


 The Horizons of Evolutionary Robotics 



 Intelligent Robots and Autonomous Agents 
 Edited by Ronald C. Arkin 

  For a complete list of the books published in this series, please see the back of this book.  



 The Horizons of Evolutionary Robotics 

 The MIT Press 
 Cambridge, Massachusetts 
 London, England 

 Edited by Patricia A. Vargas, Ezequiel A. Di Paolo, Inman Harvey, and Phil Husbands 



  ©   2014   Massachusetts Institute of Technology  

 All rights reserved. No part of this book may be reproduced in any form by any electronic or me-
chanical means (including photocopying, recording, or information storage and retrieval) with-
out permission in writing from the publisher. 
     
 MIT Press books may be purchased at special quantity discounts for business or sales promotional 
use. For information, please email special_sales@mitpress.mit.edu or write to Special Sales Depart-
ment, The MIT Press, 55 Hayward Street, Cambridge, MA 02142. 
     
 This book was set in ITC Stone Serif Std 9/13 pt by Toppan Best-set Premedia Limited, Hong Kong. 
Printed and bound in the United States of America.   
     
 Library of Congress Cataloging-in-Publication Data 
 The horizons of evolutionary robotics / edited by Patricia A. Vargas, Ezequiel A. Di Paolo, 
Inman Harvey, and Phil Husbands. 
    pages   cm. — (Intelligent robotics and autonomous agents) 
 Includes bibliographical references and index. 
 ISBN 978-0-262-02676-5 (hardcover : alk. paper) 
 1. Evolutionary robotics.   I. Vargas, Patricia A., 1969 –     II. Di Paolo, Ezequiel A.   III. Harvey, 
Inman.   IV. Husbands, Phil. 
 TJ211.37.H65 2014 
 629.8'92 — dc23 
 2013025304 
     
 10   9   8   7   6   5   4   3   2   1 



  To my parents, Joaquim Am â ncio Filho and Din á  Vargas Am â ncio  — P.A.V. 





 Contents 

 Preface  ix

 1   Context and Challenges for Evolutionary Robotics  1
 Patricia A. Vargas, Ezequiel A. Di Paolo, Inman Harvey, and Phil Husbands 

 2   Evolutionary Robotics and Neuroscience  17
 Phil Husbands, Renan C. Moioli, Yoonsik Shim, Andy Philippides, Patricia A. Vargas, and 
Michael O ’ Shea 

 3   Dynamical Analysis of Evolved Agents: A Primer  65
 Randall D. Beer 

 4   Evolutionary Pathways  77
 Inman Harvey and Ezequiel A. Di Paolo 

 5   Exploring the Roots of Spatial Cognition in Artificial and Natural Organisms: The 
Evolutionary Robotics Approach  93
 Orazio Miglino and Michela Ponticorvo 

 6   Why Morphology Matters  125
 Josh Bongard 

 7   Evolutionary Swarm Robotics: A Theoretical and Methodological Itinerary from 
Individual Neurocontrollers to Collective Behaviors  153
 Vito Trianni, Elio Tuci, Christos Ampatzis, and Marco Dorigo 

 8   Evolution of Communication in Robots  179
 Joachim de Greeff and Stefano Nolfi 

 9   Evolving Cooperation: From Biology to Engineering  203
 Sabine Hauert, Sara Mitri, Laurent Keller, and Dario Floreano 



viii Contents

 10   Understanding Higher-Order Cognitive Brain Mechanisms by Conducting 
Evolutional Neuro-robotics Experiments  219
 Jun Tani, Michail Maniadakis, and Rainer W. Paine 

 11   Incremental Evolution of an Omni-directional Biped for Rugged Terrain  237
 Eric D. Vaughan, Ezequiel A. Di Paolo, and Inman Harvey 

 12   Mindless Intelligence: Reflections on the Future of AI  279
 Jordan B. Pollack 

 Contributors  295

 Index  297



 Preface 

 Evolutionary robotics (ER) is a novel field of research that aims to apply evolutionary 
computation techniques to evolve the overall design or controllers, or both, for real 
and simulated autonomous robots. The origins of ER date back to the beginning of 
the 1990s. Since then it has been developed through various research centers around 
the world and it is still attracting the attention of an increasing number of researchers. 
ER now has many research groups worldwide, generally fully devoted to uncovering 
the intricacies of this promising multidisciplinary area of research. 

 Since ER ’ s birth, there have been a number of international conferences and work-
shops devoted to the field, as well as numerous sessions at more general conferences 
(e.g., the From Animals to Animats series, Artificial Life series of conferences, the 
European Conference on Artificial Life [ECAL series], and special sessions at the Genetic 
and Evolutionary Computation Conference [GECCO] and IEEE Congress on Evolution-
ary Computation [CEC] series of conferences). As a result some conference proceedings 
are available. To date, however, the only textbook was published in 2000 by Stefano 
Nolfi and Dario Floreano ( Evolutionary Robotics: The Biology, Intelligence, and Technology 
of Self-Organizing Machines , MIT Press). Hence after many years of further research, and 
many hundreds of published papers, we believe it is time to produce a new and 
authoritative overview of the field. This book not only revisits the most important 
work in the area, but also includes novel investigations, emerging discoveries, and 
cutting-edge developments. 

 The main purpose of this volume is to present a lively, extensive compilation of 
original articles on the cross-fertilization between ER and other research areas. Bearing 
this in mind, the book seeks to provide complete coverage of the foremost achieve-
ments of the field to date. This was accomplished by inviting leading practitioners to 
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contribute chapters written in an appealing style aimed at engaging a wide academic 
readership. The contributors include neuroscientists, cognitive scientists, philosophers, 
engineers, computer scientists, and robotics engineers. 

  The Horizons of Evolutionary Robotics  is intended to be a reference and a guide for 
future advances, not only highlighting the primary predictions and suggestions from 
today ’ s leading researchers, but also showing how evolutionary robotics is helping us 
to shape a new kind of interdisciplinary science. 



 1.1   Context 

 Evolutionary robotics involves the use of evolutionary computing techniques to auto-
matically develop some or all of the following properties of a robot: the control system, 
the body morphology, sensor and motor properties, and layout. Basically, populations 
of artificial genomes encode properties of autonomous (usually mobile) robots required 
to carry out a particular task or to exhibit some set of behaviors. The genomes are 
mutated and interbred creating new generations of robots according to a Darwinian 
scheme in which the fittest individuals are most likely to produce offspring. Fitness is 
measured in terms of how good a robot ’ s behavior is according to some evaluation 
criteria. This is usually automatically measured but may be also based on the experi-
menter ’ s judgment. 

 The origins of ER as we know it today date back to the beginning of the 1990s 
( Husbands and Harvey 1992 ;  Beer and Gallagher 1992 ;  Cliff, Harvey, and Husbands 
1993 ;  Parisi and Nolfi 1993 ;  Floreano and Mondada 1994 ). Since then it has been 
developed through various research centers around the world, where one can find 
groups of scientists devoted to uncovering the intricacies of this promising multidis-
ciplinary area of research. 

 Due to its interdisciplinary character, ER is being employed in the development of 
other fields of research, including neuroscience and cognitive science. We envisage 
that ER will play a major role in the future in a variety of industrial applications, 
including in the entertainment industries, exploration and navigation applications, 
and technology relating to environmental issues, not to mention civilization itself with 
the advent of robot companions, for which autonomy and robustness are fundamental 
requirements. 

 The aims of this chapter are to briefly describe ER ’ s main techniques and methods, 
and to place the other chapters in this book in the wider context of the field. 

 1   Context and Challenges for Evolutionary Robotics 

 Patricia A. Vargas, Ezequiel A. Di Paolo, Inman Harvey, and Phil Husbands 
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 1.2   The Basic Evolutionary Robotics Methodology 

 This section introduces the ER methodology and can be skipped by those familiar with 
the field. It is provided so that those who are not acquainted with the methods used 
can readily grasp the techniques referred to and terminology used throughout the 
book. For a detailed review of ER applications, and a more technical coverage of tech-
niques, see  Floreano, Husbands, and Nolfi (2008 ). 

 Alan  Turing ’ s (1950)  article  “ Computing Machinery and Intelligence ”  is widely 
regarded as one of the seminal works in artificial intelligence. It is best known for what 
came to be called the Turing test — a proposal for deciding whether or not a machine 
is intelligent. However, tucked away toward the end of Turing ’ s wide-ranging discus-
sion of issues arising from the test is a far more interesting proposal. He suggests that 
worthwhile intelligent machines should be adaptive, should learn and develop, but 
concedes that designing, building, and programming such machines by hand is prob-
ably infeasible. He goes on to sketch an alternative way of creating machines based 
on an artificial analog of biological evolution. Each machine would have hereditary 
material encoding its structure, mutated copies of which would form offspring 
machines. A selection mechanism would be used to favor better-adapted machines — in 
this case those that learned to behave most intelligently. Turing proposed that the 
selection mechanism should largely consist of the experimenter ’ s judgment. 

 It was more than forty years before Turing ’ s long forgotten suggestions became 
reality. In the early 1990s, emerging out of the spirited milieu of  “ New AI ”  ( Brooks 
1999 ) and building on the development of principled evolutionary search algo-
rithms ( Holland 1975 ), researchers at the National Research Council (CNR), Rome; 
Ecole Polytechnique Federale de Lausanne (EPFL); the University of Sussex; and Case 
Western University independently demonstrated methodologies and practical tech-
niques to evolve, rather than design, control systems for primitive intelligent 
machines ( Cliff, Harvey, and Husbands 1993 ;  Beer and Gallagher 1992 ;  Parisi and 
Nolfi 1993 ;  Floreano and Mondada 1994 ). Initial motivations were similar to Tur-
ing ’ s: the hand design of intelligent adaptive machines intended for operation in 
natural environments is extremely difficult. Would it be possible to wholly or partly 
automate the process? 

 The scheme used in most ER research is some elaboration or other of the basic 
methodology illustrated in   figure 1.1 . The key elements of the evolutionary robotics 
approach are: 

  •    A method for measuring the fitness of the robot behaviors generated from these 
genomes. 
  •    A way of applying selection and a set of  “ genetic ”  operators to produce the next 
generation from the current one. 
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 The general scheme is like that of any application of an evolutionary search algo-
rithm. However, many details of specific parts of the process, particularly the evalua-
tion step, are peculiar to evolutionary robotics.    

 Genetic Encoding 
 While many aspects of the robot design can potentially be under genetic control,  at 
least  the control system always is. By far the most popular form of controller used in 
ER is some sort of neural network. These range from straightforward feedforward net-
works of simple elements ( Floreano and Mondada 1994 ) to relatively complex dynamic 
and plastic recurrent networks ( Beer and Gallagher 1992 ;  Floreano and Urzelai 2000 ; 
 Philippides et al. 2005 ), as illustrated in   figure 1.2 . In the simplest case, a fixed archi-
tecture network is used to control a fixed robot whose sensors feed into the network 

Create initial population
of robot genotypes;
evalute their fitness

Population of 
robot genotypes

Replace members
of population

Evaluate new
offspring

Create mutated offspring

Breed

Select parents
according to fitness

 Figure 1.1 
 General scheme employed in evolutionary robotics. 
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that in turn feeds out to the robot motors. In this scenario the parameters of the 
network (connection weights and relevant properties of the units such as thresholds 
or biases) are coded as a fixed length string of numerical values.    

 A more complex case, which has been explored since the very early days of evolu-
tionary robotics ( Cliff, Harvey, and Husbands 1993 ), involves the evolution of the 
network architecture as well as the properties of the connections and units. Typically 
the size of the network (number of units and connections) and its architecture (wiring 
diagram) are unconstrained and free to evolve. This involves more complex encodings 
that can grow and shrink, as units and connections are added or lost, while allowing 
a coherent decoding of connections between units. These range from relatively simple 
strings employing blocks of symbols that encode a unit ’ s properties and connections 
relative to other units ( Cliff, Harvey, and Husbands 1993 ) to more indirect schemes 
that make use of growth processes in some geometric space ( Philippides et al. 2005 ) 
or employ genetic programming like tree representations in which whole subbranches 
can be added, deleted, or swapped over ( Gruau 1995 ). 

 The most general case involves the encoding of control network and body and 
sensor properties. Various kinds of developmental schemes have been used to encode 
the construction of body morphologies from basic building blocks, both in simulation 
and in the real world ( Sims 1994 ). Here the inspiration is developmental biology and 
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 Figure 1.2 
 Evolved neurocontrollers. On the left a simple fixed architecture feedforward network is illus-

trated. The connection weights, and sometimes the neuron properties, are put under evolution-

ary control. On the right a more complex architecture is illustrated. In this case the whole 

architecture, including the number of neurons and connections, is under evolutionary control, 

along with connection and neuron properties and the morphology of a visual sensor that feeds 

into the network ( Cliff, Harvey, and Husbands 1993 ). The inputs V1 and V2 refer to signals 

derived from genetically specified  “ patches ”  of a camera input, as shown on the inset on the 

right of the figure. 
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the genetic encoding is not simply a string of variable values that directly map onto 
robot properties, but a set of parameters that control an indirect growth process that 
results in a robot or robot controller. 

 The details of the specific evolutionary algorithm used to manipulate the genetic 
encoding vary widely. Many find rather simple genetic algorithms (GAs) sufficient 
( Floreano and Mondada 1994 ); others have found more sophisticated GA variants, 
involving geographical distribution and multiple levels of operators, particularly useful 
for complex fitness landscapes ( Philippides et al. 2005 ); still others have developed 
interesting new types of evolutionary algorithms specifically aimed at evolving neu-
rocontrollers ( Stanley and Miikkulainen 2002 ). 

 Fitness Evaluation 
 Fitness evaluations consist of translating the genome in question into a robot instan-
tiation and then measuring aspects of the resulting behavior. In the earliest work aimed 
at using evolutionary techniques to develop neurocontrollers for particular physical 
robots, members of a population were downloaded in turn onto the robot and their 
behavior was monitored and measured either automatically by clever experimental 
setups ( Floreano and Mondada 1994 ;  Harvey, Husbands, and Cliff 1994 ) or manually 
by an observer ( Gruau and Quatramaran 1997 ). The machinery of the evolutionary 
search algorithm was managed on a host computer while the fitness evaluations were 
undertaken on the target robot. 

 One drawback of evaluating fitness on the physical robot is that this cannot be 
done any quicker than real time, making the whole evolutionary process rather slow. 
In the early work in the field this approach was taken because researchers considered 
it unlikely that simulations could be made accurate enough to allow good transfer of 
evolved behavior onto the real robot. However, a careful study of accurate physics-
based simulations of a Khepera robot, with various degrees of noise added, proved this 
assumption false ( Jakobi, Husbands, and Harvey 1995 ). This led to various successful 
simulation-based approaches including Jakobi ’ s minimal simulation methodology 
( Jakobi 1998 ) whereby computationally very efficient simulations are built by model-
ing only those aspects of the robot-environment interaction deemed important to the 
desired behavior and masking everything else with carefully structured noise (so that 
evolution could not come to rely on any of those aspects). An alternative approach 
uses plastic controllers that further adapt through self-organization to help smooth 
out the differences between an inaccurate simulation and the real world ( Urzelai and 
Floreano 2001 ). Instead of evolving connection weights, in this approach  “ learning 
rules ”  for adapting connection strengths are evolved — this results in controllers that 
continually adapt to changes in their environment. For details of further approaches, 
see  Floreano, Husbands, and Nolfi (2008 ). Much evolutionary robotics work now 
makes use of simulations; without them it would be impossible to do the most 
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ambitious work on the concurrent evolution of controllers and body morphology 
( Lipson and Pollack 2000 ). However, although simulation packages and techniques 
have developed rapidly in the past few years, there will still inevitably be discrepancies 
between simulation and reality and the lessons and insights of the work outlined in 
this chapter should not be forgotten. 

 An interesting distinction can be made between implicit and explicit fitness func-
tions in evolutionary robotics ( Nolfi and Floreano 2000 ). In this context, an explicit 
fitness function rewards specific behavioral elements — such as traveling in a straight 
line — and hence shapes the overall behavior from a set of specific behavioral primi-
tives. Implicit fitness functions operate at a more indirect, abstract level — fitness points 
are given for completing some task but they are not tied to specific behavioral ele-
ments. Implicit fitness functions might involve components such as maintaining 
energy levels, covering as much ground as possible, or just remaining  “ viable ”  in some 
sense — all components that can be achieved in many different ways. In practice it is 
quite possible to define a fitness function that has both explicit and implicit elements. 
In some ER work, crafting a suitable fitness function has been found to be crucial in 
producing successful outcomes (e.g.,  Quinn et al. 2003 ). In some cases the evolutionary 
process proceeds in discrete stages where competences are gradually built up in an 
incremental way (often through additions to the current solution); here the fitness 
function may well change as evolution progresses ( Harvey, Husbands, and Cliff 1994 ). 

 Advantages 
 Potential advantages of the ER methodology include: 

  •    The ability to explore potentially unconstrained designs that have large numbers of 
free variables. A  class  of robot systems (to be searched) is defined rather than specific 
fully defined robot designs. This means fewer assumptions and constraints are neces-
sary in specifying a viable solution. 
  •    The ability to use the methodology to fine tune parameters of an already successful 
design, or to build on an existing solution. 
  •    The ability, through the careful design of fitness criteria and selection techniques, 
to take into account multiple, and potentially conflicting, design criteria and con-
straints (e.g., efficiency, cost, weight, power consumption). 
  •    The possibility of developing highly unconventional and minimal designs. 
  •    The ability to explicitly take into account robustness and reliability as major driving 
forces behind the fitness measure, factors that are particularly important for certain 
applications. 

 The first of these advantages has made ER an attractive tool for exploring specific 
scientific questions. Because it allows a relaxation of assumptions about mechanisms 
underlying the generation of behavior, as well as the synthesis of behaviors under 
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alternative sets of assumptions, it is an interesting way of approaching fundamental 
questions in neuroscience and cognitive science. ER specifies the target behavior but 
doesn ’ t specify how it should be achieved. Various examples of this scientific use will 
be found throughout this book. 

 1.3   The Evolutionary Robotics Chronicle 

 From the earliest work at the start of the 1990s, most evolved robot controllers were, 
and indeed still are, based on artificial neural networks ( Husbands and Harvey 1992 ; 
 Beer and Gallagher 1992 ;  Harvey, Husbands, and Cliff 1994 ;  Parisi and Nolfi 1993 ; 
 Floreano and Mondada 1994 ). This was partly because ER was built on a huge surge 
of interest in biologically inspired methods, including neural networks, which had 
been sidelined for many years, and partly because neural net ’ s inherently cellular 
nature was deemed to be suited to evolution (i.e., highly evolvable) by early practitio-
ners ( Husbands and Harvey 1992 ;  Cliff, Harvey, and Husbands 1993 ). Even in those 
pioneering days, some of the neural models and architectures used were directly 
inspired by contemporary neuroscientific findings. As more and more subtleties of the 
nervous system have been slowly revealed by major advances in neuroscience over the 
past few decades, it has become clear that the complex mechanisms underlying natural 
behavior are far removed from the simple connectionist models that until recently 
dominated the study of neural networks. Neuroscience can thus provide a rich vein 
of inspiration for the development of more sophisticated neural models that can be 
exploited by ER. But given the complexity of the systems, many of the details of the 
mechanisms at play in biological nervous systems are not well understand, which gives 
ER a potential role in exploring basic scientific questions in neuroscience by synthesiz-
ing model systems making use of, or indeed ignoring, certain assumptions about 
mechanisms. Phil Husbands, Renan C. Moioli, Yoonsik Shim, Andy Philippides, Patri-
cia A. Vargas, and Michael O ’ Shea explore these issues in chapter 2 where they discuss 
the links between ER and neuroscience. In their contribution, the authors show how 
principles from neuroscience, including volume signaling, chaotic dynamics, and 
phase coupling, can be profitably incorporated into ER methods, and how questions 
in neuroscience and cognitive science, such as the role of neural synchronization, can 
be explored using the ER methodology. 

 At its inception ER was part of a wider movement opposed to the prevailing ortho-
doxy in AI (artificial intelligence) and cognitive science. One of the strands of work 
in this insurgency was a newfound interest in dynamical approaches to cognition. 
Whereas the mainstream view involved a one-step-at-a-time model based around a 
sense-think-act consecutive pipeline of (computational, representational) processing, 
the dynamical approach threw out the idea of centrally clocked computational models. 
Instead, behavior generation was viewed in terms of dynamical interactions between 



8 Chapter 1

agent and environment (or more precisely brain-body-environment interactions) ( Port 
and van Gelder 1995 ), in a way that harked back to the earlier cybernetics frameworks 
developed by  Ashby (1952) . The agent ’ s nervous system was thought of as a free-
running dynamical system, operating in a distributed, most likely asynchronous, way 
with many different timescales at play. Hence, with the advent of newly evolved intel-
ligent robot controllers it is not surprising that the quest for understanding their 
evolved dynamics began immediately ( Beer 1995 ;  Husbands, Harvey, and Cliff 1995 ; 
 Tani and Nolfi 1999 ) and has continued ever since ( Beer 2003 ;  Negrello and Pasemann 
2008 ;  Williams, Beer, and Gasser 2008a ;  Izquierdo, Harvey, and Beer 2008 ;  Izquierdo 
and Buhrmann 2008 ). Some of these projects were early examples of the use of ER to 
synthesize models that did not adhere to the mainstream assumptions, in this case 
dynamical rather than computational behavior-generating systems. By synthesizing 
and then analyzing, existence proofs of alternative, dynamical mechanisms were pro-
duced. In chapter 3, Randall D. Beer, one of the pioneers of these approaches, provides 
an insightful step-by-step guide to the dynamical analysis of evolved agents. He helps 
to demystify the sometimes dark and difficult arts of dynamical analysis. 

 Applying evolution to create robot behaviors is often a far from straightforward task 
and sometimes ER researchers find themselves adrift in a sea of confusion when faced 
with the numerous choices to be made in setting parameters and designing experi-
ments. There are many factors that shape the search space and determine which 
evolutionary pathways are followed, but not all pathways are equally fruitful. With a 
view to shedding some light on the challenging design tasks faced by ER researchers, 
in chapter 4 Inman Harvey and Ezequiel A. Di Paolo underline  “ the various features 
of evolutionary paths that can make them more or less easy for evolution to 
navigate. ”  

 Along with a discussion of the mechanisms of evolutionary search they offer various 
heuristics (or  “ travel tips ” ) to help with the construction of search spaces replete with 
evolutionary pathways that are likely to lead to the desired goal in an efficient way. 

 This might involve embracing, rather than being scared of, such search space prop-
erties as neutrality ( Barnett 2001 ), or being aware of the intricacies of some of the 
building blocks being used, such as the style of neural network, so that parameter 
ranges can be set in a helpful way, or considering an incremental approach ( Harvey, 
Husbands, and Cliff 1994 ). Many of the heuristics thus presented are part of the folk-
lore but have never before been properly committed to print; hence this chapter 
provides a helpful initial guide to point explorers in the right direction. 

 Navigation and exploration are among the most studied behaviors in ER, and early 
on researchers raised an important question: do the evolved robots require an internal 
map-like representation of the environment? ( Nolfi et al. 1994 ;  Miglino, Lund, and 
Nolfi 1995 ;  Miglino, Nafasi, and Taylor 1996 ). More generally, what kinds of mecha-
nisms underlie spatial orientation abilities? In other words: how does spatial cognition 



Context and Challenges for Evolutionary Robotics 9

work? Orazio Miglino and Michela Ponticorvo address this issue in chapter 5 through 
a detailed discussion of an extensive program of work that uses the ER approach to 
explore spatial cognition. In particular they use the methodology to synthesize models 
that allow them to discard orthodox views of spatial cognition that assume internal 
maps and geometric representations of the world. The chapter is appealingly structured 
around the gradual development of an artificial agent whose competences increase by 
reference to various experiments carried out by Miglino and colleagues. 

 In nearly all early ER work the aim was to evolve control systems for preexisting 
robots: the brain was constrained to fit a particular body and set of sensors. Of course 
in nature the nervous system evolved simultaneously with the rest of the organism. 
As a result, the nervous system is highly integrated with the sensory apparatus and 
the rest of the body: the whole operates in a harmonious and balanced way — there 
are no distinct boundaries between control system, sensors, and body. However, even 
from the earliest days there was an acknowledgment that the question of the degree 
to which body morphology can influence an agent ’ s behavior is important in the quest 
for more complex agents. Karl Sim ’ s inspirational work on simulated coevolving crea-
tures, whose bodies as well as brains were under evolutionary control, was the first 
significant investigation in this direction ( Sims 1994 ). There were severe technical dif-
ficulties in translating such investigations into the realm of real physical robots until 
Lipson and Pollack ’ s groundbreaking work on the Golem project ( Lipson and Pollack 
2000 ). In that project they pushed the idea of fully evolvable robot hardware about as 
far as was reasonably technologically feasible at the time. Autonomous  “ creatures ”  
were evolved in simulation out of basic building blocks (neurons, bars, actuators). The 
fittest individuals were then fabricated robotically using rapid manufacturing technol-
ogy (plastic extrusion 3D printing). The team thus achieved autonomy of design and 
construction using evolution in a  “ limited universe ”  physical simulation coupled to 
automatic fabrication. More recently investigations in this area have started to multi-
ply ( Bongard 2011 ;  Clark et al. 2012 ;  Long 2012 ). In chapter 6, Josh Bongard elegantly 
reflects on the potential advantages of and issues involved in simultaneously evolving 
robot brains and bodies. He explores problems central to the balanced interplay among 
body morphology, neural processing, and environmental interactions in the genera-
tion of embodied adaptive behavior, and develops a set of design principles for intel-
ligent systems in which these issues take center stage. 

 Another kind of complexity arises when dealing with more than one robot. The 
domains of social interactions, collective behavior, and communication have provided 
challenging goals for evolutionary robotics and autonomous robotics in general since 
very early on. In the 1950s, Grey Walter added a lamp to two of his famous light-
seeking tortoises that would switch on or off depending on their current behavior 
( Walter 1953 ). The result was that the two robots would be intermittently attracted to 
each other and enact a sophisticated dance. From these complex interaction patterns 
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it would have been nearly impossible to reverse engineer the actual sensorimotor 
control programmed by Walter, which was in fact relatively simple. Work in evolution-
ary robotics has been influenced by such inspirations, in particular following an 
underlying intuition that the social domain is a kind of amplifier of the sophistication, 
intelligence, and complexity of the evolved behaviors in mobile robots ( Di Paolo 2000 ; 
 Quinn 2001 ;  Cangelosi and Riga 2006 ,  Williams, Beer, and Gasser 2008b ). Collective 
tasks demand the solution of specific problems, such as how should robots coordinate 
their behavior, but the intuition is that the gains in the overall performance and 
competence of the robots are likely to outweigh these additional difficulties because 
collective intelligence is widespread in nature. In the case of humans, higher mental 
functions seem closely connected with our social nature, and it may be that certain 
kinds of higher cognitive abilities, in both animals and machines, can only be devel-
oped in a social context. 

 An interesting example of evolved group behavior is self-organized coordinated 
movement without an explicit leader, as pioneered by  Quinn et al. (2003) . In Quinn 
and coauthors ’  seminal work a group of identical robots, equipped only with a small 
numbers of short-range infrared (IR) sensors, were evolved to move in close formation 
starting from initial random orientations. This required a direction of movement and 
suitable individual robot orientations to emerge from group dynamics: what could be 
described as the emergence of a  “ leader ”  and  “ followers. ”  In chapter 7, Vito Trianni, 
Elio Tuci, Christos Ampatzis, and Marco Dorigo explore group behavior using a similar 
scenario, but with an added twist or two. They use a group of identical robots (s-bots), 
which can form physical connections to self-assembly into a larger robotic entity built 
from individual s-bots. They demonstrate that evolutionary robotics techniques can 
be used to develop controllers that allow the s-bots to perform coordinated movement 
in quite challenging environments in which holes have to be avoided (or at least 
bridged, as the s-bots can form rigid structures that enable them to support each other). 
A notable aspect of this work is the way in which the controllers exploit physical 
interactions between the robots to support emergent self-organization of the group. 
The chapter extensively develops the theme of group behavior by reporting results 
from successful experiments in which the s-bots are evolved to perform synchroniza-
tion behaviors, collective decision making, and behaviors requiring automatic alloca-
tion of different roles. An important lesson learned from this research is the importance 
to evolvability of the right balance between controller complexity and possible modes 
of interaction among the robots, as defined by the hardware. 

 Even if a cooperative context is already assumed, several open questions remain 
in the evolution of pro-social behavior that evolutionary robotics experiments could 
shed some light on. For instance, one possible such area is the origins of communi-
cative signals. In chapter 8, Joachim de Greeff and Stefano Nolfi neatly attempt to 
answer some of these questions by contrasting existing theories about the origins of 
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animal communication with experiments in simulated and real robotic scenarios 
requiring some form of behavioral coordination between two robots. Their  “ synthetic 
experiments ”  make concrete ideas such as the origin of signal production and signal 
understanding and their relation to other, nonsignaling behavior. The robots must 
achieve a coordination task, moving between different areas in an arena, occupying 
them at the same time and then switching positions repeatedly. The task requires 
several layers of coordination (Where to move first? How long to stay there? Is the 
other robot also in its place? At what point shall we switch?). The setup permits the 
presence of implicit (body movements) signals and explicit (via a dedicated com-
munication channel) signals. Successful performance seems to require some level of 
explicit communication (as evidenced by the failure to replicate such performance 
levels when the dedicated signaling channels are knocked down). All signals observed 
seem to be grounded in the current sensorimotor context of the signaler (they are 
deictic). The robots also use implicit forms of bodily coordination, demonstrating a 
spectrum of possible communicative layers of different complexity that may have 
impact on the understanding of how signals acquire their communicative functional-
ity in the first place. 

 ER work on social and group behavior is both inspired by biology and can at the 
same time illuminate current theories and debates in biology. The contribution by 
Sabine Hauert, Sara Mitri, Laurent Keller, and Dario Floreano in chapter 9 is an example 
of this two-way street. By setting themselves the task of better understanding the 
evolution of cooperation in teams of robots, the authors superbly draw inspiration 
from evolutionary theory to fine-tune and test their evolutionary algorithms. They 
confirm empirically the benefits of genetic relatedness and group selective pressures 
for evolving cooperative strategies. Then, they directly apply these properties to the 
evolution of a complex collective task: the spontaneous formation of wireless com-
munication networks by airborne robots in a mountain rescue scenario. The difficulties 
of this task should not be underestimated: these robots must build and sustain a com-
munication network adaptively while flying without local position information and 
measuring their performance only based on their sensed local wireless connectivity. 
Upon analysis of successful results, the groups of flying robots evolved in simulation 
yield clear local rules that approximate their observed behavior. The re-implementa-
tion of such approximate rules results in reliable global effects, such as the formation 
of communication chains and network maintenance, thus translating evolved behav-
ior into easier to understand design principles. 

 More complex behaviors, social or otherwise, in nature and in robots, usually 
involve (or appear to involve) some kind of higher-level cognitive capabilities (reason-
ing, decision making, etc). But this is an area where details of natural mechanisms are 
still very sparse and evolutionary robotics has a potential role to play in both develop-
ing artificial cognitive architectures and shedding light on real neural processes. For 
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several decades some of the more prevalent theories of neural mechanisms underlying 
higher cognitive abilities and complex motor behaviors make use of the notion of 
compositionality ( Arbib 1981 ;  Arbib and Hesse 1986 ;  Tani 2003 ). The idea is that 
complex behaviors are built up from simpler reusable primitives that can be combined 
in a flexible way, with some higher level of control manipulating the behavioral primi-
tives. Although this idea can be quite attractive from a computational perspective, 
there is not yet clear evidence that this is what actually occurs in real brains. Jun Tani, 
Michail Maniadakis, and Rainer W. Paine ’ s chapter 10 is a first step toward developing 
an ER-based methodology for exploring how such mechanisms could be implemented 
in neural circuits. In the longer term such research could indicate likely classes of 
biological neural mechanisms, which could then be investigated. They use an evolu-
tionary approach to search for classes of mechanisms that are able to successfully 
generate compositional goal-directed action generation and rule-switching behaviors 
in a simulated robot engaged in maze exploration and navigation tasks. This method-
ology allows them to exploit the fact that fewer assumptions and constraints are 
needed in the evolutionary approach. 

 In connection to the challenges of evolving increasingly complex forms of behavior, 
chapter 11 by Eric D. Vaughan, Ezequiel A. Di Paolo, and Inman Harvey properly 
illustrates one application of incremental principles as a promising approach. Their 
task, the evolution of an omni-directional, 3D, minimally actuated, bipedal walker 
involving several reflex circuits and able to walk robustly over rugged terrain, seems 
nearly impossible to achieve by attempting to evolve a robot controller from scratch. 
It seems also quite complex for a human designer. But, the authors show, it is acces-
sible to an interactive scheme involving design and evolution with staged increments 
in complexity and redesign. The value of their contribution lies both in the actual 
results as well as in the wider methodological implications of the case study they 
present. 

 By breaking down the activity of walking into stages that take into account the 
roles of the body ’ s passive dynamics, of gravity and of neural reflexes, they are able 
to evolve circuits that actuate the leg movements of a simulated machine with incre-
mental complexity involving different walking components or  “ modes. ”  These modes 
involve, for instance, achieving a certain stance, contracting or swinging legs, main-
taining overall support, and so on. Each of these modes is evolved using a relatively 
simple reflex circuit and these are subsequently integrated. As the complexity of the 
task is incremented (e.g., moving from flat to sloped terrains or adding degrees of 
freedom), the earlier stages define the starting point of the new task and much of the 
circuitry is reused and the lessons learned reapplied. The result is a minimally actuated 
3D walking machine with 35 degrees of freedom (in one instantiation) involving 
several simple, coordinated neural circuits that rely on a strong environmental and 
bodily feedback. 
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 There are major ongoing challenges — methodological, theoretical, and technological —
 in all the areas mentioned in this chapter, such as finding the best way to incorporate 
developmental processes and lifetime plasticity (including learning and automatic 
self-repair) within the evolutionary framework ( Nolfi and Floreano 1999 ;  Lungarella 
and Berthouze 2002 ;  Lungarella et al. 2003 ); understanding better what the most useful 
building blocks are for evolved neurocontrollers ( Husbands et al. 2010 ;  Clune, Mouret, 
and Lipson 2013 ;  Risi and Stanley 2012 ); and finding efficient ways to scale work on 
concurrently evolving bodies and brains while continuing to best exploit the complex 
interplay among body, nervous system, and environment. Jordan Pollack ’ s contribu-
tion to this book in chapter 12 nicely lays out his vision of the kinds of approaches 
that will be needed to meet these challenges. After a lively reminder of the folly of 
traditional AI ’ s preoccupation with mimicking human-level intelligence, based on the 
myth of human symbolic conscious reasoning, he introduces the notion of mindless 
intelligence — the many complex processes to which we could (and sometimes do) 
ascribe intelligence but that have no mind — from immune systems to social systems 
and networks, via the many natural and artificial processes of self-organization we are 
beginning to understand, to the exquisite mechanisms of evolution itself. Coining the 
term  “ ectomental, ”  for outside of mind, to refer to such systems and processes, he 
begins to explore how mechanisms of organization, learning, repair, assembly, repro-
duction, recognition, and regulation (woven together by evolution) should be regarded 
as the way forward for AI, probably the only means by which true artificial intelligence 
could ever be achieved. 

 This is a vision that Alan Turing, in his guise as an ER pioneer, would recognize 
and, we like to think, approve of. 

 References 

   Arbib ,  M. A.   1981 .  Perceptual structures and distributed motor control . In   Handbook of Physiology —

 The Nervous System II. Motor Control  , ed.  V. B.   Brooks ,  1449  –  1480 .  Bethesda, MD :  American Physi-

ological Society .  

   Arbib ,  M. A. , and  M. B.   Hesse .  1986 .   The Construction of Reality  .  Cambridge, UK :  Cambridge Uni-

versity Press .  

   Ashby ,  W. R.   1952 .   Design for a Brain  .  London :  Chapman and Hall .  

   Barnett ,  L.   2001 .  Netcrawling — optimal evolutionary search with neutral networks . In   Proceedings 

of the 2001 Congress on Evolutionary Computation     (CEC2001),  30  –  37 .  Seoul, Korea :  IEEE Press .  

   Beer ,  R.   1995 .  A dynamical systems perspective on environment agent interactions .   Artificial Intel-

ligence    72 : 173  –  215 .  

   Beer ,  R. , and  J.   Gallagher .  1992 .  Evolving dynamical neural networks for adaptive behaviour.  

  Adaptive Behavior    1 : 94  –  110 .  



14 Chapter 1

   Beer ,  R. D.   2003 .  The dynamics of active categorical perception in an evolved model agent.    Adap-

tive Behavior    11 : 209  –  243 .  

   Bongard ,  J.   2011 .  Morphological change in machines accelerates the evolution of robust behav-

ior.    Proceedings of the National Academy of Sciences of the United States of America    108  ( 4 ): 

 1234  –  1239 .  

   Brooks ,  R. A.   1999 .   Cambrian Intelligence: The Early History of the New AI  .  Cambridge, MA :  MIT 

Press .  

   Cangelosi ,  A. , and  T.   Riga .  2006 .  An embodied model for sensorimotor grounding and grounding 

transfer: Experiments with epigenetic robots.    Cognitive Science    30  ( 4 ):  673  –  689 .  

   Clark ,  A. ,  J.   Moore ,  J.   Wang ,  X.   Tan , and  P.   McKinley .  2012 .  Evolutionary design and experimen-

tal validation of a flexible caudal fin for robotic fish.    Artificial Life    13 : 325  –  332 .  

   Cliff ,  D. ,  I.   Harvey , and  P.   Husbands .  1993 .  Explorations in evolutionary robotics.    Adaptive Behav-

ior    2 : 73  –  110 .  

   Clune ,  J. ,  J-B.   Mouret , and  H.   Lipson .  2013 .  The evolutionary origins of modularity .   Proceedings of 

the Royal Society B    280 :  20122863 .  

   Di Paolo ,  E. A.   2000 .  Behavioral coordination, structural congruence and entrainment in a simu-

lation of acoustically coupled agents.    Adaptive Behavior    8  ( 1 ):  25  –  46 .  

   Floreano ,  D. ,  P.   Husbands , and  S.   Nolfi .  2008 .  Evolutionary robotics . In   Springer Handbook of 

Robotics  , ed.  B.   Siciliano  and  O.   Khatib ,  1423  –  1451 .  Berlin :  Springer .  

   Floreano ,  D. , and  F.   Mondada .  1994 .  Automatic creation of an autonomous agent: Genetic 

evolution of a neural-network driven robot . In   From Animals to Animats 3: Proceedings of the Third 

International Conference on Simulation of Adaptive Behaviour     (SAB94), ed.  D. T.   Cliff ,  P.   Husbands , 

 J.-A.   Meyer , and  S.   Wilson ,  421  –  430 .  Cambridge, MA :  MIT Press .  

   Floreano ,  D. , and  J.   Urzelai .  2000 .  Evolutionary robots with online self-organization and behav-

ioral fitness.    Neural Networks    13  ( 4 – 5 ):  431  –  443 .  

   Gruau ,  F.   1995 .  Automatic definition of modular neural networks.    Adaptive Behavior    3  ( 2 ): 

 1  5  1  –  183 .  

   Gruau ,  F. , and  K.   Quatramaran .  1997 .  Cellular encoding for interactive evolutionary robotics . In 

  Proceedings of the 4th European Conference on Artificial Life  , ed.  P.   Husbands  and  I.   Harvey ,  366  –  387 . 

 Cambridge, MA :  MIT Press .  

   Harvey ,  I. ,  P.   Husbands , and  D.   Cliff .  1994 .  Seeing the light: Artificial evolution, real vision . 

In   From Animals to Animats 3: Proceedings of the Third International Conference on Simulation of 

Adaptive Behaviour     (SAB94), ed.  D. T.   Cliff ,  P.   Husbands ,  J.-A.   Meyer , and  S.   Wilson ,  392  –  401 . 

 Cambridge, MA :  MIT Press .  

   Holland ,  J. H.   1975 .   Adaptation in Natural and Artificial Systems  .  Ann Arbor :  University of Michi-

gan Press .  



Context and Challenges for Evolutionary Robotics 15

   Husbands ,  P. , and  I.   Harvey .  1992 .  Evolution versus design: Controlling autonomous mobile 

robots . In   Proceedings of the 3rd Annual Conference on Artificial Intelligence, Simulation and Planning 

in High Autonomy Systems  ,  139  –  146 .  Los Alimitos, CA :  IEEE Computer Society Press .  

   Husbands ,  P. ,  I.   Harvey , and  D.   Cliff .  1995 .  Circle in the round: State space attractors for evolved 

sighted robots.    Robotics and Autonomous Systems    15 : 83  –  106 .  

   Husbands ,  P. ,  A.   Philippides ,  P.   Vargas ,  C.   Buckley ,  P.   Fine ,  E.   Di Paolo , and  M.   O ’ Shea .  2010 . 

 Spatial, temporal and modulatory factors affecting GasNet evolvability in a visually guided robot-

ics task .   Complexity    16  ( 2 ):  35  –  44 .  

   Izquierdo ,  E. , and  T.   Buhrmann .  2008 .  Analysis of a dynamical recurrent neural network evolved 

for two qualitatively different tasks: Walking and chemotaxis . In   Proceedings of the 11th Interna-

tional Conference on Artificial Life  , ed.  S.   Bullock   et al. ,  257  –  264 .  Cambridge, MA :  MIT Press .  

   Izquierdo ,  E. ,  I.   Harvey , and  R. D.   Beer .  2008 .  Associative learning on a continuum in evolved 

dynamical neural networks.    Adaptive Behavior    16 : 361  –  384 .  

   Jakobi ,  N.   1998 .  Evolutionary robotics and the radical envelope of noise hypothesis.    Adaptive 

Behavior    6 : 325  –  368 .  

   Jakobi ,  N. ,  P.   Husbands , and  I.   Harvey .  1995 .  Noise and the reality gap: The use of simulations 

in evolutionary robotics . In   Proceedings of the 3rd European Conference on Artificial Life  , ed.  F.   Moran  

 et al. ,  704  –  720 .  Berlin :  Springer .  

   Lipson ,  H. , and  J.   Pollack .  2000 .  Automatic design and manufacture of robotic lifeforms.    Nature   

 406 : 974  –  978 .  

   Long ,  J.   2012 .   Darwin ’ s Devices: What Evolving Robots Can Teach Us about the History of Life and the 

Future of Technology  .  New York:   Basic Books .  

   Lungarella ,  M. , and  L.   Berthouze .  2002 .  On the interplay between morphological, neural, and 

environmental dynamics: A robotic case-study.    Adaptive Behavior    10 : 223  –  241 .  

   Lungarella ,  M. ,  G.   Metta ,  R.   Pfeifer , and  G.   Sandini .  2003 .  Developmental robotics: A survey.    Con-

nection Science    15 : 151  –  190 .  

   Miglino ,  O. ,  H. H.   Lund , and  S.   Nolfi .  1995 .  Evolving mobile robots in simulated and real envi-

ronments.    Artificial Life    2  ( 4 ):  417  –  434 .  

   Miglino ,  O. ,  K.   Nafasi , and  C. E.   Taylor .  1996 .  Selection for wandering behaviour in a small robot.  

  Artificial Life    2  ( 1 ):  101  –  116 .  

   Negrello ,  M. , and  F.   Pasemann .  2008 .  Attractor landscapes and active tracking: The neurodynam-

ics of embodied tracking.    Adaptive Behavior    16 : 196  –  216 .  

   Nolfi ,  S. , and  D.   Floreano .  1999 .  Learning and evolution.    Autonomous Robots    7 : 89  –  113 .  

   Nolfi ,  S. , and  D.   Floreano .  2000 .   Evolutionary Robotics: The Biology, Intelligence, and Technology of 

Self-organizing Machines  .  Cambridge, MA :  MIT Press .  



16 Chapter 1

   Nolfi ,  S. ,  D.   Floreano ,  O.   Miglino , and  F.   Mondada .  1994 .  How to evolve autonomous roots: 

Different approaches in evolutionary robotics . In   Proceedings of the International Conference on 

Artificial Life IV  , ed.  R.   Brooks  and  P.   Maes ,  190  –  197 .  Cambridge MA :  MIT Press .  

   Parisi ,  D. , and  S.   Nolfi .  1993 .  Neural network learning in an ecological and evolutionary context . 

In   Intelligent Perceptual Systems  , ed.  V.   Roberto ,  20  –  40 .  Berlin :  Springer .  

   Philippides ,  A. ,  P.   Husbands ,  T.   Smith , and  M.   O ’ Shea .  2005 .  Flexible couplings: Diffusing neuro-

modulators and adaptive robotics.    Artificial Life    11  ( 1 – 2 ):  139  –  160 .  

   Port ,  R. , and  T. J.   van Gelder .  1995 .   Mind as Motion: Explorations in the Dynamics of Cognition  . 

 Cambridge, MA :  MIT Press .  

   Quinn ,  M.   2001 .  Evolving communication without dedicated communication channels . In 

  Advances in Artificial Life: Sixth European Conference on Artificial Life     (ECAL 2001), ed.  J.   Kelemen  

and  P.   Sosik ,  357  –  366 .  Berlin :  Springer Verlag .  

   Quinn ,  M. ,  L.   Smith ,  G.   Mayley , and  P.   Husbands .  2003 .  Evolving controllers for a homogeneous 

system of physical robots: Structured cooperation with minimal sensors.    Philosophical Transac-

tions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences   

 361 : 2321  –  2344 .  

   Risi ,  S. , and  K.   Stanley .  2012 .  An enhanced hypercube-based encoding for evolving the place-

ment, density, and connectivity of neurons.    Artificial Life    18  ( 4 ):  331  –  363 .  

   Sims ,  K.   1994 .  Evolving 3D morphology and behavior by competition . In   Proceedings of the Inter-

national Conference Artificial Life IV  , ed.  R.   Brooks  and  P.   Maes ,  28  –  39 .  Cambridge, MA :  MIT Press .  

   Stanley ,  K. , and  R.   Miikkulainen .  2002 .  Evolving neural networks through augmenting topolo-

gies.    Evolutionary Computation    10  ( 2 ):  99  –  127 .  

   Tani ,  J.   2003 .  Learning to generate articulated behavior through the bottom-up and the 

top-down interaction processes.    Neural Networks    16 : 11  –  23 .  

   Tani ,  J. , and  S.   Nolfi .  1999 .  Learning to perceive the world as articulated: An approach for hierar-

chical learning in sensory-motor systems.    Neural Networks    12 : 1131  –  1141 .  

   Turing ,  A. M.   1950 .  Computing machinery and intelligence.    Mind    59 : 433  –  460 .  

   Urzelai ,  J. , and  D.   Floreano .  2001 .  Evolution of adaptive synapses: Robots with fast adaptive 

behavior in new environments.    Evolutionary Computation    9 : 495  –  524 .  

   Walter ,  W. G.   1953 .   The Living Brain  .  London :  Duckworth .  

   Williams ,  P. L. ,  R. D.   Beer , and  M.   Gasser .  2008a .  An embodied dynamical approach to relational 

categorization . In   Proceedings of the 30th Annual Conference of the Cognitive Science Society  , ed. 

 B. C .  Love ,  K.   McRae , and  V. M.   Sloutsky ,  223  –  228 .  Washington, DC :  Cognitive Science Society .  

   Williams ,  P. L. ,  R. D.   Beer , and  M.   Gasser .  2008b .  Evolving referential communication in embodied 

dynamical agents . In   Artificial Life XI: Proceedings of the Eleventh International Conference on the Simu-

lation and Synthesis of Living Systems  , ed.  S.   Bullock   et al. ,  702  –  709 .  Cambridge, MA :  MIT Press .  

 
 



 2.1   Introduction 

 When research in evolutionary robotics (ER) initially took off in the early 1990s, con-
cerns over the brittleness of traditional artificial intelligence (AI) techniques had 
recently led to a resurgence of interest in artificial neural networks (ANNs). This fact, 
coupled with the obvious (loose) analogy between robot control systems and biological 
nervous systems, meant that most ER researchers naturally gravitated toward neuro-
control systems ( Husbands and Harvey 1992 ;  Beer and Gallagher 1992 ;  Harvey, Hus-
bands, and Cliff 1994 ;  Parisi and Nolfi 1993 ;  Floreano and Mondada 1994 ). To many 
of those researchers neural networks also intuitively seemed to be more evolvable than 
other possible control substrates such as rules or programs — nodes and connections 
could be gradually changed or added or deleted in a flexible, open-ended way ( Harvey, 
Husbands, and Cliff 1993 ;  Cliff, Harvey, and Husbands 1993 ;  Beer and Gallagher 1992 ). 
In addition, from the earliest days, it has been noted that dynamical recurrent varieties 
of neural networks, many strongly biologically influenced, allow subtle dynamics that 
can be readily exploited in the generation of robust adaptive behavior ( de Garis 1990 ; 
 Beer and Gallagher 1992 ;  Harvey, Husbands, and Cliff 1993 ). Hence, from the outset 
artificial neural networks have been the predominant control system used in ER. 
Therefore the field has always had at least a tentative link with neuroscience. However, 
strands of work in which the link is more explicit have existed since the inception of 
the field and have continued to develop. They are the focus of this chapter. 

 The two main classes of ER research in which there is a strong tie with neuroscience 
are: work involving explicitly biologically inspired neural network controllers, often 
making use of cutting edge neuroscience, and research in which ER is used to develop 
or explore neural models aimed at answering specific questions in neuroscience. The 
former class is concerned with biologically inspired technology while the latter uses 
computational and robotic tools in scientific research. In some cases the boundary 
between the two classes can become rather blurred: often within a single piece of 
research both kinds of motivation can be found. 

 2   Evolutionary Robotics and Neuroscience 

 Phil Husbands, Renan C. Moioli, Yoonsik Shim, Andy Philippides, Patricia A. Vargas, 
and Michael O ’ Shea 
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 This chapter attempts to sketch a general map of the kind of relationships that exist 
between ER and neuroscience, using specific examples to illustrate the wide range of 
interactions between the two fields A number of case studies are used to explore such 
relationships in more depth. 

 Section 2.2 lays out the kinds of interactions between ER and neuroscience that will 
be considered in the rest of the chapter. Following detailed descriptions of a number 
of case studies, focusing mainly on ongoing research, the chapter concludes with a 
discussion of open issues and the prospects for such work. 

 2.2   Relationships between Evolutionary Robotics and Neuroscience 

 The two main classes of relevant research mentioned previously — the use of neurobio-
logically inspired neural networks in ER, and the use of ER modeling in neurobiological 
research — are rather broad, with many variations on each theme. In the following 
sections the scope of each of these categories will be fleshed out. 

 With the acceleration in fundamental neuroscientific research that has taken place 
since about the turn of the century, it has become ever clearer that the central nervous 
system (CNS) is a far more sophisticated and exotic system than that portrayed in the 
old-fashioned connectionist electrical network view of neural processing that has 
dominated the worlds of artificial neural networks and neural modeling ( Dayan and 
Abbott 2001 ). The emerging picture is one of many interacting adaptive processes 
operating over different temporal and spatial scales. These new understandings, par-
ticularly with reference to behavior generation, provide rich sources of inspiration, at 
many different levels of abstraction, for the development of artificial nervous systems 
for robots. A number of examples of such research are described later. 

 Natural adaptive and intelligent behavior is the result of complex interactions 
among nervous system, body, and environment. Biological neural systems are embod-
ied and embedded. Because of this there has been a growing interest in using robots, 
employing on-board neural circuitry, to model aspects of animal behavior. Such a 
methodology, the argument goes, can give deeper insights into behavior-generating 
neural mechanisms than disembodied models ( Webb 2001 ;  Beer 2003 ;  Seth et al. 
2004 ), as well as fresh perspectives on what it means to be a cognitive agent ( Wheeler 
2005 ). Like any modeling enterprise, there are many issues surrounding how to make 
robotic models, with their inevitable implementation constraints, properly relevant to 
biological enquiry. For a discussion of such matters, see  Webb 2001 ,  Webb 2009 , and 
 AB 2009 . 

 Evolutionary robotics has an important role to play in this context as it allows the 
exploration of whole classes of mechanisms, the automatic creation of working models 
when there are insufficient details to fully specify a system in advance, and a reduction 
in  “ designer bias ”  ( Harvey et al. 2005 ) through the use of an automatic search process 



Evolutionary Robotics and Neuroscience 19

that does not specify in advance what a solution should look like. Hence it has been 
recognized as a useful tool in investigating biological hypotheses ( Husbands et al. 1997 ; 
 Harvey et al. 2005 ;  Floreano, Husbands, and Nolfi 2008 ). 

 2.2.1   Biological Inspiration 
 Biological brains are often, quite rightly, posited as the most complex systems studied 
by science. As their mysteries are slowly unraveled, they provide many potential foci 
of inspiration for developing neuro-influenced controllers for robots. Four of the main 
such sources of inspiration that have found their way into ER research are: 

  •    Neural architectures 
  •    Intrinsic neural properties 
  •    Signaling modes 
  •    Brain-body-environment dynamics 

 Each of these is briefly discussed in the remainder of this section. More detailed case 
studies involving one or more of these elements are covered later in the chapter. 

 Observations of the ways in which neural circuitry is organized in nature, particu-
larly in relation to motor behaviors in invertebrates, have led to a number of powerful 
general architectures being adopted in some areas of ER, for instance work on legged 
locomotion. Such architectures impose constraints on the properties of neurons and 
the ways in which they can be connected, thus shaping and restricting the evolution-
ary search space. A pioneering example is the work of Beer and colleagues ( Beer, Chiel, 
and Sterling 1989 ;  Beer et al. 1997 ), who introduced an architecture for locomotion 
based on cross-coupled subnetworks, inspired by the cockroach nervous system (  figure 
2.1 ). Each leg is controlled by an identical (or near-identical) fully connected subnet-
work containing a small number of neurons (typically five or six). These networks are 
connected to each other by both cross-body and same-side (intersegmental) wiring as 
illustrated in   figure 2.1 . Variations on this insect-inspired architecture have proved 
very successful in the development of locomotion controllers in many types of legged 
robots, including bipeds, quadrupeds, hexapods and octopods ( Jakobi 1998 ;  Kodjaba-
chian and Meyer 1998 ;  Vaughan, Di Paolo, and Harvey 2004 ;  Reil and Husbands 2002 ). 
Other ER approaches to locomotion include work that does not make use of central 
pattern generators (and therefore is less biologically motivated but interesting none-
theless) to generate sidewinding (snake-like) behavior ( Tanev, Ray, and Buller 2005 ; 
 Kuyucu, Tanev, and Shimohara 2012 ).    

 Real neurons are highly sophisticated information processing devices, generally 
orders of magnitude more complex than the crude caricatures employed in artificial 
neural networks. Their very sophistication means that detailed modeling becomes 
computationally very expensive, so it is inevitable that abstractions and simplifications 
should be made in any model or artificial analog. However, by introducing elements 
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 Figure 2.1 
 Left: schematic diagram of a distributed neural network for the control of locomotion in a 

hexapod as used by  Beer et al. (1989) . Excitatory connections are denoted by open triangles, and 

inhibitory connections are denoted by filled circles. C = command neuron; P = pacemaker neuron; 

FT = foot motor neuron; FS and BS = forward swing and backward swing motor neurons; FAS and 

BAS = forward angle sensors and backward angle sensors. Reproduced with permission. Right: 

generalized architecture using a fully connected dynamical network controller for each leg (a), 

cross-coupled as shown (b). Solid lines are cross-body connections, and dashed lines are interseg-

mental connections. 
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of realistic neural properties, including dynamics, much can be gained. For instance, 
the particular brand of continuous-time recurrent neural networks (CTRNNs) used to 
great effect by many ER practitioners ( Beer and Gallagher 1992 ;  Beer 2003 ) are based 
on simple integrate-and-fire model neurons ( Abbott and Kepler 1990 ), which were 
originally developed to approximate aspects of neural membrane potential dynamics 
without the expense of more detailed  Hodgkin and Huxley- (1952)  style models. In 
contrast to the uniform nature of most ANNs, individual real neurons and synapses 
often have their own highly unique properties. In many identified motor circuits, 
particularly in invertebrates, nerve cells and synapses have widely varying intrinsic 
properties and behaviors ( North and Greenspan 2007 ). Incorporating such heterogene-
ity into networks is particularly suited to the ER methodology and has often been 
successfully employed ( Nolfi and Floreano 2000 ;  Floreano, Husbands, and Nolfi 2008 ). 
Many other intrinsic properties, such as spiking and oscillatory dynamics ( Izhikevich 
2007 ), homeostatic mechanisms ( Davis 2006 ), and numerous forms of plasticity (e.g., 
 Pinaud, Tremere, and De Weerd 2006 ;  Katz 1999 ) provide a rich vein of inspiration. 

 Until recently nearly all work in ANNs and computational neuroscience concen-
trated on the transmission of electrical signals between neurons via axons and den-
drites. However, nervous systems are complex electrochemical systems with many 
non-electrical signaling modes also in play. This fuller picture of neural information 
processing has inspired work in ER that makes use of analogs of chemical transmission. 
In particular, the notion of  volume signaling , whereby neurotransmitters freely diffuse 
into a relatively large volume around a nerve cell, potentially affecting many other 
neurons irrespective of whether or not they are electrically connected ( Gally et al. 
1990 ;  Wood and Garthwaite 1994 ), has been explored in a body of ER work ( Husbands 
et al. 1998 ;  Philippides, Husbands, et al. 2005 ;  Husbands et al. 2010 ). This exotic form 
of neural signaling, which involves modulation of neural or synaptic properties, or 
both, by the diffusing neurotransmitter, does not sit easily with classical connectionist 
(point-to-point) pictures of brain mechanisms and is forcing a radical rethink of exist-
ing theory ( Dawson and Snyder 1994 ;  Philippides, Husbands, and Shea 2000 ;  Philip-
pides, Ott, et al. 2005 ;  Bullock et al. 2005 ;  Katz 1999 ). Other examples include the use 
of analogs of neuro-endocrine interactions in ER control architectures ( Vargas et al. 
2005 ), neural plasticity modulated by dopamine-inspired mechanisms ( Doya 2002 ), 
and the introduction of neuron-level homeostatic mechanisms in spiking plastic net-
works ( Di Paolo 2003 ). 

 One of the driving forces behind the development of ER and other forms of  “ New 
AI ”  has been the realization that a proper understanding of intelligence must recognize 
the central role of  embodiment  ( Varela, Thompson, and Rosch 1991 ;  Brooks 1991 ;  Clark 
1999 ). The body is not just a passive vessel to be controlled. Rather, adaptive behavior 
emerges out of a subtle interplay among brain, body, and environment ( Pfeifer and 
Bongard 2007 ). For instance, studying neural circuitry underlying the generation of 
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rhythmic motor behavior in isolation ignores the considerable advantage that can be 
obtained from incorporating the physical body and its environment — an approach 
that can significantly reduce the amount of information needed to develop successful 
motor patterns. ER has proved to be very useful in exploring and exploiting the inter-
play among neural, bodily, and environmental dynamics in the development of effi-
cient and robust behaviors ( Floreano, Husbands, and Nolfi 2008 ). 

 Section 2.3 describes in some detail three examples of current work from the Centre 
for Computational Neuroscience and Robotics at Sussex University that mainly fall 
under the biological inspiration category. We say mainly, because although the studies 
are of biologically inspired neuro-robotic systems, there are elements of biological 
inquiry in each case. 

 2.2.2   Biological Modeling 
 Many types of models are now commonly used in science, including: the classical 
modeling of a target system at a particular level of abstraction according to some set 
of assumptions; and models as existence proofs — used to help to refute, or at least cast 
doubt on, certain claims about necessary conditions for a phenomenon as well as 
demonstrating new possibilities. Models can also act as substitutes for theories where 
none exist, a situation common in cognitive science and biology, and, in the case of 
computational models, as a kind of animated thought experiment aimed at clarifying 
conceptual issues. ER has been used to develop examples of all of these types of models 
in relation to various issues in neuroscience; several illustrative cases are discussed later. 

 A slightly more abstract characterization of the main classes of neurobiological 
modeling that have employed ER methods, which will be used in the remainder of 
this chapter, uses the following three categories: 

  •    Model tuning 
  •    Model synthesis 
  •    Development of probing models 

 Model tuning here refers to adjusting or setting parameter values in an otherwise 
well-defined model (parameter fitting). There is a growing history of using search 
methods, including evolutionary techniques, to either fine-tune values or set unknown 
values in scientific models, including neuroscientific models (e.g.,  Gerken et al. 2005 ; 
 Gurkiewicz and Korngreen 2007 ). When the model is of a whole embodied behavior-
generating system, evolutionary robotics can be an ideal tool to use in this context. 
In that case parameters might describe neural properties or aspects of sensors or bodies, 
or all of these things. 

 Model tuning is used when sufficient details of the target system are known to be 
able to define a parametric model at the desired level of abstraction. In cases where 
insufficient details are available (e.g., the connectivity of neural circuitry is unclear, or 
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the number of neurons involved is unknown) model synthesis techniques can be 
employed. ER can be used for this purpose by searching a space of possible models, 
constrained by available knowledge, to find one that fits the data (e.g., generates 
appropriate behavior). By attempting to fill in the blanks, a model synthesized in this 
way presents a set of hypotheses about the target system — for instance, how details of 
neural architectures and mechanisms underly behavior generation. The hypotheses 
thus generated can then be subjected to empirical scrutiny in the original biological 
system. When knowledge of the target system or phenomenon is sparse, such synthe-
sized models generally stand as existence proofs that serve to catalyze further debate 
and sharpen theories. 

 A kind of model that is closely related to the existence proof and that does not 
require any direct representational function, but is used in all branches of science, 
is the  toy , or  probing , model ( Frigg and Hartmann 2008 ). Evolutionary robotics has 
increasingly been used to develop such models, which operate at a more abstract level 
than the other types previously listed. They are not intended to represent a specific 
concrete target system or phenomenon, but to be used as simple vehicles for testing 
new tools and methods, preparatory to more detailed, empirically based modeling 
( Hartmann 1995 ). This is exactly the motivation Randy Beer gives for the strand of 
research that employs ER techniques to synthesize abstract models of agents engaged 
in  “ minimally cognitive ”  behaviors ( Beer 2003 ). He describes his work on simple 
autonomous agents involved in categorizing objects within a behavioral context thus: 
 “ The intention here is not to propose a serious model of categorical perception, but 
rather to use this model agent to explore the implications of dynamical explanation 
for cognitive agents ”  (210), and exhorts us to  “ Think of this exercise, then, as a form 
of mental calisthenics, an intellectual warm-up for the dynamical analyses of a wider 
range of agents and behaviors ”  (210). An interesting associate of the toy model is the 
false model — a model of something known to be wrong — which can have a useful 
heuristic role in refining and developing  “ true ”  models by elaborating their underlying 
assumptions ( Wimsatt 2002 ). 

 For an area as difficult and underdeveloped as dynamical analyses and explanations 
of embodied situated agent behavior, which could have a significant effect on thinking 
in neuroscience, Beer ’ s justification seems appropriate and pragmatic. The reason toy 
models are used in physics is the same reason Beer uses them: their relative tractability. 
ER can be a very powerful tool for building them. 

