple message box dialog with one button, clicking
the OK button or pressing the Enter key removes the message box from the

92 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

screen. However, when the message box has more than one button, your
procedure should detect which button was pressed. To do this, you must
save the result of the message box in a variable. Table 4.2 lists values that the
MsgBox function returns.

TABLE 4.2 Values returned by the MsgBox function.

Button Selected Constant Value

OK vbOK 1

Cancel vbCancel 2

Abort vbAbort 3

Retry vbRetry 4

Ignore vbIgnore 5

Yes vbYes 6

No vbNo 7

The MsgYesNo3 procedure in Hands-On 4.9 is a revised version of
MsgYesNo2. It demonstrates how to store the user’s response in a variable.

 Hands-On 4.9 Returning Values from the MsgBox Function

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the following code of the MsgYesNo3 procedure:

Sub MsgYesNo3()

 Dim question As String

 Dim myButtons As Integer

 Dim myTitle As String

 Dim myChoice As Integer

 question = "Do you want to open a new report?"

 myButtons = vbYesNo + vbQuestion + vbDefaultButton2

 myTitle = "New report"

 myChoice = MsgBox(question, myButtons, myTitle)

 MsgBox myChoice

End Sub

3. Position the insertion point within the MsgYesNo3 procedure and press
F5 to run it.
In this procedure, you assigned the result of the MsgBox function to the
variable myChoice. Notice that the arguments of the MsgBox function are
now listed in parentheses:

myChoice = MsgBox(question, myButtons, myTitle)

When you run the MsgYesNo3 procedure, a two-button message box is
displayed. By clicking on the Yes button, the statement MsgBox myChoice

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 93

displays the number 6. When you click the No button, the number 7 is
displayed.

MsgBox Function—With or without Parentheses?

Use parentheses around the MsgBox function argument list when you want
to use the result returned by the function. By listing the function’s argu-
ments without parentheses, you tell Visual Basic that you want to ignore
the function’s result. Most likely, you will want to use the function’s result
when the message box contains more than one button.

Using the InputBox Function

The InputBox function displays a dialog box with a message that prompts
the user to enter data. This dialog box has two buttons: OK and Cancel.
When you click OK, the InputBox function returns the information entered
in the text box. When you select Cancel, the function returns the empty
string (“”). The syntax of the InputBox function is as follows:

InputBox(prompt [, title] [, default] [, xpos] [, ypos]

 [, helpfile, context])

The first argument, prompt, is the text message you want to display in the
dialog box. Long text strings can be entered on several lines by using the
Chr(13) or Chr(10) functions. (See examples of using the MsgBox function
earlier in this chapter.) All the remaining InputBox arguments are optional.

The second argument, title, allows you to change the default title of
the dialog box. The default value is “Microsoft Access.”

The third argument of the InputBox function, default, allows the dis-
play of a default value in the text box. If you omit this argument, the empty
text box is displayed.

The following two arguments, xpos and ypos, let you specify the exact
position where the dialog box should appear on the screen. If you omit these
arguments, the input box appears in the middle of the current window. The
xpos argument determines the horizontal position of the dialog box from
the left edge of the screen. When omitted, the dialog box is centered hori-
zontally. The ypos argument determines the vertical position from the top
of the screen. If you omit this argument, the dialog box is positioned verti-
cally approximately one-third of the way down the screen. Both xpos and
ypos are measured in special units called twips. One twip is the equivalent
of approximately 0.0007 inches.

The last two arguments, helpfile and context, are used in the same
way as the corresponding arguments of the MsgBox function discussed ear-
lier in this chapter.

SIDEBAR

94 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Now that you know the meaning of the InputBox arguments, let’s see
some examples of using this function.

 Hands-On 4.10 Using the InputBox Function

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, type the following Informant subroutine:

Sub Informant()

 InputBox prompt:="Enter your place of birth:" & Chr(13) _

 & " (e.g., Boston, Great Falls, etc.) "

End Sub

3. Position the insertion point within the Informant procedure and press F5
to run it.
This procedure displays a dialog box with two buttons. The input prompt
is displayed on two lines (see Figure 4.6). Similar to using the MsgBox
function you may want to store the result of the InputBox function in a
variable.

FIGURE 4.6 A dialog box generated by the Informant procedure.

4. Now, in the same module, enter the following code of the Informant2
procedure:

Sub Informant2()

 Dim myPrompt As String

 Dim town As String

 Const myTitle = "Enter data"

 myPrompt = "Enter your place of birth:" & Chr(13) _

 & "(e.g., Boston, Great Falls, etc.)"

 town = InputBox(myPrompt, myTitle)

 MsgBox "You were born in " & town & ".", , "Your response"

End Sub

5. Position the insertion point within the Informant2 procedure and press
F5 to run it.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 95

Notice that the Informant2 procedure assigns the result of the InputBox
function to the town variable.
 This time, the arguments of the InputBox function are listed in
parentheses. Parentheses are required if you want to use the result of the
InputBox function later in your procedure. The Informant2 subroutine
uses a constant to specify the text to appear in the titlebar of the dialog box.
Because the constant value remains the same throughout the execution of
your procedure, you can declare the input box title as a constant. However,
if you’d rather use a variable, you still can.
 When you run a procedure using the InputBox function, the dialog box
generated by this function always appears in the same area of the screen.
To change the location of the dialog box, you must supply the xpos and
ypos arguments, which were explained earlier.

6. To display the dialog box in the top left-hand corner of the screen, modify
the InputBox function in the Informant2 procedure as follows:

town = InputBox(myPrompt, myTitle, , 1, 200)

Notice that the argument myTitle is followed by two commas. The second
comma marks the position of the omitted default argument. The next
two arguments determine the horizontal and vertical position of the dialog
box. If you omit the second comma after the myTitle argument, Visual
Basic will use the number 1 as the value of the default argument. If you
precede the values of arguments by their names (e.g., prompt:=myPrompt,
title:=myTitle, xpos:=1, ypos:=200), you won’t have to remember
to insert a comma in the place of each omitted argument.

What will happen if, instead of the name of a town, you enter a number?
Because users often supply incorrect data in the input box, your procedure
must verify that the data the user entered can be used in further data manip-
ulations. The InputBox function itself does not provide a facility for data
validation. To validate user input, you must use other VBA instructions,
which are discussed in Chapter 5, “Adding Decisions to Your Access VBA
Programs.”

CONVERTING DATA TYPES

The result of the InputBox function is always a string. So, if a user enters a
number, its string value must be converted to a numeric value before your
 procedure can use the number in mathematical computations. Visual Basic
can automatically convert many values from one data type to another.

96 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 4.11 Converting Data Types

1. In the Visual Basic Editor window, choose Insert | Module to add a new
module.

2. In the Code window, enter the following AddTwoNums procedure:

Sub AddTwoNums()

 Dim myPrompt As String

 Dim value1 As String

 Dim mySum As Single

 Const myTitle = "Enter data"

 myPrompt = "Enter a number:"

 value1 = InputBox(myPrompt, myTitle, 0)

 mySum = value1 + 2

 MsgBox mySum & " (" & value1 & " + 2)"

End Sub

3. Place the cursor anywhere inside the code of the AddTwoNums procedure
and press F5 to run it.
This procedure displays the dialog box shown in Figure 4.7. Notice that
this dialog box has two special features that are obtained by using the
InputBox function’s optional arguments: title and default. Instead of
the default title “Microsoft Access,” the dialog box displays a text string
as defined by the contents of the myTitle constant. The zero (0) entered
as the default value in the edit box suggests that the user enter a number
instead of text. Once the user provides the data and clicks OK, the input is
assigned to the variable value1.

value1 = InputBox(myPrompt, myTitle, 0)

FIGURE 4.7 To suggest that the user enter a specific type of data, you may want to provide a

default value in the edit box.

ACCESS VBA BUILT-IN AND CUSTOM FUNCTIONS 97

Th e data type of the variable value1 is String. You can check the data type
easily if you follow the preceding instruction with this statement:

MsgBox varType(value1)

When Visual Basic runs this line, it will display a message box with the
number 8. Recall that this number represents the String data type. Th e
next line,

mySum = value1 + 2

adds 2 to the user’s input and assigns the result of the calculation to the
variable mySum. Because the value1 variable’s data type is String, Visual
Basic goes to work behind the scenes to perform the data type conversion.
Visual Basic has the brains to understand the need for conversion. Without
it, the two incompatible data types (text and number) would generate a
Type Mismatch error.

The procedure ends with the MsgBox function displaying the result of
the calculation and showing the user how the total was derived.

Defi ne a Constant

To ensure that all the titlebars in a VBA procedure display the same text,
assign the title text to a constant. By doing so, you will save yourself the
time of typing the title text in more than one place.

SUMMARY

In this chapter, you learned the difference between subroutine procedures
that perform actions and function procedures that return values. You saw
examples of function procedures called from another Visual Basic proce-
dure. You learned how to pass arguments to functions and how to deter-
mine the data type of a function’s result. You increased your repertoire of
VBA keywords with the ByVal, ByRef, and Optional keywords.

After working through this chapter, you should be able to create some
custom functions of your own that are suited to your specific needs. You
should also be able to interact easily with your users by employing the Msg-
Box and InputBox functions.

In the next chapter, you learn how to make decisions in your VBA
programs.

SIDEBAR

99

V
isual Basic for Applications offers special statements called condi-
tional statements, or “control structures,” which allow you to in-
clude decision points in your procedures. In a conditional expres-

sion, a relational operator (see Table 5.1), a logical operator (see Table 5.2),
or a combination of both evaluates the expression to determine whether it is
true or false. If the answer is true, the procedure executes a specified block
of instructions. If the answer is false, the procedure either executes a differ-
ent block of instructions or simply doesn’t do anything. In this chapter, you
will learn how to use these VBA conditional statements to alter the flow of
your program.

RELATIONAL AND LOGICAL OPERATORS

You can make decisions in your VBA procedures by using conditional
expressions inside the special control structures. A conditional expression is
an expression that uses a relational operator (see Table 5.1), a logical opera-
tor (see Table 5.2), or a combination of both. When Visual Basic encoun-
ters a conditional expression in your program, it evaluates the expression to
determine whether it is true or false.

Chapter

5
ADDING DECISIONS

TO YOUR ACCESS
VBA PROGRAMS

100 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

TABLE 5.1 Relational operators in VBA.

Operator Description

= Equal to

<> Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

TABLE 5.2 Logical operators in VBA.

Operator Description

AND All conditions must be true before an action can be taken.

OR At least one of the conditions must be true before an action can be taken.

NOT If a condition is true, NOT makes it false. If a condition is false, NOT
makes it true.

Boolean Expressions

Conditional expressions and logical operators are also known as Boolean.
George Boole was a nineteenth-century British mathematician who made
significant contributions to the evolution of computer programming.
Boolean expressions can be evaluated as true or false.

For example,

One meter equals 10 inches. False

Two is less than three. True

IF…THEN STATEMENT

The simplest way to get some decision making into your VBA procedure
is by using the If…Then statement. Suppose you want to choose an action
depending on a condition. You can use the following structure:

If condition Then statement

For example, a quiz procedure might ask the user to guess the number of
weeks in a year. If the user’s response is other than 52, the procedure should
 display the message “Try Again.”

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 101

 Hands-On 5.1 Using the If…Then Statement

1. Start Microsoft Access and create a new database named Chap05.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
In the Module1 Code window, enter the following SimpleIfTh en
procedure:

Sub SimpleIfThen()

 Dim weeks As String

 weeks = InputBox("How many weeks are in a year:", "Quiz")

 If weeks<>52 Then MsgBox "Try Again"

End Sub

The SimpleIfThen procedure stores the user’s answer in the weeks variable.
The variable’s value is then compared with the number 52. If the result of
the comparison is true (i.e., if the value stored in the variable weeks is not
equal to 52), Visual Basic will display the message “Try Again.”

4. Run the SimpleIfThen procedure and enter a number other than 52.
5. Rerun the SimpleIfThen procedure and enter the number 52. When

you enter the correct number of weeks, Visual Basic does nothing. The
procedure ends. It would be nice to also display a message when the user
guesses right.

6. Enter the following instruction on a separate line before the End Sub
keywords:

If weeks = 52 Then MsgBox "Congratulations!"

7. Run the SimpleIfThen procedure again and enter the number 52. When
you enter the correct answer, Visual Basic does not execute the “Try
Again” statement. When the procedure is executed, the statement to the
right of the Then keyword is ignored if the result from evaluating the
supplied condition is false. As you recall, a VBA procedure can call another
procedure. Let’s see if it can also call itself.

8. Modify the first If statement in the SimpleIfThen procedure as follows:

If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen

We added a colon and the name of the SimpleIfThen procedure to the end
of the existing If…Then statement. If you enter the incorrect answer, you’ll
see a message. After clicking the OK button in the message box, you’ll
get another chance to supply the correct answer. You’ll be able to keep on
guessing for a long time. In fact, you won’t be able to exit the procedure
gracefully until you’ve supplied the correct answer. After clicking Cancel,

102 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

you’ll have to deal with the unfriendly “Type Mismatch” error message.
For now (until you learn other ways of handling errors in VBA), let’s revise
your SimpleIfThen procedure as follows:

Sub SimpleIfThen()

 Dim weeks As String

 On Error GoTo VeryEnd

 weeks = InputBox("How many weeks are in a year:", "Quiz")

 If weeks <> 52 Then MsgBox "Try Again" : SimpleIfThen

 If weeks = 52 Then MsgBox "Congratulations!"

 VeryEnd:

End Sub

If Visual Basic encounters an error, it will jump to the VeryEnd label placed
at the end of the procedure. The statements placed between On Error

GoTo VeryEnd and the VeryEnd labels are ignored. Later in this chapter
you will find other examples of trapping errors in your VBA procedures.

9. Run your revised SimpleIfThen procedure a few times by supplying
incorrect answers. The error trap that you added to your procedure will
allow you to quit guessing without having to deal with the ugly error
message.

MULTILINE IF…THEN STATEMENT

Sometimes you may want to perform several actions when the condition is
true. Although you could add other statements on the same line by separat-
ing them with colons, your code will look clearer if you use the multiline
version of the If…Then statement, as shown here:

If condition Then

 statement1

 statement2

 statementN
End If

For example, let’s modify the SimpleIfThen procedure to include additional
statements.

 Hands-On 5.2 Using the Multiline If…Then Statement

1. Insert a new module and enter the following SimpleIfThen2 procedure:

Sub SimpleIfThen2()

 Dim weeks As String

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 103

 Dim response As String

 On Error GoTo VeryEnd

 weeks = InputBox("How many weeks are in a year?", "Quiz")

 If weeks <> 52 Then

 response = MsgBox("This is incorrect. Would you like " _

 & " to try again?", vbYesNo + vbInformation _

 + vbDefaultButton1, _

 "Continue Quiz?")

 If response = vbYes Then

 Call SimpleIfThen2

 End If

 End If

 VeryEnd:

End Sub

2. Run the SimpleIfThen2 procedure and enter any number other than 52.
In this example, the statements between the first Then and the first End
If keywords don’t get executed if the variable weeks is equal to 52. Notice
that the multiline If…Then statement must end with the keywords End If.
How does Visual Basic decides? Simply put, it evaluates the condition it
finds between the If…Then keywords.

Two Formats of the If…Then Statement

The If…Then statement has two formats: a single-line format and a mul-
tiline format. The short format is good for statements that fit on one line,
like:

If secretCode <> "01W01" Then MsgBox "Access denied"

Or

If secretCode = "01W01" Then alpha = True : beta = False

In these examples, secretCode, alpha, and beta are the names of variables.
In the first example, Visual Basic displays the message “Access denied” if
the value of the secretCode variable is not equal to 01W01. In the second
example, Visual Basic will set the value of the variable alpha to True and
the value of the variable beta to False when the secretCode value is equal
to 01W01. Notice that the second statement to be executed is separated
from the first one by a colon. The multiline If…Then statement is clearer
when there are more statements to be executed when the condition is true,
or when the statement to be executed is extremely long.

SIDEBAR

104 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

DECISIONS BASED ON MORE THAN ONE CONDITION

The SimpleIfThen procedure you worked with earlier evaluated only a
single condition in the If…Then statement. This statement, however, can
take more than one condition. To specify multiple conditions in an If…Then
statement, you use the logical operators AND and OR (see Table 5.2 at the
beginning of the chapter). Here is the syntax of the If…Then statement with
the AND operator:

If condition1 AND condition2 Then statement

In this syntax, both condition1 and condition2 must be true for Visual
Basic to execute the statement to the right of the Then keyword—for exam-
ple:

If sales = 10000 AND salary < 45000 Then SlsCom = sales * 0.07

In this example, condition1 is sales = 10000, and condition2 is salary <
45000.

When AND is used in the conditional expression, both conditions must
be true before Visual Basic can calculate the sales commission (SlsCom).
If any of these conditions is false or both are false, Visual Basic ignores the
statement after Then. When it’s good enough to meet only one of the condi-
tions, you should use the OR operator. Here is the syntax:

If condition1 OR condition2 Then statement

The OR operator is more flexible. Only one of the conditions must be true
before Visual Basic can execute the statement following the Then keyword.
Let’s look at this example:

If dept = "S" OR dept = "M" Then bonus = 500

In this example, if at least one condition is true, Visual Basic assigns 500 to
the bonus variable. If both conditions are false, Visual Basic ignores the rest
of the line.

Now, let’s look at a complete procedure example. Suppose you can get
a 10% discount if you purchase 50 units of a product priced at $7.00. The
IfThenAnd procedure demonstrates the use of the AND operator.

 Hands-On 5.3 Using the If…Then…AND Statement

1. Insert a new module and enter the following IfThenAnd procedure in the
module’s Code window:

Sub IfThenAnd()

 Dim price As Single

 Dim units As Integer

 Dim rebate As Single

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 105

 Const strMsg1 = "To get a rebate, buy an additional "

 Const strMsg2 = "Price must equal $7.00"

 units = 234

 price = 7

 If price = 7 And units >= 50 Then

 rebate = (price * units) * 0.1

 MsgBox "The rebate is: $" & rebate

 End If

 If price = 7 And units < 50 Then

 MsgBox strMsg1 & "50 - units."

 End If

 If price <> 7 And units >= 50 Then

 MsgBox strMsg2

 End If

 If price <> 7 And units < 50 Then

 MsgBox "You didn’t meet the criteria."

 End If

End Sub

2. Run the IfThenAnd procedure.
The IfThenAnd procedure has four If…Then statements that are used to
evaluate the contents of two variables: price and units. The AND opera-
tor between the keywords If…Then allows more than one condition to be
tested. With the AND operator, all conditions must be true for Visual Ba-
sic to run the statements between the Then…End If keywords.

Indenting If Block Instructions

To make the If blocks easier to read and understand, use indentation.
Compare the following:

If condition Then

action
End If

If condition Then

 action
End If

Looking at the block statement on the right side, you can easily see where
the block begins and where it ends.

IF…THEN…ELSE STATEMENT

Now you know how to display a message or take an action when one or
more conditions are true or false. What should you do, however, if your
procedure needs to take one action when the condition is true and another

SIDEBAR

106 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

action when the condition is false? By adding the Else clause to the simple
If…Then statement, you can direct your procedure to the appropriate state-
ment depending on the result of the test.

The If…Then…Else statement has two formats: single-line and multiline.
The single-line format is as follows:

If condition Then statement1 Else statement2

The statement following the Then keyword is executed if the condition is
true, and the statement following the Else clause is executed if the condi-
tion is false—for example:

If sales > 5000 Then Bonus = sales * 0.05 Else MsgBox "No

Bonus"

If the value stored in the variable sales is greater than 5000, Visual Basic
will calculate the bonus using the following formula: sales * 0.05. How-
ever, if the variable sales is not greater than 5000, Visual Basic will display
the message “No Bonus.”

The If…Then…Else statement should be used to decide which of two ac-
tions to perform. When you need to execute more statements when the con-
dition is true or false, it’s better to use the multiline format of the If…Then…
Else statement:

If condition Then

statements to be executed if condition is True

Else

statements to be executed if condition is False
End If

Notice that the multiline (block) If…Then…Else statement ends with the
End If keywords. Use the indentation as shown to make this block struc-
ture easier to read.

If Me.Dirty Then

 Me!btnUndo.Enabled = True

Else

 Me!btnUndo.Enabled = False

End If

In this example, if the condition (Me.Dirty) is true, Visual Basic will
execute the statements between Then and Else, and will ignore the state-
ment between Else and End If. If the condition is false, Visual Basic will
omit the statements between Then and Else and will execute the statement
between Else and End If. The purpose of this procedure fragment is to
enable the Undo button when the data on the form has changed and keep
the Undo button disabled if the data has not changed. Let’s look at a proce-
dure example.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 107

 Hands-On 5.4 Using the If…Then…Else Statement

1. Insert a new module and enter the following WhatTypeOf Day procedure
in the module’s Code window:

Sub WhatTypeOfDay()

 Dim response As String

 Dim question As String

 Dim strMsg1 As String, strMsg2 As String

 Dim myDate As Date

 question = "Enter any date in the format mm/dd/yyyy:" _

 & Chr(13) & " (e.g., 07/06/2015)"

 strMsg1 = "weekday"

 strMsg2 = "weekend"

 response = InputBox(question)

 myDate = Weekday(CDate(response))

 If myDate >= 2 And myDate <= 6 Then

 MsgBox strMsg1

 Else

 MsgBox strMsg2

 End If

End Sub

2. Run the WhatTypeOfDay procedure.
This procedure asks the user to enter any date. The user-supplied string
is then converted to the Date data type with the built-in CDate function.
Finally, the Weekday function converts the date into an integer that
indicates the day of the week (see Table 5.3). The integer is stored in the
variable myDate. The conditional test is performed to check whether the
value of the variable myDate is greater than or equal to 2 (>=2) and less
than or equal to 6 (<=6). If the result of the test is true, the user is told that
the supplied date is a weekday; otherwise, the program announces that it’s
a weekend.

3. Run the procedure a few more times, each time supplying a different date.
Check the Visual Basic answers against your desktop or wall calendar.

TABLE 5.3 The Weekday function values.

Constant Value

vbSunday 1

vbMonday 2

vbTuesday 3

vbWednesday 4

vbThursday 5

vbFriday 6

vbSaturday 7

108 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

IF…THEN…ELSEIF STATEMENT

Quite often you will need to check the results of several different conditions.
To join a set of If conditions together, you can use the ElseIf clause. Using
the If…Then…ElseIf statement, you can evaluate more conditions than is
possible with the If…Then…Else statement that was the subject of the pre-
ceding section. Here is the syntax of the If…Then…ElseIf statement:

If condition1 Then

 statements to be executed if condition1 is True

ElseIf condition2 Then

 statements to be executed if condition2 is True

ElseIf condition3 Then

 statements to be executed if condition3 is True

ElseIf conditionN Then

 statements to be executed if conditionN is True

Else

 statements to be executed if all conditions are False
End If

The Else clause is optional; you can omit it if there are no actions to be
executed when all conditions are false.

ElseIf Clause

Your procedure can include any number of ElseIf statements and condi-
tions. The ElseIf clause always comes before the Else clause. The state-
ments in the ElseIf clause are executed only if the condition in this clause
is true.

Let’s look at the following procedure fragment:

If myNumber = 0 Then

 MsgBox "You entered zero."

ElseIf myNumber > 0 Then

 MsgBox "You entered a positive number."

ElseIf myNumber < 0 Then

 MsgBox "You entered a negative number."

End If

This example checks the value of the number entered by the user and stored
in the variable myNumber. Depending on the number entered, an appro-
priate message (zero, positive, negative) is displayed. Notice that the Else
clause is not used. If the result of the first condition (myNumber = 0) is false,
Visual Basic jumps to the next ElseIf statement and evaluates its condition
(myNumber > 0). If the value is not greater than zero, Visual Basic skips to
the next ElseIf and the condition myNumber < 0 is evaluated.

