

Learning in Embedded Systems

Copyrighted Material

Copyrighted Material

Learning in Embedded Systems

Leslie Pack Kaelbling

A Bradford Book
The MIT Press
Cambridge, Massachusetts
London, England

ghted Material

® 1993 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by
any electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the
publisher.

This book was set in Palatino by TechBooks and was printed and bound in
the United States of America.

Kaelbling, Leslie Pack.
Learning in embedded systems / Leslie Pack Kaelbling.
p. cm.

"A Bradford book."
Includes bibliographical references and index.
ISBN O-262-11174-8
1. Embedded computer systems- -Programming. 2. Computer
algorithms. I. Title.

QA76.6.K333 1993
006.3'1--dc2O 92-24672

CIP

Copyrighted Material

To the memory of my parents, who taught me I could do anything if I tried.

Copyrighted Material

Copyrighted Material

Contents

Acknowledgments xiii

Chapter I
Introduction

1.1 Direct Programming 2
1.2 What Is Learning? 3
1.3 What to Learn? 4
1.4 What to Learn From? 5
1.5 Representation 8
1.6 Situated Action 9
1.7 Theory and Practice 10
1.8 Contents 10

Chapter 2
Foundations 15

2.1 Acting in a Complex World 15
2.1.1 Modeling an Agent's Interaction with the World 16
2.1.2 Inconsistent Worlds 17
2.1.3 Learning Behaviors 22

2.2 Performance Criteria 24
2.2.1 Correctness 24
2.2.2 Convergence 29
2.2.3 Time and Space Complexity 32

2.3 Related Foundational Work 34

Chapter 3
Previous Approaches 35

3.1 Bandit Problems 35
3.2 Learning Automata 37

3.2.1 Early Work 37
3.2.2 Probability-Vector Approaches 38

3.3 Reinforcement-Comparison Methods 41

eriaI

viii Contents

3.4 Associative Methods 42
3.4.1 Copying 43
3.4.2 Linear Associators 43
3.4.3 Error Backpropagation 45

3.5 Genetic Algorithms 48
3.6 Extensions to the Model 49

3.6.1 Non-Boolean Reinforcement 49
3.6.2 Nonstationary Environments 50

3.7 Conclusions 50

Chapter 4
Interval Estimation Method 51

4.1 Description of the Algorithm 51

4.2 Analysis 54
4.2.1 Regular Error 54
4.2.2 Error Due to Sticking 55
4.2.3 Total Regret 57

4.3 Empirical Results 57
4.4 Experimental Comparisons 58

4.4.1 Algorithms and Environments 58
4.4.2 Parameter Tuning 59
4.4.3 Results 60

4.5 Extensions 64
4.5.1 Multiple In puts and Actíons 64
4.5.2 Real-valued Reinforcement 64
4.5.3 Nonstationary Environments 65

4.6 Conclusion 66

Chapter 5
Divide and Conquer 67

5.1 Boolea n-Function Learners 67
5.2 Cascade Algorithm 67
5.3 Correctness and Convergence 70

Chapter 6
Learning Boolean Functions in k-DNF 77

6.1 Background 77

pyrighted erial

5.3.1 Correctness 70
5.3.2 Convergence 72

5.4 Empirical Results 73
5.4.1 Complexity 73
5.4.2 Performance 74

5.5 Conclusion 76

Copyrighted Material

Contents ix

6.2 Learning k-DNF from Input-Out put Pairs 78
6.3 Combining the LARC and VALIANT Algorithms 78
6.4 Interval Estimation Algorithm for k-DNF 79
6.5 Empirical Comparison 82

6.5.1 Algorithms and Environments 82
6.5.2 Parameter Tuning 83
6.5.3 Results 84
6.5.4 Discussion 86

6.6 Conclusion 88

Chapter 7
A Generate-and-Test Algorithm 89

7.1 Introduction 89
7.2 High-Level Description 90
7.3 Statistics 92
7.4 Evaluating In puts 93
7.5 Managing Hypotheses 94

7.5.1 Adding Hypotheses 94
7.5.2 Promoting Hypotheses 98
7.5.3 Pruning Hypotheses 98

7.6 Parameters of the Algorithm 99
7.7 Computational Complexity 99
7.8 Choosing Parameter Values 101

7.8.1 Number of Levels 102
7.8.2 Number of Working and Candidate Hypotheses 102
7.8.3 Promotion Age 103
7.8.4 Rate of Generating Hypotheses 104
7.8.5 Maximum New Hypothesis Tries 104

7.9 Empirical Results 104
7.9.1 Sample Run 104
7.9.2 Effects of Parameter Settings on Performance 105
7.9.3 Comparison with Other Algorithms 105

7.10 Conclusions 110

Chapter 8
Learning Action Maps with State 113

8.1 Set-Reset 113
8.2 Using SR in GTRL 114

8.2.1 Hypotheses 115
8.2.2 Statistics 116
8.2.3 Search Heuristics 117
8.2.4 Complexity 117

x Contents

8.3 Experiments with GTRL-S 117
8.3.1 Lights and Buttons 119
8.3.2 Many Lights and Buttons 121

8.4 Conclusion 122

Chapter 9
Delayed Reinforcement 123

9.1 Q-Learning 123
9.2 Q-Learning and Interval Estimation 125
9.3 Adaptive Heuristic Critic Method 126
9.4 Other Approaches 129
9.5 Complexity Issues 131
9.6 Empirical Comparison 131

9.6.1 Environments 131
9.6.2 Algorithms 134
9.6.3 Parameter Tuning 134
9.6.4 Results 135
9.6.5 Discussion 136

Chapter 10
Experiments in Complex Domains 139

10.1 Simple, Large, Random Environment 139
10.1.1 Algorithms 139
10.1.2 Task 140
10.1.3 Parameter Settings 140
10.1.4 Results 140

10.2 Mobile Robot Domain 141
10.2.1 Algorithms 142
10.2.2 Task 142
10.2.3 Results 143

10.3 Robot Domain with Delayed Reinforcement 145
10.3.1 Algorithms 145
103.2 Task 146
10.3.3 Results 146

Chapter 11
Conclusion 149

11.1 Results 149
11.2 Conclusions 150
11.3 Future Work 151

11.3.1 Exploration 152
11.3.2 Bias 152
11.3.3 World Models and State 153
11.3.4 Delayed Reinforcement 157

11.4 Final Words 157
Copyrighted iviaterial

Appendix A Statistics in GTRL 159

A.1 Binomial Statistics 159
A.2 Normal Statistics 161
A.3 Non parametric Statistics 162

Appendix B Simplifying Boolean Expressions in GTRL 165

References 167
Index 175

Copyrighted Material

Contents xi

Copyrighted Material

Acknowledgments

My first thanks go to Stan Rosenschein. He has been a colleague and
mentor, providing me with lots of ideas, criticism and inspiration, and
with two excellent environments for carrying out research. Thanks to
John McCarthy for getting me interested in AI and to Nils Nilsson
for making me go back to school before I forgot how. Rich Sutton
helped me to ground my work in the context of existing literatures I
had never heard of and suggested interesting extensions of my basic
ideas. Jeff Kerr and Stanley Reifel have provided robots to play with
and lots of help and good advice. David Chapman, Stan Rosenschein,
Rich Sutton and Nils Nilsson provided insightful comments on drafts
of the dissertation on which this book is based; they have helped
the clarity of the exposition considerably. Many other colleagues at
Stanford, CSLI, SRI and Teleos have helped in indirect but important
ways. David Kaelbling has been kind and patient beyond measure
through all this and the pygmies appreciate it.

This work was supported in part by the Air Force Office of Scien-
tific Research under contract F49620-89-C-0055, in part by the System
Development Foundation, and in part by Teleos Research IR&D.

Copyrighted Material

Copyrighted Material

Learning in Embedded Systems

Copyrighted Material

Copyrighted Material

Chapter 1

Introduction

An embedded system has an ongoing interaction with a dynamic exter-
nal world. Embedded systems may be physically embodied or may
be purely computational. Mobile robots, factory process controllers,
and calendar-managing programs are examples of embedded systems.
They are expected to run for extended periods of time, repeatedly pro-
cessing new input data and generating output data. They are embed-
ded in environments whose dynamics they can influence, but cannot
completely control.

Every embedded system has perceptual faculties through which it
can sense aspects of the state of its environment; it also has effectors
that it can use to influence the state of the environment. The behav-
ior of most embedded systems can be described by a mapping from
percepts to effector outputs; the mapping may have internal state,
allowing the effector outputs to, potentially, depend on the entire pre-
vious history of percepts. The system continually examines the state
of the environment through perception, then executes the appropriate
effector outputs as specified by the mapping.

The external environment is likely to be changing during the inter-
val between the embedded system's examination of its percepts and
its execution of outputs. Exactly how the environment changes will
depend on, among other things, the length of the interval. In order
for a system to make appropriate and reliable responses to environ-
mental conditions, there must be a predictable bound on the length
of this interval. We will refer to behaviors with a bounded response
time as being real time.

In general, the perceptual abilities of the system will be insufficient
to completely characterize the state of the external environment. This
means that, in many cases, taking the same action in states of the
external environment that appear to be the same will cause different
results. Thus, even in deterministic environments, the data that the
system gets may be inconsistent, or noisy.

Copyrighted Material

2 Chapter 1

1.1 Direct Programming

The traditional approach to building embedded systems has been to
program them. Simple controllers are built using techniques of logi-
cal specification and of procedural programming, but, as the systems
that we wish to build become more complex, the programming task
becomes increasingly difficult.

Because embedded systems must operate in dynamic environments
that are not entirely predictable, their behavior is typically highly con-
ditional, making it difficult to describe in conventional procedural pro-
gramming languages. A variety of new programming methodologies
that attempt to simplify the problems of programming embedded sys-
tems have been developed within the artificial intelligence (AI) com-
munity [15, 30, 42]. Systems constructed using these techniques are
often described as reactive, because their actions are typically thought
of as reactions to recent perceptual information rather than as steps in
a complex, preconceived plan.

The designer of an embedded system is given a specification of an
environment or a class of environments in which the system must
work and a specification of the task the system is to perform. The
environment description may include the physical morphology and
primitive sensorimotor capabilities of the system, or those may be left
to vary as part of the design. The word "task" is used very broadly
here: a task could be as simple as to keep moving without bumping
into things or as complex as to research the geological make-up of an
unexplored planet. Because we are interested in systems that have a
long-term interaction with an environment, tasks will not be specifi-
cations of short-term achievement goals that terminate before the end
of the system's "life."

Even with appropriate programming languages and task specifica-
tions, programming embedded agents is quite difficult.

It is theoretically possible, given complete and correct specifications
of the task and the environment, to design a system that optimally car-
ries out the task in the environment. However, this strict prerequisite
is rarely, if ever, satisfied. Even when it is satisfied, the information is
quite often given in a form that the human programmer is unable to
exploit directly:

I once spent a long time trying to program a mobile robot to use
ultrasonic sensors to navigate down a hallway. I had a physical
specification of the environment (it was the hallway I was sit-
ting in) and fairly accurate manufacturers' specifications for the
sensors and effectors of the robot. Theoretically, I had enough
knowledge to write correct program. However, the specifications

Copyrighteo cenai

Introduction 3

of the abilities of the robot and of the properties of the environ-
ment were impossible for me to translate directly into a working
program. So, I worked in the following debugging cycle:

Write a program for the robot;
Run the program on the robot and watch it drive into a

wall;
Analyze the behavior of the robot and see where the pro-

gram was mistaken;
Fix the problem in the program;
Run the program on the robot and watch it drive into a

wall (this time for a different reason!);

and so on. The result of this cycle was that I learned a good deal
about the nature of the interaction between the robot's sensors
and the physical environment. Using this information, I learned
about the environment and adapted the robot's behavior so that it
would perform its task correctly. A much more efficient strategy
would have been for me to design a behavior for the robot that
would, itself, adapt to the environment it was in.

The need for adaptability is even more pronounced when the spec-
ification of the environment is quite weak, allowing for a variety of
different types of environments or even environments whose charac-
teristics change over time. In that case, no amount of off-line learning
on the part of the designer will allow a correct fixed strategy to be
obtained, because the correct behavior will vary from run to run and
even from time to time during the course of a single run.

1.2 What Is Learning?

For the purposes of this discussion, let us take "learning" to mean,
roughly, the improvement of a system's behavior by making it more
appropriate for the environment in which the system is embedded.
The term "learning" has been used for a much wider variety of pro-
cesses, including so-called "symbol-level learning" [241 in which no
information is gained, but the internal processes of the agent are made
more efficient.

It is difficult to give a concrete computational definition for even this
restricted form of learning. Many systems have internal state changes
that are naturally termed "perception" rather than "learning." Con-
sider a mobile robot that is programmed with a navigational strategy
that is complete except for information about the width of the halls.
The robot measures the width of the halls and begins to behave better

Copyrighted Material

4 Chapter 1

because of having done so. Standard usage would say that the robot
had "perceived" the width of the halls, and would not call this an
instance of "learning." In common usage, "perception" tends to refer
to gaining information that is specific, transient, or at a low level of
abstraction, whereas "learning" tends to refer to more general infor-
mation that is true over longer time spans. This issue is addressed
in more detail in a paper comparing different views of the nature of
knowledge [41]. In the rest of the book, this difficult question of the
interpretation of natural language will be avoided completely; any in-
stance of the improvement of behavior through increased information
about the environment will be termed "learning."

1.3 What to Learn?

Having decided that the system must learn about its environment, we
must decide exactly what the system is to learn.

In the end, the system must have some sort of operational mapping
from perceptual states to effector actions. One approach is to learn this
mapping directly from experience in the world. In this case, the action
mapping is tailored for a particular task, so that if the task changes, an
entirely new mapping must be learned. Having only a single task is
not as restrictive as it may seem, however. For example, a robot might
have the single task of carrying out orders given to it as it runs; these
orders are perceived by the robot as indications about the state of the
environment to which it must respond in a particular way.

Another approach would be to learn a more general model of the
world. If the system could learn a description of the dynamics of the
external environment, it would have enough information to satisfy
any task within its physical abilities. In order to take action, however,
it would need to have a description of its task and to use that descrip-
tion, together with the learned world model, to decide what to do.
This process will, in many cases, reduce to the general planning prob-
lem, which has been shown to be intractable in the majority of cases
[19]. Another option is to "compile" the world model and the task
description into an action mapping that can be executed efficiently. If
the task changes, the map need only be recompiled. This approach
has been explored both in the case of user-supplied, symbolic world
models [44] and in the case of learned world models [91]. In the first
case, recompilation must be done all at once; in the second case, it is
done incrementally.

Sutton [911 and Whitehead and Ballard [101] have found that in
cases in which the reinforcement from the world is delayed, learning
may be sped up by a kind of on-line compilation from a world model.

Copyrigh Material

If the world model must be learned afresh, however, the results are
inconclusive as to whether this method actually speeds up learning.
In addition, this approach opens up the new and complex problem
of learning world models, which has been addressed by a number
of people, including Sutton and Pmette [92], Drescher [25], Mason,
Christiansen, and Mitchell [54], Mel [56], Shen [85], and Lin [49].

For these reasons and because of the simplicity of the first method,
this book will focus on techniques for learning action maps without
building state-transition models as an intermediate stage. Even those
methods that do use models have this simpler form of reinforcement
learning as a component, so improved algorithms for learning action
maps directly will benefit both approaches.

1.4 What to Learn from?

Whether the system is learning the action map directly or is learning
a model of world dynamics as an intermediate stage, it must observe
and glean information from the experience it has in the world. In ad-
dition to learning how the world works, the system must learn what
its task is. It might somehow be possible to program this information
in directly, but in general, that wifi defeat the purpose of the learn-
ing system. We will, instead, consider two second-order specifications
that will cause the agent to learn to carry out a particular task in a
particular environment.

One method is to provide a teacher, or other system, to emulate. We
can then build our learning system with the fixed goal of coming to
behave in the same way as the teacher, generating the same mapping
from perceptual situations to effector actions, even when the teacher
is no longer present to be observed.

Another method is to provide a "reinforcement signal"; this is essen-
tially a mapping from each state of the environment into a scalar value
encoding how desirable that state is for the agent. The system's goal,
in this case, would be to take actions that maximize the reinforcement
values received, possibly over a long term.

As a concrete example, consider a simple robot with two wheels
and two photo-sensors. It can execute five different actions: stop, go
forward, go backward, turn left, and turn right. It can sense three
different states of the world: the light in the left eye is brighter than
that in the right eye, the light in the right eye is brighter than that
in the left eye, and the light in both eyes is roughly equally bright.
Additionally, the robot is given high values of reinforcement when the
average value of light in the two eyes is increased from the previous
instant. In order to maximize its reinforcement, this robot should turn

Copyrighted Material

Introduction 5

6 Chapter 1

left when the light in its left eye is brighter, turn right when the light
in its right eye is brighter, and move forward when the light in both
eyes is equal. The problem of learning to act is to discover such a
mapping from perceptual states to actions.

Thus, the problem of learning to act can be cast as a function-
learning problem: the agent must learn a mapping from the situations
in which it finds itself, represented by streams of input values, to the
actions it can perform. In the simplest case, the mapping wifi be a
pure function of the current input value, but in general it can have
state, allowing the action taken at a particular time to depend on the
entire stream of previous input values.

In the past few years there has been a great deal of work in the
AI and theoretical computer science communities on the problem of
learning pure Boolean-valued functions [38, 57, 64, 72, 951. Unfortu-
nately, this work is not directly relevant to the problem of learning
from reinforcement because of the different settings of the problem.
In the traditional function-learning work, often referred to in the AI
community as "concept learning," a learning algorithm is presented
with a set or series of input-output pairs that specify the correct output
to be generated for that particular input. This setting allows for effec-
tive ftmction learning, but differs from the situation of a system trying
to learn from reinforcement. The system, finding itself in a particular
input situation, must generate an action. It then receives a reinforce-
ment value from the environment, indicating how valuable the current
world state is. The system cannot, however, deduce the reinforcement
value that would have resulted from executing any of its other ac-
tions. Also, if the environment is noisy, as it wifi be in general, just
one instance of performing an action in a situation may not give an
accurate picture of the reinforcement value of that action.

Reinforcement learning reduces to concept learning when the sys-
tem has only two possible actions, the world generates Boolean rein-
forcement that depends only on the most recently taken action, there
is exactly one action that generates the high reinforcement value in
each situation, and there is no noise. In this case, from performing a
particular action in a situation, the system can deduce that it was the
correct action if it was positively reinforced; otherwise it can infer that
the other action would have been correct.

The problem of learning action maps by trial and error is often
referred to as reinforcement learning because of its similarity to models
used in psychological studies of behavior-learning in humans and
animals [29]. It is also referred to as "learning with a critic," in contrast
to the "learning with a teacher" of traditional supervised concept-

Copyrighted Material

learninìg [104]. One of the most interesting facets of the reinforcement-
learning problem is the tension between performing actions that are
not well understood in order to gain information about their rein-
forcement value and performing actions that are expected to be good
in order to increase overall reinforcement. If a system believes that a
particular action works well in a certain situation, it must trade off
performing that action against performing another one that it knows
nothing about, in case the second action is even better than the first.
Or, as Ashby [7] put it,

The process of trial and error can thus be viewed from two very
different points of view. On the one hand it can be regarded as
simply an attempt at success; so that when it fails we give zero
marks for success. From this point of view it is merely a second-
rate way of getting to success. There is, however, the other point of
view that gives it an altogether higher status, for the process may
be playing the invaluable part of gathering information, informa-
tion that is absolutely necessary if adaptation is to be successfully
achieved.

The longer the time span over which the system will be acting, the
more important it is for the agent to be acting on the basis of correct
information. Acting to gain information may improve the expected
long-term performance while causing short-term performance to de-
cline.

Another important aspect of the reinforcement-learning problem is
that the actions that a system performs influence the input situations
in which it will find itself in the future. Rather than receiving an in-
dependently chosen set of input-output pairs, the system has some
control over what inputs it wifi receive and complete control over
what outputs wifi be generated in response. In addition to making
it difficult to make distributional statements about the inputs to the
system, this degree of control makes it possible for what seem like
small "experiments" to cause the system to discover an entirely new
part of its environment.

In this book, we will investigate methods for learning action maps
from reinforcement. For the purposes of building embedded systems,
it is much easier to provide a reinforcement function than it is to pro-
vide a teacher that will specify the correct action for every possible
situation. It is important to notice, however, that we have not com-
pletely eliminated the problem of programming embedded systems;
we have simply changed the nature of the program. Now, instead
of specifying the action mapping directly, the designer must specify

Copyrighted Material

Introduction 7

8 Chapter 1

a reinforcement function, which tells the system which states of the
world are desirable. By using reinforcement learning, some of the pro-
grarnming burden is lifted from the human and placed on the system,
which is, after all, where it should be.

1.5 Representation

The question of knowledge representation has sparked a great deal
of controversy within AI and related areas. Very often, the choice of
representation of learned information directly influences the speed and
abilities of the learning system. Possible representations of action maps
vary widely and include tables, neural networks, first-order predicate
calculus, and production rules. These representations can be grossly
divided into statistical and symbolic methods.

Statistical learning methods encompass much of the early learning
work in pattern recognition [71] and adaptive control [32], as well
as current work in artificial neural networks (also known as connec-
tionist systems) [10]. The internal representations used are typically
numeric and the correctness of algorithms is demonstrated using sta-
tistical methods. These systems tend to be highly noise-tolerant and
robust. However, the internal states are difficult for humans to inter-
pret and the algorithms often perform poorly on discrete problems.

More symbolic approaches to learning, such as those standardly
pursued in the artificial inteffigence community attempt to address
these issues of understandability and complexity. They have resulted
in algorithms, such as Mitchell's version spaces [631 and Michalski's
STAR [57], that use easily interpretable symbolic representations and
whose correctness hinges on arguments from logic rather than from
statistics. These algorithms tend to suffer severely from noise intoler-
ance and high computational complexity

Many researchers use symbolic representations because, as Michie
[591 puts it, "In AI-type learning, explainability is all." That is not
the motivation for this work, which simply seeks the most effective
algorithms for building embedded systems. There is, however, an
important benefit of using symbolic representations of concepts and
strategies being learned by an agent: it may allow the learned knowl-
edge to be more easily integrated with knowledge that is provided
by humans at design time. Although such integration is not explored
in this book, it is an important direction in which learning research
should be pursued.

One of the aims of the work in this book is to blend the statistical
and the symbolic in algorithms for reinforcement learning in embed-

Copyrighted Material

ded systems. An important characteristic of most embedded systems
is that they operate in environments that are not (to them) complete-
ly predictable. In order to work effectively in such environments, a
system must be able to summarize general tendencies of its en-
vironment. The well-understood methods of statistics are most ap-
propriate for this task. This does not, however, mean we must
abandon all of the benefits of symbolic AI methods. Rather, these
two approaches can be synthesized to make learning systems that
are robust and noise-tolerant as well as being easy to understand
and capable of working in complex discrete environments. A good
example of this kind of synthesis is Quinlan's successful concept-
learning method, 1D3 [72]. Within the combined approach, complexi-
ty issues can be addressed by explicitly considering limited classes of
functions to be learned.

We wifi explore a variety of representational strategies, with primary
concern for the efficiency and effectiveness of using the representation
rather than with general methodological preferences.

1.6 Situated Action

In the 1980s, many researchers in AI began to feel uncomfortable
with the way the field was progressing. They saw a field that was
fragmented, with individuals or groups studying perception, reason-
ing, learning, action, and language in almost complete isolation from
one another. Each of these independent efforts was making its own
assumptions about what it could depend on from the others; these
assumptions were rarely grounded in any knowledge of the other en-
terprises.

From these observations arose the desire to construct entire agents
that made the connection between perception and action while embed-
ded or situated in dynamic environments. This integrated, situated ap-
proach has been pursued in different ways by a number of researchers,
including Brooks [16], Agre and Chapman [11, and Rosenschein and
Kaelbling [45].

The work in this book arises out of this tradition of situated action.
The methods are all intended to work in the context of agents em-
bedded in dynamic environments. The domains to which they have
been applied so far have been quite simple, more at the level motor
skills than of intellectual activity These methods are not expected to
be sufficient for tasks like playing chess, but they will help us gain
the necessary understanding of routine interactions with the physical
world before we go on to tackle higher level problems.

Copyrighted Material

Introduction 9

10 Chapter 1

1.7 Theory and Practice

In the best of all possible worlds, we would invent complex algo-
rithms, prove them to have desirable properties, and demonstrate
them to be useful in empirical trials. In the real world, this is un-
fortunately quite difficult. In the case of reinforcement learning, the
algorithms about which things can readily be proven are very simple
and not particularly useful; algorithms that are useful are too complex
to be analyzed theoretically.

This work is driven directly by the goal of having useful algorithms
for reinforcement learning in embedded systems. Whenever some the-
oretical insight is available, we make use of it, but the discussion is not
constrained to those properties of algorithms that can be established
theoretically. There are extensive empirical results on the performance
of reinforcement-learning algorithms; it would be wonderful if they
inspired someone to do theoretical analysis of the algorithms, but if
they do not, we must be content for now with methods that seem to
work.

1.8 Contents

This book starts with a very simple formulation of the reinforcement-
learning problem, then slowly adds complexity along different dimen-
sions, providing previous work, new algorithms, and experimental
results at each step along the way.

The first step is to understand the formal foundations of reinforce-
ment learning. The foundations of this problem have been developed,
largely independently, in the areas of statistics, dynamic program-
ming, and learning-automata theory. By formalizing the problem of
reinforcement learning, we can precisely characterize particular prob-
lem domains along different dimensions of complexity including size
of the input and output spaces, amount of noise, and the period of
time over which behavior is to be optimized. Most importantly, the
formalization wifi allow us to state objective criteria by which learning
algorithms can be compared.

Having established a vocabulary for talking about environments
and about the performance of learning methods within those envi-
ronments, we survey existing algorithms for reinforcement learning
from a variety of different literatures. We first consider methods for
solving the "two-armed bandit" problem, which is the simplest possi-
ble setting of reinforcement learning. The system has only two actions
available to it and all of the states of the world look the same, so an
action strategy consists of a single action to be executed forever into

Copyrighted Material

the future. We then go on to consider associative forms of this prob-
lem, in which the system must learn to choose actions for different
states of the world.

A new approach to the two-armed bandit problem, called the inter-
val estimation algorithm, is presented in chapter 4. This algorithm uses
second-order information about the reinforcement values to construct
confidence-interval estimates of the value of performing the different
actions. There is some theoretical discussion of the performance of the
algorithm, followed by an empirical comparison to a wide variety of
previously existing methods on a set of synthetic problems. The inter-
val estimation method proves to have superior performance overall
and shows an important lack of dependence on its internal parame-
ters.

In the next chapter, we step back briefly and consider the following
question: If we have a method for learning action maps that have only
two actions, can we combine instances of that method to learn action
maps with many actions? The question is answered in the affirmative
by the cascade method, which requires N instances of the two-action
learner to solve a problem with 2' actions. The cascade method is
shown to be correct, but convergence times are not addressed formally.
Empirical trials show a cascaded version of the interval estimation
method to converge faster than a more straightforward extension to
multiple actions; this speed-up can be attributed to the parallelism of
the multiple instances of the basic algorithm.

Armed with the ability to compose Boolean action maps into more
complex ones, we now address the question of complexity of the input
space. The interval estimation algorithm, when applied to a problem
with multiple world states, simply makes a copy of itself for each
possible state; this results in a space complexity exponential in the
number of input bits and does not allow for any generalization across
input instances. Chapters 6 and 7 each present algorithms for learning
Boolean functions from reinforcement that have their statistical basis
in the interval estimation method. By restricting the class of action
maps that can possibly be learned, these methods bias the search for a
good action map, gaining considerable time and space efficiency and
allowing for generalization across input instances.

Previous work in computational learning theory has found the re-
striction to the class of functions describable as propositional formulae
in k-DNF to provide a useful bias. Chapter 6 presents two algorithms
for learning functions in k-DNF from reinforcement, one based on
existing techniques of linear associators and the other based on the
interval estimation method. Both of the new techniques prove to be

Copyrighted Material

Introduction II

12 Chapter 1

empirically superior to previous methods on synthetic problems with
a variety of characteristics.

A more flexible algorithm is presented in chapter 7. The GTRL al-
gorithm performs a restricted, real-time, generate-and-test search in
a syntactic space of Boolean-fimction descriptions. It uses statistical
heuristics to guide the search; for a large class of target functions,
these heuristics generate the correct answer almost immediately; for
parity and related functions, the search may take considerably more
steps. The algorithm is highly parameterized and can be given a weak
or strong bias, making it more or less general and less or more effi-
Gent. The GIRL algorithm is tested on the problems from the previous
chapter and is shown, on the most complex problem, to have the best
performance, due to the direct guidance of the search heuristics.

An important problem with the preceding methods is that they as-
sume that the system has the perceptual abilities to discriminate be-
tween states of the world in which one action must be taken and
states of the world in which another action must be taken. In general,
this will not be the case; states with important differences will ap-
pear the same to the system. This problem has been called perceptual
aliasing [102] and has proven to be very difficult to address. A system
can discriminate between more states of the world if it can remember
its previous percepts. A simple solution to the problem of perceptual
aliasing is simply to extend the system's inputs to include the last k
percepts for some value of k. As k gets large, the input space grows
dramatically, and we are again subject to the complexity problems
we have been trying to avoid. Chapter 8 presents a novel attempt at
addressing the problem of perceptual aliasing that does not increase
the size of the input space and that allows actions to depend, poten-
tially, on percepts that occurred arbitrarily far back in time. This new
method, an extension of the GTRL algorithm, is shown to work on
simple problems, but is not satisfactory as the problems become more
complex. This wifi be an important area for future research.

All of the methods discussed so far have attempted choose an action
that optimizes only the reinforcement received on the next step. In the
more general case, actions should be chosen to optimize reinforcement
into the future. This would allow a system to learn to take actions that
have no immediate effect, but that generate high reinforcement values
sometime after they have been executed. There are some very good
existing techniques for handling delayed reinforcement; chapter 9 re-
views these techniques, then extends them to incorporate the statistical
ideas of the interval estimation method. The resulting algorithms are
compared experimentally on difficult synthetic problems.

Copyrighted Material

The algorithms presented in this book are finally validated through
their application to moderately complex domains, including a real
mobile robot. Chapter 10 describes these experiments, documenting
their successes and failures.

There is a great deal of future work to be done in the area of rein-
forcement learning. One of the most pressing issues is the integration
of learned knowledge with existing knowledge. In this book, we have
considered only tabula rasa learning, and seen that it works fairly well
on simple problems. Studying learning in isolation allows us to see
clearly what the main difficulties are and to perform clean experimen-
tal tests of possible solutions. Learning will almost certainly not take
us all the way to inteffigent systems. We must eventually reintegrate
learning with a priori knowledge, potentially in the form of existing
structure. Understanding how to do this integration must be a high
priority for any future work in this area.

Copyrighted Material

Introduction 13

Copyrighted Material

Chapter 2

Foundations

This chapter focuses on building formal foundations for the prob-
lem of learning in embedded systems. These foundations must allow
a clear statement of the problem and provide a basis for evaluating
and comparing learning algorithms. It is important to establish such
a basis: there are many instances in the machine learning literature
of researchers doing interesting work on learning systems, but report-
ing the results using evaluation metrics that make it difficult to com-
pare their results with the results of others. The foundational ideas
presented in this chapter are a synthesis of previous work in statis-
tics [13], dynamic programming [74], the theory of learning automata
[69], and previous work on the foundations of reinforcement learning
[9, 89, 90, 97, 106, 107].

2.1 Acting in a Complex World

An embedded system, or agent, can be seen as acting in a world,
continually executing a procedure that maps the agent's perceptual
inputs to its effector outputs. Its world, or environment, is everything
that is outside the agent itself, possibly including other robotic agents
or humans. The agent operates in a cycle, receiving an input from
the world, performing some computation, then generating an output
that affects the world. The mapping that it uses may have state or
memory, allowing its action at any time to depend, potentially, on
the entire stream of inputs that it has received until that time. Such a
mapping from an input stream to an output stream is referred to as a
behavior.

In order to study the effectiveness of particular behaviors, whether
or not they involve learning, we must model the connection between
agent and world, understanding how an agent's actions affect its
world and, hence, its own input stream.

Copyrighted Material

16 Chapter 2

2.1.1 Modeling an Agent's Interaction with the World
The world can be modeled as a deterministic finite automaton whose
state transitions depend on the actions of an agent [55]. From the
agent's perspective, the world is everything that is not itself, including
other agents and processes. This model will be extended to include
nondeterministic worlds in the next section. A world can be formally
modeled as the triple (S, A, W), in which

S is the set of possible states of the world,
A is the set of possible outputs from the agent to the world (or

actions that can be performed by the agent), and
W is the state transition function, mapping S x A into S.

Once the world has been fixed, the agent can be modeled as the 4-tuple
(1,1, R, B) where

I is the set of possible inputs from the world to the agent,
I is a mapping from S to I that determines which input the

agent will receive when the world is in a given state,
R is the reinforcement function of the agent that maps S into real

numbers (it will also be useful to consider more limited models
in which the output of the reinforcement function is Boolean-
valued), and

B is the behavior of the agent, mapping 1* (streams of inputs)
into A.

The expressions i(t) and a(t) wifi denote the input received by the agent
at time t and the action taken by the agent at time t, respectively.

The process of an agent's interaction with the world is depicted in
figure 1. The world is in some internal state, s, that is projected into i
and r by the input and reinforcement functions I and R. These values

Figure 1

An agent's interaction with its world

Copyrighted Material

serve as inputs to the agent's behavior, B, which generates an action
a as output. Once per synchronous cycle of this system, the value of
a, together with the old value of world state s, is transformed into a
new value of world state s by the world's transition function W.

Note that if the agent does not have a simple stimulus-response
behavior, but has some internal state, then the action taken by the be-
havior can be a function of both its input and its internal state. This
internal state may allow the agent to discriminate among more states
of the world and, hence, to obtain higher reinforcement values by per-
forming more appropriate actions. To simplify the following discus-
sion, actions will be conditioned only on the input, but the treatment
can be extended to the case in which the action depends on the agent's
internal state as well.

2.1.2 Inconsistent Worlds
One of the most difficult problems that an agent must contend with is
apparent inconsistency. A world is said to be apparently inconsistent for
an agent if it is possible that, on two different occasions in which the
agent receives the same input and generates the same action, the next
states of the world differ in their reinforcement or the world changes
state in such a way that the same string of future actions will have
different reinforcement results.

There are many different phenomena that can account for apparent
inconsistency:

The agent does not have the ability to discriminate among all world
states. If the agent's input function lis not one-to-one, which will
be the case in general, then an individual input could have arisen
from many world states. When some of those states respond dif-
ferently to different actions, the world will appear inconsistent to
the agent.

The agent has "faulty" sensors. Some percentage of the time, the
world is in a state s, which should cause the agent to receive I(s)
as input, but it appears that the world is in some other state s',
causing the agent to receive I(s') as input instead. Along with the
probability of error, the nature of the errors must be specified: are
the erroneously perceived states chosen maliciously, or according
to some distribution over the state space, or contingently upon
what was to have been the correct input?

The agent has "faulty" effectors. Some percentage of the time, the
agent generates action a, but the world actually changes state as
if the agent had generated a different action a'. As above, both the
probability and nature of the errors must be specified.

Copyrighted Material

Foundations 17

18 Chapter 2

The world has a probabilistic transition finction. In this case, the
world is a stochastic automaton whose transition function, W',
actually maps S x A into a probability distribution over S (a
mapping from S into the interval [0,1] such that for every state s
and action a, W'(s,a)(s') 1) that describes the probability
that each of the states in S will be the next state of the world.

Some specific cases of the noise phenomena above have been stud-
ied in the formal function-learning literature. Valiant [95] has explored
a model of noise in which, with some small probability the entire in-
put instance to the agent can be chosen maliciously. This corresponds,
roughly, to having simultaneous faults in sensing and action that can
be chosen in a way that is maximally bad for the learning algorithm.
This model is overly pessimistic and is hard to justify in practical
situations. Angluin [61 works with a model of noise in which input
instances are misclassified with some probability; that is, the output
part of an input-output pair is specified incorrectly. This is a more
realistic model of noise, but is not directly applicable to the action-
learning problem under consideration here.

If the behavior of faulty sensors and effectors is not malicious, the
inconsistency they cause can be described by transforming the original
world model into one in which the set of world states, S, is identical
to the set of agent inputs, I, and in which the world has a probabilis-
tic transition function. Inconsistency due to inability to discriminate
among world states can also be modeled in this way, but such a model
is correct only for the one-step transition probabilities of the system.
Reducing each of these phenomena to probabilistic world-transition
functions allows the rest of the discussion of embedded behaviors to
ignore the other possible modes of inconsistency. The remainder of
this section shows how to transform worlds with each type of in-
consistency into worlds with state set I and probabilistic transition
functions.

Consider an agent, embedded in a world with deterministic transi-
tion function W, whose effectors are faulty with probability p, so that
when the intended action is a, the actual action is y(a). This agent's
situation can be described by a probabilistic world transition function
W'(s, a) that maps the value of W(s, a) to the probability value i - p,
the value of W(s, ii(a)) to the probabffity value p and all other states
to probability value 0. That is,

W'(s,a)(W(s,a)) = I - p
W'(s,a)(W(s,v(a)) = p

Copyrighted Material

The result of performing action a in state s will be W(s, a) with prob-
ability i - p, and W(s, y(a)) with probability p. Figure 2 depicts this
transition function. First, a determiristic transition is made based on
the action of the agent; then, a probabilistic transition is made by the
world. This model can be easily extended to the case in which y is
a mapping from actions to probability distributions over actions. For
all a' not equal to a, the value of W(s, a') is mapped to the probability
value p v(a)(a'), which is the probability, p, of an error times the prob-
ability that action a' will be executed given that the agent intended to
execute the action a. The value of W(s, a) is mapped to the probability
value i - p + p v(a)(a), which is the probability that there is no error,
plus the probability that the error actually maps back to the correct
action.