 A good example of using ER techniques for model tuning is the work of Ijspeert 
and colleagues ( Ijspeert, Hallam, and Willshaw 1999 ;  Hallam and Ijspeert 2003 ) on 
models of the central pattern generator neural circuitry underlying swimming behav-
iors in the lamprey. The starting point was a model at an intermediate level of abstrac-
tion devised by Ekeberg ( Ekeberg 1993 ;  Ekeberg, Lansner, and Grillner 1995 ), which 
was based on neurophysiological data ( Grillner, Wallen, and Brodin 1991 ). This model 
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used networks of simple leaky integrator nodes to control a simulated lamprey body. 
The nodes in the networks can be thought of as populations of neurons and the con-
nections between them as general pathways in the lamprey ’ s spinal cord. This model 
had a well-defined set of parameters that described individual node and connection 
properties. Ekeberg hand-designed a set of specific parameter values that were able to 
reproduce some of the real lamprey ’ s behaviors to a good level of accuracy ( Ekeberg, 
Lansner, and Grillner 1995 ). Ijspeert and colleagues used a genetic algorithm to search 
the parameter space of this model and were able to find several combinations different 
from Ekeberg ’ s hand-designed set that reproduced the biological data better. Since the 
ER-generated solutions were all essentially variations of Ekeberg ’ s model, the work also 
showed that the original model was fairly robust to differences in parameter values 
( Hallam and Ijspeert 2003 ). Ijspeert also used ER as a model synthesis technique by 
relaxing the constraints imposed by Ekeberg ’ s parametric model and searching the 
resulting space of possible models. They found a number of alternative models that 
were also able to reproduce the biological data. In a related vein,  von Twickel, B ü sch-
ges, and Pasemann (2011 ) have used a mixture of hand coding and ER methodology 
to develop single-leg model controllers based on empirical observations of stick insect 
neurobiology. They were able to reproduce a range of behaviors that matched the 
biological data with their neural models. 

 Another recent example of using ER for model synthesis is the work of  Izquierdo 
and Lockery (2010) . They used ER methods to develop a model of the neural mecha-
nisms underlying klinotaxis, a common form of chemotaxis, in  C. elegans . Previous 
neural models of chemotactic behavior in nematodes focused on the other strategy 
they commonly use: klinokinesis, in which the direction of movement is governed by 
a biased random walk ( Ferree and Lockery 1999 ). Klinotaxis involves movements in 
which the direction of locomotion in a chemical gradient closely follows the line of 
steepest ascent. The differences between the two forms of behavior imply a distinctive 
neural network controlling klinotaxis. This network has not yet been identified and 
no hypothetical model existed before Izquierdo and Lockery ’ s work. They used an 
evolutionary algorithm to generate neural networks that exhibited klinotaxis in a 
simple idealized physical model of  C. elegans.  Sensory inputs and motor outputs of the 
model networks were constrained to match empirical data as were other aspects of a 
hypothesized network architecture. Motor neurons were modeled as simple leaky 
integrators as used in CTRNNs ( Beer 1995 ). The parameters of the resulting network 
were evolved to discover working instances of the network that could then stand as 
hypotheses about the mechanisms at play in  C. elegans . They discovered that a mini-
malistic neural network, comprised of an ONOFF pair of chemosensory neurons and 
a pair of neck-muscle motor neurons, is sufficient to generate realistic klinotaxis behav-
ior. Importantly, emergent properties of model networks reproduced other experimen-
tal observations that they were not designed to fit, suggesting that the model may be 
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operating according to principles similar to those of the biological network. A large 
number of successful networks were analyzed and this revealed a novel neural mecha-
nism to allow asymmetric turning behavior (a kind of mutual inhibition between 
motor neurons is achieved simply by shifting the sigmoidal input – output function of 
the motor neurons relative to the dynamic range of the oscillatory input driving the 
nematode ’ s head sweeps). The authors stress that this mechanism provides a testable 
hypothesis that is likely to accelerate the discovery and analysis of the biological cir-
cuitry for chemotaxis in  C. elegans.  

  Seth (2005 ) gives an interesting example of ER used in a probing model context. 
The aim of the work was to develop methods based on Granger causality ( Granger 
1969 ) to enable analysis of causal interactions occurring within behavior-generating 
neural mechanisms. This requires detailed simultaneous temporal data from several 
sites in some relevant neural circuitry, in practice not at all easy to gather from an 
intact biological neural system. Rather than try and develop the method (termed 
 “ causal connectivity analysis ” ) using data somehow collected from a biological context, 
Seth very sensibly opted to experiment with the ideas in an abstract simulation. This 
is a classic case of the kind of situation in which probing models can be very useful, 
as discussed earlier. He used a genetic algorithm to develop model neural networks 
optimized for controlling target fixation in a simulated head – eye system, in which 
the structure of the environment could be experimentally varied. Causal connectivity 
analysis of a number of networks evolved in various contexts within this framework 
gave novel insights into neural mechanisms underlying sensorimotor coordination. 
Seth demonstrated that networks underlying relatively rich adaptive behavior showed 
a higher density of causal interactions, as well as a stronger causal flow from sensory 
inputs to motor outputs, than networks generating relatively simple behaviors. In 
addition he showed that this style of analysis can predict the functional consequences 
of network lesions. The methods developed using this probing model were powerful 
enough to suggest that causal connectivity analysis, and similar techniques, could have 
useful applications in the analysis of real neural dynamics, a line of inquiry that has 
been followed by Seth and colleagues with some success (e.g.,  Seth, Barrett, and Barnett 
2011 ,  Barnett and Seth 2011 ). 

  Suzuki, Floreano, and DiPaolo ’ s (2005)  work on whether or not proprioceptive 
motor information resulting from the generation of actions is necessary for the devel-
opment of normal, visually guided behavior is another example of ER being used to 
explore an explicitly neuroscientific question. In an experiment inspired by  Held and 
Hein ’ s (1963)  work on cats, two initially identical evolved robots were compared. One 
was left free to move in a square environment while the other was forced to move 
along trajectories imposed externally, but was free to control its camera position. The 
visual receptive fields and behaviors of the passive robot significantly differed from 
those of the active robot. Further analysis revealed that passive robots became 
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oversensitive to features that were not functional to their normal behavior and which 
interfered with other dominant features in the visual field. This lead to a hypothesis 
that some pathological behaviors seen in animals might have roots in similar devel-
opmental deficiencies. 

 Tani, Maniadakis, and Paine (chapter 10, this volume) present another example of 
ER used to develop abstract probing models as a first step to shed light on possible 
neural mechanisms involved in higher-level cognitive processes, such as compositional 
goal-directed action generation and rule switching. 

 2.3   Neuroscience-Inspired ER Case Studies 

 This section illustrates in more detail how ideas from empirical and theoretical neu-
roscience can provide powerful inspiration for work in ER by focusing on three 
examples of current work from our lab at Sussex University. 

 2.3.1   Volume Signaling: GasNets 
 A good example of ER research drawing strongly on inspiration from neuroscience 
concerns the class of artificial neural networks developed to explore an analog of 
volume signaling — so-called GasNets ( Husbands et al. 1998 ). These take particular 
inspiration from nitric oxide (NO) signaling ( Gally et al. 1990 ). They comprise a fairly 
standard artificial neural network augmented by a chemical signaling system based on 
a diffusing  virtual  gas that can modulate the response of other neurons. Because there 
was (and still is) insufficient knowledge of the biological systems to completely define 
artificial systems working on similar principles, Husbands and colleagues developed 
the networks to be used within an evolutionary robotics context ( Husbands et al. 
1998 ). Thus researchers at Sussex University ( Philippides, Husbands, et al. 2005 ;  Hus-
bands et al. 2010 ) have explored a number of GasNet variants, inspired by different 
aspects of real nervous systems, as artificial nervous systems for mobile autonomous 
robots. These variants are being investigated as potentially useful engineering tools, 
including as modules in complex robot control systems ( Vargas et al. 2009 ), while a 
related strand of more detailed modeling work is aimed at gaining helpful insights 
into biological systems ( Philippides, Husbands, and O ’ Shea 2000 ;  Philippides et al. 
2003 ;  Philippides, Ott, et al. 2005 ). 

 By analogy with biological neuronal networks, GasNets incorporate two distinct 
signaling mechanisms, one  “ electrical ”  and one  “ chemical. ”  The underlying  “ electri-
cal ”  network is a discrete time step, recurrent neural network with a variable number 
of nodes. These nodes are connected by either excitatory or inhibitory links with the 
output,  Oi

t , of node  i  at time step  t   determined by the following equation: 
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 where  Γi  is the set of nodes with connections to node  i  and  wji = ±1  is a connection 
weight.  Ii

t   is the external (sensory) input to node  i  at time  t  , and  bi  is a genetically set 
bias. Each node has a genetically set default transfer function gain parameter,  ki

0 , which 
can be altered at each time step according to the concentration of diffusing  “ gas ”  at 
node  i  to give  ki

t  (as described later). 
 In addition to this underlying network in which positive and negative  “ signals ”  

flow between units, an abstract process loosely analogous to the diffusion of gaseous 
modulators is at play. Some units can emit virtual  “ gases, ”  which diffuse and are 
capable of modulating the behavior of other units by changing their transfer functions. 
The networks occupy a 2D space; the diffusion processes mean that the relative posi-
tioning of nodes is crucial to the functioning of the network. Spatially, the gas con-
centration varies as an inverse exponential of the distance from the emitting node 
with spread governed by a parameter,  r  , genetically set for each node, which governs 
the radius of influence of the virtual gas from the node as described by the equations 
that follow and as illustrated in   figure 2.2 . The maximum concentration at the emit-
ting node is 1.0 and the concentration builds up and decays linearly as dictated by 
the time course function,  T t( ) , defined as follows. 
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 where  C ( d , t ) is the concentration at a distance  d  from the emitting node at time  t  and 
 s  (controlling the slope of the function  T  ) is genetically determined for each node. 
The range of  s  is such that the gas diffusion timescale can vary from 0.5 to 0.09 of the 
timescale of  “ electrical ”  transmission (i.e., a little slower to much slower). The total 
concentration at a node is then determined by summing the contributions from all 
other emitting nodes (nodes are not affected by their own emitted gases to avoid 
runaway positive feedback). The diffusion process is modeled in this simple way to 
provide extreme computational efficiency, allowing arbitrarily large networks to be 
run very fast — a very useful property in the context of evolutionary search.    

 For mathematical convenience, in the original basic GasNet there are two  “ gases, ”  
one whose modulatory effect is to increase the transfer function gain parameter ( ki

t  ) 
and one whose effect is to decrease it. It is genetically determined whether or not 
any given node will emit one of these two gases (gas 1 and gas 2), and under what 
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A GasNet. Neuron 3 is emitting gas and modulating 
neuron 2 despite there being no synaptic connection.

 Figure 2.2 
 A basic GasNet showing excitatory (solid) and inhibitory (dashed)  “ electrical ”  connections and 

a diffusing virtual gas creating a  “ chemical ”  gradient. 

circumstances emission will occur (either when the  “ electrical ”  activation of the node 
exceeds a threshold, or the concentration of a genetically determined gas in the vicin-
ity of the node exceeds a threshold; note these emission processes provide a coupling 
between the electrical and chemical mechanisms). The concentration-dependent mod-
ulation is described by the following equation, with transfer function parameters 
updated on every time step as the network runs: 

  k k C Ci
t

i
t t= + −0
1 2α β   (2.4) 

 where  ki
0  is the genetically set default value for  ki ,  Ct

1  and  Ct
2  are the concentrations of 

gas 1 and gas 2 respectively at node  i  on time step  t , and  α   and  β   are constants such 
that  ki

t ∈ −[ , ]4 4  . Thus the gas does not alter the electrical activity in the network 
directly but rather acts by continuously changing the mapping between input and 
output for individual nodes, either directly or by stimulating the production of further 
virtual gas. 

 The general form of diffusion is based on the properties of a (real) single source 
neuron as modeled in detail in  Philippides, Husbands, and O ’ Shea (2000 )   and  Philip-
pides et al. (2003 ). The modulation chosen is motivated by what is known of NO 
modulatory effects at synapses ( Baranano, Ferris, and Snyder 2001 ). For further 
details, see  Husbands et al. 1998 ,  Philippides, Ott, et al. 2005 , and  Husbands et al. 
2010 . 
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 When they were first introduced, GasNets were demonstrated to be significantly 
more evolvable than a variety of standard ANNs on some noisy, visually guided evo-
lutionary robotics tasks ( Husbands 1998 ;  Husbands et al. 1998 ). Typically the increase 
in evolvability, in terms of number of fitness evaluations to a reliable good solution, 
was an order of magnitude or more. The solutions found were often very lean with 
few nodes and connections, typically far fewer than were needed for other forms of 
ANN ( Husbands et al. 1998 ). But the action of the modulatory gases imbued such 
networks with intricate dynamics: they could not be described as simple. Oscillatory 
subnetworks based on interacting  “ electrical ”  and  “ gas ”  feedback mechanisms acting 
on different timescales were found to be very easy to evolve and cropped up in many 
forms, from CPG circuits for locomotion ( McHale and Husbands 2004 ) to noise filters 
and timing mechanisms for visual processing ( Husbands et al. 1998 ,  Smith et al. 2002 ). 
GasNets appeared to be particularly suited to noisy sensorimotor behaviors, which 
could not be solved by simple reactive feedforward systems, and to rhythmical 
behaviors. 

 Two recent extensions of the basic GasNet, the receptor and the plexus models, 
incorporated further influence from neuroscience ( Philippides, Husbands, et al. 2005 ). 
In the receptor model, modulation of a node is now a function of gas concentration 
and the quantity and type of receptors (if any) at the node. This allows a range of 
site-specific modulations within the same network. In the plexus model, inspired by 
a type of NO signaling seen in the mammalian cerebral cortex ( Philippides, Ott, et al. 
2005 ), the emitted gas  “ cloud, ”  which now has a flat concentration, is no longer cen-
tered on the node controlling it but at a distance from it. Both these extended forms 
proved to be significantly more evolvable again than the basic GasNet. Other varieties 
include nonspatial GasNets where the diffusion process is replaced by explicit gas con-
nections with complex dynamics ( Vargas et al. 2009 ) and versions with other forms 
of modulation and diffusion ( Husbands et al. 2010 ). In order to gain insight into the 
enhanced evolvability of GasNets, detailed comparative studies of these variants with 
each other, and with other forms of ANN, were performed using the robot task illus-
trated in   figure 2.3  ( Philippides, Husbands, et al. 2005 ;  Husbands et al. 2010 ).    

 The question naturally arises as to why the GasNet and variants are more evolvable. 
Intriguingly, in a comprehensive study  Smith, Husbands, and O ’ Shea (2003)  found no 
explanation for increased GasNet evolvability in terms of fitness landscape properties 
(neutrality, epistasis, etc.), apart from at high fitness values. Smith and colleagues 
argued that the key to understanding the improvement of the GasNet was to analyze 
its behavior at a higher level of abstraction. In particular, they showed how the tem-
poral dynamics of the GasNet seemed to make it relatively easy to tune the networks 
to the timescales needed in the task ( Smith et al. 2002 ). Similar high-level analyses of 
the spatial structure of successful GasNets and variants led to the hypothesis that it 
was the level of coupling between the electrical and gas signaling systems that was 
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key. In particular that successful evolution came through the systems being flexibly 
coupled: neither independent of each other nor too tightly bound, allowing one 
system to be  “ tuned ”  against the other without causing catastrophic destructive inter-
ference ( Philippides, Husbands, et al. 2005 ). Throughout, however, it was clear that 
these factors did not act in isolation and that it is the modulatory effect of the gas 
that lends the networks their adaptivity. This leads to three linked hypotheses on why 
the GasNets evolve faster: 

  •    The action of gas over multiple different timescales from the electrical activity intro-
duces rich dynamics that can be exploited. 
  •    The spatial embedding of the networks serves to (flexibly) couple two interacting 
signaling systems. 
  •    The particular modulatory effects are key to evolvability. 

 These hypotheses were examined in an extended empirical study, discussed in the 
section that follows, which compared variants of the basic GasNet formed by imposing 
various constraints on spatial, temporal, and modulatory properties. 

 Figure 2.3 
 Left: the gantry robot. A CCD camera head moves at the end of a gantry arm allowing full 3D 

movement. In the study referred to in the text, 2D movement was used, equivalent to a wheeled 

robot with a fixed forward-pointing camera. A validated simulation was used: controllers devel-

oped in the simulation work at least as well on the real robot. Right: the simulated arena and 

robot. The bottom-right view shows the robot position in the arena with the triangle and rect-

angle. Fitness is evaluated on how closely the robot approaches the triangle. The top-right view 

shows what the robot  “ sees, ”  along with the pixel positions selected by evolution for visual input. 

The bottom-left view shows how the genetically set pixels are connected into the control network 

whose gas levels are illustrated. The top-left view shows current activity of nodes in the GasNet. 
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 Comparative Study 
 Nine GasNet variants were compared in order to probe the hypotheses about GasNet 
evolvability outlined earlier. These variants implement a range of constraints affecting 
spatial, temporal, and modulatory factors, and are described in   table 2.1 .   
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 The task used in the studies is illustrated in   figure 2.3 . Starting from an arbitrary 
position and orientation in a black-walled arena, a robot equipped with a forward-
facing camera must navigate under extremely variable lighting conditions to one shape 
(a white triangle) while ignoring the second shape (a white rectangle). The robot must 
successfully complete the task over a series of trials in which the relative position and 
size of the shapes vary. Both the robot control network and the robot sensor input 
morphology, that is, the number and positions of the camera pixels used as input and 
how they were connected into the network, were under evolutionary control as shown 
in   figure 2.3 . The network architecture (including number of nodes) and all properties 
of the nodes and connections and gas diffusion parameters were set by an evolutionary 
search algorithm. Because of the noise and variation, and limited sensory capabilities 

  Table 2.1 
 The GasNet variants used in a comparative study  

 #  Name  Description 

  1   gnet  Basic gasnet as described in a previous section (2.3.1). 

  2   nchem  Basic gasnet but with all chemicals inactive. 

  3   gnetN  Basic gasnet with no diffusion dynamics, i.e.,  T ( t ) = 1, for all  t  (see equation 2.3). 

  4   gnetNw  The same as gnetN but with  T ( t ) =  w  where  w   ∈  {0, 1, 2} is a  “ gas weight ”  
genetically set for each node. 

  5   flatR  The same as gnet except the gas concentration within the genetically set 
radius for each emitter is flat with no gradient (the term  e   − 2   d/r   in equation 2.2 is 
replaced by  e   − 1 ). 

  6   flatRN  The same as flatR except without diffusion dynamics, i.e.,  T ( t ) = 1, for all  t  (see 
equation 3). 

  7   flatE  The same as flatR except the influence of the gas is not confined to the 
genetically set radius of influence for a node but now extends everywhere. 

  8   flatEN  The same as flatE but without diffusion dynamics. 

  9   AddMod  The most radical variant where the multiplicative modulation of the basic 
GasNet is replaced by an additive modulation as described by equation 2.5 (i.e., 
the gas no longer modulates the transfer function gain parameter but instead 
modulates an additional additive bias term). 
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(only very few pixels are used), this task is challenging, requiring robust, general solu-
tions. The gantry robot shown in the figure was used. Evolution took place in a special 
validated simulation of the robot and its environment. 

 In all cases networks were encoded on a variable-sized genotype coding for a vari-
able number of nodes. A genotype consisted of an array of integer variables, each lying 
in the range [0,100]. For continuous variables, the phenotype value is obtained by 
normalizing the genotype value to lie in the range [0.0,1.0] and multiplying by the 
relevant variable range. For nominal values, such as whether or not the node has a 
visual input, the phenotype value = genotype value MOD N nom , where N nom  is the 
number of possible nominal values, and MOD is the binary modular division operator. 
Each node in the network had between 19 and 21 variables associated with it, depend-
ing on which network variant it described. These define the node ’ s position on a 2D 
plane; how the node connects to other nodes on the plane with either excitatory 
(weight +1) or inhibitory (weight  − 1) connections; whether or not the node has visual 
input, and if it does the coordinates of the camera pixel it takes input from, along 
with a threshold below which input is ignored; whether or not the node has a recur-
rent connection; whether and under what circumstances the node can emit a gas and 
if so which gas it emits; and a series of variables describing the gas emission dynamics 
(maximum range, rate of emission and decay, etc.). All variables were under evolution-
ary control. Four of the nodes are assigned as motor nodes (forward and backward 
nodes for the left and right motor, with motor speeds proportional to the output of 
the relevant forward node minus the output of the relevant backward node). See  Hus-
bands et al. 1998, 2010  for full details. 

 Sixteen evaluations were carried out on an individual network, with scores f i  calcu-
lated on the fraction of the initial robot-triangle distance that the robot moves toward 
the triangle by the end of the evaluation; a maximum score of 1.0 is obtained by 
getting within 10.0cm of the triangle at any time during the evaluation. The controller 
only receives visual input; reliably getting to the triangle over a series of trials with 
different starting conditions, different relative positions of the triangle and rectangle, 
and under very noisy lighting, can only be achieved by visual identification of the 
triangle. The evaluated scores are ranked, and the fitness F is the weighted sum of the 
N=16 scores, with weight proportional to the  inverse  ranking i (ranking is from 1 to N, 
with N as the  lowest  score): 
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 Note the higher weighting on the poorer scores provides pressure to do well on 
 all  evaluations; a solution scoring 50 percent on every evaluation has fitness nearly 
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four times that of one scoring 100 percent on half of the evaluations and zero on the 
other half. 

 A geographically distributed, asynchronous updating evolutionary algorithm was 
used ( Collins and Jefferson 1991 ;  Husbands 1992 ;  Husbands et al. 1998 ), with a popu-
lation size of 100 arranged on a 10  ×  10 grid. Parents were chosen through rank-based 
roulette-wheel selection on the mating pool consisting of the eight nearest neighbors 
to a randomly chosen grid-point. A mutated copy of the parent was placed back in 
the mating pool using inverse rank-based roulette-wheel selection. Three mutation 
operators were applied to solutions during evolution. Each  integer  in the genotype 
string had a 10 percent probability of mutation in a Gaussian distribution around its 
current value (for certain genes, 20 percent of its mutation will be random jumps 
within the full possible range). There was also an addition operator, with a 4 percent 
chance per  genotype  of adding one neuron to the network by inserting a block of 
random values describing each of the new node ’ s properties, and a deletion operator, 
also with a 4 percent chance per  genotype  of deleting one randomly chosen neuron 
from the network. An evolutionary run is terminated when a perfect score has been 
achieved in 10 successive generations, or after 10,000 generations if the former criteria 
are not met. 

 Results of the comparative study are summarized in   figure 2.4 . A quick glance sug-
gests that the basic GasNet (group 1) is the most consistently evolvable with group 9 
(AddMod) clearly the worst (no runs were successful). Group 2 (nchem), in which gas 
effects are turned off, performs poorly on most runs, although, like most other vari-
ants, some runs produce good solutions relatively quickly. Most other network types 
without diffusion dynamics, thereby robbed of rich temporal properties, including 
multiple timescales, perform relatively poorly (groups 3, 4, 6). However, the relatively 
good performance of group 8, without dynamics, especially compared to group 7, 
which has dynamics, suggests that the story is not quite as simple as it might at first 
appear. Since it is not possible to assume the data distributions are normal, nonpara-
metric statistical procedures were used to test for significant differences between the 
network types. A Kruskal-Wallis test performed on the whole data set (all nine groups) 
revealed highly significant differences between the distributions (p  <  10 – 14). Pair-wise 
Wilcoxon Rank-Sum tests, adjusted for multiple comparisons using the Dunn-Sidak 
procedure for controlling type-1 statistical error, were used to further probe the differ-
ences between the distributions. These tests showed that all network types, except 
group 6 (flatRND), were significantly more evolvable (in terms of generations to con-
sistent success) than group 9 (AddMod). Since the Dunn-Sidak procedure is necessarily 
conservative and becomes more so as the number of groups increases, pairwise com-
parisons were recalculated for all network types except AddMod (i.e., groups 1 – 8). The 
results of these comparisons are shown in   table 2.2 .      



34 Chapter 2

 The results reveal the importance of the dynamics conferred by the diffusing 
gases. The basic GasNet (group 1) is significantly more evolvable than the variant 
with the gas turned off (group 2) as well as the variants with the gas operating but 
without dynamics (groups 3 and 4). It is also significantly more evolvable than 
the variant with the gas operating but with neither a concentration gradient nor 
dynamics (group 6). 

 However, there is one group without gas dynamic than which the basic GasNet is 
not significantly more evolvable: group 8 (flatEN), of which more later. The version 
of the GasNet with diffusion dynamics but without a concentration gradient (group 
5, flatR) performs fairly well with a low minimum and median, but the fairly high 
spread of results means that it is not as reliably evolvable as the basic GasNet. There 
is a similar story for group 7 (flatE) but its reliability is even worse; it should be noted 
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 Figure 2.4 
 Boxplot summarizing results of the comparative study. The x-axis refers to the network type 

numbers as shown in   table 2.2 . The y-axis shows generations to success as defined by the stop-

ping criteria explained in the text. The horizontal line within each box is the median, the top 

and bottom of the box show the 75th and 25th percentiles respectively, the whiskers extend to 

extreme points of the data not considered outliers (as defined by Rosner ’ s test), with outliers 

plotted individually. Forty runs of each network type are included. 
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that this restricted form of GasNet has similarities with various network models of 
neuromodulation that use global modulator signals ( Doya 2002 ). 

 Although these results suggest there is more to the GasNet ’ s evolvability than the 
multiple timescales provided by the gas diffusion dynamics, they do add a certain 
amount of weight to previous suggestions ( Philippides, Husbands, et al. 2005 ) that 
their easily tuneable dynamics is an important part of their success (as well as to more 
general claims about the importance of dynamics in the generation of behavior). 

 Even more obvious is the role of the type of modulation used — additive modulation 
proved to be useless (group 9). The multiplicative modulation employed in all other 
variants is able to assert a much more drastic influence on a node, being able to radi-
cally change the transfer function by altering the gain  k t  i   (equation 2.1) — for instance, 
flipping the slope from positive to negative or making it flat. These kinds of radical 
changes were dynamically employed in most successful GasNets and were at the heart 
of mechanisms, such as oscillators, used to produce stable reliable behavior in the face 
of significant noise ( Husbands et al. 1998 ;  Smith et al. 2002 ). Additive modulation, 
which acts at the same level as a node input or bias, could not produce strong enough 
effects to generate stable behavior. When GasNets were first introduced ( Husbands 
1998 ) an alternative node transfer function was successfully used along with an expo-
nential modulation (changing exponents in a polynomial transfer function) that 
allowed potentially large alterations to the transfer function, which seems to be neces-
sary for effective evolution. These kinds of (multiplicative or exponential) modulations 
may well confer evolutionary advantages by allowing network nodes to be sensitive 

  Table 2.2 
 Summary of tests for differences between evolvability (generations to consistent success). 

Distributions for network types 1 – 8 were tested against each other using pair-wise Wilcoxon 

Rank-Sum tests adjusted for multiple comparisons using the Dunn-Sidak procedure. Cell entries 

state whether or not there is a significant difference between the two distributions in question 

(p  <  0.05).  

 Sig diff?  1  2  3  4  5  6  7  8 
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to different ranges of input (internal and sensory) in different contexts. For instance, 
in one (behavioral) context an input node may need to be sensitive to a range of low 
sensor values while in another it is required to be sensitive to a range of high values. 
Changing a node ’ s gain through multiplicative modulation allows its sensitivity to be 
adjusted in an appropriate way. 

 The spatial embedding of the networks also appears to play a role in producing the 
most effective coupling between the two distinct signaling processes ( “ electrical ”  and 
 “ chemical ” ). By exploiting a loose, flexible coupling between the two processes, it is 
possible to significantly reduce destructive interference between them, allowing one 
to be  “ tuned ”  against the other while searching for good solutions. It has been sug-
gested that similar forces may be at play in spiking networks, where subthreshold and 
spiking dynamics interact with each other, which have been evolved to drive vision-
based robot behaviors ( Floreano and Mattiussi 2001 ;  Floreano, Husbands, and Nolfi 
2008 ). In the most successful varieties of GasNet, dynamics, modulation, and spatial 
embedding act in concert to produce highly evolvable degenerate ( Tononi, Sporns, 
and Edelman 1999 ) networks. 

 2.3.2   Coupled Oscillator Networks and Minimal Cognition 
 From shortly after the birth of modern neuroscience at the turn of the last century, 
researchers have looked at neuronal dynamics from an oscillatory perspective ( Berger 
1929 ). The consensus nowadays is that cognitive processes have a close nontrivial 
relationship to neuronal rhythms and oscillations ( Buzsaki 2006 ). In recent years 
various researchers have stressed the importance of considering temporal relations 
among groups of neurons, modulated by external influences or sustained by internal 
mechanisms or both ( Engel, Fries, and Singer 2001 ;  Singer 1999 ;  Konig, Engel, and 
Singer 1996 ). According to  Varela et al. (2001) , it is essential to investigate the temporal 
dynamics of neural networks in order to understand the emergence and integration 
of neuronal assemblies by means of synchronization. These dynamic assemblies, which 
are related to large-scale neuronal integration, can influence every cognitive act an 
agent might eventually perform. In studying these temporal dynamics, Varela and 
collaborators opted to focus on the phase relationships of brain signals, mainly because 
these contain a great deal of information on the temporal structure of neural signals, 
particularly those relating to the underlying mechanism for brain integration. Other 
authors have emphasized the relationship between phase information and memory 
formation and retrieval ( Li and Hopfield 1989 ;  Izhikevich 1999 ). 

 In robotics, although there has been much work on neurally inspired, coupled 
oscillator-based control of complex rhythmic motor behaviors, particularly locomo-
tion (e.g.,  Ijspeert et al. 2005 ), to date there has been very little research on the wider 
issues of neuronal synchronization and phase information in the generation of embod-
ied cognitive behaviors. The study described next is the first attempt to investigate the 
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neural dynamics of a simulated robotic agent engaged in minimally cognitive tasks 
while employing an evolved instance of the Kuramoto model of coupled oscillators 
( Kuramoto 1984 ) as its nervous system. These tasks are simple enough to allow detailed 
analysis and yet are complex enough to motivate some kind of cognitive interest. The 
work has dual aims: first, to shed new light on the possible role of neuronal synchro-
nization and phase information in the generation of sensorimotor cognitive behav-
iors — for instance to investigate whether different degrees of synchronization are 
appropriate in different circumstances and what role nonsynchronized, transient 
dynamics might play — and second, to begin investigating the efficacy of such systems 
as practical robotic controllers. 

 The first task is an active categorical perception problem ( Beer 2003 ;  Dale and Hus-
bands 2010 ) in which the robot has to discriminate between moving circles and 
squares, as first introduced by  Beer (2003) . In the second task, the robotic agent has 
to approach moving circles with both normal and inverted vision, adapting to both 
conditions. Even though these tasks don ’ t strictly require a network of coupled oscil-
lators to be solved, they have been chosen because they are useful benchmarks in the 
evolutionary robotics and adaptive behavior communities ( Di Paolo 2000 ;  Izquierdo 
2006 ) and act as a suitable focus for the possible roles of synchronization in a delib-
erately nonrhythmic behavior with some relevance to cognition. 

 The rationale behind the choice of the Kuramoto model is that it describes the 
phase evolution of a set of connected oscillators and with some adjustments can be 
associated with groups of neurons firing at a periodic rate ( Cumin and Unsworth 
2007 ). Therefore, instead of focusing on single neuron activations, the model resem-
bles the behavior of groups of neurons. By using the phase dynamics as the central 
feature of the model, the emphasis is on short-term temporal activity, which has 
been previously shown to be successful in pattern recognition tasks ( Tononi Sporns, 
and Edelman 1992 ). Moreover, the model allows for easy inspection of the phase 
and frequency of each of the elements, which makes it especially suitable for study-
ing synchronization of groups of oscillators ( Acebron et al. 2005 ), a key factor when 
analyzing communication and information processing in neuronal assemblies ( Von 
der Malsburg 1981 ;  Friston 2000 ).  Izhikevich (1999)  shows that depending on changes 
in phase relationships caused by external/internal stimulus, neurons can reorganize 
and synchronize themselves with different neurons, thus changing their response 
without the need to change synaptic weights. This points toward new kinds of behav-
ior-generating mechanisms that are explored in the study that follows, based on the 
Kuramoto model. 

 The Kuramoto Model 
 The Kuramoto model consists of a lattice of oscillators coupled according to 
equation 2.7. 
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 where  θ  i  is the phase of the  i th oscillator,   ω  i   is the natural frequency of the  i th oscil-
lator,  k  is the coupling factor between nodes, and n is the total number of oscillators. 
If the frequency of any two given nodes  i  and  j  are equal, i.e.,  d θ  i    –   d θ  j   = 0 or   θ  i    –    θ  j   = 
 constant , the model is said to be globally synchronized. 

 It is possible to define a synchronization index, which calculates how synchronized 
the set of oscillators are ( Kuramoto 1984 ). A commonly used measure is defined in 
equation 2.8, where  r  is the synchronization index (a value of 1 indicating high syn-
chronization, 0 indicating incoherent oscillatory behavior) and   ψ   is the mean phase 
of the system. 
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 The Kuramoto model has a set of properties that makes it suitable for the study of 
different types of synchronization problems. The work described here focuses on a 
particular property known as partial synchronism. This phenomenon is exhibited 
when, in a globally synchronized network, changing the frequency of one node results 
in some of the nodes become synchronized while other nodes are not ( Monteiro et al. 
2003 ). 

 Moreover, the oscillatory behavior of one node can be influenced by another node 
in the network not necessarily connected to it. The importance of this property in 
mimicking brain-related dynamics relies on the fact that different neuronal blocks 
could synchronize and influence other blocks (e.g., different cortical areas could flex-
ibly establish communication channels depending on their temporal activity). This is 
in agreement with some recent findings in neuroscience ( Buzsaki 2006 ), reinforcing 
the feasibility of applying the Kuramoto model to study cognitive processes. 

 Experimental Framework 
 The Kuramoto model was modified so that it could be used to control a simulated 
robotic agent. The core of the robot controller is a set of oscillators, connected in 
two possible ways: to their two adjacent neighbors, producing a ring structure (see 
  figure 2.5 ), or fully connected. In his original work, Kuramoto suggested a fully 
connected setup, but other structures, including the ring-shaped one, have been 
studied and proven to have a direct influence over the synchronization properties of 
the model ( Wiley, Strogatz, and Girvan 2006 ;  Cumin and Unsworth 2007 ;  El-Nashar 
and Cerdeira 2009 ).    

 The frequency of each node is calculated as the sum of its natural frequency,   ω  i  , 
and the value of the sensory input related to that node is scaled by a factor  z i  . At each 
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 Figure 2.5 
 Framework for application in evolutionary robotics. The oscillatory network is represented by a 

set of nodes connected by a thick line, in the case of the ring topology, or by dashed lines, in 

the case of the fully connected topology. 

iteration the phase differences from a given node in relation to the set of all other 
nodes it is connected to ( C i  ) are calculated according to equation 2.9. Based on the 
approach suggested by  Schmidhuber et al. (2007) , the output of the network is given 
by the sine of the phase differences linearly combined by an output weight matrix  W  
(  figure 2.5 ). The sine function smooths out phase difference instabilities caused by 
phases resetting when they exceed 2  π  . Therefore there are  n  inputs to  n  corresponding 
nodes in the network, with  C n   ,2  resulting phase differences and  o  outputs created via 
a  C n   ,2   ×   o  matrix  W . 
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 In this way, the overall behavior of the network will be dictated by the phase dynamics 
and the environmental input to the robotic agent. It is important to stress that nodes 
that are not directly connected can still influence each other, depending on their 
frequencies. 

 The first experiment involved an active categorical perception task performed by a 
simulated circular robotic agent able to move horizontally at the bottom of a 250  ×  
200 rectangular environment (  figure 2.6 ). The robotic agent has seven ray sensors, 
symmetrically displaced in relation to the central ray in intervals of  ±   π  /12 radians, 
and two motors. An intersection between a sensory ray and an object gives a sensor 
reading between 0 and 10, 0 when the ray length is greater than 200 units and 10 
when the ray length is 0. In all experiments, sensors are saturated (they are clamped) 
when their value is above 9. The robotic agent has to discriminate between circles and 
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squares as they fall from the top of the arena to the bottom (only one object at each 
trial), where the robotic agent is located. The square ’ s diagonal, the robotic agent ’ s 
radius, and the circle ’ s radius all measure 15 units. At the beginning of each trial, a 
circle or a square is dropped from the top of the environment in a random horizontal 
position within a maximum of 50 units from the robotic agent, and moves vertically 
with a velocity of 3 units/step. The robotic agent, constrained to move (left and right) 
in a straight line along the bottom, has to approach the circles and avoid the squares, 
adjusting its horizontal velocity accordingly.    

 The second experiment consists of an orientation task. In the same environmental 
setup, the robotic agent has to adjust its horizontal position to catch falling circles, 
with both normal and inverted vision. When submitted to visual inversion, sensory 
readings from an object at the right side of the agent are perceived by the agent ’ s left 
set of sensors, and vice versa. Therefore, different scenarios can cause similar or identi-
cal sensory stimulus to the robotic agent; the agent is required to develop a strategy 
that can overcome the sensory disruption. 

 A genetic algorithm is used to determine the parameters of the system: the fre-
quency of each node,   ω  i    ∈  [0,10], the coupling factor  k   ∈  [0,5], the input weights 
 z i    ∈  [0,3], the matrix  W  with elements in the interval [ − 2,2], and motor output weight 
 s   ∈  [0,10], resulting in a genotype of length 58 for the tasks studied here. The network ’ s 
genotype consists of an array of integer variables lying in the range [0,999] (each vari-
able occupies a gene locus), which are mapped to values determined by the range of 
their respective parameters. For all the experiments reported here, a distributed GA 
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 Figure 2.6 
 Experimental scenario. The agent (gray circle at the bottom) has to catch falling circles and avoid 

squares in task 1 and catch falling circles with normal and inverted vision in task 2. The robotic 

agent has seven ray sensors, symmetrically displaced with relation to the central ray in intervals 

of  ± 12 radians, and two motors that can move it horizontally. The numbers next to the sensors 

show the correspondence between the agent ’ s sensory input and the nodes of the network. 
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similar to that described in the GasNets section earlier (and in  Husbands et al. 1998 ) 
was used; the population size was 49, arranged in a 7  ×  7 grid. A generation is defined 
as 49 breeding events and the evolutionary algorithm runs for a maximum of 150 
generations. Two mutation operators are used: the first operator is applied to 20 
percent of the genes and produces a change at each locus by an amount within the 
[ − 10,+10] range according to a uniform distribution. The second, more disruptive, 
mutation operator is applied with a probability of 10 percent and is applied to 40 
percent of the genotype. A randomly chosen gene locus is replaced with a new value 
within the [0,999] range in a uniform distribution. 

 In the first experiment, fitness is evaluated over a set of twenty-eight trials with 
randomly chosen objects (circles or squares), starting at a uniformly distributed 
horizontal offset in the interval of  ± 50 units from the robotic agent. Fitness is defined 
as the robotic agent ’ s ability to catch circles and avoid squares, and is calculated 

according to the following function: fitness =  
i

N
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i
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if i
= =
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/   where  f i   is the  i th value in a 

descending ordered vector of evaluation scores for separate trials, and is given by 1  −   d i  , 
in the case of a circle, or by  d i   in the case of a square where  d i   is the (normalized) hori-
zontal distance from the robotic agent to the object at the end of the  i th trial (when 
the object reaches the bottom of the environment). Therefore, a robotic agent with 
good fitness maximizes its distance from squares and minimizes its distance from 
circles. Note that the form of the fitness function is the same as that of equation 2.6, 
providing strong pressure for good performance in all trials (generalization). 

 In the second experiment, fitness is evaluated over a set of twenty trials with normal 
vision followed by twenty trials with inverted vision. The circles are dropped at a 
uniformly distributed horizontal offset in the interval of  ± 50 units from the robotic 
agent. Fitness for each part of the run is defined as above but considering just the circle-
catching scenario. The final fitness is calculated by averaging the fitness obtained 
under normal and inverted vision. 

 Results 
 In the first experiment (catch circles, avoid squares) two network topologies were 
investigated, a ring topology and a fully connected topology. Both architectures pro-
duced similarly good results, providing an existence proof that oscillator phase dynam-
ics can be useful, as part of a situated embodied system, in driving autonomous 
sensorimotor behavior. The training fitness of the best ring topology individual was 
0.96 out of 1.00, and the generalization fitness over 100 random runs was 0.94, which 
is comparable with the results that are found in the literature ( Beer 2003 ;  Di Paolo 
2000 ). For the fully connected topology the training fitness of the best evolved indi-
vidual was 0.97, and the generalization fitness over 100 runs was 0.92. Analysis of 
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successful individuals reveals clearly different dynamics are at play in circle catching 
and square avoidance; this is true for both styles of network architecture. Further, 
although synchronized states play an important role, unsynchronized and transient 
dynamics are also significant ( Moioli, Vargas, and Husbands 2010, 2012 ;  Santos, Baran-
diaran, and Husbands 2012 ).   Figure 2.7  shows the synchronization index plotted 
against time for the best individuals from experiment 1. This clearly shows that the 
phase dynamics are different for circle catching and square avoidance for both archi-
tectures. Square avoidance mainly exploits synchronized dynamics ( r  for square catch-
ing can be seen to always remain very close to 1), whereas circle catching makes 
significant use of unsynchronized dynamics ( r  for circle catching deviates significantly 
from 1 after about 40 iterations).    

 In the second experiment (catching falling circles under normal and inverted 
vision), the robotic agent was controlled by the fully connected network architecture, 
given its slightly better performance obtained in the previous experiment in the catch-
ing circles part of the task. Again agents with very good performance were successfully 
evolved. The training fitness for the best evolved individual was 0.94 out of 1.00, 
and the generalization fitness over 100 random trails was 0.93. Generalization 
performance is illustrated in   figure 2.8 . Under both conditions, the main adopted 
strategy seemed to be to move to one side of the object (in this case, the left side), 
where robotic agents with normal visual have their right sensors stimulated while 
robotic agents with inverted vision have their left sensors stimulated, and then center 
in on the object.    
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 It is possible to see in   figure 2.9  that although the strategy for the normal and 
inverted vision tasks is almost the same, the oscillatory activity of the network and its 
phase dynamics are quite different, illustrating the multiple roles a single oscillator 
can have in the network. For example, near iteration 60, under the normal vision 
condition (upper part of the figure, middle graphic), the frequency of each node is 
varying and there is no apparent synchronization. Near the same iteration, for the 
inverted vision case (bottom part of the figure), one can observe two almost synchro-
nized clusters appearing: one formed by 4 nodes, the other formed by 2 nodes and 
the unsynchronized remaining node oscillating at a much higher frequency. This 
demonstrates an interesting adaptive mechanism that does not require changes in 
synaptic strengths but rather works by changing phase and degree of synchronization 
within neural subgroups that form, break apart, and reconfigure throughout the dura-
tion of the behavior. This is another example of the  “ shifting network ”  ( Husbands 
et al. 2001 ) where reconfiguring network dynamics underlies plasticity of behavior.    

 This analysis again illustrates that evolution is able to readily exploit the rich 
dynamics the networks are capable of and, importantly, does not rely solely on simple 
synchronized states in behavior generation. This work is an initial step along a path 
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that could eventually provide insights into the role of synchronized (and unsynchro-
nized) neuronal dynamics in the generation of cognitive and sensorimotor behaviors. 
For an extended discussion of related work, including information theoretic analyses 
of evolved phase-coupled systems, see  Moioli, Vargas, and Husbands 2012  and  Santos, 
Barandiaran, and Husbands 2012 . 

 2.3.3   Exploiting Chaotic Dynamics in an Embodied System 
 This section describes research that is not strictly evolutionary robotics but is closely 
related and highlights some important emerging topics that are highly relevant to ER 
and its intersection with neuroscience. 

 The possibility of exploiting intrinsic chaotic dynamics has recently attracted the 
attention of both neurobiologists interested in how animals learn to coordinate their 
limbs ( Kelso 1995 ;  Korn and Faure 2003 ;  Mpitsos et al. 1988 ), for instance in locomo-
tion behaviors, and roboticists striving to develop better, more efficient locomotion 
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 Detailed behavior of the agent ’ s internal and external dynamics in experiment 2. The left column 

illustrates the horizontal coordinate of the agent and the object, the middle one shows the fre-

quency of each node of the network as the task progresses, and the right one presents the phase 

differences. 
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systems for articulated autonomous robots ( Kuniyoshi and Suzuki 2004 ;  Pitti, Niiyama, 
and Kuniyoshi 2010 ;  Steingrube et al. 2010 ). Chaotic dynamics emerging spontane-
ously from interactions between neural circuitry and bodies and environments can be 
used to power a kind of search process as an embodied system explores its own pos-
sible motor behaviors. However, to date it has not been clear how to harness chaos in 
a general goal-directed way such that desired adaptive sensorimotor behaviors can be 
explored, captured, and learned. In this section we briefly present a general and fully 
dynamic embodied neural system, which exploits chaotic search through adaptive 
bifurcation, for the real-time goal-directed exploration and learning of the possible 
locomotion patterns of an articulated robot of an arbitrary morphology in an unknown 
environment. Our results show that the novel neuro-robotic system is able to create 
and learn a number of emergent locomotion behaviors for a wide range of body con-
figurations and physical environments, and can readapt in real time after sustaining 
damage. For further details of the methods, see  Shim and Husbands 2010 and 2012 . 

 Properly coordinated rhythmic movements for locomotion are ubiquitous in 
animals. Biological locomotor systems (usually involving coordinated limb move-
ments) evolved to be highly adaptable, dexterous, and energy efficient. Consequently 
they are a major source of inspiration when designing robot locomotion systems. Most 
biological locomotor systems involve neural networks acting as central pattern genera-
tors (CPGs), which are responsible for producing the basic rhythmic patterns for the 
oscillatory movement of limbs. Understanding the subtleties of operation of such 
networks, and how to design artificial versions for robotic applications, are ongoing 
challenges. 

 Most approaches to designing CPG-based robotic locomotor systems have relied on 
optimization and search methods, including evolutionary algorithms and other sto-
chastic methods, to find a suitable configuration of system variables — including the 
ER approaches to locomotion described earlier. These methods can be computationally 
expensive and often require a priori knowledge of the robot body and environment. 
Hence there are still many open issues in how to deal with unknown environments 
and adaptation to arbitrary or changed (e.g., damaged) body conditions in the most 
general and efficient way. 

 In robotics, a greater appreciation of the importance of framing behavior in terms 
of brain-body-environment interactions has led to efforts to exploit various ready-
made functionalities provided by the physical properties of an embodied system. A 
recent strand of work has built on the growing body of observations of intrinsic chaotic 
dynamics in nervous systems to suggest that such dynamics can underpin crucial 
periods in animal development when brain-body-environment dynamics are explored 
in a spontaneous way as part of the process of acquiring motor skills. Recent robotics 
studies have demonstrated that chaotic neural networks can indeed power the self-
exploration of brain-body-environment dynamics in an embodied system, discovering 
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stable patterns that can be incorporated into motor behaviors ( Pitti, Niiyama, and 
Kuniyoshi 2010 ;  Kuniyoshi and Sangawa 2006 ). In the work outlined here we signifi-
cantly generalize and extend this previous research to demonstrate how chaotic neural 
dynamics can be harnessed to develop a kind of system not seen in previous models: 
one where intrinsic neural dynamics can be used to autonomously explore, capture, 
and learn whole goal-directed sensorimotor behaviors in an embodied system without 
recourse to external monitoring, evaluation, or training methods. We introduce a 
general online and fully dynamic neural process for the exploration and learning of 
possible locomotion patterns for articulated robots of an arbitrary morphology in 
unknown physical environments. Goal-directed exploration is achieved using chaotic 
search while discovered patterns are memorized and sustained by adaptive changes to 
the wirings of chaotic neural oscillators that form the basis of the neural architecture. 
As well as having direct application in robotics, this work has potential implications 
for neurobiology. 

 Conventional optimization and search strategies generally use random perturba-
tions of the system variables to search the space of possible solutions. We have devel-
oped a method that uses the intrinsic chaotic dynamics of the system to naturally 
power a search process without the need for external sources of noise ( Shim and Hus-
bands 2010 ,  2012 ). We employ the concept of chaotic mode transition with external 
feedback ( Davis 1990 ), which exploits the intrinsic chaoticity of a system orbit as a 
perturbation force to explore multiple synchronized states of the system, and stabilizes 
the orbit by decreasing its chaoticity according to a feedback signal that evaluates the 
behavior. An evaluation signal that measures how well the locomotion behavior of 
the system matches the desired criteria (e.g., locomote as fast as possible) is used to 
control a bifurcation parameter that alters the chaoticity of the system. During explo-
ration, the bifurcation parameter continuously drives the system between stable and 
chaotic regimes. If the performance reaches the desired level, the bifurcation parameter 
decreases to zero and the system stabilizes. A learning process that acts in tandem 
with the chaotic exploration captures and memorizes these high-performing motor 
patterns. 

 The overall architecture of the system is illustrated in   figure 2.10 ; the neural archi-
tecture generalizes and extends that presented in  Kuniyoshi and Sangawa 2006 , which 
is inspired by the organization of spinobulbar units in the vertebrate spinal cord and 
medulla oblongata (the lower part of the brainstem that deals with autonomic, rhyth-
mic, involuntary functions). Each joint in an articulated robot is connected to a motor 
unit comprising a pair of central pattern generator (CPG) neurons that receive sensory 
input. The neurons produce motor outputs for an antagonistic muscle pair that control 
the movement of the joint. Each CPG neuron is modeled as an extended Bonh ö ffer 
van der Pol (BVP) oscillator ( FitzHugh 1961 ;  Asai et al. 2003 ), which can be viewed as 
a simplification of the full Hodgkin Huxley neural model ( Hodgkin and Huxley 1952 ). 
The CPG neurons are all connected to each other but these connections are initially 
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made inactive. The CPG neurons receive sensory signals that integrate information 
from the body-environment interaction dynamics experienced by the system (e.g., 
from force and position/angle sensors). Hence, while the direct connections are inac-
tive, any coupling between the oscillators will be indirect via bodily and environmen-
tal interactions. The network of oscillators, coupled through physical embodiment, 
has multiple synchronized states (modes) that reflect the body schema and its interac-
tions with the environment, each of which can be regarded as a potential candidate 
for  “ meaningful ”  motor behavior. The exploration process, powered by adaptive bifur-
cation through the feedback evaluation signal, allows the system to become entrained 
in these modes, one at a time, until one is found that is sufficiently stable and high 
performing for the bifurcation parameter to reduce to zero and the system to fully 

 Figure 2.10 
 An overview of the integrated exploration and learning scheme. Each robot joint has a dedicated 

motor unit comprising oscillator-based central pattern generator neurons (CPG) with sensory 

input (S) and motor output (M). Connections between the oscillators are initially inactive but 

they are weakly coupled through the body and environment. An evaluation feedback signal 

controls a global bifurcation parameter that alters the chaoticity of the CPGs. The chaotic 

dynamics of the neutron-body-environment system drive a search process that finds motor 

patterns that perform well according to the evaluation criteria. As the system stabilizes on 

a high-performing pattern the bifurcation parameter reduces to zero and the connections 

between the oscillators become active, their weights being set by a learning procedure that is 

smoothly linked to the chaotic exploration process. The learning process further stabilizes, 

captures, and memorizes the motor patterns. Sensory input undergoes homeostatic adaptation 

as it passes through a sensor adaptation module (SAM). This enhances the synchronicity 

between the neural and physical system, thus allowing the neural system to cope with an 

arbitrary robotic system. 
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stabilize. As the system stabilizes, the connections between oscillators are dynamically 
activated using an adaptive synchronization-learning scheme. In this way the 
wiring between the oscillators is changed in order to capture and maintain the high-
performing motor pattern. The learning rule is also controlled by the bifurcation 
parameter and is set up such that the connections between the oscillators are effec-
tively zero (inactive) during the exploration process but gradually increase (become 
active) as the system nears stability (see  Shim and Husbands 2012  for full details). 
Thus, exploration and learning are merged as a continuous dynamical process such 
that the desired motor behavior is spontaneously explored, discovered, and memorized 
in a coherent way. If the performance drops, for instance following a change in the 
environment or damage to the body, the system will automatically return to the 
exploration phase until a new stable high-performing motor pattern is discovered. The 
overall process has some conceptual similarities with Ashby ’ s idea of the ultrastable 
system ( Ashby 1952 ), although, not surprisingly given how long ago he conceived it, 
Ashby only envisaged simple stochastic perturbations. The method can be interpreted 
as a continuous and deterministic version of trial-and-error search that exploits the 
intrinsic chaotic behavior of the system.    

 The pair of CPG neurons in each motor unit (labeled  l  and  r ) operates according to 
the following coupled differential equations: 
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 Where   τ   is a time constant, and  a  = 0.7,  b  = 0.675,  c  = 1.75 are the fixed parameters 
of the oscillator. Each consecutive pair in the set of 2N oscillators are sequentially 
allocated to each motor unit as  l  = 2 m   −  1 and  r  = 2 m .   δ   = 0.013 and   ε   = 0.022 are the 
coupling strengths for afferent input  H ( s ) that is a function of raw sensor output  s , 
processed by the sensor adaptation module (SAM) — see   figure 2.10 .  Fi

j  is a coupling 
term between oscillators and is subject to the learning process.  z  1  and  z  2  are the control 
parameters for adjusting the chaoticity of the motor unit. Their difference (  μ   =  z  2   −   z  1 ) 
changes identically in all motor units, and acts as the global bifurcation parameter. In 
the stable regime where the two control parameters are symmetric, it had been found 
( Asai et al. 2003 ) that the two coupled BVP equations exhibit bistable phase locking 
of their oscillations in a parameter range of 0.6  <   z  1  =  z  2   <  0.88. From the observation 



Evolutionary Robotics and Neuroscience 49

of a number of experiments on the oscillator dynamics, we chose to fix  z  2  = 0.73 and 
to vary  z  1  in order to ensure a higher probability of multistability of the system in its 
stable regime. For further details, see  Shim and Husbands 2012 . 

 The evaluation signal is determined by a ratio of the actual performance (e.g., 
forward speed) to the desired performance. Where the desired behavior is forward 
locomotion, the evaluation signal,  E , is measured according to the following equations, 
where   v   is the robot velocity vector and   τ  E   is a time constant. Using this leaky integra-
tor equation means the velocity is continuously averaged over a time window, thus 
eradicating gyrations and oscillations. 

  E t
d
dt
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 The time course of the bifurcation parameter,   μ  , is tied to the evaluation signal 
using the following equations. 
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 Where   τ   μ    and   μ  c   are constants and E d  is the desired performance;  G(x)  implements 
a decreasing sigmoid function that maps monotonically from (0, 1) to (1, 0) shaped 
so that the boundary value at  x =1 and its derivative become almost 0 so as to make 
the function smoothly vanish to zero to facilitate gradual stabilization. Since the 
method is intended for use in the most general case, where the robotic system is arbi-
trary, we do not have prior knowledge of what level of performance it can achieve. 
Using the concept of a goal-setting strategy ( Barlas and Yasarcan 2006 ), the dynamics 
of the desired performance are modeled as a temporal average of the actual perfor-
mance, such that the expectation of a desired goal is influenced by the history of the 
actual performance experienced as described by the following equation. 

  τd
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 The sensor signal fed to a CPG neuron undergoes homeostatic adaptation as it 
passes through a sensor adaptation module (SAM) before reaching the neuron (see 
  figure 2.10 ). The SAMs were introduced because by adjusting the waveforms of input 
signals to be close to those of the neural activities, the synchronicity between the 
neural and physical system was enhanced thus allowing the neural system to cope 
with an arbitrary robotic system. This regulation also results in a diversification of 
output behaviors, increasing the scale of the search process. 

 The chaotic exploration and learning system was evaluated by using it to control a 
range of realistically simulated articulated robots that were required to locomote in an 
effective way. Successful experiments with a swimming robot and a variety of walking 
robots of differing morphologies demonstrated that the framework is highly general 
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( Shim and Husbands 2012 ). In each case a range of stable locomotion behaviors were 
discovered and learned. It was also shown that the robots can readily readapt after 
damage or other changes. 

 The seamless interaction between the exploration and learning processes results in 
a system that can be thought of as continually self-monitoring in order to maintain 
an appropriate level of motor function. As well as being an effective means of develop-
ing robotic controllers, the method has more general implications for truly autono-
mous artificial systems, which must maintain their integrity on several levels, including 
behavioral. Because of its strong biological inspiration it also serves as an indication 
of the kinds of processes that may be operating in natural nervous systems. 

   Figure 2.11  shows two of the robot simulations used to demonstrate the system. 
  Figure 2.12  shows a typical swimming motion discovered and captured for the 4-Fin 
Swimmer. It is an efficient frog-like motion.   Figure 2.13  illustrates how the method 
allows real-time adaptation. The robot suffered damage where the length of the fin on 
arm 4 was reduced by 90 percent. Its performance dropped almost immediately to zero 
so the exploration process automatically kicked in. Very quickly it discovered and 
stabilized one of the high-performing transient patterns, needing only a few trials 
for the oscillator learning mechanism to completely stabilize the system once more 
into a new high-performance swimming motion that is able to compensate for the 
damage.          

   Figure 2.14  illustrates the generality of the method by showing how it quickly dis-
covers, captures, and stabilizes high-performing walking behavior in a quadruped robot 
model. For details of applications of the method to other robots and body morpholo-
gies, see  Shim and Husbands 2012 .    

 Just as incorporating various forms of neural plasticity into ER has proved very 
fruitful ( Floreano and Urzelai 2000 ;  Husbands et al. 1998 ;  Di Paolo 2003 ), the integra-
tion of chaotic dynamics, as outlined in this section, may result in a powerful hybrid 

dir2

dir1dir3

dir4

 Figure 2.11 
 Robotic simulation models of a 4-Fin Swimmer (2D movement) and a quadruped (3D movement) 

used to evaluate the method. 
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 Figure 2.12 
 Upper: snapshots of a straight swimming (ST dir3) behavior of the 4-Fin Swimmer developed by 

the exploration and capture method. Images were taken every 1/10 gait cycle. The tip trajectories 

of the fore (fin 3,4:black) and rear (fin1,2:grey) fins are shown. Lower: (a) joint angles and (b) fin-

bending angles of the behavior. Each segment along the vertical axis indicates the range [ − 1,1] rad. 
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 Figure 2.13 

 Real-time recovery after a radical change to the body of the swimmer (damage). Dashed lines and 

arrows indicate the time of damage, when the length of fin 4 is decreased to 1/10 of its original 

length. The sensor gain of (damaged) fin 4 (A(t)  ≈  5.0) in (c) was truncated for a better view of 

the other gain plots. (e) and (f) show the joint angles and the fin angles respectively, where the 

undamaged motion and the readapted motion are superposed. The fiducial point for the super-

posed plots was set to the starting point of arm angle 1 in (e). 
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method. There are a number of parameters in the chaotic method that need to be set 
by hand. ER methods may be able find better setting for combinations of these param-
eters in order to further increase the efficiency of the method. But a potentially more 
powerful hybridization of the chaotic search and learning method with ER will be to 
allow the exploration of more complex architectures within an evolutionary frame-
work. This may involve the integration of spinobulbar motor units within a more 
complex overall architecture, for instance to allow a variety of behaviors, or the devel-
opment of alternative architectures for the motor units themselves. 

 The chaotic search approach has some commonalities with information-driven 
approaches to ER ( Delarboulas, Schoenauer, and Sebag 2012 ) and to self-organization 
( Burfoot, Lungarella, and Kuniyoshi 2008 ;  Zahedi, Ay, and Der 2010 ). The former make 
use of information theoretic fitness measures (e.g., entropy of a stream of sensor and 
motor readings) to encourage, for instance, the behavioral diversity of controllers that 
will continually seek to explore. 

 2.4   Discussion and Prospects 

 Although great progress has been made in autonomous robotics over the past few 
decades, and techniques similar to those discussed in this chapter have played their 
part in some of the ever-proliferating mobile robots we now see in the home (e.g., 
autonomous vacuum cleaners and toys), or in areas such as planetary exploration, 
security, or military applications, many challenges remain. 
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 Figure 2.14 
 An example of a quadruped gait captured by the exploration-learning process. Snapshots were 

taken every 1/10 gait cycle. (a) and (b) show the joint angles of limbs. (c) shows the horizontal 

speeds of each foot (the tips of limbs 5 – 8) in the direction of locomotion. (d) shows the height 

of each foot from the ground. The two rear feet (V7, V8, H7, H8) show stick-and-slip movements 

on the ground under Coulomb friction. The range of each plot is as follows; J1 – J8: [ − 1.0,1.0]rad, 

V5 – V8: [0.0,2.0]m/s, H5 – H8: [0.0,0.08]m. 
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 It is now possible to produce autonomous robots that behave in a robust and reli-
able way in real environments, engaging in real tasks in real time. However, the 
behaviors involved are still relatively simple. Progress has been slow toward more 
sophisticated tasks such as learning what to focus attention on in a complex environ-
ment, coordinating many conflicting goals and drives, interacting with other robots 
in complex group behaviors, learning to communicate in a sophisticated way about 
the task at hand, and so on. Perhaps this should not be at all surprising. One lesson 
that most neuroscientists have understood for many decades, but which has often 
been overlooked in AI, is that the generation of intelligent embodied behavior is an 
extremely complicated problem. However, progress is being made and there are many 
promising lines of research. It is likely that directions involving artificial neural systems 
and other biologically inspired methods will become even more important as attempts 
to tackle these hard problems gather momentum. ER methods will surely play a role, 
either as a standalone direction or in concert with other approaches. One direction, 
mentioned in several examples described earlier, that is likely to become increasingly 
important is the continued dismantling of the line between brain and body that has 
traditionally been present in studies of both natural and artificial intelligence. The 
tighter integration of artificial bodies and brains at many different levels, as Pollack 
suggests (chapter 12, this volume), is an intriguing possibility that would probably 
require advances in evolutionary developmental systems — something that could usher 
in an exciting new direction in ER research. 

 There are a number of potentially important emerging fields that may have a radical 
impact in the decades to come. These include developments in interfacing digital 
electronics to neural tissue. The most frequent motivation for such work is to allow 
improved prosthetics to be directly controlled by the nervous system. This points to 
the possibility of an increased merging of robotic technology with human bodies —
 something that a number of people have reflected on recently (e.g.,  Brooks 2002 ) and 
that the work of Stelarc, the radical performance artist, has long explored ( Smith 2007 ). 
A related area involves attempting to harness the sophisticated nonlinear adaptive 
properties of cultured (real) neural networks to create hybrid machines ( DeMarse et al. 
2001 ), pointing toward the possibility of robots that include biological matter in their 
control systems — a development that would echo the imagined landscapes of dozens 
of sci-fi books and movies. It is possible that in the long run that kind of approach 
may prove more powerful than attempting to understand biological systems in suffi-
cient detail to be able to abstract general mechanisms underlying the generation of 
intelligent behavior. However, such research is at an extremely early stage, so we 
cannot yet properly assess its potential. One approach that has been considered 
recently is the use of artificial selection to shape cultured networks toward some 
behavior end ( Bull 2004 ). This is very difficult with current technology, but advances 
in high-density multielectrode array hardware, allied with chemical perfusion systems, 
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might allow sufficiently powerful and repeatable manipulation of neural networks to 
make this a viable approach. 

 There is little doubt that many powerful biological neural mechanisms have not 
yet been discovered. One intriguing hypothesis is that one of the forms of plasticity 
on which the brain relies is itself a form of evolution via natural selection acting within 
neural tissue ( Fernando, Karishma, and Szathm á ry 2008 ;  Fernando, Szathmary, and 
Husbands 2012 ). The units of selection in this case are activity and connection patterns 
that are copied between groups of neurons. Irrespective of whether or not it occurs in 
nature (and it might), this kind of mechanism could be employed in a whole new kind 
of evolutionary robotics. 

 The field of robotics has massively expanded since the days when cumbersome 
industrial arms dominated; it is now quite possible that in the not too distant future 
robots will become as widespread and as common as computers are now. If such a 
technological revolution comes to pass, it is highly likely that artificial neural systems 
will play an important part as there will be greater demands for robust, reliable adapta-
tion and learning, as well as sophisticated pattern recognition and sensory process-
ing — all areas in which neural systems have great potential, especially within the 
context of behaving embodied systems. This in turn means that there are great oppor-
tunities for the kinds of interactions between ER and neuroscience described in 
this chapter. 
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 3.1   Introduction 

 In many evolutionary robotics (ER) projects, the evolution of high-performing agents 
is just the beginning. Once successful agents have been evolved, we often want to 
 understand  how they work. For example, in my own work, in which evolutionary 
algorithms are used to explore the implications of a situated, embodied, and dynamical 
perspective on behavior and cognition, dynamical analysis of evolved model brain-
body-environment systems using the mathematical tools of dynamical systems theory 
is central to the entire enterprise. Even in more engineering-oriented projects, it may 
be necessary to understand the range of conditions over which an evolved solution 
can be trusted to perform satisfactorily. In addition, the insights gained from analysis 
can sometimes be used to improve the performance of an evolutionary search ( Matha-
yomchan and Beer 2002 ). Examples of the dynamical analysis of evolved agents 
include  Beer 1995a ;  Husbands, Harvey, and Cliff 1995 ;  Tani and Nolfi 1999 ;  Beer 2003 ; 
 Negrello and Pasemann 2008 ;  Williams, Beer, and Gasser 2008 ;  Izquierdo, Harvey, and 
Beer 2008 ;  Izquierdo and Buhrmann 2008 . 