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 109

NESTED IF…THEN STATEMENTS

You can make more complex decisions in your VBA procedures by plac-
ing an If…Then or If…Then…Else statement inside another If…Then or If…
Then…Else statement. Structures in which an If statement is contained
inside another If block are referred to as nested If statements. To under-
stand how nested If…Then statements work, it’s time for another hands-on
exercise.

 Hands-On 5.5 Using Nested If…Then Statements

1. In the database Chap05.accdb, create a blank form by choosing Blank
form in the Forms section of the Create tab (Microsoft Access 2019
window). When Access opens the new form in Layout view, switch to
Design view.

2. Use the text box control in the Controls section of the Design tab to add
two text boxes to the form (see Figure 5.1).

FIGURE 5.1 Placing text box controls on an Access form for Hands-On 5.5.

3. Click the Property Sheet button in the Tools section of the Design tab.
4. In the property sheet, change the Caption property for the label in front of

the first text box to User and the Caption property for the label in front of
the second text box to Password.

5. Click the Unbound text box to the right of the User label. In the property
sheet on the Other tab, set the Name property of this control to txtUser.
Click the Unbound text box to the right of the Password label. In the property
sheet on the Other tab, set the Name property of this text box to txtPwd (see
Figure 5.2).

110 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

6. In the property sheet on the Data tab, type Password next to the Input
Mask property of the txtPwd text box control.

FIGURE 5.2 Setting the Name property of the text box control for Hands-On 5.5.

7. Click the Button (Form Control) in the Controls section of the Design tab
and add a button to the form. When the Command Button Wizard dialog
box appears, click Cancel. With the Command button selected, set the
Caption and Name properties of this button by typing the following values
in the property sheet next to the shown property name (see Figure 5.3):
Name property: cmdOK
Caption property: OK

FIGURE 5.3 Setting the Command button properties for Hands-On 5.5.

8. Right-click the OK button and choose Build Event from the shortcut
menu. In the Choose Builder dialog box, select Code Builder and click
OK.

9. Enter the following code for the cmdOK_Click event procedure. To make
the procedure easier to understand, the conditional statements are shown
with different formatting (bold and underlined).

Private Sub cmdOK_Click()

 If txtPwd = “FOX” Then

 MsgBox "You’re not authorized to run this report."

 ElseIf txtPwd = “DOG” Then

 If txtUser = "John" Then

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 111

 MsgBox "You’re logged on with restricted privileges."

 ElseIf txtUser = "Mark" Then

 MsgBox "Contact the Admin now."

 ElseIf txtUser = "Anne" Then

 MsgBox "Go home."

 Else

 MsgBox "Incorrect user name."

 End If

 Else

 MsgBox "Incorrect password or user name"

 End If

 Me.txtUser.SetFocus

End Sub

10. Choose File | Close and Return to Microsoft Access. Save your form as
frmTestNesting. When prompted to save standard modules you created in
earlier exercises, save these objects with default names.

11. Switch to Form view. Enter any data in the User and Password text boxes,
and then click OK.
 The procedure first checks if the txtPwd text box on the form holds the
text string “FOX.” If this is true, the message is displayed, and Visual Basic
skips over the ElseIf and Else clauses until it finds the matching End If
(see the bolded conditional statement).
 If the txtPwd text box holds the string “DOG,” we use a nested If…
Then…Else statement (underlined) to check if the content of the txtUser
text box is set to John, Mark, or Anne, and then display the appropriate
message. If the user name is not one of the specified names, then the
condition is false, and we jump to the underlined Else to display a message
stating that the user entered an incorrect user name.
 The first If block (in bold) is called the outer If statement. This outer
statement contains one inner If statement (underlined).

Nesting Statements

Nesting means placing one type of control structure inside another control
structure. You will see more nesting examples with the looping structures
discussed in Chapter 6, “Adding Repeating Actions to Your Access VBA
Programs.”

SELECT CASE STATEMENT

To avoid complex nested If statements that are difficult to follow, you can
use the Select Case statement instead. The syntax of this statement is as
follows:

Select Case testExpression

 Case expressionList1

SIDEBAR

112 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 statements to be executed

 if expressionList1 matches testExpression

 Case expressionList2

 statements to be executed

 if expressionList2 matches testExpression

 Case expressionListN

 statements to be executed

 if expressionListN matches testExpression

 Case Else

 statements to be executed

 if no values match testExpression
End Select

You can place any number of cases to test between the keywords Select
Case and End Select. The Case Else clause is optional. Use it when you
expect that there may be conditional expressions that return False. In the
Select Case statement, Visual Basic compares each expressionList with
the value of testExpression.

Here’s the logic behind the Select Case statement. When Visual Basic
encounters the Select Case clause, it makes note of the value of testEx-
pression. Then it proceeds to test the expression following the first Case
clause. If the value of this expression (expressionList1) matches the value
stored in testExpression, Visual Basic executes the statements until an-
other Case clause is encountered, and then jumps to the End Select state-
ment. If, however, the expression tested in the first Case clause does not
match testExpression, Visual Basic checks the value of each Case clause
until it finds a match. If none of the Case clauses contain the expression
that matches the value stored in testExpression, Visual Basic jumps to
the Case Else clause and executes the statements until it encounters the
End Select keywords. Notice that the Case Else clause is optional. If your
procedure does not use Case Else, and none of the Case clauses contain
a value matching the value of testExpression, Visual Basic jumps to the
statements following End Select and continues executing your procedure.

Let’s look at an example of a procedure that uses the Select Case state-
ment. As you already know, the MsgBox function allows you to display a
message with one or more buttons. You also know that the result of the
MsgBox function can be assigned to a variable. Using the Select Case state-
ment, you can decide which action to take based on the button the user
pressed in the message box.

 Hands-On 5.6 Using the Select Case Statement

1. Press Alt+F11 to switch from the Microsoft Access application window to
the Visual Basic Editor window.

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 113

2. Insert a new module and enter the following TestButtons procedure in the
module’s Code window:

Sub TestButtons()

 Dim question As String

 Dim bts As Integer

 Dim myTitle As String

 Dim myButton As Integer

 question = "Do you want to preview the report now?"

 bts = vbYesNoCancel + vbQuestion + vbDefaultButton1

 myTitle = "Report"

 myButton = MsgBox(prompt:=question, buttons:=bts, _

 Title:=myTitle)

 Select Case myButton

 Case 6

 DoCmd.OpenReport "Sales by Year", acPreview

 Case 7

 MsgBox "You can review the report later."

 Case Else

 MsgBox "You pressed Cancel."

 End Select

End Sub

3. Run the TestButtons procedure three times, each time selecting a different
button. (Because there is no Sales by Year report in the current database,
an error message will pop up when you select Yes. Click End to exit the
error message.)
The first part of the TestButtons procedure displays a message with three
buttons: Yes, No, and Cancel. The value of the button selected by the user
is assigned to the variable myButton.
 If the user clicks Yes, the variable myButton is assigned the vbYes
constant or its corresponding value 6. If the user selects No, the variable
myButton is assigned the constant vbNo or its corresponding value 7.
Lastly, if Cancel is pressed, the content of the variable myButton equals
vbCancel, or 2.
 The Select Case statement checks the values supplied after the Case
clause against the value stored in the variable myButton. When there is a
match, the appropriate Case statement is executed.
 The TestButtons procedure will work the same if you use constants
instead of button values:

Select Case myButton

 Case vbYes

 DoCmd.OpenReport "Sales by Year", acPreview

 Case vbNo

 MsgBox "You can review the report later."

 Case Else

114 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 MsgBox "You pressed Cancel."

End Select

You can omit the Else clause. Simply revise the Select Case statement
as follows:

Select Case myButton

 Case vbYes

 DoCmd.OpenReport "Sales by Year", acPreview

 Case vbNo

 MsgBox "You can review the report later."

 Case vbCancel

 MsgBox "You pressed Cancel."

End Select

Capture Errors with Case Else

Although using Case Else in the Select Case statement isn’t required,
it’s always a good idea to include one just in case the variable you are test-
ing has an unexpected value. The Case Else clause is a good place to put
an error message.

Using Is with the Case Clause

Sometimes a decision is made based on whether the test expression uses the
greater than, less than, equal to, or some other relational operator (see Table
5.1). The Is keyword lets you use a conditional expression in a Case clause.
The syntax for the Select Case clause using the Is keyword is as follows:

Select Case testExpression

 Case Is condition1

 statements if condition1 is true

 Case Is condition2

 statements if condition2 is true

 Case Is conditionN

 statements if conditionN is true

End Select

Let’s look at an example:

Select Case myNumber

 Case Is <= 10

 MsgBox "The number is less than or equal to 10."

 Case 11

 MsgBox "You entered 11."

 Case Is >= 100

 MsgBox "The number is greater than or equal to 100."

 Case Else

 MsgBox "The number is between 12 and 99."

End Select

SIDEBAR

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 115

If the variable myNumber holds 120, the third Case clause is true, and the
only statement executed is the one between Case Is >= 100 and the Case
Else clause.

Specifying a Range of Values in a Case Clause

In the preceding example, you saw a simple Select Case statement that
uses one expression in each Case clause. Many times, however, you may
want to specify a range of values in a Case clause. You do this by using the
To keyword between the values of expressions, as in the following example:

Select Case unitsSold

 Case 1 To 100

 Discount = 0.05

 Case Is <= 500

 Discount = 0.1

 Case 501 To 1000

 Discount = 0.15

 Case Is >1000

 Discount = 0.2

End Select

Let’s analyze this Select Case block with the assumption that the variable
unitsSold currently has a value of 99. Visual Basic compares the value of
the variable unitsSold with the conditional expression in the Case clauses.
The first and third Case clauses illustrate how to use a range of values in a
conditional expression by using the To keyword.

Because unitsSold equals 99, the condition in the first Case clause is
true; thus, Visual Basic assigns the value 0.05 to the variable Discount.
Well, how about the second Case clause, which is also true? Although it’s
obvious that 99 is less than or equal to 500, Visual Basic does not execute
the associated statement Discount = 0.1. The reason for this is that once
Visual Basic locates a Case clause with a true condition, it doesn’t bother
to look at the remaining Case clauses. It jumps over them and continues to
execute the procedure with the instructions that may follow the End Se-
lect statement.

For more practice with the Select Case statement, let’s use it in a function
procedure. As you recall from Chapter 4, function procedures allow you to
return a result to a subroutine. Suppose a subroutine must display a dis-
count based on the number of units sold. You can get the number of units
from the user and then run a function to figure out which discount applies.

 Hands-On 5.7 Using the Select Case Statement in a Function

1. Insert a new module and enter the following DisplayDiscount procedure
in the Code window:

116 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Sub DisplayDiscount()

 Dim unitsSold As Integer

 Dim myDiscount As Single

 unitsSold = InputBox("Units Sold:")

 myDiscount = GetDiscount(unitsSold)

 MsgBox myDiscount

End Sub

2. In the same module, enter the following GetDiscount function procedure:

Function GetDiscount(unitsSold As Integer)

 Select Case unitsSold

 Case 1 To 200

 GetDiscount = 0.05

 Case 201 To 500

 GetDiscount = 0.1

 Case 501 To 1000

 GetDiscount = 0.15

 Case Is > 1000

 GetDiscount = 0.2

 End Select

End Function

3. Place the insertion point anywhere within the code of the DisplayDiscount
procedure and press F5 to run it.
The DisplayDiscount procedure passes the value stored in the variable
unitsSold to the GetDiscount function. When Visual Basic encounters
the Select Case statement, it checks whether the value of the first Case
clause expression matches the value stored in the unitsSold parameter. If
there is a match, Visual Basic assigns a 5% discount (0.05) to the function
name, and then jumps to the End Select keywords. Because there are no
more statements to execute inside the function procedure, Visual Basic
returns to the calling procedure, DisplayDiscount. Here it assigns the
function’s result to the variable myDiscount. The last statement displays
the value of the retrieved discount in a message box.

4. Choose File | Save Chap05 and click OK when prompted to save the
changes to the modules you created during the hands-on exercises.

5. Choose File | Close and Return to Microsoft Access.
6. Close the Chap05.accdb database and exit Microsoft Access.

Specifying Multiple Expressions in a Case Clause

You may specify multiple conditions within a single Case clause by separat-
ing each condition with a comma:

Select Case myMonth

 Case "January", "February", "March"

 Debug.Print myMonth & ": 1st Qtr."

ADDING DECISIONS TO YOUR ACCESS VBA PROGRAMS 117

 Case "April", "May", "June"

 Debug.Print myMonth & ": 2nd Qtr."

 Case "July", "August", "September"

 Debug.Print myMonth & ": 3rd Qtr."

 Case "October", "November", "December"

 Debug.Print myMonth & ": 4th Qtr."

End Select

NOTE

Multiple Conditions within a Case Clause
The commas used to separate conditions within a Case
clause have the same meaning as the OR operator used in
the If statement. The Case clause is true if at least one of the
conditions is true.

SUMMARY

Conditional statements, introduced in this chapter, let you control the flow
of your VBA procedure. By testing the truth of a condition, you can decide
which statements should be run and which should be skipped over. In other
words, instead of running your procedure from top to bottom, line by line,
you can execute only certain lines. Here are a few guidelines to help you
determine which conditional statement you should use:

 ● If you want to supply only one condition, the simple If…Then state-
ment is the best choice.

 ● If you need to decide which of two actions to perform, use the If…
Then…Else statement.

 ● If your procedure requires two or more conditions, use the If…Then…
ElseIf or Select Case statements.

 ● If your procedure has many conditions, use the Select Case state-
ment. Th is statement is more fl exible and easier to comprehend than
the If…Then…ElseIf statement.

Sometimes decisions must be repeated. The next chapter teaches you how
your procedures can perform the same actions repeatedly.

119

N
ow that you’ve learned how conditional statements can give your
VBA procedures decision-making capabilities, it’s time to get more
involved. Not all decisions are easy. Sometimes you will need to

perform a number of statements several times to arrive at a certain condi-
tion. On other occasions, however, after you’ve reached the decision, you
may need to run the specified statements as long as a condition is true or
until a condition becomes true. In programming, performing repetitive
tasks is called looping. VBA has various looping structures that allow you to
repeat a sequence of statements several times. In this chapter, you learn how
to loop through your code.

What Is a Loop?

A loop is a programming structure that causes a section of program code
to execute repeatedly. VBA provides several structures to implement loops
in your procedures: Do…While, Do…Until, For…Next, and For Each…Next.

USING THE DO…WHILE STATEMENT

Visual Basic has two types of Do loop statements that repeat a sequence of
statements either as long as or until a certain condition is true: Do…While
and Do…Until.

The Do…While statement lets you repeat an action as long as a condition
is true. This statement has the following syntax:

Do While condition

 statement1

SIDEBAR

Chapter

6
ADDING REPEATING ACTIONS TO
YOUR ACCESS VBA PROGRAMS

120 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 statement2

 statementN

Loop

When Visual Basic encounters this loop, it first checks the truth value of the
condition. If the condition is false, the statements inside the loop are not
executed, and Visual Basic will continue to execute the program with the
first statement after the Loop keyword or will exit the program if there are
no more statements to execute. If the condition is true, the statements inside
the loop are run one by one until the Loop statement is encountered. The
Loop statement tells Visual Basic to repeat the entire process again as long as
the testing of the condition in the Do…While statement is true.

Let’s see how you can put the Do…While loop to good use in Microsoft
Access. You will find out how to continuously display an input box until the
user enters the correct password. The following hands-on exercise demon-
strates this.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 6.1 Using the Do…While Statement

1. Start Microsoft Access and create a new database named Chap06.accdb
in your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following AskForPassword

procedure:

Sub AskForPassword()6

 Dim pWord As String

 pWord = ""

 Do While pWord <> "DADA"

 pWord = InputBox("What is the report password?")

 Loop

 MsgBox "You entered the correct report password."

End Sub

5. Run the AskForPassword procedure.
In this procedure, the statement inside the Do…While loop is executed as
long as the variable pWord is not equal to the string “DADA.” If the user
enters the correct password (“DADA”), Visual Basic leaves the loop and
executes the MsgBox statement after the Loop keyword.

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 121

 To allow the user to exit the procedure gracefully and cancel out of the
input box if he does not know the correct password, add the following
statement on an empty line before the Loop keyword:

If pWord = "" Then Exit Do

The Exit Do statement tells Visual Basic to exit the Do loop if the variable
pWord does not hold any value (see the section titled “Exiting Loops Early”
later in this chapter). Therefore, when the input box appears, the user can
leave the text field empty and click OK or Cancel to stop the procedure.
Without the Exit Do statement, the procedure will keep on asking the
user to enter the password until the correct value is supplied.
 To forgo displaying the informational message when the user has not
provided the correct password, you may want to use the conditional state-
ment If…Then that you learned in the previous chapter. Here is the revised
AskForPassword procedure:

Sub AskForPassword() ' revised procedure

 Dim pWord As String

 pWord = ""

 Do While pWord <> "DADA"

 pWord = InputBox("What is the report password?")

 If pWord = "" Then

 MsgBox "You did not enter a password."

 Exit Do

 End If

 Loop

 If pWord <> "" Then

 MsgBox "You entered the correct report password."

 End If

End Sub

Another Approach to the Do…While Statement

The Do…While statement has another syntax that lets you test the condition
at the bottom of the loop:

Do

 statement1

 statement2

 statementN

Loop While condition

When you test the condition at the bottom of the loop, the statements
inside the loop are executed at least once. Let’s try this in the next hands-on
exercise.

122 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 6.2 Using the Do…While Statement with a Condition
at the Bottom of the Loop

1. In the Visual Basic Editor window, insert a new module and enter the
following SignIn procedure:

Sub SignIn()

 Dim secretCode As String

 Do

 secretCode = InputBox("Enter your secret code:")

 If secretCode = "sp1045" Then Exit Do

 Loop While secretCode <> "sp1045"

End Sub

2. Run the SignIn procedure.
Notice that by the time the condition is evaluated, Visual Basic has already
executed the statements one time. In addition to placing the condition at
the end of the loop, the SignIn procedure shows again how to exit the loop
when a condition is reached. When the Exit Do statement is encountered,
the loop ends immediately.
 To exit the loop in the SignIn procedure without entering the password,
you may revise it as follows:

Sub SignIn() 'revised procedure

 Dim secretCode As String

 Do

 secretCode = InputBox("Enter your secret code:")

 If secretCode = "sp1045" Or secretCode = "" Then

 Exit Do

 End If

 Loop While secretCode <> "sp1045"

End Sub

Avoid Infi nite Loops

If you don’t design your loop correctly, you can get an infinite loop—a loop
that never ends. You will not be able to stop the procedure by using the Esc
key. The following procedure causes the loop to execute endlessly because
the programmer forgot to include the test condition:

Sub SayHello()

 Do

 MsgBox "Hello."

 Loop

End Sub

To stop the execution of the infinite loop, you must press Ctrl+Break.
When Visual Basic displays the message box “Code execution has been
interrupted,” click End to end the procedure.

SIDEBAR

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 123

USING THE DO…UNTIL STATEMENT

Another handy loop is Do…Until, which allows you to repeat one or more
statements until a condition becomes true. In other words, Do…Until repeats
a block of code as long as something is false. Here is the syntax:

Do Until condition

 statement1

 statement2

 statementN

Loop

Using the preceding syntax, you can now rewrite the AskForPassword pro-
cedure (written in Hands-On 6.1) as shown in the following hands-on exer-
cise.

 Hands-On 6.3 Using the Do…Until Statement

1. In the Visual Basic Editor window, insert a new module and type the
AskForPassword2 procedure:

Sub AskForPassword2()

 Dim pWord As String

 pWord = ""

 Do Until pWord = "DADA"

 pWord = InputBox("What is the report password?")

 Loop

End Sub

2. Run the AskForPassword2 procedure.
The first line of this procedure says: Perform the following statements until
the variable pWord holds the value “DADA.” As a result, until the correct
password is supplied, Visual Basic executes the InputBox statement inside
the loop. This process continues as long as the condition pWord = "DADA"
evaluates to false.
You could modify this procedure to allow the user to cancel the input box
without supplying the password, as follows:

Sub AskForPassword2() 'revised procedure

 Dim pWord As String

 pWord = ""

 Do Until pWord = "DADA"

 pWord = InputBox("What is the report password?")

 If pWord = "" Then Exit Do

 Loop

End Sub

124 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Variables and Loops

All variables that appear in a loop should be assigned default values before
the loop is entered.

Another Approach to the Do…Until Statement

Similar to the Do…While statement, the Do…Until statement has a second
syntax that lets you test the condition at the bottom of the loop:

Do

 statement1

 statement2

 statementN

Loop Until condition

If you want the statements to execute at least once, no matter what the value
of the condition, place the condition on the line with the Loop statement.
Let’s try out the following example that prints 27 numbers to the Immediate
window.

 Hands-On 6.4 Using the Do…Until Statement with a Condition
at the Bottom of the Loop

1. In the Visual Basic Editor window, insert a new module and type the
PrintNumbers procedure shown here:

Sub PrintNumbers()

 Dim num As Integer

 num = 0

 Do

 num = num + 1

 Debug.Print num

 Loop Until num = 27

End Sub

2. Make sure the Immediate window is open in the Visual Basic Editor
window (choose View | Immediate Window or press Ctrl+G).

3. Run the PrintNumbers procedure.
The variable num is initialized at the beginning of the procedure to zero
(0). When Visual Basic enters the loop, the content of the variable num is
increased by one, and the value is written to the Immediate window with the
Debug.Print statement. Next, the condition tells Visual Basic that it should
execute the statements inside the loop until the variable num equals 27.

4. Return to the Microsoft Access application window by choosing File |
Close and Return to Microsoft Access. When prompted, save the changes
to all the modules.

SIDEBAR

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 125

Counters

A counter is a numeric variable that keeps track of the number of items
that have been processed. The preceding PrintNumbers procedure de-
clares the variable num to keep track of numbers that were printed. A coun-
ter variable should be initialized (assigned a value) at the beginning of the
program. This ensures that you always know the exact value of the counter
before you begin using it. A counter can be incremented or decremented
by a specified value.

USING THE FOR…NEXT STATEMENT

The For…Next statement is used when you know how many times you want
to repeat a group of statements. The syntax of a For…Next statement looks
like this:

For counter = start To end [Step increment]

 statement1

 statement2

 statementN

Next [counter]

The code in the brackets is optional. Counter is a numeric variable that
stores the number of iterations. Start is the number at which you want to
begin counting. End indicates how many times the loop should be executed.
For example, if you want to repeat the statements inside the loop five times,
use the following For statement:

For counter = 1 To 5

 statements

Next

When Visual Basic encounters the Next statement, it will go back to the
beginning of the loop and execute the statements inside the loop again, as
long as the counter hasn’t reached the end value. As soon as the value of
counter is greater than the number entered after the To keyword, Visual
Basic exits the loop. Because the variable counter automatically changes
after each execution of the loop, sooner or later the value stored in the coun-
ter exceeds the value specified in end.

By default, every time Visual Basic executes the statements inside the
loop, the value of the variable counter is increased by one. You can change
this default setting by using the Step clause. For example, to increase the
variable counter by three, use the following statement:

For counter = 1 To 5 Step 3

 statements

Next counter

SIDEBAR

126 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

When Visual Basic encounters this statement, it executes the statements
inside the loop twice. The first time the loop runs, the counter equals 1. The
second time the loop runs, the counter equals 4 (1+3). The loop does not
run a third time, because now the counter equals 7 (4+3), causing Visual
Basic to exit the loop.

Note that the Step increment is optional. Optional statements are always
shown in square brackets (see the syntax at the beginning of this section).
The Step increment isn’t specified unless it’s a value other than 1. You can
place a negative number after Step in order to decrement this value from
the counter each time it encounters the Next statement. The name of the
variable (counter) after the Next statement is also optional; however, it’s
good programming practice to make your Next statements explicit by in-
cluding the counter variable’s name.