Faulty input sensors are somewhat more difficult to model. Let the
agent's sensors be faulty with probability p, yielding a value I(v(s))
rather than I(s). We can construct a new model with a probabilistic
world transition function in which the states of the world are those
that the agent thinks it is in. The model can be most simply viewed if
the world makes more than one probabilistic transition, as shown in
figure 3. If it appears that the world is in state s, then with probability
Ps, it actually is, and the first transition is to the same state. The rest of
the probability mass is distributed over the other states in the inverse
image of s under y, y' (s), causing a transition to some world state s'
with probability Ps'. Next, there is a transition to a new state on the
basis of the agent's action according to the original transition function
W. Finally, with probability p, the world makes a transition to the state
v(W(s', a)), allowing for the chance that this result will be misperceived
on the next tick. In figure 4, the diagram of figure 3 is converted into a
more standard form, in which the agent performs an action, and then
the world makes a probabilistic transition. This construction can also
be extended to the cases in which y(s) is a probability distribution over
S and in which the initial world transition function is probabilistic.

Figure 2

Modeling faulty effectors with a probabilistic world transition function

Copyrighted Material

Foundations 19

20 Chapter 2

W(s,a)

p(1 -p)
v(W(s.a))

pp

ps,p

N, v(W(s',a))
p(lp)

W(s',a)

Figure 4

Modeling faulty sensors with a probabilistic world transition function

Copyrighted Material

agent's real world real world agents
perspective state state perspective

Figure 3
Modeling faulty sensors with multiple probabilistic transitions

Foundations 21

We can construct an approximate model of an agent's inability to
discriminate among world states by creating a new model of the world
in which the elements of I are the states, standing for equivalence
classes of the states in the old model. Let {Si,.. . ,s} be the inverse
image of i under I. There is a probabilistic transition to each of the
sj,, based on the probability, Pi' that the world is in state sj given that
the agent received the input i. From each of these states, the world
makes a transition on the basis of the agent's action, a, to the state
W(s1, a), which is finally mapped back down to the new state space by
the function I. This process is depicted in figure 5 and the resulting
transition function is shown in figure 6. The new transition function
gives a correct one-step model of the transition probabilities, but will
not generate the same distribution of sequences of two or more states.

In the construction for faulty sensors, it is necessary to evaluate the
probability that the world is in some state Sk, given that it appears
to the agent to be in another state s. This probability depends on
the unconditional probability that the world is in the state Sk, as well
as the unconditional probability that the world appears to be in the
state s. These unconditional probabilities depend, in the general case,
on the behavior that the agent is executing, so the construction cannot
be carried out before the behavior is fixed. A similar problem exists
for the case of lack of discrimination: it is necessary to evaluate the
probability that the world is in each of the individual states in the
inverse image of input i under I given that the agent received input i.
These probabilities also depend on the behavior that is being executed
by the agent. This leads to a very complex optimization problem that
is, in its general form, beyond the scope of this work.

This work will mainly address learning in worlds that are globally
consistent for the learning agent. A world is globally consistent for an
agent if and only if for all inputs i I and actions a E A, the expected
value of the reinforcement given i and a is constant. Global consis-
tency allows for variations in the result of performing an action in
a situation, as long as the expected, or average, result is the same.
It simply requires that there not be variations in the world that are
undetectable by the agent and that affect its choice of action. Impor-
tant hidden state in the world can cause such variations; methods for
learning to act in such worlds are discussed in chapter 7. If the trans-
formation described above has been carried out so that the sets I and
S are the same, the requirement for global consistency is tantamount
to requiring that the resulting world be a Markov decision process
with stationary transition and output probabilities [46]. In addition,
the following discussion will assume that the world is consistent over
changes in the agent's behavior.

Copyrighted Material

22 Chapter 2

. I(W(s1,a))

Figure 6
Modeling inability to discriminate among worlds with a probabilistic world transition
function

2.1.3 Learning Behaviors
The problem of programming an agent to behave correctly in a world
is to choose some behavior B, given that the rest of the parameters
of the agent and world are fixed. If the programmer does not know
everything about the world, or if he wishes the agent he is designing
to be able to operate in a variety of different worlds, he must program
an agent that will learn to behave correctly. That is, he must find a
behavior that, through changing parts of its internal state on the basis
of its perceptual sfream, eventually converges to some behavior B'
that is appropriate for the world that gave rise to its perceptions.
Of course, to say that a program learns is just to take a particular
perspective on a program with internal state. A behavior with state
can be seen as "learning" if parts of its state eventually converge to
some fixed or slowly varying values. The behavior that results from
those parameters having been fixed in that way can be called the
learned behavior."

Copyrighted Material

new state old state old state new state
space space space space

Figure 5
Modeling inability to discriminate among worlds

Foundations 23

A learning behavior is an algorithm that learns an appropriate behav-
ior for an agent in a world. It is itself a behavior, mapping elements
of I to elements of A, but it requires the additional input r, which
designates the reinforcement value of the world state for the agent. A
learning behavior consists of three parts: an initial state s0, an update
function u, and an evaluation function e.1 At any moment, the internal
state, s, encodes whatever information the learner has chosen to save
about its interactions with the world. The update function maps an
internal state of the learner, an input, an action, and a reinforcement
value into a new internal state, adjusting the current state based on
the reinforcement resulting from performing that action in that input
situation. The evaluation function maps an internal state and an input
into an action, choosing the action that seems most useful for the agent
in that situation, based on the information about the world stored in
the internal state. Recall that an action can be useful for an agent ei-
ther because it has a high reinforcement value or because the agent
knows little about its outcome. Figure 7 shows a schematic view of
the internal structure of a learning behavior. The register s has initial
value and can be thought of as programming the evaluation func-
tion e to act as a particular state-free action map. The update function,
u, updates the value of s on each clock tick.

A general algorithm for learning behaviors, based on these three
components, is shown in figure 8. The internal state is initialized to
5o, and then the algorithm ioops forever. An input is read from the

Figure 7

Decomposition of a learning behavior

1From this point on, the variable S will refer to an internal state of the learning behavior.
Because we have assumed the transformations described in the previous section, it is
no longer important to name the different states of the world.

Copyrighted Material

24 Chapter 2

s := 50

loop
i := input
a := e(s, i)
output a
r := reinforcement
s : u(s,i,a,r)

end ioop

Figure 8

General algorithm for learning behaviors

world and the evaluation fanction is applied to the internal state and
the input, resulting in an action, which is then output. At this point,
the world makes a transition to a new state. The program next de-
termines the reinforcement associated with the new world state, uses
that information, together with the last input and action, to update the
internal state, and then goes back to the top of its loop. Formulating
learning behaviors in terms of s0, e, and u facilitates building expen-
mental frameworks that allow testing of different learning behaviors
in a wide variety of real and simulated worlds.

2.2 Performance Criteria

In order to compare algorithms for learning behaviors, we must fix the
criteria on which they are to be judged. There are three major consider-
ations: correctness, convergence, and time-space complexity. First, we
must determine the correct behavior for an agent in a domain. Then
we can measure to what degree a learned behavior approximates the
correct behavior and the speed, in terms of the number of interactions
with the world, with which it converges. We must also be concerned
with the amount of time and space needed for computing the update
and evaluation functions and with the size of the internal state of the
algorithm.

2.2.1 Correctness
When shall we say that a behavior is correct for an agent in an envi-
ronment? There are many possible answers that wifi lead to different
learning algorithms and analyses. An important quantity is the ex-
pected reinforcement that the agent will receive in the next instant,
given that the current input is i(t) and the current action is a(t), which
can be expressed as

Copyrighted Material

Foundations 25

er(i(t),a(t)) = E(R(i(t + 1))
I
i(t),a(t)) = R(i')W'(i(t),a(t))(i').

i'EI

It is the sum, over all possible next world states, of the probabifity that
the world will make a transition to that state times its reinforcement
value. This formulation assumes that the inputs directly correspond
to the states of the world and that W' is a probabilistic transition
function. If the world is globally consistent for the agent, then the
process is Markov and the times are irrelevant in the above definition,
allowing it to be restated as

er(i, a) = R(i') l'V'(i, a)(i').
i' EI

One of the simplest criteria is that a behavior is correct if, at each
step, it performs the action that is expected to cause the highest rein-
forcement value to be received on the next step. A correct behavior,
in this case, is one that generates actions that are optimal under the
following definition:

Vi E I, a E A. Opt(i, a) 4-* Va' E A. er(i, a) > er(i, a').

Optimal behavior is defined as a relation on inputs and actions rather
than as a function, because there may be many actions that are equally
good for a given input. However, it can be made into a function by
breaking ties arbitrarily. This is a local criterion that may cause the
agent to sacrifice future reinforcement for immediately attainable cur-
rent reinforcement.

The concept of expected reinforcement can be made more global by
considering the total expected reinforcement for a finite future inter-
val, or horizon, given that an action was taken in a particular input
situation. This is often termed the value of an action, and it is com-
puted with respect to a particular behavior (because the value of the
next action taken depends crucially on how the agent will behave after
that). In the following, expected reinforcement is computed ander the
assumption that the agent will act according to the optimal policy the
rest of the time. The expected reinforcement, with horizon k, of doing
action a in input situation i at time t is defined as

erk(i(t), a(t))

= E(R(i(t +j)) I i(t),a(t),Vh <k. Optk_h(i(t + h),a(t + h))).

This expression can be simplified to a recursive, time-independent
formulation, in which the k-step value of an action in a state is just

Copyrighted Material

26 Chapter 2

the one-step value of the action in the state plus the expected k-1 -step
value of the optimal action for horizon k - I in the following state:

erk(i,a) = er(i,a) + W'(i,a)(i') erk_1(i',Optk_l(i')).
i'EI

This definition is recursively dependent on the definition of optimality
k steps into the future, Optk:

Vi E I,a E A. Optk(i,a) -+ Va' E A. erk(i,a) erk(i,a').

The values of er1 and Opt1 are just er and Opt given above. The k-step
value of action a in situation i at time t, erk(i, a), can be computed
by dynamic programming [13]. First, the Opt1 relation is computed;
this allows the er2 function to be calculated for all i and a. Proceeding
for k steps will generate the value for erk. Because of the assumption
that the world is Markov, these values are not dependent on the time.
However, if k is large, the computational expense of this method is
prohibitive.

Another way to define global optimality is to consider an infinite
sum of future reinforcement values, in which near term values are
weighted more heavily than values to be received in the distant future.
This is referred to as a discounted sum, depending on the parameter 'y
to specify the rate of discounting. Expected discounted reinforcement at
time t is defined as

er_(i(t), a(t))

E (yi_1Ri(t +j)) i(t),a(t),Vh > O. Opt(i(t + h),a(t + h))).

Properties of the exponential allow us to reduce this expression to

er(i(t),a(t)) + yer(i(t + 1),a(t + 1))

which can be expressed independent of time as

er., (i, a) = er(i, a) + 'y
j

I'V'(i, a)(i') er_(i', Opt..(i')).
i' EI

The related definition of y-discounted optimally is given by

Vi E I,a E A. Opt,(i,a) Va' E A. er(i,a) er(i,a').

For a given value of y and a proposed definition of Opt, er can be
found by solving a system of equations, one for each possible instanti-
ation of its arguments. A dynamic programming method called policy

Copyrighted Material

Foundations 27

iteration [741 can be used in conjunction with that solution method to
adjust policy Opt until it is truly the optimal behavior. This defini-
tion of optimality is more widely used than finite-horizon optimality
because its exponential form makes it more computationally tractable.
It is also an intuitively satisfying model, with slowly diminishing im-
portance attached to events in the distant future.

As an illustration of these different measures of optimality, consider
the world depicted in figure 9. In state A, the agent has a choice as
to whether to go right or left; in all other states the world transition
is the same no matter what the agent does. In the left loop, the only
reinforcement comes at the last state before state A, but it has value
6. In the right loop, each state has reinforcement value 1. Thus, the
average reinforcement is higher around the left loop, but it comes
sooner around the right loop. The agent must decide what action to
take in state A. Different definitions of optimality lead to different
choices of optimal action.

Under the local definition of optimality, we have er(A, L) = O and
er(A, R) = 1. The expected return of going left is O and of going right
is 1, so the optimal action would be to go right.

Using the finite-horizon definition of opfimalit which action is op-
timal depends on the horizon. For very short horizons, it is clearly
better to go right. When the horizon, k, is 5, it becomes better to go
left. A general rule for optimal behavior is that when in state A, if the
horizon is 5 or more, go left, otherwise go right. Figure 10 shows a
plot of the values of going left (solid line) and going right (dashed
line) initially, assuming that all choices are made optimally thereafter.
We can see that going right is initially best, but it is dominated by
going left for all k 5.

Figure 9

A sample deternm-dstic world. The numbers represent the immediate reinforcement
values that the agent will receive when it is in each of the states. The only choice of
action is in state A.

Copyrighted Material

28 Chapter 2

er

20

17.5-
15-

12 .5-

er 10

7 . 5-

5-

2.5---------

k

Figure 10
Plot of expected reinforcement against horizon k. Solid line indicates strategy of going
left first, then behaving optimally. Dashed line indicates strategy of going right first,
then behaving optimally.

Copyrighted Material

0.6 0.7 0.8 0.9
-Y

Figure 11

Plot of expected reinforcement against discount factor y. Solid line indicates strategy
of always going left. Dashed line indicates strategy of always going right.

Finally, we can consider discounted expected value. Figure 11 shows
a plot of the expected reinforcement of the strategies of always going
left at state A (solid line) and always going right at state A (dashed
line) plotted as a function of y. When there is a great deal of dis-
counting ('y is small), it is best to go right because the reward happens
sooner. As y increases, going left becomes better, and at approximately
y = 0.915, going left dominates going right.

Foundations 29

Using a global optimality criterion can require agents to learn that
chains of actions will result in states with high reinforcement value. In
such situations, the agent takes actions not because they directly result
in good states, but because they result in states that are closer to the
states with high payoff. One way to design learning behaviors that at-
tempt to achieve these difficult kinds of global optimality is to divide
the problem into two parts: transducing the global reinforcement sig-
nal into a local reinforcement signal and learning to perform the locally
best action. The global reinforcement signal is the stream of values of
R(i(t)) that come from the environment. The optimal local reinforce-
ment signal, R(i(t)), can be defined as R(i(t)) + 'yer.(i(t), Opt,(i(t)). It is
the value of the state i(t) assuming that the agent acts optimally. As
shown by Sutton [89], this signal can be approximated by the value of
the state i(t) given that the agent follows the policy it is currently exe-
cuting. Sutton's adaptive heuristic critic (AHC) algorithm, an instance
of the general class of temporal difference methods, provides a way
of learning to generate the local reinforcement signal from the global
reinforcement signal in such a way that, if combined with a correct
local learning algorithm, it wifi converge to the true optimal local rein-
forcement values [89, 90]. A complication introduced by this method
is that, from the local behavior-learner's point of view, the world is
not stationary. This is because it takes time for the AHC algorithm to
converge and because changes in the behavior cause changes in the
values of states and therefore in the local reinforcement function. This
and related methods will be explored further in chapter 8,

The following discussion will be in terms of some definition of the
optimality of an action for a situation, Opt(i, a), which can be dcfined
in any of the three ways above, or in some novel way that is more
appropriate for the domain in which a particular agent is working.

2.2.2 Convergence
Correctness is a binary criterion: either a behavior is or is not correct
for its world. Since correctness requires that the behavior perform
the optimal actions from the outset, it is unlikely that any "learning"
behavior will ever be correct. Using a definition of correctness as a
reference, however, it is possible to develop other measures of how
close particular behaviors come to the optimal behavior. This section
will consider two different classes of methods for characterizing how
good or useful a behavior is in terms of its relation to the optimal
behavior.

Classical Convergence Measures Early work in the theory of machine
learning was largely concerned with learning in the limit [14, 34]. A

Copyrighted Material

30 Chapter 2

behavior converges to the optimal behavior in the limit if there is some
time after which every action taken by the behavior is the same as the
action that would have been taken by the optimal behavior.

Work in learning-automata theory has relaxed the requirements of
learning in the limit by applying different definitions of probabilistic
convergence to the sequence of internal states of a learning automaton.
Following Narendra and Thathachar [69], the definitions are presented
here. A learning automaton is said to be expedient if

hm E[M(n)] <M0
n -

where M(n) is the average penalty (they are trying to minimize
"penalty" rather than maximize "reinforcement"merely a termino-
logical difference) for the internal state at time step n and M0 is M(n)
for the pure-chance automaton that selects each action randomly with
a uniform distribution. A learning automaton is said to be optimal if

lim E[M(n)] = c1
n

where c1 = min1{c} and c is the expected penalty of executing action
i. A learning automaton is said to be e-optimal if

lim E[M(n)] <c1 + e
n-. =

can be obtained for any arbitrary e > O by a proper choice of the
parameters of the automaton. Finally, a learning automaton is said to
be absolutely expedient if

E[M(n + 1) I s(n)] <M(n)

for all legal internal states of the algorithm s(n) and for all possible
sets {c1}(i = 1,2,. . . ,r) (under the assumption that environments with
all expected penalties equal are excluded).

An important recent theoretical development is a model of Boolean-
function learning algorithms that are probably approximately correct
(PAC) [6, 95], that is, that have a high probability of converging to
a function that closely approximates the optimal function. The cor-
rectness of a function is measured with respect to a fixed probability
distribution on the input instancesa function is said to approximate
another function to degree e if the probability that they will disagree
on any instance chosen according to the given probability distribution
is less than e. This model requires that there be a fixed distribution
over the input instances and that each input to the algorithm be
drawn according to that distribution.

For an agent to act effectively in the world, its inputs must pro-
vide some information about the state that the world is in. In general,

Copyrighted Material

Copyrighted Material

Foundations 31

when the agent performs an action it will bring about a change in
the state of the world and, hence, a change in the information the
agent receives about the world. Thus, it will be very unlikely that
such an agent's inputs could be modeled as being drawn from a fixed
distribution, making PAC-convergence an inappropriate model for au-
tonomous agents.

In addition, the PAC-learning model is distribution-independent-
it seeks to make statements about the performance of algorithms no
matter how the input instances are distributed. As Buntine has pointed
out [17], its predictions are often overly conservative for situations in
which there is a priori information about the distribution of the input
instances, or even in which certain properties of the actual sample,
such as how many distinct elements it contains, are known.

Measuring Error over an Agent's Lifetime None of the classical conver-
gence measures take into account the behavior of the agent during the
period in which it converges. Instead, they make what is, for an agent
embedded in the world, an artificial distinction between a learning
phase and an acting phase. Autonomous agents that have extended
run times will be expected to learn for their entire lifetime. Because
they may not encounter certain parts or aspects of their environments
until arbitrarily late in the run, it is inappropriate to require all mis-
takes to be made before some fixed deadline.

Another way of characterizing the performance of a function-
learning algorithm is to count the divergences it makes from the
optimal function. Littlestone [51] has investigated this model ex-
tensively, characterizing the optimal number of "mistakes" for a
Boolean-function learner and presenting algorithms that perform
very well, under this measure, on certain classes of Boolean functions.
This model is intuitively pleasing, making no restrictive division
into learning and acting phases, but it is not presented as being
suited to noisy or inconsistent domains. However, by assimilating the
inconsistency of the domain into the definition of the target function,
as in the requirement for optimal behavior, Opt, we can make use of
mistake bounds in inconsistent domains. A behavior is said to make
an avoidable mistake if, given some input instance i, it generates action
a and Opt(i, a) does not hold; that is, there was some other action that
would have had a higher expected reinforcement.

Avoidable mistake bounds take into account the fact that many mis-
takes cannot be avoided by an agent with limited sensory abilities and
unreliable effectors. However, this measure is not entirely appropriate,
because every nonoptimal choice of action is considered to be a mis-

32 Chapter 2

take of the same magnitude. The expected error of an action a given
an input i, err(a, i), is defined to be

err(a, i) = er(a', i) - er(a, i)

in which a' is any action such that opt(a', i). The expected error asso-
dated with an optimal action is O; for a nonoptimal action, it is just
the decrease in expected reinforcement due to having executed that
action rather than an optimal one. The error of a behavior, either in
the limit, or for runs of finite length, can be measured by summing the
errors of the actions it generates. This value, referred to in the statis-
tics literature as the regret of a strategy [13], represents the expected
amount of reinforcement lost due to executing this behavior rather
than an optimal one. This is an appropriate performance metric for
agents embedded in inconsistent environments because it measures
expected loss of reinforcement, which is precisely what we would like
to minimize in our agents.

In many situations, the optimal behavior is unknown or difficult to
compute, which makes it difficult to calculate the error of a given be-
havior. It is still possible to use this measure to compare two different
behaviors for the same agent and environment. The expected rein-
forcement for an algorithm over some time period can be estimated
by nmning it several times and averaging the resulting total reinforce-
ments. Because expectations are additive, the difference between the
expected errors of two algorithms is the same as the difference be-
tween their expected total reinforcement values. Thus, the difference
between average reinforcements is a valid measure of a behavior's
correctness that is independent of the internal architecture of the algo-
rithm and that can be used to compare results across a wide variety
of techniques.

2.2.3 Time and Space Complexity
Autonomous agents must operate in the real world, continually re-
ceiving inputs from and performing actions on their environments.
Because the world changes dynamically, an autonomous agent must
be reactivealways aware of and reacting to changes in its environ-
ment. To ensure reactivity, an agent must operate in real-time; that is, its
sense-compute-act cycle must keep pace with the unfolding of impor-
tant events in the environment. The exact constraints on the reaction
time of an agent are often difficult to articulate, but it is clear that, in
general, unbounded computation must never take place.

A convenient way to guarantee real-time performance is to require
that the behavior spend only a constant amount of time, referred to

Copyrighted Material

Copyrighted Material

Foundations 33

as a "tick," generating an action in response to each input. If the be-
havior is a learning behavior, the learning process must also spend
only a constant amount of time on each input instance. There are two
strategies for designing such a learning system: incremental and batch.

An incremental system processes each new data set or learning in-
stance as it arrives as input. The processing must be efficient enough
that the system is always ready for new data when it arrives. If new
relevant data can arrive every tick, the learning algorithm must spend
only one constant tick's worth of time on each instance. The require-
ment for incrementality can, theoretically, be relaxed to yield a batch
system, in which a number of learning instances are collected, then
processed for many ticks. As long as the learning system adheres to
the tick discipline, this process need not interfere with the reactiveness
of the rest of the system. Working in batch mode may limit the use-
fulness of the learning system to some degree, however, because the
system will be working with old data that may not reflect the current
situation and it will force the data that arrive during the computation
phase to be ignored. When using this method, the input data must be
sampled with care, in order to avoid statistical distributions of inputs
that do not reflect those of the external world.

An algorithm can be said to be strictly incremental if it uses a
bounded amount of time and space throughout its entire lifetime.
This is in contrast with such approaches as Aha and Kibler's instance-
based learning [2], which is incremental in that it processes one
instance at a time, but is not strictly incremental because instances
are stored in a memory whose size may increase without bound. For
an incremental system that processes one instance per tick to perform
in real time, the system must be strictly incremental.

By definition, the amount of time a sfrictly incremental behavior
spends on each input does not vary as a ftmction of the number of
inputs that have been received. It will, however, depend on the size of
the input and the output, but that is fixed at design time. This allows
the programmer to know how long each tick of the learning behavior
will take to compute on the available hardware and to compare that
rate with the pace of events in the world.

Any formalization of the interaction between an agent and its world
will depend on the rate of the interaction; behaviors that work at dif-
ferent rates wifi essentially be working in different environments. The
expected values of optimal behaviors for different reaction rates will
be quite different. In general, up to some minimum value, the faster an
agent can interact with the world, the better (otherwise the agent does
not have time to avert impending bad events), so we should strive for

34 Chapter 2

the most efficient algorithms possible, although a slow algorithm with
better convergence properties might be preferable to a fast algorithm
that is far from optimal.

Complex agents, such as mobile robots with a wide variety of sen-
sors and effectors, will have a huge number of possible inputs and
outputs. If algorithms for these agents are to be practical, they must
have time and space complexity that is at worst polynomial in the
number of input bits, lg(jII), and the number of output bits, lg(IAj),
rather than the number of inputs and outputs. As we shall see iii sec-
tion 4.6, this will only be achievable, in general, by limiting the class
of behaviors that can be learned by the agent.

2.3 Related Foundational Work

The problem of learning the structure of a finite-state automaton from
examples has been studied by many theoreticians, including Moore
[67], Gold [35] and, more recently, Rivest and Schapire [731. This is a
very difficult problem that has only been studied in the case of deter-
ministic automata. If the entire structure of the world can be learned,
it is conceptually straightforward to compute the optimal behavior. It
is important to note, however, that learning an action-map that max-
imizes reinforcement is likely to be much less complex than learning
the world's transition function.

Watkins [97] presents a clear discussion of different types of optimal-
ity from an operations-research perspective and characterizes possible
algorithms for learning optimal behavior from delayed rewards. Sut-
ton [89, 901 shows how to divide the problem of learning from delayed
reinforcement into the problems of locally optimal behavior learning
and secondary reinforcement-signal learning. The implications of these
ideas for learning from delayed reinforcement will be explored further
in chapter 8.

Williams has done important work on the foundations of reinforce-
ment learning, which is considerably different than the framework
provided in this chapter [106, 1071. He has developed a general form
for expressing reinforcement algorithms in which a wide variety of
existing reinforcement learning algorithms may be described. In ad-
dition, he has shown that the algorithms expressed in this form are
performing a gradient ascent search, in which the average update of
the internal parameters of the algorithm is in the direction of steepest
ascent for expected reinforcement.

Copyrighted Material

Chapter 3

Previous Approaches

The problem of learning from reinforcement has been studied by
a variety of researchers: statisticians studying the "two-armed ban-
dit" problem, psychologists working on mathematical learning theory
learning-automata theorists, and researchers in artificial intelligence.
This chapter explores the differing frameworks in which these groups
have studied reinforcement learning and presents a few important al-
gorithms and results from each area. It discusses previous approaches
only to the simple reinforcement-learning scenario in which all rein-
forcement is instantaneous (the goal is to optimize local, immediate
reinforcement) and the action maps to be learned are pure functions.
As these assumptions are relaxed, in later chapters, other relevant
work pertainrng to the more complex situations will be discussed.

3.1 Bandit Problems

The reinforcement learning problem is addressed within the statistics
community as the "two-armed bandit" problem: given a machine with
two levers that independently pays some amount of money each time
a lever is pulled, develop a strategy that gains the maximum payoff
over time by choosing which lever to pull based on the previous expe-
rience of lever-pulling and payoffs. Among the early results was that
the "stick with a winner but switch on a loser" strategy (that is, keep
pulling a lever until it loses, then switch to the other one and keep
pulling it until it loses, etc.) is expedient (better than choosing levers
at random), but not optimal [13].

Most of the technical results in this area make very strict assump-
fions about the a priori information the player has about the probabilis-
tic models underlying the payoff distributions of the two arms. These
results may be useful in restricted situations, but are not applicable to
the general problem of building learning agents.

There has been some consideration, however, of the min imax case,
in which it is assumed that the events of arm-puffing are independent,
that they pay off either nothing or a fixed amount, that the probability

Copyrighted Material

36 Chapter 3

of each arm paying off remains constant for the entire game, and that
the world will choose the probabilities in the way that is worst for the
player. It has been shown [131 that the best possible strategy for such
a domain has regret proportional to (1 - -y)-112 for discounting factor
'y and to n112 for finite horizon n.

Art example algorithm satisfying these requirements is formally de-
scribed in algorithm 1.1 The algorithm alternates between the two
arms, keeping track of the number of successes of each. When the
number of successes of one arm exceeds the number of successes of
the other by k, it chooses the winning arm forever into the future.
The array c contains counts of the number of successes of each arm; d
encodes the decision about future actions; if it has value 1, the deci-
sion has not yet been made; i encodes the last action taken so that the
algorithm can alternate between actions in the pre-decision phase. if
reinforcement is to be optimized over a fixed horizon n, the parameter
k should be chosen to be nl2. If reinforcement with discounting factor
'y is to be optimized, k should be chosen to be (1 - 'yY112. This is a sim-
ple algorithm with an upper bound on regret of (1 - 'y)'12 (i +)

The initial state, S, consists of 3 components: c, an array with two
integer elements, and integers d and i. Initially, c contains zeros, d =
1, and ¡ = O.

u(s,a,r) =

e(s) =

Algorithm I
The BAMMT algorithm

1There is no input argument, i, to the update and evaluation functions. This algorithm,
as well as most of the others in the first part of the chapter, makes a choice about what
action to perform for every future time step, independent of the state of the world, with
only reinforcement as input.

if d= 1 then
c[a] := c[a] + 1

if d= 1 then
ifcEO]c[1]>kthenbegin

d := O; return O; end
else if cEll - cEO] > k then begin

d := 1; return 1; end
else if i O then begin

:= 1; return 1; end
else begin

O; return O; end
else return d

Copyrighted Material

Previous Approaches 37

in the discounted case or (1 - n1Y('1n1I2(1 +) in the finite hon-
zon case. This value is itself bounded above by &'2(e + 1/2). In both
cases, the upper bound on regret is within a constant factor of optimal.
However, as we will see in section 4.4, this algorithm is outperformed
by many others in empirical tests.

In more recent work on the bandit problem, Lai [47] has devel-
oped an algorithm for finite horizon problems and has shown it to
be asymptotically optimal as the horizon approaches iithnity The al-
gonthm has also been shown, empirically, to work well for small
horizons. Assuming the reinforcements for each arm come from a
univanate distribution, it constructs upper confidence bounds on the
parameters of the distribution of each arm and chooses the action with
the highest upper confidence bound. The bounds are based on results
from boundary crossing theory In many cases of interest, including
the case of Bernoulli payoffs, a good closed-form approximation for
the bound is not known. The algorithm can be implemented using
iterative root-finding methods at each evaluation step, but it is not
completely satisfactory because the amount of time taken per step is
not bounded.

3.2 Learning Automata

Another closely related field is that of learning automata. The phrase
"learning automata" means, in this case, automata that learn to act
in the world, as opposed to automata that learn the state-transition
structures of other automata (as in Moore [67]).

3.2.1 Early Work
The first work in this area took place in the Soviet Union. An example
of early learning-automaton work is the Tsetlin automaton, designed
by M. L. Tsetlin [94]. The input set of the automaton is {O, i }, with
i corresponding to the case when the agent receives reinforcement
and O corresponding to the case when it does not. As in the BANDIT
algorithm, there is no input corresponding to i, the information about
the state of the world. The automaton has two possible actions, or
outputs: O and 1. The operation of the Tsetlin automaton is described
in algorithm 2.

The Tsetlin automaton is parametrizable by the number, N, of states
between the center state and the ends of the chains going to the right
and left. It can be shown that, if one of the actions has success probabil-
ity greater than .5, then, as the value N approaches infinity, the average
reinforcement approaches the maximum success probability [69].

Copyrighted Material

38 Chapter 3

a=O a=1
04-O o o ..

N-1 N 2N 2N-1 N+3 N+2 N+1

r=1

a=O a=1
o o

i N+3 N2 N+12 3 N

r=O

The initial state can be any of the states, but would most reasonably be
chosen to be state N or state 2N. All of the states on the left half of the
graph evaluate to action O and on the right half of the graph to action
1. The state update operation consists of making one of the labeled
transitions: when reinforcement has value 1, a transition to the left is
taken if the action was O and to the right if the action was 1; when the
reinforcement has value O, a right transition is taken if the action was
O and a left transition if the action was 1. Zero reinforcement values
move the state toward the center and positive reinforcement values
move the state toward the end corresponding to the action that was
taken.

Algorithm 2
The TSETLIN algorithm

There are many other similar learning automata, some with better
convergence properties than this one. The BANDIT algorithm can also
be easily modeled as a finite-state machine.

3.2.2 Probability-Vector Approaches
As it is difficult to conceive of complex algorithms in terms of finite-
state transition diagrams, the learning automata community moved
to a new model, in which the internal state of the learning algorithm
is represented as a vector of nonnegative numbers that sum to 1. The
length of the vector corresponds to the number of possible actions
of the agent. The agent chooses an action probabilistically, with the
probability that it chooses the nth action equal to the nth element of
the state vector. The problem, then, is one of updating the values in
the state vector depending on the most recent action and its outcome.

These and similar, related models were also independently devel-
oped by the mathematical psychology community [18] as models for
human and animal learning.

Copyrighted Material

The initial state, s0, consists of pi and p2. two positive real numbers
such that Pi + p2 1.

u(s,a,r) =

e(s) =

where 0< Z,@ < 1.

Algorithm 3
The linear reward-penalty (Lp) algorithm

Any mstance of Algorithm Lpp in which /3 0.

Algorithm 4
The linear reward-inaction (Lp1) algorithm

The most common of these approaches, called the linear reward-
penalty algorithm, is shown in algorithm 3. Whenever an action is
chosen and succeeds, the probability of performing that action is in-
creased in proportion to I minus its current probability; when an ac-
tion is chosen and fails, the probability of performing the other action
is increased in proportion to its current probability The parameters
c and /3 govern the amount of adjustment upon success and failure,
respectively. An important specialization is the linear reward-inaction
algonthm, described in algorithm 4, in which no adjustment is made
to the probability vector when reinforcement value O is received.

The linear reward-penalty algorithm has asymptotic performance
that is better than random (that is, it is expedient), but it is not opti-
mal. It has no absorbing states, so it always executes the wrong action
with some nonzero probability. The linear reward-inaction algorithm,
on the other hand, has the absorbing states [1,0] and [0,11, because a
probability is only ever increased if the corresponding action is taken
and it succeeds. Once one of the probabilities goes to 0, that action

if a = O then
if r = O then

:= (1 -
else po := PO + ct(1 - po)

else
if r = O then

Po :=po+/3(I po)
else po := (1 - a)po

Pi := i - p
f O with probability PO

i. I with probability Pi

Copyrighted Material

Previous Approaches 39

40 Chapter 3

wifi never be taken, so its probability can never be increased. The lin-
ear reward-inaction algorithm is -optimal; that is, the parameter a
can be chosen in order to make the probability of converging to the
wrong absorbing state as small as desired. As the value of a is de-
creased, the probability of converging to the wrong state is decreased;
however, the rate of convergence is also decreased. Theoreticians have
been unable to derive a general formula that describes the probability
of convergence to the wrong state as a function of a and the initial
value of pi. This would be necessary in order to choose a to optimize
reinforcement for nms of a certain length or with a certain discounting
factor, as we did with k in the BANDIT algorithm above.

In addition to these linear approaches, a wide range of non-linear
approaches have been proposed. One of the most promising is
Thathachar and Sastry's method [93]. It is slightly divergent in form
from the previous algorithms in that it keeps more state than simply
the vector p of action probabifities. In addition, there is a vector d
of estimates of the expected reinforcements of executing each action.
Reinforcement values are assumed to be real values in the interval
[0,1]. A simple two-action version of this algorithm is shown in
algorithm 5.

The R1 are the summed reinforcement values for each action, the
Z1 are the number of times each action has been tried, and the are
the average reinforcement values for each action. The adjustment to
the probability vector depends on the values of the lj rather than on
the direct results of recent actions. This introduces a damping effect,
because as long as, for instance, d0 > , po will be increased, even if
it has a few negative-reinforcement results during that time.

The TS algorithm converges much faster than the linear algorithms
Lpp and One of the reasons may be that it naturally takes big steps
in the parameter space when the actions are well differentiated (the
difference between d0 and d1 is large) and small steps when they are
not. It has been shown that, for any stationary random environment,
there is some value of). such that p,(n) -* i in probability2 as n -
oc, where pi(n) is the probability of executing the action that has the
highest expected reinforcement [93].

Although there are asymptotic convergence results for the learning
automata methods, there has been no formal characterization of their
regret.

2According to Narendra and Thathachar [69], "The sequence {X} of random vari-
ables converges in probability to the random variable X if for every c> O, limn. Pr
{IX - Xj } = O."

Copyrighted Material

e(s) =

Algorithm 5
The TS algorithm

3.3 Reinforcement-Comparison Methods

One drawback of most of the algorithms that have been presented so
far is that reinforcement values of O and i cause the same sized adjust-
ment to the internal state independent of the expected reinforcement
value. Sutton [891 addressed this problem with a new class of algo-
rithms, called reinforcement-comparison methods. These methods work
by estimating the expected reinforcement, then adjusting the internal
parameters of the algorithm proportional to the difference between
the actual and estimated reinforcement values. Thus, in an environ-
ment that tends to generate reinforcement value i quite frequently,
receiving the value i will cause less adjustment than will be caused
by receiving the value O.

An instance of the reinforcement-comparison method is shown in
algorithm 6. The internal state consists of the "weight" w, which is

Copyrighted Material

Previous Approaches 41

The initial state, s0, consists of the following 6 components: po and pi.
which are positive real numbers such that po + pi = 1, and R0 = R1 =
z0 = z1 = o.

u(s,a,r) = Ro/Zo; a1 := R1/Z1
if a = O then begin

if do > di then
po := po +)(a0 -

else po := Po + À(20 -
i - Po

R0 := R0 + r
Z0 := Z0 +1

end else begin
if d > do then

pi := pi + A(ti -
else pi := pi + À(ai -
po := i - Pi
R1 := R1 + r
Z1 := Z1 +1

end
O with probability PO

I. i with probability pi

where O <) < i is a positive constant.

42 Chapter 3

The internal state, s0, consists of the values w = O and p, which will
be initialized to the first reinforcement value received.

u(s,a,r) = w := w + c(r - p)(a - 1/2)
p :=p+ß(rp)

e(s)=
I ifw+v>0

1. 0 otherwise

where c > O, O < ß < 1, and y is a normally distributed random vari-
able of mean O and standard deviation 6,,.

Algorithm 6
A reinforcement-comparison (RC) algorithm

initialized to O, and the predicted expected reinforcement, p, which
is initialized to the first reinforcement value received. The output, e(s),
has value i or O depending on the values of w and the random variable
y. The addition of the random value causes the algorithm to "experi-
ment" by occasionally performing actions that it would not otherwise
have taken. The state component w is incremented by a value with
three terms. The first term, c, is a parameter that represents the learn-
ing rate. The next term, r - p, represents the difference between the
actual reinforcement received and the predicted reinforcement, p. This
serves to normalize the reinforcement values: the absolute value of the
reinforcement signal is not as important as its value relative to the av-
erage reinforcement that the agent has been receiving. The third term
in the update function for w is a - 1/2; it has constant absolute value
and the sign is used to encode which action was taken. The predicted
reinforcement, p, is a weighted running average of the reinforcement
values that have been received.

Sutton showed that a slightly different version of the RC algorithm
is absolutely expedient, that is, that the expected reinforcement of in-
dividual actions taken by the algorithm is monotonically increasing
over time. There are no results concerning the regret of this class of
algorithms, however.