 Analysis is not a monolithic activity; there is no standard mathematical procedure 
into which an evolved agent is dropped, some crank is turned, and out comes  “ under-
standing. ”  Rather, analysis is a creative process, in which one actively engages the 
phenomenology of the evolved agents so as to answer particular questions with a given 
set of mathematical tools. The questions of interest can range from very specific inqui-
ries about a particular property of a single evolved agent to very general examinations 
of the common features of large sets of successful agents. In addition, evolved agents 
can be analyzed at many different levels of description: the overall task, the behavior 
produced by the coupled brain-body-environment system, the agent-environment 
interactions that underlie the behavior of the coupled system, and the grounding of 
these interactions in specific neural, body, and environmental properties. Finally, 
many different mathematical tools can be employed, of which dynamical systems 
theory is only one. A good strategy is to begin an analysis with some specific question 
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about a set of evolved agents and let this question guide the choice of level of analysis 
and mathematical tools, generalizing to a broader set of questions as understanding 
improves. 

 The goal of this chapter is to illustrate in a step-by-step manner the process of 
dynamical analysis of evolved agents. For this purpose, we study a walking agent 
consisting of a single leg in closed-loop interaction with a single neuron. Although 
the single-leg walking task is quite simple, it has also turned out to be incredibly rich. 
For example, we have used to it examine the conditions under which different pattern 
generator organizations evolve, the dynamical structure of these different organiza-
tions, the modular decomposition of central pattern generators, the interplay between 
neural and biomechanical properties in the generation of walking, and the impact of 
network architecture on performance and evolvability ( Beer and Gallagher 1992 ;  Beer 
1995a, 1995b ;  Chiel, Beer, and Gallagher 1999 ;  Beer, Chiel, and Gallagher 1999 ;  Psujek, 
Ames, and Beer 2006 ). This combination of simplicity and richness makes it ideal for 
our pedagogical purposes here. In this chapter, we consider how evolved walking 
agents work and what this tells us about where in parameter space they might be 
found. The analysis described here is fairly qualitative in nature; a much more rigorous 
and extensive analysis of this system with full mathematical details can be found in 
 Beer 2010 . 

 3.2   Model 

 The single-leg model that we employ is illustrated in   figure 3.1  ( Beer and Gallagher 
1992 ). A leg is composed of a segment of length  L  connected to the body by a joint 
actuated by two opposing  “ muscles ”  (or effectors) BS and FS, for controlling the back 
and forward swing of the leg respectively, and a binary foot FT. When the foot is  “ up ”  
 (swing phase ), any torque produced by the muscles serves to swing the leg along an arc 
relative to the body, with a maximum angular acceleration of  αmax  and angular limits 
of  φ φmin max,[ ] . When a swinging leg reaches this angular limit, it comes to an abrupt 
stop. When the foot is  “ down ”  ( stance phase ), any torque produced by the muscles 
applies a translational force to the body under Newtonian mechanics, with a maximum 
acceleration of  amax . Note that during stance phase the leg stretches between the body 
joint and the stationary foot as the body moves; the horizontal distance between the 
joint and the foot is labeled  d . The leg is only able to generate force over a limited 
angular range of motion of  φ φmin max,[ ]  (modeling how mechanical advantage changes 
with limb geometry). A stancing leg exceeding these limits can still provide support, 
but only within vertical limits of  x xmin max,[ ]  (modeling skeletal constraints). When a 
stancing leg reaches these hard kinematic limits, forward motion comes to an abrupt 
stop (modeling a loss of postural stability). Note that, when a stretched stancing leg 
lifts its foot, the leg immediately snaps back to the swing angular limits of  φ φmin max,[ ]  
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(modeling the passive restoring force of muscle). Each leg also possesses an angle sensor 
AS whose output is proportional to the angular deviation of the leg from perpendicu-
larity to the long axis of the body. The leg parameter values utilized in this work were 
 L = 15 ,  αmax = 1 40 ,  amax = 1 20 ,  φ φ πmax min, = ± 6 , and  x xmax min, = ±20 .    

 The model body was coupled to a continuous-time recurrent neural network 
(CTRNN). The operation of a standard N node CTRNN is described by   equations 3.1 
and 3.2 . 

  τ σ θi
i

i
j

N

ji j j
dy
dt

y w y S t( )= − + +( ) +
=
∑

1

  (3.1) 

  σ( ) / ( )x e x= + −1 1   (3.2) 

 where  y i   is the mean membrane potential of the  i th neuron,   τ  i   is the neuron ’ s mem-
brane time constant,  w ji   is the strength of the synaptic connection from the  j th to the 
 i th neuron,   θ  j   is a bias term,   σ  ( x ) represents the neuron ’ s mean firing rate, and  S ( t ) is 
a sensory input signal. 

 In the work described in this chapter, we have only a single CTRNN neuron that 
receives as input the sensory signal  S SW= φ  from the angle sensor, where  SW = 30 π  . 

 Figure 3.1 
 Configuration of the model agent. The single neuron N sends output to the forward swing (FS), 

backward swing (BS), and foot (FT) effectors, and in turn receives input from the angle sensor 

(AS). The dashed gray lines mark the path of the foot during swing (curved path) and stance 

(straight path), assuming that the foot is put down at the leg angle shown. The various angle 

limits mentioned in the main text are shown as black dashed lines. 
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The output  o y= +( )σ θ   of this neuron drives the leg muscles and foot. Specifically, FT 
is  “ up ”  when  o ≤ 1 2  and  “ down ”  when  o > 1 2 , and the neuron output scales  αmax  
during swing and  amax  during stance. If we assume that the leg parameters are all fixed 
to constant values as described, then the model dynamics depends on only three 
neural parameters: the self-weight  w , the bias  θ  , and the time constant  τ   of the single 
CTRNN neuron. 

 If we work in the output space of the neuron and the angular coordinates of the 
leg joint, then the complete model can be succinctly defined by expressing the swing 
and stance dynamics of the walking agent as separate sets of differential equations that 
are switched between whenever the foot changes state. The relevant state variables are 
the neuron output  o , the leg angle  φ   at the joint, and the leg angular velocity  ω  . 

 The fitness measure we employ to characterize the walking performance of a legged 
agent is the average forward velocity of the body. We have typically computed this 
average velocity in two ways. During evolution,  truncated fitness  is computed by inte-
grating the model for a fixed length of time and then dividing the total forward dis-
tance covered by the evaluation duration. During analysis,  asymptotic fitness  is computed 
by integrating the model for a fixed length of time to skip transients and then calcu-
lating its average velocity for one stepping period (with a fitness of 0 assigned to 
nonoscillatory circuits). Since the focus of this chapter is on analysis, we will employ 
asymptotic fitness throughout. 

 3.3   The Operation of a Typical Agent 

 An excellent place to begin a dynamical analysis is with a detailed examination of the 
operation of a single highly fit individual. A detailed understanding of one agent pro-
vides a strong foundation for asking more general questions. For this purpose, we focus 
in this section on the best individual found out of 250 evolutionary searches. The 
evolved parameter values for this agent were  w = 16 ,  θ = −4 4876.  , and  τ = 1 3956.  . 

 When analyzing an evolved agent, I prefer to begin with a visualization of its 
dynamics. Once some intuition for what is going on has been developed, it is often 
straightforward to translate this understanding into equations that can then be utilized 
for subsequent analysis. For our purposes here, we need a visualization that illustrates 
the dynamics of the leg, the dynamics of the neuron, and the effect that each of these 
dynamics has on the other.   Figure 3.2a  illustrates the operation of the best evolved 
walker in  φ,o( )  space (since this system is Newtonian, the third state variable  ω   is just 
the time derivative of  φ  ).    

 The black curve shows the  φ,o( )  trajectory of the system over one step cycle. Stance 
phase begins at the right-hand side of this plot, when the output of the neuron exceeds 
1/2 and the foot is put down. The trajectory then moves to the left as the leg angle 
decreases during stance phase. Stance phase ends when the output of the neuron falls 
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below 1/2 and the foot is lifted. Since the leg has stretched beyond  φmin  during stance, 
it snaps back to this angle when the foot goes up. The leg angle then increases during 
the swing phase until the neuron output once again exceeds 1/2, at which point the 
foot goes back down and the cycle repeats. 

 What role does the neuron play in this walking cycle? In order to answer this ques-
tion, we need to visualize how the neuron ’ s output depends on the sensory input  SW φ  
that it receives from the leg. The S-shaped gray curve in   figure 3.2a  shows the neuron ’ s 
steady-state input/output (SSIO) curve. This curve gives the locations of the equilib-
rium points of the neuron as a function of its sensory input. Note that the SSIO curve 
is folded, indicating a region of bistability, with the upper and lower branches of the 
SSIO corresponding to stable equilibrium points and the middle branch corresponding 
to an unstable equilibrium point. When the leg angle is large enough that the sensory 
input exceeds the right edge of the fold, only the upper branch of the SSIO exists and 
the neuron state is attracted to that equilibrium point. Likewise, when the leg angle 
is sufficiently negative, only the lower attractor exists and the neuron state is attracted 
to it. When the leg angle is such that the sensory input falls within the fold, which 
stable branch of the SSIO the neuron state will be attracted to depends on its initial 
state. If the state begins above the middle unstable branch, then it will be attracted to 

a b

 Figure 3.2 
 Operation of two evolved walkers. (A) Operation of the best evolved agent, with parameters  w  = 

16,  θ   =  − 4.4876,  τ   = 1.3956. (B) Operation of the best-evolved agent with  w   <  4. The parameters 

of this agent are  w  = 3.6224,  θ   = 0.0051,  τ   = 8.4555. In parts a and b, black curves denote stable 

limit cycles, small circles indicate unstable equilibrium points, and a neuron ’ s steady-state input/

output curve is shown in gray. 
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the upper stable branch. If it begins below the middle branch, then the state will be 
attracted to the lower branch. 

 Using the diagram in   figure 3.2a , we can understand the basic operation of the best 
evolved walker as follows. At the beginning of stance phase, the leg angle is such that 
only the upper equilibrium point of the neuron exists, attracting the neuron output 
toward 1. Once  o > 1 2 , the foot goes down and a stance phase begins, causing  φ   to 
decrease. As the leg angle approaches  φxmin , the sensory input to the neuron passes 
below the left edge of the SSIO fold and only the lower equilibrium point of the neuron 
is stable, attracting the neuron output toward 0. Once  o ≤ 1 2 , the foot lifts and snaps 
back to  φmin  and then  o  continues on toward 0, initiating a swing phase that eventually 
increases the leg angle past the point where the sensory input exceeds the right edge 
of the SSIO fold, leading to another stance phase. Thus, the stepping cycle arises from 
a reciprocal interaction between the shape of the neuron ’ s SSIO curve and the move-
ment of the leg, with any given neuron output serving to drive the leg toward an angle 
that will eventually cause the neuron output to switch. 

 From previous analysis of CTRNNs ( Beer 1995b ), we know that a folded SSIO only 
occurs when  w > 4 . Is it possible to have a functioning walking agent when  w < 4 ? 
Examining the results of a number of evolutionary searches, we find that functional 
walking agents with  w < 4  do in fact occur, although their fitness tends to be lower 
than agents with  w > 4 .   Figure 3.2b  illustrates the operation of the best such agent 
found among 250 evolutionary searches. Note that its basic operation is very similar 
to the agent shown in   figure 3.2a . The only real difference is that, because its SSIO 
curve is not folded, the leg angle only has to get to a point where the sensory input 
is to the right of the center point of the SSIO in order to make a transition from swing 
to stance. Similarly, the leg angle must get to a point where the sensory input is to 
the left of the center point in order to make the transition from stance to swing. 

 3.4   The Location of Functional Walkers in Parameter Space 

 With the intuition that we developed in section 3.3, we are now in a position to ask 
more general questions about this model agent. The question we will focus on in the 
remainder of this chapter is: Where in  w, ,θ τ( )  parameter space can functional walking 
agents be found? By  “ functional, ”  I mean agents that are capable of rhythmic stepping. 
Note that this question represents an enormous leap in scope, from the operation of 
individual walking agents to the structure of the space of all possible instances of this 
model agent. 

 Our first step in answering this question is to examine the ways that the interaction 
between the leg and the neuron ’ s SSIO can fail to produce rhythmic stepping. To do 
this, we need to recall how a CTRNN ’ s SSIO depends on its parameters ( Beer 1995b ). 
First, the shape of the SSIO curve is independent of  τ  , so we will temporarily ignore 
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this parameter. Second, increasing (decreasing)  θ   shifts the SSIO curve left (right) in 
input space. Third, as we have already seen,  w  determines the degree of folding of the 
SSIO curve. It also influences the location of the fold in input space, with larger  w  
values moving the fold to the left. 

 One way in which the walking agent shown in   figure 3.2a  can fail to produce 
rhythmic stepping is if the sensory input from the leg at the most forward angle  φmax  
the leg can reach during swing is insufficient to clear the right edge of the SSIO fold. 
In this case, the leg will become  “ stuck ”  in a permanent swing phase, with the neuron 
output unable to make the transition toward 1 and initiate a stance phase. Since 
decreasing  θ   shifts the SSIO curve to the right, this constraint determines a  w -
dependent lower bound on  θ   that must be satisfied in order for successful stepping to 
occur. We will call this boundary B1. 

 By similar reasoning, we can derive four other constraints on functional walkers, 
each of which gives rise to another boundary in parameter space. For example, in 
order for the agent shown in   figure 3.2a  to make the transition from stance to swing, 
the left edge of the SSIO fold must be greater than the most negative angle  φxmin  that 
the leg can reach during stance. We will call the boundary defined by this constraint 
B2. Boundary B3 is given by the constraint that the angle of the leg after snapping 
back to  φmin  when the foot is lifted must lie to the left of the center of the SSIO 
curve in order for the neuron output to complete its transition to the lower stable 
branch of the SSIO. When  w < 4 , an examination of   figure 3.2b  gives rise to two 
more boundaries. Boundary B4 is given by the constraint that the sensory input from 
the maximum leg angle  φmax   reached during swing must clear the center of the SSIO 
curve in order for the swing-to-stance transition to occur. Boundary B5 is given by 
the constraint that the sensory input from the minimum leg angle  φxmin  reached 
during stance must clear the SSIO center in order for the stance-to-swing transition 
to occur. 

 The next step in our analysis is to derive equations for the five boundaries deter-
mined by the constraints that we have outlined. We will illustrate this process with 
boundary B1. The constraint underlying B1 can be written as  φ φIR < max . The critical 
boundary thus occurs when  φ φIR = max . We know from previous analysis of CTRNNs 
that the right edge of the SSIO fold in input space is given by the expression  I wR ( ) − θ   
( Beer 1995b ). Since the input to the neuron from the leg is given by  SWφ  , the leg 
angle  φIR  corresponding to the right edge of the fold is given by  S I wW I RRφ θ= ( ) −   
or  φ θI R WR I w S= ( ) −( )  . Thus, B1 satisfies the equation  I w SR W( ) −( ) =θ φmax  or 
 θ φ= ( ) −I w SR W max . Similar reasoning can be used to derive equations for the other four 
boundaries, although there are some subtleties with B2 that we will not go into here 
( Beer 2010 ). 

 It is now time to test our analysis against the actual structure of the fitness 
space for this model agent and to determine whether we have missed any important 
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features. Toward this end,   figure 3.3  shows our predicted boundaries as white curves 
superimposed over a density plot of fitness space for the  w,θ( )  slice at  τ = 0 5.  . As it 
turns out, boundary B5 is subsumed by the tighter boundary B3, so only B1 – B4 are 
shown. Note that our theoretical boundaries provide an excellent fit to the lower, 
upper, and right edges of the high-fitness region in this slice.    

 However, something is definitely wrong on the left side of   figure 3.3 . Although our 
analysis predicts no boundary there, the fitness density plot clearly exhibits a sharp 
left edge. Since our preceding analysis has accounted for all the possible ways that the 
neuron ’ s SSIO can interact with the various angle limits of the body to prevent rhyth-
mic stepping, something else must be going on to create this left boundary that we 
have not yet considered. 

 In order to determine what we missed, we will return to looking at particular 
examples in order to build intuition.   Figure 3.4  shows the operation of two walkers 
that lie just to the left and just to the right of this new boundary (their locations in 
parameter space are marked by white dots in   figure 3.3 ). In the walker to the right of 
the new boundary (  figure 3.4b ), we see a stable limit cycle surrounding an unstable 
equilibrium point just as we did in both walkers shown in   figure 3.2 . Note that the 

 Figure 3.3 
 A fitness slice through ( w ,  θ  ) parameter space at  τ   = 0.5. The density plot in the background 

indicates the fitness of each parameter combination, with brighter areas corresponding to higher 

fitness. The white curves superimposed on the density plot indicate the theoretical boundaries 

described in the main text. Note that no theoretical boundary corresponds to the left edge of the 

density plot. The two white points give the parameter space locations of the two walkers shown 

in   figure 3.4 . 
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a b

 Figure 3.4 
 Operation of two walkers whose parameter space locations are indicated by the left (a) and right 

(b) white points in   figure 3.3 . The labeling conventions are the same here as in   figure 3.2 , except 

that the black dot in part a corresponds to a stable equilibrium point. As  w  increases from part 

a to part b, the system undergoes a Hopf-like bifurcation, in which a stable spiral equilibrium 

point loses stability, giving rise to a stable limit cycle. 

limit cycle is rather narrow, corresponding to steps that cover only a small angular 
range. In contrast, in the walker to the left of the new boundary (  figure 3.4a ) we see 
only a single stable equilibrium point. In this case, transient rhythmic stepping occurs, 
but it eventually decays; the agent only takes a limited number of increasingly smaller 
steps until coming to a standstill.    

 What happens between these two walkers to create the left boundary? The change 
between   figure 3.4a  and   figure 3.4b  is reminiscent of a Hopf bifurcation, in which a 
stable spiral equilibrium point loses stability and gives off a stable limit cycle in 
the process ( Strogatz 1994 ). We will use the term  “ Hopf-like ”  to describe this bifurca-
tion because, due to the switch-like character of the foot, the technical conditions 
of a Hopf bifurcation are not satisfied in this system ( di Bernardo et al. 2008 ). 
Nevertheless, although we will not go into the details here, it is possible to write an 
equation for the curve in parameter space along which this bifurcation occurs and to 
solve this equation numerically ( Beer 2010 ). The resulting boundary, labeled B6, is 
shown in   figure 3.5 . Note that this curve matches the left edge of the density plot 
perfectly. Thus, at least for the  τ = 0 5.   slice that we have considered here, we have 
developed a complete understanding of the location and layout of functional walkers 
in parameter space.    
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 3.5   Discussion 

 This chapter has briefly illustrated the process by which one goes about dynamically 
analyzing evolved agents. We began with the very specific question of how the best 
evolved agent worked. This necessitated finding a way to visualize the walking dynam-
ics that made explicit the interaction between key neural and mechanical properties 
of the agent (  figure 3.2a ). The study of this agent led us to consider a second agent 
for which a key neural property differed (  figure 3.2b ). The intuition gained from the 
examination of these two agents then allowed us to hypothesize some general con-
straints on functional walking agents, which were then made mathematically precise. 
Testing these predictions against a fitness slice through parameter space, we found 
that, although our predictions were generally quite accurate, there was one major 
discrepancy (  figure 3.3 ). This required us to return to the examination of specific agents 
in order to understand the nature of the discrepancy (  figure 3.4 ). With the insight 
gained from these additional examples, we were then able to state an additional con-
straint and thus fully account for the location and shape of the region of functional 
walkers in parameter space (  figure 3.5 ). 

 If the flow of this chapter has a bit of the feel of solving a mystery, then it will have 
succeeded in communicating something of the nature of analysis. A  “ crime ”  has been 
committed (some sets of neural parameters lead to rhythmic stepping and some do 

 Figure 3.5 
 Adding the theoretical curve of Hopf-like bifurcations B6 to   figure 3.3  completely accounts for 

the shape and location of the region of functional walkers in the parameter space for  τ   = 0.5. 
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not). We collect clues (e.g., how a particular successful walker operates) and interrogate 
suspects (e.g., what happens if this parameter is changed?), gathering evidence for 
making the case that our explanation of what really happened is correct. Even though 
the crime, clues, suspects, and evidence may differ significantly from one set of evolved 
agents to the next, the overall logic by which an analysis proceeds has many similari-
ties from case to case. 

 In the interests of accessibility, this chapter has downplayed the mathematical 
details underlying our analysis. However, it is important to recognize that these details 
are crucial to the entire endeavor. The mathematics is what allows us to transform 
intuitive understanding into precise quantitative descriptions. It is what makes it pos-
sible to move from simulations of specific agents to a rigorous general theoretical 
framework for understanding the structure of the space of all possible instances of a 
given model agent. Despite the fact that the mathematics can be a high barrier for 
some, it provides essential tools for disentangling the complex causal mechanisms 
operating in evolved brain-body-environment systems. 

 Regarding the specific walking agent considered in this chapter, there is much more 
that can be done ( Beer 2010 ). For example, it is possible to characterize the dependence 
of the boundaries we have analyzed in this chapter on  τ  . Although boundaries B1, B3, 
and B4 are independent of  τ  , boundaries B2 and B6 vary in interesting ways with the 
neuron time constant. In addition, it turns out that the left edge of the density plot 
is defined not only by the curve B6 of Hopf-like bifurcations, but also another bifurca-
tion that comes into play at larger  τ   values. As can be seen in   figure 3.5 , there is also 
interesting internal structure to the high-fitness region that can be characterized. 
Finally, a similar analysis could be applied to walking agents with higher-dimensional 
parameter spaces, including central pattern generators (in which an intrinsically oscil-
latory neural circuit drives walking) and mixed pattern generators (in which a walking 
pattern arises from the interaction between a neural oscillator and rhythmic sensory 
feedback from the leg). 
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 4.1   Introduction 

 Heredity, in both natural and artificial evolution, is often pictured in the form of a 
tree. This may be at the level of individuals, where the lines trace pathways back 
through parents and grandparents to distant ancestors. It could be at a higher level, 
where the ancestral relationships traced are those of the species, genera, and orders. 
This simple and compelling picture is made somewhat muddier by a belated recogni-
tion that there may be interesting amounts of horizontal gene transmission between 
many of these branches. Nevertheless, the concept of the evolutionary pathway may 
be useful for many purposes. For people using artificial evolution, as in evolutionary 
robotics (ER), one question that may be asked is this: given the present situation of 
some evolving population, and given the desired end goal, what pathways are there 
that evolution may take and is there any way that we can persuade evolution to head 
along the faster ones? 

 That question, in its very general form, is what we are tackling in this chapter. In 
doing so we shall move back and forth between rather abstract discussion of evolution-
ary search spaces and practical tips and hints that may be useful for people designing 
and applying evolutionary algorithms for some specific problem. Sometimes such tips 
have been found useful by practitioners and are passed on by word of mouth, yet do 
not find their way into the published literature. As heuristics, they are sometimes crude 
and unproven. This chapter is not intended as an exhaustive classification of evolu-
tionary pathways; it should rather be considered as an album of postcard views drawn 
from several ER travelogues, in the hope that some of them may inspire and influence 
future explorers. 

 We discuss the various features of evolutionary paths that can make them more or 
less easy for evolution to navigate. These are illustrated by some case studies, and where 
the lessons or intuitions thus suggested may have some wider applicability they are 
summarized in the form of  “ Travel Tips. ”  

 4   Evolutionary Pathways 

 Inman Harvey and Ezequiel A. Di Paolo 
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 4.2   Where to Start From 

 The apocryphal Irish peasant, accosted in a rural lane by an American tourist in a 
rental car asking for the best route to Dublin airport, scratched his head and replied: 
 “ If I was going there, I wouldn ’ t be starting from here. ”  There are often good choices 
and bad choices for a starting population. Initializing the population at random sounds 
as though it should be simple, but there are significant subtleties. The Bayesian ratio-
nale behind initializing a population at random is that if we have no prior knowledge 
of where the solution or solutions may be found, then we should not bias the search 
in any way — but where we do have some prior knowledge we may be justified in 
incorporating it. 

 In evolutionary robotics it is common for all or part of the genotypes to be specify-
ing real values for things like weights and biases of a neural network, time parameters, 
sizes of body parts, and so on. When any of these values are potentially unbounded 
in one or both directions, the search space is infinite in size. We must scatter the initial 
population over some bounded region that includes where the goal will be. A careless 
guess for the size of these bounds could be orders of magnitude too large or too small. 
The programmer may be hoping for evolution to do most of the work, but a reality 
check — needing some ability to reason with orders of magnitude — could help stop the 
search in the right ballpark. In general, if some of the parameters tend to evolve toward 
one of the extremes of their range, this may be a sign that the parameter range should 
be changed accordingly. Incidentally, when a range is indeed given hard boundaries 
then a decision has to be taken as to how to treat mutations that mutate values  “ out 
of range ” ; one solution often found effective is to  “ reflect ”  such a mutation back off 
the end-of-range value as if it was a reflecting wall. 

 In the absence of better knowledge, parameter ranges should be searched uniformly 
without bias. This is often done using linear mapping of genotype values onto the 
parameter range. However, the meaning of an unbiased search can depend on the 
parameter. When evolving CTRNNs ( Beer 1995a ,  1995b ), time parameters  τ  are signifi-
cant, and should often be allowed to range over several orders of magnitude, for 
instance from milliseconds to hours as the performance of the task may involve a 
variety of timescales (up to and including the timescale of the whole performance, 
which can include several trials when, for instance, evolving learning behavior). One 
trick to facilitate this is to encode time parameters logarithmically on the genotype. 
A value  t  on the genotype gets translated to   τ   via a formula such as   τ   =  e t  , or   τ   = 10  t  . 
This allows  t  to range through positive and negative values, while  τ  is always positive. 
It means that an initial population, drawn from a flat distribution in  t  values, will be 
realistically scattered across several orders of magnitude in   τ   values, and subsequent 
mutations also behave more appropriately. 
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 4.2.1   CTRNNs or CTSNs 
 The choice of initial bounds, and the use of logarithmic encoding where appropriate, 
are examples where we do have some prior knowledge and are justified in incorporat-
ing this. A further example of this is the use of center-crossing ( Beer 1995b ;  Mathayo-
mchan and Beer 2002 ), where an understanding of the dynamics of CTRNNs is used 
to inform the choice of an initial population. The mathematical formalism of a CTRNN 
covers dynamical systems in general, and the inclusion of NN for neural networks in 
the name has misled some people who have been puzzled that the  “ weights ”  involved 
are fixed. The description CTSN, for continuous time sigmoidal networks ( Beer and 
Daniels 2010 ), may have less misleading assumptions attached to it. Whichever term 
is used, the  “ nodes ”  of such networks refer to any modeled variable of a dynamical 
system — and could, for instance, include the weights of a conventional NN. The ben-
efits of using CTRNNs or CTSNs as a default architecture for an evolved robot  “ brain ”  
include: 

 1.   They provide universal approximators for any smooth dynamical system ( Funa-
hashi and Nakamura 1993 ). 
 2.   They are well understood, with a lot of accumulated experience and some analytical 
results. 
 3.   They are easy to implement. 
 4.   They are relatively easy to analyze. 
 5.   They give good building blocks for dynamical systems, e.g., their activations are 
squashed so that values do not shoot off to infinity. 

 Each neuron in a CTRNN has a nonlinear activation function, with a central region 
(defined by the value of the bias term) that specifies where its output is most sensitive 
to varying input values. For summed input values significantly higher or lower than 
this, the nonlinear activation function saturates close to its upper or lower bounds, 
and ceases to be sensitive to further variations. In effect it is then switched (almost) 
fully on or fully off and plays (almost) no further role in the dynamics of the network 
as a whole. Small variations in connection weights associated with such a saturated 
neuron would make negligible changes to its function, and hence it becomes difficult 
for evolution to  “ explore viable pathways. ”   Beer (1995b)  conjectured that if an initial 
population was manipulated so as to ensure that all the neurons started off in their 
sensitive regions, then this would maximize the prospects for evolution. This can be 
done by ensuring that there is an equilibrium point for the network with every neu-
ron ’ s activation at its exact center of symmetry, in other words, with an output of 0.5 
halfway between the saturation levels of 0.0 and 1.0. 

 A simple way to achieve this in an initial population that is otherwise random is to 
initialize the bias term for each neuron, as a function of the connection weights, so as 
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to obey the  “ center-crossing ”  condition ( Beer 1995b ). In other words, although the 
connection weights are initialized randomly, the biases are initially constrained to meet 
this condition. Thereafter evolution is free to change (through mutation) all the param-
eters including these biases.  “ The richest dynamics should be found in the neighbor-
hood of the center-crossing networks in parameter space, and one would expect that an 
evolutionary algorithm would benefit from focusing its search there ”  ( Beer 1985b ). In 
addition, if it were convenient for some neurons to work in the saturated regions, evolu-
tion could easily find suitable parameters to achieve this from such a starting point, 
while the opposite move from saturated to more dynamical regions is trickier. 

 In ( Mathayomchan and Beer 2002 ) this strategy is compared against pure random 
initialization in evolving central pattern generators for a simulated walking creature, 
and found to give significantly superior performance. Analysis of CTRNNs ( Beer and 
Daniels 2010 ) also shows that under some circumstances new regimes of dynamics 
become available when self-weights are allowed to exceed a value of 4 allowing 
neurons to become bistable, hence restrictions of weights to smaller values than this 
can limit the richness of possibilities. Randall Beer provides a primer (chapter 3, this 
volume) with pointers to such studies. It pays to pay attention to where an evolution-
ary pathway starts. 

   Travel Tip (TT) 1:     Choose limits on initial values in a random population so as to span 
the full range in which you expect to find good results. 
   TT2:     Consider  “ reflecting ”  mutations that take a value out of bounds as if the bounds 
were a reflecting wall. 
   TT3:     Where an evolved value may scale several orders of magnitude, consider scaling 
it logarithmically on the genotype. 
   TT4:     Where possible, ensure the initial population is free to evolve in any direction; 
for example, for CTRNNs, use the center-crossing method. 

 4.3   Where We Are Heading 

 In biology, we are often interested in pathways leading to the here and now of some 
particular individual or species. In evolutionary robotics we are typically looking to 
the future, and must decide what would count as a satisfactory end goal. This goal 
may be more or less explicit; it may demand solutions to specific tasks or the satisfac-
tion of broad viability constraints (explore the world, survive, and so on). If it is some 
uniquely specified robot behavior, there are probably very many different genetic 
specifications, different genotypes, that could generate this. Usually we are seeking 
some satisfactory class of behaviors, rather than something unique, so the target is 
wider still. In terms of evolutionary search, we are seeking the uplands of some fitness 
landscape rather than one unique point at the peak of Mount Everest. 
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 Failure to realize this may underlie the common, but false, intuition that assumes 
big search spaces must be worse than small search spaces. After all, surely searching 
for a single needle in a large haystack is worse than searching for a single needle in a 
small haystack? But actually, if the density of needles is the same in each case, that 
intuition is misguided. Sometimes it may be the big haystack that is more navigable 
than the small one. Choices of genetic encoding will translate through to the size of 
the evolutionary search space. Any attempts to make the search space small, while 
ignoring consideration of the density of acceptable solutions or the navigability of the 
fitness landscape, are likely to be counterproductive. 

 If a fitness landscape only has two levels of fitness — in haystack terms, needles 
equals good and hay equals bad — then no search can be better than random search. 
The expected time to success depends only on the ratio of needles to hay. For evolu-
tionary search to have some advantages, fitness should be measured in shades of gray 
and not just black and white. If one relates these different shades of fitness to contour 
lines on the fitness landscape, then any evolutionary pathway up the hills corresponds 
to passing through intermediate subgoals, which should be easier to find, en route to 
the more elusive uplands. Sometimes we can reshape the landscape by introducing 
intermediate targets, or stepping-stones, and we give some examples below. An inter-
mediate target that is wider than the ultimate bull ’ s-eye will of course be easier; and 
as archers know, surrounding the bull ’ s-eye with concentric circles is one more way 
to add shades of gray to the fitness function. 

   TT5:     Big search spaces may be as easy as, or sometimes even easier than, smaller search 
spaces — it is the density of satisfactory solutions that should be considered. 
   TT6:     Fitness functions in shades of gray are usually easier than discrete black-and-
white values. 

 4.4   Incremental Evolution 

 A classic strategy for tackling a difficult problem is to first carve it up into smaller 
ones: divide and conquer. When designing robots, such division is typically at the 
level of mechanism. Development of a motor mechanism can go ahead largely 
independently of any development of a vision system, since although each such 
module may be complex internally we expect the interactions between them to be 
rather simpler and easier to understand. But though humans find it easier to design 
complex systems in such a modular fashion, it is not so clear whether evolved 
systems, naturally or artificially evolved, have the same overwhelming need for 
modularity. It is significant that evolutionary robotics can and does produce evolved 
systems whose complexity of interactions is too difficult for humans to analyze and 
understand. 
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 But there is a different way to carve up a large problem into smaller ones. A complex 
behavior can be seen as composed of simpler behaviors. Insofar as we can see, with 
hindsight, the evolutionary pathways from the origin of life to present-day mammals, 
we see phylogenetic development from relatively small and simple organisms with 
relatively simple behaviors through successive increases in complexity and variety of 
mechanisms and of behaviors. Necessarily every single individual in any one of these 
pathways must have been viable in its own right. This thought inspired  Brooks (1991a , 
 1991b ) to propose a subsumption architecture as a method for the incremental design 
of robots. 

 The way in which an evolutionary algorithm can be applied to such an incremental 
process and the use of such methods in ER were proposed in  Harvey (1992) ,  Harvey, 
Husbands, and Cliff (1993) , and a body of work following from this. These resulted in 
the SAGA principles ( Harvey 2001 ) of balancing mutation rates against selection pres-
sure so as to optimize the exploitation/exploration balance in such scenarios. Incre-
mental evolution is now quite widely practiced. Sometimes it is called robot shaping 
( Dorigo and Colombetti 1998 ), or incremental shaping ( Auerbach and Bongard 2011 ). 
The term  “ scaffolding ”  is used in developmental psychology to refer to the framework 
that guides a child ’ s educational development, and can naturally extend to ER. It is 
clear that the choice of scaffolding methods can affect the ease or difficulty of evolu-
tionary progress ( Auerbach and Bongard 2011 ). 

 There are two separate issues to worry about when doing incremental evolution. 
First, one must assign the appropriate stepping-stones leading in the right direction 
and a suitable distance apart. This translates to designing a new fitness function for 
the next stage, to bias selection in favor of the desired behavior. An example can be 
seen in  Vickerstaff and Di Paolo (2005) , where an evolved agent was required to navi-
gate via a series of beacons, with successive stages being also incremental in terms of 
complexity — evolving simple phototaxis first, then phototaxis to multiple sources, and 
finally homing to a nest. 

 The second issue is to decide whether new mechanisms are appropriate, for instance 
sensors, or extra brainpower in the form of a larger neural network, and if so, how to 
handle grafting such new material on to what is inherited from the previous stages. 

 Vaughan, Di Paolo, and Harvey (chapter 11, this volume) present a detailed case 
study on how incremental evolution was used to design a bipedal walking robot. 
An important lesson from this was that the effectiveness of results at one incre-
mental stage, and the problems encountered there, informed the decision of what 
the next stepping-stone should be and what sorts of extra facilities might be needed 
to achieve that next step. So the evolutionary pathway was not prespecified from 
the beginning, but instead was laid out as evolution progressed in a dialogue 
between the analysis of the engineer and the high-dimensional parameter search of 
the genetic algorithm (GA). 
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  Vaughan (2007)  used a significantly useful trick in this and related work, which 
only received a passing mention in his thesis. At a new stage in the incremental evolu-
tion, if there was for example a new sensor with an associated neural network to be 
added to the previously evolved system, then the weights and biases of this new neural 
network could be set at random. But the trick was to make sure all the connection 
weights between this new neural network and the previously evolved one were set to 
zero. In consequence, the new sensor and its locally associated neural network had 
absolutely no effect on the previously evolved system. Nevertheless further evolution 
was allowed to modify thereafter the parameters for the old network, for the new 
network, and for their interconnections. 

 By doing it this way, the potential new functionality was added in an initially 
neutral manner. As with neutral networks in general (to be discussed later in this 
chapter), the extra dimensionality opened up possibilities for new pathways. If the 
engineer ’ s analysis and intuitions in making available the new sensor and deciding 
where it should connect up to the existing network were not sound, if incorporation 
of these new components would actually lead to loss of fitness, then evolution  
“ had the option ”  of keeping the interconnection weights at zero and the new 
part effectively was ignored. But if the intuitions were useful, then the new compo-
nent part could coevolve together with the previous system and interconnections 
between them. 

   TT7:     Consider intermediate targets, less specialized than the ultimate goal, as 
stepping-stones. 
   TT8:     When adding new component parts to the robot or its  “ brain ”  at a new stepping-
stone, consider having them initially connected to the preexisting system in a neutral 
way (e.g., with zero weights), so as to preserve the previous functionality. 

 4.5   Showing the Way 

 Setting out a pathway of stepping-stones, through incremental changes in the tasks 
on which evolving robots are evaluated, is one way that the engineer can influence 
the direction taken. But there is another way of implicitly encouraging evolution to 
head toward the next goal via some particular direction. In this next example, the 
engineers crafted their fitness function to make a crucial factor salient. This could be 
related to the biological concept of exaptation, where something that  “ will be useful 
in the future, ”  such as feathers on a flying creature, may have been originated with 
some different role, such as providing warmth. In natural evolution the Blind Watch-
maker has no foresight, so that when one feature is exapted to take on a new role, this 
is serendipitous. But in artificial evolution, where there is scope for foresight, the 
Watchmakers may be partially sighted. 
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 In one example ( Tuci, Quinn, and Harvey 2002 ) experimenters introduced an arti-
ficial bias in the evolutionary process that was stimulated by a lack of success in evolv-
ing a second-order behavior. The task for a (simulated) robot was to navigate in a 2D 
arena toward a distant target, placed on the floor at random at either the left or right 
end of the arena. The target was not visible until reached, and the only visible indica-
tion of which end to head for was a light signal. Over some sequences of trials the 
light was associated with the same end as the target, but over other sequences the light 
was at the opposite end. Hence a good strategy, as expressed by a human, might be: 
on the first trial of a sequence, follow the light, and, if the target turned out to be 
where the light was, use the target-light correlation to guide the following trials; but 
if the target was not associated with the light, turn back to find it, and on the follow-
ing trials head for the end opposite the light. The problem for the ER method to tackle 
is to evolve, from scratch, neural networks that implement some such strategy, based 
solely on feedback derived from the time taken to find the target, averaged over many 
sequences of trials. 

 The initial fitness function was indeed based simply on that average; given that the 
experimental design implied that half the time the light was correlated with the target 
and half the time it was not, there was no easy first-order relationship between the 
direction of the light and the direction of what increased the fitness score. As a con-
sequence, evolution fairly soon  “ discarded ”  the light sensors as irrelevant (by reducing 
their connection weights to zero) and focused on the best simple strategy. This was as 
if the robot was following this rule:  “ first, head to one end at random, and if the target 
was not there, then backtrack to the other end. ”  Though this was a reasonable first-
order strategy, the possibility of improving on this, with a second-order strategy 
exploiting the light, was no longer available if the light sensors had in effect been 
disconnected. The  “ feathers ”  were not available to be exapted for  “ flying. ”  

 So the solution found ( Tuci, Quinn, and Harvey 2002 ) was to put in an artificial 
bias to make the light sensors salient. The decision was made to weight more heavily 
(by a factor of 3) the score for those trials where the light was next to the target, while 
retaining the original score when the light and target were anti-correlated. It is the 
average of these scores over many sequences of trials that contribute to selective fitness. 
In this way the light becomes of first-order significance for fitness, rather than merely 
of second-order significance as a learning cue. As a result of this bootstrapping, a 
majority of the subsequent evolutionary runs using this modified fitness function 
showed the desired results. First, the robot used the light sensors to go toward the light 
in search of the target. If the target was not there, the robot  “ learned from its mistake, ”  
headed in the other direction, and in subsequent trials headed away from the light. 

   TT9:   When you know that some environmental feature will be salient at a later, more 
evolved stage, exploit your foresight by ensuring it is salient early on. 
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 4.6   Neutral Pathways 

 When one interprets evolution as finding pathways toward the uplands of the fitness 
landscape, it is tempting to assume that any pathway that fails to rise in fitness should 
be ignored. This need not be the case. In natural evolution, many mutational changes 
are neutral, yet still play a role in facilitating subsequent nonneutral changes. The 
same may well be true in artificial evolution. 

 One way of visualizing this is to picture a multistory building with numerous inter-
connecting corridors and staircases. In order to reach the higher stories, it may be 
necessary to traverse a level corridor to find an available staircase. Even though walking 
down the corridor does not immediately increase one ’ s height above ground, and even 
though there is no gradient to the corridor indicating whether you are moving toward 
or away from the nearest staircase, it is nevertheless a good strategy to search along 
these neutral pathways. 

 Such neutrality is associated with redundancy in a mapping from genotype to phe-
notype. If different genotypes are associated with one and the same phenotype, or 
indeed with a class of phenotypes of identical fitness, then this is a many to one 
mapping. It implies that the genotype search space is larger than the phenotype search 
space, and sometimes this may be good news. This is particularly the case if and when 
such neutral pathways provide wormholes, or escape routes in hyperspace, allowing a 
population to escape from what otherwise might have been a local optimum. 

 One can create artificial abstract fitness landscapes to illustrate this. The NKp land-
scape proposed by  Barnett (1998) , an extension of Kauffman ’ s NK landscapes ( Kauff-
man and Weinberger 1989 ), is one such example. Barnett demonstrated that by 
varying the parameter  p  one could increase or decrease the neutrality of the fitness 
landscape, without needing to alter the ruggedness. A low-neutrality version, with low 
value of  p , might be rugged enough to have lots of local optima, low hills that can 
trap a population trying to climb to the uplands. A high-neutrality version of the same 
landscape, with high value of  p , can be just as rugged according to standard measures 
of ruggedness; yet the neutral corridors, or neutral networks, provide escape routes in 
this case so that the population no longer gets trapped in local optima. The additional 
neutral pathways will completely transform the evolutionary dynamics. 

  Barnett (2001)  showed that on versions ( “ epsilon-correlated ” ) of his abstract fitness 
landscapes a  “ netcrawler ”  can be provably optimal. This is a version of a 1 + 1 genetic 
algorithm; in other words, the population is in effect of size two. He demonstrated 
that one can optimize the mutation rate for the best balance between exploration and 
exploitation. Increasing mutation rates increases the rate at which a population 
 “ searches blindly along corridors for possible staircases, ”  but also increases the prob-
ability of  “ falling off ”  such a neutral network. It is desirable to balance these two factors 
against each other. It is shown ( Barnett 2001 ) that under certain circumstances the 
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provably optimal mutation rate for an  “ adaptive ”  netcrawler is such that a fraction 
1/e  ≅  37 percent of mutations are neutral. Hence the mutation rate can be adapted on 
the fly; if currently more than 63 percent of mutated variants prove to be deleterious, 
the mutation rate should be decreased, and if less, increased. 

 Such neutral networks are not confined to artificial abstract fitness landscapes. 
There is good reason to expect that any high-dimensional evolutionary search space, 
whether biological or artificial, which has sufficient redundancy in a nonarbitrary 
genotype to phenotype mapping will have such neutral networks. Schuster and col-
leagues ( Schuster et al. 1994 ) have pioneered the study of these in RNA fitness land-
scapes.  Gavrilets (1997)  has applied a (much more abstract and broader) version of 
these ideas at the species level to explain the dynamics of biological species on a 
 “ holey ”  fitness landscape. Moving closer to ER, the existence and exploitation of 
neutral networks in an engineering design problem has been demonstrated by Thomp-
son ( Thompson 1997 ;  Harvey and Thompson 1997 ;  Thompson and Layzell 2000 ). 

 These experiments were based on evolving the connectivity of a field programmable 
gate array (FPGA): a chip composed of cells with multiplexers ( “ muxes ” ) in a square 
array. For these experiments a 10  ×  10 region of cells was used, and binary genotypes 
(of length 1800 or more) specified the connectivity between cells, the configurations 
of muxes in each cell, and other synchronizing features. The real, physical FPGA, as 
thus genetically specified, was tested on its capacity to discriminate between two kinds 
of input signals: square waveforms of 1 kHz or 10 kHz. The genetic search space is 
immense; the fitness landscape depends upon the physical properties of the FPGA, 
which, since it can operate in asynchronous (unclocked) mode, cannot be reliably 
simulated by a deterministic simulation. In other words, it is a complex fitness land-
scape whose properties are largely unknown and noisy, and in this respect shares some 
aspects with biological fitness landscapes (in contrast to synthetic and abstract deter-
ministic fitness landscapes). However it is still possible to keep accurate records of the 
evolutionary pathway taken. 

 One example ( Thompson and Layzell 2000 ) used a 1 + 1 Evolution Strategy: that 
is, the population was in effect reduced to size two with the current parent and its 
mutated copy, very similar to Barnett ’ s netcrawler discussed earlier. If the mutant ’ s 
fitness is greater or equal to its parent, it then becomes the new parent for the next 
stage. Hence a unique pathway can be recorded, as contrasted with the moving cloud 
observed when population sizes are bigger. It can be seen ( Thompson 2002 ) that the 
path did indeed avoid getting trapped in local optima by  “ escaping ”  via neutral net-
works. Subject only to some noise in the (physical) evaluations, the evolutionary 
pathway was constrained not to go downhill, and there were extended stages without 
increase in fitness but with genetic modification — exploration of a neutral network. 
Analysis of the (minimal) population  “ walking ”  along neutral pathways shows that —
 despite fitness remaining unchanged during this level segment — the jump in fitness 
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at the end of the segment was due to a specific mutation that would not have had 
that beneficial effect at the beginning of the segment. In other words, the neutral drift 
along that segment was not wasted; it provided a new genetic environment in which 
that mutation now had a positive effect. 

   TT10:     If there is redundancy in the genotype-phenotype mapping, so as to open up 
the possibility of neutral networks, then you shouldn ’ t necessarily consider a period 
of fitness stasis over many generations to be a waste of time — the population may be 
 “ looking for a staircase along the corridor. ”  
   TT11:     Particularly if there is a lot of neutrality in the evolutionary search space, con-
sider a minimal population such as a 1 + 1 GA. . . 
   TT12:     . . . and then consider whether it is appropriate to adapt the mutation rate 
according to the 1/e  ≅  37 percent rule ( Barnett 2001 ). 

 4.7   Are We Nearly There Yet? 

 The experimenter using ER can often sympathize with the young child on an inter-
minable car journey. Supposing one has done one ’ s best to give the initial population 
the most favorable starting conditions, one has chosen appropriate stepping-stones to 
make incremental evolution easier, and encouraged the exploration of potentially 
fruitful pathways, then how long should one wait before becoming impatient for 
results? 

 Under some circumstances it is possible to at least put a lower bound on this waiting 
time. Here we draw on ideas from  Worden (1995)  and  Haldane (1957) , but these are 
revised for the purposes of a GA using a binary genotype. The simplest way to under-
stand this point is via the game of Twenty Questions. 

 Suppose that this game is played with an agreed search space containing exactly 
1,048,576 (=2 20 ) objects. Player_1 secretly chooses the target object, and Player_2 can 
ask twenty questions to elicit Yes/No answers. The optimum strategy for Player_2 is 
to choose questions that in effect bisect the search space. If exactly one half of the 
previously agreed-upon set of objects are bigger than a shoe and one half of the objects 
are smaller than a shoe, then the answer to the initial question  “ Is it [the target object] 
bigger than a shoe? ”  immediately gives 1 bit of information. A less efficient question, 
such as  “ Is it bigger than bus? ”  is less informative; the challenge of the game for 
Player_2 is to choose the most appropriate question at each stage. 

 One can view this process as iterative selection in a population of size 2 20 . At each 
stage, and each question, the objects in the less fit half are discarded, while we may 
assume that the objects in the fitter half are duplicated; hence the population size 
remains unchanged. This is in effect a simple asexual GA, with no mutation, but a 
vast population size that initially completely spans the search space, then starts to 
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genetically converge, under selection driven by appropriate questions, toward the 
target. In GA terms, we may treat this as a case of binary genotypes of length 20 — and 
clearly 20 generations (or rounds of selection) is the absolute minimum length of time 
required, under optimum questioning strategy. This is assuming that the selection 
process picks the top half — which is in the ball park of a typical selection pressure used 
in many GAs; for instance, tournament selection with tournaments of size 2, as used 
in the Microbial GA ( Harvey 2001 ) does just this. Generalizing, for an n-bit genotype, 
under these circumstances, the minimal expected time to wait is n generations; this 
is what  Worden (1995)  calls the  “ Speed Limit of Evolution. ”  As with the speed of light, 
this forms an upper bound only achievable under ideal circumstances. 

 Moving back from the Twenty Questions scenario to evolution, natural or artificial, 
one can view each round of selection as a very noisy, imperfect version of  “ the envi-
ronment posing a binary question ”  — survive or die. In artificial evolution we may well 
start with a random initial population that does not span the whole search space, 
indeed is typically tiny compared to the search space. This, together with the role 
of mutations and the various inefficiencies combine to make the expected speed 
of evolution much slower than the theoretical speed limit. In artificial evolution, 
even under ideal conditions, one rule of thumb is to allow two orders of magnitude 
slower.  Worden (1995)  argues that recombination will not provide any added benefit, 
though his arguments are unclear and not accepted by many. Nevertheless, these 
back-of-the-envelope estimates are a starting point for estimating how long evolution 
might take. 

 So with an artificial evolution problem, with n-bit genotypes, the rule of thumb 
suggests one should wait for, say, 100n generations before getting impatient. This 
assumes the selection pressure mentioned earlier, and that one is waiting to find the 
unique best point in the search space. If redundancy or other reasons imply that any 
solution within the top-ranked 2 m  of the search space would be acceptable, then the 
rule of thumb dictates 100(n  −  m) as a plausible waiting time. 

 This is presented here as a rule of thumb, which seems to bear up reasonably well 
in practice but is not rigorously proven. Extending beyond binary genotypes to those 
with real values, as might be the case when evolving parameters for neural networks, 
is controversial. But on the face of it, if a genotype contains n real values, and it is 
estimated that each such value needs to be defined to 4-bit, or 8-bit accuracy, then a 
starting place would be to compare this with binary genotypes of length 4n or 8n, for 
the purposes of relating this to a  “ speed limit. ”  

   TT13:     When evolving binary genotypes of length n, under the circumstances previ-
ously indicated, consider waiting 100n generations before becoming impatient. 
   TT14:     When evolving genotypes with real values, consider how many bits would give 
sufficient accuracy and use this to calculate the speed limit. 
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 4.8   Conclusions 

 Evolutionary robotics can be pursued for scientific or for engineering motives ( Harvey 
et al. 2005 ). Apart from such motives it also requires experimental and computational 
skills, and experience builds up a body of insights. Sometimes this results from theo-
retical analysis of what should work, but often it comes down to intuitions that have 
yet to be firmly grounded. ER practice, along with most other technical accomplish-
ments, includes hints and practical knowledge that often does not make it into the 
textbooks. 

 This chapter has aimed to get some of these  “ Travel Tips ”  onto the record. This is 
not intended as an exhaustive list, and we do not claim to be covering the most 
important tips — it is a somewhat random set of postcard views from several ER jour-
neys, and other travelers could have emphasized different views. Planning an ER 
expedition is challenging, but there is a sense of achievement in finding promising 
pathways toward one ’ s goals. 
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 5.1   Introduction 

  If we had a different physiology we would have a different geometry, not necessarily 
Euclidean.  

 The behaviors of spatial orientation that an organism displays result from its capac-
ity for adapting, knowing, and modifying its environment; expressed in one word, 
spatial orientation behaviors result from its  psychology.  These behaviors can be extremely 
simple — consider, for example, obstacle avoidance, tropisms, taxis, or random walks —
 but extremely sophisticated as well — for example, intercontinental migrations, orient-
ing in tangled labyrinths, reaching unapproachable areas. 

 In different species orienting abilities can be innate or the result of a long learning 
period in which teachers can be involved. This is the case for many vertebrates. More-
over, an organism can exploit external resources that amplify its exploring capacities; 
it can rely on others ’  help and in this case what we observe is a sophisticated collective 
orienting behavior. An organism can use technological devices as well. Human beings 
have widely developed these two strategies — namely, either exploring its own capaci-
ties or learning new orienting skills — and thanks to well-structured work groups (a 
crew navigating a boat, for instance) and the continuous improving of technological 
devices (geographical maps, satellites, compasses, etc.), they have expanded their 
habitat and can easily orient in skies and seas. 

 It also is possible to observe orienting behaviors in an apparently paradoxical condi-
tion: exploring a world without moving one ’ s body. In the present day a lot of interac-
tions between humans and information and communication technologies (mobile 
phones, PCs, networks) are achieved using orienting behaviors. The best example is 
the World Wide Web: the explorer in this pure-knowledge universe  navigates  while 
keeping her body almost completely still. 

 Spatial orientation behaviors are the final and observable outcome of a long chain 
made up by very complex psychobiological states and processes. There is no orienting 
without perception, learning, memory, motivation, planning, decision making, 

 5   Exploring the Roots of Spatial Cognition in Artificial and Natural 
Organisms: The Evolutionary Robotics Approach 
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problem solving, and, in some cases, socialization. Explaining how an organism orients 
in space requires study of all human and animal cognition dimensions and, for this 
reason, psychology, and in more recent years anthropology, ethology, neuroscience 
all consider orientation a very interesting field of study. Moreover spatial orientation 
behaviors can be observed everywhere in the animal kingdom and this allows us to 
adopt a comparative approach in studying spatial cognition. Orienting in space is in 
fact one of the few behaviors that is common to most animal species. It is therefore 
possible to take into account a common behavior, such as homing behavior, detour 
behavior, or food searching, in analyzing how insects, vertebrates, or mammals realize 
it. In this way it is possible to identify differences and similarities at various levels of 
analysis (anatomical, neural, cognitive, etc.). Indeed, moving in an adequate fashion 
is strictly connected to animal nature: the word  “ animal ”  means exactly something 
that is animated and can therefore move as a whole in its environment. In different 
kingdoms we also find much simpler organisms whose primary ability is moving 
properly, such as the well-known paramecium. 

 In our opinion this indicates that spatial cognition, in whatever form that allows 
adequate movement, is a very basic requirement in natural organisms. One can find 
a very long catalog of spatial abilities by studying the ethological, psychological, and 
veterinarian literature. But, if we abstract from the capabilities of specific species in 
specific environments, what can we say about the general mechanisms underlying 
spatial cognition? 

 For many years of the last century spatial orienting behavior was studied according 
to a  behaviorist  paradigm. In this perspective attention was focused on defining asso-
ciation laws between environmental stimuli and observable, quantifiable, behavioral 
responses. Organisms ’  internal states — today we could say  psychological  states — were 
left outside of scientific investigation, as they were not directly observable. Organisms 
were considered a black box that could be described and explained only by observ-
able behavior. This approach led to undoubted successes by American behaviorist 
psychologists such as the scientific explication of associative learning (see  Thorndike 
1911 ;  Skinner 1938 ;  Watson 1913 ,  1914 ), but they neglected all the cognitive pro-
cesses that could not be explained by behavioral observation. The only way to unveil 
the generative mechanisms of behavior was to enter organisms ’   “ heads. ”  The Ameri-
can psychologist C. E.  Tolman (1930 ,  1948 ) was the one who opened a breach in 
these heads, opening the way to the study of cognition as we know it. Tolman was 
a great innovator and anticipated and influenced many issues of successive research 
in psychology as well as in other disciplines. He believed that organisms, at least the 
ones he studied (e.g., rats and humans), in order to orient effectively in their envi-
ronments, built a mental (cognitive) map of the worlds they were immersed in, as 
we will describe in more detail later. Moreover he was one of the first psychologists 
who proposed the use of artificial systems, similar to what we call robots, to be used 
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as a means to express psychological theories ( Tolman 1939 , and for a modern revisit 
see  Miglino et al. 2007 ). 

 Since Tolman ’ s work in the 1930s, many psychologists have argued that animals, 
in particular mammals, use  “ cognitive maps ”  of the environment. For Tolman the 
cognitive map was a necessity: how would he explain otherwise the results he obtained 
with rats that had learned the labyrinth configuration without being explicitly rein-
forced? How was it possible for him to hold the stimulus-response association if studies 
with rats provided suggestive evidence that laboratory animals systematically explored 
environments they have never experienced before, detect displaced landmarks, and 
chose new, efficient paths between familiar locations ( Tolman 1930 ;  Poucet 1993 )? 

 From that moment on cognitive map theory became very successful, as the meta-
phor it proposed was attractive: it is easy to imagine animals that use a map in their 
brain like humans use maps of a city. The theory ’ s success is evident if we consider 
that cognitive maps have been ascribed to humans (e.g.,  Tolman 1948 ;  P é ruch, Firaudo, 
and Garling 1989 ;  Herman, Miller, and Shiraki 1987 ;  Coucelis et al. 1987 ;  Baker 1989 ; 
 G ä rling et al. 1990 ;  Gallistel 1990 ), to dogs, rats, chimpanzees (e.g.,  Tolman 1948 ; 
 O ’ Keefe and Nadel 1978 ;  Thinus-Blanc 1987 ;  Gallistel 1990 ;  Menzel 1973 ), to birds 
(e.g.,  Wallraff 1974 ;  Gould 1982 ;  Baker 1984 ;  Wiltschko and Wiltschko 1987 ;  Gallistel 
1990 ), and to insects ( Gould 1986 ;  Gallistel 1989 ,  1990 ;  Poucet 1993 ). 

 According to this theory, different cues, such as data from internal compasses, the 
position of the sun, and the arrangement of landmarks, are fused to form a map-like 
representation of the external world. These maps are enduring, geocentric, and com-
prehensive. In other words, spatial cognition consists of computations in which the 
input comes from these representations and the output is behavior. 

 Tolman can therefore be considered a precursor of the computational and repre-
sentational approach, which has been mainstream in psychology since the 1950s. 
Summarizing, this point of view tells us that human beings, and many vertebrates, 
collect information about their environment through their sensory organs and build 
a mental representation in their brain about it. It is assumed that reality exists exter-
nally to us and what we do is to represent it as a kind of picture in our mind and 
brain. It is worth emphasizing that many mobile robots nowadays are provided with 
navigation systems starting from this assumption. 

 In the last decades many empirical clues both on the behavioral and neurocognitive 
levels have been collected to support this hypothesis. Many lab experiments have 
showed that various animal species orient in a way that suggests the presence of a 
Euclidean cognitive map of their environment. In other words our mind and brain 
may possess a neurocognitive module that organizes spatial information under formal 
laws of Euclidean geometry. This hypothesis is supported by neural data as well: in 
the brains of rats, nonhuman primates, and primates there are neurons (place cells 
and grid cells) that may act as neural building blocks for cognitive representation of 
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space ( O ’ Keefe and Nadel 1978 ;  Hafting et al. 2005 ;  Fyhn et al. 2004 ) as we will describe 
later. In parallel, a wide literature on artificial models of the cognitive (see, for example, 
a recent review by  Cheng 2008 ), connectionist ( Rolls and Treves 1998 ), and robotics 
( Burgess Donnett, and O ’ Keefe 1997 ;  Burgess et al. 1998 ,  2000 ) kind has tried to for-
malize and synthesize the experimental results. 

 However, in the last years, as often happens in scientific practice, a new point of 
view has arisen, which is different from the mainstream. In fact, the same experimental 
results can be explained with an alternative frame of reference with respect to com-
putational and representational approaches. An alternative is the action-based, 
 “ embodied ”  perspective that emerged in the late 1980s and early 1990s. This view 
suggests that many navigational tasks are based on sensorimotor schemes, in which 
the key input comes not from a complete representation of the geometry of the envi-
ronment but from local  “ affordances ” ( Gibson 1979 ) that the animal discovers as it 
moves around. 

 According to this point of view organisms do not build maps of the external world, 
but create their own worlds. If we hold this perspective, the question science must 
answer is not how an organism represents external reality in its mind and brain, but 
how a continuously evolving living being immersed, situated in a continuously evolv-
ing world, creates an embedded cognitive universe in its biological structures (body, 
brain, genetic code, etc.). 

 This position has solid roots and has been proposed in different forms by philoso-
phers such as  Dewey (1938) ,  Merleau-Ponty (1945) , psychologists such as  Piaget (1971) , 
and  Gibson (1979)  and, in a certain sense by Gestalt theory ( K ö hler 1929 ). More 
recently, this point of view has received attention from psychologistS  O ’ Regan and 
No ë  (2001 ), philosopher  Clark (1997) , biologist and epistemologist Varela ( Maturana 
and Varela 1980, 1992 ), and the Italian school of Parisi ( Parisi, Nolfi, and Cecconi 1992  
and  Parisi 1994 , just to cite two) that extended it to the study of artificial systems 
cognition (robots and software-simulated agents). 

 Our studies in evolutionary robotics (ER) belong to this approach and have tried to 
make concrete the description of cognition in non-representational terms. Our first 
works ( Nolfi et al. 1994 ;  Miglino, Lund, and Nolfi 1995 ;  Miglino, Nafasi, and Taylor 
1996 ) focused on defining techniques and methodologies that allowed us to train, on 
an evolutionary scale, small mobile robot populations in the same spatial orientation 
tasks that are used by psychologists with biological organisms (fish, chicks, corvids, 
rats, humans, etc.). 

 Using these techniques we have developed a methodology that can help approach 
the controversy between representational and action-based approaches. The cognitive 
map metaphor is still too strong. It is often assumed that representations exist, without 
trying to verify if this is the case or if they are indeed used for spatial cognition. 
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 In this frame of reference sensory input always comes first and action is just the 
product of input elaboration. The embodiment frame of reference would require a shift 
in perspective that puts action in its proper place. But this perspective change is almost 
impossible to run in animal studies. How can we control the animal action? 

 We may build artificial agents and prevent them from building representation and 
observe them. The robots generated by evolutionary robotics are the final outcome of 
an (artificial) evolutionary process of adaptation. Like animals, they are embodied 
systems that live and act in physical environments. This is crucial. Natural cognition 
does not emerge in an abstract brain, isolated from the body and the environment, 
but rather through active interaction with the world and active extraction of meaning-
ful information from this interaction. ER allows us to simulate these interactions 
comparing the emergent, adaptive behavior of natural and artificial agents ( Nolfi and 
Floreano 2000 ) and identifying the principles underlying this behavior. 

 From the point of view of  “ embodied cognition ”  ( Clark 1997 ), evolutionary robotics 
shows how artificial (and natural) organisms can exploit physics and morphology to 
achieve solutions that would be difficult to achieve using  “ rational design. ”  

 The fact that robots are physical artifacts means that at least in theory they can 
reproduce the observed behavior of animals in a specific experimental setup. As 
 “ embodied ”  systems, they can exploit the same physics used by animals, displaying 
biologically plausible behavior. But in robot experiments, unlike animal experiments, 
researchers have full control over all key variables. For example, they can evolve 
robots with little or no  “ memory ”  or compare systems governed by different control 
mechanisms. 

 This direct comparison between behavioral indexes from animal observation in 
controlled conditions and artificial organisms has been a relevant part of our work. 
Each experiment was designed with the ambition to put, ideally, the artificial organism 
we evolve in the same experimental setting used to study spatial behavior in animal 
labs. This way we apply to robots the understanding process through comparison that 
is typical of animal psychology. The robotics systems we evolved were treated not as 
simplified models of much more complex systems (natural organisms), but as new, 
now much simpler, artificial organisms. In our opinion these studies are the starting 
point of a new horizon in evolutionary robotics that will lead the artificial evolved 
agents to share with natural organisms the same environmental niches and the same 
tasks, and more generally, face the same challenges. In the following pages we will try 
to support our thesis with four different but related studies concerning spatial 
cognition. 