How can you use the For…Next loop in Microsoft Access? Suppose you
want to retrieve the names of the text boxes located on an active form. The
procedure in the next hands-on exercise demonstrates how to determine
whether a control is a text box and how to display its name if a text box is
found.

 Hands-On 6.5 Using the For…Next Statement

1. Make sure you have a copy of the Northwind 2007.accdb database from
the companion CD in your VBAPrimerAccess_ByExample folder.

2. Import the Customers table from the Northwind 2007.accdb database.
To do this, click Access in the Import & Link section of the External Data
tab. In the File name text box of the Get External Data dialog box, enter
C:\VBAPrimerAccess_ByExample\Northwind 2007.accdb and click
OK. In the Import Objects dialog box, select the Customers table and
click OK. Click Close to exit the Get External Data dialog box.

3. Now, create a simple Customers form based on the Customers table. To
do this, select the Customers table in the navigation pane by clicking on its
name. Next, click the Form button in the Forms section of the Create tab.
Access creates a form as shown in Figure 6.1.

4. Press Alt+F11 to switch to the Visual Basic Editor window and insert a
new module.

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 127

FIGURE 6.1 Automatic data entry form created by Microsoft Access shown in the Layout

View.

5. In the module’s Code window, enter the following GetTextBoxNames
procedure:

Sub GetTextBoxNames()

 Dim myForm As Form

 Dim myControl As Control

 Dim c As Integer

 Set myForm = Screen.ActiveForm

 Set myControl = Screen.ActiveControl

 For c = 0 To myForm.Count - 1

 If TypeOf myForm(c) Is TextBox Then

 MsgBox myForm(c).Name

 End If

 Next c

End Sub

The conditional statement (If…Then) nested inside the For…Next loop tells
Visual Basic to display the name of the active control only if it is a text box.

6. Run the GetTextBoxNames procedure.

Paired Statements

For and Next must be paired. If one is missing, Visual Basic generates the
following error message: “For without Next.”

SIDEBAR

128 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

USING THE FOR EACH…NEXT STATEMENT

When your procedure needs to loop through all the objects of a collection
or all of the elements in an array (arrays are the subject of the next chapter),
the For Each…Next statement should be used. This loop does not require a
counter variable. Visual Basic can figure out on its own how many times the
loop should execute. The For Each…Next statement looks like this:

For Each element In Group

 statement1

 statement2

 statementN

Next [element]

Element is a variable to which all the elements of an array or collection will
be assigned. This variable must be of the Variant data type for an array and
of the Object data type for a collection. Group is the name of a collection
or an array. Let’s now see how to use the For Each…Next statement to print
the names of the controls in the Customers form to the Immediate window.

 Hands-On 6.6 Using the For Each…Next Statement

This hands-on exercise requires the completion of Steps 1 and 2 of Hands-
On 6.5.

1. Ensure that the Customers form you created in Hands-On 6.5 is still open
in Form view.

2. Switch to the Visual Basic Editor window and insert a new module.
3. In the Code window, enter the GetControls procedure shown here:

Sub GetControls()

 Dim myControl As Control

 Dim myForm As Form

 DoCmd.OpenForm "Customers"

 Set myForm = Screen.ActiveForm

 For Each myControl In myForm

 Debug.Print myControl.Name

 Next

End Sub

4. Run the GetControls procedure.
5. The results of the procedure you just executed will be displayed in the

Immediate window. If the window is not visible, press Ctrl+G in the Visual
Basic Editor window to open the Immediate window or choose View |
Immediate Window.

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 129

EXITING LOOPS EARLY

Sometimes you might not want to wait until the loop ends on its own. It’s
possible that a user will enter the wrong data, a procedure will encounter an
error, or perhaps the task will complete and there’s no need to do additional
looping. You can leave the loop early without reaching the condition that
normally terminates it. Visual Basic has two types of Exit statements:

 ● Th e Exit For statement is used to end either a For…Next or a For
Each…Next loop early.

 ● Th e Exit Do statement immediately exits any of the VBA Do loops.

The following hands-on exercise demonstrates how to use the Exit For
statement to leave the For Each…Next loop early.

 Hands-On 6.7 Early Exit from a Loop

1. In the Visual Basic Editor window, choose Insert | Module.
2. In the module’s Code window, enter the following GetControls2

procedure:
Sub GetControls2()

 Dim myControl As Control

 Dim myForm As Form

 DoCmd.OpenForm "Customers"

 Set myForm = Screen.ActiveForm

 For Each myControl In myForm

 Debug.Print myControl.Name

 If myControl.Name = "Address" Then

 Exit For

 End If

 Next

End Sub

3. Run the GetControls2 procedure.
The GetControls2 procedure examines the names of the controls in the
open Customers form. If Visual Basic encounters the control named
“Address,” it exits the loop.

4. Return to the Microsoft Access application window by choosing File |
Close and Return to Microsoft Access.

Exiting Procedures

If you want to exit a subroutine earlier than normal, use the Exit Sub
statement. If the procedure is a function, use the Exit Function state-
ment instead.

SIDEBAR

130 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

NESTED LOOPS

So far in this chapter you have tried out various loops. Each procedure dem-
onstrated the use of an individual looping structure. In programming prac-
tice, however, one loop is often placed inside another. Visual Basic allows
you to “nest” various types of loops (For and Do loops) within the same
procedure. When writing nested loops, you must make sure that each inner
loop is completely contained inside the outer loop. Also, each loop must
have a unique counter variable. When you use nesting loops, you can often
execute specific tasks more effectively.

The GetFormsAndControls procedure shown in the following hands-on
exercise illustrates how one For Each…Next loop is nested within another
For Each…Next loop.

 Hands-On 6.8 Using Nested Loops

1. Import the Employees table from the Northwind 2007.accdb database
located in your VBAPrimerAccess_ByExample folder (see Hands-On 6.5).
To do this, click Access in the Import section of the External Data tab.
In the File name text box of the Get External Data dialog box, enter C:\
VBAPrimerAccess_ByExample\Northwind 2007.accdb and click OK.
In the Import Objects dialog box, select the Employees table and click
OK. Click Close to exit the Get External Data dialog box.

2. Now, create a simple Employees form based on the Employees table. To
do this, select the Employees table in the navigation pane by clicking on its
name. Next, click the Form button in the Forms section of the Create tab.
Access creates a simple Employees data entry form.

3. Leave the Employees form in Form view and press Alt+F11 to switch to
the Visual Basic Editor window.

4. Choose Insert | Module to add a new module. In the module’s Code
window, enter the GetFormsAndControls procedure shown here:

Sub GetFormsAndControls()

 Dim accObj As AccessObject

 Dim myControl As Control

 For Each accObj In CurrentProject.AllForms

 Debug.Print accObj.Name & " Form"

 If Not accObj.IsLoaded Then

 DoCmd.OpenForm accObj.Name

 End If

 For Each myControl In Forms(accObj.Name).Controls

 Debug.Print Chr(9) & myControl.Name

 Next

 DoCmd.Close , , acSaveYes

 Next

End Sub

ADDING REPEATING ACTIONS TO YOUR ACCESS VBA PROGRAMS 131

5. Run the GetFormsAndControls procedure.
The GetFormsAndControls procedure uses two For Each…Next loops
to print the name of each currently open form and its controls to the
Immediate window. To enumerate through the form’s controls, the form
must be open. Notice the use of the Access built-in function IsLoaded.
The procedure will open the form only if it is not yet loaded. The control
names are indented in the Immediate window using the Chr(9) function.
This is like pressing the Tab key once. To get the same result, you can
replace Chr(9) with a VBA constant: vbTab.
 After reading the names of the controls, the form is closed, and the next
form is processed in the same manner. The procedure ends when no more
forms are found in the AllForms collection of CurrentProject.

6. Choose File | Save Chap06 to save changes to the modules.
7. Choose File | Close and Return to Microsoft Access.
8. Close the Chap06.accdb database and click Yes when prompted to save

changes.
9. Exit Microsoft Access.

SUMMARY

In this chapter, you learned how to repeat certain groups of statements in
VBA procedures by using loops. While working with several types of loops,
you saw how each loop performs repetitions in a slightly different way. As
you gain experience, you’ll find it easier to choose the appropriate flow con-
trol structure for your task.

The next chapter shows you how to write procedures that require a large
number of variables.

133

I
n previous chapters, you worked with many VBA procedures that used
variables to hold specific information about an object, property, or
value. For each single value you wanted your procedure to manipulate,

you declared a variable. But what if you have a series of values? If you had
to write a VBA procedure to deal with larger amounts of data, you would
have to create enough variables to handle all the data. Can you imagine
the nightmare of storing currency exchange rates for all the countries in
the world in your program? To create a table to hold the necessary data,
you’d need at least three variables for each country: country name, currency
name, and exchange rate. Fortunately, Visual Basic has a way to get around
this problem. By clustering the related variables together, your VBA proce-
dures can manage a large amount of data with ease. In this chapter, you’ll
learn how to manipulate lists and tables of data with arrays.

UNDERSTANDING ARRAYS

In Visual Basic, an array is a special type of variable that represents a group
of similar values that are of the same data type (String, Integer, Currency,
Date, etc.). The two most common types of arrays are one-dimensional
arrays (lists) and two-dimensional arrays (tables).

A one-dimensional array is sometimes referred to as a list. A shopping
list, a list of the days of the week, and an employee list are examples of one-
dimensional arrays or, simply, numbered lists. Each element in the list has
an index value that allows you to access that element. For example, in the

Chapter

7
KEEPING TRACK OF MULTIPLE

VALUES USING ARRAYS

134 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

following illustration we have a one-dimensional array of six elements in-
dexed from 0 to 5:

(0) (1) (2) (3) (4) (5)

You can access the third element of this array by specifying index (2). By
default, the first element of an array is indexed zero (0). You can change this
behavior by using the Option Base 1 statement or by explicitly coding the
lower bound of your array as explained later in this chapter.

All elements of the array should be of the same data type. In other words,
if you declare an array to hold textual data you cannot store in it both strings
and integers. If you want to store values of different data types in the same
array, you must declare the array as Variant as discussed later. Following
are two examples of one-dimensional arrays: an array named cities that
is populated with text (String data type—$) and an array named lotto that
contains six lottery numbers stored as integers (Integer data type—%).

A one-dimensional array: cities$ A one-dimensional array: lotto%

cities(0) Baltimore lotto(0) 25

cities(1) Atlanta lotto(1) 4

cities(2) Boston lotto(2) 31

cities(3) Washington lotto(3) 22

cities(4) New York lotto(4) 11

cities(5) Trenton lotto(5) 5

As you can see, the contents assigned to each array element match the array
type. Storing values of different data types in the same array requires that
you declare the array as Variant. You will learn how to declare arrays in the
next section.

A two-dimensional array may be thought of as a table or matrix. The
position of each element in a table is determined by its row and column
numbers. For example, an array that holds the yearly sales data for each
product your company sells has two dimensions: the product name and the
year. The following is a diagram of an empty two-dimensional array.

(0,0) (0,1) (0,2) (0,3) (0,4) (0,5)

(1,0) (1,1) (1,2) (1,3) (1,4) (1,5)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5)

(3,0) (3,1) (3,2) (3,3) (3,4) (3,5)

(4,0) (4,1) (4,2) (4,3) (4,4) (4,5)

(5,0) (5,1) (5,2) (5,3) (5,4) (5,5)

You can access the first element in the second row of this two-dimensional
array by specifying indices (1, 0). Following are two examples of two-dimen-
sional arrays: an array named yearlyProductSales that stores yearly prod-

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 135

uct sales using the Currency data type (@) and an array named exchange
(of Variant data type) that stores the name of the country, its currency, and
the U.S. dollar exchange rate.

A TWO-DIMENSIONAL array: yearlyProductSales@

Walking Cane
(0,0)

$25,023
(0,1)

Pill Crusher
(1,0)

$64,085
(1,1)

Electric Wheelchair
(2,0)

$345,016
(2,1)

Folding Walker
(3,0)

$85,244
(3,1)

A TWO-DIMENSIONAL array: exchange (not actual rates)

Japan
(0,0)

Japanese Yen
(0,1)

122.856
(0,2)

Australia
(1,0)

Australian Dollar
(1,1)

1,38220
(1,2)

Canada
(2,0)

Canadian Dollar
(2,1)

1.33512
(2,2)

Norway
(3,0)

Norwegian Krone
(3,1)

8.63744
(3,2)

Europe
(4,0)

Euro
(4,1)

0.939350
(4,2)

In these examples, the yearlyProductSales array can hold a maximum
of 8 elements (4 rows * 2 columns = 8) and the exchange array will allow a
maximum of 15 elements (5 rows * 3 columns = 15).

Although VBA arrays can have up to 60 dimensions, most people find it dif-
ficult to picture dimensions beyond 3D. A three-dimensional array is an array
of two-dimensional arrays (tables) where each table has the same number of
rows and columns. A three-dimensional array is identified by three indices: ta-
ble, row, and column. The first element of a three-dimensional array is indexed
(0, 0, 0).

Declaring Arrays

Because an array is a variable, you must declare it in a similar way that you
declare other variables (by using the keywords Dim, Private, or Public).
For fixed-length arrays, the array bounds are listed in parentheses following
the variable name. The bounds of an array are its lowest and highest indices.
If a variable-length, or dynamic, array is being declared, the variable name
is followed by an empty pair of parentheses.

The last part of the array declaration is the definition of the data type
that the array will hold. An array can hold any of the following data types:

136 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Integer, Long, Single, Double, Variant, Currency, String, Boolean, Byte, or
Date. Let’s look at some examples:

Array Declaration (one-dimensional) Description

Dim cities(5) as String Declares a 6-element array, indexed 0 to 5

Dim lotto(1 To 6) as String Declares a 6-element array, indexed 1 to 6

Dim supplies(2 To 11) Declares a 10-element array, indexed 2 to 11

Dim myIntegers(-3 To 6) Declares a 10-element array, indexed –3 to 6

Dim dynArray() as Integer Declares a variable-length array whose bounds
will be determined at runtime (see examples
later in this chapter)

Array Declaration (two-dimensional) Description

Dim exchange(4,2) as Variant Declares a two-dimensional
array (five rows by three
columns)

Dim yearlyProductSales(3, 1) as Currency Declares a two-dimensional
array (four rows by two
columns)

Dim my2Darray(1 To 3, 1 To 7) as Single Declares a two-dimensional
array (three rows indexed
1 to 3 by seven columns
indexed 1 to 7)

When you declare an array, Visual Basic automatically reserves enough
memory space for it. The amount of memory allocated depends on the
array’s size and data type. For a one-dimensional array with six elements,
Visual Basic sets aside 12 bytes—2 bytes for each element of the array (recall
that the size of the Integer data type is 2 bytes—hence 2 * 6 = 12). The larger
the array, the more memory space is required to store the data. Because
arrays can eat up a lot of memory and impact your computer’s performance,
it’s recommended that you declare arrays with only as many elements as you
think you’ll use.

What Is an Array Variable?

An array is a group of variables that have a common name. While a typical
variable can hold only one value, an array variable can store many indi-
vidual values. You refer to a specific value in the array by using the array
name and an index number.

Subscripted Variables

The numbers inside the parentheses of the array variables are called sub-
scripts, and each individual variable is called a subscripted variable or ele-
ment. For example, cities(5) is the sixth subscripted variable (element)
of the array cities().

SIDEBAR

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 137

Array Upper and Lower Bounds

By default, VBA assigns zero (0) to the first element of the array. Therefore,
number 1 represents the second element of the array, number 2 represents
the third, and so on. With numeric indexing starting at 0, the one-dimen-
sional array cities(5) contains six elements numbered from 0 to 5. If
you’d rather start counting your array’s elements at 1, you can explicitly
specify a lower bound of the array by using an Option Base 1 statement.
This instruction must be placed in the declaration section at the top of a
VBA module before any Sub statements. If you don’t specify Option Base
1 in a procedure that uses arrays, VBA assumes that the statement Option
Base 0 is to be used and begins indexing your array’s elements at 0. If you’d
rather not use the Option Base 1 statement and still have the array index-
ing start at a number other than 0, you must specify the bounds of an array
when declaring the array variable. As mentioned in the previous section,
the bounds of an array are its lowest and highest indices. Let’s look at the
following example:

Dim cities(3 To 6) As Integer

This statement declares a one-dimensional array with four elements. The
numbers enclosed in parentheses after the array name specify the lower (3)
and upper (6) bounds of the array. The index of the first element of this
array is 3, the second 4, the third 5, and the fourth 6. Notice the keyword To
between the lower and upper indices.

Initializing and Filling an Array

After you declare an array, you must assign values to its elements. This is
often referred to as “initializing an array,” “filling an array,” or “populating
an array.” The three methods you can use to load data into an array are dis-
cussed in this section.

Filling an Array Using Individual Assignment Statements

Assume you want to store the names of your six favorite cities in a one-
dimensional array named cities. After declaring the array with the Dim
statement:

Dim cities(5) as String

or

Dim cities$(5)

you can assign values to the array variable like this:

cities(0) = "Baltimore"

cities(1) = "Atlanta"

cities(2) = "Boston"

138 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

cities(3) = "San Diego"

cities(4) = "New York"

cities(5) = "Denver"

Filling an Array Using the Array Function

VBA’s built-in Array function returns an array of Variants. Because Variant
is the default data type, the As Variant clause is optional in the array vari-
able declaration:

Dim cities() as Variant

or

Dim cities()

Notice that you don’t specify the number of elements between the paren-
theses.

Next, use the Array function as shown here to assign values to your cit-
ies array:

 cities = Array("Baltimore", "Atlanta", "Boston", _

 "San Diego", "New York", "Denver")

When using the Array function to populate a six-element array like cit-
ies, the lower bound of the array is 0 or 1 and the upper bound is 5 or 6,
depending on the setting of Option Base (see the previous section titled
“Array Upper and Lower Bounds”).

Filling an Array Using the For…Next Loop

The easiest way to learn how to use loops to populate an array is by writing
a procedure that fills an array with a specific number of integer values. Let’s
look at the following example procedure:

Sub LoadArrayWithIntegers()

 Dim myIntArray(1 To 10) As Integer

 Dim i As Integer

 ' Initialize random number generator

 Randomize

 ' Fill the array with 10 random numbers between 1 and 100

 For i = 1 To 10

 myIntArray(i) = Int((100 * Rnd) + 1)

 Next

 ' Print array values to the Immediate window

 For i = 1 To 10

 Debug.Print myIntArray(i)

 Next

End Sub

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 139

This procedure uses a For…Next loop to fill myIntArray with 10 random
numbers between 1 and 100. The second loop is used to print out the values
from the array. Notice that the procedure uses the Rnd function to generate
a random number. This function returns a value less than 1 but greater than
or equal to 0. You can try it out in the Immediate window by entering:

x=rnd

?x

Before calling the Rnd function, the LoadArrayWithIntegers procedure
uses the Randomize statement to initialize the random number generator.
To become more familiar with the Randomize statement and Rnd function,
be sure to follow up with the Access online help. For an additional example
of using loops, Randomize and Rnd, see Hands-On 7.4.

USING A ONE-DIMENSIONAL ARRAY

Having learned the basics of array variables, let’s write a couple of VBA pro-
cedures to make arrays a part of your new skill set. The procedure in Hands-
On 7.1 uses a one-dimensional array to programmatically display a list of
six North American cities.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 7.1 Using a One-Dimensional Array

1. Start Microsoft Access and create a new database named Chap07.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following FavoriteCities proce-

dure. Be sure to enter the Option Base 1 statement at the top of the
module.

Option Base 1

Sub FavoriteCities()

 ' declare the array

 Dim cities(6) As String

 ' assign the values to array elements

 cities(1) = "Baltimore"

 cities(2) = "Atlanta"

 cities(3) = "Boston"

140 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 cities(4) = "San Diego"

 cities(5) = "New York"

 cities(6) = "Denver"

 ' display the list of cities

 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _

 & cities(3) & Chr(13) & cities(4) & Chr(13) _

 & cities(5) & Chr(13) & cities(6)

End Sub

5. Choose Run | Run Sub/UserForm to execute the FavoriteCities procedure.
Before the FavoriteCities procedure begins, the default indexing for an
array is changed. Notice the Option Base 1 statement at the top of the
module window before the Sub statement. This statement tells Visual Basic
to assign the number 1 instead of the default 0 to the first element of the
array. The array cities() is declared with six elements of the String data
type. Each element of the array is then assigned a value. The last statement
in this procedure uses the MsgBox function to display the list of cities in a
message box. When you run this procedure, each city name will appear on
a separate line (see Figure 7.1). You can change the order of the displayed
data by switching the index values.

FIGURE 7.1 You can display the elements of a one-dimensional array with the MsgBox

function.

6. Click OK to close the message box.
7. On your own, modify the FavoriteCities procedure so that it displays the

names of the cities in reverse order (from 6 to 1).

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 141

The Range of the Array

The spread of the elements specified by the Dim statement is called the
range of the array—for example: Dim mktgCodes(5 To 15).

ARRAYS AND LOOPING STATEMENTS

Several of the looping statements you learned about in Chapter 6 (For…Next
and For Each…Next) will come in handy now that you’re ready to perform
such tasks as populating an array and displaying the elements of an array. It’s
time to combine the skills you’ve learned so far.

How can you rewrite the FavoriteCities procedure, so each city name
is shown in a separate message box? To answer this question, notice how
in the FavoriteCities2 procedure in Hands-On 7.2 we are replacing the last
statement of the original procedure with the For Each…Next loop.

 Hands-On 7.2 Using the For Each…Next Statement to List the
Array Elements

1. In the Visual Basic Editor window, insert a new module.
2. Enter the FavoriteCities2 procedure in the Code window. Be sure to enter

the Option Base 1 statement at the top of the module.

Option Base 1

Sub FavoriteCities2()

 ' declare the array

 Dim cities(6) As String

 Dim city As Variant

 ' assign the values to array elements

 cities(1) = "Baltimore"

 cities(2) = "Atlanta"

 cities(3) = "Boston"

 cities(4) = "San Diego"

 cities(5) = "New York"

 cities(6) = "Denver"

 ' display the list of cities in separate messages

 For Each city In cities

 MsgBox city

 Next

End Sub

3. Choose Run | Run Sub/UserForm to execute the FavoriteCities2
procedure.

SIDEBAR

142 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Notice that the For Each…Next loop uses the variable city of the Variant
data type. As you recall from the previous chapter, the For Each…Next
loop allows you to loop through all of the objects in a collection or all
of the elements of an array and perform the same action on each object
or element. When you run the FavoriteCities2 procedure, the loop will
execute as many times as there are elements in the array.

In Chapter 4, you practiced passing arguments as variables to subroutines
and functions. The CityOperator procedure in Hands-On 7.3 demonstrates
how you can pass elements of an array to another procedure.

 Hands-On 7.3 Passing Elements of an Array to Another
Procedure

1. In the Visual Basic Editor window, insert a new module.
2. Enter the following two procedures (CityOperator and Hello) in the

module’s Code window. Be sure to enter the Option Base 1 statement at
the top of the module.

Option Base 1

Sub CityOperator()

 ' declare the array

 Dim cities(6) As String

 ' assign the values to array elements

 cities(1) = "Baltimore"

 cities(2) = "Atlanta"

 cities(3) = "Boston"

 cities(4) = "San Diego"

 cities(5) = "New York"

 cities(6) = "Denver"

 ' call another procedure and pass

 ' the array as argument

 Hello cities()

End Sub

Sub Hello(cities() As String)

 Dim counter As Integer

 For counter = 1 To 6

 MsgBox "Hello, " & cities(counter) & "!"