3.4 Associative Methods

The algorithms presented so far have addressed the case of reinforce-
ment learning in environments that present only reinforcement val-
ues as input to the agent. A more general setting of the problem,
called associative reinforcement learning, requires the agent to learn the
best action for each of a possibly large number of input states. This

ted

Previous Approaches 43

section will describe three general approaches for converting sim-
ple reinforcement-learning algorithms to work in associative environ-
ments. The first is a simple copying strategy, and the second two are
instances of a large class of associative reinforcement-learning meth-
ods developed by researchers working in the connectionist learning
paradigm. Other approaches not described here include those of Min-
sky [611 and Widrow, Gupta, and Maitra [104]. Barto [10] gives a good
overview of connectionist learning for control, including learning from
reinforcement.

3.4.1 Copying
The simplest method for constructing an associative reinforcement-
learner, shown in algorithm 7, consists of making a copy of the state of
the nonassociative version of the algorithm for each possible input and
training each copy separately. It requires 2M (the number of different
input states) times the storage of the original algorithm.

In addition to being very computationally complex, the copying
method does not allow for any generalization between input instances:
that is, the agent cannot take advantage of environments in which
"similar" situations require "similar" responses.

3.4.2 Linear Associators
Sutton [89] gives methods for converting standard reinforcement-
learning algorithms to work in an associative setting in a way that
allows an agent to learn efficiently and to generalize across in-
put states. He uses a version of the Widrow-Hoff or Adaline [105]
weight-update algorithm to associate different internal state values
with different input situations. This approach is illustrated by the
LARC (linear-associator reinforcement-comparison) algorithm shown
in algorithm 8. It is an extension of the RC algorithm to work in
environments with multiple input states.

The inputs to the algorithm are represented as M + 1-dimensional
vectors.3 The output, e(s, i), has value I or O depending on the dot
product of the weight vector w and the input i and on the value of
the random variable y. The updating of the vector w is somewhat
complicated: each component is incremented by a value with four
terms. The first term, c, is a constant that represents the learning rate.
The next term, r - p, represents the difference between the actual rein-
forcement received and the predicted reinforcement, p. The predicted
reinforcement, p, is generated using a standard linear associator that

3The extra constant input allows the discrimination hyperplane learned by the algorithm
to be displaced from the origin of the space.

Copyrighted Material

44 Chapter 3

Let (so, u, e) be a learning behavior that has only reinforcement as in-
put. We can construct a new learning behavior (ss, u', e') with 2M inputs
as follows:

= array 112Mj of

u'(s', i, a, r) = u(s'[i], a, r)

e'(s', i) e(s'[iJ)

Algorithm 7
Constructing an associative algorithm by making copies of a nonassociative algorithm
(COPY)

The input is represented as an M + 1-dimensional vector i, in which
the last component is set to a constant value. The internal state, ü,

consists of two M + 1-dimensional vectors, y and w.

u(s,i,a,r) = let p := vi
for j = 1 to M + i do begin

w1 := w + a(r - p)(a - 1/2)i1
Vj := Vj + /3(r - p)i1

end

e(s,i) =
{

i ifwi+v>O
O otherwise

where a > O, O < /3 < 1, and u is a normally distributed random vari-
able of mean O and standard deviation 6,,.

Algorithm 8
The linear-associator reinforcement-comparison (LARC) algorithm

learns to associate input vectors with reinforcement values by setting
the weights in vector y. The third term in the update function for
w is a - 1/2: it has constant absolute value and the sign is used to
encode which action was taken. The final term is i1, which causes the
jth component of the weight vector to be adjusted in proportion to the
jth value of the input.

Another instance of the linear-associator approach is Barto and
Anandan's associative reward-penalty (A) algorithm [81. It is a hybrid
of the linear reward-penalty and linear-associator methods and was
shown (under a number of restrictions, including the restriction that
the set of input vectors be linearly independent) to be -optimal.

ighted Material

Previous Approaches 45

The linear-associator approach can be applied to any of the learning
algorithms whose internal state consists of one or a small number of
independently interpretable values for each input. If the input set is
encoded by bit strings, the linear-associator approach can achieve an
exponential improvement in space over the copy approach, because
the size of the state of the linear-associator is proportional to the num-
ber of input bits rather than to the number of inputs. This algorithm
works well on simple problems, but algorithms of this type are inca-
pable of learning functions that are not linearly separable [62].

3.4.3 Error Backpropagation
To remedy the limitations of the linear-associator approach, multilayer
connectionist learniiìg methods have been adapted to reinforcement
learning. Anderson [4], Werbos [991, and Munro [68], among others,
have used error backpropagation methods4 with hidden units in order
to allow reinforcement-learning systems to learn more complex action
mappings. Williams [108] presents an analysis of the use of backprop-
agation in associative reinforcement-learning systems. He shows that
a class of reinforcement-learning algorithms that use backpropagation
(an instance of which is given below) perform gradient ascent search
in the direction of maximal expected reinforcement. This technique
is effective and allows considerably more generalization across input
states, but it requires many more presentations of the data in order for
the internal units to converge to the features that they need to detect in
order to compute the overall function correctly. Barto and Jordan [11]
demonstrate the use of a multilayer version of the associative reward-
penalty algorithm to learn nonlinear functions. This method is argued
to be more biologically plausible than backpropagation, but requires
considerably more presentations of the data.

As an example of the application of error backpropagation methods
to reinforcement learning, Anderson's method [4] will be examined in
more detail. It uses two networks: one for learning to predict reinforce-
ment and one for learning which action to take. The weights in the
action network are updated in proportion to the difference between
actual and predicted reinforcement, making this an instance of the
reinforcement-comparison method (discussed in section 3.3 above).
Each of the networks has two layers, with all of the hidden units
connected to all of the inputs and all of the inputs and hidden units
connected to the outputs. The system was designed to work in worlds

4A good description of error backpropagation for supervised learning is given by
Rumeihart, Hinton, and Williams [75].

Copyrighted Material

46 Chapter 3

with delayed reinforcement (which are discussed at greater length in
chapter 8), but it is easily simplified to work in domains with instan-
taneous reward.

The BPRC algorithm, which is analogous to the LARC algorithm, is
shown in algorithm 9 and is explained in more detail by Anderson [4].
The presentation here is simplified in a number of respects, however.
In this version, there is no use of momentum and the term (a - 1/2)
is used to indicate the choice of action rather than the more complex
expression used by Anderson. Also, Anderson uses a different distri-
bution for the random variable i'.

The input is represented as an M + 1-dimensional vector i, in which
the last element contains a constant value. The internal state, S, con-
sists of

WEH : Weights of the hidden units in the evaluation network, an H
by M + i element array initialized to small random values.

WEO: Weights of the output unit in the evaluation network, an H +
M + i element array initialized to small random values.

W: Weights of the hidden units in the action network, an H by
M + i element array initialized to small random values.

WAO: Weights of the output unit in the action network, an H + M +
i element array initialized to small random values.

In addition, the algorithm makes use of the following local variables

QEH : Outputs of the hidden units in the evaluation network, an H
element array.

Ojq: Outputs of the hidden units in the action network, an H ele-
ment array.

p: Output of the output unit in the evaluation network.

This method is theoretically able to learn very complex functions,
but tends to require many training instances before it converges. The
time and space complexity for this algorithm is O(MH), where M is
the number of input bits and H is the number of hidden units. Also,
this method is somewhat less robust than the more standard version
of error backpropagation that learns from input-output pairs, because
the error signal generated by the reinforcement-learning system is not
always correct. In addition, the two networks must converge simulta-
neously to the appropriate solutions; if the learning rates are not set
appropriately, the system can converge to a state in which the eval-
uation network decides that all input states will have a very poor
expected performance, which is in fact true, given the current state
of the action network. In such a situation, the weights will not be
updated and the system becomes stuck.

Copyrighted Material

u(s,i,a,r) =

e(s, i) =

Algorithm 9
The BPRC algorithm

ed Material

{Calculate outputs of evaluation hidden units}
for j = 1 to H do

OEHEJ] := f(i. WEHEj])
{ Calculate result of evaluation network}
p WEO Cûncat(i, OEH)
{ Update weights of the evaluation output unit}
for j = I to M + I do

WEOEj] := WEOEI] + ß (r - p) i[j]
for j = I to H do

WEO[j+M+1] := WEO[j+M+1]
+ß (r - p) OEH[j]

{Update weights of the evaluation hidden units}
forj=1 toHdo begin

d:=(rp)
sign(WEO[j + M + 1]) OEH[JI (1 - OEHEj])

for k = I to M + I do
WEH[j,k] := WEHEj,k]+I3hdi[k]

end

{Calculate outputs of action hidden units}
for j = 1 to H do

OAjj[j] := f(i. WAJq[j])
{Update weights of the action output umt}
for j i to M + 1 do

WAOEj] := WAQEj] + p (r - p) (a - 1/2) i[jJ
for j = I to H do

WAQ[j+M+1] := WAQEj+M+11
+p (r - p) (a - 1/2) OMIEj]

{Update weights of the action hidden units}
for j = 1 to H do begin

d := (r - p) (a - 1/2)
sign(WAQEj + M + 1]) OAHEj] (1 - O[j1)

for k = I to M + I do
W,[j,k] := W[j,kJ+phdiEk]

end
{ Calculate outputs of action hidden units}
for j I to H do

OMIEj] :=f(i. W[j])

f 1 if (WAO concat(i3Oq)) + V > O
1 O otherwise

where /3, 13h. p' Ph > O, f(x) = I/(1 + e), and li is a normally dis-
tributed random variable of mean O and standard deviation 5,.

48 Chapter 3

3.5 Genetic Algorithms

Genetic algorithms constitute a considerably different approach to the
design and implementation of reinforcement-learning systems. This
section will briefly describe the general approach and point to some
representative applications of genetic-algorithm methods to reinforce-
ment learning. An excellent introduction to and survey of this field is
given in Goldberg's book [361.

In their purest form, genetic algorithms (GAs) can be seen as a tech-
nique for solving optimization problems in which the elements of the
solution space are coded as binary strings and in which there is a scalar
objective function that can be used to compute the "fitness" of the so-
lution represented by any string. The GA maintains a "population" of
strings, which are initially chosen randomly. The fitness of each mem-
ber of the population is calculated. Those with low fitness values are
eliminated and members with high fitness values are reproduced in
order to keep the population at a constant size. After the reproduc-
tion phase, operators are applied to introduce variation in the popula-
tion. Common operators are crossover and mutation. In crossover, two
population elements are chosen, at random, as operands. They are re-
combined by randomly choosing an index into the string and making
two new strings, one that consists of the first part of the first string
and the second part of the second string and one that consists of the
first part of the second string and the second part of the first string.
Mutation simply changes bits in population elements, with very low
probability

A more complex type of GA is the classifier system [401. Developed
by Holland, it consists of a population of production rules, which
are encoded as strings. The rules can be executed to implement an
action function that maps external inputs to external actions. When the
rules chain forward to cause an external action, a reinforcement value
is received from the world. Holland developed a method, called the
Bucket Brigade, for propagating reinforcement back along the chain
of production rules that caused the action. This method is an instance
of the class of temporal difference methods, which will be discussed
further in chapter 8. As a set of rules is run, each rule comes to have
a relatively stable value which is used as its fitness. The standard
genetic operations of reproduction, crossover, mutation, etc., are used
to generate new populations of rules from old ones.

Although classifier systems are reinforcement-learners, they are not
well suited for use in embedded systems. As with most production
systems, there is no bound on the number of rule-firings that will be

Copyrighted Material

Previous Approaches 49

required to generate an output in response to an input, preventing the
algorithm's operation from being real-time.

Grefenstette [37] has applied GA methods directly to the time-
constrained problem of learning action strategies from reinforcement.
The elements of the population of his system are symbolic represen-
tations of action maps. The fitness of an element is determined by
executing it in the world for a number of ticks and measuring the
average reinforcement. Action maps that perform well are reproduced
and recombined to generate new action maps.

The GA approach works well on problems that can be effectively
coded as syntactic objects in which the interpretation of individual ele-
ments is relatively context-independent and for which there are useful
recombination operators. It is not yet clear what classes of problems
can be so specified.

3.6 Extensions to the Model

The algorithms of the previous sections have been presented in their
simplest possible forms, with only Boolean reinforcement as input and
with two possible actions. It is a relatively simple matter to extend all
of the algorithms except RC, LARC, and BPRC to the case of multiple
actions. Because the details differ for each one, however, they shall
be omitted from this discussion. The algorithms that choose an action
by comparing an internal value plus noise to a threshold are more
difficult to generalize in this way.

The rest of this section will briefly detail extensions of these al-
gorithms to work in domains with non-Boolean and nonstationary
reinforcement.

3.6.1 Non-Boolean Reinforcement
Algorithms BANDIT and TSETLIN have no obvious extensions to the case
of non-Boolean reinforcement.

The learning-automata community considers three models of
reinforcement: P, Q, and S. The P-model of reinforcement is the
Boolean-reinforcement model we have already explored. In the Q-
model, reinforcement is one of a finite number of possible values
that are known ahead of time. These reinforcement values can al-
ways be scaled into values in the interval [O, I]. Finally, the S-model
allows real-valued reinforcement in the interval [O, I]. The notions of
expediency and optimality can be extended to apply to the Q- and
S-models.

Algorithms designed for P-model environments, such as the and
algorithms, can be adjusted to work in Q- and S-models as follows.

Copyrighted Material

50 Chapter 3

Let L be the change made to action-probability i when reinforcement
O is received and let be the change made when reinforcement value
i is received. We can define, for the new models, ,, the change made
when reinforcement value r is received as

= + (1-
a simple linear combination of the updates for the Boolean reinforce-
ment cases [69].

Algorithm TS was designed to work in an S-model of reinforcement
and can be used in such environments without change. Algorithm RC,
as well as the associative reinforcement-comparison algorithms LARC
and BPRC, work in the more general case of real-valued reinforcement
that is not necessarily scaled to fall in the interval [0,1].

3.6.2 Nonstationary Environments
A world is nonstationary if er(i, a) (the expected reinforcement of per-
forming action a in input situation i) varies over time. It is very difficult
to prove formal results about the performance of learning algorithms
in nonstationary environments, but several observations can be made
about which algorithms are likely to perform better in such environ-
ments. For instance, algorithms with absorbing states, such as BAN-
DIT and are inappropriate for nonstationary environments: if the
world changes after the algorithm has converged, the algorithm will
never sample the other actions and adjust its behavior to the changed
environment. On the other hand, such algorithms as TSETLIN, Lay, and
RC, which continue to sample all of the actions with nonzero proba-
bility, will adapt to changes in the environment.

3.7 Conclusions

A number of effective reinforcement-learning algorithms have been
developed by different research communities. The work in this volume
seeks to extend and improve upon the previous work by developing
more effective learning methods and by finding approaches to asso-
dative reinforcement learning that are capable of learning a broader
class of functions than the linear approaches can, but doing so more
space-efficiently than the copy method and with fewer input instances
than are required by the error backpropagation method.

Copyrighted Material

Chapter 4

Interval Estimation Method

The interval estimation method is a simple statistical algorithm for re-
inforcement learning that logically extends the statistical algorithms of
the previous chapter. By allowing the state of the algorithm to encode
not only estimates of the relative merits of the various actions, but also
the degree of confidence that we have in those estimates, the interval
estimation method makes it easier to control the tradeoff between act-
ing to gain information and acting to gain reinforcement. The interval
estimation algorithm performs well on a variety of tasks and its basis
in standard statistical methods makes its operation intuitively clear.

This chapter presents the algorithm, together with an estimate of
its expected error and experimental comparisons with many of the
algorithms of chapter 3; it also explores ways of extending the basic
algorithm to deal with the more general learning models presented in
section 3.6.

4.1 Description of the Algorithm

The interval estimation algorithm is based on the idea of storing an
estimate of the expected reinforcement for each action and some in-
formation about how good that estimate is. The standard statistical
technique of constructing confidence-interval estimates of quantities
provides us with a method for doing this. The size of the confidence
interval is a measure of the lack of information about the quantity
being estimated. The interval estimation method can be applied in a
wide variety of environments; the simplest form will be presented first,
and extensions to the basic algorithm will be described in section 4.5.

The basic interval estimation algorithm is specified in algorithm lo.
The state consists of simple statistics: for each action a, a and Xa

are the number of times that the action has been executed and the
number of those times that have resulted in reinforcement value 1,
respectively. The evaluation function uses these statistics to compute,
for each action, a confidence interval on the underlying probability

Copyrighted Material

52 Chapter 4

Pa, of receiving reinforcement value I given that action a is executed.
If n is the number of trials and x the number of successes arising
from a series of Bernouffi trials with probability p, the upper bound
of a 100(1 &% confidence interval for p can be approximated by
ub(x, n). The evaluation function chooses the action with the highest
upper bound on expected reinforcement.

Initially, each of the actions will have an upper bound of 1, and ac-
tion O will be chosen arbitrarily. As more trials take place, the bounds
will tighten. The interval estimation method balances acting to gain
information with acting to gain reinforcement by taking advantage
of the fact that there are two reasons that the upper bound for an
action might be high: because there is little information about that
action, causing the confidence interval to be large, or because there
is information that the action is good, causing the whole confidence

The initial state, consists of the integer variables x0, n0, x1, and n1,
each initialized to 0.

u(s,a, r) = if a = O then begin
x0 := x0 + r
n0 := no + I

end else begin
X1 := X1 + r
n1 := n1 + I

end
e(s) = if ub(xo, no) > ub(x1, n1) then

return O
else

return I

where

+La x)z2
ub(x,n)

n 2n +
-;-7;- - 4n

n

and z012 > 0.

Algorithm 10

The interval-estimation (lE) algorithm

1This is a somewhat more complex form than usual, designed to give good results for
small values of n [48].

Copyrighted Material

Interval Estimation Method 53

interval to be high. The parameter z,2 is the value that will be ex-
ceeded by the value of a standard normal variable with probability
cl/2. It controls the size of the confidence intervals and, thus, the rel-
ative weights given to acting to garn information and acting to gain
reinforcement. As c increases, more instances of reinforcement value
O are required to drive down the upper bound of the confidence inter-
vals, causing more weight to be placed on acting to gain information.
By the DeMoivre-Laplace theorem [48], these bounds will converge,
in the limit, to the true underlying probability values, and, hence, if
each action is continually attempted, this algorithm will converge to
a function that satisfies Opt.

This algorithm is very closely related to, but was developed inde-
pendently of, Lai's algorithm [47]. Both methods use the notion of
choosing the action with the highest upper confidence bound. The
confidence bounds used in Lai's algorithm are more complex than the
standard statistical methods used in the interval estimation algorithm.
Lai's algorithm can be shown to be optimal, but is not always corn-
putationally tractable. As we will see in section 4.4, the performance
of the two algorithms is not significantly different.

In order to provide intuition about the workings of the interval-
estimation algonthm, figures 12 and 13 show output from two sample
runs in a simulated environment in which the actions a0 and a1 succeed
with probabilities Po and Pi. The listings show the number of successes
and trials of a0 (the colimms headed aOs and aOt), the upper bound
on the confidence interval of po (the column headed aOb) and the same
for a1 and pi (columns headed als, alt, and alb). These statistics are
just shown at interesting points during the rim of the algorithm. In
figure 12, the first few trials of a1 fail, causing the estimate of pi to be
quite low; it will be executed a few more times, once the upper bound
for po is driven near .56. The run shown in figure 13 is somewhat more
characteristic. The two actions have similar probabilities of success, so
it takes a long time for one to establish dominance.

sOs aOt aOb als alt alb

Figure 12

A sample run of ¡E with p = .55, pi = .45, and za/2 = 1.96. In this case, it converges
very quickly.

Copyrighted Material

14 / 19) .88194 (O I 1) .79346

81/ 138) .66567 (O / 2) .65763

85 / 147) .65507 (O / 3) .56151

Figure 13
Another sample run of ¡E with po = .55, pi = .45, and z017 = 1.96. This time, the two
actions battle for a long time, but ao is clearly winning after 10,000 trials.

4.2 Analysis

In order to analytically compare this algorithm with other algorithms,
we would like to know the regret or expected error of executing this
algorithm in an environment specified by the action-success probabil-
ities p and pi. This section informally derives an approximate expres-
sion for the regret in terms of po, pi, and z012.

4.2.1 Regular Error
For concreteness, let us assume that po > pi. An error occurs every
time a1 is executed, and we expect it to be executed a number of times
that is sufficient to drive the upper bound of Pi below the actual value
of po We can compute this expected number of errors by setting the
expected value of the upper boi.md Ofl Pi equal to po and solving for
ni. The expected value of the upper bound on Pi is approximately2
the upper bound with the number of successes set to nipi. This allows
us to solve the equation ub(nipi, n1) = po for n1, yielding

z12po(1 - po)
2(popi)

As po and Pi grow close, ni goes to infinity. This is as it should be- it becomes infinitely hard to tell which of the two actions is better.
We can simplify this expression further by abstracting away from the
actual values of po and pi and considering their difference, 6, instead.
For probabilities with a fixed difference, n1 is maximized by setting po
to 1/2 and pi to 1/2 + 6. Making this simplification, we can bound n1
above by

2This is only an approximation because n1 occurs inside a square-root, which does not
commute with the expectation operator.

Copyrighted Material

54 Chapter 4

a0s a0t aøb als alt alb

4 / 7) .84178 (1 I 3) .79235

39 / 75) .62931 (22 / 45) .62996

(226/ 394) .62150 (22/ 46) .61863

(358/ 631) .60549 (31/ 59) .64734

963 I 1789) .56128 (52 / 111) .56080

(5548 I 9888) .57084 (52 / 112) .55630

Interval Estimation Method 55

z2

462

This is an approximate upper bound on the expected number of errors
that will be made on a run of infinite length. The regret, or expected
amount of error, can be obtained simply by multiplying by 6, the mag-
nitude of the error, yielding

z2

46

This result is somewhat disturbing, because the amount of error
on an infinitely long run can be made arbitrarily large by making 6
arbitrarily small. However, it is possible to bound the amount of error
on a finite run of length m. The maximum expected number of errors
that could be made on such a run is m/2 (when the two probabilities
are equal, we expect to perform the actions equal numbers of times).
The number of errors is monotonically decreasing in 6, so we can
easily find the largest value of 6 that could cause this many errors by
solving the equation

m z2

2 = 462

for 6, getting =. Thus, the maximum expected regular error on a
run of length m would be

z2/'
obtained by multiplying the maximum number of errors, m/2, by
the maximum magnitude of the error. This maximum regular error
is 0(m112), which means that the interval estimation algorithm, like
the BAJ4DIT algorithm, performs within a constant factor of optimal
when the environment is as hostile as possible.

4.2.2 Error Due to Sticking
The analysis of the previous section was all carried out under the
assumption that the action a0 would be executed an infinite number
of times during an infinite run. Unforttmately, this is not always the
caseit is possible for a0 to get stuck below a1 in the following way. If
there is a statistically unlikely series of trials of a0 that cause the upper
bound on po to go below the actual value of pi. then it is very likely that
a0 will never be executed again. When this happens, we shall say that
a0 is stuck. A consequence of a0 being stuck is that errors will be made

Copyrighted iviaterial

56 Chapter 4

for the remainder of the run. The process of sticking is illustrated by
two sample nms. In figure 14, there is an early series of failures for a0,
causing a1 to be dominant. However, because the upper bound on po
was not driven below pi, the upper bound on pi eventually goes down
far enough to cause more trials of a0, which bring its upper bound back
up. The run shown in figure 15 is a case of permanent sticking. After
O successes in 5 trials, the upper bound on the confidence interval for
po is less than pi. causing a1 to be executed for the remainder of the
run.

By assuming that once a0 becomes stuck below a1 it will never be-
come unstuck, we can bound expected error due to sticking on a run
in which a0 would be executed T times, if unstuck, by

sp(t)(T - t)(p0 - pi)

where the sticking probability sp(t) = Pr(ub(xo, t) < pi first becomes true
at time t). It is the sum, over all time steps t on which a0 is executed, of
the probability that a0 first gets stuck at time t times the number of time
steps that remain, (T - t), times the magnitude of the error, (po - pi).

aOs a0t a0b als alt alb

O / 2) .65763 (4 / 8) .78479

o I 3) .56151 (67 I 137) .57191

1 / 4) .69936 (70 / 146) .55997

16 / 34) .63264 (78 / 116) .51701

Figure 14

A sample run of lE with po = 55, p = .45, and = 1.96. The first action almost
gets stuck.

a0s a0t a0b als alt alb

O / 2) .65763 (O I 1) .79346

o / 3) .56151 (11 / 24) .64925

0/ 4) .48990 C 57/ 121) .55953

O / 5) .43449 (108 / 253) .48841

O / 5) .43449 (132 / 308) .49658

Figure 15

A sample runof lE with po = .55, pi = .45, and z,12 = 1.96. Here, the first action really
does get stuck below the second.

Copyrighted Material

Interval Estimation Method 57

By solving for x0, we can transform the constraint that ub(xo, t) <Pi
into

X0 < tpi - z12/tpi(1 pi)

Using the theory of random walks, the probabifity that x0 first goes
below tpi - z/tpi (1 - pi) at time t can be approximated by [431

sp(t) = (- t(pi - z12pj(1 - pi)/t))
()P1 0)t_k

where k = [tpi - z12/tpi(1 - pi)].

4.2.3 Total Regret
An approximate upper bound on the total regret on a nm of length T
can finally be expressed as the sum of the regular and sticking errors:

4(popi)
+sp(t)(Nt)(pop1)

The sticking error is summed to T for the upper bound, although the
expected number of times a0 will be executed is T There
has not yet been any discussion of appropriate values for za/2 to take
on. The value of za/2 determines the size of the confidence interval
and, therefore, the number of trials it takes to drive an upper bound
below a certain value. Thus, regular error increases as z12 increases
and the interval gets larger. But, as the size of the confidence interval
increases, error due to sticking decreases as z12 increases. This trade-
off is illustrated in figure 16, which plots the approximate forms for
regular error and error due to sticking as functions of zQ/2. If we had
any a priori expectations about the underlying values of po and pi. we
could choose z/2 to minimize regret.

4.3 Empirical Results

The approximations of the previous section were tested by comparing
predicted results against actual results of the interval estimation algo-
rithm in a simulated world. The algorithm was executed for (5 ranging,
in increments of .05, from .05 to .6, with pi and P2 equally spaced about
.5 (for 6 = .1, pi = .55 and P2 = .45.) For each value of 6, 1079 runs
of length 10,000 were conducted. The variable za/2 had value 1.96
throughout. Figure 17 contains a plot, for each 6, of the mean error of
the rims that did not stick, together with the predicted error. The pre-
dictions seem to be fairly accurate for regular error. Figure 18 shows

Copyrighted Material

2 T
Zc/2

58 Chapter 4

error

500

400

300

200

loo

sticking

regular

10 a/2

Figure 16
Expected regular error and sticking error plotted as a function of Z/2

the mean error due to sticking for each 6, along with the predicted
values. This prediction is somewhat less accurate. Nonetheless, these
results are encouraging, because we can see that, in these cases, the
total expected error is quite smallless than 50 fewer instants of rein-
forcement value i than expected from the optimal algorithm for runs
of length 10,000.

4.4 Experimental Comparisons

This section reports the results of a set of experiments designed to
compare the performance of the interval estimation algorithm with
the most promising existing reinforcement-learning algorithms.

4.4.1 Algorithms and Environments
The following algorithms were compared in these experiments:

BANDIT (algorithm 1)
Lpp (algorithm 3)

(algorithm 4)
TS (algorithm 5)
RC (algorithm 6)
LAI (described briefly in Section 3.1)
lE (algorithm 10)

Each of the algorithms was tested in four different environments.
The environments generate Boolean reinforcement, with reinforcement
value i resulting with probability po after doing action a0 and with

Copyrighted Material

regular error

17 . 5-

15-

12 .5-

10-

7 . 5-

5-

2 . 5-

40

30

20

10

Interval Estimation Method 59

Figure 17
Regular error as a function of 8; dots indicate the mean regular error on 1079 runs of
length 10,000; the curve is predicted error.

sticking error
50

Figure 18

Error due to sticking as a function of 6; dots indicate the mean error due to sticking on
1079 runs of length 10,000; the curve is predicted error.

probability Pi after doing action a1. Table I shows the values of Po and
pi for each environment.

4.4.2 Parameter Tuning
Each of the algorithms, except LAI, has a single parameter that can
be chosen to make the algorithm more or less conservative;3 the best

3Actually, RC also has parameters 3 and a, but following Sutton [89], these parameters
were held constant at .1 and .3, respectively.

Copyrighted Material

0.2 0.4 0.6 0.8 1

0.1 0.2 0.3 0.4 0.5 0.6

60 Chapter 4

Table 1
Parameters of test environments

Table 2
Best parameter value for each algorithm in each environment

choice of value for these parameters typically depends on the length
of the run, because it is more important to ensure that an absorbing
algorithm converges to the correct action on a long run. For each
algorithm and environment, a series of 100 trials of length 1000 were
run with different values of the parameter. Table 2 shows the best
parameter value found for each algorithm and environment pair.

Although these experiments can be illuminating, in actual applica-
tions we will typically want to apply these algorithms to situations
in which the underlying probabilities are not known or there is not
enough time to make many runs with different parameter values. In
such situations, an algorithm that performs well over a wide range of
problems with the same parameter value is to be preferred over one
that performs well when the parameter is chosen exactly appropriately
for the problem, but poorly otherwise. As we can see in table 2, the
interval estimation algorithm operates at its best in all of these prob-
lems with a z /2 value between 2 and 3this roughly corresponds to
using 95% or 99% confidence intervals, values that, interestingly, are
often used by human decision-makers.

4.4.3 Results
After choosing the best parameter value for each algorithm and envi-
ronment, the performance of the algorithms was compared on 100 runs
of length 1000. The performance metric was average reinforcement per
tick, averaged over the entire nm. The results are shown in table 3.

terk

ALG-TASK 1 2 3 4

BANDIT(k) 1 12 10 10

Lp.p (a) .60 .60 .30 .40

Lj (a) .55 .1 .05 .15

TS (À) .30 .20 .20 .35

RC (a) .40 .30 .15 .50

IF (z,2) 3.0 2.0 3.0 2.0

Task Po Pi
1 .9 .1

2 .6 .4

3 .9 .8

4 .2 .1

Interval Estimation Method 61

Table 3
Average reinforcement over loo runs of length 1000

These results do not tell the entire story, however. It is important to
test for statistical significance to be relatively sure that the ordering of
one algorithm over another did not arise by chance. Figure 19 shows,
for each task, a pictorial representation of the results of a 1-sided t-
test applied to each pair of experimental results. The graphs encode
a partial order of significant dominance, with solid lines representing
significance at the .95 level and dashed lines representing significance
at the .85 level. We can see that the interval-estimation algorithm dom-
inates in nearly every task. On Task 3 its average reinforcement value
was slightly lower than that of the TS and LAI algorithms, but this dif-
ference was not significant. The LAI algorithm performs well on Tasks
2, 3, and 4, which have a relatively small separation between payoff
probabilities. It does much worse on Task i, in which the separation
is large. Because the algorithm is designed to be optimal on infinite
runs, it must guard against premature convergence to the wrong ac-
tion. The larger the separation, the worse the consequences of choosing
the wrong action, so the LAI algorithm is more conservative than the
other algorithms in such cases. The Lp algorithm is, as expected, uni-
formly suboptimal, and the rest of the algorithms perform about the
same at quite a high level.

Another view of the relative performance of the algorithms is given
by examining their learning curves. A learning curve is a plot of ex-
pected reinforcement values versus time, which shows the rate of per-
formance improvement. Figures 20, 21, 22, and 23 contain, for each
task, the superimposed learning curves of each algorithm for that task.
Each point represents the average reinforcement received over a se-
quence of 50 ticks, averaged over 100 runs of length 1000. For Tasks
i and 2, the curves are hard to differentiate; the order of the labels
on the right hand sides of the graphs indicates the average relative
performance of the algorithms on the first sample of 50 ticks.

Copyrighted Material

ALG-TASK 1 2 3 4

BANDIT .8982 .5856 .8892 .1888

Lp .8172 .5190 .8665 .1521

L .8911 .5872 .8780 .1934

rS .8979 .5893 .8941 .1870

RC .8988 .5890 .8897 .1930

LAI .8960 .5950 .8949 .1963

IF .9004 .5953 .8937 .1972

random .5000 .5000 .8500 .1500

optimal .9000 .6000 .9000 .2000

62 Chapter 4

TASK i TASK 2

er

0.9

0.85

0.8

0.75

lE

LRP

Figure 20

Learning curves for Task I

TS

RC

-

10 15 20
bucket of 50 ticks

Copyrighted Material

Figure 19

Significant dominance partial order among algorithms for each task

lrp

bandit
je
rc
in
lai
ts

LAI

RC

TS

TASK 3 TASK 4

Figure 21

Learning curves for Task 2

0.21

0.2

0.19

er 0.18

0.17

0.16

0.1

bucket of 50 ticks

bucket of 50 ticks

Figure 22

Learning curves for Task 3

bucket of 50 ticks

Figure 23

Learning curves for Task 4

Copyrighted Material

je

la i

in
ts
rc
bandit

i np

64 Chapter 4

4.5 Extensions

As with the algorithms of chapter 3, the interval estimation algorithm
can be extended to work in more complex environments. All of the
extensions described in this section have been implemented and tested
in simulated environments.

4.5.1 Multiple In puts and Actions
The interval estimation algorithm can be directly generalized to mul-
tiple actions. Statistics are collected for each action and are used to
construct upper bounds. The action with the highest upper bound is
chosen to be executed at each tick.

There is no specific way to tailor the interval estimation algorithm to
work in situations where there are multiple input states. The method
of making a copy of the internal state for each possible input situation
can be applied to the interval estimation algorithm, but because there
is more than a single value associated with each input state, it would
be difficult to apply the linear association or error backpropagation
methods.

4.5.2 Real-valued Reinforcement
Rather than thinking of choosing the action with the highest probabil-
ity of succeeding, we can think of choosing the action with the highest
expected reinforcement. Under this view, the interval estimation pro-
cess can be applied to the expected value of reinforcement given that
the action a is executed in situation i. If the reinforcement for each
tick is binomially distributed with parameter p, this is exactly what is
taking place in the version of the algorithm presented in section 4.1.

Simple extensions can be made if a different probabilistic distri-
bution underlies the reinforcement associated with taking action. In
order to handle real-valued reinforcement, for example, we can apply
one of the following methods: assuming the normal distribution and
using nonparametric statistics.

If the reinforcement values are normally distributed, we can use
standard statistical methods to construct a confidence interval for the
expected value. In order to do this, we must keep the following statis-
tics: n, the number of trials, > x, the sum of the reinforcement received
so far, and > x2, the sum of squares of the individual reinforcement
values. The upper bound of a 100(1 - a) % confidence interval for the
mean of the distribution can be computed by

nub(n,x,x2) =+t1)
where x/n is the sample mean,

Copyrighted Material

For large values of n, u can be approximated using the normal distri-
bution.

4.5.3 Nonstationary Environments
The basic version of the interval estimation algorithm can converge to
absorbing states and, as noted in section 3.6.2, that makes it inappro-
priate for use in nonstationary environments. One way to modify the

r algorithm in order to fix this problem is to decay all of the statistics
associated with a particular input value by some value 8 less than, but

4Nonparametric methods tend to work poorly when there are a small number of discrete
values with very different magnitudes. Practical results have been obtained in such cases
by using methods for the normal distribution with the modification that each action is
performed at least a certain fixed number of times. This prevents the sample variance
from going to O on small samples with identical values.

Copyrighted Material

Interval Estimation Method 65

5= nIx2 _(>x)2
n(n - 1)

is the sample standard deviation, and t72 is Student's t function
with n - i degrees of freedom at the a/2 confidence level [88]. Other
than using a different statistical method to compute the upper bound
of the expected reinforcement, the algorithm remains the same.

Even when the reinforcement values caimot be assumed to be nor-
mally distributed, the interval estimation algorithm can be imple-
mented using simple nonparametric statistics.4 In this case, it is not
possible to derive an upper bound on expected value from summary
statistics, so we must keep the individual reinforcement values. Obvi-
ously, it is impossible to store them all, so only the data in a sliding
window are kept. The nonparametric version of the interval estima-
tion algorithm requires another parameter, w, that determines the size
of the window of data. The data are kept sorted by value as well as
by time received. The upper bound of a 100(1 - a)% confidence inter-
val for the center of the underlying distribution (whatever it may be)
can be calculated, using the ordinary sign test [33], to be the (n - u)th
element of the sorted data, if they are labelled, starting at 1, from
smallest to largest, where n is minimum of w and the number of in-
stances received. The value u is chosen to be the largest value such
that

66 Chapter 4

typically near, 1, whenever that input value is received. This decaying
will have the effect that the recorded number of trials of an action that
is not being executed decreases over time, causing the confidence in-
terval to grow, the upper bound to increase, and the neglected action
to be executed again. If its underlying expected value has increased,
that wifi be revealed when the action is executed and it may come to
be the dominant action.

This technique may be similarly applied when using statistical
methods for normally distributed reinforcement values. The non-
parametric method described above is already partially suited to
nonstationary environments because old data only has a finite period
of influence (of length w) on the choices of the algorithm. It can
be made more responsive to environmental changes by occasionally
dropping a data point from the list of an action that is not being
executed. This will cause the upper bound to increase, eventually
forcing the action to be executed again.

Another method of changing an algorithm to work in nonstationary
environments is to choose the "wrong action" (one that would not
have been chosen by the algorithm) with some probability that varies
inversely with n, the number of trials that have taken place so far. As
time passes, it becomes less and less likely to do an action that is not
prescribed by the current learned policy but executing these "wrong"
actions ensures that if they have become "right" due to changes in the
environment, the algorithm will adapt. This method is more suited to
situations in which environmental changes are expected to be more
likely to happen early in a run, rather than later.

4.6 Conclusion

The interval estimation algorithm is of theoretical interest because of
its simplicity and its direct ties to standard statistical methods. It per-
forms at a consistently high level, not significantly different from LAI,
which has been shown to be optimal for infinite runs, but is poten-
tially compulationally unbounded. In addition, following chapters will
demonstrate that the interval estimation techniques used in m can also
be applied to other learning problems, such as learning functions in
k-DNF from reinforcement and learning from delayed reinforcement.

Copyrighted Material

Chapter 5

Divide and Conquer

Because we wish to reduce the complexity of learning algorithms,
it is useful to think of the inputs and outputs as being encoded in
some binary code. The problem, then, is one of constructing a function
that maps a number of input bits to a number of output bits. If we
can construct algorithms that effectively learn interesting classes of
functions with time and space complexity that is polynomial in the
number of input and output bits, we will have improved upoll the
previous group of algorithms.