 Which thesis? As introduced before, ER can be used to test the representational 
and computational point of view in psychology and potentially to support the action-
based one. 
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 To describe this approach we would like to use  Piaget ’ s (1971)  proposal that knowing 
is an adaptive function, and all knowledge springs from action. Starting from this he 
proposes a sophisticated model in which (human) cognition develops through complex 
mechanisms of self-regulation and negative feedback. According to Piaget, the first 
stage in children ’ s cognitive development is what he calls the  “ sensory-motor stage. ”  
During this phase, which lasts from birth until about the age of two, children ’ s innate 
reflexes are gradually substituted by mechanisms allowing them to make more efficient 
contact with their environment. In Piaget ’ s view, the most elementary units of knowl-
edge are  “ action-based schemes ” : nonsymbolic structures that originate in children ’ s 
actions in the external environment and that mediate their future interactions. These 
motor programs can be generalized to new situations and tend to coordinate to form 
wider and wider behavioral units. In this perspective, cognition is an active,  “ embod-
ied ”  process. Changes of perspective deriving from children ’ s movements, the mor-
phology of their bodies, and the physics of their sensory organs are just as important 
as the way in which their brains create and process incoming information. 

 We think that this general principle can be effectively applied to the understanding 
of spatial cognition: in the following pages we will show in detail how spatial cogni-
tion can emerge with no sensory input, how geometry can be represented without 
representation, how different environmental information can be merged without 
resorting to language, and how information can be kept in mind without representa-
tion, issues that are relevant in the literature about natural organisms and that we will 
face with the evolutionary robotics approach. 

 5.2   A Brief Methodological Note 

 Evolutionary robotics uses a range of different technical devices and computational 
tools. We will briefly describe here the devices and tools used in our own experiments, 
including e-puck and Khepera, two miniature mobile robots. Khepera ( Mondada, 
Franzi, and Ienne 1993 ) and e-puck ( Mondada et al. 2009 ) are designed and built at 
the Laboratory of Microprocessors and Interfaces of the Swiss Federal Institute of Tech-
nology of Lausanne. The robots are round and have an on-board CPU and can be 
connected to a host computer using a serial port or Bluetooth. 

 Their motor system consists of two wheels (one on each side), supported by two 
rigid pivots in the front and back. The wheels can rotate in both directions. The sensory 
system includes eight infrared sensors, six on the front and two on the back of the 
robot. This basic apparatus can be easily expanded with additional components. 
Turrets with their own processors can provide new sensory information. In some of 
our experiments, we used robot cameras capable of detecting black or white obstacles 
at a significant distance. Given that the camera is positioned above the robot, and 
detects distal stimuli, while the infrared sensors are placed along the robot ’ s 
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circumference and detect proximal stimuli, their combined use provides the robot with 
two quasi-independent sources of information. 

 Evolving control systems for large populations of physical robots is time consuming 
and expensive. To resolve this problem,  Nolfi (2000)  designed and implemented Evo-
Robot, a realistic simulator of the Khepera and e-puck robots that makes it possible to 
run evolutionary experiments in simulation. EvoRobot accurately models the charac-
teristics of Khepera and its interaction with the environment. In our experiments, we 
often use a modified version of this software. Control systems evolved with EvoRobot 
can be downloaded to robots and validated in a physical test environment. 

 In each of the experiments presented below, the robot control system was modeled 
by an artificial neural network (ANN). From a functional point of view, we use dif-
ferent kinds of input, hidden and output units. The sensor layer consists of two bias 
units and of units that receive information from the external world. Bias units are 
units that are always on (that is, their level of activation is always 1) and receive no 
information from the outside environment. In some cases we have a timekeepers 
unit whose activation varies as a function of time. The hidden layer consists of units 
that elaborate the incoming signal. The output layer consists of two motor units, 
whose activation is fed to the wheels. In some of the experiments, we use an addi-
tional decision unit, which represents the robot ’ s decision whether or not to take a 
specific action (e.g., digging or recognition) in a specific location. Robot movement 
is determined by the activation of the output units. Robots are bred using a simple 
form of genetic algorithm ( Belew and Mitchell 1996 ). Each of the experiments we 
will report here used the same basic procedure. At the beginning of the breeding 
process, we generated a first generation of 100 robots. We initialized the robots ’  
control systems with random weights. We then tested their ability to perform the 
experimental task. Performance was measured using a fitness function related to 
spatial ability. At the end of the testing session, each robot received a fitness score, 
measuring its ability on the task. After all robots had been tested, the eighty robots 
with the lowest fitness score were eliminated (truncation selection). We then pro-
duced five clones of each of the remaining twenty robots (asexual reproduction). 
During cloning, a certain percentage of connection weights were incremented by 
random values uniformly distributed in the interval [ − 1,+1]. The new neural control 
systems were implanted in 100 robot bodies thereby creating a second generation of 
robots. This cycle of testing/selection/reproduction was iterated until no further 
improvements in fitness were observed. 

 The environments we use are derived from the animal behavior literature. We 
mainly use the so-called open field box, a rectangular enclosure commonly used in 
animal research where the animal can roam freely. In this open field we can modify 
the shape, for example it can become square, or we can add landmarks, obstacles, or 
feature information such as color clues. 
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 As always happens in psychology labs, first we train the evolved robots to solve a 
certain spatial orientation task and then we first test their behavior and then we study 
their rudimentary artificial neural networks to understand the emerging cognitive 
organization. 

 5.3   Spatial Cognition without Environmental Sensory Information 

 In this section we describe a paradoxical experiment in which the orienting organisms 
cannot rely on information on the external environment, but only on its internal state. 
This condition is not found in nature where at least a minimal external sensory source 
is always present. This is an extreme and simple form of knowledge that is achieved 
only through action and with no sensory contribution. The ability we investigate is a 
very basic one: exploring an open enclosure. We propose these experiments to support 
our thesis that cognition comes from action in an extreme way that is suppressing the 
sensory side. 

 5.3.1   How Can Robots with No Sensory Information Exhibit Spatial Cognition? 
 A new organism is born and it is blind and deaf. It knows nothing about what is 
outside, but it tries and it can move. It starts receiving some sensation from the inside, 
maybe hunger. Standing still is not useful: nothing happens. Maybe something edible 
can be reached by moving. It starts moving and finds unexplored areas where it can 
get food. Quite soon the organism behaves as if it knows that its world has edges: every 
time it touches one of the edges it hurts so it comes back to its starting position. Step 
by step its behavior improves. 

 What is this newborn organism doing? Which strategy is it using? The newborn 
organism has found a way to survive in an unknown environment. Next we will 
describe two extreme examples of how spatial cognition can operate without using 
sensory information. 

 How the  “ Inner World ”  Can Build Spatial Cognition 
 At this moment, while you are reading this chapter, you may see your best friend 
coming toward you, hear the children playing in the courtyard, or smell the inviting 
sandwich that the person sitting beside you in the train is eating. Maybe in the same 
moment you feel that you are hungry. 

 While seeing a friend, hearing the children, or smelling the sandwich each represent 
a perturbation coming from the outside, perceiving your biological needs represent a 
perturbation coming from the inside. Outside and inside are therefore two windows 
our newborn organism can use and whose interaction determines the organism itself. 

 In this sense, cognition derives from an autopoietic process as defined by  Maturana 
and Varela (1980) . According to these authors, a genotype becomes an organism 



Spatial Cognition in Artificial and Natural Organisms 101

through active interaction with the external environment: it extracts primary resources 
from the external environment (water, food, etc.) and it transforms them into tissues, 
bones, organs, systems, and so on. The organism is the factory of itself. This view of 
the organism can be extended to the genesis of cognitive structures. 

 As a result of this conception we can consider living systems are self-reproducing 
systems that compensate for the perturbations arriving from the external world in 
order to sustain their organization. 

 However, they also change as a consequence of environmental stimulation. This 
view strongly resembles what  Piaget (1971)  said about human cognitive development 
being an interaction between assimilation and accommodation. Assimilation and 
accommodation are two complementary processes of adaptation: assimilation changes 
the external word to adapt it to the internal world while accommodation changes the 
internal world to adapt it to the external world. Cognition is the result of both pro-
cesses. This view emphasizes the role of coupled interactions between organisms and 
the environment. 

 The internal vs. external issue is relevant also in robotics research. In this field Tom 
 Ziemke (2005 ,  2007 ,  2008 ) has studied intensively this  “ nonphysical space ”  that holds 
past, present, and future together in an  “ inner world, ”  a notion that has been first 
introduced by  Hesslow (2002)  and developed by  Grush (2004) . The metaphor is power-
ful and useful because it makes clear the crucial split between the external world the 
organism is immersed in and its  “ internal, ”  private world, which is hidden to other 
organisms but is fundamental in determining the organism ’ s behavior. 

 If in order to understand the behavior of organisms it is necessary to consider both 
their inner world and their external environment, constructing artificial organisms 
make this possible. The simultaneous consideration of both the internal and external 
aspects of behavior is relevant also if we wish to study spatial cognition. It is usually 
assumed that this knowledge is founded upon integrating innate schemes with sensory 
experience, where sensory experience is provided by environmental stimuli and is 
received by the organism ’ s sensory apparatus. However, in addition to the external 
environment the organism ’ s body itself is a precious source of stimuli ( Parisi 2004 ). 
Examples are internal clocks, proprioception, and signals from the gastroenteric appa-
ratus and the hormonal system. Such stimulation is considered relevant to regulate 
the organism ’ s behavior but not to build up  “ knowledge ”  of the external environment. 
For example, hunger can motivate an organism to choose a certain action to satisfy 
this need but it is not useful to construct a representation of the environment in which 
the organism lives. 

 The newborn organism we introduced at the beginning of this section has to exploit 
the role of internal stimulation in building knowledge of the environment in which 
it lives and from which it receives no stimulation at all. This situation is represented 
in   figure 5.1 .   Figure 5.1a  shows the first stage of our artificial organism without sensory 
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apparatus but with internal dynamics and action that warrant a link with the world. 
In a later stage (  figure 5.1b ) this dynamic is enriched with the introduction of sensory 
apparatus.    

  Ponticorvo, Parisi, and Miglino (2009 ) have considered the issue of introducing 
sensory apparatus. Let ’ s imagine an organism with a motor apparatus and an internal 
sensory apparatus, but totally without sensory organs that directly inform the organ-
ism concerning the current state of the external environment, just like the newborn 
organism we described earlier (  figure 5.1a ). This organism is completely closed inside 
itself at the sensory level. It can interact with the external environment but it cannot 
get any direct information from it. The organism is forced to create its own inner world 
on the basis of purely self-generated stimuli. But the organism cannot be said to be 
isolated from the external environment in that its actions have effects that modify the 
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 Figure 5.1 
 Organism/environment dynamic: (a) the organism with internal stimulation only, and (b) the 

organism with external and internal stimulation. 



Spatial Cognition in Artificial and Natural Organisms 103

physical relation of the organism to the external environment, which the organism 
can exploit to behave adaptively in the environment. 

 Can internal stimulation be sufficient to solve a spatial task? Which mechanism do 
artificial organisms use to adapt? What we have observed is that an adaptive behavior 
can indeed emerge even in the absence of direct sensory information from the external 
environment. Even if they are closed in their own self-generated internal world, the 
simulated robots establish a useful relation with the external environment through 
their actions. In fact, by realizing and exploiting a precise coordination between pro-
duced output and self-generated internal input, in other words, between the external 
and the internal worlds, the robots are able to successfully adapt to their environment. 
This is possible because action is accurately selected under evolutionary pressure, and 
the evolutionary pressure causes the emergence of a kind of resonance between inner 
world and external world. Through the physical interactions between the organism 
and the environment, after a demanding search the possibility emerges to utilize action 
to know the environment, even if there is no sensory input from the environment. In 
other words, the organism ’ s actions become the vehicle for developing a representation 
of the environment. 

 Under evolutionary pressures the agents ’  neural control architecture extracts and 
incorporates the statistical regularities and information structure underlying their 
interactions with the environment, and in this way the external constraints and the 
internal dynamic resonate. The flow of information between the hidden units and the 
robot ’ s effectors is actively shaped by the robot ’ s interactions with the environment 
on an evolutionary scale. 

 How  “ Rhythm ”  Can Build Spatial Cognition 
 In the previous subsection we have seen that sensor-less artificial organisms could solve 
effectively some kinds of problems without external stimulation, relying on internal 
dynamics. These internal dynamics, under evolutionary pressure, were tuned with 
external dynamic, thus allowing artificial organisms to build spatial cognition. What 
we observed was that regularities in space were translated into timekeepers in internal 
dynamics. 

 In this subsection we would like to add one more piece to the puzzle by discussing 
the role played by time. Virtually all animals possess  “ internal clocks ”  that operate on 
different timescales, ranging from seconds to years ( Farner 1985 ). These clocks regulate 
a broad variety of behaviors and body rhythms, from sleep and wakefulness to repro-
duction and migration. Time and rhythm are, in short, a basic component of animal 
biology, an issue that was faced in  Marocco, Miglino, Walker ’ s (1999)  work. They show 
that adding time sensors to artificial organisms ’  neural networks allowed these organ-
isms to have a better performance in a wandering behavior, similar to the one already 
studied in  Miglino, Nafasi, and Taylor (1996) . The authors compare two kinds of 
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artificial organisms with and without internal clocks. Both were evolved according to 
evolutionary robotics methods. 

 Organisms with and without internal clocks were able to adapt to the environment 
they were evolved in, but organisms with internal clocks proved to be much more 
efficient in behaving in an environment they had never experienced before. In other 
words internal clocks help generalization. Using internal timekeepers can significantly 
simplify a number of cognitive tasks. 

 In many circumstances is useful to change a behavioral strategy once a certain 
amount of time has elapsed, regardless of changes in external environment. All animals 
can rely on internal clocks: it is natural that evolution has used them also for cognitive 
purposes, to help in building spatial cognition. 

 Take-home Message 
 How may the newborn artificial organism explore its world to find food and survive? 
One possible reply is by exploiting action. Without external sensory information 
action can become the channel to get in touch with the external world and it can be 
enough. For this reason these results support our thesis according to which action is 
cognition ’ s basis. 

 The behavior of artificial organisms can reflect the particular characteristics of the 
environment in which the organisms live and are adaptive to, even if they obtain 
extremely little information from the environment through their sensors, or no infor-
mation at all. Cognition can emerge from the interaction, made possible by action, 
between two coupled processes: the agent ’ s internal dynamic and the agent/environ-
ment dynamic. 

 5.4   Spatial Cognition in Natural and Artificial Organisms 

 In the previous section we have described a paradoxical situation in which an organ-
ism is born without external sensory apparatus (  figure 5.1a ). In this section we take a 
step further: we consider artificial organisms with sensory apparatus (  figure 5.1b ) and 
directly compare them with natural organisms in spatial orientation tasks. This way 
we show how it is possible to understand the roots of spatial cognition in artificial 
organisms by focusing on action and not on sensation. 

 5.4.1   Could Geometry Be Known without an Explicit (Neuro)cognitive 
Representation of Space? 
 In this subsection we will describe two experiments in which artificial organisms use 
geometry without resorting to representation. We will address two specific aspects of 
geometric knowledge in detail: the use of distance from landmarks and the use of 
environmental shape. 
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 Landmark Navigation without Representation of Space 
 Our artificial organism opens its eyes and sees an empty space.  “ What a bad world I 
live in! ”  it may think. Then it moves. Suddenly something interesting appears: a huge 
black square. Our artificial organism moves toward it. While it is approaching it finds 
a pink sphere, a yellow cone, and a red cylinder. The artificial organism ’ s world is now 
populated with relevant cues in proximity of which it can find food, water, or whatever 
it needs. From now onward it can survive reaching one geometrical figure, or the areas 
between two of them, or the center of their arrangement. 

 In the natural world, the role played by these geometric figures is usually assumed 
by landmarks. Landmarks are distinct features that an animal can recognize in order 
to orient itself. A landmark can be anything that is easily recognizable such as a monu-
ment, a building, or a mountain. Landmarks can be geometric shapes such as rect-
angles, lines, or circles (as in our artificial imaginary world), and they may include 
additional information other than the landmark ’ s position. In fact, landmarks have a 
fixed and known position, relative to which an animal can localize itself. Unsurpris-
ingly, using landmarks to orient is common in animals.  Gallistel (1990)  has shown 
that, at least in rats, navigation mechanisms based on landmarks prevails over other 
navigation mechanisms based on alternative sources of information. Animals can use 
their distance from a landmark and its bearing to locate their position. 

 An interesting experiment by  Kamil and Jones (1997)  shows that some birds can 
do much more than this. Clark ’ s nutcracker ( Nucifraga columbiana ) is a species of crow 
with an extraordinary ability to find seeds it has previously hidden. In their experi-
ments, Kamil and Jones demonstrated that in performing this task, the bird could 
exploit abstract geometric relationships between landmarks. In their work, wild-caught 
birds were taught to locate a seed, hidden at the midpoint between two landmarks. In 
the training phase, the seed was partially buried between green and yellow landmarks 
whose position and distance were changed after each trial. The birds were able to see 
the seed. In the subsequent, test phase, the seed was completely hidden. In about half 
the trials, the distance between landmarks was different from the distance in the train-
ing phase. This tested the crows ’  ability to generalize. The results showed that the 
animals could locate and dig for the seed with a high degree of accuracy, even in 
conditions they had not experienced during the training phase. Control experiments 
confirmed that they were exploiting the abstract geometrical relationship between 
landmarks and did not rely on their sense of smell or on the size of the landmarks. 
The crows ’  observed behavior was consistent with Gallistel ’ s hypothesis that orienta-
tion uses a Euclidean map of an organism ’ s environment. 

 However, we would like to show that the action-based approach can also explain 
these data: landmark navigation does not require explicit representation of space. In 
the experiment by  Miglino and Walker (2004) , these findings were replicated, using 
the ER approach. 
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 The experimental setting in this model reproduced the setting in which Kamil 
and Jones had conducted their work. Like Kamil and Jones ’ s observation room, 
robots entered the arena through a  “ porthole. ”  The arena contained two landmarks 
(one gray and one black) emulating the green and yellow landmarks in the original 
experiment. The landmarks were aligned in parallel to the shorter side, with the 
gray landmark in the northerly position. At the beginning of each trial, the simu-
lated robot was placed at the midpoint of one of the two short sides of the area 
(always the same side), facing east. During the experiments, the positions of the 
landmarks and the distances between them were changed after each trial, following 
the same procedure as in Kamil and Jones ’ s experiments. The robot ’ s sensory input 
came from a linear camera providing it with a 360-degree field of vision, while the 
output units consisted of the two motor units plus a decision unit that stopped the 
robot every time its activation was higher than a defined threshold. This was inter-
preted as  “ digging, ”  as explained in the methodological note. Results are shown in 
  figure 5.2 .    

 Results showed that robots succeeded in digging in the correct area, in a way that 
was comparable with birds. To understand this ability, the authors analyzed the activ-
ity of the digging unit, the only unit of the network that was sensitive to the robot ’ s 
location in the arena in free movement and in imposed position, to understand the 
mechanism underlying the robot ’ s navigational ability. The data indicated that the 
robot ’ s ability to exploit geometrical relationships for navigation depended not just 
on the digging unit but also on the two motor units controlling its movement in the 
environment. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0

0.05

0.1

0.15

0.2

0.25

0.3

Pr
o

p
o

rt
io

n
 o

f 
d

ig
s 

in
 b

in

Pr
o

p
o

rt
io

n
 o

f 
d

ig
s 

in
 b

in

0–60 604040 0–60 604040

Distance from midpoint (cm) Distance from midpoint (cm)

 Figure 5.2 
 Behavioral indexes for robots (on the left) and for birds (on the right). Performance is measured 

by mean percentage of digs in target area. Squares represent training trials; triangles represent 

testing results. Robot data from  Miglino and Walker 2004 ; bird data from  Kamil and Jones 1997 . 



Spatial Cognition in Artificial and Natural Organisms 107

 In other words, the ability to exploit geometrical relationships between landmarks 
depended on a process of active perception, with robot action playing a fundamental 
role. Once again we see how spatial behavior emerges from the embodied interaction 
between the agent and its environment. 

 Shape Cognition without Representation of Space 
 Our artificial organism can move and can calculate distances between landmarks. At 
this stage, it is ready to learn something more about geometry. Geometry? Does this 
mean the artificial organism will learn about squares, triangles, rectangles, and other 
such shapes? Some readers may think that geometry is something we study at school, 
so how can it be interesting for our young artificial organism? Perhaps some readers 
who are not geometrically inclined don ’ t want our artificial organism to be bothered 
with solving complicated geometrical problems. 

 Indeed, the use of shape for orientation is widespread among animals. Many ver-
tebrates exploit information about the shape of the environment. For example, chim-
panzees ( Gouteux, Thinus-Blanc, and Vauclair 2001 ), pigeons ( Kelly, Spetch, and Heth 
1998 ), rats ( Cheng 1986 ;  Margules and Gallistel 1988 ), human beings ( Hermer and 
Spelke 1996 ), newborn chicks ( Vallortigara, Zanforlin, and Pasti 1990 ) can all recognize 
the geometrical relationships between the walls of a room and use this information 
as the basis for efficient orientation. It seems clear that many species, and not just 
 Homo sapiens,  have a detailed geometrical understanding of the portion of the world 
they inhabit. 

 Let us consider the experiments run in the experimental setting known as the open 
field box, described in the methodological note. In open field experiments, rats that 
have been shown the location of hidden food in a rectangular box are able to navigate 
toward and dig at that location (or at the rotational equivalent location) in a second, 
identical box. 

 During a learning phase, rats learn to localize a visible food patch. Later the rats 
are tested in a box with the same features as that of the learning box. Here, the rats 
are to localize a buried food patch put in same position as in the box in the learning 
phase. 

 In this experimental condition it was observed that rats systematically produced 
errors including the  “ rotational error ”  ( Cheng 1986 ;  Margules and Gallistel 1988 ). In 
roughly half of the trials, the rats dug in the correct location. In the other half they 
dug in the  “ rotationally equivalent area, ”  that is, the area where they should have dug 
if the arena had been rotated by 180 degrees. This behavior has been interpreted as 
evidence that the vertebrate brain contains a  “ geometry module ”  that encodes geo-
metric features of the environment, such as distance and direction, and that rats rely 
exclusively on this information during navigation. In other words, rats understand 
that the open field box is a rectangle. 
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 These results, about twenty years ago, led  Gallistel (1990)  to point out that rats 
have a cerebral module to represent the shape of their environment in terms of Euclid-
ean geometry. In other words, according to Gallistel the vertebrate brain includes a 
specialized module that provides a Euclidean representation of space. This  “ geometry 
module ”  reconstructs an image of space, which precisely reproduces the quantitative 
geometrical relationships between objects. In substance, it produces a metric (cogni-
tive) map. 

 The discovery of  “ place cells ”  in the rat hippocampus provided the neural substrate 
for this hypothesis ( O ’ Keefe and Nadel 1978 ). Place cells are neurons in the hippocam-
pus whose rate of firing strongly depends on the rat ’ s location in the environment. 
When the rat is in the area associated with a specific  “ place field, ”  neurons in the field 
fire faster than other cells. In O ’ Keefe ’ s words, a place cell is  “ a cell which constructs 
the notion of a place in an environment by connecting together several multi-sensory 
inputs each of which can be perceived when the animal is in a particular place in the 
environment ”  ( O ’ Keefe and Nadel 1978 , 425). Complementary information is pro-
vided by  “ head direction cells ”  ( Taube 1998 ), which fire only when the animal ’ s head 
is pointing in a specific direction. Recently discovered  “ grid cells ”  in dorsocaudal 
medial entorhinal cortex (dMEC) ( Hafting et al. 2005 ;  Fyhn et al. 2004 ) fire when the 
animal occupies any one of the vertices of a grid overlaid on the surface of its environ-
ment. Together, these findings support the hypothesis that the mammalian brain 
contains topographic neural maps, representing the spatial environment occupied by 
the animal. 

 Place cells and grid cells  “ fire ”  when the animal is in a specific location in the 
environment: a single cell, neurophysiological mechanism supports spatial cognition 
and geometric information representation. 

 The geometric module has received notable attention during these last twenty years, 
but recently this conception has shown some rifts: modularity in geometry is in doubt 
( Cheng 2008 ). It seems in fact that geometry could be learned together with other 
spatial information. This issue, which we will deal with in detail in the next section, 
is generally approached by assuming that geometry is known with an explicit 
representation. 

 But this view is not universally accepted. Other authors argue that animals do  not  
use a complete, explicit representation of space. Rather they construct their spatial 
understanding  “ on the fly, ”  as they move through space, extracting geometrically 
meaningful information from the stimuli they receive from the environment. In this 
view, geometrical knowledge emerges from the interaction between a behaving animal 
and the environment it inhabits as well as the physical constraints imposed by the 
environment. In other words, spatial cognition is  “ situated. ”  

 Open field box experiments with rats have provided evidence, which appears to 
support Gallistel ’ s view, but in 2001, however,  Miglino and Lund (2001)  used 
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techniques from evolutionary robotics to investigate whether robots with no internal 
representation could produce the same behavior observed in animals. Their aim was 
to verify whether a construction of a cognitive map of the rectangular box (long vs. 
short wall) was necessary for obtaining the behaviors described in rats. 

 They carefully reproduced the experiments using a robot that had no capability of 
constructing cognitive maps: a Khepera robot governed by an artificial perceptron with 
direct connection between input and output units. This control system, whose weights 
were determined via artificial evolution, can make sensorimotor responses, but it 
cannot build a cognitive map. 

 The results, reported in   table 5.1 , showed that with the perceptron control system, 
the robot was able to navigate to the target in the rectangular box. However, as in the 
case with rats, the robot would navigate to the rotational equivalent area as many 
times as to the correct target area. The number of successes was comparable to the 
ones obtained with rats, and the robots performed fewer misses.   

 The authors also report a careful analysis of strategy, which underlines that, although 
the shape of the box (its geometrical characteristics) cannot be seen and represented 
by the robot, it is assimilated in the robot ’ s behavioral sequences. 

 This experiment shows that, in the case of open field box settings, similar behavioral 
indexes can be produced by strategies that do not use a cognitive Euclidean representa-
tion (map) of the environmental shape. In fact, the structural characteristics of our 
robot, which exclude any kind of internal representation, show that the results with 
rats in open field box experiments cannot be interpreted as evidence of the existence 
of cognitive maps of the environmental geometry. 

 A more recent study by  Miglino, Ponticorvo, and Bartolomeo (2009)  has addressed 
the question of spatial geometric representation with artificial organisms. In this study, 
 “ place units ”  in robots are produced via artificial evolution. The starting point of this 
work is a set of studies that show that when animals are restrained, the spatial selectiv-
ity of place cells is partially or completely lost. This suggests that the role of place cells 
in spatial cognition depends not only on the place cells themselves but also on repre-
sentations of the animal ’ s physical interactions with its environment. 

  Table 5.1 
 Correct identification of target, rotational errors, and misses for rats and for Khepera robots   

 Correct  Rotational Errors  Misses 

  Rats    35    31    33  
  Khepera    41    41    18  

   Sources:  Data for rats from  Margules and Gallistel 1988 . Data for Khepera from  Miglino and Lund 

2001 .    
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 This hypothesis was tested in a population of evolved robots. The results suggest 
that successful place cognition requires not only the ability to process spatial informa-
tion but also the ability to select the environmental stimuli to which the agent is 
exposed. In other words, these results indicate that the action-based perspective can 
explain data on place cells in spatial cognition. 

 Take-home Message 
 If we pronounce the word  “ geometry ”  many people will think of a sheet of paper 
where lines, triangles, cubes, and so forth, are drawn, and of formulas to calculate 
perimeters, areas, and the like. 

 In a certain sense this view is not so far from the one derived from the representa-
tional hypothesis: if geometry is represented inside the brain in a module, this means 
that it is represented in an abstract way. On the contrary, the evolutionary robotics 
experiments we have described in this chapter indicate that geometric information 
can be used also without resorting to explicit representation. Through action, geometry 
is exploited by relying on sensorimotor coordination. 

 5.4.2   How Can Different Types of Spatial Information Be Merged in a Single 
Neurocognitive System without Language? 
 The artificial organism, at this stage, can move, distinguish landmarks, and understand 
the geometrical relationship between them. In the world it lives in and explores, it 
seems to know that there is a rectangular enclosure with four blue cylinders in the 
corners and white walls. It often happens, in one of these corners, that something very 
interesting for our organism appears and disappears fast. 

 The organism has to localize in which corner the precious reward appears, in order 
to receive it. Just considering geometry it has a 50 percent chance of success. But one 
day a new event happens: by a strange coincidence one of the long walls becomes 
colored. In this case the artificial organism can obtain the desired reward very easily. 

 The mystery of the colored wall is solved by merging two kinds of information: 
geometric and nongeometric. Geometric information comes from the difference 
between a short wall and a long one and sense (left vs. right) whereas the nongeometric 
information comes from the colored wall. 

 Not surprisingly, many animals are able to use these forms of information to orient. 
Evidence suggests that vertebrates orient using geometric and nongeometric feature 
information. For example, many different animals can locate a region within a larger 
space by using the distance between their current location and landmarks in the 
environment. Consider for example rats, birds, fish, primates and human beings. 
Nongeometric spatial information, such as the color of a landmark, or smells, is also 
a relevant source. 
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 But, while there is strong evidence that vertebrates know how to exploit geometric 
and nongeometric information, the exact weight of these sources of information is 
less clear. In the presence of both cues vertebrates behave in different ways. 

 Allow us to start from rats, the first species that has undergone the experimental 
setting of the  “ Blue Wall ”  task, an open field box with a colored wall. Rats seem to 
have some problems in merging geometric and nongeometric information. In the first 
experiments by Gallistel and colleagues ( Gallistel 1989 ;  Margules and Gallistel 1988 ) 
rats exploit geometric information in the environment, ignoring contradictory 
nongeometric information. They therefore often confuse diagonally opposite corners 
even when featured cues differentiate them. As stated earlier, this was the trigger for 
the geometric module postulation. Recent results have produced more than one doubt 
regarding this hypothesis as underlined by the recent review by  Cheng (2008) . What 
is observed is that, in some cases, geometric cues were overshadowed by feature cues 
when spanning entire walls ( Pearce et al. 2006 ). 

 Other organisms integrate geometric and nongeometric spatial information such as 
color ( Sovrano, Bisazza, and Vallortigara 2002  for fish  Xenotoca eiseni ) or featured cues 
( Vallortigara, Zanforlin, and Pasti 1990  for young chicks). They use consistently geo-
metric and nongeometric information. 

 Other puzzling results come from human beings. Systematic rotational errors are 
made by young children (under five to six years old) in small spaces ( Hermer and 
Spelke 1996 ), but they use nongeometric information consistently in large spaces or 
when they grow older ( Hermer-Vazquez, Moffet, and Munkholm 2001 ).  Hermer and 
Spelke (1996) , who have studied children ’ s behavior, suggest that merging ability 
depends on language: mature use of language appears around the age of six, as happens 
with merging. Moreover the role of language is sustained by results on shadowing 
findings ( Hermer-Vazquez, Spelke, and Katsnelson 1999 ) where adults engaged in a 
linguistic task during reorientation ignored a colored wall feature and only used geo-
metric information to reorient. According to these authors, language makes it possible 
to link geometric and nongeometric information in a single  “ cognitive representa-
tion. ”  If this argument is correct, animals such as rats, which have no superior language 
functions, are unable to progress beyond  “ geometric primacy ” : evolution forces them 
to rely on the automatic processing provided by the geometric module. Wild-caught 
mountain chickadees  Poecile gambeli  have shown a nongeometric primacy:  “ features 
overshadow geometry ”  ( Gray et al. 2005 ). It seems therefore that two distinct mecha-
nisms are dedicated to geometric and nongeometric information and these systems do 
not work together in every condition. 

 Since  Gallistel ’ s (1989)  study, according to a certain number of scholars, geometric 
information ( Cheng and Newcombe 2005 ;  Vallortigara, Feruglio, and Sovrano 2005 ) 
is coded by a modular system. In fact, Gallistel attributes the ability to orient using 
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geometric cues to a dedicated  “ brain module ”  in Fodor ’ s sense of the term ( Fodor 
1983 ). In cases of conflict, this geometric module overrides other modules whose 
output is based on nongeometric information. 

 Another point of view, supported by behavioral evidence, claims that the modular-
ism is not the only way to approach this controversial issue and language could not 
play a fundamental role.  Newcombe (2002)  suggests that geometric and nongeometric 
information can be integrated. In fact, he claims,  “ There is no reason to believe that 
information is encapsulated. It is indeed integrated with other relevant information 
about the spatial world ”  (398). This integration  “ combines input from these various 
mechanisms in a variable, weighted fashion that reflects characteristics of the input 
(e.g., size of features or their apparent moveability) and characteristics of the organ-
ism ’ s learning history ”  ( Cheng and Newcombe 2005 ). This hypothesis is supported by 
studies on monkeys that use nongeometric information if there are large featured cues, 
but show geometric primacy if these cues are small ( Gouteux, Thinus-Blanc, 
and Vauclair 2001 ) and by the amazing results involving mountain chickadees 
 Poecile gambeli  ( Gray et al. 2005 ): when geometric and nongeometric information 
conflict, there is nongeometric primacy. The authors suggest that this result may be 
explained by the fact that these wild-caught birds  “ have little experience with salient 
right-angle cues. ”  

 In a recent paper by  Ponticorvo and Miglino (2009) , the authors use evolutionary 
robotics techniques to address the issue of geometric and nongeometric information 
merging without language. If we describe in operational terms the hypothesis derived 
from  Newcombe 2002 , we can say that the variable role of geometric information in 
different species depends on the frequency with which organisms are exposed to dif-
ferent kinds of spatial information during their adaptive history. In this perspective, 
language is not a crucial variable to explain geometric primacy, nongeometric primacy, 
and merging. We assume that any environment contains a certain proportion of geo-
metric information and a certain proportion of nongeometric information. Organisms 
learn to respond preferentially to the information that is most commonly available to 
them. Only in a successive phase do they use the less available information.  Ponticorvo 
and Miglino (2009)  investigated this hypothesis with ER techniques by manipulating 
the proportions of geometric and nongeometric information in the environment and 
observing what patterns of behavior evolve and how information is processed in the 
artificial brain of evolved robots.   Figures 5.3 and 5.4  compare the behavioral indexes 
for animals and robots.       

 The results indicate that different orientation abilities can emerge, varying system-
atically the exposure to different environmental cues. It is possible to evolve agents 
with different spatial skills by varying the frequency with which they are exposed to 
different classes of stimuli during their evolution. Agents that evolve in environments 
providing balanced exposure to geometric and nongeometric cues acquire the ability 



Spatial Cognition in Artificial and Natural Organisms 113

to use both kinds of cue. Agents that are exposed primarily to a single class of cue 
show primacy. 

 In more detail, there is a clear interdependency between exposure balance and the 
ability to integrate geometric and nongeometric information: this ability in fact 
emerges mainly with balanced exposure to both kinds of information while primacy 
behaviors emerge in unbalanced exposure conditions. 

 Moreover it seems that different spatial abilities that emerge in evolved robots are 
not represented in separate areas in agents ’   “ brains. ”  In fact there is no dissociation 
between the processing of geometric and nongeometric cues: it is possible to evolve 
geometric and nongeometric information encoding in the absence of specific modules 
performing these functions; a modular neural organization is not necessary and 
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therefore language is not necessary to merge different sources of information. Also, on 
a behavioral level, in spite of various trajectories, adapted to specific environmental 
conditions, the basic mechanism involved in place cognition appears to be the same 
for all the agents. The general spatial competence assumes different forms in different 
environments as different spatial information patterns produce different motor action 
sequences, but the place recognition mechanism is always the same for all the agents. 

 Take-home Message 
 How can the organism find the desired reward? The reply is by merging geometric and 
nongeometric information, but this merging does not imply the use of language. Dif-
ferent types of spatial information can be merged in single neurocognitive systems 
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with an appropriate environmental exposition. Shape and colors are put together 
thanks to the evolutionary pressure that leads to an embedded and situated cognition 
that allows orientation. Also in this case the key is represented by action: what is 
needed is not representation but an adequate sensorimotor coordination that links 
various spatial inputs to the appropriate action. 

 5.4.3   How Can an External Object Be  “ Kept in Mind ”  without an Explicit 
Representation? 
 Our artificial organism is now familiar with its environment: it therefore follows 
quietly the routes to what it is looking for. It now possesses good spatial abilities: it 
can use landmarks in the world, such as the pink-color sphere; it can use geometric 
and featured information provided by rectangular squares, circular-arranged walls, or 
milestones; it can use a time counter to know how much time has elapsed. 

 At a certain point the organism wants to reach the area where a tall beacon is visible 
and heads toward it. Suddenly it comes across an enormous obstacle that blocks its 
path. It is forced to take an indirect route, and it loses sight of the target along the 
way. In this condition it has to move toward the target but it cannot rely on the beacon 
mechanism that allows it to approach a target by moving directly toward it. 

 This kind of behavior is widespread in the animal kingdom. It is not surprising, as 
many animals have to reach food locations or their nests that are far away from the 
animal itself, meaning the animal must reach its target even if it is not visible. This 
behavior, orienting toward a target when it is not visible, is called  “ detour behavior. ”  
Detour behavior is very interesting and it has produced much theoretical debate. In 
fact, when the target is out of view, there is no stimulus to elicit a response. Conse-
quently many theorists ascribe this behavior to the presence of an internal representa-
tion of the target, which allows the animal to maintain its orientation even when the 
target is out of sight. 

 In the first years of scientific psychology this ability was considered an example of 
high-level cognition as it was observed in nonhuman primates such as chimpanzees 
( K ö hler 1925 ). Moreover,  Tolman ’ s (1948)  historical study of detour behavior in rats 
led the famous scholar to postulate the existence of mental spatial maps. In this experi-
ment, Tolman placed rats in a circular labyrinth with a long corridor departing from 
the center and leading to a reward. The rats easily learned to follow the corridor, but 
in a later session they found this corridor was blocked, whereas many new alternate 
corridors now radiated from the circular arena. The rats followed the one that led most 
directly to the reward, thus demonstrating they remembered where the reward had 
been. More surprisingly, two-day-old chicks ( Regolin, Vallortigara, and Zanforlin 1994 ) 
also possess the ability to detour. The chicks were placed in a white cage divided in 
two by a barrier. The chicks were on one side of the barrier, the target on the other. 
The chicks ’  side of the cage contained a corridor. At the end of the corridor, there was 
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a grill that allowed a chick to see the target, which the chick believed to be its mother 
from the imprinting process. Two openings on the side of the corridor opened onto 
four compartments, two of which faced away from the target while two faced toward 
the target. In the experiment, the chick was placed in the corridor, close to the barrier, 
and allowed to explore its surroundings. Researchers recorded which corners each 
chick reached and the time they took to reach their target. The results showed that 
the chicks preferred the compartments facing toward the target. This was taken as 
evidence that the chicks maintained a mental representation of the target and its posi-
tion, even when they had lost sight of it along the route. 

  Walker and Miglino (1999)  replicated Regolin and colleagues ’  experiment in order 
to understand if an explicit representation was necessary to solve this task. They have 
replicated this experiment using evolutionary robotics techniques, providing the 
robots with a control system that precluded the presence of explicit representations 
of the environment. Each robot was provided with external sensors and with  “ time 
sensors ”  to give the robot a sense of  “ rhythm. ”  

 The authors hypothesized that detour behavior might be derived from other, more 
primitive forms of exploration and food seeking, namely, the ability to move toward 
a visible target, to negotiate an obstacle, and to efficiently search an open space. They 
therefore designed fitness formulae, which rewarded these abilities individually even 
when they did not lead to successful detours. To elicit robust behavior, the robots were 
trained in different environments, each consisting of an open field with no external 
wall. In the first environment, there was no obstacle between the robot and the target. 
The fitness formula rewarded robots that successfully searched for the target and 
moved toward it. The second, third, and fourth environments selected for detour 
behavior. In the training sessions, the robot was always able to perceive the target even 
when the route to reach it was obstructed. Finally, the authors tested the four best 
robots from the last generation of each simulation in Regolin and colleagues ’  apparatus 
(where the robot could not see the target except at the beginning of the experiment). 
Behavioral indices, reported in   table 5.2 , were computed using the same procedures 
applied by  Regolin, Vallortigara, and Zanforlin (1994) , that is, by summing up the 
number of robots choosing specific compartments after a predetermined time.   

  Table 5.2 
 Performance of chicks and robots in the experimental apparatus   

 Do Not Leave the Corridor  Sec.A  Sec.B  Sec.C  Sec.D  Total 

  Chicks    5    2    3    9    11    25  
  Robots    1    0    2    10    11    24  

   Sources:   Regolin, Vallortigara, and Zanforlin 1994 ;  Walker and Miglino 1999 .     
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 In this experiment the behavior of the robots successfully replicated that of the 
chicks. By carefully analyzing the trajectories followed by the robots, Walker and 
Miglino were able to derive an alternative model of detour behavior, which does not 
require explicit representation of the target position. In this model detour behavior is 
built up, step by step, from more primitive behaviors, namely the ability to move 
toward a target, minimization of the time the robot is out of view of the target, and 
wall following. These abilities emerge in tight interaction with the environment. 
Detour behavior is structured by the robot ’ s body and the interaction between the 
robot body and the environment. It is this interaction that allows the robot to discover 
new adaptive behaviors: the knowledge resides in the event that links organism and 
environment. 

 Take-home Message 
 In our simulated world the artificial organism can reach the final destination using 
detour behavior. This ability does not require keeping an explicit representation of the 
target ’ s position: it is the result of simpler behaviors. Of course, these simpler abilities 
must emerge in close interaction with the external environment, which is based upon 
action. 

 5.5   Conclusions 

 At the end of this path we have obtained an artificial organism with sophisticated 
spatial abilities. How did it get these abilities? 

 The experiments we have described indicate that several forms of spatial behavior 
can be achieved without internal, symbolic, static representations. The artificial organ-
ism ’ s ability to perform specific tasks emerged from the interaction between the 
robot and its environment: its knowledge springs from the adaptation to environ-
mental constraints. In other words, cognition is not a property of the brain, but a 
relational property deriving from the organism-environment interaction, mediated 
by action. 

 What we have described therefore lends some support to the action-based approach. 
As we have discussed in the introduction to this chapter, evolutionary robotics is 
particularly suitable to explore the role of spatial cognition that would otherwise be 
difficult to address. When we apply ER to a specific problem such as spatial cognition 
the results provide useful insight into the implicit assumptions of biological and etho-
logical research. The experiments we have described show that, in many cases, there 
is more than one mechanism capable of generating a particular set of values for this 
kind of indicator: the representational paradigm is only one possibility for understand-
ing spatial behavior, but the embodied, embedded, situated, implicit one can be pow-
erful as well. In this paradigm action comes first; it is action that determines the input 
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pattern and the resulting next action in an endless chain inscribed in environmental 
constraints. Therefore knowledge is possible without representation as cognition 
comes from sensorimotor coordination — in Piaget ’ s words,  “ a direct action co-
ordination without representation or thinking ”  ( Piaget 1971 ). 

 The new horizon in evolutionary robotics that we propose in this chapter consists 
of using this methodology to discard the representational paradigm in psychology. 
There is still a lot to be done, however. The challenges we will face in the coming years 
are various. We would like to introduce them following our imaginary artificial organ-
ism as it acquires new spatial abilities step by step. What do we mean by  “ step by 
step ” ? On an evolutionary scale, each step would be a generation, or a hundred gen-
erations. On a development scale, each step would a specific period of time or matura-
tion. On a learning scale, each step would be the acquisition of new abilities by trial 
and error or through supervised teaching. All of these steps should be put together in 
building artificial organisms that better resemble real-life dynamics. 

 Until now our artificial organism has only needed to explore its world to get what 
it needs to survive, but we can imagine that it will want to satisfy new needs. Motiva-
tion and emotion are two fundamental dimensions in the animal kingdom and in 
human life, and introducing them in artificial organisms would probably be difficult 
but undoubtedly very interesting. At a certain point during its exploration our artificial 
organism will find another artificial organism, similar or different. It will become a 
social being that must interact with, understand, anticipate, communicate with, col-
laborate with, fight against another social being or with numerous social beings. 
In the animal kingdom sociality is a great trigger for opening up elevated forms of 
cognition. 

 Facing these challenges with ER will enable us to develop artificial organisms that 
behave in complex and unforeseeable ways. They will be a new species, over which 
we have much more control, to study and analyze in order to solve the puzzling issues 
of cognition. 
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 One can distinguish between traditional and evolutionary robotics (ER) by the way in 
which each community generates controllers: traditional roboticists hand-design or 
use learning methods to create control policies, while evolutionary roboticists employ 
evolutionary algorithms. What further distinguishes these two approaches is that 
evolutionary algorithms may also be used to optimize robot morphology as well as 
the control policy. This chapter traces the history of this practice and outlines how 
we as a community are transitioning from questions regarding  how  to evolve morphol-
ogy to  why  one should do so. Here I outline seven such reasons: selecting or evolving 
an appropriate morphology can (1) simplify control, (2) make seemingly difficult tasks 
easier, (3) increase evolvability, (4) provide new behaviors, (5) facilitate the extraction 
of information from the environment, (6) generate new research questions, and 
(7) improve scalability. 

 6.1   Introduction 

 Embodied cognition was an intellectual rebellion that entered the field of artificial 
intelligence (AI) in the early 1990s ( Brooks 1991a, 1991b ), and challenged the prevail-
ing (and still majority) view in AI that intelligence can be replicated in a computer 
without requiring interaction with the external world ( Minsky 1974 ;  Bechtel 1990 ). 
Brooks outlined a strong view in which internal modeling was not required for real-
izing relatively sophisticated behavior such as locomotion over uneven terrain ( Brooks 
1986 ) and, later, social interaction ( Brooks et al. 1999 ). Indeed internal processing was 
minimized as much as possible; instead, emphasis was placed on exploiting the situ-
ated and embodied nature of the robot. 

 This movement has steadily been gaining ground since that time ( Clark 1996 ; 
 Pfeifer 1999 ;  Pfeifer and Bongard 2006 ), but a large majority of the AI and even robot-
ics community continue to focus extensively on the control side of behavior realiza-
tion, with minimum attention paid to the robot ’ s morphology. One reason for this 
emphasis may be that AI and robotics grew out of cybernetics, which in turn was 
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founded on control theory. Furthermore, the formal, mathematical traditions of the 
field promote approaches that provide guarantees of convergence or the discovery 
of optimal solutions, or both. Such guarantees are very difficult or impossible in 
stochastic optimization processes such as evolutionary algorithms, much less when 
the optimization process is extended to the morphology of the robot. It may be that 
this contributes to why evolutionary robotics is not a popular approach among many 
mainstream robotics and AI practitioners. 

 Nature however provides abundant examples of organisms with diverse body plans, 
and an ever-greater diversity of adaptive mechanisms by which those body plans 
support behavior. Biorobotics ( Webb and Consi 2001 ), a sister field of evolutionary 
robotics, has demonstrated several successes of replicating both the control and mor-
phological adaptations of individual animals in machine form such that the machines 
also demonstrate one or more of the animal ’ s behaviors. However, bioroboticists 
tend to copy the actual body plan of animals, rather than copy the evolutionary 
mechanisms that produced that body plan in the first place, as is done in evolutionary 
robotics. 

 If the right morphology can indeed facilitate behavior, the question then arises as 
to how to select an appropriate machine body plan for the task environment and 
desired behavior. A prevailing view in robotics is that choosing such a body plan is 
much more intuitive that designing controllers:  “ Humans are much better at designing 
physical systems than they are at designing intelligent control systems: complex 
powered machines have been in existence for over 150 years, whereas it is safe to say 
that no truly intelligent autonomous machine has ever been built by a human ”  
( Nelson, Barlow, and Doitsidis 2009 , 22). However, a growing number of examples 
surveyed in this chapter illustrate that selecting an appropriate body plan is rarely an 
intuitive process, and that therefore automating the selection process using evolution-
ary computation may indeed allow for the realization of increasingly intelligent and 
autonomous machines. 

 6.1.1   The Role of Morphology in Animal Behavior 
 As already mentioned, many of the geometric layouts, material properties, and 
mechanical mechanisms of animals ’  body plans are shaped by evolution to support 
particular behaviors. A well-studied example in robotics is human bipedal locomotion. 
Human legs are structured to support extremely energy-efficient travel by exploiting 
the passive swing of the leg and loading of the ankle, and therefore support long-
distance travel. Indeed several researchers have been able to reproduce this energy-
efficient gait in robots through careful hand-tuning of the robot ’ s morphology ( McGeer 
1990 ;  Collins et al. 2005 ). However, for many morphological adaptations it is difficult 
to determine which behaviors they evolved to support. Whether the quadrupedality 
seen in higher animals or the hexapody seen in insects is a result of historical accident 
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or serves adaptive behaviors is unknown, and there exist a panoply of hypotheses for 
why bipedality evolved in early humans ( Lovejoy 1980 ;  Morgan 1982 ;  Jablonski and 
Chaplin 1993 ;  Hunt 1996 ). 

 For this reason it is difficult to determine which aspects of an organism ’ s morphol-
ogy to replicate in a robot, as some aspects may be dictated by physiological constraint 
or are the result of historical accident. An example of this former constraint is that it 
seems likely that bipedalism was a simpler path for evolution to take to free up the 
upper extremities rather than evolving a new pair of limbs, as the quadrupedal body 
plan is an extremely conserved trait across the animal kingdom. Therefore, although 
instantiating bipedalism in robots may be desirable so that they can operate in a world 
built for human body plans, if not done correctly, a legged robot may not be capable 
of the behavior that legs originally evolved for: energy-efficient transport. Similarly, 
whether to implement four or five fingers on a robot hand is probably a less important 
design decision than whether to include an opposable digit, which supports a wider 
range of grasping strategies than a hand without such a digit ( Wilson 1998 ). 

 As these two examples illustrate, choosing an appropriate body plan for a robot is 
not so easy a task as it seems. An alternative strategy therefore is to replicate the evo-
lutionary mechanism that produced the body plan originally: biological evolution. 
Artificial evolution may then discover a body plan that, while possibly not similar to 
any found in nature, is well suited to the task environment, desired behavior, and 
control policy evolved along with it. 

 6.1.2    “ How ”  versus  “ Why ”  
 Karl Sims was the first to demonstrate that evolutionary computation could be used 
to evolve both the morphology and control policies for autonomous agents in a 
physics-based simulator ( Sims 1994 ). He obtained many agents with morphologies that 
were and were not biologically familiar. He employed an evolutionary algorithm with 
a genotype-to-phenotype mapping that included recursion and therefore tended to 
produce body plans with repeated segments. 

 This work stimulated a subsequent wave of research that explored different ways of 
evolving morphology. One research line employed direct encoding schemes ( Ventrella 
1994 ;  Lipson and Pollack 2000 ), while another line expanded the recursive Sims-type 
mapping by incorporating Lindenmayer systems ( Prusinkiewicz and Lindenmayer 
1990 ) into the encoding scheme ( Hornby and Pollack 2001 ). Others still pursued more 
biologically realistic encodings that simulated genetic regulatory networks to grow the 
body plan ( Eggenberger 1997 ), and later both the body plan and control policy 
( Bongard 2002 ) of simulated agents. Examples of robots evolved with this latter 
approach are shown in   figure 6.1q – u ).    

 Yet most of this work focused on  how  to evolve morphology, rather than  why  one 
should do so: it is imperative for the field of evolutionary robotics to accumulate such 
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 Figure 6.1 
 A selection of the author ’ s past projects involving embodied cognition. (a – f) Simulated machines 

with differing morphologies, yet identical sensor, motor, and control systems were evolved to 

isolate the effect of morphology on evolvability ( Bongard and Pfeifer 2002 ). A physical autono-

mous machine (g) was reported in  Bongard, Zykov, and Lipson 2006  that is capable of creating 

a simulation of its own morphology (h). The simulation of a brachiating machine (i) was used 

to prototype passive dynamic behaviors before instantiating them in a physical machine 

(j) ( Frutiger, Bongard, and Iida et al. 2002 ). The simulation of a machine with both serial and 

parallel actuated linkages (k) was used to prototype nonintuitive control strategies that were later 

used on the physical version of the machine (l) ( Zykov, Bongard, and Lipson 2004 ). A simulation 

framework for prototyping stochastic self-assembling machine modules was developed, and used 

to discover assembly plans for producing three-dimensional structures such as the tower shown 

in (m).   Results from the simulation were used to build a macroscale physical prototype of this 

technology (n) ( White et al. 2005 ). (o) Both mass distribution and control parameters of a simu-

lated bipedal machine were evolved to produce locomotion in  Bongard and Paul 2001 . (p) Strat-

egies by which multiple machines may share self-models and controllers were investigated in 

 Bongard 2009 . (q – u) Evolving the body plans and control circuits for simulated machines. (q,r): 

Evolution of block pushing behavior ( Bongard and Pfeifer 2001 ). (s – u) Illustrations indicating the 

combined growth of the body plan during ontogenesis as well as the internal sensor, motor, and 

control circuits (internal networks). (v) A virtual robot capable of both legged locomotion and 

object manipulation ( Auerbach and Bongard 2009b ).   
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reasons in order to justify the added complexity of these methods. This chapter will 
explore seven reasons why a machine ’ s body plan should be carefully hand- or auto-
matically designed, beyond the one already mentioned:  1   

 1.   Choosing or evolving an appropriate body plan can simplify control compared to 
when an inappropriate body plan is employed —  morphology simplifies control ; 
 2.   Seemingly difficult tasks, approached with purely computational methods, become 
easier if the methods incorporate an appropriate morphology —  morphology eases tasks ; 
 3.   Although incorporating morphological parameters into the evolutionary process 
increases the dimensionality of the search space, doing so can often improve the prob-
ability of finding useful behavior —  morphology increases evolvability ; 
 4.   By exploring the space of robots in which the topology of the robot ’ s body plan 
may change during behavior, new behaviors not available with a fixed morphology 
can be realized —  morphology affords new behaviors ; 
 5.   With the right body, a robot can use it to systematically extract useful information 
from the environment —  morphology supports self-exploration ; 
 6.   With the adoption of certain body plans, research questions not yet explored in 
artificial intelligence arise —  morphology creates new research questions ; and 
 7.   What constitutes a  “ good ”  morphology becomes less intuitive as the complexity of 
the task increases —  morphology supports scalability . 

 6.2   Morphology Simplifies Control 

 The task environment in which a robot must act dictates much of the control policy 
that the robot should adopt in order to perform its task successfully. However, the task 
environment also dictates what kinds of morphology are appropriate: a poorly chosen 
morphology will require a more complex control policy than a well-chosen morphol-
ogy. As a simple example, consider a robot that should move forward over flat terrain. 
Clearly a wheeled robot will require simpler control than a legged robot: a wheeled 
robot may simply supply constant torque to all of its wheels while a legged robot must 
orchestrate the motion of its legs. However, for more complex task environments, it 
is not always so clear how to devise a morphology that will simplify control. Therefore, 
a growing number of examples have been put forward in the robotics and evolutionary 
robotics community. One such example, passive dynamic walking machines, has 
already been mentioned, in which little or no control is required if the body is designed 
properly. However, it is often the case that human intuition or examples from nature 
fail to suggest what an appropriate robot body plan should be for a given task. In such 
circumstances evolutionary algorithms can be used to discover an appropriate body 
plan for the task at hand. 
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  Lichtensteiger and Eggenberger (1999)  described a mobile robot that simulates 
the facets of an insect ’ s eye, and demonstrated that evolving the distribution of these 
facets on the robot (which resulted in nonuniform distributions) simplified the 
visual processing required to calculate the time at which the robot would contact an 
external object. 

 The author developed a method that combines evolution and ontogeny: virtual 
organisms are grown in the environment in which they must behave, and evolution 
in turn shapes the form of these growth programs ( Bongard and Pfeifer 2001 ). This 
was accomplished by simulating genetic regulatory networks ( Eggenberger 1997 ): 
genomes that are evolutionarily modified may contain noncoding and coding regions. 
These coding regions are treated as genes, and the parameters within these regions 
dictate the gene ’ s behavior. Genes produce simulated substances that diffuse through 
the body of the robot as it grows in its environment. Some of these substances may 
affect the expression of other genes near the point of the substance ’ s production or, 
through passive diffusion, the substance may affect gene expression in distal parts of 
the robot. 

 Other substances may cause phenotypic change. The robots are composed of spheri-
cal modules (  figure 6.1q – u ), and modules may grow and split in response to substance 
concentration. The modules also contain neurons and connecting synapses (visualized 
by the internal networks in   figure 6.1s – u ); substances may create, destroy, or move 
neurons throughout the robot ’ s body, and may cause synapses to grow from one 
neuron, through the body, and attach to other neurons. Additional synapses may 
connect sensors to neurons, neurons to motors, or sensors directly to motors. Using 
this approach, few assumptions are made about the form of the robots ’  body plans 
and neural controllers, and evolution is free to discover an appropriate body plan and 
neural controller for the task at hand. 

 In one experiment in which robots were selected for approaching and pushing large 
objects in their environment (  figure 6.1q,r ), two robots were observed to have long 
front appendages and exhibited a wave-like form of locomotion reminiscent of that 
seen in inchworms. Both robots were evolutionarily related, and were found to possess 
very similar neural patterning as illustrated in   figure 6.2 .    

 A human engineer asked to design a controller for such a body plan would most 
likely favor a centralized architecture in which a central timer orchestrated a sequence 
of motions along the appendage ’ s length. However, artificial evolution here discovered 
a simpler solution that does not require timing or orchestration, but rather exploits 
the interactions between the robot ’ s body plan (a series of spherical modules) and the 
environment (gravity pulls lifted modules back to the ground) and controller (distrib-
uted direct sensor-motor reflexes). 

 This example points to one of the fundamental differences between more formal 
learning methods and evolutionary algorithms: the former are suited for parametric 
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optimization in which guarantees of convergence are required, while the latter allow 
both structural (i.e., topological) and parametric improvement in which such guaran-
tees are more difficult to provide. Currently, popular learning methods support that 
there are a fixed number of parameters that must be optimized: these parameters 
may specify the parameters of a controller with a fixed architecture, or aspects of the 
robot ’ s morphology. However, many evolutionary algorithms do not presuppose 
the dimensionality of candidate solutions. This is very much the case in indirect 
genotype-to-phenotype mappings, in which there is dissociation between the com-
plexities of the genotype and phenotype. Indeed the more complex robot shown in 
  figure 6.1r  is a descendent of the simpler robot in   figure 6.1q , although both were 
grown from a genotype with the same number of genes ( Bongard and Pfeifer 2001 ). 

a b

c d

 Figure 6.2 
 The evolved morphology, control policy, and resultant action of the front appendages of the 

robots shown in   figure 6.1q,r . The front appendage is comprised of a series of morphological 

modules (large circles) attached to each other by one degree-of-freedom rotational joints. Each 

joint is motorized (M). The evolved genetic regulatory network places a touch sensor (S) in each 

module, and connects it by a synapse (arrows) to the motorized joint in the neighboring module. 

Gravity and the mass distribution of the appendage causes the distal tip to contact the ground, 

which causes the touch sensor to fire and activate the motor it connects to. This causes the joint 

to rotate the tip off the ground, thereby causing the second module to contact the ground. This 

in turn activates the next touch sensor and its associated motor, and so on, producing a wave of 

motion along the appendage ’ s length without requiring centralized control (Courtesy MIT Press). 



132 Chapter 6

 6.3   Morphology Eases Tasks 

 One of the surprising results accumulating in the embodied cognition literature is that 
seemingly challenging tasks when tackled with disembodied algorithms are rendered 
much simpler when an intelligent agent is allowed to interact with the environment 
using its body. A particularly striking example comes from the work of  Metta and 
Fitzpatrick (2003) , in which a humanoid robot is tasked with object segmentation. 
This task has primarily been cast as a purely perceptual problem in the computer vision 
literature in which objects in a cluttered scene should be visually separated ( “ seg-
mented ” ) from the background and other objects. 

 Metta and Fitzpatrick describe a series of experiments in which a humanoid robot 
moves its arm, and observes the resulting motion in its visual field. When the arm 
comes in contact with various objects, the robot can simultaneously observe and feel 
the result of that contact. Different outcomes of this interaction help not only to 
determine the outline of the object against the background, but also physical charac-
teristics of it. For example, heavy objects halt the arm ’ s movement. Lighter objects 
may begin to move, and the resulting flow field indicates the boundary of the object. 
Complex objects may be more amenable to movement along different axes as a result 
of their geometry or friction properties, or both, which the robot can discover by 
poking an object from different directions. The robot thus demonstrates a form of 
active perception ( No ë  2005 ), in which the object is understood not so much as a 
result of its external appearance, but rather by the affordances ( Gibson 1977 ) that the 
object projects: in other words, the ways in which the embodied agent may interact 
with the object. Indeed active perception is a growing area of study in evolutionary 
robotics ( Gomez and Eggenberger 2007 ;  Tuci, Massera, and Nolfi 2009 ;  Bongard 2009a, 
2009b ). 

 Metta and Fitzpatrick also point out that this blending of perceptual and motor 
processes is observed in the primate brain, and that this blending may therefore have 
a functional role rather than being an accident of evolution. Finally, they demonstrate 
that this interaction with the environment can support the development of more 
complex cognitive abilities such as mimicking a human demonstrator. The main long-
term goal of artificial intelligence is, after all, the realization of more complex cogni-
tion through the aggregation of simpler competencies; this work, along with others 
(e.g.,  Yamashita and Tani 2008 ) indicates how embodied behavior may simplify this 
progression. 

 6.4   Morphology Increases Evolvability 

 The ability to find good solutions within a search space is dictated primarily by three 
factors: the dimensionality of the search space, its smoothness, and the degree of 
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neutrality. Smoothness can be operationally defined as how much phenotypic effect 
a small genetic mutation causes. Mutational effect can be influenced by the amount 
of genetic interaction, as in Kauffman ’ s NK fitness landscapes ( Kauffman and Johnsen 
1991 ), where N represents the dimensionality of the genotype and K indicates the 
degree of coupling between genes. For higher K values, a slight genetic mutation will 
influence the expression of several other genes, magnifying the mutation ’ s phenotypic 
effect. It has been known for some time in biology that the probability of a mutation 
conferring a fitness benefit is inversely proportional to the phenotypic magnitude of 
that mutation ( Fisher 1930 ). Therefore, for evolutionary algorithms with high epistasis, 
the resulting fitness landscape tends to be  “ rugged ” : regions of high fitness are sepa-
rated from one another by difficult-to-cross regions of low fitness. 

 The effect of neutrality on evolvability  2   has also been extensively studied in biology 
( Kimura 1983 ) and evolutionary computation ( Barnett 1998 ;  Yu and Miller 2002 ), and 
shows that populations may discover more high fit regions by undergoing a series of 
neutral mutations. Neutral mutation in a population can be visualized within the 
fitness landscape metaphor by envisioning a series of solutions clustering upward 
along a slope of increasing fitness, but then diffusing outward across a horizontal 
plateau, and thereby discovering multiple routes upward toward more fit solutions. 

 It follows from this that increasing the dimensionality of the search space for a 
given problem does not necessarily make it more difficult for an evolutionary algo-
rithm to discover good solutions, as long as the correspondingly larger search space is 
smoothed in the process. In other words, a larger yet smoother fitness landscape may 
be more amenable to evolutionary search than a smaller, more rugged landscape. 

 Adding additional dimensions to a search may indeed smooth it in the process by 
introducing what the theoretical biologist Michael Conrad termed  “ extradimensional 
bypasses ”  ( Chen and Conrad 1994 ;  Cariani 2002 ): isolated fitness peaks in the small 
space may become saddle points in the larger space. This additional genotypic material 
may not necessarily introduce phenotypic novelty: rather, it may introduce intermedi-
ate, highly-fit solutions between two solutions that already existed in the smaller space 
such that an evolving population more often finds the higher peak by traversing the 
extradimensional bypass. 