 Next

End Sub

Notice that the last statement in the CityOperator procedure calls the Hello
procedure and passes to it the array cities() that holds the names of
our favorite cities. Also notice that the declaration of the Hello procedure

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 143

includes an array type argument—cities()—passed to this procedure as
String. In order to iterate through the elements of an array, you need to
know how many elements are included in the passed array. You can easily
retrieve this information via two array functions—LBound and UBound.
Th ese functions are discussed later in this chapter. In this procedure
example, LBound(cities()) will return 1 as the fi rst element of the array,
and UBound(cities()) will return 6 as the last element of the cities()
array. Th erefore, the statement For counter = LBound(cities()) To
UBound(cities()) will boil down to For counter = 1 To 6.

3. Execute the CityOperator procedure (choose Run | Run Sub/UserForm).

Passing array elements from a subroutine to a subroutine or function proce-
dure allows you to reuse the same array in many procedures without unnec-
essary duplication of the program code.

Here’s how you can put to work your newly acquired knowledge about
arrays and loops in real life. If you’re an avid lotto player who is getting tired
of picking your own lucky numbers, have Visual Basic do the picking. The
Lotto procedure in Hands-On 7.4 populates an array with six numbers from
1 to 54. You can adjust this procedure to pick numbers from any range.

 Hands-On 7.4 Using Arrays and Loops in Real Life

1. In the Visual Basic Editor window, insert a new module.
2. Enter the following Lotto procedure in the module’s Code window:

Sub Lotto()

 Const spins = 6

 Const minNum = 1

 Const maxNum = 54

 Dim t As Integer ' looping variable in outer loop

 Dim i As Integer ' looping variable in inner loop

 Dim myNumbers As String ' string to hold all picks

 Dim lucky(spins) As String ' array to hold generated picks

 myNumbers = ""

 For t = 1 To spins

 Randomize

 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum

 ' check if this number was picked before

 For i = 1 To (t - 1)

 If lucky(t) = lucky(i) Then

 lucky(t) = Int((maxNum - minNum + 1) * Rnd) + minNum

 i = 0

 End If

 Next i

 MsgBox "Lucky number is " & lucky(t), , "Lucky number " & t

 myNumbers = myNumbers & " -" & lucky(t)

144 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Next t

 MsgBox "Lucky numbers are " & myNumbers, , "6 Lucky Numbers"

End Sub

The Randomize statement initializes the random number generator. The
instruction Int((maxNum – minNum + 1) * Rnd + minNum) uses the Rnd
function to generate a random value from the specified minNum to maxNum.
The Int function converts the resulting random number to an integer.
Instead of assigning constant values for minNum and maxNum, you can use
the InputBox function to get these values from the user.
 The inner For…Next loop ensures that each picked number is unique—
it may not be any one of the previously picked numbers. If you omit the
inner loop and run this procedure multiple times, you’ll likely see some
occurrences of duplicate numbers.

3. Execute the Lotto procedure (choose Run | Run Sub/UserForm) to get the
computer-generated lottery numbers.

Initial Value of an Array Element

Until a value is assigned to an element of an array, the element retains its
default value. Numeric variables have a default value of zero (0), and string
variables have a default value of empty string (“”).

Passing Arrays between Procedures

When an array is declared in a procedure, it is local to this procedure and
unknown to other procedures. However, you can pass the local array to
another procedure by using the array’s name followed by an empty set
of parentheses as an argument in the calling statement. For example, the
statement Hello cities() calls the procedure named Hello and passes to
it the array cities.

USING A TWO-DIMENSIONAL ARRAY

Now that you know how to programmatically produce a list (a one-dimen-
sional array), it’s time to take a closer look at how you can work with tables
of data. The following procedure creates a two-dimensional array that will
hold country name, currency name, and exchange rate for three countries.

 Hands-On 7.5 Using a Two-Dimensional Array

1. In the Visual Basic Editor window, insert a new module.
2. Enter the Exchange procedure in the module’s Code window:

Sub Exchange()

SIDEBAR

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 145

 Dim t As String

 Dim r As String

 Dim Ex(3, 3) As Variant

 t = Chr(9) & Chr(9) ' 2 Tabs

 r = Chr(13) ' Enter

 Ex(1, 1) = "Japan"

 Ex(1, 2) = "Yen"

 Ex(1, 3) = 122.856

 Ex(2, 1) = "Europe"

 Ex(2, 2) = "Euro"

 Ex(2, 3) = 0.939350

 Ex(3, 1) = "Canada"

 Ex(3, 2) = "Dollar"

 Ex(3, 3) = 1.33512

 MsgBox "Country " & t & "Currency" & t & _

 "1 USD" & r & r _

 & Ex(1, 1) & t & Ex(1, 2) & t & Ex(1, 3) & r _

 & Ex(2, 1) & t & Ex(2, 2) & t & Ex(2, 3) & r _

 & Ex(3, 1) & t & Ex(3, 2) & t & Ex(3, 3), , _

 "Exchange Rates"

End Sub

3. Execute the Exchange procedure (choose Run | Run Sub/UserForm).
When you run the Exchange procedure, you will see a message box with
the information presented in three columns, as shown in Figure 7.2.

FIGURE 7.2 The text displayed in the message box can be custom formatted. (Note that these

are fictitious exchange rates for demonstration only.)

4. Click OK to close the message box.

146 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

STATIC AND DYNAMIC ARRAYS

The arrays introduced thus far are static. A static array is an array of a spe-
cific size. You use a static array when you know in advance how big the
array should be. The size of the static array is specified in the array’s decla-
ration statement. For example, the statement Dim Fruits(10) As String
declares a static array called Fruits that is made up of 10 elements.

But what if you’re not sure how many elements your array will contain?
If your procedure depends on user input, the number of user-supplied ele-
ments might vary every time the procedure is executed. How can you en-
sure that the array you declare is not wasting memory?

You may recall that after you declare an array, VBA sets aside enough
memory to accommodate the array. If you declare an array to hold more
elements than what you need, you’ll end up wasting valuable computer re-
sources. The solution to this problem is making your arrays dynamic. A
dynamic array is an array whose size can change. You use a dynamic array
when the array size will be determined each time the procedure is run.

Fixed-Dimension Arrays

A static array contains a fixed number of elements. The number of ele-
ments in a static array will not change once it has been declared.

A dynamic array is declared by placing empty parentheses after the array
name—for example:

Dim Fruits() As String

Before you use a dynamic array in your procedure, you must use the ReDim
statement to dynamically set the lower and upper bounds of the array.

The ReDim statement redimensions arrays as the procedure code exe-
cutes. The ReDim statement informs Visual Basic about the new size of the
array. This statement can be used several times in the same procedure. Now
let’s write a procedure that demonstrates the use of a dynamic array.

 Hands-On 7.6 Using a Dynamic Array

1. Insert a new module and enter the following DynArray procedure in the
module’s Code window:

Sub DynArray()

 Dim counter As Integer

 Dim myArray() As Integer ' declare a dynamic array

 ReDim myArray(5) ' specify the initial size of the array

 Dim myValues As String

 ' populate myArray with values

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 147

 For counter = 1 To 5

 myArray(counter) = counter + 1

 myValues = myValues & myArray(counter) & Chr(13)

 Next

 ' change the size of myArray to hold 10 elements

 ReDim Preserve myArray(10)

 ' add new values to myArray

 For counter = 6 To 10

 myArray(counter) = counter * counter

 myValues = myValues & myArray(counter) & Chr(13)

 Next counter

 MsgBox myValues

 For counter = 1 To 10

 Debug.Print myArray(counter)

 Next counter

End Sub

In the DynArray procedure, the statement Dim myArray() As Integer
declares a dynamic array called myArray. Although this statement declares
the array, it does not allocate any memory to the array. The first ReDim
statement specifies the initial size of myArray and reserves for it 10 bytes
of memory to hold its five elements. As you know, every Integer value
requires 2 bytes of memory. The For…Next loop populates myArray with
data and writes the array’s elements to the variable myValues. The value of
the variable counter equals 1 at the beginning of the loop.
 The first statement in the loop (myArray(counter) = counter +1)
assigns the value 2 to the first element of myArray. The second statement
(myValues = myValues & myArray(counter) & Chr(13)) enters the
current value of myArray’s element followed by a carriage return (Chr(13))
into the variable myValues. The statements inside the loop are executed
five times. Visual Basic places each new value in the variable myValues
and proceeds to the next statement: ReDim Preserve myArray(10).
 Normally, when you change the size of the array, you lose all the values
that were in that array. When used alone, the ReDim statement reinitial-
izes the array. However, you can append new elements to an existing array
by following the ReDim statement with the Preserve keyword. In other
words, the Preserve keyword guarantees that the redimensioned array
will not lose its existing data.
 The second For…Next loop assigns values to the 6th through 10th ele-
ments of myArray. This time the values of the array’s elements are ob-
tained by multiplication: counter * counter.

2. Execute the DynArray procedure (choose Run | Run Sub/UserForm).

148 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Dimensioning Arrays

You can’t assign a value to an array element until you have declared the
array with the Dim or ReDim statement. (An exception to this is if you use
the Array function discussed in the next section.)

ARRAY FUNCTIONS

You can manipulate arrays with five built-in VBA functions: Array, IsAr-
ray, Erase, LBound, and UBound. The following sections demonstrate the
use of each of these functions in VBA procedures.

The Array Function

The Array function allows you to create an array during code execution
without having to first dimension it. This function always returns an array
of Variants. You can quickly place a series of values in a list by using the
Array function.

The CarInfo procedure in the following hands-on exercise creates a
fixed- size, one-dimensional, three-element array called auto.

 Hands-On 7.7 Using the Array Function

1. Insert a new module and enter the following CarInfo procedure in the
module’s Code window:

Option Base 1

Sub CarInfo()

 Dim auto As Variant

 auto = Array("Ford", "Black", "2015")

 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)

 auto(2) = "4-door"

 MsgBox auto(2) & " " & auto(1) & ", " & auto(3)

End Sub

2. Run the CarInfo procedure and examine the results.
When you run this procedure, you get two message boxes. The first one
displays the following text: “Black Ford, 2015.” After changing the value of
the second array element, the second message box will say: “4-door Ford,
2015.”

NOTE

Be sure to enter Option Base 1 at the top of the module
before running the CarInfo procedure. If this statement is
missing in your module, Visual Basic will display runtime
error 9—“Subscript out of range.”

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 149

The IsArray Function

The IsArray function lets you test whether a variable is an array. The IsAr-
ray function returns True if the variable is an array or False if it is not an
array. Let’s do another hands-on exercise.

 Hands-On 7.8 Using the IsArray Function

1. Insert a new module and enter the code of the IsThisArray procedure in
the module’s Code window:

Sub IsThisArray()

 ' declare a dynamic array

 Dim tblNames() As String

 Dim totalTables As Integer

 Dim counter As Integer

 Dim db As Database

 Set db = CurrentDb

 ' count the tables in the open database

 totalTables = db.TableDefs.Count

 ' specify the size of the array

 ReDim tblNames(1 To totalTables)

 ' enter and show the names of tables

 For counter = 1 To totalTables - 1

 tblNames(counter) = db.TableDefs(counter).Name

 Debug.Print tblNames(counter)

 Next counter

 ' check if this is indeed an array

 If IsArray(tblNames) Then

 MsgBox "The tblNames is an array."

 End If

End Sub

2. Run the IsThisArray procedure to examine its results.
When you run this procedure, the list of tables in the current database is
written to the Immediate window. A message box displays whether the
tblNames array is indeed an array.

The Erase Function

When you want to remove the data from an array, you should use the Erase
function. This function deletes all the data held by static or dynamic arrays.
In addition, the Erase function reallocates all of the memory assigned to a
dynamic array. If a procedure must use the dynamic array again, you must
use the ReDim statement to specify the size of the array. The next hands-on
exercise demonstrates how to erase the data from the array cities.

150 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 Hands-On 7.9 Removing Data from an Array

1. Insert a new module and enter the code of the FunCities procedure in the
module’s Code window:

' start indexing array elements at 1

Option Base 1

Sub FunCities()

 ' declare the array

 Dim cities(1 To 5) As String

 ' assign the values to array elements

 cities(1) = "Las Vegas"

 cities(2) = "Orlando"

 cities(3) = "Atlantic City"

 cities(4) = "New York"

 cities(5) = "San Francisco"

 ' display the list of cities

 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _

 & cities(3) & Chr(13) & cities(4) & Chr(13) _

 & cities(5)

 Erase cities

 ' show all that was erased

 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _

 & cities(3) & Chr(13) & cities(4) & Chr(13) _

 & cities(5)

End Sub

2. Run the FunCities procedure to examine its results.
3. Click OK to close the message box.

Visual Basic should now display an empty message box because all values
were deleted from the array by the Erase function.

4. Click OK to close the empty message box.

The LBound and UBound Functions

The LBound and UBound functions return whole numbers that indicate the
lower bound and upper bound indices of an array.

 Hands-On 7.10 Finding the Lower and Upper Bounds of an Array

1. Insert a new module and enter the code of the FunCities2 procedure in
the module’s Code window:

Sub FunCities2()

 ' declare the array

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 151

 Dim cities(1 To 5) As String

 ' assign the values to array elements

 cities(1) = "Las Vegas"

 cities(2) = "Orlando"

 cities(3) = "Atlantic City"

 cities(4) = "New York"

 cities(5) = "San Francisco"

 ' display the list of cities

 MsgBox cities(1) & Chr(13) & cities(2) & Chr(13) _

 & cities(3) & Chr(13) & cities(4) & Chr(13) _

 & cities(5)

 ' display the array bounds

 MsgBox "The lower bound: " & LBound(cities) & Chr(13) _

 & "The upper bound: " & UBound(cities)

End Sub

2. Run the FunCities2 procedure.
3. Click OK to close the message box that displays the favorite cities.
4. Click OK to close the message box that displays the lower and upper

bound indices.
To determine the upper and lower indices in a two-dimensional array, you
may want to add the following statements at the end of the Exchange pro-
cedure that was prepared in Hands-On 7.5 (add these lines just before the
End Sub keywords):

MsgBox "The lower bound (first dimension) is " & LBound(Ex, 1) & "."

MsgBox "The upper bound (first dimension) is " & UBound(Ex, 1) & "."

MsgBox "The lower bound (second dimension) is " & LBound(Ex, 2) & "."

MsgBox "The upper bound (second dimension) is " & UBound(Ex, 2) & "."

NOTE

When determining the lower and upper bound indices of
a two-dimensional array, you must specify the dimension
number: 1 for the first dimension and 2 for the second di-
mension.

ERRORS IN ARRAYS

When working with arrays, it’s easy to make a mistake. If you try to assign
more values than there are elements in the declared array, Visual Basic will
display the error message “Subscript out of range” (see Figure 7.3).

152 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 7.3 This error was caused by an attempt to access a nonexistent array element.

Suppose you declared a one-dimensional array that consists of three ele-
ments, and you are trying to assign a value to the fourth element. When you
run the procedure, Visual Basic can’t find the fourth element, so it displays
the error message shown in Figure 7.3. If you click the Debug button, Visual
Basic will highlight the line of code that caused the error (see Figure 7.4).

FIGURE 7.4 The statement that triggered the error shown in Figure 7.3. is highlighted.

The error Subscript out of range is often triggered in procedures using loops.
The procedure Zoo1 shown in Hands-On 7.11 serves as an example of such
a situation.

 Hands-On 7.11 Understanding Errors in Arrays

1. Insert a new module and enter the following Zoo1 and Zoo2 procedures
in the module’s Code window:

Sub Zoo1()

 ' this procedure triggers an error

 ' "Subscript out of range"

 Dim zoo(3) As String

 Dim i As Integer

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 153

 Dim response As String

 i = 0

 Do

 i = i + 1

 response = InputBox("Enter a name of animal:")

 zoo(i) = response

 Loop Until response = ""

End Sub

Sub Zoo2()

 ' this procedure avoids the error

 ' "Subscript out of range"

 Dim zoo(3) As String

 Dim i As Integer

 Dim response As String

 i = 1

 Do While i >= LBound(zoo) And i <= UBound(zoo)

 response = InputBox("Enter a name of animal:")

 If response = "" Then Exit Sub

 zoo(i) = response

 Debug.Print zoo(i)

 i = i + 1

 Loop

End Sub

2. Run the Zoo1 procedure and enter your favorite animal names when
prompted. Do not cancel the procedure until you see the error.
While executing this procedure, when the variable i equals 4, Visual Basic
will not be able to find the fourth element in a three-element array, so the
error message will appear.

3. Click the Debug button in the error message.
Visual Basic will highlight the code that caused the error.

4. Position the cursor over the variable i in the highlighted line of code to
view the variable’s value.
Visual Basic displays: i=4
Notice that at the top of the Zoo1 procedure zoo has been declared as an
array containing only three elements:

Dim zoo(3) As String

Because Visual Basic could not find the fourth element, it displayed the
“Subscript out of range” error.
The Zoo2 procedure demonstrates how, by using the LBound and UBound
functions introduced in the preceding section, you can avoid errors caused
by an attempt to access a nonexistent array element.

5. Choose Run | Reset to terminate the debugging session and exit the
procedure. You will learn more about debugging procedures in Chapter 9.

154 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Another frequent error you may encounter while working with arrays is a
Type Mismatch error. To avoid this error, keep in mind that each element of
an array must be of the same data type. Therefore, if you attempt to assign to
an element of an array a value that conflicts with the data type of the array,
you will get a Type Mismatch error during the code execution. If you need
to hold values of different data types in an array, declare the array as Variant.

PARAMETER ARRAYS

In Chapter 4, you learned that values can be passed between subroutines or
functions as either required or optional arguments. If the passed argument
is not absolutely required for the procedure to execute, the argument’s name
is preceded by the keyword Optional. Sometimes, however, you don’t know
in advance how many arguments you want to pass. A classic example is
addition. One time you may want to add 2 numbers together, another time
you may want to add 3, 10, or 15 numbers.

Using the keyword ParamArray, you can pass an array consisting of
any number of elements to your subroutines and functions. The follow-
ing hands-on exercise uses the AddMultipleArgs function to add as many
numbers as you may require. This function begins with the declaration of
an array myNumbers. Notice the use of the ParamArray keyword.

The array must be declared as type Variant, and it must be the last argu-
ment in the procedure definition.

 Hands-On 7.12 Working with Parameter Arrays

1. Insert a new module and enter the following AddMultipleArgs function
procedure in the module’s Code window:

Function AddMultipleArgs(ParamArray myNumbers() As Variant)

 Dim mySum As Single

 Dim myValue As Variant

 For Each myValue In myNumbers

 mySum = mySum + myValue

 Next

 AddMultipleArgs = mySum

End Function

2. Choose View | Immediate Window and type the following instruction,
and then press Enter to execute it:

?AddMultipleArgs(1, 23.24, 3, 24, 8, 34)

When you press Enter, Visual Basic returns the total of all the numbers in
the parentheses: 93.24. You can supply an unlimited number of arguments.

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 155

To add more values, enter additional values in the parentheses after the
function name in the Immediate window, and then press Enter. Notice
that each function argument must be separated by a comma.

PASSING ARRAYS TO FUNCTION PROCEDURES

You can pass an array to a function procedure and return an array from a
function. For example, let’s assume you have a list of countries. You want to
convert the country names stored in your array to uppercase and keep the
original array intact. You can delegate the conversion process to a function
procedure. When the array is passed using the ByVal keyword, the function
will work with the copy of the original array. Any modifications performed
within the function will affect only the copy. Therefore, the array in the call-
ing procedure will not be modified.

 Hands-On 7.13 Passing an Array to a Function Procedure

1. Insert a new module and enter the following procedure and function in
the module’s Code window:

Sub ManipulateArray()

 Dim countries(1 To 6) As Variant

 Dim countriesUCase As Variant

 Dim i As Integer

 ' assign the values to array elements

 countries(1) = "Bulgaria"

 countries(2) = "Argentina"

 countries(3) = "Brazil"

 countries(4) = "Sweden"

 countries(5) = "New Zealand"

 countries(6) = "Denmark"

 countriesUCase = ArrayToUCase(countries)

 For i = 1 To 6

 Debug.Print countriesUCase(i)

 Debug.Print countries(i) & " (Original Entry)"

 Next i

End Sub

Public Function ArrayToUCase(ByVal myValues _

 As Variant) As String()

 Dim i As Integer

 Dim Temp() As String

 If IsArray(myValues) Then

 ReDim Temp(LBound(myValues) To UBound(myValues))

156 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 For i = LBound(myValues) To UBound(myValues)

 Temp(i) = CStr(UCase(myValues(i)))

 Next i

 ArrayToUCase = Temp

 End If

 End Function

2. Run the ManipulateArray procedure and check its results in the Immediate
window.

SORTING AN ARRAY

We all find it easier to work with sorted data. Some operations on arrays,
like finding maximum and minimum values, require that the array is sorted.
Once it is sorted, you can find the maximum value by assigning the upper
bound index to the sorted array, as in the following:

y = myIntArray(UBound(myIntArray))

The minimum value can be obtained by reading the first value of the sorted
array:

x = myIntArray(1)

So how can you sort an array? Hands-On 7.14 demonstrates how to delegate
the sorting task to a classic bubble sort routine. A bubble sort is a com-
parison sort. To create a sorted set, you step through the list to be sorted,
compare each pair of adjacent items, and swap them if they are in the wrong
order. As a result of this sorting algorithm, the smaller values “bubble” to
the top of the list. In the next procedure, we will sort the list of countries
alphabetically in ascending order.

 Hands-On 7.14 Sorting an Array

This hands-on exercise requires prior completion of Hands-On 7.13.

1. In the same module where you entered the ArrayToUCase function
procedure, enter the following BubbleSort function procedure:

Sub BubbleSort(myArray As Variant)

 Dim i As Integer

 Dim j As Integer

 Dim uBnd As Integer

 Dim Temp As Variant

 uBnd = UBound(myArray)

 For i = LBound(myArray) To uBnd - 1

 For j = i + 1 To uBnd

 If UCase(myArray(i)) > UCase(myArray(j)) Then

 Temp = myArray(j)

KEEPING TRACK OF MULTIPLE VALUES USING ARRAYS 157

 myArray(j) = myArray(i)

 myArray(i) = Temp

 End If

 Next j

 Next i

End Sub

2. Add the following statements to the ManipulateArray procedure, placing
them just above the For…Next statement block (see Figure 7.5):

' call function to sort the array

 BubbleSort countriesUCase

FIGURE 7.5 Calling the BubbleSort function procedure from the ManipulateArray procedure.

3. Run the ManipulateArray procedure and check its results in the Immediate
window. Notice that the countries that appear in uppercase letters are
shown in alphabetic order.

4. Choose File | Save Chap07 and save changes to the modules when
prompted.

5. Choose File | Close and Return to Microsoft Access.
6. Close the Chap07.accdb database and exit Microsoft Access.

SUMMARY

In this chapter, you learned how, by creating an array, you can write proce-
dures that require a large number of variables. You worked with examples
of procedures that demonstrated how to declare and use a one-dimensional
array (list) and a two-dimensional array (table). You learned the difference
between static and dynamic arrays. This chapter introduced you to five
built-in VBA functions that are frequently used with arrays (Array, IsAr-
ray, Erase, LBound, and UBound), as well as the ParamArray keyword. You

158 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

also learned how to pass one array and return another array from a function
procedure. Finally, you saw how to sort an array. You now know all the VBA
control structures that can make your code more intelligent: conditional
statements, loops, and arrays.

In the next chapter, you will learn how to use collections instead of ar-
rays to manipulate large amounts of data.