Having decided to view the problem as one of learning a mapping
from many input bits to many output bits, we can reduce this prob-
lem to the problem of learning a mapping from many input bits to
one output bit. This chapter discusses such a problem reduction, first
describing it informally, then proving its correctness. It concludes with
empirical results of applying the reduction method to two rxioderately
complex learning problems.

5.1 Boolean-Function Learners

A Boolean-function learner (BFL) is a reinforcement-learning behavior
that learns a mapping from many input bits to one output bit. It has
the same input-output structure as any of the algorithms discussed so
far, but is limited to having only two actions. We can describe a BEL
with k input bits in the general form of a learning behavior where
is the initial state, Ûk is the update function and êk is the evaluation
function.

A BEL is correct if and only if whenever it chooses an action a in
situation i, er(i, a) er(i, -la). That is, it always chooses the action that
has the higher expected reinforcement.

5.2 Cascade Algorithm

We can construct an algorithm that learns an action map with N out-
put bits by using N copies of a Boolean-ftmction learning algorithm,

Copyï

68 Chapter 5

one dedicated to learning the function corresponding to each individ-
ual output bit. This simple scheme is called the TEAM algorithm and is
shown schematically in figure 24. It can be described as a learning be-
havior, defined in terms of calls on the components of the underlying
BFL, as shown in algorithm 11.

There is a large potential problem with the TEAM method: when the
collection of BFLs generates an output pattern that does not result in
a good reinforcement value, it is difficult to know whose fault it was.
Perhaps only one of the bits was "wrong." To avoid this problem,
often referred to the as "structural credit assignment" problem, we
construct a learning algorithm (shown schematically in figure 25) from
N cascaded BFLs. The BFL dedicated to learning to generate the first
output bit (referred to as BFL0) has the M real input bits as input. The
next one, BFL1, has the M real inputs as well as the output of BFL0 as
input. In general, BFLk will have M + k bits of input, corresponding to
the real inputs and the outputs of the k lower-numbered BFLs. Each
one learns what its output bit should be, given the input situation and
the values of the output bits of the lower-numbered BFLs. The cascade
algorithm can be described in terms of component learning behaviors
as shown in algorithm 12.

The complexity of the CASCADE algorithm can be expressed as a
function of the complexity of the component BFLs, letting S(0,) be
the size of the initial state of a BFL with k input bits, T(ûk) be the time
for the BFL update function with k input bits, and T(êk) be the time for
the BFL evaluation function with k input bits. For the entire CASCADE
algorithm with M input bits and N output bits, the size of the state is

O(S(0,+1))

which reduces to

O(N S(so,,+N))

the time for an update is

O(N T(ÛM+N))

and the time for an evaluation is

O(N T(êM-I-N))

Given efficient algorithms for implementing the BFLs, the CASCADE
method can construct an efficient algorithm for learning functions with
any number of output bits.1

1Th1S assumes that S(0), T(ûk), and T(êk) are all monotonically nondecreasing in k.

Copyrighted Material

Figure 24

A TEAM of Boolean-function learners

array of length N of
u(s, i, a, r) = for j := O to N - i

uM(s[]],i,a[]], r)

e(h, i) = for j := O to N - i
a[j] := eM(s[jJ, i)

return a

Algorithm 11

The TEAM algorithm

This efficiency comes at a price, however. Even if there is no noise
in the environment, a mistake made on bit j will cause the reinforce-
ment information for bits O through j - i to be in error. To see this,
consider the case of two output bits. Given input instance i, bit O is
generated to have the value 1; then, bit i is generated, as a function
of both i and the value of bit O, to have the value O. If the correct
response in this case was (1, 1), then each of the bits will be given
low reinforcement values, even though bit O was correct. This brings
to light another requirement of the BFLs: they must work correctly in
nonstationary environments. As the higher-numbered BFLs are in the
process of converging, the lower-numbered ones will be getting rein-
forcement values that are not necessarily indicative of how well they
are performing. Once the higher-numbered BFLs have converged, the
lower-numbered BFLs must be able to disregard their earlier training
and learn to act correctly given the functions that the higher-numbered
BFLs are now implementing.

Copyrighted Material

Divide and Conquer 69

70 Chapter 5

r

£

Algorithm 12
The CASCADE algorithm

5.3 Correctness and Convergence

In order to show that the CASCADE algorithm works, we must demon-
strate two points: first, that if the component BFLs converge to correct
behavior then the behavior of the entire construction will be correct;
second, that the component BFLs are trained in a way that guarantees
that they will converge to correct behavior. These requirements will
be referred to as correctness and convergence.

5.3.1 Correctness
This section presents a proof that the cascade construction is correct
for the case of two output bits. Similar proofs can be constructed for
cases with any number of bits. Assume that the two BFLs have al-
ready converged, the first one to the function fo. and the second to
the function fi. The following formula asserts that the function fo is
correct, given the choice of fi:

Vi. er(i, (fo(i),f1(i,fo(i)))) er(i, (ifo(i),f(i, ifo(i)))) (I)
Copyrighted Material

BFL

Figure 25

A CASCADE of Boolean-function learners

B

J

= array of o,M+j where j goes from O to N - I

u(s, i, a, r) = for j := O to N - i
UM+j(5[J], concat(i, a[0..j - I]), a[jJ, r)

e(h,i)= forj:=OtoNI
a[j] := eM+(s[j1,concat(i,a[O..j - I]))

return a

B o

Divide and Conquer 71

that is, that for any value of the input i, it is better for the first bit to
have the value fo(i) than its opposite. Similarly, we can assert that the
function fi is correct:

Vi, b. er(i, (b, fi (i, b))) er(i, (b, --'fi (i, b))) (2)

that is, that for any values of input i and first bit b (b is the output of
fo in the cascade), it is better that the second bit have the value fi (i, b)
than its opposite.

We would like to show that the composite output of the cascade
algorithm is correct: that is, that for any input, no two-bit output has
higher expected reinforcement than the one that is actually chosen by
fo and fi. This can be stated formally as the following conjunction:

Vi. er(i, (fo(i), fi (i,fo(i)))) er(i, (-ifo(i),fi(i,fo(i)))) A (3)

Vi. er(i, (fo(i),fi (i,fo(i)))) er(i, (fo(i), -'fi (i,fo(i)))) A (4)

Vi. er(i, (fo(i),fi(i,fo(i)))) er(i, ('fo(i), 'fj(i,fo(i)))) . (5)

The first conjunct, 3, can be shown with a proof by cases. In the
first case, given first argument i, function fi is insensitive to its second
argument: that is, Vx. fi (i, x) = fi (i, -ix). In this case,

er(i, (-fo(i),f1 (i,fo(i)))) = er(i, (-fo(i),f1 (i, -fo(i)))) (6)

from 6 and assumption i we can conclude that

er(i, (fo(i),fi(i,fo(i)))) er(i, (-ifo(i),fi(i,fo(i))))

In the second case, function fi is sensitive to its second argument
when the first argument has value i; that is, Vx. fi (i, x) = -'fi (i, -lx). In
this case,

er(i, (-ifo(i),fj(i,fo(i)))) = er(i, (-'fo(i), -'fj(i, -'fo(i)))) . (7)

Combining assumptions i and 2, we can derive

er(i, (fo(i),fi (i,fo(i»)) er(i, (-ifo(i), -fi (i, -'fo(i)))) . (8)

From 7 and 8, we have our desired conclusion, that

er(i, (fo(i),fi(i,fo(i)))) > er(i, (-'fo(i),fi(i,fo(i))))

The second conjunct, 4, follows directly from assumption 2.
The third conjunct, 5, also requires a proof based on cases sim-

ilar those used in the proof of the first conjunct. In the first case,
Vx. fi (i, x) = fi (i, --'x), so

er(i, ('fo(i), 'fi (i,fo(i)))) = er(i, ('fo(i), f1(i, fo(i)))) . (9)

Copyrighted Material

72 Chapter 5

From 9 and result 8 above, we can derive

er(i, (fo(i),fi(i,fo(i)))) er(i, (-'fo(i), -fi (i,fo(i))))

In the second case, Vx. fi (i, x) = -'fi (i, -ix), so

er(i, ('fo(i), ifi(i,fo(i)))) = er(i, (-fo(i),fi(i, -fo(i))))

Combining this result with assumption 1, we get the desired result,
that

er(i, (fo(i),fi(i,fo(i)))) > er(i, (-ifo(i),--ifi(i,fo(i))))

Thus, we can see that local assumptions of correctness for each BFL
are sufficient to guarantee global correctness of the entire cascade al-
gorithm.

5.3.2 Convergence
Now, we must show that the BFLs are trained in a way that justi-
fies assumptions I and 2 above. It is difficult to make this argument
precise without making very strong assumptions about the BFLs and
the environment. Informally, the argument is as follows. The highest-
numbered BFL (BFLN) always gets correct reinforcement and so con-
verges to the correct strategy; this is because, independent of what the
lower-numbered BFLs are doing, it can learn always to make the best
of a bad situation. Once this has happened, BFLN_I will get correct
reinforcement; because its internal learning algorithm works in non-
stationary environments, it will converge to behave in the best way it
can in light of what BFLN does (which now is correct). This argument
can be made all the way up to BEL0.

In general, the convergence process may work somewhat differently.
Convergence happens on an input-by-input basis, because there is no
guarantee that the whole input space will be explored during any fi-
nite prefix of a run of the agent. Rather, an input comes in from the
world and all the BFLs except BFLN generate their output bits. This
constitutes a learning instance for BFLN, which can gain information
about what to do in this situation. After this situation has occurred
a few times, BFLN will converge for that input situation (including the
bits generated by the lower-numbered BFLs). As the lower-numbered
BFLs begin to change their behavior, they may generate output pat-
terns that BFLN has never seen, requiring BFLN to learn what to do
in that situation before the lower-numbered BFLs can continue their
learning process.

opyrighted Material

Divide and Conquer 73

5.4 Empirical Results

As an illustration of the CASCADE reduction method, this section out-
lines its use, in conjunction with the interval estimation algorithm, to
solve a complex learning problem. As a baseline for comparison, we
also consider the TEAM algorithm and the use of the interval estimation
algorithm in conjunction with the method of adding extra copies of
the basic statistical algorithm to handle multiple actions. These three
methods will be compared in terms of computational complexity and
performance on the learning problem.

5.4.1 Complexity
Table 4 shows the space, update time, and evaluation time complexity
of the three algorithms forM input bits and N output bits. The space
complexity of an instance of the interval estimation algorithm with a
copy of the basic algorithm for each input-action pair is 0(2M+N) The
TEAM method requires N copies of the algorithm each with i output
bit and M input bits and the CASCADE method requires N copies of
the algorithm, each with i output bit and up to M + N - i input bits.

The time complexity of an update operation (if indexing is ignored)
is constant for the JE method; the TEAM and CASCADE methods require
each component BFL to be updated, using 0(N) time.

The time complexity of an evaluation using the JE method is 0(2N),

because each possible action must be evaluated. Using the TEAM and
CASCADE methods, however, it is 0(N), because only 2 actions must
be evaluated for each output bit.

Each cycle of a learning behavior requires one update and one eval-
uation: for the JE method this requires 0(1) + 0(2')

0(2N) time; for
the TEAM and CASCADE methods it requires 0(N) + 0(N) = 0(N) time.
Thus, the TEAM method is the most time and space efficient; the space
complexity is somewhat greater using the CASCADE method, but com-
putation time is still considerably shorter than for the basic JE method.

Table 4
Complexities of lE, TEAM and CASCADE methods using lE to implement the component
BFLs

Copyrighted Material

lE TEAM CASCADE

SPACE Q(2M+N) 0(N2M) O(N2M+N)

UPDATE TIME 0(1) 0(N) 0(N)

EVAL TIME 0(2N) 0(N) 0(N)

74 Chapter 5

Table 5
Average reinforcement over 5 nrns. Runs of adder task are of length 100,000; runs of
random task are of length 30,000.

5.4.2 Performance
The algorithms were tested on two moderately complex reinforcement-
learning problems. The first was that of learning to be an n-bit adder:
the learner has 2n input bits, representing the addends, and n output
bits, representing the result. It is considered to be correct if the output
bits are the binary sum of the first n input bits and the second n input
bits. For this experiment, a 5-bit adder problem was used; it has fairly
high complexity, with 1024 possible inputs and 32 possible outputs.
The second domain was an artificial domain chosen to demonstrate
generalization in the output space. It had 3 input bits and 10 output
bits; five of the output bits were randomly selected Boolean functions
of the inputs and four of them were "don't cares," which did not
affect the correctness of an output. In each case, if the correct output
was generated, reinforcement value 1 would be received with proba-
bility .9; if the output was incorrect, reinforcement value i would be
received with probability .1. Inputs were chosen randomly according
to the uniform distribution.

Table 5 shows the results of five runs of length 100,000 of each of the
algorithms in the adder environment and five runs of length 30,000
in the random environment. The c parameter of the JE algorithm had
value 2.0 throughout; the instances of lE in the TEAM had decay rate
of .99999 and those in the CASCADE had value .99. These parameter
values were determined by informal experimentation. We can see that
in each case, the CASCADE algorithm performed much better than the
JE algorithm, which, in turn, performed much better than the TEAM
algorithm. All of these differences are statistically significant. Figures
26 and 27 show the superimposed learning curves of the algorithms in
the two domains, which plot expected reinforcement per tick against
time during the run. The data points represent averages of 1000 time
steps (300 time steps for the random domain), themselves averaged
over the five runs.

Copyrighted Material

ALG-TASJ(ADDER RAND

lE .5887 .6192

TEAM + lE .3108 .1004

CASCADE + lE .6647 .6428

random .1250 .1008

optimal .9000 .9000

Figure 26

Learning curves for the 5-bit adder domain

er

20 40 60 80 100
buckets of 1000 ticks

opt

buckets of 300 ticks

Figure 27

Learning curves for the 3-10 bit random domain

Examination of the learning curves reveals the nature of the perfor-
mance differences between the algorithms. The first thing to notice is
the very poor asymptotic performance of the TEAM algorithm. Because
the output bits are generated completely independently, the algorithm
is unable to explore the output space in any sort of systematic way, so
it converges too soon on suboptimal solutions. The CASCADE algorithm
avoids this problem by conditioning the output bits on one another,
which allows it to make the necessary individual action choices to
explore the entire space. Another important feature of these curves

Copyrighted Material

Divide and Conquer 75

team
random

76 Chapter 5

is the initial learning rates: 1ÌvI learns the fastest, followed by CAS-
CADE and then JE. The reason for this is that, in the TEAM and CASCADE
methods, the output bits are being trained in parallel and the agent
wifi not, in general, have to try all (or even half) of the 2N possible
actions in each input situation before finding the correct one. The in-
put spaces for TEAM are even smaller than those for CASCADE. The last
thing to notice is that the asymptotic performance of CASCADE is not
quite optimal; this is due to the fact that the decay rate must be set to
some value less than i in order for the BFLs to overcome their initially
poor reinforcement. This problem could be easily fixed by moving the
decay rate toward i as a function of time.

At first, it may seem that the algorithm is somehow taking advan-
tage of the structure of the adder problem, because the general solution
to the n-bit adder problem involves feeding intermediate results (car-
ries) to later parts of the computation. Upon closer examination, how-
ever, it is clear that the intermediate results are simply less-significant
output bits, which are not related to the values of the carries and do
not simplify the computation of the more-significant output bits. Thus,
the performance of the CASCADE algorithm cannot be attributed to the
special structure of the adder problem.

5.5 Conclusion

The CASCADE method provides an effective way to combine a collection
of Boolean-function learning components into a learner with a large
output space. It gives both a reduction in run-time complexity and an
improvement in on-line performance at the cost of a slight increase
in space. In addition, it allows us to focus on the simpler problem of
learning Boolean functions, knowing that solutions to that problem can
be combined effectively into solutions for the more general problem.

Copyrighted Material

Chapter 6

Learning Boolean Functions in k-DNF

6.1 Background

Algorithms, like the interval estimation algorithm, that simply make a
copy of their state for each input instance require space proportional
to the number of inputs in the space; as we begin to apply such al-
gorithms to real-world problems, their time and space requirements
will make them impractical. In addition, such algorithms completely
compartmentalize the information they have about individual input
situations. If such an algorithm learns to perform a particular action in
one input situation, that knowledge has no influence on what it will
do in similar input situations. In realistic environments, an agent can-
not expect ever to encounter all of the input situations, let alone have
enough experience with each one to learn the appropriate response.
Thus, it is important to develop algorithms that will generalize across
input situations.

It is important to note, however, that in order to find more efficient
algorithms, we must give up something. What we will be giving up is
the possibility of learning any arbitrary action mapping. In the worst
case, the only way to represent a mapping is as a complete look-up
table, which is what the multiple-input version of the interval estima-
tion algorithm does. There are many useful and interesting hmctions
that can be represented much more efficiently, and the remainder of
this work will rest on the hope and expectation that an agent can learn
to act effectively in interesting environments without needing action
maps of pathological complexity.

In the previous chapter, we saw that the problem of learning an
action map with many output bits can be reduced to the problem of
learning a collection of action maps with single Boolean outputs. Such
action maps can be described by formulae in propositional logic, in
which the atoms are input bits. The formula (i1 A i2) V -ij0 describes an
action map that performs action I whenever input bits I and 2 are on
or input bit O is off and performs action O otherwise. When there are
only two possible actions, we can describe the class of action maps

Copyrighted Material

78 Chapter 6

that are learnable by an algorithm in terms of syntactic restrictions
on the corresponding class of propositional formulae. This method is
widely used in the literature on computational learning theory.

A restriction that has proved useful to the concept-learning commu-
nity is to the class of functions that can be expressed as propositional
formulae in k-DNF. A formula is said to be in disjunctive normal form
(DNF) if it is syntactically organized into a disjunction of purely con-
junctive terms; there is a simple algorithmic method for converting
any formula into DNF [28]. A formula is in the class k-DNF if and
only if its representation in DNF contains only conjunctive terms of
length k or less. There is no restriction on the number of conjunctive
termsjust their length. Whenever k is less than the number of atoms
in the domain, the class k-DNF is a restriction on the class of functions.

The next section presents Valiant's algorithm for learning functions
in k-DNF from input-output pairs. The following sections describe
algorithms for learning action maps in k-DNF from reinforcement and
present the results of an empirical comparison of their performance.
For each reinforcement-learning algorithm, the inputs are bit-vectors
of length M, plus a distinguished reinforcement bit; the outputs are
single bits.

6.2 Learning k-DNF from Input-Out put Pairs

Valiant was one of the first to consider the restriction to learning func-
tions expressible in k-DNF [95,96]. He developed an algorithm, shown
in algorithm 13, for learning functions in k-DNF from input-output
pairs, which actually only uses the input-output pairs with output 1

The VALIANT algorithm returns the set of terms remaining in T, with
the interpretation that their disjunction is the concept that was learned
by the algorithm. This method simply examines a fixed number of
negative instances and removes any term from T that would have
caused one of the negative instances to be satisfied.2

6.3 Combining the LARC and VALIANT Algorithms

Given our interest in restricted classes of functions, we can construct
a hybrid algorithm for learning action maps in k-DNF. It hinges on

The choice of L is not relevant to our remforcement-learning scenariothe details are
described in Valiant's papers 195, 96].
2Valiant's presentation of the algorithm defines T to be the set of conjunctive terms of
length k or less over the set of atoms and their negations; however, because any term
of length less than k can be represented as a disjunction of terms of length k, we use a
smaller set T for simplicity in exposition and slightly more efficient computation time.

Copyrighted Material

Learning Boolean Functions in k-DNF 79

Let T be initialized to the set of conjunctive terms of length k over the
set of atoms (corresponding to the input bits) and their negations, and
let L be the number of learning instances required to learn the concept
to the desired accuracy

for i := i to L do begin
y := randomly drawi negative instance
T := T any term that is satisfied by y

end
return T

Algorithm 13
Valiant's algorithm for learning functions in k-DNF from input-output pairs

the simple observation that any such function is a linear combination
of terms in the set T, where T is the set of conjunctive terms of length
k over the set of atoms (corresponding to the input bits) and their
negations. It is possible to take the original M-bit input signal and
transduce it to a wider signal that is the result of evaluating each
member of T on the original inputs. We can use this new signal as
input to a linear-associative reinforcement learning algorithm, such as
Sutton's LARC algorithm (algorithm 8). If there are M input bits, the
set T has size () because we are choosing from the set of input
bits and their negations. However, we can eliminate all elements that
contain both an atom and its negation, yielding a set of size 2k ()
The combined algorithm, called LARCKDNF, is described formally in
algorithm 14 and schematically in figure 28.

The space required by the LARCKDNF algorithm, as well as the time
to update the internal state or to evaluate an input instance, is pro-
portional to the size of T, and thus, O(Mk).

6.4 Interval Estimation Algorithm for k-DNF

The interval estimation algorithm for k-DNF is, like the LARCKDNF
algorithm, based on Valiant's algorithm, but it uses standard statistical
estimation methods, like those used in the JE algorithm, rather than
weight adjustments.

The algorithm will first be described independent of particular
statistical tests, which will be introduced later in this section. We shall
need the following definitions, however. Ari input bit vector satisfies
a term whenever all the bits mentioned positively in the term have
value i in the input and all the bits mentioned negatively in the term
have value O in the input. The quantity er(t, a) is the expected value

Copyrighted Material

80 Chapter 6

Let FT be a function mapping an M-bit input vector into a 2k () -bit
vector, each of whose elements is the result of evaluating an element
of T on the raw input vector.

Let s0 of this algorithm be the initial state, s0, of an instance of the
LARC algorithm with 2k () bits. The update function will be u of LARC,

with the input Fi(i), and, similarly, the evaluation will be e of LARC,
with the input FT(i).

Algorithm 14
The LARCKDNF algorithm

Figure 28

The LARCKDNF algorithm constructs all of the k-wide conjunctions over the inputs and
their negations, then feeds them to an instance of the LARC algorithm.

of the reinforcement that the agent will gain, per trial, if it generates
action a whenever term t is satisfied by the input and action 'a oth-
erwise. The quantity ubr0(t, a) is the upper bound of a 100(1 -
confidence interval on the expected reinforcement gained from per-
forming action a whenever term t is satisfied by the input and action
-'a otherwise. The formal definition is given in algorithm 15.

As in the regular interval estimation algorithm, the evaluation cri-
terion is chosen in such a way as to make the important trade-off
between acting to gain information and acting to gain reinforcement.
Thus, the first requirement for a term to cause a 1 to be emitted is that
the upper bound on the expected reinforcement of emitting a I when
this term is satisfied is higher than the upper bound on the expected
reinforcement of emitting a O when the term is satisfied.

Copyrighte;í erial

Algorithm 15

The IEKONF algorithm

Let the equivalence probability of a term be the probability that the
expected reinforcement is the same no matter what choice of action
is made when the term is satisfied. The second requirement for a
term to cause a I to be emitted is that the equivalence probability be
small. Without this criterion, terms for which no action is better will,
roughly, alternate between choosing action I and action O. Because
the output of the entire algorithm wifi be i whenever any term has
value 1, this alternation of values can cause a large number of wrong
answers. Thus, if we can convince ourselves that a term is irrelevant
by showing that its choice of action makes no difference, we can safely
ignore it.

At any moment in the operation of this algorithm, we can extract a
symbolic description of its current action function. It is the disjunction
of all terms t such that ubr0(t, 1) > ubr0(t, O) and Pr(er(t, 1) = er(t, O)) <
/3. This is the k-DNF expression according to which the agent is choos-
ing its actions.

In the simple Boolean reinforcement-learning scenario, the necessary
statistical tests are quite simple. For each term, the following statis-
tics are stored: n0, the number of trials of action O; S, the number of
successes of action O; n1, the number of trials of action 1; and s1, the
number of successes of action 1. These are incremented only when
the associated term is satisfied by the current input instance. Using
the definition of ub(x, n) from algorithm 10, we can define ubr(t, O)
as ub(s0,n0) and ubr(t,1) as ub(s1,ni), where S, n0, s1, and n1 are the
statistics associated with term t and is used in the computation of ub.

Learning Boolean Functions in k-DNF 81

= the set T, with a collection of statistics
associated with each member of the set

e(s, i) = for each t in s
if i satisfies t and

ubr,(t, 1) > ubr0(t, O) and
Pr(er(t, 1) = er(t, O)) < /3

then return i
return O

u(s, i, a, r) = for each t irt s
update_term_statistics(t, i, a, r)

return s

Copyrighted Material

82 Chapter 6

To test for equality of the underlying Bernoulli parameters, we use a
two-sided test at the 3 level of significance that rejects the hypothesis
that the parameters are equal whenever

n0 n1

\/(-)(1 - --)(flo+fli)
,,

non1

is either

{

where z13,2 is a standard normal deviate [481. Because sample size is
important for this test, the algorithm is slightly modified to ensure
that, at the beginning of a run, each action is chosen a minimum
number of times. This parameter wifi be referred to as (3min.

As for the interval-estimation algorithm, real-valued reinforcement
can be handled in IEKDNF using statistical tests appropriate for nor-
mally distributed values or for nonparametric models. In nonstation-
ary environments, statistics can be decayed in order to ensure that the
algorithm does not stay converged to a nonoptimal strategy.

The complexity of this algorithm is the same as that of the LARCKDNF
algorithm of section 6.3, namely O(Mk).

6.5 Empirical Comparison

This section reports the results of a set of experiments designed to
compare the performance of the algorithms discussed in this chapter
with one another, as well as with some other standard methods.

6.5.1 Algorithms and Environments
The following algorithms were tested in these experiments:

LARCKDNF (algorithm 14)
JEKDNF (algorithm 15)
LARC (algorithm 8)
ffl'RC (algorithm 9)
JE (algorithm 10)

The regular interval-estimation algorithm JE is included as a yardstick;
it is computationally much more complex than the other algorithms
and may be expected to out-perform them.

Each of the algorithms was tested in three different environments.
The environments are called binomial Boolean expression worlds and can
be characterized by the parameters M, expr, pie, PJn, Pos' and P0n The
parameter M is the number of input bits; expr is a Boolean expression
over the input bits; p is the probability of receiving reinforcement
value I given that action i is taken when the input instance satis-
fies expr; in is the probability of receiving reinforcement value I given

Jopyrightea iviaterial

Learning Boolean Functions in k-DNF 83

that action i is taken when the input instance does not satisfy expr; po
is the probabffity of receiving reinforcement value I given that action O
is taken when the input instance satisfies expr; Pon is the probability of
receiving reinforcement value I given that action O is taken when the
input instance does not satisfy expr. Input vectors are chosen randomly
by the world according to a uniform probability distribution.

Table 6 shows the values of these parameters for each task. The first
task has a simple, linearly separable ftmction; what makes it difficult
is the small separation between the reinforcement probabilities. Task 6
has highly differentiated reinforcement probabilities, but the function
to be learned is a complex exclusive-or. Finally, Task 7 is a simple
conjunctive function, but all of the reinforcement probabilities are high
and it has significantly more input bits than the other two tasks.

6.5.2 Parameter Tuning
Each of the algorithms has a set of parameters. For both IEKDNF and
LARCKDNF, k = 2. Algorithms LARC and LARCKDNF have parameters
c, ¡3, and a-. Following Sutton [89], parameters ¡3 and a- in LARCKDNF
and LARC are fixed to have values .1 and .3, respectively.3 The IEKDNF
algorithm has two confidence-interval parameters, z(/2 and zß/2, and
a minimum age for the equality test ßm, while the lE algorithm has
only za/2. Finally, the BPRC algorithm has a large set of parameters: ¡3,
learning rate of the evaluation output units, [3h. learning rate of the
evaluation hidden units, p, learning rate of the action output units, and
Ph learning rate of the action hidden units. All of the parameters for
each algorithm are chosen to optimize the behavior of that algorithm
on the chosen task. The success of an algorithm is measured by the
average reinforcement received per tick, averaged over the entire run.

For each algorithm and environment, a series of 100 trials of length
3000 were nm with different parameter values. Table 7 shows the best
set of parameter values found for each algorithm-environment pair.

Table 6
Parameters of test environments for k-DNF experiments

Task M expr Pis Pin Pos Pon

5 3 (io A i1) V (i A i2) .6 .4 .4 .6

6 3 (i0 A -'i1) V (ii A -'i2) V (i2 A i0) .9 .1 .1 .9

7 10 i2 A -'i5 .9 .6 .5 .8

3This strategy seemed to work well until LARCKDNF was applied to task 7. In this
situation, there are 180 inputs to the linear associator; with so many inputs, the large
value of ¡3 causes the weights to grow without bound. To remedy this problem, but to
avoid more parameter tuning, for task 7, /3 was set to the same value as a.

ipyrighted MateriL

84 Chapter 6

Table 7
Best parameter values for each k-DNF algorithm in each environment

6.5.3 Results
Using the best parameter values for each algorithm and environment,
the performance of the algorithms was compared on runs of length
3000. The performance metric was average reinforcement per tick, av-
eraged over the entire run. The results are shown in table 8, together
with the expected reinforcement of executing a completely random
behavior (choosing actions O and I with equal probability) and of ex-
ecuting the optimal behavior.

As in the set of experiments described in chapter 4, we must exam-
ine the relationships of statistically significant dominance among the
algorithms for each task. Figure 29 shows, for each task, a pictorial
representation of the results of a 1-sided t-test applied to each pair of
experimental results. The graphs encode a partial order of significant
dominance, with solid lines representing significance at the .95 level.

With the best parameter values for each algorithm, it is also instruc-
tive to compare the rate at which performance improves as a function
of the number of training instances. Figures 30, 31, and 32 show super-
imposed plots of the learning curves for each of the algorithms. Each
point represents the average reinforcement received over a sequence
of 100 steps, averaged over 100 runs of length 3000.

Copyrighted Material

ALG-TASK 5 6 7

LARCKDNF

a .125 .25 .001

IEKDNF

Za/2 3 3.5 2.5

zß/2 1 2.5 3.5

/3mm 15 5 30

¡ARC

a .125 .0625 .03

BPRC

/3 .1 .25 .1

I3h .2 .3 .1

P .15 .15 .3

Ph

lE

zj2

.2

3.0

.05

1.5

.3

2.0

TASK 5 TASK 6

E E

TASK 7

Learning Boolean Functions in k-DNF 85

Table 8
Average reinforcement for k-DNF problems over 100 runs of length 3000

Copyrighted Material

LARC

Figure 29
Significant dominance partial order among k-DNF algorithms for each task

LAACKDNF

ALG-TASK 5 6 7

LARCKDNF .5783 .8903 .7474

IEKDNF .5789 .8900 .7939

LARC .5456 .7459 .7644

BPRC .5456 .7406 .7620

lE .5827 .8966 .7205

random .5000 .5000 .7000

optimal .6000 .9000 .8250

LARCKDNFIEKDNF

LARC BPRC

86 Chapter 6

0.6

0.58
.56

er
0.54

0.52

15 20 25 30

bucket of 100 ticks

Figure 30
Learning curves for Task 5

Figure 31

Learning curves for Task 6

6.5.4 Discussion
On Tasks 5 and 6, the basic interval-estimation algorithm, JE, per-
formed significantly better than any of the other algorithms. The mag-
nitude of its superiority however, is not extremely greatfigures 30
and 31 reveal that the IEKDNF and LARCKDNF algorithms have sinn-
lar performance characteristics both to each other and to LE. On these
two tasks, the overall performance of IEKDNF and LARCKDNF were not
found to be signfficantly different.

The backpropagation algorithm, BPRC, performed considerably
worse than expected on Tasks 5 and 6. It is very difficult to tune

Copyrighted Material

bucket of 100 ticks

iekdnf
opt
le
larckdnf

bprc

larc

random

opt
je
jekdnf
larckdnf

bprc

larc

random

0.68

Figure 32

Learning curves for Task 7

the parameters for this algorithm, so its poor performance may be
explained by a suboptimal setting of parameters.4 However, it is
possible to see in the learning curves of figures 30 and 31 that the
performance of BP was still increasing at the ends of the runs. This
may indicate that with more training instances it would eventually
converge to optimal performance.

The LARC algorithm performed poorly on both Tasks 5 and 6. This
poor performance was expected on Task 6, because linear associators
are known to be unable to learn functions that are not linearly sep-
arable [621. Task 5 is difficult for LARC because, during the execution
of the algorithm, the evaluation function can be too complex to be
learned by the simple linear associator, even though the action func-
tion is linearly separable.

Task 7 reveals many interesting strengths and weaknesses of the
algorithms. One of the most interesting is that JE suddenly becomes
the worst performer. Because the target function is simple and there
is a larger number of input bits, the ability to generalize across input
instances becomes crucial. The IEKDNF algorithm is able to find the
correct action function early during the run (this is apparent in the
learnmg curve of figure 32). However, because the reinforcement val-
ues are not highly differentiated and because the size of the set T is
quite large, it begins to include extraneous terms due to statistical fluc-
tuations in the environment, causing slightly degraded performance.
The BPRC and LARCKDNF algorithms have very similar performance on

4Jn the parameter tuning phase, the parameters were varied independentlyit may
well be necessary to perform gradient-ascent search in the parameter space, but that is a
computationally difficult task, especially when the evaluation of any point in parameter
space may have a high degree of noise.

Copyrighted Material

Learning Boolean Functions in k-DNF 87

10 15 20 25 30

bucket of 100 ticks

opt
iekdnf
bp
larc
larckdnf

e

random

er

0.82
0.8

0.78
0.76
0.74
0.72

88 Chapter 6

Task 7, with the LARC algorithm performing slightly worse, but still
reasonably well. The good performance of the generalizing algorithms
is especially apparent when we consider the size of the input space for
this task. With 10 input bits, by the end of a run of length 3000, each
input can only be expected to have been seen about 3 times. This ac-
counts for the poor performance of JE, which would eventually reach
optimal asymptotic performance on longer runs.

6.6 Conclusion

From this study, we can see that it is useful to design algorithms that
are tailored to learning certain restricted classes of functions. The two
specially-designed algorithms far out-performed standard methods of
comparable complexity; the IEKDNF algorithm performed better than
any of the available methods of any complexity on a problem with a
simple action function over a large domain of inputs. In addition, the
methods based on overt statistical tests converged to good strategies
much more quickly than the algorithms based on artificial neural-
network techniques. This may be because the statistical algorithms
start without an initial bias to overcome (the initial random setting of
the weights in a network provides an initial bias) and can get more
"information" out of single training instances. In addition, the sta-
tistical algorithms have internal semantics that are clear and directly
interpretable in the language of classical statistics. This simplifies the
process of extending the algorithm to apply to other types of worlds
in a principled manner.

The next chapter will explore a more flexible algorithm, motivated
by these observations, that combines statistical and symbolic learning
techniques.

Copyrighted Material

Chapter 7

A Generate-and-Test Algorithm

This chapter describes GIRL, a highly parametrized generate-and-test
algorithm for learning Boolean functions from reinforcement. Some
parameter settings make it highly time- and space-efficient, but allow
it to learn only a restricted class of functions; other parameter settings
allow it to learn arbitrarily complex functions, but at a cost in time
and space.

7.1 Introduction

The generate-and-test reinforcement-learning algorithm, GIRL, per-
forms a bounded, real-time beam-search in the space of Boolean
formulae, searching for a formula that represents an action function
that exhibits high performance in the environment. This algorithm ad-
heres to the strict synchronous tick discipline of the learning-behavior
formulation of chapter 2, performing its search incrementally, while
using the best available solution to generate actions for the inputs
with which it is presented.

The algorithm has, at any time, a set of hypotheses under consid-
eration. A hypothesis has as its main component a Boolean formula
whose atoms are input bits or their negations. Negations can occur
only at the lowest level in the formulae.1 Each formula represents a
potential action-map for the behavior, generating action i whenever
the current input instance satisfies the formula and action O when it
does not. The GIRL algorithm generates new hypotheses by combin-
ing the formulae of existing hypotheses using syntactic conjunction
and disjunction operators.2 This generation of new hypotheses repre-
sents a search through Boolean-formula space; statistics related to the
performance of the hypotheses in the domain are used to guide the
search, choosing appropriate formulae to be combined.

1Any Boolean formula can be put in this form using DeMorgan's laws.
2Other choices of syntactic search operators are possible. Conjunction and disjunction
are used here because of the availability of good heuristics for guiding their application.
These heuristics will be discussed in section 7.5.1.

Copyrighted Material

90 Chapter 7

This search is quite constrained, however. There is a limit on the
number of hypotheses with formulae at each level of Boolean com-
plexity (depth of nesting of Boolean operators), making the process
very much like a beam search in which the entire beam is retained in
memory. As time passes, old elements may be deleted from and new
elements added to the beam, as long as the size is kept constant. This
guarantees that the algorithm will operate in constant time per input
instance and that the space requirement wifi not grow without bourtd
over time.3

This search method is inspired by Schlimmer's STAGGER system
[79, 80, 81, 82, 83], which learns Boolean functions from input-output
pairs. STAGGER makes use of a number of techniques, including a
Bayesian weight-updating component, that are inappropriate for the
reinforcement-learning problem. In addition, it is not strictly limited
in time- or space-complexity. The GTRL algorithm exploits STAGGER's
idea of performing incremental search in the space of Boolean formu-
lae, using statistical estimates of "necessity" and "sufficiency" (these
notions will be made concrete in the following discussion) to guide
the search.

The presentation of the GTRL algorithm will be initially independent
of any distributional assumptions about the reinforcement values gen-
erated by the environment; it will, however, assume that the environ-
ment is consistent (see section 2.1.2 for the definition) for the agent.
The process of tailoring the algorithm to work for particular kinds of
reinforcement will be described in section 7.3.

7.2 High-Level Description

As with other learning algorithms, we will view the GTRL algorithm
in terms of initial state, update function, and evaluation function,
as shown in algorithm 16. The internal state of the GTRL algorithm
consists of a set of hypotheses organized into levels. Along with a
Boolean formula, each hypothesis contains a set of statistics that reflect
different aspects of the performance of the formula as an action map
in the domain. Each level contains hypotheses whose formulae are of
a given Boolean complexity. Figure 33 shows an example GTRL internal
state. Level O consists of hypotheses whose formulae are individual
atoms corresponding to the input bits and to their negations, as well
as the hypotheses whose formulae are the logical constants true and

3An alternative would be to simply limit the total number of hypotheses, without sorting
them into levels. This approach would give added flexibffit but would also cause
some increase in computational complexity In addition, it is often beneficial to retain
hypotheses at low levels of complexity because of their usefulness as building blocks.