 Of course, blindly increasing the dimensionality of a search space does not guaran-
tee the creation of bypasses: larger search spaces might just as easily become more 
rugged than smooth. Seen through the lens of evolutionary robotics, we may take an 
existing ER experiment in which only the controller is optimized, increase the geno-
type to also specify some morphological parameters, and then re-evolve robots against 
the same task. We may expect one of three outcomes. First, the new experimental 
regime may turn out to be less evolvable than the original experiment, suggesting that 
the increased search space has either kept the ruggedness of the landscape constant 
or increased it. Second, the evolutionary algorithm may outperform the original 
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experiment because it discovers a different body plan than the fixed one used previ-
ously. Third, performance may increase but the final, best robot may have the same 
or very similar body plan to the fixed one from the original experiment. 

 This last outcome would suggest that the additional evolvable morphological 
parameters have introduced extradimensional bypasses into the search space: evolu-
tion gradually modified the initial, default body plan through a series of intermediate 
forms — as well as modifying the controllers accompanying those body plans — until 
eventually evolution converged back on a body plan similar to the original body plan. 

 This evolutionary trajectory has been observed in several independent studies that 
employed different evolutionary algorithms, robots, and tasks. In  Bongard and Paul 
(2001)  we first evolved a simulated biped with an active torso to walk over flat terrain 
(  figure 6.1o  while keeping the morphology fixed. A standard genetic algorithm was 
used to evolve a feedforward neural network to optimize the robot ’ s displacement over 
a fixed time period. In this first set of experiments the radii of the lower and upper 
legs and arms were kept constant. In the second set of experiments these three mor-
phological parameters (lower leg, upper leg, and arm radii) were evolved along with 
the robot ’ s neural network controller. In some of these latter experiments evolution 
discovered body plans different from the default, such as the one shown in   figure 6.1o . 
It can be seen that the radii of the legs and arms are significantly larger than that of 
the torso, producing a bimodal mass distribution: mass is gathered in the legs to sta-
bilize walking; and torque induced by walking is canceled by the neural network 
swinging the heavy arms in opposition to the legs. Other experiments produced robots 
that outperformed those found in the original set of experiments, but had very similar 
morphologies: in these runs the body plan was observed to change, but converged 
eventually on the original, default morphology. From these observations we concluded 
that although the additional morphological parameters had increased the dimension-
ality of the search space, it had also created new fitness peaks (as illustrated by the 
robot in   figure 6.1o ) as well as introduced extradimensional bypasses that allowed 
evolution to more often climb to fitness peaks that existed in the original experiments 
but which were more difficult to find. 

 More recently, I evolved a simulated robot manipulator based on the human arm 
and hand to grasp, lift, and actively distinguish between several objects. Each experi-
ment series in which only the controller of the arm was evolved was paired with a 
second experiment series in which the radii and length of each finger ’ s phalanges and 
the distribution of fingers around the hand were evolved (  figure 6.3 ).    

 In the fixed, default morphology the fingers are arranged equidistantly around the 
spherical palm, and the lengths and radii of the phalanges were set to the same value. 
When the morphology was evolved, initial robots had random controllers but started 
with the default morphology. Evolution could then place fingers closer or further from 
each other around the palm, and phalange lengths and radii could differentiate. It was 
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 Figure 6.3 
 Evolving the morphology and controller of an anthropomorphic arm. (a – h )  An evolved arm 

capable of grasping, lifting, and actively distinguishing between objects of different shapes. (a – d )  

The resultant behavior of the arm when grasping spheres. (e – h )  The resultant behavior when the 

same arm grasps cubes. Note the trajectories of the arm in the two cases are different, indicating 

it can distinguish between them. The thin white lines indicate range sensors. Black and white 

finger segments indicate whether the tactile sensor in that segment is firing (black) or not (white). 

The evolved, differing radii of the phalanges can be seen most clear in (h). (i – o )  Fitness improve-

ments over evolutionary time for arms with fixed morphology (gray curves; 30 independent runs 

each) and evolved morphology (black curves; 30 independent runs each). In the former case 

phalange length (LN), phalange radii (RD), and spacing (SP) between phalanges was not evolved 

(LN,RD,SP = 0); in the latter case all three types of morphological parameters were evolved 

(LN,RD,SP = 1). Evolutionary time is measured in generations along the horizontal axis; the 

vertical axis indicates the mean number of generations required for the arms to successfully 

manipulate the object (two of the six objects are shown in [a – h ] ). The grey and black vertical 

lines indicate the mean time until the arms successfully evolved to manipulate all six objects. In 

different regimes, arms were evolved to grasp (G), actively distinguish between (A) and/or lift (L) 

the objects. Unity and zero indicate whether that aspect of manipulation was selected for or not, 

respectively. Thick lines indicate means; thin lines indicate one unit of standard error. For more 

details please refer to  Bongard 2009b . 
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hoped that this would lead to the appearance of specialized digits such as human ’ s 
opposable thumbs; indeed in several (but not all) runs differentiated digits were 
observed. 

 Again, I found that despite the expanded search space, due to the inclusion of the 
morphological parameters, evolution consistently found fitter behaviors compared to 
when hand morphology was held fixed. Also, in many runs the shape and distribution 
of the fingers would drift away from the default morphology and then gradually con-
verge back to the default. 

 The creation of extradimensional bypasses through the evolution of morphology 
suggests the morphology should not only be optimized because a body plan different 
from that envisioned by human engineers may be found. Rather, it is often the  process  
of gradually changing morphology that increases performance: there may be particular 
morphologies in which it is easier to discover a workable but crude controller, but that 
are not ideal for optimal performance. Subsequent evolution may refine the control 
and morphology (perhaps returning morphology close to the originally fixed body 
plan) so that robots may exhibit performance close to this optimal. 

 For example, it was observed in  Bongard and Paul (2001)  that early in some evolu-
tionary runs mass was focused in the legs, making the morphology quite stable. This 
allowed for the discovery of a shuffling gait. Later evolution moved mass into the arms, 
thereby allowing for longer strides and using the heavy arms to cancel the torque 
induced by such a gait. This could be viewed as a kind of scaffolding ( Wood, Bruner, 
and Ross 1976 ), as it is known in psychology, or shaping ( Dorigo and Colombetti 
1994 ), as it is known in the robotics literature: typically scaffolding or shaping implies 
that a learner ’ s environment is structured to facilitate learning; here, the learner ’ s own 
body provides a gradient for discovering crude behaviors and then refining them as 
the learner ’ s body plan changes. I refer to this additional kind of scaffolding as  mor-
phological scaffolding . 

 6.5   Morphology Affords New Behaviors 

 In most robotics experiments, the robot ’ s body plan is fixed by the experimenter. In 
several of the research projects surveyed so far in this chapter, body plans change over 
evolutionary timescales. In a particular class of robots — modular robots — there is the 
possibility of morphological change over the lifetime of the robot itself. A modular 
robot is typically made up of independent units, or modules that can attach to and 
detach from one another either under active control of the robot, or as response to 
environmental perturbation. This latter class of modular robots are known as stochastic 
modular robots ( White et al. 2005 ); a simulated and physical example are shown in 
  figure 6.1m,n . Behaviors exhibited by modular robots are typically denoted using a 
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self-X nomenclature: such systems may start as independent modules and gradually 
attach into some desired form (self-assembly [ Murata, Kurokawa, and Kokaji 1994 ; 
 White et al. 2005 ;  Gro β  et al. 2006 ]); create a copy of themselves (self-reproduction 
[ Zykov et al. 2005 ]); start in some desired form, experience module loss or malfunction, 
and reconfigure back into the original form (self-repair [ Tomita et al. 1999 ;  Stoy and 
Nagpal 2004 ]); or alter form to exhibit different behaviors (self-reconfiguration [ Murata 
et al. 2002 ;  Park et al. 2008 ]). 

 This particular approach to embodied cognition creates a rich new vista of behaviors 
beyond the reach of traditional robots, or for that matter beyond most biological 
organisms.  3   Using the self-assembling machine and associated simulator shown in 
  figure 6.1m,n , we explored different strategies for stochastic self-assembly ( White 
et al. 2005 ). One of the main goals of modular robotics is to scale down the units to 
micro- or nanoscale. Such scales enforce strict constraints on the internal complexity 
of the units, so one approach is to assume units have no internal power source or 
actuation machinery: rather, the modules are moved by the flow of their surrounding 
motion. We further assumed that each side of each cube can be magnetized, and could 
attach to a powered floor plate if coming into contact with it. Once powered, an 
attached module can flip the polarity of the magnets on any of its exposed sides, 
thereby attracting unpowered modules suspended in the medium. If a module attaches 
to the structure it becomes powered and may in turn attract other modules, allowing 
for self-assembly. 

 By specifying a sequence of commands that flip magnet polarity during the self-
assembly process, different structures can be created such as a vertical tower (  figure 
6.1m ). However, for more complex structures attracting independent modules to par-
ticular surfaces may be difficult. For example if a cage-like structure is self-assembling 
it may be very improbable for independent modules to ricochet into the internal 
volume of the cage through random motion. However, by flipping the polarity between 
two attached modules, substructures can be jettisoned back into the fluid to be 
attached elsewhere. This allows for the added capability of self-reconfiguration, which 
can be exploited to overcome this limitation. 

 In  White et al. (2005)  we described two programs that specified the assembly of the 
same structure: in the first program modules were only attached; in the second 
program, modules were attached and detached during different stages of the assembly 
process. This latter program was more complex than the former, yet it led to more 
rapid mean assembly times. The reason for this was that attached modules were 
detached at strategic times and places. Once released back into the medium, they had 
low linear and rotational velocity, and were proximal to surfaces that would otherwise 
have had difficulty attracting an independent module. These surfaces would then often 
capture the recently released module, and the self-assembly process would continue. 
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 This result demonstrates yet another advantage of building robot systems in which 
morphology may change: the robot ’ s growing body may serve as its own scaffold, 
easing the otherwise difficult task of self-assembly. This is another example of the 
morphological scaffolding concept introduced in the previous section. When evolving 
robot body plans along with controllers, body plans change over evolutionary time 
and increase the probability of discovering a robot that can accomplish the desired 
task. In stochastic self-assembling modular robots, the robot can change the topology 
of its own body over the lifetime of the system such that it increases the probability 
of assembling the desired structure. 

 In another set of experiments from the same work, we investigated assembly times 
for structures composed of the same number of objects, but having different geome-
tries: we studied structures ranging from a vertical tower (  figure 6.1m ) to branched 
and then closed structures. We found that despite the same volume of these structures, 
the closed structure was assembled more rapidly and consistently than the branched 
or tower structure. This indicates another importance of considering morphology for 
such systems: one should not only consider which body plan of a modular robot 
is appropriate for a given task once assembled, but also which body plan also has 
the best probability of self-assembling (or self-reconfiguring or self-repairing) in its 
environment. 

 Finally,  Zykov et al. (2005)  described a self-reproducing robot, in which the body 
plan of the parent robot played an important role in self-reproduction. The parent 
robot is composed of a series of magnetic modules, bonds to external modules, and 
deposits them on to the growing child robot, thereby dynamically changing the topol-
ogy of its body in the process. The child robot ’ s body plan also plays an important 
role in the self-reproduction process. It rotates itself to accept donated modules from 
the parent robot at the right place on its body, thereby contributing to a process in 
which the body plan of both parent and child robot change over time. 

 In the described experiments the self-assembly, self-reconfiguration, and self-repro-
duction programs were hand-designed. The finding that self-assembly can be deceptive 
(i.e., simpler programs do not always produce the desired structure more often or 
consistently than a more complex program) suggests that human intuition is difficult 
to apply to this problem, and that an automated process may therefore produce supe-
rior self-assembly programs. However, the number and type of commands as well as 
their timing are not known a priori, so a learning method in which a fixed number 
of parameters are optimized may not be appropriate. Rather, an evolutionary algorithm 
such as genetic programming ( Koza 1992 ), in which the structure and parameters of 
algorithms can be optimized, may be appropriate in this domain in future. Indeed 
preliminary work ( Est é vez and Lipson 2007 ) has investigated evolving self-assembly 
programs in which the fitness of a program is the rapidity and consistency with which 
it leads to the desired structure. 
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 6.6   Morphology Supports Self-Exploration 

 One of the necessary abilities an agent must possess to be considered intelligent is the 
capacity for learning. Learning has long played a role in AI and robotics, predating 
evolutionary robotics by several decades. Developmental robotics ( Lungarella et al. 
2003 ), another sister discipline of evolutionary robotics (in addition to biorobotics), is 
dedicated to investigating how a robot can exploit its body to scaffold its own learn-
ing, although typically the body does not change during this process. The experiments 
described in section 6.3 illustrate a typical experiment from that field. 

 Work within machine learning, a branch of disembodied AI, is often partitioned 
into passive learning, in which the learner passively receives the raw material for learn-
ing from a teacher, and active learning in which the learner must harvest its own 
material. Much work in that field has investigated strategies how to extract the most 
informative data for learning from the external world ( Seung, Opper, and Sompolinsky 
1992 ;  Baram, Yaniv, and Luz 2004 ). 

 When the learner has a physical body, the challenge becomes how to best exploit 
its body to extract useful information about itself and its environment. This question 
of course depends on the goal of the learner. In past work ( Bongard, Zykov, and Lipson 
2006 ) we introduced a physical, autonomous robot that is able to autonomously gener-
ate legged gaits for itself and regenerate a new gait if it suffers unanticipated body plan 
change such as physical damage. In order to accomplish this, the robot evolves simula-
tions that reflect the current topology of its body plan; if it is damaged, it re-evolves 
these simulations to reflect its changed state. 

 In most real-world contexts it is infeasible to equip a machine with enough sensors 
to detect all possible malfunctions. Therefore, it was assumed that the robot would use 
inferred relationships between motor commands and subsequent sensor signals to 
infer possible changes in its morphology. The robot therefore performs a short motor 
sequence (  figure 6.4a ), records the resulting sensor signature, and then generates a 
population of simulations, each of which contains a different body plan topology 
(  figure 6.4b ). The robot actuates each simulation with the same motor program it just 
performed, and compares the resulting sensor data from the simulation against the 
physical sensor data: the closer the match, the more accurate the simulator must be. 
Using an internal evolutionary algorithm the robot can then optimize the models to 
better reflect the topology of its body plan.    

 However, a single motor program is unlikely to provide sufficient information for 
it to accurately assess the state of all of its body parts. Therefore the robot must perform 
several actions to extract sufficient information for self-modeling. But we cannot allow 
the robot to perform an arbitrary number of actions, as physical motion is expensive 
in terms of time, power, and the risk of suffering additional damage by performing 
inappropriate actions in poorly understood environments. Therefore the robot must 
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Self-model synthesis Exploratory action synthesis

Target behavior synthesis
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 Figure 6.4 
 An example of an autonomous robot that integrates self-modeling and internal behavior genera-

tion. The robot executes an action (a) and then creates a set of models to describe the sensorial 

result of that action (b). It then uses the models to find a new action (c) that will reduce uncer-

tainty in the models when executed. By alternating between modeling and testing, it eventually 

finds and then uses an accurate model to internally optimize a behavior (d) before executing it 

in reality (e,f). (Courtesy of AAAS) 
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employ an active learning methodology that finds motor programs likely to extract 
the most information from the external environment. If successful, the robot can 
minimize the number of actions it has to perform. 

 The robot uses query by committee ( Seung, Opper, and Sompolinsky 1992 ) as the 
underlying active learning method. A population of initially random self-models is 
evolved against a single motor program and the resulting sensor data. Model evolution 
is paused after a short period and a second evolutionary algorithm searches for a motor 
program that, when supplied to the current model population, causes them to output 
diverging time series sensor data (  figure 6.4c ). This informative motor program is 
executed by the physical robot, the resulting sensor data is recorded, and the models 
are re-evolved to explain both motor programs. This process continues for a fixed 
number of cycles or until a sufficiently accurate self-model is found. An accurate self-
model is then used in the traditional evolutionary robotics manner: a controller is 
optimized aboard the simulated robot such it performs the desired task, after which 
the best controller is executed by the physical robot (  figure 6.4d ). 

 In this domain in which the body plan of the physical robot may change unexpect-
edly,  4   morphology drives behavior at several levels: the overall learning framework 
uses the physical body as a vehicle for generating and extracting information from the 
world, and the simulated morphologies in the self-models influence which motor 
program will be executed. It was demonstrated in  Bongard, Zykov, and Lipson 2006  
that this method can be used to automatically create a simulator for a robot rather 
than hand-design one, and can allow the robot to continuously generate compensating 
behaviors in the face of unexpected damage, malfunction, or degradation. 

 This work also goes some way toward reconciling the seemingly divergent philoso-
phies of traditional and embodied AI: while the former stressed purely computational 
notions such as modeling and planning, the latter demonstrated that robust behavior 
could be realized through model-free, sensor-to-motor coupling ( Brooks 1991a, 1991b ). 
Our robot exhibited several automatically generated gaits such as the one shown in 
  figure 6.1e  that result from tight sensor-motor coordination. However, these gaits are 
the result of a separate process that uses exploratory actions to create internal self-
models, and self-models to drive exploratory actions. This suggests that the two 
branches of AI may not be as irreconcilable as was previously thought: it may be pos-
sible to gradually augment the cognitive capabilities of a robot by grounding them in 
low-level sensor-motor processes. Regardless, this reconciliation is only possible by 
placing the physical robot ’ s body at the center of cognitive processes, rather than 
focusing on cognition while marginalizing or discarding the body. 

 In neuroscience, there is a similar reconciliation between abstract thought and 
sensor-motor coordination, which is often referred to as mental simulation or motor 
imagery ( Porro et al. 1996 ;  Hesslow 2002 ). Mental simulation implies that higher 
brains  “ run ”  candidate motor programs and reason about the results. This contrasts 
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with older, more disembodied theories in which the brain extracts concepts from their 
sensorimotor components, stores them in mental symbols, and higher-thought pro-
cesses such as planning and reasoning transform those symbols. The role of symbols 
in AI and cognitive science raises difficult issues such as how abstract symbols can 
acquire real-world meaning ( Harnad 1990 ). These issues somewhat dissipate when a 
closer connection between sensor-motor processes and cognitive processes is forged, 
such as in the robot just described. The robot ’ s self-models have real-world meaning 
insofar as they arise from sensor-motor processes, and they allow the robot to deter-
mine how it may move. In this sense self-models  afford  ( Gibson 1977 ) possible action: 
they tell the robot how it may interact with the world. 

 Although it is not yet known how biological brains simulate action, there is growing 
evidence that the mental toolkit for this exist. Body images encoded as topographic 
maps exist in the primate brain, and often exhibit topologies similar to the sensor and 
motor systems that project to them: the retina projects to the primary visual cortex; 
the organ of Corti to the primary auditory cortex; and cutaneous receptors to the 
primary somatosensory cortex ( Kandel, Schwartz, and Jessell 2000 ). Also, both forward 
and inverse models are found in the cerebellum ( Wolpert, Miall, and Kawato 1998 ; 
 Wolpert and Kawato 1998 ): like the robot just described, the primate brain can predict 
future sensor state given a candidate motor primitive by supplying that primitive to a 
forward model, and inverse models can be used to find an appropriate motor primitive 
that will produce a desired future sensor state. Although it is unknown how higher 
brain areas like the cerebral cortex make use of these sensorimotor maps and models, 
it seems likely that there is no clear dividing line in the brain between sensorimotor 
representation and simulation and higher cognition. 

 6.7   Morphology Creates New Research Questions 

 As just described, how situated action supports the emergence of more complex (and 
possibly cognitive  5  ) behaviors is becoming a hot topic in evolutionary robotics and AI 
in general. However, fixing a robot ’ s morphology places limits and biases on the kinds 
of action that the robot can perform, and therefore also on the more complex behav-
iors that those actions may eventually support. A robot with legs can only exhibit 
legged locomotion; a wheeled robot with a rigid gripper can only move over flat terrain 
and grasp objects with a fixed radius. Therefore, given a desired task, a roboticist should 
select not only appropriate control architecture for the robot, but also an appropriate 
body plan. 

 The engineering tradition places an inordinate emphasis on modularity ( Suh 1990 ): 
presumably, this is primarily due to the reductionist paradigm that emphasizes break-
ing problems down into separable subproblems, each of which can be more easily 
solved than the original problem. The general concept of modularity can be broken 
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down into functional and structural modularity: what are the separate functions that 
an agent (or its constitutive parts) must perform, and what are the substructures that 
make up an agent ’ s phenotype? Broadly speaking, structure dictates function: the 
shape of a protein completely determines its function; the morphology of the primate 
hand determines its possible grasping strategies. However, it does not follow that a 
structural module must contribute to only one function: in addition to grasping, the 
primate hand contributes to a near infinitude of other functions from fine manipula-
tion to whole-body brachiation. 

 Yet in robotics one tends to observe a one-to-one correspondence between morpho-
logical components and function: in a wheeled robot with a gripper, wheels contribute 
to movement but not grasping, while a gripper contributes to grasping but not loco-
motion. This seems on the surface to simplify things: the researcher can design a 
subcontroller for each function that interacts only with the substructure responsible 
for that function. In this spirit several projects have explicitly evolved modular neural 
networks in which each neural module contributes to a different function ( Brooks 
1986 ;  Calabretta et al. 2000 ). However, this approach is not scalable: humans are 
capable of a very large number of behaviors, and it is unlikely that there are separate 
brain structures for each of them. What seems more likely is that similar actions are 
driven by common neural circuitry. Indeed in the field of evolutionary robotics several 
researchers have demonstrated that this explicit structural modularity in the robot ’ s 
neural network is not always necessary ( Bongard 2008 ;  Izquierdo and Buhrmann 2008 ; 
 Auerbach and Bongard 2009b ). 

 In recent work ( Auerbach and Bongard 2009a ) we have explored a simulated robot 
morphology (  figure 6.5 ) that challenges the structural and functional modularity 
observed in other morphologies. The robot is composed of a series of segments, each 
of which supports a pair of cylindrical appendages. Each appendage pair can be actu-
ated, as can intersegmental joints that allow the robot to flex its  “ spine ”  within the 
sagittal plane. This allows the robot to rotate its upper or lower body up- and down-
ward, or to keep its body horizontal during locomotion. In this work the robot ’ s 
morphology was not evolved; only its controller was. The fitness function selected for 
robots that locomote toward an object in their environment, grasp the object once 
reached, and lift it. The robot is equipped with sensors that signal the distance of the 
sensor from the object at each time step of the simulation: the sensors can be thought 
of as returning a signal commensurate with ambient sound amplitude, and the object 
as emitting a continuous sound. The robot ’ s front appendages were also equipped with 
touch sensors.    

 Given the body plan and task environment of the robot, there are two classes of 
behaviors that the robot may adopt to complete the task. In the first class, the robot 
would raise the front of the body, locomote to the object using the back four append-
ages, and manipulate the object with the front pair when the object is reached. The 
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second strategy involves developing a hexapodal gait such that all six appendages 
are involved in locomotion toward the object; once reached, the front of the body 
would rise to allow the front appendage pair to manipulate the object. Both such 
strategies, if performed rapidly, achieve a very high fitness value. It was found that in 
different independent trials both strategies were discovered by evolution:   figure 6.5a  
shows an example of the first class of behaviors;   figure 6.5b  shows an example of the 
second class. 

 It was also found that functionally specialized controllers tended to arise much 
more often than functionally generalized ones, even though both, when optimized, 
obtain about the same fitness values. This raises the question as to why and how 
specialization arises. We investigated three hypotheses: (1) functionally specialized 
controllers are more evolvable (i.e., the slopes of fitness peaks surrounding special -
ized controllers can be more easily climbed than peaks surrounding generalized 

 Figure 6.5 
 Two evolved behaviors for a segmented robot. (a – h) A sample functionally specialized controller. 

The robot initially raises its front pair of appendages and keeps them raised while it approaches 

the target object. Once reached, it grasps and lifts the object. (i – p) A functionally generalized 

controller. The front appendage pair participates in locomotion toward the object. Once reached, 

the front pair participates in object manipulation. 
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controllers); (2) early discovery of rudimentary specialized controllers is more common, 
and the degree of specialization is difficult for evolution to tune throughout a run so 
evolution is forced to refine these behaviors; or (3) functionally specialized controllers 
more easily allow for active perception ( No ë  2005 ). 

 The first hypothesis seems unlikely due to the observation that when comparing 
runs that discover specialized controllers and those that discover functionally special-
ized controllers, both exhibit relatively rapid, smooth, and consistent fitness improve-
ment over the run. This suggests that both kinds of solutions afford relatively smooth 
gradients for the population to climb. Many runs exhibited controller phylogenies that 
gradually changed from specialized to generalized and back again, providing evidence 
against the second hypothesis. 

 This leaves the third hypothesis, which seems to be supported by the results. When 
the front of the body is raised early during an evaluation, the touch sensors fall silent. 
This silence can be shaped by evolution into a trigger that guides the controller into 
a cyclic attractor, which produces a rhythmic gait toward the object. If the front 
appendages come into contact with the object then the touch sensors fire: again, 
evolution can alter the controller such that this signal shifts the controller into a dif-
ferent dynamic state that causes object grasping and lifting. This is a form of active 
perception in that through the robot ’ s interaction with the environment — mediated 
by its morphology — the robot either approaches or manipulates the object. 

 By choosing this segmented body plan, new research questions arise, namely, how 
will the responsibility for different behaviors be distributed across the agent ’ s control-
ler  and  morphology? And how will evolution accomplish this, given the opportunity 
to do so? If we wish to realize robots capable of ever more complex tasks, these robots 
will have to perform several behaviors separated in time, space, and across their mor-
phological and control substructures. It seems unlikely that each such substructure 
will support one and only one function, but how to overlap them is nonintuitive. 
Therefore it will become important to investigate these new research questions by 
considering different combinations of robot morphology and control. More desirable, 
however, is to allow evolution to co-optimize both to discover the most appropriate 
distribution of function across the robot ’ s structure. 

 6.8   Morphology Supports Scalability 

 The preceding six lines of argument are unlikely to convince many in the robotics 
community that formulating an appropriate robot morphology for a given task is 
nonintuitive. In order to make progress along this front it is necessary to clearly dem-
onstrate under what conditions this intuition breaks down. For this reason I conducted 
a series of experiments with an anthropomorphic arm (already briefly described in 
section 6.4 and illustrated in   figure 6.3a – h ) in which both the morphology and the 
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controller of the arm were evolved. The arm was exposed to a variety of selection 
pressures that favored the manipulation of a series of objects in some way. Three fitness 
functions were formulated that selected for object grasping, lifting, and active categori-
cal perception. Grasping (G) is accomplished by closing the fingers tightly around 
objects, and lifting (L) is accomplished by maintaining contact with the object while 
raising the arm. Active categorical perception (A) is accomplished by causing the con-
troller to exhibit common signal signatures among the hidden neurons when grasping 
objects of the same shape but different signatures when manipulating objects of dif-
ferent shape. 

 Different selection regimes could be created by evolving a population of robots 
using multiobjective optimization ( Deb 2002 ), in which each of these competencies 
is an objective. This allowed for a total of seven regimes in which robots were evolved 
against only one objective (G = 1, A = 1, or L = 1;   figure 6.3i – k ), any two objectives 
(G + A + L = 2;   figure 6.3l – n ), or all three objectives (G,A,L = 1;   figure 6.3o ). Shaping 
( Dorigo and Colombetti 1994 ) was also employed in that, at the outset of an evolu-
tionary run, robots were only evolved against a single object. When fitness rose to a 
prespecified threshold a second object was added to the training pool, and so on up 
to a total of six objects. 

 It was found, not surprisingly, that the more objectives a robot population had to 
satisfy simultaneously, the more difficult it was to evolve a robot that could success-
fully manipulate all six objects (note the lowered curves in   figures 6.3l – o  compared to 
  figures 6.3j  – k  6  ). In addition, it was found that evolving aspects of the hand ’ s morphol-
ogy along with the controller, compared to just evolving the hand ’ s morphology, did 
not provide any advantage when only one objective was selected for.  7   However, for 
two or three objectives, evolving morphology along with control provided a significant 
performance advantage. 

 This result suggests that at least for object manipulation, an intuitive biologically 
inspired hand design — in which four fingers with more or less equal phalange length, 
radii, and equal separation between the digits — is perfectly serviceable if the task is 
relatively simple. However, when the robot must satisfy several goals simultaneously 
(such as grasping, lifting, and actively distinguishing between objects of different 
shape), slight changes in this default morphology provide dramatically increased capa-
bility. For example, in one independent trial in which all three manipulation capabili-
ties were selected for, the robot shown in   figure 6.3a – h  was evolved. Note the slight 
differences in phalange radii within individual digits. This ensures that when the hand 
closes on an object, different phalanges come in contact with the object depending 
on the object ’ s shape. This in turn causes different touch sensors to fire for differently 
shaped objects, stimulating different hidden neuron signatures and satisfying the 
active categorical perception requirement. Such combinations of a tight grip and active 
perception are more difficult if phalanges on the same digit have the same radii. 
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 This provides evidence that as roboticists we may indeed be able to formulate per-
fectly serviceable morphologies for simple tasks, but as the tasks become more difficult, 
for example by requiring that the robot accomplish several tasks at once, our intuitions 
as designers break down. Even slight changes to the body plan may greatly simplify 
the task (as discussed in section 6.3 or allow for simpler controller policies (section 
6.2, although which changes provide these advantages may not be immediately clear: 
they may however be found through evolutionary search. 

 6.9   Conclusions 

 This chapter has surveyed the history and current state of an intellectual movement 
in artificial intelligence centered on the concept of embodiment: in order to exhibit 
intelligent behavior, the agent must have a body with which to interact with the 
environment. This movement can be summarized by considering the progression of 
research questions that have been asked:  what ,  how , and  why . 

 The founders of embodied AI ( Brooks 1991a ;  Clark 1996 ;  Pfeifer 1999 ;  Pfeifer and 
Bongard 2006 ) described  what  embodiment is, and what some of the consequences of 
having a body are. This raised the issue of  how  to choose an appropriate body plan for 
a given task. Evolutionary robotics provided one answer to this question by showing 
how evolutionary algorithms could be extended to optimize both the morphology and 
control policies of autonomous robots ( Prusinkiewicz and Lindenmayer 1990 ;  Sims 
1994 ;  Ventrella 1994 ;  Eggenberger 1997 ;  Lipson and Pollack 2000 ;  Hornby and Pollack 
2001 ;  Bongard 2002 ). If evolutionary robotics is to be considered a serious engineering 
or computational discipline, or both, however, we must provide concrete evidence of 
increased performance to justify the cost of this additional algorithmic complexity. In 
other words, we must provide reasons for  why  evolutionary algorithms are employed 
for morphology optimization. 

 This chapter has described seven such reasons. A robot body plan appropriate to 
the task at hand can simplify control and make seemingly difficult tasks easier, but it 
is often difficult to determine manually what morphology would provide these ben-
efits. Allowing evolution to optimize morphology instead requires additional evolvable 
parameters and therefore increases the dimensionality of the search space, but if 
done properly this can actually smooth the enlarged search space and increase the 
probability of finding good solutions. The burgeoning field of modular robotics 
assumes that the topology of the robot ’ s body plan can change over its lifetime, which 
generates new behaviors beyond traditional robotics such as self-assembly, self-repair, 
self-reconfiguration, and even self-reproduction at several size scales. A curious robot 
with the right morphology can learn intelligently about its own capabilities and limita-
tions, as well as discover unforeseen changes to its body as a result of damage. The 
adoption of nonstandard morphologies such as segmented body plans raises new 
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research questions about how to distribute the responsibility for several behaviors 
across different parts of the robot body. Finally, as we attempt to evolve robots capable 
of ever more complex behaviors, our intuitions about what form the robot ’ s body must 
take break down, and we must rely on artificial evolution to explore the rich space of 
physical forms that support such behaviors — just as biological evolution did.   

 Notes 

 1.   It is often difficult to decide which aspects of biological body plans to mimic. 

 2.   Evolvability can be loosely defined as the ability of an evolutionary system to consistently 

discover higher-fit phenotypes. 

 3.   The notable exception is certain slime molds that transition between single- and multicellular 

configurations. 

 4.   Rather than deliberately, as in the modular robotics examples.  

 5.    “ Cognition ”  is a controversial term: here I use it as shorthand for sufficiently complex behav-

iors that may cause an outside observer to consider the robot to be, to some degree, cognitive. Of 

course, for different observers this threshold will be different, rendering  “ cognition ”  a subjective 

term. 

 6.   The exception to this was grasping (  figure 6.3i ), which benefited when lifting or active 

perception, or both, was also selected for. 

 7.   Again, with the exception of grasping, in which evolving morphology provided a slight benefit 

(  figure 6.3i ).   
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 7.1   Introduction 

 In the last decade, swarm robotics gathered much attention in the research commu-
nity. By drawing inspiration from social insects and other self-organizing systems, it 
focuses on large robot groups featuring distributed control, adaptation, high robust-
ness, and flexibility. Various reasons lay behind this interest in similar multi-robot 
systems. Above all, inspiration comes from the observation of social activities, which 
are based on concepts like division of labor, cooperation, and communication. If soci-
eties are organized in such a way in order to be more efficient, then robotic groups 
also could benefit from similar paradigms. 

As  Kube and Zhang (1993 ) have pointed out,   “ Constructing tools from a collection 
of individuals is not a novel endeavor for humankind. A chain is a collection of links, 
a rake a collection of tines, and a broom a collection of bristles. Sweeping the sidewalk 
would certainly be difficult with a single or even a few bristles. Thus there must exist 
tasks that are easier to accomplish using a collection of robots, rather than just one. ”  

 A multi-robot approach can have many advantages over a single-robot system. First, 
a monolithic robot able to accomplish various tasks in varying environmental condi-
tions is difficult to design. Moreover, the single-robot approach suffers from the 
problem that even small failures of the robotic unit may prevent the accomplishment 
of the whole task. On the contrary, a multi-robot approach can benefit from the paral-
lelism of operation to be more efficient, from the versatility of its multiple, possibly 
heterogeneous units, and from the inherent redundancy in using multiple agents 
( Jones and Matari ć  2006 ). 

 Swarm robotics pushes the cooperative approach to its extreme. It represents a theo-
retical and methodological approach to the design of  “ intelligent ”  multi-robot systems 
inspired by the efficiency and robustness observed in social insects in performing col-
lective tasks ( Bonabeau, Dorigo, and Theraulaz 1999 ). Collective motion in fish, birds, 
and mammals, as well as collective decisions, synchronization, and social differentia-
tion are examples of collective responses observed in natural swarms (for some recent 
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reviews, see  Camazine et al. 2001 ;  Franks et al. 2002 ;  Couzin and Krause 2003 ;  Sumpter 
2006 ;  Couzin 2007 ). 

 In all these examples, the individual behavior is relatively simple, but the global 
system behavior presents complex features that result from the multiple interactions 
of the system components. Similarly, in a swarm robotics system, the complexity of 
the group behavior should not reside in the individual controller, but in the interac-
tions among the individuals. Thus, the main challenge in designing a swarm robotics 
system is represented by the need to identify suitable interaction rules among the 
individual robots. In other words, the challenge is designing the individual control 
rules that can lead to the desired global behavior. 

 In the preceding perspective, self-organization is the mechanism that can explain 
how complex collective behaviors can be obtained in a swarm robotics system from 
simple individual rules. In this context, a complex collective behavior should be 
intended as some spatiotemporal organization in a system that is brought forth 
through the interactions among the system components. Not every collective behavior 
is self-organized, though ( Camazine et al. 2001 ). The presence of a leader in the group, 
the presence of blueprints or recipes to be followed by the individual system compo-
nents clashes with the concept of self-organization, at least at the level of description 
in which leader or blueprints are involved. Another condition in which a collective 
behavior cannot be considered self-organizing is when environmental cues or hetero-
geneities are exploited to support the group organization. For instance, animals that 
aggregate in a warm part of the environment following a temperature gradient do not 
self-organize. But animals that aggregate to stay warm, and therefore create and 
support a temperature gradient in the environment, do self-organize. In both cases, 
the observer may recognize the presence of some structure (the aggregate) that cor-
relates with the presence of an environmental heterogeneity (the temperature 
gradient). However, the two examples are radically different from the organizational 
point of view. Similar natural examples can be easily given also for the presence of 
leader or blueprints, to show that not every collective behavior is self-organizing 
( Camazine et al. 2001 ). Both the leader and the blueprint can be recognized as the 
place where the behavioral complexity of the group is centralized. In other words, the 
complexity of the group behavior does not result from the multiple interactions among 
the individual behaviors. Rather, the group behavior results from a fixed pattern of 
interactions among the system components that is either decided beforehand (in the 
case of a blueprint) or is centrally or continuously re-planned, or both (in the case of 
a leader). In both cases, there is limited room for adaptiveness to unknown, unpredict-
able situations resulting from a highly dynamical environment, both physical and 
social. 

 The unpredictable nature of the (social) environment makes it difficult to predict 
in advance, and therefore design, the behavioral sequence and the pattern of 
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interactions that would lead to a certain group behavior. Moreover,  “ the adaptiveness 
of an autonomous multi-robot system is reduced if the circumstances an agent should 
take into account to make a decision concerning individual or collective behaviour 
are defined by a set of a priori assumptions ”  ( Tuci et al. 2006b ). This design problem 
can be bypassed by relying on evolutionary robotics (ER) techniques as an automatic 
methodology to synthesize the swarm behavior ( Trianni, Nolfi, and Dorigo 2008 ). In 
past researches conducted within the SWARM-BOTS project, we experimented with 
different tasks and defined a methodology that proved viable for the synthesis of self-
organizing systems. 

 We focused on two particular kinds of self-organizing systems: (1) systems that are 
able to achieve and maintain a certain organization, and (2) systems close to a bifurca-
tion point, where robot-robot interactions and randomness lead to one or the other 
solution. In both cases, the problem is solved without placing any assumption on the 
kind of interaction pattern that would have been exploited to achieve a certain goal. 
Even more important, we have shown that determining a priori a certain form of 
interaction may result in worse performance with respect to an assumption-free setup. 

 We present the SWARM-BOTS project ’ s experience in section 7.2, and in section 
7.3 we discuss in detail some examples of problems studied exploiting the ER approach. 
Then, in section 7.4 we speculate on the current limitations of the ER approach, and 
the future role of ER in the development of more complex behaviors and cognitive 
abilities for robotic swarms. 

 7.2   Swarm Robotics and the Swarm-bots 

 Even though research in swarm robotics is relatively novel, it is quickly developing 
thanks to the contribution of various pioneer studies ( Kube and Zhang 1993 ;  Beckers, 
Holland, and Deneubourg 1994 ;  Holland and Melhuish 1999 ;  Martinoli, Ijspeert, and 
Mondada 1999 ;  Krieger, Billeter, and Keller 2000 ). The SWARM-BOTS project made a 
significant contribution to the field in the design and development of an innovative 
swarm robotics platform: the swarm-bot ( Mondada, Floreano, and Gambardella 2004 ; 
 Dorigo et al. 2004 ). A swarm-bot is defined as a self-assembling, self-organizing artifact 
formed by a number of independent robotic units, called s-bots. In the swarm-bot 
form, the s-bots become a single robotic system that can move and reconfigure. Physi-
cal connections between s-bots are essential for solving many collective tasks, such as 
the retrieval of a heavy object. Also, during navigation on rough terrain, physical links 
can serve as support when the swarm-bot has to pass over a hole wider than a single 
s-bot, or when it has to pass through a steep concave region. 

 However, for tasks such as searching for a goal location or tracing an optimal path 
to a goal, a swarm of s-bots can be more efficient. An s-bot is a small mobile autono-
mous robot with self-assembling capabilities, shown in   figure 7.1 . It weighs 700 g and 
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 View of the s-bot from different sides. The main components are indicated (see text for more 

details). 



Evolutionary Swarm Robotics 157

its main body has a diameter of about 12 cm. Its design is innovative concerning both 
sensors and actuators. The traction system is composed of both tracks and wheels —
 referred to as  “ treels ”  — that provide the s-bot with a differential drive motion. The 
wheels are connected to the chassis, which contains the batteries, some sensors, and 
the corresponding electronics. The main body is a cylindrical turret mounted on the 
chassis by means of a motorized joint that allows the relative rotation of the two parts. 
The gripper is mounted on the turret and can be used for connecting rigidly to other 
s-bots or to some objects. The shape of the gripper closely matches the T-shaped ring 
placed around the s-bot ’ s turret, so that a firm connection can be established. The 
gripper not only opens and closes, but also has a degree of freedom for lifting the 
grasped objects. The corresponding motor is powerful enough to lift another s-bot.    

 An s-bot is provided with many sensory systems, useful for the perception of the 
surrounding environment or for proprioception. Infrared proximity sensors are distrib-
uted around the rotating turret. Four proximity sensors placed under the chassis —
 referred to as  “ ground sensors ”  — can be used for perceiving holes or the terrain ’ s 
roughness (see   figure 7.1 ). Additionally, an s-bot is provided with eight light sensors 
uniformly distributed around the turret, two temperature/humidity sensors, a three-
axis accelerometer and incremental encoders on each degree of freedom. Each robot 
is also equipped with sensors and devices to detect and communicate with other s-bots, 
such as an omni-directional camera, colored LEDs around the s-bots ’  turret, micro-
phones, and loudspeakers (see   figure 7.1 ). Eight groups of three colored LEDs each —
 red, green, and blue — are mounted around the turret. They can be used to emit a color 
that can represent a particular internal state of the robot. 

 The color emitted by a robot can be detected by other s-bots using the omni-
directional camera, which allows the robot to grab panoramic views of the scene sur-
rounding an s-bot. The loudspeaker can be used to emit a sound signal, which can be 
perceived by the microphones and processed by the on-board CPU. In addition to a 
large number of sensors for perceiving the environment, several sensors provide each 
s-bot with information about physical contacts, efforts, and reactions at the intercon-
nection joints with other s-bots. These include torque sensors on most joints as well 
as a traction sensor, which detects the direction and the intensity of the pulling force 
that the turret exerts on the chassis resulting from the forces applied by other con-
nected s-bots. 

 7.3   Experiments 

 By exploiting the swarm-bot robotic platform, we performed a series of experiments, 
all characterized by a coherent methodological approach. First of all, evolution was 
always performed in a simulated environment, which was designed to model the rel-
evant features of the s-bot. When required by the experimental setup, the simulation 
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exploited a full 3D physics simulation. This is the case for the experiments presented 
in section 7.3.1, in which pulling/pushing forces have a fundamental role in the 
swarm-bot behavior. Otherwise, we employed minimal simulations. In any case, the 
evolved controllers have been ported to reality to test the viability of the obtained 
controllers. 

 All evolutionary experiments share the same methodological approach. The algo-
rithm is run for a fixed number of generations and works on a single population of 
genotypes. Each genotype encodes the parameters of a single neural network control-
ler. During evolution, a genotype is mapped into a control structure that is cloned and 
downloaded in all the s-bots taking part in the experiment (i.e., we make use of a 
homogeneous group of s-bots). Each genotype is evaluated over multiple trials. The 
fitness of a genotype is the average performance computed over the trials in which 
the corresponding neural controller is tested. The homogeneous group resulting from 
a single genotype allows us to simplify the fitness assignment problem. In fact, a single 
controller is evaluated and selected for the group performance. This group selection 
also facilitates the evolution of cooperative strategies, given that there is no competi-
tion between different individuals in the group. 

 In the following sections 7.3.1 – 7.3.4, we present four different experiments per-
formed within the SWARM-BOTS project exploiting the ER approach: coordinated 
motion and hole avoidance, synchronization, categorization, and self-assembly. In all 
four sections, we first introduce the scenario in which these experiments have been 
performed, we discuss the experimental setup, and finally we draw some conclusions 
about the lesson learned from the study. 

 7.3.1   Coordinated Motion and Hole Avoidance 
 The Scenario 
 For a swarm-bot to move coherently, s-bots need to negotiate a common direction of 
motion and maintain the group coordination against external disturbances. The coor-
dinated motion of the assembled structure must take into account the variable number 
of assembled units, as well as a varying topology. Moreover, the swarm-bot ’ s naviga-
tion must be efficient with respect to any obstacle and other hazards such as holes 
and rough terrain, which may be perceived only by a limited subset of the connected 
s-bots. 

 Coordinated motion has been widely studied in the literature ( Balch and Arkin 
1998 ;  Fredslund and Matari ć  2002 ;  Quinn et al. 2003 ;  Spector et al. 2005 ). However, 
in the swarm-bot case, it takes a different flavor, due to the physical connections 
among the s-bots, which open the way to study novel interaction modalities that can 
be exploited for coordination. The experimental scenario can be summarized as follows: 
at the beginning of a trial, the s-bots start with their chassis oriented in a random 
direction. Their goal is to choose a common direction of motion on the basis of only 
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the information provided by their traction sensor, and then to move as far as possible 
from the starting position ( Baldassarre et al. 2007 ). In a different set of experiments, 
the experimental arena presents holes and open borders, in which a swarm-bot risks 
remaining trapped. In this case, s-bots must coordinate with the rest of the group to 
avoid falling ( Trianni and Dorigo 2006 ). Notice that this task is more difficult than it 
might appear at first sight. First, the group is not driven by a centralized controller 
(i.e., the control is distributed). Moreover, s-bots cannot use any type of landmark in 
the environment, such as light sources, or exploit predefined hierarchies between 
them to coordinate (i.e., there is no  “ leader robot ”  that decides and communicates to 
the other robots the direction of motion of the whole group). Finally, the 
s-bots do not have a predefined trajectory to follow, nor they are aware of their relative 
positions or about the structure of the swarm-bot in which they are assembled. As a 
consequence, the common direction of motion of the group should result from a self-
organizing process based on local interactions, which are shaped as traction forces. 
The problem of designing a controller capable of producing such a self-organized 
coordination is tackled using feed-forward neural networks synthesized by artificial 
evolution. 

 Results Obtained 
 As mentioned earlier, in order to move in a coordinated way s-bots can rely only 
on the traction sensor information, which provides a coarse indication of the 
average direction of motion of the group. By physically integrating the pulling/
pushing forces that the connected s-bots produce, the traction sensor provides 
compact information that can be exploited for coordination. The problem is there-
fore designing a controller that would let the group self-organize by interacting 
through physical forces. The results obtained evolving coordinated motion are 
extremely interesting ( Baldassarre et al. 2007 ). The evolved neural network encodes 
simple control rules that allow the robots to consistently achieve a common direc-
tion of motion in a very short time, and compensate possible misalignments during 
motion. In general terms, the evolved strategy is based on two feedback loops. 
Positive feedback makes robots match the average direction of motion of the group, 
as it is perceived through the traction sensor. Negative feedback makes robots persist 
in their own direction of motion, but when the traction and motion directions are 
opposite. Thus the positive feedback allows for a fast convergence toward a common 
direction of motion, which is stabilized by the negative feedback loop that avoids 
deadlock conditions. 

 All this is synthesized in a simple neural network evolved in simulation and tested 
on real robots (see   figure 7.2 ). The performance of the evolved controllers in terms of 
robustness, adaptation to varying environmental conditions, and scalability to differ-
ent number of robots and different topologies is striking, demonstrating how evolution 
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synthesized a very efficient self-organizing behavior for coordinated motion ( Baldas-
sarre et al. 2007 ).    

 Exploiting a similar setup, we also studied how a swarm-bot can navigate in an 
arena presenting holes or open borders in which the robots risk remaining trapped 
( Trianni and Dorigo 2006 ). In this case, we investigated how the swarm-bot can main-
tain coordination despite the presence of hazardous situations that are perceived only 
by a subset of the robots involved. To this purpose, some form of communication may 
be necessary to the group for a quick reaction. We tested three different communica-
tion modalities: (1) direct interactions (DI) through pulling/pushing forces, (2) direct 
communication (DC), handcrafted as a single-tone signal emitted as a reflex to the 
perception of the hazard, and (3) direct communication in which signaling was con-
trolled by the evolved neural network (evolved communication, EC). In all cases, the 
s-bots ’  motion was controlled by a simple perceptron network similar to the one used 
for coordinated motion. Additionally, s-bots could use their sensors for perceiving the 
presence of holes in the ground. In the DC and EC setups, s-bots could also commu-
nicate with each other through sound signaling ( Trianni and Dorigo 2006 ). 

 The results obtained show that it is possible to evolve efficient navigation strategies 
with each communication paradigm we devised. In the DI setup, when only direct 
interactions are present, the pulling/pushing forces are sufficient to trigger collective 
hole avoidance. However, in some cases the swarm-bot is not able to avoid falling 
because the signal encoded in the traction force produced by the s-bots that perceive 
the hazard may not be strong enough to trigger the reaction of the whole group. 
A different situation can be observed in the DC and EC setup, in which direct 

a b

 Figure 7.2 
 (a) Four real s-bots forming a linear swarm-bot during coordinated motion. (b) A physical swarm-

bot while performing hole avoidance. Notice how physical connections among the s-bots can 

serve as support when a robot is suspended out of the arena, still allowing the whole system 

to work. 
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communication allows a faster reaction of the whole group, as the emitted signal 
immediately reaches all the s-bots. Therefore, the use of direct communication among 
the s-bots is particularly beneficial in the case of hole avoidance. It is worth noting 
that direct communication acts here as a reinforcement of the direct interactions 
among the s-bots. In fact, s-bots react faster to the detection of the hole when they 
receive a sound signal, without waiting to perceive a traction strong enough to trigger 
the hole avoidance behavior. However, traction is still necessary for avoiding the hole 
and coordinating the motion of the swarm-bot as a whole. 

 We performed a statistical analysis to compare the three different setups we studied, 
and the results obtained showed that the completely evolved setup outperforms the 
setup in which direct communication is handcrafted. This result is in our eyes particu-
larly significant, because it shows how artificial evolution can synthesize solutions that 
would be very hard to design with conventional approaches. In fact, the most effective 
solutions discovered by evolution exploit some interesting mechanisms for the inhibi-
tion of communication that would have been difficult to devise without any a priori 
knowledge of the system ’ s dynamics ( Trianni and Dorigo 2006 ). 

 The Lesson Learned 
 The experiments performed with coordinated motion and hole avoidance revealed 
how direct interactions through pulling/pushing forces can be exploited to obtain 
robust coordination strategies in a swarm-bot. The connections among s-bots in fact 
represent an important means of transferring information through physical forces. 
However, exploiting such information is not an easy endeavor if a precise model of 
the traction sensor is not available. In particular, with respect to the synthesis of self-
organizing behaviors, the top-down approach runs into troubles due to the complex 
dynamical interactions among the system components that can hardly be predicted 
or modeled. The evolutionary approach, instead, does not need any precise model of 
the system. It is sufficient to test potential solutions and to compare their performance 
on the basis of a user-defined metric. With respect to handcrafted solutions, the evo-
lutionary approach can achieve a better performance as it can better exploit all system 
features, without being constrained by a priori assumptions. This is clear in the hole 
avoidance experiments, which show how the handcrafted reflex signaling, which 
seemed perfectly reasonable at first sight, is outperformed by the evolved signaling 
strategy, which could exploit self-inhibitory mechanisms that are counterintuitive for 
a  “ naive ”  designer. 

 7.3.2   Synchronization 
 The Scenario 
 An important feature of a swarm robotics system is the coordination of the activities 
through time. Normally, robots can be involved in different tasks, and higher 



162 Chapter 7

efficiency may be achieved through the synchronization of the activities within the 
swarm. Synchrony is a pervasive phenomenon: examples of synchronous behaviors 
can be found in the inanimate world as well as among living organisms ( Strogatz 2003 ). 
The synchronization behaviors observed in nature can be a powerful source of inspira-
tion for the design of swarm robotic systems, where emphasis is given to the emergence 
of coherent group behaviors from simple individual rules. Much work takes inspiration 
from the self-organized behavior of fireflies or similar chorusing behaviors ( Holland 
and Melhuish 1997 ;  Wischmann et al. 2006 ;  Christensen, O ’ Grady, and Dorigo 2009 ). 
Here, we present a study of self-organizing synchronization in a group of robots based 
on minimal behavioral and communication strategies ( Trianni and Nolfi 2009 ). We 
follow the basic idea that if an individual displays a periodic behavior, it can synchro-
nize with other (nearly) identical individuals by temporarily modifying its behavior 
in order to reduce the phase difference with the rest of the group. In this work, the 
period and the phase of the individual behavior are defined by the sensorimotor coor-
dination of the robot, that is, by the dynamical interactions with the environment 
that result from the robot embodiment. The studied task requires that each robot in 
the group display a simple periodic behavior, which should be entrained with the 
periodic behavior of the other robots present in the arena. The individual periodic 
behavior consists in oscillations along the y-direction of a rectangular arena (see   figure 
7.3 ). Oscillations are possible through the exploitation of a symmetric gradient in 
shades of gray painted on the ground.    

 Synchronization of robots movements can be achieved by exploiting a binary, 
global communication: each robot can produce a continuous tone with fixed fre-
quency and intensity. When a tone is emitted, it is perceived by every robot in the 
arena, including the signaling one. The tone is perceived in a binary way, that is, either 
there is someone signaling in the arena, or there is no one. This is a very minimal 

 Figure 7.3 
 Snapshot of a simulation showing three robots in the experimental arena. The dashed lines 

indicate the reference frame used in the experiments. 
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communication system for a swarm of robots, which carries no information about the 
number of signalers, or about their position in the environment. No assumption is 
made on the way the robots should move on the arena, and on the way they should 
communicate. All the behavioral rules are designed by the evolution of feedforward 
neural controllers. 

 Results Obtained 
 We performed twenty evolutionary replications, each resulting in the evolution of 
efficient synchronization behaviors. The individual ability to perform oscillatory 
movements is based on the perception of the gradient painted on the arena floor, 
which gives information about the direction parallel to the y-axis and about the point 
where to perform a U-turn and move back toward the x-axis. The main role of the 
evolved communication strategy is to provide a coupling between the oscillating 
s-bots, in order to achieve synchronization: we observed that s-bots change their 
behavior in response to a perceived communication signal coming from other robots. 
Recall that the communication signal, being binary and global, does not carry infor-
mation about either the sender or about its oscillation phase. The reaction to a per-
ceived signal is therefore adapted by evolution to allow the robots to reduce the phase 
difference between their oscillations, eventually achieving synchronous movements. 
In summary, the evolved synchronization behaviors are the results of the dynamical 
relationship between the robot and the environment, modulated through the com-
municative interactions among robots. No further complexity is required at the level 
of the neural controller: simple and reactive behavioral and communication strategies 
are sufficient to implement effective synchronization mechanisms. To better under-
stand the dynamical relationship between individual sensorimotor coordination and 
communication, we introduced a dynamical system model of the robots interacting 
with the environment and among each other ( Trianni and Nolfi 2009 ). 

 This model offers us the possibility to deeply understand the evolved behaviors, 
both at the individual and collective level, by uncovering the mechanisms that arti-
ficial evolution synthesized to maximize the user-defined utility function. We assumed 
an idealized, noise-free and collision-free environment, and we modeled the s-bot 
individual behavior as it is produced by the evolved neural network. By coupling the 
individual behaviors through the communication channel, we could study the effects 
of perturbations through sound signals over the robot oscillations. We analyzed the 
different evolutionary runs performed, and we discovered two alternative mecha-
nisms for synchronization. With the modulation mechanism, s-bots synchronize by 
tuning their oscillatory frequency in response to the perceived communication signal 
coming from other robots, in order to match the other robots ’  oscillations. They do 
so basically by anticipating or delaying the U-turn. With the reset mechanism, s-bots 
 “ reset ”  their oscillation phase by moving to a particular position over the painted 
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gradient, waiting for the other robots to reach a similar position. Qualitatively, similar 
mechanisms are also observed in biological oscillators. For instance, different species 
of fireflies present different synchronization mechanisms, based on delayed or 
advanced phase responses. 

 Besides studying the synchronization mechanisms, we performed a scalability anal-
ysis to test all evolved behaviors with varying group sizes. While scalability is ensured 
for small groups, we found that physical interactions may prevent the system from 
scaling to very large number of robots due to the higher probability of performing 
collision-avoidance maneuvers. Still, the evolved synchronization mechanism scales 
well if there are no physical interactions. We found that many controllers present 
perfect scalability, with only a slight decrease in performance due to the longer time 
required by larger groups to perfectly synchronize. Some controllers, however, present 
a communicative interference that prevents large groups from synchronizing: the 
signals emitted by different s-bots overlap in time and are perceived as a fixed signal-
ing pattern. If the perceived signal does not vary in time, it does not bring information 
to be exploited for synchronization. This problem is mainly due to the global and 
binary communication form, in which the signal emitted by an s-bot is perceived by 
any other s-bot anywhere in the arena. Moreover, from the perception point of view, 
there is no difference between a single s-bot and a thousand signaling at the same 
time. In order to understand the conditions under which this communicative interfer-
ence takes place, we again exploited the mathematical model. We found that scal-
ability can be predicted just by looking at the features of the individual behavior: the 
synchronization behavior scales to any number of robots provided that an s-bot that 
perceives a communication signal never emits a signal itself. This is a very interesting 
result, as it directly relates the collective behavior to the individual one, and indicates 
which are the building blocks for obtaining scalability in the system under study 
( Trianni and Nolfi 2009 ). 

 The Lesson Learned 
 The synchronization experiments show how temporal coordination can be achieved 
exploiting simple self-organizing rules. To this purpose, it is not necessary to provide 
robots with complex behaviors and time-dependent structures. Instead, we show that 
a minimal complexity of the behavioral and communicative repertoire is sufficient to 
observe the onset of synchronization. Robots can be described as embodied oscillators, 
their behavior being characterized by a period and a phase. In this perspective, the 
movements of an s-bot correspond to advancements of its oscillation phase. Robots 
can modulate their oscillations simply by moving in the environment and by modify-
ing their dynamical relationship with it. Such modulations are brought forth in 
response to the perceived communication signals, which also depend on the dynami-
cal relationship between the s-bot and the environment. 
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 In this perspective, the dynamical system analysis proved very useful: we introduced 
a dynamical system model of the robots interacting with the environment and each 
other. This model offered us the possibility to deeply understand the evolved behav-
iors, both at the individual and collective level, by uncovering the mechanisms that 
artificial evolution synthesized to maximize the user-defined utility function. More-
over, the developed model can be used to predict the ability of the evolved behavior 
to efficiently scale with the group size. We believe that such predictions are of funda-
mental importance to quickly select or discard obtained solutions without performing 
a time-demanding scalability analysis, as well as to engineer swarm robotic systems 
that present the desired properties. For instance, the knowledge acquired through the 
performed analysis could be exploited to improve the experimental setup. We have 
found that the communicative interferences that prevent the group from synchroniz-
ing are caused by a communication channel that is neither additive nor local. The 
locality of communication certainly is an important issue to take into account when 
studying a realistic experimental setup. Additivity, that is, the capability of perceiving 
the influence of multiple signals at the same time, is also crucial for self-organizing 
behaviors. We tested the latter issue, and we discovered that it is sufficient to provide 
the robots with the average signaling activity of the group to systematically evolve 
scalable behaviors ( Trianni and Nolfi 2011 ). 

 7.3.3   Categorization, Integration over Time, and Collective Decisions 
 The Scenario 
 A general problem common to biology and robotics concerns the understanding of 
the mechanisms necessary to decide whether to pursue a particular activity or to give 
up and perform alternative behaviors. This problem is common to many activities that 
natural or artificial agents are required to carry out. Autonomous agents may be asked 
to change their behavior in response to the information gained through repeated 
interactions with their environment. For example, after various unsuccessful attempts 
to retrieve a heavy prey, an ant may decide to give up and change its behavior by 
either cutting the prey or recruiting some nest-mates for collective transport ( Detrain 
and Deneubourg 1997 ). This example suggests that autonomous agents require adap-
tive mechanisms to decide whether it is better to pursue solitary actions or to initiate 
cooperative strategies. 

 We confronted with the decision-making problem by designing the experimental 
scenario depicted in   figure 7.4 . Robots are positioned within a boundless arena con-
taining a light source. Their goal is to reach a target area around the light sources. The 
color of the arena floor is white except for a circular band around the lamp, within 
which the floor is in shades of gray. The robots can freely move within the band, but 
they are not allowed to cross the black edge. The latter can be imagined as an obstacle 
or a trough that prevents the robot from further approaching the light. The goal of 
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the experiments is to show that the robots can learn to discriminate between two types 
of environments. In the first type — referred to as Env. A — the band presents a discon-
tinuity (see   figure 7.4a ). This discontinuity, referred to as the  “ way in zone, ”  is a sector 
of the band in which the floor is white. In the second type — referred to as Env. B — the 
band completely surrounds the light (see   figure 7.4b ). The way in zone represents the 
path along which the robots are allowed to safely reach the light in Env. A. Successful 
robots should prove capable of performing phototaxis and of moving over the circular 
band in search for the way in zone, without crossing the black edge. When placed in 
Env. A, the robots should always reach the target area. When placed in Env. B, on the 
contrary, the robot should initiate an alternative action, such as signaling or moving 
away in order to search for other light sources.    

 Initial experimentation was performed using a single robot controlled by an evolved 
continuous-time recurrent neural network (CTRNN) ( Beer 1995 ). The results revealed 
that decision making could be performed by exploiting a temporal cue: the Env. B can 
be  “ recognized ”  by the persistence of a particular perceptual state for the amount of 
time necessary to discover that there is no way in zone. The flow of time, in turns, 
can be recognized through the integration of the perceptual information available to 
the robot. This means that the movements of the robot should bring forth the persis-
tence of a certain perceptual condition, and the discrimination can be made only if 
the latter is maintained long enough. 

Env. A Env. B

Way-in
zone

Target area Target
 area

a b

 Figure 7.4 
 Depiction of the task. (a) Env. A is characterized by the way in zone. The target area, centered 

on the light, is indicated by the dashed circle. (b) In Env. B there is no way in zone and the target 

area cannot be reached. The continuous lines are an example of a good navigation strategy for 

one robot. 
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 We repeated the experiments using two robots having the same sensorimotor capa-
bilities ( Ampatzis et al. 2008 ). Additionally, robots are provided with a communication 
system similar to the one used in the synchronization experiments: they can emit a 
single frequency tone that is perceived everywhere in the arena in a binary way. The 
experiments have been performed by varying the initial position of the two robots, 
and by rewarding them when they perform antiphototaxis when placed in Env. B. 
However, no explicit reward was given for communication among the robots. In this 
way, we aimed at observing whether cooperative communicative behavior could 
emerge or not. 

 Results Obtained 
 Twenty evolutionary simulation runs, each using a different random initialization, 
were performed for 12,000 generations. Thirteen evolutionary runs produced success-
ful groups of robots: both robots approach the band and subsequently (1) reach the 
target area through the way in zone in Env. A; (2) leave the band performing antipho-
totaxis in Env. B. The discrimination between the two environments is possible by 
exploiting the integration over time and the ability of the leaky integrators that form 
the robot ’ s neural controller. While moving over the circular band, the s-bot accumu-
lates evidence about the absence of the way in zone. If the latter is found, the integra-
tion over time is stopped and the robot continues performing phototaxis. If, instead, 
the way in zone is not present, after approximately one loop, the robot leaves the 
band. This evolved behavior closely resembles the one obtained with a single robot. 
However, a closer look reveals that among the thirteen successful groups, nine make 
use of sound signaling. In particular, signaling strongly characterizes the behavioral 
strategies of the groups when they are located in Env. B. In Env. A signaling is, for all 
these groups, negligible. 

 Note that the emission of sound is not demanded in order to navigate toward the 
target and discriminate Env. A from Env. B. Indeed, the task and the fitness function do 
not require the robots to display signaling behavior. Mechanisms for phototaxis, anti-
phototaxis, and memory are sufficient for a robot to accomplish the task. In order to 
reveal the adaptive significance of sound signaling, further tests have been performed. 

 We looked at the behavior of the robots that emit sound during a successful trial 
in each type of environment. We recorded the behavior of the robots in both a normal 
condition and a condition in which the robots cannot hear each other ’ s sounds. 