159

M
icrosoft Access offers a large number of built-in objects that you
can access from your VBA procedures to automate many aspects
of your databases. You are not limited to using these built-in ob-

jects, however. VBA allows you to create your own objects and collections
of objects, complete with their own methods and properties. While writing
your own VBA procedures, you may come across a situation where there’s
no built-in collection to handle the task at hand. The solution is to create
a custom collection object. You already know from the previous chapter
how to work with multiple items of data by using static and dynamic arrays.
Because collections have built-in properties and methods that allow you to
add, remove, and count their elements, they make working with multiple
data items much easier. In this chapter, you learn how to work with col-
lections, including how to declare a custom Collection object. Using class
modules to create user-defined objects will also be discussed. Before diving
into theory and this chapter’s hands-on examples, let’s review the following
terms:

Collection—An object that contains a set of related objects.

Class—A definition of an object that includes its name, properties, meth-
ods, and events. The class acts as a sort of object template from which an
instance of an object is created at runtime.

Class module—A module that contains the definition of a class, including
its property and method definitions.

Event—An action recognized by an object, such as a mouseclick or a key-
press, for which you can define a response. Events can be triggered by a user
action, a VBA statement, or the system.

Chapter

8
KEEPING TRACK OF MULTIPLE

VALUES USING OBJECT COLLECTIONS

160 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Event procedure—A procedure that is automatically executed in response
to an event triggered by the user, program code, or the system.

Form module—A module that contains the VBA code for all event proce-
dures triggered by events occurring in a user form or its controls. A form
module is a type of class module.

Instance—A specific object that belongs to a class is referred to as an
instance of the class. When you create an instance, you create a new object
that has the properties and methods defined by the class.

Module—A structure containing subroutine and function procedures that
are available to other VBA procedures and are not related to any object in
particular.

WORKING WITH COLLECTIONS OF OBJECTS

Collections are objects that contain other similar objects. For example, a
Microsoft Access database has a collection of Tables, and each table has a
collection of Fields and Indexes. In Microsoft Excel, all open workbooks
belong to the Workbooks collection, and all the sheets in a particular work-
book are members of the Worksheets collection. In Microsoft Word, all
open documents belong to the Documents collection, and each paragraph
in a document is a member of the Paragraphs collection.

No matter what collection you want to work with, you can do the fol-
lowing:

 ● Insert new items into the collection by using the Add method.

The following example uses the Immediate window to create a col-
lection named myTestCollection and adds three items to the collec-
tion. To try out these examples, type the statements in the Immediate
window, and then press Enter after each line:

set myTestCollection = New Collection

myTestCollection.Add "first member"

myTestCollection.Add "second member"

myTestCollection.Add "third member"

 ● Determine the number of items in the collection by using the Count
property.

For example, when you type this statement in the Immediate win-
dow, and then press Enter:

?myTestCollection.Count

it returns the total number of items stored in the myTestCollection
object variable.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 161

 ● Refer to a specifi c object in a collection by using an index value.

For example, to find out the names of the collection members, you
can type the following statement in the Immediate window, and then
press Enter:

?myTestCollection.Item(1)

Because the Item method is a default method of the collection, you
may omit it from the statement, as shown here:

?myTestCollection(1)

 ● Remove an object from a collection by using the Remove method.

For example, to remove the first object from the myTestCollection
object variable, enter the following statement, and then press Enter:

myTestCollection.Remove 1

 ● Cycle through every object in the collection by using the For Each…
Next loop.

For example, to remove all objects from the myTestCollection ob-
ject variable, type the following looping structure in the Immediate
window, and then press Enter:

For Each m in myTestCollection : myTestCollection.Remove 1 :

Next

Note that a colon is used to separate one statement from the next. You
can write two or more statements on a single line by separating them
with a colon (:). This is very convenient when testing statements in
the Immediate window. Because collections are reindexed, the pre-
ceding statement will remove the first member of the collection on
each iteration. When you press Enter, myTestCollection should
have zero objects. However, to be sure, type the following statement
in the Immediate window, and then press Enter:

?myTestCollection.Count

Now that you have learned the basics of working with built-in collections,
let’s move on to declaring and using custom collections.

Declaring a Custom Collection

To create a user-defined collection, you should begin by declaring an object
variable of the Collection type. This variable is declared with the New key-
word in the Dim statement:

Dim collection Fruits As New Collection

162 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Adding Objects to a Custom Collection

After you’ve declared the Collection object, you can insert new items into
the collection by using the Add method. The objects with which you popu-
late your collection do not have to be of the same data type. The Add method
looks as follows:

object.Add item[, key, before, after]

For example, the following statement adds a new item to the previously
declared Fruits collection:

Fruits.Add "apples"

You are required only to specify object and item. object is the collection
name, such as Fruits. This is the same name that was used in the declaration
of the Collection object. The Item, such as “apples,” is the object you want to
add to the collection (Fruits).

Although the other arguments are optional, they are quite useful. It’s
important to understand that the items in a collection are automatically
assigned numbers starting with 1. However, they can also be assigned a
unique key value. Instead of accessing a specific item with an index (1, 2, 3,
and so on) at the time an object is added to a collection, you can assign a key
for that object. For instance, to identify an individual in a collection of stu-
dents or employees, you could use Social Security numbers as a key. If you
want to specify the position of the object in the collection, you should use
either the before or after argument (but not both). The before argument
is the object before which the new object is added. The after argument is
the object after which the new object is added.

The NewEmployees procedure in the following hands-on exercise de-
clares the custom Collection object called colEmployees.

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Hands-On 8.1 Creating a Custom Collection

1. Start Microsoft Access and create a new database named Chap08.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Once your new database is opened, press Alt+F11 to switch to the Visual
Basic Editor window.

3. Choose Insert | Module to add a new standard module.
4. In the Module1 Code window, enter the following NewEmployees proce-

dure. Be sure to enter the Option Base 1 statement before this procedure.

Option Base 1 ' ensure that there is only one

 ' Option Base 1 statement

 ' at the top of the module

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 163

Sub NewEmployees()

 ' declare the employees collection

 Dim colEmployees As New Collection

 ' declare a variable to hold each element of a collection

 Dim emp As Variant

 ' Add 3 new employees to the collection

 With colEmployees

 .Add Item:="John Collins", Key:="128634456"

 .Add Item:="Mary Poppins", Key:="223998765"

 .Add Item:="Karen Loza", Key:="120228876", Before:=2

 End With

 ' list the members of the collection

 For Each emp In colEmployees

 Debug.Print emp

 Next

 MsgBox "There are " & colEmployees.Count & " employees."

End Sub

Note that the control variable used in the For Each…Next loop must be de-
clared as Variant or Object. When you run this procedure, you will notice
that the order of employee names stored in the colEmployees collection
(as displayed in the Immediate window) may be different from the order
in which these employees were entered in the program code. This is the
result of using the optional before argument with Karen Loza’s entry. This
argument’s value tells Visual Basic to place Karen before the second item
in the collection.

5. Choose Run | Run Sub/UserForm to execute the NewEmployees
procedure.

Removing Objects from a Custom Collection

Removing an item from a custom collection is as easy as adding an item. To
remove an item, use the Remove method in the following format:

object.Remove index

object is the name of the custom collection that contains the object you
want to remove. index is an expression specifying the position of the object
in the collection.

To demonstrate the process of removing an item from a collection, let’s
work with the following hands-on exercise that modifies the NewEmploy-
ees procedure that you prepared in Hands-On 8.1.

 Hands-On 8.2 Removing Objects from a Collection

This hands-on exercise requires the prior completion of Hands-On 8.1.

164 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

1. Add the following lines to the NewEmployees procedure just before the
End Sub keywords:

' remove the third item from the collection

colEmployees.Remove 3

MsgBox colEmployees.Count & " employees remain."

2. Rerun the NewEmployees procedure.

Reindexing Collections

Collections are reindexed automatically when an item is removed.
Therefore, to remove all items from a custom collection you can use 1 for
the Index argument, as in the following example:

Do While myCollection.Count > 0

 myCollection.Remove Index:=1

Loop

CREATING CUSTOM OBJECTS IN CLASS MODULES

There are two module commands available in the Visual Basic Editor’s Insert
menu: Module and Class Module. So far, you’ve used a standard module to
create subprocedures and function procedures. You’ll use the class module
for the first time in this chapter to create a custom object and define its
properties and methods.

Creating a new VBA object involves inserting a class module into your
project and adding code to that module. However, before you do so you
need a basic understanding of what a class is.

If you refer back to the list of terms at the beginning of this chapter, you
will find out that the class is a sort of object template. A frequently used
analogy is comparing an object class to a cookie cutter. Just like a cookie
cutter defines what a cookie will look like; the definition of the class de-
termines how a particular object should look and how it should behave.
Before you can use an object class, you must first create a new instance of
that class. Object instances are the cookies. Each object instance has the
characteristics (properties and methods) defined by its class. Just as you can
cut out many cookies using the same cookie cutter, you can create multiple
instances of a class. You can change the properties of each instance of a class
independently of any other instance of the same class.

A class module lets you define your own custom classes, complete with
custom properties and methods. A property is an attribute of an object that
defines one of its characteristics, such as shape, position, color, title, and so
forth. A method is an action that the object can perform. You can create the
properties for your custom objects by writing property procedures in a class

SIDEBAR

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 165

module. The object methods are also created in a class module by writing
subprocedures or function procedures.

After building your object in the class module, you can use it in the same
way you use other built-in objects. You can also export the object class out-
side the VBA project to other VBA-capable applications.

Creating a Class

The following sections of this chapter walk you through the process of cre-
ating and working with a custom object called CEmployee. This object will
represent an employee. It will have properties such as ID, FirstName, Last-
Name, and Salary. It will also have a method to modify the current salary.

 Custom Project 8.1 (Step 1) Creating a Class Module

1. In the Visual Basic Editor window, choose Insert | Class Module.
2. In the Project Explorer window, highlight the Class1 module and use the

Properties window to rename the class module CEmployee (see Figure
8.1).

FIGURE 8.1 Use the Name property in the Properties window to rename the Class module.

Naming a Class Module

Every time you create a new class module, give it a meaningful name. Set
the name of the class module to the name you want to use in your VBA
procedures using the class. The name you choose for your class should be
easily understood and should identify the “thing” the object class repre-
sents. As a rule, the object class name is prefaced with an uppercase “C.”

SIDEBAR

166 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Variable Declarations

After adding and renaming the class module, the next step is to declare the
variables that will hold the data you want to store in the custom CEmployee
object. Each item of data you want to store in an object should be assigned
a variable. Class variables are called data members and are declared with the
Private keyword. Using the Private keyword in a class module hides the
data members and prevents other parts of the application from referencing
them. Only the procedures within the class module in which the private
variables were defined can modify the value of these variables.

Because the name of a variable also serves as a property name, use mean-
ingful names for your object’s data members. It’s traditional to preface the
class variable names with “m_” to indicate that they are data members of a
class.

 Custom Project 8.1 (Step 2) Declaring Class Members

1. Type the following declaration lines at the top of the CEmployee class
module’s code window:

Option Explicit

' declarations

Private m_LastName As String

Private m_FirstName As String

Private m_Salary As Currency

Private m_ID As String

Notice that the name of each data member variable begins with the prefi x
“m_.”

Defining the Properties for the Class

Declaring the variables with the Private keyword ensures that they cannot
be directly accessed from outside the object. This means that the VBA pro-
cedures outside the class module will not be able to set or read data stored
in those variables. To enable other parts of your VBA application to set or
retrieve the employee data, you must add special property procedures to
the CEmployee class module. There are three types of property procedures:

 ● Property Let—Th is type of procedure allows other parts of the ap-
plication to set the value of a property.

 ● Property Get—Th is type of procedure allows other parts of the ap-
plication to get or read the value of a property.

 ● Property Set—Th is type of procedure is used instead of Property Let
when setting the reference to an object.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 167

Property procedures are executed when an object property needs to be set
or retrieved. The Property Get procedure can have the same name as the
Property Let procedure. You should create property procedures for each
property of the object that can be accessed by another part of your VBA
application.

The easiest of the three types of property statements to understand is
the Property Get procedure. Let’s examine the syntax of the property proce-
dures by taking a close look at the Property Get LastName procedure.

Property procedures contain the following parts:

 ● A procedure declaration line

 ● An assignment statement

 ● Th e End Property keywords

A procedure declaration line specifies the name of the property and the
data type:

Property Get LastName() As String

LastName is the name of the property and As String determines the data
type of the property’s return value.

An assignment statement is similar to the one used in a function proce-
dure:

LastName = m_LastName

LastName is the name of the property and m_LastName is the data member
variable that holds the value of the property you want to retrieve or set. The
m_LastName variable should be defined with the Private keyword at the
top of the class module. Here’s the complete Property Get procedure:

Property Get LastName() As String

 LastName = m_LastName

End Property

The Property Get procedure can return a result from a calculation, like this:

Property Get Royalty()

 Royalty = (Sales * Percent) - Advance

End Property

The End Property keywords specify the end of the property procedure.

Immediate Exit from Property Procedures

Just as the Exit Sub and Exit Function keywords allow you to exit early
from a subroutine or a function procedure, the Exit Property keywords
give you a way to immediately exit from a property procedure. Program
execution will continue with the statements following the statement that
called the Property Get, Property Let, or Property Set procedure.

SIDEBAR

168 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Creating the Property Get Procedures

The CEmployee class object has four properties that need to be exposed
to VBA procedures that we will write later in a standard module named
EmpOperations. When working with the CEmployee object, you would
certainly like to get information about the employee ID, first and last name,
and current salary.

 Custom Project 8.1 (Step 3) Writing Property Get Procedures

1. Type the following Property Get procedures in the CEmployee class
module, just below the declaration section that you entered in Step 2 of
this custom project:

Property Get ID() As String

 ID = m_ID

End Property

Property Get LastName() As String

 LastName = m_LastName

End Property

Property Get FirstName() As String

 FirstName = m_FirstName

End Property

Property Get Salary() As Currency

 Salary = m_Salary

End Property

Notice that each employee information type requires a separate Property
Get procedure. Each of the preceding Property Get procedures returns the
current value of the property. Notice also how a Property Get procedure is
similar to a function procedure. Similar to function procedures, the Prop-
erty Get procedures contain an assignment statement. As you recall from
Chapter 4, to return a value from a function procedure, you must assign it
to the function’s name.

Creating the Property Let Procedures

In addition to retrieving values stored in data members (private variables)
with Property Get procedures, you must prepare corresponding Property
Let procedures to allow other procedures to change the values of these vari-
ables as needed. The only time you don’t define a Property Let procedure is
when the value stored in a private variable is meant to be read-only.

Suppose you don’t want the user to change the employee ID. To make the
ID read-only, you simply don’t write a Property Let procedure for it. Hence,
the CEmployee class will have only three properties (LastName, FirstName,

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 169

and Salary). Each of these properties will require a separate Property Let
procedure. The employee ID will be assigned automatically with a return
value from a function procedure.

Let’s continue with our project and write the required Property Let pro-
cedures for our custom CEmployee object.

 Custom Project 8.1 (Step 4) Writing Property Let Procedures

1. Type the following Property Let procedures in the CEmployee class
module below the Property Get procedures:

Property Let LastName(L As String)

 m_LastName = L

End Property

Property Let FirstName(F As String)

 m_FirstName = F

End Property

Property Let Salary(ByVal dollar As Currency)

 m_Salary = dollar

End Property

The Property Let procedures require at least one parameter that specifies
the value you want to assign to the property. This parameter can be passed
by value (note the ByVal keyword in the preceding Property Let Salary pro-
cedure) or by reference (ByRef is the default). If you need a refresher on the
meaning of these keywords, see the section titled “Passing Arguments by
Reference and by Value” in Chapter 4.

The data type of the parameter passed to the Property Let procedure
must be the same data type as the value returned from the Property Get or
Set procedure with the same name. Notice that the Property Let procedures
have the same names as the Property Get procedures prepared in the pre-
ceding section. By skipping the Property Let procedure for the ID property,
you created a read-only ID property that can be retrieved but not set.

Defi ning the Scope of Property Procedures

You can place the Public, Private, or Static keyword before the name
of a property procedure to define its scope. To indicate that the Property
Get procedure is accessible to procedures in all modules, use the following
statement format:

Public Property Get FirstName() As String

To make the Property Get procedure accessible only to other procedures
in the module where it is declared, use the following statement format:

Private Property Get FirstName() As String

SIDEBAR

170 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

To preserve the Property Get procedure’s local variables between proce-
dure calls, use the following statement format:

Static Property Get FirstName() As String

If not explicitly specified using either Public or Private, property pro-
cedures are public by default. Also, if the Static keyword is not used, the
values of local variables are not preserved between procedure calls.

Creating the Class Methods

Apart from properties, objects usually have one or more methods. A method
is an action that the object can perform. Methods allow you to manipulate
the data stored in a class object. Methods are created with subroutines or
function procedures. To make a method available outside the class mod-
ule, use the Public keyword in front of the sub or function definition.
The CEmployee object that you create in this chapter has one method that
allows you to calculate the new salary. Assume that the employee salary can
be increased or decreased by a specific percentage or amount.

Let’s continue with our project by writing a class method that calculates
the employee salary.

 Custom Project 8.1 (Step 5) Writing Class Methods

1. Type the following CalcNewSalary function procedure in the CEmployee
class module:

Public Function CalcNewSalary(choice As Integer, _

 curSalary As Currency, amount As Long) As Currency

 Select Case choice

 Case 1 ' by percent

 CalcNewSalary = curSalary + ((curSalary * amount) / 100)

 Case 2 ' by amount

 CalcNewSalary = curSalary + amount

 End Select

End Function

Th e CalcNewSalary function defi ned with the Public keyword in a
class module serves as a method for the CEmployee class. To calculate
a new salary, a VBA procedure from outside the class module must pass
three arguments: choice, CurSalary, and amount. Th e choice argument
specifi es the type of the calculation. Suppose you want to increase the
employee salary by 5% or by $5.00. Th e fi rst option will increase the salary
by the specifi ed percentage, and the second option will add the specifi ed
amount to the current salary. Th e curSalary argument is the current
salary fi gure for an employee, and amount determines the value by which
the salary should be changed.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 171

About Class Methods

 ● Only those methods that will be accessed from outside of the class
should be declared as Public. All others should be declared as Pri-
vate.

 ● Methods perform some operation on the data contained within the
class.

 ● If a method needs to return a value, write a function procedure. Oth-
erwise, create a subprocedure.

Creating an Instance of a Class

After typing all the necessary Property Get, Property Let, sub, or function
procedures for your VBA application in the class module, you are ready to
create a new instance of a class, which is called an object.

Before an object can be created, an object variable must be declared in a
standard module to store the reference to the object. If the name of the class
module is CEmployee, then a new instance of this class can be created with
the following statement:

Dim emp As New CEmployee

The emp variable will represent a reference to an object of the CEmployee
class. When you declare the object variable with the New keyword, VBA
creates the object and allocates memory for it. However, the object isn’t
instanced until you refer to it in your procedure code by assigning a value to
its property or by running one of its methods.

You can also create an instance of the object by declaring an object vari-
able with the data type defined to be the class of the object, as in the follow-
ing:

Dim emp As CEmployee

Set emp = New CEmployee

If you don’t use the New keyword with the Dim statement, VBA does not allo-
cate memory for your custom object until your procedure needs it.

 Custom Project 8.1 (Step 6) Creating an Instance of a Class

1. Activate the Visual Basic Editor window and choose Insert | Module to
add a standard module to your application.

2. Use the Name property in the Properties window to change the name of
the new module to EmpOperations.

3. Type the following declarations at the top of the EmpOperations module:

Dim emp As New CEmployee

Dim CEmployee As New Collection

SIDEBAR

172 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Th e fi rst declaration statement (Dim) declares the variable emp as a new
instance of the CEmployee class. Th e second statement declares a custom
collection. Th e CEmployee collection will be used to store all employee
data.

Event Procedures in the Class Module

An event is basically an action recognized by an object. Custom classes rec-
ognize only two events: Initialize and Terminate. These events are trig-
gered when an instance of the class is created and destroyed, respectively.
The Initialize event is generated when an object is created from a class
(see the preceding section on creating an instance of a class).

In the CEmployee class example, the Initialize event will also fire
the first time that you use the emp variable in code. Because the statements
included inside the Initialize event are the first ones to be executed for
the object before any properties are set or any methods are executed, the
Initialize event is a good place to perform initialization of the objects
created from the class. As you recall, we made the ID read-only in the CEm-
ployee class. You can use the Initialize event to assign a unique five-digit
number to the m_ID variable.

The Class_Initialize procedure uses the following syntax:

Private Sub Class_Initialize()

 [code to perform tasks as the object is created goes here]

End Sub

The Terminate event occurs when all references to an object have been
released. This is a good place to perform any necessary cleanup tasks. The
Class_Terminate procedure uses the following syntax:

Private Sub Class_Terminate()

 [cleanup code goes here]

End Sub

To release an object variable from an object, use the following syntax:

Set objectVariable = Nothing

When you set the object variable to Nothing, the Terminate event is gener-
ated. Any code in this event is executed then.

CREATING THE USER INTERFACE

Implementing our custom CEmployee object requires that you design a
form to enter and manipulate employee data.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 173

 Custom Project 8.1 (Step 7) Designing a User Form

1. Choose File | Close and Return to Microsoft Access.
2. Click the Blank form in the Forms section of the Create tab. Access will

display a blank form in the Form view.
3. Switch to the form’s Design view by choosing Design View from the Views

section.
4. Save the form as frmEmployeeSalaries.
5. Use the tools in the Controls section of the Design tab to place controls on

the form as shown in Figure 8.2.

FIGURE 8.2 This form demonstrates the use of the CEmployee custom object.

6. Activate the property sheet and set the following properties for the form
controls. To set the specified property, first click the control on the form
to select it. Then, in the property sheet type the information shown in the
Setting column next to the property indicated in the Property column.

Object Property Setting

Label1 Caption Last Name

Text box next to the Last Name label Name txtLastName

Label2 Caption First Name

Text box next to the First Name label Name txtFirstName

Label3 Caption Salary

Text box next to the Salary label Name txtSalary

Option group 1 Name
Caption

frSalaryMod
Salary Modification

(contd.)

174 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Object Property Setting

Text box in the option group titled
“Salary Modification”

Name txtRaise

Option button 1 Name
Caption

optPercent
Percent

Option button 2 Name
Caption

optAmount
Amount

Option group 2 Name
Caption

frSalaryFor
Salary Change for

Option button 3 Name
Caption

optSelected
Selected Employee

Option button 4 Name
Caption

optAll
All Employees

Listbox Name
Row Source Type
Column Count
Column Widths

lboxPeople
Value List
4
0.5”;0.9”;0.7”;0.5”

Command Button 1 Name
Caption

cmdAdd
Add

Command Button 2 Name
Caption

cmdClose
Close

Command Button 3 Name
Caption

cmdUpdate
Update Salary

Command Button 4 Name
Caption

cmdDelete
Delete Employee

Now that the form is ready, you need to write a few event procedures to han-
dle various events, such as clicking a command button or loading the form.

 Custom Project 8.1 (Step 8) Writing Event Procedures

1. Activate the Code window behind the form by choosing the View Code
button in the Tools section of the Design tab.

2. Enter the following variable declarations at the top of the form’s Code
window:

' variable declarations

Dim choice As Integer

Dim amount As Long

NOTE
Please ensure that the Option Explicit statement ap-
pears at the top of the module, above the variable declara-
tion statements.