¿erial

=

u(s,i,a,r) =

e(s,i) =

Algorithm 16
High-level description of the GTRL algorithm

(avb),'.(-bv---c) (bvc),-a (cA-a)v(aA--b)Level 2

Level I

Level O

Figure 33

Example GTRL internal state

A Generate-and-Test Algorithm 91

false.4 Hypotheses at level i have formulae that are conjunctions and
disjunctions of the formulae of the hypotheses at level O. In general,
the hypotheses at level n have formulae that consist of conjunctions or
disjunctions of two formulae: one from level n - I and one from any
level, from O to n - 1. The hypotheses at each level are divided into
working and candidate hypotheses; the reasons for this distinction
will be made clear during the detailed explanation of the algorithm.

The update function of the GTRL algorithm consists of two phases:
first, updating the statistics of the individual hypotheses and, second,
adding and deleting hypotheses.

array [O..L] of
record

working-hypoths: array[O..H] of hypoth
candidate-hypoths: array[O..C] of hypoth

end
update-hypotheses (s, i, a, r)
for each level in s do begin

add-hypotheses (level, s)
promote-hypotheses (level)
prune-hypotheses (level)

end
h := best-predictor (s)
if satisfies (i, h) then

return I
else return O

avb bvc ct-a -bv-c aA-'b

41t is necessary to include true and false in case either of those is the optimal hypothesis.
Hypotheses at higher levels are simplified, so even if a A -la or a V a were to be
constructed at level 1, it would not be retained.

Copyrighted Material

a IzI b -lb I c IcI If I

92 Chapter 7

The evaluation function also works in two phases. The first step is to
find the working hypothesis at any level that has the best performance
at choosing actions. If the chosen working hypothesis is satisfied by
the input instance to be evaluated, action I is generated; if it is not
satisfied, action O is generated.

The following sections will examine these processes in greater detail.

7.3 Statistics

Associated with each working and candidate hypothesis is a set of
statistics; these statistics are used to choose working hypotheses for
generating actions and for combination into new candidate hypothe-
ses at higher levels. The algorithms for updating the statistical infor-
mation and computing statistical quantities are modularly separated
from the rest of the GTRL algorithm. The choice of statistical mod-
ule wifi depend on the distribution of reinforcement values received
from the enviroim-tent. Appendix A provides the detailed definitions
of statistics modules for cases in which the reinforcement values are
binomially or normally distributed; in addition, it contains a nonpara-
metric statistics module for use when there is no known model of the
distribution of reinforcement values. A statistics module supplies the
following functions:

age(h): The number of times the behavior, as a whole, has taken
the action that would have been taken had hypothesis h
been used to generate the action.

er(h): A point estimate of the expected reinforcement received
given that the action taken by the behavior agrees with the
one that would have been generated had hypothesis h been
used to generate the action.

er-ub(h): The upper bound of a 100(1 - a)% confidence interval es-
timate of the quantity estimated by er(h).

erp(h): A point estimate of the expected reinforcement received
given that hypothesis h was used to generate the action
that resulted in the reinforcement.

erp-ub(h): The upper bound of a 100(1 - a)% confidence interval es-
timate of the quantity estimated by ep(h).

N(h): A statistical measure of the probability that the expected
reinforcement of executing action O when hypothesis h is
not satisfied is greater than the expected reinforcement of
execution action 1 when hypothesis h is not satisfied.
A statistical measure of the probability that the expected
reinforcement of executing action i when hypothesis h is

Copyrighted Material

A Generate-and-Test Algorithm 93

satisfied is greater than the expected reinforcement of exe-
cuting action O when hypothesis h is satisfied.

7.4 Evaluating In puts

Each time the evaluation function is called, the most predictive work-
ing hypothesis is chosen by taking the one with the highest value of
prediction value pv, defined as

pv(h) = k er(h)j + erp-ub(h)

This definition has the effect of sorting first on the value of er, then
breaking ties based on the value of erp-ub. The constant multiplier ic
can be adjusted to make this criterion more or less sensitive to low-
order digits of the value of er(h).5

What makes this an appropriate criterion for choosing the hypoth-
esis with the best performance? The quantity that most clearly rep-
resents the predictive value of the hypothesis is erp(h), which is a
point estimate of the expected reinforcement given that actions are
chosen according to hypothesis h. Unfortunately, this quantity only
has a useful value after the hypothesis has been chosen to generate
actions a number of times. Thus, as in the interval estimation algo-
rithm, we make use of erp-ub(h), the upper bound of a confidence
interval estimate of the expected reinforcement of acting according to
hypothesis h.

So, why not simply choose the working hypothesis with the high-
est value of erp-ub(h), similar to the execution of the interval estima-
tion algorithm? The reason lies in the fact that in the GTRL algorithm,
new hypotheses are continually being created. If the algorithm always
chooses hypotheses with high values of erp-ub(h), it will be in danger
of spending nearly all of its time choosing hypotheses because little
is known about them, rather than because they are known to per-
form well. The value of er(h) serves as a ifiter on hypotheses that will
prevent much of this fruitless exploration. The quantity er(h) is not a
completely accurate estimator of erp(h), because the distribution of in-
stances over which it is defined may be different than the distribution
of input instances presented to the entire algorithm,6 but it serves as
a useful approximation. We can use er(h) rather than er-ub(h) because
the statistics used to compute er(h) get updated even when h is not

5In all of the experiments described in this chapter, ¿ç had the value 1000.
6TI difference in distributions depends on the fact that er(h) is conditioned on the
agreement between hypothesis h and whatever hypotheses are actually being used to
generate actions.

Copyrighted Material

94 Chapter 7

used to generate actions, so that the statistic becomes valid eventually
without having to do any special work. Thus, hypotheses that look
good on the basis of the value of er(h) tend to get chosen to act; as
they do, the value of erp-ub(h) begins to reflect their true predictive
value. This method stifi spends some time acting according to untested
hypotheses, but that is necessary in order to allow the algorithm to
discover the correct hypothesis initially and to adjust to a dynamically
changing world. The amount of exploration that actually takes place
can be controlled by changing the rate at which new hypotheses are
generated, as wifi be discussed in section 7.7.

Once a working hypothesis is chosen, it is used to evaluate the input
instance. An input vector i satisfies hypothesis h if h's formula evalu-
ates to true under the valuation of the atoms supplied by input i. If the
input instance satisfies the chosen hypothesis, action i is generated;
otherwise, action O is generated.

7.5 Managing Hypotheses

The process by which hypotheses are managed in the GTRL algorithm
can be divided into three parts: adding, promoting, and pruning. On
each call to the update function, the statistics of all working and can-
didate hypotheses are updated. Then, if it is time to do so, a new hy-
pothesis may be constructed and added to the candidate list of some
level. Candidate hypotheses that satisfy the appropriate requirements
are "promoted" to be working hypotheses. Finally, any level that has
more working hypotheses than the constant number allotted to it will
have its working hypothesis list pruned.

7.5.1 Adding Hypotheses
Search in the GTRL algorithm is carried out by adding hypotheses. Each
new hypothesis is a conjunction or disjunction of hypotheses from
lower levels.7 On each update cycle, a candidate hypothesis is added
to a level if the level is not yet fu]ly populated (the total number of
working and candidate hypotheses is less than the maximum number
of working hypotheses) or if it has been a certain length of time since
a candidate hypothesis was last generated for this level and there is
room for a new candidate.

7Terminology is being abused here in order to simplify the presentation. Rather than
conjoining hypotheses, the algorithm actually creates a new hypothesis whose formula
is the conjunction of the formulae of the operand hypotheses. This use of terminology
should not cause any confusion.

Copyrighted Material

LS(E,H)
Pr(E H)

A Generate-and-Test Algorithm 95

If it is time to generate a new hypothesis, it is randomly decided
whether to make a conjunctive or disjunctive hypothesis.8 Once the
combining operator is determined, operands must be chosen.

The following search heuristic is used to guide the selection of
operands:

When making a conjunction, use operands that have a high value of
necessity; when making a disjunction, use operands that have a high
value of sufficiency.

The terms necessity and sufficiency have a standard logical interpre-
tation: P is sufficient for Q if P implies Q; P is necessary for Q if
-'P implies -'Q (that is,Q implies P). Schlimmer follows Duda, Hart,
and Nilsson [26, 27], defining the logical sufficiency of evidence E for
hypothesis H as

Pr(E I -'H)

and the logical necessity of E for H as

Pr(-'E H)
LN(E,H)

= P(E
I

If E is truly logically sufficient for H, then E implies H, so Pr(E -'H) =
O, making LS(E, H) = oo. If E and H are statistically independent, then
LS(E, H) = 1. Similarly, if E is logically necessary for H, then -'E im-
plies -'H, so Pr(-'E

I
H) = O, making LN(E, H) = O. As before, if E and

H are independent, LN(E,H) = 1.
What makes functions like these useful for our purposes is that

they encode the notions of "degree of implication" and "degree of
implication by."9 Let h*(i) be the optimal hypothesis, that is, the ac-
tion map that has the highest expected instantaneous reinforcement
in the domain. We would like to use these same notions of necessity
and sufficiency to guide our search, estimating the necessity and suf-
ficiency of hypotheses in the GTRL algorithm state for h*, the Boolean

8Schlimmer's STAGGER system generates new hypotheses in response to errors, using
the nature of the error (false positive vs. true negative) to determine whether the new
hypothesis should be a conjunction or a disjunction. This method cannot be applied
in the general reinforcement-learning scenario, in which the algorithm is never told
what the "correct" answer is, making it unable to know whether or not it just made an
"error."
9The LS and LN functions were designed for combining evidence in a human-intuitive
way; their quantitative properties are crucial to their correctness and usefulness for this
purpose. The S and N operators that will be proposed do not have the appropriate
quantitative properties for such uses.

Copyrighted Material

96 Chapter 7

function that encodes the optimal action policy for the environment.
But, because of the reinforcement-learning setting of our problem, we
have no access to or direct information about h*_the environment
never tells the agent which action it should have taken.

Let us first consider an appropriate measure of sufficiency By the
definition of conditional probability we can rewrite the definition of
logical sufficiency as

LS(E, H)
Pr(E I H)

Pr(E I -'H)
Pr(E A H) Pr(-'H)

= Pr(E A -'H) Pr(H)
Pr(H

I
E) Pr(-'H)

- Pr(-'H
I

E) Pr(H)

We are interested in the sufficiency of a particular hypothesis, h, for
the optimal hypothesis, h*, or LS(h, h*), which is equal to

Pr(h*
I

h)Pr(_ih*)

Pr(_,h*
I

h)Pr(h*)

It is easiest to consider the case of deterministic Boolean reinforcement
first. In this case, Pr(h*

I h) = Pr(r = i a = I A h), which is the same
as the expected reinforcement of executing action i given that h is
satisfied, or er(l

I
h). So, we can express logical sufficiency as

LS(h h*)
er(l

I
h) Pr(.ih*)

- er(O
I

h) Pr(h*)

There are two further steps that we will take to derive our heuns-
tic measure of sufficiency. The first is to notice that the term
Pr(_,h*)/ Pr(h*) will occur in the sufficiency of every hypothesis
h, and so may be eliminated without changing the ordering induced
by the sufficiency function. The next step is to generalize this formu-
lation to the case in which the world may be nondeterministic and
reinforcement non-Boolean. In such cases, the expected reinforcement
values may be negative, making the ratio an inappropriate measure
of their relative magnitudes. Instead, we will define sufficiency as

S(h) = Pr(er(l h) > er(O
I
h))

This measure is strongly related to the difference of the two expected
reinforcements, but is much more stable when estimates of the quan-
tity are constructed on line. Any function that induces the same or-
dering on hypotheses may be used in place of S; in particular, if a
statistical test such as Student's t is used, th raw t values may be

Copyrighted Material

A Generate-and-Test Algorithm 97

used directly without translation back into the probability domain.
Necessity can be analogously defined to be

N(h) = Pr(er(O -h) > er(l -h))

Now we understand the definition and purpose of the necessity
and sufficiency operators, but what makes them appropriate for use
as search-control heuristics? In general, if we have a hypothesis that
is highly sufficient, it can be best improved by making it highly nec-
essary as well; this can be achieved by making the hypothesis more
general by disjoining it with another sufficient hypothesis. Similarly,
given a highly necessary hypothesis, we would like to make it more
sufficient; we can achieve this through specialization by conjoining
it with another necessary hypothesis. As a simple example, consider
the case in which h* = a V b. In this case, the hypothesis a is logically
sufficient for h*, so the heuristic will have us try to improve it by
disjoining it with another sufficient hypothesis. If h* = a A b, the hy-
pothesis a is logically necessary for h*, so the heuristic would give
preference to conjoining it with another necessary hypothesis.

Having decided, for instance, to create a new disjunctive hypothe-
sis at level n, the algorithm uses sufficiency as a criterion for choosing
operands. This is done by creating two sorted lists of hypotheses: the
first list consists of the hypotheses of level n - 1, sorted from highest
to lowest sufficiency; the second list contains all of the hypotheses
from levels O to n - 1, also sorted by sufficiency. The first list is lim-
ited in order to allow complete coverage of the search space without
duplication of hypotheses at different levels. Thus, for example, a hy-
pothesis of depth 2 can be constructed at level 2, but one of depth I
cannot.

Given the two sorted lists (another sorting criterion could easily be
substituted for necessity or sufficiency at this point), a new disjunctive
hypothesis is constructed by syntactically disjoining the formulae as-
sociated with the hypotheses at the top of each list. This new formula
is then simplified and put into a canonical form.1° If the simplified
formula is of depth less than n it is discarded, because if it is impor-
tant, it will occur at a lower level and we wish to avoid duplication.

10The choice of canomcalization and simplification procedures represents a tradeoff
between computation time and space used in canonicalization against the likelihood that
duplicate hypotheses will not be detected. Any process for putting Boolean formulae
into a normal form that reduces semantic equivalence to syntactic equivalence has
exponential worst-case time and space complexity in the original size of the formula.
The GTRL algorithm currently uses a very basic simplification process whose complexity
is linear in the original size of the formula and that seems, empirically, to work well.
This simplification process is described in detail in appendix B.

Copyí ed Material

98 Chapter 7

If it is of depth n, it is tested for syntactic equality against all other
hypotheses at level n. If the hypothesis is not a syntactic duplicate, it
is added to the candidate list of level n and its statistics are initial-
ized. If the new hypothesis is too simple or is a duplicate, two new
indices into the sorted lists are chosen and the process is repeated. The
new indices are chosen so that the algorithm finds the nonduplicate
disjunction made from a pair of hypotheses whose sum of indices is
least. The complexity of this process can be controlled by limiting the
total number of new hypotheses that can be tried before giving up. In
addition, given such a limit, it is possible to generate only prefixes of
the sorted operand-lists that are long enough to support the desired
number of attempts.

7.5.2 Promoting Hypotheses
On each update phase, the candidate hypotheses are considered for
promotion. The reason for dividing the candidate hypotheses from
the working hypotheses is to be sure that they have gathered enough
statistics for their values of the statistics N, S, and er to be fairly accu-
rate before they enter the pool from which operands and the action-
generating hypothesis are chosen. Thus, the criterion for promotion
is simply the age of the hypothesis, which reflects the accuracy of its
statistics. Any candidate that is old enough is moved, on this phase,
to the working hypothesis list.

7.5.3 Pruning Hypotheses
After candidates have been promoted, the total number of working
hypotheses in a level may exceed the preset limit. If this happens,
the working hypothesis list for the level is pruned. A hypothesis can
play an important role in the GTRL algorithm for any of three reasons:
its prediction value is high, making it useful for choosing actions; its
sufficiency is high, making it useful for combining into disjunctions; or
its necessity is high, making it useful for combining into conjunctions.
For these reasons, we adopt the following pruning strategy:

To prune down to n hypotheses, first choose the n/3 hypotheses with
the highest predictive value; of the remaining hypotheses, choose the n/3
with the highest necessity; and, finally, of the remaining hypotheses,
choose the n/3 with the highest sufficiency.

This pruning criterion is applied to all but the bottommost and
topmost levels. Level O, which contains the atomic hypotheses and
their negations, must never be pruned, or the capability of generating
the whole space of fixed-size Boolean formulae will be lost. Because

Copyrighted Material

A Generate-and-Test Algorithm 99

its hypotheses will not undergo further recombination, the top level
is pruned so as to retain the n most predictive hypotheses.

7.6 Parameters of the Algorithm

The GTRL algorithm is highly configurable, with its complexity and
learning ability controlled by the following parameters:

The number of levels of hypotheses.
z(/2: The size of the confidence interval used to generate erp-ub.
H(l): The maximum number of working hypotheses per level; can

be a function of level number, 1.
C(l): The maximum number of candidate hypotheses per level; can

be a function of level number, 1.
PA: The age at which candidate hypotheses are promoted to be

working hypotheses.
R: The rate at which new hypotheses are generated; every R ticks,

for each level, 1, if there are not more than C(l) candidate hy-
potheses, a new one is generated.

T: The maximum number of new hypotheses that are tried, in a
tick, to find a nonduplicate hypothesis.
The number of input bits.

Because level O is fixed, we have H(0) = 2M +2.

7.7 Computational Complexity

The space complexity of the GTRL algorithm is

O((H(j) + C(j))21)

for each level j of the L levels, there are H(j) + C(j) working and can-
didate hypotheses, each of which has size at most 2' for the Boolean
expression, plus a constant amount of space for storing the statistics
associated with the hypothesis. This expression can be simplified, if
H and C are independent of level, to

O(L(H + C)(2' - 1))

which is

O(L(H+C)2L)

ghted Material

100 Chapter 7

The time complexity for the evaluation function is

O(H(j)+2L)

the first term accounts for spending a constant amount of time examin-
ing each working hypothesis to see which one has the highest predic-
tive value. Once the most predictive working hypothesis is chosen, it
must be tested for satisfaction by the input instance; this process takes
time proportional to the size of the expression, the maximum possible
value of which is 2L If H is independent of level, this simplifies to

O(LH+2L).

The expression for computation time of the update function is con-
siderably more complex. It is the sum of the time taken to update the
statistics of ail the working and candidate hypotheses plus, for each
level, the time to add hypotheses, promote hypotheses, and prune
hypotheses for the level.

The time to update the hypotheses is the sum of the times to up-
date the individual hypotheses. The update phase requires that each
hypothesis be tested to see if it is satisfied by the input. This testing
requires time proportional to the size of the hypothesis. Thus we have
a time complexity of

O((H(j) + C(j))21)

which simplifies to

O(L(H+C)2')

The time to add hypotheses consists of the time to create the two
sorted lists (assumed to be done in n log n time in the length of the
list) plus the number of new hypotheses tried times the amount of
time to construct and test a new hypothesis for duplication. This time
is, for level j,

O(H(j - 1)logH(j - 1 + (H(k)) log(H(k))

+ T21(H(j) + C(j)))

The last term is the time for testing new hypotheses against old ones
at the same level to be sure there are no duplicates. Testing for syn-

Copyrighted Material

A Generate-and-Test Algorithm 101

tactic equality takes time proportional to the size of the hypothesis
and must be done against all working and candidate hypotheses in
level j. There is no explicit term for simplification of newly created
hypotheses because GTRL uses a procedure that is linear in the size of
the hypothesis.

The time to promote hypotheses is simply proportional to the num-
ber of candidates, C(j).

Finally, the time to prune hypotheses is 3 times the time to choose
the H(j)/3 best hypotheses which, for the purpose of developing upper
bounds, is H(j) log H(j).

Summing these expressions for adding, promoting, and pruning at
each level, and making the simplifying assumption that H and C do
not vary with level yields a time complexity of

O(L(HlogH + LHlog(LH)+ T2L(H + C) + C +HlogH))

which can be further simplified to

0(L2H log(LH) + T2LL(H + C)) . (10)

The time complexity of the statistical update component, O(L(H +
C)2L), is dominated by the second term above, making expression 10
the time complexity of the entire update function. This is the com-
plexity of the longest possible tick. The addition and pruning of hy-
potheses, which are the most time-consuming steps, will happen only
once every R ticks. Taking this into account, we get a kind of "av-
erage worst-case" total complexity (the average is guaranteed when
taken over a number of ticks, rather than being a kind of expected
complexity based on assumptions about the distribution of inputs) of

0(L(H + C)2L + L2H log(LH) + 2LL(H + C))

The complexity in the individual parameters is 0(2'), 0(H log H),
0(1 /R), 0(T), 0(C). Clearly, the number of levels and the number
of hypotheses per level have the greatest effect on total algorithmic
complexity. This complexity is not as bad as it may look, because 2L is
just the length of the longest formula that can be constructed by the
algorithm. The time and space complexities are linear in this length.

7.8 Choosing Parameter Values

This section will explore the relationship between the settings of pa-
rameter values and the learning abilities of the GTRL algorithm.

Copyrighted Material

102 Chapter 7

7.8.1 Number of Levels
Any Boolean function can be written with a wide variety of syntactic
expressions. Consider the set of Boolean formulae with the negations
driven in as far as possible, using DeMorgan's laws. The depth of
such a formula is the maximum nesting depth of binary conjunction
and disjunction operators within the formula. The depth of a Boolean
function is defined to be the depth of the shallowest Boolean formula
that expresses the function.

An instance of the GTRL algorithm with L levels of combination is
unable to learn functions with depth greater than L. Whether it can
learn all functions of depth L or less depends on the settings of other
parameters in the algorithm. The time and space complexities of the
algorithm are, technically, most sensitive to this parameter, both being
exponential in the number of levels.

7.8.2 Number of Working and Candidate Hypotheses
The choice of the size of the hypothesis lists at each level also has a
great effect on the overall complexity of the algorithm. The working
hypothesis list needs to be at least big enough to hold all of the subex-
pressions of some formula that describes the target function. Thus, in
order to learn the function described by i0 A (i1 V i2) A (i3 V -li4), level
i must have room for at least two working hypotheses, i1 y i2 and
i2 V -ii, and levels 2 and 3 must have room for at least one working
hypothesis each.

This amount of space will rarely be sufficient, however. There must
also be room for newly generated hypotheses to stay until they are
tested and proven or disproven by their performance in the environ-
ment. Exactly how much room this is depends on the rate, R, at which
new hypotheses are generated and on the size, z12, of the confidence
intervals used to generate erp-ub. To see this, consider the case in which
a representation of the optimal hypothesis, h*, has already been con-
structed. The algorithm continues to generate new hypotheses, one
every R ticks, with each new hypothesis requiring an average of j
ticks to be proven to be worse than h*. That means there must be an
average of R/j slots for extra hypotheses at this level. Of course, it is
likely that during the course of a run, certain nonoptimal hypotheses
will take more than j ticks to disprove. This can cause h* to be driven
out of the hypothesis list altogether during the pruning phase. Thus,
a more conservative strategy is to prevent this by increasing the size
of the hypothesis lists, but it incurs a penalty in computation time.

Even when there is enough space for all subexpressions and their
competitors at each level, it is possible for the size of the hypothesis

Copyrighted Material

A Generate-and-Test Algorithm 103

lists to affect the speed at which the optimal hypothesis is gener-
ated by the algorithm. This can be easily understood in the context of
the difficulty of a function for the algorithm. Functions whose subex-
pressions are not naturally preferred by the necessity and sufficiency
search heuristics are difficult for the GIRL algorithm to construct. In
such cases, the algorithm is reduced to randomly choosing expressions
at each level.

Consider the case in which h* (i0 A -'i1) V (-ii0 A i1), an exclusive-
or function. Because h* neither implies nor is implied by any of the
input bits, the atoms wifi all have similar, average values of N and
S. Due to random fluctuations in the environment, different atoms
will have higher values of N and S at different times during a run.
Thus, the conjunctions and disjunctions at level i will represent a
sort of random search through expression space. This random search
will eventually generate one of the following expressions: i0 A -'ii,
-ii0 A i1, io V i1, -ii0 V -ii1. When one of these is generated, it will be
retained in the level I hypothesis list because of its high necessity or
sufficiency We need only wait until the random combination process
generates its companion subexpression, then they will be combined
into a representation of h* at level 2.

Even with very small hypothesis lists, the correct answer will even-
tually be generated. However, as problems become more difficult, the
probability that the random process will, on any given tick, generate
the appropriate operands becomes very small, making the algorithm
arbitrarily slow to converge to the correct answer. This process can
be made to take fewer ticks by increasing the size of the hypothesis
list. In the limit, the hypothesis list will be large enough to hold all
conjunctions and disjunctions of atoms at the previous level and as
soon as it is ifiled, the correct building blocks for the next level will
be available and apparent.

7.8.3 Promotion Age
The choice of values for the age parameter depends on how long it
takes for the er, N, and S statistics to come to be a good indication of
the values they are estimating. 1f reinforcement has a high variance, for
instance, it may take more examples to get a true statistical picture of
the underlying processes. If the value of R is large, causing new com-
binations to be made infrequently, it is often important for promotion
age to be large, ensuring that the data that guides the combinations
is accurate. If R is small, the effect of occasional bad combinations
is not so great and may be outweighed by the advantage of moving
candidate hypotheses more quickly to the working hypothesis list.

Copyrighted Material

104 Chapter 7

7.8.4 Rate of Generating Hypotheses
The more frequently new hypotheses are generated, the sooner the al-
gorithm will construct important subexpressions and the more closely
it wifi track a changing environment. However, each new hypothesis
that has a promising value of er will be executed a number of times
to see if its value of erp is as high as that of the current best hypoth-
esis. In general, most of these hypotheses will not be as good as the
best existing one, so using them to choose actions will decrease the
algorithm's overall performance significantly.

7.8.5 ivlaximum New Hypothesis Tries
The attempt to make a new hypothesis can fail for two reasons. Ei-
ther the newly created hypothesis already exists in the working or
candidate hypothesis list of the level for which it was created or the
expression associated with the hypothesis was subject to one of the
reductions of appendix B, causing it to be inappropriate for this level.
It is possible, but very unlikely, to have more than H + C failures of
the first type. The number of failures of the second type is harder to
quantify.

7.9 Empirical Results

This section describes a set of experiments with the GTRL algorithm.
First, the operation of the GTRL algorithm is ifiustrated by discussing a
sample run. Then, the dependence of the algorithm's performance on
the settings of its parameters is explored. Finally, the performance of
the GTRL algorithm is compared with the algorithms of the previous
chapter on Tasks 5, 6, and 7.

7.9.1 Sample Run
Figure 34 shows the trace of a sample run of the GTRL algorithm. It
is executed on Task 8, a binomial Boolean-expression world11 with
3 input bits, in which the expression is (b0 V b1) A (b1 V b2), Pis =
Pin = .1, Pos = .1, and Pon = .9. The figure shows the state of the algo-
rithm at ticks 50, 100, and 250. The report for each tick shows the
working hypotheses for each level, together with their statistics.12
In order to save space in the figure, only the four most predictive
working hypotheses are shown at each level. At tick 50, the two
component hypotheses, b0 A b1 and b1 A b2, have been constructed.

11Binomial Boolean-expression worlds are defined in section 6.5.1.
12The age statistic reported in the trace is the number of times the hypothesis has been
chosen to generate actions, rather than the value of age, which is the number of times
this hypothesis has agreed with the ones that have been chosen to generate actions.

Copyrighted Material

Task/Parani PA R H Results

A Generate-and-Test Algorithm 105

Table 9
Best parameter values for GTRL on Tasks 5, 6, and 7 from chapter 6

They both have high levels of sufficiency, which makes them good
operands for disjunction. By tick 100, the correct disjunction has been
made, and the most predictive hypothesis is the optimal hypothesis
(b0 A b1) V (b1 A 1,2). At tick 250, the optimal hypothesis is still winning
and the average reinforcement is approaching optimal.

7.9.2 Effects of Parameter Settings on Performance
The section describes a set of experiments that ifiustrate how learning
performance varies as a function of the values of the parameters PA,
R, and H on Task 8, which was described in the previous section.
The parameter L was set to 3, z,12 to 2, C to be equal to H, and
T to 100. Figures 35, 36, and 37 show the results, plotting average
reinforcement per tick on 100 runs of length 3000 against each of the
remaining parameters, PA, R, and H.

The expected reinforcement is maximized at a low value of PA, the
promotion age of candidate hypotheses, because it is relatively easy
to discriminate between good and bad actions in Task 8. When the
probabilities of receiving reinforcement value 1 are closer to one an-
other, as they are in the tasks discussed in the next section, it becomes
necessary to use higher values of PA. Because this task (and all of the
others discussed in this chapter) is stationary. the only reason to have
a low value of R, the inverse of the rate at which new hypotheses are
generated, is if the function is very difficult and hypothesis list is too
small to hold all subexpressions at once. This is not the case for Task 8,
so high values of R are desirable. Finally, performance increases with
the length of the hypothesis lists, H, in every task. Because this task
is relatively easy, however, the correct answer is usually found fairly
quickly with even small values of H, so the increase is not dramatic
(this is evidenced by the small range of er in figure 37.)

7.9.3 Comparison with Other Algorithms
The GTRL algorithm was tested on Tasks 5, 6, and 7 from chapter 6. The
best values of the parameters for each task were determined through
extensive testing, and are shown in table 9. Some of the values are
arbitrarily cut off where the parameter testing stopped. For instance,

Copyrighted Material

5 35 200 30 .5667

6 10 100 30 .7968

7 25 450 20 .7986

106 Chapter 7

Seesen Tick 50 Surinriary sisees

---Level 0---
PV=897.9SOEPPUBO.95EP=0.90N=5.02S=2.87HGE=21H:1

PV=843.000EPPU8=1.00EP=O.84N=1.16S=O.59AGE= OH:0

PV=783.000EPPUBl.O0EP=0.78N 0.64S 0.00AGE OH:f
PV=775.000EPP08=l.00EP=O.T7N= 0.92S= 0.00AGE= 2H:2
---Level 1---
PV=917.000EPPUB=l.00EP=O.92N=-l.1OS=sssssAGE= 1H: (andøl)
PV=910.000EPPUB=1.00EP=0.91N= 0.005= 1.67AGE= 0H: (orl(not2))
PV = 876.000 EPPUB 1.00 EF 0.87 N = 0.00 S 1.08 AGE = O H: (or 1 (not 0))

PV = 870.000 EPPUB = 1.00 EF = 0.87 N = 0.00 S = 1.37 AGE = O H: (or 1 2)

--Level
PV =l001.000EPPIJB= 1.00 EP= 1.00 N = 0.00S= 2.45 AGE= 0H: (or (not 0) (or 12))
PV =819.000EPPUB 1.00EP=0.82 N =-1.67S=s*sss AGE OH: (and (and 12) (or 12))

ses ReJnf = (37 I 50) 74.007. Long term (37 / 50) 74.007. **s

sessi. Tick 100 Sumary

---Level 0---
PV = 916.950 EPPUB = 0.95 EP = 0.92 N = 6.95 S = 1.87 AGE = 21 H: 1

PV=904.000EPPUB=l.00EP=0.90N= 2.545= O.89AGE= OH:O

PV=858.000EPPU8=1.00EP=O.86N- 0.955= O.00AGE= OH:f
PV=853.000EPPIJB=1.00EP-O.85N= 1.50S=-0.28AGE= 2H:2
---Level 1---
PV = 942.000 EPPUB = 1.00 EP 0.94 N 1.16 S sessi AGE = 7 H: (and 0 1)

PV938.917EPPUBO.92EP=O.94N=O.00S=l.57AGE= 7H:(orOl)
PV = 922.000 EPPUB = 1.00 EP = 0.92 N = 0.37 S 1.12 AGE = O H: (and 0 2)

PV=921.882EPPUB=0.88EP=O.92N = l.52S=23.49 AGE 5H: (and 12)
---Level 2----
PV 976.994 EPPUB = 0.99 EP = 0.00 N = 23.49 S = 0.00 AGE 32 H: (Or (and 01) (and 12))

PV =949.000EPPIJB= 1.00 EP=O.95 N =20.495=-1.03 AGE= OH: (or (and 12) (and 1 (not 2)))
PV = 945.000 EPPUB = 1.00 EP = 0.94 N = 1.15 S -1.04 AGE = i A: (or (and 0 1) (and i (not 2)))
PV 942.000 EPPUB 1.00 EP 0.94 N 0.88 S AGE = O H: (and O (and 1 2))

vis Reinf = (45 / 50) 90.007. Long term = (82 / 100) 82.007. sss

sisee. Tick 250 Sumary esiti.
---Level O---
PV = 906.000 EPPUB 1.00 EP = 0.91 N = 2.38 S = 1.14 AGE O H: O

PV902.95OEPPUBO.95EP0.90N8.l55l.90AGE21H:1
PV873.000EPPIIB1.00EP=Q.87N= 1.64S= O.O8AGE= 2H:2
PV 872.000 EPPUB = 1.00 EF 0.87 N 0.96 S 0.00 AGE = O H: f

Copyrighted Material

----Level 1----

PV = 917.831 EPPUB 0.83 [P = 0.92 N = 0.00 s 1.49 AGE lo H: (or O I)

PV = 907.000 EPPUB = 1.00 EV = 0.91 N = 1.45 s = 33.23 AGE = 7 H: (and 0 1)

PV = 902.882 EPPUB O.:: EV 0.90 N = 1.62 s 25.69 AGE = 5H: (and 12)

PV=895.000EPPUB=l.00EP=O.89N=O.425=O.72AGE= OH:(andO2)

---Level 2----

PV = 920.941 EPPUB = 0.94 [P = 0.92 N 34.12 5 = 32.40 AGE 157 H: (Or (and 0 1) (and 1 2))

PV = 905.977 EPPUB = 0.98 EP 0.91 N 31.79 s = 0.92 AGE = 8H: (or (and 12) (and i (not 2)))

PV=898.000EPPUB=l.00EP=O.90N=21.66s= O.6SAGE= 0H: (or (andi2) (orl2))

PV =894.962 EPPUB=O.96EP =0.89 N = 0.82 5=-0.07 AGE 15H: (or (andO 1) (and i (not2)))

ese Reinf = (44 I 50) 88.00/, Long term = (213 / 250) 85.20/. **s

Figure 34

A sample run of the GTRL algorithm

20 40 60
PA

Figure 35

Performance versus parameter value PA for Task 8

performance on Task 5 might be improved with higher values of PA
and performance on Task 6 would be improved with higher values
of H. The average reinforcement per tick of executing GIRL at these
parameter settings on 100 runs of length 3000 are shown in the final
columr of the table.

Figure 38 is a modified version of figure 29, with the results of the
GTRL algorithm included with those of the algorithms of chapter 6
for Tasks 5, 6, and 7. On Tasks 5 and 6, the GIRL algorithm performs
significantly better than the LARC and BPRC algorithms, but not as well
as lE, IEKDNF, or LARCKDNF. Finally, on Task 7, the real advantage of
GTRL is ifiustrated. On a task with a large number of inputs, GIRL finds
the correct hypothesis very promptly, significantly outperforming all
other algorithms.

Copyright Material

A Generate-and-Test Algorithm 107

80 100

0.87

0.865

0.86er
0.855

0.85

0.845

108 Chapter 7

0.85

0.84
er

0.83

0.82

Figure 36
Performance versus parameter value R for Task 8

er

0.875

0.87

0.865

0.86

0.855

20 30 40
R

H

Figure 37
Performance versus parameter value H for Task 8

The learning curves of GTRL on each of the tasks are shown in fig-
ures 39, 40 and 41. They are superimposed on the learning curves of
the algorithms tested in chapter 6; the GTRL curves are drawn in bold
lines.

This comparison is, to some degree, unfair, because the GTRL algo-
rithm is designed for nonstationary environments. We can see in the
learning curves that, although it improves quickly early in run, it does
not reach as high a steady-state level of performance as the other al-
gorithms. It does not converge to a fixed state, because it is always
entertaining new competing hypotheses. This flexibility causes a large
decrease in performance. If the GTRL algorithm is to be applied in a
domain in which changes, if any, are expected to take place near the

Copyrighted Material

70

5 10 15 20

TASK 5

TASK 7
GTRL

IEKDNF

Figure 38

Significance of GTRL results on Tasks 5, 6, and 7, compared with the results of the
algorithms of chapter 6

15 20 25 30

bucket of 100 ticks

Figure 39

GTRL learning curve for Task 5 (bold) compared with the algorithms of chapter 6

Copyrighted Material

A Generate-and-Test Algorithm 109

TASK 6

JE

GTRL

LARC

BPRC

iekdnf
opt
je
larckdnf
gtrl
bprc
larc

random

LARCKDNF

er

0.6

0.58

0.56

0.54

0.52

110 Chapter 7

Figure 40

GTRL learning curve for Task 6 (bold) compared with the algorithms of chapter 6

0.68

i ekdn'i>'

Figure 41

GTRL learning curve for Task 7 (bold) compared with the algorithms of chapter 6

beginning of a run, performance can be improved by decreasing over
time the rate at which new candidate hypotheses are generated. This
will cause the algorithm to spend less time experimenting and more
time acting on the basis of known good hypotheses.

7.10 Conclusions

We have seen that the GTRL algorithm can be used to learn a variety
of Boolean function classes with varying degrees of effectiveness and

10 15 20 25 30

bucket of 100 ticks

gtrl

10

bucket of 100 ticks

Copyrighted Material

opt
le
i ekdn f

larckdnf

gtrl

bprc
iarc

30

random

opt

bprc
larc

larckdnf

je

random

er

0.82

0.8

0.78

0.76

0.74

0.72

A Generate-and-Test Algorithm 111

efficiency. This chapter describes only a particular instance of a gen-
eral, dynamic generate-and-test methodthere are a number of other
possible variations.

The algorithm is designed so that other search heuristics may be eas-
ily accommodated. An example of another, potentially useful, heuristic
is to combine hypotheses that are highly correlated with the optimal
hypothesis. One way to implement this heuristic would be to run a
linear-association algorithm, such as LARC, over the input bits and
the outputs of the newly created hypotheses, then make combinations
of those hypotheses that evolve large weights. It is not immediately
apparent how this would compare to using the N and S heuristics.

Another possible extension would be to add genetically motivated
operators, such as crossover and mutation, to the set of search opera-
tors. Many genetic methods are concerned only with the performance
of the final result so this extension would have to be made carefully
in order to preserve good on-line performance.

Copyrighted Material

Copyrighted Material

Chapter 8

Learning Action Maps with State

All of the algorithms that we have considered thus far are capable of
learning only actions maps that are pure, instantaneous functions of
their inputs. It is more generally the case, however, that an agent's
actions must depend on the past history of input values in order to be
effective. By storing information about past inputs, the agent is able to
induce a finer partition on the set of world states, allowing it to make
more discriminations and to tailor its actions more appropriately to
the state of the world.