 In the normal condition we notice that as soon as one of the robots starts signaling, 
both robots initiate an antiphototactic movement. But when communication signals 
are blocked, we notice that each robot initiates antiphototaxis only at the time when 
it starts emitting its own sound. Sound signaling has therefore the function of stimu-
lating antiphototaxis also for those robots that have not yet gathered enough evidence 
about the absence of the way in zone. 
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 These results show that most successful strategies employ signaling behavior and 
communication among the members of the groups. However, communication was not 
explicitly rewarded: communicating and noncommunicating groups could in principle 
obtain equal fitness. This means that communication may have other functions that 
influence its adaptive significance. By looking at the behavior of all successful groups, 
we discovered that whenever signaling is functionally relevant, robots employ it in 
Env. B as a self-produced perceptual cue. This cue induces the emitter as well as the 
other robot of the group to change its behavior from light seeking to light avoiding.  

 This evidence constrains our investigation on the adaptive significance of sound 
signaling to two functions: on the one hand, sound is the means by which a robot 
emitter switches from phototaxis to antiphototaxis. We refer to this as the  “ solitary ”  
function. On the other hand, sound is the means by which the robot emitter influ-
ences the behavior of the other robot. We refer to this as the  “ social ”  function. From 
the data we gathered, it appears that signaling is beneficial mainly because of its 
 “ social ”  function. 

 The selective advantage of signaling groups is given by the beneficial effects of 
communication with respect to a robust disambiguation of Env. A from Env. B. The 
task in fact requires one to find an optimal trade-off between speed and accuracy of 
the decision. 

 The beneficial effect of communication corresponds to robust individual decision 
making and faster group reaction, since signaler and hearer react at the same time. In 
fact, a robust individual decision requires longer time spent over the circular band to 
accumulate evidence of the absence of the way in zone, due to the environmental 
noise that influences the sensors and to the uncertainty of the action outcomes. In 
total, in those groups in which antiphototaxis is triggered by the perception of sound, 
a robot that by itself is not ready to make a decision concerning the nature of the 
environment can rely on the decision taken by the other robot of the group. In average, 
communication allows the group to accomplish the task earlier, and more reliably. In 
this way, signaling groups are better adapted to the  “ danger ”  of discrimination mis-
takes in Env. A than are nonsignaling groups, and thus  “ early ”  signaling seems to be 
an issue that has been taken care of by evolution. In fact, once signaling groups evolve, 
their signaling behavior is refined by categorizing the world later than in the case of 
nonsignaling groups. This happens in order to ensure that the chances of a potential 
disadvantage resulting from social behavior are minimized. In other words, the use of 
communication in a system can also affect aspects of the behavior not directly related 
to communication (i.e., the process of integration of inputs over time). 

 The Lesson Learned 
 The experiments presented in this section show how individual decision making and 
group behavior can be coevolved to obtain a robust and efficient system. The need to 
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perform a decision on the basis of information accumulated over time creates a natural 
trade-off between speed and accuracy. Each s-bot has to resolve a dilemma: to continue 
searching for the way in zone, or to leave for good? The solution, under normal evo-
lutionary pressures, would be to tune the individual behavior to limit the time spent 
searching to the minimum. However, the introduction of other robots contemporane-
ously solving the same task, and the possibility of communication, changes the evo-
lutionary dynamics. By exploiting the information gathered by other robots, it is 
possible to improve the accuracy of the group decision without reducing the decision 
speed. This is a relevant fact, which justifies the usage of a collective robotics setup 
even for those conditions in which it is not explicitly required. Additionally, the 
exploitation of communicative strategies allows each robot to spread acquired informa-
tion to the group, and to share information retrieval duties among group members: 
in fact, as soon as communication is in place, the individual behavior can be refined 
to exploit the redundancy of the system to the maximum. 

 7.3.4   Self-assembly and Autonomous Role Allocation 
 The Scenario 
 Self-assembly is a ubiquitous process in nature. According to  Whitesides and Grzy-
bowski (2002) , it is defined as  “ the autonomous organisation of components into 
patterns or structures without human intervention. ”  At the nano- or microscopic scale, 
the interaction among components is essentially stochastic and depends on their 
shape, structure, or chemical nature. Nature also provides many examples of self-
assembly at the macroscopic scale, the most striking being animals forming collective 
structures by connecting to one another. Individuals of various ant, bee, and wasp 
species self-assemble and manage to build complex structures such as bivouacs and 
ladders ( Anderson, Theraulaz, and Deneubourg 2002 ;  H ö lldobler and Wilson 1978 ). 

 As mentioned in section 7.1, the robotics community has been largely inspired from 
cooperative behavior in animal societies when designing controllers for groups of 
robots that have to accomplish a given task. In particular, self-assembly provides a 
novel form of cooperation in groups of robots. However, it is important to notice that 
some characteristics of the hardware may impose important constraints on the control 
of the modules of a self-assembling system. As argued by  Tuci et al. (2006a) , some 
hardware platforms consist of morphologically heterogeneous modules that can only 
play a predefined role in the assembly process. In others, the hardware design does 
not allow, for example, the assembly of more than two modules, or requires extremely 
precise alignment during the connection phase — that is, it requires a great accuracy. 
The swarm-bot platform, thanks to its sensors and actuators and its connection appa-
ratus, does not severely constrain the design of control mechanisms for self-assembly. 
The lack of hardware constraints and the homogeneity of the robots require that self-
assembly be achieved through a differentiation of roles, resulting in the definition of 
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an s-bot gripper (i.e., the robot that makes the action of gripping) and an s-bot grippee 
(i.e., the robot that is gripped). In work carried out within the SWARM-BOTS project 
by using control design techniques other than ER, the s-bot gripper/s-bot grippee dif-
ferentiation was either predefined ( Groß   et al. 2006 ) or based on stochastic events and 
a complex communication protocol ( O ’ Grady et al. 2005 ). Thanks to the use of ER we 
designed control strategies for real assembling robots that are not constrained by either 
morphological or behavioral heterogeneities introduced by the hardware and control 
method, respectively (see  Ampatzis et al. 2009 , for details). Instead of a priori defining 
the mechanisms leading to role allocation and self-assembly, ER allowed us to let 
behavioral heterogeneity emerge from the interaction among the system ’ s homoge-
neous components. Moreover, coordination and cooperation in self-assembly between 
physical robots is achieved without requiring explicit signaling of internal states, as 
assumed, for example, in  Groß   et al. 2006 . 

 Self-assembly is studied in a scenario in which two s-bots are positioned in a bound-
less arena at a distance randomly generated in the interval [25 cm,30 cm], and with 
predefined initial orientations. The robots are required to approach each other and to 
physically assemble through the gripper. The agents perceive each other through their 
omni-directional camera mounted on the turret, which returns rough information 
about robot distance and orientation. We also make use of the optical barrier mounted 
on the gripper, which informs a robot about the presence of an object between the 
gripper claws. The agent controller is composed of a CTRNN, whose control parameters 
are evolved through a rank-based evolutionary algorithm. 

 Results Obtained 
 The results of this work prove that dynamical neural networks shaped by evolutionary 
computation techniques directly controlling the robots ’  actuators can provide physical 
robots with all the required mechanisms to autonomously perform self-assembly. 
Owing to the ER approach, the assembly is initiated and regulated by perceptual cues 
that are brought forth by the homogeneous robots through their dynamical interac-
tions. Moreover, in spite of the system being homogeneous, role allocation — in other 
words, who is the s-bot gripper and who is the s-bot grippee — is successfully accom-
plished by the robots through an autonomous negotiation phase between the two 
s-bots, as confirmed by our behavioral analyses (see   figure 7.5 ). We observed that role 
allocation unfolds in time during the entire duration of a trial.    

 Whenever the two robots have different initial perceptions, the role that each s-bot 
assumes can be predicted knowing the combination of the initial relative orientations 
of the robots. In other words, the combination of relative orientations leads to a 
pattern of interactions among the robots with a predictable outcome, from the observer 
point of view. However, a robot has no such information. Perceiving the other robot 
at a specific distance and orientation does not inform a robot about the role it will 
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assume at the end of the trial. In summary, whenever the initial orientations are asym-
metrical, robots engage in a role negotiation phase, and the dynamical system com-
posed of the two interacting robots almost always converges at the same final condition, 
which depends only on the initial conditions. 

 In those cases in which the robots start with an identical perception, symmetry 
does not hinder the robots from autonomously allocating different roles to successfully 
accomplish their goal. The robots engage in a dynamical interaction, which eventually 
leads to a role assignment. However, in this case it is not possible to predict the 
outcome of the role allocation process: both robots have 50 percent probability of 
assuming the s-bot gripper or the s-bot grippee role. Post-evaluation tests have shown 
that the random noise inherent in the system is the causal factor that drives the system 
through sequences of actions that turn out to be successful. In other words, the 
dynamical system composed by the two interacting robots starts from an unstable 
equilibrium point, from which it can converge at either stable condition, that is, at 
one of the two alternative role allocations. It is important to notice that the symmetry 
breaking is performed by exploiting randomness present in the system, which is ampli-
fied by the neural controllers as a result of the evolutionary optimization. 

 Finally, tests with real robots revealed that the evolved mechanisms proved to be 
robust with respect to changes in the color of the light displayed by the LEDs. Fur-
thermore, the self-assembling robotic system designed by using ER techniques exhibits 
recovery capabilities that could not be observed during the artificial evolution and that 
were not coded or foreseen by the experimenter ( Ampatzis et al. 2009 ). Such a feature 
in our case comes for free, while in the case of  Groß   et al.  ’ s experiments ( 2006 ) a 
recovery mechanism had to be designed as a specific behavioral module to be activated 
every time the robots failed to achieve assembly. 

 The Lesson Learned 
 The main contribution of this work lies in the design of control strategies for real 
assembling robots that are not constrained by morphological or behavioral heteroge-
neities introduced by the hardware and control method, respectively. Contrary to the 
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 Figure 7.5 
 Snapshots from a successful trial: (a) initial configuration, (b) starting phase, (c) role allocation 

phase, (d) gripping phase, (e) success (grip). 
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modular or hand-coded controllers described by  Groß   et al. (2006)  and  O ’ Grady et al. 
(2005) , the evolutionary robotics approach did not require the experimenter to make 
any a priori assumption concerning the roles of the robots during self-assembly (i.e., 
either s-bot gripper or s-bot grippee) or about their status (e.g., either capable of moving 
or required not to move). We showed with physical robots that coordination and 
cooperation in self-assembly do not require explicit signaling of internal states, as 
assumed, for example, by  Groß   et al. (2006) . In other words, we present a setup that 
requires minimal cognitive and communicative capacities on behalf of the robots. The 
absence of a priori assumptions allows evolution to exploit the dynamical interaction 
among the robots to produce an autonomous role allocation mechanism. This can be 
considered an example of a self-organizing system close to a bifurcation point, in 
which the random fluctuations of the system are amplified to let the system overcome 
the impasse given by symmetric starting conditions and converge toward a desired 
solution. 

 7.4   Discussion 

 The experiments presented in section 7.3 are representative of a coherent theoretical 
and methodological approach to the synthesis of self-organizing behaviors for a swarm 
robotics system. What are the limits of this approach? The main problem to deal with 
is the evolvability of the system related to the scaling in complexity of the collective 
behavior. By practicing with evolutionary swarm robotics, it appears rather easy to 
evolve self-organizing behaviors in which the system achieves and maintains a certain 
spatiotemporal pattern. For instance, coordinated motion of the swarm-bot and syn-
chronization are not particularly difficult to evolve (e.g., they require few generations, 
and successful controllers are almost always obtained), once a suitable experimental 
setup has been defined (see sections 7.3.1 and 7.3.2). 

 On the one hand, this is justified by the simplicity of the neural controller and the 
rather limited number of free parameters that need to be optimized by the evolution-
ary machinery. On the other hand, the quality of the interactions among the robots 
contains in itself part of the solution to the self-organization problem. 

 In the whole, simple controllers and well-defined interactions represent a perfect 
starting point for the evolution of self-organizing behavior. As a matter of fact, in similar 
conditions successful behaviors are systematically obtained in all evolutionary runs. 

 However, the situation is slightly different when evolution must produce self-
organizing systems close to a bifurcation point, in which multiple solutions are 
possible as a result of the interactions, feedback loops, and randomness of the system. 
This is the case of the categorization experiment, in which robots had to take a 
collective decision (section 7.3.3), and of the self-assembly experiment, in which 
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complementary roles needed to emerge from the robot-robot interactions and the 
amplification of random fluctuations of the system (section 7.3.4). In similar condi-
tions, evolvability is limited by the need to contemporaneously evolve different behav-
ioral traits, and by the presence of multiple stable conditions, which create local 
optima in which evolution may remain trapped. In the experiments we performed, 
many generations were necessary to find a suitable solution. Also, the success rate was 
never close to 100 percent, and some evolutionary runs resulted in partial solutions 
of the problem. The evolution of communication raises a similar problem, requiring 
evolution of both the signal and the response to the signal, which individually may 
be counteradaptive or neutral with respect to the devised fitness function (see section 
7.3.3). 

 The experiments presented in section 7.3.3 are interesting also from a different 
point of view, that is, the influence that the individual behavior has on the evolution 
of the group behavior. Here, we can distinguish between two organizational levels: (1) 
the individual level, in which sensorimotor coordination and integration over time 
support the decision making, and (2) the collective level, in which information spread-
ing through communication leads to increased group efficiency. We believe that future 
directions in evolutionary swarm robotics should focus on systems characterized 
by multiple levels of organization. More complex self-organizing behaviors can be 
obtained through a layered evolution that proceeds through individual sensorimotor 
coordination, individual categorization abilities, and communication and exploitation 
of the social environment, aiming at some collective intelligence. As experienced in 
our experiments, each different level of organization is supported by the lower levels, 
and in turns influences their dynamics. In a swarm robotics scenario, the influences 
of the higher organizational level on the lower ones could be exploited to simplify the 
individual behavior in favor of more robust, collective solutions. Brought to the limit, 
each robot in the swarm could behave as a neuron-like device that can move in the 
environment and interact, physically or through communication, with neighboring 
robots, while the swarm brings forth complex processes as a whole. In this respect, we 
believe that the cognitive abilities of swarms should be studied and compared with 
those observed in the vertebrate brain, in the attempt to find the common mechanisms 
that underlie cognition. In this respect, robotics models of swarm behavior may 
represent extremely powerful tools for the study of swarm cognition ( Trianni et al. 
2011 ).  

 Another possible direction in the study of evolutionary swarm robotics concerns 
the exploitation of heterogeneous swarms, in which different types of robots are orga-
nized in swarms, which cooperate for a collective goal. We investigated swarms of 
heterogeneous robots within the project Swarmanoid,  1   in which three types of robots 
have been studied: eye-bots, foot-bots, and hand-bots. Eye-bots are robots specialized 
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in sensing and analyzing the environment from a high position to provide an overview 
that foot-bots or hand-bots cannot have. Eye-bots fly or are attached to the ceiling. 
Hand-bots are specialized in moving and acting in a space zone between the one 
covered by the foot-bots (the ground) and the one covered by the eye-bots (the ceiling). 
Hand-bots can climb vertical surfaces. Foot-bots are specialized in moving on rough 
terrain and transporting either objects or other robots. They are based on the s-bot 
platform, and extend it with novel functionalities. The combination of these three 
types of autonomous agents forms a heterogeneous swarm robotic system that is 
capable of operating in a 3D space. 

 Generally speaking, dealing with heterogeneity in a collective robotics setup often 
leads to specialization and teamwork: the task is broken down on the basis of the 
different robots available, and roles are assigned correspondingly. With heteroge-
neous swarms, the redundancy of the system opens the way to various scenarios. On 
one extreme, the classical scenario accounts for different swarms that specialize in 
particular subtasks, and are loosely coupled. For instance, a swarm of eye-bots is 
responsible of locating areas of particular interest, such as areas that contain objects 
to be retrieved. The eye-bots direct the action of a swarm of foot-bots, which col-
lectively retrieve such objects. On the other extreme, robots can form a swarm of 
homogeneous entities, where each entity is a small, heterogeneous, tightly cooperat-
ing team. For instance, two or three foot-bots can self-assemble to transport a single 
hand-bot, thereby creating a small team, which can coordinate its activities within 
a swarm of similar foot-bot/hand-bot teams. Between these two extreme scenarios, 
there can be an infinite blend of possibilities for cooperating heterogeneous swarms. 
In this respect, ER can give a strong contribution to define the individual behaviors, 
and shape the self-organization of the heterogeneous swarm. In particular, ER can be 
exploited to define the behavior of the heterogeneous robots by evolving one con-
troller for each robot type. An alternative, interesting scenario consists of synthesizing 
homogeneous controllers for heterogeneous robots, in which the controller adapts 
to the dynamics of the robot on which it is downloaded without a priori knowledge 
of its type. We performed preliminary studies by evolving controllers for a heteroge-
neous group of three simulated robots ( Tuci et al. 2008 ). The agents are required to 
cooperate in order to avoid collisions when approaching a light source. The robots 
are morphologically different: two of them are equipped with infrared sensors, one 
with light sensors. Thus, the two morphologically identical robots should take care 
of obstacle avoidance, while the other one should take care of phototaxis. Since all 
the agents can emit and perceive sound, the group ’ s coordination of actions is based 
on acoustic communication. The results of this study are a  “ proof-of-concept ” : they 
show that dynamic artificial neural networks can be successfully synthesized by arti-
ficial evolution to design the neural mechanisms required to under pin the behavioral 
strategies and adaptive communication capabilities demanded by this task. Thus, ER 
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represents a promising method that should be considered in future research works 
dealing with the design of homogeneous controllers for groups of heterogeneous 
cooperating and communicating robots. 

 In conclusion, based on the results obtained in past research and on the prospect 
of future achievements, we believe that the bidirectional influence arrow connecting 
ER and swarm robotics can be enforced in both directions. ER can offer swarm robotics 
a bias-free method to automatically obtain robust and sophisticated control structures 
that exploit aspects of the experimental setup not always evident a priori to the experi-
menter. Equally, swarm robotics can broaden the horizons of ER beyond the current 
limits. In our opinion, the swarm cognition approach and studies with heterogeneous 
swarms are two of the most promising directions.   

 Note 

 1.   A project funded by the Future and Emerging Technologies program of the European Com-

munity, under grant IST-022888.        
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 8.1   Introduction 

 During the last ten years, the attempt to study the evolution of communication and 
language through computational and robotic models has attracted the attention of an 
increasing number of researchers (for a review, see  Cangelosi and Parisi 2002 ;  Kirby 
2002 ;  Steels 2003 ;  Wagner et al. 2003 ;  Nolfi 2005 ;  Nolfi and Mirolli 2010 ). Indeed, the 
study of how populations of artificial agents that are embodied and situated can 
autonomously develop communication skills and a communication system while they 
interact with a physical and social environment presents two important advantages 
with respect to experimental methods: (1) it allows researchers to study how commu-
nication signals are grounded in agents ’  nonsymbolic sensorimotor experiences, and 
(2) it allows researchers to come up with precise and operational models of how com-
munication skills can originate and how established communication systems can 
evolve and adapt to variations of the physical and social environment. 

 Within this area, evolutionary robotics (ER) can provide a key contribution because 
some of its foundational features differentiate it from other alternative learning 
methods: the fact that fine-grained characteristics that regulate how the robots interact 
with the physical and social environment can be encoded into free parameters; and 
the fact that variations can be retained or discarded on the basis of their affect at the 
level of the global behavior exhibited by the robot/robots ( Nolfi 2009 ). These features, 
in fact, allow the experimenter to reduce the number of characteristics that are prede-
termined and fixed to the minimum and leave the robots free to determine how to 
solve the adaptive problem. 

 These features enable us to study whether and how communication can emerge in 
populations of individuals that are not rewarded directly for communicating. 
Moreover, they allow us to study the role of the coadaptation of behavioral and 
communication skills ( Nolfi 2005 ) which, as we will show in the following sections, 
represents an essential prerequisite for the emergence and complexification of robots ’  
communication skills. 

 8   Evolution of Communication in Robots 

 Joachim de Greeff and Stefano Nolfi 
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 In this chapter we describe an experimental scenario (section 8.2) that is simple 
enough to be analyzed systematically, but that at the same time includes all the ele-
ments necessary to investigate important questions concerning the evolution of com-
munication: What are the conditions that might lead to the evolution of communication 
skills in a population of initially noncommunicating robots? What is the relation 
between agents ’  communicative and noncommunicative behaviors and between dif-
ferent communication modalities (e.g., implicit and explicit communication)? How 
does the  “ meaning ”  of signals originate and evolve and how is this grounded ( Harnad 
1990 ) in agents ’  sensory experience? The key aspects of the chosen scenarios are (1) 
the fact that the task/environment allows qualitatively different solutions, (2) the fact 
that the robots are provided with a sensorimotor system that allows them to interact/
communicate through different modalities, and (3) the fact that the evolving robots 
are not rewarded for communicating and are left free to determine how they react to 
sensory states and sequences of sensory states. 

 In section 8.3 we present the results of these experiments. Analysis of these results 
might allow us to generate new data that can partially compensate for the paucity of 
empirical data caused by the fact that language and communication do not leave direct 
traces in fossil records. As we will see, the analyses of these synthetic experiments 
provide hints for confirming or disconfirming existing theories on the evolution of 
communication and language as proposed by evolutionary biologists, and for formu-
lating new theoretical explanations. 

 Finally, in section 8.4 we discuss some of the implications of the evolution of coop-
erative behaviors in evolutionary robotics experiments, with particular reference to the 
role that sociality might have in the manifestation of open-ended evolutionary 
processes. 

 8.2   Experimental Setup 

 The experimental setup involves two wheeled robots situated in an arena containing 
two target areas (  figure 8.1 ) that are evolved for being concurrently located in the two 
target areas and for switching areas as often as possible. The characteristics of the task/
environment have been chosen to identify a situation in which the robots should 
coordinate/cooperate to solve their adaptive problem. In the following subsections we 
describe the characteristics of the environment, of the robots ’  body and neural control-
ler, and of the evolutionary algorithm.    

 8.2.1   The Environment and the Robots 
 The environment consists of an arena of either 110  ×  110 or 150  ×  150 cm surrounded 
by walls and containing two target areas with a diameter of 34 cm placed on two 
randomly selected but non-overlapping positions inside the arena. The floor of the 
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arena and the walls are gray. The two circular portions of the arena corresponding to 
the two target areas are colored black and white, respectively. 

 The robotic platform consists of two e-Puck robots ( Mondada and Bonani 2007 ) 
equipped with the ground sensor-board extension. The robots, which have a diameter 
of 7.5 cm, are equipped with two motors that control the two corresponding wheels, 
eight infrared proximity sensors located around the robot ’ s body, three infrared sensors 
placed on the frontal side of the robot and oriented toward the ground, a VGA camera 
with a field of view of 36 degrees pointing in the direction of forward motion, and a 
wireless Bluetooth interface that can be used to send and receive signals to and from 
other robots. The body of the robot has been covered with a circular strip of red paper 
to allow robots to detect the presence of another robot in their field of view. 

 Signals consist of single floating-point values in the range [0.0,1.0], which are trans-
mitted and received through the Bluetooth connection. Each time step both robots 
emit a signal and detect the signal produced by the other robot. For more details, see 
 De Greef and Nolfi 2010 ). 

 8.2.2   The Neural Controller 
 The neural controller of each robot is provided with seventeen sensory neurons, four 
internal neurons with recurrent connections, and three motor neurons. The internal 
neurons receive connections from the sensory neurons and from themselves. The 
motor neurons receive connections from both the sensory and the internal neurons 
(  figure 8.2 ).    

 The sensory layer consists of eight neurons that encode the state of the eight cor-
responding infrared sensors, three neurons that encode whether the robot detects 

 Figure 8.1 
 Left: The environment and the robots. The two circular areas of the environment colored in black 

and white represent the two target areas. Right: The e-puck robotic platform including the ground 

sensor board and a strip of red paper around the top part of the body that allows for easier visual 

recognition. 
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another robot in its field of view and the angular offset of the detected robot on the 
left or right side of the camera, two neurons that binary encode whether the ground 
sensor of the robot detects a white or black target area, two neurons that encode the 
previous state of the ground sensors, and two signal sensors that encode the signal 
received from the other robot and the signal produced by the robot itself in the previ-
ous time step. 

 The motor layer includes two neurons that encode the desired speed of the two 
corresponding wheels and one neuron that encodes the value of the signal produced 
by the robot. 

 The state of sensory, internal, and motor neurons are updated every 100 ms (i.e., 
each time step lasts 100 ms). The internal neurons consist of leaky integrator neurons 
that hold a certain amount of activation from the previous time step and in which 
the effect of the previous state on their current state is determined by a time-constant 
parameter. The motor neurons consist of standard sigmoid units. For more details, see 
 De Greeff and Nolfi 2010 . 

 The type and number of sensors and actuators and the way in which the informa-
tion extracted by the robots ’  sensors is encoded into the sensory neurons has been 
chosen to allow the robots to have a potentially rich interaction with their physical 
and social environment, while keeping the number of free parameters as low as 
possible. 

 More specifically, concerning communication, the possibility for the robots to per-
ceive each other potentially allows the development of communication skills, that is, 

Wheels Communication

Infrared Ground Vision Communication

 Figure 8.2 
 The architecture of the robots ’  neural controller. The lower, middle, and top layers indicate 

sensory, internal, and motor neurons, respectively. Thin arrows indicate connections. Thick 

arrows indicate that the state of the communication motor neuron at time  t  is copied into the 

state of a sensory neuron at time  t  + 1. 
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the development of an ability to react to stimuli produced by other individuals in 
functional ways, or the development of an ability to modify the perceptual environ-
ment of the other individuals in functional ways, or both. Moreover, the possibility 
for robots to influence each other through different modalities (i.e., radio, vision, and 
infrared) potentially allows the robots to exploit both: (a)  implicit  communication 
forms, in which the robots develop an ability to react appropriately to the perceptual 
stimuli that are produced by the other individuals spontaneously, and (b)  explicit  com-
munication forms, in which the robots develop an ability to functionally shape the 
way in which they affect the perceptual environment of the other individuals. For 
example, the possibility for the robots to visually detect the presence and the relative 
position of the other robot might allow the development of implicit communication 
forms that react to such stimuli in a functional manner with respect to the task/
environment. And the possibility for the robots to vary the radio signal produced in 
different robot/environmental circumstances allows them to develop explicit com-
munication forms in which both the signal produced and detected and the reaction 
to such signals have been adapted. 

 For the sake of simplicity, from now on we will use the term  “ implicit signal ”  to 
indicate the signal that is generated by the actual physical position of the robots and 
that is detected by other robots through their visual and infrared sensors. We will use 
the term  “ explicit signal ”  to indicate the signal produced by a robot and received by 
other robots through the wireless connection (providing that robots do not always 
produce the same signal). This is justified by the fact that in this particular experimen-
tal setup, the robot can shape the latter stimuli, but not the former, during the adaptive 
process. We should bear in mind, however, that there are no straightforward ways to 
formally distinguish between implicit and explicit signals. For example, as we will 
discuss, the perceptual stimuli generated by the physical position of the robots also 
can be partially shaped in an adaptive way by the robots themselves through modifica-
tion of the robots motor behaviors. Finally, the possibility to interact through different 
communication channels might lead to the development of communication forms 
that are based on a combination of implicit and explicit signals. 

 The four sensors that encode both the current and the previous state of the ground 
sensors allow the robots to easily recognize whether they are or were recently located 
in one of the target areas. 

 Finally, leaky internal neurons with recurrent connections allow the evolving robots 
to integrate sensorimotor information through time (e.g., to detect the duration of a 
given sensory state) or to remember and eventually communicate previously experi-
enced sensory states, or both ( Nolfi and Marocco 2001 ;  Beer 2003 ). In other words, 
the characteristics of the neural controllers potentially allow the robots to extract and 
communicate information that is not currently available through their sensors. 
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 8.2.3   The Evolutionary Algorithm 
 An evolutionary technique is used to set the free parameters of the robots ’  neural 
controller ( Nolfi and Floreano 2000 ). The initial population consists of 100 randomly 
generated genotypes that encode the connection weights, the biases and time con-
stants of 100 corresponding neural controllers (each parameter is encoded by 8 bits 
and normalized in the range [ – 5.0,+5.0] in the case of connection weights and biases 
and in the range [0.0,1.0] in the case of time constants). Each genotype is translated 
into two identical neural controllers that are embodied in two corresponding robots 
situated in the environment (i.e., teams are homogeneous). The twenty best genotypes 
of each generation are allowed to reproduce by generating five copies each, with 2 
percent of their bits replaced with a new randomly selected value. The evolutionary 
process lasts 1,000 generations (i.e., the process of testing, selecting, and reproducing 
robots is iterated 1,000 times). The experiment is replicated ten times for each of the 
two experimental conditions (smaller and larger environment). 

 Each team of two robots is allowed to  “ live ”  for twenty trials, lasting 200 seconds 
each (i.e., 2000 time steps of 100 ms each). However, if a collision occurs a trial is 
immediately terminated. At the beginning of each trial the position of the two target 
areas and the position and orientation of the robots are assigned randomly. 

 Each team of evolving robots scores 1 point every time the two robots occupy the 
two different target areas for the first time during a trial or after a switch (i.e., after 
the robot that previously occupied the white target area moves to the black target area 
and vice versa). The total performance of a team (fitness) consists of the average 
number of points scored during the twenty trials. 

 The robots ’  neural controllers are evolved in simulation and the best evolved neural 
controllers have been post-evaluated on hardware (i.e., have been downloaded on the 
two robots situated in the physical environment). 
  
 Before concluding the description of the experimental setup it is important to clarify 
which characteristics are predetermined by the experimenter and fixed, and which 
characteristics are unspecified and are left free to vary during the evolutionary process. 

 One predetermined aspect is that the experimental scenario involves a full coopera-
tive situation. This is due to the fact that the two robots forming a team have the same 
genetic characteristics and that selection operates on the basis of the performance of 
the team and not on the performance of a single individual ( Floreano et al. 2007 ). A 
second predetermined aspect is constituted by the fitness function that is used to select 
the best individuals. The adaptive task faced by the robots, however, is only partially 
predetermined since on the one hand it depends on fixed aspects like the fitness func-
tion and characteristics of the robots ’  body and of the environment, but on the other 
hand also depends on the characteristics of the social environment (i.e., the other 
robots ’  behavior), which is not predetermined and varies during the evolutionary 
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process. The development of new behavioral and communication skills modifies the 
social environment of the robots themselves. These modifications, in turn, modify the 
adaptive landscape of the robots. Indeed, as we will discuss in section 8.4, modifica-
tions of robots ’  behavior and communication skills may create the adaptive condition 
for the emergence of new skills. 

 The motor and communicative behaviors exhibited by the robots are not prede-
termined since the way in which a robot reacts to any given sensory state or sequence 
of sensory states depends on the free parameters that are encoded in the genome of 
the population and are subjected to variations. Indeed, as we will see, evolving robots 
are left free to determine the characteristics of their behavior within a large space of 
different behavioral solutions. More specifically, concerning robots ’  motor behavior, 
the robots are free to determine the number and the type of elementary behaviors 
that they display and the way in which these behaviors are combined and arbitrated. 
Concerning robots ’  communicative behaviors, evolving robots are left free to deter-
mine how to use the information that has a communicative value from the physical 
and social environment, how many different signals they will produce, in which 
agent/environmental context each signal will be produced, and what will be the 
motor and communicative effects of the explicit and implicit signals that are detected. 
Finally, evolving robots are free to co-adapt their motor and communicative 
behaviors. 

 The theoretical approach and the methodology followed in this chapter are in line 
with the work of  Di Paolo (1997 ,  2000 );  Quinn (2001) ;  Quinn et al. (2003) ;  Baldassarre, 
Nolfi, and Parisi (2003) ;  Trianni and Dorigo (2006) ;  Marocco and Nolfi (2007) ; and 
 Williams, Beer, and Gasser (2008) . However, the experimental scenario proposed here 
is more advanced than in the experimental works mentioned previously with respect 
to the following aspects (or with respect to the possibility to study the following aspects 
in combination): (1) the complexity of the task that enable us to study how several 
behavioral and communication skills are developed and co-adapted during the evolu-
tionary process; (2) the richness of the agents ’  sensorimotor system that supports, for 
example, the exploitation of both explicit and implicit communication; and (3) the 
validation of the results obtained in simulation in hardware. 

 8.3   Results 

 The analysis of the results obtained in different replications of the experiment and in 
different experimental conditions indicates that the robots solve the problem through 
qualitatively different strategies by exploiting the possibility to communicate through 
explicit and implicit signals (section 8.3.1). The analysis of the best solutions indicates 
that evolving robots display rather rich behavioral and communication skills, includ-
ing: the ability to access/generate information that has a communicative value, the 
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ability to produce different signals encoding useful regularities, and the ability to react 
appropriately to explicit and implicit signals, by also regulating the reaction on the 
basis of the context in which signals are detected (section 8.3.2). The analysis of 
the evolutionary development of the best replications sheds light on how signals/
meanings originate and how robots ’  behavioral and communication skills progres-
sively complexify as a result of an incremental process. New skills are added on top of 
previously developed skills, which thus represent a prerequisite for the development 
and the exhibition of the new skills and which are retained during the successive 
course of the evolutionary process (see end of section 8.32 and section 8.4). The analy-
sis of evolved behavioral and communication skills and their origin also provides 
insights on the mechanisms that allow evolving robots to solve the problem resulting 
from the need to develop an ability to produce useful signals and to react to signals 
appropriately at the same time (section 8.4). 

 8.3.1   Performance and Evolved Strategies 
 By analyzing the results obtained at the end of the evolutionary process for different 
replications of the experiment and for different experimental conditions (i.e., 110  ×  
110 and 150  ×  150 cm arenas) we observed that evolved robots display an ability to 
be concurrently located in the two areas and to switch area several times in the case 
of the best replications and only a few times in the case of the worst replications. More 
precisely, the mean number of switches made (+1 point for finding the two target areas 
for the first time) is 10.035 and 4.680 for the best individuals evolved and tested in 
the 110  ×  110 and 150  ×  150 environments, respectively. 

 Evolved robots exploit the possibility to communicate through explicit signals in 
most of the replications. Indeed, by analyzing the variance of the performance obtained 
in a standard condition and a control condition in which the evolving robots are 
forced to always produce a 0.0 signal, we observed that the ability to vary the explicit 
signals significantly affects the overall performance of the robots (Kruskal-Wallis 
test, p  <  0.0005 for both the experiments performed in the small and large arenas). 
Evolved robots also rely on implicit communications in most of the cases, as we 
will illustrate. 

 The visual inspection of the fittest evolved solutions indicates that they can be 
grouped in two qualitatively different strategies. In both strategies, the robots initially 
display an exploration behavior that allows them to enter the two target areas (one 
robot per area) and then display a series of target-switching behaviors in which each 
robot exploits the information provided by the other individual to navigate directly 
toward the other target area. The first strategy (that will be called  “ symmetrical strat-
egy ”  from now on and that corresponds to the strategy exhibited by the best robots 
of the best replication performed in the 110 x 110 arena) is characterized by a syn-
chronized target-switching behavior in which the two robots, located in the two 



Evolution of Communication in Robots 187

different target areas, simultaneously leave their current target area and move directly 
toward the other target area. The second strategy (that will be called  “ asymmetrical 
strategy ”  from now on and that corresponds to the strategy exhibited by the best 
robots of the best replication performed in the 150  ×  150 arena) is characterized by a 
switching behavior organized in two phases in which first a robot exits from its target 
area and travels toward the other target area containing the second robot, and then 
the latter robot exits from its target area and travels directly toward the target area 
previously occupied by the former robot. 

 By testing the robots evolved in simulation in a real environment (i.e., by embody-
ing the neural controller on physical robots and by situating them in the physical 
environment) we observed that the behaviors exhibited in hardware are qualitatively 
very similar to those shown in simulation. Examples of the best evolved behaviors 
both in simulation and in the real environment can be seen at the following webpage: 
 http://laral.istc.cnr.it/esm/evo-communication ). 

 8.3.2   Detailed Analysis of an Exemplar Solution (Asymmetrical Strategy) 
 In this section we describe in detail the behavioral and communication skills of the 
best-evolved robots (of the best replication of the experiment performed in the 150  ×  
150 cm arena) that display an asymmetrical strategy. Moreover, we describe the origin 
of such skills by analyzing how the behavioral and communication skills exhibited by 
robots of succeeding generations vary over the course of evolution. 

 To perform this analysis we divided the overall behavior exhibited by the robots 
into a list of selected elementary motor and communicative behaviors corresponding 
to sequences of sensorimotor interactions that produce a given functionality (e.g., that 
allow a robot to avoid an obstacle, or to move toward the other robot located in the 
other target area, or to produce a signal that allows the other robot to exit from its 
current area when the two robots are concurrently located in the two areas). The divi-
sion of the robots ’  overall individual behavior into individual elementary behavior has 
been realized through the use of mutual exclusive conditions (for details see  De Greeff 
and Nolfi 2010 ). For example, the sequences of robot/environmental interactions in 
which the robots ’  infrared sensors are activated above a given threshold are classified 
as  obstacle-avoidance  behavior (until the infrared sensors are no longer activated). Simi-
larly, the sequences of robot/environmental interactions in which a robot is located 
on the border of a target area and in which this robot moves forward (and turns slightly 
left or right) are classified as  follow-border  behavior (provided that the robots ’  infrared 
sensors are not activated). 

 For reasons of clarity, behaviors having similar functions or constituted by sequences 
of similar but not necessarily identical sensorimotor interactions, or both, are grouped 
into the same elementary behaviors. For example, sequences of sensorimotor interac-
tions in which the agents produce similar, although not identical, explicit signals are 
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grouped into the same elementary signaling behavior provided that the effect of the 
signals produced have a similar qualitative effect on the other robot. 

 Motor and Communication Behaviors Repertoire 
 In this section we describe the elementary motor and communicative behavior exhib-
ited by the best robots of the last generation. For each elementary behavior we briefly 
describe the functionality of the behavior (with respect to the task), the conditions in 
which it is executed, and the actions that are produced during its execution. 

  •    A   signal-A   behavior consists of the emission of a signal in the range [0.9,1.0]. This 
signal is always produced by robots located outside the black target area that are not 
detecting obstacles. 
  •    A   signal-B   behavior consists of the emission of a signal in the range [0.0,0.6]. This 
signal is always produced by robots located in the black target area. 
  •    An   obstacle-avoidance   behavior consists of a sequence of left-turning movements. 
This behavior is always performed near an obstacle (a wall or another robot) when 
left, frontal, or right infrared sensors of the robot are activated, regardless of the signals 
perceived. The robot turns on the spot until the frontal side of the robot is free from 
obstacles. 
  •    A   move-straight   behavior consists of a sequence of move-forward movements. This 
behavior is always produced by robots located outside target areas when no other robot 
is perceived visually and no obstacles are detected. 
  •    A   follow-border   behavior consists of a combination of left-turning and move-for-
ward movements that allow a robot to move counterclockwise by following the border 
of an area. The  follow-border  behavior is always produced by robots located in the black 
area that do not visually perceive the other robot, regardless of any perceived signal. 
This behavior originates evolutionarily from the modification of a  remain-on-black-area 
 behavior that allows the robot to remain on the target area by producing circular 
trajectories without necessarily moving along the border independently from whether 
or not the other robot is visually perceived (see section 8.3.2). 
  •    An   avoid-robot   behavior consists of a sequence of left-turning movements that make 
the robot turn on the spot until the other robot exits from its field of view. This 
behavior is produced by robots located outside areas that visually perceive the other 
robot in all cases, except cases in which additional conditions trigger the execution of 
the  move-toward-robot  behavior. 
  •    A   move-toward-robot   behavior consists of a sequence of move-forward and left-
turning movements that allow a robot to move straight by slightly turning toward the 
direction of a visually perceived robot. This behavior is always produced by robots 
that: are located outside target areas, previously visited the white target area, detect 
signal-B, and detect the other robot in their field of view. 
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  •    A   look-robot-and-follow-border   behavior consists of a combination of left-turning, 
right-turning, and move-forward movements that allow the robot to remain 
on the border of the area while maintaining the other robot on the left side of its 
field of view. This behavior also allows the robot to reach a particular location in its 
target area with respect to the other robot located in the other target area and hence 
with respect to this other target area. This latter aspect is realized by remaining on the 
spot when the other visually perceived robot is on the front or right side of the visual 
field and by moving counterclockwise along the border of the area when the other 
robot is on the left side of the visual field. This behavior is always produced by robots 
that are located in the black target area, perceive signal-A, and visually perceive the 
other robot. 
  •    An   exit-white-area   behavior consists of one or a few move-forward movements that 
allow a robot located in the white target area to exit from this area. This behavior is 
always produced by robots located in the white target area that perceive signal-B and 
visually detect the other robot in the left part of their visual field. 
  •    An   exit-black-area   behavior consists of one or a few move-forward move  ments 
that allow a robot located in the black target area to exit from this area. This behavior 
is always produced by robots located in the black target area that perceive signal-B. 

 The identification of the robot ’ s elementary behaviors, in this case, is simplified by 
the fact that this robot displays a reactive behavior, in other words, always reacts 
in the same way to the same sensory states. For an analysis of other individual solu-
tions in which the internal dynamic occurring within the agents ’  control system plays 
a significant role, see  De Greeff and Nolfi 2010 . 

 Arbitration and Combination of the Elementary Behaviors 
 To illustrate how the elementary behaviors previously described are combined and 
arbitrated to solve the robots ’  adaptive task we will describe a typical trial (see the 
videos available from  http://laral.istc.cnr.it/esm/evo-communication ). 

 At the beginning of a trial the two robots are located outside target areas. In this 
phase the robots display a  move-straight  behavior when they are far from obstacles and 
do not visually perceive other robots, an  obstacle-avoidance  behavior when they detect 
an obstacle through infrared sensors, and an  avoid-robot  behavior when they visually 
perceive the other robot. The combination of the  move-straight  and  obstacle-avoidance  
behaviors allows the robots to explore the environment. The  avoid-robot  behavior does 
not play a functional role when both robots are located outside target areas. Indeed, 
the performance in a normal condition does not significantly differ from the perfor-
mance in a control condition in which the robots located outside target areas were 
not allowed to visually detect the other robot. The signaling behaviors produced when 
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both robots are located outside target areas do not alter the motor behavior of the 
robots themselves and thus do not have any functionality. 

 When a robot enters the white target area while the other robot is located outside 
target areas, it starts to produce a  follow-border  behavior. This  follow-border  behavior 
allows the robot to remain in the white target area until the other robot enters the 
black target area. The signaling behavior produced by the robot located in the white 
target area does not have any functionality since it does not alter the motor behavior 
of the other robot. The implicit signal produced by the robot located in the white 
target area triggers the  avoid-robot  behavior in the other robot that plays an adaptive 
role in this circumstance. Indeed, the variance of the overall performance (observed 
in a normal condition and in a control condition in which the robots located outside 
target areas were not allowed to visually detect robots located in the white target area) 
is significant (mean score of 4.723 and 3.941, respectively). 

 When a robot enters the black target area while the other robot is located outside 
target areas, it starts to produce a  signal-B  behavior and a  follow-border  behavior or a 
 look-robot-and-follow-border  behavior, depending on whether or not it perceives the 
other robot visually. The function of the  follow-border  behavior is to remain in the 
black target area and to look around in order to identify the relative position of 
the other robot. The  look-robot-and-follow-border  behavior plays several roles (to be 
discussed in more detail): (1) it allows the robot to remain in the black target area, (2) 
it allows the robot to assume a specific position in the target area relative to the other 
robot that in turn provides for that robot an indication of the exact position of the 
black target area, and (3) it allows the robot to orient itself toward the center of the 
white target area (as soon as the other robot enters that target area). Also in this case, 
the explicit signals produced by the two robots do not affect their motor behavior and 
therefore do not have any functionality. 

 Finally, when the two robots are concurrently located in the two target areas they 
trigger a sequence of coordinated behaviors that is repeated over and over. This allows 
the two robots to quickly exchange their relative locations several times, thus maximiz-
ing their fitness. 

 During the first phase of this sequence, the robot located in the black target area 
displays a  follow-border  behavior or a  look-robot-and-follow-border  behavior depending 
on whether or not it visually perceives the other robot. The robot located in the white 
target area displays a  follow-border  behavior. 

 During the second phase, when both robots visually perceive each other on the left 
side of their field of view, the robot located in the white target area triggers an 
 exit-white-area  behavior that allows it to exit from the area and to initiate a  move-straight  
behavior toward the black target area. 

 During the third phase the robot that left the white target area displays a  move-
toward-robot  behavior, moving toward the other robot while the robot located in the 



Evolution of Communication in Robots 191

black target area continues to look toward the former approaching robot. The trajec-
tory of the  move-toward-robot  behavior allows the approaching robot to move approxi-
mately toward the center of the black target area, thus maximizing the chance to enter 
this target area and avoiding the risk of obstructing the occupying robot. The  look-
robot-and-follow-border behavior , through which the occupying robot maintains the 
approaching robot on the left part of its visual field, allows the former robot to leave 
the black target area while being oriented toward the direction of the white target area. 

 During the fourth phase, as soon as the approaching robot enters the black target 
area and switches its signaling behavior from A to B, the occupying robot leaves this 
target area by triggering an  exit-black-area  behavior and then a  move-straight  behavior. 
The newly arrived robot triggers a  follow-border  behavior and then a  look-robot-and-fol-
low-border  behavior. The orientation of the robot exiting from the black target area 
(that depends on the relative position assumed by the robot in this target area, the 
ability to keep the approaching robot on the left side of its visual field, and the ability 
of the approaching robot to move toward the center of the area) ensures that the  move-
straight  behavior will bring this robot directly toward the center of the white target area. 

 Finally, during the fifth and last phase, the robot that left the black target area 
enters the white target area. At this point the two robots are located again in the two 
target areas and the sequence of coordinated behaviors articulated in the five phases 
is repeated. 

 Communication System 
 In this section we focus on the communication system possessed by evolved robots 
and on the relation between robots ’  behavioral and communication skills. More pre-
cisely, we will describe the motor behaviors that allow the robots to access the infor-
mation that has a communicative value, the explicit and implicit signals produced, 
and the (context-dependent) effect of the detected signals. 

 The elementary behaviors that allow the robots to access and to generate informa-
tion that has a communicative value include: an  exploration  behavior (a combination 
of an  obstacle-avoidance  behavior and a  move-forward  behavior) that allows the robots 
to identify the location of the two target areas, a  follow-border  behavior that allows the 
robots to maintain this information over time, and a  look-robot-and-follow-border  behav-
ior that allows the robots to identify and assume a specific position in a target area 
with respect to the location of the other robot. Interestingly, part of the information 
conveyed through implicit and explicit signals is not simply extracted from the envi-
ronment but is instead generated through the behavioral and communicative interac-
tion between the two robots. For example, information that encodes the location of 
the center of the two target areas (that cannot be detected directly by a single robot) 
is extracted by the two robots through a coordinated behavior that allows the robots 
to assume a precise relative position in the target area with respect to the other robot. 
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 The signals produced by the robots include two explicit signals (A and B) that 
encode whether a robot is located outside or inside the black target area, respectively, 
and an implicit signal constituted by the body of a robot itself that can be visually 
detected by the other robot and that provides an indication of its relative position. 
The fact that the explicit signals do not differentiate the white target area from the 
regions outside target areas does not constitute a source of ambiguity since this infor-
mation is exploited only by robots currently located in target areas and because robots 
never occupy the same target area. 

 The effects of implicit and explicit signals consist in a modification of the robots ’  
motor behavior that is context dependent (i.e., the type of effect produced or whether 
or not the effect will be produced, or both, depends on the state of the robot detecting 
the signal). More precisely: 

  •    the perception of signal-B always triggers an  exit  behavior in robots located in the 
black target area; 
  •    the perception of signal-B in combination with an implicit signal constituted by the 
visual perception of the other robot on the left side of the visual field always triggers 
an  exit  behavior in robots located in the white target area; 
  •    the perception of signal-B in combination with an implicit signal constituted by the 
visual perception of the other robot triggers a  move-toward-robot  behavior in robots 
located outside target areas that previously visited the white target area. 
  •    the perception of the implicit signal always triggers an  avoid-robot  behavior in robots 
located outside target areas (with the exception of the case reported above that triggers 
the execution of the  move-toward-robot  behavior). 

 Evolutionary Origin of Robots ’  Motor and Communicative Skills 
 The analysis of individuals of successive generations indicates that the behavioral and 
communication repertoire exhibited by the robots progressively complexifies through-
out generations as follows. 

 1.   In the very first generations the robots develop an  exploration  behavior that consists 
of the combination of  move-forward  and  obstacle-avoidance  behaviors. The exhibition 
of these behaviors allows the robots to occasionally score 1 point when they happen 
to transit over the two target areas at the same time. 
 2.   During generations 5 – 10 the robots develop a  remain-on-black-area  behavior that 
allows them to remain in the black area when they enter it. The exhibition of this new 
behavior increases the probability that the two robots happen to be concurrently 
located in the two areas since it eliminates a situation in which the latter robot enters 
the white area, while the former robot already has abandoned the black area. 
 3.   The development of a capacity to remain on the black area, however, also has an 
additional function; it allows the robot located in the black area to access information 
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that is potentially useful for the other robot when it reaches the white area (informa-
tion that, as we will see, may allow the other robot to decide whether it should remain 
or exit from its area). This creates the conditions for the development of an ability to 
communicate to the other robot whether a robot is located in a black area or not 
through the production of two different signals (A and B). 
 4.   The development of these  signal-A  and  signal-B  communication behaviors does not 
lead to an improvement in performance in itself, but creates the adaptive conditions 
in the next generations for the development of an  exit-black-area  behavior, which is 
executed by robots located in the black area detecting the signal-B produced by another 
robot also located in the black area. This new behavior allows the robots to occasion-
ally exchange areas in the following situation: a robot that visited the white area enters 
the black area that already contains the other robot; through the  exit-black-area  behav-
ior the later robot exits from the black area and subsequently reaches the white area. 
 5.   The development of these behavioral and communication skills, in turn, creates the 
conditions for the development of a  remain-on-white-area  behavior that allows the 
robots to remain in the white area until they do not detect the signal that indicates 
that the other robot is located in the black area. The development of this new behav-
ioral skill eliminates the problem caused by the fact that while the second robot enters 
the black area the first robot has already exited from the white area. 

 At this stage of the evolutionary process, the robots are able to reach the two areas 
through an exploration behavior, to remain on the black area until the other robot 
also enters the black area. On the basis of these skills, they are able to be located in 
the two areas for the first time in most of the trials but they are able to switch areas 
only occasionally. In many cases the trial ends before the robot exiting from the black 
area succeeds in finding the white area, because, after exiting from the black area, it 
resumes a simple but time-consuming exploration behavior. 

 During the next phase of the evolutionary process, however, the robots manage to 
develop new additional skills that allow them to switch areas more frequently by 
directly navigating from one area to the other: 

 6.   Around generation 205, the robots develop a  move-toward-robot  behavior that allows 
the robot exiting from the white area to navigate toward the robot emitting signal-B 
and therefore directly toward the black area. This new behavioral skill drastically 
reduces the time needed by the robot located in the white area to reach the black area. 
 7.   Finally, after a long, substantially stable phase, at generation 814, the robots develop 
a new way to remain in the black area that consists in remaining in the border of the 
area itself while looking toward the other robot (i.e., the  look-robot-and-follow-border  
behavior). Also in this case, this new behavior is realized through the exploitation of 
the explicit and implicit signals produced by the robots located outside the black area, 
which in turn are based on the ability to produce the behavioral skills previously 
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developed. The function of this new behavior is to ensure that the robot located in 
the black area positions itself toward the other robot located in the white area (or 
traveling from the white to the black area) and therefore toward the white area. This, 
in turn, ensures that when the robot exits from the black area, it will travel directly 
toward the white area (i.e., toward the direction previously occupied by the other 
robot). The development of this new behavior also creates the adaptive conditions for 
a further improvement of the  move-toward-robot  behavior previously developed. Indeed, 
the exhibition of  look-robot-and-follow-border  behavior implies that the robot located 
in the black area assumes a specific relative position with respect to the other robot 
located in the white area (i.e., the left side of the area with respect to the other robot). 
The fact that the robot located in the black area now assumes such a specific position 
allows the robot traveling from the white to the black area through the  move-toward-
robot  behavior to position itself toward the center of the black area, thus minimizing 
the risk of missing this target. This ability is refined in the following generations. 

 Overall this analysis shows how the behavioral and communication skills developed 
by the robots at a certain stage of the adaptive process often create the conditions for 
the development of further skills with additional functionalities that are based on 
previously developed skills (  figure 8.3 ). With the sentence  “ create the conditions for 

 Figure 8.3 
 Schematic representation of the relations between different behavioral and communication skills. 

The y-axis indicates the course of the evolutionary process and the order in which skills are devel-

oped. The arrows summarize the most important dependencies between the different elementary 

skills. More precisely, the arrows pointing to a given capacity indicate that the development of the 

skills at the bottom of the arrow created the adaptive conditions for the development of the new 

capacity and the fact that the new capacity is based (i.e., depends) on the previously developed skills. 
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the development of further skills ”  we mean that the skills that have been developed 
after would not have been developed (or would have had a lower probability to be 
developed) without the previously developed skills. With the phrase  “ are based on 
previously developed skills ”  we mean that the newly developed skills require the previ-
ously developed skills and that the eventual loss of one or more or the previously 
developed skills would also imply the loss of the newly developed skills.    

 The development of new skills that are based on previously developed skills implies 
that old skills tend to assume additional functions (i.e., support of these newly devel-
oped skills). The creation of these chains of dependencies explains why the adaptive 
processes observed in this and other replications of the experiments can be described 
fundamentally as an incremental process in which new skills are often developed on 
top of previously developed skills and in which previously developed skills tend to be 
preserved in successive generations. 

 Moreover, the observation that new behavioral and communication skills are often 
based on simpler previously developed skills implies that the signals that are produced 
and exploited by the robots are not simply  “ grounded ”  on robots ’  sensorimotor states 
but also on robots ’  behaviors. 

 8.4   Discussion 

 We believe that the experimental scenario illustrated in this chapter represents a mini-
malist model that allows us to study how communication can evolve in a population 
of initially noncommunicating robots and how robots ’  communication skills can 
progressively complexify as they adapt to their task/environment. In this section we 
will discuss how the obtained results can help us to better answer the general questions 
identified in section 8.1. 

 The first issue that we want to consider is  under what circumstances and how can 
communication evolve in the first place.  The evolution of a communication skill, in fact, 
requires the development of two complementary but interdependent abilities: an 
ability to produce signals that are useful (from the point of view of the signaler or the 
receiver, or both) and an ability to react to signals in a way that is useful (from the 
point of view of the signaler or the receiver, or both). As Maynard Smith puts it:  “ It ’ s 
no good making a signal unless it is understood, and a signal will not be understood 
the first time it is made ”  ( Maynard Smith 1997 ). From the point of view of the evolu-
tion of explicit signaling capabilities, this implies that variations that lead to the 
production of a useful signal will tend to be retained only if agents already have the 
complementary ability to react to that signal in an appropriate way. Or, vice versa, 
variations that lead to an ability to react to signals in a useful way tend to be retained 
only if agents already have the complementary ability to produce the corresponding 
signal. This means that adaptive variations that lead to the production of useful signals 
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or to the exploitation of the same signals, but not to both, are adaptively neutral unless 
the two abilities are developed at the same time. This aspect seems to indicate that 
the evolution of communication would be an extremely unlikely event, a consider-
ation that is in contrast to experimental evidence. 

 This apparent paradox can be solved by hypothesizing that: (a) originally neutral 
traits can later acquire a communicative function, and (b) traits originally playing a 
certain function can later be exapted ( Gould 1977 ) to play an additional communica-
tive function. This general hypothesis can be further articulated into two cases, depend-
ing on whether the preexisting trait consists of the ability to produce an action that 
could potentially assume a signaling value (as proposed by Konrad Lorenz and other 
earlier ethologists); or in the tendency to react in a certain way to signals that could 
potentially assume a communicative value ( Maynard Smith and Harper 2003 ). Evi-
dence supporting the former hypothesis is constituted by the observation that the 
beak-wiping behavior serving a preening function displayed by several species of grass 
finches, in some species plays the role of a courtship signal ( Morris 1958 ). Evidence 
supporting the latter hypothesis is constituted by the colorful phenotype of  Papilio 
memnon , which increases the chances of survival of this species by exploiting the 
tendency of its predator to avoid distasteful insects characterized by a colorful pheno-
type ( Maynard Smith and Harper 2003 ). 

 The results obtained through the synthetic experiments presented in this chapter 
confirm that indeed, communication can emerge despite the fact that the traits that 
are necessary for its emergence — namely, an ability to produce useful signals and an 
ability to react to signals appropriately — taken in isolation are adaptively neutral in 
that they do not, per se, increase the reproductive chances of individuals that possess 
them. Moreover, the possibility to analyze the course of the evolutionary process in 
detail, thanks to the synthetic nature of these experiments, allows us to identify how 
the problem of developing two interdependent traits that are adaptively neutral in 
isolation is solved. Indeed, the analysis reported in section 8.3.2 indicates that the 
evolution of communication skills occurs through the exploitation of traits that origi-
nally did not serve a communicative function or fulfill any functionality. 

 An example of a case in which preexisting signal acquires a communication func-
tionality through a variation in the way in which agents react to the signal (and not 
through a variation of the signal itself) is constituted by the variations occurring from 
generation 210 on that lead to the development of the move-toward-robot behavior 
(section 8.3.2). Up to this point the signal-B, which is produced by robots located in 
the black area, triggers an  exit  behavior in the robot located in the white area (thus 
allowing the robots to eventually reach the other area). From generation 210 on, the 
same signal plays an additional functionality that is realized by triggering a move-
toward-robot behavior in robots that previously visited the white area. The new func-
tionality is achieved through a variation that modifies the way in which the robots 
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react to the signal, but not the signal itself or the conditions in which it is 
produced. 

 An example of a case in which a preexisting ability to react to signals in a specific 
way acquires a functionality through a variation of the signal produced, but not of 
the way in which the robots react to the signal, is constituted by the development of 
the signal-B that triggers the  exit-black-area  behavior. The tendency to react to this 
signal by exiting from the black area, in fact, is displayed already from generation 10 
on (which was be observed in a control condition in which one robot is forced by the 
experimenter to produce the signal-B while the other robot is located in the black 
area). The ability to produce signal-B in the black area is developed several generations 
after. The presence of a trait that makes the robot exit from the black area in reaction 
to signal-B is thus exploited by developing an ability to produce the signal-B in a situ-
ation in which the  exit-black-area  behavior is functional. 

 The second issue that we want to consider is  how and to what extent the evolved com-
munication system can complexify.  Complexity can be measured along different dimen-
sions. One dimension concerns the number of different elementary behaviors produced 
by the agents. A second dimension concerns the number of signals or combination of 
signals serving a communicative function that co-determine the expressive power of 
the communication system. A third dimension concerns the diversification of the 
effects that each signal produces depending on the context in which the signal is 
detected. A fourth dimension concerns the ability of the agents to access and to gener-
ate information that has a communicative value and that can then be conveyed 
through communication signals. Finally, a fifth dimension concerns the nature of 
signals developed, namely whether a signal encodes information directly available 
through the agents ’  sensors or more complex, re-elaborated information ( Mirolli and 
Nolfi 2010 ). 

 The analysis of the evolutionary process as described indicates that improvements 
in terms of performance are often correlated with a complexification of agents ’  skills 
with respect to one or more of these five dimensions. The comparative analysis of 
different replications of the experiments also shows how solutions that are comparable 
in terms of performance and in terms of overall complexity of the evolved strategy 
can differ significantly with respect to the complexity along different dimensions. 

 In the case of the two best replications of the experiments performed in large and 
small arenas, evolved individuals display a rich behavioral and communicative reper-
toire that includes seven to ten different elementary behaviors and four to six signals 
(constituted by different explicit signals or combination of implicit and explicit 
signals), each producing one to three different effects depending on the context in 
which signals (or combination of signals) are experienced. 

 With respect to the ability of the robots to access, generate, and elaborate commu-
nicative information, in most of the cases explicit signals encode, on the one hand, 
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nonabstract information that is directly and currently available through the sensors 
of the robots and that is accessed through the exhibition of simple behaviors (i.e., an 
exploration or a remain-on-target behavior, or both). Nonabstract signals of this form 
do not involve a significant re-elaboration of the sensory information or the integra-
tion of sensorimotor information through time, or both ( Hauser 1996 ;  Rendall et al. 
1999 ). In the case of the symmetrical strategy, however, explicit signals encoding 
abstract information are also observed (see the analysis reported at  http://laral.istc.cnr
.it/esm/evo-communication ). 

 Implicit signals and combination of implicit and explicit signals, on the other hand, 
often encode abstract information. This can be explained by considering that the 
implicit signal constituted by the actual position of a robot often implicitly encodes 
useful information concerning the sensory states and motor actions previously per-
ceived and performed by the robot itself. The need to extract and communicate infor-
mation about previous experienced sensory states therefore is solved by selecting 
behavioral skills that allow the robots to integrate and elaborate information by acting 
in the environment rather than by performing internal operations. An example of an 
abstract signal is constituted by the combination of the implicit signal and the explicit 
signal-B produced by a robot located in the black area that allows the other robot to 
infer the direction in which it should navigate to reach the central part of the black 
area — information that is not directly available from the state of the robot ’ s sensors 
and that reflects the effects of the previous sensorimotor interactions between the 
robot and the environment (see section 8.3.2). 

 All used signals are deictic (i.e., they provide information that is dependent on 
the current context of the sender ( Hockett 1960 )). Displaced signals (i.e., signals 
providing information that is independent from the current context of the sender 
( Hockett 1960 )) are not observed. Finally, most of the used signals are informative/
manipulative (i.e., they convey information possessed by one of the individuals, or 
one individual manipulates a second individual to accomplish a certain adaptive 
function). In few cases, however, relational signals are also observed. By relational 
signals we mean signals that are generated through a communicative interaction, 
allowing a group of individuals to perform a collaborative task that could not be 
accomplished by a single individual (i.e., signals analogous to the vocal duetting 
produced by several species that allow them to establish and maintain a pair bond, 
 Bailey 2003 ;  Farabaugh 1982 ;  Haimoff 1986 ). An example of relational signal is 
observed in the experiment displaying the symmetrical strategy. The signaling inter-
action occurring between the two robots allows the robots to produce two different 
signals; one occurs when only one robot is located outside target areas, the other 
when both robots are located outside target areas (see  De Greeff and Nolfi 2010 ). 
On the evolution of relational signals in a similar experimental setting see also 
 Marocco and Nolfi 2007 . 
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 The third issue that we want to consider is  the role of innovations in the evolutionary 
process and the relation between social/communicative interaction and open-ended evolution . 
The analysis of the origins of robots ’  behavioral and communicative skills demon-
strates, on the one hand, how the evolutionary process is strongly influenced by the 
initial capabilities of the robots. These, in turn, depend on the family of strategies on 
which the evolutionary process converges in the very initial generations as a result of 
the random generation of the genome of the initial population, and as a result of the 
high stochasticity that characterizes the selection process in the very first generations. 
On the other hand, the analysis of the most successful replications of the experiment 
also demonstrates how robots ’  skills can be progressively transformed and how the 
number and the complexity of the robots ’  elementary skills can increase during the 
adaptive process until optimal or close to optimal solutions are discovered. As we 
mentioned in section 8.3.2, such progressive complexification of robots ’  skills seems 
to occur as a result of an incremental process in which the development of new skills 
often creates the adaptive condition for the development of further skills and in which 
previously developed skills tend to be retained. 

 The tendency to preserve previously developed skills can be explained by consider-
ing that new skills often exploit (are based on) previously developed skills. For 
example, in the case of the experiment displaying the asymmetrical strategy described 
earlier, the  move-toward-robot  behavior that allows the robots located in the white 
area to navigate directly toward the black area depends on the  follow-border  behavior 
exhibited by robots remaining on the black area that was initially developed to 
allow the robots to reach the two areas for the first time, not for switching areas. 
Moreover, the  move-toward-robot  behavior also depends on the  signal-B  behavior that 
was previously developed to allow one robot to exit from the black area when the 
other robot is also located in the same area. This means that the  move-toward-robot  
behavior is based on the other two previously developed behavioral skills and that 
the development of the  move-toward-robot  behavior causes the  follow-border  and  signal-
B  behaviors to acquire additional functionality — that of supporting the  move-toward-
robot  behavior. 