3. Type the following UserForm_Initialize procedure to enable or disable
controls on the form:

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 175

Private Sub UserForm_Initialize()

 txtLastName.SetFocus

 cmdUpdate.Enabled = False

 cmdDelete.Enabled = False

 lboxPeople.Enabled = False

 frSalaryFor.Enabled = False

 frSalaryFor.Value = 0

 frSalaryMod.Enabled = False

 frSalaryMod.Value = 0

 txtRaise.Enabled = False

 txtRaise.Value = ""

End Sub

4. Type the following Form_Load event procedure:

Private Sub Form_Load()

 Call UserForm_Initialize

End Sub

When the form loads, the UserForm_Initialize procedure will run.
5. Enter the following cmdAdd_Click procedure to add the employee to the

collection:

Private Sub cmdAdd_Click()

 Dim strLast As String

 Dim strFirst As String

 Dim curSalary As Currency

 ' Validate data entry

 If IsNull(txtLastName.Value) Or txtLastName.Value = "" _

 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _

 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then

 MsgBox "Enter Last Name, First Name and Salary."

 txtLastName.SetFocus

 Exit Sub

 End If

 If Not IsNumeric(txtSalary) Then

 MsgBox "You must enter a value for the Salary."

 txtSalary.SetFocus

 Exit Sub

 End If

 If txtSalary < 0 Then

 MsgBox "Salary cannot be a negative number."

 Exit Sub

 End If

 ' assign text box values to variables

 strLast = txtLastName

 strFirst = txtFirstName

 curSalary = txtSalary

 ' enable buttons and other controls

176 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 cmdUpdate.Enabled = True

 cmdDelete.Enabled = True

 lboxPeople.Enabled = True

 frSalaryFor.Enabled = True

 frSalaryMod.Enabled = True

 txtRaise.Enabled = True

 txtRaise.Value = ""

 lboxPeople.Visible = True

 ' enter data into the CEmployees collection

 EmpOperations.AddEmployee strLast, strFirst, curSalary

 ' update listbox

 lboxPeople.RowSource = GetValues

 ' delete data from text boxes

 txtLastName = ""

 txtFirstName = ""

 txtSalary = ""

 txtLastName.SetFocus

End Sub

The cmdAdd_Click procedure starts off by validating the user’s input
in the Last Name, First Name, and Salary text boxes. If the user entered
correct data, the text box values are assigned to the variables strLast,
strFirst, and curSalary. Next, several statements enable buttons and
other controls on the form so that the user can work with the employee
data. The following statement calls the AddEmployee procedure in the
EmpOperations standard module and passes the required parameters to it:

EmpOperations.AddEmployee strLast, strFirst, curSalary

Once the employee is entered into the collection, the employee data is
added to the listbox (see Figure 8.3) with the following statement:

lboxPeople.RowSource = GetValues

GetValues is the name of a function procedure in the EmpOperations
module (see Step 12 further on). This function cycles through the
CEmployee collection to create a string of values for the listbox row source.
 The cmdAdd_Click procedure ends by clearing the text boxes, and
then setting the focus to the Last Name text box so the user can enter new
employee data.

6. Enter the following cmdClose_Click procedure to close the form:

Private Sub cmdClose_Click()

 DoCmd.Close

End Sub

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 177

FIGURE 8.3 The listbox control displays employee data as entered in the custom collection

CEmployee.

7. Write the following Click procedure for the cmdUpdate button:

Private Sub cmdUpdate_Click()

 Dim numOfPeople As Integer

 Dim colItem As Integer

 'validate user selections

 If frSalaryFor.Value = 0 Or frSalaryMod.Value = 0 Then

 MsgBox " choose appropriate option button in " & _

 vbCr & "the 'Salary Modification’ and " & _

 "’Change the Salary for’ areas.", vbOKOnly, _

 "Insufficient selection"

 Exit Sub

 ElseIf Not IsNumeric(txtRaise) Or txtRaise = "" Then

 MsgBox "You must enter a number."

 txtRaise.SetFocus

 Exit Sub

 ElseIf frSalaryMod.Value = 1 And _

 lboxPeople.ListIndex = -1 Then

 MsgBox "Click the employee name.", , _

 "Missing selection in the List box"

 Exit Sub

 End If

 If frSalaryMod.Value = 1 And lboxPeople.ListIndex = -1 Then

 MsgBox "Enter data or select an option."

 Exit Sub

 End If

178 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

 'get down to calculations

 amount = txtRaise

 colItem = lboxPeople.ListIndex + 1

 If frSalaryFor.Value = 1 And frSalaryMod.Value = 1 Then

 'by percent, one employee

 choice = 1

 numOfPeople = 1

 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 1 Then

 'by amount, one employee

 choice = 2

 numOfPeople = 1

 ElseIf frSalaryFor.Value = 1 And frSalaryMod.Value = 2 Then

 'by percent, all employees

 choice = 1

 numOfPeople = 2

 ElseIf frSalaryFor.Value = 2 And frSalaryMod.Value = 2 Then

 'by amount, all employees

 choice = 2

 numOfPeople = 2

 End If

 UpdateSalary choice, amount, numOfPeople, colItem

 lboxPeople.RowSource = GetValues

End Sub

When the Update Salary button is clicked, the procedure checks to see
whether the user selected the appropriate option buttons and entered the
adjusted figure in the text box. The update can be done for the selected
employee or for all the employees listed in the listbox control and collection.
You can increase the salary by the specified percentage or amount (see
Figure 8.4). Depending on which options are specified, values are assigned

FIGURE 8.4 The employee salary can be increased or decreased by the specified percentage or

amount.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 179

to the variables choice, amount, numOfpeople, and colItem. These
variables serve as parameters for the UpdateSalary procedure located in
the EmpOperations module (see Step 13 further on). The last statement
in the cmdUpdate_Click procedure sets the row source property of the
listbox control to the result obtained from the GetValues function, which
is located in the EmpOperations standard module.

8. Enter the following cmdDelete_Click procedure:

Private Sub cmdDelete_Click()

 ' make sure an employee row is highlighted

 ' in the listbox control

 If lboxPeople.ListIndex > -1 Then

 DeleteEmployee lboxPeople.ListIndex + 1

 If lboxPeople.ListCount = 1 Then

 lboxPeople.RowSource = GetValues

 UserForm_Initialize

 Else

 lboxPeople.RowSource = GetValues

 End If

 Else

 MsgBox "Click the item you want to remove."

 End If

End Sub

The cmdDelete_Click procedure lets you remove an employee from the
custom collection CEmployee. If you click an item in the listbox and then
click the Delete Employee button, the DeleteEmployee procedure is called.
This procedure requires an argument that specifies the index number
of the item selected in the listbox. After the employee is removed from
the collection, the row source of the listbox control is reset to display
the remaining employees. When the last employee is removed from the
collection, the UserForm_Initialize procedure is called to tackle the task
of disabling controls that cannot be used until at least one employee is
entered into the CEmployee collection.

9. To activate the EmpOperations module that you created earlier, double-
click its name in the Project Explorer window. The top of the module
should contain the following declaration lines, the first two automatically
added by Access:

Option Compare Database

Option Explicit

Dim emp As New CEmployee

Dim CEmployee As New Collection

180 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

10. In the EmpOperations standard module, enter the following
AddEmployee procedure:

Sub AddEmployee(empLast As String, empFirst As String, _

 empSalary As Currency)

 With emp

 .ID = SetEmpId

 .LastName = empLast

 .FirstName = empFirst

 .Salary = CCur(empSalary)

 If .Salary = 0 Then Exit Sub

 CEmployee.Add emp

 End With

End Sub

The AddEmployee procedure is called from the cmdAdd_Click procedure
attached to the form’s Add button. This procedure takes three arguments.
When Visual Basic for Applications reaches the With emp construct, a new
instance of the CEmployee class is created. The LastName, FirstName, and
Salary properties are set with the values passed from the cmdAdd_Click
procedure. The ID property is set with the number generated by the result
of the SetEmpId function (see the following step). Each time VBA sees
the reference to the instanced emp object, it will call upon the appropriate
Property Let procedure located in the class module. (The next section of
this chapter demonstrates how to walk through this procedure step by
step to see exactly when the Property procedures are executed.) The last
statement inside the With emp construct adds the user-defined object emp
to the custom collection called CEmployee.

11. In the EmpOperations standard module, enter the following SetEmpID
function procedure:

Function SetEmpID() As String

 Dim ref As String

 Randomize

 ref = Int((99999 - 10000) * Rnd + 10000)

 SetEmpId = ref

End Function

This function will assign a unique five-digit number to each new employee.
To generate a random integer between two given integers where ending_
number = 99999 and beginning_number = 10000, the following formula
is used:

= Int((ending_number - beginning_number) * Rnd + beginning_number)

The SetEmpId function procedure also uses the Randomize statement to
reinitialize the random number generator. For more information on using

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 181

the Rnd and Integer functions, as well as the Randomize statement, refer
to the online help.

12. Enter the following GetValues function procedure. This function, which is
called from the cmdAdd_Click, cmdUpdate_Click, and cmdDelete_Click
procedures, provides the values for the listbox control to synchronize it
with the current values in the CEmployee collection.

Function GetValues()

 Dim myList As String

 myList = ""

 For Each emp In CEmployee

 myList = myList & emp.ID & ";" & _

 emp.LastName & ";" & _

 emp.FirstName & "; $" & _

 Format(emp.Salary, "0.00") & ";"

 Next emp

 GetValues = myList

End Function

13. Enter the following UpdateSalary procedure:

Sub UpdateSalary(choice As Integer, myValue As Long, _

 peopleCount As Integer, colItem As Integer)

 Set emp = New CEmployee

 If choice = 1 And peopleCount = 1 Then

 CEmployee.Item(colItem).Salary = _

 emp.CalcNewSalary(1, CEmployee.Item(_

 colItem).Salary, myValue)

 ElseIf choice = 1 And peopleCount = 2 Then

 For Each emp In CEmployee

 emp.Salary = emp.Salary + ((emp.Salary * myValue) _

 / 100)

 Next emp

 ElseIf choice = 2 And peopleCount = 1 Then

 CEmployee.Item(colItem).Salary = _

 CEmployee.Item(colItem).Salary + myValue

 ElseIf choice = 2 And peopleCount = 2 Then

 For Each emp In CEmployee

 emp.Salary = emp.Salary + myValue

 Next emp

 Else

 MsgBox "Enter data or select an option."

 End If

End Sub

The UpdateSalary procedure is called from the cmdUpdate_Click
procedure, which is assigned to the Update Salary button on the form. The
click procedure passes four parameters that the UpdateSalary procedure

182 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

uses for the salary calculations. When a salary for the selected employee
needs to be updated by a percentage or amount, the CalcNewSalary method
residing in the class module is called. For modification of salary figures
for all the employees, we iterate over the CEmployee collection to obtain
the value of the Salary property of each emp object, and then perform the
required calculation by using a formula. By entering a negative number in
the form’s txtRaise text box, you can decrease the salary by the specified
percentage or amount.

14. Enter the DeleteEmployee procedure:

Sub DeleteEmployee(colItem As Integer)

 Dim getcount As Integer

 CEmployee.Remove colItem

End Sub

The DeleteEmployee procedure uses the Remove method to delete the
selected employee from the CEmployee custom collection. Recall that
the Remove method requires one argument, which is the position of the
item in the collection. The value of this argument is obtained from the
cmdDelete_Click procedure. The class module procedures were called
from the standard module named EmpOperations. This was done to avoid
creating a new instance of a user-defined class every time we needed to
call it.

RUNNING THE CUSTOM APPLICATION

Now that you have finished writing the necessary VBA code, let’s load
frmEmployeeSalaries to enter and modify employee information.

 Custom Project 8.1 (Step 9) Running the Custom Project

1. Choose File | Save Chap08 to save all the objects in the VBA project.
2. Switch to the Microsoft Office Access window and activate

frmEmployeeSalaries in the Form view.
3. Enter the employee last and first name and salary and click the Add button.

The employee information now appears in the listbox. Notice that an
employee ID is automatically entered in the first column. All the disabled
form controls are now enabled.

4. Enter data for another employee, and then click the Add button.
5. Enter information for at least three more people.
6. Increase the salary of the third employee in the listbox by 10%. To do this,

click the employee name in the listbox, click the Percent option button, and
type 10 in the text box in the Salary Modification section of the form. In

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 183

the Change the Salary for section of the form, click the Selected Employee
option button. Finally, click the Update Salary button to perform the
update operation.

7. Now increase the salary of all the employees by $5.
8. Remove the fourth employee from the listbox. To do this, select the

employee in the listbox and click the Delete Employee button.
9. Close frmEmployeeSalaries by clicking the Close button.

WATCHING THE EXECUTION OF YOUR VBA PROCEDURES

To help you understand what’s going on when your code runs and how
the custom object works, let’s walk through the cmdAdd_Click procedure.
Treat this exercise as a brief introduction to the debugging techniques that
are covered in detail in the next chapter.

 Custom Project 8.1 (Step 10) Custom Project Code Walkthrough

1. Open frmEmployeeSalaries in Design view and click View Code in the
Tools section of the Design tab.

2. Select cmdAdd from the combo box at the top left of the Code window.
3. Set a breakpoint by clicking in the left margin next to the following line of

code, as shown in Figure 8.5:

If IsNull(txtLastName.Value) Or txtLastName.Value = "" _

 Or IsNull(txtFirstName.Value) Or txtFirstName.Value = "" _

 Or IsNull(txtSalary.Value) Or txtSalary.Value = "" Then

FIGURE 8.5 A red circle in the margin indicates a breakpoint. The statement with a

breakpoint is displayed as white text on a red background.

4. Press Alt+F11 to return to the form frmEmployeeSalaries, and then
switch to the Form view.

5. Enter data in the Last Name, First Name, and Salary text boxes, and then
click the form’s Add button. Visual Basic should now switch to the Code

184 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

window because it came across the breakpoint in the first line of the
cmdAdd_Click procedure (see Figure 8.6).

FIGURE 8.6 When Visual Basic encounters a breakpoint while running a procedure, it switches

to the Code window and displays a yellow arrow in the margin to the left of the statement at

which the procedure is suspended.

6. Step through the code one statement at a time by pressing F8. Visual
Basic runs the current statement, then automatically advances to the next
statement and suspends execution. The current statement is indicated by
a yellow arrow in the margin and a yellow background. Keep pressing
F8 to execute the procedure step by step. After Visual Basic switches to
the EmpOperations module to run the AddEmployee procedure and
encounters the With emp statement, it will run the function to set the
employee ID and will go out to execute the Property Let procedures in the
CEmployee class module (see Figure 8.7).

FIGURE 8.7 Setting the properties of your custom object is accomplished through the

Property Let procedures.

KEEPING TRACK OF MULTIPLE VALUES USING OBJECT COLLECTIONS 185

7. Using the F8 key, continue executing the cmdAdd_Click procedure code
to the end. When VBA encounters the end of the procedure (End Sub),
the yellow highlighter will be turned off. At this time, press F5 to finish
execution of the remaining code. Next, switch back to the active form by
pressing Alt+F11.

NOTE
To activate the form, you may need to first click the Table1
tab and then reselect the Employee Operations tab (see
Figure 8.3).

8. Enter data for a new employee, and then click the Add button. When Visual
Basic displays the Code window, choose Debug | Clear All Breakpoints.
Now press F5 to run the remaining code without stepping through it.

9. In the Visual Basic Editor window, choose File | Save Chap08, and then
save changes to the modules when prompted.

10. Choose File | Close and Return to Microsoft Access.
11. Close the Chap08.accdb database and exit Microsoft Access.

VBA Debugging Tools

Visual Basic provides many debugging tools to help you analyze how your
application operates, as well as to locate the source of errors in your proce-
dures. See the next chapter for details on working with these tools.

SUMMARY

In this chapter, you learned how to create and use your own objects and
collections in VBA procedures. You used a class module to create a user-
defined (custom) object. You saw how to define your custom object’s prop-
erties using the Property Get and Property Let procedures. You also learned
how to write a method for your custom object and saw how to make the
class module available to the user with a custom form. Finally, you learned
how to analyze your VBA application by stepping through its code.

As your procedures become more complex, you will need to start using
special tools for tracing errors, which are covered in the next chapter.

SIDEBAR

187

I
n the course of writing or editing VBA procedures, no matter how care-
ful you are, you’re likely to make some mistakes. For example, you may
misspell a word, misplace a comma or quotation mark, or forget a pe-

riod or ending parenthesis. These kinds of mistakes are known as syntax
errors. Fortunately, Visual Basic for Applications is quite helpful in spotting
these kinds of errors. To have VBA automatically check for correct syntax
after you enter a line of code, choose Tools | Options in the VBE window.
Make sure the Auto Syntax Check setting is selected on the Editor tab, as
shown in Figure 9.1.

Chapter

9
GETTING TO KNOW BUILT-IN TOOLS

FOR TESTING AND DEBUGGING

188 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.1 The Auto Syntax Check setting on the Editor tab of the Options dialog box helps

you find typos in your VBA procedures.

When VBA finds a syntax error, it displays an error message box and
changes the color of the incorrect line of code to red, or another color as
indicated on the Editor Format tab in the Options dialog box.

If the explanation of the error in the error message isn’t clear, you can
click the Help button for more help. If Visual Basic for Applications cannot
point you in the right direction, you must return to your procedure and
carefully examine the offending instruction for missed letters, quotation
marks, periods, colons, equal signs, and beginning and ending parenthe-
ses. Finding syntax errors can be aggravating and time-consuming. Certain
syntax errors can be caught only during the execution of the procedure.
While attempting to run your procedure, VBA can find errors that were
caused by using invalid arguments or omitting instructions that are used in
pairs, such as If…End statements and looping structures.

You’ve probably heard that computer programs are “full of bugs.” In pro-
gramming, errors are called bugs, and debugging is a process of eliminating
errors from your programs. Visual Basic for Applications provides a myriad
of tools for tracking down and eliminating bugs. The first step in debugging
a procedure is to correct all syntax errors. In addition to syntax errors, there
are two other types of errors: runtime and logic. Runtime errors, which oc-
cur while the procedure is running, are often caused by unexpected situa-
tions the programmer did not think of while writing the code. For example,
the program may be trying to access a drive or a file that does not exist on

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 189

the user’s computer. Or it may be trying to copy a file to a CD-ROM disc
without first determining whether the user had inserted a CD.

The third type of error, a logic error, often does not generate a specific
error message. Even though the procedure has no flaws in its syntax and
runs without errors, it produces incorrect results. Logic errors happen when
your procedure simply does not do what you want it to do. Logic errors are
usually very difficult to locate. Those that happen intermittently are some-
times so well concealed that you can spend long hours—even days—trying
to locate the source of the error.

STOPPING A PROCEDURE

VBA offers four methods of stopping your procedure and entering into a
so-called break mode:

 ● Pressing Ctrl+Break

 ● Setting one or more breakpoints

 ● Inserting the Stop statement

 ● Adding a watch expression

A break occurs when execution of your VBA procedure is temporarily sus-
pended. Visual Basic remembers the values of all variables and the state-
ment from which the execution of the procedure should resume when you
decide to continue.

You can resume a suspended procedure in one of the following ways:

 ● Click the Run Sub/UserForm button on the toolbar

 ● Choose Run | Run Sub/UserForm from the menu bar

 ● Click the Continue button in the error message box (see Figure 9.2)

FIGURE 9.2 This message appears when you press Ctrl+Break while your VBA procedure is

running.

190 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

The error message box shown in Figure 9.2 informs you that the procedure
was halted. The description of each button is provided in Table 9.1.

TABLE 9.1 Error message box buttons.

Button Name Description

Continue Click this button to resume code execution. This button will be grayed out
if an error was encountered.

End Click this button if you do not want to troubleshoot the procedure at this
time. VBA will stop code execution.

Debug Click this button to enter break mode. The Code window will appear, and
VBA will highlight the line at which the procedure execution was suspend-
ed. You can examine, debug, or step through the code.

Help Click this button to view the online help that explains the cause of this er-
ror message.

USING BREAKPOINTS

If you know more or less where there may be a problem in your procedure
code, you should suspend code execution at that location (on a given line).
Set a breakpoint by pressing F9 when the cursor is on the desired line of
code. When VBA gets to that line while running your procedure, it will dis-
play the Code window immediately. At this point you can step through the
procedure code line by line by pressing F8 or choosing Debug | Step Into.

To see how this works, let’s look at the following scenario. Assume that
during the execution of the ListEndDates function procedure (see Custom
Project 9.1) the following line of code could get you into trouble:

ListEndDates = Format(((Now() + intOffset) - 35) + 7 * row, _

 "MM/DD/YYYY")

 Please note files for the hands-on project may be found on the compan-
ion CD-ROM.

 Custom Project 9.1 Debugging a Function Procedure

1. Start Microsoft Access and create a new database named Chap09.accdb in
your C:\VBAPrimerAccess_ByExample folder.

2. Create the form shown in Figure 9.3.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 191

FIGURE 9.3 The combo box control shown on this form will be filled with the result of the

ListEndDates function.

3. Use the property sheet to set the following control properties:

Control Name Property Name Property Setting

combo box Name
Row Source Type
Column Count

cboEndDate
ListEndDates
1

text box controls Name txt1
txt2
txt3
txt4
txt5
txt6
txt7

4. Save the form as frmTimeSheet.
5. In the property sheet, select Form from the drop-down listbox. Click the

Event tab. Choose [Event Procedure] from the drop-down list next to the
On Load property, and then click the Build button (…). Complete the
following Form_Load procedure when the Code window appears:

Private Sub Form_Load()

 With Me.cboEndDate

 .SetFocus

 .ListIndex = 5 ' Select current end date

 End With

End Sub

192 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

6. Select the combo box control (cboEndDate) on the form. In the property
sheet, click the Event tab. Choose [Event Procedure] from the drop-down
list next to the On Change property, and then click the Build button (…).
Enter the following code:

Private Sub cboEndDate_Change()

 Dim endDate As Date

 endDate = Me.cboEndDate.Value

 With Me

 .txt1 = Format(endDate - 6, "mm/dd")

 .txt2 = Format(endDate - 5, "mm/dd")

 .txt3 = Format(endDate - 4, "mm/dd")

 .txt4 = Format(endDate - 3, "mm/dd")

 .txt5 = Format(endDate - 2, "mm/dd")

 .txt6 = Format(endDate - 1, "mm/dd")

 .txt7 = Format(endDate - 0, "mm/dd")

 End With

End Sub

7. In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

8. In the Properties window, change the Name property of Module1 to
TimeSheetProc.

9. Enter the ListEndDates function procedure in the TimeSheetProc module:

Function ListEndDates(fld As Control, id As Variant, _

 row As Variant, col As Variant, _

 code As Variant) As Variant

 Dim intOffset As Integer

 Select Case code

 Case acLBInitialize

 ListEndDates = True

 Case acLBOpen

 ListEndDates = Timer

 Case acLBGetRowCount

 ListEndDates = 11

 Case acLBGetColumnCount

 ListEndDates = 1

 Case acLBGetColumnWidth

 ListEndDates = -1

 Case acLBGetValue

 ' days till end date

 intOffset = Abs((8 - Weekday(Now)) Mod 7)

 ' start 5 weeks prior to current week end date

 ' (7 days * 5 weeks = 35 days before next end date)

 ' and show 11 dates

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 193

 ListEndDates = Format(((Now() + intOffset) - 35) _

 + 7 * row, "MM/DD/YYYY")

 End Select

End Function

10. In the ListEndDates function procedure, click anywhere on the line
containing the following statement:

ListEndDates = Format(((Now() + intOffset) - 35) _

 + 7 * row, "MM/DD/YYYY")

11. Press F9 (or choose Debug | Toggle Breakpoint) to set a breakpoint on
the line where the cursor is located.
When you set the breakpoint, Visual Basic displays a red dot in the margin.
At the same time, the line that has the breakpoint will change to white text
on a red background (see Figure 9.4). The color of the breakpoint can be
changed on the Editor Format tab in the Options dialog box (choose Tools
| Options).
 Another way of setting a breakpoint is to click in the margin indicator to
the left of the line on which you want to stop the procedure.

FIGURE 9.4 The line of code where the breakpoint is set is displayed in the color specified on

the Editor Format tab in the Options dialog box.