Perhaps the simplest way to achieve this finer-grained historical
view of the world is simply to remember all input instances from the
last k ticks and present them in parallel to the behavior-learning algo-
rithm. This method has two drawbacks: it is not possible for actions
to depend on conditions that reach back arbitrarily far in history and
the algorithmic complexity increases considerably as the length of the
available history is increased.

This chapter will present an alternative approach, based on the GTRL
algorithm, that can efficiently learn simple action maps with temporal
dependencies that go arbitrarily far back in history.

8.1 Set-Reset

A common component in hardware logic design is a set-reset (SR)
ffip-flop.1 It has two input lines, designated set and reset, a clock, and
an output line. Whenever the clock is triggered, if the set line is high,
then the output of the unit is high; else, if the reset line is high, the
output of the unit is low; finally, if both input lines are low, the output
of the uiiit remains the same as it was during the previous clock cycle.
The value of the output is held in the determined state until the next
clock tick.

'Components of this kind ase also commonly referred to as RS (reset-set) flip-flops in
the logic-design literature.

ghted Material

114 Chapter 8

aJ7
b r

SR(a,b)

Figure 42
Timing diagram for a set-reset flip-flop

The behavior of an SR flip-flop can be described logically in terms
of the following binary Boolean operator

SR(a, b) a V (-ib A .SR(a, b)) /

where is the temporal operator last." Figure 42 shows a timing
diagram, in which the top two lines represent a time-history of the
values of wires a and b and the bottom line represents the time history
of the values of SR(a, b), the output of a set-reset flip-flop whose inputs
are wires a and b.

In the logical definition of SR as a Boolean operator, no initial value
is specified. This problem is dealt with by adding a third logical value,
I, which means, intuitively, "undefined." When an expression of the
form SR(a, b) is to be evaluated for the first time, it is assumed that the
value of .SR(a, b) is I. The value I combines with the other logical
values as follows:

true V I true
false V J

LVII
true A J
false A I false
IAII

-ij

Thus, the expression SR(a, b) will have value I until either a true,
in which case SR(a,b) true V... true, or a false and b true,
in which case SR(a, b) false V (false A J.) false.

8.2 Using SR in GTRL

In the original version of the GTRL algorithm, the hypotheses were
pure Boolean functions of the input bits. This section describes an

Copyrighted Material

Learning Action Maps with State 115

extended version of that algorithm, called GTRL-S, which has simple
sequential networks as hypotheses.

8.2.1 Hypotheses
The GTRL-S algorithm is structured in exactly the same way as the GTRL
algorithm. The main difference is that SR is added as another binary
hypothesis-combination operator. This allows hypotheses such as

SR(-'b0, b1 A b2) A (b1 V SR(SR(b0, b1), -b2))

which represents the sequential network shown in figure 43, to be
constructed.

This operator does not allow every possible sequential circuit to
be generated, however. In the pure-function case it was not neces-
sary to have a negation operator because DeMorgan's laws guarantee
that having access to the negated atoms is sufficient to generate any
Boolean function. Unfortimately, negation cannot be moved past the
SR operator in any general way, so, for instance, a sequential circuit
equivalent to -'SR(io, i1) cannot be generated by applications of the
SR operator to atoms and their negations. This deficiency can be sim-
ply remedied by adding a unary negation operator or by adding an
operator NSR, which is defined as

NSR(a, b) -'SR(a, b)

Another deficiency is that the construction of sequential networks
with feedback is not allowed. Thus, the circuit shown in figure 44,
which generates the sequence 0, 1,0, 1.....cannot be constructed. For
agents embedded in realistic environments, this limitation may not be
too great in practice. We would not, in general, expect such agents to
have to make state changes that are not a function of changes in the
world that are reflected in the agent's input vector. There is one addi-
tional limitation that is both more serious and more easily corrected.
With the semantics of SR defined as they are, it is not possible to con-
struct an expression equivalent to .a. One way to solve this problem
would be to redefine SR(a, b) as .a V (s-b A .SR(a, b)). In that case, a
could be expressed as SR(a, -'a), but the search heuristics to be used
in GTRL-S (described in section 8.2.3) would no longer be applicable.
Another option would be to add s as a unary operator, along with
negation. This is a reasonable course of action; it is not followed in
this chapter, however, both because it would complicate the exposition
and because no appropriate search heuristics for the last and negation
operators are known.

In addition to the syntactic expression describing the network and
the necessary statistics (discussed in section 7.3), a hypothesis also

Copyrighted Material

116 Chapter 8

SR

Figure 44
This circuit generates the sequence 0, 1, 0, 1.....because it has feedback, it cannot be
constructed by the GTRL-S algorithm.

contains the current state of each of its SR components. When a new
hypothesis is created with SR as the top-level operator, that compo-
nent's state is set to I. The state of SR components occurring in the
operands is copied from the operand hypotheses. In order to keep
all state values up to date, a new state-update phase is added to the
update function. In the state-update phase, the new state of each SR
component of each hypothesis is calculated as a function of the input
vector and the old state, then stored back into the hypothesis. The
result of this calculation may be 1, 0, or I.

Expressions containing SR operators may be partially simplified us-
ing an extension of the simplification procedure used for standard
Boolean expressions. This extended simplifier is also described in ap-
pendix B.

8.2.2 Statistics
The statistical modules for GTRL-S differ from GTRL only when
satisfies(i, h) returns the value I. In that case, none of the statistics

SR

Figure 43
A sample sequential network, described by SR(-bo, b1 A b2) A (b1 V SR(SR(bo, bi)r'b2)

b,

b1

b2

C

SR

SR
o

Learning Action Maps with State 117

is updated. Once satisfies(i, h) becomes defined for any input i, it will
remain defined for every input, so this has no effect on the distribution
of the instances for which statistics are collected, just on when the
collection of statistics begins.

8.2.3 Search Heuristics
The problem of guiding the search for generating sequential networks
is considerably more difficult than for pure functional networks. Statis-
tics collected about the performance of expressions as generators of
actions in the world are not necessarily a strong indication of their
performance as the set or reset signal of an SR component. They can
still provide sorne guidance, however.

Recall the logical definition of SR as

SR(a, b) a V (-ib A .SR(a, b))

First, we can see that a - SR(a, b) and that SR(a, b) - (a V -ib). The
first observation should guide us to choose set operands that are suf-
ficient for the target hypothesis. The second observation is slightly
more complex, due to the fact that set takes precedence over reset, but
it makes it reasonable to choose reset operands whose negations are
necessary for the target hypothesis. From these observations we can
derive the following heuristic:

When making a set-reset hypothesis, use a set operand that has a
high value of sufficiency and a reset operand whose negation has
a high value of necessity.

8.2.4 Complexity
The computational complexity of the GTRL-S algorithm is the same as
that of GTRL, which is discussed in section 7.7. The only additional
work performed by GIRL-S is the state-update computation. It has
complexity O(L(H + C)2') (assuming that H and C are independent
of level), which is of the same order as the statistical updating phase
that occurs in both algorithms.

8.3 Experiments with GTRL-S

This section documents experiments with GIRL-S in some simple do-
mains that require action mappings with state. There are no direct
comparisons with other algorithms because no other directly compa-
rable algorithms that learn action mappings with state from reinforce-
ment are known.

Copyrighted Material

118 Chapter 8

Tick 100 Suiinary

---Level 0---

P0= 66.8500EPPUBO.85EP0.67N100.00S-0.43AGE 4H:(notû)

PV 648.7384EPPUB0.74EP0.65N= 2.41S 4.47AGE= 62H: 1

PV = 633.0000 EPPUB = 1.00 EP 0.63 N 1.16 S 0.00 AGE = O H: f

PV = 600.7935 EPPUB = 0.79 EP 0.60 N = 0.43 S =-l00.00 AGE 1H: O

PV 462.0000EPPUB1.00EPO.46N 0.00S -1.16AGE OH:t

---Level 1---

PV 619.7686 EPPUB 0.77 EP 0.62 N = 0.49 S -2.00 AGE 19 H: (or 0 1)

PV 619.0000 EPPUB 1.00 EP = 0.62 N = 0.36 S 0.00 AGE = Oli: (and 01)

PV- 616.0000EPPUB-1.00EP=0.62N- 0.945- 0.00*0E- Oil: (srl (noto) nil)

PV 584.0000EPPUB1.00EPO.58N= -0.185=-lO0.00*GE OH:(sr0(notl)nil)

ens Reinf = (61 / 100) 61.007. Long tern (61 / 100) 61.007. sss

Tick 200 Sumary 55*5*5

---Level 0---

P0= 843.9S67EPPUB=O.96EP=0.84N=i0O.00S= 2.31AGE= 13H: (notO)

P0 795.0000EPPUB1.00EPO.79N 0.00S= l.46AGE Ol4:t

PV= 765.)OOEPPUB= 1.00 EP=0.76 N=-lO.49S= 1.00AGE OH: (noti)

PV = 727.7384 EPPUB = 0.74 EP = 0.73 N = -1.00 S = 10.49 AGE 62 H: i

PV = 705.0000 EPPUB = 1.00 EP = 0.70 N = -1.46 S = 0.00 AGE OH: f

PV = 666.7935 EPPUB = 0.79 EP = 0.67 N = -2.31S =-100.00 AGE = 1H: O

---Level 1---

PV = 912.9468 EPPUB = 0.95 EP = 0.91 N = 2.14 S = 2.83 AGE = 65 H: (sr i O nil)

PV = 902.8124 EPPUB 0.81 EP = 0.90 N = 0.87 S = 0.00 AGE 6H: (and i (not O))

PV 869.9690 EPPUB = 0.97 EP = 0.87 N 100.00 S = -0.13 AGE 18 H: (Sr (not O) (not 1) t)

PV = 858.0000 EPPUB = 1.00 EP = 0.86 N = 100.00 S = -0.30 AGE 1 H: (or i (not O))

PV 857.7935EPPUB0.79EP=0.86N 0.00S= -0.41AGE 1H: (sr(notl) Ot)

P0= 855.0000EPPUB=1.00EP=O.85N= 0.00S= -0.44*0E- OH: (sr (notO) it)

5*5 Reinf = (87 / 100) 87.007. Long tern = (148 / 200) 74.00X see

Tick 500 Sumary

---Level 0---

PV 893.9567 EPPUB 0.96 EP 0.89 N 100.00 5 = 2.99 AGE - 13 H: (not O)

PV = 870.0000 EPPUB 1.00 EP = 0.87 N = 0.00 S = 2.14 AGE O H: t

PV= 864.0000EPPUB=i.00E0=O.86N=-i4.O4S= 1.99AGE= OH:(noti)

P0= 8O9.I384EPPUBO.74EP=0.B1N= -1.99S= 14.O4AGE= 62H: i

PV = 799.0000 EPPUB = 1.00 EP - 0.80 N = -2.14 5 = 0.00 AGE O H: f

P0= 770.7935EPPUB=0.79EP=0.77N=-2.99S=-l00.00AGE 1H:0

Copyrighted Material

Learning Action Maps with State 119

----Level 1--
PV 904.9276 EPPUB 0.93 EP 0.90 N 2.12 S 4.85 AGE = 352 H: (sr t O nil)

PV 903.9193 EPPUB 0.92 EP = 0.90 N 100.00 S 1.03 AGE = 20 H: (sr (not 0) (not 1) t)

PV 901.O000EPPUB1.O0EP-0.90N100.ØO5 O.90AGE 1H: (orl(not0))

PV= 894.0000EPPUB=1.00EP=O.89N= 0.005 O.59AGE= OH: (sr (not O) it)

PV = 893.7935 EPPUB =0.79EP= 0.89 N 0.00S 0.60 AGE 1H: (sr (noti) Ot)

PV = 836.9032 EPPUB 0.90 EP 0.84 N - -0.74 S 0.00 AGE 6 H: (Sr O (not 1) nil)

ses Reinf = (:; / 100) 88.00% Long term (415 / 500) 83.007. ese

Figure 45

A sample run of the GTRL-S algorithm on the simple lights and buttons problem

8.3.1 Lights and Buttons
The first domain of experimentation is very simple. It can be thought
of as consisting of two light bulbs and two buttons. The input to the
agent is a vector of two bits, the first having value i if the first light
bulb is on and the second having value i if the second light bulb is on.
The agent can generate two actions: action O causes the first button to
be pressed and action i causes the second button to be pressed. One
or no lights will be on at each instance. The optimal action map is
to push the button corresponding to the light that is on if, in fact, a
light is on. If no lights are on, the optimal action is to push the button
associated with the light that was last on. A light is turned on on a
given tick with probability pithe particular light is chosen uniformly
at random. Thus, the optimal hypothesis is simply SR(b1, b0).

Figure 45 shows parts of the trace of a sample run of the GTRL-S al-
gorithm in the simple lights and buttons domain, in which the correct
action (as discussed above) yields reinforcement value 1 with prob-
ability .9 and the incorrect action yields reinforcement value I with
probability .1. A light comes on each tick with probability .1. The first
section of the trace shows the state of the algorithm after loo ticks.2
It has not yet constructed the correct hypothesis, but we can see in
the statistics of the atomic hypotheses that b1 is the most sufficient
hypothesis and -'b0 is the most necessary After 200 ticks, we can see
that the correct hypothesis, SR(b1, b0), has just been found and appears
to be the best. By tick 500, the original winning hypothesis is still at
the top of the list, with another equivalent expression, SR(-b0, -ibj),
being second best. The GTRL-S algorithm works quite reliably on this
problem because the search heuristics provide good guidance.

2The third value in the SR expressions of the printout indicates the stored value of the
unit: t for 1, nil for 0, and bottom for I (which does not happen to occur in this
trace.)

Copyrighted Material

120 Chapter 8

Secase Tick 100 Suninary sasses

-Level 0--

PV- 566.65O4EPPUB-0.65EP-0.57N-1.41S-i0.T6AGE- 45H:(notl)

PV 555.6576EPPUBO.66EP-O.56N- 0.00S 4.2OAGE- 2H:t

PV - 534.7690 ERPUB - 0.77 EP - 0.53 N - -4.47 s 3.65 AGE 16 H: (not 0)

PV= 358.0000ERPUB=i.00EP=0.36N--3.65S= 4.47AGE= OH:0

---Level 1---

PV 882.9699 EPRUB - 0.97 EP O. ;: N 1.08 S = 0.00 AGE 6 H: (Sr O i t)

PV - 840.9285 EPPUB -0.93 ER 0.84 N = 0.00 S = 0.00 AGE - 8H: (sr (noti) (noto) t)

PV = 834.0000 EPPUB 1.00 ER 0.83 N 0.00 S = 0.00 AGE = O H: (or O (not 1))

PV - 532.7935 EPPUB = 0.79 ER -0.53 N - 0.00 S 0.09 AGE - 1H: (or (not 0) (not i))

-Level 0--

PV- 566.6447EPPUB-0.54EP-O.57N=1O.84S-i.22AGE 78H:(not2)

PV= 542.7935ERPUB=0.79ER=O.54N=1O.47S-1.41AGE- 1H:1

PV 531.7935 EPPUB = 0.79 ER - 0.53 N - 2.27 S - 0.00 AGE - i H: f

PV= 51i.8824EPPUB=0.88EP=0.5iN= 1.70S-4.47 AGE 5H: O

---Level 1---

PV = 544.0000 EPPUB = 1.00 ER = 0.54 N = 0.00 S = 1.41 AGE = O H: (Sr i (not 0) nil)

PV - 534.0000 EPPUB 1.00 EP - 0.53 N o.00 s - 1.41 AGE - O H: (sr 1 2 nil)

PV- 532.Ï935EPPUB=0.79EP=0.53N=0.09S=0.00HGE= 1H:(and0(not2))

PV- 526.(X)OOEPPUB=1.00EP-O.53N- 0.00S- 0.00HGE- Oil: (and 1 (not2))

5*5 Reinf - (51 I 100) 51.00% Long term (51 I 100) 51.00% sss

Tick 200 Sunnnary sassas

---Level O---

PV- 747.0000EPPUB=i.00EPO.75N 0.96S=10.49HGE= OH:0

PV- 702.0000EPRIJB=i.00EP-O.70N- 0.52S 0.00AGE OH:f

PV 677.6504 EPPUB = 0.65 EP 0.68 N - 4.90 S - -0.26 AGE = 45 H: (not i)

RV 667.O000EPPUBi.O0EPO.67N 0.26S-4.9OAGE 0H: i

PV 664.6576 EPPUB = 0.66 ER 0.66 N = 0.00 S = -0.52 AGE 2 H: t

PV = 639.7690 EPPUB = 0.77ER 0.64 N =-10.49 S -0.96 AGE = 16H: (not O)

-Level 1---

PV - 860.9246 EPPUB = 0.92 ER 0.86 N = 0.63 5 - 21.11 AGE - 93 H: (sr O i nil)

PV- 857.9019EPRUB-0.86EP-O.86N--0.O45-O.90AGE- i2H:(andO(noti))

PV = 845.8794 EPPUB = 0.:: ER = 0.85 N - 0.005 = 0.21 AGE = 9H: (sr (noti) (noto) t)

PV - 845.0000 EPPUB - 1.00 EP - 0.84 N - 0.00 S - 0.19 AGE - O H: (or O (not 1))

--Level 0---

PV - 781.7923 EPPUB - 0.79 ER - 0.78 N - 10.49 5 - 1.73 AGE - 3 H: (not 0)

RH = 141.0000 EPPUB = 1.00 ER = 0.74 N = 0.00 S 1.26 AGE O H: t

PV - 714.7400 EPPUB = 0.74 ER -0.71 N - 17.32 S-14.14 AGE - 128 H: (not 2)

PV = 709.0000 EPPUB = 1.00 ER = 0.71 N = -4.90 S = 1.05 AGE - O H: (not 1)

PV - 664.7935 EPPIJB - 0.79 ER - 0.66 N - -1.05 S - 4.90 AGE - i H: i

Copyrighted Material

Learning Action Maps with State 121

PV" 650.793SEPPUBO.79EP.O.55N--l.265- 0.00AGE" 1H: f

PV = 625.8824 EPPUB O. :: EP - 0.62 N -1.73 S «-10.49 AGE 5 H: O

PV 1.0000 EPPUB 1.00 EP - 0.00 N "-14.14 S 17.32 AGE O H: 2

----Level 1---
PV - 827.9259 EPPUB 0.93 EP 0.83 II - 6.93 S = 0.00 AGE 47 H: (Sr 1 0 t)

PV = 712.0000 EPPUB = 1.00 EP = 0.71 N = 0.32 S = 14.43 AGE O H: (Sr 12 t)

PV - 700.0000EPPUB- 1.00 EP=O.70N -15.28S- 0.00 AGE" OH: (sr (sot 2) (noti) t)

PV» 695.0000EPPUB-1.00EP=O.69N=14.82S=-3.32AGE= OH: (sr(not2) (not0)t)

ves Reinf = (84 / 100) 84.O0(Long term = (135 I 200) 67.50X *5*

Figure 46

A sample run of the GTRL-S algorithm on the two-bit lights and buttons problem. Only
the 4 most predictive hypotheses are shown at each non-atomic level.

8.3.2 Many Lights and Buttons
The lights-and-buttons domain described in section 8.3.1 can be easily
extended to have an arbitrary number, M, of lights and buttons. If we
let each input bit correspond to a light and each output bit correspond
to the pressing of a button, we have an environment with M input and
M output bits. The agent is never rewarded for pressing more than
one button at once.

The more complex lights-and-buttons problem can be solved by us-
ing the CASCADE method in conjunction with GTRL-S, with one copy of
the GIRL-S algorithm for each bit of output (corresponding to each but-
ton.) Figure 46 shows excerpts from a sample run with two lights and
two buttons (this differs from the domain described in the previous
section in that there are two output bits rather than only one.) The first
two levels belong to the instance of GTRL-S for the first output bit and
the second two levels belong to the second instance of GIRL-S. After
the first 100 ticks, the second bit has clearly learned to be the negation
of the first. We can see this because the prediction age of hypothesis
-'b2 is 78; b2 here is the output of the first Boolean function learner.
The first bit has just constructed its correct hypothesis, SR(b0, b1), but
has not yet executed it many times. By tick 200, however, the first bit is
confirmed in its choice of hypothesis. The second bit has constructed
some additional correct hypotheses, including SR(b1, b0) and SR(b1, b2),
and performance is approaching optimal. Again, it is easy to verify
that the necessity and sufficiency heuristics are a good guide for the
search.

The search heuristics for SR fail us when we wish to extend this
problem to a larger number of lights and buttons using a cascade of
3-level instances of GTRL-S. When there are three lights and buttons,
the optimal function for the first bit can be most simply expressed
as SR(b0, b1 V b2). In order to synthesize this expression, the expression

Copyrighted Material

122 Chapter 8

-b1 A -b2 must be available at the previous level. For that to happen,
-'b1 and -b2 must be highly sufficient, which is false, in general. Thus,
the only way to learn this function is to generate all subexpressions
exhaustively, which is computationally prohibitive.

8.4 Conclusion

Although the approach embodied in GTRL-S is capable of learning some
simple action maps with state, it does not hold much promise for more
complex cases. In such cases, it may, iii fact, be necessary to learn a
state-transition model of the world and values of the world states,
using a combination of Rivest and Schapire's [73] method for learn-
ing models with hidden state and Sutton's [911 or Whitehead and
Ballard's [101] method for "compiling" transition models into action
maps. This wifi be a difficult jobcurrently available methods for
learning models with hidden state only work in deterministic worlds.
Even if they did work in nondetermiriistic worlds, they attempt to
model every aspect of the world's state transitions. In realistic envi-
ronments, there will be many more aspects of the world state than
the agent can track, and its choice of which world states to represent
must be guided by reinforcement, so that it can learn to make only the
"important" distinctions. Dreschers work on generating "synthetic
items" [25] is a promising step in this direction. His "schema mecha-
nism" attempts to learn models of the world that will enable problem
solving. When it is unsuccessful at discovering which preconditions
will cause a particular action to have a particular result, it "reifies"
that set of preconditions as an "item" and attempts to discover tests
for its truth or falsity. In many cases the reified item turns out to be
a particular aspect of the state of the world that is hidden from the
agent.

Copyrighted Material

Chapter 9

Delayed Reinforcement

Until now, we have only considered algorithms for learning to act
in environments in which local reinforcement is generated each tick,
giving the agent all of the information it will ever get about the suc-
cess or failure of the action it just took. This is a simple instance of
the more general case, in which actions taken at a particular time
may not be rewarded or punished until some time in the future. This
chapter surveys some existing approaches to the problem of learning
from delayed reinforcement, focusing on the use of temporal difference
methods [90], such as Sutton's adaptive heuristic critic method [89] and
Watkins' Q-learning method [98]. It wifi be shown how these methods
can be combined with the pure function-learning algorithms presented
in previous chapters to create a variety of systems that can learn from
delayed reinforcement.

9.1 Q-Learning

Q-learning is concerned with learning values of Q(i, a), where i is an
input, a is an action, and Q(i, a) is the expected discounted reward of
taking action a in input state i, then continuing by following the policy
of taking the action with the highest Q value. Recalling that W'(i, a)(i')
is the probabifity of ending in state i' given that action a is taken in
state i, Q* can be defined as

Q* (i, a) = er(i, a) + y Ut (i') VV'(i, a)(i')
i'EI

where

Ut(i) = maxQt(i,a)
aEA

The policy of taking the action with the highest Qt value is unique
and optimal.

Copyrighted Material

124 Chapter 9

A traditional way of arriving at values of Q* would be to learn the
probabilistic state transition function W' and the expected reinforce-
ment function er, and then to solve the system of Q* equations to
determine the value of Q* for every i and a. This method has been
used in the dynamic programming community [74], but is not well
suited to on-line learning because it requires the problem to be broken
down into a learning phase, a compilation phase, and a performance
phase. The agent is unable to take advantage of partial information it
gathers during the course of learning and is generally not adaptable
to changing environments.

Watkins has developed a method for learning Q values that he
describes [97] as "incremental dynamic programming by a Monte
Carlo method: the agent's experiencethe state-transitions and the
rewards that the agent observesare used in place of transition and
reward models." The Q-learning algorithm empirically samples val-
ues of Q*(i,a), constructing an estimate, Q(i,a), which is equal to the
average of

r + 'yU(i+1),

where r is actual the reinforcement gained, i1 is the actual next state
after having taking action a in situation i, and LI(i) is defined in the
same way as U', except with respect to Q. Watkins proved that the Q
values will converge to the true Q* values given, among other condi-
tions, that each input-action pair is experienced an infinite number of
times. The Q algorithm is described formally in algorithm 17.

The initial state of the Q algorithm is simply the array of estimated
Q values, indexed by the input and action sets. They are typically
initialized to O.

The initial state S is an array indexed by the set of input states and the
set of actions, whose elements are initialized to some constant value.

u(s, i, a, r) = sEi', a'] = (1 - a)s[i', a'] + a(r' + -yU(i))
e(s, i) = chosen according to the distribution

e
Pr(a)

= a'EA eQ«,a')/T

where i', a', and r' are the input, action, and reinforcement values from
tick t - 1, 0 < a < 1, 0 < 'y < 1, and LI(i) = maxa{s[i,a]}.

Algorithm 17
The Q-learning algorithm

Copyrighted Material

Delayed Reinforcement 125

The update function adjusts the estimated Q value of the previous
input and action in the direction of

r'+'-yLI(i)

which is the actual reinforcement received on the last tick, r', plus a
discounted estimate of the value of the current state, -yLI(i). The func-
tion U(i) estimates the value of an input i by returning the estimated Q
value of the best action that can be taken from that state. This update
rule illustrates the concept of temporal difference learning, which was
formulated by Sutton [90]. Rather than waiting until a reinforcement
value is received and then propagating it back along the path of states
that lead up to it, each state is updated as it is encountered by using
the discounted estimated value of the next state as a component of the
reinforcement. Initially, these estimated values are meaningless, but as
the agent experiences the world, they soon begin to converge to the
true values of the states.

If the Q values are correct, it is clear that the evaluation function
should choose the action a that maximizes Q(i, a) for the current input
i. However, this policy does not include any exploration and, if the
Q values are not correct, quickly leads to convergence to nonoptimal
behavior. Watkins did not suggest a concrete exploration policy but
Sutton [91] has suggested using a stochastic policy which makes use
of the Boltzmann distribution. Thus, the evaluation function shown
above calculates a probability for executing each action based on its
Q value, then draws an action from that distribution. This guarantees
that there is always a finite probability that a particular action will
be taken, but actions with small Q values will be relatively unlikely
to be chosen. The temperature parameter, T, governs the degree of
randomness; the higher the value of T the more the distribution is
spread out and the more likely an action with a low Q value will be
taken.

9.2 Q-Learning and Interval Estimation

A more statistically well-founded approach to the problem of explo-
ration in the context of Q learning is to apply the basic idea of interval
estimation, choosing the action with the highest upper bound on the
underlying Q value. This approach is embodied IEQ shown in algo-
rithm 18.

This algorithm can use either a normal or nonparametric model to
estimate the expected action values. Using the normal distribution as
a model can be dangerous, however, because at the beginning of this
process, the sample variance is often 0, which causes the confidence

Copyrighted Material

126 Chapter 9

intervals to be degenerate. The normal and nonparametric methods
for generating confidence intervals were informally discussed in sec-
tion 4.5.2 and are presented in detail in appendix A.

The function U changes over time, making early reinforcement val-
ues no longer representative of the current value of a particular ac-
tion. This problem is already dealt with, in part, by the nature of the
bounded-space nonparametric techniques, because only a sliding win-
dow of data is kept and used to generate upper bounds. However, this
does not guarantee that poor-looking actions will be taken periodically
in order to see if they have improved. One way of doing this is to de-
cay the statistics, periodically dropping old measurements out of the
sliding windows, making them smaller. A similar decay process can
be used in the normal statistical model, as well. Decaying the statistics
will have the effect of increasing upper bounds, eventually forcing the
action to be re-executed. This method will keep the algorithm from ab-
solutely converging to the optimal policy, but the optimal policy can
be closely approximated by decreasing the decay rate over time. The
IEQ algorithm has three parameters: 'y, the discount factor, a, the size
of the confidence intervals, and 5, the decay rate.

In the context of the Dyna architecture [91], Sutton has recently
developed a similar extension to Q-learning, called Dyna-Q+, in which
a factor measuring uncertainty about the results of actions is added to
the Q values, giving a bonus to exploring actions about which little is
known.

9.3 Adaptive Heuristic Critic Method

Sutton [89, 90] has developed a different approach of applying the
temporal difference method to learning from delayed reinforcement.

The initial state is an array indexed by the set of input states and
the set of actions, whose elements are initial states of a normal or
nonparametric central-value estimator.

u(s,i,a,r) = s[i',a'] := update-stats(s[i',a'], r' + yU(i))
e(s,i) = a such that uba(s[i,a]) is maximized

where O < a < 1, 0 < -y < 1, and U(i) = maxa{er(s[i,a])} (er is an es-
timate of the expected reinforcement of performing action a in state
i).

Algorithm 18
The IEQ algorithm

ghted Material

The initial state, s0,
c and y, and Si, the

u(s,i,a,r) =

e(s, i) =

Algorithm 19

The AHC algorithm

Copyrighted Material

Delayed Reinforcement 127

Rather than learning the value of every action in every input state, the
adaptive heuristic critic (AHc) method learns an evaluation function that
maps input states into their expected discounted future reinforcement
values, given that the agent executes the policy it has been executing.
One way of viewing this method is that the AHC module is learning to
transduce the delayed reinforcement signal into a local reinforcement
signal that can be used by any of the algorithms of the previous chap-
ters. The algorithm used to learn from the local reinforcement signal
need only optimize the reinforcement received on the next tick; such
an algorithm is referred to as a local (as opposed to global) learning
algorithm. It is a requirement, however, that the local learning algo-
rithm be capable of learning in nonstationary environments, because
the AHC module will be learning a transduction that changes as the
agent's policy changes.

The Al-IC method, in combined operation with an algorithm for
learning from local reinforcement, is formally described in algo-
nthm 19. There are two components to the state of the AHC algorithm:
the vectors y and c. The y vector contains, at every tick, the current
best estimate of the discounted future value of each state with dis-
count rate 'y, given that the agent is executing the behavior that it
is currently executing. The c vector values represent the "activation"
values of the states. States that have been visited recently have high
activation values and those that have not been visited recently have
low values. Each of these vectors is initialized to contain O values.

consists of three parts: two n-dimensional vectors,
initial state of the local learning algorithm.

forj := O to n do
c[j] :=y.)c[j1

c[i'] := c[i'] + 1
vi: = v[i]; vi' : = v[i']
forj : O to n do

v[j] := v[j] + a c[j] (r' + y vi - vi')
si := ui(si, i", a", v[i'])
ei(si, i)

where i', a', and r' are the input and action values from tick t - 1; i",
and a" are from tick t - 2; n is the size of the input set; s,, u and e are
the internal state, the update function, and the evaluation function of
the local learner; O <À 1; O < i; and Oa< I.

128 Chapter 9

The update function first updates the activation values. Each ele-
ment's activation is multiplied by Ay, where y is the discounting rate
and A is an independent factor that controls the degree to which ac-
tivation is spread backward from the currently active state. Then, the
activation of the state whose value is being updated on this tick, state
i', is increased by 1. The values of states are adjusted in proportion to
their activations, so for A = 0, only the currently active state's value
is updated on each tick.

Next, the state values in vector o are updated. Each value v[j] is
incremented by the product of its activation, c[j], the learning rate,
a, and the prediction difference, r' - 'yv[i] - v[i'l. The quantity v[i']
is the estimated value of state i'. The quantity r' + yv[i] is a one-step
lookahead value of state i', computed as the sum of the global value of
state i' (as indicated by the reinforcement value r') and the discounted
value of the next state, 'yv[i]. Since the one-step lookahead value is a
better estimate than the stored value, the difference between the two
values can be used as an error signal for updating the stored value.
This updating method efficiently propagates global reinforcement val-
ues back along the chain of actions that lead to them, making the AHC
algorithm another instance of the temporal difference method.

Finally, the update function feeds a learning instance to the update
function of the local learning algorithm. The reason for updating the
local learner two ticks behind is that if a large reinforcement value is
received, we would like it to be reflected in the function learner as
soon as possible. However, if a large r is received at time t, it takes
two more ticks to receive the data that will allow its effect on o to
be calculated. The algorithm would not be incorrect if it performed

:= U,(Si, i', a', v[i]) instead, but it would not respond to good or bad
results the first time they were encountered.

The hi-ic algorithm has no effect on the evaluation process and sim-
ply calls the evaluation method of the local learning algorithm.

Sutton has shown [90] that, for the nondiscounted case, the ex-
pected values of the predictions found by the temporal difference
method converge to the ideal predictions if the data sequences are
generated by Markov processes and the value of parameter A equals
0. When A = 1, the temporal difference method generates the same
weight adjustments as Widrow and Stearns' least mean squares
technique [1031. Recently, Dayan [22] has extended Sutton's results
to show that the predictions of the temporal difference method, for
any value of A, converge in expected value to the ideal predictions.
Of course, when the agent is choosing actions that change the state
of the world, the distributions of input instances change and these
results do not necessarily hold.

Copyrighted Material

Delayed Reinforcement 129

Sutton's presentation of the AHC algorithm was combined with a
version of the LARC algorithm for local learning. The AHC method is
presented here independent of assumptions about the local learning
algorithm. This way of breaking down the problem is very useful,
because it allows us to independently choose a local reinforcement-
learning algorithm that is appropriate for the sorts of environments in
which it will be run for use in combination with the Al-Ic algorithm. In
addition, Sutton used linear association methods to store the values of
y and c more efficiently. In this version, the activation and state values
are simply stored in a table, but it is easy to see how a variety of more
efficient (if less precise) associative storage methods could be applied.

There have been a number of implementations of temporal differ-
ence algorithms similar to Al-ic, but none have had a correct analysis
of convergence results. The Al-Ic work grew out of the adaptive critic
element (AcE) used by Barto, Sutton, and Anderson [12].

Witten's [109] adaptive optimal controller algorithm computes state
values as in the AHC algorithm, but differs from Sutton's work in the
way it is combined with the local learner. This difference causes its
performance to be significantly inferior [89].

One of Al's most striking early successes was Samuel's checkers-
playing program [77, 78]. In one of its learning modes, it learned an
evaluation function for board positions from reinforcement. Although
Samuel's learning procedure is very complex, it can be closely approx-
imated by the AHC algorithm with) = 1.

Another, more distantly related, learning method is Holland's
bucket brigade method for assigning credit to chains of rules firing
in a production system [40]. It differs significantly in the details,
but shares the temporal-difference notion of assigning credit along
a sequence based on the local predicted improvement rather than
waiting for global reinforcement.

9.4 Other Approaches

There have been a number of other approaches to learning from de-
layed reinforcement. They can be divided into those that learn a world
model (generally assuming, unlike Rivest and Schapire [73], that there
is no hidden state) and those that do not.

Drescher [25] presents a theory and implementation of learning
based on the developmental psychology of Piaget. The agent learns
precondition-action-result schemata that allow it to achieve dynam-
ically presented goals. Drescher's methods have been demonstrated
in a simple deterministic world with hidden state. There have been a

Copyrighted Material

130 Chapter 9

number of other efforts to learn world models. These include the work
of Sutton and Pinette [92], Mason, Christiansen, and Mitchell [54],
Mel [56], and Shen [85].

There has been a series of attempts to solve the pole-balancing prob-
lem using reinforcement. The problem is motivated by a physical sys-
tem in which a pole is flexibly mounted on a cart. The pole can rotate
about its cormection to the cart in one dimension, and the cart can
move along a one-dimensional track (in the same dimension as the
plane in which the pole moves). The goal is to control the cart in such
a way as to keep the pole from falling over and to keep the cart from
reaching either end of its track. The system is given an encoding of
the positions and velocities of the angle of the pole with respect to
the cart and the offset of the cart with respect to the midpoint of the
track, and the system chooses to apply a fixed-magnitude force on the
cart in either a positive or negative direction. Negative reinforcement
is received whenever the pole falls over or the cart reaches the end
of its track. The system must learn a "bang-bang" control law that
maximizes reinforcement by keeping the pole up and the cart within
limits for as long as possible.

The first learning solution to this problem was the BOXES system of
Michie and Chambers [58]. It was so named because of the quantiza-
lion of the four-dimensional continuous-valued parameter space into
a set of 255 regions or "boxes." Each box was viewed as making a
separate decision about whether to generate a "left" or "right" action
when the system was in that state, based on the expected run length
given each choice of action. Learning only took place after a failure,
and each policy was tested for an entire run. The details of the method
are complex and somewhat ad hoc, but it recognizes the interesting is-
sues of the problem setting, including temporal credit assignment and
the tradeoff between acting to gain information and acting to gain
reinforcement.

Connell and Utgoff's CART system [21] takes advantage of the con-
tinuity of the parameter space, using an algorithm that does not make
an a priori division of the space into discrete boxes. Points in the state
space are determined from experience to be either desirable or not
desirableinterpolation is used to determine the desirability of states
that have not yet been visited. The system has considerably better per-
formance than either the BOXES system or the application of the Al-IC
algorithm to this problem by Selfridge and Sutton [84] or by Anderson
[4, 5]. The difference in performance seems principally to depend on
differences in the encodings of the inputs, however.

Copyrighted Material

Delayed Reinforcement 131

9.5 Complexity Issues

Whether we are learning action values or an evaluation function, we
are confronted again with the problem of high computational com-
plexity.

With the Q and IEQ algorithms, we are back again to the kinds of
exponential complexity in the size of the input and output that we
have been trying to avoid. Watkins addresses this issue for Q-learning
by using Albus' CMAC method [3] for associating Q values with input-
action pairs for its "computational speed and simplicity rather than
accuracy or storage economy." It is possible to use a CMAC that is very
space efficient, but at a potentially great cost in accuracy

Another method of improving computational complexity at the ex-
pense of accuracy is to use a linear associator to store the values being
learned. The Q values could be stored as a function of a bit vector con-
structed by concatenating the bit-vector encodings of the input state
and the action. Sutton uses this method in his implementation of AHC,
storing the evaluations of input states as functions of bit-vector en-
codings of those states.1 It is difficult to quantify exactly how much
expressive power is lost by using such methods and how that loss in
expressiveness will impact the performance of the learning methods
as a whole. A related method, used by Anderson [4], is to store predic-
tions in a multilayer network trained using the error-backpropagation
method (section 3.4.3 describes this method in more detail).