 The ability to generate the required new skills can be explained by considering the 
potential to exploit previously developed skills. The development of new skills, in fact, 
not only leads to an improvement of agents ’  performance but also often leads to the 
establishment of the adaptive condition, which enables the development of further 
and more complex skills. For example, the ability to remain on the black area by dis-
playing a  look-robot-and-follow-border  behavior (i.e., by assuming a precise position in 
the target area with respect to the other robot) creates the condition for the develop-
ment of an ability to leave the white area by navigating toward the center of the black 
area. More generally, concerning communication and social interaction, the develop-
ment of an ability to signal relevant information enriches the perceptual environment 
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of the robots, thus creating the adaptive conditions for the emergence of new skills 
which exploit information encoded in detected signals. In other words, innovations 
often creates the adaptive conditions for the development of additional novelties, thus 
producing an evolutionary process that is open-ended (within the limits imposed by 
the complexity of the task/scenario). 

 Supplemental Data 

 For supplemental data including movies of the behaviors displayed by evolved robots 
of different replications of the experiment, go to  http://laral.istc.cnr.it/esm/evo
-communication . Open software for replicating the experiments in simulation as 
well as hardware including the source codes, a manual, a tutorial, and the sample files 
of the experiment can be downloaded from  http://laral.istc.cnr.it/evorobotstar/ . 
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 9.1   Introduction 

 Robots are increasingly being used to solve real-world tasks such as vacuuming or 
assembly-line work in industrial applications. Controllers for these robots are typically 
designed by engineers following textbook guidelines. Although this methodology has 
proven to be very successful in such applications, it quickly meets its limitations as 
tasks become more complex. Collective robotic systems, where groups of robots coop-
erate to solve a distributed task in partially unknown environments, are an example 
of systems that are difficult to engineer following a classical approach ( Beni 2004 ; 
 Sahin 2005 ). This is because it is not obvious how to design controllers for individual 
robots that cooperate toward a common goal. 

 Evolutionary robotics (ER) has proven to be highly successful in solving difficult or 
underdefined engineering problems due to its potential to automatically find simple 
and efficient solutions ( Cliff, Husbands, and Harvey 1993 ;  Nolfi and Floreano 2000 ). 
However, for the approach to reach its full potential in solving real-world problems, 
we believe that a better understanding of the influence of different factors driving 
evolution should be developed and summarized as guidelines. An additional step is 
then needed to practically use the evolved controllers in a verifiable and adaptable 
manner. 

 As a starting point in constructing guidelines for the evolution of cooperative 
robots, we turn to the biological systems that inspired evolutionary robotics. Over 
billions of years, animals have evolved to solve a variety of collective tasks from navi-
gation to collective hunting, which evolutionary biologists have studied extensively. 
By tapping into decades of research in biology, we explore whether the insights con-
cerning the conditions that allow for the evolution of cooperation in nature can be 
translated into evolutionary algorithms that are applicable to robotic problems. For 
this purpose, we test the biological predictions on a preliminary robotic experiment. 
The results obtained from this initial study are then used as a guideline for solving a 
problem where we evolve a group of flying robots in simulation that must cooperate 

 9   Evolving Cooperation: From Biology to Engineering 

 Sabine Hauert, Sara Mitri, Laurent Keller, and Dario Floreano 



204 Chapter 9

in forming and maintaining an aerial communication network in a rescue scenario. 
The simple, efficient, yet unintuitive solutions discovered through this evolutionary 
process are then reverse-engineered and implemented in hand-designed controllers. 
This approach is practical for real-world applications because hand-designed control-
lers can be easier to understand and to parameterize for different scenarios than 
evolved controllers. 

 9.2   Understanding the Evolution of Cooperative Behavior 

 9.2.1   Cooperative Behavior in Animals 
 Cooperative behavior has constituted one of the biggest mysteries in evolutionary 
biology, and perhaps in modern biology as a whole ( Dugatkin 2002 ;  Lehmann and 
Keller 2006 ;  Sachs et al. 2004 ;  West et al. 2007 ). This is because the theory of Darwin-
ian selection predicts that individuals should maximize their own reproduction, rather 
than altruistically increasing the reproductive success of others. However, evolutionary 
biology has come a long way in understanding cooperation by determining two 
mechanisms that may lead to the evolution of cooperative behaviors in groups of 
conspecifics. First, high relatedness between individuals in a group is expected to 
promote cooperative behavior within the group. This theory was formalized by  Ham-
ilton (1964)  and is thus commonly referred to as  “ Hamilton ’ s rule, ”   “ inclusive fitness 
theory, ”  or  “ kin selection theory. ”  A second theory that provides an explanation for 
the evolution of cooperative behavior is that of  “ group selection ”  ( Dugatkin and Reeve 
1994 ;  Lehmann and Keller 2006 ;  West, Griffin, and Gardner 2007 ). This theory states 
that selection  between  groups of individuals should result in cooperation  within  groups, 
regardless of within-group relatedness. It has recently been shown that the two theories 
are mathematically equivalent ( Dugatkin and Reeve 1994 ;  Hamilton 1975 ;  Lehmann 
et al. 2007 ). 

 9.2.2   Cooperative Behavior in Robots 
 When engineering collective robotic systems, we are interested in maximizing perfor-
mance. In many collective robotic tasks, performance can be increased if robots in a 
group cooperate toward a common goal. However, it remains unclear how groups of 
robots should be composed and selected to achieve maximal performance. In fact, a 
variety of methods are used in studies that report on evolving cooperative behavior in 
groups of robots (see  Waibel, Keller, and Floreano 2009  for a review), yet few explicitly 
motivate their choice of evolutionary parameters. 

 To study how cooperative behavior can evolve, we designed an experimental setup 
consisting of groups of robots that could emit and perceive light and were evolved to 
solve a foraging task. Because cooperative communication can potentially increase the 
performance of robot groups, this system allowed us to explore whether high 
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relatedness and group-level selection can lead to an increase in cooperative behavior, 
as biological theory predicts, and thus an increase in group performance. 

 In our experimental system, ten s-bot robots ( Mondada et al. 2004 ) placed randomly 
in a square arena must find a food source emitting red light and avoid a similar red 
poison source (  figure 9.1a ). The sources could only be distinguished once the robots 
were very close to them, by using their floor sensors to detect a disc of colored 
paper placed under each of the sources. Robots could cooperate by emitting blue lights 
in a way that provided information on the location of the food and poison sources to 
other robots. Each robot was controlled using a feedforward neural network, which 
processed blue and red light, in addition to the information on its own location (at 
food, poison, or elsewhere) to determine the speeds of its two tracks and whether to 
emit blue light or not. The weights of the neural network formed the genome of the 
robot, which evolved over 500 generations in a population of 1,000 robots. The per-
formance was calculated for each robot by counting the number of time-steps within 
the sixty-second trial during which it was at the food minus the number of time-steps 
spent by the poison, averaged over ten consecutive trials. At each generation the 200 

a b

 Figure 9.1 
 Experimental setup. (a) A food and poison source, both emitting red light, are placed 1 m from 

one of two opposite corners of the square (3m  ×  3m) arena. Robots (small circles) can distinguish 

the two by sensing the color of the circles of paper placed under each source using their floor 

sensors when driving over the paper. (b) The robot used for the experiments is equipped with 

two tracks to drive, an omni-directional (360 degree) vision camera, a ring of lights used to emit 

blue light, and floor sensors to distinguish food and poison sources. 
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best-performing robots were selected, replicated through cloning or crossover (with a 
probability of 0.2), and mutated (with a probability of 0.01 per bit) to form the next 
generation. For more details, see for example  Floreano et al. 2007 .    

 To test the effect of varying relatedness and the level of selection, four experimental 
treatments were used: (1) high relatedness, group-level selection; (2) high relatedness, 
individual-level selection; (3) low relatedness, group-level selection; and (4) low relat-
edness, individual-level selection. To form groups of low-relatedness individuals, we 
randomly selected 1,000 robots (with replacement) from the pool of the 200 best-
performing robots and assigned them to 100 new groups of 10 robots each for the 
next generation. In contrast, high relatedness was achieved by selecting 100 individu-
als from the pool of 200, and cloning each 10 times to form the 100 new groups of 
10 identical robots. Group-level selection was implemented by simply assigning the 
same performance score to all robots in a group that represented the average of the 
individual scores. Alternatively, in the individual-level selection treatments, perfor-
mance was calculated independently for each individual robot (see  Floreano et al. 2007  
for details). 

 In the two treatments where relatedness between robots was high, performance was 
significantly higher than when relatedness was low (MannWhitney test, all P  <  0.001, 
  figure 9.2 ). Group-level selection also resulted in higher performance when robots were 
highly related (P  <  0.05). However, when relatedness was low, robots selected at the 
group level performed significantly worse than those selected at the individual level 
(P  <  0.001).    
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 Figure 9.2 
 Mean ( ± SD) performance of robot populations during the last fifty generations for each of the 

four treatments (twenty replicates per treatment).  “ * ”  indicates that the bars are significantly 

different at P  <  0.05. Bars that are not compared are significantly different at P  <  0.001. 
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 Although this performance comparison seems to indicate that unrelated robots 
selected at the group level did not cooperate, an analysis of their behavior shows 
otherwise. Both high relatedness and group-level selection led to the evolution of 
altruistic communication (  figure 9.3a, b, and c ). For these treatments, two different 
communication strategies were observed. In some evolutionary runs, robots produced 
blue light in the vicinity of the food and were attracted to blue light, thus being likely 
to end up by the food (e.g., top right quadrant in   figure 9.3a ). In other runs, blue light 
was more likely to be emitted by the poison, and resulted in robots driving in the 
opposite direction and avoiding poison (e.g., bottom left quadrant in   figure 9.3a ). 
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 Figure 9.3 
 Relationship between signaling strategies and responses to blue light in the four treatments. Each 

dot is the average for the 100 colonies in one replicate after 500 generations of selection. Positive 

values for the signaling strategy indicate a tendency to signal close to the food, and negative 

values indicate a tendency to signal close to the poison. Positive values for the responses to blue 

light indicate attraction to blue light and negative values indicate repulsion (see  Floreano et al. 

2007  for definitions). The darkness of the points is proportional to the mean performance. 
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These two strategies, although not equally efficient, are both of a cooperative nature, 
because signalers and receivers evolved complementary strategies. However, when 
robots were unrelated and selected at the level of the individual, they emitted light by 
the poison more often than by the food, but were nevertheless slightly attracted to 
blue light (  figure 9.3d ). This strategy essentially constitutes a suppression of informa-
tion, and can therefore be seen as uncooperative behavior (for more information on 
this strategy, see  Mitri, Floreano, and Keller 2009 ).    

 These results are interesting in two respects. On the one hand, they show that the 
predictions of evolutionary theory hold in the case of evolutionary robotics. Since it 
is difficult to conduct similar experiments in living organisms, this test, within its 
limitations, provides some supporting contribution to theoretical discussions in 
biology (see  Floreano et al. 2007  and  Mitri, Floreano, and Keller 2009  for a discussion 
on this perspective). On the other hand, from an engineering perspective, it is inter-
esting that cooperative behavior between robots does not always imply high perfor-
mance and that this depends on the selection method. By designing an evolutionary 
algorithm using unrelated robots and selecting them at the group level, our results 
confirm that cooperative behavior between the robots can evolve, as expected from 
theoretical predictions. However, their performance has been found to be low com-
pared to other selection methods, such as selecting related individuals at the group 
level. This is due to the inherent inefficiency of this particular selection algorithm. 
Because robots are all different in a group and the group is selected as a whole, it is 
difficult to select high-performing individuals, while simultaneously avoiding select-
ing individuals with low performance (see also  “ credit assignment problem ”  described 
in  Waibel, Keller, and Floreano 2009 ). In addition, the composition of the groups 
changes at every generation, making it difficult for individuals to optimize their 
behavior with respect to the behavior of their group mates. Similar results have been 
obtained in a systematic study of collective object transportation by  Waibel, Keller, 
and Floreano (2009) . 

 In summary, we find that cooperation can evolve either if robots in a group are 
clones or if they share their performance scores with other members of their group. 
The highest performance in cooperative tasks is achieved when both these conditions 
are true. 

 9.3   From Biology to Engineering 

 The experiments described in the previous section allowed us to test biologically moti-
vated theories on the evolution of cooperation, and at the same time, to draw guide-
lines on the design of evolutionary algorithms for groups of cooperating robots. In 
this section we show how these guidelines can be applied to engineer a solution to a 
real-world problem. Engineering consists in finding the best possible solution to a 
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problem under some constraints. In the context of this chapter, this amounts to select-
ing the most appropriate evolutionary algorithm that is likely to lead to cooperation 
between robots and high performance. However, regardless of the performance of the 
evolved solution, it is often difficult to apply it directly to a real-world problem, 
because it is likely to be less predictable than a hand-engineered solution, which may 
result in costly failures. Alternatively, a process of reverse engineering may be applied 
to the evolved solution to derive a controller whose behavior and operating conditions 
are predictable while still capturing the simplicity and efficiency of the evolved 
solution. 

 To illustrate this process, we describe a situation where groups of flying robots must 
form communication networks between two rescuers in a disaster scenario as shown 
in   figure 9.4 . The robots are fully autonomous, such that the network of robots can 
be deployed by a single nonexpert rescuer on the ground. To create and maintain 
wireless bridges and avoid getting lost, the robots must distribute to find rescuers on 
the ground while staying within the communication range of one another. Flying 
robots have the advantage of navigating above obstacles while providing unobstructed 
wireless transmissions. The robots are required to work in environments with no access 
to GPS satellites or visual information (urban canyons, occluded environments, night 
operation). Therefore, they do not know their own position or the position of their 
neighbors. Instead they use local wireless communication and have proprioceptive 
sensors such as a compass, an altitude, and a speed sensor.    

 Figure 9.4 
 Artistic view of the use of a group of flying robots to establish communication networks between 

rescuers on the ground in a flood scenario. 
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 This problem is challenging because existing controllers for flying robots rely on 
position information and because there is no obvious strategy to design individual 
controllers that will lead to an effective communication network ( Hauert, Zuffery, and 
Floreano 2009a ). Furthermore, the performance of the robots can be measured only 
at the level of the team as a function of the quality of the resulting communication 
among rescuers. 

 9.3.1   Evolving a Group of Flying Robots 
 To explore this problem, we consider a simplified scenario in simulation, in which a 
group of robots must deploy and maintain a wireless communication network between 
two rescuers on the ground ( Hauert, Zuffery, and Floreano 2009a ). Twenty robots are 
launched by one rescuer at a rate of 1 every 15 s ( ± 7.5) and the group must then 
cooperate to find a second rescuer positioned within a  ± 30-degree angle of a predefined 
search direction and a distance of 500  ±  50 m. Once the communication link between 
the two rescuers is established, it must be maintained until the end of the mission, 
which lasts a maximum of thirty minutes. The robots are simulated using 
a physics engine in which we implement a first-order dynamics model of a fixed-
wing robot that flies at a speed of 10 m/s and turns with a minimum turn radius of 
20 m. These constraints bring interesting dynamics to the system since the robots 
cannot stop or turn on the spot like ground robots or hovercrafts. The communication 
range of robots and rescuers is of maximum 100 m with added noise between 90 m 
and 100 m. 

 Each robot is controlled using a feedforward neural controller consisting of three 
inputs, four hidden neurons, and one output controlling the turn rate of the robot 
(speed and altitude are constant). The first input to the network is the heading of the 
robot given by a magnetic compass. The second and third inputs are the number of 
network hops separating the robot from the two rescuers (high values indicate that 
the robot is disconnected), where network hops can be seen as the number of times a 
message sent from a rescuer needs to be forwarded from one robot to another before 
it reaches the robot in question (number of lines between a rescuer on the ground 
and a robot in   figure 9.4 ). The genome of each robot consists of the 16 synaptic 
weights of the neural network, each represented by 8 bits, making a total genome size 
of 128 bits. 

 Based on the results obtained in the previous section, we use homogeneous groups 
and apply group-level selection. The performance of each group is computed as the 
minimum number of robots that need to fail for the communication between the 
rescuers to break, averaged over thirty minutes and ten missions. This performance 
measure favors the rapid creation of communication pathways and the robustness of 
the network over time. As in the foraging experiment with homogeneous individuals, 
a population of 100 genomes is used, which are cloned twenty times to construct 100 
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groups of twenty robots each. After ranking the genomes according to the measured 
performance of the robot groups, the twenty best genomes in the population are 
copied to the new population (elitism) and cloned to make groups of twenty robots 
each. The remaining population is generated by repeatedly selecting two random 
individuals from the best 30 percent of the genomes, applying one-point crossover to 
the pair with a probability of 0.2 and then mutating the newly created individual with 
a probability of 0.01 per bit, and cloning it twenty times. 

 With these settings, artificial evolution results in controllers for flying robots that 
are able to create and maintain a communication network between the rescuers. At 
the end of the evolutionary process, robots with the best evolved controller over all 
populations in all generations were tested in 1,000 consecutive missions, of which 975 
missions led to the creation and maintenance of a network between the two rescuers. 
As shown in   figure 9.5 , these robots form a chain that translates over the area to be 
searched until the second rescuer is found. The chain then stays on the spot to main-
tain the communication link.    

 9.3.2   Reverse Engineering 
 Robot controllers for real-world applications must often adapt across different sce-
narios depending on the needs of a given operation (different environment, different 
number of robots, slightly different task, etc.). However, evolved controllers are con-
strained to scenarios for which they were evolved. Furthermore, evolved controllers 
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such as neural networks, electronic circuits, and programs are not always easy to 
understand. This makes it difficult to evolve robots that are rapidly and robustly usable 
out of the box in unexpected situations. Possible solutions to this challenge include 
evolving a different controller before each operation. For this to be practical, the evo-
lutionary process must be extremely rapid and portable. While most current evolution-
ary experiments are conducted over several hours or even weeks on large computer 
clusters, the natural increase in computational resources and power might allow for 
such an approach in the future. Moreover, one could imagine evolving a controller 
that takes as an input the parameters of the environment. This is indeed a promising 
approach, although it is currently challenging to find optimal controllers for different 
combinations of parameters because of current limitations in evolving multi-objective 
systems ( Urzelai and Floreano 2001 ). Another solution would be to allow the system 
to evolve online, provided that it can be given some time to fail and learn ( Floreano 
and Mattiussi 2008 ). This is not necessarily obvious for all applications, including 
search-and rescue missions. 

 Here, we propose to address this issue by reverse engineering high-performing con-
trollers found by the evolutionary algorithm. In doing so, we aim to build a control 
model with a limited set of variables that captures the simplicity and efficiency of the 
evolved solution. To proceed, we analyze the effect of each input of the best evolved 
neural controller on the turn rate of the robot (see  Hauert, Zuffery, and Floreano 2009b  
for details). Through this systematic analysis, we identify three simple behaviors per-
formed by the individual robots: 

 1.   Robots that are connected to the launching rescuer, even indirectly, move away 
from it (  figure 9.6 , low hop values). 
 2.   Robots that are disconnected from the launching rescuer, move toward it with a 
different radius than when connected (  figure 9.6 , high hop values). 
 3.   Robots connected to both rescuers turn following small circular trajectories.   

Number of hops from the launching rescuer
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

100 m

 Figure 9.6 
 Effect of the number of hops that separate the launching rescuer from a robot on its trajectory. 

Here, we plot the trajectories of the best evolved controller over 30 s. The robot was never con-

nected to the second rescuer during these experiments. 
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 The effect of these individual behaviors on the behavior of the entire group can 
be hypothesized as follows. As long as robots are being launched, they remain con-
nected to the launching rescuer (at least indirectly) while advancing in a common 
direction. This results in the formation of a chain. Once all robots have been launched, 
the chain continues to advance until it disconnects from the launching rescuer. To 
reconnect, the chain changes direction and moves toward the launching rescuer. Not 
only does the chain reconnect, but it also translates along the communication range 
of the rescuer, effectively sweeping through the search area and eventually finding 
the second rescuer. This is due to the different turn radius of the robots when 
disconnected or connected to the launching rescuer. Finally, robots connected to 
both rescuers maintain the communication pathway by performing small circular 
trajectories. 

 To explore whether the extracted behaviors yield similar collective behavior as the 
evolved controllers, we then translate the rules into an algorithm ( Hauert, Zuffery, and 
Floreano 2009b ). To do so, we simplify the strategy found through evolution by only 
considering if a robot is receiving messages from the rescuers (i.e., whether it is con-
nected to the rescuers rather the number of hops separating it from the rescuers). The 
robot is assumed to fly at a constant speed  v  and to form circles of radius  r  min  or more. 
The reverse-engineered controller, summarized as follows, outputs the turn rate   ω   of 
the robot based on the global direction   ψ   s  in which the robots must search for the 
second rescuer, the orientation of the robot   ψ  , and whether the robot is connected or 
disconnected from the rescuers. 

 When the robot is connected to the launching rescuer only (  figure 9.7a ): 

  ω
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 When the robot is disconnected from the launching rescuer (  figure 9.7b ): 
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 Finally, when the robot is connected to both rescuers (figure 9.7c): 

  ω = { v
rmin

  

 where obtuse returns true if there is an obtuse angle between the two variables and 
r1, r2, r3, and r4 are parameters of the controller.    
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 Using these rules, we are able to reproduce the strategies found through evolution, 
namely chain formation, translation, and network maintenance. Furthermore, the 
rules are easier to understand than a neural network and the trajectories of the robots 
can be mathematically modeled and subsequently parameterized (by setting  r  1 ,  r  2 ,  r  3,  
and  r  4 ) for a different desired area coverage. This can be intuitively explained by the 
fact that the controller is based on simple geometry (circular trajectories). Therefore, 
changing the ratio between parameters  r  1  and  r  2  will lead to robot trajectories that 
move away from the launching rescuer at different speeds and thus affect the length 
of the robot chain. Furthermore, the relationship between the trajectory of a robot 
when connected to the launching rescuer (defined by  r  1 ,  r  2 ) or disconnected (defined 
by  r  3 ,  r  4 ) will determine the speed at which the chain translates. 

 9.4   Conclusion 

 In this chapter, we have taken inspiration from the predictions of evolutionary biology 
regarding the evolution of cooperative behavior, and systematically compared the 
effect of different evolutionary parameters on a collective system of foraging robots 
evolved artificially. Through these experiments, we have derived a set of guidelines, 
which state that cooperative behavior, as well as a high group performance can be 
achieved if groups are composed of genetically identical individuals and selected 
at the level of the group. We then applied these guidelines to a real-world problem 
where flying robots with limited sensory capabilities were required to create commu-
nication networks in disaster areas. Finally, we proposed to reverse engineer the best 
evolved solution to design a robot controller model whose behavior is well understood 
and predictable. 
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 Figure 9.7 
 Robot trajectories performed by a reverse-engineered controller with parameters  r  1 ,  r  2 ,  r  3,  and  r  4  

depending on the connection to the rescuers and the general search direction   ψ  s  . 
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 This chapter presents the first step toward evolving groups of robots for real-
world problems. Although the results shown here have been conducted in simula-
tion, the reverse-engineered controllers have also been implemented on board real 
flying robots ( Hauert 2010; Hauert et al. 2013 ). In addition, we aim toward more 
complex scenarios involving windy environments, increasing the number of rescuers 
or allowing for mobile rescuers. Our approach has thus shown the potential of 
evolutionary robotics in generating efficient control solutions to complex engineer-
ing problems, such as controlling groups of robots. 

 More generally, we believe that the biological literature is a promising starting point 
to understanding many aspects of evolutionary systems. This is because many of the 
factors influencing systems of evolving robots have been extensively studied by biolo-
gists. The results we have reported in this chapter are only the tip of the iceberg, 
however. Many open questions remain on how to design evolutionary robotic systems 
and how to apply them to complex real-world applications. In particular, there is still 
a widely untapped source of biological theories that could be used for the purpose of 
ER, such as theories concerning division of labor, coevolution, and neuroscience. These 
guidelines extracted from biology to evolve controllers for robots may potentially lead 
to the compilation of a complete  “ reference manual ”  on how to evolve robots that 
can solve competitive tasks outside the lab. 
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 10.1   Introduction 

 In our everyday lives, we conduct complex cognitive behaviors without noticing their 
complexity. We can build up complex action programs for different goals without 
having to think about them, for instance, when going to a nearby convenience store 
or preparing a cup of coffee. An interesting point is that in many cases such goal-
directed actions are compositional, meaning that entire actions can be decomposed 
into a set of reusable action units or behavior primitives.  Arbib ’ s (1981)  motor sche-
mata theory says that a diversity of actions can be generated by flexibly combining 
different behavior primitives stored in a memory pool. Some neuroscience researchers 
have considered that executive control in the prefrontal cortex (PFC) is responsible for 
this type of compositional cognitive operation ( Fuster 1989 ). However, there is still 
much debate over the details of neural mechanisms and architectures that might 
underlie this executive control. In this chapter we propose that evolutionary robotics 
(ER) methods can be useful tools in helping to illuminate this question by allowing 
us to explore it without having to make too many assumptions, as explained in earlier 
chapters of this book (particularly chapter 2). 

 It is widely considered that executive control in the PFC is not just for combining 
or sequencing behavior primitives in goal-directed actions, but is also involved with 
other higher-order cognitive tasks such as monitoring, evaluating, inhibiting, and 
sustaining other ongoing processes in a role that is analogous to that of a computer 
operating system. A prototype test for examining such executive control capabilities 
in humans is the Wisconsin Card Sorting Test (WCST) ( Berg 1948 ;  Milner 1963 ), for 
which subjects are invited to discover and apply a given card-sorting rule based on 
reward and punishment feedback. During the experiment, the rule is changed unpre-
dictably by the experimenter and must be rediscovered. Although it is said that this 
test requires working memory, for the rule in effect at any given moment, in the dorso-
lateral prefrontal cortex (DLPFC) ( Mansouri, Matsumoto, and Tanaka 2006 ); and con-
flict monitoring in the anterior cingulate cortex (ACC) along with reward/punishment 

 10   Understanding Higher-Order Cognitive Brain Mechanisms by 
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feedback ( Kerns et al. 2004 ), the related local functionality in the PFC is still a matter 
of ongoing debate ( Stoet and Snyder 2009 ). 

 Existing computational modeling studies on the WCST tend to impose discrete and 
algorithmic computational processes on the models based on the common assumption 
that, although posterior cortices can be characterized as fundamentally analog systems, 
the PFC has a more discrete, digital character ( O ’ Reilly 2006 ;  Dayan 2007 ). Some 
studies ( Dehaene and Changeux 1991 ;  Stemme, Deco, and Busch 2007 ) have employed 
a local and discrete representation in neural network models where currently adopted 
rules are represented by the activation of the corresponding local units.  Rougier and 
O ’ Reilly (2002)  have proposed an on-off type of gating operation acting on working 
memory for storing information about currently adopted rules. 

 We see similar ideas of local representation and their external manipulations in 
constructing neuronal models for compositional action generations.  Tani and Nolfi 
(1999)  once proposed a hierarchical model in which each behavior primitive is stored 
in a corresponding local modular network at the lower level whereas a higher level 
network sequentially selects activated local module one by one by opening and closing 
gates associated with the local modules.  Haruno, Wolpert, and Kawato (2003)  also 
considered a similar model. Although an idea of locally representing rules or primitives 
as manipulable objects for the higher executive control level is easily understandable 
from the computational view, it is not yet clear that real biological brains actually 
perform in this manner. In particular, electrophysiological experiments on monkeys 
trained to perform WCST analogs showed that assemblies of DLPFC cells encode rules 
through different distributions of dynamically changing firing activity ( Mansouri, 
Matsumoto, and Tanaka 2006 ). 

 Rather than hand coding specific computational mechanisms in model networks, 
our proposal is to look at what sorts of neural mechanisms could appear by means of 
self-organization of internal structures in simple neural network models through their 
adaptation to achieve target tasks by utilizing the evolutionary robotics scheme ( Koza 
1992 ;  Cliff, Harvey, and Husbands 1993 ;  Nolfi and Floreano 2000 ). More specifically, 
general types of neural network models with recurrent connectivity are evolved to 
perform robotics tasks involving two classes of higher-order executive control func-
tions using a standard genetic algorithm to search for optimal synaptic weights maxi-
mizing the task fitness. One task involves a compositional goal-directed action 
generation and the other is concerned with a rule-switching behavior similar to WCST. 
If the same neural mechanism consistently appears for each robotics task in repeated 
evolutionary runs, comparable principles might be applicable also in real brains. The 
following sections will briefly describe the simulation experiment for each target task 
one by one. For further details of each experiment refer to ( Paine and Tani 2005 ; 
 Maniadakis and Tani 2009 ). 
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 10.2   Goal-Directed Compositional Action Generation 

 An exploratory navigation task of a simulated mobile robot was considered for in -
vestigation of possible neural mechanisms for goal-directed compositional action 
generation. 

 10.2.1   Model 
 A simulated mobile robot equipped with eight proximity sensors and two motor-driven 
wheels explores a maze environment shown in   figure 10.1 . The task of the robot is to 
find navigation paths reaching as many different goals as possible from a start position. 
This navigation task can be deconstructed into two levels of system functions. The 
first level should deal with collision-free maneuvering, going straight along a corridor, 
and turning left or right at corners. The second level should deal with sequencing the 
turning at corners in order to reach a set of different goals. The goal of the study is to 
understand how two such levels of functions can be self-organized in neural networks 
from scratch without showing explicit cues. Our navigation task is unique compared 
to other navigation tasks conducted by other groups ( Ziemke and Thieme 2002 ;  Nolfi 
2002 ;  Blynel and Floreano 2003 ) because our task requires the robot to deal with mul-
tiple goals. It is expected that this requirement will force the neural system to organize 
to make use of compositionality.    

 The robot is implemented with a fully connected CTRNN (continuous-time recur-
rent neural network) that is evolved by a genetic algorithm (GA). The activation 
dynamics of each neuronal unit is given by 

  τ �u u w ai i ij j= − + ∑   (10.1) 

  a u bi i i= +( )σ   (10.2) 

1

3 4 7 8

2 5 6

P1 P2

 Figure 10.1 
 A simulated mobile robot learns ways to reach eight different goals starting from the home 

position. 



222 Chapter 10

 Where  u  is the activation,  a  the output,  w  a connection weight, and  b  a bias,   τ   a 
time constant and  σ x e x( ) ( )= + −1 1/   is a standard sigmoid function. We tested two 
types of CTRNNs as shown in   figure 10.2 .   Figure 10.2a  is called a  “ bottleneck ”  network 
since the information flow between the top and bottom levels is narrowed into a 
bottleneck. (The neural activations can propagate to the other level only through the 
bottleneck neurons [BN].) The bottleneck CTRNN has five neurons in the lower part, 
two BNs, and four neurons in the upper part. There are two so-called task neurons 
(TN) in the upper part whose functions will be explained later. All neurons in the 
lower part receive eight proximity sensor inputs and output to two motor neurons, 
driving left and right wheels, through synaptic connections.   Figure 10.2b  is a standard 
CTRNN consisting of nine neurons including two TNs. All neurons receive eight 
sensory inputs and output to two motor neurons.    

 We employed the ideas of initial sensitivity to generate combinatorial action 
sequences in the current task. The idea in the current setting is that the robot can 
reach different goals depending on the initial state values set in the TNs shown in 
  figure 10.2 . In the evolutionary process, a set of the initial state values in the task goal 
neurons evolves, along with the synaptic weights and the biases. The time constant   τ   
for each neuronal unit is also evolved. The fitness function is designed to increase the 
number of different goals reached with the set of evolved initial state values. We 
repeated the evolutionary runs twenty times for both types of networks for statistical 
comparisons of their performances. Each evolutionary run is conducted for 200 genera-
tions with an eighty-robot population per generation. 

 10.2.2   Results 
 Our results showed that the best performance is obtained in the bottleneck network. 
In twenty evolutionary runs, the average number of different goals reached was 5.1 

Set initial task neuron states

Set initial task neuron states

Bottleneck

Sensory inputs Sensory inputsMotor inputs Motor inputs

a b

 Figure 10.2 
 (a) CTRNN with a bottleneck and (b) standard CTRNN. 
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for the bottleneck CTRNN, and 2.3 for the standard CTRNN. The bottleneck CTRNN 
found five or more goals on fourteen of twenty runs. The standard CTRNN found them 
on only six runs. 

 The temporal neuronal activation profiles for an evolved bottleneck network, 
which found six different goals, are shown in   figure 10.3 . The profiles correspond to 
a right-left-right turn sequence, starting from the home position that reaches goal 6 
of   figure 10.1 .    

 The top row shows the activation profiles of two TNs and two BNs (see   figure 10.2a ). 
The bottom row shows the profiles of the two motor output neurons in the lower part 
of the network. Observe that the motor outputs show much faster dynamics than those 
of the TNs and BNs. Actually, we found that the time constants for the motor neurons 
evolve to be much faster than those of the TNs and BNs in all successful evolutionary 
runs. The activation profiles of the BNs correlate with right and left turns, denoted by 
labels in the top figure. For the right turn, both BNs have high activation values, while 
BN-2 takes a low value and BN-1 slightly decreases for the left turn. TN-2 shows a 
similar type of encoding to the BNs, while the dynamic profile of TN-1 seems uncor-
related with the turn sequence. These profiles suggest that certain structures in the 
levels are self-organized in the bottleneck network. The following analysis examines 
such structures. 

 Figure 10.3 
 Neuronal activity for a right-left-right turn sequence in the bottleneck network. Top: neuronal 

activity of bottleneck and task neurons, respectively; bottom: activities of motor output nodes. 
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 First, functions of the BNs were examined. We constructed a phase space analysis 
for the BNs, focusing on the cornering behavior at the T branch.   Figure 10.4  indicates 
how the cornering behavior varies when the activation of two BNs are clamped exter-
nally to various values. It is observed that the BNs ’  activation space is divided into 
three regions, gray, white, and black, which correspond to left turns, right turns, and 
collisions with the walls, respectively. It is considered that the BNs ’  activation states 
encode the behavior primitives of turning left or right in branches.    

 Next, we constructed a phase space analysis for the task neurons, initial states, 
focusing on their possible encoding for the turning sequences. The results can be seen 
in   figure 10.5 , where the regions in the initial state space that reach different goals are 
labeled by the corresponding turn sequence, for example, LRR for a left-right-right turn 
sequence. The turn sequence is denoted by number in the plot (see the legend on the 
right in the figure).    

 It is observed that the sequence patterns are arranged in clusters in the TN initial 
state space. First, the space is grossly clustered based on the first turn direction, left or 
right, of the movement sequence, as shown by a thick solid line in   figure 10.5 . Each 
of these two clusters is then further divided into topologically ordered subclusters, 
depending on the second turn direction of the movement sequence, as shown by a 
solid line. These subclusters are still further divided into smaller clusters, depending 
on the third turn as shown by the dashed lines. These smallest clusters neighbor each 
other and share the first two turns of their sequences in common. In other words, the 
turn sequences are hierarchically ordered into progressively smaller regions of the 
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 Phase space analysis for two bottleneck neurons. 
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initial TN activity space as additional turns are added. As the complexity of the move-
ment sequence increases, so too does the initial sensitivity to the TN activities. 

 In order to clarify the functional roles of the upper level of the bottleneck network, 
we observed the activities of the upper-level neurons while they were decoupled from 
the lower-level ones — that is, disconnecting all the synaptic connections from the 
lower-level neurons to the BNs. It turned out that the activities over time of the TNs 
and BNs are mostly the same as the original ones provided that the same initial states 
are set in TNs. Compare the disconnected case shown in   figure 10.6  with the original 
one shown in   figure 10.3  for reaching goal 6.    

 The results imply that the whole network was evolved such that the upper level 
generates top-down internal images or plans for achieving the goals without accessing 
the sensory inputs, and that the lower level deals with actual maneuvering control of 
the robot based on the plans. More specifically, the upper level generates the top-down 
anticipation of how the BNs ’  states should develop based on the goal information 
encoded in the initial states of the TNs while the states of the BNs activate the behavior 
primitives of turning left or right in sequences in the lower level. 

 Finally, we consider why the case of the standard fully connected CTRNN cannot 
evolve successfully as compared to the bottleneck case. It is assumed that evolving 
different dynamic functions with different time constants is difficult within a single 
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fully connected network because it would cause too much interference among them. 
In the bottleneck case, fast and slow dynamics can be evolved more easily by having 
less interference with each other since they are segregated by the bottleneck of the 
network. Our experiments showed that a class of level-structured functions can be 
evolved provided that adequate topological constraints such as bottlenecks or hub-like 
connectivities are imposed on the network. This should be also true for real brains that 
are known to have partial connectivity segregation between the PFC and the posterior 
cortices. Our speculation is that such partial segregation would make the PFC a special 
place suitable for the executive control of other brain regions. 

 10.3   Rule-switching Task 

 We considered a robotic rule-switching task similar to the WCST to examine possible 
neural mechanisms for executive control of rule switching. 

 10.3.1   Model 
 A mobile robot equipped with range sensors for obstacles and light sensors navigates 
a T-maze environment (see   figure 10.7 ) by following the current rule set by an experi-
menter. Two light sources are located on the left and right sides of the walls near the 
start position at the bottom of the T-maze. In each trial, the robot (starting from the 
start position) perceives light from either side and proceeds to determine the branching 
(left or right) depending on the currently adopted rules and the side from which the 
light was perceived. If the robot reaches either side of the T-wings within 165 simula-
tion steps by following the current rule, it receives no punishment signals and the trial 
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 Figure 10.6 
 The profiles of BNs and TNs activities in upper-level disconnected case (reaching to goal 6). 
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Opposite side (OS) ruleSame side (SS) rule

Robot:

Light:

Target:

Punishment:

Sample Response Sample Response

Sample ResponseSample Response

 Figure 10.7 
 A graphical interpretation of the two behavioral rules used in our experiments. Light samples are 

depicted with double circles, each target location is depicted with an X, and the punishment area 

is depicted with a gray circle. 

is regarded as successful. However, it receives a punishment signal if it fails. After each 
trial, the robot is moved back to the start position by the experimenter. It should be 
noted that the internal neural dynamics are continued without being reset when the 
position is reset. In the current experiment, two rules are considered, namely the same 
side (SS) rule and the opposite side (OS) rule. In SS, the trajectory of the robot branches 
in the same direction as that of the light source, whereas in OS it branches in the 
opposite direction, as shown in   figure 10.7 .    

 The robot acquires each of the preceding two rules and furthermore learns that the 
currently adopted rule should be switched to the other rule if a punishment signal has 
been received. It should be noted that there is no explicit cue for the switching of rules 
and it is unpredictable when the switching will take place. After repeating the same 
rule for thirteen trials, there is a chance that the experimenter will switch the rule. 

 Two types of CTRNN architectures with/without the bottleneck connectivity were 
evolved to achieve the task and their performances were compared (  figure 10.8 ). Both 
networks, consisting of the same number of neural units ( N  = 15), have connections 
to the same input in the form of range sensors, light sensors, and punishment signals 
and the same output in the form of two wheels driven by a motor. The connection 
weights in these two networks were evolved by using a standard genetic algorithm 
(GA) with a fitness function based on the success rate. In this model, the time constant 
  τ   is set to a constant value for all neural units.    

 10.3.2   Results 
 We examined the robot performances for both the fully connected and the bottleneck 
CTRNN, conducting ten independent evolutionary runs for each network type. For 
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a b

 Figure 10.8 
 (a) CTRNN with bottleneck and (b) fully connected CTRNN employed for the rule-switching task. 

the case of the bottleneck CTRNN, eight out of the ten evolutionary processes con-
verged successfully producing controllers capable of accomplishing the given tasks. 
However, only three out of the ten evolutionary processes converged successfully for 
the case of the fully connected CTRNN. These results are analogous to the one in the 
previous experiment. Due to the significantly better performance of the bottleneck 
CTRNN, for the rest of the section we will concentrate our study on the results from 
the bottleneck CTRNN case. 

 The behavior of the robotic agent for one representative bottleneck CTRNN is dem-
onstrated in   figure 10.9 . During trials 1 – 4 the robot is successfully following the oppo-
site side (OS) rule. Then, in the fifth trial the rule is unexpectedly changed to same 
side (SS) rule, and the agent produces a wrong response driving in the punishment 
area. At that time, the agent understands that its current response strategy is not correct 
anymore, and it adopts another response rule. Accordingly, it adopts the SS rule, 
responding successfully for the next eleven trials, avoiding punishment signals. The 
rule is unexpectedly changed again in trial 17, where the robot gives a wrong response 
driving again into the punishment area. This time it takes two trials for the agent to 
revert back to the OS rule. After that, the agent gives correct responses in the subse-
quent trials.    

 Interestingly, it was found that robot paths are significantly correlated with the 
currently adopted rule. For example, every time the robot turns left according to 
the SS rule it follows very similar trajectories (compare trials 8, 9, 15 in   figure 10.9 ). 
The same is also true when it turns to the right for the same rule (see trials 12, 13, 16 
in   figure 10.9 ). A similar relationship can be observed for the paths of the OS rule 
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(compare for example right turns in trials 3, 20, 21, and additionally compare left 
turnings in trials 19, 26, 27). However, by comparing same side turnings under differ-
ent rules, we can see different trajectory characteristics (for example comparing trials 
12, 13 with trials 24, 25). This means that robot trajectories are somehow involved in 
distinguishing the two rules. In other words, the CTRNN controller takes advantage 
of its embodiment and environmental interaction in generating specific maneuvering 
under the currently adopted rule. 

 We turn back now to the results shown in   figure 10.9 , and their relationship to the 
neural activities shown in   figure 10.10 . We previously commented that we observed 
very similar behaviors every time the robot responds to the same side, following a 
given rule (e.g., for all left turns of the SS rule). Additionally, very similar activation 
patterns are observed in the higher- and lower-level neurons in each one of these cases. 
This means that the composite CTRNN controller has stored internally a set of differ-
ent behavioral procedures, which are properly selected and expressed, based on the 
activity of the higher-level neurons and the sensory light input. This emergent func-
tion is similar to the one in parametric bias neurons ( Tani and Ito 2003 ;  Nishimoto 
and Tani 2004 ), which has been shown to facilitate storing and recalling a set of 
behaviors to the same network.    

 Figure 10.9 
 The behavior of the agent in a sequence of trials. The light is depicted with a double circle, the 

goal position is depicted with an X, the punishment area is depicted with a gray circle, while the 

robot path is depicted with a black line starting from the bottom of the T-maze. 
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 After conducting attractor analysis, neural characteristics correlated to SS and OS 
rules were identified in both the higher and the lower part of the CTRNN. Specifi-
cally, for each rule, we asked the agent to perform 1,000 trials with a randomly 
located light source either on the left or right side at each trial. We observed that 
after an initial transient period, the agent ’ s behavior always converges to the correct 
response strategy by utilizing the punishment feedback for each rule, implying that 
rule-based attractors have emerged in the network dynamics. To confirm this, the 
phase plots for the higher- and lower-level neurons for each rule are shown in   figure 
10.11 . For each rule, the same shape of attractor appears in the plot in repeated 
examinations. As was expected, for each rule a distinct invariant set of dynamically 
changing trajectories is observed in the higher-level neural activity. Additionally, we 
can see that distinct invariant sets have also emerged in the lower level. It can be 
seen that the shapes of the invariant sets in the higher level are much more compact 
than the ones in the lower level. This implies that the higher level functions as a 
working memory to memorize the currently adopted rules with abstraction, whereas 
the lower level takes care of the details of sensorimotor control by following the 
adopted rules. Then, the rule switch is enabled by a transition of dynamic state from 
one attractor to the other as triggered by the punishment feedback. Because the same 

a b

Turn left Turn right Turn left Turn right

 Figure 10.10 
 The activation of two higher-level (H-N1, H-N2) and two lower-level (L-N1, L-N2) neurons when 

the agent follows (a) the SS rule and (b) the OS rule. SS is depicted with a solid line while OS is 

depicted with a dashed line. 
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 Figure 10.11 
 The phase plots of higher- and lower-level neural activity when the agent follows (a) the SS rule 

and (b) the OS rule. In the figures of the first row, the axes  x  and  y  correspond to the activity of 

neurons H-N1 and H-N2, while in the figures of the second row the axes  x  and  y  correspond to 

the activity of neurons L-N1 and L-N2. 
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dynamical mechanism has been observed in all successful evolutionary runs, the 
attractor encoding of rules and their state transition might be a general mechanism 
for the executive control of the rule switching.    

 Furthermore, we found that the same model can achieve a more complex rule-
switching task with three rules by self-organizing the same attractor switching mecha-
nism as the result of evolution (see  Maniadakis and Tani 2009 ). The only difference 
was that the rule switching takes a greater number of trials for the transition period 
in the three rules case. This is natural because there is a potential ambiguity in select-
ing alternative rules in the case of punishment for the current rule. 

 10.4   Discussion 

 This chapter has described how executive control functions can be self-organized for 
two different higher-order cognitive tasks by conducting neuro-evolutionary robotics 
experiments. In the first experiment, two different levels of functions have self-orga-
nized as a result of evolution: one is to sequence behavior primitives of either left or 
right branching for different goals by utilizing the initial sensitivity characteristics; the 
other is to realize the sensorimotor control associated with the behavior primitives. 
The executive control in this task was attained successfully by utilizing a bottleneck 
type of information flow constraint in the model network. 

 The results of the second experiment indicated that the same bottleneck constraint 
also enhances the performance in executive control for rule switching. As a result of 
evolution, multiple attractors self-organize in the network dynamics where each attrac-
tor embeds a corresponding rule and the rule switching is enabled by state transitions 
from one attractor to another one triggered by punishment feedback. The neural acti-
vation in the higher level encodes abstract information about the currently adopted 
rules as a working memory, whereas the neural activation in the lower level takes care 
of sensorimotor-level control for the rules. It is noted that  Ziemke (1996)  showed that 
an RNN controller evolved by a genetic algorithm can achieve some context switching 
tasks that are analogous to our rule-switching task. However, because Ziemke ’ s task 
does not involve the complexity of rules but is simply involved with sensory situations, 
his task does not require the organization of any functional hierarchy like that shown 
in our results. 

 One interesting finding was that the neural internal representation for the behavior 
primitives or the rules achieved by evolution turn out to always be distributed rather 
than local. The distributed representation is considered to have some advantages over 
the local one. First, the distributed representation can be more compact than the local 
one because if there are common structures between different primitives or rules, they 
can be shared. In other words, the distributed representation can represent what is 
distinct or common among others efficiently in one body of memory structure and 
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therefore it can achieve generalization more easily than the local one. This cannot be 
afforded by the local representation scheme in which all memory items are isolated 
in local modular networks. Second, there is a stability problem in the local representa-
tion scheme ( Tani et al. 2008 ). The instability in the local representation scheme 
originates from the fact that the currently activated primitives or rules have to match 
exactly with one of a finite number of stored memory modules. If a near miss takes 
place in the matching, the winner-take-all dynamics of selecting the most appropriate 
memory module tends to be unstable. In the case of the distributed representation, 
the primitives or rules in the lower level in the bottleneck architecture are represented 
with sort of  “ elasticity ”  along with smooth changes of the bottleneck neuron-
activation values. For example, exact trajectories for left turning or right turning in 
the first experiment can modulate with analog patterns of bottleneck neuron activa-
tions. When the way of turning left or right has to be slightly modulated at each 
instance, this modulation would cause only minor modulations in the activations of 
the bottleneck neurons in a bottom-up manner. It is strongly suspected that the evo-
lutionary processes tend to select a distributed representation rather than a local one 
because of these advantages. 

 It is, however, interesting to see that the evolutionary processes are likely to gener-
ate distinct locality in representing functional levels in both experiments. This might 
be because there are no shared structures between the memory contents at different 
levels, that is, behavior primitives and their sequencing or working memory of current 
rules and their sensorimotor details. If the network attempts to represent contents 
belonging to different levels in a distributed manner, its performances become worse 
as has been shown in the results of the fully connected network cases. 

 Many computer scientists have considered that higher-order cognition dealing with 
some hierarchy should involve combinatorial symbolic computation processes. This 
is, however, not always true because dynamical systems defined in continuous time 
and space can also exhibit combinatorial complexity by utilizing their nonlinear 
systems characteristics such as parameter bifurcation and sensitivity to initial condi-
tions relating to chaos ( Wiggins 1990 ;  Crutchfield 1989 ;  Tani and Fukumura 1995 ). 
Actually our evolutional neuro-robotics experiments have suggested the possibility 
that even higher-order cognition involved with the executive control of primitives and 
rules can be realized by adopting analog neural dynamics. In this situation, the top-
down executive control function assumed to exist in the prefrontal cortex can have a 
more natural interaction with the posterior cortex, which is responsible for the bottom-
up sensorimotor processes, because both sides share the same metric space of analog 
dynamical systems, as our group has discussed for more than a decade ( Tani 1996 , 
 1998 ;  Yamashita and Tani 2008 ). In fact, our simulation results in the rule switching 
task have shown that the sensorimotor level embodiment positively participated in 
the encoding of higher-level rules. 
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 Evolutionary neuro-robotics could provide a new approach to computational neural 
modeling studies. On the one hand, conventional neural modeling studies usually 
begin with computational frameworks predefined in detail by the researchers them-
selves. Then, the purpose of the simulation experiments is to validate the performances 
of the models by identifying possible parameter ranges. On the other hand, the evo-
lutional neuro-robotics studies start with computational experiments on dynamic 
interactions among neural systems, bodies, and environments to achieve specific cog-
nitive tasks without making assumptions about the exact mechanisms. Such compu-
tational experiments could show us novel neural mechanisms to solve given cognitive 
tasks that the experimenters could not have imagined beforehand. If such neural 
mechanisms appear repeatedly as the results of evolving simple neural network models, 
the same principle may well be applicable also in real brains. 

 We, however, admit that the current CTRNN model is too simple to support the 
neuroscientific reality even at the minimum level. Future research will consider the 
inclusion in the models of known neurophysiological constraints such as anatomical 
connectivity and neurochemical substrates. 
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 11.1   Introduction 

 Natural evolution has produced humans that can walk and talk, without any explicit 
design process; Darwinian evolution has taken the role of the Blind Watchmaker. The 
process took some four billion years overall, with inconceivably immense resources 
and plenty of dead ends. It was not aimed, we may assume, at the end goal of walking, 
talking humans; there are certainly plenty of viable species that neither walk nor talk. 

 A human designer, aiming to replace at least part of the explicit design process by 
an evolutionary robotics (ER) methodology based on Darwinian evolution, will have 
comparatively tiny resources and a limited timeframe. There are many possible motives 
for using ER ( Harvey et al. 2005 ), and the one presented here can be called an engi-
neering motivation: to design a mechanism for a specific application. The use of ER 
will only be justified to the extent that it produces better results than can be expected 
through conventional design methods. The human engineer will have a focused goal, 
and will want to apply every trick that can be found to speed up the evolutionary 
process. There will typically be a continuing interplay between the role of  “ blind ”  ER 
and the vision of the engineer as a way of iteratively finding the evolutionary pathways 
toward the desired solution (chapter 4, this volume); we present here one case study 
of how this can work. 

 The engineering goal in our case study is the design of efficient and robust machines 
for bipedal walking in any direction on both flat and irregular surfaces. Bipedal robots 
have the potential to replace or assist humans in the types of terrain that they use, 
including rugged surfaces outdoors and steps and stairs indoors. It turns out that rep-
licating human walking is a challenge. One reason human locomotion is so efficient 
is that it leverages passive dynamics to reduce energy consumption and uses the elastic 
nature of tendons to store and release energy; these considerations have been missing 
from traditional robot design. Here we present one part of a larger body of work 
undertaken by the first author of this chapter in doctoral research on the development 
of bipedal walking ( Vaughan 2007 ). The results presented include the successful 

 11   Incremental Evolution of an Omni-directional Biped for Rugged Terrain 

 Eric D. Vaughan, Ezequiel A. Di Paolo, and Inman Harvey 
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coordination and control of many more degrees of physical freedom (up to thirty-five) 
than are typically tackled by conventional design methods; this endorses the effective-
ness of the ER methodology. Going beyond the domain of bipedal walking, we con-
sider that the ongoing interplay between engineering vision and ER methods in 
incremental design, as illustrated in this case study, may have valuable lessons for a 
wider audience. 

 11.2   Empowering ER through Incremental Design 

 Natural evolution has clearly been incremental, at both micro- and macroscales, with 
current generations altering and extending the design achievements of earlier ones. 
Human design methods are likewise often incremental. The Wright brothers started 
by adding elements of active control to kites, so as to produce unpowered dynamic 
flying machines — gliders. Only then did they go on to adding power and increasing 
the sophistication of the controls. Our current aircraft can trace their ancestry through 
continued incremental improvements from those early days. 

 This work in this chapter takes inspiration from the Wright brothers, but applied 
to walking.  McGeer (1990)  showed that a simple set of jointed legs, in proportions 
similar to human legs, with knees, could walk down a slope with no power other than 
that provided by gravity, and no control other than that provided by the pendulum 
dynamics. This passive dynamic walker (PDW) can play the part of the Wrights ’  glider, 
to which power and increasingly sophisticated levels of control are to be added. This 
implies an incremental design pathway that can be well suited to ER. Ways in which 
an evolutionary algorithm can be applied to such an incremental process, and the 
use of incremental methods in ER, were proposed in  Harvey 1992  and  Harvey, Hus-
bands, and Cliff 1993 , and a body of work following from this. Prior work applying 
incremental evolution specifically to walking robots includes  Kodjabachian and 
Meyer 1998 . 

  Brooks ’ s (1991)   “ subsumption architecture ”  also advocates an incremental design 
approach. Though it is explicitly inspired by the incremental aspects of natural evolu-
tion, design by hand is used throughout. The emphasis is on building complete robots 
that initially have simple behaviors, and then adding extra functionality to enable 
extra layers of behavior and more sophistication. At each successive stage, the robot 
has to function successfully in the real world at its currently expected level, and only 
after this is achieved will the next stage be added. We can consider several potential 
advantages to this incremental approach, over and beyond the fact that it follows good 
engineering principles of iterative development and testing. 

 First, it breaks down what may be one very large design problem into many 
smaller ones, each of them individually more tractable. Since limited resources may 
well make cracking the big problem in one go unlikely or impossible within the 
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available timescale, the achievement of some intermediate stepping-stones can be a 
better result. Second, intuitions supported by anecdotal evidence (and meriting more 
principled investigation) suggest that it may well often consume fewer resources to 
achieve an ambitious end goal via intermediate stepping-stones than it would to 
attempt it in one go, even if the engineer learned nothing new during the process. 
Third, as will be indicated in the examples that follow, it is likely that the engineer 
will indeed learn of significant new factors during the intermediate stages, and this 
can lead to recognition of stumbling blocks, improvements in choosing what the 
next stepping-stone might be, and the possibility of making available new and appro-
priate resources for the next stage of design. The ER example here illustrates an 
ongoing collaboration between the engineer and the evolutionary process; often the 
former is providing the broad brush strokes outlining the direction the next design 
stage should take, while the latter is providing the essential detail by juggling the 
parameters of a highly complex system so as to coordinate the different parts. Here 
the coordination needs to be between neural and physical dynamics. Walking 
involves real-time dynamics, so it is natural that the control system being involved 
should also cope with real-time dynamics. This consideration influenced the choice 
of continuous-time recurrent neural networks (CTRNNs) ( Beer 1995 ), to be described 
in more detail. 

 Most forms of evolutionary algorithm will handle incremental evolution satisfac-
torily, so the details of the GA (genetic algorithm) used here are not significant. One 
observation to note is that, at each successive stage of evolution, the population will 
be based on that which succeeded at a preceding stage, and hence will tend to be 
always quite genetically converged rather than initially randomized. This has some 
implications for the evolutionary dynamics ( Harvey 2001 ). 

 11.3   Staged Evolutionary Design of Walkers 

 In previous work ( Vaughan et al. 2004a ;  Vaughan 2007 ), passive dynamics were 
explored in physical simulations using staged evolutionary design (SED) — in this case, 
three stages. In the first stage a ten-degrees-of freedom-machine was created with hips 
and ankles; it could walk down a gentle slope unpowered by optimizing the physical 
properties of the body. In the second stage a simple neural network was hand-designed 
and coupled with a central pattern generator. In the final stage sensor input was added 
to the network and the slope was lowered to a flat surface over many generations. This 
machine showed that efficient walking attractors can be generated in the body itself 
and it is possible to vary their range from sloped surfaces to flat ones by adding simple 
stabilizing neural networks. In following work ( Vaughan, Di Paolo, and Harvey 2004b , 
 Vaughan 2007 ), some of the weaknesses of this model were addressed, specifically its 
lack of a weighted torso and inability to walk backward. Using a more complex network 
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and prior knowledge the sloped platform stage was bypassed and the machine learned 
to walk directly on a flat surface. 

 In this chapter, a more sophisticated 3D bipedal machine is developed that can 
walk unsupported in any direction on both flat and irregular surfaces. First we discuss 
and explore simple models and some basic principles of walking and balance. This is 
followed by a description of the body and networks used. We develop the machine in 
three stages demonstrating the power of the incremental methodology. 

 In stage one, we develop a simple planar machine based on previous work that 
can walk forward and backward on a flat surface.  Manoonpong et al. (2007)  have 
explored the addition of neural circuits to a passive dynamic walker in the planar 
case by using synaptic plasticity to achieve adaptive control, but with significant 
differences from the approach described here. Through observation, we add improve-
ments to increase the machine ’ s performance and to allow it to walk on rugged 
terrain. In stage two, we add a lateral control system allowing the machine to walk 
unrestrained in three dimensions. We test the machine on flat and rugged surfaces, 
where it shows the ability to walk at different speeds and make dynamic quick move-
ments in response to the environment. In stage three, we examine and discuss some 
implications of walking with ankles and flat feet. At the end of the chapter, we 
discuss preliminary experiments with a spine, passive arms, and extra hip joints. 
These are difficult problems that have not been studied previously but can be 
approached using the SED methodology. 

 11.4   Walking Revisited 

 Following the incremental strategy, we reexamine the same problem of robust walking 
but at each stage taking experience from earlier work ( Vaughan, Di Paolo, and Harvey 
2004a ;  Vaughan, Di Paolo, and Harvey 2004b ,  Vaughan 2007 ). Previous models are 
scaled up to a machine with thirty-five degrees of freedom with a flexible spine. At 
this point it is beneficial to revisit what has been learned from previous work. In par-
ticular, we return to the process of walking to come up with a strategy for scaling up 
to a machine that could challenge trajectory-based machines such as Honda ’ s Asimo. 
We focus in particular on three concepts in walking:  foot placement ,  foot passing , and 
 weight balancing . 

  Foot placement    Walking can be thought of as controlled falling, whereby the legs 
consistently break the fall of body mass on each step. Generally this is controlled by 
foot placement. The larger the angle between the hip and the leg when the foot strikes 
the ground, the greater the decrease in the body ’ s velocity. Smaller angles can act to 
increase velocity by failing to reduce the machine ’ s fall ( Raibert 1986 ). This provides 
a basic mechanism for controlling a machine ’ s velocity not just forward and backward 
but sideways as well. 
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  Foot passing    To apply foot placement to a machine ’ s gait each leg needs a way for 
the foot to pass the other without striking the ground. A simple artificial solution 
would be to use a telescoping leg. When the machine falls forward its rear leg naturally 
loses contact with the ground. Upon detecting this the leg contracts, swings past the 
other leg, and extends. When the leg finally strikes the ground the rear leg loses contact 
and the cycle is repeated with the other leg. If the angle of the hip is correct when the 
foot strikes the ground the machine can maintain a desired velocity. Not only does 
the hip angle need to be correct but also the leg must swing to that hip angle in just 
the right amount of time. This implies that any control system used to rotate the hip 
or knee must have good control over joint velocity. For a more human-like gait the 
telescoping leg model can be replaced with knees as shown in   figure 11.1 . It is impor-
tant to note that this creates a virtual angle at the hip. On a telescoping leg the hip 
angle will not change as the leg is contracted, but when a knee is added, the hip angle 
must increase as the knee bends. A dotted line is used in   figure 11.1  to denote the 
virtual angle that should be used when calculating foot placement.    

  Weight balancing    In previous work ( Vaughan, Di Paolo, and Harvey 2004b ) a  stance  
mode (see section 11.5.2 for a detailed explanation of modes) was implemented 
making a positive connection between a gyroscope that detected the orientation of 
the waist around the x-axis and the desired hip velocity. This  stance  mode balanced a 
weighted torso placed above the hips. The idea of balancing weight above a machine ’ s 
hips is often the focal point of research on bipedal walking. At its simplest the torso 
can be thought of as an inverted pendulum ( Raibert 1986 ). Linear feedback from 

Support Contract Swing Extend

 Figure 11.1 
 Walking gait with jointed knees. The dotted line denotes the virtual hip angle used for foot 

placement. 
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 Figure 11.2 
 Body of walking machine with axes of movement. 

orientation sensors can be used to rotate the hip and balance the torso dynamically. 
If the torso begins to tip, the hip is rotated to capture its weight. 

 11.5   Stage One: Walking Forward and Backward 

 The purpose of stage one is to develop a planar machine similar to the one explored 
in previous work but built upon a more flexible control system. Movement is con-
strained to the sagittal plane (x- and y-axis). The degree of freedom in the hip that 
allows the leg to rotate to the side (around the x-axis) is locked (  figure 11.2 ). A prede-
signed control system is encoded into a genotype and seeded into a population of 
machines that is later evolved with a GA. To simplify the problem, the use of flat 
spring-loaded feet is added in stage two.    

 11.5.1   The Body 
 The body used in this chapter initially has six degrees of freedom: two in each hip and 
one in each knee. Later in stage two ankles and feet are added, increasing the number 
of degrees to ten (  figure 11.2 ). The simulation is done with the open dynamics engine 
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(ODE) and the parameters of both the body and control system are evolved using a 
GA (details follow). Body parameters are evolved from the following ranges: thigh ’ s 
mass (kg) [2,4], thigh ’ s length (m) [2,4], shin ’ s mass (kg) [1,3], shin ’ s length (m) 
[0.3,0.4]. The torso ’ s mass is 30 kg and its length is 0.7m. The range of motion for all 
joints on the machine was between  –   π  /2 and   π  /2. 

 A simple muscle model is used that supports foot placement and energy conserva-
tion through passive dynamics. Each degree of freedom has three parameters:  target 
angle ,  desired velocity , and  maximum torque . The first two allow the joint to move to a 
target angle smoothly within a specified time as required by foot placement. The last 
parameter places a limitation on how much torque can be used to reach the target, 
giving evolution a mechanism to take advantage of the natural dynamics of the body. 

 11.5.2   Modes 
 We refer to dynamic patterns playing a functional role in walking as modes. These are 
implemented through individual neural circuits (similar to reflex circuits in animal 
walking). In previous work just two modes were used for each leg in the walking cycle: 
 swing  and  stance . A winner-take-all circuit was used to switch between each mode 
depending on whether the foot was on or off the ground. In the more complex 
machine proposed here the  swing  mode could become overly complex. It must contract 
the leg, swing it to the proper location, and then extend it in just the right amount 
of time. It must keep track of the virtual hip angle and respond dynamically to changes 
in forward or backward velocity. The approach of this chapter is to hand-design a 
simple network that can be improved though evolution. However, this mode would 
appear to require a nontrivial, nonlinear solution. One approach is to break the  swing  
mode up into several modes that have simpler solutions as done by  Raibert (1986)  and 
 Pratt and Pratt (1999) . Logically these are:  contract ,  swing , and  extend .   Figure 11.3  shows 
the transitions between modes for each leg. Modes are implemented as networks with 
 sensors , two  hidden layers ,  effectors , and a  switching neuron  (  figure 11.4 ).       

  Sensors    A list of sensors and their description can be found in   table 11.1 . For angle 
sensors such as  Hip X ,  Hip Y , and  Knee  a single sensor neuron is used. Angles are 
mapped linearly onto the sensor neuron ’ s activation with negative angles correspond-
ing to activations below 0.5 and positive angles corresponding to activations above 
0.5. For velocity sensors neuron pairs are used:  forward/backward  and  left/right . When 
the machine is falling forward the  forward velocity  neuron ’ s activation increases over 
0.5 while the  backward velocity  neuron ’ s activation is maintained at 0.5. When falling 
backward the opposite is true. While this could have been encoded in one neuron the 
ability to get the velocity regardless of its sign helps to simplify the design.   