12. Press Alt+F11 to switch to the Microsoft Access application window and
open the form frmTimeSheet in the Form view.
When the form is opened, Visual Basic for Applications will call the
ListEndDates function to fill the combo box, executing all the statements
until it encounters the breakpoint you set in Steps 10–11. Once the

194 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

breakpoint is reached, the code is suspended and the screen displays the
Code window in break mode (notice the word “break” surrounded by
square brackets in the Code window’s titlebar), as shown in Figure 9.5. VBA
displays a yellow arrow in the margin to the left of the statement at which
the procedure was suspended. At the same time, the statement appears
inside a box with a yellow background. The arrow and the box indicate
the current statement, or the statement that is about to be executed. If
the current statement also contains a breakpoint, the margin displays both
indicators overlapping one another (the circle and the arrow).

FIGURE 9.5 Code window in break mode. A yellow arrow appears in the margin to the left

of the statement at which the procedure was suspended. Because the current statement also

contains a breakpoint (indicated by a red circle), the margin displays both indicators overlapping

one another (the circle and the arrow).

13. Finish running the ListEndDates function procedure by pressing F5 to
continue without stopping or press F8 to execute the procedure line by
line.
When you step through your procedure code line by line by pressing F8,
you can use the Immediate window to further test your procedure (see
the section titled “Using the Immediate Window in Break Mode”). To
learn more about stepping through a procedure, refer to the section titled
“Stepping through VBA Procedures” later in this chapter.

You can set any number of breakpoints in a procedure. This way you can
suspend and continue the execution of your procedure as you . Press F5 to
quickly move between the breakpoints. You can analyze the code of your
procedure and check the values of variables while code execution is sus-
pended. You can also perform various tests by typing statements in the
Immediate window. Consider setting a breakpoint if you suspect that your
procedure never executes a certain block of code.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 195

Removing Breakpoints

When you finish running the procedure in which you had set breakpoints,
VBA does not automatically remove them. To remove the breakpoint,
choose Debug | Clear All Breakpoints or press Ctrl+Shift+F9. All the break-
points are removed. If you had set several breakpoints in a given procedure
and would like to remove only some of them, click on the line containing
the breakpoint you want to remove and press F9 (or choose Debug | Clear
Breakpoint). You should clear the breakpoints when they are no longer
needed. The breakpoints are automatically removed when you exit Micro-
soft Access.

NOTE Remove the breakpoint you set in Custom Project 9.1.

USING THE IMMEDIATE WINDOW IN BREAK MODE

When the procedure execution is suspended, the Code window appears in
break mode. This is a good time to activate the Immediate window and
type VBA instructions to find out, for instance, the name of the open form
or the value of a certain control. You can also use the Immediate window to
change the contents of variables in order to correct values that may be caus-
ing errors. By now, you should be an expert when it comes to working in the
Immediate window. Figure 9.6 shows the suspended ListEndDates function
procedure and the Immediate window with the questions that were asked of
Visual Basic for Applications while in break mode.

FIGURE 9.6 When code execution is suspended, you can check current values of variables and

expressions by entering appropriate statements in the Immediate window.

196 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

In break mode, you can also hold the mouse pointer over any variable in
a running procedure to see the variable’s value. For example, in the ListEnd-
Dates function procedure shown in Figure 9.7, the breakpoint has been set
on the statement just before the End Select keywords. When Visual Basic
for Applications encounters this statement, the Code window appears in
break mode. Because the statement that stores the value of the variable in-
tOffset has already been executed, you can quickly find out the value of
this variable by resting the mouse pointer over its name. The name of the
variable and its current value appear in a floating frame. To show the values
of several variables used in a procedure, you should use the Locals window,
which is discussed later in this chapter.

FIGURE 9.7 In break mode, you can find out the value of a variable by resting the mouse

pointer on that variable.

Working in a Code Window in Break Mode

While in break mode, you can change code, add new statements, execute
the procedure one line at a time, skip lines, set the next statement, use the
Immediate window, and more. When the procedure is in break mode, all
the options on the Debug menu are available. You can enter break mode
by pressing Ctrl+Break or F8 or by setting a breakpoint. In break mode, if
you change a certain line of code, VBA will prompt you to reset the project
by displaying the message “This action will reset your project, proceed
anyway?” Click OK to stop the program’s execution and proceed editing
your code or click Cancel to delete the new changes and continue running
the code from the point where it was suspended. For example, change the
variable declaration. As you press F5 to resume code execution, you’ll be
prompted to reset your project.

USING THE STOP STATEMENT

Sometimes you won’t be able to test your procedure right away. If you set
up your breakpoints and then close the database file, the breakpoints will be

SIDEBAR

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 197

removed; next time, when you are ready to test your procedure, you’ll have
to begin by setting up your breakpoints again. If you need to postpone the
task of testing your procedure until later, you can take a different approach
by inserting a Stop statement into your code wherever you want to halt a
procedure.

Figure 9.8 shows the Stop statement before the With…End With con-
struct. VBA will suspend the execution of the cboEndDate_Change event
procedure when it encounters the Stop statement, and the screen will dis-
play the Code window in break mode. Although the Stop statement has
the same effect as setting a breakpoint, it does have one disadvantage: All
Stop statements stay in the procedure until you remove them. When you
no longer need to stop your procedure, you must locate and remove all the
Stop statements.

FIGURE 9.8 You can insert a Stop statement anywhere in your VBA procedure code.

The procedure will halt when it gets to the Stop statement, and the Code window will appear with

the code line highlighted.

USING THE ASSERT STATEMENT

A very powerful and easy-to-apply debugging technique is utilizing Debug.
Assert statements. Assertions allow you to write code that checks itself
while running. By including assertions in your programming code, you
can verify that a particular condition or assumption is true. Assertions give
you immediate feedback when an error occurs. They are great for detecting
logic errors early in the development phase instead of hearing about them
later from your end users. Just because your procedure ran on your system
without generating an error does not mean that there are no bugs in that
procedure. Don’t assume anything—always test for validity of expressions

198 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

and variables in your code. The Debug.Assert statement takes any expres-
sion that evaluates to True or False and activates the break mode when that
expression evaluates to False. The syntax for Debug.Assert is as follows:

Debug.Assert condition

where condition is a VBA code or expression that returns True or False. If
condition evaluates to False or 0 (zero), VBA will enter break mode. For
example, when running the following looping structure, the code will stop
executing when the variable i equals 50:

Sub TestDebugAssert()

 Dim i As Integer

 For i = 1 To 100

 Debug.Assert i <> 50

 Next

End Sub

Keep in mind that Debug.Assert does nothing if the condition is False
or zero (0). The execution simply stops on that line of code and the VBE
screen opens with the line containing the false statement highlighted so that
you can start debugging your code. You may need to write an error handler
to handle the identified error. Error-handling procedures are covered later
in this chapter. While you can stop the code execution by using the Stop
statement (see the previous section), Debug.Assert differs from the Stop
statement in its conditional aspect; it will stop your code only under specific
conditions. Conditional breakpoints can also be set by using the Watches
window (see the next section). After you have debugged and tested your
code, comment out or remove the Debug.Assert statements from your
final code. The easiest way to do this is to use Edit | Replace in the VBE
editor screen. To comment out the statements, in the Find What box, enter
Debug.Assert. In the Replace With box, enter an apostrophe followed by
Debug.Assert.

NOTE

To remove the Debug.Assert statements from your code,
enter Debug.Assert in the Find What box. Leave the Re-
place With box empty but be sure to mark the Use Pattern
Matching checkbox.

USING THE ADD WATCH WINDOW

Many errors in procedures are caused by variables that assume unexpected
values. If a procedure uses a variable whose value changes in various loca-
tions, you may want to stop the procedure and check the current value of
that variable. VBA offers a special Watches window that allows you to keep
an eye on variables or expressions while your procedure is running. To add

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 199

a watch expression to your procedure, select the variable whose value you
want to monitor in the Code window, and then choose Debug | Add Watch.
The screen will display the Add Watch dialog box, as shown in Figure 9.9.

FIGURE 9.9 The Add Watch dialog box allows you to define conditions you want to monitor

while a VBA procedure is running.

The Add Watch dialog box contains three sections, which are described in
Table 9.2.

TABLE 9.2 Add Watch dialog box sections.

Section Description

Expression Displays the name of a variable you have highlighted in your procedure. If
you opened the Add Watch dialog box without selecting a variable name,
type the name of the variable you want to monitor in the Expression text
box.

Context In this section, indicate the name of the procedure that contains the variable
and the name of the module where this procedure is located.

Watch Type Specifies how to monitor the variable. If you choose:

 • The Watch Expression option button, you can read the value of the
variable in the Add Watch window while in break mode.

 • Break When Value Is True, Visual Basic will automatically stop the
procedure when the variable evaluates to True (nonzero).

 • Break When Value Changes, Visual Basic will automatically stop the
procedure each time the value of the variable or expression changes.

You can add a watch expression before running a procedure or after sus-
pending the execution of your procedure.

200 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

The difference between a breakpoint and a watch expression is that the
breakpoint always stops a procedure in a specified location, but the watch
stops the procedure only when the specified condition (Break When Value
Is True or Break When Value Changes) is met. Watches are extremely use-
ful when you are not sure where the variable is being changed. Instead of
stepping through many lines of code to find the location where the variable
assumes the specified value, you can put a watch breakpoint on the variable
and run your procedure as normal. Let’s see how this works.

 Hands-On 9.1 Watching the Values of VBA Expressions

1. In the Visual Basic Editor window, choose Insert | Module to insert a new
standard module.

2. Use the Properties window to change the name of the module to Breaks.
3. In the Breaks Code window, type the following WhatDate procedure:

Sub WhatDate()

 Dim curDate As Date

 Dim newDate As Date

 Dim x As Integer

 curDate = Date

 For x = 1 To 365

 newDate = Date + x

 Next x

End Sub

The WhatDate procedure uses the For…Next loop to calculate the date that
is x days in the future. You won’t see any result when you run this proce-
dure unless you insert the following instruction in the procedure code just
before the End Sub keywords:

MsgBox "In " & x & " days, it will be " & NewDate

However, you don’t want to display the individual dates, day after day.
Suppose that you want to stop the program when the value of the variable
x reaches 211. In other words, you want to know what date will be 211 days
from now. To get the answer, you could insert the following statement into
your procedure before the Next x statement:

If x = 211 Then MsgBox "In " & x & " days it will be " & _

 NewDate

But this time, you want to get the answer without introducing any new
statements into your procedure. If you add watch expressions to the
procedure, Visual Basic for Applications will stop the For…Next loop when
the specified condition is met, and you’ll be able to check the values of the
desired variables.

4. Choose Debug | Add Watch.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 201

5. In the Expression text box, enter the following expression: x = 211.
6. In the Context section, choose WhatDate from the Procedure combo box

and Breaks from the Module combo box.
7. In the Watch Type section, select the Break When Value Is True option

button.
8. Click OK to close the Add Watch dialog box. You have now added your

first watch expression.
9. In the Code window, position the insertion point anywhere within the

name of the curDate variable.
10. Choose Debug | Add Watch and click OK to set up the default watch type

with the Watch Expression option.
11. In the Code window, position the insertion point anywhere within the

name of the newDate variable.
12. Choose Debug | Add Watch and click OK to set up the default watch type

with the Watch Expression option.
After performing these steps, the WhatDate procedure contains the
 following three watches:
x = 211 Break When Value Is True
curDate Watch Expression
newDate Watch Expression

13. Position the cursor anywhere inside the code of the WhatDate procedure
and press F5.
Visual Basic stops the procedure when x = 211 (see Figure 9.10). Notice
that the value of the variable x in the Watches window is the same as the
value you specified in the Add Watch dialog box.

FIGURE 9.10 Using the Watches window.

202 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

In addition, the Watches window shows the value of the variables curDate
and newDate. The procedure is in break mode. You can press F5 to con-
tinue, or you can ask another question: What date will be in 277 days? The
next step shows how to do this.

14. Choose Debug | Edit Watch and enter the following expression: x
= 277.
You can also display the Edit Watch dialog box by double-clicking the
expression in the Watches window.

15. Click OK to close the Edit Watch dialog box. Notice that the Watches
window now displays a new value of the expression. x is now false.

16. Press F5. The procedure stops again when the value of x = 277. The value
of curDate is the same; however, the newDate variable now contains a new
value—a date that is 277 days from now. You can change the value of the
expression again or finish the procedure.

17. Press F5 to finish the procedure without stopping.
When your procedure is running and a watch expression has a value, the
Watches window displays the value of the Watch expression. If you open
the Watches window after the procedure has finished, you will see the
error “<out of context>” instead of the variable values. In other words,
when the watch expression is out of context, it does not have a value.

Removing Watch Expressions

To remove a watch expression, click on the expression you want to remove
from the Watches window and press Delete. Remove all the watch expres-
sions you defined in the preceding exercise.

USING QUICK WATCH

To check the value of an expression not defined in the Watches window, you
can use Quick Watch (see Figure 9.11).

To access the Quick Watch dialog box while in break mode, position the
insertion point anywhere inside a variable name or an expression you want
to watch and choose Debug | Quick Watch, or press Shift+F9.

FIGURE 9.11 The Quick Watch dialog box shows the value of the selected expression in a VBA

procedure.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 203

The Quick Watch dialog box contains an Add button that allows you to add
the expression to the Watches window. Let’s see how to take advantage of
Quick Watch.

 Hands-On 9.2 Using the Quick Watch Dialog Box

NOTE
Remove all the watch expressions you defined in Hands-On
9.1. See the preceding section on how to remove a watch ex-
pression from the Watches window.

1. In the WhatDate procedure, position the insertion point on the name of
the variable x.

2. Choose Debug | Add Watch.
3. Enter the expression x = 50.
4. Choose the Break When Value Is True option button and click OK.
5. Run the WhatDate procedure.

Visual Basic will suspend procedure execution when x = 50. Notice that
the Watches window does not contain either the newDate or the curDate
variables. To check the values of these variables, you can position the
mouse pointer over the appropriate variable name in the Code window, or
you can invoke the Quick Watch dialog box.

6. In the Code window, position the mouse inside the newDate variable and
press Shift+F9, or choose Debug | Quick Watch.
The Quick Watch dialog box shows the name of the expression and its
current value.

7. Click Cancel to return to the Code window.
8. In the Code window, position the mouse inside the curDate variable and

press Shift+F9, or choose Debug | Quick Watch.
9. The Quick Watch dialog box now shows the value of the variable curDate.

10. Click Cancel to return to the Code window.
11. Press F5 to continue running the procedure.

USING THE LOCALS WINDOW

If you need to keep an eye on all the declared variables and their current
values during the execution of a VBA procedure, choose View | Locals Win-
dow before you run your procedure. While in break mode, VBA will display
a list of variables and their corresponding values in the Locals window (see
Figure 9.12).

The Locals window contains three columns: Expression, Value, and
Type.

The Expression column displays the names of variables that are declared
in the current procedure. The first row displays the name of the module

204 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

preceded by the plus sign. When you click the plus sign, you can check if
any variables have been declared at the module level. Here the class module
will show the system variable Me. In the Locals window, global variables and
variables used by other projects aren’t displayed.

The second column, Value, shows the current variable values. In this col-
umn, you can change the value of a variable by clicking on it and typing the
new value. After changing the value, press Enter to register the change. You
can also press Tab, Shift+Tab, or the up or down arrows, or click anywhere
within the Locals window after you’ve changed the variable value.

Type, the third column, displays the type of each declared variable.

FIGURE 9.12 The Locals window displays the current values of all the declared variables in the

current VBA procedure.

To observe the variable values in the Locals window, let’s proceed to the
following hands-on exercise.

 Hands-On 9.3 Using the Locals Window

1. Choose View | Locals Window.
2. Click anywhere inside the WhatDate procedure and press F8.

Pressing F8 places the procedure in break mode. The Locals window
displays the name of the current module, the local variables, and their
beginning values.

3. Press F8 a few more times while keeping an eye on the Locals window.
4. Press F5 to continue running the procedure.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 205

USING THE CALL STACK DIALOG BOX

The Locals window (see Figure 9.12) contains a button with an ellipsis (…).
This button opens the Call Stack dialog box (see Figure 9.13), which displays
a list of all active procedure calls. An active procedure call is a procedure that
is started but not completed. You can also activate the Call Stack dialog box
by choosing View | Call Stack. This option is available only in break mode.

The Call Stack dialog box is especially helpful for tracing nested proce-
dures. Recall that a nested procedure is a procedure that is being called from
within another procedure (see Hands-On 9.5). If a procedure calls another,
the name of the called procedure is automatically added to the Calls list in
the Call Stack dialog box. When VBA has finished executing the statements
of the called procedure, the procedure name is automatically removed from
the Call Stack dialog box. You can use the Show button in the Call Stack
dialog box to display the statement that calls the next procedure listed in
the Call Stack dialog box.

FIGURE 9.13 The Call Stack dialog box displays a list of procedures that are started but not

completed.

STEPPING THROUGH VBA PROCEDURES

Stepping through the code means running one statement at a time. This
allows you to check every line in every procedure that is encountered. To
start stepping through the procedure from the beginning, place the cursor
anywhere inside the code of your procedure and choose Debug | Step Into,
or press F8. The Debug menu contains several options that allow you to
execute a procedure in step mode (see Figure 9.14).

When you run a procedure one statement at a time, VBA executes each
statement until it encounters the End Sub keywords. If you don’t want to
step through every statement, you can press F5 at any time to run the re-

maining code of the procedure without stepping through it.

206 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.14 The Debug menu offers many commands for stepping through VBA procedures.

Certain commands on this menu are available only in break mode.

 Hands-On 9.4 Stepping Through a Procedure

1. Place the cursor anywhere inside the procedure you want to trace.
2. Press F8 or choose Debug | Step Into.

Visual Basic for Applications executes the current statement, then
automatically advances to the next statement and suspends execution.
While in break mode, you can activate the Immediate window, the Watches
window, or the Locals window to see the effect of a particular statement
on the values of variables and expressions. And if the procedure you are
stepping through calls other procedures, you can activate the Call Stack
dialog box to see which procedures are currently active.

3. Press F8 again to execute the selected statement. After executing this
statement, VBA will select the next statement, and again the procedure
execution will be halted.

4. Continue stepping through the procedure by pressing F8, or press F5 to
continue running the code without stopping.

5. You can also choose Run | Reset to stop the procedure at the current
statement without executing the remaining statements.
When you step over procedures (Shift+F8), VBA executes each procedure
as if it were a single statement. This option is quite handy if a procedure
contains calls to other procedures you don’t want to step into because they
have already been tested and debugged, or because you want to concentrate
only on the new code that has not been debugged yet.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 207

Stepping Over a Procedure

Suppose that the current statement in MyProcedure calls the SpecialMsg
procedure. If you choose Debug | Step Over (Shift+F8) instead of Debug |
Step Into (F8), VBA will quickly execute all the statements inside the Spe-
cialMsg procedure and select the next statement in the calling procedure,
MyProcedure. While the SpecialMsg procedure is being executed, VBA
continues to display the current procedure in the Code window.

 Hands-On 9.5 Stepping Over a Procedure

This hands-on exercise refers to the Access form named frmTimeSheet that
you created in Custom Project 9.1 at the beginning of this chapter.

1. In the Visual Basic Editor window, choose Insert | Module to add a new
standard module.

2. In the module’s Code window, enter the MyProcedure and SpecialMsg
procedures as shown here:

Sub MyProcedure()

 Dim myName As String

 myName = Forms!frmTimeSheet.Controls(1).Name

 ' choose Step Over to avoid stepping through the

 ' lines of code in the called procedure - SpecialMsg

 SpecialMsg myName

End Sub

Sub SpecialMsg(n As String)

 If n = "Label1" Then

 MsgBox "You must change the name."

 End If

End Sub

3. Add a breakpoint within MyProcedure at the following statement:

SpecialMsg myName

4. Place the insertion point anywhere within the code of MyProcedure and
press F5 to run it.
Visual Basic halts execution when it reaches the breakpoint.

5. Press Shift+F8 or choose Debug | Step Over.
Visual Basic runs the SpecialMsg procedure, and then execution advances
to the statement immediately after the call to the SpecialMsg procedure.

6. Press F5 to finish running the procedure without stepping through its
code.
Now suppose you want to execute MyProcedure to the line that calls the
SpecialMsg procedure.

208 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

7. Click anywhere inside the statement SpecialMsg myName.
8. Choose Debug | Run to Cursor.

Visual Basic will stop the procedure when it reaches the specified line.
9. Press Shift+F8 to step over the SpecialMsg procedure.

10. Press F5 to execute the rest of the procedure without single stepping.

Stepping over a procedure is useful when you don’t want to analyze
individual statements inside the called procedure (SpecialMsg).

Stepping Out of a Procedure

Another command on the Debug menu, Step Out (Ctrl+Shift+F8), is used
when you step into a procedure and then decide that you don’t want to
step all the way through it. When you choose this option, Visual Basic will
execute the remaining statements in this procedure in one step and proceed
to activate the next statement in the calling procedure.

In the process of stepping through a procedure, you can switch between
the Step Into, Step Over, and Step Out options. The option you select de-
pends on which code fragment you wish to analyze at a given moment.

Running a Procedure to Cursor

The Debug menu Run To Cursor command (Ctrl+F8) lets you run your
procedure until the line you have selected is encountered. This command
is quite useful if you want to stop the execution before a large loop or you
intend to step over a called procedure.

Setting the Next Statement

At times, you may want to rerun previous lines of code in the procedure or
skip over a section of code that is causing trouble. In each of these situa-
tions, you can use the Set Next Statement option on the Debug menu. When
you halt execution of a procedure, you can resume the procedure from any
statement you want. VBA will skip execution of the statements between the
selected statement and the statement where execution was suspended.

Skipping Lines of Code

Although skipping lines of code can be very useful in the process of de-
bugging your VBA procedures, it should be done with care. When you use
the Next Statement option, you tell Visual Basic for Applications that this
is the line you want to execute next. All lines in between are ignored. This
means that certain things you may have expected to occur don’t happen,
which can lead to unexpected errors.

SIDEBAR

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 209

Showing the Next Statement

If you are not sure where procedure execution will resume, you can choose
Debug | Show Next Statement, and VBA will place the cursor on the line
that will run next. This is particularly useful when you have been looking at
other procedures and are not sure where execution will resume. The Show
Next Statement option is available only in break mode.

NAVIGATING WITH BOOKMARKS

In the process of analyzing or reviewing your VBA procedures, you will
often find yourself jumping to certain areas of code. Using the built-in book-
mark feature, you can easily mark the spots you want to navigate between.

To set up a bookmark:

1. Click anywhere in the statement you want to define as a bookmark.
2. Choose Edit | Bookmarks | Toggle Bookmark (or click the Toggle

Bookmark button on the Edit toolbar).
Visual Basic will place a blue, rounded rectangle in the left margin beside
the statement, as shown in Figure 9.15.

FIGURE 9.15 Using bookmarks, you can quickly jump between often-used sections of your

procedures.

Once you’ve set up two or more bookmarks, you can jump between the
marked locations of your code by choosing Edit | Bookmarks | Next Book-
mark or simply clicking the Next Bookmark button on the Edit toolbar.
You may also right-click anywhere in the Code window and select Next
Bookmark from the shortcut menu. To go to the previous bookmark, select

210 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

Previous Bookmark. You can remove bookmarks at any time by choosing
Edit | Bookmarks | Clear All or by clicking the Clear All Bookmarks button
on the Edit toolbar. To remove a single bookmark, click anywhere in the
bookmarked statement and choose Edit | Bookmarks | Toggle Bookmark,
or click the Toggle Bookmark button on the Edit toolbar.

STOPPING AND RESETTING VBA PROCEDURES

At any time while stepping through the code of a procedure in the Code win-
dow, you can press F5 to execute the remaining instructions without stepping
through them or choose Run | Reset to finish the procedure without executing
the remaining statements. When you reset your procedure, all the vari-
ables lose their current values. Numeric variables assume the initial value
of zero(0), variable-length strings are initialized to a zero-length string
(""), and fixed-length strings are filled with the character represented by
the ASCII character code 0, or Chr(0). Variant variables are initialized to
Empty, and the value of Object variables is set to Nothing.