Algorithms, such as IEQ, that must associate a whole collection of
data with an input-action pair are harder to make more efficient in
this way. Recent work by Chapman and Kaelbling [20] has addressed
the problem of using IEQ in large domains by using statistical tests to
select salient aspects of the domain to focus on.

9.6 Empirical Comparison

This section describes the results of three different methods of learning
from delayed reinforcement in three simple simulated environments.

9.6.1 Environments
The first two environments are taken from Sutton's thesis [89]. Fig-
ures 47 and 48 show their state-transition diagrams. The circled num-
bers are the reinforcement values of the states; most of the states have
reinforcement value O (which is omitted from the figure). The first

11t must be remembered that even in cases for which the optimal policy is a low-
complexity function of the inputs, the Q function or state evaluation function may be
of much higher complexity.

Copyrighted Material

132 Chapter 9

2340D11 11
0,1

Figure 47
Environment Dl: a very simple delayed-reinforcement environment

Figure 48
Environment D2: a more difficult delayed-reinforcement environment

is a very easy deterministic environment. The second is a consider-
ably more difficult nondeterministic environment, with little differ-
entiation between "good" and "bad" actions. The third environment,
from Watkins [971, is shown in figure 49. It was constructed to be
misleading, because, although the correct action in state O is 0, if the
agent is executing a random policy the action I will have a higher
value. Before we apply the learning algorithms to these domains, it
is interesting to consider the values of the states and the expected
reinforcement of acting optimally in each case.

The optimal strategy for environment Dl is, obviously, always to
execute action 1. Because the world is deterministic, it will take five
steps to get payoff 1, so the average reinforcement of the optimal
policy is 0.2. The values of the states can be calculated by solving
the following set of equations, which specify the value of each state
in terms of its global value and the discounted value of its successor
under the optimal policy:

Vo = 1 + '-yvi

VI = 'YV2

V2 'f V3

V3 = "f V4

V4 = "f V0

Copyrighted Material

O

1_ Ç
001

0 0,1>
10,1

Copyrighted Material

Delayed Reinforcement 133

Figure 49

Environment D3: a highly misleading delayed-reinforcement environment

The solution to the equations is

vo = 1/(1 - -y5)

which, for = .9, yields the following values: y0 = 2.44, y1 =
1.60,v2 = 1.78,v3 = 1.98,v4 = 2.20.

The second automaton, D2, is nondeterministic. In this case, the op-
timal strategy is also always to execute action 1. The expected number
of failures preceding the first success in a sequence of Bernoulli tri-
als with probability p is (1 - p)/p, so we expect to remain in each of
states i through 4 for an average of 1 + 0.4/0.6 = 1.67 steps when ex-
ecuting the optimal policy. Thus, the total expected round-trip time
is 4 x 1.67 + i = 6.67, making the expected reinforcement per tick ap-
proximately equal to 0.13. The action values are the solution to the
equations

Vo i + 7V1

y1 = 7(.4v1 + .6v2)

V2 = 7(.4V2 + .6v3)

V3 = y(.4v3 + .6v4)

= 7(.4v4 + .6v0)

which, for 'y = .9, is y0 = 1.84,v1 = 0.93,v2 = 1.10,v3 = 1.31,v4 =
1.55.

y1 = 7/(1 75)

V2 = 7/(1 - -y5)

V3 = -y2/(1 75)

V4 = 75)

134 Chapter 9

Finally, for the complex automaton D3, the optimal strategy is to
take action O in state O and action i in states 5, 6 and 7. l'bis path
through the transition graph takes 5 steps to gain reinforcement value
2, yielding an average reinforcement per tick of 0.4. The values of the
states under the optimal strategy can be expressed as

= 7V5

V1 = 7V

7V

= 7V4

V4 = i + 7V0

V5 = 7v6

V6 = 7V7

V7 = 7V8

V8 = 2 + 7V0

Solving these equations with = .9 yields the state values y0 =
3.20,v1 = 2.83,v2 = 3.15,v3 = 3.50,v4 = 3.88,v5 = 3.56,v6 = 3.96,v7 =
4.40, y8 = 4.88.

In order to be sure that we are examining the interesting part of the
behavior in each of these environments, runs on environment Dl will
be of length 1500; runs on environments D2 and D3 will be of length
5000.

9.6.2 Algorithms
The following three algorithms for learning from delayed reinforce-
ment were tested on each of these problems:

Q (algorithm 17)
IEQ (algorithm 18)
AHC (algorithm 19) in combination with a version of JE (algo-

rithm 10) that uses normal statistics and is modified for use in
non-stationary environments.

9.6.3 Parameter Tuning
Each of these algorithms has a number of parameters. Algorithm Q
has parameters T, a, and 7; IEQ has parameters a,2 7, and 6; Al-ic has
parameters a, , and \; and JE with normal nonstationary statistics
has parameters OEje and 6. The parameter 7 is part of the specification

2Because we are using statistics for the normal distribution, it is easier to express the
size of the confidence intervals in terms of a rather than Z012; these are simply two
ways of specifying the same parameter.

Copyrighted Material

Copyrighted Material

Delayed Reinforcement 135

of the correctness criterion, and it will be set to 0.9 for each algorithm
and task.

For each algorithm and environment, a series of 100 trials (length
1500 for Dl; length 5000 for D2 and D3) were run with different pa-
rameter values. Table 10 shows the best set of parameter values found
for each algorithm-environment pair.

9.6.4 Results
Using the best parameter values for each algorithm and environment,
the performance of the algorithms was compared on 100 nms of appro-
priate length. The performance metric was average reinforcement per
tick, averaged over the entire run. The results are shown in table 11,
together with the expected reinforcement of executing a completely
random behavior (choosing actions O and i with equal probabiJity)
and of executing the optimal behavior.

As in the previous sets of experiments, we must examine the rela-
tionships of statistically significant dominance among the algorithms
for each task. Figure 50 shows, for each task, a pictorial representation
of the results of a 1-sided t-test applied to each pair of experimental
results. The graphs encode a partial order of significant dominance,
with solid lines representing significance at the .95 level.

With the best parameter values for each algorithm, it is also instruc-
tive to compare the rate at which performance improves as a function
of the number of training instances. Figures 51, 52, and 53 show super-
imposed plots of the learning curves for each of the algorithms. Each

Table 10
Best parameter values for each algorithm in environments Dl, D2, and D3

ALG-TASK Dl D2 D3

Q

T .01 .1 .5

a .9 .2 .2

IEQ

ie .1 .1 .001

o .999 .99

AHC + JE

a .2 .35 .35

.5 .9 1.0

aje .01 .01 .001

1 .999 .99

136 Chapter 9

Table 11
Average reinforcement for tasks DI, D2, and D3 over 100 trials

point represents the average reinforcement received over a sequence
of 100 steps, averaged over 100 runs.

9.6.5 Discussion
There are no clear winners among this set of algorithms. On the sim-
ple deterministic task Dl, all of the algorithms approach the optimal
performance level very closely.

The nondeterministic task D2 is very difficult because of the similar-
ity in transition probabilities between the two actions in each state. On
this task, algorithm AHCIE performs very well, with optimal asymp-
totic performance. The IEQ and Q algorithms perform better than ran-
dom, but are far from optimal. One conjecture about their poor perfor-
mance is that, in order for the exploration policies to try each action
enough to find the right one, too much exploration takes place. The
T parameter for Q is higher and the t5 parameter for JEQ is lower than
for Dl, causing more exploration.

Performance on the difficult problem of task D3 hinges on persis-
tently trying, for a while, courses of action that appear bad. This per-
sistence is necessary to discover that the left loop of the graph is better
if the proper action strategy is known. The Q algorithm does a good job
of this and comes closer to optimal performance than any of the other

TASK Dl TASK D2

ANClE

AHCIE Q

Copyrighted Material

TASK D3

¡Q

AHCIE

EQ

Figure 50

Significant dominance partial order among delayed-reinforcement algorithms for each
task

ALG-TASK DI D2 D3

Q .1985 .1182 .3257

IEQ .1976 .1191 .2462

AHC + lE .1975 .1251 .2984

random .1100 .1100 .1250

optima! .2000 .1300 .4000

0.13

0. 125-

er 0.12-

o . 115-

0.11

Figure 51

Learning curves for Task Dl

10 15 20 25 30
bucket of 100 ticks

20 40 60 80 100
bucket of 100 ticks

Figure 52

Learning curves for Task D2

algorithms. The other algorithms improve over time, but not nearly as
fast. The fact that their performance rises above the .2 level (which is
achieved by going around the right loop of the graph) indicates that
they are discovering the left loop of the graph. All of the algorithms
are parametrized to be very exploratory which prevents them from
asymptotically reaching optimal behavior. In addition, the variance of
the performance of IEQ and AHCIE in this domain was quite high; this
indicates that the left loop of the graph was found at very different
times in different runs.

One important conclusion from these experiments is that the
interval-estimation techniques are not very satisfactory in the kinds

ghted Materk

Delayed Reinforcement 137

ahcie
opt

i eq
q

random

138 Chapter 9

0.4

0.35

er 0.3

bucket of 100 ticks

Figure 53
Learning curves for Task D3

of nonstationary environments that are encountered in learning from
delayed reinforcement. The initial reinforcement values typically have
very low variance, then, as the structure of the world is discovered,
they change very quickly. The weight-adjustment techniques seem to
handle these changes more flexibly than do the statistical methods
tried here. It might be possible to address this by using statistical tech-
niques that, for instance, would notice radically unexpected results or
policy changes in one part of the space and make the policy in other
parts of the space more highly exploratory in order to take advantage
of possible changes. This is an important area for additional research.

Copyrighted Material

Chapter 10

Experiments in Complex Domains

This chapter reports on three experiments comparing algorithms in-
troduced in previous chapters on more complex domains. The first
domain is a simulated one with a large number of input and output
bits, but with a fairly low-complexity function defining the depen-
dence of each output bit on the input bits. The second domain is a
mobile-robot domain in which the agent learns from local reinforce-
ment. The third domain is an extension of the mobile robot domain
in which the agent learns from delayed reinforcement. The settings of
the experiments will emulate, as much as possible, the deployment of
these learning algorithms in realistic domains.

10.1 Simple, Large, Random Environment

This task, in its general form, has M input and M output bits. The
optimal action mapping is generated randomly as follows: each output
bit is the conjunction or disjunction of two input bits or their negations.
If the agent chooses an action in agreement with this mapping, it
receives reinforcement value I with probability pi and O otherwise;
if the agent's action disagrees with the optimal mapping, it receives
reinforcement value i with probability p2 and O otherwise.

10.1.1 Algorithms
The following algorithms were tested in this domain:

JE

CASCADE + JE

CASCADE + GTRL

The second and third algorithms consist of a set of Boolean-
function learners combined using the CASCADE method. It is expected
that the cascade of GTRL algorithms will be both more computation-
ally efficient and learn more quickly than the other three algorithms
because the functions are not too complex and the opportunity for
generalization is great.

140 Chapter 10

10.1.2 Task
The algorithms were tested on an instance of the general family of
large random environments with M 8, pi = .8, and P2 = .1. It would
have been desirable to use an even larger task, but the size of the
data structures for the JE and CASCADE + JE algorithms of size M = 8
exhausted the available computer memoiy Each run of each algorithm
was on a newly generated random task with the parameters described
above.

10.1.3 Parameter Settings
When we wish to use a learning algorithm in a new setting, we will
rarely have the luxury of performing extensive parameter-tuning runs
to be sure that we get the best possible performance out of our algo-
rithms. In this experiment, as well as in the other two described in this
chapter, parameters for the algorithms will be chosen as well as possi-
ble to optimize performance within reasonable complexity constraints
based on intuitions gained from the results of previous experiments
that we have carried out. There were no test runs used to select pa-
rameter values specifically tuned to these problems. The parameter
settings were:

JE: zc,/2 3.0
CASCADE + JE: z,,2 = 3.0,6 = .9999
CASCADE + GTRL: = 3.0,6 = .9999, H = 3M, PA = 20, R = 100

All of the confidence-interval parameters are set to 3.0 and the decays
are .9999. The size of the hypothesis lists, H, in the GTRL algorithm
varies linearly as a function of the number of input bits. The number
of input instances required for promotion was 20 and new candidates
were generated once every 100 ticks.

10.1.4 Results
Each of the algorithms was run for 10 trials of length 10,000 each. This
is is a small fraction of the number of trials that would be required
for the agent to try all 512 possible actions in each of 512 possible
input situations. The average reinforcement for each algorithm on this
task is

JE: .1019

CASCADE + JE : .1050

CASCADE + GTRL : .1634

The cascaded generate-and-test algorithm significantly outperforms
either of the other algorithms, due to its ability to generalize both
over the input and output sets. The learning curves for the algorithms

Copy ted Maten

0.16
er

0.14

0.12

4À L
Y "is 30 'V !

bucket of 250 ticks

Figure 54
Learning curves for large, random environment

Copyrighted Material

Experiments in Complex Domains 141

are shown in figure 54. As we can see, the GTRL algorithm improves
in performance significantly more quickly than the others. The GTRL
algorithm is much more space efficient than the others. It is, theoreti-
cally, also more time-efficient as well, but the constant factor is quite
large, making it significantly slower than the other methods on this
problem. As the size of the input and output spaces grows, however,
the GTRL algorithm wifi become the fastest.

10.2 Mobile Robot Domain

l'bis section describes the application of algorithms from this book to a
mobile-robot learning scenario. There have been very few implemen-
tations of reinforcement-learning algorithms on real robotic hardware.
Three notable examples are: Nehmzow, Smithers and Hallam's [70]
work on a reinforcement-like learning problem; Maes and Brooks' [52]
use of a simple algorithm to learn to coordinate predefined behaviors
on a walking robot; and Mahadevan and Connell's [53] work on learn-
ing individual behaviors given a subsumption structure for them.

A number of researchers have applied reinforcement-learning algo-
rithms to simulated robotic domains, such as the cart-pole problem
described in chapter 3. Franklin [311 used learning-automata tech-
niques and the Ap,p algorithm to learn to adjust the outputs of an
existing controller to compensate for externally applied torques on a
simulated robot arm. In addition, there has been work on learning
world models, such as Moore's [661, Miller's [601, and Mel's [561 work
on learning a mapping from joint positions to visual coordinates in
the workspace of a robotic arm [56] and Mason, Christiansen, and

0.18 casc-gtrl

casc-ie

O le

142 Chapter 10

Mitchell's [541 work on learning the results of using a robotic arm to
tip a tray of objects in various ways.

The robot pictured in figure 55 was used to validate a variety of
reinforcement-learning algorithms. It has two drive wheels, one on
each side, which allow it to move forward and backward along circu-
lar arcs. A set of five "feelers" allow it to detect obstacles to its front
and sides, the round bumper detects contact anywhere on its perime-
ter, and four photosensors, facing forward, backward, left, and right,
measure the light levels m each direction.

10.2.1 Algorithms
The same algorithms and parameter settings were used in this exper-
iment as in the previous one.

10.2.2 Task
In this task, the robot is given negative reinforcement, normally dis-
tributed with mean 2.0 and standard deviation 0.5 whenever the
round bumper makes contact with any physical object. If the bumper
is not engaged, the robot is given positive reinforcement, normally
distributed with mean 1.0 and standard deviation 0.2, whenever the
light in its front sensor gets brighter. If the bumper has not engaged

Figure 55

Spanky, a mobile robot

Copyrighted Material

Experiments in Complex Domains 143

and the brightness has not increased, it is given "zero" reinforcement,
normally distributed with mean 0.0 and standard deviation 0.2.

The robot interacts with the world by making short fixed-length
motions, either forward or rotating in place to the left or right. The
agent gets the following five bits of input:

Bits O and 1: Which direction is currently the brightest?
00 = front, 01 = left, 10 = right, 11 = back.

Bit 2: Is the rightmost feeler engaged?
Bit 3: Is the leftmost feeler engaged?
Bit 4: Is (at least) one of the middle three feelers engaged?

The agent must learn a mapping from this input space to its three
actions that maximizes its local reinforcement. It develops a behavior
that avoids bumping into obstacles and tends to move toward the
light.

The robot was built using cheap, simple, off-the-shelf components;
the aim in its construction was not to have great precision and accu-
racy. As a result, the sensors and effectors were quite unreliable. A
hand-coded strategy that turned away from obstacles and went to-
wards the light, when evaluated according the reinforcement scheme
given above, only got an average reinforcement of about 0.4. This was
due, in large part, to dramatic fluctuations in the light sensors. Any
algorithm that can learn to act reasonably in this domain is doing a
good job of locating the signal within the noise.

10.2.3 Results
The robot was run, using the interval estimation algorithm, in this do-
main for more than 20 trials. It always learned a good local strategy for
the domain with the length of time to learn the strategy varying from
2 to 10 minutes depending on how favorable the initial interactions
with the world were. These experiments allow us to say, qualitatively,
that the learning algorithm worked successfully. We would like, in ad-
dition, to compare different learning algorithms quantitatively in this
domain.

Ideally, this section would describe a long series of trials of each
algorithm on the real mobile robot. Unfortunately, it is difficult to
conduct such trials fairly in the physical system. The first problem
is that a human must intervene whenever the robot approaches the
light source and move the robot to a new location. The second, more
difficult, problem is that it takes a long time to conduct the exper-
iments. The time that it takes the robot to move greatly dominates
the computation time of the learning algorithms. So, for quantitative

Copyrighted Material

144 Chapter 10

experiments with multiple trials, we will make use of an artificial do-
main. The domain is, superficially, a simulation of the robot domain
described above. It is not of high fldelit which causes this to be a sub-
stantially different problem than that of running on the actual robot.
Still, it serves as an interesting ¿md slightly complex domain for testing
reinforcement-learning algorithms. Also, the results in the simulated
domain mirror informal impressions of the relative performance of the
algorithms on the actual robot.

In the artificial robot domain, noise is added to the action and per-
ception of the robot. Each action of the simulated robot is, with prob-
ability .1, changed to a randomly chosen action; each perception of
the state of the world is, with probability .1, changed to a randomly
chosen world state. This noise is in no way expected to model the
noise occurring in the physical robot domain, which was greater in
magnitude and had considerable bias. Whenever the robot reaches
the light source in the simulated world, the light is "teleported" to a
new randomly chosen location.

The results of running each algorithm for 100 nms of length 2000
are shown in table 12. The optimal expected reinforcement value was
estimated by running a hand-crafted nonlearning behavior in the en-
vironment under the same conditions as the experimental algorithms.
Similarly, the expected reinforcement of a random strategy was esti-
mated by running a random strategy in the world. All of the differ-
ences in expected reinforcement are significant. There is only a small
difference in performance between the pure JE algorithm and the cas-
caded version, but the GTRL algorithm performs markedly worse than
either of them. As we can see in the learning curves, shown in fig-
ure 56, the GTRL algorithm takes longer to converge to its maximum
performance, which is lower than optimal because it is continually
trying new hypotheses. This problem does not highlight the abilities
of the GIRL algorithm, because the input space is fairly small.

Table 12
Average reinforcement for simulated mobile robot envuonment over 100 runs of length
2000

Copyrighted Material

ALG er
lE .6439

CASCADE + lE .6203

CASCADE + GIRL .4930

random .3074

optimal .6695

ie
(cas c -

¡f
I/ random

5 10 15 20
bucket of 100 ticks

Figure 56

Learning curves for the simulated mobile robot task

10.3 Robot Domain with Delayed Reinforcement

The previous mobile robot domain can be made more difficult by
giving the robot a large reinforcement only when it reaches the light
source. This problem is considerably more difficult than other domains
used in delayed-reinforcement experiments, such as the cart-pole do-
main. In the cart-pole domain, the robot receives a large negative re-
inforcement value whenever the pole falls over. In the absence of a
good control sfrategy the pole will fall over quite readily, giving the
learner a lot of useful data early on. In this robot domain, the robot
may execute its initial random strategy for a very long time before
it accidentally encounters the light source. Informal experiments with
the real mobile robot were only successful if a human took an active
role near the beginning of the run, putting the robot in situations from
which it was relatively easy to reach the light and, therefore, get useful
reinforcement data.1

This section will report formal experiments carried out in the same
simulated robot domain, but with a delayed reinforcement function.

10.3.1 Algorithms
This experiment compares the same algorithms as were compared in
the experiment described in section 9.6: Q IEQ, and AHC + JE. The
parameter settings were

1This process is an instance of a class of methods for expediting learning that are referred
to by psychologists [391 as "shaping." Its use in the robot domain described here was
suggested by R. Sutton.

Experiments in Complex Domains 145

Copyrighted Material

er

O . 6

O . 5-

0.4-

O . 3-

O 2-

O . 1-

146 Chapter lO

Q: a = .1, T = .2
IFQ: a = .01, 8 .9999
AHC + JE: a = .1, À = .2, 6 = .9999, a .05

103.2 Task
The mputs and outputs available to the agent remain the same as in the
local reinforcement task. The reinforcement generated by the world is,
in this domain, global rather than local. When the agent comes very
close to the light source, it is given reinforcement that is normally
distributed with mean 10 and standard deviation 2.0; when it bumps
into an obstacle, it is given reinforcement normally distributed with
mean -2 and standard deviation 0.25; finally, if it neither bumps into
the wall nor comes near the light, it is given reinforcement normally
distributed with mean O and standard deviation 0.25. When the light
is reached by the robot, it is randomly moved to a new location.

10.3.3 Results
The results of running each algorithm for lo runs of length 50,000
are shown in table 13. As before, the optimal expected reinforcement
value was estimated by running a hand-crafted nonlearning behavior
in the enviromnent under the same conditions as the experimental al-
gorithms. Similarly, the expected reinforcement of a random strategy
was estimated by running a random strategy in the world. The perfor-
mance of Q was significantly better than that of IEQ or AHC + JE, which
were not significantly different from one another. The learning curves
for this domain are shown in figure 57. The poor performance of the
algorithms in this domain may be somewhat deceiving. In many cases,
the learning strategies learned quickly to perform at near-optimal lev-
els. However, in many other cases, especially for the IEQ and AHC + JE
algorithms, the robot never, or only late in the run, acquired enough
experience with the light source to learn an appropriate strategy.

Table 13
Average reinforcement for simulated robot domain with delayed reinforcement over 10
runs of length 50,000

Copyrighted Material

ALG er
Q .6529

IEQ .1468

AHC + lE .1669

random .0927
optimal 1.0591

0.8

0.6er
0.4 ahcie

i eq0.2

bucket of 500 ticks
Figure 57

Learning curves for the simulated delayed-reinforcement mobile robot task

For this reason, a "shaping" process used early in the runs would
allow the agent to get more useful information and hence improve
its performance. An interesting area for future research would be to
formally specify such shaping processes and characterize their role in
expediting learning.

Experiments in Complex Domains 147

opt

random

Copyrighted Material

Copyrighted Material

Chapter 11

Conclusion

This chapter first summarizes the results of the book, then goes on to
describe important conclusions that can be drawn from these results.
It concludes with a discussion of how the conclusions can direct and
inspire future research on building embedded systems that learn from
their environments.

11.1 Results

Simple reinforcement-learning problems can be effectively solved us-
ing the interval estimation algorithm, which does a good job of making
the trade-off between acting to gain reinforcement and acting to gain
information. It has two serious limitations, however. First, its compu-
tational complexity increases exponentially in the size of the input and
output spaces. Second, it exhibits no generalization across input and
output instances.

Problems of efficiency and lack of generalization have traditionally
been addressed by the use of linear-association and error backpropa-
gation methods for associative reinforcement-learning. Each of these
methods has its own problems. The linear-association method can only
learn action maps that are in the class of linearly separable functions.
Error backpropagation methods can, theoretically, learn functions of
arbitrary complexity, but they generally require a large number of
presentations of the learning data and are very sensitive to internal
parameter values.

hi this work, we have pursued the problem of finding new algo-
rithms for efficiently learning limited classes of action maps from re-
inforcement.

The first step was to simplify the job of the algorithm designer
by reducing the problem of learning action maps with many output
bits to the problem of learning action maps with a single output bit.
The CASCADE method implements this problem reduction, providing
decreased time complexity and improved learning rates, as well.

Copyrighted Material

150 Chapter 11

Valiant's algorithm for learning Boolean functions in k-DNF pro-
vided a useful foundation for creating new reinforcement-learning al-
gorithms. The LARCKDNF and iEiwrs algorithms integrate the ideas of
linear-associative reinforcement comparison and of interval estimation
with Valiant's methods. These new algorithms efficiently learn action
maps in k-DNF: they are both more time-efficient than the raw lE algo-
rithm, require fewer presentations of data than the BP algorithm, and
can learn a larger class of functions than linear-associative approaches.

The GIRL algorithm learns Boolean functions from reinforcement.
Its main advantage over the k-DNF methods is that it can learn low-
complexity functions very efficiently; however, by changing internal
parameter values, it can be configured to learn a variety of differ-
ent classes of functions with different computational complexities. In
addition, its use of internal symbolic representations allows it to be
extended to learn simple sequential networks.

All of this work has only addressed the problem of local learning
from immediate reinforcement. Existing work on temporal difference
methods can also be seen as a problem reduction. It reduces the prob-
lem of global learning from delayed reinforcement to the problem of
local learning from nonstationary immediate reinforcement. This per-
spective allows temporal difference methods to be integrated with any
available local learning method.

All of these methods can be integrated in various ways, such as us-
ing the CASCADE and AHC problem reductions together with the GTRL,
LARCKDNF, or IEKDNF algorithms to construct an algorithm that learns
an action mapping with many output bits from delayed reinforce-
ment. Many of these methods have been tested and shown to work
robustly on a physical mobile robot, demonstrating their applicability
to embedded systems in the real world.

11.2 Conclusions

The main conclusion of this work is that it is possible for embedded
systems to learn good action strategies from reinforcement in moder-
ately complex, noisy environments. The results are encouraging but
also clearly indicate that this learning approach is limited. More specif-
ically, we have observed that

it is crucial to have a good exploration strategy. It is not, in general,
difficult to estimate the value of different actions in different sit-
uations, but it is difficult to decide which action to take on the
basis of their estimated values. The interval estimation method
provides a good exploration policy in domains with immediate

Copyrighted Material

reinforcement, but does not work particularly well in delayed-
reinforcement environments because of nonstationarity.

Solving a restricted version of the problem can be very efficient and
effective. There have been good algorithms for quickly solving the
subset of learning problems that are linearly separable. The utffity
of considering restricted versions of a problem is made even more
apparent by the results of the algorithms for learning k-DNF and
the GTRL algorithm.

Learning action maps with state is difficult. It can be very difficult to
notice that there is hidden state in a domain that should be taken
into account when choosing actions. In a deterministic domain,
it is possible to notice that the same action, when taken in two
situations that are nominally the same, has two different results
and conclude that there must be some important hidden state.
In nondeterministic domains, it is much more difficult to notice
such inconsistencies, and a search-based approach foundered due
to the lack of good heuristics.

Learning from delayed reinforcement is possible, but may require care-
ful design of the domain or of the initial experience. The algorithms
based on temporal-difference methods make effective use of re-
inforcement data when it is available. In most complex domains,
the initial random action policy will execute for a huge amount
of time before the system encounters an interesting positive or
negative state from which it can learn. We may have to design
domains with intermediate "stepping-stones" of reinforcement or
take an active role in shaping the agent's behavior.

11.3 Future Work

The initial goal of this work was to build effective embedded sys-

tems using whatever techniques were necessary: In the introduction,
we saw that direct programming was rarely sufficient due to lack of
knowledge on the part of the programmer and lack of flexibility in the
resulting system. This book has, so far, considered the opposite case,
in which there is as little programming as possible and the system
learns a behavior from a tabula rasa.

This sort of tabula rasa learning clearly has important abilities, as
well as limitations, as we have seen. To build truly effective embed-
ded systems, we wifi have to combine a priori knowledge or structure,
as provided by a human programmer, with the ability to adapt, as
provided by reinforcement-learning algorithms. The remaining sec-
tions explore the possibilities for this integration, in the light of the
main conclusions of the previous section.

Copyrighted Material

Conclusion 151

152 Chapter 11

11.3.1 Exploration
If an agent had an a priori expectation of how well it needed to per-
form iii the environment, many of the problems of exploration would
disappear. Once the agent had found a strategy that worked as well
as necessary it could quit exploring and simply execute the sufficient
strategy In nonstationary environments, the agent would find that, af-
ter a while, its previously sufficient policy was no longer sufficient. It
would then revert to a more exploratory policy, find a policy sufficient
for the newly changed environment, then settle down to executing that
policy until the world changed again.

This extension to the current reinforcement-learning paradigm
would be very small; the programmer would have to supply a de-
sired average level of reinforcement along with the reinforcement
function and would have to be satisfied with any policy that achieved
the specified level of reinforcement.

The emphasis on optimality in machine learning has followed a
similar emphasis in artificial inteffigence and even in computer sci-
ence in general. In all of these fields there have been discouraging
theoretical results about the computational complexity of finding op-
timal solutions, resulting in a renewed interest in methods that find
approximations to the optimal solution or only probably find a good
solution. Simon has long advocated "satisficing" or finding solutions
that are "good enough" [86]; this sort of approach is finally gaining
currency in other areas of artificial intelligence and could be applied
very effectively to reinforcement learning.

11.3.2 Bias
The decision to restrict the set of action maps that can be learned can
be thought of as the application of a kind of knowledge about the
nature of the domain, namely that the optimal or a sufficient action
map is within the restricted class. This use of knowledge in machine
learning is often called bias [65]; bias can restrict the set of possible
hypotheses (this case is called categorical bias) or put a preference-
ordering on them. The stronger the categorical bias, in general, the
less data is required to converge to an appropriate hypothesis.

In this work, we have seen a few examples of categorical bias that
was based on the form of the action map to be learned. There are many
other kinds of bias that are potentially useful and should be explored
in the context of reinforcement learning. Determinations, introduced by
Russell [76], provide an especially useful kind of bias. Determinations
are, essentially, descriptions of which input values the outputs depend
on. Such information would be of great help in constraining the learn-
ing problem when there are large input or output spaces; it could be

Copyrighted Material

Copyrighted Material

Conclusion 153

used to limit the search done by the GTRL algorithm or to limit the
set of conjunctive terms in the k-DNF algorithms. This kind of knowl-
edge might also be fairly easy for a human programmer to provide
reliably; the programmer must only indicate which perceptual values
influence which output values, without specifying the specific nature
of the influence.

There are much stronger forms of bias available, as well. The system
could be started with a fully specified strategy that was a human
programmer's best attempt at a correct program. The system would
adopt some sort of exploration policy to see whether improvements
could be made, but it would probably be starting from a position
of making many of its policy decisions correctly. A useful adjunct to
such a learning system would be a programming language that would
allow the programmer to specify reactions for different situations and
also to specify the level of confidence the programmer has in their
correctness. This would allow the system to be more exploratory in
situations in which the programmer was less confident.

11.3.3 World Models and State
Learning methods composed of the best techniques described above
work effectively in small to medium-sized domains. As the size of do-
mains increases, the effectiveness of the methods tends to degrade. The
computational complexity of many of the algorithms is fairly good, so
the degradation is not primarily in the space requirements of the meth-
ods or the time per learning instance to execute. Rather, it is in the
number of learning instances, or interactions with the environment,
that the agent must have in order to learn an effective strategy.

One way to learn with fewer interactions with the world is to allow
the agent to do some of its experimentation "in its head" rather than
directly in the world, by using an internal model of the world. A
model of the world consists of two parts: a description of the state-
transition function (can be deterministic or not), which maps states
and actions into new states, and a description of the reinforcement
function, which maps states into reinforcement values. An agent with
such an internal world model can, in Popper's words (according to
Dennett) [231 "permit its hypotheses to die in its stead," by trying out
different courses of action through mental simulation, using the state-
transition and reinforcement models. Although this may take some
computation time, reinforcement penalties do not accrue for doing the
wrong thing. Having a partial world model wifi also allow an agent
to learn the rest of the world model more effectively, by allowing it
to experiment in a more informed way. If there is a part of its space
the agent does not yet have very much experience with, it can use its

154 Chapter 11

existing world model to "plan" a course of action to get to that part
of the space much sooner than it would if it had to stumble upon it
through random exploration. This is an extension of the exploration
versus exploitation trade-off that was discussed above.

Sutton [91] and Whitehead and Ballard [101], among others, have
advocated this approach in the context of reinforcement learning. In
situations where a corred world model is given in advance, results are
very encouraging. However, that is a rather unreasonable scenario; if
we had a complete and correct world model initially, we could simply
calculate the optimal policy and be done. The more reasonable scenario
is one in which the model is learned during the agent's interaction
with the world. Empirical studies of such a scenario [50] have not yet
clearly shown that it helps to learn a world model. The difficulty is
that, initially, the world model is of no help because it is incorrect. By
the time the agent has acquired a fairly correct world model, it could
also have learned a good policy by standard policy-learning methods.

Im proving Model Learning There are many representational weakness-
es in the model-learning approach as it has been implemented. All of
the existing work using world models has assumed a deterministic
environment, allowing the state-transition model to consist of a map-
ping from initial states and actions into resulting states, and the re-
inforcement model to be a mapping from states to scalar values. In a
nondeterministic domain, a state-transition model of the environment
must consist of a mapping from initial states and actions into a prob-
ability distribution over resulting states. Similarly, the reinforcement
model must map states into distributions over reinforcement values
(or, at least, the centers of the distributions). If such a mapping could
be learned, then either the optimal policy could be calculated from
it using dynamic programming methods, or it could be used incre-
mentally, in the style of Dyna [91], to simulate learning steps in the
environment.

Learning such models for anything but a very small domain is a
nearly hopeless task, however. The size grows quickly in increased
size of input and output spaces, and the model suffers from prob-
lems of compartmentalization of information. This problem can be
ameliorated by applying standard function-approximation techniques
to decrease space requirements and to increase generalization across
similar situations and actions.

Function-approximation techniques are general-purpose; they will
learn the same approximation of the world model no matter what
the agent's goals (or reinforcement function) are. It would make more
sense for the the kinds of approximations the agent makes in modeling

Copyrighted Material

the world to depend on the kinds of tasks it is trying to accomplish. If
the agent's only goals concern navigation, it may not be at all impor-
tant to store information about color change in the environment (on
the other hand, if colors serve as important navigational cues, then it
may).

Another thing to notice is that the current world models consist of a
description of how entire states are mapped to other entire states un-
der particular actions. The Al planning community has done a great
deal of work on describing state-transition models of worlds (although
they are usually deterministic), but they rarely, if ever, consider de-
scribing the mapping at this level. Rather, they take advantage of the
compositional structure of the domain, noticing that states that have a
certain property tend to be mapped to states that have a certain other
property under a particular action. Such structure allows them to de-
scribe the world in terms of operator descriptions, which specify what
must be true in the world given that certain conditions held initially
and a particular action was taken. Given a compositional transition
model of the world, a particular fully specified state can be mapped
into another fully specified state, but the mapping can be represented
much more compactly and will, as a side effect, tend to make ap-
propriate generalizations by ignoring those properties of the initial
state that are irrelevant to the result. There are domains for which no
such compositional model can be obtained; in these domains, every
aspect of the outcome of a particular action depends on every aspect
of the situation in which that action was taken, and learning will be
intractable no matter what approach is taken.

An important research direction is to develop methods for learn-
ing approximate world models in nondeterministic reinforcement-
learning problems. The models should have the property that the
details of the approximation depend on the task of the agent and
should exploit the compositional structure of the environment.

Using Approximate World Models Approximate world models, in the
form of probabilistic operator descriptions, can be used to simulate in-
teractions with the world and, thereby, to construct a policy for acting
in the world. Following the Dyna method [91], the agent will update
its policy both by taking steps in the real world (information gained
from these steps can be used to update the model) and by taking
imagined steps in the internal model.

In the simplest way of using the model to simulate results, the agent
decides to consider what would happen if it were to take a particular
action in a particular situation. It applies any operator descriptions that
are appropriate to the action and whose preconditions are satisfied

Copyrighted Material

Conclusion 155

156 Chapter 11

in that situation; from these it generates a distribution on possible
resulting situations. It draws from the distribution to get a resulting
situation, then evaluates the reinforcement model on that situation. It
now has a situation, action, result triple which it can use as data for
conventional reinforcement-learning methods.

In order to control exploration, the agent must notice that there
is a certain state or class of states that it has very little experience
with. It may then do something very similar to classical backward
planning, looking in its repertoire of operator descriptions for one
that has the little-experienced condition as one of its likely results. It
can then back-chain until it finds a sequence of actions that is likely
to reach the little-known state from the current one. It will execute the
first of those actions, then repeat the planning-for-exploration process.

One of the important difficulties of past work that uses a learned
world model is that while the model is first being learned, its use
is detrimental to the process of policy formation. An improvement
would be only to use the model when its predictions are fairly accu-
rate. Since the probabilistic operator descriptions we are proposing to
learn are based directly on statistical evidence, it will be possible to
construct a measure of reliability of operator descriptions and to use
their predictions only when the reliability exceeds a certain threshold.

Learning Models with Hidden State It is rarely the case that an agent
can instantaneously perceive all of the relevant state of the world. In
order to be able to discriminate the state of the world more finely, and
hence to act more appropriately, the agent must be able to track cer-
tain aspects of the world that are not directly perceivable. Of course,
there will be infinitely many such aspects, so it will again be nec-
essary to apply task-driven techniques to choose to track only those
aspects that enable the agent to perform more appropriately given its
reinforcement ftmction.

How can we know if there is hidden state in a nondeterministic
world? The answer is probably that we cannot. However, if we as-
sume that the environments we are dealing with have certain useful
properties of predictability, it may be appropriate to postulate the ex-
istence of hidden state when it is not possible to find a low-entropy
operator description for certain salient postconditions. It may be that
whenever an especially good state, s, is reached, it is reached by per-
forming action a. However, performing action a seems to have many
other possible results, as well. When we try to construct an operator
description concerning action a with s as one of the postconditions,
we find that there are no preconditions that make s (or anything else)

ighted Material

a very likely outcome. We may postulate that some hidden condition
must obtain for action a to lead to state s.

11.3.4 Delayed Reinforcement
In learning from delayed reinforcement, we have to ensure that in-
teresting good and bad results will happen to the system so it has
an opportunity to learn. In situations like the robot domain studied
in chapter 10, there is a real problem that the initial random strategy
of the system would run for a very long time before an interesting
reinforcement even happened. We briefly discussed shaping as an ap-
propriate kind of help in such situations: a teacher starts the system
initially in configurations from which it is easy to reach an interesting
result; as the system learns to deal with these situations, it is moved
to progressively more difficult situations.