  Hidden layers    There are two hidden layers (  figure 11.4 ). The first hidden layer 
is primarily used to control movement through the sagittal plane, although there are 
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some exceptions. The second layer is used in stage two to control movements laterally 
outside the sagittal plane. 

  Effectors    These are neurons that connect to each of the three powered joints: the hip 
around the x-axis, the hip around the y-axis, and the knee around the y-axis. Each 
joint is controlled by three neurons. 

  Tar    The activity of this neuron indicates the target angle the joint should rotate to. 
Its value can be anywhere between 0 and 1. If the value is 0 the joint will strive to 
rotate to  –  range  and if it is 1 the joint will try to rotate to + range , where  range  is the 
maximum amount of movement of the joint in radians. 
  Vel    The activity of this neuron sets desired velocity  v  at which the joint should rotate 
until it reaches its desired angle. This value can be between 0 and 1. Actual velocity 
( av ) is calculated as:  av  = ( v   –  0.5)*2. 
  Tq    The activity of this neuron indicates maximum torque ( mt ) that can be applied 
to reach the desired velocity. If  mt  is 0 the joint becomes unpowered regardless of 
velocity or target. 
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 Figure 11.3 
 Mode diagram. Each leg has its own mode independent of the other. 



Evolution of an Omni-directional Biped 245

  Table 11.1 
 The sensor neurons supplied to each mode circuit  

 Sensor type  Description 

 Hip angle X  The current angle of the hip joint as it rotates around the x-axis. 

 Hip angle Y  The current angle of the hip joint as it rotates around the y-axis. 

 Knee angle  The current angle of the knee joint as it rotates around the y-axis. 

 Foot contact  Becomes 1 when the foot is touching the ground, 0 otherwise. 

 Forward pitch  The angle of the machine ’ s torso as it tilts forward. 

 Backward pitch  The angle of the machine ’ s torso as it tilts backward. 

 Right roll  The angle of the machine ’ s torso as it tilts right. 

 Left roll  The angle of the machine ’ s torso as it tilts left. 

 Forward velocity  Velocity of the machine ’ s torso as it moves forward. 

 Backward velocity  Velocity of the machine ’ s torso as it moves backward. 

 Right velocity  Velocity of the machine ’ s torso as it moves right. 

 Left velocity  Velocity of the machine ’ s torso as it moves left. 

  Switching neuron    Each mode network may connect to all incoming sensors as well 
as signals coming from other mode networks. The activity of the switching neuron ( S ) 
in each mode circuit can be increased or decreased by neurons in the same circuit or 
in others. Only one of the four modes in a leg can be active at any time so the mode 
with the strongest switching neuron activity is enabled and all other modes are inhib-
ited (i.e., their effectors shut down). 

  Activation functions    Continuous-time recurrent neural networks are used to imple-
ment the different mode networks ( Beer 1995 ). The activation of neuron  i  ( y i  ) is given by 

  τ i i i ij j jj iy y w Act y b I� = − + + +∑ ( )   

 where   τ  i   is the decay time constant,  w ij   is the weight of the connection between neuron 
 j  and  i ,  b j   is a bias term,  Act()  is the activation function, and  I i   is an external input. 

 Five types of activation functions are used. 
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 Computationally, most of these activation functions could be replaced in practice by 
small networks of neurons using only the sigmoid function,   σ  ( s ). However, the use of 
the different functions greatly simplifies the hand-design of seed networks. As a graphic 
convention in the figures that follow describing neural circuits, neurons with activation 
function of type 1 are represented by plain circles, type 2 by squares, type 3 by cubes, 
type 4 by triangles, and type 5 by diamonds. Excitatory connections are represented by 
full lines, inhibitory connections by dashed lines, bias neurons by double circles, and 
modulatory connections as arrows linking a neuron and another connection. 

 11.5.3   Support 
 The  support  mode becomes active when the foot is touching the ground. It attempts 
to balance the upper torso of the biped by rotating the hip either forward or backward. 
A simple algorithm is: 

  •    Keep the knee straight. 
  •    If the torso is pitching forward power the leg backward until the torso becomes 
upright. If the torso is pitching backward power the leg forward until the torso 
becomes upright. 

 The support network (see   figure 11.5 ) has four tasks: keeping the knee straight, 
keeping the torso upright, storing the angle of the leg, and ensuring that when the 
leg leaves the ground the  contract  mode is triggered.    

  Keeping the knee straight    The knee is kept straight by giving the ( B ) neuron a posi-
tive bias and excitatory connections to the knee angle target, velocity, and torque. 
This causes the knee to gently push into the kneecap. 

  Keeping torso upright    Connections from the forward ( 6 ) and backward ( 5 ) pitch 
sensors increase the hip ’ s velocity and torque. The more the torso falls forward or 
backward the more speed and torque can be used to bring it upright again. A positive 
connection from ( 5 ) and a negative connection from ( 6 ) set the hip ’ s desired target 
angle toward the direction the leg needs to rotate. 

  Storing the hip angle    Why store the hip angle? Once the leg loses traction with the 
ground the leg switches to the  contract  mode. In this state the leg must support itself 
at the angle at which it left the ground and retract. This requires some way to store 
the last hip location. A single positive recurrent self-connection on neuron ( M ) is used 
to store the current angle by adding a negative and positive connection to neuron ( C ). 
Whatever value ( C ) receives will automatically be stored in neuron ( N ). 
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 Network circuit design for the  support  mode. 
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  Triggering the contract mode    Once a foot loses traction its touch sensor inhibits the 
switching neuron and then  contract ,  swing , and  extend  modes have to compete to see 
which mode gains control. Each one needs to be active at different stages of the 
walking gait. One solution is to train the connections from a mode ’ s input layer to its 
switching neuron such that it becomes active at the right time. However, these func-
tions may not be linear, requiring an additional hidden layer between the inputs and 
the switching neuron. A simpler approach is to notice that the  support  mode always 
precedes the  contract  mode. It is much easier to allow the  support  mode to tip the vote 
through a positive connection to  contract ’ s  switching neuron. Neuron ( E ) is given a 
positive bias and connected to the  contract  network ’ s ( Z ) neuron. The ( Z ) neuron has 
a larger time constant (  τ  ) than other neurons so while the  support  mode is active, it 
charges up. When  support  does finally lose, ( Z ) is still excited momentarily, resulting 
in a higher activity in  contract ’ s  switch neuron. 

 11.5.4   Contract 
 The  contract  mode ’ s task is to contract the leg while maintaining the current hip angle. 
When the leg is fully contracted to the desired leg height it triggers the  swing  mode. 
The  contract  network is shown in   figure 11.6 .    

  Contraction speed    One important factor in walking is the speed at which the leg 
moves. This is not only how fast the leg swings forward but also how fast it is con-
tracted, swung, and extended. The total time it takes for all three to occur is critical 
to good foot placement. Too slow and the leg will not reach the target in time and 
the machine will stumble. Too fast and unnecessary energy is used that could have 
been saved. The speed of leg contraction should be proportional to the speed the 
machine is moving forward or backward. This is the function of neuron ( C ), which is 
excited by the forward ( 7 ) and backward ( 8 ) velocity sensors. It in turn excites the knee 
velocity/torque and the hip velocity/torque. The faster the machine falls the greater 
the strength and velocity of contraction. 

  Contraction height    Contraction height is specified by neuron ( D ) whose positive 
bias pulls the knee up and the foot in at the velocity specified by neuron ( C ). Future 
stages could use this neuron to increase leg height on more rugged terrain. 

  Virtual hip angle    The leg must contract but keep whatever angle it had when it was 
in the  support  mode. Neuron ( B ) adjusts the leg angle by adding the last angle stored 
in  support ’ s  ( M ) neuron. 

  Triggering swing    The  swing  mode is triggered by thresholded neuron ( E ) when the 
leg is fully contracted. Neuron ( E ) receives the difference between the current knee 
angle ( 3 ) and the desired contraction height ( D ). When the sum of the two is greater 
than 0, neuron ( E ) reaches its threshold and fires, inhibiting  contract  and exciting the 
 swing  mode. 
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 Network circuit design for the  contract  mode. 
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 11.5.5   Swing 
 The purpose of the  swing  mode is to generate proper foot placement and move the leg 
such that when extended it will break the machine ’ s fall and reduce its speed. Once 
the leg has reached its position it triggers the  extend  mode. The  swing  network is shown 
in   figure 11.7 .    

 As discussed earlier, the speed at which a leg moves is critical for proper foot place-
ment. The leg must swing forward or backward proportionally to the machine ’ s veloc-
ity. The faster it falls the faster the leg needs to move to catch the machine ’ s weight. 
Foot placement is also proportional to the velocity of the machine. Both of these 
mechanisms together produce a balanced walking gait. 

 The swing algorithm uses six neurons: ( A ), ( B ), ( C ), ( D ), ( E ), ( J ), and ( M ). 
 Neuron ( A ) stores the virtual hip angle (factor three) in ( M ) by subtracting the 

desired contraction height ( D ) from the actual hip angle ( 2 ). 
 Neuron ( B ) computes the velocity and torque of the hip as it swings forward or 

backward. Factor one is implemented by positive and negative connections from 
forward ( 7 ) and backward ( 8 ) velocities. Factor two is implemented by adding in the 
previous leg position stored by the  support  mode. 

 The knee is kept bent at its contraction height due to the lack of any connections 
to its velocity combined with ( C ) constantly exciting the torque. 

 Neuron ( D ) is proportional to the desired contraction height. It has connections to 
the hip target to keep the leg contracted throughout the swing phase. 

 Neuron ( E ) computes the absolute error between the target hip angle and the actual 
hip angle. A large error keeps ( J ) below its threshold; when the error is small enough 
( J ) fires and triggers the  extend  mode. 

 In previous work ( Vaughan, Di Paolo, and Harvey 2004a ) a machine was evolved that 
could be controlled easily by gently pushing it at the speed and direction required. If no 
force were applied the machine would stand still. Such control mechanisms are very 
desirable when building machines for carrying loads, as they do not require a driver. 
Instead they can be gently pushed or pulled by a rope in the desired direction. If a more 
complex control system is needed it can be added incrementally later. In this chapter, 
we explore a subsumptive control of such a mechanism by adding a special neuron ( K ) 
to modify the default behavior. As discussed earlier, foot placement can be used to 
directly control the velocity of a walker. Too large a step and the walker will slow down; 
too small a step and the machine will continue to accelerate as it falls. Neuron ( K ) can 
adjust the machine ’ s velocity simply by connecting it to the  Hip Y  target neuron. As ( K ) 
is increased the machine tends to walk forward as it fails to catch its center of mass 
(COM) in time. If gently pushed backward it will overcompensate and take too big a step 
backward causing it eventually to walk forward again. When ( K ) is inhibited the opposite 
happens and the walker tends to walk backward. The actual speed of the walking gait 
depends on ( K ) allowing basic control over acceleration and deceleration of the machine. 
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 11.5.6   Extend 
 The  extend  network ’ s job is the opposite of the  contract  network. It must straighten the 
leg while keeping it fixed at the desired angle stored by the  swing  network. Once the 
foot touches the ground the  support  network is automatically triggered. 

 Only two neurons are required: ( C ) and ( B ) (  figure 11.8 ). Neuron ( C ) has a bias 
and supplies a constant velocity and torque to the knee and hip to keep them firm 
when the machine is not moving. When the machine has velocity it is added to ( C ). 
The faster the machine falls the faster and stronger the leg extends out to catch 
its fall.    

 11.5.7   Experiments in Flat Surfaces 
 A geographically distributed GA ( Husbands 1994 ) was used with twenty-five individu-
als. Each generation, 20 percent of the genes were selected according to fitness and 
changed using creep mutation to populate the next generation. The mutation rate 
was 0.02. 

 Machines were evaluated by testing their ability to walk both forward and backward. 
Two test cases were used. In the first test case the ( K ) neurons in each  swing  leg were 
set to a random negative value causing the machine to walk backward. In the second 
case a random positive value was used, causing the machine to walk forward. Five trials 
were used for each test case and then the averages for each case were multiplied 
together. 

 The following fitness function was used: 

  fitness = time * min ( rot )  * min ( vel )  * min ( energy ) 

 where  min ( t ) = 1/(1 +  t ),  time  is the amount of time the machine walked (maximum 
is 30 seconds),  rot  is the absolute average error between 0 and the body ’ s pitch angle, 
 vel  is the absolute average error between the desired velocity — specified by the ( K ) 
neuron — and the actual velocity, and  energy  is the average torque used by all 
actuators. 

 An evaluation was started by placing both legs on the ground and stimulating the 
switching neuron for  support  on one leg while stimulating  contract  on the other. Once 
a leg lost contact with the ground all stimulation was removed. 

 11.5.8   Observations and Improvements 
 The hand-designed networks did well even before any evolutionary processes were 
applied with an average fitness of 0.4. After evolving for 1,320 generations it improved 
to a fitness of 0.8. 

 The machine walked well on a flat surface but in real-world environments this is 
rarely the case. On less smooth surfaces the machine ’ s natural walking dynamics must 
be able to minimize disturbances in the torso in the same way shock absorbers work 
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 Network circuit design for the  extend  mode. 
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for a car. A bumpy ground surface was simulated using a mesh of flat triangles. 
The mesh was a grid of 70  ×  70 squares each split into two triangles with random 
heights. The maximum height of the surface was 3 cm. The same GA population 
evolved on the flat surface was tested on the rugged surface. Initially their average 
fitness fell from 0.8 to 0.12. After 400 generations the machine ’ s best average fitness 
was only 0.24. 

 Although the machine ’ s performance is excellent on flat surfaces, when placed on 
bumpy, uneven surfaces the machine destabilizes and loses its balance, falling either 
forward or backward. Through careful observation the cause for this poor performance 
was isolated to four different situations. The first two were early foot strike when step-
ping on a small incline and late foot strike when stepping into a small depression. The 
third situation was when the machine lost forward momentum and came to a com-
plete stop with both legs side by side. Eventually, it began to fall either forward or 
backward while both feet continued to stay on the ground. There was no triangle 
between each foot and the torso so neither leg could be lifted off the ground as the 
torso moved. Unable to switch to the  contract  mode the walking gait stopped com-
pletely and the machine fell. The fourth situation was when both legs accidentally lost 
traction with the ground. In this situation both legs would enter the  contract  mode 
simultaneously and the machine would fall to its knees. 

 In the early foot strike situation, the machine steps onto an incline and the leg 
strikes the ground before it is fully extended. When the leg does finally extend, it is 
during the  support  mode, which causes the machine to push itself backward (  figure 
11.9 ). The simplest remedy for this behavior is to modify  support  to reduce the velocity 
at which it can straighten the leg.    

 In late foot strike, the foot extends fully but does not strike immediately due to a 
small depression on the ground. As the foot moves into the depression the machine ’ s 
center of mass falls too far forward, causing it to fall (  figure 11.10 ). The easiest remedy 
is to wait until the leg is fully extended, then if the foot still hasn ’ t struck the ground, 
bend the knee on the opposite leg. This will push the extended leg farther down until 
it strikes the ground, preventing the machine ’ s mass from falling too far forward. To 
modify the modes, knee angle ( 3 ) causes neuron ( A ) to fire when it reaches full exten-
sion. Neuron ( A ) in turn excites neuron ( F ), which due to its longer time constant fires 
a few moments later. Neuron ( F ) triggers the knee neurons in the opposite leg ’ s 
network to contract momentarily.    

 Correcting the third situation when the walking gait is stalled as both legs come 
together requires a different approach. This is a fundamental problem in walking. 
What happens when a person is standing and they suddenly begin to fall backward? 
They naturally lean to one side, pick up the opposite leg, and take a step back. This 
can be looked at as an additional mode called  stand  whose purpose is to contract the 
opposing leg if the machine begins to fall while its legs are together (  figure 11.11 ). 
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 Addition of the  stand  mode. 

This situation also happens at the beginning of our experiments when the machine is 
first placed on the ground and pushed.    

 Currently this is solved artificially by placing one leg in  support  mode and one in 
 contract  mode at the very beginning of the experiment. This can easily be replaced by 
a  stand  mode allowing the machine to initiate the first step itself. 

 11.5.8   Stand 
 The  stand  mode inherits all the functionality of the  support  mode while adding 
some additional features. Five additional neurons are used: ( Y ), ( G ), ( H ), ( I ), and ( J ) 
(  figure 11.12 ).    
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 The ( Y ) neuron responds to the difference between each leg ’ s virtual angle. The 
closer the legs are to each other the smaller the virtual angle becomes. In turn, it 
inhibits ( Z ), which stimulates the switching neuron. The result is that the legs must 
be very close to each other in order for the  stand  mode to become active. 

 Neuron ( I ) is excited if the machine begins to fall forward or backward; if it falls 
too much ( J ) will fire contracting the opposite leg ’ s knee. As both legs are in  stand  
mode only one ( I ) – ( J ) circuit should activate or both legs will simultaneously contract 
and the machine will fall. Normally this would be determined by weight. If the center 
of mass (COM) is over the left foot it is natural to contract the right one and vice 
versa. However, the machine in stage one is planar and is supported laterally such that 
the COM is equally distributed between each leg. In stage two when lateral support is 
added, the hip angle X can be used to decide which leg the COM is over. To remedy 
this in planar experiments, the concept of  handedness  must be introduced. A small 
random initial bias is given to each ( H ) neuron so when the  stand  mode is entered the 
neuron with the greatest bias will become active. 

 Neuron ( G ) has a threshold causing it to fire only if the network ’ s ( H ) is the winner 
of the competition. It acts as a simple switch turning the connection between ( I ) and 
( J ) on and off. 

 As discussed earlier, the fourth situation that destabilizes the machine on irregular 
surfaces is when both legs lose traction simultaneously. When this happens it is impor-
tant that one of the legs remain in the  support  mode until the machine touches the 
ground again. An easy solution is to create positive lateral connections from  contract , 
 swing , or  extend  on one leg to the  support  ’ s switching neuron on the other. The  support  ’ s 
switching neurons should be more excited when a mode other than  support  on the 
other leg is active. A specialized neuron with a threshold activation function (type 5) 
is used that only fires if the mode is active. 

  Overall performance improvement    The four modifications were made and a new 
population of twenty-five machines was evolved under the bumpy surface condition. 
After the first generation the population ’ s average fitness was 0.2, very close to the 
best average of the unmodified population of 0.24. The fitness quickly grew until 
machines appeared that could walk the entire evaluation period. After 260 generations 
the average began to flatten out at 0.54. 

 11.6   Stage Two: Lateral Control 

 The goal of stage one was to develop a planar machine that could walk on irregular 
surfaces. In this second stage the virtual boom is removed and the machine is allowed 
to walk unsupported. The machine must now work to keep its torso from falling or 
rolling to the left or right outside of the sagittal plane. 
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 Two basic walking principles can greatly simplify understanding lateral balance: 
lateral foot placement and weight shifting. Lateral foot placement is fundamentally 
the same concept used in the sagittal plane. If the machine detects it is falling to 
the right it must also move its foot to the right to catch its weight as it falls and 
vice versa. 

 If a person is standing and wishes to take a step with her right foot she must first 
have her COM positioned over her left foot. If she doesn ’ t, she will have to step out 
to the right to stop her lateral momentum. This weight shift allows a person to step 
in a straight line forward. This can be done mechanically with a damped spring in the 
hips. For example, if the machine is taking a step forward with its right foot the COM 
will begin to move toward the right foot. When the right leg eventually touches the 
ground the COM compresses into the spring and balances over the right hip. When 
the left leg contracts this potential energy is released and the COM is pushed back 
toward the left hip. This creates a kind of throw-and-catch game with the COM 
between the legs. 

 11.6.1   Support 
 Lateral support along the y-axis addresses a problem similar to that of the sagittal 
plane; it must keep the torso upright as the machine begins to fall. This can be accom-
plished by four additional neurons: ( F ), ( A ), ( G ), and ( T ) (  figure 11.13 ). The ( F ) neuron 
takes input from the roll neurons (11, 12) and adjusts the target lateral hip angle along 
the x-axis to keep the torso upright. Torque and velocity are controlled by ( A ), which 
takes the absolute value of ( F ).    

 Unlike support moving along the sagittal plane, support along the y-axis must also 
control the shifting of the COM from one leg to the other. At its simplest, if the  support  
mode detects that the opposite leg is not in  support  (contracting) it should begin to 
push its leg to the outside moving the COM over the contracting leg. When the oppo-
site leg does finally touch the ground the COM will now be resting above it. This can 
be done with just two neurons ( G ) and ( T ). Neuron ( T ) has a threshold and fires only 
when the  support  mode is active. It in turn inhibits the ( G ) neuron in the opposite leg. 
Neuron ( G ) has a small bias and an inhibitory connection to ( F ). If both ( T )s are firing 
then both legs are down weakening the bias of both ( G )s. In this case ( G ) has no effect 
on the hip angle. If the opposite leg moves into  contract  its ( T ) will stop firing and 
( G ) ’ s bias will cause it to excite ( F ) moving the leg to the outside. The result is that the 
COM begins to move over the newly contracting leg. 

 When a leg enters the  support  mode the COM will be over it. The task of this mode 
is to capture this mass and then release it when the opposite leg contracts. This can 
be accomplished with a mechanical spring ( Vaughan, Di Paolo, and Harvey 2004a ). 
Catching of the COM only happens as the COM moves from the inside leg toward 
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the outside, requiring this spring to be enabled only when the hip angle X ( 1 ) is nega-
tive. A spring can be approximated by making an inhibitory connection from the hip 
angle X ( 1 ) to the ( F ) neuron. An additional inhibitory connection disables this con-
nection when ( 1 ) is a negative angle. This creates a spring that only engages when the 
COM is falling toward the outside of the leg. It is up to the other leg to capture the 
COM if it falls to the inside of the leg. 

 11.6.2   Contract 
 The task of the  contract  network is to keep the leg laterally stable while the leg is lifted. 
If the leg is angled out to the left or right, the  contract  network slowly brings the leg 
back toward the center. Ideally the leg should be angled slightly underneath the torso, 
reducing the distance the COM needs to be shifted on each step. 

 A single neuron ( I ) is used to provide a small bias that sets the desired hip angle, 
velocity, and torque (  figure 11.14 ). Its connection to the hip ’ s velocity is relatively 
small so the machine doesn ’ t jerk its leg but moves it slowly under the hip.    

 11.6.3   Swing and Extend 
 During the swing phase it is possible for the machine to begin to fall to the left or the 
right. Modifications must be made to reduce velocities along the y-axis when this 
happens. A single neuron ( H ) is used to track the error between the desired lateral 
velocity (always 0) and the current lateral velocity (  figure 11.15 ). Neuron ( H ) receives 
inputs from the right ( 10 ) and left ( 9 ) velocity sensors and though ( G ), adjusts the 
desired hip target, velocity, and torque. The ( G ) neuron from the opposite leg ’ s  support  
network provides critical error correction information. Neuron ( G ) as discussed earlier 
in the  support  network, becomes excited when the COM shifts over the opposite leg. 
If ( G ) is active then the machine will be falling toward the opposite leg at a velocity 
proportional to ( G ). By adding this information to the ( H ) neuron we keep the leg 
from using foot placement to correct the shift velocity. This lateral velocity is a natural 
part of the gait and should not cause the legs to compensate for it. The  extend  network 
is identical to that of  swing.     

 11.6.4   Stand 
 The  stand  mode becomes active when both legs are together and both feet are touch-
ing the ground. At this point the COM should be over one of its feet in case it needs 
to take a step in the future. In the planar machine the ( H ) neuron competed with the 
other leg ’ s ( H ) neuron to decide which leg would be in  support  mode and which would 
become  contract . In this stage the ( H ) neurons can receive input from the hip angle X 
( 1 ) forcing the leg that is supporting more of the COM to win. This winning state 
gently shifts the COM completely over its leg by slowly bending its knee. To keep the 
opposite leg relaxed during the weight shift ( G ) disables the connection between ( F ) 
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and ( A ) when it is not firing. The resulting machine always keeps its weight over one 
of its feet. 

 11.6.5   Experiments 
 Experiments on a flat surface were conducted in the same manner as in stage one with 
a few minor changes. The forces normally applied to the torso to prevent any move-
ment other than along the sagittal plane (a virtual boom) were removed. An addition 
was made to the fitness function to minimize lateral movement from side to side. This 
improves stability by selecting individuals who shift their weight only when needed. 
The mutation rate was lowered to 0.01 after observation showed lateral stability was 
more sensitive to these kinds of changes. Fitness is defined as follows: 

  fitness = time * min ( rot )  * min ( vel )  * min ( energy )  * min ( lvel ) 

 where  min ( t ) = 1/(1 +  t ),  time  is the amount of time the machine walked (maximum 
is 30 seconds),  rot  is the absolute average error between 0 and pitch/roll/yaw angles of 
the torso,  vel  is the absolute average error between the desired velocity and the actual 
velocity,  energy  is the average torque used by all actuators, and  lvel  is the absolute 
average error between 0 and the velocity along the y-axis. 

 A population was evolved for 190 generations on a flat surface. The average fitness 
in the first generation was 0.16 but over the next 80 generations rose to 0.6 and then 
flattened out over the next 110 generations. 

 As in stage one, when machines from the flat population above were placed on an 
irregular surface their fitness was poor, averaging around 0.1. In this stage observations 
were made directly before attempting to continue evolution on a bumpy surface. 

 11.6.6   Observations and Improvements 
 If a machine is built using just foot placement and weight shifting, it is capable of 
walking quite well on a flat surface. However, as in the first stage, when placed on an 
irregular surface the machine often lost its balance. One reason could be that all of 
the innovations to handle  early foot strike  and  late foot strike  had been evolved while 
on a flat surface. The other observed cause was  foot tangling . If the right foot of the 
machine stepped into a gully it caused the machine to shift too much weight to the 
right. To compensate the machine tried to move the left foot toward the right only 
to get it tangled up with the right leg (  figure 11.16 ).    

 The easiest way to modify the current machine is first to develop a small symmetric 
neural network that inhibits or disables a neuron if foot passing is allowed, given the 
virtual leg angles and forward and backward velocity. Once computed it can be fed as 
an input to any state that requires it. The center of the entire walking network is an 
ideal location for this new leg-crossing network as it has access to all state sensors, 
allowing a new sensor to be added ( 13 ). The basic method to keep the legs from getting 
tangled is as follows: 
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 Figure 11.16 
 Foot tangling: while walking on an irregular surface the machine begins to fall to its left. To 

compensate it swings its right leg directly into the left, knocking its hip out of its socket. 

 1.    Side  =  left  or  right . 
 2.   If the machine is moving forward while falling toward the  Side  and the  Side  
leg is in front of the opposite leg, disable the opposite leg ’ s ability to move toward 
the  Side . 
 3.   If the machine is moving backward while falling to the  Side  and the  Side  leg is in 
back of the opposite leg, disable the opposite leg ’ s ability to move toward the  Side . 

 11.6.7   Foot Tangle Network 
 The neural controller for foot tangle can be seen in (  figure 11.17 ). To determine 
whether the machine can move a leg laterally the following information must be 
considered: 
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 Implementation of the  tangle  network (left); modifications to the  swing  and  extend  networks 

(right). 

 1.   What direction is the machine walking? Forward or backward? 
 2.   What are the virtual leg angles? 
 3.   What is the difference between these angles?    

 Neurons ( A ) and ( C ) create a winner-take-all circuit to determine which way the 
machine is walking. Neuron ( A ) takes input from the forward velocity sensor and ( C ) 
from the backward one. Due to slow time constants ( A ) and ( C ) are resistant to quick 
fluctuations in velocity. If ( A ) becomes active the machine is moving forward, if ( C ), 
backward. Neuron ( B ) estimates the virtual angle of each leg and ( D ) and ( F ) calculate 
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 Fitness after modifications to prevent foot tangling. 

the difference between the leg angles and fire when one leg is in front of the other. 
Neuron ( D ) triggers ( E ) when walking backward and crossing is not allowed. Neuron 
( F ) triggers ( E ) when walking forward and crossing is not allowed. An additional sensor 
( 13 ) is used to propagate this information to each mode network. 

 On the  swing  and  extend  modes connections are made that disable the connections 
between the left velocity sensor when crossing is not possible (  figure 11.18 , right). Due 
to the bilateral nature of the network the left and right sensors are swapped on the 
left side of the body. As a result each leg is prevented from moving inward under the 
body where it could get tangled up with the other leg when sensor ( 13 ) has a high 
activation.    

   Figure 11.18  shows the improvement in fitness after including the foot tangle 
network in the population seeded into the GA. When the best machine is observed, 
it shows quick movements when necessary both forward and laterally in response to 
environment disturbance.   Figure 11.19  shows it quickly stepping in front of its right 
leg to try and capture the COM.   Figure 11.20  illustrates how the machine can adjust 
its stride dynamically when moving over rugged terrain.     
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 Figure 11.19 
 A machine stepping in front of its right leg to try to capture its COM. 

   11.7   Spines, Hips, Arms, and Toes 

 It is possible to build more complex walking machines using the techniques explored 
in this chapter. Preliminary experiments were done with jointed spines, rotational hip 
joints, arms, and toes. Each new control system was added on top of earlier successful 
ones. To add a spine, the body orientation sensors were moved to the head and a 
simple control system was used to balance the spine on top of the legs. Arms were 
added that passively swing from side to side on each step. An extra degree of freedom 
allowed the hip joint to rotate around the z-axis and a spring-loaded toe increased 
traction. Even with these radical changes evolution managed to integrate them into a 



 Figure 11.20 
 Front view of machine recovering as it steps in a gully on 5 cm surface. 
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 Figure 11.21 
 Preliminary walker with spine, head, ankles, and arms. The machine had thirty-five degrees of 

freedom: two in each ankle, one in each knee, three in each hip, nine in the spine, three in each 

shoulder, one in each elbow, two in each wrist, and one in each toe. The toe joint used a simple 

linear spring that provided additional traction as the heel lifted off the ground. This tended to 

prevent the body from twisting as it took each step. 

natural walking gait.   Figure 11.21  shows a machine with thirty-five degrees of freedom 
that can walk indefinitely. While this machine was constrained to a flat surface due 
to limitation of the simulation, it does show that such incremental methods can scale 
up to similar complexities currently explored by trajectory-based machines. This 
machine was called  “ Spine Walker. ”     

 The design of Spine Walker is based on ideas proposed by  Raibert (1986)  and  Pratt 
and Pratt (1999 ). Like Raibert and Pratt ’ s work this machine was built using hand-
wired dynamic equations instead of neural circuits. When both approaches were 
compared, the neural network-based approach used throughout this chapter appeared 
to be more evolvable. Although the more complex spine-based machine did not use 
the neural circuits previously described, it still was built using SED and is another good 
illustration of our methodology. In this section we discuss some of the ideas revealed 
by our work on the Spine Walker and how they could be transferred to the neural 
network-based approach presented in earlier sections. 

 The Spine Walker was developed in five main stages: 

 Stage 1.   The machine was evolved to walk on a flat surface. 
 Stage 2.   An extra degree of freedom was added to the hip. 
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 Stage 3.   A flexible toe joint was added. 
 Stage 4.   A flexible spine was added. 
 Stage 5.   A head and arms were added. 

  Hips with three degrees of freedom    Spine Walker has one more degree of freedom in 
the hip than the other machines in this chapter. This allows it to rotate the hip around 
the z-axis the way humans do. The control system for this is quite simple. In the  swing  
mode the opposite leg ’ s hip rotates around the z-axis to bring the hip farther forward 
(  figure 11.22 ). This results in a more natural-looking walk. In terms of the current 
circuit model, this could be done by creating connections from the  swing  mode of one 
leg to the  support  mode of the other. When the leg lifts off the ground and enters  swing  
it can rotate the opposite leg ’ s hip forward.    

  Flexible toe joint    A spring-loaded toe joint is added to each foot to make the 
machine walk with a more human gait. This change was observed to increase stability 
by increasing traction with the ground as the heel was lifting. The increased traction 
reduced the chance of the body twisting (yaw) too much and losing its balance (  figure 
11.22 , right). 

  Spine with nine degrees or freedom    The second stage is to add a spine on top of the 
hips that support a weighted torso. The goal of the spine is to use an inclinometer in 
the torso to balance the torso on top of the hips. It uses a balancing algorithm similar 
to the one used by the  support  mode earlier in this chapter. Its only input is that of 
the inclinometer and its output the direction the spine should bend around three axes 
to support it. The control system bends the spine to isolate movements in the hips so 
they do not affect the torso. This idea was taken from the observation that when people 
walk their upper torso tends to be relatively still compared to their hips. Once the 
spine is in place the population was evolved until the machine could walk without 
falling (  figure 11.22 ). 

  Head and arms    The final stage is to add a head and passive arms to the machine. 
This proved relatively trivial. The arms are damped and allowed to swing freely. When 
a leg enters the  swing  mode it causes the shoulder on the opposite arm to swing forward 
slightly leading to a natural-looking smooth gait. This could be done in our neural 
model by creating connections between the  swing  network and motor neurons in the 
opposite arm (  figure 11.23 ).    

 11.8   Conclusions 

 Criticism leveled against ER has often invoked the difficulty of breaking the complexity 
barriers when the design process is approached from scratch. We have demonstrated 
here that it is indeed convenient to use evolutionary methods iteratively in combina-
tion with domain knowledge and analysis of intermediate results. This can help 
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 Figure 11.22 
 Hip movement of Spine Walker. The upper three frames show how the hips can rotate around 

the z-axis due to the addition of an extra degree of freedom. The lower three frames show how 

the hips can move from side to side due to a gentle flexing of the spine. 
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 “ orient ”  the process in directions that may be originally unknown to the engineer but 
that are  “ naturally ”  suggested by the process itself. In doing this, not only do we break 
complexity barriers for our particular design problem, but we can also draw some 
concrete lessons applicable in wider domains. 

 The machine developed in this chapter was built upon experience gained from 
previous work combining evolutionary design of body and controllers with engineer-
ing insights about the problem domain. The basic elements of walking were reexam-
ined and simplified into stages involving foot placement, foot passing, and torso 
balancing. In foot placement simple linear relationships were shown between velocity 
and hip angle. To support foot passing the walking gait was broken down into five 
networks:  stand ,  support ,  contract ,  swing , and  extend . Each mode was hand-designed 
using simple neural circuits. A larger network was constructed that could modify 
these modes allowing only one active circuit per leg to be active at any given time. 
Through contraction and extension each foot could pass in front of the other. The 

 Figure 11.23 
 Spine Walker walking on a flat surface. 
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 support  mode allowed the leg whose foot was touching the ground to dynamically 
support a weighted torso. If the torso began to tilt the hip was powered to capture 
its center of mass. The wider lesson of this process is that whenever feasible, a 
complex behavior should be approached as composed of multiple elements which 
may be initially designed separately using existing knowledge and then integrated 
by seeding these elements into the evolutionary algorithm and improving them 
incrementally. 

 In this chapter, the process of incremental design though seeding networks and 
stages continued to produce integrated networks with increasingly complex behavior. 
This follows a practical rule of thumb: increment task complexity or environmental 
difficulty in stages. In stage one the machine was first tested on a flat surface and then 
on an irregular one. Though observation four situations were found that reduced its 
fitness on rugged surfaces: early foot strike, late foot strike, loss of momentum when 
feet come together, and when both feet lost traction with the ground completely. The 
analysis of these issues led to network modifications to remove the problems. In stage 
two the virtual boom that constrained the machine to the sagittal plane was removed. 
This required modification of the five modes. As in stage one, the machine was tested 
on both flat and rugged surfaces. On flat surfaces the machine could walk quite well 
even before being evolved. On rugged surfaces the machine tended to tangle its legs 
together when trying to regain lateral balance. A foot tangle network was designed 
that inhibited leg movement that might cause the legs to collide, increasing fitness. 
This suggests that ankles are not necessary for basic walking but they can prevent 
twisting and inject energy into the gait. When walking normally the leg movements 
were slow and smooth but when destabilized due to a rugged surface the machine 
made quick movements to recover. 

 Preliminary work explores more complex machines including a jointed spine, arms, 
and extra hip joints. As before, each stage is built on top of earlier ones by adding 
simple control systems that evolution integrated into the whole. The result is a 
machine with thirty-five degrees of freedom that can walk infinitely on a flat surface. 

 Overall these machines show the power of incremental design using evolution. 
They can walk in any direction on smooth and rugged surfaces. They can walk slowly 
at 0.1  m/s  or fast at 0.3  m/s . They can be scaled up to control many degrees of freedom 
mimicking human-like movement using spines and arms. These machines suggest that 
passive dynamic walkers can be scaled up to a level of human-like complexity that 
until recently was only explored by trajectory-based approaches. The PDWs exhibit 
natural walking gaits in 3D space and can switch behaviors depending on the state of 
their environment. Like trajectory-based machines, when pushed they can recapture 
their center of mass even on rugged surfaces in a controlled way and in the presence 
of a large number of degrees of freedom. However, these machines have the advantage 
of greater efficiency, speed, and simplicity. The control systems are relatively simple 
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and could be implemented with cheap embedded controllers. They are fast, efficient, 
robust, and can perform different behaviors making them more practical for legged 
vehicles and lifelike toys. 

 To build a physical machine based on these simulations two issues must be addressed: 
the need for low impedance actuators, and any mismatches that arise between reality 
and simulation. There are solutions for the first issue, such as Series Elastic Actuators 
developed at MIT by  Robinson et al. (1999) , or the Programmable Spring developed 
at Sussex by  Bigge (2010) . For the second issue, there are known methods for  “ crossing 
the reality gap ”  ( Jakobi 1998 ), and there are indications in this chapter, mentioned 
earlier, that at some new incremental stages walking was achieved even before further 
evolution, that the outcome of this design process is surprisingly robust, and hence 
more likely to be robust enough to cross the reality gap. 

 The techniques used in our case study have achieved results beyond the former 
state of the art. The design insights discussed here are specific to bipedal walking 
machines, but it is hoped that this case study may also provide useful insights and 
lessons for people trying to use an incremental ER methodology in other domains, 
especially in connection with the iterative strategies for generating, combining, and 
seeding into the evolutionary process domain knowledge that is itself largely generated 
as part of the design process. 
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 12.1   Introduction 

 Most of my thirty-three years of professional involvement in AI (artificial intelligence) 
have been focused on research far from its mainstream, not because of any antisocial 
tendencies on my part, but because of certain dilemmas inherent in the field. The first 
dilemma confronting AI is that both single-celled and multicelled animals survive and 
reproduce very well without any nervous system at all, and  “ lower animals, ”  even 
insects, organize into thriving societies without any symbols, logic, or language, bee 
dancing and birdsong notwithstanding. These phenomena led me to delve into non-
symbolic models and ask how complex hierarchal representations and sustained state-
changing procedures might naturally emerge from iterative numeric systems such as 
associative or connectionist neural networks. 

 The second dilemma is that the kind of mind we in AI seek to discover, one that 
 “ runs ”  on the human brain yet might be portable to another universal machine, 
wouldn ’ t even exist without having coevolved with the brain — a chicken-and-egg 
problem. So, while many of my connectionist colleagues migrated with U.S. National 
Institutes of Health funding into cognitive or computational neuroscience, trying to 
understand how the human brain works, I focused instead on what natural process 
could design and fabricate machinery as complex as the brain. 

 I ended up working closer to the field of artificial life, seeking to understand how 
evolution, a mindless iterative reproduction system, could eventually lead to machines 
whose complexity and reliability dwarfs the product of the largest teams of human 
engineers. 

 AI is now more than fifty years old, so I would like to reflect on what I feel has 
been its great mistake, and propose a corrective course going forward. But before ana-
lyzing this mistake, I want to say that AI is a great human endeavor with a colorful 
cast and many partial successes. It has provided frameworks for formally studying 
biological systems, animals, and humans and has spun out industries such as Lisp 
machines, expert systems, data mining, and even Internet search. 

 12   Mindless Intelligence: Reflections on the Future of AI 

 Jordan B. Pollack 
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 12.2   Don ’ t Promise the Practically Impossible 

 We all agree on AI ’ s fundamental hypothesis, that physical machines have the capacity 
for intelligence. Unfortunately, this hypothesis can neither be proven nor refuted 
scientifically, but realized only by demonstration. And until it has been convincingly 
demonstrated, it must remain in scientific limbo. Ordinary citizens and funding 
bureaucrats don ’ t know whether AI is  tardy , like mechanical flight, which emerged 
from limbo after several hundred years of failure, or  magical , like ESP or the alchemists ’  
quest to turn lead into gold. Perhaps there is even an  impossibility proof  waiting around 
the corner, as has put to rest quixotic notions such as time travel (Einstein) and per-
petual motion (Ludwig Boltzmann). Who wants to fund a field that might be proven 
impossible tomorrow? 

 So AI, which represents one of the greatest intellectual and engineering challenges 
in human history — and should command the same fiscal resources as efforts to cure 
cancer or colonize Mars — is sometimes relegated to a laughingstock status, because we 
can ’ t prevent bogus claims from cropping up in newspapers and books. We cannot 
seem to convince the public that humanoids and Terminators are just Hollywood 
special effects, as science-fictional as the little green men from Mars! 

 Still, some want to keep pursuing the same old AI goals:  “ What are the missing 
pieces necessary to achieving human-level common sense? ”   “ Let ’ s do a project to gain 
human-level performance in a (non-chess) domain. ”   “ We will build natural language 
software that ’ s human-level in ability. ”   “ Soon computers will be fast enough to supply 
human-level intelligence to humanoid robots. ”  

 AI won ’ t be a gift of more CPU time. If it were, we would have already glimpsed 
real AI on supercomputers or large clusters, yet nothing of the kind has occurred. We 
don ’ t need faster chips to make robots smarter, since we can link a robot ’ s body to its 
supercomputer brain over wireless broadband. As the joke goes, even if AI requires an 
infinite loop, it should run in only five seconds on a supercomputer. 

 The issue isn ’ t the speed of running a mind-like program; it is the size and quality 
of the program itself. Because we routinely underestimate the complexity of evolved 
biological systems, and because Moore ’ s law doesn ’ t lead to a doubling of the quality 
of human-written software ( Lanier 2000 ), the same old goals are red herrings that 
promise the practically impossible! 

 12.3   Take Mind Off Its Pedestal 

 AI ’ s great mistake is its assumption that  human-level intelligence is the greatest intelligence 
that exists , and thus, that our computational intelligences should operate  “ like ”  human 
cognition. Because of this mistake, most AI research has focused on  “ cognitive models ”  
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of intelligence, on programs that run like people think. But it turns out that we don ’ t 
think the way we think we think! 

 The scientific evidence coming in all around us is clear:  ‘ Symbolic Conscious Rea-
soning, ’  which is extracted through protocol analysis from serial verbal introspection, 
is a myth. From Michael Gazzaniga ’ s famous split-brain experiments, where a patient 
associated a snow shovel with a chicken ( Gazzaniga 1985 ), through Daniel  Dennett ’ s 
(1991)  demolition of consciousness, through the unconscious intelligence described 
recently by Malcolm  Gladwell (2005) , it ’ s entirely clear that the  “ symbolic mind ”  
that AI has tried for more than fifty years to simulate is just a story we humans tell 
ourselves to predict and explain the unimaginably complex processes occurring in our 
evolved brains. 

 Because of this preoccupation with mimicking human-level intelligence, as a scien-
tific field, AI has largely ignored or excluded the contributions of many alternative 
nonsymbolic mechanisms. Such mechanisms range from associative and matrix 
models of mathematical psychology, to Markovian models, to both game and decision 
theories, to early neural networks (the perceptron disaster), to simulations of evolution 
and organic self-organization. The early success of low-hanging symbolic fruit through 
Lisp programming led to the pursuit of the  “ mythical man module, ”  a computer 
program that has the  “ look and feel ”  of human cognition yet is something more than 
an Eliza. 

 John Searle ’ s  “ Chinese Room ”  argument ( Searle 1980 ) is hateful because, in fact, 
he ’ s correct. Neither the room nor the guy in it pushing symbols  “ understands ”  
Chinese. But this isn ’ t really a problem, because nobody actually  “ understands ”  
Chinese! We only think we understand it. As anyone — even a native speaker — drives 
further down into an explanation of his or her knowledge or behavior, instead of 
gaining sharper insights (as we might expect in a reductionist physical science with a 
better microscope), the explanations get blurrier and blurrier. 

 By assuming that intelligences based on human-centric cognitive architectures such 
as grammars or production systems are the zenith, are the most powerful intelligences 
in the world, our field has made the same kind of embarrassing mistake as today ’ s 
cryptocreationists, the proponents of Intelligent Design: by doubting that a mindless 
nonlinear iterative process such as evolution could be responsible for irreducible 
complexity in the designs of biological life forms, they hold that a superhuman, super-
intelligent being must have intervened. 

 AI also behaves as if human intelligence is next to godliness. Even the neural 
approach, more accepted today then ever, falls into the trap of trying to model human 
cognitive structures such as verb conjugation. Why is simulating the human mind 
more important than simulating cellular metabolisms, insect or animal intelligence, 
complex pattern formation, or distributed control of complex ecologies? It must be 
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because, as a mirror of our own intelligence, the mindless iterative and numeric com-
puting we scientifically uncover in nature doesn ’ t compare to the perfectly logical 
indefatigable mind of Hollywood characters such as Mr. Spock and Commander Data, 
NP-completeness notwithstanding. 

 To repair this mistake and move forward as a scientific field, AI must recognize 
that many intelligent processes in nature perform more powerfully than human 
symbolic reasoning, even though they lack any of the mind-like mechanisms long 
believed necessary for human  “ competence. ”  Once we recognize this and start to 
work out these scalable representations and algorithms without anthropomorphizing 
them, we should be able to produce the kind of results that will get our work funded 
to the level necessary for growth and deliver beneficial applications to society, 
without promising the intelligent English-speaking humanoid robot slaves and sol-
diers of science fiction. 

 12.4   Defining Mindless Intelligence 

 I define  “ mindless intelligence ”  as intelligent behavior ascribed (by an observer) to any 
process lacking a mind-brain. Suppose some black-box process (for example, mathe-
matical, numerical, or mechanical) exhibits behavior that appears to require intelli-
gence. However, when we scientifically study it, we find no Lisp interpreter, no 
symbols, no grammars, no logic or inference engine — in fact, we realize that it works 
without any of the accoutrements of cognition. We can say that this process is mind-
lessly intelligent. 

 Now we can begin to seriously study intelligent performance by 

  •    feedback-driven systems such as thermostats and steam governors; 
  •    pattern-action systems such as Eliza programs and immune systems; 
  •    stability and hierarchy networks such as cellular metabolisms; 
  •    societal assemblies such as insect and colonial life forms; 
  •    utility-maximizing systems such as game and economic agents; 
  •    exquisitely iterative systems such as evolution, fractals, and embryogenesis; and 
even 
  •    mind-erasing collectives such as academic committees, crowds, and bureaucracies. 

 To give you a broader sense of the field, I ’ ll briefly cover several kinds of natural 
processes that appear intelligent yet lack any cognitive apparatus. John Kolen and 
I showed how an iterated dynamical system could appear to generate a context-free 
or context-sensitive language, depending on the observer ( Kolen and Pollack 1995 ). 
The dynamical system lacked any cognitive architecture for  “ generative capacity, ”  
which has been assumed by all natural language processing systems since Noam 
Chomsky. 
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 Wherever we look in nature, we see amazingly complex processes to which we can 
ascribe intelligence, yet we observe symbolic cognition in only one place, and only 
there as a result of introspection. Many of these natural processes have been studied 
under the aegis of complex systems or have been given the prefix  “ self ”  or  “ auto. ”  
Because these systems have no mind, and thus no self, I ’ ve taken the liberty of replac-
ing those prefixes with the new term  “ ectomental, ”  which means  “ outside ”  (Greek) 
 “ of mind ”  (Latin). 

 12.5   Ectomental Organization 

 Evolution is the primary example of an intelligent designer who lacks a mind. There ’ s 
no grammar, set of rules, library of CAD parts, or physics simulation. Simply put: a 
mindless reproductive system operates, transcription errors occur, and selection locks 
in a statistical advantage for the marginally better — or luckier — members of a popula-
tion. And yet this iterative process has automatically designed machines of incredible 
beauty and complexity, objects that far surpass — in complexity and reliability — any-
thing architects, engineers, novelists, venture capitalists, or teams of software program-
mers can achieve. 

 Human teams can build systems with only 10 million to 100 million unique moving 
parts before the entire structure collapses, yet biological forms can have 10 billion 
unique moving parts. 

 For the past decade and more, my lab ’ s goal has been to understand how evolution 
can produce more complex designs than a human engineering team, while lacking 
human-level symbolic cognition. We ’ ve focused specifically on coevolutionary machine 
learning systems. While we haven ’ t yet achieved a fully open-ended design process, 
we have 

  •    shown coevolutionary systems that have surpassed human performance in sorting 
networks and cellular-automata optimization ( Juille and Pollack 1999 ); 
  •    developed theories such as Pareto coevolution ( Ficici and Pollack 2001 ), emergent 
dimensionality ( Bucci and Pollack 2003 ), and computational models of symbiogenesis 
( Watson and Pollack 2002 ); and 
  •    revealed the possibility of motivating a community of learners ( Sklar and Pollack 
2000 ) to become their own Ideal Teachers ( DeJong and Pollack 2004 ), resulting in 
novel educational software ( Bader-Natal and Pollack 2005 ). 

 Perhaps our best-known research is on the coevolution of robot bodies and brains, 
known as the Genetically Organized Lifelike Electro-Mechanics, or GOLEM, project. 
This research resulted in three generations of self-designed systems that discovered 
irreducibly complex components and processes such as the cantilever, ratcheting, and 
kayaking (see   figure 12.1 ).    



284 Chapter 12

 12.6   Ectomental Learning 

 One of the oldest AI paradigms is a self-learning or autodidactic system, a program 
that begins with a tabula rasa and, when dropped into an environment, gets better 
and better over time. Perhaps the best example of such a system is Gerald Tesauro ’ s 
TD-Gammon ( Tesauro 1992 ). He started with essentially a random neural network that 
could return a value for any backgammon position. Rather than training the network 
against an encyclopedia of human expert games, he essentially trained it against itself. 
After about a month of computer time on an IBM supercomputer, with the weights 
adjusted as a result of each game, his network, with further refinements, became one 
of the best players in the world. 

 Humans can verbalize backgammon strategies. We consider only a few plausible 
moves and then estimate whether one move is better or worse than another on the 
basis of strategic goals from models of the game (running, blocking, back-game), using 
all kinds of approximate and exact calculations about probability. I was a professional-
level backgammon player in 1975 and felt that there were about seven different 
human-player  “ types ”  who, at the top of their game, achieved a rock-scissors-paper 
parity. 

 On the other hand, TD-Gammon is a mindless intelligence that dominates all 
human players. It uses a function to estimate values and uses a one- or two-ply look-
ahead with a greedy selector to make a move. It has no logic or symbols, no strategy 
that looks far ahead or back in time, and no language component to discuss its strategy. 
Yet it ’ s stronger than any rule-based strategy. 

 My lab had worked on self-learning for tic-tac-toe ( Angeline and Pollack 1993 ), and 
we became interested in understanding why TD-Gammon worked. We were able to 

a b c

 Figure 12.1 
 Three generations of evolved robots: (a) Pablo Funes ’ s evolution of Lego discovered the cantilever 

( Funes and Pollack 1998 ), (b) Hod Lipson ’ s evolution of dynamic trusses invented the ratchet 

( Lipson and Pollack 2000 ), and (c) Gregory Hornby ’ s evolution using L-systems to describe 

machines invented a kayaking motion ( Hornby and Pollack 2002 ). 
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replicate the Tesauro effect using simple hill climbing ( Pollack and Blair 1998 ), which 
led to the question of why coevolutionary self-learning worked so well for backgam-
mon. Game theorists such as Richard Bellman recognized many years ago why a purely 
numeric backgammon player works better than a logical game ( Bellman 1957 ). He 
proved the existence of a value table for optimal sequential choice in Markovian 
games, where opponents can choose strategies yet are buffeted by random elements 
such as dice. Moreover, iterated approximation of the value table, through a single-ply 
expectimax look-ahead, leads to its convergence. So, an optimal value table combined 
with a one-ply greedy choice leads to the strongest-possible player. 

 In order to study the success of learning backgammon, I recently invented Nannon ® , 
the smallest version of backgammon that maintains its core behaviors, using only six 
points, three checkers, and one die per side. There are only 2,530 different board posi-
tions, and the value table converges in 15 sweeps to an error of 10  – 7  ( Pollack 2005 ). 
While the full game of backgammon is much larger than Nannon, so a table can ’ t be 
stored, Tesauro ’ s choice of input representation and network size from earlier experi-
ments led to a fortuitous convergence between TD reinforcement learning and Bell-
man ’ s earlier mathematical work. Perhaps many mindlessly intelligent processes in 
nature are similar instances of mathematical ideals that can lead to convergence, 
complexity, and optimal performance in the limit. 

 12.7   Ectomental Repair 

 A marvelous characteristic of natural systems is that they can heal, or self-repair. A 
na ï ve computerized view would be to envision the algorithmic equivalent of a team 
of repairpersons who, under centralized supervision, consult a system model and are 
then deployed to a disturbance ’ s site to apply cognition, logic, and spare parts to return 
the system to model behavior. However, imagining a system that contains a deployable 
model of itself can lead to logical conundrums ( Minsky 1965 ). 

 How might we understand self-repair in natural systems? In artificial-life research 
on  “ algorithmic chemistry, ”  Walter Fontana and Leo Buss described systems of simple 
lambda calculus programs that consume and produce each other, forming a metabo-
lism ( Fontana and Buss 1994 ). When such an artificial-chemistry network had a steady-
state dynamic, perturbations would return to the same attractor, like the memories in 
a Hopfield network. 

 Is the  Bauplan  of an animal a similar attractor, which the myriad of microscopic 
mindless actions can ’ t help but keep returning to? In other words, the answer to 
self-repair is that there ’ s no blueprint or explicit diagram; there ’ s just a framework 
and a set of parameters that mathematically define a complex attractor. Mindless 
and far-flung distributed operations can ’ t help themselves; they must gravitate 
toward it. 
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 Such dynamical systems with complex attractors driven by parameters are well 
known. One example is the Mandelbrot set, a truly exquisite iteration where the 
parameters define a window and each pixel computes its own color. Another 
example is  iterated function systems  (IFS), a union of a set of contractive maps that 
Michael Barnsley proved has a single fractal limit attractor akin to Cantor dust ( Barn-
sley 1988 ). 

 Barnsley showed, much analogous to Bellman ’ s proof, that some nonlinear iterative 
processes, despite having many adjustable parameters, have a single, yet complicated, 
limit, defined by the interaction of the parameters and rules. Simply put, an IFS fractal 
attractor is like repeatedly copying an image with a special copying machine that 
makes multiple shrunken and transformed copies of the input page (see   figure 12.2 ). 
All nonblank starting pages, from a speck of dust to a piece of black construction paper, 
end up converging to the same attractor in the limit.    

 I came across IFSs while working to understand the relationship between recurrent 
neural networks and finite-state machines. As the result of trying to learn a language, 
a recurrent network generated an infinite-state machine with the states located on a 
fractal attractor ( Pollack 1991 ). Subsequent research used these structures for memory 
and hierarchal representations ( Levy, Melnik, and Pollack 2000 ). 

a b

 Figure 12.2 
 (a) An iterated-function-systems fractal is like a feedback loop on a copy machine that makes 

more than one reduced copy of an image, resulting in the same limit for a speck of dust or a full 

page of ink. (b) The IFS theory explained the  “ strange automata ”  that emerged when recurrent 

neural networks were trained to recognize languages. 
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 The mindless intelligence of self-defining and self-repairing, or autopoetic ( Varela, 
Maturana, and Uribe 1974 ), biological forms is a big leap from Fontana ’ s chemistries 
and Barnsley ’ s fractals. Yet I am certain that biological form will one day be scientifi-
cally explained as an attractor that changes its parameters over time while it ’ s con-
stantly and mindlessly repaired by distributed processing at a microscopic level. 

 12.8   Ectomental Assembly 

 Fetal development, or embryogenesis, is perhaps the perfect place to recognize the 
profound scale of complex behavior achievable by mindless intelligence. 

 Herb Simon introduced Tempus and Hora as two different kinds of watchmakers 
who suffer from interruptions: one uses modular construction; the other works with 
basic parts ( Simon 1969 ). Richard Dawkins introduced the idea of the Blind Watch-
maker ( Dawkins 1986 ). Both researchers comfortably anthropomorphized what is a 
mindless assembly process. 

 Every assembly factory depends critically on human minds both as labor as well as 
supervision to monitor, correct, and repair ongoing processes. Yet a developing fertil-
ized egg is also an assembly factory, without any human supervisors or any brain, 
which produces an exquisite, custom product with ten billion moving parts in only 
nine months! Where ’ s the mind inside the fertilized egg? Even Intelligent Design 
proponents might be hard pressed to defend the existence of an omniscient  “ Intelli-
gent Factory Foreman ”  who supervises every embryo developing in the world simul-
taneously, deciding which creatures live or die. 

 Other than basic work on pattern formation, related to work by, for example, Alan 
Turing and Stephen Wolfram, we have a long way to go in understanding the mindless 
intelligence in a process that could self-assemble into a biological form with billions 
of parts. My lab is working on replacing the idea of a perfect robotic factory with 
evolutionary processes that must evolve both form and formation and overcome noise 
and error in physical assembly ( Rieffel and Pollack 2005 ). One of the more interesting 
threads is the relationship between robotic assembly with errors and noise, and the 
kinds of tasks that Bellman proved could iteratively converge to optimal ( Viswanathan 
and Pollack 2005 ). This might provide a self-construction theory involving not a blind 
watchmaker but a  blind chess master  who continuously optimizes assembly processes 
to maximize its own chances for successful reproduction. 

 12.9   Ectomental Reproduction 

 Another great mystery of nature is complex self-reproduction. Shy of a magical reverse-
engineering theory (which would let us genetically engineer flying horses), we have 
little or no grasp on the algorithmic processes involved in the major transition from 
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single cells reproducing, through colonialization, to multicellular creatures with dif-
ferentiated tissues and functions. 

 I think it ’ s another case of dramatically underestimating the amount of intelligence 
in a seemingly obvious natural process. We have many simple examples of reproduc-
tion in software, from straight data copying to self-reproducing code as shown by 
evaluating this ditty in Common Lisp: 

 ((LAMBDA (X) (LIST X (LIST  ‘ QUOTE X))) 

  ‘ (LAMBDA (X) (LIST X (LIST  ‘ QUOTE X)))) 

 Following John Von Neumann ’ s challenge of finding self-reproduction in cellular 
automata, Christopher Langton helped birth the field of artificial life with his more 
elegant automata ( Langton 1984 ), and Jason Lohn and James Reggia showed how easy 
it is to discover the rules for such automata ( Lohn and Reggia 1997 ).Yet so far, all our 
computing reproducing systems, including Tom Ray ’ s Tierra ( Ray 1991 ) and Hod Lip-
son ’ s cubes ( Zykov et al. 2005 ), are very simple. I ’ m hopeful that evolutionary search 
for more complex reproductive forms holds some hope for understanding how a mind-
less reproductive process can become more capable over time to sustain complexity in 
the design of reproducible machinery. 

 12.10   Ectomental Recognition, Control, and Regulation 

 Obviously, intelligence arises outside the mental sphere in so many other places in 
nature that I can ’ t list them all. 

 The immune system is an ectomental chemical recognition system that filters and 
separates millions of chemicals along the me/not-me boundary, without a central 
database listing which compounds are in or out. Self-control of physical movement, 
of individuals and groups, is often mindless. This isn ’ t only because time constraints 
push nervous-system controls to the edge but also because it ’ s hard to find a valuable 
use for cognitive symbols inside mainly numeric models such as pattern generators 
and feedback loops. 

 Finally, the zenith of self-regulation is probably the planet itself. Similar to Adam 
Smith ’ s  “ invisible hand ”  idea that markets are mindlessly intelligent regulators and 
allocators of goods and services, the Gaia hypothesis proposes that the whole bio-
sphere operates so as to maintain the right conditions for life as we know it ( Lovelock 
1979 ). A trivial and kooky interpretation is that Gaia is a goddess with a mind of 
her own, complete with symbols, logic, and language, so she might talk to us one 
day through a burning bush or a statue of her likeness. A deeper interpretation is to 
recognize that the algorithmic complexity of balancing resources, encouraging 
growth, and managing the network of species to maintain the  “ sweet spot ”  for life 
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is a huge job requiring such intelligence that we better not entrust it to any elected 
human officials! 

 Under the mindless-intelligence viewpoint, both evolution itself and the global-
regulation system known as Gaia are intelligent beyond and outside the mental frame-
work based on the symbol manipulation that AI has chosen as its focus. 

 I ’ m neither alone nor unique in wishing for a stronger scientific basis for the field. 
These comments certainly hearken back to many earlier calls ( Brooks 1991 ). Much of 
the world has changed in the last decade. For example, after so many years of chasing 
generative linguistics ’  focus on parsing and syntax, the main thrust of both natural 
language processing and speech recognition has been to drive mindless statistical 
responses from large corpora rather than to establish carefully wrought rules and fea-
tures. Intelligent-control research is also moving in a mindless way, from robotics that 
use shaky logical algorithms to more mathematically sophisticated nonlinear control 
systems ( Zhao 1994 ). Much cognitive modeling research takes seriously the idea that 
algorithms should be not only cognitively plausible but also neurally plausible. Finally, 
machine learning research has progressed from its early efforts at matching human 
learning curves, to building strong algorithms for extracting knowledge from large 
statistical sources. 

 Yet these fields often must defend themselves from the charge that they aren ’ t really 
AI. A few years ago George Dyson visited Google and wrote that he has long considered 
that when  “ real ”  AI arrives on the scene, it will be surrounded by  “ a circle of cheerful, 
contented, intellectually and physically well-nourished people ”  ( Dyson 2005 ). Cer-
tainly Google is based on a very large database and uses statistical machine learning 
techniques to choose which keywords are important in different contexts. Does Google 
software have any of the cognitive aspects that AI has studied for many years? The 
mindless market doesn ’ t care. 

 As we ’ ve seen, mindless intelligence abounds in nature, through processes that 
channel mathematical ideals into physical processes that can appear optimally designed 
yet arise through and operate via exquisite iteration. 

 The hypothesis for how intelligence arises in nature is that dynamical processes, 
driven by accumulated data gathered through iterated and often random-seeming 
processes, can become more intelligent than a smart adult human, yet continue to 
operate on principles that don ’ t rely on symbols and logical reasoning. The proof lies 
not only in Markovian situations where a greedy sequential-choice algorithm driven 
by values converged under Bellman ’ s equation, but also in the reliability, complexity, 
and low cost of biologically produced machines. 

 Because our minds aren ’ t what they seem, symbolic explanations of our behavior 
that were extracted from protocol analysis and conscious introspection are misleading 
at best and complete fabrications at worst. Most of what our brains are doing involves 
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mindless chemical activity not even distinguishable from digestion of the food in the 
Chinese Room. 

 I don ’ t mean to imply that human cognition isn ’ t worth studying. I just want to 
reiterate that cognitive reporting is an always-incomplete story, a simplified verbaliza-
tion of a partial insight of the working patterns of our brains. And brains aren ’ t 
instruction set computers; they ’ re complicated biological networks with all kinds of 
feedback at all levels, like metabolisms, gene regulatory networks, and immune 
systems. The software and systems that emerge from and control these networks, like 
evolution, embryological-development protocols, Gaian ecological regulation, or 
mind, will be much harder to reverse engineer than the artifacts of human engineer-
ing culture. 

 Emphatically then, as AI arises, it won ’ t be organized like a good computer program, 
it won ’ t speak English, and it certainly won ’ t act like a humanoid robot from a science 
fiction movie.  ‘ Symbolic Mind ’  is a self-aggrandized fiction told to make sense of a few 
pounds of mindlessly intelligent meat. It ’ s time we wean ourselves from the fiction 
and start working on the science. 
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