TRAPPING ERRORS

No one writes bug-free programs the first time. For this reason, when you
create VBA procedures you have to determine how your program will
respond to errors. Many unexpected errors happen at runtime. For exam-
ple, your procedure may try to give a new file the same name as an open file.

Runtime errors are often discovered not by a programmer but by the
user who attempts to do something that the programmer has not anticipat-
ed. If an error occurs when the procedure is running, Visual Basic displays
an error message and the procedure is stopped. The error message that VBA
displays to the user is often quite cryptic.

You can keep users from seeing many runtime errors by including error-
handling code in your VBA procedures. This way, when Visual Basic en-
counters an error, instead of displaying a default error message, it will show
a much friendlier, more comprehensive error message, perhaps advising the
user how to correct the error.

How do you implement error handling in your VBA procedure? The
first step is to place the On Error statement in your procedure. This state-
ment tells VBA what to do if an error happens while your program is run-
ning. In other words, VBA uses the On Error statement to activate an error-
handling procedure that will trap runtime errors. Depending on the type of
procedure, you can exit the error trap by using one of the following state-
ments: Exit Sub, Exit Function, Exit Property, End Sub, End Func-
tion, or End Property.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 211

You should write an error-handling routine for each procedure. Table 9.3
shows how the On Error statement can be used.

TABLE 9.3 On Error statement options.

On Error Statement Description

On Error GoTo Label Specifies a label to jump to when an error occurs.
This label marks the beginning of the error-handling
routine. An error handler is a routine for trapping and
responding to errors in your application. The label
must appear in the same procedure as the On Error
GoTo statement.

On Error Resume Next When a runtime error occurs, Visual Basic ignores
the line that caused the error and continues the pro-
cedure with the next line. An error message is not
displayed.

On Error GoTo 0 Turns off error trapping in a procedure. When VBA
runs this statement, errors are detected but not
trapped within the procedure.

Is This an Error or a Mistake?

In programming, mistakes and errors are not the same thing. A mistake—
such as a misspelled or missing statement, a misplaced quotation mark or
comma, or an assignment of a value of one type to a variable of a different
(and incompatible) type—can be removed from your program through
proper testing and debugging. But even though your code may be free of
mistakes, errors can still occur. An error is a result of an event or opera-
tion that doesn’t work as expected. For example, if your VBA procedure
accesses a certain file on disc and someone deleted this file or moved it to
another location, you’ll get an error no matter what. An error prevents the
procedure from carrying out a specific task.

Using the Err Object

Your error-handling code can utilize various properties and methods of the
Err object. For example, to check which error occurred, check the value of
Err.Number. The Number property of the Err object will tell you the value
of the last error that occurred, and the Description property will return a
description of the error. You can also find the name of the application that
caused the error by using the Source property of the Err object (this is very
helpful when your procedure launches other applications). After handling
the error, use the Err.Clear statement to reset the error number. This will
set Err.Number back to zero.

SIDEBAR

212 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

To test your error-handling code you can use the Raise method of the
Err object. For example, to raise the “Disk not ready” error, use the follow-
ing statement:

Err.Raise 71

The following OpenToRead procedure demonstrates the use of the On
Error statement and the Err object.

 Hands-On 9.6 Error-Trapping Techniques

1. Copy the Vacation.txt file from the companion CD to your
VBAPrimerAccess_ByExample folder.

2. In the Visual Basic Editor window, insert a new module and rename it
ErrorTraps.

3. In the Code window, enter the following OpenToRead procedure:

Sub OpenToRead()

 Dim strFile As String

 Dim strChar As String

 Dim strText As String

 Dim FileExists As Boolean

 FileExists = True

 On Error GoTo ErrorHandler

 strFile = InputBox("Enter the name of file to open:")

 Open strFile For Input As #1

 If FileExists Then

 Do While Not EOF(1) ' loop until the end of file

 strChar = Input(1, #1) ' get one character

 strText = strText + strChar

 Loop

 Debug.Print strText

 ' Close the file

 Close #1

 End If

 Exit Sub

ErrorHandler:

 FileExists = False

 Select Case Err.Number

 Case 71

 MsgBox "The CD/DVD drive is empty."

 Case 53

 MsgBox "This file can’t be found on the specified drive."

 Case 76

 MsgBox "File Path was not found."

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 213

 Case Else

 MsgBox "Error " & Err.Number & " :" & Err.Description

 Exit Sub

 End Select

 Resume Next

End Sub

Before continuing with this hands-on, let’s examine the code of the
OpenToRead procedure. Th e purpose of the OpenToRead procedure is
to read the contents of the user-supplied text fi le character by character.
When the user enters a fi lename, various errors can occur. For example,
the fi lename may be wrong, the user may attempt to open a fi le from a
CD-ROM or DVD disc without actually placing the disc in the drive, or
he may try to open a fi le that is already open. To trap these errors, the
error-handling routine at the end of the OpenToRead procedure uses the
Number property of the Err object. Th e Err object contains information
about runtime errors. If an error occurs while the procedure is running,
the statement Err.Number will return the error number.

 If errors 71, 53, or 76 occur, Visual Basic will display the user-friendly
messages given inside the Select Case block and then proceed to the
Resume Next statement, which will send it to the line of code following
the one that had caused the error. If another (unexpected) error occurs,
Visual Basic will return its error code (Err.Number) and error description
(Err.Description).

 At the beginning of the procedure, the variable FileExists is set
to True. If the program doesn’t encounter an error, all the instructions
inside the If FileExists Then block will be executed. However, if VBA
encounters an error, the value of the FileExists variable will be set to
False (see the first statement in the error-handling routine just below the
ErrorHandler label).

 If you comment the Close #1 instruction, Visual Basic will encounter
the error on the next attempt to open the same file. Notice the Exit Sub
statement before the ErrorHandler block. Put the Exit Sub statement
just above the error- handling routine. You don’t want Visual Basic to carry
out the error handling if there are no errors.

 How does this procedure accomplish the read operation? The Input
function allows you to return any character from a sequential file.
Sequential access files are files where data is retrieved in the same order
as it is stored, such as files stored in the CSV format (comma-delimited
text), TXT format (text separated by tabs), or PRN format (text separated
by spaces). Configuration files, error logs, HTML files, and all sorts of
plain text files are all sequential files. These files are stored on disc as a
sequence of characters. The beginning of a new text line is indicated by
two special characters: the carriage return and the linefeed. When you

214 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

work with sequential files, start at the beginning of the file and move
forward character by character, line by line, until you encounter the end
of the file. Sequential access files can be easily opened and manipulated by
just about any text editor.

 If you use the VBA function named LOF (length of file) as the first
argument of the Input function, you can quickly read the contents of the
sequential file without having to loop through the entire file.

 For example, instead of the following Do…While loop statement block:

Do While Not EOF(1) ' loop until the end of file

 strChar = Input(1, #1) ' get one character

 strText = strText + strChar

Loop

you can simply write the following statement to get the contents of the fi le
at once:

strText = Input(LOF(1), #1)

Th e LOF function returns the number of bytes in a fi le. Each byte
corresponds to one character in a text fi le.

To read data from a fi le, you must fi rst open the fi le with the Open statement
using the following syntax:

Open pathname For mode[Access access][lock] As [#]filenumber

_ [Len=reclength]

Th e Open statement has three required arguments: pathname, mode, and
filenumber. Pathname is the name of the fi le you want to open. Th e
fi lename may include the name of a drive and folder.

 Mode is a keyword that determines how the file was opened. Sequential
files can be opened in one of the following modes: Input, Output, or
Append. Use Input to read the file, Output to write to a file and overwrite
any existing file and Append to write to a file by adding to any existing
information.

 Filenumber is a number from 1 to 511. This number is used to refer
to the file in subsequent operations. You can obtain a unique file number
using the VBA built-in FreeFile function.

 The optional Access clause can be used to specify permissions for the
file (Read, Write, or Read Write). The optional lock argument determines
which file operations are allowed for other processes. For example, if a file
is open in a network environment, lock determines how other people can
access it. The following lock keywords can be used: Shared, Lock Read,
Lock Write, or Lock Read Write. The last element of the Open state-
ment, reclength, specifies the buffer size (total number of characters) for
sequential files.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 215

 Therefore, to open a sequential file in order to read its data, the example
procedure uses the following instruction:

Open strFile For Input As #1

And to close the sequential file, the following statement is used:

Close #1

4. Click anywhere within the OpenToRead procedure and press F5 to run
it. When prompted for the file to open, type C:\VBAPrimerAccess_
ByExample\Vacation.txt in the input dialog box and click OK. The
procedure reads the contents of the Vacation.txt file into the Immediate
window.

5. Run the OpenToRead procedure again. When prompted for the file to
open, type P:\VBAPrimerAccess_ByExample\Vacation.txt in the input
dialog box and click OK. This time Visual Basic cannot find the specified
file, so it displays the message “File Path was not found.”

6. Run the OpenToRead procedure again. This time, when prompted for the
filename, enter the name of any file that references your CD/DVD drive
(when the drive slot is empty). This should trigger error 71 and result in
the message “The CD/DVD drive is empty.”

7. Comment the Close #1 statement and run OpenToRead. When prompted
for the file, enter C:\VBAPrimerAccess_ByExample\Vacation.txt as the
filename. Run the same procedure again, supplying the same filename.
The second run will cause the statements within the Case Else block to
run. You should get an error 55 “File already open” message because the
text file will still be open in memory. To remove the file from memory, type
Close #1 in the Immediate window and press Enter. Next, uncomment
the Close # 1 statement in the OpenToRead procedure to return it to the
original state.

Procedure Testing

You are responsible for the code you write. Before you give your procedure
to others to test, you should test it yourself. After all, you understand best
how it is supposed to work. Some programmers think testing their own
code is some sort of degrading activity, especially when they work in an
organization that has a team devoted to testing. Don’t make this mistake.
The testing process at the programmer level is as important as the code
development itself. After you’ve tested the procedure yourself, you should
give it to the users to test. Users will provide you with answers to questions
such as: Does the procedure produce the expected results? Is it easy and fun
to use? Does it follow the standard conventions? Also, it is a good idea to
give the entire application to someone who knows the least about using this
type of application and ask them to play around with it and try to break it.

216 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

You can test the ways your program responds to runtime errors by caus-
ing them on purpose:

 ● Generate any built-in error by entering the following syntax:

Error error_number

For example, to display the error that occurs on an attempt to divide
by zero (0), type the following statement in the Immediate window:

Error 11

When you press Enter, Visual Basic will display the error message
saying, “Run-time error 11. Division by zero.”

 ● To check the meaning of the generated error, use the following syn-
tax:

Error(error_number)

For example, to find out what error number 7 means, type the
following in the Immediate window:

?Error(7)

When you press Enter, Visual Basic returns the error description:

"Out of memory"

To generate the same error at runtime in the form of a message box
like the one in Figure 9.16, enter the following in the Immediate
window or in your procedure code:

Err.Raise 7

When you finish debugging your VBA procedures, make sure you remove
all statements that raise errors.

FIGURE 9.16 To test your error-handling code, use the Raise method of the Err object. This will

generate a runtime error during the execution of your procedure.

GETTING TO KNOW BUILT-IN TOOLS FOR TESTING AND DEBUGGING 217

When testing your VBA procedure, use the following guidelines:

 ● If you want to analyze your procedure, step through your code one
line at a time by pressing F8 or by choosing Debug | Step Into.

 ● If you suspect that an error may occur in a specifi c place in your pro-
cedure, use a breakpoint.

 ● If you want to monitor the value of a variable or expression used by
your procedure, add a watch expression.

 ● If you are tired of scrolling through a long procedure to get to sec-
tions of code that interest you, set up a bookmark to quickly jump to
the desired location.

Setting Error-Trapping Options

You can specify the error-handling settings for your current Visual Basic
project by choosing Tools | Options and selecting the General tab (shown
in Figure 9.17). The Error Trapping area located on the General tab deter-
mines how errors are handled in the Visual Basic environment. The follow-
ing options are available:

 ● Break on All Errors

This setting will cause Visual Basic to enter the break mode on any
error, no matter whether an error handler is active or whether the
code is in a class module (class modules were covered in Chapter 8).

 ● Break in Class Module

This setting will trap any unhandled error in a class module. Visual
Basic will activate the break mode when an error occurs and will
highlight the line of code in the class module that produced this error.

 ● Break on Unhandled Errors

This setting will trap errors for which you have not written an error
handler. The error will cause Visual Basic to activate the break mode.
If the error occurs in a class module, the error will cause Visual Basic
to enter break mode on the line of code that called the offending
procedure of the class.

218 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

FIGURE 9.17 Setting the error-trapping options in the Options dialog box will affect all

instances of Visual Basic started after you change the setting.

SUMMARY

In this chapter, you learned how to test your VBA procedures to make sure
they perform as planned. You debugged your code by stepping through it
using breakpoints and watches. You learned how to work with the Immedi-
ate window in break mode; you found out how the Locals window can help
you monitor the values of variables; and you learned how the Call Stack
dialog box can be helpful in keeping track of where you are in a complex
program. You also learned how to mark your code with bookmarks so you
can easily navigate between sections of your procedure. Additionally, this
chapter showed you how to trap errors by including an error-handling rou-
tine inside your VBA procedure and how to use the VBA Err object.

By using the built-in debugging tools, you can quickly pinpoint the
problem spots in your Access VBA procedures. Try to spend more time
getting acquainted with the Debug menu options and debugging tools dis-
cussed in this chapter. Mastering the art of debugging can save you hours
of trial and error.

INDEX.

(?), 9, 39, 45
.accdb, 5
.mdb, 69
Alt+F11, 5, 23
ampersand (&), 3
colon (:), 161
Ctrl+Break, 122, 189
Ctrl+F8, 208
Ctrl+G, 41
Ctrl+I, 35
Ctrl+Shift+F2, 70
Ctrl+Shift+F8, 208
Ctrl+Shift+F9, 195
Ctrl+Shift+J, 35
Ctrl-J, 33
Ctrl-R, 24
Ctrl-Shift-I, 34
F5, 185, 194
F8, 184
F9, 190
underscore (_), 15, 48, 86

A
Access constants, 72–73
Access Library, 38, 40, 73
Add method, 160
Add Watch Window, 198–200
Adding decisions, 95
ampersand (&), 3
As keyword, 78
Assert Statement, 197–198,

Arrays,
Array variable, 136

array functions, 143, 148
Erase,148
IsArray, 149
LBound and UBound, 150

declaring arrays, 135–136
dimensioning, 148
errors in arrays, 151–153
filling arrays, 137
Initial Value, 144
initializing arrays, 137
one-dimensional arrays, 133–134
parameter arrays, 154
passing arrays, 155,
Passing elements, 142,
sorting arrays, 156–157
static and dynamic arrays, 146–147
three-dimensional arrays, 133,
two-dimensional arrays, 133–135,
Upper Bounds, 146
with looping statements, 141

Arguments, 2–3, 33–34, 66, 74, 75–78, 79–81
Context argument, 91
MsgBox arguments, 91
optional arguments, 81–82
passing arguments, 79
Subscripted, 136

Auto Syntax Check, 187

234 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

B
Boolean Expressions, 100
Break mode, 57, 189
Breakpoints, 185, 189, 190–195
Bubble sort, 156
ByRef keyword, 81
ByVal keyword, 81

C
Call Statement, 9
Carriage Return, 76
Case Clause, 112

multiple Expressions in, 116
range of values, 115
Case Else, 115

Class,
class members, 166
class methods, 170
creating,164–165
Instance of class, 171
class modules, 10
report modules, 10

Call Stack Dialog Box, 205
Chr(10) function, 93
Chr(13) function, 93
Chr(9) function, 76, 131
Close # 1 statement, 215
Code Builder, 15, 18, 74, 110
Code window, 16, 18, 25, 27–29, 31, 196–199
Collection, 159
Colon (:), 161
Comment Block, 37
Compiling, 18–19
Complete Word, 35–36
Concatenation, 51–52
Conditional Expression, 99
Const statement, 72
Constants, 72
Context argument, 91
Continuation character (_), 86, 91
Converting Data Types, 67
Counters, 125
CSV format (comma-delimited text), 213
Custom Application, 182–183

Intrinsic Constants, 73
Custom Objects, 164

declaring members of, 166
defining properties of, 166
and event procedures, 172
and form modules, 10

naming rules, 165
Custom Collection, 159

D
data types, 45,
database tools, 5
database, 5
Debug statement, 42
Debugging, 187-218

Add Watch Window, 198–200
Assert Statement, 197–198
Call Stack Dialog Box, 205
Debugging Tools, 218
Immediate Window, 194–196, 215, 216
Locals Window,196, 203–204, 218
Quick Watch, 202–203,
skipping code, 208
stepping techniques, 205-209
using Breakpoints, 190, 218
using Err Object, 211
using Next statement, 208
using Stop Statement, 196–197
working in Break Mode, 194, 195–196

Dim statement,3
Do…Until, 123–125
Do…While, 119–122

E
Edit toolbar, 32
ElseIf Clause, 108
End Function keyword, 7
End Property, 167
End Sub keyword, 2
EOF function, 212
Erase function, 149
Error

message box buttons, 190
Runtime errors, 188
Syntax errors, 187–188
Type Mismatch error, 97, 102, 154
On Error statement options, 211
Division by zero, 216

Error Vs Mistake, 211
Error-Trapping, 217–218
Event, 159

event procedure, 160
event trap, 13

Event-driven application, 12
Exit Do, 129
Exit For, 129

INDEX 235

Exit Function, 129
Exit Sub, 129
Exiting Loops Early, 121, 129
Exiting Procedures, 129
Explicit variable, 48

F
Filenumber, 214
Fixed-Dimension Arrays, 146
For Each…Next, 128
For…Next, 125–127
Form module, 160
Form_Load, 175
Function (keyword), 3
Function Procedure, 155–156

IsMissing function, 82

G
George Boole, 100
Global variable, 62, 63, 64, 65, 66, 204
GotFocus, 15–16

H
Has Module property, 10
help files, 91

I
IF...THEN Statement

Multiline, 102
Nested, 109–111

IF…THEN …AND, 102
IF…THEN …ELSE, 105–107
IF…THEN …ELSEIF, 108–109
Immediate Exit, 167
Immediate Window, 8–9, 34, 38, 41–44, 45,

51, 64, 65, 70–71, 76–77, 82, 84–90,
124, 128, 131, 139, 149, 154–157, 160,
161–163, 195–196, 206, 215–216

Implicit (informal) variables, 50
Indent/Outdent,36–37
Infinite Loops, 122
Input, 214
InputBox function, 93–95
Instance, 160
IntelliSense, 31
Intrinsic Constants, 73
IsMissing (function), 82
Item method, 161

K
keywords, 2, 16, 36, 49, 51, 53, 81, 97, 112,

116, 135, 151, 169, 196, 205, 214

L
lightweight forms, 10
Linefeed, 76
List Constants, 34–35
List Properties/Methods, 32–33
Local variables, 59
LOF function, 214
Logical operators, 99–100
Lower Bounds, 137
Loop, 119

loop with conditions, 120–121
For Each…Next, 125–127
For…Next, 125–127
Do…Until, 123–125
Do…While, 119–122

M
Methods

Add, 159
Remove, 159
adding, 76
Item, 159
MkDir, 41
OpenForm, 34
removing, 65
RmDir, 41
Raise, 212

module, 2, 5
standard modules, 5
renaming, 31

MsgBox (and arguments), 84, 90, 93

N
Nested Loops, 130
Nesting Statements, 111
New keyword, 161, 171

O
Object Browser, 38–40
Objects

custom objects, 164–165
adding objects, 162
reindexing objects, 164
removing objects, 163

On Change property, 192

236 MICROSOFT ACCESS 2019 PROGRAMMING POCKET PRIMER

On Error GoTo 0, 198,
On Error GoTo label, 211
On Error Resume Next, 211
Option Compare Binary, 6
Option Compare Database, 6
Option Explicit statement, 6, 56–57, 58,

60, 174
Option Private Module statement, 63
Optional keyword, 81
Options dialog box, 29, 35

Q
Quick Info button, 35
Question mark (?), 9 39, 43, 45, 89

P
Paired Statements, 127
Parameter Info, 33–34
ParamArray keyword, 154
Passing Arguments to functions, 79–81
Preserve keyword, 147
Private keyword, 62, 72, 166, 167
PRN format, 213
procedure (s), 2

calling procedures, 116
executing procedures, 8,153
stopping and resetting procedures, 210
procedure arguments, 75,
Returning Values, 91
function procedures, 2–3, 5, 9, 11, 22,

75–77, 97, 115,155–156
event procedures, 2, 4, 11, 12–14, 22, 64
property procedures, 2, 4, 22, 164

Project Explorer, 10, 24–25, 29–31, 37, 50, 75,
165, 179

Project-level variables, 62
Properties window, 25–27, 30–31, 40, 165,

171, 192, 200
Property Get, 4
Property Let, 4, 166
Property Name, 4, 26, 110, 166, 191
Property procedures, 2, 4, 22
Property Set, 4
Property sheet, 11–14, 17–18, 65, 109–110,

173, 191–192
Property type, 4
Public keyword, 63, 72, 170
Public variables, 63

R
Raise method, 212
ReDim statement, 146
References dialog box, 38
Reindex collection, 161
Relational operators, 100
Remove method, 161, 163
Report modules, 10
Reserved words, 16
RGB function, 17
Run menu, 8
Runtime errors, 38, 188, 210, 213, 216

S
Statement, 2

Assert statement, 197–198
Call statement, 9
Close # statement, 215
Const statement, 72
Debug statement, 38, 42
Dim statement, 3, 50, 52, 53, 59, 63, 137
Exit statements, 129
Option Base statement, 134, 137, 139, 140,

141, 142
Option Compare Binary, 6
Option Explicit statement, 6, 56–58, 60,

174
ReDim statement, 146
Select Case statement, 111–117
Stop statement, 189

Scope, 58, 59, 169–170
Search Text, 38, 40, 73
Security Warning message, 14
Select Case, 111–117
Split bar, 29
Standard module, 50, 180,
Standard toolbar, 24, 25, 26
Static keyword, 66, 169, 170
Step clause,125
Step increment, 126
Sub (keyword), 2
Subroutine procedures, 2, 22
Syntax (and programming), 31–32
Syntax errors, 187–188

T
Tab, 76
TempVars, 64
Testing, 215

INDEX 237

navigating with Bookmarks, 209–210
procedure Testing, 215–217
stopping and resetting procedures, 210

Toggle Breakpoint, 193
Toggle Folders, 25, 26
Trust Center, 19–21
Trusted location, 19–22
Two-Dimensional Array, 144–145
TXT format, 213
Type Conversion Functions, 68
Type declaration characters, 53
Type Mismatch, 52, 97, 102, 154

U
User Interface, 172–173

V
Variables, 3, 48–49

advantages of, 70
assigning value to, 54
creating variables, 64
Data Type, 45, 85, 70
declaring, 48, 53
disposing of, 70
explicit variable, 48
finding definition, 70
Global variable, 63, 65
implicit variable, 49–50

initialization, 56
lifetime, 63
local variables, 59
Module Level variables, 59–60
Object variables, 68
Project Level variables, 62
Public variables, 63
Scope of variables, 58
Static variables, 66
Temporary variables, 63–64
TempVars, 64
working with, 69

Variable Type, 51
VarType function, 71
VBA Functions, 40
VBA macros, 14,
VBA Object Library, 40–41
VBA Project, 30–31, 39, 62, 165, 182
VBE, 23
vbTab, 131
View Code, 25, 27, 174, 183
View Object, 25, 26

W
Weekday function, 107
With...End With, 197