Another way to make learning from delayed reinforcement more ef-
fective is to supply a teacher. Of course, if the system gets to observe
the teacher perfectly, our problem is reduced to simple supervised
learning. A weaker teacher might supply only a few interesting tra-
jectories through the space and leave the system to explore their con-
nections and alternate paths. Some scenarios of this kind have been
studied by Whitehead [1001 and by Lin [50].

Learning from delayed reinforcement can also benefit significantly
from initial strategies that are supplied by a programmer. As iii most
problems of computer science, learning in complex systems can be
made much more efficient by breaking a large problem into a num-
ber of smaller problems. In general, there may not be a domain-
independent way of doing this, although there are interesting results
along this line by Singh [87]. An alternative is for the programmer to
specify a break-down of the task into subtasks; this was done by Ma-
hadevan and Connell [53] in a way that required the programmer to
specify separate reinforcement functions for each submodule. It will
take further experimentation to see if this is an appropriate division
of labor between man and machine.

11.4 Final Words

This work represents some steps toward the final goal of the synthe-
sis of complex embedded systems through a combination of a priori
design and on-line learning. There is still a long way to go down this
path, but it is hoped that these steps will provide a sound start.

Copyrighted Material

Conclusion 157

Copyrighted Material

Appendix A

Statistics in GTRL

A.1 Binomial Statistics

Each hypothesis has the following set of statistics associated with it:

b05 The number of times action O was taken when this hypothesis was
satisfied and reinforcement value O was received (mnemonically
"bad O satisfied").

b The number of times action O was taken when this hypothesis was
not satisfied and reinforcement value O was received (mnemoni-
cally "bad O not-satisfied").

b1 The number of times action I was taken when this hypothesis was
satisfied and reinforcement value O was received (mnemonically
"bad I satisfied").

b1 The number of times action I was taken when this hypothesis was
not satisfied and reinforcement value O was received (mnemoni-
cally "bad i not-satisfied").

gos The number of times action O was taken when this hypothesis was
satisfied and reinforcement value i was received (mnemonically
"good O satisfied").

go The number of times action O was taken when this hypothesis was
not satisfied and reinforcement value i was received (mnemoni-
cally "good O not-satisfied").

gi The number of times action I was taken when this hypothesis was
satisfied and reinforcement value i was received (mnemonically
"good i satisfied").

gm The number of times action i was taken when this hypothesis was
not satisfied and reinforcement value i was received (mnemoni-
cally, "good i not-satisfied").

pbo The number of times this hypothesis has chosen the action O and
received reinforcement value O (mnemonically, "predicted bad O").

pb1 The number of times this hypothesis has chosen the action i and
received reinforcement value O.

Copyrighted Material

160 Appendix A

Pgo The number of times this hypothesis has chosen the action O and
received reinforcement value 1 (mnemonically, "predicted good
O").

pgi The number of times this hypothesis has chosen the action i and
received reinforcement value 1.

The procedure for updating these statistics should be apparent from
the descriptions given above.

Most of the statistics are concerned with what happens when the
hypothesis agreed with the action that was actually taken; this will be
the case when the action was I and the hypothesis was satisfied and
when the action was O and the hypothesis was not satisfied. Given
this data structure, we can define the statistical functions as follows:

age(h) = bon + b5 + gon + gis
gon +g15

er(h) =
b0n +b15 +gon +gis

er-ub(h) = ub(go + gis, b0 + b15 + gon + gi5)

(h)
pgo + pgi

' pbo+pb1+pgo+pgi
erp-ub(h) = ub(pgo + pgi,pbo + pbi + pgo + pgi)

NC/i) = Z(gon,gon + bo,gi,gi + bin)
S(h) = Z(g15,g15 + bi5,go5,go5 + b05)

where the upper-bound function, ub, is defined [48] as

+ + - +n 2n /i V nI k nl 4n
ub(x, n) = 1+-La

and the Z function is the normal deviate returned by the standard
binomial test for difference of parameter, given by [88]:

Z(s1, n1, s2, n2)
Pi - P2

/pi(1pi) + pp2) '
n1 n2

where Pi = i/fli and P2 = s2/n2. The parameter za/2 is used to deter-
mine the size of the confidence interval for computing ub.

Copyrighted Material

Copyrighted Material

Statistics in GTRL 161

A.2 Normal Statistics

Each hypothesis has the following set of statistics associated with it:

no The number of times action O has been taken when this hypoth-
esis was satisfied.

sos The sum of reinforcement values received when action O was
taken when this hypothesis was satisfied.

sso The sum of the squares of the reinforcement values received
when action O was taken when this hypothesis was satisfied.

no The number of times action O has been taken when this hypoth-
esis was not satisfied.

50n The sum of reinforcement values received when action O was
taken when this hypothesis was not satisfied.

550n The sum of the squares of the reinforcement values received
when action O was taken when this hypothesis was not satisfied.

n15 The number of times action I has been taken when this hypoth-
esis was satisfied.

51s The sum of reinforcement values received when action I was
taken when this hypothesis was satisfied.

ssi The sum of the squares of the reinforcement values received
when action i was taken when this hypothesis was satisfied.

ni, The number of times action i has been taken when this hypoth-
esis was not satisfied.
The sim-i of reinforcement values received when action i was
taken when this hypothesis was not satisfied.

ss The sum of the squares of the reinforcement values received
when action i was taken when this hypothesis was not satisfied.
The number of times this hypothesis has chosen an action.

s, The sum of reinforcement values received when the hypothesis
has chosen an action.

ss The sum of the squares of the reinforcement values received
when the hypothesis has chosen an action.

The procedure for updating these statistics should be apparent from
the descriptions given above.

As in the binomial case, most of the statistics are concerned with
what happens when the hypothesis agreed with the action that was
actually taken; this wifi be the case when the action was i and the
hypothesis was satisfied and when the action was O and the hypothesis

162 Appendix A

was not satisfied. Given this data structure, we can define the statistical
functions as follows:

non + fis
er-ub(h) = nub(no + n15, on + s, ssj, + ss)

erp(h) =
np

er-ub(h) = nub(n, s, sse)

N(h) = T(non, 50n, SSo, ni,, ssi)
5(h) = T(n15, ss15, flos, sos, sso5)

where the normal upper-bound function, nub, is defined as

nub(n,x,x2)=Î+t/21)_5=

where = x/n is the sample mean,

age(h) = non + fis
son + 51s

er(h) =

n - (x)

n(n-1)

is the sample standard deviation, t2 is Student's t function with n - i
degrees of freedom [881. The function T is the result of a test for equal
means, not assuming equal variances; it is not distributed exactly as
Student's t, but can be approximated using that distribution [88]; it is
defined as

Copyrighted Material

XI -
T(n1, x, n2, x2, x) =

+
Vni 772

where x1 and x2 are sample means and s1 and 2 are sample standard
deviations as defined above. The parameter z,,2 is used to determine
the size of the confidence interval for computing nub.

A.3 Non parametric Statistics

This statistical module is parametrized by w, the window size, as well
as by the confidence-interval parameter z,2. The parameter w controls
the size of the data buffers kept by the module. Because this method
employs no summary statistics, all of the data for the last w ticks
are stored in this module. Each hypothesis has the following set of
statistics associated with it:

riaI

Statistics in GIRL 163

n The number of th-nes this hypothesis has agreed with the action
taken.

r1 A list of the reinforcement values of the last w ticks on which
this hypothesis agreed with the action taken, sorted increasing
by time received.

r0 A list of the reinforcement values of the last w ticks on which
this hypothesis agreed with the action taken, sorted increasing
by value.

n0 The number of times this hypothesis has agreed with the action
o.

TW A list of the reinforcement values of the last w ticks on which this
hypothesis agreed with the action O, sorted increasing by time
received.

r A list of the reinforcement values of the last w ticks on which this
hypothesis agreed with the action O, sorted increasing by value.

n1 The number of times this hypothesis has agreed with the action
1.

rtj A list of the reinforcement values of the last w ticks on which this
hypothesis agreed with the action 1, sorted increasing by time
received.

r01 A list of the reinforcement values of the last w ticks on which this
hypothesis agreed with the action 1, sorted increasing by value.

n, The number of times this hypothesis has chosen the action.
rIp A list of the reinforcement values of the last w ticks on which this

hypothesis chose the action, sorted increasing by time received.
A list of the reinforcement values of the last w ticks on which this
hypothesis chose the action, sorted increasing by value.

Updating these statistics is slightly more complex that in the previous
cases. The n's are simply incremented appropriately. As long as the n
value is less than or equal to w, new data are simply inserted into the
appropriate places in the lists. Once n is greater than w, on each tick,
the first element of r1 is removed from both r1 and TV, and the new
reinforcement value is inserted into the resulting r and put on the
end of the resulting r1. This keeps the window of data sliding along.
We need r1 in order to know which element to remove from r, before
we can add a new element.

Given this data structure, we can define the statistical functions,
using the ordinary sign test [33], as follows:

age(h) = n

er(h) = r0[Lmin(w,n)/2j]

164 Appendix A

er-ub(h) = r[min(w, n) - u]
erp(h) = r,[Lmin(w, n)/2j I

er-ub(h) = r[rnin(w, n) - u]
where value u is chosen to be the largest value such that

(=o
nk.5 c/2

For large values of n, u can be approximated using the normal distri-
bution.

The computation of N and S can be done using a two-sample
Kolmogorov-Smirnov test or a median test; these tests are too com-
plex to describe here, but are covered in detail by Gibbons [331.

Copyrighted Material

Appendix B

Simplifying Boolean Expressions in GTRL

This appendix describes the Boolean canonicalization and simplifi-
cation rules that are used in the GTRL algorithm. It is assumed that
simplification happens when a conjunction, disjunction, or set-reset
expression is being constructed and that the arguments have already
been simplified and canonicalized. The algorithm is described as first
constructing the combined hypothesis, then testing to see if has depth
appropriate to the level of the algorithm for which it was constructed.
In fact, the procedures for constructing composite hypotheses simpiy
return nil if any applicable simplification rules can be found.

The disjunctive hypothesis e1 V e2 can be simplified to a lower level
of complexity if any of the following statements is true (e stands for
any expression):

e1 = e2

e1 = false
e1 = true
e2 = false
e2 = true
e1 = -'e2

e2 =

e1 = e2 V e

e1 = e V e2

e2 = e1 V e

e2 = e V e1

e1 = e2 A e

e1 = e A e2

e2 = e1 A e

e2 = e A e1

Copyrighted Material

166 Appendix B

The conjunctive hypothesis e1 A e2 can also be simplified in any of the
situations described above. The set-reset hypothesis SR(e11e2) can be
simplified in all of the situations described above, except the ones in
which e1 = e2 A e or e1 = e A e2. To see this, note that SR(a,a Ab) =
SR(a, b) beca.ise setting takes priority, but SR(a A b, a) cannot be re-
duced.

Canomcalization consists of ordering the two top-level subexpres-
sions, because they are assumed to have already been canonicalized.
An arbitrary ordering is defined on operators; atomic expressions re-
ferring to input bits are ordered according to their index into the input
vector. The expression e1 is less than expression e2 if and only if

e1 and e2 are both atoms and e1 <e2;
e1 is an atom and e2 is not;
neither e1 nor e2 is an atom and the top level operator of e1 is

less than the top level operator of e2;
neither e1 nor e2 is an atom, they both have the same top-level

operator, and the first subexpression of e1 is less than (under this
definition) the first subexpression of e2; or

neither e1 nor e2 is an atom, they both have the same top-level
operator, they both have the same first subexpression, and the
second subexpression of e1 is less than (under this definition) the
second subexpression of e2.

Copyrighted Material

References

Philip E. Agre and David Chapman. Pengi: An implementation of
a theory of activity. In Proceedings of the Sixth National Conference on
Artificial Intelligence, volume 1, pages 268-272, Seattle, Washington, 1987.
Morgan Kaufmann.
David W. Aha and Dennis Kibler. Noise tolerant instance-based learning
algorithms. In Proceedings of the Eleventh International Joint Conference on
Artificial Intelligence, volume 1, pages 794-799, Detroit, Michigan, 1989.
Morgan Kaufmann.
James S. Albus. Brains, Behavior, and Robotics. BYTE Books, Subsidiary of
McGraw-Hill, Peterborough, New Hampshire, 1981.
Charles W. Anderson. Learning and Problem Solving with Multilayer
Connectionist Systems. PhD thesis, University of Massachusetts, Amherst,
Massachusetts, 1986.

[51 Charles W. Anderson. Strategy learning with multilayer connectionist
representations. In Proceedings of the Fourth International Workshop on
Machine Learning, pages 103-114, Ann Arbor, Michigan, 1987.
Dana Angluin and Philip Laird. Learning from noisy examples. Machine
Learning, 2(4):343-370, 1988.

W. Ross Ashby. Design for a Brain: The Origin of Adaptive Behaviour. John
Wiley and Sons, New York, New York, second edition, 1960.
A. G. Barto and P. Anandan. Pattern recognizing stochastic learning
automata. IEEE Transactions on Systems, Man, and Cybernetics, 15:360-374,
1985.

A. G. Barto, R. S. Sutton, and C. J. C. H. Watkins. Learning and se-
quential decision making. Technical Report 89-95, Department of Com-
puter and Information Science, University of Massachusetts, Amherst,
Massachusetts, 1989. Also published in Learning and Computational Neu-
roscience: Foundations of Adaptive Networks, Michael Gabriel and John
Moore, editors. The MIT Press, Cambridge, Massachusetts, 1991.
Andrew G. Barto. Connectionist learning for control. Technical Report
89-89, Department of Computer and Information Science, University of
Massachusetts, Amherst, Massachusetts, 1989.

[il] Andrew G. Barto and Michael I. Jordan. Gradient following without
back-propagation in layered networks. In Proceedings of the IEEE First

ighted Mai

168 References

International Conference on Neural Networks, volume 2, pages 629-636,
San Diego, California, 1987.

[12] Andrew G. Barto, Richard S. Sutton, and Charles W. Anderson.
Neuronlike adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man, and Cybernetics, SMC-
13(5):834-846, 1983.

[131 Donald A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation
of Experiments. Chapman and Hall, London, 1985.
L. Blum and N. Blum. Towards a mathematical theory of inductive
inference. Information and Control, 28:125-155, 1975.
Rodney A. Brooks. A robust layered control system for a mobile robot.
IEEE Journal of Robotics and Automation, RA-2:14-23, 1986.

Rodney A. Brooks, Anita M. Flynn, and Thomas ManU. Self calibration
of motion and stereo vision for mobile robot navigation. Technical
Report AJM-984, MiT Artificial Intelligence Laboratory Cambridge,
Massachusetts, 1987.
Wray Buntine. A critique of the Valiant model. In Proceedings of the
Eleventh International Joint Conference on Artificial Intelligence, volume 1,
pages 837-842, Detroit, Michigan, 1989. Morgan Kaufmann.
Robert R. Bush and William K. Estes, editors. Studies in Mathematical
Learning Theory. Stanford University Press, Stanford, California, 1959.
David Chapman. Planning for conjunctive goals. Artificial Intelligence,
32(3):333-378, 1987.
David Chapman and Leslie Pack Kaelbling. Input generalization in de-
layed reinforcement learning: An algorithm and performance compar-
isons. In Proceedings of the International Joint Conference on Artificial Intel-
ligence, Sydney, Australia, 1991.

[211 Margaret E. Connell and Paul E. Utgoff. Learning to control a dynamic
physical system. In Proceedings of the Sixth National Conference on Artificial
Intelligence, volume 2, pages 456-460, Seattle, Washington, 1987. Morgan
Kaufmann.
Peter Dayan. The convergence of TD(A) for general A. Machine Learning,
8(3):341-362, 1992.

Daniel C. Dennett. Brainstorms: Philosophical Essays on Mind and Psychol-
ogy. Bradford Books, Montgomery, Vermont, 1978.
Thomas G. Dietterich. Learning at the knowledge level. Machine Learning,
1(3):287-315, 1986.

125] Gary L. Drescher. Made-up Minds: A Constructivist Approach to Artificial
Intelligence. The MIT Press, Cambridge, Massachusetts, 1991.

[26] Richard O. Duda, John Gaschnig, and Peter E. Hart. Model design in the
Prospector consultant system for mineral exploration. In Donald Michie,
editor, Expert Systems in the Micro Electronic Age. Edinburgh University
Press, Edinburgh, U.K., 1979.

Copyrighted Material

References 169

Richard O. Duda, Peter E. Hart, and Nils J. Nilsson. Subjective Bayesian
methods for rule-based inference systems. Technical Report 124, Artifi-
cial Intelligence Center, SRI International, Menlo Park, California, 1976.
Herbert B. Enderton. A Mathematical Introduction to Logic. Academic
Press, New York, New York, 1972.
William K. Estes. Toward a statistical theory of learning. Psychological
Review, 57:94-107, 1950.

R. James Firby. An investigation into reactive planning in complex
domains. In Proceedings of the Sixth National Conference on Artificial
Intelligence, volume 1, pages 202-206, Seattle, Washington, 1987. Morgan
Kaufmann.
Judy A. Franklin. Learning control in a robotic system. In Proceedings of
the IEEE International Conference on Systems, Man, and Cybernetics, 1987.

King-Sun Fu. Learning control systemsreview and outlook. IEEE
Transactions on Automatic Control, 15(2):210-221, April 1970.
Jean Dickinson Gibbons. Nonparametric Statistical Inference. Marcel
Dekker, Inc., New York and Basel, 1985.
E. Mark Gold. Language identification in the limit. Information and
Control, 10:447-474, 1967.

[351 E. Mark Gold. Complexity of automaton identification from given data.
Information and Control, 37:302-320, 1978.

David E. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley, Reading, Massachusetts, 1989.
John J. Grefenstette. Incremental learning of control strategies with
genetic algorithms. In Proceedings of the Sixth International Workshop
on Machine Learning, pages 340-344, Ithaca, New York, 1989. Morgan
Kaufmann.
David Haussier. Quantifying inductive bias: AI learning algorithms and
Valiant's learning framework. Artificial Intelligence, 36(2):177-222, 1988.
Ernest R. Hilgard and Gordon I-I. Bower. Theories of Learning. Prentice-
Hall, Engiewood Cliffs, New Jersey, fourth edition, 1975.
John H. Holland. Escaping brittleness: The possibilities of general-
purpose learning algorithms applied to parallel rule-based systems. In
Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell, editors,
Machine Learning: An Artificial Intelligence Approach, volume 2, chapter 20.
Morgan Kaufmann, 1986.

[411 Leslie Pack Kaelbling. Learning as an increase in knowledge. Technical
report, Center for the Study of Language and Information, Stanford,
California, 1987.
Leslie Pack Kaelbling. Goals as parallel program specifications. In
Proceedings of the Seventh National Conference on Artificial Intelligence,
Minneapolis-St. Paul, Minnesota, 1988.
Leslie Pack Kaelbling. Learning in Embedded Systems. PhD thesis, Stanford
Uthversit Stanford, California, 1990.

pyrighted Material

170 References

Leslie Pack Kaelbling. Compiling operator descriptions into reactive
strategies using goal regression. Technical report, Teleos Research, Palo
Alto, California, 1991.
Leslie Pack Kaelbling and Stanley J. Rosenschein. Action and planning
in embedded agents. Robotics and Autonomous Systems, 6(1):35-48, 1990.
Also published in Designing Autonomous Agents: Theory and Practice
from Biology to Engineering and Back, Pattie Maes, editor, The MIT
Press/Elsevier, 1991.
John G. Kemeny and J. Laurie Snell. Finite Markov Chains. Springer-
Verlag, New York, 1976.
Tze Leung Lai. Adaptive treatment allocation and the multi-armed
bandit problem. The Annals of Statistics, 15(3):1091-1114, 1987.
Richard J. Larsen and Morris L. Marx. An Introduction to Mathematical
Statistics and Its Applications. Prentice-Hall, Englewood Cliffs, New Jersey,
1986.

Long-Ji Lin. Self-improving based on reinforcement learning, planning,
and teaching. In Proceedings of the Eighth International Workshop on
Machine Learning, Evanston, Illinois, 1991. Morgan Kaufmann.
Long-Ji Lin. Self-improving reactive agents based on reinforcement
learning, planning and teaching. Machine Learning, 8(3):293-322, 1992.
Nick Littlestone. Learning quickly when irrelevant attributes abound: A
new linear threshold algorithm. Machine Learning, 2(4):245-318, 1988.
Pattie Maes and Rodney A. Brooks. Learning to coordinate behaviors.
In Proceedings of the Eighth National Conference on Artificial Intelligence,
Boston, Massachusetts, 1990. Morgan Kaufmann.

[531 Sridhar Mahadevan and Jonathan Connell. Automatic programming of
behavior-based robots using reinforcement learning. In Proceedings of the
Ninth National Conference on Artificial Intelligence, Anaheim, California,
1991.

Matthew T. Mason, Alan D. Christiansen, and Tom M. Mitchell.
Experiments in robot learning. In Proceedings of the Sixth International
Workshop on Machine Learning, pages 141-145, Ithaca, New York, 1989.
Morgan Kaufmann.
John McCarthy and Patrick J. Hayes. Some philosophical problems from
the standpoint of artificial intelligence. In B. Meitzer and D. Michie,
editors, Machine Intelligence 4. Edinburgh University Press, Edinburgh,
1969.

Bartlett W. Mel. Building and using mental models in a sensory-motor
domain: A connectionist approach. In Proceedings of the Fifth International
Conference on Machine Learning, pages 207-213, Ann Arbor, Michigan,
1988.

Ryszard S. Michaiski. A theory and methodology of inductive learning.
In Ryszard S. Michalski, Jaime G. Carbonell, and Tom M. Mitchell,
editors, Machine Learning: An Artificial Intelligence Approach, chapter 4,
Tioga, 1983.

Copy

References 171

D. Michie and R. A. Chambers. boxes: An experiment in adaptive control.
In E. Dale and D. Michie, editors, Machine Intelligence 2. Oliver and Boyd,
Edinburgh, 1968.

Donald Michie. Machine learning in the next five years. In Proceedings of
the Third European Working Session on Learning, pages 107-122, Glasgow,
1988.

W. Thomas Miller III. Sensor-based control of robotic manipulators using
a general learning algorithm. IEEE Journal of Robotics and Automation,
RA-3(2):157-165, 1987.

Marvin L. Minsky. Theory of Neural-Analog Reinforcement Systems and Its
Application to the Brain-Model Problem. PhD thesis, Princeton University
Princeton, New Jersey, 1954.

Marvin L. Minsky and Seymour Papert. Perceptrons: An Introduction to
Computational Geometry. The MIT Press, Cambridge, Massachusetts, 1969.
Tom M. Mitchell. Version spaces: A candidate elimination approach to
rule learning. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 305-310, Cambridge, Massachusetts, 1977.
Tom M. Mitchell. Generalization as search. Artificial Intelligence,
18(2):203-226, 1982.

Tom M. Mitchell. The need for biases in learning generalizations. In
Jude W. Shavlik and Thomas G. Dietterich, editors, Readings in Machine
Learning. Morgan Kaufmann, San Mateo, California, 1990.
Andrew W. Moore. Acquisition of dynamic control knowledge for a
robotic manipulator. In Proceedings of the Seventh International Conference
on Machine Learning, pages 244-252, Austin, Texas, 1990. Morgan
Kaufmann.
Edward F Moore. Gedanken experiments on sequential machines. In
Automata Studies, pages 129-153. Princeton University Press, Princeton,
New Jersey, 1956.

Paul Munro. A dual back-propagation scheme for scalar reward learning.
In Proceedings of the Ninth Conference of the Cognitive Science Society, pages
165-176, Seattle, Washington, 1987.
Kumpati Narendra and M. A. L. Thathachar. Learning Automata: An
Introduction. Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
Ulrich Nehmzow, Tim Smithers, and John Hallam. Steps towards intelli-
gent robots. Technical Report 502, Department of Artificial Intelligence,
University of Edinburgh, Edinburgh, Scotland, 1990.

[711 Nils J. Niisson. Learning Machines. McGraw-Hill, New York, 1965. Second
edition, Morgan Kaufmann, 1990.

[72] J. Ross Quinlan. Learning efficient classification procedures and their
application to chess end games. In Ryszard S. Michalski, Jaime G.
Carbonell, and Tom M. Mitchell, editors, Machine Learning: An Artificial
Intelligence Approach, chapter 15. Tioga, 1983.

Copyrighted erial

172 References

Ronald L. Rivest and Robert E. Schapire. A new approach to unsuper-
vised learning in deterministic environments. In Proceedings of the Fourth
International Workshop on Machine Learning, pages 364-375, Irvine, Cali-
fornia, 1987. Morgan Kaufmann.
Sheldon M. Ross. Introduction to Stochastic Dynamic Programming. Aca-
demic Press, New York, 1983.
D. E. Rumelhart, G. E. 1-linton, and R. J. Williams. Learning internal
representations by error propagation. In David E. Rumelhart and
James L. McClelland, editors, Parallel Distributed Processing, volume 1,
chapter 8. The MIT Press, Cambridge, Massachusetts, 1986.
Stuart J. Russell. The Use of Knowledge in Analogy and Induction. Pitman
Publishing, London, 1989.
A. L. Samuel. Some studies in machine learning using the game of
checkers. IBM Journal of Research and Development, 3:211-229, 1959.
Reprinted in E. A. Feigenbaum and J. Feldman, editors, Computers and
Thought, McGraw-Hill, New York 1963.
A. L. Samuel. Some studies in machine learning using the game of
checkers. IlRecent progress. IBM Journal of Research and Development,
pages 601-617, 1967.
Jeffrey C. Schlimmer. Concept Acquisition Through Representational Adjust-
ment. PhD thesis, University of California, Irvine, Irvine, California, 1987.
Jeffrey C. Schlimmer. Incremental adjustment of representations for
learning. In Proceedings of the Fourth International Workshop on Machine
Learning, pages 79-90, Ann Arbor, Michigan, 1987.
Jeffrey C. Schlimmer. Learning and representation change. In Proceedings
of the Sixth National Conference on Artificial Intelligence, volume 2, pages
511-515, Seattle, Washington, 1987. Morgan Kaufmann.
Jeffrey C. Schlimmer and Richard H. Granger, Jr. Beyond incremental
processing: Tracking concept drift. In Proceedings of the Fifth National
Conference on Artificial Intelligence, volume 1, pages 502-507, Philadelphia,
Pennsylvania, 1986. Morgan Kaufmann.
Jeffrey C. Schlimmer and Richard H. Granger, Jr. Incremental learning
from noisy data. Machine Learning, I (3):317-354, 1986.
Oliver G. Selfridge and Richard S. Sutton. Training and tracking
in robotics. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 670-672, Los Angeles, California, 1985.
Morgan Kaufmann.
Wei-Min Shen. Learning from the Environment Based on Percepts and Ac-
tions. PhD thesis, Carnegie Mellon University, Pittsburgh, Pennsylvania,
1989.

Herbert A. Simon. The Sciences of the Artificial. The MiT Press, Cambridge,
Massachusetts, second edition, 1982.

[871 Satinder Pal Singh. Transfer of learning by composing solutions of
elemental sequential tasks. Machine Learning, 8(3):323-340, 1992.

Copyrighted Material

Copyrighted Material

References 173

George W. Snedecor and William G. Cochran. Statistical Methods. Iowa
State University Press, Ames, Iowa, eighth edition, 1989.
Richard S. Sutton. Temporal Credit Assignment in Reinforcement Learning.
PhD thesis, University of Massachusetts, Amherst, Massachusetts, 1984.
Richard S. Sutton. Learning to predict by the method of temporal
differences. Machine Learning, 3(1):9-44, 1988.

Richard S. Sutton. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Proceedings
of the Seventh International Conference on Machine Learning, Austin, Texas,
1990. Morgan Kaufmann.

Richard S. Sutton and Brian Pmette. The learning of world models by
connectionist networks. In Proceedings of the Seventh Annual Conference of
the Cognitive Science Society, pages 54-64, 1985.
M. A. L. Thathachar and P. 5. Sastry. A new approach to the design
of reinforcement schemes for learning automata. IEEE Transactions on
Systems, Man, and Cybernetics, SMC-15(1):168-175, 1985.

M. L. Tsetlin. Automaton Theory and Modeling of Biological Systems.
Academic Press, New York, New York, 1973.
L. G. Valiant. A theory of the learnable. Communications of the ACM,
27(11):1134-1142, 1984,

[961 L. G. Valiant. Learning disjunctions of conjunctions. In Proceedings of
the International Joint Conference on Artificial Intelligence, volume 1, pages
560-566, Los Angeles, California, 1985. Morgan Kaufmann.

[971 C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, King's
College, Cambridge, 1989.
C. J. C. H. Watkins and P. Dayan. Q-learning. Machine Learning, 8(3):279-
292, 1992.

Paul J. Werbos. Generalization of backpropagation with application to a
recurrent gas market model. Neural Networks, 1:339-356, 1988.
Steven D. Whitehead. Complexity and cooperation in q-learning. In
Proceedings of the Eighth International Workshop on Machine Learning,
Evanston, illinois, 1991. Morgan Kaufmann.

[1011 Steven D. Whitehead and Dana H. Ballard. A role for anticipation
in reactive systems that learn. In Proceedings of the Sixth International
Workshop on Machine Learning, pages 354-357, Ithaca, New York, 1989.
Morgan Kaufmann.
Steven D. Whitehead and Dana H. Ballard. Learning to perceive and act
by trial and error. Machine Learning, 7(1):45-83, 1991.
B. Widrow and S. D. Stearns. Adaptive Signal Processing. Prentice Hall,
Englewood Cliffs, New Jersey, 1985.
Bernard Widrow, Narendra K. Gupta, and Sidhartha Maitra. Pun-
ish/reward: Learning with a critic in adaptive threshold systems. IEEE
Transactions on Systems, Man, and Cybernetics, SMC-3(5):455--465, 1973.

174 References

Bernard Widrow and Marcian E. Hoff. Adaptive switching circuits. In
IRE WESCON Convention Record, New York, New York, 1960. Reprinted
in Neurocoinputing: Foundations of Research, James A. Anderson and
Edward Rosenfeld, editors, The MIT Press, Cambridge, Massachusetts,
1988.

Ronald J. Williams. Reinforcement learning in connectionist networks: A
mathematical analysis. Technical Report ICS-8605, Institute for Cognitive
Science, University of California, San Diego, La Jolla, California, 1986.

Ronald J. Williams A class of gradient-estimating algorithms for
reinforcement learning in neural networks. In Proceedings of the IEEE
First International Conference on Neural Networks, San Diego, California,
1987.

Ronald J. Williams. On the use of backpropagation in associative
reinforcement learning. In Proceedings of the IEEE International Conference
on Neural Networks, San Diego, California, 1988.
Ian H. Witten. An adaptive optimal controller for discrete-time markov
environments. Information and Control, 34:286-295, 1977.

Copyrighted Material

Index

Action value, 25
Adaline, 43
Adaptive heuristic critic, 123, 127
AHC algorithm, 127, 134
Associative reinforcement learning, 42
Associative reward-penalty algorithm, 44,

45

Bandit algorithm, 36, 58
Binomial Boolean expression worlds, 82,

104
Boltzmann distribution, 125
Boolean-function learner, 67
BOXES, 130
BPRC algorithm, 46, 82

CASCADE algorithm, 68, 139, 149
Classifier system, 48
CMAC, 131
Complexity 32
Concept learning, 6
Correctness, 24
Consistency 21
Convergence, 29
Copying, 43

Delayed reinforcement, 123
Discounted reinforcement, 26
Disjunctive normal form, 78
Dyna, 126
Dynamic programming, 26, 124

Embedded system, I
Epsilon optimal, 30
Error backpropagation, 45, 149
Expected reinforcement, 24
Expedient, 30

Function learning, 6

Genetic algorithms, 48
GTRL algorithm, 89, 139, 150
GTRL-S algorithm, 115

Horizon, 25

IEKDNF algorithm, 79, 82, 150
IEQ algorithm, 125, 134
Inconsistency, 17
Interval estimation algorithm, 51, 58, 79,

82, 125, 134, 139, 149

k-DNF, 78

Lai algorithm, 37, 53, 58
LARC algorithm, 43, 79, 82
LARCDNF algorithm, 79, 82, 150
Learning automata, 37
Learning behaviors, 22
Learning in the limit, 29
Linear associator, 43, 131, 149
Linear reward-inaction algorithm, 39, 40
Linear reward-penalty algorithm, 39, 40,

58

Markov decision process, 21, 25
Mathematical psychology, 38
Mistake bounds, 31
Mobile robot, 141

Necessity 90, 95, 98
Noise, I
Non-Boolean reinforcement, 49
Nonstationary environments, 50, 65

Optimal behavior, 30

Policy iteration, 27
Probably approximately correct, 30

Copyrighted i erial

176 Index

Prediction value, 93, 98

Q-learning algorithm, 123, 134

Reactive systems, 2, 32
Real time, I
Regret, 32,36
Reinforcement comparison algorithm, 41,

58
Reinforcement learning, 5, 6

Set-reset, 113
STAGGER, 90
Strictly incremental, 33
Structural credit assignment, 68
Sufficiency 90, 95, 98

Team algorithm, 68
Temporal difference, 123, 125, 128
Thathachar-Sastry (TC) algorithm, 40, 58
Tsetlin automaton, 37
Two-armed bandit, 35

Valiant's algorithm, 78

Widrow-Hoff rule, 43
World model, 4

Copyrighted Material

	Contents
	Acknowledgments
	Chapter 1 Introduction
	1.1 Direct Programming
	1.2 What Is Learning?
	1.3 What to Learn?
	1.4 What to Learn from?
	1.5 Representation
	1.6 Situated Action
	1.7 Theory and Practice
	1.8 Contents

	Chapter 2 Foundations
	2.1 Acting in a Complex World
	2.1.1 Modeling an Agent's Interaction with the World
	2.1.2 Inconsistent Worlds
	2.1.3 Learning Behaviors

	2.2 Performance Criteria
	2.2.1 Correctness
	2.2.2 Convergence
	2.2.3 Time and Space Complexity

	2.3 Related Foundational Work

	Chapter 3 Previous Approaches
	3.1 Bandit Problems
	3.2 Learning Automata
	3.2.1 Early Work
	3.2.2 Probability-Vector Approaches

	3.3 Reinforcement-Comparison Methods
	3.4 Associative Methods
	3.4.1 Copying
	3.4.2 Linear Associators
	3.4.3 Error Backpropagation

	3.5 Genetic Algorithms
	3.6 Extensions to the Model
	3.6.1 Non-Boolean Reinforcement
	3.6.2 Nonstationary Environments

	3.7 Conclusions

	Chapter 4 Interval Estimation Method
	4.1 Description of the Algorithm
	4.2 Analysis
	4.2.1 Regular Error
	4.2.2 Error Due to Sticking
	4.2.3 Total Regret

	4.3 Empirical Results
	4.4 Experimental Comparisons
	4.4.1 Algorithms and Environments
	4.4.2 Parameter Tuning
	4.4.3 Results

	4.5 Extensions
	4.5.1 Multiple In puts and Actions
	4.5.2 Real-valued Reinforcement
	4.5.3 Nonstationary Environments

	4.6 Conclusion

	Chapter 5 Divide and Conquer
	5.1 Boolean-Function Learners
	5.2 Cascade Algorithm
	5.3 Correctness and Convergence
	5.3.1 Correctness
	5.3.2 Convergence

	5.4 Empirical Results
	5.4.1 Complexity
	5.4.2 Performance

	5.5 Conclusion

	Chapter 6 Learning Boolean Functions in k-DNF
	6.1 Background
	6.2 Learning k-DNF from Input-Out put Pairs
	6.3 Combining the LARC and VALIANT Algorithms
	6.4 Interval Estimation Algorithm for k-DNF
	6.5 Empirical Comparison
	6.5.1 Algorithms and Environments
	6.5.2 Parameter Tuning
	6.5.3 Results
	6.5.4 Discussion

	6.6 Conclusion

	Chapter 7 A Generate-and-Test Algorithm
	7.1 Introduction
	7.2 High-Level Description
	7.3 Statistics
	7.4 Evaluating In puts
	7.5 Managing Hypotheses
	7.5.1 Adding Hypotheses
	7.5.2 Promoting Hypotheses
	7.5.3 Pruning Hypotheses

	7.6 Parameters of the Algorithm
	7.7 Computational Complexity
	7.8 Choosing Parameter Values
	7.8.1 Number of Levels
	7.8.2 Number of Working and Candidate Hypotheses
	7.8.3 Promotion Age
	7.8.4 Rate of Generating Hypotheses
	7.8.5 Maximum New Hypothesis Tries

	7.9 Empirical Results
	7.9.1 Sample Run
	7.9.2 Effects of Parameter Settings on Performance
	7.9.3 Comparison with Other Algorithms

	7.10 Conclusions

	Chapter 8 Learning Action Maps with State
	8.1 Set-Reset
	8.2 Using SR in GTRL
	8.2.1 Hypotheses
	8.2.2 Statistics
	8.2.3 Search Heuristics
	8.2.4 Complexity

	8.3 Experiments with GTRL-S
	8.3.1 Lights and Buttons
	8.3.2 Many Lights and Buttons

	8.4 Conclusion

	Chapter 9 Delayed Reinforcement
	9.1 Q-Learning
	9.2 Q-Learning and Interval Estimation
	9.3 Adaptive Heuristic Critic Method
	9.4 Other Approaches
	9.5 Complexity Issues
	9.6 Empirical Comparison
	9.6.1 Environments
	9.6.2 Algorithms
	9.6.3 Parameter Tuning
	9.6.4 Results
	9.6.5 Discussion

	Chapter 10 Experiments in Complex Domains
	10.1 Simple, Large, Random Environment
	10.1.1 Algorithms
	10.1.2 Task
	10.1.3 Parameter Settings
	10.1.4 Results

	10.2 Mobile Robot Domain
	10.2.1 Algorithms
	10.2.2 Task
	10.2.3 Results

	10.3 Robot Domain with Delayed Reinforcement
	10.3.1 Algorithms
	103.2 Task
	10.3.3 Results

	Chapter 11 Conclusion
	11.1 Results
	11.2 Conclusions
	11.3 Future Work
	11.3.1 Exploration
	11.3.2 Bias
	11.3.3 World Models and State
	11.3.4 Delayed Reinforcement

	11.4 Final Words

	Appendix A Statistics in GTRL
	A.1 Binomial Statistics
	A.2 Normal Statistics
	A.3 Non parametric Statistics

	Appendix B Simplifying Boolean Expressions in GTRL
	References
	Index

